Sample records for monocrotaline-induced pulmonary hypertension

  1. Monocrotaline-Induced Pulmonary Hypertension Involves Downregulation of Antiaging Protein Klotho and eNOS Activity.

    PubMed

    Varshney, Rohan; Ali, Quaisar; Wu, Chengxiang; Sun, Zhongjie

    2016-11-01

    The objective of this study is to investigate whether stem cell delivery of secreted Klotho (SKL), an aging-suppressor protein, attenuates monocrotaline-induced pulmonary vascular dysfunction and remodeling. Overexpression of SKL in mesenchymal stem cells (MSCs) was achieved by transfecting MSCs with lentiviral vectors expressing SKL-green fluorescent protein (GFP). Four groups of rats were treated with monocrotaline, whereas an additional group was given saline (control). Three days later, 4 monocrotaline-treated groups received intravenous delivery of nontransfected MSCs, MSC-GFP, MSC-SKL-GFP, and PBS, respectively. Ex vivo vascular relaxing responses to acetylcholine were diminished in small pulmonary arteries (PAs) in monocrotaline-treated rats, indicating pulmonary vascular endothelial dysfunction. Interestingly, delivery of MSCs overexpressing SKL (MSC-SKL-GFP) abolished monocrotaline-induced pulmonary vascular endothelial dysfunction and PA remodeling. Monocrotaline significantly increased right ventricular systolic blood pressure, which was attenuated significantly by MSC-SKL-GFP, indicating improved PA hypertension. MSC-SKL-GFP also attenuated right ventricular hypertrophy. Nontransfected MSCs slightly, but not significantly, improved PA hypertension and pulmonary vascular endothelial dysfunction. MSC-SKL-GFP attenuated monocrotaline-induced inflammation, as evidenced by decreased macrophage infiltration around PAs. MSC-SKL-GFP increased SKL levels, which rescued the downregulation of SIRT1 (Sirtuin 1) expression and endothelial NO synthase (eNOS) phosphorylation in the lungs of monocrotaline-treated rats. In cultured endothelial cells, SKL abolished monocrotaline-induced downregulation of eNOS activity and NO levels and enhanced cell viability. Therefore, stem cell delivery of SKL is an effective therapeutic strategy for pulmonary vascular endothelial dysfunction and PA remodeling. SKL attenuates monocrotaline-induced PA remodeling and PA smooth muscle

  2. Lodenafil treatment in the monocrotaline model of pulmonary hypertension in rats.

    PubMed

    Polonio, Igor Bastos; Acencio, Milena Marques Pagliareli; Pazetti, Rogério; Almeida, Francine Maria de; Silva, Bárbara Soares da; Pereira, Karina Aparecida Bonifácio; Souza, Rogério

    2014-01-01

    We assessed the effects of lodenafil on hemodynamics and inflammation in the rat model of monocrotaline-induced pulmonary hypertension (PH). Thirty male Sprague-Dawley rats were randomly divided into three groups: control; monocrotaline (experimental model); and lodenafil (experimental model followed by lodenafil treatment, p.o., 5 mg/kg daily for 28 days) Mean pulmonary artery pressure (mPAP) was obtained by right heart catheterization. We investigated right ventricular hypertrophy (RVH) and IL-1 levels in lung fragments. The number of cases of RVH was significantly higher in the monocrotaline group than in the lodenafil and control groups, as were mPAP and IL-1 levels. We conclude that lodenafil can prevent monocrotaline-induced PH, RVH, and inflammation.

  3. Lodenafil treatment in the monocrotaline model of pulmonary hypertension in rats*

    PubMed Central

    Polonio, Igor Bastos; Acencio, Milena Marques Pagliareli; Pazetti, Rogério; de Almeida, Francine Maria; da Silva, Bárbara Soares; Pereira, Karina Aparecida Bonifácio; Souza, Rogério

    2014-01-01

    We assessed the effects of lodenafil on hemodynamics and inflammation in the rat model of monocrotaline-induced pulmonary hypertension (PH). Thirty male Sprague-Dawley rats were randomly divided into three groups: control; monocrotaline (experimental model); and lodenafil (experimental model followed by lodenafil treatment, p.o., 5 mg/kg daily for 28 days) Mean pulmonary artery pressure (mPAP) was obtained by right heart catheterization. We investigated right ventricular hypertrophy (RVH) and IL-1 levels in lung fragments. The number of cases of RVH was significantly higher in the monocrotaline group than in the lodenafil and control groups, as were mPAP and IL-1 levels. We conclude that lodenafil can prevent monocrotaline-induced PH, RVH, and inflammation. PMID:25210965

  4. Protective effects of drag-reducing polymers in a rat model of monocrotaline-induced pulmonary hypertension.

    PubMed

    Wang, Yali; Hu, Feng; Mu, Xiaoyan; Wu, Feng; Yang, Dechun; Zheng, Guixiang; Sun, Xiaoning; Gong, Kaizheng; Zhang, Zhengang

    2016-01-27

    Drag-reducing polymers (DRPs) are blood-soluble macromolecules which may increase blood flow and reduce vascular resistance. The purpose of the present study was to observe the effect of DRPs on monocrotaline-induced pulmonary hypertension (PH) in the rat model. A total of 64 male Wistar rats were randomly divided into four groups: Group I (pulmonary hypertension model + DRP treatment); Group II (pulmonary hypertension model + saline treatment); Group III (control + DRP treatment); Group IV (control + saline treatment). After five weeks, comparisons were made of the following indices: survival rate, body weight, blood pressure, right ventricular systolic pressure, right ventricular hypertrophy, wall thickness of pulmonary arteries, the internal diameter of small pulmonary arteries, plasma IL-1β and IL-6. The survival rate after 5 weeks varied significantly across all groups (P=0.013), but the survival rates of Groups I and II were not statistically significantly different. Administration of DRP (intravenous injection twice weekly) attenuated the PH-induced increase in right ventricular systolic pressure and suppressed the increases in right ventricular (RV) weight and the ratio of right ventricular weight to left ventricle plus septum weight (RV/LV + S). DRP treatment also significantly decreased the wall thickness of pulmonary arteries, augmented the internal diameter of small pulmonary arteries, and suppressed increases in the plasma levels of IL-1β and IL-6. DRP treatment with intravenous injection effectively inhibited the development of monocrotaline-induced pulmonary hypertension in the rat model. DRPs may have potential application for the treatment of pulmonary hypertension.

  5. [Effect of acidic oligosaccharides on P-selectin of pulmonary hypertensive rats induced by monocrotaline].

    PubMed

    Feng, Z; Hu, Y; An, N N; Feng, W J; Hu, T; Mao, Y J

    2018-02-12

    Objective: To observe the effects of acidic oligosaccharides (AOS) on P-selectin levels in the serum and the pulmonary arteries of pulmonary hypertensive rats induced by monocrotaline. Methods: Sixty healthy adult male Sprague-Dawley rats were randomly divided into control group ( n =10), model group ( n =10), Alprostadil group ( n =10), low-dose AOS group (AOS-L, n =10), medium-dose AOS group (AOS-M, n =10) and high-dose AOS group (AOS-H, n =10). The rat model of pulmonary arterial hypertension was made by a single intraperitoneal injection of monocrotaline(60 mg/kg). Five weeks after injection, pulmonary arterial (PA) acceleration time (PAT) and ejection time (ET) were measured by color Doppler ultrasound. Then, the Alprostadil group was treated by Alprostadil 5 μg·kg(-1)·d(-1)intraperitoneally. Acidic oligosaccharides was administered by intraperitoneal injection to rats in the AOS-L group(5 kg(-1)·d(-1)), AOS-M group (10 mg·kg(-1)·d(-1))and AOS-H group (20 mg·kg(-1)·d(-1)). Control group and model group were given normal saline instead. At the end of experiments, the death rate was recorded and PAT/ET was measured. We calculated the right ventricular hypertrophy index (RVHI) of all rats sacrificed under anesthesia. Precision-cut lung slices were stained with HE for observation of the structure of middle and small arteries. The expression level of P-selectin in serum and pulmonary arterial tissues were detected by ELISA and Western blot respectively. Results: AOS significantly increased the level of PAT/ET ( P <0.01), and attenuated RVHI ( P <0.01). AOS significantly improved intima-media proliferation in small-to medium-sized pulmonary arteries, and attenuated perivascular inflammation. AOS and Alprostadil significantly down-regulated the protein expression of P-selectin in serum and pulmonary arteries ( P <0.01). Conclusion: In this rat model of monocrotaline-induced pulmonary hypertension, AOS decreased the expressions of P-selectin in serum and

  6. Upregulation of GLUT-4 in right ventricle of rats with monocrotaline-induced pulmonary hypertension.

    PubMed

    Broderick, Tom L; King, Tiffany M

    2008-12-01

    Pulmonary hypertension is characterized by abnormal vascular remodeling leading to occlusion of pulmonary arteries and increased stress placed on the right ventricle (RV). This causes the RV to hypertrophy and eventually to failure. This study was designed to examine the effects of pulmonary hypertension in rats on right ventricular remodeling and glucose transporter protein (GLUT4) content in right (RV) and left ventricle (LV). Pulmonary hypertension was induced in male Sprague-Dawley rat by a single subcutaneous injection of monocrotaline (MCT) at the concentration of 60 mg/kg. Forty-six days following the injection of MCT, animals were sacrificed. MCT-treated rats displayed significant increases in lung weight and RV weight. Marked RV hypertrophy was evident as the ratio of the RV to LV plus septum weight was nearly 40% higher in MCT-treated rats compared to control rats. Total GLUT4 content from whole homogenates from the RV was increased by approximately 28% in MCT-treated hearts compared to control hearts. No differences, however, in the LV content between groups were observed. Our findings indicate that the structural remodeling of the RV in MCT-induced pulmonary hypertension results in the upregulation of glucose transporters. This increase in RV GLUT4 levels may potentially result in alterations in substrate energy metabolism.

  7. Inhibition of Notch3 prevents monocrotaline-induced pulmonary arterial hypertension.

    PubMed

    Zhang, Yonghong; Xie, Xinming; Zhu, Yanting; Liu, Lu; Feng, Wei; Pan, Yilin; Zhai, Cui; Ke, Rui; Li, Shaojun; Song, Yang; Fan, Yuncun; Fan, Fenling; Wang, Xiaochuang; Li, Fengjuan; Li, Manxiang

    2015-01-01

    It has been shown that activation of Notch3 signaling is involved in the development of pulmonary arterial hypertension (PAH) by stimulating pulmonary arteries remodeling, while the molecular mechanisms underlying this are still largely unknown. The aims of this study are to address these issues. Monocrotaline dramatically increased right ventricle systolic pressure to 39.0 ± 2.6 mmHg and right ventricle hypertrophy index to 53.4 ± 5.3% (P < 0.05 versus control) in rats, these were accompanied with significantly increased proliferation and reduced apoptosis of pulmonary vascular cells as well as pulmonary arteries remodeling. Treatment of PAH model with specific Notch inhibitor DAPT significantly reduced right ventricle systolic pressure to 26.6 ± 1.3 mmHg and right ventricle hypertrophy index to 33.5 ± 2.6% (P < 0.05 versus PAH), suppressed proliferation and enhanced apoptosis of pulmonary vascular cells as well as inhibited pulmonary arteries remodeling. Our results further indicated that level of Notch3 protein and NICD3 were increased in MCT-induced model of PAH, this was accompanied with elevation of Skp2 and Hes1 protein level and reduction of P27Kip1. Administration of rats with DAPT-prevented MCT induced these changes. Our results suggest that Notch3 signaling activation stimulated pulmonary vascular cells proliferation by Skp2-and Hes1-mediated P27Kip1 reduction, and Notch3 might be a new target to treat PAH.

  8. Possible involvement of mitochondrial energy-producing ability in the development of right ventricular failure in monocrotaline-induced pulmonary hypertensive rats.

    PubMed

    Daicho, Takuya; Yagi, Tatsuya; Abe, Yohei; Ohara, Meiko; Marunouchi, Tetsuro; Takeo, Satoshi; Tanonaka, Kouichi

    2009-09-01

    The present study was undertaken to explore the possible involvement of alterations in the mitochondrial energy-producing ability in the development of the right ventricular failure in monocrotaline-administered rats. The rats at the 6th week after subcutaneous injection of 60 mg/kg monocrotaline revealed marked myocardial hypertrophy and fibrosis, that is, severe cardiac remodeling. The time-course study on the cardiac hemodynamics of the monocrotaline-administered rat by the cannula and echocardiographic methods showed a reduction in cardiac double product, a decrease in cardiac output index, and an increase in the right ventricular Tei index, suggesting that the right ventricular failure was induced at the 6th week after monocrotaline administration in rats. The mitochondrial oxygen consumption rate of the right ventricular muscle isolated from the monocrotaline-administered animal was decreased, which was associated with a reduction in myocardial high-energy phosphates. Furthermore, the decrease in mitochondrial oxygen consumption rate was inversely related to the increase in the right ventricular Tei index of the monocrotaline-administered rats. These results suggest that impairment of the mitochondrial energy-producing ability is involved in the development of the right ventricular failure in monocrotaline-induced pulmonary hypertensive rats.

  9. Changes of Pulmonary Pathology and Gene Expressions After Simvastatin Treatment in the Monocrotaline-Induced Pulmonary Hypertension Rat Model

    PubMed Central

    Lee, Yun Hee; Kim, Kwan Chang; Cho, Min-Sun

    2011-01-01

    Background and Objectives Simvastatin's properties are suggestive of a potential pathophysiologic role in pulmonary hypertension. The objectives of this study were to investigate changes of pulmonary pathology and gene expressions, including endothelin (ET)-1, endothelin receptor A (ERA), inducible nitric oxide synthase (NOS2), endothelial nitric oxide synthase (NOS3), matrix metalloproteinase (MMP) 2, tissue inhibitor of matrix metalloproteinases (TIMP) and caspase 3, and to evaluate the effect of simvastatin on monocrotaline (M)-induced pulmonary hypertension. Materials and Methods Six week old male Sprague-Dawley rats were treated, as follows: control group, subcutaneous (sc) injection of saline; M group, sc injection of M (60 mg/kg); and simvastatin group, sc injection of M (60 mg/kg) plus 10 mg/kg/day simvastatin orally. Results On day 28, right ventricular hypertrophy (RVH) significantly decreased in the simvastatin group compared to the M group. Similarly, right ventricular pressure significantly decreased in the simvastatin group on day 28. From day 7, the ratio of medial thickening of the pulmonary artery was significantly increased in the M group, but there was no significant change in the simvastatin group. The number of muscular pulmonary arterioles was significantly reduced in the simvastatin group. On day 5, gene expressions of ET-1, ERA, NOS2, NOS3, MMP and TIMP significantly decreased in the simvastatin group. Conclusion Administration of simvastatin exerted weak inhibitory effects on RVH and on the number of muscular pulmonary arterioles, during the development of M-induced pulmonary hypertension in rats. Simvastatin decreased gene expressions on day 5. PMID:22022327

  10. Pathophysiology of infantile pulmonary arterial hypertension induced by monocrotaline.

    PubMed

    Dias-Neto, Marina; Luísa-Neves, Ana; Pinho, Sónia; Gonçalves, Nádia; Mendes, Maria; Eloy, Catarina; Lopes, José M; Gonçalves, Daniel; Ferreira-Pinto, Manuel; Leite-Moreira, Adelino F; Henriques-Coelho, Tiago

    2015-06-01

    Pediatric pulmonary arterial hypertension (PAH) presents certain specific features. In this specific age group, experimental models to study the pathophysiology of PAH are lacking. To characterize hemodynamic, morphometric, and histological progression as well as the expression of neurohumoral factors and regulators of cardiac transcription in an infantile model of PAH induced by monocrotaline (MCT), eight-day-old Wistar rats were randomly injected with MCT (30 mg/kg, sc, n = 95) or equal volume of saline solution (n = 92). Animals were instrumented for biventricular hemodynamic recording 7, 14, and 21 days after MCT, whereas samples were collected at 1, 3, 7, 14, and 21 days after MCT. Different time point postinjections were defined for further analysis. Hearts and lungs were collected for morphometric characterization, assessment of right- and left-ventricle (RV and LV) cardiomyocyte diameter and collagen type-I and type-III ratio, RV collagen volume fraction, and pulmonary vessels wall thickness. mRNA quantification was undertaken for brain natriuretic peptide (BNP), endothelin-1 (ET-1), and for cardiac transcription regulators (HOP and Islet1). Animals treated with MCT at the 8th day of life presented RV hypertrophy since day 14 after MCT injection. There were no differences on the RV collagen volume fraction or collagen type-I and type-III ratio. Pulmonary vascular remodelling and PAH were present on day 21, which were accompanied by an increased expression of BNP, ET-1, HOP, and Islet1. The infantile model of MCT-induced PAH can be useful for the study of its pathophysiology and to test new therapeutic targets in pediatric age group.

  11. Docosahexaenoic acid inhibits monocrotaline-induced pulmonary hypertension via attenuating endoplasmic reticulum stress and inflammation.

    PubMed

    Chen, Rui; Zhong, Wei; Shao, Chen; Liu, Peijing; Wang, Cuiping; Wang, Zhongqun; Jiang, Meiping; Lu, Yi; Yan, Jinchuan

    2018-02-01

    Endoplasmic reticulum (ER) stress and inflammation contribute to pulmonary hypertension (PH) pathogenesis. Previously, we confirmed that docosahexaenoic acid (DHA) could improve hypoxia-induced PH. However, little is known about the link between DHA and monocrotaline (MCT)-induced PH. Our aims were, therefore, to evaluate the effects and molecular mechanisms of DHA on MCT-induced PH in rats. Rat PH was induced by MCT. Rats were treated with DHA daily in the prevention group (following MCT injection) and the reversal group (after MCT injection for 2 wk) by gavage. After 4 wk, mean pulmonary arterial pressure (mPAP), right ventricular (RV) hypertrophy index, and morphological and immunohistochemical analyses were evaluated. Rat pulmonary artery smooth muscle cells (PASMCs) were used to investigate the effects of DHA on cell proliferation stimulated by platelet-derived growth factor (PDGF)-BB. DHA decreased mPAP and attenuated pulmonary vascular remodeling and RV hypertrophy, which were associated with suppressed ER stress. DHA blocked the mitogenic effect of PDGF-BB on PASMCs and arrested the cell cycle via inhibiting nuclear factor of activated T cells-1 (NFATc1) expression and activation and regulating cell cycle-related proteins. Moreover, DHA ameliorated inflammation in lung and suppressed macrophage and T lymphocyte accumulation in lung and adventitia of resistance pulmonary arteries. These findings suggest that DHA could protect against MCT-induced PH by reducing ER stress, suppressing cell proliferation and inflammation.

  12. Role of secretory phospholipase A(2) in rhythmic contraction of pulmonary arteries of rats with monocrotaline-induced pulmonary arterial hypertension.

    PubMed

    Tanabe, Yoshiyuki; Saito-Tanji, Maki; Morikawa, Yuki; Kamataki, Akihisa; Sawai, Takashi; Nakayama, Koichi

    2012-01-01

    Excessive stretching of the vascular wall in accordance with pulmonary arterial hypertension (PAH) induces a variety of pathogenic cellular events in the pulmonary arteries. We previously reported that indoxam, a selective inhibitor for secretory phospholipase A(2) (sPLA(2)), blocked the stretch-induced contraction of rabbit pulmonary arteries by inhibition of untransformed prostaglandin H(2) (PGH(2)) production. The present study was undertaken to investigate involvement of sPLA(2) and untransformed PGH(2) in the enhanced contractility of pulmonary arteries of experimental PAH in rats. Among all the known isoforms of sPLA(2), sPLA(2)-X transcript was most significantly augmented in the pulmonary arteries of rats with monocrotaline-induced pulmonary hypertension (MCT-PHR). The pulmonary arteries of MCT-PHR frequently showed two types of spontaneous contraction in response to stretch; 27% showed rhythmic contraction, which was sensitive to indoxam and SC-560 (selective COX-1 inhibitor), but less sensitive to NS-398 (selective COX-2 inhibitor); and 47% showed sustained incremental tension (tonic contraction), which was insensitive to indoxam and SC-560, but sensitive to NS-398 and was attenuated to 45% of the control. Only the rhythmically contracting pulmonary arteries of MCT-PHR produced a substantial amount of untransformed PGH(2), which was abolished by indoxam. These results suggest that sPLA(2)-mediated PGH(2) synthesis plays an important role in the rhythmic contraction of pulmonary arteries of MCT-PHR.

  13. N-acetylcysteine improves established monocrotaline-induced pulmonary hypertension in rats

    PubMed Central

    2014-01-01

    Background The outcome of patients suffering from pulmonary arterial hypertension (PAH) are predominantly determined by the response of the right ventricle to the increase afterload secondary to high vascular pulmonary resistance. However, little is known about the effects of the current available or experimental PAH treatments on the heart. Recently, inflammation has been implicated in the pathophysiology of PAH. N-acetylcysteine (NAC), a well-known safe anti-oxidant drug, has immuno-modulatory and cardioprotective properties. We therefore hypothesized that NAC could reduce the severity of pulmonary hypertension (PH) in rats exposed to monocrotaline (MCT), lowering inflammation and preserving pulmonary vascular system and right heart function. Methods Saline-treated control, MCT-exposed, MCT-exposed and NAC treated rats (day 14–28) were evaluated at day 28 following MCT for hemodynamic parameters (right ventricular systolic pressure, mean pulmonary arterial pressure and cardiac output), right ventricular hypertrophy, pulmonary vascular morphometry, lung inflammatory cells immunohistochemistry (monocyte/macrophages and dendritic cells), IL-6 expression, cardiomyocyte hypertrophy and cardiac fibrosis. Results The treatment with NAC significantly decreased pulmonary vascular remodeling, lung inflammation, and improved total pulmonary resistance (from 0.71 ± 0.05 for MCT group to 0.50 ± 0.06 for MCT + NAC group, p < 0.05). Right ventricular function was also improved with NAC treatment associated with a significant decrease in cardiomyocyte hypertrophy (625 ± 69 vs. 439 ± 21 μm2 for MCT and MCT + NAC group respectively, p < 0.001) and heart fibrosis (14.1 ± 0.8 vs. 8.8 ± 0.1% for MCT and MCT + NAC group respectively, p < 0.001). Conclusions Through its immuno-modulatory and cardioprotective properties, NAC has beneficial effect on pulmonary vascular and right heart function in experimental PH. PMID:24929652

  14. Cardioprotective effect of cerium oxide nanoparticles in monocrotaline rat model of pulmonary hypertension: A possible implication of endothelin-1.

    PubMed

    Nassar, Seham Zakaria; Hassaan, Passainte S; Abdelmonsif, Doaa A; ElAchy, Samar Nabil

    2018-05-15

    Cerium oxide nanoparticles (CeO 2 NPs) have been recently introduced into the medical field for their antioxidant properties. The ability of CeO 2 NPs alone or in combination with spironolactone (SP) to attenuate monocrotaline (MCT)-induced pulmonary hypertension and associated right ventricular hypertrophy was studied in rats. A special emphasis was given to endothelin-1 pathway. Pulmonary hypertension was induced in albino rats by a single subcutaneous injection of MCT (60 mg/kg). Rats received either single CeO 2 NPs therapy or combined therapy with SP for 2 weeks. CeO 2 NPs improved pulmonary function tests with concomitant decrease in serum endothelin-1 and pulmonary expression of endothelin-1 and its receptor ETAR. Besides, CeO 2 NPs diminished MCT-induced right ventricular hypertrophy and reduced cardiac oxidative stress and apoptosis. CeO 2 NPs could improve pulmonary hypertension and associated right ventricular hypertrophy with no additive value for SP. Besides being an antioxidant, CeO 2 NPs work through endothelin-1 pathway to improve pulmonary hypertension. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Lineage Analysis in Pulmonary Arterial Hypertension

    DTIC Science & Technology

    2012-06-01

    undergo pneunomectomy followed one week later by intravenous injection of monocrotaline pyrrole . The fate of GFP-expressing cells of endothelial lineage...pneumonectomy followed one week later by jugular vein injection of monocrotaline pyrrole in dimethyl formamide. Expression of smooth muscle alpha actin in...cells. We induced experimental pulmonary hypertension in SM22 Cre x mT/mG mice, by injecting monocrotaline pyrrole into the pulmonary circulation of

  16. Apoptosis and Inflammation Associated Gene Expressions in Monocrotaline-Induced Pulmonary Hypertensive Rats after Bosentan Treatment

    PubMed Central

    Hong, Young Mi; Kwon, Jung Hyun; Choi, Shinkyu

    2014-01-01

    Background and Objectives Vascular wall remodeling in pulmonary hypertension can be caused by an aberration in the normal balance between proliferation and apoptosis of endothelial cell in the pulmonary artery. The objective of this study was to evaluate the effect of bosentan on apoptosis in monocrotaline (MCT)-induced pulmonary hypertension. Materials and Methods Sprague-Dawley rats were divided into three groups: control (C) group, M group (MCT 60 mg/kg) and B group (MCT 60 mg/kg plus bosentan 20 mg/day orally). Gene expressions of Bcl (B cell leukemia/lymphoma)-2, caspase-3, complement component (C)-6, vascular endothelial growth factor (VEGF), interleukin (IL)-6 and tumor necrosis factor-alpha (TNF-α) were analyzed by real time polymerase chain reaction and western blot analysis. Results The messenger ribonucleic acid (mRNA) expressions of caspase-3 and VEGF were significantly increased in the M group compared with the C group, and significantly decreased in the B group compared with the M group in week 4. mRNA expression of IL-6 was significantly decreased in weeks 1, 2, and 4 in the B group compared with the M group. mRNA expression of TNF-α was significantly decreased on day 5 and in weeks 1 and 2 in the B group compared with the M group. Conclusion Bosentan may have potential for preventing apoptosis and inflammation. PMID:24653739

  17. Changes of Gene Expression after Bone Marrow Cell Transfusion in Rats with Monocrotaline-Induced Pulmonary Hypertension

    PubMed Central

    Kim, Kwan Chang; Lee, Hae Ryun; Kim, Sung Jin; Cho, Min-Sun

    2012-01-01

    Pulmonary artery hypertension (PAH) causes right ventricular failure and possibly even death by a progressive increase in pulmonary vascular resistance. Bone marrow-derived mesenchymal stem cell therapy has provided an alternative treatment for ailments of various organs by promoting cell regeneration at the site of pathology. The purpose of this study was to investigate changes of pulmonary haemodynamics, pathology and expressions of various genes, including ET (endothelin)-1, ET receptor A (ERA), endothelial nitric oxide synthase (NOS) 3, matrix metalloproteinase (MMP) 2, tissue inhibitor of matrix metalloproteinase (TIMP), interleukin (IL)-6 and tumor necrosis factor (TNF)-α in monocrotaline (MCT)-induced PAH rat models after bone marrow cell (BMC) transfusion. The rats were grouped as the control (C) group, monocrotaline (M) group, and BMC transfusion (B) group. M and B groups received subcutaneous (sc) injection of MCT (60 mg/kg). BMCs were transfused by intravenous injection at the tail 1 week after MCT injection in B group. Results showed that the average RV pressure significantly decreased in the B group compared with the M group. RV weight and the ratio of RH/LH+septum significantly decreased in the B group compared to the M group. Gene expressions of ET-1, ERA, NOS 3, MMP 2, TIMP, IL-6, and TNF-α significantly decreased in week 4 in the B group compared with the M group. In conclusion, BMC transfusion appears to improve survival rate, RVH, and mean RV pressure, and decreases gene expressions of ET-1, ERA, NOS 3, MMP 2, TIMP, IL-6, and TNF-α. PMID:22690090

  18. Arterial morphology responds differently to Captopril then N-acetylcysteine in a monocrotaline rat model of pulmonary hypertension

    NASA Astrophysics Data System (ADS)

    Molthen, Robert; Wu, Qingping; Baumgardt, Shelley; Kohlhepp, Laura; Shingrani, Rahul; Krenz, Gary

    2010-03-01

    Pulmonary hypertension (PH) is an incurable condition inevitably resulting in death because of increased right heart workload and eventual failure. PH causes pulmonary vascular remodeling, including muscularization of the arteries, and a reduction in the typically large vascular compliance of the pulmonary circulation. We used a rat model of monocrotaline (MCT) induced PH to evaluated and compared Captopril (an angiotensin converting enzyme inhibitor with antioxidant capacity) and N-acetylcysteine (NAC, a mucolytic with a large antioxidant capacity) as possible treatments. Twenty-eight days after MCT injection, the rats were sacrificed and heart, blood, and lungs were studied to measure indices such as right ventricular hypertrophy (RVH), hematocrit, pulmonary vascular resistance (PVR), vessel morphology and biomechanics. We implemented microfocal X-ray computed tomography to image the pulmonary arterial tree at intravascular pressures of 30, 21, 12, and 6 mmHg and then used automated vessel detection and measurement algorithms to perform morphological analysis and estimate the distensibility of the arterial tree. The vessel detection and measurement algorithms quickly and effectively mapped and measured the vascular trees at each intravascular pressure. Monocrotaline treatment, and the ensuing PH, resulted in a significantly decreased arterial distensibility, increased PVR, and tended to decrease the length of the main pulmonary trunk. In rats with PH induced by monocrotaline, Captopril treatment significantly increased arterial distensibility and decrease PVR. NAC treatment did not result in an improvement, it did not significantly increase distensibility and resulted in further increase in PVR. Interestingly, NAC tended to increase peripheral vascular density. The results suggest that arterial distensibility may be more important than distal collateral pathways in maintaining PVR at normally low values.

  19. Beneficial Effect of Ocimum sanctum (Linn) against Monocrotaline-Induced Pulmonary Hypertension in Rats.

    PubMed

    Meghwani, Himanshu; Prabhakar, Pankaj; Mohammed, Soheb A; Dua, Pamila; Seth, Sandeep; Hote, Milind P; Banerjee, Sanjay K; Arava, Sudheer; Ray, Ruma; Maulik, Subir Kumar

    2018-04-17

    The study was designed to explore any beneficial effect of Ocimum sanctum (Linn) (OS) in experimental pulmonary hypertension (PH) in rats. OS is commonly known as “holy basil” and “Tulsi” and is used in the Indian System of Medicine as antidiabetic, antioxidant, hepatoprotective, adaptogenic, and cardioprotective. Monocrotaline (MCT) administration caused development of PH in rats after 28 days and rats were observed for 42 days. Treatments (sildenafil; 175 µg/kg, OS; 200 mg/kg) were started from day 29 after the development of PH and continued for 14 days. Parameters to assess the disease development and effectiveness of interventions were echocardiography, right and left ventricular systolic pressures, and right ventricular end diastolic pressure, percentage medial wall thickness (%MWT) of pulmonary artery, oxidative stress markers in lung tissue, NADPH oxidase (Nox-1) protein expression in lung, and mRNA expression of Bcl2 and Bax in right ventricular tissue. OS (200 mg/kg) treatment ameliorated increased lung weight to body weight ratio, right ventricular hypertrophy, increased RVSP, and RVoTD/AoD ratio. Moreover, OS treatment decreases Nox-1 expression and increases expression of Bcl2/Bax ratio caused by MCT. The present study demonstrates that OS has therapeutic ability against MCT-induced PH in rat which are attributed to its antioxidant effect. The effect of OS was comparable with sildenafil.

  20. Effect of small hairpin RNA targeting endothelin-converting enzyme-1 in monocrotaline-induced pulmonary hypertensive rats.

    PubMed

    Son, Jae Sung; Kim, Kwan Chang; Kim, Bo Kyung; Cho, Min-Sun; Hong, Young Mi

    2012-12-01

    The purpose of this study was to investigate the therapeutic effects of small hairpin RNA (shRNA) targeting endothelin-converting enzyme (ECE)-1 in monocrotaline (MCT)-induced pulmonary hypertensive rats. Ninty-four Sprague-Dawley rats were divided into three groups: control (n = 24), MCT (n = 35) and shRNA (n = 35). Four-week survival rate in the shRNA group was significantly increased compared to that in the MCT group. The shRNA group showed a significant improvement of right ventricular (RV) pressure compared with the MCT group. The MCT and shRNA groups also showed an increase in RV/(left ventricle + septum) ratio and lung/body weight. Plasma endothelin (ET)-1 concentrations in the shRNA group were lower than those in the MCT group. Medial wall thickness of pulmonary arterioles were increased after MCT injection and was significantly decreased in the shRNA group. The number of intra-acinar muscular pulmonary arteries was decreased in the shRNA group. The mRNA expressions of ET-1 and ET receptor A (ET(A)) were significantly decreased in the shRNA group in week 4. The protein levels of ET(A) were decreased in the shRNA group in week 2. The protein levels of tumor necrosis factor-α and vascular endothelial growth factor were decreased in the shRNA group in week 4. In conclusion, the gene silencing with lentiviral vector targeting ECE-1 could be effective against hemodynamic, histopathological and gene expression changes in pulmonary hypertension.

  1. Beneficial effects of a novel agonist of the adenosine A2A receptor on monocrotaline-induced pulmonary hypertension in rats

    PubMed Central

    Alencar, Allan K N; Pereira, Sharlene L; Montagnoli, Tadeu L; Maia, Rodolfo C; Kümmerle, Arthur E; Landgraf, Sharon S; Caruso-Neves, Celso; Ferraz, Emanuelle B; Tesch, Roberta; Nascimento, José H M; de Sant'Anna, Carlos M R; Fraga, Carlos A M; Barreiro, Eliezer J; Sudo, Roberto T; Zapata-Sudo, Gisele

    2013-01-01

    Background and Purpose Pulmonary arterial hypertension (PAH) is characterized by enhanced pulmonary vascular resistance, right ventricular hypertrophy and increased right ventricular systolic pressure. Here, we investigated the effects of a N-acylhydrazone derivative, 3,4-dimethoxyphenyl-N-methyl-benzoylhydrazide (LASSBio-1359), on monocrotaline (MCT)-induced pulmonary hypertension in rats. Experimental Approach PAH was induced in male Wistar rats by a single i.p. injection of MCT (60 mg·kg−1) and 2 weeks later, oral LASSBio-1359 (50 mg·kg−1) or vehicle was given once daily for 14 days. Echocardiography was used to measure cardiac function and pulmonary artery dimensions, with histological assay of vascular collagen. Studies of binding to human recombinant adenosine receptors (A1, A2A, A3) and of docking with A2A receptors were also performed. Key Results MCT administration induced changes in vascular and ventricular structure and function, characteristic of PAH. These changes were reversed by treatment with LASSBio-1359. MCT also induced endothelial dysfunction in pulmonary artery, as measured by diminished relaxation of pre-contracted arterial rings, and this dysfunction was reversed by LASSBio-1359. In pulmonary artery rings from normal Wistar rats, LASSBio-1359 induced relaxation, which was decreased by the adenosine A2A receptor antagonist, ZM 241385. In adenosine receptor binding studies, LASSBio-1359 showed most affinity for the A2A receptor and in the docking analyses, binding modes of LASSBio-1359 and the A2A receptor agonist, CGS21680, were very similar. Conclusion and Implications In rats with MCT-induced PAH, structural and functional changes in heart and pulmonary artery were reversed by treatment with oral LASSBio-1359, most probably through the activation of adenosine A2A receptors. PMID:23530610

  2. Effects of atorvastatin and losartan on monocrotaline-induced pulmonary artery remodeling in rats.

    PubMed

    Xie, Liangdi; Lin, Peisen; Xie, Hong; Xu, Changsheng

    2010-01-01

    Structural remodeling of pulmonary artery plays an important role in maintaining sustained pulmonary arterial hypertension (PAH). The anti-remodeling effects of statins have been reported in systemic hypertension. In this study, we studied the effects of atovastatin (Ato) or losartan (Los) in monocrotaline (MCL)-induced pulmonary artery remodeling using a rat model. Forty Sprague-Dawley (SD) rats were randomly assigned into four groups (n = 10): normal control (Ctr), PAH, PAH treated with Los, and PAH treated with Ato. We found that in the Los- or Ato-treated group, the mean pulmonary arterial pressure, right heart hypertrophy index, ratio of wall/lumen thickness (WT%), as well as the wall/lumen area (WA%) were significantly reduced compared to the PAH group. Also in pulmonary arteries dissected from rats in the Ato- or Los-treated group, in both mRNA and protein levels, the expression of α1C subunit of voltage-gated calcium channel (Ca(v)α1c) was downregulated, while sarcoplasmic/endoplasmic reticulum calcium-ATPase (SERCA-2a) and inositol 1,4,5 triphosphate receptor 1 (IP3R-1) upregulated. However, the mRNA level of RyR-3 subunit of calcium regulating channel was increased, whereas its protein level was reduced in the treated groups. Our results suggest that atorvastatin or losartan may regress the remodeling of the pulmonary artery in pulmonary hypertensive rats, with differential expression of calcium regulating channels.

  3. Lineage Analysis in Pulmonary Arterial Hypertension

    DTIC Science & Technology

    2011-06-01

    later by intravenous injection of monocrotaline pyrrole . The fate of GFP-expressing cells of endothelial lineage will be correlated with...vein injection of monocrotaline pyrrole in dimethyl formamide. At day 35, mice demonstrated pulmonary hypertension with RVSP increased from 22 + 3

  4. Cardiopulmonary protective effects of the selective FXR agonist obeticholic acid in the rat model of monocrotaline-induced pulmonary hypertension.

    PubMed

    Vignozzi, Linda; Morelli, Annamaria; Cellai, Ilaria; Filippi, Sandra; Comeglio, Paolo; Sarchielli, Erica; Maneschi, Elena; Vannelli, Gabriella Barbara; Adorini, Luciano; Maggi, Mario

    2017-01-01

    Farnesoid X receptor (FXR) activation by obeticholic acid (OCA) has been demonstrated to inhibit inflammation and fibrosis development and even induce fibrosis regression in liver, kidney and intestine in multiple disease models. OCA also inhibits liver fibrosis in nonalcoholic steatohepatitis patients. FXR activation has also been demonstrated to suppress the inflammatory response and to promote lung repair after lung injury. This study investigated the effects of OCA treatment (3, 10 or 30mg/kg, daily for 5days a week, for 7 and/or 28 days) on inflammation, tissue remodeling and fibrosis in the monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) rat model. Treatment with OCA attenuated MCT-induced increased pulmonary arterial wall thickness and right ventricular hypertrophy, by i) blunting pathogenic inflammatory mechanisms (downregulation of interleukin 6, IL-6, and monocyte chemoattractant protein-1, MCP-1) and ii) enhancing protective mechanisms counteracting fibrosis and endothelial/mesenchymal transition. MCT-injected rats also showed a marked decrease of pulmonary artery responsiveness to both endothelium-dependent and independent relaxant stimuli, such as acetylcholine and a nitric oxide donor, sodium nitroprusside. Administration of OCA (30mg/kg) normalized this decreased responsiveness. Accordingly, OCA treatment induced profound beneficial effects on lung histology. In particular, both OCA doses markedly reduced the MCT-induced medial wall thickness increase in small pulmonary arteries. To evaluate the objective functional improvement by OCA treatment of MCT-induced PAH, we performed a treadmill test and measured duration of exercise. MCT significantly reduced, and OCA normalized treadmill endurance. Results with OCA were similar, or even superior, to those obtained with tadalafil, a well-established treatment of PAH. In conclusion, OCA treatment demonstrates cardiopulmonary protective effects, modulating lung vascular remodeling, reducing

  5. Lineage Analysis in Pulmonary Arterial Hypertension

    DTIC Science & Technology

    2013-06-01

    monocrotaline pyrrole . The fate of lacZ-expressing cells will be correlated with immunofluorescent staining of endothelial marker CD31, mesenchymal marker...A) Pilot study: Time course of development of pulmonary hypertension in pneumonectomized mice injected with monocrotaline pyrrole (P/MCTP, n = 4... pyrrole . A, B) Normal muscular pulmonary artery (PA) adjacent to bronchiole (Br) A) hematoxylin and eosin stain (H&E), B) elastin-van Gieson stain (EVG

  6. Preventive effect of sildenafil on right ventricular function in rats with monocrotaline-induced pulmonary arterial hypertension

    PubMed Central

    Yoshiyuki, Rieko; Tanaka, Ryo; Fukushima, Ryuji; Machida, Noboru

    2016-01-01

    The present study aimed to evaluate the preventive effect of sildenafil treatment on pulmonary hypertension (PH) induced by monocrotaline (MCT) in rats. Fifty-four 12-week-old male Sprague–Dawley rats were injected with MCT or saline solution (MCT-injected rats: n=36; saline: n=18). Serial echocardiography and right ventricular systolic pressure (RVSP) measurements via a cardiac catheter were performed at 2, 4 and 6 weeks after the injection. After injection of MCT, rats received oral sildenafil (MCT/sildenafil group: n=18) or no treatment (MCT group: n=18) until undergoing echocardiography and cardiac catheterization. RVSP in the MCT/sildenafil group was lower than that in the MCT group at 4 (P<0.001) and 6 weeks (P<0.001). The septal curvature was improved in the MCT/sildenafil group compared with the MCT group. This finding showed that sildenafil prevented flattening of the interventricular septum because of right ventricular pressure overload. The ratio of peak trans-tricuspid early diastolic wave velocity to active filling with atrial systolic velocity showed that sildenafil improved diastolic function. Tricuspid annular plane systolic excursion and tricuspid annular systolic velocity in the MCT/sildenafil group did not show preserved myocardial contraction after administration of sildenafil. Administration of sildenafil leads to a reduction in RVSP and improvement in cardiac function in rats with PH induced by MCT. The vasodilatory action of sildenafil improves right ventricular diastolic function, but the intrinsic, positive, inotropic effect of sildenafil is minimal. PMID:26876436

  7. Secoisolariciresinol diglucoside attenuates cardiac hypertrophy and oxidative stress in monocrotaline-induced right heart dysfunction.

    PubMed

    Puukila, Stephanie; Fernandes, Rafael Oliveira; Türck, Patrick; Carraro, Cristina Campos; Bonetto, Jéssica Hellen Poletto; de Lima-Seolin, Bruna Gazzi; da Rosa Araujo, Alex Sander; Belló-Klein, Adriane; Boreham, Douglas; Khaper, Neelam

    2017-08-01

    Pulmonary arterial hypertension (PAH) occurs when remodeling of pulmonary vessels leads to increased pulmonary vascular resistance resulting in increased pulmonary arterial pressure. Increased pulmonary arterial pressure results in right ventricle hypertrophy and eventually heart failure. Oxidative stress has been implicated in the pathogenesis of PAH and may play a role in the regulation of cellular signaling involved in cardiac response to pressure overload. Secoisolariciresinol diglucoside (SDG), a component from flaxseed, has been shown to reduce cardiac oxidative stress in various pathophysiological conditions. We investigated the potential protective effects of SDG in a monocrotaline-induced model of PAH. Five- to six-week-old male Wistar rats were given a single intraperitoneal injection of monocrotaline (60 mg/kg) and sacrificed 21 days later where heart, lung, and plasma were collected. SDG (25 mg/kg) was given via gavage as either a 21-day co-treatment or pre-treatment of 14 days before monocrotaline administration and continued for 21 days. Monocrotaline led to right ventricle hypertrophy, increased lipid peroxidation, and elevated plasma levels of alanine transaminase (ALT) and aspartate transaminase (AST). Co-treatment with SDG did not attenuate hypertrophy or ALT and AST levels but decreased reactive oxygen species (ROS) levels and catalase and superoxide dismutase activity compared to the monocrotaline-treated group. Pre-treatment with SDG decreased right ventricle hypertrophy, ROS levels, lipid peroxidation, catalase, superoxide dismutase, and glutathione peroxidase activity and plasma levels of ALT and AST when compared to the monocrotaline group. These findings indicate that pre-treatment with SDG provided better protection than co-treatment in this model of right heart dysfunction, suggesting an important role for SDG in PAH and right ventricular remodeling.

  8. Farnesoid-X-receptor expression in monocrotaline-induced pulmonary arterial hypertension and right heart failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Lusi; Department of Rheumatology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325015; Jiang, Ying

    Objective: The farnesoid-X-receptor (FXR) is a metabolic nuclear receptor superfamily member that is highly expressed in enterohepatic tissue and is also expressed in the cardiovascular system. Multiple nuclear receptors, including FXR, play a pivotal role in cardiovascular disease (CVD). Pulmonary arterial hypertension (PAH) is an untreatable cardiovascular system disease that leads to right heart failure (RHF). However, the potential physiological/pathological roles of FXR in PAH and RHF are unknown. We therefore compared FXR expression in the cardiovascular system in PAH, RHF and a control. Methods and results: Hemodynamic parameters and morphology were assessed in blank solution-exposed control, monocrotaline (MCT)-exposed PAHmore » (4 weeks) and RHF (7 weeks) Sprague–Dawley rats. Real-time reverse transcription polymerase chain reaction (real-time RT-PCR), Western blot (WB), immunohistochemistry (IHC) analysis and immunofluorescence (IF) analysis were performed to assess FXR levels in the lung and heart tissues of MCT-induced PAH and RHF rats. In normal rats, low FXR levels were detected in the heart, and nearly no FXR was expressed in rat lungs. However, FXR expression was significantly elevated in PAH and RHF rat lungs but reduced in PAH and RHF rat right ventricular (RV) tissues. FXR expression was reduced only in RHF rat left ventricular (LV) tissues. Conclusions: The differential expression of FXR in MCT-induced PAH lungs and heart tissues in parallel with PAH pathophysiological processes suggests that FXR contributes to PAH. - Highlights: • FXR was expressed in rat lung and heart tissues. • FXR expression increased sharply in the lung tissues of PAH and RHF rats. • FXR expression was reduced in PAH and RHF rat RV tissue. • FXR expression was unaltered in PAH LV but reduced in RHF rat LV tissue. • FXR expression was prominent in the neovascularization region.« less

  9. PCPA protects against monocrotaline-induced pulmonary arterial remodeling in rats: potential roles of connective tissue growth factor.

    PubMed

    Bai, Yang; Li, Zhong-Xia; Zhao, Yue-Tong; Liu, Mo; Wang, Yun; Lian, Guo-Chao; Zhao, Qi; Wang, Huai-Liang

    2017-12-19

    The purpose of this study was to investigate the mechanism of monocrotaline (MCT)-induced pulmonary artery hypertension (PAH) and determine whether 4-chloro-DL-phenylalanine (PCPA) could inhibit pulmonary arterial remodeling associated with connective tissue growth factor (CTGF) expression and downstream signal pathway. MCT was administered to forty Sprague Dawley rats to establish the PAH model. PCPA was administered at doses of 50 and 100 mg/kg once daily for 3 weeks via intraperitoneal injection. On day 22, the pulmonary arterial pressure (PAP), right ventricle hypertrophy index (RVI) and pulmonary artery morphology were assessed and the serotonin receptor-1B (SR-1B), CTGF, p-ERK/ERK were measured by western blot or immunohistochemistry. The concentration of serotonin in plasma was checked by ELISA. Apoptosis and apoptosis-related indexes were detected by TUNEL and western blot. In the MCT-induced PAH models, the PAP, RVI, pulmonary vascular remodeling, SR-1B index, CTGF index, anti-apoptotic factors bcl-xl and bcl-2, serotonin concentration in plasma were all increased and the pro-apoptotic factor caspase-3 was reduced. PCPA significantly ameliorated pulmonary arterial remodeling induced by MCT, and this action was associated with accelerated apoptosis and down-regulation of CTGF, SR-1B and p-ERK/ERK. The present study suggests that PCPA protects against the pathogenesis of PAH by suppressing remodeling and inducing apoptosis, which are likely associated with CTGF and downstream ERK signaling pathway in rats.

  10. Targeted Delivery of Pulmonary Arterial Endothelial Cells Overexpressing Interleukin-8 Receptors Attenuates Monocrotaline-Induced Pulmonary Vascular Remodeling

    PubMed Central

    Fu, Jinyan; Chen, Yiu-Fai; Zhao, Xiangmin; Creighton, Judy; Guo, Yuan-Yuan; Hage, Fadi G.; Oparil, Suzanne; Xing, Daisy D.

    2014-01-01

    Objective Interleukin-8 (IL8) receptors IL8RA and IL8RB (ILRA/B) on neutrophil membranes bind to IL8 with high affinity and play a critical role in neutrophil recruitment to sites of injury and/or inflammation. This study tested the hypothesis that administration of rat pulmonary arterial endothelial cells (ECs) overexpressing IL8RA/B can accelerate the adhesion of ECs to the injured lung and inhibit monocrotaline (MCT)-induced pulmonary inflammation, arterial thickening and hypertension, and right ventricular (RV) hypertrophy. Approach and Results The treatment groups included 10-wk-old ovariectomized Sprague-Dawley rats that received s.c. injection of phosphate-buffered-saline (Vehicle); a single injection of MCT (MCT alone, 60 mg/kg, s.c.); MCT followed by i.v. transfusion of ECs transduced with the empty adenoviral vector (Null-EC); and MCT followed by i.v. transfusion of ECs overexpressing IL8RA/B (IL8RA/B-EC, 1.5×106 cells/rat). Two days or 4 wks after MCT treatment, eNOS, iNOS, CINC-2β (IL8 equivalent in rat) and MCP-1 expression; neutrophil and macrophage infiltration into pulmonary arterioles, and arteriolar and alveolar morphology were measured by histological and immunohistochemical techniques. Pro-inflammatory cytokine/chemokine protein levels were measured by Multiplexed rat specific magnetic beads based sandwich immunoassay in total lung homogenates. Transfusion of IL8RA/B-ECs significantly reduced MCT-induced neutrophil infiltration and pro-inflammatory mediator (IL-8, MCP-1, iNOS, CINC and MIP-2) expression in lungs and pulmonary arterioles and alveoli, pulmonary artery pressure, and pulmonary arteriole and RV hypertrophy and remodeling. Conclusion These provocative findings suggest that targeted delivery of ECs overexpressing IL8RA/B is effective in repairing the injured pulmonary vasculature. PMID:24790141

  11. Gene Expressions of Nitric Oxide Synthase and Matrix Metalloproteinase-2 in Monocrotaline-Induced Pulmonary Hypertension in Rats After Bosentan Treatment

    PubMed Central

    Koo, Hee Sun; Kim, Kwan Chang

    2011-01-01

    Background and Objectives Nitric oxide (NO) is a major endothelium dependent vasomediator and growth inhibitor. NO synthesis is catalyzed by endothelial nitric oxide synthase (eNOS), and NO can also produce peroxynitrite, which activates matrix metalloproteinases (MMPs). The purpose of this study was to determine the gene expression of eNOS and MMP-2 in the lungs of a rat model of pulmonary hypertension after bosentan treatment. Materials and Methods Six-week-old male Sprague-Dawley rats were treated as follows: control group, subcutaneous (sc) injection of saline; monocrotaline (MCT) group, sc injection of MCT (60 mg/kg); and bosentan group, sc injection of MCT (60 mg/kg) plus 20 mg/day bosentan orally. The rats were sacrificed after 1, 5, 7, 14 and 28 days. Results The right ventricle/(left ventricle+septum) ratio significantly increased in the MCT group compared to the control group on day 14 and 28. The expression of eNOS messenger ribonucleic acid was significantly increased in the MCT group compared to the control group on day 28. MMP-2 gene expression was significantly increased in the MCT-treated rats compared to the control group on day 5 and 28. Following bosentan treatment to reduce pulmonary hypertension, the expression levels of MMP-2 gene were significantly decreased on day 7 and 28. eNOS and tissue inhibitor of MMPs genes were also significantly decreased on day 28 after bosentan treatment. Conclusion These results suggest that elevated eNOS expression may be responsible for MMP-2 activation. The causal relationship between eNOS and MMP-2 and their role in pulmonary hypertension require further investigations. PMID:21430993

  12. Biaxial Properties of the Left and Right Pulmonary Arteries in a Monocrotaline Rat Animal Model of Pulmonary Arterial Hypertension.

    PubMed

    Pursell, Erica R; Vélez-Rendón, Daniela; Valdez-Jasso, Daniela

    2016-11-01

    In a monocrotaline (MCT) induced-pulmonary arterial hypertension (PAH) rat animal model, the dynamic stress-strain relation was investigated in the circumferential and axial directions using a linear elastic response model within the quasi-linear viscoelasticity theory framework. Right and left pulmonary arterial segments (RPA and LPA) were mechanically tested in a tubular biaxial device at the early stage (1 week post-MCT treatment) and at the advanced stage of the disease (4 weeks post-MCT treatment). The vessels were tested circumferentially at the in vivo axial length with matching in vivo measured pressure ranges. Subsequently, the vessels were tested axially at the mean pulmonary arterial pressure by stretching them from in vivo plus 5% of their length. Parameter estimation showed that the LPA and RPA remodel at different rates: axially, both vessels decreased in Young's modulus at the early stage of the disease, and increased at the advanced disease stage. Circumferentially, the Young's modulus increased in advanced PAH, but it was only significant in the RPA. The damping properties also changed in PAH; in the LPA relaxation times decreased continuously as the disease progressed, while in the RPA they initially increased and then decreased. Our modeling efforts were corroborated by the restructuring organization of the fibers imaged under multiphoton microscopy, where the collagen fibers become strongly aligned to the 45 deg angle in the RPA from an uncrimped and randomly organized state. Additionally, collagen content increased almost 10% in the RPA from the placebo to advanced PAH.

  13. Baicalein Ameliorates Pulmonary Arterial Hypertension Caused by Monocrotaline through Downregulation of ET-1 and ETAR in Pneumonectomized Rats.

    PubMed

    Hsu, Wen-Lin; Lin, Yu-Chieh; Jeng, Jing-Ren; Chang, Heng-Yuan; Chou, Tz-Chong

    2018-05-08

    Baicalein (BE) extracted from Scutellaria baicalensis Georgi is able to alleviate various cardiovascular and inflammatory diseases. However, the effects of BE on pulmonary arterial hypertension (PAH) remain unknown. Therefore, the present study aimed to examine whether BE ameliorates pneumonectomy and monocrotaline-induced PAH in rats and further investigate the underlying molecular mechanisms. Administration of BE greatly attenuated the development of PAH as evidenced by an improvement of its characteristic features, including elevation of right ventricular systolic pressure, right ventricular hypertrophy, and pulmonary vascular remodeling. Moreover, the increased protein expression of endothelin-1 (ET-1) and ET A receptor (ET A R), superoxide overproduction, and activation of Akt/ERK1/2/GSK3[Formula: see text]/[Formula: see text]-catenin pathway that occurred in the lungs of PAH rats were markedly reversed by BE treatment. Compared with the untreated PAH rats, higher expression of endothelial nitric oxide synthase (eNOS), but lower levels of inducible nitric oxide synthase and vWF were observed in BE-treated PAH rats. Collectively, treatment with BE remarkably attenuates the pathogenesis of PAH, and the protection of BE may be associated with suppressing Akt/Erk1/2/GSK3[Formula: see text]/[Formula: see text]-catenin/ET-1/ET A R signaling and preventing endothelial dysfunction. These results suggest that BE is a potential agent for treatment of PAH.

  14. Longitudinal In Vivo SPECT/CT Imaging Reveals Morphological Changes and Cardiopulmonary Apoptosis in a Rodent Model of Pulmonary Arterial Hypertension

    PubMed Central

    Paffett, Michael L.; Hesterman, Jacob; Candelaria, Gabriel; Lucas, Selita; Anderson, Tamara; Irwin, Daniel; Hoppin, Jack; Norenberg, Jeffrey; Campen, Matthew J.

    2012-01-01

    Pulmonary arterial hypertension (PAH) has a complex pathogenesis involving both heart and lungs. Animal models can reflect aspects of the human pathology and provide insights into the development and underlying mechanisms of disease. Because of the variability of most animal models of PAH, serial in vivo measurements of cardiopulmonary function, morphology, and markers of pathology can enhance the value of such studies. Therefore, quantitative in vivo SPECT/CT imaging was performed to assess cardiac function, morphology and cardiac perfusion utilizing 201Thallium (201Tl) in control and monocrotaline-treated rats. In addition, lung and heart apoptosis was examined with 99mTc-Annexin V (99mTc-Annexin) in these cohorts. Following baseline imaging, rats were injected with saline or monocrotaline (50 mg/kg, i.p.) and imaged weekly for 6 weeks. To assess a therapeutic response in an established pulmonary hypertensive state, a cohort of rats received resveratrol in drinking water (3 mg/kg/day) on days 28–42 post-monocrotaline injection to monitor regression of cardiopulmonary apoptosis. PAH in monocrotaline-treated rats was verified by conventional hemodynamic techniques on day 42 (right ventricular systolic pressure (RSVP) = 66.2 mmHg in monocrotaline vs 28.8 mmHg in controls) and in terms of right ventricular hypertrophy (RV/LVS = 0.70 in monocrotaline vs 0.32 in controls). Resveratrol partially reversed both RVSP (41.4 mmHg) and RV/LVS (0.46), as well as lung edema and RV contractility +dP/dtmax. Serial 99mTc-Annexin V imaging showed clear increases in pulmonary and cardiac apoptosis when compared to baseline, which regressed following resveratrol treatment. Monocrotaline induced modest changes in whole-heart perfusion as assessed by 201TI imaging and cardiac morphological changes consistent with septal deviation and enlarged RV. This study demonstrates the utility of functional in vivo SPECT/CT imaging in rodent models of PAH and further confirms the

  15. Colchicine Depolymerizes Microtubules, Increases Junctophilin-2, and Improves Right Ventricular Function in Experimental Pulmonary Arterial Hypertension.

    PubMed

    Prins, Kurt W; Tian, Lian; Wu, Danchen; Thenappan, Thenappan; Metzger, Joseph M; Archer, Stephen L

    2017-05-31

    Pulmonary arterial hypertension (PAH) is a lethal disease characterized by obstructive pulmonary vascular remodeling and right ventricular (RV) dysfunction. Although RV function predicts outcomes in PAH, mechanisms of RV dysfunction are poorly understood, and RV-targeted therapies are lacking. We hypothesized that in PAH, abnormal microtubular structure in RV cardiomyocytes impairs RV function by reducing junctophilin-2 (JPH2) expression, resulting in t-tubule derangements. Conversely, we assessed whether colchicine, a microtubule-depolymerizing agent, could increase JPH2 expression and enhance RV function in monocrotaline-induced PAH. Immunoblots, confocal microscopy, echocardiography, cardiac catheterization, and treadmill testing were used to examine colchicine's (0.5 mg/kg 3 times/week) effects on pulmonary hemodynamics, RV function, and functional capacity. Rats were treated with saline (n=28) or colchicine (n=24) for 3 weeks, beginning 1 week after monocrotaline (60 mg/kg, subcutaneous). In the monocrotaline RV, but not the left ventricle, microtubule density is increased, and JPH2 expression is reduced, with loss of t-tubule localization and t-tubule disarray. Colchicine reduces microtubule density, increases JPH2 expression, and improves t-tubule morphology in RV cardiomyocytes. Colchicine therapy diminishes RV hypertrophy, improves RV function, and enhances RV-pulmonary artery coupling. Colchicine reduces small pulmonary arteriolar thickness and improves pulmonary hemodynamics. Finally, colchicine increases exercise capacity. Monocrotaline-induced PAH causes RV-specific derangement of microtubules marked by reduction in JPH2 and t-tubule disarray. Colchicine reduces microtubule density, increases JPH2 expression, and improves both t-tubule architecture and RV function. Colchicine also reduces adverse pulmonary vascular remodeling. These results provide biological plausibility for a clinical trial to repurpose colchicine as a RV-directed therapy for PAH

  16. Metabolic reprogramming of the urea cycle pathway in experimental pulmonary arterial hypertension rats induced by monocrotaline.

    PubMed

    Zheng, Hai-Kuo; Zhao, Jun-Han; Yan, Yi; Lian, Tian-Yu; Ye, Jue; Wang, Xiao-Jian; Wang, Zhe; Jing, Zhi-Cheng; He, Yang-Yang; Yang, Ping

    2018-05-11

    Pulmonary arterial hypertension (PAH) is a rare systemic disorder associated with considerable metabolic dysfunction. Although enormous metabolomic studies on PAH have been emerging, research remains lacking on metabolic reprogramming in experimental PAH models. We aim to evaluate the metabolic changes in PAH and provide new insight into endogenous metabolic disorders of PAH. A single subcutaneous injection of monocrotaline (MCT) (60 mg kg - 1 ) was used for rats to establish PAH model. Hemodynamics and right ventricular hypertrophy were adopted to evaluate the successful establishment of PAH model. Plasma samples were assessed through targeted metabolomic profiling platform to quantify 126 endogenous metabolites. Orthogonal partial least squares discriminant analysis (OPLS-DA) was used to discriminate between MCT-treated model and control groups. Metabolite Set Enrichment Analysis was adapted to exploit the most disturbed metabolic pathways. Endogenous metabolites of MCT treated PAH model and control group were well profiled using this platform. A total of 13 plasma metabolites were significantly altered between the two groups. Metabolite Set Enrichment Analysis highlighted that a disruption in the urea cycle pathway may contribute to PAH onset. Moreover, five novel potential biomarkers in the urea cycle, adenosine monophosphate, urea, 4-hydroxy-proline, ornithine, N-acetylornithine, and two candidate biomarkers, namely, O-acetylcarnitine and betaine, were found to be highly correlated with PAH. The present study suggests a new role of urea cycle disruption in the pathogenesis of PAH. We also found five urea cycle related biomarkers and another two candidate biomarkers to facilitate early diagnosis of PAH in metabolomic profile.

  17. Cardiac arrhythmia mechanisms in rats with heart failure induced by pulmonary hypertension

    PubMed Central

    Benoist, David; Stones, Rachel; Drinkhill, Mark J.; Benson, Alan P.; Yang, Zhaokang; Cassan, Cecile; Gilbert, Stephen H.; Saint, David A.; Cazorla, Olivier; Steele, Derek S.; Bernus, Olivier

    2012-01-01

    Pulmonary hypertension provokes right heart failure and arrhythmias. Better understanding of the mechanisms underlying these arrhythmias is needed to facilitate new therapeutic approaches for the hypertensive, failing right ventricle (RV). The aim of our study was to identify the mechanisms generating arrhythmias in a model of RV failure induced by pulmonary hypertension. Rats were injected with monocrotaline to induce either RV hypertrophy or failure or with saline (control). ECGs were measured in conscious, unrestrained animals by telemetry. In isolated hearts, electrical activity was measured by optical mapping and myofiber orientation by diffusion tensor-MRI. Sarcoplasmic reticular Ca2+ handling was studied in single myocytes. Compared with control animals, the T-wave of the ECG was prolonged and in three of seven heart failure animals, prominent T-wave alternans occurred. Discordant action potential (AP) alternans occurred in isolated failing hearts and Ca2+ transient alternans in failing myocytes. In failing hearts, AP duration and dispersion were increased; conduction velocity and AP restitution were steeper. The latter was intrinsic to failing single myocytes. Failing hearts had greater fiber angle disarray; this correlated with AP duration. Failing myocytes had reduced sarco(endo)plasmic reticular Ca2+-ATPase activity, increased sarcoplasmic reticular Ca2+-release fraction, and increased Ca2+ spark leak. In hypertrophied hearts and myocytes, dysfunctional adaptation had begun, but alternans did not develop. We conclude that increased electrical and structural heterogeneity and dysfunctional sarcoplasmic reticular Ca2+ handling increased the probability of alternans, a proarrhythmic predictor of sudden cardiac death. These mechanisms are potential therapeutic targets for the correction of arrhythmias in hypertensive, failing RVs. PMID:22427523

  18. Mycophenolate mofetil attenuates pulmonary arterial hypertension in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Chihiro; Takahashi, Masafumi; Morimoto, Hajime

    Pulmonary arterial hypertension (PAH) is characterized by abnormal proliferation of smooth muscle cells (SMCs), leading to occlusion of pulmonary arterioles, right ventricular (RV) hypertrophy, and death. We investigated whether mycophenolate mofetil (MMF), a potent immunosuppresssant, prevents the development of monocrotaline (MCT)-induced PAH in rats. MMF effectively decreased RV systolic pressure and RV hypertrophy, and reduced the medial thickness of pulmonary arteries. MMF significantly inhibited the number of proliferating cell nuclear antigen (PCNA)-positive cells, infiltration of macrophages, and expression of P-selectin and interleukin-6 on the endothelium of pulmonary arteries. The infiltration of T cells and mast cells was not affected bymore » MMF. In vitro experiments revealed that mycophenolic acid (MPA), an active metabolite of MMF, dose-dependently inhibited proliferation of human pulmonary arterial SMCs. MMF attenuated the development of PAH through its anti-inflammatory and anti-proliferative properties. These findings provide new insight into the potential role of immunosuppressants in the treatment of PAH.« less

  19. NMDA-Type Glutamate Receptor Activation Promotes Vascular Remodeling and Pulmonary Arterial Hypertension.

    PubMed

    Dumas, Sébastien J; Bru-Mercier, Gilles; Courboulin, Audrey; Quatredeniers, Marceau; Rücker-Martin, Catherine; Antigny, Fabrice; Nakhleh, Morad K; Ranchoux, Benoit; Gouadon, Elodie; Vinhas, Maria-Candida; Vocelle, Matthieu; Raymond, Nicolas; Dorfmüller, Peter; Fadel, Elie; Perros, Frédéric; Humbert, Marc; Cohen-Kaminsky, Sylvia

    2018-05-29

    Excessive proliferation and apoptosis resistance in pulmonary vascular cells underlie vascular remodeling in pulmonary arterial hypertension (PAH). Specific treatments for PAH exist, mostly targeting endothelial dysfunction, but high pulmonary arterial pressure still causes heart failure and death. Pulmonary vascular remodeling may be driven by metabolic reprogramming of vascular cells to increase glutaminolysis and glutamate production. The N -methyl-d-aspartate receptor (NMDAR), a major neuronal glutamate receptor, is also expressed on vascular cells, but its role in PAH is unknown. We assessed the status of the glutamate-NMDAR axis in the pulmonary arteries of patients with PAH and controls through mass spectrometry imaging, Western blotting, and immunohistochemistry. We measured the glutamate release from cultured pulmonary vascular cells using enzymatic assays and analyzed NMDAR regulation/phosphorylation through Western blot experiments. The effect of NMDAR blockade on human pulmonary arterial smooth muscle cell proliferation was determined using a BrdU incorporation assay. We assessed the role of NMDARs in vascular remodeling associated to pulmonary hypertension, in both smooth muscle-specific NMDAR knockout mice exposed to chronic hypoxia and the monocrotaline rat model of pulmonary hypertension using NMDAR blockers. We report glutamate accumulation, upregulation of the NMDAR, and NMDAR engagement reflected by increases in GluN1-subunit phosphorylation in the pulmonary arteries of human patients with PAH. K v channel inhibition and type A-selective endothelin receptor activation amplified calcium-dependent glutamate release from human pulmonary arterial smooth muscle cell, and type A-selective endothelin receptor and platelet-derived growth factor receptor activation led to NMDAR engagement, highlighting crosstalk between the glutamate-NMDAR axis and major PAH-associated pathways. The platelet-derived growth factor-BB-induced proliferation of human

  20. Cardioprotection Induced by Activation of GPER in Ovariectomized Rats With Pulmonary Hypertension.

    PubMed

    Alencar, Allan K N; Montes, Guilherme C; Costa, Daniele G; Mendes, Luiza V P; Silva, Ananssa M S; Martinez, Sabrina T; Trachez, Margarete M; Cunha, Valéria do M N; Montagnoli, Tadeu L; Fraga, Aline G M; Wang, Hao; Groban, Leanne; Fraga, Carlos A M; Sudo, Roberto T; Zapata-Sudo, Gisele

    2018-05-21

    Pulmonary hypertension (PH) is a disease of women (female-to-male ratio 4:1), and is associated with cardiac and skeletal muscle dysfunction. Herein, the activation of a new estrogen receptor (GPER) by the agonist G1 was evaluated in oophorectomized rats with monocrotaline (MCT)-induced PH. Depletion of estrogen was induced by bilateral oophorectomy (OVX) in Wistar rats. Experimental groups included SHAM or OVX rats that received a single intraperitoneal injection of MCT (60 mg/kg) for PH induction. Animals received s.c. injection of either vehicle or G1, a GPER agonist, (400 µg/kg/day) for 14 days after the onset of disease. Rats with PH exhibited exercise intolerance and cardiopulmonary alterations, including reduced pulmonary artery flow, biventricular remodeling, and left ventricular systolic and diastolic dysfunction. The magnitude of these PH-induced changes was significantly greater in OVX versus SHAM rats. G1 treatment reversed both cardiac and skeletal muscle functional aberrations caused by PH in OVX rats. G1 reversed PH-related cardiopulmonary dysfunction and exercise intolerance in female rats, a finding that may have important implications for the ongoing clinical evaluation of new drugs for the treatment of the disease in females after the loss of endogenous estrogens.

  1. Resveratrol Reverses Monocrotaline-Induced Pulmonary Vascular and Cardiac Dysfunction: A Potential Role for Atrogin-1 in Smooth Muscle

    PubMed Central

    Paffett, Michael L.; Lucas, Selita N.; Campen, Matthew J.

    2011-01-01

    Arterial remodeling contributes to the elevated pulmonary artery (PA) pressures and right ventricular hypertrophy seen in pulmonary hypertension (PH). Resveratrol, a sirtuin-1 (SIRT1) pathway activator, can prevent the development of PH in a commonly used animal model, but it is unclear whether it can reverse established PH pathophysiology. Furthermore, atrophic ubiquitin ligases, such as atrogin-1 and MuRF-1, are known to be induced by SIRT1 activators but have not been characterized in hypertrophic vascular disease. Therefore, we hypothesized that monocrotaline (MCT)-induced PH would attenuate atrophy pathways in the PA while, conversely, SIRT1 activation (resveratrol) would reverse indices of PH and restore atrophic gene expression. Thus, we injected Sprague-Dawley rats with MCT (50 mg/kg i.p.) or saline at Day 0, and then treated with oral resveratrol or sildenafil from days 28–42 post-MCT injection. Oral resveratrol attenuated established MCT-induced PH indices, including right ventricular systolic pressure, right ventricular hypertrophy, and medial thickening of intrapulmonary arteries. Resveratrol also normalized PA atrogin-1 mRNA expression, which was significantly reduced by MCT. In cultured human PA smooth muscle cells (hPASMC), resveratrol significantly inhibited PDGF-stimulated proliferation and cellular hypertrophy, which was also associated with improvements in atrogin-1 levels. In addition, SIRT1 inhibition augmented hPASMC proliferation, as assessed by DNA mass, and suppressed atrogin mRNA expression. These findings demonstrate an inverse relationship between indices of PH and PA atrogin expression that is SIRT1 dependent and may reflect a novel role for SIRT1 in PASMCs opposing cellular hypertrophy and proliferation. PMID:22146233

  2. Up-regulation of the mammalian target of rapamycin complex 1 subunit Raptor by aldosterone induces abnormal pulmonary artery smooth muscle cell survival patterns to promote pulmonary arterial hypertension

    PubMed Central

    Aghamohammadzadeh, Reza; Zhang, Ying-Yi; Stephens, Thomas E.; Arons, Elena; Zaman, Paula; Polach, Kevin J.; Matar, Majed; Yung, Lai-Ming; Yu, Paul B.; Bowman, Frederick P.; Opotowsky, Alexander R.; Waxman, Aaron B.; Loscalzo, Joseph; Leopold, Jane A.; Maron, Bradley A.

    2016-01-01

    Activation of the mammalian target of rapamycin complex 1 (mTORC1) subunit Raptor induces cell growth and is a downstream target of Akt. Elevated levels of aldosterone activate Akt, and, in pulmonary arterial hypertension (PAH), correlate with pulmonary arteriole thickening, which suggests that mTORC1 regulation by aldosterone may mediate adverse pulmonary vascular remodeling. We hypothesized that aldosterone-Raptor signaling induces abnormal pulmonary artery smooth muscle cell (PASMC) survival patterns to promote PAH. Remodeled pulmonary arterioles from SU-5416/hypoxia-PAH rats and monocrotaline-PAH rats with hyperaldosteronism expressed increased levels of the Raptor target, p70S6K, which provided a basis for investigating aldosterone-Raptor signaling in human PASMCs. Aldosterone (10−9 to 10−7 M) increased Akt/mTOR/Raptor to activate p70S6K and increase proliferation, viability, and apoptosis resistance in PASMCs. In PASMCs transfected with Raptor–small interfering RNA or treated with spironolactone/eplerenone, aldosterone or pulmonary arterial plasma from patients with PAH failed to increase p70S6K activation or to induce cell survival in vitro. Optimal inhibition of pulmonary arteriole Raptor was achieved by treatment with Staramine-monomethoxy polyethylene glycol that was formulated with Raptor-small interfering RNA plus spironolactone in vivo, which decreased arteriole muscularization and pulmonary hypertension in 2 experimental animal models of PAH in vivo. Up-regulation of mTORC1 by aldosterone is a critical pathobiologic mechanism that controls PASMC survival to promote hypertrophic vascular remodeling and PAH.—Aghamohammadzadeh, R., Zhang, Y.-Y., Stephens, T. E., Arons, E., Zaman, P., Polach, K. J., Matar, M., Yung, L.-M., Yu, P. B., Bowman, F. P., Opotowsky, A. R., Waxman, A. B., Loscalzo, J., Leopold, J. A., Maron, B. A. Up-regulation of the mammalian target of rapamycin complex 1 subunit Raptor by aldosterone induces abnormal pulmonary artery

  3. Up-regulation of the mammalian target of rapamycin complex 1 subunit Raptor by aldosterone induces abnormal pulmonary artery smooth muscle cell survival patterns to promote pulmonary arterial hypertension.

    PubMed

    Aghamohammadzadeh, Reza; Zhang, Ying-Yi; Stephens, Thomas E; Arons, Elena; Zaman, Paula; Polach, Kevin J; Matar, Majed; Yung, Lai-Ming; Yu, Paul B; Bowman, Frederick P; Opotowsky, Alexander R; Waxman, Aaron B; Loscalzo, Joseph; Leopold, Jane A; Maron, Bradley A

    2016-07-01

    Activation of the mammalian target of rapamycin complex 1 (mTORC1) subunit Raptor induces cell growth and is a downstream target of Akt. Elevated levels of aldosterone activate Akt, and, in pulmonary arterial hypertension (PAH), correlate with pulmonary arteriole thickening, which suggests that mTORC1 regulation by aldosterone may mediate adverse pulmonary vascular remodeling. We hypothesized that aldosterone-Raptor signaling induces abnormal pulmonary artery smooth muscle cell (PASMC) survival patterns to promote PAH. Remodeled pulmonary arterioles from SU-5416/hypoxia-PAH rats and monocrotaline-PAH rats with hyperaldosteronism expressed increased levels of the Raptor target, p70S6K, which provided a basis for investigating aldosterone-Raptor signaling in human PASMCs. Aldosterone (10(-9) to 10(-7) M) increased Akt/mTOR/Raptor to activate p70S6K and increase proliferation, viability, and apoptosis resistance in PASMCs. In PASMCs transfected with Raptor-small interfering RNA or treated with spironolactone/eplerenone, aldosterone or pulmonary arterial plasma from patients with PAH failed to increase p70S6K activation or to induce cell survival in vitro Optimal inhibition of pulmonary arteriole Raptor was achieved by treatment with Staramine-monomethoxy polyethylene glycol that was formulated with Raptor-small interfering RNA plus spironolactone in vivo, which decreased arteriole muscularization and pulmonary hypertension in 2 experimental animal models of PAH in vivo Up-regulation of mTORC1 by aldosterone is a critical pathobiologic mechanism that controls PASMC survival to promote hypertrophic vascular remodeling and PAH.-Aghamohammadzadeh, R., Zhang, Y.-Y., Stephens, T. E., Arons, E., Zaman, P., Polach, K. J., Matar, M., Yung, L.-M., Yu, P. B., Bowman, F. P., Opotowsky, A. R., Waxman, A. B., Loscalzo, J., Leopold, J. A., Maron, B. A. Up-regulation of the mammalian target of rapamycin complex 1 subunit Raptor by aldosterone induces abnormal pulmonary artery smooth

  4. Dasatinib-induced pulmonary arterial hypertension - A rare late complication.

    PubMed

    Ibrahim, Uroosa; Saqib, Amina; Dhar, Vidhya; Odaimi, Marcel

    2018-01-01

    Dasatinib is a dual Src/Abl tyrosine kinase inhibitor approved for frontline and second line treatment of chronic phase chronic myelogenous leukemia. Pulmonary arterial hypertension is defined by an increase in mean pulmonary arterial pressure >25 mmHg at rest. Dasatinib-induced pulmonary hypertension has been reported in less than 1% of patients on chronic dasatinib treatment for chronic myelogenous leukemia. The pulmonary arterial hypertension from dasatinib may be categorized as either group 1 (drug-induced) or group 5 based on various mechanisms that may be involved including the pathogenesis of the disease process of chronic myelogenous leukemia. There have been reports of dasatinib-induced pulmonary arterial hypertension being reversible. We report a case of pulmonary arterial hypertension in a 46-year-old female patient with chronic phase chronic myelogenous leukemia on dasatinib treatment for over 10 years. She had significant improvement in symptoms after discontinuation of dasatinib and initiation of vasodilators. Several clinical questions arise once patients experience significant adverse effects as discussed in our case.

  5. PAR-2 inhibition reverses experimental pulmonary hypertension.

    PubMed

    Kwapiszewska, Grazyna; Markart, Philipp; Dahal, Bhola Kumar; Kojonazarov, Baktybek; Marsh, Leigh Matthew; Schermuly, Ralph Theo; Taube, Christian; Meinhardt, Andreas; Ghofrani, Hossein Ardeschir; Steinhoff, Martin; Seeger, Werner; Preissner, Klaus Theo; Olschewski, Andrea; Weissmann, Norbert; Wygrecka, Malgorzata

    2012-04-27

    A hallmark of the vascular remodeling process underlying pulmonary hypertension (PH) is the aberrant proliferation and migration of pulmonary arterial smooth muscle cells (PASMC). Accumulating evidence suggests that mast cell mediators play a role in the pathogenesis of PH. In the present study we investigated the importance of protease-activated receptor (PAR)-2 and its ligand mast cell tryptase in the development of PH. Our results revealed strong increase in PAR-2 and tryptase expression in the lungs of idiopathic pulmonary arterial hypertension (IPAH) patients, hypoxia-exposed mice, and monocrotaline (MCT)-treated rats. Elevated tryptase levels were also detected in plasma samples from IPAH patients. Hypoxia and platelet-derived growth factor (PDGF)-BB upregulated PAR-2 expression in PASMC. This effect was reversed by HIF (hypoxia inducible factor)-1α depletion, PDGF-BB neutralizing antibody, or the PDGF-BB receptor antagonist Imatinib. Attenuation of PAR-2 expression was also observed in smooth muscle cells of pulmonary vessels of mice exposed to hypoxia and rats challenged with MCT in response to Imatinib treatment. Tryptase induced PASMC proliferation and migration as well as enhanced synthesis of fibronectin and matrix metalloproteinase-2 in a PAR-2- and ERK1/2-dependent manner, suggesting that PAR-2-dependent signaling contributes to vascular remodeling by various mechanisms. Furthermore, PAR-2(-/-) mice were protected against hypoxia-induced PH, and PAR-2 antagonist application reversed established PH in the hypoxia mouse model. Our study identified a novel role of PAR-2 in vascular remodeling in the lung. Interference with this pathway may offer novel therapeutic options for the treatment of PH.

  6. The protective effects of PCPA against monocrotaline-induced pulmonary arterial hypertension are mediated through the downregulation of NFAT-1 and NF-κB.

    PubMed

    Bai, Yang; Li, Zhong-Xia; Wang, Huai-Liang; Lian, Guo-Chao; Wang, Yun

    2017-07-01

    Inflammation and remodeling play a role in the pathogenesis of pulmonary arterial hypertension (PAH). Nuclear factor-κB (NF-κB) and nuclear factor of activated T cells-1 (NFAT-1) participate in inflammation and remodeling in a number of diseases. As a tryptophan hydroxylase inhibitor, 4-chloro-DL-phenylalanine (PCPA) had been reported to exert anti-inflammatory and remodeling effects. Therefore, we hypothesized that PCPA may attenuate monocrotaline (MCT)-induced PAH through the NFAT-1 and NF-κB signaling pathways. In order to confirm our hypothesis, we divided 68 Sprague-Dawley male rats into 4 groups as follows: the control, MCT, MCT + P1 and MCT + P2 groups. MCT was administered at a dose of 60 mg/kg once via intraperitoneal injection. PCPA was administered via intraperitoneal injection at a dose of 50 or 100 mg/kg once daily for 21 consecutive days. We then measured the hemodynamic index and morphological analysis was carried out on the lung tissues. Western blot analysis and immunohistochemistry were used to examine the levels of NFAT-1 and NF-κB p-65. The expression levels of phosphorylated inhibitor of NF-κB kinase (p-IKK), IKK, phosphorylated extracellular signal‑regulated kinase (p-ERK), ERK, intercellular adhesion molecule-1 (ICAM-1) and inter-leukin-6 (IL-6) were examined by western blot analysis. MCT was found to significantly induce PAH, with inflammation and remodeling of the lung tissues. This was associatd with an increased expression of NFAT-1, p-IKK, p-ERK and nuclear p65. PCPA significantly attenuated MCT-induced inflammation and arterial remodeling, and decreased the expression of NFAT-1, as well as that of relevant proteins of the NF-κB signaling pathway. The above-mentioned findings suggest that the inhibitory effects of PCPA on MCT-induced inflammation and arterial remodeling are related to the downregulation of the NFAT-1 and NF-κB signaling pathways in rats with PAH.

  7. Upregulated Copper Transporters in Hypoxia-Induced Pulmonary Hypertension

    PubMed Central

    Zimnicka, Adriana M.; Tang, Haiyang; Guo, Qiang; Kuhr, Frank K.; Oh, Myung-Jin; Wan, Jun; Chen, Jiwang; Smith, Kimberly A.; Fraidenburg, Dustin R.; Choudhury, Moumita S. R.; Levitan, Irena; Machado, Roberto F.; Kaplan, Jack H.; Yuan, Jason X.-J.

    2014-01-01

    Pulmonary vascular remodeling and increased arterial wall stiffness are two major causes for the elevated pulmonary vascular resistance and pulmonary arterial pressure in patients and animals with pulmonary hypertension. Cellular copper (Cu) plays an important role in angiogenesis and extracellular matrix remodeling; increased Cu in vascular smooth muscle cells has been demonstrated to be associated with atherosclerosis and hypertension in animal experiments. In this study, we show that the Cu-uptake transporter 1, CTR1, and the Cu-efflux pump, ATP7A, were both upregulated in the lung tissues and pulmonary arteries of mice with hypoxia-induced pulmonary hypertension. Hypoxia also significantly increased expression and activity of lysyl oxidase (LOX), a Cu-dependent enzyme that causes crosslinks of collagen and elastin in the extracellular matrix. In vitro experiments show that exposure to hypoxia or treatment with cobalt (CoCl2) also increased protein expression of CTR1, ATP7A, and LOX in pulmonary arterial smooth muscle cells (PASMC). In PASMC exposed to hypoxia or treated with CoCl2, we also confirmed that the Cu transport is increased using 64Cu uptake assays. Furthermore, hypoxia increased both cell migration and proliferation in a Cu-dependent manner. Downregulation of hypoxia-inducible factor 1α (HIF-1α) with siRNA significantly attenuated hypoxia-mediated upregulation of CTR1 mRNA. In summary, the data from this study indicate that increased Cu transportation due to upregulated CTR1 and ATP7A in pulmonary arteries and PASMC contributes to the development of hypoxia-induced pulmonary hypertension. The increased Cu uptake and elevated ATP7A also facilitate the increase in LOX activity and thus the increase in crosslink of extracellular matrix, and eventually leading to the increase in pulmonary arterial stiffness. PMID:24614111

  8. ASK1 Inhibition Halts Disease Progression in Preclinical Models of Pulmonary Arterial Hypertension.

    PubMed

    Budas, Grant R; Boehm, Mario; Kojonazarov, Baktybek; Viswanathan, Gayathri; Tian, Xia; Veeroju, Swathi; Novoyatleva, Tatyana; Grimminger, Friedrich; Hinojosa-Kirschenbaum, Ford; Ghofrani, Hossein A; Weissmann, Norbert; Seeger, Werner; Liles, John T; Schermuly, Ralph T

    2018-02-01

    Progression of pulmonary arterial hypertension (PAH) is associated with pathological remodeling of the pulmonary vasculature and the right ventricle (RV). Oxidative stress drives the remodeling process through activation of MAPKs (mitogen-activated protein kinases), which stimulate apoptosis, inflammation, and fibrosis. We investigated whether pharmacological inhibition of the redox-sensitive apical MAPK, ASK1 (apoptosis signal-regulating kinase 1), can halt the progression of pulmonary vascular and RV remodeling. A selective, orally available ASK1 inhibitor, GS-444217, was administered to two preclinical rat models of PAH (monocrotaline and Sugen/hypoxia), a murine model of RV pressure overload induced by pulmonary artery banding, and cellular models. Oral administration of GS-444217 dose dependently reduced pulmonary arterial pressure and reduced RV hypertrophy in PAH models. The therapeutic efficacy of GS-444217 was associated with reduced ASK1 phosphorylation, reduced muscularization of the pulmonary arteries, and reduced fibrotic gene expression in the RV. Importantly, efficacy was observed when GS-444217 was administered to animals with established disease and also directly reduced cardiac fibrosis and improved cardiac function in a model of isolated RV pressure overload. In cellular models, GS-444217 reduced phosphorylation of p38 and JNK (c-Jun N-terminal kinase) induced by adenoviral overexpression of ASK1 in rat cardiomyocytes and reduced activation/migration of primary mouse cardiac fibroblasts and human pulmonary adventitial fibroblasts derived from patients with PAH. ASK1 inhibition reduced pathological remodeling of the pulmonary vasculature and the right ventricle and halted progression of pulmonary hypertension in rodent models. These preclinical data inform the first description of a causal role of ASK1 in PAH disease pathogenesis.

  9. Rapamycin nanoparticles localize in diseased lung vasculature and prevent pulmonary arterial hypertension.

    PubMed

    Segura-Ibarra, Victor; Amione-Guerra, Javier; Cruz-Solbes, Ana S; Cara, Francisca E; Iruegas-Nunez, David A; Wu, Suhong; Youker, Keith A; Bhimaraj, Arvind; Torre-Amione, Guillermo; Ferrari, Mauro; Karmouty-Quintana, Harry; Guha, Ashrith; Blanco, Elvin

    2017-05-30

    Vascular remodeling resulting from pulmonary arterial hypertension (PAH) leads to endothelial fenestrations. This feature can be exploited by nanoparticles (NP), allowing them to extravasate from circulation and accumulate in remodeled pulmonary vessels. Hyperactivation of the mTOR pathway in PAH drives pulmonary arterial smooth muscle cell proliferation. We hypothesized that rapamycin (RAP)-loaded NPs, an mTOR inhibitor, would accumulate in diseased lungs, selectively targeting vascular mTOR and preventing PAH progression. RAP poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-PCL) NPs were fabricated. NP accumulation and efficacy were examined in a rat monocrotaline model of PAH. Following intravenous (IV) administration, NP accumulation in diseased lungs was verified via LC/MS analysis and confocal imaging. Pulmonary arteriole thickness, right ventricular systolic pressures, and ventricular remodeling were determined to assess the therapeutic potential of RAP NPs. Monocrotaline-exposed rats showed increased NP accumulation within lungs compared to healthy controls, with NPs present to a high extent within pulmonary perivascular regions. RAP, in both free and NP form, attenuated PAH development, with histological analysis revealing minimal changes in pulmonary arteriole thickness and no ventricular remodeling. Importantly, NP-treated rats showed reduced systemic side effects compared to free RAP. This study demonstrates the potential for nanoparticles to significantly impact PAH through site-specific delivery of therapeutics. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Liposomal Fasudil, a Rho-Kinase Inhibitor, for Prolonged Pulmonary Preferential Vasodilation in Pulmonary Arterial Hypertension

    PubMed Central

    Gupta, Vivek; Gupta, Nilesh; Shaik, Imam H.; Mehvar, Reza; McMurtry, Ivan F.; Oka, Masahiko; Nozik-Grayck, Eva; Komatsu, Masanobu; Ahsan, Fakhrul

    2013-01-01

    Current pharmacological interventions for pulmonary arterial hypertension (PAH) require continuous infusions, multiple inhalations, or oral administration of drugs that act on various pathways involved in the pathogenesis of PAH. However, invasive methods of administration, short duration of action, and lack of pulmonary selectivity result in noncompliance and poor patient outcomes. In this study, we tested the hypothesis that encapsulation of an investigational anti-PAH molecule fasudil (HA-1077), a Rho-kinase inhibitor, into liposomal vesicles results in prolonged vasodilation in distal pulmonary arterioles. Liposomes were prepared by hydration and extrusion method and fasudil was loaded by ammonium sulfate-induced transmembrane electrochemical gradient. Liposomes were then characterized for various physicochemical properties. Optimized formulations were tested for pulmonary absorption and their pharmacological efficacy in a monocrotaline (MCT) induced rat model of PAH. The entrapment efficiency of optimized liposomal fasudil formulations was between 68.1±0.8% and 73.6±2.3%, and the cumulative release at 37°C was 98–99% over a period of 5 days. Compared to intravenous (IV) fasudil, a ~10 fold increase in the terminal plasma half-life was observed when liposomal fasudil was administered as aerosols. The t1/2 of IV fasudil was 0.39±0.12 h. and when given as liposomes via pulmonary route, the t1/2 extended to 4.71±0.72 h. One h after intratracheal instillation of liposomal fasudil, mean pulmonary arterial pressure (MPAP) was reduced by 37.6±5.7% and continued to decrease for about 3 h, suggesting that liposomal formulations produced pulmonary preferential vasodilation in MCT induced PAH rats. Overall, this study established the proof-of-principle that aerosolized liposomal fasudil is a feasible option for a non-invasive, controlled release and pulmonary preferential treatment of PAH. PMID:23353807

  11. The reversal of pulmonary vascular remodeling through inhibition of p38 MAPK-alpha: a potential novel anti-inflammatory strategy in pulmonary hypertension

    PubMed Central

    Martin, Damien H.; Wadsworth, Roger; Bryson, Gareth; Fisher, Andrew J.; Welsh, David J.; Peacock, Andrew J.

    2015-01-01

    The p38 mitogen-activated protein kinase (MAPK) system is increasingly recognized as an important inflammatory pathway in systemic vascular disease but its role in pulmonary vascular disease is unclear. Previous in vitro studies suggest p38 MAPKα is critical in the proliferation of pulmonary artery fibroblasts, an important step in the pathogenesis of pulmonary vascular remodeling (PVremod). In this study the role of the p38 MAPK pathway was investigated in both in vitro and in vivo models of pulmonary hypertension and human disease. Pharmacological inhibition of p38 MAPKα in both chronic hypoxic and monocrotaline rodent models of pulmonary hypertension prevented and reversed the pulmonary hypertensive phenotype. Furthermore, with the use of a novel and clinically available p38 MAPKα antagonist, reversal of pulmonary hypertension was obtained in both experimental models. Increased expression of phosphorylated p38 MAPK and p38 MAPKα was observed in the pulmonary vasculature from patients with idiopathic pulmonary arterial hypertension, suggesting a role for activation of this pathway in the PVremod A reduction of IL-6 levels in serum and lung tissue was found in the drug-treated animals, suggesting a potential mechanism for this reversal in PVremod. This study suggests that the p38 MAPK and the α-isoform plays a pathogenic role in both human disease and rodent models of pulmonary hypertension potentially mediated through IL-6. Selective inhibition of this pathway may provide a novel therapeutic approach that targets both remodeling and inflammatory pathways in pulmonary vascular disease. PMID:26024891

  12. Pulmonary hypertension

    MedlinePlus

    Pulmonary arterial hypertension; Sporadic primary pulmonary hypertension; Familial primary pulmonary hypertension; Idiopathic pulmonary arterial hypertension; Primary pulmonary hypertension; PPH; Secondary pulmonary ...

  13. Activation of GPER ameliorates experimental pulmonary hypertension in male rats.

    PubMed

    Alencar, Allan K; Montes, Guilherme C; Montagnoli, Tadeu; Silva, Ananssa M; Martinez, Sabrina T; Fraga, Aline G; Wang, Hao; Groban, Leanne; Sudo, Roberto T; Zapata-Sudo, Gisele

    2017-01-15

    Pulmonary hypertension (PH) is characterized by pulmonary vascular remodeling that leads to pulmonary congestion, uncompensated right-ventricle (RV) failure, and premature death. Preclinical studies have demonstrated that the G protein-coupled estrogen receptor (GPER) is cardioprotective in male rats and that its activation elicits vascular relaxation in rats of either sex. To study the effects of GPER on the cardiopulmonary system by the administration of its selective agonist G1 in male rats with monocrotaline (MCT)-induced PH. Rats received a single intraperitoneal injection of MCT (60mg/kg) for PH induction. Experimental groups were as follows: control, MCT+vehicle, and MCT+G1 (400μg/kg/daysubcutaneous). Animals (n=5pergroup) were treated with vehicle or G1 for 14days after disease onset. Activation of GPER attenuated exercise intolerance and reduced RV overload in PH rats. Rats with PH exhibited echocardiographic alterations, such as reduced pulmonary flow, RV hypertrophy, and left-ventricle dysfunction, by the end of protocol. G1 treatment reversed these PH-related abnormalities of cardiopulmonary function and structure, in part by promoting pulmonary endothelial nitric oxide synthesis, Ca 2+ handling regulation and reduction of inflammation in cardiomyocytes, and a decrease of collagen deposition by acting in pulmonary and cardiac fibroblasts. G1 was effective to reverse PH-induced RV dysfunction and exercise intolerance in male rats, a finding that have important implications for ongoing clinical evaluation of new cardioprotective and vasodilator drugs for the treatment of the disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Left-Ventricular Energetics in Pulmonary Arterial Hypertension-Induced Right-Ventricular Hypertrophic Failure

    PubMed Central

    Han, June-Chiew; Guild, Sarah-Jane; Pham, Toan; Nisbet, Linley; Tran, Kenneth; Taberner, Andrew J.; Loiselle, Denis S.

    2018-01-01

    Pulmonary arterial hypertension (PAH) alters the geometries of both ventricles of the heart. While the right ventricle (RV) hypertrophies, the left ventricle (LV) atrophies. Multiple lines of clinical and experimental evidence lead us to hypothesize that the impaired stroke volume and systolic pressure of the LV are a direct consequence of the effect of pressure overload in the RV, and that atrophy in the LV plays only a minor role. In this study, we tested this hypothesis by examining the mechanoenergetic response of the atrophied LV to RV hypertrophy in rats treated with monocrotaline. Experiments were performed across multiple-scales: the whole-heart in vivo and ex vivo, and its trabeculae in vitro. Under the in vivo state where the RV was pressure-overloaded, we measured reduced systemic blood pressure and LV ventricular pressure. In contrast, under both ex vivo and in vitro conditions, where the effect of RV pressure overload was circumvented, we found that LV was capable of developing normal systolic pressure and stress. Nevertheless, LV atrophy played a minor role in that LV stroke volume remained lower, thereby contributing to lower LV mechanical work output. Concomitantly lower oxygen consumption and change of enthalpy were observed, and hence LV energy efficiency was unchanged. Our internally consistent findings between working-heart and trabecula experiments explain the rapid improvement of LV systolic function observed in patients with chronic pulmonary hypertension following surgical relief of RV pressure overload. PMID:29375394

  15. Identification of a Novel Hybridization from Isosorbide 5-Mononitrate and Bardoxolone Methyl with Dual Activities of Pulmonary Vasodilation and Vascular Remodeling Inhibition on Pulmonary Arterial Hypertension Rats.

    PubMed

    Cheng, Yusheng; Gong, Yan; Qian, Shuai; Mou, Yi; Li, Hanrui; Chen, Xijing; Kong, Hui; Xie, Weiping; Wang, Hong; Zhang, Yihua; Huang, Zhangjian

    2018-02-22

    Given the clinical therapeutic efficacy of oral-dosed bardoxolone methyl (1) and the selective vasodilatory effect caused by inhalation of nitric oxide (NO) on pulmonary arterial hypertension (PAH) patients, a new hybrid (CDDO-NO, 2) from 1 and NO donor isosorbide 5-mononitrate (3) was designed and synthesized. This hybrid could liberate 1 and NO in the lungs of rats after trachea injection. Significantly, 2 lowered mean pulmonary artery pressure (mPAP) and right ventricular systolic pressure (RVSP), decreased right ventricular hypertrophy (RVH), and attenuated pulmonary artery medial thickness (PAMT) and vascular muscularization in monocrotaline (MCT)-induced PAH rats. Meanwhile, 2 inhibited overproliferation of perivascular cells and diminished macrophage infiltration and oxidative stress by inactivation of NOX4. In addition, 2 markedly reduced cardiac hypertrophy and fibrosis in the PAH rats. Overall, 2 exhibited potent dual activities of pulmonary vasodilation and vascular remodeling inhibition, suggesting that it may be a promising agent for PAH intervention.

  16. Pulmonary Hypertension

    MedlinePlus

    ... together all groups are called pulmonary hypertension.) Group 1 Pulmonary Arterial Hypertension Group 1 PAH includes: PAH ... information, go to "Types of Pulmonary Hypertension." ) Group 1 Pulmonary Arterial Hypertension Group 1 pulmonary arterial hypertension ( ...

  17. Changes in pulmonary arterial wall mechanical properties and lumenal architecture with induced vascular remodeling

    NASA Astrophysics Data System (ADS)

    Molthen, Robert C.; Heinrich, Amy E.; Haworth, Steven T.; Dawson, Christopher A.

    2004-04-01

    To explore and quantify pulmonary arterial remodeling we used various methods including micro-CT, high-resolution 3-dimensional x-ray imaging, to examine the structure and function of intact pulmonary vessels in isolated rat lungs. The rat is commonly used as an animal model for studies of pulmonary hypertension (PH) and the accompanying vascular remodeling, where vascular remodeling has been defined primarily by changes in the vessel wall composition in response to hypertension inducing stimuli such as chronic hypoxic exposure (CHE) or monocrotaline (MCT) injection. Little information has been provided as to how such changes affect the vessel wall mechanical properties or the lumenal architecture of the pulmonary arterial system that actually account for the hemodynamic consequences of the remodeling. In addition, although the link between primary forms of pulmonary hypertension and inherited genetics is well established, the role that genetic coding plays in hemodynamics and vascular remodeling is not. Therefore, we are utilizing Fawn-Hooded (FH), Sprague-Dawley (SD) and Brown Norway (BN)rat strains along with unique imaging methods to parameterize both vessel distensibility and lumenal morphometry using a principal pulmonary arterial pathway analysis based on self-consistency. We have found for the hypoxia model, in addition to decreased body weight, increased hematocrit, increased right ventricular hypertrophy, the distensibility of the pulmonary arteries is shown to decrease significantly in the presence of remodeling.

  18. Excess L-arginine restores endothelium-dependent relaxation impaired by monocrotaline pyrrole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng Wei; Oike, Masahiro; Hirakawa, Masakazu

    2005-09-15

    The pyrrolizidine alkaloid plant toxin monocrotaline pyrrole (MCTP) causes pulmonary hypertension in experimental animals. The present study aimed to examine the effects of MCTP on the endothelium-dependent relaxation. We constructed an in vitro disease model of pulmonary hypertension by overlaying MCTP-treated bovine pulmonary artery endothelial cells (CPAEs) onto pulmonary artery smooth muscle cell-embedded collagen gel lattice. Acetylcholine (Ach) induced a relaxation of the control CPAEs-overlaid gels that were pre-contracted with noradrenaline, and the relaxation was inhibited by L-NAME, an inhibitor of NO synthase (NOS). In contrast, when MCTP-treated CPAEs were overlaid, the pre-contracted gels did not show a relaxation inmore » response to Ach in the presence of 0.5 mM L-arginine. Expression of endothelial NOS protein, Ach-induced Ca{sup 2+} transients and cellular uptake of L-[{sup 3}H]arginine were significantly smaller in MCTP-treated CPAEs than in control cells, indicating that these changes were responsible for the impaired NO production in MCTP-treated CPAEs. Since cellular uptake of L-[{sup 3}H]arginine linearly increased according to its extracellular concentration, we hypothesized that the excess concentration of extracellular L-arginine might restore NO production in MCTP-treated CPAEs. As expected, in the presence of 10 mM L-arginine, Ach showed a relaxation of the MCTP-treated CPAEs-overlaid gels. These results indicate that the impaired NO production in damaged endothelial cells can be reversed by supplying excess L-arginine.« less

  19. A Novel Therapeutic Approach in the Treatment of Pulmonary Arterial Hypertension: Allium ursinum Liophylisate Alleviates Symptoms Comparably to Sildenafil

    PubMed Central

    Bombicz, Mariann; Priksz, Daniel; Varga, Balazs; Kurucz, Andrea; Kertész, Attila; Takacs, Akos; Posa, Aniko; Kiss, Rita; Szilvassy, Zoltan; Juhasz, Bela

    2017-01-01

    Right-sided heart failure—often caused by elevated pulmonary arterial pressure—is a chronic and progressive condition with particularly high mortality rates. Recent studies and our current findings suggest that components of Wild garlic (Allium ursinum, AU) may play a role in reducing blood pressure, inhibiting angiotensin-converting enzyme (ACE), as well as improving right ventricle function in rabbit models with heart failure. We hypothesize that AU may mitigate cardiovascular damage caused by pulmonary arterial hypertension (PAH) and has value in the supplementary treatment of the complications of the disease. In this present investigation, PAH was induced by a single dose of monocrotaline (MCT) injection in Sprague-Dawley rats, and animals were divided into 4 treatment groups as follows: I. healthy control animals (Control group); II. pulmonary hypertensive rats (PAH group); III. pulmonary hypertensive rats + daily sildenafil treatment (Sildenafil group); and IV. pulmonary hypertensive rats + Wild garlic liophylisate-enriched chow (WGLL group), for 8 weeks. Echocardiographic measurements were obtained on the 0 and 8 weeks with fundamental and Doppler imaging. Isolated working heart method was used to determinate cardiac functions ex vivo after thoracotomy on the 8th week. Histological analyses were carried out on excised lung samples, and Western blot technique was used to determine Phosphodiesterase type 5 enzyme (PDE5) expression in both myocardial and pulmonary tissues. Our data demonstrate that right ventricle function measured by echocardiography was deteriorated in PAH animals compared to controls, which was counteracted by AU treatment. Isolated working heart measurements showed elevated aortic flow in WGLL group compared to PAH animals. Histological analysis revealed dramatic increase in medial wall thickness of pulmonary arteries harvested from PAH animals, but arteries of animals in sildenafil- and WGLL-treated groups showed physiological status

  20. Improved pulmonary vascular reactivity and decreased hypertrophic remodeling during nonhypercapnic acidosis in experimental pulmonary hypertension

    PubMed Central

    Christou, Helen; Reslan, Ossama M.; Mam, Virak; Tanbe, Alain F.; Vitali, Sally H.; Touma, Marlin; Arons, Elena; Mitsialis, S. Alex; Kourembanas, Stella

    2012-01-01

    Pulmonary hypertension (PH) is characterized by pulmonary arteriolar remodeling with excessive pulmonary vascular smooth muscle cell (VSMC) proliferation. This results in decreased responsiveness of pulmonary circulation to vasodilator therapies. We have shown that extracellular acidosis inhibits VSMC proliferation and migration in vitro. Here we tested whether induction of nonhypercapnic acidosis in vivo ameliorates PH and the underlying pulmonary vascular remodeling and dysfunction. Adult male Sprague-Dawley rats were exposed to hypoxia (8.5% O2) for 2 wk, or injected subcutaneously with monocrotaline (MCT, 60 mg/kg) to develop PH. Acidosis was induced with NH4Cl (1.5%) in the drinking water 5 days prior to and during the 2 wk of hypoxic exposure (prevention protocol), or after MCT injection from day 21 to 28 (reversal protocol). Right ventricular systolic pressure (RVSP) and Fulton's index were measured, and pulmonary arteriolar remodeling was analyzed. Pulmonary and mesenteric artery contraction to phenylephrine (Phe) and high KCl, and relaxation to acetylcholine (ACh) and sodium nitroprusside (SNP) were examined ex vivo. Hypoxic and MCT-treated rats demonstrated increased RVSP, Fulton's index, and pulmonary arteriolar thickening. In pulmonary arteries of hypoxic and MCT rats there was reduced contraction to Phe and KCl and reduced vasodilation to ACh and SNP. Acidosis prevented hypoxia-induced PH, reversed MCT-induced PH, and resulted in reduction in all indexes of PH including RVSP, Fulton's index, and pulmonary arteriolar remodeling. Pulmonary artery contraction to Phe and KCl was preserved or improved, and relaxation to ACh and SNP was enhanced in NH4Cl-treated PH animals. Acidosis alone did not affect the hemodynamics or pulmonary vascular function. Phe and KCl contraction and ACh and SNP relaxation were not different in mesenteric arteries of all groups. Thus nonhypercapnic acidosis ameliorates experimental PH, attenuates pulmonary arteriolar thickening

  1. Variation of heat shock protein gene expression in the brain of cold-induced pulmonary hypertensive chickens.

    PubMed

    Hassanpour, H; Khosravi Alekoohi, Z; Madreseh, S; Bahadoran, S; Nasiri, L

    2016-10-01

    Quantitative real-time PCR was carried out to evaluate gene expression of heat shock proteins (HSP) (HSP27, HSP56, HSP60, HSP70, HSP90 and ubiquitin) in the brain (hindbrain, midbrain, forebrain) of chickens with cold-induced pulmonary hypertension. The ratio of the right ventricle to the total ventricle (index of pulmonary hypertension in chickens) was increased in the cold-induced pulmonary hypertensive chickens at 42 d of age compared with control. The HSP genes were expressed in the three parts of the brain in the two experimental groups. In the hindbrain of cold-induced pulmonary hypertensive chickens, the relative gene expression of HSP27, HSP60, HSP70 and HSP90 was decreased while gene expression of HSP56 and ubiquitin was increased compared with controls. In the midbrain of cold induced-pulmonary hypertensive chickens, the expression of HSP56, HSP60, HSP70 and ubiquitin genes was increased compared with controls while HSP27 and HSP90 were decreased. In the forebrain of cold induced-pulmonary hypertensive chickens, the expression of HSP56, HSP60, HSP70 and ubiquitin genes was increased while the expression of the HSP27 gene was decreased compared with controls. It is concluded that overexpression of HSPs in the forebrain and midbrain probably delays the pathological process of cold stress whereas diminished expression of HSP genes in the hindbrain may affect the normal function of brain centres in this area to exacerbate pulmonary hypertension.

  2. Capsaicin pre- and post-treatment on rat monocrotaline pneumotoxicity.

    PubMed

    Katzman, N J; Lai, Y L

    2000-12-31

    Monocrotaline (MCT) produces respiratory dysfunction, pulmonary hypertension (PH), and right ventricular hypertrophy (RVH) in rats. Tachykinins, such as substance P (SP) and neurokinin A (NKA), may mediate these effects. The purpose of this study was to investigate the length of tachykinin depletion (via capsaicin treatment) is needed to prevent (or attenuate) PH and/or RVH. Six groups of rats were injected subcutaneously with saline (3 ml/kg); capsaicin followed by saline or MCT (60 mg/kg); or MCT followed 7, 11, or 14 days later by capsaicin. Capsaicin (cumulative dose, 500 mg/kg) was given over a period of 4-5 days. Respiratory function, pulmonary vascular parameters, lung tachykinin levels, and tracheal neutral endopeptidase (NEP) activity were measured 21 days after MCT or saline injection. Capsaicin significantly decreased lung levels of SP but not NKA. Both capsaicin pretreatment and posttreatment blocked the following MCT-induced alterations: increases in lung SP and airway constriction; decreases in tracheal NEP activity and dynamic respiratory compliance. Administration of capsaicin before or 7 days after MCT blocked MCT-induced PH and RVH. The above data suggest that the early tachykinin-mediated airway dysfunction requires only transient elevated tachykinins, while progression of late tachykinin-mediated effects (PH and RVH) requires elevated tachykinins for more than one week.

  3. Group B streptococcal phospholipid causes pulmonary hypertension.

    PubMed

    Curtis, Jerri; Kim, Geumsoo; Wehr, Nancy B; Levine, Rodney L

    2003-04-29

    Group B Streptococcus is the most common cause of bacterial infection in the newborn. Infection in many cases causes persistent pulmonary hypertension, which impairs gas exchange in the lung. We purified the bacterial components causing pulmonary hypertension and identified them as cardiolipin and phosphatidylglycerol. Synthetic cardiolipin or phosphatidylglycerol also induced pulmonary hypertension in lambs. The recognition that bacterial phospholipids may cause pulmonary hypertension in newborns with Group B streptococcal infection opens new avenues for therapeutic intervention.

  4. Group B streptococcal phospholipid causes pulmonary hypertension

    NASA Astrophysics Data System (ADS)

    Curtis, Jerri; Kim, Geumsoo; Wehr, Nancy B.; Levine, Rodney L.

    2003-04-01

    Group B Streptococcus is the most common cause of bacterial infection in the newborn. Infection in many cases causes persistent pulmonary hypertension, which impairs gas exchange in the lung. We purified the bacterial components causing pulmonary hypertension and identified them as cardiolipin and phosphatidylglycerol. Synthetic cardiolipin or phosphatidylglycerol also induced pulmonary hypertension in lambs. The recognition that bacterial phospholipids may cause pulmonary hypertension in newborns with Group B streptococcal infection opens new avenues for therapeutic intervention.

  5. A novel mouse model of high flow-induced pulmonary hypertension-surgically induced by right pulmonary artery ligation.

    PubMed

    Zhang, Anchen; Wang, Hongfei; Wang, Shengwei; Huang, Xiaofan; Ye, Ping; Du, Xinling; Xia, Jiahong

    2017-02-01

    This study sought to establish a new model of high-flow pulmonary hypertension (PH) in mice. This model may be useful for studies seeking to reduce the pulmonary vascular resistance and delay the development of PH caused by congenital heart disease. The right pulmonary artery was ligated via a right posterolateral thoracotomy. Pulmonary hemodynamics was evaluated by right heart catheterization immediately after ligation and at 2, 4, 8, and 12 wk postoperatively. The right ventricle (RV) and the left ventricle (LV) with septum (S) were weighed to calculate the RV/(LV + S) ratio as an index of right ventricular hypertrophy. Morphologic changes in the left lungs were analyzed, and percentages of muscularized pulmonary vessels were assessed by hematoxylin and eosin, elastica van Gieson and alpha-smooth muscle actin staining. All the study data were compared with data from a model of PH generated by hypoxic stimulation. A pulmonary hypertensive state was successfully induced by 2 wk after surgery. However, the morphologic analysis demonstrated that pulmonary vascular muscularization, as evaluated using right ventricular systolic pressure and RV/(LV + S), was not significantly increased until 4 wk postoperatively. When mice from the new model and the hypoxic model were compared, no significant differences were observed in any of the evaluated indices. High-flow PH can be induced within 4 wk after ligation of the right pulmonary artery, which is easily performed in mice. Such mice can be used as a model of high-flow PH. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Peptide-micelle hybrids containing fasudil for targeted delivery to the pulmonary arteries and arterioles to treat pulmonary arterial hypertension.

    PubMed

    Gupta, Nilesh; Ibrahim, Hany M; Ahsan, Fakhrul

    2014-11-01

    This study investigates the respirability and efficacy of peptide-micelle hybrid nanoparticles as carriers for inhalational therapy of pulmonary arterial hypertension (PAH). CARSKNKDC (CAR), a cell-penetrating and lung-homing peptide, conjugated polyethylene glycol-distearoyl-phosphoethanolamine micelles containing fasudil, an investigational anti-PAH drug, were prepared by solvent evaporation method and characterized for various physicochemical properties. The pharmacokinetics and pharmacological efficacy of hybrid particles containing fasudil were evaluated in healthy rats and monocrotaline-induced PAH rats. CAR micelles containing fasudil had an entrapment efficiency of approximately 58%, showed controlled release of the drug, and were monodispersed with an average size of approximately 14 nm. Nuclear magnetic resonance scan confirmed the drug's presence in the core of peptide-micelle hybrid particles. Compared with plain micelles, CAR peptide increased the cellular uptake by approximately 1.7-fold and extended the drug half-life by approximately fivefold. The formulations were more prone to accumulate in the pulmonary vasculature than in the peripheral blood, which is evident from the ratio of the extent of reduction of pulmonary and systemic arterial pressures. On the whole, this study demonstrates that peptide-polymer hybrid micelles can serve as inhalational carriers for PAH therapy. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  7. Chemotherapy-induced pulmonary hypertension: role of alkylating agents.

    PubMed

    Ranchoux, Benoît; Günther, Sven; Quarck, Rozenn; Chaumais, Marie-Camille; Dorfmüller, Peter; Antigny, Fabrice; Dumas, Sébastien J; Raymond, Nicolas; Lau, Edmund; Savale, Laurent; Jaïs, Xavier; Sitbon, Olivier; Simonneau, Gérald; Stenmark, Kurt; Cohen-Kaminsky, Sylvia; Humbert, Marc; Montani, David; Perros, Frédéric

    2015-02-01

    Pulmonary veno-occlusive disease (PVOD) is an uncommon form of pulmonary hypertension (PH) characterized by progressive obstruction of small pulmonary veins and a dismal prognosis. Limited case series have reported a possible association between different chemotherapeutic agents and PVOD. We evaluated the relationship between chemotherapeutic agents and PVOD. Cases of chemotherapy-induced PVOD from the French PH network and literature were reviewed. Consequences of chemotherapy exposure on the pulmonary vasculature and hemodynamics were investigated in three different animal models (mouse, rat, and rabbit). Thirty-seven cases of chemotherapy-associated PVOD were identified in the French PH network and systematic literature analysis. Exposure to alkylating agents was observed in 83.8% of cases, mostly represented by cyclophosphamide (43.2%). In three different animal models, cyclophosphamide was able to induce PH on the basis of hemodynamic, morphological, and biological parameters. In these models, histopathological assessment confirmed significant pulmonary venous involvement highly suggestive of PVOD. Together, clinical data and animal models demonstrated a plausible cause-effect relationship between alkylating agents and PVOD. Clinicians should be aware of this uncommon, but severe, pulmonary vascular complication of alkylating agents. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  8. Hydrogen ameliorates pulmonary hypertension in rats by anti-inflammatory and antioxidant effects.

    PubMed

    Kishimoto, Yasuaki; Kato, Taichi; Ito, Mikako; Azuma, Yoshiteru; Fukasawa, Yoshie; Ohno, Kinji; Kojima, Seiji

    2015-09-01

    The pathogenesis of pulmonary arterial hypertension (PAH) involves reactive oxygen species and inflammation. Beneficial effects of molecular hydrogen, which exerts both anti-inflammatory and antioxidative effects, have been reported for various pathologic conditions. We therefore hypothesized that molecular hydrogen would improve monocrotaline (MCT)-induced PAH in rats. Nineteen male Sprague-Dawley rats (body weight: 200-300 g) were divided into groups, receiving: (1) MCT + hydrogen-saturated water (group H); (2) MCT + dehydrogenized water (group M); or (3) saline + dehydrogenized water (group C). Sixteen days after substance administration, we evaluated hemodynamics, harvested the lungs and heart, and performed morphometric analysis of the pulmonary vasculature. Macrophage infiltration, antiproliferating cell nuclear antigen-positive cells, 8-hydroxy-deoxyguanosine (8-OHdG)-positive cells, and expressions of phosphorylated signal transducers and activators of transcription-3 (STAT3) and nuclear factor of activated T-cells (NFAT) were evaluated immunohistochemically. Stromal cell-derived factor-1 and monocyte chemoattractant protein-1 expressions were evaluated by quantitative reverse-transcription polymerase chain reaction. Pulmonary arterial hypertension was significantly exacerbated in group M compared to group C, but was significantly improved in group H. Vascular density was significantly reduced in group M, but not in group H. Adventitial macrophages, antiproliferating cell nuclear antigen - and 8-OHdG-positive cells, and stromal cell-derived factor-1 and monocyte chemoattractant protein-1 expressions were significantly increased in group M, but improved in group H. Expressions of phosphorylated STAT3 and NFAT were up-regulated in group M, but improved in group H. Molecular hydrogen ameliorates MCT-induced PAH in rats by suppressing macrophage accumulation, reducing oxidative stress and modulating the STAT3/NFAT axis. Copyright © 2015 The American

  9. Key Role of ROS in the Process of 15-Lipoxygenase/15-Hydroxyeicosatetraenoiccid-Induced Pulmonary Vascular Remodeling in Hypoxia Pulmonary Hypertension

    PubMed Central

    Qiu, Yanli; Liu, Gaofeng; Sheng, Tingting; Yu, Xiufeng; Wang, Shuang; Zhu, Daling

    2016-01-01

    We previously reported that 15-lipoxygenase (15-LO) and its metabolite 15-hydroxyeicosatetraenoic acid (15-HETE) were up-regulated in pulmonary arterial cells from both pulmonary artery hypertension patients and hypoxic rats and that these factors mediated the progression of pulmonary hypertension (PH) by affecting the proliferation and apoptosis of pulmonary arterial (PA) cells. However, the underlying mechanisms of the remodeling induced by 15-HETE have remained unclear. As reactive oxygen species (ROS) and 15-LO are both induced by hypoxia, it is possible that ROS are involved in the events of hypoxia-induced 15-LO expression that lead to PH. We employed immunohistochemistry, tube formation assays, bromodeoxyuridine (BrdU) incorporation assays, and cell cycle analyses to explore the role of ROS in the process of 15-HETE-mediated hypoxic pulmonary hypertension (HPH). We found that exogenous 15-HETE facilitated the generation of ROS and that this effect was mainly localized to mitochondria. In particular, the mitochondrial electron transport chain and nicotinamide-adenine dinucleotide phosphate oxidase 4 (Nox4) were responsible for the significant 15-HETE-stimulated increase in ROS production. Moreover, ROS induced by 15-HETE stimulated endothelial cell (EC) migration and promoted pulmonary artery smooth muscle cell (PASMC) proliferation under hypoxia via the p38 MAPK pathway. These results indicated that 15-HETE-regulated ROS mediated hypoxia-induced pulmonary vascular remodeling (PVR) via the p38 MAPK pathway. PMID:26871724

  10. Pulmonary Arterial Hypertension

    MedlinePlus

    Pulmonary Arterial Hypertension What Is Pulmonary Hypertension? To understand pulmonary hypertension (PH) it helps to understand how blood ows throughout your body. While the heart is one organ, it ...

  11. Targeted activation of endothelin-1 exacerbates hypoxia-induced pulmonary hypertension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satwiko, Muhammad Gahan; Ikeda, Koji; Nakayama, Kazuhiko

    Pulmonary arterial hypertension (PAH) is a fatal disease that eventually results in right heart failure and death. Current pharmacologic therapies for PAH are limited, and there are no drugs that could completely cure PAH. Enhanced activity of endothelin system has been implicated in PAH severity and endothelin receptor antagonists have been used clinically to treat PAH. However, there is limited experimental evidence on the direct role of enhanced endothelin system activity in PAH. Here, we investigated the correlation between endothelin-1 (ET-1) and PAH using ET-1 transgenic (ETTG) mice. Exposure to chronic hypoxia increased right ventricular pressure and pulmonary arterial wallmore » thickness in ETTG mice compared to those in wild type mice. Of note, ETTG mice exhibited modest but significant increase in right ventricular pressure and vessel wall thickness relative to wild type mice even under normoxic conditions. To induce severe PAH, we administered SU5416, a vascular endothelial growth factor receptor inhibitor, combined with exposure to chronic hypoxia. Treatment with SU5416 modestly aggravated hypoxia-induced pulmonary hypertension, right ventricular hypertrophy, and pulmonary arterial vessel wall thickening in ETTG mice in association with increased interleukin-6 expression in blood vessels. However, there was no sign of obliterative endothelial cell proliferation and plexiform lesion formation in the lungs. These results demonstrated that enhanced endothelin system activity could be a causative factor in the development of PAH and provided rationale for the inhibition of endothelin system to treat PAH. - Highlights: • Role of endothelin-1 in pulmonary arterial hypertension (PAH) was investigated. • The endothelin-1 transgenic (ETTG) and wild type (WT) mice were analyzed. • ETTG mice spontaneously developed PAH under normoxia conditions. • SU5416 further aggravated PAH in ETTG mice. • Enhanced endothelin system activity could be a causative

  12. Exercise-Induced Pulmonary Hypertension: Translating Pathophysiological Concepts Into Clinical Practice.

    PubMed

    Naeije, Robert; Saggar, Rajeev; Badesch, David; Rajagopalan, Sanjay; Gargani, Luna; Rischard, Franz; Ferrara, Francesco; Marra, Alberto M; D' Alto, Michele; Bull, Todd M; Saggar, Rajan; Grünig, Ekkehard; Bossone, Eduardo

    2018-01-31

    Exercise stress testing of the pulmonary circulation for the diagnosis of latent or early-stage pulmonary hypertension (PH) is gaining acceptance. There is emerging consensus to define exercise-induced PH by a mean pulmonary artery pressure > 30 mm Hg at a cardiac output < 10 L/min and a total pulmonary vascular resistance> 3 Wood units at maximum exercise, in the absence of PH at rest. Exercise-induced PH has been reported in association with a bone morphogenetic receptor-2 gene mutation, in systemic sclerosis, in left heart conditions, in chronic lung diseases, and in chronic pulmonary thromboembolism. Exercise-induced PH is a cause of decreased exercise capacity, may precede the development of manifest PH in a proportion of patients, and is associated with a decreased life expectancy. Exercise stress testing of the pulmonary circulation has to be dynamic and rely on measurements of the components of the pulmonary vascular equation during, not after exercise. Noninvasive imaging measurements may be sufficiently accurate in experienced hands, but suffer from lack of precision, so that invasive measurements are required for individual decision-making. Exercise-induced PH is caused either by pulmonary vasoconstriction, pulmonary vascular remodeling, or by increased upstream transmission of pulmonary venous pressure. This differential diagnosis is clinical. Left heart disease as a cause of exercise-induced PH can be further ascertained by a pulmonary artery wedge pressure above or below 20 mm Hg at a cardiac output < 10 L/min or a pulmonary artery wedge pressure-flow relationship above or below 2 mm Hg/L/min during exercise. Copyright © 2018 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  13. Interleukin-6 overexpression induces pulmonary hypertension.

    PubMed

    Steiner, M Kathryn; Syrkina, Olga L; Kolliputi, Narasaish; Mark, Eugene J; Hales, Charles A; Waxman, Aaron B

    2009-01-30

    Inflammatory cytokine interleukin (IL)-6 is elevated in the serum and lungs of patients with pulmonary artery hypertension (PAH). Several animal models of PAH cite the potential role of inflammatory mediators. We investigated role of IL-6 in the pathogenesis of pulmonary vascular disease. Indices of pulmonary vascular remodeling were measured in lung-specific IL-6-overexpressing transgenic mice (Tg(+)) and compared to wild-type (Tg(-)) controls in both normoxic and chronic hypoxic conditions. The Tg(+) mice exhibited elevated right ventricular systolic pressures and right ventricular hypertrophy with corresponding pulmonary vasculopathic changes, all of which were exacerbated by chronic hypoxia. IL-6 overexpression increased muscularization of the proximal arterial tree, and hypoxia enhanced this effect. It also reproduced the muscularization and proliferative arteriopathy seen in the distal arteriolar vessels of PAH patients. The latter was characterized by the formation of occlusive neointimal angioproliferative lesions that worsened with hypoxia and were composed of endothelial cells and T-lymphocytes. IL-6-induced arteriopathic changes were accompanied by activation of proangiogenic factor, vascular endothelial growth factor, the proproliferative kinase extracellular signal-regulated kinase, proproliferative transcription factors c-MYC and MAX, and the antiapoptotic proteins survivin and Bcl-2 and downregulation of the growth inhibitor transforming growth factor-beta and proapoptotic kinases JNK and p38. These findings suggest that IL-6 promotes the development and progression of pulmonary vascular remodeling and PAH through proproliferative antiapoptotic mechanisms.

  14. Oxidant and enzymatic antioxidant status (gene expression and activity) in the brain of chickens with cold-induced pulmonary hypertension

    NASA Astrophysics Data System (ADS)

    Hassanpour, Hossein; Khalaji-Pirbalouty, Valiallah; Nasiri, Leila; Mohebbi, Abdonnaser; Bahadoran, Shahab

    2015-11-01

    To evaluate oxidant and antioxidant status of the brain (hindbrain, midbrain, and forebrain) in chickens with cold-induced pulmonary hypertension, the measurements of lipid peroxidation, protein oxidation, antioxidant capacity, enzymatic activity, and gene expression (for catalase, glutathione peroxidase, and superoxide dismutases) were done. There were high lipid peroxidation/protein oxidation and low antioxidant capacity in the hindbrain of cold-induced pulmonary hypertensive chickens compared to control ( P < 0.05). In the hypertensive chickens, superoxide dismutase activity was decreased (forebrain, midbrain, and hindbrain), while catalase activity was increased (forebrain and midbrain) ( P < 0.05). Glutathione peroxidase activity did not change. Relative gene expression of catalase and superoxide dismutases (1 and 2) was downregulated, while glutathione peroxidase was upregulated in the brain of the cold-induced pulmonary hypertensive chickens. Probably, these situations in the oxidant and antioxidant status of the brain especially hindbrain may change its function at cardiovascular center and sympathetic nervous system to exacerbate pulmonary hypertension.

  15. Absence of the inflammasome adaptor ASC reduces hypoxia-induced pulmonary hypertension in mice.

    PubMed

    Cero, Fadila Telarevic; Hillestad, Vigdis; Sjaastad, Ivar; Yndestad, Arne; Aukrust, Pål; Ranheim, Trine; Lunde, Ida Gjervold; Olsen, Maria Belland; Lien, Egil; Zhang, Lili; Haugstad, Solveig Bjærum; Løberg, Else Marit; Christensen, Geir; Larsen, Karl-Otto; Skjønsberg, Ole Henning

    2015-08-15

    Pulmonary hypertension is a serious condition that can lead to premature death. The mechanisms involved are incompletely understood although a role for the immune system has been suggested. Inflammasomes are part of the innate immune system and consist of the effector caspase-1 and a receptor, where nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) is the best characterized and interacts with the adaptor protein apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC). To investigate whether ASC and NLRP3 inflammasome components are involved in hypoxia-induced pulmonary hypertension, we utilized mice deficient in ASC and NLRP3. Active caspase-1, IL-18, and IL-1β, which are regulated by inflammasomes, were measured in lung homogenates in wild-type (WT), ASC(-/-), and NLRP3(-/-) mice, and phenotypical changes related to pulmonary hypertension and right ventricular remodeling were characterized after hypoxic exposure. Right ventricular systolic pressure (RVSP) of ASC(-/-) mice was significantly lower than in WT exposed to hypoxia (40.8 ± 1.5 mmHg vs. 55.8 ± 2.4 mmHg, P < 0.001), indicating a substantially reduced pulmonary hypertension in mice lacking ASC. Magnetic resonance imaging further supported these findings by demonstrating reduced right ventricular remodeling. RVSP of NLRP3(-/-) mice exposed to hypoxia was not significantly altered compared with WT hypoxia. Whereas hypoxia increased protein levels of caspase-1, IL-18, and IL-1β in WT and NLRP3(-/-) mice, this response was absent in ASC(-/-) mice. Moreover, ASC(-/-) mice displayed reduced muscularization and collagen deposition around arteries. In conclusion, hypoxia-induced elevated right ventricular pressure and remodeling were attenuated in mice lacking the inflammasome adaptor protein ASC, suggesting that inflammasomes play an important role in the pathogenesis of pulmonary hypertension. Copyright © 2015 the American Physiological

  16. Isorhynchophylline protects against pulmonary arterial hypertension and suppresses PASMCs proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Haipeng; Zhang, Xin; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan 250012

    Highlights: • We focus on PASMCs proliferation in the pathogenesis of PAH. • Isorhynchophylline inhibited PASMCs proliferation and alleviated PAH. • IRN blocked PDGF-Rβ phosphorylation and its downstream signal transduction. • IRN regulated cyclins and CDKs to arrest cell cycle in the G0/G1 phase. • We reported IRN has the potential to be a candidate for PAH treatment. - Abstract: Increased pulmonary arterial smooth muscle cells (PASMCs) proliferation is a key pathophysiological component of pulmonary vascular remodeling in pulmonary arterial hypertension (PAH). Isorhynchophylline (IRN) is a tetracyclic oxindole alkaloid isolated from the Chinese herbal medicine Uncaria rhynchophylla. It has longmore » been used clinically for treatment of cardiovascular and cerebrovascular diseases. However, very little is known about whether IRN can influence the development of PAH. Here we examined the effect of IRN on monocrotaline (MCT) induced PAH in rats. Our data demonstrated that IRN prevented MCT induced PAH in rats, as assessed by right ventricular (RV) pressure, the weight ratio of RV to (left ventricular + septum) and RV hypertrophy. IRN significantly attenuated the percentage of fully muscularized small arterioles, the medial wall thickness, and the expression of smooth muscle α-actin (α-SMA) and proliferating cell nuclear antigen (PCNA). In vitro studies, IRN concentration-dependently inhibited the platelet-derived growth factor (PDGF)-BB-induced proliferation of PASMCs. Fluorescence-activated cell-sorting analysis showed that IRN caused G0/G1 phase cell cycle arrest. IRN-induced growth inhibition was associated with downregulation of Cyclin D1 and CDK6 as well as an increase in p27Kip1 levels in PDGF-BB-stimulated PASMCs. Moreover, IRN negatively modulated PDGF-BB-induced phosphorylation of PDGF-Rβ, ERK1/2, Akt/GSK3β, and signal transducers and activators of transcription 3 (STAT3). These results demonstrate that IRN could inhibit PASMCs

  17. Chlorogenic acid inhibits hypoxia-induced pulmonary artery smooth muscle cells proliferation via c-Src and Shc/Grb2/ERK2 signaling pathway.

    PubMed

    Li, Qun-Yi; Zhu, Ying-Feng; Zhang, Meng; Chen, Li; Zhang, Zhen; Du, Yong-Li; Ren, Guo-Qiang; Tang, Jian-Min; Zhong, Ming-Kang; Shi, Xiao-Jin

    2015-03-15

    Chlorogenic acid (CGA), abundant in coffee and particular fruits, can modulate hypertension and vascular dysfunction. Hypoxia-induced pulmonary artery smooth muscle cells (PASMCs) proliferation has been tightly linked to vascular remodeling in pulmonary arterial hypertension (PAH). Thus, the present study was designed to investigate the effect of CGA on hypoxia-induced proliferation in cultured rat PASMCs. The data showed that CGA potently inhibited PASMCs proliferation and DNA synthesis induced by hypoxia. These inhibitory effects were associated with G1 cell cycle arrest and down-regulation of cell cycle proteins. Treatment with CGA reduced hypoxia-induced hypoxia inducible factor 1α (HIF-1α) expression and trans-activation. Furthermore, hypoxia-evoked c-Src phosphorylation was inhibited by CGA. In vitro ELISA-based tyrosine kinase assay indicated that CGA was a direct inhibitor of c-Src. Moreover, CGA attenuated physical co-association of c-Src/Shc/Grb2 and ERK2 phosphorylation in PASMCs. These results suggest that CGA inhibits hypoxia-induced proliferation in PASMCs via regulating c-Src-mediated signaling pathway. In vivo investigation showed that chronic CGA treatment inhibits monocrotaline-induced PAH in rats. These findings presented here highlight the possible therapeutic use of CGA in hypoxia-related PAH. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Chymase: a multifunctional player in pulmonary hypertension associated with lung fibrosis.

    PubMed

    Kosanovic, Djuro; Luitel, Himal; Dahal, Bhola Kumar; Cornitescu, Teodora; Janssen, Wiebke; Danser, A H Jan; Garrelds, Ingrid M; De Mey, Jo G R; Fazzi, Gregorio; Schiffers, Paul; Iglarz, Marc; Fischli, Walter; Ghofrani, Hossein Ardeschir; Weissmann, Norbert; Grimminger, Friedrich; Seeger, Werner; Reiss, Irwin; Schermuly, Ralph Theo

    2015-10-01

    Limited literature sources implicate mast-cell mediator chymase in the pathologies of pulmonary hypertension and pulmonary fibrosis. However, there is no evidence on the contribution of chymase to the development of pulmonary hypertension associated with lung fibrosis, which is an important medical condition linked with increased mortality of patients who already suffer from a life-threatening interstitial lung disease.The aim of this study was to investigate the role of chymase in this particular pulmonary hypertension form, by using a bleomycin-induced pulmonary hypertension model.Chymase inhibition resulted in attenuation of pulmonary hypertension and pulmonary fibrosis, as evident from improved haemodynamics, decreased right ventricular remodelling/hypertrophy, pulmonary vascular remodelling and lung fibrosis. These beneficial effects were associated with a strong tendency of reduction in mast cell number and activity, and significantly diminished chymase expression levels. Mechanistically, chymase inhibition led to attenuation of transforming growth factor β1 and matrix-metalloproteinase-2 contents in the lungs. Furthermore, chymase inhibition prevented big endothelin-1-induced vasoconstriction of the pulmonary arteries.Therefore, chymase plays a role in the pathogenesis of pulmonary hypertension associated with pulmonary fibrosis and may represent a promising therapeutic target. In addition, this study may provide valuable insights on the contribution of chymase in the pulmonary hypertension context, in general, regardless of the pulmonary hypertension form. Copyright ©ERS 2015.

  19. Valsartan attenuates pulmonary hypertension via suppression of mitogen activated protein kinase signaling and matrix metalloproteinase expression in rodents.

    PubMed

    Lu, Yuyan; Guo, Haipeng; Sun, Yuxi; Pan, Xin; Dong, Jia; Gao, Di; Chen, Wei; Xu, Yawei; Xu, Dachun

    2017-08-01

    It has previously been demonstrated that the renin-angiotensin system is involved in the pathogenesis and development of pulmonary hypertension (PH). However, the efficacy of angiotensin II type I (AT1) receptor blockers in the treatment of PH is variable. The present study examined the effects of the AT1 receptor blocker valsartan on monocrotaline (MCT)‑induced PH in rats and chronic hypoxia‑induced PH in mice. The results demonstrated that valsartan markedly attenuated development of PH in rats and mice, as indicated by reduced right ventricular systolic pressure, diminished lung vascular remodeling and decreased right ventricular hypertrophy, compared with vehicle treated animals. Immunohistochemical analyses of proliferating cell nuclear antigen expression revealed that valsartan suppressed smooth muscle cell proliferation. Western blot analysis demonstrated that valsartan limited activation of p38, c‑Jun N‑terminal kinase 1/2 and extracellular signal‑regulated kinase 1/2 signaling pathways and significantly reduced MCT‑induced upregulation of pulmonary matrix metalloproteinases‑2 and ‑9, and transforming growth factor‑β1 expression. The results suggested that valsartan attenuates development of PH in rodents by reducing expression of extracellular matrix remodeling factors and limiting smooth muscle cell proliferation to decrease pathological vascular remodeling. Therefore, valsartan may be a valuable future therapeutic approach for the treatment of PH.

  20. Pulmonary hypertension - at home

    MedlinePlus

    ... care; Activity - pulmonary hypertension; Preventing infections - pulmonary hypertension; Oxygen - pulmonary hypertension ... In the hospital, you received oxygen treatment. You may need to use ... change how much oxygen is flowing without asking your doctor. ...

  1. HIV and Pulmonary Hypertension

    MedlinePlus

    ... What do I need to know about pulmonary hypertension in connection with HIV? Although pulmonary hypertension and ... Should an HIV patient be tested for pulmonary hypertension? HIV patients know that medical supervision is critical ...

  2. Ca2+ handling remodeling and STIM1L/Orai1/TRPC1/TRPC4 upregulation in monocrotaline-induced right ventricular hypertrophy.

    PubMed

    Jessica, Sabourin; Angèle, Boet; Catherine, Rucker-Martin; Mélanie, Lambert; Ana-Maria, Gomez; Jean-Pierre, Benitah; Frédéric, Perros; Marc, Humbert; Fabrice, Antigny

    2018-05-01

    Right ventricular (RV) function is the most important prognostic factor for pulmonary arterial hypertension (PAH) patients. The progressive increase of pulmonary vascular resistance induces RV hypertrophy (RVH) and at term RV failure (RVF). However, the molecular mechanisms of RVH and RVF remain understudied. In this study, we gained insights into cytosolic Ca 2+ signaling remodeling in ventricular cardiomyocytes during the pathogenesis of severe pulmonary hypertension (PH) induced in rats by monocrotaline (MCT) exposure, and we further identified molecular candidates responsible for this Ca 2+ remodeling. After PH induction, hypertrophied RV myocytes presented longer action potential duration, higher and faster [Ca 2+ ] i transients and increased sarcoplasmic reticulum (SR) Ca 2+ content, whereas no changes in these parameters were detected in left ventricular (LV) myocytes. These modifications were associated with increased P-Ser 16 -phospholamban pentamer expression without altering SERCA2a (Sarco/Endoplasmic Reticulum Ca 2+ -ATPase) pump abundance. Moreover, after PH induction, Ca 2+ sparks frequency were higher in hypertrophied RV cells, while total RyR2 (Ryanodine Receptor) expression and phosphorylation were unaffected. Together with cellular hypertrophy, the T-tubules network was disorganized. Hypertrophied RV cardiomyocytes from MCT-exposed rats showed decreased expression of classical STIM1 (Stromal Interaction molecule) associated with increased expression of muscle-specific STIM1 Long isoform, glycosylated-Orai1 channel form, and TRPC1 and TRPC4 channels, which was correlated with an enhanced Ca 2+ -release-activated Ca 2+ (CRAC)-like current. Pharmacological inhibition of TRPCs/Orai1 channels in hypertrophied RV cardiomyocytes normalized [Ca 2+ ] i transients amplitude, the SR Ca 2+ content and cell contractility to control levels. Finally, we showed that most of these changes did not appear in LV cardiomyocytes. These new findings demonstrate RV

  3. Pulmonary arterial hypertension in pregnancy.

    PubMed

    Običan, Sarah G; Cleary, Kirsten L

    2014-08-01

    Pulmonary hypertension is a medical condition characterized by elevated pulmonary arterial pressure and secondary right heart failure. Pulmonary arterial hypertension is a subset of pulmonary hypertension, which is characterized by an underlying disorder of the pulmonary arterial vasculature. Pulmonary hypertension can also occur secondarily to structural cardiac disease, autoimmune disorders, and toxic exposures. Although pregnancies affected by pulmonary hypertension and pulmonary arterial hypertension are rare, the pathophysiology exacerbated by pregnancy confers both high maternal and fetal mortality and morbidity. In light of new treatment modalities and the use of a multidisciplinary approach to care, maternal outcomes may be improving. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. A study on the involvement of GABA-transaminase in MCT induced pulmonary hypertension.

    PubMed

    Lingeshwar, Poorella; Kaur, Gurpreet; Singh, Neetu; Singh, Seema; Mishra, Akanksha; Shukla, Shubha; Ramakrishna, Rachumallu; Laxman, Tulsankar Sachin; Bhatta, Rabi Sankar; Siddiqui, Hefazat H; Hanif, Kashif

    2016-02-01

    Increased sympathetic nervous system (SNS) activity is associated with cardiovascular diseases but its role has not been completely explored in pulmonary hypertension (PH). Increased SNS activity is distinguished by elevated level of norepinephrine (NE) and activity of γ-Amino butyric acid Transminase (GABA-T) which degrades GABA, an inhibitory neurotransmitter within the central and peripheral nervous system. Therefore, we hypothesized that GABA-T may contribute in pathophysiology of PH by modulating level of GABA and NE. The effect of daily oral administration of GABA-T inhibitor, Vigabatrin (GVG, 50 and 75 mg/kg/day, 35 days) was studied following a single subcutaneous administration of monocrotaline (MCT, 60 mg/kg) in male SD rats. The pressure and hypertrophy of right ventricle (RV), oxidative stress, inflammation, pulmonary vascular remodelling were assessed after 35 days in MCT treated rats. The expression of GABA-T and HIF-1α was studied in lung tissue. The levels of plasma NE (by High performance liquid chromatography coupled with electrochemical detector; HPLC-ECD) and lung GABA (by liquid chromatography-mass spectrometry) were also estimated. GVG at both doses significantly attenuated increased in pressure (35.82 ± 4.80 mm Hg, p < 0.001; 28.37 ± 3.32 mm Hg, p < 0.001 respectively) and hypertrophy of RV, pulmonary vascular remodelling, oxidative stress and inflammation in lungs of MCT exposed rats. GVG also reduced the expression of GABA-T and HIF-1α in MCT treated rats. Increased NE level and decreased GABA level was also reversed by GVG in MCT exposed rats. GABA-T plays an important role in PH by modulating SNS activity and may be considered as a therapeutic target in PH. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Diesel exhaust induced pulmonary and cardiovascular impairment: The role of hypertension intervention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodavanti, Urmila P., E-mail: kodavanti.urmila@epa.gov; Thomas, Ronald F.; Ledbetter, Allen D.

    Exposure to diesel exhaust (DE) and associated gases is linked to cardiovascular impairments; however, the susceptibility of hypertensive individuals is poorly understood. The objectives of this study were (1) to determine cardiopulmonary effects of gas-phase versus whole-DE and (2) to examine the contribution of systemic hypertension in pulmonary and cardiovascular effects. Male Wistar Kyoto (WKY) rats were treated with hydralazine to reduce blood pressure (BP) or L-NAME to increase BP. Spontaneously hypertensive (SH) rats were treated with hydralazine to reduce BP. Control and drug-pretreated rats were exposed to air, particle-filtered exhaust (gas), or whole DE (1500 μg/m{sup 3}), 4 h/daymore » for 2 days or 5 days/week for 4 weeks. Acute and 4-week gas and DE exposures increased neutrophils and γ-glutamyl transferase (γ-GT) activity in lavage fluid of WKY and SH rats. DE (4 weeks) caused pulmonary albumin leakage and inflammation in SH rats. Two-day DE increased serum fatty acid binding protein-3 (FABP-3) in WKY. Marked increases occurred in aortic mRNA after 4-week DE in SH (eNOS, TF, tPA, TNF-α, MMP-2, RAGE, and HMGB-1). Hydralazine decreased BP in SH while L-NAME tended to increase BP in WKY; however, neither changed inflammation nor BALF γ-GT. DE-induced and baseline BALF albumin leakage was reduced by hydralazine in SH rats and increased by L-NAME in WKY rats. Hydralazine pretreatment reversed DE-induced TF, tPA, TNF-α, and MMP-2 expression but not eNOS, RAGE, and HMGB-1. ET-1 was decreased by HYD. In conclusion, antihypertensive drug treatment reduces gas and DE-induced pulmonary protein leakage and expression of vascular atherogenic markers. - Highlights: ► Acute diesel exhaust exposure induces pulmonary inflammation in healthy rats. ► In hypertensive rats diesel exhaust effects are seen only after long term exposure. ► Normalizing blood pressure reverses lung protein leakage caused by diesel exhaust. ► Normalizing blood pressure reverses

  6. Change in pharmacological effect of endothelin receptor antagonists in rats with pulmonary hypertension: Role of ETB-receptor expression levels

    PubMed Central

    Sauvageau, Stéphanie; Thorin, Eric; Villeneuve, Louis; Dupuis, Jocelyn

    2013-01-01

    Background and purpose The endothelin (ET) system is activated in pulmonary arterial hypertension (PAH). The therapeutic value of pharmacological blockade of ET receptors has been demonstrated in various animal models and led to the current approval and continued development of these drugs for the therapy of human PAH. However, we currently incompletely comprehend what local modifications of this system occur as a consequence of PAH, particularly in small resistance arteries, and how this could affect the pharmacological response to ET receptor antagonists with various selectivities for the receptor subtypes. Therefore, the purposes of this study were to evaluate potential modifications of the pharmacology of the ET system in rat pulmonary resistance arteries from monocrotaline (MCT)-induced pulmonary arterial hypertension. Experimental approach ET-1 levels were quantified by ELISA. PreproET-1, ETA and ETB receptor mRNA expressions were quantified in pulmonary resistance arteries using Q-PCR, while protein expression was evaluated by Western blots. Reactivity to ET-1 of isolated pulmonary resistance arteries was measured in the presence of ETA (A-147627), ETB (A-192621) and dual ETA/B (bosentan) receptor antagonists. Key results In rats with PAH, plasma ET-1 increased (p < 0.001) while pulmonary levels were reduced (p < 0.05). In PAH arteries, preproET-1 (p < 0.05) and ETB receptor (p < 0.001) gene expressions were reduced, as were ETB receptor protein levels (p < 0.05). ET-1 induced similar vasoconstrictions in both groups. In arteries from sham animals, neither bosentan nor the ETA or the ETB receptor antagonists modified the response. In arteries from PAH rats, however, bosentan and the ETA receptor antagonist potently reduced the maximal contraction, while bosentan also reduced sensitivity (p < 0.01). Conclusions and implications The effectiveness of both selective ETA and dual ETA/B receptor antagonists is markedly increased in PAH. Down-regulation of

  7. Role of chymase in cigarette smoke-induced pulmonary artery remodeling and pulmonary hypertension in hamsters.

    PubMed

    Wang, Tao; Han, Su-Xia; Zhang, Shang-Fu; Ning, Yun-Ye; Chen, Lei; Chen, Ya-Juan; He, Guang-Ming; Xu, Dan; An, Jin; Yang, Ting; Zhang, Xiao-Hong; Wen, Fu-Qiang

    2010-03-31

    Cigarette smoking is an important risk factor for pulmonary arterial hypertension (PAH) in chronic obstructive pulmonary disease (COPD). Chymase has been shown to function in the enzymatic production of angiotensin II (AngII) and the activation of transforming growth factor (TGF)-beta1 in the cardiovascular system. The aim of this study was to determine the potential role of chymase in cigarette smoke-induced pulmonary artery remodeling and PAH. Hamsters were exposed to cigarette smoke; after 4 months, lung morphology and tissue biochemical changes were examined using immunohistochemistry, Western blotting, radioimmunoassay and reverse-transcription polymerase chain reaction. Our results show that chronic cigarette smoke exposure significantly induced elevation of right ventricular systolic pressures (RVSP) and medial hypertrophy of pulmonary arterioles in hamsters, concurrent with an increase of chymase activity and synthesis in the lung. Elevated Ang II levels and enhanced TGF-beta1/Smad signaling activation were also observed in smoke-exposed lungs. Chymase inhibition with chymostatin reduced the cigarette smoke-induced increase in chymase activity and Ang II concentration in the lung, and attenuated the RVSP elevation and the remodeling of pulmonary arterioles. Chymostatin did not affect angiotensin converting enzyme (ACE) activity in hamster lungs. These results suggest that chronic cigarette smoke exposure can increase chymase activity and expression in hamster lungs. The capability of activated chymase to induce Ang II formation and TGF-beta1 signaling may be part of the mechanism for smoking-induced pulmonary vascular remodeling. Thus, our study implies that blockade of chymase might provide benefits to PAH smokers.

  8. Does exercise pulmonary hypertension exist?

    PubMed

    Lau, Edmund M; Chemla, Denis; Whyte, Kenneth; Kovacs, Gabor; Olschewski, Horst; Herve, Philippe

    2016-09-01

    The exercise definition of pulmonary hypertension using a mean pulmonary artery pressure threshold of greater than 30 mmHg was abandoned following the 4th World Pulmonary Hypertension Symposium in 2008, as this definition was not supported by evidence and healthy individuals frequently exceed this threshold. Meanwhile, the clinical value of exercise pulmonary hemodynamic testing has also been questioned. Recent data support the notion that an abnormal pulmonary hemodynamic response during exercise (or exercise pulmonary hypertension) is associated with symptoms and exercise limitation. Pathophysiologic mechanisms accounting for the development of exercise pulmonary hypertension include increased vascular resistance, excessive elevation in left atrial pressure and/or increased volume of trapped air during exercise, resulting in a steep rise in pulmonary artery pressure relative to cardiac output. Recent evidence suggests that exercise pulmonary hypertension may be defined by a mean pulmonary artery pressure surpassing 30 mmHg together with a simultaneous total pulmonary resistance exceeding 3 WU. Exercise pulmonary hypertension is a clinically relevant entity and an improved definition has been suggested based on new evidence. Exercise pulmonary hemodynamics may help unmask early or latent disease, particularly in populations that are at high risk for the development of pulmonary hypertension.

  9. Characterization of fibroblasts from hypertrophied right ventricle of pulmonary hypertensive rats.

    PubMed

    Imoto, Keisuke; Okada, Muneyoshi; Yamawaki, Hideyuki

    2018-06-02

    Pulmonary arterial hypertension (PAH), which is characterized by an elevation of pulmonary arterial resistance, leads to a lethal right heart failure. It is an urgent issue to clarify the pathogenesis of PAH-induced right heart failure. The present study aimed to elucidate the characteristics of cardiac fibroblasts (CFs) isolated from hypertrophied right ventricles of monocrotaline (MCT)-induced PAH model rats. CFs were isolated from the right ventricles of MCT-injected rats (MCT-CFs) and saline-injected control rats (CONT-CFs). Expression of α-smooth muscle actin and collagen type I in MCT-CFs was lower than that in CONT-CFs. On the other hand, proliferation, migration, and matrix metalloproteinase (MMP)-9 production were significantly enhanced in MCT-CFs. In MCT-CFs, phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, c-Jun N-terminal kinase (JNK), and Ca 2+ /calmodulin-dependent protein kinase (CaMK) II was significantly enhanced. In addition to mRNA expression of Orai1, a Ca 2+ release-activated Ca 2+ channel, and stromal interaction molecules (STIM) 1, an endoplasmic reticulum Ca 2+ sensor, the associated store-operated Ca 2+ entry (SOCE) was significantly higher in MCT-CFs than CONT-CFs. Pharmacological inhibition of ERK1/2 pathway prevented the enhanced proliferation of MCT-CFs. The enhanced migration of MCT-CFs was prevented by a pharmacological inhibition of ERK1/2, JNK, CaMKII, or SOCE pathway. The enhanced MMP-9 production in MCT-CFs was prevented by a pharmacological inhibition of ERK1/2, CaMKII, or SOCE pathway but not JNK. The present results suggested that MCT-CFs exhibit proliferative and migratory phenotypes perhaps through multiple signaling pathways. This study for the first time determined the characteristics of CFs isolated from hypertrophied right ventricles of MCT-induced PAH model rats.

  10. Diesel exhaust inhalation exposure induces pulmonary arterial hypertension in mice.

    PubMed

    Liu, Jing; Ye, Xiaoqing; Ji, Dapeng; Zhou, Xiaofei; Qiu, Cong; Liu, Weiping; Yu, Luyang

    2018-06-01

    Diesel exhaust (DE) is one of the main sources of urban air pollution. An increasing number of evidence showed the association of air pollution with cardiovascular diseases. Pulmonary arterial hypertension (PAH) is one of the most disastrous vascular diseases, which results in right ventricular failure and death. However, the relationship of DE inhalation exposure with PAH is still unknown. In this study, male adult mice were exposed by inhalation to filtered ambient air (negative control), 10% O 2 hypoxia (PAH-phenotype positive control), 350 μg/m 3 particulate matter whole DE, or the combination of DE and hypoxic condition. DE inhalation induced PAH-phenotype accompanied with increased right ventricular systolic pressure (RVSP), right ventricle hypertrophy and pulmonary arterial thickening in a mouse model. DE exposure induced the proliferation of vascular smooth muscle cells (VSMCs) and apoptosis of endothelial cells in pulmonary artery. DE inhalation exposure induced an accumulation of CD45 +  lymphocytes and CD68 +  macrophages surrounding and infiltrating pulmonary arteriole. The levels of pro-inflammatory cytokines tumor necrosis factor (TNF-α), interleukin-6 (IL-6) and IL-13 produced by T helper 17 (Th17) and Th2 cells were markedly elevated in lung tissues of mice after DE inhalation exposure. Our findings suggest DE exposure induces PAH by activating Th17-skewed and Th2-droved responses, stimulating VSMCs proliferation and inducing endothelial cell apoptosis by the production of multifunctional pro-inflammatory cytokines, especially IL-6 and TNF-α. Considering the adverse impact of air pollution on health care, it is imperative to understand air pollution-induced susceptibility of progressive cardiopulmonary disease, such as PAH, and also elucidate critical mechanistic pathways which mediate pulmonary artery vascular remodeling and may serve as targets for preventive measures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Sarcoidosis-associated pulmonary hypertension.

    PubMed

    Cordova, Francis C; D'Alonzo, Gilbert

    2013-09-01

    Pulmonary hypertension is a serious complication of sarcoidosis. This review discusses clinical characteristics of patients with sarcoid-associated pulmonary hypertension (SAPH) and pitfalls in the diagnosis, and highlights potential therapies. SAPH is common in patients with advanced disease, but it can occur in patients with minimal disease burden. Risk factors for SAPH include restrictive lung physiology, hypoxemia, advanced Scadding chest X-ray stage, and low carbon monoxide diffusion capacity. Echocardiogram is a good initial screening tool in the diagnosis of pulmonary hypertension, but right heart catheterization is necessary to confirm the diagnosis. Treatment with pulmonary vasodilators, including endothelin antagonists, can lead to improvements in pulmonary hemodynamics in some patients but may not improve their exercise capacity. Forced vital capacity is an important predictor of exercise performance in patients with SAPH. Clinical observations and response to specific therapies for pulmonary hypertension suggest the presence of different SAPH phenotypes. Patients who complain of persistent dyspnea should be screened for the presence of pulmonary hypertension. The prognosis of SAPH is poor and it is prudent to consider referral of these patients for lung transplantation. In some patients with SAPH, treatment with anti-inflammatory agents and pulmonary vasodilators can lower pulmonary arterial pressures, improve dyspnea and functionality, and enhance overall quality of life.

  12. Hypoxia-induced pulmonary arterial hypertension augments lung injury and airway reactivity caused by ozone exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zychowski, Katherine E.; Lucas, Selita N.; Sanchez

    Ozone (O{sub 3})-related cardiorespiratory effects are a growing public health concern. Ground level O{sub 3} can exacerbate pre-existing respiratory conditions; however, research regarding therapeutic interventions to reduce O{sub 3}-induced lung injury is limited. In patients with chronic obstructive pulmonary disease, hypoxia-associated pulmonary hypertension (HPH) is a frequent comorbidity that is difficult to treat clinically, yet associated with increased mortality and frequency of exacerbations. In this study, we hypothesized that established HPH would confer vulnerability to acute O{sub 3} pulmonary toxicity. Additionally, we tested whether improvement of pulmonary endothelial barrier integrity via rho-kinase inhibition could mitigate pulmonary inflammation and injury. Tomore » determine if O{sub 3} exacerbated HPH, male C57BL/6 mice were subject to either 3 weeks continuous normoxia (20.9% O{sub 2}) or hypoxia (10.0% O{sub 2}), followed by a 4-h exposure to either 1 ppm O{sub 3} or filtered air (FA). As an additional experimental intervention fasudil (20 mg/kg) was administered intraperitoneally prior to and after O{sub 3} exposures. As expected, hypoxia significantly increased right ventricular pressure and hypertrophy. O{sub 3} exposure in normoxic mice caused lung inflammation but not injury, as indicated by increased cellularity and edema in the lung. However, in hypoxic mice, O{sub 3} exposure led to increased inflammation and edema, along with a profound increase in airway hyperresponsiveness to methacholine. Fasudil administration resulted in reduced O{sub 3}-induced lung injury via the enhancement of pulmonary endothelial barrier integrity. These results indicate that increased pulmonary vascular pressure may enhance lung injury, inflammation and edema when exposed to pollutants, and that enhancement of pulmonary endothelial barrier integrity may alleviate such vulnerability. - Highlights: • Environmental exposures can exacerbate chronic

  13. Dysregulated renin-angiotensin-aldosterone system contributes to pulmonary arterial hypertension

    PubMed Central

    De Man, Frances; Tu, Ly; Handoko, Louis; Rain, Silvia; Ruiter, Gerrina; François, Charlène; Schalij, Ingrid; Dorfmüller, Peter; Simonneau, Gérald; Fadel, Elie; Perros, Frederic; Boonstra, Anco; Postmus, Piet; Van Der Velden, Jolanda; Vonk-Noordegraaf, Anton; Humbert, Marc; Eddahibi, Saadia; Guignabert, Christophe

    2012-01-01

    Rationale Patients with idiopathic pulmonary arterial hypertension (iPAH) often have a low cardiac output. To compensate, neurohormonal systems like renin-angiotensin-aldosterone system (RAAS) and sympathetic nervous system are upregulated but this may have long-term negative effects on the progression of iPAH. Objectives Assess systemic and pulmonary RAAS-activity in iPAH-patients and determine the efficacy of chronic RAAS-inhibition in experimental PAH. Measurements and Main Results We collected 79 blood samples from 58 iPAH-patients in the VU University Medical Center Amsterdam (between 2004–2010), to determine systemic RAAS-activity. We observed increased levels of renin, angiotensin (Ang) I and AngII, which was associated with disease progression (p<0.05) and mortality (p<0.05). To determine pulmonary RAAS-activity, lung specimens were obtained from iPAH-patients (during lung transplantation, n=13) and controls (during lobectomy or pneumonectomy for cancer, n=14). Local RAAS-activity in pulmonary arteries of iPAH-patients was increased, demonstrated by elevated ACE-activity in pulmonary endothelial cells and increased AngII type 1 (AT1) receptor expression and signaling. In addition, local RAAS- upregulation was associated with increased pulmonary artery smooth muscle cell proliferation via enhanced AT1-receptor signaling in iPAH-patients compared to controls. Finally, to determine the therapeutic potential of RAAS-activity, we assessed the chronic effects of an AT1-receptor antagonist (losartan) in the monocrotaline PAH-rat model (60 mg/kg). Losartan delayed disease progression, decreased RV afterload and pulmonary vascular remodeling and restored right ventricular-arterial coupling in PAH-rats. Conclusions Systemic and pulmonary RAAS-activities are increased in iPAH-patients and associated with increased pulmonary vascular remodeling. Chronic inhibition of RAAS by losartan is beneficial in experimental PAH. PMID:22859525

  14. Pulmonary arterial hypertension in schistosomiasis.

    PubMed

    Gavilanes, Francisca; Fernandes, Caio J C; Souza, Rogerio

    2016-09-01

    Schistosomiasis is one of the most prevalent parasitic diseases in the world, being present in more than 70 countries. Pulmonary hypertension is one of the several chronic complications of schistosomiasis; particularly in developing countries, schistosomiasis-associated pulmonary arterial hypertension might represent one of the most prevalent causes of pulmonary arterial hypertension. New epidemiological data reinforce the importance of schistosomiasis in the context of pulmonary hypertension; furthermore, the inflammatory components of the pathophysiology of pulmonary hypertension associated with schistosomiasis have been recently explored, opening the perspective of new targets to be explored. Clinical and hemodynamic features of this particular complication of schistosomiasis, and the role of targeted therapies in this setting, have been better described in recent years. The importance of schistosomiasis-associated pulmonary hypertension is now recognized with better knowledge about its pathophysiology and management. Nevertheless, there is a need for better understanding the predisposal factors (genetic, environmental and so on) for the development of pulmonary hypertension in schistosomiasis as a way to prevent it from occurring. Furthermore, better control programs to decrease disease transmission are still missing, ensuring that we will have to face this devastating complication of schistosomiasis for a long future.

  15. Pulmonary hypertension in older adults.

    PubMed

    McArdle, John R; Trow, Terence K; Lerz, Kathryn

    2007-12-01

    Pulmonary hypertension is a frequently encountered problem in older patients. True idiopathic pulmonary arterial hypertension can also be seen and requires careful exclusion in older patients. Institution of therapies must be tempered with an appreciation of individual comorbidities and functional limitations that may affect patients' ability to comply and benefit from the complex treatments available for pulmonary arterial hypertension. This article reviews the existing data on the various forms of pulmonary hypertension presenting in older patients and on appropriate therapy in this challenging population.

  16. High-intensity interval training, but not continuous training, reverses right ventricular hypertrophy and dysfunction in a rat model of pulmonary hypertension.

    PubMed

    Brown, Mary Beth; Neves, Evandro; Long, Gary; Graber, Jeremy; Gladish, Brett; Wiseman, Andrew; Owens, Matthew; Fisher, Amanda J; Presson, Robert G; Petrache, Irina; Kline, Jeffrey; Lahm, Tim

    2017-02-01

    Exercise is beneficial in pulmonary arterial hypertension (PAH), although studies to date indicate little effect on the elevated pulmonary pressures or maladaptive right ventricle (RV) hypertrophy associated with the disease. For chronic left ventricle failure, high-intensity interval training (HIIT) promotes greater endothelial stimulation and superior benefit than customary continuous exercise training (CExT); however, HIIT has not been tested for PAH. Therefore, here we investigated acute and chronic responses to HIIT vs. CExT in a rat model of monocrotaline (MCT)-induced mild PAH. Six weeks of treadmill training (5 times/wk) were performed, as either 30 min HIIT or 60 min low-intensity CExT. To characterize acute hemodynamic responses to the two approaches, novel recordings of simultaneous pulmonary and systemic pressures during running were obtained at pre- and 2, 4, 6, and 8 wk post-MCT using long-term implantable telemetry. MCT-induced decrement in maximal aerobic capacity was ameliorated by both HIIT and CExT, with less pronounced pulmonary vascular remodeling and no increase in RV inflammation or apoptosis observed. Most importantly, only HIIT lowered RV systolic pressure, RV hypertrophy, and total pulmonary resistance, and prompted higher cardiac index that was complemented by a RV increase in the positive inotrope apelin and reduced fibrosis. HIIT prompted a markedly pulsatile pulmonary pressure during running and was associated with greater lung endothelial nitric oxide synthase after 6 wk. We conclude that HIIT may be superior to CExT for improving hemodynamics and maladaptive RV hypertrophy in PAH. HIIT's superior outcomes may be explained by more favorable pulmonary vascular endothelial adaptation to the pulsatile HIIT stimulus.

  17. High-intensity interval training, but not continuous training, reverses right ventricular hypertrophy and dysfunction in a rat model of pulmonary hypertension

    PubMed Central

    Neves, Evandro; Long, Gary; Graber, Jeremy; Gladish, Brett; Wiseman, Andrew; Owens, Matthew; Fisher, Amanda J.; Presson, Robert G.; Petrache, Irina; Kline, Jeffrey; Lahm, Tim

    2017-01-01

    Exercise is beneficial in pulmonary arterial hypertension (PAH), although studies to date indicate little effect on the elevated pulmonary pressures or maladaptive right ventricle (RV) hypertrophy associated with the disease. For chronic left ventricle failure, high-intensity interval training (HIIT) promotes greater endothelial stimulation and superior benefit than customary continuous exercise training (CExT); however, HIIT has not been tested for PAH. Therefore, here we investigated acute and chronic responses to HIIT vs. CExT in a rat model of monocrotaline (MCT)-induced mild PAH. Six weeks of treadmill training (5 times/wk) were performed, as either 30 min HIIT or 60 min low-intensity CExT. To characterize acute hemodynamic responses to the two approaches, novel recordings of simultaneous pulmonary and systemic pressures during running were obtained at pre- and 2, 4, 6, and 8 wk post-MCT using long-term implantable telemetry. MCT-induced decrement in maximal aerobic capacity was ameliorated by both HIIT and CExT, with less pronounced pulmonary vascular remodeling and no increase in RV inflammation or apoptosis observed. Most importantly, only HIIT lowered RV systolic pressure, RV hypertrophy, and total pulmonary resistance, and prompted higher cardiac index that was complemented by a RV increase in the positive inotrope apelin and reduced fibrosis. HIIT prompted a markedly pulsatile pulmonary pressure during running and was associated with greater lung endothelial nitric oxide synthase after 6 wk. We conclude that HIIT may be superior to CExT for improving hemodynamics and maladaptive RV hypertrophy in PAH. HIIT’s superior outcomes may be explained by more favorable pulmonary vascular endothelial adaptation to the pulsatile HIIT stimulus. PMID:27784688

  18. Colforsin-induced vasodilation in chronic hypoxic pulmonary hypertension in rats.

    PubMed

    Yokochi, Ayumu; Itoh, Hiroo; Maruyama, Junko; Zhang, Erquan; Jiang, Baohua; Mitani, Yoshihide; Hamada, Chikuma; Maruyama, Kazuo

    2010-06-01

    Colforsin, a water-soluble forskolin derivative, directly activates adenylate cyclase and thereby increases the 3',5'-cyclic adenosine monophosphate (cAMP) level in vascular smooth muscle cells. In this study, we investigated the vasodilatory action of colforsin on structurally remodeled pulmonary arteries from rats with pulmonary hypertension (PH). A total of 32 rats were subjected to hypobaric hypoxia (380 mmHg, 10% oxygen) for 10 days to induce chronic hypoxic PH, while 39 rats were kept in room air. Changes in isometric force were recorded in endothelium-intact (+E) and -denuded (-E) pulmonary arteries from the PH and control (non-PH) rats. Colforsin-induced vasodilation was impaired in both +E and -E arteries from PH rats compared with their respective controls. Endothelial removal did not influence colforsin-induced vasodilation in the arteries from control rats, but attenuated it in arteries from PH rats. The inhibition of nitric oxide (NO) synthase did not influence colforsin-induced vasodilation in +E arteries from controls, but attenuated it in +E arteries from PH rats, shifting its concentration-response curve closer to that of -E arteries from PH rats. Vasodilation induced by 8-bromo-cAMP (a cell-permeable cAMP analog) was also impaired in -E arteries from PH rats, but not in +E arteries from PH rats, compared with their respective controls. cAMP-mediated vasodilatory responses without beta-adrenergic receptor activation are impaired in structurally remodeled pulmonary arteries from PH rats. In these arteries, endothelial cells presumably play a compensatory role against the impaired cAMP-mediated vasodilatory response by releasing NO (and thereby attenuating the impairment). The results suggest that colforsin could be effective in the treatment of PH.

  19. 4-Chloro-DL-phenylalanine protects against monocrotaline‑induced pulmonary vascular remodeling and lung inflammation.

    PubMed

    Bai, Yang; Wang, Han-Ming; Liu, Ming; Wang, Yun; Lian, Guo-Chao; Zhang, Xin-Hua; Kang, Jian; Wang, Huai-Liang

    2014-02-01

    The present study was performed to investigate the effects of 4-chloro-DL-phenylalanine (PCPA), a tryptophan hydroxylase (Tph) inhibitor (TphI), on pulmonary vascular remodeling and lung inflammation in monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) in rats. Animal models of PAH were established using Sprague-Dawley (SD) rats by a single intraperitoneal injection of MCT (60 mg/kg). PCPA (50 or 100 mg/kg/day) was administered to the rats with PAH. On day 22, hemodynamic measurements and morphological observations of the lung tissues were performed. The levels of Tph-1 and serotonin transporter (SERT) in the lungs were analyzed by immunohistochemistry and western blot analysis. The expression of matrix metalloproteinase (MMP)-2 and MMP-9, tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 and inflammatory cytokines were assayed by western blot analysis. The activity of MMP-2 and MMP-9 was evaluated by gelatin zymography (GZ). MCT markedly promoted PAH, increased the right ventricular hypertrophy index, pulmonary vascular remodeling, lung inflammation and mortality, which was associated with the increased expression of Tph-1, SERT, MMP-2/-9, TIMP-1/-2 and inflammatory cytokines. PCPA markedly attenuated MCT-induced pulmonary vascular remodeling and lung inflammation, inhibited the expression of Tph-1 and SERT and suppressed the expression of MMP-2/-9, TIMP-1/-2, interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and intercellular adhesion molecule-1 (ICAM-1). These findings suggest that the amelioration of MCT-induced pulmonary vascular remodeling and lung inflammation by PCPA is associated with the downregulation of Tph-1, SERT, MMP/TIMP and inflammatory cytokine expression in rats.

  20. Tamoxifen Therapy to Treat Pulmonary Arterial Hypertension

    ClinicalTrials.gov

    2018-05-16

    Hypertension; Pulmonary Arterial Hypertension; Familial Primary Pulmonary Hypertension; Primary Pulmonary Hypertension; Lung Diseases; Tamoxifen; Estrogen Receptor Antagonist; Hormone Antagonists; Estrogens

  1. Smooth Muscle-Mediated Connective Tissue Remodeling in Pulmonary Hypertension

    NASA Astrophysics Data System (ADS)

    Mecham, Robert P.; Whitehouse, Loren A.; Wrenn, David S.; Parks, William C.; Griffin, Gail L.; Senior, Robert M.; Crouch, Edmond C.; Stenmark, Kurt R.; Voelkel, Norbert F.

    1987-07-01

    Abnormal accumulation of connective tissue in blood vessels contributes to alterations in vascular physiology associated with disease states such as hypertension and atherosclerosis. Elastin synthesis was studied in blood vessels from newborn calves with severe pulmonary hypertension induced by alveolar hypoxia in order to investigate the cellular stimuli that elicit changes in pulmonary arterial connective tissue production. A two- to fourfold increase in elastin production was observed in pulmonary artery tissue and medial smooth muscle cells from hypertensive calves. This stimulation of elastin production was accompanied by a corresponding increase in elastin messenger RNA consistent with regulation at the transcriptional level. Conditioned serum harvested from cultures of pulmonary artery smooth muscle cells isolated from hypertensive animals contained one or more low molecular weight elastogenic factors that stimulated the production of elastin in both fibroblasts and smooth muscle cells and altered the chemotactic responsiveness of fibroblasts to elastin peptides. These results suggest that connective tissue changes in the pulmonary vasculature in response to pulmonary hypertension are orchestrated by the medial smooth muscle cell through the generation of specific differentiation factors that alter both the secretory phenotype and responsive properties of surrounding cells.

  2. Update in pulmonary arterial hypertension.

    PubMed

    Mejía Chew, C R; Alcolea Batres, S; Ríos Blanco, J J

    2016-11-01

    Pulmonary arterial hypertension is a rare and progressive disease that mainly affects the pulmonary arterioles (precapillary), regardless of the triggering aetiology. The prevalence of pulmonary hypertension and pulmonary arterial hypertension in Spain is estimated at 19.2 and 16 cases per million inhabitants, respectively. The diagnosis of pulmonary arterial hypertension is based on haemodynamic criteria (mean pulmonary artery pressure ≥25mmHg, pulmonary capillary wedge pressure ≤15mmHg and pulmonary vascular resistance >3 Wood units) and therefore requires the implementation of right cardiac catheterisation. Sequential therapy with a single drug has been used in clinical practice. However, recent European guidelines recommend combined initial therapy in some situations. This review conducts a critical update of our knowledge of this disease according to the latest guidelines and recommendations. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.

  3. MicroRNA-138 and MicroRNA-25 Down-regulate Mitochondrial Calcium Uniporter, Causing the Pulmonary Arterial Hypertension Cancer Phenotype

    PubMed Central

    Hong, Zhigang; Chen, Kuang-Hueih; DasGupta, Asish; Potus, Francois; Dunham-Snary, Kimberly; Bonnet, Sebastien; Tian, Lian; Fu, Jennifer; Breuils-Bonnet, Sandra; Provencher, Steeve; Wu, Danchen; Mewburn, Jeffrey; Ormiston, Mark L.

    2017-01-01

    Rationale: Pulmonary arterial hypertension (PAH) is an obstructive vasculopathy characterized by excessive pulmonary artery smooth muscle cell (PASMC) proliferation, migration, and apoptosis resistance. This cancer-like phenotype is promoted by increased cytosolic calcium ([Ca2+]cyto), aerobic glycolysis, and mitochondrial fission. Objectives: To determine how changes in mitochondrial calcium uniporter (MCU) complex (MCUC) function influence mitochondrial dynamics and contribute to PAH’s cancer-like phenotype. Methods: PASMCs were isolated from patients with PAH and healthy control subjects and assessed for expression of MCUC subunits. Manipulation of the pore-forming subunit, MCU, in PASMCs was achieved through small interfering RNA knockdown or MCU plasmid-mediated up-regulation, as well as through modulation of the upstream microRNAs (miRs) miR-138 and miR-25. In vivo, nebulized anti-miRs were administered to rats with monocrotaline-induced PAH. Measurements and Main Results: Impaired MCUC function, resulting from down-regulation of MCU and up-regulation of an inhibitory subunit, mitochondrial calcium uptake protein 1, is central to PAH’s pathogenesis. MCUC dysfunction decreases intramitochondrial calcium ([Ca2+]mito), inhibiting pyruvate dehydrogenase activity and glucose oxidation, while increasing [Ca2+]cyto, promoting proliferation, migration, and fission. In PAH PASMCs, increasing MCU decreases cell migration, proliferation, and apoptosis resistance by lowering [Ca2+]cyto, raising [Ca2+]mito, and inhibiting fission. In normal PASMCs, MCUC inhibition recapitulates the PAH phenotype. In PAH, elevated miRs (notably miR-138) down-regulate MCU directly and also by decreasing MCU’s transcriptional regulator cAMP response element–binding protein 1. Nebulized anti-miRs against miR-25 and miR-138 restore MCU expression, reduce cell proliferation, and regress established PAH in the monocrotaline model. Conclusions: These results highlight miR-mediated MCUC

  4. Pulmonary hypertension associated with thalassemia syndromes

    PubMed Central

    Fraidenburg, Dustin R.; Machado, Roberto F.

    2016-01-01

    Chronic hemolytic anemia has increasingly been identified as an important risk factor for the development of pulmonary hypertension. Within the thalassemia syndromes, there are multiple mechanisms, both distinct and overlapping, by which pulmonary hypertension develops and that differ among β-thalassemia major or intermedia patients. Pulmonary hypertension in β-thalassemia major correlates with the severity of hemolysis, yet in patients whose disease is well treated with chronic transfusion therapy, the development of pulmonary hypertension can be related to cardiac dysfunction and the subsequent toxic effects of iron overload rather than hemolysis. β-thalassemia intermedia, on the other hand, has a higher incidence of pulmonary hypertension owing to the low level of hemolysis that exists over years without the requirement for frequent transfusions, while splenectomy is shown to play an important role in both types. Standard therapies such as chronic transfusion have been shown to mitigate pulmonary hypertension, and appropriate chelation therapy can avoid the toxic effects of iron overload, yet is not indicated in many patients. Limited evidence exists for the use of pulmonary vasodilators or other therapies, such as l-carnitine, to treat pulmonary hypertension associated with thalassemia. Here we review the most recent findings regarding the pathogenic mechanisms, epidemiology, presentation, diagnosis, and treatment of pulmonary hypertension in thalassemia syndromes. PMID:27008311

  5. Commercial air travel and in-flight pulmonary hypertension.

    PubMed

    Smith, Thomas G; Chang, Rae W; Robbins, Peter A; Dorrington, Keith L

    2013-01-01

    It has recently been shown that commercial air travel triggers hypoxic pulmonary vasoconstriction and modestly increases pulmonary artery pressure in healthy passengers. There is large interindividual variation in hypoxic pulmonary vasoreactivity, and some passengers may be at risk of developing flight-induced pulmonary hypertension, with potentially dangerous consequences. This study sought to determine whether it is possible for a susceptible passenger to develop pulmonary hypertension in response to a routine commercial flight. Using in-flight echocardiography, a passenger was studied during a 6-h commercial flight from London to Dubai. The passenger was generally well and frequently traveled by air, but had been diagnosed with Chuvash polycythemia, a genetic condition that is associated with increased hypoxic pulmonary vasoreactivity. Hematocrit had been normalized with regular venesection. During the flight, arterial oxygen saturation fell to a minimum of 96% and systolic pulmonary artery pressure (sPAP) rapidly increased into the pulmonary hypertensive range. The in-flight increase in sPAP was 50%, reaching a peak of 45 mmHg. This study has established that an asymptomatic but susceptible passenger can rapidly develop in-flight pulmonary hypertension even during a medium-haul flight. Prospective passengers at risk from such responses, including those who have cardiopulmonary disease or increased hypoxic pulmonary vasoreactivity, could benefit from preflight evaluation with a hypoxia altitude simulation test combined with simultaneous echocardiography (HAST-echo). The use of in-flight supplementary oxygen should be considered for susceptible individuals, including all patients diagnosed with Chuvash polycythemia.

  6. Genetics Home Reference: pulmonary arterial hypertension

    MedlinePlus

    ... Home Health Conditions Pulmonary arterial hypertension Pulmonary arterial hypertension Printable PDF Open All Close All Enable Javascript ... view the expand/collapse boxes. Description Pulmonary arterial hypertension is a progressive disorder characterized by abnormally high ...

  7. Cardioprotective effects of early and late aerobic exercise training in experimental pulmonary arterial hypertension.

    PubMed

    Moreira-Gonçalves, Daniel; Ferreira, Rita; Fonseca, Hélder; Padrão, Ana Isabel; Moreno, Nuno; Silva, Ana Filipa; Vasques-Nóvoa, Francisco; Gonçalves, Nádia; Vieira, Sara; Santos, Mário; Amado, Francisco; Duarte, José Alberto; Leite-Moreira, Adelino F; Henriques-Coelho, Tiago

    2015-11-01

    Clinical studies suggest that aerobic exercise can exert beneficial effects in pulmonary arterial hypertension (PAH), but the underlying mechanisms are largely unknown. We compared the impact of early or late aerobic exercise training on right ventricular function, remodeling and survival in experimental PAH. Male Wistar rats were submitted to normal cage activity (SED), exercise training in early (EarlyEX) and in late stage (LateEX) of PAH induced by monocrotaline (MCT, 60 mg/kg). Both exercise interventions resulted in improved cardiac function despite persistent right pressure-overload, increased exercise tolerance and survival, with greater benefits in EarlyEX+MCT. This was accompanied by improvements in the markers of cardiac remodeling (SERCA2a), neurohumoral activation (lower endothelin-1, brain natriuretic peptide and preserved vascular endothelial growth factor mRNA), metabolism and mitochondrial oxidative stress in both exercise interventions. EarlyEX+MCT provided additional improvements in fibrosis, tumor necrosis factor-alpha/interleukin-10 and brain natriuretic peptide mRNA, and beta/alpha myosin heavy chain protein expression. The present study demonstrates important cardioprotective effects of aerobic exercise in experimental PAH, with greater benefits obtained when exercise training is initiated at an early stage of the disease.

  8. Selective activation of angiotensin AT2 receptors attenuates progression of pulmonary hypertension and inhibits cardiopulmonary fibrosis.

    PubMed

    Bruce, E; Shenoy, V; Rathinasabapathy, A; Espejo, A; Horowitz, A; Oswalt, A; Francis, J; Nair, A; Unger, T; Raizada, M K; Steckelings, U M; Sumners, C; Katovich, M J

    2015-05-01

    Pulmonary hypertension (PH) is a devastating disease characterized by increased pulmonary arterial pressure, which progressively leads to right-heart failure and death. A dys-regulated renin angiotensin system (RAS) has been implicated in the development and progression of PH. However, the role of the angiotensin AT2 receptor in PH has not been fully elucidated. We have taken advantage of a recently identified non-peptide AT2 receptor agonist, Compound 21 (C21), to investigate its effects on the well-established monocrotaline (MCT) rat model of PH. A single s.c. injection of MCT (50 mg·kg(-1) ) was used to induce PH in 8-week-old male Sprague Dawley rats. After 2 weeks of MCT administration, a subset of animals began receiving either 0.03 mg·kg(-1) C21, 3 mg·kg(-1) PD-123319 or 0.5 mg·kg(-1) A779 for an additional 2 weeks, after which right ventricular haemodynamic parameters were measured and tissues were collected for gene expression and histological analyses. Initiation of C21 treatment significantly attenuated much of the pathophysiology associated with MCT-induced PH. Most notably, C21 reversed pulmonary fibrosis and prevented right ventricular fibrosis. These beneficial effects were associated with improvement in right heart function, decreased pulmonary vessel wall thickness, reduced pro-inflammatory cytokines and favourable modulation of the lung RAS. Conversely, co-administration of the AT2 receptor antagonist, PD-123319, or the Mas antagonist, A779, abolished the protective actions of C21. Taken together, our results suggest that the AT2 receptor agonist, C21, may hold promise for patients with PH. © 2014 The British Pharmacological Society.

  9. Pulmonary endarterectomy outputs in chronic thromboembolic pulmonary hypertension.

    PubMed

    López Gude, María Jesús; Pérez de la Sota, Enrique; Pérez Vela, Jose Luís; Centeno Rodríguez, Jorge; Muñoz Guijosa, Christian; Velázquez, María Teresa; Alonso Chaterina, Sergio; Hernández González, Ignacio; Escribano Subías, Pilar; Cortina Romero, José María

    2017-07-07

    Pulmonary thromboendarterectomy surgery is the treatment of choice for patients with chronic thromboembolic pulmonary hypertension; extremely high pulmonary vascular resistance constitutes a risk factor for hospital mortality. The objective of this study was to analyze the immediate and long-term results of the surgical treatment of chronic thromboembolic pulmonary hypertension in patients with very severe pulmonary hypertension. Since February 1996, we performed 160 pulmonary thromboendarterectomies. We divided the patient population in 2 groups: group 1, which included 40 patients with pulmonary vascular resistance≥1090dyn/sec/cm -5 , and group 2, which included the remaining 120 patients. Hospital mortality (15 vs. 2.5%), reperfusion pulmonary edema (33 vs. 14%) and heart failure (23 vs. 3.3%) were all higher in group 1; however, after one year of follow-up, there were no significant differences in the clinical, hemodynamic and echocardiographic conditions of both groups. Survival rate after 5 years was 77% in group 1 and 92% in group 2 (P=.033). After the learning curve including the 46 first patients, there was no difference in hospital mortality (3.8 vs. 2.3%) or survival rate after 5 years (96.2% in group 1 and 96.2% in group 2). Pulmonary thromboendarterectomy is linked to significantly higher morbidity and mortality rates in patients with severe chronic thromboembolic pulmonary hypertension. Nevertheless, these patients benefit the same from the procedure in the mid-/long-term. In our experience, after the learning curve, this surgery is safe in severe pulmonary hypertension and no level of pulmonary vascular resistance should be an absolute counter-indication for this surgery. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  10. Pulmonary Hypertension Overview

    MedlinePlus

    ... well as sleep apnea, are common causes of secondary pulmonary hypertension. Other causes include the following: Congestive heart failure Birth defects in the heart Chronic pulmonary thromboembolism (blood clots in the pulmonary arteries) Acquired immunodeficiency syndrome ( ...

  11. Pulmonary hypertension.

    PubMed

    Peacock, Andrew

    2013-03-01

    2011 to 2012 has seen an explosion in published research in the field of pulmonary vascular disease, especially pulmonary hypertension. In conjunction with this research has been an explosion in clinical interest in treating pulmonary hypertension. This is possible because we now have three different generic classes of drug therapy: endothelin receptor antagonists, phosphodiesterase-5 inhibitors and prostacyclins. Clearly, however, we need to be careful that we are treating the correct disease with the correct drug and measuring the correct response. Herein, I will review the papers published over the last year that offer the most insight into the pathobiology, but also those that give us the clinical information we need in epidemiology, treatment and end-points so that we can treat this devastating group of disease.

  12. Pulmonary arterial hypertension reduces energy efficiency of right, but not left, rat ventricular trabeculae.

    PubMed

    Pham, Toan; Nisbet, Linley; Taberner, Andrew; Loiselle, Denis; Han, June-Chiew

    2018-04-01

    Pulmonary arterial hypertension (PAH) triggers right ventricle (RV) hypertrophy and left ventricle (LV) atrophy, which progressively leads to heart failure. We designed experiments under conditions mimicking those encountered by the heart in vivo that allowed us to investigate whether consequent structural and functional remodelling of the ventricles affects their respective energy efficiencies. We found that peak work output was lower in RV trabeculae from PAH rats due to reduced extent and velocity of shortening. However, their suprabasal enthalpy was unaffected due to increased activation heat, resulting in reduced suprabasal efficiency. There was no effect of PAH on LV suprabasal efficiency. We conclude that the mechanism underlying the reduced energy efficiency of hypertrophied RV tissues is attributable to the increased energy cost of Ca 2+ cycling, whereas atrophied LV tissues still maintain normal mechano-energetic performance. Pulmonary arterial hypertension (PAH) greatly increases the afterload on the right ventricle (RV), triggering RV hypertrophy, which progressively leads to RV failure. In contrast, the disease reduces the passive filling pressure of the left ventricle (LV), resulting in LV atrophy. We investigated whether these distinct structural and functional consequences to the ventricles affect their respective energy efficiencies. We studied trabeculae isolated from both ventricles of Wistar rats with monocrotaline-induced PAH and their respective Control groups. Trabeculae were mounted in a calorimeter at 37°C. While contracting at 5 Hz, they were subjected to stress-length work-loops over a wide range of afterloads. They were subsequently required to undergo a series of isometric contractions at various muscle lengths. In both protocols, stress production, length change and suprabasal heat output were simultaneously measured. We found that RV trabeculae from PAH rats generated higher activation heat, but developed normal active stress. Their

  13. Pulmonary Hypertension

    PubMed Central

    Kim, John S.; McSweeney, Julia; Lee, Joanne; Ivy, Dunbar

    2015-01-01

    Objective Review the pharmacologic treatment options for pulmonary arterial hypertension (PAH) in the cardiac intensive care setting and summarize the most-recent literature supporting these therapies. Data Sources and Study Selection Literature search for prospective studies, retrospective analyses, and case reports evaluating the safety and efficacy of PAH therapies. Data Extraction Mechanisms of action and pharmacokinetics, treatment recommendations, safety considerations, and outcomes for specific medical therapies. Data Synthesis Specific targeted therapies developed for the treatment of adult patients with PAH have been applied for the benefit of children with PAH. With the exception of inhaled nitric oxide, there are no PAH medications approved for children in the US by the FDA. Unfortunately, data on treatment strategies in children with PAH are limited by the small number of randomized controlled clinical trials evaluating the safety and efficacy of specific treatments. The treatment options for PAH in children focus on endothelial-based pathways. Calcium channel blockers are recommended for use in a very small, select group of children who are responsive to vasoreactivity testing at cardiac catheterization. Phosphodiesterase type 5 inhibitor therapy is the most-commonly recommended oral treatment option in children with PAH. Prostacyclins provide adjunctive therapy for the treatment of PAH as infusions (intravenous and subcutaneous) and inhalation agents. Inhaled nitric oxide is the first line vasodilator therapy in persistent pulmonary hypertension of the newborn, and is commonly used in the treatment of PAH in the Intensive Care Unit (ICU). Endothelin receptor antagonists have been shown to improve exercise tolerance and survival in adult patients with PAH. Soluble Guanylate Cyclase Stimulators are the first drug class to be FDA approved for the treatment of chronic thromboembolic pulmonary hypertension. Conclusions Literature and data supporting the

  14. Opposite effects of training in rats with stable and progressive pulmonary hypertension.

    PubMed

    Handoko, M L; de Man, F S; Happé, C M; Schalij, I; Musters, R J P; Westerhof, N; Postmus, P E; Paulus, W J; van der Laarse, W J; Vonk-Noordegraaf, A

    2009-07-07

    Exercise training in pulmonary arterial hypertension (PH) is a promising adjunct to medical treatment. However, it is still unclear whether training is beneficial for all PH patients. We hypothesized that right ventricular adaptation plays a pivotal role in the response to training. Two different dosages of monocrotaline were used in rats to model stable PH with preserved cardiac output and progressive PH developing right heart failure. Two weeks after injection, PH was confirmed by echocardiography, and treadmill training was initiated. Rats were trained for 4 weeks unless manifest right heart failure developed earlier. At the end of the study protocol, all rats were functionally assessed by endurance testing, echocardiography, and invasive pressure measurements. Lungs and hearts were further analyzed in quantitative histomorphologic analyses. In stable PH, exercise training was well tolerated and markedly increased exercise endurance (from 25+/-3.9 to 62+/-3.9 minutes; P<0.001). Moreover, capillary density increased significantly (from 1.21+/-0.12 to 1.51+/-0.07 capillaries per cardiomyocyte; P<0.05). However, in progressive PH, exercise training worsened survival (hazard ratio, 2.7; 95% confidence interval, 1.1 to 14.2) and increased pulmonary vascular remodeling. In addition, training induced widespread leukocyte infiltration into the right ventricle (from 135+/-14 to 276+/-18 leukocytes per 1 mm(2); P<0.001). In our rat model, exercise training was found to be beneficial in stable PH but detrimental in progressive PH. Future studies are necessary to address the clinical implications of our findings.

  15. Single-dose rosuvastatin ameliorates lung ischemia-reperfusion injury via upregulation of endothelial nitric oxide synthase and inhibition of macrophage infiltration in rats with pulmonary hypertension.

    PubMed

    Matsuo, Satoshi; Saiki, Yuriko; Adachi, Osamu; Kawamoto, Shunsuke; Fukushige, Shinichi; Horii, Akira; Saiki, Yoshikatsu

    2015-03-01

    Lung ischemia-reperfusion (IR) injury during cardiopulmonary surgery is associated with postoperative morbidity and mortality, particularly in patients with pulmonary hypertension (PH). Using a rat model for monocrotaline-induced PH, we investigated the protective effect of rosuvastatin against IR injury in lungs affected by PH and attempted to elucidate its mechanism of action. Male Sprague-Dawley monocrotaline-treated rats were divided into 4 groups (n = 8-9): sham, control + IR, statin + IR, and statin + mevalonolactone + IR. Lung ischemia was induced by left pulmonary artery occlusion (1 hour), followed by reperfusion (4 hours). Rosuvastatin (2 mg/kg) was injected 18 hours before reperfusion and mevalonolactone (1 mg/kg) was injected immediately before reperfusion. The arterial oxygen tension/inspired oxygen fraction ratio was used as a measure of lung oxygenation. Left lung tissue was analyzed for the wet-to-dry lung weight ratio and protein expression of endothelial nitric oxide synthase (eNOS) and phospho-eNOS. Macrophage recruitment was assessed by CD68 immunostaining. Our results showed that rosuvastatin decreased IR lung injury (control + IR vs statin + IR) in terms of the arterial oxygen tension/inspired oxygen fraction ratio (272 ± 43 vs 442 ± 13), wet-to-dry ratio (5.7 ± 0.7 vs 4.8 ± 0.6), and macrophage infiltration (8.0 ± 0.6/field vs 4.0 ± 0.5/field) (P < .05 for all). eNOS and phospho-eNOS were downregulated by IR, which was blocked by rosuvastatin. Effects of rosuvastatin were blunted by mevalonolactone. Single-dose rosuvastatin decreased IR injury in lungs affected by PH via 2 anti-inflammatory mechanisms: preserving eNOS function and inhibiting macrophage infiltration. Copyright © 2015 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  16. Impact of the mitochondria-targeted antioxidant MitoQ on hypoxia-induced pulmonary hypertension.

    PubMed

    Pak, Oleg; Scheibe, Susan; Esfandiary, Azadeh; Gierhardt, Mareike; Sydykov, Akylbek; Logan, Angela; Fysikopoulos, Athanasios; Veit, Florian; Hecker, Matthias; Kroschel, Florian; Quanz, Karin; Erb, Alexandra; Schäfer, Katharina; Fassbinder, Mirja; Alebrahimdehkordi, Nasim; Ghofrani, Hossein A; Schermuly, Ralph T; Brandes, Ralf P; Seeger, Werner; Murphy, Michael P; Weissmann, Norbert; Sommer, Natascha

    2018-02-01

    Increased mitochondrial reactive oxygen species (ROS), particularly superoxide have been suggested to mediate hypoxic pulmonary vasoconstriction (HPV), chronic hypoxia-induced pulmonary hypertension (PH) and right ventricular (RV) remodelling.We determined ROS in acute, chronic hypoxia and investigated the effect of the mitochondria-targeted antioxidant MitoQ under these conditions.The effect of MitoQ or its inactive carrier substance, decyltriphenylphosphonium (TPP + ), on acute HPV (1% O 2 for 10 minutes) was investigated in isolated blood-free perfused mouse lungs. Mice exposed for 4 weeks to chronic hypoxia (10% O 2 ) or after banding of the main pulmonary artery (PAB) were treated with MitoQ or TPP + (50 mg/kg/day).Total cellular superoxide and mitochondrial ROS levels were increased in pulmonary artery smooth muscle cells (PASMC), but decreased in pulmonary fibroblasts in acute hypoxia. MitoQ significantly inhibited HPV and acute hypoxia-induced rise in superoxide concentration. ROS was decreased in PASMC, while it increased in the RV after chronic hypoxia. Correspondingly, MitoQ did not affect the development of chronic hypoxia-induced PH, but attenuated RV remodelling after chronic hypoxia as well as after PAB.Increased mitochondrial ROS of PASMC mediate acute HPV, but not chronic hypoxia-induced PH. MitoQ may be beneficial under conditions of exaggerated acute HPV. Copyright ©ERS 2018.

  17. Pulmonary hypertension and hepatic cirrhosis.

    PubMed

    Téllez Villajos, L; Martínez González, J; Moreira Vicente, V; Albillos Martínez, A

    2015-01-01

    Pulmonary hypertension is a relatively common phenomenon in patients with hepatic cirrhosis and can appear through various mechanisms. The most characteristic scenario that binds portal and pulmonary hypertension is portopulmonary syndrome. However, hyperdynamic circulation, TIPS placement and heart failure can raise the mean pulmonary artery pressure without increasing the resistances. These conditions are not candidates for treatment with pulmonary vasodilators and require a specific therapy. A correct assessment of hemodynamic, ultrasound and clinical variables enables the differential diagnosis of each situation that produces pulmonary hypertension in patients with cirrhosis. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Medicina Interna (SEMI). All rights reserved.

  18. The Evolving Classification of Pulmonary Hypertension.

    PubMed

    Foshat, Michelle; Boroumand, Nahal

    2017-05-01

    - An explosion of information on pulmonary hypertension has occurred during the past few decades. The perception of this disease has shifted from purely clinical to incorporate new knowledge of the underlying pathology. This transfer has occurred in light of advancements in pathophysiology, histology, and molecular medical diagnostics. - To update readers about the evolving understanding of the etiology and pathogenesis of pulmonary hypertension and to demonstrate how pathology has shaped the current classification. - Information presented at the 5 World Symposia on pulmonary hypertension held since 1973, with the last meeting occurring in 2013, was used in this review. - Pulmonary hypertension represents a heterogeneous group of disorders that are differentiated based on differences in clinical, hemodynamic, and histopathologic features. Early concepts of pulmonary hypertension were largely influenced by pharmacotherapy, hemodynamic function, and clinical presentation of the disease. The initial nomenclature for pulmonary hypertension segregated the clinical classifications from pathologic subtypes. Major restructuring of this disease classification occurred between the first and second symposia, which was the first to unite clinical and pathologic information in the categorization scheme. Additional changes were introduced in subsequent meetings, particularly between the third and fourth World Symposia meetings, when additional pathophysiologic information was gained. Discoveries in molecular diagnostics significantly progressed the understanding of idiopathic pulmonary arterial hypertension. Continued advancements in imaging modalities, mechanistic pathogenicity, and molecular biomarkers will enable physicians to define pulmonary hypertension phenotypes based on the pathobiology and allow for treatment customization.

  19. [Aerosolized iloprost therapy for pulmonary hypertensive crisis in 4 patients with idiopathic pulmonary arterial hypertension].

    PubMed

    Deng, Ke-wu; Zhou, Yu-jie; Xu, Xi-qi; Wu, Ming-ying; Wang, Guo-hong; Bian, Hong; Chen, Bo; Wang, Chun-bo

    2012-10-01

    To summary the efficacy and safety of aerosolized iloprost in patients with pulmonary hypertensive crisis. On the basis of conventional therapy, aerosolized iloprost (10 µg per time for 10 - 15 min in 2 hours interval, 8 times per day) was administered to four patients with idiopathic pulmonary arterial hypertension and pulmonary hypertensive crisis. Blood pressure, heart rate, systemic artery oxygen saturation, systolic pulmonary arterial pressure (sPAP) measured by echocardiography and the adverse events were analyzed. After aerosolized iloprost therapy, sPAP was significantly decreased and systemic artery oxygen saturation was improved. Adverse events (nausea, vomiting, diarrhea, dry cough) were observed in two patients, and the iloprost use was stopped in one patient due to severe vomiting and diarrhea. Aerosolized iloprost could significantly reduce the sPAP and improve the systemic artery oxygen saturation in patients with pulmonary hypertension crisis.

  20. Pulmonary capillary haemangiomatosis: a rare cause of pulmonary hypertension.

    PubMed

    Babu, K Anand; Supraja, K; Singh, Raj B

    2014-01-01

    Pulmonary capillary haemangiomatosis (PCH) is a rare disorder of unknown aetiology, characterised by proliferating capillaries that invade the pulmonary interstitium, alveolar septae and the pulmonary vasculature. It is often mis-diagnosed as primary pulmonary hypertension and pulmonary veno-occlusive disease. Pulmonary capillary haemangiomatosis is a locally aggressive benign vascular neoplasm of the lung. We report the case of a 19-year-old female who was referred to us in the early post-partum period with severe pulmonary artery hypertension, which was diagnosed as PCH by open lung biopsy.

  1. A Critical Role for the Anti-apoptotic Protein ARC (Apoptosis Repressor with CARD) in Hypoxia-Induced Pulmonary Hypertension

    PubMed Central

    Zaiman, Ari L; Damico, Rachel; Thoms-Chesley, Alan; Files, D Clark; Kesari, Priya; Johnston, Laura; Swaim, Mara; Mozammel, Shehzin; Myers, Alan C; Halushka, Marc; El-Haddad, Hasim; Shimoda, Larissa A; Peng, Chang-Fu; Hassoun, Paul M; Champion, Hunter C; Kitsis, Richard N; Crow, Michael T

    2015-01-01

    Background Pulmonary hypertension (PH) is a lethal syndrome associated with the pathogenic remodeling of the pulmonary vasculature and the emergence of apoptosis-resistant cells. ARC (Apoptosis Repressor with Caspase Recruitment Domain) is an inhibitor of multiple forms of cell death known to be abundantly expressed in striated muscle. We show for the first time that ARC is expressed in arterial smooth muscle cells of the pulmonary vasculature and is markedly up-regulated in several experimental models of PH. In this study, we test the hypothesis that ARC expression is essential for the development of chronic hypoxia-induced PH. Methods and Results Experiments in which cells or mice were rendered ARC-deficient revealed that ARC not only protected pulmonary arterial smooth muscle cells from hypoxia-induced death, but also facilitated growth factor-induced proliferation and hypertrophy and hypoxia-induced down-regulation of selective voltage-gated potassium channels, the latter a hallmark of the syndrome in humans. Moreover, ARC-deficient mice exhibited diminished vascular remodeling, increased apoptosis, and decreased proliferation in response to chronic hypoxia, resulting in marked protection from PH in vivo. Patients with PH have significantly increased ARC expression not only in remodeled vessels but also in the lumen-occluding lesions associated with severe disease. Conclusions These data show that ARC, previously unlinked to pulmonary hypertension, is a critical determinant of vascular remodeling in this syndrome. PMID:22082675

  2. Methamphetamine Use and Pulmonary Hypertension

    MedlinePlus

    ... doctor recently told me that I have pulmonary hypertension, and also asked me if I had ever ... continues into the causes and development of pulmonary hypertension (PH). In particular, scientists are trying to identify ...

  3. Fundamentals of management of acute postoperative pulmonary hypertension.

    PubMed

    Taylor, Mary B; Laussen, Peter C

    2010-03-01

    In the last several years, there have been numerous advancements in the field of pulmonary hypertension as a whole, but there have been few changes in the management of children with pulmonary hypertension after cardiac surgery. Patients at particular risk for postoperative pulmonary hypertension can be identified preoperatively based on their cardiac disease and can be grouped into four broad categories based on the mechanisms responsible for pulmonary hypertension: 1) increased pulmonary vascular resistance; 2) increased pulmonary blood flow with normal pulmonary vascular resistance; 3) a combination of increased pulmonary vascular resistance and increased blood flow; and 4) increased pulmonary venous pressure. In this review of the immediate postoperative management of pulmonary hypertension, various strategies are discussed including medical therapies, monitoring, ventilatory strategies, and weaning from these supports. With early recognition of patients at particular risk for severe pulmonary hypertension, management strategies can be directed at preventing or minimizing hemodynamic instability and thereby prevent the development of ventricular dysfunction and a low output state.

  4. Pulmonary hypertension associated with left-sided heart disease.

    PubMed

    Maeder, Micha Tobias; Schoch, Otto D; Kleiner, Rebekka; Joerg, Lucas; Weilenmann, Daniel; Swiss Society For Pulmonary Hypertension

    2017-01-19

    Pulmonary hypertension associated with left-sided heart disease (PH-LHD) is the most common type of pulmonary hypertension. In patients with left-sided heart disease, the presence of pulmonary hypertension is typically a marker of more advanced disease, more severe symptoms, and worse prognosis. In contrast to pulmonary arterial hypertension, PH-LHD is characterised by an elevated pulmonary artery wedge pressure (postcapillary pulmonary hypertension) without or with an additional precapillary component (isolated postcapillary versus combined postcapillary and precapillary pulmonary hypertension). Transthoracic echocardiography is the primary nonin-vasive imaging tool to estimate the probability of pulmonary hypertension and to establish a working diagnosis on the mechanism of pulmonary hyperten-sion. However, right heart catheterisation is always required if significant pulmonary hypertension is sus-pected and exact knowledge of the haemodynamic constellation is necessary. The haemodynamic con-stellation (mean pulmonary artery pressure, mean pulmonary artery wedge pressure, left ventricular end-diastolic pressure) in combination with clinical infor-mation and imaging findings (mainly echocardiog-raphy, coronary angiography and cardiac magnetic resonance imaging) will usually allow the exact mech-anism underlying PH-LHD to be defined, which is a prerequisite for appropriate treatment. The general principle for the management of PH-LHD is to treat the underlying left-sided heart disease in an optimal man-ner using drugs and/or interventional or surgical ther-apy. There is currently no established indication for pulmonary arterial hypertension-specific therapies in PH-LHD, and specific therapies may even cause harm in patients with PH-LHD.

  5. Gene Therapy by Targeted Adenovirus-mediated Knockdown of Pulmonary Endothelial Tph1 Attenuates Hypoxia-induced Pulmonary Hypertension

    PubMed Central

    Morecroft, Ian; White, Katie; Caruso, Paola; Nilsen, Margaret; Loughlin, Lynn; Alba, Raul; Reynolds, Paul N; Danilov, Sergei M; Baker, Andrew H; MacLean, Margaret R

    2012-01-01

    Serotonin is produced by pulmonary arterial endothelial cells (PAEC) via tryptophan hydroxylase-1 (Tph1). Pathologically, serotonin acts on underlying pulmonary arterial cells, contributing to vascular remodeling associated with pulmonary arterial hypertension (PAH). The effects of hypoxia on PAEC-Tph1 activity are unknown. We investigated the potential of a gene therapy approach to PAH using selective inhibition of PAEC-Tph1 in vivo in a hypoxic model of PAH. We exposed cultured bovine pulmonary arterial smooth muscle cells (bPASMCs) to conditioned media from human PAECs (hPAECs) before and after hypoxic exposure. Serotonin levels were increased in hypoxic PAEC media. Conditioned media evoked bPASMC proliferation, which was greater with hypoxic PAEC media, via a serotonin-dependent mechanism. In vivo, adenoviral vectors targeted to PAECs (utilizing bispecific antibody to angiotensin-converting enzyme (ACE) as the selective targeting system) were used to deliver small hairpin Tph1 RNA sequences in rats. Hypoxic rats developed PAH and increased lung Tph1. PAEC-Tph1 expression and development of PAH were attenuated by our PAEC-Tph1 gene knockdown strategy. These results demonstrate that hypoxia induces Tph1 activity and selective knockdown of PAEC-Tph1 attenuates hypoxia-induced PAH in rats. Further investigation of pulmonary endothelial-specific Tph1 inhibition via gene interventions is warranted. PMID:22525513

  6. MURC deficiency in smooth muscle attenuates pulmonary hypertension.

    PubMed

    Nakanishi, Naohiko; Ogata, Takehiro; Naito, Daisuke; Miyagawa, Kotaro; Taniguchi, Takuya; Hamaoka, Tetsuro; Maruyama, Naoki; Kasahara, Takeru; Nishi, Masahiro; Matoba, Satoaki; Ueyama, Tomomi

    2016-08-22

    Emerging evidence suggests that caveolin-1 (Cav1) is associated with pulmonary arterial hypertension. MURC (also called Cavin-4) is a member of the cavin family, which regulates caveolar formation and functions together with caveolins. Here, we show that hypoxia increased Murc mRNA expression in the mouse lung, and that Murc-null mice exhibited attenuation of hypoxia-induced pulmonary hypertension (PH) accompanied by reduced ROCK activity in the lung. Conditional knockout mice lacking Murc in smooth muscle also resist hypoxia-induced PH. MURC regulates the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) through Rho/ROCK signalling. Cav1 suppresses RhoA activity in PASMCs, which is reversed by MURC. MURC binds to Cav1 and inhibits the association of Cav1 with the active form of Gα13, resulting in the facilitated association of the active form of Gα13 with p115RhoGEF. These results reveal that MURC has a function in the development of PH through modulating Rho/ROCK signalling.

  7. The Critical Role of Pulmonary Arterial Compliance in Pulmonary Hypertension

    PubMed Central

    Prins, Kurt W.; Pritzker, Marc R.; Scandurra, John; Volmers, Karl; Weir, E. Kenneth

    2016-01-01

    The normal pulmonary circulation is a low-pressure, high-compliance system. Pulmonary arterial compliance decreases in the presence of pulmonary hypertension because of increased extracellular matrix/collagen deposition in the pulmonary arteries. Loss of pulmonary arterial compliance has been consistently shown to be a predictor of increased mortality in patients with pulmonary hypertension, even more so than pulmonary vascular resistance in some studies. Decreased pulmonary arterial compliance causes premature reflection of waves from the distal pulmonary vasculature, leading to increased pulsatile right ventricular afterload and eventually right ventricular failure. Evidence suggests that decreased pulmonary arterial compliance is a cause rather than a consequence of distal small vessel proliferative vasculopathy. Pulmonary arterial compliance decreases early in the disease process even when pulmonary artery pressure and pulmonary vascular resistance are normal, potentially enabling early diagnosis of pulmonary vascular disease, especially in high-risk populations. With the recognition of the prognostic importance of pulmonary arterial compliance, its impact on right ventricular function, and its contributory role in the development and progression of distal small-vessel proliferative vasculopathy, pulmonary arterial compliance is an attractive target for the treatment of pulmonary hypertension. PMID:26848601

  8. Systems approach to the study of stretch and arrhythmias in right ventricular failure induced in rats by monocrotaline

    PubMed Central

    Benoist, David; Stones, Rachel; Benson, Alan P.; Fowler, Ewan D.; Drinkhill, Mark J.; Hardy, Matthew E.L.; Saint, David A.; Cazorla, Olivier; Bernus, Olivier; White, Ed

    2014-01-01

    We demonstrate the synergistic benefits of using multiple technologies to investigate complex multi-scale biological responses. The combination of reductionist and integrative methodologies can reveal novel insights into mechanisms of action by tracking changes of in vivo phenomena to alterations in protein activity (or vice versa). We have applied this approach to electrical and mechanical remodelling in right ventricular failure caused by monocrotaline-induced pulmonary artery hypertension in rats. We show arrhythmogenic T-wave alternans in the ECG of conscious heart failure animals. Optical mapping of isolated hearts revealed discordant action potential duration (APD) alternans. Potential causes of the arrhythmic substrate; structural remodelling and/or steep APD restitution and dispersion were observed, with specific remodelling of the Right Ventricular Outflow Tract. At the myocyte level, [Ca2+]i transient alternans were observed together with decreased activity, gene and protein expression of the sarcoplasmic reticulum Ca2+-ATPase (SERCA). Computer simulations of the electrical and structural remodelling suggest both contribute to a less stable substrate. Echocardiography was used to estimate increased wall stress in failure, in vivo. Stretch of intact and skinned single myocytes revealed no effect on the Frank-Starling mechanism in failing myocytes. In isolated hearts acute stretch-induced arrhythmias occurred in all preparations. Significant shortening of the early APD was seen in control but not failing hearts. These observations may be linked to changes in the gene expression of candidate mechanosensitive ion channels (MSCs) TREK-1 and TRPC1/6. Computer simulations incorporating MSCs and changes in ion channels with failure, based on altered gene expression, largely reproduced experimental observations. PMID:25016242

  9. Pathophysiology of Pulmonary Hypertension in Chronic Parenchymal Lung Disease.

    PubMed

    Singh, Inderjit; Ma, Kevin Cong; Berlin, David Adam

    2016-04-01

    Pulmonary hypertension commonly complicates chronic obstructive pulmonary disease and interstitial lung disease. The association of chronic lung disease and pulmonary hypertension portends a worse prognosis. The pathophysiology of pulmonary hypertension differs in the presence or absence of lung disease. We describe the physiological determinants of the normal pulmonary circulation to better understand the pathophysiological factors implicated in chronic parenchymal lung disease-associated pulmonary hypertension. This review will focus on the pathophysiology of 3 forms of chronic lung disease-associated pulmonary hypertension: idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, and sarcoidosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. S-Nitrosylation and the Development of Pulmonary Hypertension

    DTIC Science & Technology

    2011-02-01

    performed in the monocrotaline rat model of PAH and monocrotaline pyrrole treated endothelial cells has suggested that disrupted intracellular membrane...nitrosylation of vasorelevant proteins in endothelial cells exposed to monocrotaline pyrrole . Am. J. Physiol 295: H1943-1955, 2008. 7. Mukhopadhyay S

  11. Crotalaria-induced pulmonary hypertension. Uptake of 3H-thymidine by the cells of the pulmonary circulation and alveolar walls.

    PubMed Central

    Meyrick, B. O.; Reid, L. M.

    1982-01-01

    Feeding with Crotalaria spectabilis seeds induces structural changes in the pulmonary arterial circulation characteristic of pulmonary hypertension: increased medial and adventitial thickness, the appearance of muscle in smaller arteries than normal, and reduction in the number of peripheral arteries. By autoradiographic techniques, after injection of 3H-thymidine into rats fed Crotalaria for 3, 7, 14, 21, 28, or 35 days, the contribution of hyperplasia to these changes has been assessed at two levels of the pulmonary artery--the hilum and the periphery. In the hilar pulmonary artery, a biphasic increase in labeling index (LI) is seen in each cell type. After 3 days of feeding, the medial smooth muscle cells show a slight but significant increase (1.5 times the control value), and, after 7 days, so do the adventitial fibroblasts (3 x) and the endothelial cells (EC) (2 x). After 14 days LI for all three cell types is again at control values, but after 21 days (wall thickness is no increased) each cell type shows at least a fivefold increase; by 35 days all are again near control levels. In the intra-acinar region, by 14 days, "newly" muscularized arteries are identified and increase in number and proportion up to 35 days; 3H-thymidine uptake is not evident in this cell type until 35 days have passed. The ECs of these arteries, however, show a striking increase in LI after 14 days as do those of the alveolar capillaries. The ECs of the intra-acinar veins show a biphasic response being increased after 7, 28, and 35 days. The present study has shown that Crotalaria ingestion induces hyperplasia and hypertrophy of pulmonary arterial cells at pre- and intra-acinar levels. The early increase in LI probably represents a response to the original cell injury, the later changes, a response to continuing damage or, in part, adaptation to the pulmonary hypertension now present. Images Figure 3 Figure 7 PMID:7055214

  12. Exercise-induced Pulmonary Hypertension

    PubMed Central

    Vanderpool, Rebecca; Dhakal, Bishnu P.; Saggar, Rajeev; Saggar, Rajan; Vachiery, Jean-Luc; Lewis, Gregory D.

    2013-01-01

    Exercise stresses the pulmonary circulation through increases in cardiac output (Q.) and left atrial pressure. Invasive as well as noninvasive studies in healthy volunteers show that the slope of mean pulmonary artery pressure (mPAP)–flow relationships ranges from 0.5 to 3 mm Hg⋅min⋅L−1. The upper limit of normal mPAP at exercise thus approximates 30 mm Hg at a Q. of less than 10 L⋅min−1 or a total pulmonary vascular resistance at exercise of less than 3 Wood units. Left atrial pressure increases at exercise with an average upstream transmission to PAP in a close to one-for-one mm Hg fashion. Multipoint PAP–flow relationships are usually described by a linear approximation, but present with a slight curvilinearity, which is explained by resistive vessel distensibility. When mPAP is expressed as a function of oxygen uptake or workload, plateau patterns may be observed in patients with systolic heart failure who cannot further increase Q. at the highest levels of exercise. Exercise has to be dynamic to avoid the increase in systemic vascular resistance and abrupt changes in intrathoracic pressure that occur with resistive exercise and can lead to unpredictable effects on the pulmonary circulation. Postexercise measurements are unreliable because of the rapid return of pulmonary vascular pressures and flows to the baseline resting state. Recent studies suggest that exercise-induced increase in PAP to a mean higher than 30 mm Hg may be associated with dyspnea-fatigue symptomatology. PMID:23348976

  13. Hyperthyroidism and pulmonary hypertension: an important association.

    PubMed

    Vallabhajosula, Sailaja; Radhi, Saba; Cevik, Cihan; Alalawi, Raed; Raj, Rishi; Nugent, Kenneth

    2011-12-01

    Pulmonary hypertension is a complex disorder with multiple etiologies. The World Health Organization Group 5 (unclear multifactorial mechanisms) includes patients with thyroid disorders. The authors reviewed the literature on the association between hyperthyroidism and pulmonary hypertension and identified 20 publications reporting 164 patients with treatment outcomes. The systolic pulmonary artery (PA) pressures in these patients ranged from 28 to 78 mm Hg. They were treated with antithyroid medications, radioactive iodine and surgery. The mean pretherapy PA systolic pressure was 39 mm Hg; the mean posttreatment pressure was 30 mm Hg. Pulmonary hypertension should be considered in hyperthyroid patients with dyspnea. All patients with pulmonary hypertension should be screened for hyperthyroidism, because the treatment of hyperthyroidism can reduce PA pressures, potentially avoid the side-effects and costs with current therapies for pulmonary hypertension and limit the consequences of untreated hyperthyroidism. However, the long-term outcome in these patients is uncertain, and this issue needs more study. Changes in the pulmonary circulation and molecular regulators of vascular remodeling likely explain this association.

  14. Sickle Cell Disease and Pulmonary Hypertension

    MedlinePlus

    ... My doctor wants to screen me for pulmonary hypertension. Why is this? Sickle cell disease (SCD), a ... What are some of the symptoms of pulmonary hypertension? Because they are somewhat general symptoms, the characteristics ...

  15. MURC deficiency in smooth muscle attenuates pulmonary hypertension

    PubMed Central

    Nakanishi, Naohiko; Ogata, Takehiro; Naito, Daisuke; Miyagawa, Kotaro; Taniguchi, Takuya; Hamaoka, Tetsuro; Maruyama, Naoki; Kasahara, Takeru; Nishi, Masahiro; Matoba, Satoaki; Ueyama, Tomomi

    2016-01-01

    Emerging evidence suggests that caveolin-1 (Cav1) is associated with pulmonary arterial hypertension. MURC (also called Cavin-4) is a member of the cavin family, which regulates caveolar formation and functions together with caveolins. Here, we show that hypoxia increased Murc mRNA expression in the mouse lung, and that Murc-null mice exhibited attenuation of hypoxia-induced pulmonary hypertension (PH) accompanied by reduced ROCK activity in the lung. Conditional knockout mice lacking Murc in smooth muscle also resist hypoxia-induced PH. MURC regulates the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) through Rho/ROCK signalling. Cav1 suppresses RhoA activity in PASMCs, which is reversed by MURC. MURC binds to Cav1 and inhibits the association of Cav1 with the active form of Gα13, resulting in the facilitated association of the active form of Gα13 with p115RhoGEF. These results reveal that MURC has a function in the development of PH through modulating Rho/ROCK signalling. PMID:27546070

  16. Reversible pulmonary hypertension in a cat.

    PubMed

    Baron Toaldo, M; Guglielmini, C; Diana, A; Giunti, M; Dondi, F; Cipone, M

    2011-05-01

    A 13-year-old, neutered female domestic shorthair cat was presented for sudden respiratory distress following palliative radiotherapy and the combined administration of a single dose of carboplatin for the treatment of recurrent fibrosarcoma. Clinical and radiographic findings were suggestive of pleural effusion. Echocardiography revealed marked right-sided cardiac enlargement associated with tricuspid regurgitation and Doppler evidence of pulmonary hypertension. After 25 days of treatment for congestive heart failure and suspected pulmonary thromboembolism, clinical signs and echocardiographic and Doppler evidence of right-sided cardiac enlargement and pulmonary hypertension had completely resolved. To the best of the authors' knowledge, this is the first report of reversible pulmonary hypertension, likely secondary to pulmonary thromboembolism, in a cat. © 2011 British Small Animal Veterinary Association.

  17. Hypoxia-induced mitogenic factor (FIZZ1/RELMα) induces endothelial cell apoptosis and subsequent interleukin-4-dependent pulmonary hypertension

    PubMed Central

    Takimoto, Eiki; Zhang, Ailan; Weiner, Noah C.; Meuchel, Lucas W.; Berger, Alan E.; Cheadle, Chris; Johns, Roger A.

    2014-01-01

    Pulmonary hypertension (PH) is characterized by elevated pulmonary artery pressure that leads to progressive right heart failure and ultimately death. Injury to endothelium and consequent wound repair cascades have been suggested to trigger pulmonary vascular remodeling, such as that observed during PH. The relationship between injury to endothelium and disease pathogenesis in this disorder remains poorly understood. We and others have shown that, in mice, hypoxia-induced mitogenic factor (HIMF, also known as FIZZ1 or RELMα) plays a critical role in the pathogenesis of lung inflammation and the development of PH. In this study, we dissected the mechanism by which HIMF and its human homolog resistin (hRETN) induce pulmonary endothelial cell (EC) apoptosis and subsequent lung inflammation-mediated PH, which exhibits many of the hallmarks of the human disease. Systemic administration of HIMF caused increases in EC apoptosis and interleukin (IL)-4-dependent vascular inflammatory marker expression in mouse lung during the early inflammation phase. In vitro, HIMF, hRETN, and IL-4 activated pulmonary microvascular ECs (PMVECs) by increasing angiopoietin-2 expression and induced PMVEC apoptosis. In addition, the conditioned medium from hRETN-treated ECs had elevated levels of endothelin-1 and caused significant increases in pulmonary vascular smooth muscle cell proliferation. Last, HIMF treatment caused development of PH that was characterized by pulmonary vascular remodeling and right heart failure in wild-type mice but not in IL-4 knockout mice. These data suggest that HIMF contributes to activation of vascular inflammation at least in part by inducing EC apoptosis in the lung. These events lead to subsequent PH. PMID:24793164

  18. Pulmonary Hypertension Care Center Network: Improving Care and Outcomes in Pulmonary Hypertension.

    PubMed

    Sahay, Sandeep; Melendres-Groves, Lana; Pawar, Leena; Cajigas, Hector R

    2017-04-01

    Pulmonary hypertension (PH) is a chronic, progressive, life-threatening disease that requires expert multidisciplinary care. To facilitate this level of care, the Pulmonary Hypertension Association established across the United States a network of pulmonary hypertension care centers (PHCCs) with special expertise in PH, particularly pulmonary arterial hypertension, to raise the overall quality of care and outcomes for patients with this life-threatening disease. Since the inception of PHCCs in September 2014, to date 35 centers have been accredited in the United States. This model of care brings together physicians and specialists from other disciplines to provide care, facilitate basic and clinical research, and educate the next generation of providers. PHCCs also offer additional opportunities for improvements in PH care. The patient registry offered through the PHCCs is an organized system by which data are collected to evaluate the outcomes of patients with PH. This registry helps in detecting variations in outcomes across centers, thus identifying opportunities for improvement. Multiple tactics were undertaken to implement the strategic plan, training, and tools throughout the PHCC network. In addition, strategies to foster collaboration between care center staff and individuals with PH and their families are the cornerstone of the PHCCs. The Pulmonary Vascular Network of the American College of Chest Physicians believes this to be a positive step that will improve the quality of care delivered in the United States to patients with PH. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  19. Beneficial Effects of Renal Denervation on Pulmonary Vascular Remodeling in Experimental Pulmonary Artery Hypertension.

    PubMed

    Qingyan, Zhao; Xuejun, Jiang; Yanhong, Tang; Zixuan, Dai; Xiaozhan, Wang; Xule, Wang; Zongwen, Guo; Wei, Hu; Shengbo, Yu; Congxin, Huang

    2015-07-01

    Activation of both the sympathetic nervous system and the renin-angiotensin-aldosterone system is closely associated with pulmonary arterial hypertension. We hypothesized that renal denervation decreases renin-angiotensin-aldosterone activity and inhibits the progression of pulmonary arterial hypertension. Twenty-two beagles were randomized into 3 groups. The dogs' pulmonary dynamics were measured before and 8 weeks after injection of 0.1mL/kg dimethylformamide (control dogs) or 2mg/kg dehydromonocrotaline (pulmonary arterial hypertension and pulmonary arterial hypertension + renal denervation dogs). Eight weeks after injection, neurohormone levels and pulmonary tissue morphology were measured. Levels of plasma angiotensin II and endothelin-1 were significantly increased after 8 weeks in the pulmonary arterial hypertension dogs and were higher in the lung tissues of these dogs than in those of the control and renal denervation dogs (mean [standard deviation] angiotensin II: 65 [9.8] vs 38 [6.7], 46 [8.1]; endothelin-1: 96 [10.3] vs 54 [6.2], 67 [9.4]; P < .01). Dehydromonocrotaline increased the mean pulmonary arterial pressure (16 [3.4] mmHg vs 33 [7.3] mmHg; P < .01), and renal denervation prevented this increase. Pulmonary smooth muscle cell proliferation was higher in the pulmonary arterial hypertension dogs than in the control and pulmonary arterial hypertension + renal denervation dogs. Renal denervation attenuates pulmonary vascular remodeling and decreases pulmonary arterial pressure in experimental pulmonary arterial hypertension. The effect of renal denervation may contribute to decreased neurohormone levels. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  20. Prediction of pulmonary hypertension in idiopathic pulmonary fibrosis☆

    PubMed Central

    Zisman, David A.; Ross, David J.; Belperio, John A.; Saggar, Rajan; Lynch, Joseph P.; Ardehali, Abbas; Karlamangla, Arun S.

    2007-01-01

    Summary Background Reliable, noninvasive approaches to the diagnosis of pulmonary hypertension in idiopathic pulmonary fibrosis are needed. We tested the hypothesis that the forced vital capacity to diffusing capacity ratio and room air resting pulse oximetry may be combined to predict mean pulmonary artery pressure (MPAP) in idiopathic pulmonary fibrosis. Methods Sixty-one idiopathic pulmonary fibrosis patients with available right-heart catheterization were studied. We regressed measured MPAP as a continuous variable on pulse oximetry (SpO2) and percent predicted forced vital capacity (FVC) to percent-predicted diffusing capacity ratio (% FVC/% DLco) in a multivariable linear regression model. Results Linear regression generated the following equation: MPAP = −11.9+0.272 × SpO2+0.0659 × (100−SpO2)2+3.06 × (% FVC/% DLco); adjusted R2 = 0.55, p<0.0001. The sensitivity, specificity, positive predictive and negative predictive value of model-predicted pulmonary hypertension were 71% (95% confidence interval (CI): 50–89%), 81% (95% CI: 68–92%), 71% (95% CI: 51–87%) and 81% (95% CI: 68–94%). Conclusions A pulmonary hypertension predictor based on room air resting pulse oximetry and FVC to diffusing capacity ratio has a relatively high negative predictive value. However, this model will require external validation before it can be used in clinical practice. PMID:17604151

  1. Pulmonary capillary pressure in pulmonary hypertension.

    PubMed

    Souza, Rogerio; Amato, Marcelo Britto Passos; Demarzo, Sergio Eduardo; Deheinzelin, Daniel; Barbas, Carmen Silvia Valente; Schettino, Guilherme Paula Pinto; Carvalho, Carlos Roberto Ribeiro

    2005-04-01

    Pulmonary capillary pressure (PCP), together with the time constants of the various vascular compartments, define the dynamics of the pulmonary vascular system. Our objective in the present study was to estimate PCPs and time constants of the vascular system in patients with idiopathic pulmonary arterial hypertension (IPAH), and compare them with these measures in patients with acute respiratory distress syndrome (ARDS). We conducted the study in two groups of patients with pulmonary hypertension: 12 patients with IPAH and 11 with ARDS. Four methods were used to estimate the PCP based on monoexponential and biexponential fitting of pulmonary artery pressure decay curves. PCPs in the IPAH group were considerably greater than those in the ARDS group. The PCPs measured using the four methods also differed significantly, suggesting that each method measures the pressure at a different site in the pulmonary circulation. The time constant for the slow component of the biexponential fit in the IPAH group was significantly longer than that in the ARDS group. The PCP in IPAH patients is greater than normal but methodological limitations related to the occlusion technique may limit interpretation of these data in isolation. Different disease processes may result in different times for arterial emptying, with resulting implications for the methods available for estimating PCP.

  2. MicroRNA-27b plays a role in pulmonary arterial hypertension by modulating peroxisome proliferator-activated receptor γ dependent Hsp90-eNOS signaling and nitric oxide production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bi, Rui; Bao, Chunrong; Jiang, Lianyong

    Pulmonary artery endothelial dysfunction is associated with pulmonary arterial hypertension (PAH). Based on recent studies showing that microRNA (miR)-27b is aberrantly expressed in PAH, we hypothesized that miR-27b may contribute to pulmonary endothelial dysfunction and vascular remodeling in PAH. The effect of miR-27b on pulmonary endothelial dysfunction and the underlying mechanism were investigated in human pulmonary artery endothelial cells (HPAECs) in vitro and in a monocrotaline (MCT)-induced model of PAH in vivo. miR-27b expression was upregulated in MCT-induced PAH and inversely correlated with the levels of peroxisome proliferator-activated receptor (PPAR)-γ, and miR-27b inhibition attenuated MCT-induced endothelial dysfunction and remodeling and prevented PAHmore » associated right ventricular hypertrophy and systolic pressure in rats. PPARγ was confirmed as a direct target of miR-27b in HPAECs and shown to mediate the effect of miR-27b on the disruption of endothelial nitric oxide synthase (eNOS) coupling to Hsp90 and the suppression of NO production associated with the PAH phenotype. We showed that miR-27b plays a role endothelial function and NO release and elucidated a potential mechanism by which miR-27b regulates Hsp90-eNOS and NO signaling by modulating PPARγ expression, providing potential therapeutic targets for the treatment of PAH. - Highlights: • miR-27b plays a role in endothelial function and NO release. • miR-27b inhibition ameliorates MCT-induced endothelial dysfunction and PAH. • miR-27b targets PPARγ in HPAECs. • miR-27b regulates PPARγ dependent Hsp90-eNOS and NO signaling.« less

  3. Lipocalin-2 Promotes Endoplasmic Reticulum Stress and Proliferation by Augmenting Intracellular Iron in Human Pulmonary Arterial Smooth Muscle Cells

    PubMed Central

    Wang, Guoliang; Liu, Shenghua; Wang, Li; Meng, Liukun; Cui, Chuanjue; Zhang, Hao; Hu, Shengshou; Ma, Ning; Wei, Yingjie

    2017-01-01

    Endoplasmic reticulum (ER) stress, a feature of many conditions associated with pulmonary hypertension (PH), is increasingly recognized as a common response to promote proliferation in the walls of pulmonary arteries. Increased expression of Lipocalin-2 in PH led us to test the hypothesis that Lipocalin-2, a protein known to sequester iron and regulate it intracellularly, might facilitate the ER stress and proliferation in pulmonary arterial smooth muscle cells (PASMCs). In this study, we observed greatly increased Lcn2 expression accompanied with increased ATF6 cleavage in a standard rat model of pulmonary hypertension induced by monocrotaline. In cultured human PASMCs, Lcn2 significantly promoted ER stress (determined by augmented cleavage and nuclear localization of ATF6, up-regulated transcription of GRP78 and NOGO, increased expression of SOD2, and mild augmented mitochondrial membrane potential) and proliferation (assessed by Ki67 staining and BrdU incorporation). Lcn2 promoted ER stress accompanied with augmented intracellular iron levels in human PASMCs. Treatment human PASMCs with FeSO4 induced the similar ER stress and proliferation response and iron chelator (deferoxamine) abrogated the ER stress and proliferation induced by Lcn2 in cultured human PASMCs. In conclusion, Lcn2 significantly promoted human PASMC ER stress and proliferation by augmenting intracellular iron. The up-regulation of Lcn2 probably involved in the pathogenesis and progression of PH. PMID:28255266

  4. Pulmonary hypertension in patients with hepatic cirrhosis and portal hypertension. An echographic study.

    PubMed

    Gurghean, Adriana V; Tudor, Ioana A

    2017-01-01

    The aim of the study is to determine the frequency of pulmonary hypertension in patients with hepatic cirrhosis and portal hypertension, to determine the possibility of an accurate ultrasound diagnosis of the characteristics of this complication. 347 patients with liver cirrhosis consecutively hospitalized at Coltea Clinical Hospital were screened. 61 were excluded because of other possible causes of portal or pulmonary hypertension. All patients were investigated clinically and by abdominal and cardiac ultrasonography. Of the remaining 286 patients, 116 had portal hypertension, 27 of them (23%) having pulmonary hypertension. In this group we found a higher cardiac index and right atrial volume, higher pressures in the right atrium, suggesting a hyperdynamic state. Porto-pulmonary hypertension was found in only one patient. Echocardiography permits characterization of patients with cirrhosis and portal hypertension.

  5. [Obstetric management in patients with severe pulmonary hypertension].

    PubMed

    Castillo-Luna, Rogelio; Miranda-Araujo, Osvaldo

    2015-12-01

    Pulmonary hypertension is a disease of poor prognosis when is associated with pregnancy. A maternal mortality of 30-56% and a neonatal survival of approximately 85% is reported. Surveillance of patients with severe pulmonary hypertension during pregnancy must be multidisciplinary, to provide information and optimal treatment during and after gestation. Targeted therapy for pulmonary arterial hypertension during pregnancy significantly reduces mortality. The critical period with respect to mortality, is the first month after birth. Propose an algorithm for management during pregnancy for patients with severe pulmonary hypertension who want to continue with it. The recommendations established with clinical evidence for patients with severe pulmonary hypertension and pregnancy are presented: diagnosis, treatment, obstetrics and cardiology management, preoperative recommendations for termination of pregnancy, post-partum care and contraception. The maternal mortality remains significantly higher in patients with severe pulmonary hypertension and pregnancy, in these cases should be performed multidisciplinary management in hospitals that have experience in the management of this disease and its complications.

  6. Pulmonary hypertension due to acute respiratory distress syndrome

    PubMed Central

    Ñamendys-Silva, S.A.; Santos-Martínez, L.E.; Pulido, T.; Rivero-Sigarroa, E.; Baltazar-Torres, J.A.; Domínguez-Cherit, G.; Sandoval, J.

    2014-01-01

    Our aims were to describe the prevalence of pulmonary hypertension in patients with acute respiratory distress syndrome (ARDS), to characterize their hemodynamic cardiopulmonary profiles, and to correlate these parameters with outcome. All consecutive patients over 16 years of age who were in the intensive care unit with a diagnosis of ARDS and an in situ pulmonary artery catheter for hemodynamic monitoring were studied. Pulmonary hypertension was diagnosed when the mean pulmonary artery pressure was >25 mmHg at rest with a pulmonary artery occlusion pressure or left atrial pressure <15 mmHg. During the study period, 30 of 402 critically ill patients (7.46%) who were admitted to the ICU fulfilled the criteria for ARDS. Of the 30 patients with ARDS, 14 met the criteria for pulmonary hypertension, a prevalence of 46.6% (95% CI; 28-66%). The most common cause of ARDS was pneumonia (56.3%). The overall mortality was 36.6% and was similar in patients with and without pulmonary hypertension. Differences in patients' hemodynamic profiles were influenced by the presence of pulmonary hypertension. The levels of positive end-expiratory pressure and peak pressure were higher in patients with pulmonary hypertension, and the PaCO2 was higher in those who died. The level of airway pressure seemed to influence the onset of pulmonary hypertension. Survival was determined by the severity of organ failure at admission to the intensive care unit. PMID:25118626

  7. Pulmonary Hypertension

    MedlinePlus

    Pulmonary hypertension (PH) is high blood pressure in the arteries to your lungs. It is a serious condition. If you have ... and you can develop heart failure. Symptoms of PH include Shortness of breath during routine activity, such ...

  8. Wave Intensity Analysis Provides Novel Insights Into Pulmonary Arterial Hypertension and Chronic Thromboembolic Pulmonary Hypertension.

    PubMed

    Su, Junjing; Manisty, Charlotte; Parker, Kim H; Simonsen, Ulf; Nielsen-Kudsk, Jens Erik; Mellemkjaer, Soren; Connolly, Susan; Lim, P Boon; Whinnett, Zachary I; Malik, Iqbal S; Watson, Geoffrey; Davies, Justin E; Gibbs, Simon; Hughes, Alun D; Howard, Luke

    2017-10-31

    In contrast to systemic hypertension, the significance of arterial waves in pulmonary hypertension (PH) is not well understood. We hypothesized that arterial wave energy and wave reflection are augmented in PH and that wave behavior differs between patients with pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH). Right heart catheterization was performed using a pressure and Doppler flow sensor-tipped catheter to obtain simultaneous pressure and flow velocity measurements in the pulmonary artery. Wave intensity analysis was subsequently applied to the acquired data. Ten control participants, 11 patients with PAH, and 10 patients with CTEPH were studied. Wave speed and wave power were significantly greater in PH patients compared with controls, indicating increased arterial stiffness and right ventricular work, respectively. The ratio of wave power to mean right ventricular power was lower in PAH patients than CTEPH patients and controls. Wave reflection index in PH patients (PAH: ≈25%; CTEPH: ≈30%) was significantly greater compared with controls (≈4%), indicating downstream vascular impedance mismatch. Although wave speed was significantly correlated to disease severity, wave reflection indexes of patients with mildly and severely elevated pulmonary pressures were similar. Wave reflection in the pulmonary artery increased in PH and was unrelated to severity, suggesting that vascular impedance mismatch occurs early in the development of pulmonary vascular disease. The lower wave power fraction in PAH compared with CTEPH indicates differences in the intrinsic and/or extrinsic ventricular load between the 2 diseases. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  9. Oestrogen receptor alpha in pulmonary hypertension.

    PubMed

    Wright, Audrey F; Ewart, Marie-Ann; Mair, Kirsty; Nilsen, Margaret; Dempsie, Yvonne; Loughlin, Lynn; Maclean, Margaret R

    2015-05-01

    Pulmonary arterial hypertension (PAH) occurs more frequently in women with mutations in bone morphogenetic protein receptor type 2 (BMPR2) and dysfunctional BMPR2 signalling underpinning heritable PAH. We have previously shown that serotonin can uncover a pulmonary hypertensive phenotype in BMPR2(+/-) mice and that oestrogen can increase serotinergic signalling in human pulmonary arterial smooth muscle cells (hPASMCs). Hence, here we wished to characterize the expression of oestrogen receptors (ERs) in male and female human pulmonary arteries and have examined the influence of oestrogen and serotonin on BMPR2 and ERα expression. By immunohistochemistry, we showed that ERα, ERβ, and G-protein-coupled receptors are expressed in human pulmonary arteries localizing mainly to the smooth muscle layer which also expresses the serotonin transporter (SERT). Protein expression of ERα protein was higher in female PAH patient hPASMCs compared with male and serotonin also increased the expression of ERα. 17β-estradiol induced proliferation of hPASMCs via ERα activation and this engaged mitogen-activated protein kinase and Akt signalling. Female mice over-expressing SERT (SERT(+) mice) develop PH and the ERα antagonist MPP attenuated the development of PH in normoxic and hypoxic female SERT(+) mice. The therapeutic effects of MPP were accompanied by increased expression of BMPR2 in mouse lung. ERα is highly expressed in female hPASMCs from PAH patients and mediates oestrogen-induced proliferation of hPASMCs via mitogen-activated protein kinase and Akt signalling. Serotonin can increase ERα expression in hPASMCs and antagonism of ERα reverses serotonin-dependent PH in the mouse and increases BMPR2 expression. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  10. Activation of Nrf2 Attenuates Pulmonary Vascular Remodeling via Inhibiting Endothelial-to-Mesenchymal Transition: an Insight from a Plant Polyphenol

    PubMed Central

    Chen, Yucai; Yuan, Tianyi; Zhang, Huifang; Yan, Yu; Wang, Danshu; Fang, Lianhua; Lu, Yang; Du, Guanhua

    2017-01-01

    The endothelial-to-mesenchymal transition (EndMT) has been demonstrated to be involved in pulmonary vascular remodeling. It is partly attributed to oxidative and inflammatory stresses in endothelial cells. In current study, we conducted a series of experiments to clarify the effect of salvianolic acid A (SAA), a kind of polyphenol compound, in the process of EndMT in human pulmonary arterial endothelial cells and in vivo therapeutic efficacy on vascular remodeling in monocrotaline (MCT)-induced EndMT. EndMT was induced by TGFβ1 in human pulmonary arterial endothelial cells (HPAECs). SAA significantly attenuated EndMT, simultaneously inhibited cell migration and reactive oxygen species (ROS) formation. In MCT-induced pulmonary arterial hypertension (PAH) model, SAA improved vascular function, decreased TGFβ1 level and inhibited inflammation. Mechanistically, SAA stimulated Nrf2 translocation and subsequent heme oxygenase-1 (HO-1) up-regulation. The effect of SAA on EndMT in vitro was abolished by ZnPP, a HO-1 inhibitor. In conclusion, this study indicates a deleterious impact of oxidative stress on EndMT. Polyphenol antioxidant treatment may provide an adjunctive action to alleviate pulmonary vascular remodeling via inhibiting EndMT. PMID:28924387

  11. Evolving Concepts of Pulmonary Hypertension Secondary to Left Heart Disease.

    PubMed

    Ramu, Bhavadharini; Thenappan, Thenappan

    2016-04-01

    Pulmonary hypertension associated with left heart disease is the most common form of pulmonary hypertension. Although its pathophysiology remains incompletely understood, it is now well recognized that the presence of pulmonary hypertension is associated with a worse prognosis. Right ventricular failure has independent and additive prognostic value over pulmonary hypertension for adverse outcomes in left heart disease. Recently, several new terminologies have been introduced to better define and characterize the nature and severity of pulmonary hypertension. Several new treatment options including the use of pulmonary arterial hypertension specific therapies are being considered, but there is lack of evidence. Here, we review the recent advances in this field and summarize the diagnostic and therapeutic modalities of use in the management of pulmonary hypertension associated with left heart disease.

  12. [Pulmonary arterial hypertension in intensive care unit and operating room].

    PubMed

    Kerbaul, F; Rondelet, B; Collart, F; Naeije, R; Gouin, F

    2005-05-01

    To review the perioperative anaesthetic management of pulmonary arterial hypertension. Extraction from Pubmed database of French and English articles on the perioperative anaesthetic management of pulmonary hypertension for 9 years. The collected articles were reviewed and selected according their quality and originality. The more recent data were selected. Pulmonary arterial hypertension is classically divided in primary and secondary. Primary pulmonary hypertension (familial and sporadic) is relatively severe and rare. Muscularization of the terminal portion of the pulmonary vascular arterial tree, caused by smooth muscle cell hyperplasia is the first change. Pulmonary arterial hypertension linked with disorders of the respiratory system and hypoxemia or pulmonary venous hypertension including mitral valve disease and chronic left ventricular dysfunction are often associated with high morbidity and mortality. The main consequence of pulmonary hypertension development is the occurrence of right-sided circulatory failure. A better understanding of disease pathophysiology will contribute to the development of new therapies increasing then the prognosis of these patients. The management of primary pulmonary hypertension or secondary pulmonary arterial hypertension is a challenge for the anaesthesiologist because the risk of right ventricular failure is markedly increased.

  13. Bronchus-associated Lymphoid Tissue in Pulmonary Hypertension Produces Pathologic Autoantibodies

    PubMed Central

    Colvin, Kelley L.; Cripe, Patrick J.; Ivy, D. Dunbar; Stenmark, Kurt R.

    2013-01-01

    Rationale: Autoimmunity has long been associated with pulmonary hypertension. Bronchus-associated lymphoid tissue plays important roles in antigen sampling and self-tolerance during infection and inflammation. Objectives: We reasoned that activated bronchus-associated lymphoid tissue would be evident in rats with pulmonary hypertension, and that loss of self-tolerance would result in production of pathologic autoantibodies that drive vascular remodeling. Methods: We used animal models, histology, and gene expression assays to evaluate the role of bronchus-associated lymphoid tissue in pulmonary hypertension. Measurements and Main Results: Bronchus-associated lymphoid tissue was more numerous, larger, and more active in pulmonary hypertension compared with control animals. We found dendritic cells in and around lymphoid tissue, which were composed of CD3+ T cells over a core of CD45RA+ B cells. Antirat IgG and plasma from rats with pulmonary hypertension decorated B cells in lymphoid tissue, resistance vessels, and adventitia of large vessels. Lymphoid tissue in diseased rats was vascularized by aquaporin-1+ high endothelial venules and vascular cell adhesion molecule–positive vessels. Autoantibodies are produced in bronchus-associated lymphoid tissue and, when bound to pulmonary adventitial fibroblasts, change their phenotype to one that may promote inflammation. Passive transfer of autoantibodies into rats caused pulmonary vascular remodeling and pulmonary hypertension. Diminution of lymphoid tissue reversed pulmonary hypertension, whereas immunologic blockade of CCR7 worsened pulmonary hypertension and hastened its onset. Conclusions: Bronchus-associated lymphoid tissue expands in pulmonary hypertension and is autoimmunologically active. Loss of self-tolerance contributes to pulmonary vascular remodeling and pulmonary hypertension. Lymphoid tissue–directed therapies may be beneficial in treating pulmonary hypertension. PMID:24093638

  14. Determinants of exercise-induced pulmonary arterial hypertension in systemic sclerosis.

    PubMed

    Voilliot, Damien; Magne, Julien; Dulgheru, Raluca; Kou, Seisyou; Henri, Christine; Laaraibi, Saloua; Sprynger, Muriel; Andre, Béatrice; Pierard, Luc A; Lancellotti, Patrizio

    2014-05-15

    Exercise-induced pulmonary arterial hypertension (EIPH) in systemic sclerosis (SSc) has already been observed but its determinants remain unclear. The aim of this study was to determine the incidence and the determinants of EIPH in SSc. We prospectively enrolled 63 patients with SSc (age 54±3years, 76% female) followed in CHU Sart-Tilman in Liège. All patients underwent graded semi-supine exercise echocardiography. Systolic pulmonary arterial pressure (sPAP) was derived from the peak velocity of the tricuspid regurgitation jet and adding the estimation of right atrial pressure, both at rest and during exercise. Resting pulmonary arterial hypertension (PH) was defined as sPAP > 35 mmHg and EIPH as sPAP > 50 mmHg during exercise. The following formulas were used: mean PAP (mPAP) = 0.61 × sPAP + 2, left atrial pressure (LAP)=1.9+1.24 × left ventricular (LV) E/e' and pulmonary vascular resistance (PVR)=(mPAP-LAP)/LV cardiac output (CO) and slope of mPAP-LVCO relationship=changes in mPAP/changes in LVCO. Resting PH was present in 3 patients (7%) and 21 patients developed EIPH (47%). Patients with EIPH had higher resting LAP (10.3 ± 2.2 versus 8.8 ± 2.3 mmHg; p = 0.03), resting PVR (2.6 ± 0.8 vs. 1.4 ± 1.1 Woods units; p=0.004), exercise LAP (13.3 ± 2.3 vs. 9 ± 1.7 mmHg; p < 0.0001), exercise PVR (3.6 ± 0.7 vs. 2.1 ± 0.9 Woods units; p = 0.02) and slope of mPAP-LVCO (5.8 ± 2.4 vs. 2.9 ± 2.1 mmHg/L/min; p < 0.0001). After adjustment for age and gender, exercise LAP (β=3.1 ± 0.8; p=0.001) and exercise PVR (β=7.9 ± 1.7; p=0.0001) were independent determinants of exercise sPAP. EIPH is frequent in SSc patients and is mainly related to both increased exercise LV filling pressure and exercise PVR. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Protective Effects of 10-nitro-oleic Acid in a Hypoxia-Induced Murine Model of Pulmonary Hypertension

    PubMed Central

    Klinke, Anna; Möller, Annika; Pekarova, Michaela; Ravekes, Thorben; Friedrichs, Kai; Berlin, Matthias; Scheu, Katrin M.; Kubala, Lukas; Kolarova, Hana; Ambrozova, Gabriela; Schermuly, Ralph T.; Woodcock, Steven R.; Freeman, Bruce A.; Rosenkranz, Stephan; Baldus, Stephan; Rudolph, Volker

    2014-01-01

    Pulmonary arterial hypertension (PAH) is characterized by adverse remodeling of pulmonary arteries. Although the origin of the disease and its underlying pathophysiology remain incompletely understood, inflammation has been identified as a central mediator of disease progression. Oxidative inflammatory conditions support the formation of electrophilic fatty acid nitroalkene derivatives, which exert potent anti-inflammatory effects. The current study investigated the role of 10-nitro-oleic acid (OA-NO2) in modulating the pathophysiology of PAH in mice. Mice were kept for 28 days under normoxic or hypoxic conditions, and OA-NO2 was infused subcutaneously. Right ventricular systolic pressure (RVPsys) was determined, and right ventricular and lung tissue was analyzed. The effect of OA-NO2 on cultured pulmonary artery smooth muscle cells (PASMCs) and macrophages was also investigated. Changes in RVPsys revealed increased pulmonary hypertension in mice on hypoxia, which was significantly decreased by OA-NO2 administration. Right ventricular hypertrophy and fibrosis were also attenuated by OA-NO2 treatment. The infiltration of macrophages and the generation of reactive oxygen species were elevated in lung tissue of mice on hypoxia and were diminished by OA-NO2 treatment. Moreover, OA-NO2 decreased superoxide production of activated macrophages and PASMCs in vitro. Vascular structural remodeling was also limited by OA-NO2. In support of these findings, proliferation and activation of extracellular signal-regulated kinases 1/2 in cultured PASMCs was less pronounced on application of OA-NO2.Our results show that the oleic acid nitroalkene derivative OA-NO2 attenuates hypoxia-induced pulmonary hypertension in mice. Thus, OA-NO2 represents a potential therapeutic agent for the treatment of PAH. PMID:24521348

  16. Reversal of reflex pulmonary vasoconstriction induced by main pulmonary arterial distension.

    PubMed

    Juratsch, C E; Grover, R F; Rose, C E; Reeves, J T; Walby, W F; Laks, M M

    1985-04-01

    Distension of the main pulmonary artery (MPA) induces pulmonary hypertension, most probably by neurogenic reflex pulmonary vasoconstriction, although constriction of the pulmonary vessels has not actually been demonstrated. In previous studies in dogs with increased pulmonary vascular resistance produced by airway hypoxia, exogenous arachidonic acid has led to the production of pulmonary vasodilator prostaglandins. Hence, in the present study, we investigated the effect of arachidonic acid in seven intact anesthetized dogs after pulmonary vascular resistance was increased by MPA distention. After steady-state pulmonary hypertension was established, arachidonic acid (1.0 mg/min) was infused into the right ventricle for 16 min; 15-20 min later a 16-mg bolus of arachidonic acid was injected. MPA distension was maintained throughout the study. Although the infusion of arachidonic acid significantly lowered the elevated pulmonary vascular resistance induced by MPA distension, the pulmonary vascular resistance returned to control levels only after the bolus injection of arachidonic acid. Notably, the bolus injection caused a biphasic response which first increased the pulmonary vascular resistance transiently before lowering it to control levels. In dogs with resting levels of pulmonary vascular resistance, administration of arachidonic acid in the same manner did not alter the pulmonary vascular resistance. It is concluded that MPA distension does indeed cause reflex pulmonary vasoconstriction which can be reversed by vasodilator metabolites of arachidonic acid. Even though this reflex may help maintain high pulmonary vascular resistance in the fetus, its function in the adult is obscure.

  17. [General anesthesia for a patient with pulmonary hypertension, bronchial asthma and obesity].

    PubMed

    Nakamura, Shinji; Nishiyama, Tomoki; Hanaoka, Kazuo

    2005-10-01

    The management of the patient with pulmonary hypertension is a challenge for the anesthesiologists because the risk of right-sided heart failure is markedly increased. We experienced a case of general anesthesia for a patient with pulmonary hypertension (mean pulmonary arterial pressure 39 mmHg), bronchial asthma and obesity. A 31-year-old woman was scheduled for arytenoid rotation for left recurrent nerve palsy. We applied routine monitors (noninvasive blood-pressure, five-lead electrocardiogram, pulse oximeter), and direct blood pressure monitoring through the radial artery. Anesthesia was induced with midazolam 4 mg, fentanyl 100 microg and sevoflurane 5%, and maintained with sevoflurane (1-2%) and nitrous oxide in oxygen. Surgery was completed in 100 minutes without any complications. We could successfully perform general anesthesia in a patient complicated by pulmonary hypertension, bronchial asthma and obesity, without invasive right-sided heart catheterization.

  18. Pregnancy and pulmonary hypertension: a practical approach to management

    PubMed Central

    Condliffe, Robin; Wilson, Vicki J; Gandhi, Suarabh V; Elliot, Charlie A

    2013-01-01

    Pulmonary hypertension remains a major cause of cardiac maternal death in the developed world. Over the last two decades, effective therapies for pulmonary hypertension have been developed, improving symptoms and survival. Consequently, increasing numbers of women with pulmonary hypertension and childbearing potential exist, with a number considering pregnancy. Patients with pulmonary hypertension may also present for the first time during pregnancy or shortly following delivery. The last decade has seen increasing reports of women with pulmonary hypertension surviving pregnancy using a variety of approaches but there is still a significant maternal mortality at between 12% and 33%. Current recommendations counsel that patients with known pulmonary hypertension should be strongly advised to avoid pregnancy with the provision of clear contraceptive advice and termination of pregnancy should be considered in its eventuality. In patients who are fully informed and who have been counselled regarding the risks of continuing with pregnancy, there is growing evidence that a multi-professional approach with expert care in pulmonary hypertension centres may improve outlook, although the mortality remains high. PMID:27656247

  19. Hypoxia-inducible factor 1α is a critical downstream mediator for hypoxia-induced mitogenic factor (FIZZ1/RELMα)-induced pulmonary hypertension

    PubMed Central

    Johns, Roger A.; Takimoto, Eiki; Meuchel, Lucas W.; Elsaigh, Esra; Zhang, Ailan; Heller, Nicola M.; Semenza, Gregg L.; Yamaji-Kegan, Kazuyo

    2017-01-01

    Objective Pulmonary hypertension (PH) is characterized by progressive elevation of pulmonary vascular resistance, right ventricular failure, and ultimately death. We have shown that in rodents, hypoxia-induced mitogenic factor (HIMF; also known as FIZZ1 or RELMα) causes PH by initiating lung vascular inflammation. We hypothesized that hypoxia-inducible factor-1 (HIF-1) is a critical downstream signal mediator of HIMF during PH development. Approach and Results In this study, we compared the degree of HIMF-induced pulmonary vascular remodeling and PH development in wild-type (HIF-1α+/+) and HIF-1α heterozygous null (HIF-1α+/−) mice. HIMF-induced PH was significantly diminished in HIF-1α+/− mice and was accompanied by a dysregulated VEGF-A–VEGF receptor 2 pathway. HIF-1α was critical for bone marrow-derived cell migration and vascular tube formation in response to HIMF. Furthermore, HIMF and its human homolog, resistin-like molecule-β (RELMβ), significantly increased IL-6 in macrophages and lung resident cells through a mechanism dependent on HIF-1α and, at least to some extent, on nuclear factor κB. Conclusions Our results suggest that HIF-1α is a critical downstream transcription factor for HIMF-induced pulmonary vascular remodeling and PH development. Importantly, both HIMF and human RELMβ significantly increased IL-6 in lung resident cells and increased perivascular accumulation of IL-6–expressing macrophages in the lungs of mice. These data suggest that HIMF can induce HIF-1, VEGF-A, and interleukin-6, which are critical mediators of both hypoxic inflammation and PH pathophysiology. PMID:26586659

  20. Hereditary Hemorrhagic Telangiectasia (HHT) and Pulmonary Hypertension

    MedlinePlus

    ... has said these might be symptoms of pulmonary hypertension. How does this relate to my HHT? About ... differences are significant. In HHT-associated pulmonary arterial hypertension, abnormal blood flow through the blood vessels in ...

  1. Pulmonary hypertension and isolated right heart failure complicating amiodarone induced hyperthyroidism.

    PubMed

    Wong, Sean-Man; Tse, Hung-Fat; Siu, Chung-Wah

    2012-03-01

    Hyperthyroidism is a common side effect encountered in patients prescribed long-term amiodarone therapy for cardiac arrhythmias. We previously studied 354 patients prescribed amiodarone in whom the occurrence of hyperthyroidism was associated with major adverse cardiovascular events including heart failure, myocardial infarction, ventricular arrhythmias, stroke and even death [1]. We now present a case of amiodarone-induced hyperthyroidism complicated by isolated right heart failure and pulmonary hypertension that resolved with treatment of hyperthyroidism. Detailed quantitative echocardiography enables improved understanding of the haemodynamic mechanisms underlying the condition. Copyright © 2011 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  2. Pulmonary arterial hypertension

    PubMed Central

    2013-01-01

    Pulmonary arterial hypertension (PAH) is a chronic and progressive disease leading to right heart failure and ultimately death if untreated. The first classification of PH was proposed in 1973. In 2008, the fourth World Symposium on PH held in Dana Point (California, USA) revised previous classifications. Currently, PH is devided into five subgroups. Group 1 includes patients suffering from idiopathic or familial PAH with or without germline mutations. Patients with a diagnosis of PAH should systematically been screened regarding to underlying mutations of BMPR2 gene (bone morphogenetic protein receptor type 2) or more rarely of ACVRL1 (activine receptor-like kinase type 1), ENG (endogline) or Smad8 genes. Pulmonary veno occusive disease and pulmonary capillary hemagiomatosis are individualized and designated as clinical group 1'. Group 2 'Pulmonary hypertension due to left heart diseases' is divided into three sub-groups: systolic dysfonction, diastolic dysfonction and valvular dysfonction. Group 3 'Pulmonary hypertension due to respiratory diseases' includes a heterogenous subgroup of respiratory diseases like PH due to pulmonary fibrosis, COPD, lung emphysema or interstitial lung disease for exemple. Group 4 includes chronic thromboembolic pulmonary hypertension without any distinction of proximal or distal forms. Group 5 regroup PH patients with unclear multifactorial mechanisms. Invasive hemodynamic assessment with right heart catheterization is requested to confirm the definite diagnosis of PH showing a resting mean pulmonary artery pressure (mPAP) of ≥ 25 mmHg and a normal pulmonary capillary wedge pressure (PCWP) of ≤ 15 mmHg. The assessment of PCWP may allow the distinction between pre-capillary and post-capillary PH (PCWP > 15 mmHg). Echocardiography is an important tool in the management of patients with underlying suspicion of PH. The European Society of Cardiology and the European Respiratory Society (ESC-ERS) guidelines specify its role

  3. Pulmonary Hypertension in Congenital Heart Disease: Beyond Eisenmenger Syndrome.

    PubMed

    Krieger, Eric V; Leary, Peter J; Opotowsky, Alexander R

    2015-11-01

    Patients with adult congenital heart disease have an increased risk of developing pulmonary hypertension. There are several mechanisms of pulmonary hypertension in patients with adult congenital heart disease, and understanding them requires a systematic approach to define the patient's hemodynamics and physiology. This article reviews the updated classification of pulmonary hypertension in patients with adult congenital heart disease with a focus on pathophysiology, diagnostics, and the evaluation of pulmonary hypertension in special adult congenital heart disease populations. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. [Analysis of factors related to pulmonary hypertensive crisis in patients with idiopathic pulmonary arterial hypertension].

    PubMed

    Zhang, Chen; Li, Qiangqiang; Zhu, Yan; Gu, Hong

    2014-06-10

    To explore the risk and protective factors for pulmonary hypertensive crisis (PHC) in patients with idiopathic pulmonary arterial hypertension (IPAH). A retrospective study was performed for 65 patients with a diagnosis of IPAH between January 2010 and December 2013. According to clinical manifestations, they were divided into two groups of susceptibility and non-susceptibility to PHC. Clinical and hemodynamic parameters were analyzed in univariate and multivariate manners. Among them, there were 32 males and 33 females with a mean age of (14.4 ± 12.3) (10/12-47.3) years. Twenty-three patients had typical manifestations of PHC and 18 of them were induced by exercises.Univariate analysis revealed that the proportion of patients with World Health Organization (WHO) functional class III-IV in PHC-susceptible group was significantly higher than PHC-nonsusceptible group (60.9% vs 23.8%, P = 0.003) while the percentage of patent foramen ovale in PHC-susceptible group was significantly lower than PHC-nonsusceptible group (8.7% vs 45.2%, P = 0.003).In patients with WHO functional classI-II, hemodynamic variables including the decline of pulmonary arterial pressure and positive rate in vasoreactivity testing in PHC-susceptible group were significantly higher than PHC-nonsusceptible group.In patients with WHO functional class III-IV, baseline pulmonary arterial pressure and mean right atrial pressure in PHC-susceptible group were significantly higher than those in PHC-nonsusceptible group. Multivariate Logistic regression analysis revealed that, for those with WHO functional class III-IV (OR = 23.45, 95%CI: 2.85-193.09) and the decline of systolic pulmonary arterial pressure in vasoreactivity testing (OR = 1.12, 95%CI: 1.04-1.22) were independent risk factors for PHC in IPAH patients while patent foramen ovale (OR = 0.01, 95%CI: 0.00-0.52) was a protective factor. PHC in IPAH patients is correlated with WHO functional class, pulmonary vascular reactivity, baseline pulmonary

  5. Prenatal programming of pulmonary hypertension induced by chronic hypoxia or ductal ligation in sheep.

    PubMed

    Papamatheakis, Demosthenes G; Chundu, Madalitso; Blood, Arlin B; Wilson, Sean M

    2013-12-01

    Pulmonary hypertension of the newborn is caused by a spectrum of functional and structural abnormalities of the cardiopulmonary circuit. The existence of multiple etiologies and an incomplete understanding of the mechanisms of disease progression have hindered the development of effective therapies. Animal models offer a means of gaining a better understanding of the fundamental basis of the disease. To that effect, a number of experimental animal models are being used to generate pulmonary hypertension in the fetus and newborn. In this review, we compare the mechanisms associated with pulmonary hypertension caused by two such models: in utero ligation of the ductus arteriosus and chronic perinatal hypoxia in sheep fetuses and newborns. In this manner, we make direct comparisons between ductal ligation and chronic hypoxia with respect to the associated mechanisms of disease, since multiple studies have been performed with both models in a single species. We present evidence that the mechanisms associated with pulmonary hypertension are dependent on the type of stress to which the fetus is subjected. Such an analysis allows for a more thorough evaluation of the disease etiology, which can help focus clinical treatments. The final part of the review provides a clinical appraisal of current treatment strategies and lays the foundation for developing individualized therapies that depend on the causative factors.

  6. Deficiency of Akt1, but not Akt2, attenuates the development of pulmonary hypertension

    PubMed Central

    Tang, Haiyang; Chen, Jiwang; Fraidenburg, Dustin R.; Song, Shanshan; Sysol, Justin R.; Drennan, Abigail R.; Offermanns, Stefan; Ye, Richard D.; Bonini, Marcelo G.; Minshall, Richard D.; Garcia, Joe G. N.; Machado, Roberto F.; Makino, Ayako

    2014-01-01

    Pulmonary vascular remodeling, mainly attributable to enhanced pulmonary arterial smooth muscle cell proliferation and migration, is a major cause for elevated pulmonary vascular resistance and pulmonary arterial pressure in patients with pulmonary hypertension. The signaling cascade through Akt, comprised of three isoforms (Akt1–3) with distinct but overlapping functions, is involved in regulating cell proliferation and migration. This study aims to investigate whether the Akt/mammalian target of rapamycin (mTOR) pathway, and particularly which Akt isoform, contributes to the development and progression of pulmonary vascular remodeling in hypoxia-induced pulmonary hypertension (HPH). Compared with the wild-type littermates, Akt1−/− mice were protected against the development and progression of chronic HPH, whereas Akt2−/− mice did not demonstrate any significant protection against the development of HPH. Furthermore, pulmonary vascular remodeling was significantly attenuated in the Akt1−/− mice, with no significant effect noted in the Akt2−/− mice after chronic exposure to normobaric hypoxia (10% O2). Overexpression of the upstream repressor of Akt signaling, phosphatase and tensin homolog deleted on chromosome 10 (PTEN), and conditional and inducible knockout of mTOR in smooth muscle cells were also shown to attenuate the rise in right ventricular systolic pressure and the development of right ventricular hypertrophy. In conclusion, Akt isoforms appear to have a unique function within the pulmonary vasculature, with the Akt1 isoform having a dominant role in pulmonary vascular remodeling associated with HPH. The PTEN/Akt1/mTOR signaling pathway will continue to be a critical area of study in the pathogenesis of pulmonary hypertension, and specific Akt isoforms may help specify therapeutic targets for the treatment of pulmonary hypertension. PMID:25416384

  7. Uncoupling protein 2 deficiency mimics the effects of hypoxia and endoplasmic reticulum stress on mitochondria and triggers pseudohypoxic pulmonary vascular remodeling and pulmonary hypertension.

    PubMed

    Dromparis, Peter; Paulin, Roxane; Sutendra, Gopinath; Qi, Andrew C; Bonnet, Sébastien; Michelakis, Evangelos D

    2013-07-05

    Mitochondrial signaling regulates both the acute and the chronic response of the pulmonary circulation to hypoxia, and suppressed mitochondrial glucose oxidation contributes to the apoptosis-resistance and proliferative diathesis in the vascular remodeling in pulmonary hypertension. Hypoxia directly inhibits glucose oxidation, whereas endoplasmic reticulum (ER)-stress can indirectly inhibit glucose oxidation by decreasing mitochondrial calcium (Ca²⁺m levels). Both hypoxia and ER stress promote proliferative pulmonary vascular remodeling. Uncoupling protein 2 (UCP2) has been shown to conduct calcium from the ER to mitochondria and suppress mitochondrial function. We hypothesized that UCP2 deficiency reduces Ca²⁺m in pulmonary artery smooth muscle cells (PASMCs), mimicking the effects of hypoxia and ER stress on mitochondria in vitro and in vivo, promoting normoxic hypoxia inducible factor-1α activation and pulmonary hypertension. Ucp2 knockout (KO)-PASMCs had lower mitochondrial calcium than Ucp2 wildtype (WT)-PASMCs at baseline and during histamine-stimulated ER-Ca²⁺ release. Normoxic Ucp2KO-PASMCs had mitochondrial hyperpolarization, lower Ca²⁺-sensitive mitochondrial enzyme activity, reduced levels of mitochondrial reactive oxygen species and Krebs' cycle intermediates, and increased resistance to apoptosis, mimicking the hypoxia-induced changes in Ucp2WT-PASMC. Ucp2KO mice spontaneously developed pulmonary vascular remodeling and pulmonary hypertension and exhibited a pseudohypoxic state with pulmonary vascular and systemic hypoxia inducible factor-1α activation (increased hematocrit), not exacerbated further by chronic hypoxia. This first description of the role of UCP2 in oxygen sensing and in pulmonary hypertension vascular remodeling may open a new window in biomarker and therapeutic strategies.

  8. [Pulmonary hypertension: the future has begun].

    PubMed

    Olschewski, Horst

    2006-04-15

    In recent years, pulmonary hypertension got into the focus of research due to the development of efficacious medications and the discovery of important pathologic mechanisms of disease. Currently, prostanoids, endothelin receptor antagonists and phosphodiesterase 5 inhibitors are the most important substance groups used for treatment. Substances that are emerging in tumor therapy (tyrosine kinase inhibitors, epidermal growth factor [EGF] und platelet-derived growth factor [PDGF] receptor blockers), vasoactive intestinal peptide (VIP), rho-kinase inhibitors and targeted drugs for endothelial dysfunction will be evaluated as future drugs for pulmonary hypertension. Improving early diagnosis of pulmonary hypertension will be an important task in the future. Both the development of diagnostic methods with increased sensitivity and specificity and a broad awareness program will be necessary to achieve this goal.

  9. [Pregnancy in pulmonary arterial hypertension patients].

    PubMed

    Rosengarten, Dror; Kramer, Mordechai R

    2013-09-01

    Pulmonary arterial hypertension (PAH) is a disorder defined by elevated mean pulmonary arterial pressure. PAH can be idiopathic or associated with a variety of medical conditions such as scleroderma, congenital heart disease, left heart failure, lung disease or chronic pulmonary thromboembolism. This progressive disease can cause severe right heart failure and death. Normal physiologic changes that occur during pregnancy may produce fatal consequences in PAH patients. Current guidelines recommend that pregnancy be avoided or terminated early in women with PAH. During the past decade, new advanced therapies for PAH have emerged gathering reports of successful pregnancies in patients with pulmonary hypertension. Substantial risk still exists and current recommendations have not changed. Nevertheless, in selected cases, if a patient insists on continuing the pregnancy, being fully aware of the risks involved, an intensive treatment approach should be implemented in experienced centers. This is necessary in order to control pulmonary hypertension during pregnancy and reduce the risk so as to improve outcomes. This review will focus on the pathophysiology of PAH in pregnancy and appropriate management during pregnancy, delivery and the post-partum period.

  10. Emerging Metabolic Therapies in Pulmonary Arterial Hypertension

    PubMed Central

    Harvey, Lloyd D.; Chan, Stephen Y.

    2017-01-01

    Pulmonary hypertension (PH) is an enigmatic vascular disorder characterized by pulmonary vascular remodeling and increased pulmonary vascular resistance, ultimately resulting in pressure overload, dysfunction, and failure of the right ventricle. Current medications for PH do not reverse or prevent disease progression, and current diagnostic strategies are suboptimal for detecting early-stage disease. Thus, there is a substantial need to develop new diagnostics and therapies that target the molecular origins of PH. Emerging investigations have defined metabolic aberrations as fundamental and early components of disease manifestation in both pulmonary vasculature and the right ventricle. As such, the elucidation of metabolic dysregulation in pulmonary hypertension allows for greater therapeutic insight into preventing, halting, or even reversing disease progression. This review will aim to discuss (1) the reprogramming and dysregulation of metabolic pathways in pulmonary hypertension; (2) the emerging therapeutic interventions targeting these metabolic pathways; and (3) further innovation needed to overcome barriers in the treatment of this devastating disease. PMID:28375184

  11. Increased systemic vascular resistance in neonates with pulmonary hypertension.

    PubMed

    Milstein, J M; Goetzman, B W; Riemenschneider, T A; Wennberg, R P

    1979-11-01

    The time necessary for aortic diastolic pressure to decrease to 50 percent of an initially selected value after dissipation of the dicrotic notch (T 1/2) was determined in newborn infants with and without pulmonary hypertension. The mean T 1/2 was 671 +/- 167 msec in seven infants with clinical evidence of pulmonary hypertension and documented right to left ductus arteriosus shunting; 849 +/- 243 msec in nine infants with clinical evidence of pulmonary hypertension but no documented right to left ductus arteriosus shunting; and 457 +/- 66 msec in eight infants with hyaline membrane disease and no clinical evidence of pulmonary hypertension or a patent ductus arteriosus. The mean T 1/2 values in the former two groups were significantly different from that in the group with no pulmonary hypertension (P less than 0.01). An evaluation of factors affecting T 1/2 leads to the conclusion that the patients with pulmonary hypertension had increased systemic vascular resistance as well. This finding has important diagnostic, etiologic and therapeutic implications.

  12. Pulmonary Hypertension in Parenchymal Lung Disease

    PubMed Central

    Tsangaris, Iraklis; Tsaknis, Georgios; Anthi, Anastasia; Orfanos, Stylianos E.

    2012-01-01

    Idiopathic pulmonary arterial hypertension (IPAH) has been extensively investigated, although it represents a less common form of the pulmonary hypertension (PH) family, as shown by international registries. Interestingly, in types of PH that are encountered in parenchymal lung diseases such as interstitial lung diseases (ILDs), chronic obstructive pulmonary disease (COPD), and many other diffuse parenchymal lung diseases, some of which are very common, the available data is limited. In this paper, we try to browse in the latest available data regarding the occurrence, pathogenesis, and treatment of PH in chronic parenchymal lung diseases. PMID:23094153

  13. Pulmonary Hypertension in Wild Type Mice and Animals with Genetic Deficit in KCa2.3 and KCa3.1 Channels

    PubMed Central

    Sadda, Veeranjaneyulu; Nielsen, Gorm; Hedegaard, Elise Røge; Mogensen, Susie; Köhler, Ralf; Simonsen, Ulf

    2014-01-01

    Objective In vascular biology, endothelial KCa2.3 and KCa3.1 channels contribute to arterial blood pressure regulation by producing membrane hyperpolarization and smooth muscle relaxation. The role of KCa2.3 and KCa3.1 channels in the pulmonary circulation is not fully established. Using mice with genetically encoded deficit of KCa2.3 and KCa3.1 channels, this study investigated the effect of loss of the channels in hypoxia-induced pulmonary hypertension. Approach and Result Male wild type and KCa3.1−/−/KCa2.3T/T(+DOX) mice were exposed to chronic hypoxia for four weeks to induce pulmonary hypertension. The degree of pulmonary hypertension was evaluated by right ventricular pressure and assessment of right ventricular hypertrophy. Segments of pulmonary arteries were mounted in a wire myograph for functional studies and morphometric studies were performed on lung sections. Chronic hypoxia induced pulmonary hypertension, right ventricular hypertrophy, increased lung weight, and increased hematocrit levels in either genotype. The KCa3.1−/−/KCa2.3T/T(+DOX) mice developed structural alterations in the heart with increased right ventricular wall thickness as well as in pulmonary vessels with increased lumen size in partially- and fully-muscularized vessels and decreased wall area, not seen in wild type mice. Exposure to chronic hypoxia up-regulated the gene expression of the KCa2.3 channel by twofold in wild type mice and increased by 2.5-fold the relaxation evoked by the KCa2.3 and KCa3.1 channel activator NS309, whereas the acetylcholine-induced relaxation - sensitive to the combination of KCa2.3 and KCa3.1 channel blockers, apamin and charybdotoxin - was reduced by 2.5-fold in chronic hypoxic mice of either genotype. Conclusion Despite the deficits of the KCa2.3 and KCa3.1 channels failed to change hypoxia-induced pulmonary hypertension, the up-regulation of KCa2.3-gene expression and increased NS309-induced relaxation in wild-type mice point to a novel

  14. Diagnosis and treatment of pulmonary hypertension in infancy

    PubMed Central

    Steinhorn, Robin H.

    2013-01-01

    Normal pulmonary vascular development in infancy requires maintenance of low pulmonary vascular resistance after birth, and is necessary for normal lung function and growth. The developing lung is subject to multiple genetic, pathological and/or environmental influences that can adversely affect lung adaptation, development, and growth, leading to pulmonary hypertension. New classifications of pulmonary hypertension are beginning to account for these diverse phenotypes, and or pulmonary hypertension in infants due to PPHN, congenital diaphragmatic hernia, and bronchopulmonary dysplasia (BPD). The most effective pharmacotherapeutic strategies for infants with PPHN are directed at selective reduction of PVR, and take advantage of a rapidly advancing understanding of the altered signaling pathways in the remodeled vasculature. PMID:24083892

  15. Right Ventricular Longitudinal Strain Is Depressed in a Bovine Model of Pulmonary Hypertension.

    PubMed

    Bartels, Karsten; Brown, R Dale; Fox, Daniel L; Bull, Todd M; Neary, Joseph M; Dorosz, Jennifer L; Fonseca, Brian M; Stenmark, Kurt R

    2016-05-01

    Pulmonary hypertension and resulting right ventricular (RV) dysfunction are associated with significant perioperative morbidity and mortality. Although echocardiography permits real-time, noninvasive assessment of RV function, objective and comparative measures are underdeveloped, and appropriate animal models to study their utility are lacking. Longitudinal strain analysis is a novel echocardiographic method to quantify RV performance. Herein, we hypothesized that peak RV longitudinal strain would worsen in a bovine model of pulmonary hypertension compared with control animals. Newborn Holstein calves were randomly chosen for induction of pulmonary hypertension versus control conditions. Pulmonary hypertension was induced by exposing animals to 14 days of hypoxia (equivalent to 4570 m above sea level or 430 mm Hg barometric pressure). Control animals were kept at ambient pressure/normoxia. At the end of the intervention, transthoracic echocardiography was performed in awake calves. Longitudinal wall strain was analyzed from modified apical 4-chamber views focused on the RV. Comparisons between measurements in hypoxic versus nonhypoxic conditions were performed using Student t test for independent samples and unequal variances. After 14 days at normoxic versus hypoxic conditions, 15 calves were examined with echocardiography. Pulmonary hypertension was confirmed by right heart catheterization and associated with reduced RV systolic function. Mean systolic strain measurements were compared in normoxia-exposed animals (n = 8) and hypoxia-exposed animals (n = 7). Peak global systolic longitudinal RV strain after hypoxia worsened compared to normoxia (-10.5% vs -16.1%, P = 0.0031). Peak RV free wall strain also worsened after hypoxia compared to normoxia (-9.6% vs -17.3%, P = 0.0031). Findings from strain analysis were confirmed by measurement of tricuspid annular peak systolic excursion. Peak longitudinal RV strain detected worsened RV function in animals with hypoxia-induced

  16. Interleukin 13– and interleukin 17A–induced pulmonary hypertension phenotype due to inhalation of antigen and fine particles from air pollution

    PubMed Central

    Park, Sung-Hyun; Chen, Wen-Chi; Esmaeil, Nafiseh; Lucas, Benjamin; Marsh, Leigh M.; Reibman, Joan

    2014-01-01

    Abstract Pulmonary hypertension has a marked detrimental effect on quality of life and life expectancy. In a mouse model of antigen-induced pulmonary arterial remodeling, we have recently shown that coexposure to urban ambient particulate matter (PM) significantly increased the thickening of the pulmonary arteries and also resulted in significantly increased right ventricular systolic pressures. Here we interrogate the mechanism and show that combined neutralization of interleukin 13 (IL-13) and IL-17A significantly ameliorated the increase in right ventricular systolic pressure, the circumferential muscularization of pulmonary arteries, and the molecular change in the right ventricle. Surprisingly, our data revealed a protective role of IL-17A for the antigen- and PM-induced severe thickening of pulmonary arteries. This protection was due to the inhibition of the effects of IL-13, which drove this response, and the expression of metalloelastase and resistin-like molecule α. However, the latter was redundant for the arterial thickening response. Anti-IL-13 exacerbated airway neutrophilia, which was due to a resulting excess effect of IL-17A, confirming concurrent cross inhibition of IL-13- and IL-17A-dependent responses in the lungs of animals exposed to antigen and PM. Our experiments also identified IL-13/IL-17A-independent molecular reprogramming in the lungs induced by exposure to antigen and PM, which indicates a risk for arterial remodeling and protection from arterial constriction. Our study points to IL-13- and IL-17A-coinduced inflammation as a new template for biomarkers and therapeutic targeting for the management of immune response–induced pulmonary hypertension. PMID:25610601

  17. Pulmonary hypertension in chronic hemolytic anemias: Pathophysiology and treatment.

    PubMed

    Haw, Alexandra; Palevsky, Harold I

    2018-04-01

    Pulmonary hypertension has emerged as a major cause of morbidity and mortality in patients with hemoglobinopathies and chronic hemolytic anemias. These hematological diseases include - but are not limited to - sickle cell disease (SCD), thalassemia, paroxysmal nocturnal hematuria, and hereditary spherocytosis. Although most studies have been based on the use of echocardiography as a screening tool for pulmonary hypertension as opposed to the gold standard of right heart catheterization for definitive diagnosis, the association between chronic hemolytic anemia and pulmonary hypertension is evident. Studies have shown that patients with SCD and a tricuspid regurgitant velocity (TRV) ≥ 2.5 m/sec are at increased risk of pulmonary hypertension and are at increased mortality risk. Additional markers of risk of pulmonary hypertension and increased mortality include a pro-BNP >160 pg/mL combined with a 6-min walk distance of <333 m. There is currently a lack of concrete data to support the use of targeted oral pulmonary arterial hypertension therapy in chronic hemolytic anemia. As a result, management is generally targeted towards medical optimization of the underlying anemia. This literature review aims to discuss the pathophysiology, diagnostic and prognostic tools, recent studies and current protocols that are essential in guiding management of pulmonary hypertension in chronic hemolytic anemias. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Pulmonary artery segmentation and quantification in sickle cell associated pulmonary hypertension

    NASA Astrophysics Data System (ADS)

    Linguraru, Marius George; Mukherjee, Nisha; Van Uitert, Robert L.; Summers, Ronald M.; Gladwin, Mark T.; Machado, Roberto F.; Wood, Bradford J.

    2008-03-01

    Pulmonary arterial hypertension is a known complication associated with sickle-cell disease; roughly 75% of sickle cell disease-afflicted patients have pulmonary arterial hypertension at the time of death. This prospective study investigates the potential of image analysis to act as a surrogate for presence and extent of disease, and whether the size change of the pulmonary arteries of sickle cell patients could be linked to sickle-cell associated pulmonary hypertension. Pulmonary CT-Angiography scans from sickle-cell patients were obtained and retrospectively analyzed. Randomly selected pulmonary CT-Angiography studies from patients without sickle-cell anemia were used as negative controls. First, images were smoothed using anisotropic diffusion. Then, a combination of fast marching and geodesic active contours level sets were employed to segment the pulmonary artery. An algorithm based on fast marching methods was used to compute the centerline of the segmented arteries. From the centerline, the diameters at the pulmonary trunk and first branch of the pulmonary arteries were measured automatically. Arterial diameters were normalized to the width of the thoracic cavity, patient weight and body surface. Results show that the pulmonary trunk and first right and left pulmonary arterial branches at the pulmonary trunk junction are significantly larger in diameter with increased blood flow in sickle-cell anemia patients as compared to controls (p values of 0.0278 for trunk and 0.0007 for branches). CT with image processing shows great potential as a surrogate indicator of pulmonary hemodynamics or response to therapy, which could be an important tool for drug discovery and noninvasive clinical surveillance.

  19. Group 2 Pulmonary Hypertension: Pulmonary Venous Hypertension: Epidemiology and Pathophysiology.

    PubMed

    Clark, Craig B; Horn, Evelyn M

    2016-08-01

    Pulmonary hypertension from left heart disease (PH-LHD) is the most common form of PH, defined as mean pulmonary artery pressure ≥25 mm Hg and pulmonary artery wedge pressure ≥15 mm Hg. PH-LHD development is associated with more severe left-sided disease and its presence portends a poor prognosis, particularly once right ventricular failure develops. Treatment remains focused on the underlying LHD and despite initial enthusiasm for PH-specific therapies, most studies have been disappointing and their routine clinical use cannot be recommended. More work is urgently needed to better understand the pathophysiology underlying this disease and to develop effective therapeutic strategies. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. [The effect of calcitonin gene-related peptide on collagen accumulation in pulmonary arteries of rats with hypoxic pulmonary arterial hypertension].

    PubMed

    Li, Xian-Wei; Du, Jie; Li, Yuan-Jian

    2013-03-01

    To observe the effect of calcitonin gene-related peptide (CGRP) on pulmonary vascular collagen accumulation in hypoxia rats in order to study the effect of CGRP on hypoxic pulmonary vascular structural remodeling and its possible mechanism. Rats were acclimated for 1 week, and then were randomly divided into three groups: normoxia group, hypoxia group, and hypoxia plus capsaicin group. Pulmonary arterial hypertension was induced by hypoxia in rats. Hypoxia plus capsaicin group, rats were given capsaicin (50 mg/(kg x d), s.c) 4 days before hypoxia to deplete endogenous CGRP. Hypoxia (3% O2) stimulated proliferation of pulmonary arterial smooth muscle cells (PASMCs) and proliferation was measured by BrdU marking. The expression levels of CGRP, phosphorylated ERK1/2 (p-ERK1/ 2), collagen I and collagen III were detected by real-time PCR or Western blot. Right ventricle systolic pressure (RVSP) and mean pulmonary arterial pressure (mPAP) of pulmonary arterial hypertension (PAH) rats induced by hypoxia were higher than those of normoxia rats. By HE and Masson staining, it was demonstrated that hypoxia also significantly induced hypertrophy of pulmonary arteries and increased level of collagen accumulation. Hypoxia dramatically decreased the CGRP level and increased the expression of p-ERK1/2, collagen I, collagen III in pulmonary arteries. All these effects of hypoxia were further aggravated by pre-treatment of rats with capsaicin. CGRP concentration-dependently inhibited hypoxia-induced proliferation of PASMCs, markedly decreased the expression of p-ERK1/2, collagen I and collagen III. All these effects of CGRP were abolished in the presence of CGRP8-37. These results suggest that CGRP might inhibit hypoxia-induced PAH and pulmonary vascular remodeling, through inhibiting phosphorylation of ERK1/2 and alleviating the collagen accumulation of pulmonary arteries.

  1. Rest and exercise echocardiography for early detection of pulmonary hypertension.

    PubMed

    Kusunose, Kenya; Yamada, Hirotsugu

    2016-03-01

    Early detection of pulmonary hypertension (PH) is essential to ensure that patients receive timely and appropriate treatment for this progressive disease. Rest and exercise echocardiography has been used to screen patients in an attempt to identify early stage PH. However, current PH guidelines recommend against exercise tests because of the lack of evidence. We reviewed previous studies to discuss the current standpoint concerning rest and exercise echocardiography in PH. Around 20 exercise echocardiography studies were included to assess the cutoff value for exercise-induced pulmonary hypertension (EIPH). Approximately 40 exercise echocardiography studies were also included to evaluate the pulmonary artery pressure-flow relationship as assessed by the slope of the mean pulmonary artery pressure and cardiac output (ΔmPAP/ΔQ). There were several EIPH and ΔmPAP/ΔQ reference values in individuals with pulmonary vascular disease. We believed that assessing the ΔmPAP/ΔQ makes sense from a physiological standpoint, and the clinical value should be confirmed in future studies. Exercise echocardiography is an appealing alternative in PH. Further studies are needed to assess the prognostic value of the pulmonary artery pressure-flow relationship in high-risk subjects.

  2. Perioperative pharmacological management of pulmonary hypertensive crisis during congenital heart surgery.

    PubMed

    Brunner, Nathan; de Jesus Perez, Vinicio A; Richter, Alice; Haddad, François; Denault, André; Rojas, Vanessa; Yuan, Ke; Orcholski, Mark; Liao, Xiaobo

    2014-03-01

    Pulmonary hypertensive crisis is an important cause of morbidity and mortality in patients with pulmonary arterial hypertension secondary to congenital heart disease (PAH-CHD) who require cardiac surgery. At present, prevention and management of perioperative pulmonary hypertensive crisis is aimed at optimizing cardiopulmonary interactions by targeting prostacyclin, endothelin, and nitric oxide signaling pathways within the pulmonary circulation with various pharmacological agents. This review is aimed at familiarizing the practitioner with the current pharmacological treatment for dealing with perioperative pulmonary hypertensive crisis in PAH-CHD patients. Given the life-threatening complications associated with pulmonary hypertensive crisis, proper perioperative planning can help anticipate cardiopulmonary complications and optimize surgical outcomes in this patient population.

  3. The cancer theory of pulmonary arterial hypertension

    PubMed Central

    Boucherat, Olivier; Vitry, Geraldine; Trinh, Isabelle; Paulin, Roxane; Provencher, Steeve; Bonnet, Sebastien

    2017-01-01

    Pulmonary arterial hypertension (PAH) remains a mysterious killer that, like cancer, is characterized by tremendous complexity. PAH development occurs under sustained and persistent environmental stress, such as inflammation, shear stress, pseudo-hypoxia, and more. After inducing an initial death of the endothelial cells, these environmental stresses contribute with time to the development of hyper-proliferative and apoptotic resistant clone of cells including pulmonary artery smooth muscle cells, fibroblasts, and even pulmonary artery endothelial cells allowing vascular remodeling and PAH development. Molecularly, these cells exhibit many features common to cancer cells offering the opportunity to exploit therapeutic strategies used in cancer to treat PAH. In this review, we outline the signaling pathways and mechanisms described in cancer that drive PAH cells’ survival and proliferation and discuss the therapeutic potential of antineoplastic drugs in PAH. PMID:28597757

  4. Perioperative pharmacological management of pulmonary hypertensive crisis during congenital heart surgery

    PubMed Central

    2014-01-01

    Abstract Pulmonary hypertensive crisis is an important cause of morbidity and mortality in patients with pulmonary arterial hypertension secondary to congenital heart disease (PAH-CHD) who require cardiac surgery. At present, prevention and management of perioperative pulmonary hypertensive crisis is aimed at optimizing cardiopulmonary interactions by targeting prostacyclin, endothelin, and nitric oxide signaling pathways within the pulmonary circulation with various pharmacological agents. This review is aimed at familiarizing the practitioner with the current pharmacological treatment for dealing with perioperative pulmonary hypertensive crisis in PAH-CHD patients. Given the life-threatening complications associated with pulmonary hypertensive crisis, proper perioperative planning can help anticipate cardiopulmonary complications and optimize surgical outcomes in this patient population. PMID:25006417

  5. AAV delivery of tumor necrosis factor-α short hairpin RNA attenuates cold-induced pulmonary hypertension and pulmonary arterial remodeling.

    PubMed

    Crosswhite, Patrick; Chen, Kai; Sun, Zhongjie

    2014-11-01

    Cold temperatures are associated with increased mortality and morbidity of cardiovascular and pulmonary disease. Cold exposure causes lung inflammation, pulmonary hypertension (PH), and right ventricle hypertrophy, but there is no effective therapy because of unknown mechanism. Here, we investigated whether RNA interference silencing of tumor necrosis factor (TNF)-α decreases cold-induced macrophage infiltration, PH, and pulmonary arterial (PA) remodeling. We found for the first time that continuous cold exposure (5.0°C) increased TNF-α expression and macrophage infiltration in the lungs and PAs right before elevation of right ventricle systolic pressure. The in vivo RNA interference silencing of TNF-α was achieved by intravenous delivery of recombinant AAV-2 carrying TNF-α short hairpin small-interfering RNA 24 hours before cold exposure. Cold exposure for 8 weeks significantly increased right ventricle pressure compared with the warm controls (40.19±4.9 versus 22.9±1.1 mm Hg), indicating that cold exposure caused PH. Cold exposure increased TNF-α, interleukin-6, and phosphodiesterase-1C protein expression in the lungs and PAs and increased lung macrophage infiltration. Notably, TNF-α short hairpin small-interfering RNA prevented the cold-induced increases in TNF-α, interleukin-6, and phosphodiesterase-1C protein expression, abolished lung macrophage infiltration, and attenuated PH (26.28±1.6 mm Hg), PA remodeling, and right ventricle hypertrophy. PA smooth muscle cells isolated from cold-exposed animals showed increased intracellular superoxide levels and cell proliferation along with decreased intracellular cGMP. These cold-induced changes were prevented by TNF-α short hairpin small-interfering RNA. In conclusions, upregulation of TNF-α played a critical role in the pathogenesis of cold-induced PH by promoting pulmonary macrophage infiltration and inflammation. AAV delivery of TNF-α short hairpin small-interfering RNA may be an effective

  6. Changing demographics, epidemiology, and survival of incident pulmonary arterial hypertension: results from the pulmonary hypertension registry of the United Kingdom and Ireland.

    PubMed

    Ling, Yi; Johnson, Martin K; Kiely, David G; Condliffe, Robin; Elliot, Charlie A; Gibbs, J Simon R; Howard, Luke S; Pepke-Zaba, Joanna; Sheares, Karen K K; Corris, Paul A; Fisher, Andrew J; Lordan, James L; Gaine, Sean; Coghlan, J Gerry; Wort, S John; Gatzoulis, Michael A; Peacock, Andrew J

    2012-10-15

    Incident pulmonary arterial hypertension was underrepresented in most pulmonary hypertension registries and may have a different disease profile to prevalent disease. To determine the characteristics and outcome of a purely incident, treatment-naive cohort of idiopathic, heritable, and anorexigen-associated pulmonary arterial hypertension and to determine the changes in presentations and survival over the past decade in the United Kingdom and Ireland. All consecutive newly diagnosed patients from 2001 to 2009 were identified prospectively. A total of 482 patients (93% idiopathic, 5% heritable, and 2% anorexigen-associated pulmonary arterial hypertension) were diagnosed, giving rise to an estimated incidence of 1.1 cases per million per year and prevalence of 6.6 cases per million in 2009. Younger patients (age ≤ 50 yrs) had shorter duration of symptoms, fewer comorbidities, better functional and exercise capacity, higher percent diffusing capacity of carbon monoxide, more severe hemodynamic impairment, but better survival compared with older patients. In comparison with the earlier cohorts, patients diagnosed in 2007-2009 were older, more obese, had lower percent diffusing capacity of carbon monoxide,(,) and more comorbidities, but better survival. Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL) equation, REVEAL risk score, and Pulmonary Hypertension Connection Registry survival equation accurately predicted survival of our incident cohort at 1 year. This study highlights the influence of age on phenotypes of incident pulmonary arterial hypertension and has shown the changes in demographics and epidemiology over the past decade in a national setting. The results suggest that there may be two subtypes of patients: the younger subtype with more severe hemodynamic impairment but better survival, compared with the older subtype who has more comorbidities.

  7. Evaluation of patients with chronic thromboembolic pulmonary hypertension for pulmonary endarterectomy

    PubMed Central

    Auger, William R.; Kerr, Kim M.; Kim, Nick H.; Fedullo, Peter F.

    2012-01-01

    Pulmonary hypertension as a result of chronic thromboembolic disease (CTEPH) is potentially curable with pulmonary endarterectomy surgery. Consequently, correctly diagnosing patients with this type of pulmonary hypertension and evaluating these patients with the goal of establishing their candidacy for surgical intervention is of utmost importance. And as advancements in surgical techniques have allowed successful resection of segmental-level chronic thromboembolic disease, the number of CTEPH patients that are deemed suitable surgical candidates has expanded, making it even more important that the evaluation be conducted with greater precision. This article will review a diagnostic approach to patients with suspected chronic thromboembolic disease with an emphasis on the criteria considered in selecting patients for pulmonary endarterectomy surgery. PMID:22837856

  8. Mexican registry of pulmonary hypertension: REMEHIP.

    PubMed

    Sandoval Zarate, Julio; Jerjes-Sanchez, Carlos; Ramirez-Rivera, Alicia; Zamudio, Tomas Pulido; Gutierrez-Fajardo, Pedro; Elizalde Gonzalez, Jose; Leon, Mario Seoane Garcia De; Gamez, Miguel Beltran; Abril, Francisco Moreno Hoyos; Michel, Rodolfo Parra; Aguilar, Humberto Garcia

    REMEHIP is a prospective, multicentre registry on pulmonary hypertension. The main objective will be to identify the clinical profile, medical care, therapeutic trends and outcomes in adult and pediatric Mexican patients with well-characterized pulmonary hypertension. REMEHIP a multicenter registry began in 2015 with a planned recruitment time of 12 months and a 4-year follow-up. The study population will comprise a longitudinal cohort study, collecting data on patients with prevalent and incident pulmonary hypertension. Will be included patients of age >2 years and diagnosis of pulmonary hypertension by right heart catheterization within Group 1 and Group 4 of the World Health Organization classification. The structure, data collection and data analysis will be based on quality current recommendations for registries. The protocol has been approved by institutional ethics committees in all participant centers. All patients will sign an informed consent form. Currently in Mexico, there is a need of observational registries that include patients with treatment in the everyday clinical practice so the data could be validated and additional information could be obtained versus the one from the clinical trials. In this way, REMEHIP emerges as a link among randomized clinical trials developed by experts and previous Mexican experience. Copyright © 2016 Instituto Nacional de Cardiología Ignacio Chávez. Publicado por Masson Doyma México S.A. All rights reserved.

  9. Pulmonary Hypertension Among End-Stage Renal Failure Patients Following Hemodialysis Access Thrombectomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Richard J.; Stavropoulos, S. William; Wasserstein, Alan G.

    Purpose: Percutaneous hemodialysis thrombectomy causes subclinical pulmonary emboli without short-term clinical consequence; the long-term effects on the pulmonary arterial vasculature are unknown. We compared the prevalence of pulmonary hypertension between patients who underwent one or more hemodialysis access thrombectomy procedures with controls without prior thrombectomy.Methods: A retrospective case-control study was performed. Cases (n = 88) had undergone one or more hemodialysis graft thrombectomy procedures, with subsequent echocardiography during routine investigation of comorbid cardiovascular disease. Cases were compared with controls without end-stage renal disease (ESRD) (n = 100, group 1), and controls with ESRD but no prior thrombectomy procedures (n =more » 117, group 2). The presence and velocity of tricuspid regurgitation on echocardiography was used to determine the prevalence and grade of pulmonary hypertension; these were compared between cases and controls using the chi-square test and logistic regression.Results: The prevalence of pulmonary hypertension among cases was 52% (46/88), consisting of mild, moderate and severe in 26% (n = 23), 10% (n = 9) and 16% (n = 14), respectively. Prevalence of pulmonary hypertension among group 1 controls was 26% (26/100), consisting of mild, moderate and severe pulmonary hypertension in 14%, 5% and 7%, respectively. Cases had 2.7 times greater odds of having pulmonary hypertension than group 1 controls (p = 0.002). The prevalence of pulmonary hypertension among group 2 controls was 42% (49/117), consisting of mild, moderate and severe pulmonary arterial hypertension in 25% (n = 49), 10% (n = 12) and 4% (n = 5), respectively. Cases were slightly more likely to have pulmonary hypertension than group 2 controls (OR = 1.5), although this failed to reach statistical significance (p = 0.14).Conclusion: Prior hemodialysis access thrombectomy does not appear to be a risk factor for pulmonary arterial

  10. Development of occlusive neointimal lesions in distal pulmonary arteries of endothelin B receptor-deficient rats: a new model of severe pulmonary arterial hypertension.

    PubMed

    Ivy, D Dunbar; McMurtry, Ivan F; Colvin, Kelley; Imamura, Masatoshi; Oka, Masahiko; Lee, Dong-Seok; Gebb, Sarah; Jones, Peter Lloyd

    2005-06-07

    Human pulmonary arterial hypertension (PAH) is characterized by proliferation of vascular smooth muscle and, in its more severe form, by the development of occlusive neointimal lesions. However, few animal models of pulmonary neointimal proliferation exist, thereby limiting a complete understanding of the pathobiology of PAH. Recent studies of the endothelin (ET) system demonstrate that deficiency of the ET(B) receptor predisposes adult rats to acute and chronic hypoxic PAH, yet these animals fail to develop neointimal lesions. Herein, we determined and thereafter showed that exposure of ET(B) receptor-deficient rats to the endothelial toxin monocrotaline (MCT) leads to the development of neointimal lesions that share hallmarks of human PAH. The pulmonary hemodynamic and morphometric effects of 60 mg/kg MCT in control (MCT(+/+)) and ET(B) receptor-deficient (MCT(sl/sl)) rats at 6 weeks of age were assessed. MCT(sl/sl) rats developed more severe PAH, characterized by elevated pulmonary artery pressure, diminished cardiac output, and right ventricular hypertrophy. In MCT(sl/sl) rats, morphometric evaluation revealed the presence of neointimal lesions within small distal pulmonary arteries, increased medial wall thickness, and decreased arterial-to-alveolar ratio. In keeping with this, barium angiography revealed diminished distal pulmonary vasculature of MCT(sl/sl) rat lungs. Cells within neointimal lesions expressed smooth muscle and endothelial cell markers. Moreover, cells within neointimal lesions exhibited increased levels of proliferation and were located in a tissue microenvironment enriched with vascular endothelial growth factor, tenascin-C, and activated matrix metalloproteinase-9, factors already implicated in human PAH. Finally, assessment of steady state mRNA showed that whereas expression of ET(B) receptors was decreased in MCT(sl/sl) rat lungs, ET(A) receptor expression increased. Deficiency of the ET(B) receptor markedly accelerates the progression of

  11. Development of Occlusive Neointimal Lesions in Distal Pulmonary Arteries of Endothelin B Receptor–Deficient Rats: A New Model of Severe Pulmonary Arterial Hypertension

    PubMed Central

    Ivy, D. Dunbar; McMurtry, Ivan F.; Colvin, Kelley; Imamura, Masatoshi; Oka, Masahiko; Lee, Dong-Seok; Gebb, Sarah; Jones, Peter Lloyd

    2007-01-01

    Background Human pulmonary arterial hypertension (PAH) is characterized by proliferation of vascular smooth muscle and, in its more severe form, by the development of occlusive neointimal lesions. However, few animal models of pulmonary neointimal proliferation exist, thereby limiting a complete understanding of the pathobiology of PAH. Recent studies of the endothelin (ET) system demonstrate that deficiency of the ETB receptor predisposes adult rats to acute and chronic hypoxic PAH, yet these animals fail to develop neointimal lesions. Herein, we determined and thereafter showed that exposure of ETB receptor–deficient rats to the endothelial toxin monocrotaline (MCT) leads to the development of neointimal lesions that share hallmarks of human PAH. Methods and Results The pulmonary hemodynamic and morphometric effects of 60 mg/kg MCT in control (MCT+/+) and ETB receptor–deficient (MCTsl/sl) rats at 6 weeks of age were assessed. MCTsl/sl rats developed more severe PAH, characterized by elevated pulmonary artery pressure, diminished cardiac output, and right ventricular hypertrophy. In MCTsl/sl rats, morphometric evaluation revealed the presence of neointimal lesions within small distal pulmonary arteries, increased medial wall thickness, and decreased arterial-to-alveolar ratio. In keeping with this, barium angiography revealed diminished distal pulmonary vasculature of MCTsl/sl rat lungs. Cells within neointimal lesions expressed smooth muscle and endothelial cell markers. Moreover, cells within neointimal lesions exhibited increased levels of proliferation and were located in a tissue microenvironment enriched with vascular endothelial growth factor, tenascin-C, and activated matrix metalloproteinase-9, factors already implicated in human PAH. Finally, assessment of steady state mRNA showed that whereas expression of ETB receptors was decreased in MCTsl/sl rat lungs, ETA receptor expression increased. Conclusions Deficiency of the ETB receptor markedly

  12. [Patterns, predictors, and personalization in pulmonary arterial hypertension].

    PubMed

    Kawut, Steven M

    2014-06-01

    Epidemiologic patterns of pulmonary arterial hypertension differ by era and region and may shed light on the pathophysiology and treatment of the disease. New efforts to target one or more of the recently studied therapies could establish personalized medicine as standard care in pulmonary arterial hypertension.

  13. [Pulmonary hypertension in interstitial lung diseases: diagnostic and therapeutic approach in 2011?].

    PubMed

    Cottin, Vincent; Kiakouama, Lize; Traclet, Julie; Cordier, Jean-François

    2011-04-01

    Pulmonary hypertension is frequent in late-stage idiopathic pulmonary fibrosis, and is associated with a shorter survival. It should be suspected in case of dyspnea or hypoxemia disproportionate with the degree of parenchymal lung disease. It is particularly frequent in patients with the syndrome of combined pulmonary fibrosis and emphysema, and associated with a short survival (median survival less than 1 year). Pulmonary hypertension associated with chronic infiltrative lung diseases can be detected by echocardiography and must be confirmed by right-sided heart catheterization, especially to rule out post-capillary pulmonary hypertension frequent in this context. Management is mainly palliative and based on supplemental nasal oxygen. Therapy specific for pulmonary arterial hypertension, poorly evaluated in pulmonary hypertension associated with infiltrative lung diseases, is occasionally proposed to patients with disproportionate pulmonary hypertension (mean PAP > 35 mmHg), with often limited efficacy, and requiring careful follow-up (risk of increased hypoxemia) and invasive evaluation. Pulmonary transplantation should be considered in the absence of contra-indication.

  14. New-onset neonatal pulmonary hypertension associated with a rhinovirus infection

    PubMed Central

    Patel, Nishit; The, Tiong G

    2012-01-01

    A 3.5-week-old male neonate who developed an upper and lower respiratory tract rhinovirus infection that was temporally associated with the development of severe pulmonary hypertension is described. Rhinovirus has not previously been associated with pulmonary hypertension. This child developed severe pulmonary hypertension with right ventricular failure, requiring mechanical ventilation, nitric oxide inhalation and, eventually, extracorporeal membrane oxygenation. PMID:22332130

  15. New-onset neonatal pulmonary hypertension associated with a rhinovirus infection.

    PubMed

    Patel, Nishit; The, Tiong G

    2012-01-01

    A 3.5-week-old male neonate who developed an upper and lower respiratory tract rhinovirus infection that was temporally associated with the development of severe pulmonary hypertension is described. Rhinovirus has not previously been associated with pulmonary hypertension. This child developed severe pulmonary hypertension with right ventricular failure, requiring mechanical ventilation, nitric oxide inhalation and, eventually, extracorporeal membrane oxygenation.

  16. Bardoxolone Methyl Evaluation in Patients With Pulmonary Hypertension (PH) - LARIAT

    ClinicalTrials.gov

    2018-06-08

    Pulmonary Arterial Hypertension; Pulmonary Hypertension; Interstitial Lung Disease; Idiopathic Interstitial Pneumonia; Idiopathic Pulmonary Fibrosis; Sarcoidosis; Respiratory Bronchiolitis Associated Interstitial Lung Disease; Desquamative Interstitial Pneumonia; Cryptogenic Organizing Pneumonia; Acute Interstitial Pneumonitis; Idiopathic Lymphoid Interstitial Pneumonia; Idiopathic Pleuroparenchymal Fibroelastosis

  17. High Prevalence of Pulmonary Hypertension Complicates the Care of Infants with Omphalocele.

    PubMed

    Hutson, Shandee; Baerg, Joanne; Deming, Douglas; St Peter, Shawn D; Hopper, Andrew; Goff, Donna A

    2017-01-01

    Omphalocele is one of the most common abdominal wall defects. Many newborn infants born with omphalocele present with significant respiratory distress at birth, requiring mechanical ventilatory support, and have clinical evidence of pulmonary hypertension. Little information exists on the prevalence of and risk factors associated with pulmonary hypertension in this cohort of infants. To describe the prevalence of and risk factors associated with pulmonary hypertension among infants with omphalocele. This is a multicenter retrospective chart review of demographic data and clinical characteristics of infants with omphalocele admitted to the neonatal intensive care units of Loma Linda University Children's Hospital and Children's Mercy Hospital between 1994 and 2011. Echocardiogram images were reviewed for pulmonary hypertension, and statistical analyses were performed to identify risk factors associated with the presence of pulmonary hypertension. Pulmonary hypertension was diagnosed in 32/56 (57%) infants with omphalocele. Compared to infants without pulmonary hypertension, infants with pulmonary hypertension were more likely to have a liver-containing defect (16/32 [50%] vs. 5/24 [21%], p = 0.03), require intubation at birth (18/32 [56%] vs. 6/24 [17%], p = 0.03), and die during initial hospitalization (12/32 [38%] vs. 2/24 [8%], p = 0.01). The majority of infants with omphalocele have evidence of pulmonary hypertension which is associated with increased mortality. Echocardiograms to screen for pulmonary hypertension should be obtained at ≥2 days of life in infants with omphalocele, especially in those with liver within the omphalocele sac and/or in those infants who require intubation at birth to screen for pulmonary hypertension. © 2017 S. Karger AG, Basel.

  18. Chronic thromboembolic pulmonary hypertension

    PubMed Central

    Reesink, H.J.; Kloek, J.J.; Bresser, P.

    2006-01-01

    Chronic thromboembolic pulmonary hypertension (CTEPH) is a rapidly progressive and deadly disease, resulting from incomplete resolution of acute pulmonary embolism. Historically, the incidence of CTEPH was significantly underestimated but it may be as high as 3.8% following acute pulmonary embolism. Although the medical management of CTEPH may be supportive, the only curative treatment is pulmonary endarterectomy (PEA). However, a careful screening programme is mandatory to select CTEPH patients who are likely to benefit from PEA. In this review we discuss the pathophysiology, clinical and diagnostic pitfalls, surgical treatment, outcome after surgery, and the potential benefit of medical treatment in inoperable CTEPH patients. ImagesFigure 1Figure 2Figure 3Figure 4 PMID:25696637

  19. Pulmonary hypertension and computed tomography measurement of small pulmonary vessels in severe emphysema.

    PubMed

    Matsuoka, Shin; Washko, George R; Yamashiro, Tsuneo; Estepar, Raul San Jose; Diaz, Alejandro; Silverman, Edwin K; Hoffman, Eric; Fessler, Henry E; Criner, Gerard J; Marchetti, Nathaniel; Scharf, Steven M; Martinez, Fernando J; Reilly, John J; Hatabu, Hiroto

    2010-02-01

    Vascular alteration of small pulmonary vessels is one of the characteristic features of pulmonary hypertension in chronic obstructive pulmonary disease. The in vivo relationship between pulmonary hypertension and morphological alteration of the small pulmonary vessels has not been assessed in patients with severe emphysema. We evaluated the correlation of total cross-sectional area of small pulmonary vessels (CSA) assessed on computed tomography (CT) scans with the degree of pulmonary hypertension estimated by right heart catheterization. In 79 patients with severe emphysema enrolled in the National Emphysema Treatment Trial (NETT), we measured CSA less than 5 mm(2) (CSA(<5)) and 5 to 10 mm(2) (CSA(5-10)), and calculated the percentage of total CSA for the lung area (%CSA(<5) and %CSA(5-10), respectively). The correlations of %CSA(<5) and %CSA(5-10) with pulmonary arterial mean pressure (Ppa) obtained by right heart catheterization were evaluated. Multiple linear regression analysis using Ppa as the dependent outcome was also performed. The %CSA(<5) had a significant negative correlation with Ppa (r = -0.512, P < 0.0001), whereas the correlation between %CSA(5-10) and Ppa did not reach statistical significance (r = -0.196, P = 0.083). Multiple linear regression analysis showed that %CSA(<5) and diffusing capacity of carbon monoxide (DL(CO)) % predicted were independent predictors of Ppa (r(2) = 0.541): %CSA (<5) (P < 0.0001), and DL(CO) % predicted (P = 0.022). The %CSA(<5) measured on CT images is significantly correlated to Ppa in severe emphysema and can estimate the degree of pulmonary hypertension.

  20. Diagnosis of Grave's disease with pulmonary hypertension on chest CT.

    PubMed

    Lee, Hwa Yeon; Yoo, Seung Min; Kim, Hye Rin; Chun, Eun Ju; White, Charles S

    To evaluate the diagnostic accuracy of chest CT findings to diagnose Grave's disease in pulmonary hypertension. We retrospectively evaluated chest CT and the medical records of 13 patients with Grave's disease with (n=6) or without pulmonary hypertension (n=7) and in 17 control patients. Presence of iso-attenuation of diffusely enlarged thyroid glands compared with adjacent neck muscle on non-enhanced CT as a diagnostic clue of Grave's disease, and assessment of pulmonary hypertension on CT has high diagnostic accuracy. Chest CT has the potential to diagnose Grave's disease with pulmonary hypertension in the absence of other information. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Pulmonary Arterial Hypertension Associated With Systemic Lupus Erythematosus: Results From the French Pulmonary Hypertension Registry.

    PubMed

    Hachulla, Eric; Jais, Xavier; Cinquetti, Gaël; Clerson, Pierre; Rottat, Laurence; Launay, David; Cottin, Vincent; Habib, Gilbert; Prevot, Grégoire; Chabanne, Céline; Foïs, Eléna; Amoura, Zahir; Mouthon, Luc; Le Guern, Véronique; Montani, David; Simonneau, Gérald; Humbert, Marc; Sobanski, Vincent; Sitbon, Olivier

    2018-01-01

    Pulmonary arterial hypertension (PAH) is a rare complication of systemic lupus erythematosus (SLE). We identified all patients with SLE and PAH (SLE-PAH) who were enrolled in the French Pulmonary Hypertension Registry with a diagnosis confirmed by right heart catheterization (RHC). A control group of 101 patients with SLE without known PAH was selected from SLE expert centers participating in the Pulmonary Hypertension Registry. Survival was estimated by the Kaplan-Meier method. Hazard ratios associated with potential predictors of death were estimated using Cox proportional hazard models. Of the 69 patients with SLE-PAH identified in the French Pulmonary Hypertension Registry, 51 were included in the study. They did not differ from the control group regarding age, sex, or duration of SLE at the time of the analysis but had a higher frequency of anti-SSA and anti-SSB antibodies. The delay between SLE diagnosis and PAH diagnosis was 4.9 years (range, 2.8-12.9) years. The 3- and 5-year overall survival rates were 89.4% (95% CI, 76.2%-96.5%) and 83.9% (95% CI, 68.8%-92.1%), respectively. The survival rate was significantly better in patients with anti-U1-RNP antibodies (P = .04). Patients with SLE-PAH have an overall 5-year survival rate of 83.9% after the PAH diagnosis. Anti-SSA/SSB antibodies may be a risk factor for PAH, and the presence of anti-U1-RNP antibodies appears to be a protective factor regarding survival. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  2. Management of pulmonary arterial hypertension associated with congenital heart disease.

    PubMed

    Togănel, Rodica; Benedek, I; Suteu, Carmen; Blesneac, Cristina

    2007-01-01

    Congenital heart diseases are the most common congenital malformations and account for about eight cases per 1000 births and are often associated with pulmonary arterial hypertension. Increased shear stress and the excess flow through the pulmonary vascular bed due to a systemic-to-pulmonary shunt lead to the development of pulmonary vascular disease and an increase in pulmonary vascular resistance. Without surgical repair approximately 30% of patients develop pulmonary vascular disease. Eisenmenger syndrome represents the extreme end of pulmonary arterial hypertension with congenital heart disease. We summarized the current therapeutic options for pulmonary arterial hypertension; conventional treatments including calcium channel blockers, anticoagulation, digitalis, diuretics, and new treatment: prostacyclin, bosentan, sildenafil, ambrisentan. Preliminary data of new therapies are encouraging with disease significantly improved natural history, but there is need for more evidence-based data.

  3. High Altitude Pulmonary Hypertension: Role of K+ and Ca2+ Channels

    PubMed Central

    Remillard, Carmelle V.; Yuan, Jason X.-J.

    2006-01-01

    Global alveolar hypoxia, as experienced at high-altitude living, has a serious impact on vascular physiology, particular on the pulmonary vasculature. The effects of sustained hypoxia on pulmonary arteries include sustained vasoconstriction and enhanced medial hypertrophy. As the major component of the vascular media, pulmonary artery smooth muscle cells (PASMC) are the main effectors of the physiological response(s) induced during or following hypoxic exposure. Endothelial cells, on the other hand, can sense humoral and haemodynamic changes incurred by hypoxia, triggering their production of vasoactive and mitogenic factors that then alter PASMC function and growth. Transmembrane ion flux through channels in the plasma membrane not only modulates excitation-contraction coupling in PASMC, but also regulates cell volume, apoptosis, and proliferation. In this review, we examine the roles of K+ and Ca2+ channels in the pulmonary vasoconstriction and vascular remodeling observed during chronic hypoxia-induced pulmonary hypertension. PMID:16060848

  4. Pulmonary hypertension in chronic obstructive pulmonary disease.

    PubMed

    Weitzenblum, Emmanuel; Chaouat, Ari; Kessler, Romain

    2013-01-01

    Pulmonary hypertension (PH) is a common complication of advanced chronic obstructive pulmonary disease (COPD) and is defined by a mean pulmonary artery pressure (PAP) ≥ 25 mm Hg at rest in the supine position. Owing to its frequency, COPD is a common cause of PH; in fact, it is the second most frequent cause of PH, just after left heart diseases. PH is due to the elevation of pulmonary vascular resistance, which is caused by functional and morphological factors, chronic alveolar hypoxia being the most important. In COPD PH is generally mild to moderate, PAP usually ranging between 25 and 35 mm Hg in a stable state of the disease. A small proportion of COPD patients may present a severe or "disproportionate" PH with a resting PAP > 35-40 mm Hg. The prognosis is particularly poor in these patients. In COPD PH worsens during exercise, sleep and severe exacerbations of the disease, and these acute increases in afterload may favour the development of right heart failure. The diagnosis of PH relies on Doppler echocardiography, and right heart catheterization is needed in a minority of patients. Treatment of PH in COPD relies on long-term oxygen therapy (≥ 16h/day) which generally stabilizes or at least attenuates the progression of PH. Vasodilator drugs, which are commonly used in idiopathic pulmonary arterial hypertension, have rarely been used in COPD, and we lack studies in this field. Patients with severe PH should be referred to a specialist PH centre where the possibility of inclusion in a controlled clinical trial should be considered.

  5. Effect of prepro-calcitonin gene-related peptide-expressing endothelial progenitor cells on pulmonary hypertension.

    PubMed

    Zhao, Qiang; Liu, Zixiong; Wang, Zhe; Yang, Cheng; Liu, Jun; Lu, Jun

    2007-08-01

    Calcitonin gene-related peptide (CGRP) is a potent smooth muscle cell proliferation inhibitor and vasodilator. It is now believed that CGRP plays an important role in maintaining a low pulmonary vascular resistance. We evaluated the therapeutic effect of intravenously administered CGRP-expressing endothelial progenitor cells (EPCs) on left-to-right shunt-induced pulmonary hypertension in rats. Endothelial progenitor cells were obtained from cultured human peripheral blood mononuclear cells. The genetic sequence for CGRP was subcloned into cultured EPCs by human expression plasmid. Pulmonary hypertension was established in immunodeficient rats with an abdominal aorta to inferior vena cava shunt operation. The transfected EPCs were injected through the left jugular vein at 10 weeks after the shunt operation. Mean pulmonary artery pressure and total pulmonary vascular resistance were detected with right cardiac catheterization at 4 weeks. The distribution of EPCs in the lung tissue was examined with immunofluorescence technique. Histopathologic changes in the structure of the pulmonary arteries was observed with electron microscopy and subjected to computerized image analysis. The lungs of rats transplanted with CGRP-expressing EPCs demonstrated a decrease in both mean pulmonary artery pressure (17.64 +/- 0.79 versus 22.08 +/- 0.95 mm Hg; p = 0.018) and total pulmonary vascular resistance (1.26 +/- 0.07 versus 2.45 +/- 0.18 mm Hg x min/mL; p = 0.037) at 4 weeks. Immunofluorescence revealed that intravenously administered cells were incorporated into the pulmonary vasculature. Pulmonary vascular remodeling was remarkably attenuated with the administration of CGRP-expressing EPCs. The transplantation of CGRP-expressing EPCs may effectively attenuate established pulmonary hypertension and exert reversal effects on pulmonary vascular remodeling. Our findings suggest that the therapy based on the combination of both CGRP transfection and EPCs may be a potentially useful

  6. Serotonin Signaling Through the 5-HT1B Receptor and NADPH Oxidase 1 in Pulmonary Arterial Hypertension.

    PubMed

    Hood, Katie Y; Mair, Kirsty M; Harvey, Adam P; Montezano, Augusto C; Touyz, Rhian M; MacLean, Margaret R

    2017-07-01

    Serotonin can induce human pulmonary artery smooth muscle cell (hPASMC) proliferation through reactive oxygen species (ROS), influencing the development of pulmonary arterial hypertension (PAH). We hypothesize that in PASMCs, serotonin induces oxidative stress through NADPH-oxidase-derived ROS generation and reduced Nrf-2 (nuclear factor [erythroid-derived 2]-like 2) antioxidant systems, promoting vascular injury. HPASMCs from controls and PAH patients, and PASMCs from Nox1 -/- mice, were stimulated with serotonin in the absence/presence of inhibitors of Src kinase, the 5-HT 1B receptor, and NADPH oxidase 1 (Nox1). Markers of fibrosis were also determined. The pathophysiological significance of our findings was examined in vivo in serotonin transporter overexpressing female mice, a model of pulmonary hypertension. We confirmed thatserotonin increased superoxide and hydrogen peroxide production in these cells. For the first time, we show that serotonin increased oxidized protein tyrosine phosphatases and hyperoxidized peroxiredoxin and decreased Nrf-2 and catalase activity in hPASMCs. ROS generation was exaggerated and dependent on cellular Src-related kinase, 5-HT 1B receptor, and the serotonin transporter in human pulmonary artery smooth muscle cells from PAH subjects. Proliferation and extracellular matrix remodeling were exaggerated in human pulmonary artery smooth muscle cells from PAH subjects and dependent on 5-HT 1B receptor signaling and Nox1, confirmed in PASMCs from Nox1 -/- mice. In serotonin transporter overexpressing mice, SB216641, a 5-HT 1B receptor antagonist, prevented development of pulmonary hypertension in a ROS-dependent manner. Serotonin can induce cellular Src-related kinase-regulated Nox1-induced ROS and Nrf-2 dysregulation, contributing to increased post-translational oxidative modification of proteins and activation of redox-sensitive signaling pathways in hPASMCs, associated with mitogenic responses. 5-HT 1B receptors contribute to

  7. Serotonin Signaling Through the 5-HT1B Receptor and NADPH Oxidase 1 in Pulmonary Arterial Hypertension

    PubMed Central

    Hood, Katie Y.; Mair, Kirsty M.; Harvey, Adam P.; Montezano, Augusto C.; Touyz, Rhian M.

    2017-01-01

    Objective— Serotonin can induce human pulmonary artery smooth muscle cell (hPASMC) proliferation through reactive oxygen species (ROS), influencing the development of pulmonary arterial hypertension (PAH). We hypothesize that in PASMCs, serotonin induces oxidative stress through NADPH-oxidase–derived ROS generation and reduced Nrf-2 (nuclear factor [erythroid-derived 2]-like 2) antioxidant systems, promoting vascular injury. Approach and Results— HPASMCs from controls and PAH patients, and PASMCs from Nox1−/− mice, were stimulated with serotonin in the absence/presence of inhibitors of Src kinase, the 5-HT1B receptor, and NADPH oxidase 1 (Nox1). Markers of fibrosis were also determined. The pathophysiological significance of our findings was examined in vivo in serotonin transporter overexpressing female mice, a model of pulmonary hypertension. We confirmed thatserotonin increased superoxide and hydrogen peroxide production in these cells. For the first time, we show that serotonin increased oxidized protein tyrosine phosphatases and hyperoxidized peroxiredoxin and decreased Nrf-2 and catalase activity in hPASMCs. ROS generation was exaggerated and dependent on cellular Src-related kinase, 5-HT1B receptor, and the serotonin transporter in human pulmonary artery smooth muscle cells from PAH subjects. Proliferation and extracellular matrix remodeling were exaggerated in human pulmonary artery smooth muscle cells from PAH subjects and dependent on 5-HT1B receptor signaling and Nox1, confirmed in PASMCs from Nox1−/− mice. In serotonin transporter overexpressing mice, SB216641, a 5-HT1B receptor antagonist, prevented development of pulmonary hypertension in a ROS-dependent manner. Conclusions— Serotonin can induce cellular Src-related kinase–regulated Nox1-induced ROS and Nrf-2 dysregulation, contributing to increased post-translational oxidative modification of proteins and activation of redox-sensitive signaling pathways in hPASMCs, associated with

  8. Saudi Guidelines on the Diagnosis and Treatment of Pulmonary Hypertension: Pulmonary hypertension in children

    PubMed Central

    Al Dabbagh, Maha; Banjar, Hanna; Galal, Nasser; Kouatli, Amjad; Kandil, Hammam; Chehab, May

    2014-01-01

    Pulmonary hypertension (PH) is relatively uncommon in children. Pulmonary arterial hypertension (PAH) in pediatric comprises a wide spectrum of diseases, from a transient neonatal condition to a progressive disease associated with morbidity and mortality. Most common PAH in pediatric are idiopathic (IPAH) or PAH associated with congenital heart disease (PAH-CHD), while other associated conditions, such as connective tissue disease (CTD), are less common in pediatrics. Despite better understanding of PH and the availability of new medications during recent decades; the diagnosis, investigation and choice of therapy remain a challenge in children, as evidence-based recommendations depend mainly on adult studies. In this review, we provide a detailed discussion about the distinctive features of PAH in pediatric, mainly emphacysing on classification and diagnostic algorithm. PMID:25076989

  9. Gene expression of cyclin-dependent kinase inhibitors and effect of heparin on their expression in mice with hypoxia-induced pulmonary hypertension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Lunyin; Quinn, Deborah A.; Garg, Hari G.

    The balance between cell proliferation and cell quiescence is regulated delicately by a variety of mediators, in which cyclin-dependent kinases (CDK) and CDK inhibitors (CDKI) play a very important role. Heparin which inhibits pulmonary artery smooth muscle cell (PASMC) proliferation increases the levels of two CDKIs, p21 and p27, although only p27 is important in inhibition of PASMC growth in vitro and in vivo. In the present study we investigated the expression profile of all the cell cycle regulating genes, including all seven CDKIs (p21, p27, p57, p15, p16, p18, and p19), in the lungs of mice with hypoxia-induced pulmonarymore » hypertension. A cell cycle pathway specific gene microarray was used to profile the 96 genes involved in cell cycle regulation. We also observed the effect of heparin on gene expression. We found that (a) hypoxic exposure for two weeks significantly inhibited p27 expression and stimulated p18 activity, showing a 98% decrease in p27 and 81% increase in p18; (b) other CDKIs, p21, p57, p15, p16, and p19 were not affected significantly in response to hypoxia; (c) heparin treatment restored p27 expression, but did not influence p18; (d) ERK1/2 and p38 were mediators in heparin upregulation of p27. This study provides an expression profile of cell cycle regulating genes under hypoxia in mice with hypoxia-induced pulmonary hypertension and strengthens the previous finding that p27 is the only CDKI involved in heparin regulation of PASMC proliferation and hypoxia-induced pulmonary hypertension.« less

  10. What Is Pulmonary Hypertension?

    MedlinePlus

    ... Disease Venous Thromboembolism Aortic Aneurysm More Pulmonary Hypertension - High Blood Pressure in the Heart-to-Lung System Updated:Jan ... Pressure" This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP Introduction What ...

  11. Gender, sex hormones and pulmonary hypertension

    PubMed Central

    Austin, Eric D.; Lahm, Tim; West, James; Tofovic, Stevan P.; Johansen, Anne Katrine; MacLean, Margaret R.; Alzoubi, Abdallah; Oka, Masahiko

    2013-01-01

    Most subtypes of pulmonary arterial hypertension (PAH) are characterized by a greater susceptibility to disease among females, although females with PAH appear to live longer after diagnosis. While this “estrogen paradoxȍ of enhanced female survival despite increased female susceptibility remains a mystery, recent progress has begun to shed light upon the interplay of sex hormones, the pathogenesis of pulmonary hypertension, and the right ventricular response to stress. For example, emerging data in humans and experimental models suggest that estrogens or differential sex hormone metabolism may modify disease risk among susceptible subjects, and that estrogens may interact with additional local factors such as serotonin to enhance the potentially damaging chronic effects of estrogens on the pulmonary vasculature. Regardless, it remains unclear why not all estrogenic compounds behave equally, nor why estrogens appear to be protective in certain settings but detrimental in others. The contribution of androgens and other compounds, such as dehydroepiandrosterone, to pathogenesis and possibly treatment must be considered as well. In this review, we will discuss the recent understandings on how estrogens, estrogen metabolism, dehydroepiandrosterone, and additional susceptibility factors may all contribute to the pathogenesis or potentially to the treatment of pulmonary hypertension, by evaluating current human, cell-based, and experimental model data. PMID:24015330

  12. Bioactive fraction of Rhodiola algida against chronic hypoxia-induced pulmonary arterial hypertension and its anti-proliferation mechanism in rats.

    PubMed

    Nan, Xingmei; Su, Shanshan; Ma, Ke; Ma, Xiaodong; Wang, Ximeng; Zhaxi, Dongzhu; Ge, Rili; Li, Zhanqiang; Lu, Dianxiang

    2018-04-24

    Rhodiola algida var. tangutica (Maxim.) S.H. Fu is a perennial plant of the Crassulaceae family that grows in the mountainous regions of Asia. The rhizome and roots of this plant have been long used as Tibetan folk medicine for preventing high latitude sickness. The aim of this study was to determine the effect of bioactive fraction from R. algida (ACRT) on chronic hypoxia-induced pulmonary arterial hypertension (HPAH) and to understand the possible mechanism of its pharmacodynamic actions. Male Sprague-Dawley rats were separated into five groups: control group, hypoxia group, and hypoxia+ACRT groups (62.5, 125, and 250mg/kg/day of ACRT). The chronic hypoxic environment was created in a hypobaric chamber by adjusting the inner pressure and oxygen content for 4 weeks. After 4 weeks, major physiological parameters of pulmonary arterial hypertension such as mPAP, right ventricle index (RV/LV+S, RVHI), hematocrit (Hct) levels and the medial vessel thickness (wt%) were measured. Protein and mRNA expression levels of proliferating cell nuclear antigen (PCNA), cyclin D1, p27Kip1 and cyclin-dependent kinase 4 (CDK4)) were detected by western blotting and real time PCR respectively. Chemical profile of ACRT was revealed by ultra performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UHPLC-Q-TOF-MS/MS). The results showed that a successful HPAH rat model was established in a hypobaric chamber for 4 weeks, as indicated by the significant increase in mPAP, RV/LV+S, RV/BW and wt%. Compared with the normal group, administration of ACRT reduced mPAP, right ventricular hypertrophy, pulmonary small artery wall thickness, and damage in ultrastructure induced by hypoxia in rats. PCNA, cyclin D1, and CDK4 expression was reduced (p<0.05), and p27Kip1 expression increased (p<0.05) in hypoxia+ACRT groups compared to hypoxia. 38 constituents in bioactive fraction were identified by UHPLC-Q-TOF-MS/MS. Our results suggest that ACRT could alleviate

  13. Individual dose adjustment of riociguat in patients with pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension.

    PubMed

    Hill, Nicholas S; Rahaghi, Franck F; Sood, Namita; Frey, Reiner; Ghofrani, Hossein-Ardeschir

    2017-08-01

    Riociguat is a soluble guanylate cyclase stimulator that has been approved for the treatment of pulmonary arterial hypertension and inoperable chronic thromboembolic pulmonary hypertension or persistent/recurrent pulmonary hypertension following pulmonary endarterectomy. Riociguat is administered using an 8-week individual dose-adjustment scheme whereby a patient initially receives riociguat 1.0 mg three times daily (tid), and the dose is then increased every 2 weeks in the absence of hypotension, indicated by systolic blood pressure measurements and symptoms, up to a maximum dose of 2.5 mg tid. The established riociguat dose-adjustment scheme allows the dose of riociguat to be individually optimized in terms of tolerability and efficacy. The majority of patients in the phase III clinical trials and their long-term extension phases achieved the maximum riociguat dose, whereas some patients remained on lower doses. There is evidence that these patients may experience benefits at riociguat doses lower than 2.5 mg tid, with improvement in exercise capacity being observed after only 2-4 weeks of treatment in the phase III studies and in the exploratory 1.5 mg-maximum patient group of PATENT-1. This review aims to provide an overview of the rationale behind the riociguat dose-adjustment scheme and examine its application to both clinical trials and real-life clinical practice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Can patients with pulmonary hypertension travel to high altitude?

    PubMed

    Luks, Andrew M

    2009-01-01

    With the increasing popularity of adventure travel and mountain activities, it is likely that many high altitude travelers will have underlying medical problems and approach clinicians for advice about ensuring a safe sojourn. Patients with underlying pulmonary hypertension are one group who warrants significant concern during high altitude travel, because ambient hypoxia at high altitude will trigger hypoxic pulmonary vasoconstriction and cause further increases in pulmonary artery (PA) pressure, which may worsen hemodynamics and also predispose to acute altitude illness. After addressing basic information about pulmonary hypertension and pulmonary vascular responses to acute hypoxia, this review discusses the evidence supporting an increased risk for high altitude pulmonary edema in these patients, concerns regarding worsening oxygenation and right-heart function, the degree of underlying pulmonary hypertension necessary to increase risk, and the altitude at which such problems may occur. These patients may be able to travel to high altitude, but they require careful pre-trip assessment, including echocardiography and, when feasible, high altitude simulation testing with echocardiography to assess changes in PA pressure and oxygenation under hypoxic conditions. Those with mean PA pressure > or =35 mm Hg or systolic PA pressure > or =50 mm Hg at baseline should avoid travel to >2000 m; but if such travel is necessary or strongly desired, they should use supplemental oxygen during the sojourn. Patients with milder degrees of pulmonary hypertension may travel to altitudes <3000 m, but should consider prophylactic measures, including pulmonary vasodilators or supplemental oxygen.

  15. Pulmonary Hypertension, Hyperthyroidism, and Fenfluramine: A Case Report and Review

    PubMed Central

    Ying, Leung Ying; Shing, Tang Kam; Chi, Tsang Chiu; Kin, Chan Chi; Keung, Wong Kwan; Wai-yin, Yu Alex

    2006-01-01

    We report a case of pulmonary hypertension presenting with sudden cardiac arrest, hyperthyroidism and fenfluramine usage. This fatal case of pulmonary hypertension and valvular heart disease is associated with the use of an anorectic drug that had been withdrawn from the market more than eight years ago. Clinicians should alert to the side effects of appetite suppressant and slimming agents. The association between pulmonary hypertension in relation to hyperthyroidism and fenfluramine usage is reviewed. PMID:17415311

  16. [Diagnosis and treatment of pulmonary hypertension].

    PubMed

    Román, J Sánchez; Hernández, F J García; Palma, M J Castillo; Medina, C Ocaña

    2008-03-01

    Pulmonary arterial hypertension is an idiopathic process or can be associated with another circumstances (connective tissue diseases, congenital heart disease, portal hypertension, exposure to appetite suppressants or another drugs or infectious agents such as HIV). Most patients are diagnosed as the result of an evaluation of symptoms, whereas others are diagnosed incidentally or during screening of asymptomatic populations at risk. We reviews systematic screening for the approach to diagnosing pulmonary arterial hypertension. A diagnostic algorithm can guide the evaluation but it can be modified according to specific clinical circumstances. The number of therapeutic options has increased.in the last years. We reviews the use of calcium-channel blockers, prostacyclin (and analogues), endothelin-receptor antagonists, and phosphodiesterase-5 inhibitors, and the use of combination therapy, and provides specific recommendations about the actual treatment.

  17. REACTIVE OXYGEN AND NITROGEN SPECIES IN PULMONARY HYPERTENSION

    PubMed Central

    Tabima, Diana M.; Frizzell, Sheila; Gladwin, Mark T.

    2013-01-01

    Pulmonary vascular disease can be defined as either a disease affecting the pulmonary capillaries and pulmonary arterioles, termed pulmonary arterial hypertension, or as a disease affecting the left ventricle, called pulmonary venous hypertension. Pulmonary arterial hypertension (PAH) is a disorder of the pulmonary circulation characterized by endothelial dysfunction, as well as intimal and smooth muscle proliferation. Progressive increases in pulmonary vascular resistance and pressure impair the performance of the right ventricle, resulting in declining cardiac output, reduced exercise capacity, right heart failure, and ultimately death. While the primary and heritable forms of the disease are thought to affect over 5,000 patients in the U.S., the disease can occur secondary to congenital heart disease, most advanced lung diseases, and many systemic diseases. Multiple studies implicate oxidative stress in the development of PAH. Further, this oxidative stress has been shown to be associated with alterations in reactive oxygen species (ROS), reactive nitrogen species (RNS) and nitric oxide (NO) signaling pathways, whereby bioavailable NO is decreased and ROS and RNS production are increased. Many canonical ROS and NO signaling pathways are simultaneously disrupted in PAH, with increased expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and xanthine oxidoreductase, uncoupling of endothelial NO synthase (eNOS), and reduction in mitochondrial number, as well as impaired mitochondrial function. Upstream dysregulation of ROS/NO redox homeostasis impairs vascular tone and contributes to the pathological activation of anti-apoptotic and mitogenic pathways, leading to cell proliferation and obliteration of the vasculature. This manuscript will review the available data regarding the role of oxidative and nitrosative stress and endothelial dysfunction in the pathophysiology of pulmonary hypertension, and provide a description of targeted therapies

  18. Preoperative partitioning of pulmonary vascular resistance correlates with early outcome after thromboendarterectomy for chronic thromboembolic pulmonary hypertension.

    PubMed

    Kim, Nick H S; Fesler, Pierre; Channick, Richard N; Knowlton, Kirk U; Ben-Yehuda, Ori; Lee, Stephen H; Naeije, Robert; Rubin, Lewis J

    2004-01-06

    Pulmonary thromboendarterectomy (PTE) is the preferred treatment for chronic thromboembolic pulmonary hypertension (CTEPH), but persistent pulmonary hypertension after PTE, as a result of either inaccessible distal thrombotic material or coexistent intrinsic small-vessel disease, remains a major determinant of poor outcome. Conventional preoperative evaluation is unreliable in identifying patients at risk for persistent pulmonary hypertension or predicting postoperative hemodynamic outcome. We postulated that pulmonary arterial occlusion pressure waveform analysis, a technique that has been used for partitioning pulmonary vascular resistance, might identify CTEPH patients with significant distal, small-vessel disease. Twenty-six patients underwent preoperative right heart catheterization before PTE. Pulmonary artery occlusion waveform recordings were performed in triplicate. Postoperative hemodynamics after PTE were compared with preoperative partitioning of pulmonary vascular resistance derived from the occlusion data. Preoperative assessment of upstream resistance (Rup) correlated with both postoperative total pulmonary resistance index (R2=0.79, P<0.001) and postoperative mean pulmonary artery pressure (R2=0.75, P<0.001). All 4 postoperative deaths occurred in patients with a preoperative Rup <60%. Pulmonary arterial occlusion pressure waveform analysis may identify CTEPH patients at risk for persistent pulmonary hypertension and poor outcome after PTE. Patients with CTEPH and Rup value <60% appear to be at highest risk.

  19. Pulmonary hypertension and ventilation during exercise: Role of the pre-capillary component.

    PubMed

    Caravita, Sergio; Faini, Andrea; Deboeck, Gael; Bondue, Antoine; Naeije, Robert; Parati, Gianfranco; Vachiéry, Jean-Luc

    2017-07-01

    Excessive exercise-induced hyperventilation and high prevalence of exercise oscillatory breathing (EOB) are present in patients with post-capillary pulmonary hypertension (PH) complicating left heart disease (LHD). Patients with pre-capillary PH have even higher hyperventilation but no EOB. We sought to determine the impact of a pre-capillary component of PH on ventilatory response to exercise in patients with PH and left heart disease. We retrospectively compared patients with idiopathic or heritable pulmonary arterial hypertension (PAH, n = 29), isolated post-capillary PH (IpcPH, n = 29), and combined post- and pre-capillary PH (CpcPH, n = 12). Diastolic pressure gradient (DPG = diastolic pulmonary artery pressure - pulmonary wedge pressure) was used to distinguish IpcPH (DPG <7 mm Hg) from CpcPH (DPG ≥7 mm Hg). Pulmonary vascular resistance (PVR) was higher in PAH, intermediate in CpcPH, and low in IpcPH. All patients with CpcPH but 1 had PVR >3 Wood unit. Exercise-induced hyperventilation (high minute ventilation over carbon dioxide production, low end-tidal carbon dioxide) was marked in PAH, intermediate in CpcPH, and low in IpcPH (p < 0.001) and correlated with DPG and PVR. Prevalence of EOB decreased from IpcPH to CpcPH to PAH (p < 0.001). Patients with CpcPH may have worse hemodynamics than patients with IpcPH and distinct alterations of ventilatory control, consistent with more exercise-induced hyperventilation and less EOB. This might be explained at least in part by the presence and extent of pulmonary vascular disease. Copyright © 2017 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  20. Pregnancy in pulmonary arterial hypertension.

    PubMed

    Olsson, Karen M; Channick, Richard

    2016-12-01

    Despite advanced therapies, maternal mortality in women with pulmonary arterial hypertension (PAH) remains high in pregnancy and is especially high during the post-partum period. However, recent data indicates that morbidity and mortality during pregnancy and after birth have improved for PAH patients. The current European Society of Cardiology/European Respiratory Society guidelines recommend that women with PAH should not become pregnant. Therefore, the risks associated with pregnancy must be emphasised and counselling offered to women at the time of PAH diagnosis and to women with PAH who become pregnant. Early termination should be discussed. Women who choose to continue with their pregnancy should be treated at specialised pulmonary hypertension centres with experience in managing PAH during and after pregnancy. Copyright ©ERS 2016.

  1. Pediatric Perioperative Pulmonary Arterial Hypertension: A Case-Based Primer

    PubMed Central

    Shah, Shilpa; Szmuszkovicz, Jacqueline R.

    2017-01-01

    The perioperative period is an extremely tenuous time for the pediatric patient with pulmonary arterial hypertension. This article will discuss a multidisciplinary approach to preoperative planning, the importance of early identification of pulmonary hypertensive crises, and practical strategies for postoperative management for this unique group of children. PMID:29064445

  2. DNA Damage and Pulmonary Hypertension

    PubMed Central

    Ranchoux, Benoît; Meloche, Jolyane; Paulin, Roxane; Boucherat, Olivier; Provencher, Steeve; Bonnet, Sébastien

    2016-01-01

    Pulmonary hypertension (PH) is defined by a mean pulmonary arterial pressure over 25 mmHg at rest and is diagnosed by right heart catheterization. Among the different groups of PH, pulmonary arterial hypertension (PAH) is characterized by a progressive obstruction of distal pulmonary arteries, related to endothelial cell dysfunction and vascular cell proliferation, which leads to an increased pulmonary vascular resistance, right ventricular hypertrophy, and right heart failure. Although the primary trigger of PAH remains unknown, oxidative stress and inflammation have been shown to play a key role in the development and progression of vascular remodeling. These factors are known to increase DNA damage that might favor the emergence of the proliferative and apoptosis-resistant phenotype observed in PAH vascular cells. High levels of DNA damage were reported to occur in PAH lungs and remodeled arteries as well as in animal models of PH. Moreover, recent studies have demonstrated that impaired DNA-response mechanisms may lead to an increased mutagen sensitivity in PAH patients. Finally, PAH was linked with decreased breast cancer 1 protein (BRCA1) and DNA topoisomerase 2-binding protein 1 (TopBP1) expression, both involved in maintaining genome integrity. This review aims to provide an overview of recent evidence of DNA damage and DNA repair deficiency and their implication in PAH pathogenesis. PMID:27338373

  3. Effects and mechanism of oridonin on pulmonary hypertension induced by chronic hypoxia-hypercapnia in rats.

    PubMed

    Wang, Liang-Xing; Sun, Yu; Chen, Chan; Huang, Xiao-Ying; Lin, Quan; Qian, Guo-Qing; Dong, Wei; Chen, Yan-Fan

    2009-06-20

    Pulmonary arterial hypertension (PAH) is characterized by suppressing apoptosis and enhancing cell proliferation in the vascular wall. Inducing pulmonary artery smooth muscle cells (PASMC) apoptosis had been regarded as a therapeutic approach for PAH. Oridonin can cause apoptosis in many cell lines, while little has been done to evaluate its effect on PASMC. Thirty male Sprague-Dawley rats were randomly assigned to three groups: normal control (NC); hypoxia-hypercapnia (HH); Hypoxia-hypercapnia + oridonin (HHO). Rats were exposed to hypoxia-hypercapnia for four weeks. Cultured human PASMC (HPASMC) were assigned to three groups: normoxia (NO); hypoxia (HY); hypoxia + oridonin (HO). The mean pulmonary artery pressure, mass ratio of right ventricle over left ventricle plus septum (RV/(LV + S)), the ratio of thickness of the pulmonary arteriole wall to vascular external diameter (WT%) and the ratio of the vessel wall area to the total area (WA%) were measured. Morphologic changes of pulmonary arteries were observed under light and electron microscopes. The apoptotic characteristics in vitro and in vivo were detected. The mPAP, RV/(LV + S), WT%, and WA% in the HH group were significantly greater than those in the NC (P < 0.01) and HHO groups (P < 0.01); the activities of caspase-3 and caspase-9, and the expressions of Bax, cyt-C and apoptotic index (AI) in the group HH were less than those in the NC and HHO groups; and the expression of Bcl-2 in group HH was greater than that in the NC and HHO groups. HPASMC mitochondrial membrane potentials in group HO was lower than in group HY (P < 0.01), and cyt-C in the cytoplasm, AI, and caspase-9 in the HO group were greater than that in the HY group (P < 0.01), but the expression of Bcl-2 in the HO group was less than that in the HY group (P < 0.05). The results suggest that oridonin can lower pulmonary artery pressure effectively, and inhibit pulmonary artery structural remodeling by inducing smooth cell apoptosis via a

  4. Maternal PUFA omega-3 supplementation prevents hyperoxia-induced pulmonary hypertension in the offspring.

    PubMed

    Zhong, Ying; Catheline, Daniel; Houeijeh, Ali; Sharma, Dyuti; Du, Li-Zhong; Besengez, Capucine; Deruelle, Philippe; Legrand, Philippe; Storme, Laurent

    2018-03-29

    Pulmonary hypertension (PH) and right ventricular hypertrophy (RVH) affect 16-25% of premature infants with bronchopulmonary dysplasia (BPD), contributing significantly to perinatal morbidity and mortality. Polyunsaturated fatty acids ω-3 (PUFA ω-3) can improve vascular remodeling, angiogenesis, and inflammation under pathophysiological conditions. However, the effects of PUFA ω-3 supplementation in BPD-associated PH are unknown. The present study aimed to evaluate the effects of PUFA ω-3 on pulmonary vascular remodeling, angiogenesis, and inflammatory response in a hyperoxia-induced rat model of PH. From embryonic day 15, pregnant Spague-Dawley rats were supplemented daily with PUFA ω-3, PUFA ω-6, or normal saline (0.2 ml/day). After birth, pups were pooled, assigned as 12 per litter, and randomly to either in air or continuous oxygen exposure (FiO2 = 85%) for 20 days, then sacrificed for pulmonary hemodynamic and morphometric analysis. We found that PUFA ω-3 supplementation improved survival, decreased right ventricular systolic pressure and RVH caused by hyperoxia, and significantly improved alveolarization, vascular remodeling, and vascular density. PUFA ω-3 supplementation produced a higher level of total ω-3 in lung tissue and breast milk, and was found reversing the reduced levels of VEGFA, VEGFR-2, ANGPT-1, TIE-2, eNOS, and NO concentrations in lung tissue, and the increased ANGPT-2 levels in hyperoxia-exposed rats. The beneficial effects of PUFA ω-3 in improving lung injuries were also associated with an inhibition of leukocyte infiltration, and reduced expression of proinflammatory cytokines IL-1β, IL-6 and TNF-α. These data indicated that maternal PUFA ω-3 supplementation strategies could effectively protect against infant PH induced by hyperoxia.

  5. Computer-assisted diagnostic tool to quantify the pulmonary veins in sickle cell associated pulmonary hypertension

    NASA Astrophysics Data System (ADS)

    Jajamovich, Guido H.; Pamulapati, Vivek; Alam, Shoaib; Mehari, Alem; Kato, Gregory J.; Wood, Bradford J.; Linguraru, Marius George

    2012-03-01

    Pulmonary hypertension is a common cause of death among patients with sickle cell disease. This study investigates the use of pulmonary vein analysis to assist the diagnosis of pulmonary hypertension non-invasively with CT-Angiography images. The characterization of the pulmonary veins from CT presents two main challenges. Firstly, the number of pulmonary veins is unknown a priori and secondly, the contrast material is degraded when reaching the pulmonary veins, making the edges of these vessels to appear faint. Each image is first denoised and a fast marching approach is used to segment the left atrium and pulmonary veins. Afterward, a geodesic active contour is employed to isolate the left atrium. A thinning technique is then used to extract the skeleton of the atrium and the veins. The locations of the pulmonary veins ostia are determined by the intersection of the skeleton and the contour of the atrium. The diameters of the pulmonary veins are measured in each vein at fixed distances from the corresponding ostium, and for each distance, the sum of the diameters of all the veins is computed. These indicators are shown to be significantly larger in sickle-cell patients with pulmonary hypertension as compared to controls (p-values < 0.01).

  6. Transferrin Receptor 1 in Chronic Hypoxia-Induced Pulmonary Vascular Remodeling.

    PubMed

    Naito, Yoshiro; Hosokawa, Manami; Sawada, Hisashi; Oboshi, Makiko; Hirotani, Shinichi; Iwasaku, Toshihiro; Okuhara, Yoshitaka; Morisawa, Daisuke; Eguchi, Akiyo; Nishimura, Koichi; Soyama, Yuko; Fujii, Kenichi; Mano, Toshiaki; Ishihara, Masaharu; Tsujino, Takeshi; Masuyama, Tohru

    2016-06-01

    Iron is associated with the pathophysiology of several cardiovascular diseases, including pulmonary hypertension (PH). In addition, disrupted pulmonary iron homeostasis has been reported in several chronic lung diseases. Transferrin receptor 1 (TfR1) plays a key role in cellular iron transport. However, the role of TfR1 in the pathophysiology of PH has not been well characterized. In this study, we investigate the role of TfR1 in the development of hypoxia-induced pulmonary vascular remodeling. PH was induced by exposing wild-type (WT) mice and TfR1 hetero knockout mice to hypoxia for 4 weeks and evaluated via assessment of pulmonary vascular remodeling, right ventricular (RV) systolic pressure, and RV hypertrophy. In addition, we assessed the functional role of TfR1 in pulmonary artery smooth muscle cells in vitro. The morphology of pulmonary arteries did not differ between WT mice and TfR1 hetero knockout mice under normoxic conditions. In contrast, TfR1 hetero knockout mice exposed to 4 weeks hypoxia showed attenuated pulmonary vascular remodeling, RV systolic pressure, and RV hypertrophy compared with WT mice. In addition, the depletion of TfR1 by RNA interference attenuated human pulmonary artery smooth muscle cells proliferation induced by platelet-derived growth factor-BB (PDGF-BB) in vitro. These results suggest that TfR1 plays an important role in the development of hypoxia-induced pulmonary vascular remodeling. © American Journal of Hypertension, Ltd 2015. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Inhaled nitric oxide, oxygen, and alkalosis: dose-response interactions in a lamb model of pulmonary hypertension.

    PubMed

    Heidersbach, R S; Johengen, M J; Bekker, J M; Fineman, J R

    1999-07-01

    Inhaled nitric oxide (NO) is currently used as an adjuvant therapy for a variety of pulmonary hypertensive disorders. In both animal and human studies, inhaled NO induces selective, dose-dependent pulmonary vasodilation. However, its potential interactions with other simultaneously used pulmonary vasodilator therapies have not been studied. Therefore, the objective of this study was to determine the potential dose-response interactions of inhaled NO, oxygen, and alkalosis therapies. Fourteen newborn lambs (age 1-6 days) were instrumented to measure vascular pressures and left pulmonary artery blood flow. After recovery, the lambs were sedated and mechanically ventilated. During steady-state pulmonary hypertension induced by U46619 (a thromboxane A2 mimic), the lambs were exposed to the following conditions: Protocol A, inhaled NO (0, 5, 40, and 80 ppm) and inspired oxygen concentrations (FiO2) of 0.21, 0.50, and 1.00; and Protocol B, inhaled NO (0, 5, 40, and 80 ppm) and arterial pH levels of 7.30, 7.40, 7.50, and 7.60. Each condition (in randomly chosen order) was maintained for 10 min, and all variables were allowed to return to baseline between conditions. Inhaled NO, oxygen, and alkalosis produced dose-dependent decreases in mean pulmonary arterial pressures (P < 0.05). Systemic arterial pressure remained unchanged. At 5 ppm of inhaled NO, alkalosis and oxygen induced further dose-dependent decreases in mean pulmonary arterial pressures (P < 0.05). At inhaled NO doses > 5 ppm, alkalosis induced further dose-independent decreases in mean pulmonary arterial pressure, while oxygen did not. We conclude that in this animal model, oxygen, alkalosis, and inhaled NO induced selective, dose-dependent pulmonary vasodilation. However, when combined, a systemic arterial pH > 7.40 augmented inhaled NO-induced pulmonary vasodilation, while an FiO2 > 0.5 did not. Therefore, weaning high FiO2 during inhaled NO therapy should be considered, since it may not diminish the

  8. The role of platelets in the development and progression of pulmonary arterial hypertension.

    PubMed

    Kazimierczyk, Remigiusz; Kamiński, Karol

    2018-06-06

    Pulmonary arterial hypertension is a multifactorial disease characterized by vasoconstriction, vascular remodeling, inflammation and thrombosis. Although an increasing number of research confirmed that pulmonary artery endothelial cells, pulmonary artery smooth muscle cells as well as platelets have a role in the pulmonary arterial hypertension pathogenesis, it is still unclear what integrates these factors. In this paper, we review the evidence that platelets through releasing a large variety of chemokines could actively impact the pulmonary arterial hypertension pathogenesis and development. A recent publication revealed that not only an excess of platelet derived cytokines, but also a deficiency may be associated with pulmonary arterial hypertension development and progression. Hence, a simple platelet blockade may not be a correct action to treat pulmonary arterial hypertension. Our review aims to analyse the interactions between the platelets and different types of cells involved in pulmonary arterial hypertension pathogenesis. This knowledge could help to find novel therapeutic options and improve prognosis in this devastating disease. Copyright © 2018 Medical University of Bialystok. Published by Elsevier B.V. All rights reserved.

  9. Reverse right ventricular structural and extracellular matrix remodeling by estrogen in severe pulmonary hypertension

    PubMed Central

    Nadadur, Rangarajan D.; Umar, Soban; Wong, Gabriel; Eghbali, Mansour; Iorga, Andrea; Matori, Humann; Partow-Navid, Rod

    2012-01-01

    Chronic pulmonary hypertension (PH) leads to right-ventricular failure (RVF) characterized by RV remodeling. Ventricular remodeling is emerging as an important process during heart failure and recovery. Remodeling in RVF induced by PH is not fully understood. Recently we discovered that estrogen (E2) therapy can rescue severe preexisting PH. Here, we focused on whether E2 (42.5 μg·kg−1·day−1, 10 days) can reverse adverse RV structural and extracellular matrix (ECM) remodeling induced by PH using monocrotaline (MCT, 60 mg/kg). RV fibrosis was evident in RVF males. Intact females developed less severe RV remodeling compared with males and ovariectomized (OVX) females. Novel ECM-degrading disintegrin-metalloproteinases ADAM15 and ADAM17 transcripts were elevated ∼2-fold in all RVF animals. E2 therapy reversed RV remodeling in all groups. In vitro, E2 directly inhibited ANG II-induced expression of fibrosis markers as well as the metalloproteinases in cultured cardiac fibroblasts. Estrogen receptor-β agonist diarylpropionitrile (DPN) but not estrogen receptor-α agonist 4,4′,4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT) was as effective as E2 in inhibiting expression of these genes. Expression of ECM-interacting cardiac fetal-gene osteopontin (OPN) also increased ∼9-fold in RVF males. Intact females were partially protected from OPN upregulation (∼2-fold) but OVX females were not. E2 reversed OPN upregulation in all groups. Upregulation of OPN was also reversed in vitro by E2. Plasma OPN was elevated in RVF (∼1.5-fold) and decreased to control levels in the E2 group. RVF resulted in elevated Akt phosphorylation, but not ERK, in the RV, and E2 therapy restored Akt phosphorylation. In conclusion, E2 therapy reverses adverse RV remodeling associated with PH by reversing fibrosis and upregulation of novel ECM enzymes ADAM15, ADAM17, and OPN. These effects are likely mediated through estrogen receptor-β. PMID:22628376

  10. Management of pulmonary arterial hypertension.

    PubMed

    McLaughlin, Vallerie V; Shah, Sanjiv J; Souza, Rogerio; Humbert, Marc

    2015-05-12

    Pulmonary hypertension (PH) is common and may result from a number of disorders, including left heart disease, lung disease, and chronic thromboembolic disease. Pulmonary arterial hypertension (PAH) is an uncommon disease characterized by progressive remodeling of the distal pulmonary arteries, resulting in elevated pulmonary vascular resistance and, eventually, in right ventricular failure. Over the past decades, knowledge of the basic pathobiology of PAH and its natural history, prognostic indicators, and therapeutic options has exploded. A thorough evaluation of a patient is critical to correctly characterize the PH. Cardiac studies, including echocardiography and right heart catheterization, are key elements in the assessment. Given the multitude of treatment options currently available for PAH, assessment of risk and response to therapy is critical in long-term management. This review also underscores unique situations, including perioperative management, intensive care unit management, and pregnancy, and highlights the importance of collaborative care of the PAH patient through a multidisciplinary approach. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  11. Acute effects of the combination of sildenafil and inhaled treprostinil on haemodynamics and gas exchange in pulmonary hypertension.

    PubMed

    Voswinckel, Robert; Reichenberger, Frank; Enke, Beate; Kreckel, Andre; Krick, Stefanie; Gall, Henning; Schermuly, Ralph Theo; Grimminger, Friedrich; Rubin, Lewis J; Olschewski, Horst; Seeger, Werner; Ghofrani, Hossein A

    2008-10-01

    Inhaled treprostinil was recently developed for the treatment of pulmonary arterial hypertension (PAH). We investigated the safety and acute haemodynamic effects of the combination oral sildenafil and inhaled treprostinil in an open label study in patients with precapillary pulmonary hypertension. Inhaled nitric oxide (20ppm; n=50), sildenafil (50mg; n=50) and inhaled treprostinil (15microg; n=25 or 30microg; n=25) were applied in subsequent order during right heart catheter investigation to consecutive patients with pulmonary arterial hypertension (PAH; n=28), non-operable chronic thromboembolic pulmonary hypertension (CTEPH; n=17) and pulmonary fibrosis associated pulmonary hypertension (n=5). Inhaled nitric oxide reduced pulmonary vascular resistance (PVR) to 87.3+/-5.1% of baseline values, reduced mean pulmonary arterial pressure (PAP) to 89.7+/-3.5% and increased cardiac output (CO) to 102.4+/-2.9%. Sildenafil reduced PVR to 80.1+/-5.0%, mPAP to 86.5+/-2.9% and increased CO to 103.8+/-3.2%. Treprostinil, inhaled 1h after sildenafil, reduced PVR to 66.3+/-3.8%, mPAP to 77.8+/-3.3%, and increased CO to 107.1+/-3.3% (mean+/-95% confidence interval). Subgroup analysis showed similar acute haemodynamic effects in PAH and CTEPH patients. Ventilation/perfusion distribution measurement in six patients with pre-existing gas exchange limitations was not changed by sildenafil and treprostinil. Relevant side effects were not observed. The combination of sildenafil and inhaled treprostinil was well tolerated and induced additive, pulmonary selective vasodilatation in pulmonary hypertension patients. This could be of relevance also for long-term treatment of PAH and CTEPH patients.

  12. [Pulmonary hypertension associated with congenital heart disease and Eisenmenger syndrome].

    PubMed

    Calderón-Colmenero, Juan; Sandoval Zárate, Julio; Beltrán Gámez, Miguel

    2015-01-01

    Pulmonary arterial hypertension is a common complication of congenital heart disease (CHD). Congenital cardiopathies are the most frequent congenital malformations. The prevalence in our country remains unknown, based on birthrate, it is calculated that 12,000 to 16,000 infants in our country have some cardiac malformation. In patients with an uncorrected left-to-right shunt, increased pulmonary pressure leads to vascular remodeling and endothelial dysfunction secondary to an imbalance in vasoactive mediators which promotes vasoconstriction, inflammation, thrombosis, cell proliferation, impaired apotosis and fibrosis. The progressive rise in pulmonary vascular resistance and increased pressures in the right heart provocated reversal of the shunt may arise with the development of Eisenmenger' syndrome the most advanced form de Pulmonary arterial hypertension associated with congenital heart disease. The prevalence of Pulmonary arterial hypertension associated with CHD has fallen in developed countries in recent years that is not yet achieved in developing countries therefore diagnosed late as lack of hospital infrastructure and human resources for the care of patients with CHD. With the development of targeted medical treatments for pulmonary arterial hypertension, the concept of a combined medical and interventional/surgical approach for patients with Pulmonary arterial hypertension associated with CHD is a reality. We need to know the pathophysiological factors involved as well as a careful evaluation to determine the best therapeutic strategy. Copyright © 2014 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  13. Pediatric Cardiac Intensive Care Society 2014 Consensus Statement: Pharmacotherapies in Cardiac Critical Care Pulmonary Hypertension.

    PubMed

    Kim, John S; McSweeney, Julia; Lee, Joanne; Ivy, Dunbar

    2016-03-01

    To review the pharmacologic treatment options for pulmonary arterial hypertension in the cardiac intensive care setting and summarize the most-recent literature supporting these therapies. Literature search for prospective studies, retrospective analyses, and case reports evaluating the safety and efficacy of pulmonary arterial hypertension therapies. Mechanisms of action and pharmacokinetics, treatment recommendations, safety considerations, and outcomes for specific medical therapies. Specific targeted therapies developed for the treatment of adult patients with pulmonary arterial hypertension have been applied for the benefit of children with pulmonary arterial hypertension. With the exception of inhaled nitric oxide, there are no pulmonary arterial hypertension medications approved for children in the United States by the Food and Drug Administration. Unfortunately, data on treatment strategies in children with pulmonary arterial hypertension are limited by the small number of randomized controlled clinical trials evaluating the safety and efficacy of specific treatments. The treatment options for pulmonary arterial hypertension in children focus on endothelial-based pathways. Calcium channel blockers are recommended for use in a very small, select group of children who are responsive to vasoreactivity testing at cardiac catheterization. Phosphodiesterase type 5 inhibitor therapy is the most-commonly recommended oral treatment option in children with pulmonary arterial hypertension. Prostacyclins provide adjunctive therapy for the treatment of pulmonary arterial hypertension as infusions (IV and subcutaneous) and inhalation agents. Inhaled nitric oxide is the first-line vasodilator therapy in persistent pulmonary hypertension of the newborn and is commonly used in the treatment of pulmonary arterial hypertension in the ICU. Endothelin receptor antagonists have been shown to improve exercise tolerance and survival in adult patients with pulmonary arterial

  14. Guidelines on the Diagnosis and Treatment of Pulmonary Hypertension: Summary of Recommendations.

    PubMed

    Barberà, Joan Albert; Román, Antonio; Gómez-Sánchez, Miguel Ángel; Blanco, Isabel; Otero, Remedios; López-Reyes, Raquel; Otero, Isabel; Pérez-Peñate, Gregorio; Sala, Ernest; Escribano, Pilar

    2018-04-01

    Pulmonary hypertension is a hemodynamic disorder defined by abnormally high pulmonary artery pressure that can occur in numerous diseases and clinical situations. The causes of pulmonary hypertension are classified into 5 major groups: arterial, due to left heart disease, due to lung disease and/or hypoxemia, chronic thromboembolic, with unclear and/or multifactorial mechanisms. This is a brief summary of the Guidelines on the Diagnostic and Treatment of Pulmonary Hypertension of the Spanish Society of Pulmonology and Thoracic Surgery. These guidelines describe the current recommendations for the diagnosis and treatment of the different pulmonary hypertension groups. Copyright © 2017 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Severe pulmonary hypertension due to combined pulmonary fibrosis and emphysema: another cause of death among smokers

    PubMed Central

    Hirano, André Carramenha de Góes; Targueta, Eduardo Pelegrineti; Martines, João Augusto dos Santos; Andrade, Dafne; Lovisolo, Silvana Maria; Felipe-Silva, Aloisio

    2017-01-01

    In 2005, the combined pulmonary fibrosis and emphysema (CPFE) was first defined as a distinct entity, which comprised centrilobular or paraseptal emphysema in the upper pulmonary lobes, and fibrosis in the lower lobes accompanied by reduced diffused capacity of the lungs for carbon monoxide (DLCO). Recently, the fibrosis associated with the connective tissue disease was also included in the diagnosis of CPFE, although the exposure to tobacco, coal, welding, agrochemical compounds, and tire manufacturing are the most frequent causative agents. This entity characteristically presents reduced DLCO with preserved lung volumes and severe pulmonary hypertension, which is not observed in emphysema and fibrosis alone. We present the case of a 63-year-old woman with a history of heavy tobacco smoking abuse, who developed progressive dyspnea, severe pulmonary hypertension, and cor pulmonale over a 2-year period. She attended the emergency facility several times complaining of worsening dyspnea that was treated as decompensate chronic obstructive pulmonary disease (COPD). The imaging examination showed paraseptal emphysema in the upper pulmonary lobes and fibrosis in the middle and lower lobes. The echo Doppler cardiogram revealed the dilation of the right cardiac chambers and pulmonary hypertension, which was confirmed by pulmonary trunk artery pressure measurement by catheterization. During this period, she was progressively restricted to the minimal activities of daily life and dependent on caregivers. She was brought to the hospital neurologically obtunded, presenting anasarca, and respiratory failure, which led her to death. The autopsy showed signs of pulmonary hypertension and findings of fibrosis and emphysema in the histological examination of the lungs. The authors highlight the importance of the recognition of this entity in case of COPD associated with severe pulmonary hypertension of unknown cause. PMID:28740835

  16. Effects of novel muscarinic M3 receptor ligand C1213 in pulmonary arterial hypertension models.

    PubMed

    Ahmed, Mohamed; VanPatten, Sonya; Lakshminrusimha, Satyan; Patel, Hardik; Coleman, Thomas R; Al-Abed, Yousef

    2016-12-01

    Pulmonary hypertension (PH) is a complex disease comprising a pathologic remodeling and thickening of the pulmonary vessels causing an after load on the right heart ventricle that can result in ventricular failure. Triggered by oxidative stress, episodes of hypoxia, and other undetermined causes, PH is associated with poor outcomes and a high rate of morbidity. In the neonate, this disease has a similar etiology but is further complicated by the transition to breathing after birth, which requires a reduction in vascular resistance. Persistent pulmonary hypertension of the newborn (PPHN) is one form of PH that is frequently unresponsive to current therapies including inhaled nitric oxide (due to lack of proper absorption and diffusion), and other therapeutics targeting signaling mediators in vascular endothelium and smooth muscle. The need for novel agents, which target distinct pathways in pulmonary hypertension, remains. Herein, we investigated the therapeutic effects of novel muscarinic receptor ligand C1213 in models of PH We demonstrated that via M3 muscarinic receptors, C1213 induced activating- eNOS phosphorylation (serine-1177), which is known to lead to nitric oxide (NO) production in endothelial cells. Using signaling pathway inhibitors, we discovered that AKT and calcium signaling contributed to eNOS phosphorylation induced by C1213. As expected for an eNOS-stimulating agent, in ex vivo and in vivo models, C1213 triggered pulmonary vasodilation and induced both pulmonary artery and systemic blood pressure reductions demonstrating its potential value in PH and PPHN In brief, this proof-of-concept study provides evidence that an M3 muscarinic receptor functionally selective ligand stimulates downstream pathways leading to antihypertensive effects using in vitro, ex vivo, and in vivo models of PH. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  17. Pulmonary arterial hypertension in children: diagnosis using ratio of main pulmonary artery to ascending aorta diameter as determined by multi-detector computed tomography.

    PubMed

    Caro-Domínguez, Pablo; Compton, Gregory; Humpl, Tilman; Manson, David E

    2016-09-01

    The ratio of the transverse diameter of the main pulmonary artery (MPA) to ascending aorta as determined at multi-detector CT is a tool that can be used to assess the pulmonary arterial size in cases of pulmonary arterial hypertension in children. To establish a ratio of MPA to ascending aorta diameter using multi-detector CT imaging suggestive of pulmonary arterial hypertension in children. We hypothesize that a defined ratio of MPA to ascending aorta is identifiable on multi-detector CT and that higher ratios can be used to reliably diagnose the presence of pulmonary arterial hypertension in children. We calculated the multi-detector CT ratio of MPA to ascending aorta diameter in 44 children with documented pulmonary arterial hypertension by right heart catheterization and in 44 age- and gender-matched control children with no predisposing factors for pulmonary arterial hypertension. We compared this multi-detector-CT-determined ratio with the MPA pressure in the study group, as well as with the ratio of MPA to ascending aorta in the control group. A threshold ratio value was calculated to accurately identify children with pulmonary arterial hypertension. Children with documented primary pulmonary arterial hypertension have a significantly higher ratio of MPA to ascending aorta (1.46) than children without pulmonary arterial hypertension (1.11). A ratio of 1.3 carries a positive likelihood of 34 and a positive predictive value of 97% for the diagnosis of pulmonary arterial hypertension. The pulmonary arteries were larger in children with pulmonary arterial hypertension than in a control group of normal children. A CT-measured ratio of MPA to ascending aorta of 1.3 should raise the suspicion of pulmonary arterial hypertension in children.

  18. Adenosine monophosphate-activated protein kinase is required for pulmonary artery smooth muscle cell survival and the development of hypoxic pulmonary hypertension.

    PubMed

    Ibe, Joyce Christina F; Zhou, Qiyuan; Chen, Tianji; Tang, Haiyang; Yuan, Jason X-J; Raj, J Usha; Zhou, Guofei

    2013-10-01

    Human pulmonary artery smooth muscle cells (HPASMCs) express both adenosine monophosphate-activated protein kinase (AMPK) α1 and α2. We investigated the distinct roles of AMPK α1 and α2 in the survival of HPASMCs during hypoxia and hypoxia-induced pulmonary hypertension (PH). The exposure of HPASMCs to hypoxia (3% O2) increased AMPK activation and phosphorylation, and the inhibition of AMPK with Compound C during hypoxia decreased their viability and increased lactate dehydrogenase activity and apoptosis. Although the suppression of either AMPK α1 or α2 expression led to increased cell death, the suppression of AMPK α2 alone increased caspase-3 activity and apoptosis in HPASMCs exposed to hypoxia. It also resulted in the decreased expression of myeloid cell leukemia sequence 1 (MCL-1). The knockdown of MCL-1 or MCL-1 inhibitors increased caspase-3 activity and apoptosis in HPASMCs exposed to hypoxia. On the other hand, the suppression of AMPK α1 expression alone prevented hypoxia-mediated autophagy. The inhibition of autophagy induced cell death in HPASMCs. Our results suggest that AMPK α1 and AMPK α2 play differential roles in the survival of HPASMCs during hypoxia. The activation of AMPK α2 maintains the expression of MCL-1 and prevents apoptosis, whereas the activation of AMPK α1 stimulates autophagy, promoting HPASMC survival. Moreover, treatment with Compound C, which inhibits both isoforms of AMPK, prevented and partly reversed hypoxia-induced PH in mice. Taking these results together, our study suggests that AMPK plays a key role in the pathogenesis of pulmonary arterial hypertension, and AMPK may represent a novel therapeutic target for the treatment of pulmonary arterial hypertension.

  19. Adenosine Monophosphate–Activated Protein Kinase Is Required for Pulmonary Artery Smooth Muscle Cell Survival and the Development of Hypoxic Pulmonary Hypertension

    PubMed Central

    Ibe, Joyce Christina F.; Zhou, Qiyuan; Chen, Tianji; Tang, Haiyang; Yuan, Jason X.-J.; Raj, J. Usha

    2013-01-01

    Human pulmonary artery smooth muscle cells (HPASMCs) express both adenosine monophosphate–activated protein kinase (AMPK) α1 and α2. We investigated the distinct roles of AMPK α1 and α2 in the survival of HPASMCs during hypoxia and hypoxia-induced pulmonary hypertension (PH). The exposure of HPASMCs to hypoxia (3% O2) increased AMPK activation and phosphorylation, and the inhibition of AMPK with Compound C during hypoxia decreased their viability and increased lactate dehydrogenase activity and apoptosis. Although the suppression of either AMPK α1 or α2 expression led to increased cell death, the suppression of AMPK α2 alone increased caspase-3 activity and apoptosis in HPASMCs exposed to hypoxia. It also resulted in the decreased expression of myeloid cell leukemia sequence 1 (MCL-1). The knockdown of MCL-1 or MCL-1 inhibitors increased caspase-3 activity and apoptosis in HPASMCs exposed to hypoxia. On the other hand, the suppression of AMPK α1 expression alone prevented hypoxia-mediated autophagy. The inhibition of autophagy induced cell death in HPASMCs. Our results suggest that AMPK α1 and AMPK α2 play differential roles in the survival of HPASMCs during hypoxia. The activation of AMPK α2 maintains the expression of MCL-1 and prevents apoptosis, whereas the activation of AMPK α1 stimulates autophagy, promoting HPASMC survival. Moreover, treatment with Compound C, which inhibits both isoforms of AMPK, prevented and partly reversed hypoxia-induced PH in mice. Taking these results together, our study suggests that AMPK plays a key role in the pathogenesis of pulmonary arterial hypertension, and AMPK may represent a novel therapeutic target for the treatment of pulmonary arterial hypertension. PMID:23668615

  20. Rationale and design of the screening of pulmonary hypertension in systemic lupus erythematosus (SOPHIE) study

    PubMed Central

    Huang, Duo; Cheng, Yang-Yang; Chan, Pak-Hei; Hai, Jojo; Yiu, Kai-Hang; Tse, Hung-Fat; Wong, Ka-Lam; Fan, Katherine; Ng, Woon-Leung; Yim, Cheuk-Wan; Wong, Cheuk-hon John; Tam, Lai-Shan; Wong, Priscilla C.H.; Wong, Chi-Yuen; Ho, Chup-Hei; Leung, Alexander M.H.; Mok, Chi-Chiu; Lam, Ho; Lau, Chak-Sing; Cheung, Tommy; Ho, Carmen; Law, Sharon W.Y.; Yin, Li-Xue; Yue, Wen-Sheng; Mok, Toi Meng; Evora, Mario Alberto; Siu, Chung-Wah

    2018-01-01

    Current guideline-recommended screening for pulmonary hypertension in patients with systemic sclerosis has not been evaluated in systemic lupus erythematosus (SLE), which is disproportionately prevalent in Asians. This multicentre, cross-sectional screening study aims to study the prevalence of pulmonary hypertension among SLE patients using these guidelines, and identify independent predictors and develop a prediction model for pulmonary hypertension in SLE patients. SLE patients from participating centres will undergo an echocardiography- and biomarker-based pulmonary hypertension screening procedure as in the DETECT study. Standard right heart catheterisation will be provided to patients with intermediate or high echocardiographic probability of pulmonary hypertension. Those with low echocardiographic probability will rescreen within 1 year. The primary measure will be the diagnosis and types of pulmonary hypertension and prevalence of pulmonary hypertension in SLE patients. The secondary measures will be the predictors and prediction models for pulmonary hypertension in SLE patients. The estimated sample size is approximately 895 participants. The results of the SOPHIE study will be an important contribution to the literature of SLE-related pulmonary hypertension and may be immediately translatable to real clinical practice. Ultimately, this study will provide the necessary evidence for establishing universal guidelines for screening of pulmonary hypertension in SLE patients. PMID:29531959

  1. [Definition and classification of pulmonary arterial hypertension].

    PubMed

    Nakanishi, Norifumi

    2008-11-01

    Pulmonary hypertension(PH) is a disorder that may occur either in the setting of a variety of underlying medical conditions or as a disease that uniquely affects the pulmonary vasculature. Because an accurate diagnosis of PH in a patient is essential to establish an effective treatment, a classification of PH has been helpful. The first classification, established at WHO Symposium in 1973, classified PH into groups based on the known cause and defined primary pulmonary hypertension (PPH) as a separate entity of unknown cause. In 1998, the second World Symposium on PPH was held in Evian. Evian classification introduced the concept of conditions that directly affected the pulmonary vasculature (i.e., PAH), which included PPH. In 2003, the third World Symposium on PAH convened in Venice. In Venice classification, the term 'PPH' was abandoned in favor of 'idiopathic' within the group of disease known as 'PAH'.

  2. Multidimensional fatigue in pulmonary hypertension: prevalence, severity and predictors

    PubMed Central

    Tartavoulle, Todd M.; Karpinski, Aryn C.; Aubin, Andrew; Kluger, Benzi M.; Distler, Oliver; Saketkoo, Lesley Ann

    2018-01-01

    Pulmonary hypertension is a potentially fatal disease. Despite pharmacological advances in pulmonary hypertension, fatigue remains common in patients with pulmonary hypertension. A convenience sample of 120 participants at an international patient conference completed the Multidimensional Fatigue Inventory (MFI)-20 scale. Data on New York Heart Association Functional Class, body mass index, oxygen use and medication type/use were also collected. There was a high prevalence of “severe” to “very severe” fatigue for each dimension: General Fatigue (60%), Physical Fatigue (55.8%), Reduced Activity (41.7%), Reduced Motivation (32.5%) and Mental Fatigue (27.5%). The mean±sd overall MFI-20 score was 58±5.1. Dimensions with the highest averaged levels were General Fatigue (13.40±3.61), Physical Fatigue (13.23±3.67) and Reduced Activity (11.33±4.16). Body mass index correlated with higher fatigue scores. Phosphodiesterase inhibitor plus endothelin receptor antagonist combination negatively predicted General Fatigue, Physical Fatigue, Reduced Motivation and Reduced Activity. Triple therapy was a significant predictor of General Fatigue, Physical Fatigue and Reduced Activity. There were no significant predictors of Mental Fatigue. Multidimensional fatigue is common and severe in patients with pulmonary hypertension. Phosphodiesterase inhibitor plus endothelin receptor antagonist combination resulted in lower scores in most fatigue dimensions. Comprehensive assessment of fatigue should be considered in the clinical care of patients with pulmonary hypertension and clinical research to develop formal interventions that target this disabling symptom. PMID:29577043

  3. Multidimensional fatigue in pulmonary hypertension: prevalence, severity and predictors.

    PubMed

    Tartavoulle, Todd M; Karpinski, Aryn C; Aubin, Andrew; Kluger, Benzi M; Distler, Oliver; Saketkoo, Lesley Ann

    2018-01-01

    Pulmonary hypertension is a potentially fatal disease. Despite pharmacological advances in pulmonary hypertension, fatigue remains common in patients with pulmonary hypertension. A convenience sample of 120 participants at an international patient conference completed the Multidimensional Fatigue Inventory (MFI)-20 scale. Data on New York Heart Association Functional Class, body mass index, oxygen use and medication type/use were also collected. There was a high prevalence of "severe" to "very severe" fatigue for each dimension: General Fatigue (60%), Physical Fatigue (55.8%), Reduced Activity (41.7%), Reduced Motivation (32.5%) and Mental Fatigue (27.5%). The mean±sd overall MFI-20 score was 58±5.1. Dimensions with the highest averaged levels were General Fatigue (13.40±3.61), Physical Fatigue (13.23±3.67) and Reduced Activity (11.33±4.16). Body mass index correlated with higher fatigue scores. Phosphodiesterase inhibitor plus endothelin receptor antagonist combination negatively predicted General Fatigue, Physical Fatigue, Reduced Motivation and Reduced Activity. Triple therapy was a significant predictor of General Fatigue, Physical Fatigue and Reduced Activity. There were no significant predictors of Mental Fatigue. Multidimensional fatigue is common and severe in patients with pulmonary hypertension. Phosphodiesterase inhibitor plus endothelin receptor antagonist combination resulted in lower scores in most fatigue dimensions. Comprehensive assessment of fatigue should be considered in the clinical care of patients with pulmonary hypertension and clinical research to develop formal interventions that target this disabling symptom.

  4. Pulmonary hypertension and right heart failure due to severe hypernatremic dehydration.

    PubMed

    Chiwane, Saurabh; Ahmed, Tageldin M; Bauerfeld, Christian P; Chauhan, Monika

    2017-07-01

    Neonates are at risk of developing hypernatremic dehydration and its associated complications, such as stroke, dural sinus thrombosis and renal vein thrombosis. Pulmonary hypertension has not been described as a complication of hypernatremia. We report a case of a seven-day-old neonate with severe hypernatremic dehydration who went on to develop pulmonary hypertension and right heart failure needing extracorporeal membrane oxygenation (ECMO). Normal or high anion gap metabolic acidosis commonly accompanies hypernatremic dehydration. The presence of acidosis and/or hypoxia can delay the normal drop in pulmonary vascular resistance (PVR) after birth, causing pulmonary hypertension and right ventricular failure. A high index of suspicion is paramount to diagnose pulmonary hypertension and aggressive correction of the acidosis and hypoxia is needed. In the presence of severe right ventricular failure, ECMO can be used as a bridge to recovery while underlying metabolic derangements are being corrected.

  5. Unraveling endothelin-1 induced hypercontractility of human pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension

    PubMed Central

    Warburton, Rod; Taylor, Linda; Toksoz, Deniz; Hill, Nicholas; Polgar, Peter

    2018-01-01

    Contraction of human pulmonary artery smooth muscle cells (HPASMC) isolated from pulmonary arterial hypertensive (PAH) and normal (non-PAH) subject lungs was determined and measured with real-time electrical impedance. Treatment of HPASMC with vasoactive peptides, endothelin-1 (ET-1) and bradykinin (BK) but not angiotensin II, induced a temporal decrease in the electrical impedance profile mirroring constrictive morphological change of the cells which typically was more robust in PAH as opposed to non-PAH cells. Inhibition with LIMKi3 and a cofilin targeted motif mimicking cell permeable peptide (MMCPP) had no effect on ET-1 induced HPASMC contraction indicating a negligible role for these actin regulatory proteins. On the other hand, a MMCPP blocking the activity of caldesmon reduced ET-1 promoted contraction pointing to a regulatory role of this protein and its activation pathway in HPASMC contraction. Inhibition of this MEK/ERK/p90RSK pathway, which is an upstream regulator of caldesmon phosphorylation, reduced ET-1 induced cell contraction. While the regulation of ET-1 induced cell contraction was found to be similar in PAH and non-PAH cells, a key difference was the response to pharmacological inhibitors and to siRNA knockdown of Rho kinases (ROCK1/ROCK2). The PAH cells required much higher concentrations of inhibitors to abrogate ET-1 induced contractions and their contraction was not affected by siRNA against either ROCK1 or ROCK2. Lastly, blocking of L-type and T-type Ca2+ channels had no effect on ET-1 or BK induced contraction. However, inhibiting the activity of the sarcoplasmic reticulum Ca2+ ATPase blunted ET-1 and BK induced HPASMC contraction in both PAH and non-PAH derived HPASMC. In summary, our findings here together with previous communications illustrate similarities and differences in the regulation PAH and non-PAH smooth muscle cell contraction relating to calcium translocation, RhoA/ROCK signaling and the activity of caldesmon. These findings

  6. Acute resolution of pulmonary alveolar infiltrates in 10 dogs with pulmonary hypertension treated with sildenafil citrate: 2005-2014.

    PubMed

    Kellihan, Heidi B; Waller, Kenneth R; Pinkos, Alyssa; Steinberg, Howard; Bates, Melissa L

    2015-09-01

    To describe clinical canine patients with naturally occurring pulmonary hypertension and radiographic pulmonary alveolar infiltrates before and after treatment with sildenafil. Ten client-owned dogs. A retrospective analysis of dogs with echocardiographically-determined pulmonary hypertension and pulmonary alveolar infiltrates on thoracic radiographs was performed before (PRE) and after (POST) sildenafil therapy. Clinical scores, pulmonary alveolar infiltrate scores and tricuspid regurgitation gradients were analyzed PRE and POST sildenafil. Pulmonary alveolar infiltrates associated with pulmonary hypertension developed in a diffusely patchy distribution (10/10). Sixty percent of dogs had a suspected diagnosis of interstitial pulmonary fibrosis as the etiology of pulmonary hypertension. Median PRE clinical score was 4 (range: 3-4) compared to POST score of 0 (0-2) (p = 0.005). Median alveolar infiltrate score PRE was 10 (5-12) compared to POST score of 4 (0-6) (p = 0.006). Median tricuspid regurgitation gradient PRE was 83 mmHg (57-196) compared to 55 mmHg POST (33-151) (p = 0.002). A subset of dogs with moderate to severe pulmonary hypertension present with diffuse, patchy alveolar infiltrates consistent with non-cardiogenic pulmonary edema. The typical clinical presentation is acute dyspnea and syncope, often in conjunction with heart murmurs suggestive of valvular insufficiency. This constellation of signs may lead to an initial misdiagnosis of congestive heart failure or pneumonia; however, these dogs clinically and radiographically improve with the initiation of sildenafil. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. [Inhaled iloprost, a selective pulmonary vasodilator. Clinical evidence from its use in perioperative pulmonary hypertension cardiovascular surgery].

    PubMed

    Santos-Martínez, Luis Efren; Baranda-Tovar, Francisco Martín; Telona-Fermán, Eslí; Barragán-García, Rodolfo; Calderón-Abbo, Moisés Cutiel

    2015-01-01

    Inhaled iloprost is one of the most recent drugs from prostanoids group's in the treatment of pulmonary arterial hypertension. His place in pulmonary hypertension seen in the perioperative cardiovascular surgery has not been defined. In this review we analyze pulmonary hypertension group's susceptibles of cardiac surgery and its importance, besides the current clinical evidence from drug use in this context. Copyright © 2013 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  8. Genetics of pulmonary hypertension in the clinic.

    PubMed

    Girerd, Barbara; Lau, Edmund; Montani, David; Humbert, Marc

    2017-09-01

    Heritable pulmonary arterial hypertension (PAH) is an autosomal dominant disease with incomplete penetrance because of mutations in bone morphogenetic protein receptor-II (BMPR2), activin A receptor type II-like kinase 1, endoglin, caveolin-1, potassium channel subfamily K, member 3, and T-box gene 4 genes. Heritable pulmonary veno-occlusive disease and/or pulmonary capillary hemangiomatosis (PVOD/PCH) is an autosomal recessive disease because of biallelic mutations in the eukaryotic translation initiation factor 2 alpha kinase 4 gene. The 2015 european society of cardiology (ESC) and european respiratory society (ERS) pulmonary hypertension guidelines recommend genetic counselling and testing to adults and children with PAH or PVOD/PCH as well as in adult relatives at risk of carrying a predisposing mutation. In France, genetic counseling and testing are offered to all patients displaying sporadic or familial form of PAH or PVOD/PCH and to their relatives at high risk of carrying a predisposing mutation. Patients with a heritable form of PAH are younger at diagnosis with a worse hemodynamic and a dismal prognosis. Patients with a heritable form of PVOD/PCH are younger at diagnosis with a worse response to specific PAH therapies. A program to detect PAH in an early phase was offered to all asymptomatic BMPR2 mutation carriers, according to the 2015 ESC/ERS guidelines. Finally, preimplantation genetic diagnosis has been performed in families with a history of BMPR2 mutations. Genetic counseling and testing has to be implemented in pulmonary hypertension centers.

  9. Exercise-induced pulmonary artery hypertension in a patient with compensated cardiac disease: hemodynamic and functional response to sildenafil therapy.

    PubMed

    Nikolaidis, Lazaros; Memon, Nabeel; O'Murchu, Brian

    2015-02-01

    We describe the case of a 54-year-old man who presented with exertional dyspnea and fatigue that had worsened over the preceding 2 years, despite a normally functioning bioprosthetic aortic valve and stable, mild left ventricular dysfunction (left ventricular ejection fraction, 0.45). His symptoms could not be explained by physical examination, an extensive biochemical profile, or multiple cardiac and pulmonary investigations. However, abnormal cardiopulmonary exercise test results and a right heart catheterization-combined with the use of a symptom-limited, bedside bicycle ergometer-revealed that the patient's exercise-induced pulmonary artery hypertension was out of proportion to his compensated left heart disease. A trial of sildenafil therapy resulted in objective improvements in hemodynamic values and functional class.

  10. Pulmonary hypertension in patients with congenital portosystemic venous shunt: a previously unrecognized association.

    PubMed

    Ohno, Takuro; Muneuchi, Jun; Ihara, Kenji; Yuge, Tetsuji; Kanaya, Yoshiaki; Yamaki, Shigeo; Hara, Toshiro

    2008-04-01

    Pulmonary arterial hypertension has been reported to be observed in association with acquired portal hypertension. However, the contribution of congenital anomalies occurring in the portal system to the development of pulmonary arterial hypertension remains to be elucidated. Nine patients with congenital portosystemic venous shunt were studied from January 1990 through September 2005. Patent ductus venosus was detected in 5 patients, including 3 patients with an absence of the portal vein. The presence of either a gastrorenal or splenorenal shunt was evident in another 4 patients. Six patients had a history of hypergalactosemia with normal enzyme activities, as seen during neonatal screening. Six (66.7%) of the 9 patients were identified to have clinically significant pulmonary arterial hypertension (mean pulmonary artery pressure: 34-79 mm Hg; pulmonary vascular resistances: 5.12-38.07 U). The median age at the onset of pulmonary arterial hypertension was 12 years and 3 months. Histologic studies of lung specimens, which were available in 4 of the 9 patients with congenital portosystemic venous shunt, showed small arterial microthrombotic lesions in 3 patients. This characteristic finding was recognized even in the congenital portosystemic venous shunt patients without PAH. This study demonstrated thromboembolic pulmonary arterial hypertension to be a crucial complication in congenital portosystemic venous shunt, and this pathologic state may be latently present in patients with pulmonary arterial hypertension of unknown etiology.

  11. Lipid changes in hepatic microsomes and its relationship to P-nitrophenol glucuronidation in an experimental model of portal hypertension.

    PubMed

    Ghanem, C; Ghisolfi, C; Marabotto, L; Ouviña, G; Rubio, M; Perazzo, J; Lemberg, A; Bengochea, L

    1997-10-01

    The liver is responsible for the most important metabolic pathway of non polar compounds. The aim of the present work was to study the p-nitrophenol glucuronidation and its relationship with lipidic composition of microsomal membrane in a model of hepatic portal hypertension and hepatocellular damage induced by monocrotaline. A global increment in liver microsomal phospholipids as well as changes in the phospholipid pattern (phosphatidylethanolamine and sphingomyelin increased up to 156 +/- 13 and 195 +/- 14% respectively) were detected in monocrotaline intoxicated rats when it were compared to control rats. The microsomal cholesterol content showed a decrease in monocrotaline intoxicated rats. (4.1 +/- 0.7 against 6.6 +/- 1.5 micrograms/mg of microsomal protein, in control rats). When p-nitrophenol activity was measured, Km from monocrotaline intoxicated rats was 0.137 mM, and Vmax was 2.9 nmol of p-nitrophenol/mg microsomal protein since in control group Km was 0.322 mM, and Vmax was 4.5 nmol of p-nitrophenol/mg microsomal protein. It is concluded that monocrotaline intoxicated rats showed a different behavior in the kinetics of p-nitrophenol UDP-glucuronyltransferase, as well as a different microsomal lipidic profile, when compared to control group.

  12. Losartan attenuates chronic cigarette smoke exposure-induced pulmonary arterial hypertension in rats: possible involvement of angiotensin-converting enzyme-2.

    PubMed

    Han, Su-Xia; He, Guang-Ming; Wang, Tao; Chen, Lei; Ning, Yun-Ye; Luo, Feng; An, Jin; Yang, Ting; Dong, Jia-Jia; Liao, Zeng-Lin; Xu, Dan; Wen, Fu-Qiang

    2010-05-15

    Chronic cigarette smoking induces pulmonary arterial hypertension (PAH) by largely unknown mechanisms. Renin-angiotensin system (RAS) is known to function in the development of PAH. Losartan, a specific angiotensin II receptor antagonist, is a well-known antihypertensive drug with a potential role in regulating angiotensin-converting enzyme-2 (ACE2), a recently found regulator of RAS. To determine the effect of losartan on smoke-induced PAH and its possible mechanism, rats were daily exposed to cigarette smoke for 6months in the absence and in the presence of losartan. Elevated right ventricular systolic pressure (RVSP), thickened wall of pulmonary arteries with apparent medial hypertrophy along with increased angiotensin II (Ang II) and decreased ACE2 levels were observed in smoke-exposed-only rats. Losartan administration ameliorated pulmonary vascular remodeling, inhibited the smoke-induced RVSP and Ang II elevation and partially reversed the ACE2 decrease in rat lungs. In cultured primary pulmonary artery smooth muscle cells (PASMCs) from 3- and 6-month smoke-exposed rats, ACE2 levels were significantly lower than in those from the control rats. Moreover, PASMCs from 6-month exposed rats proliferated more rapidly than those from 3-month exposed or control rats, and cells grew even more rapidly in the presence of DX600, an ACE2 inhibitor. Consistent with the in vivo study, in vitro losartan pretreatment also inhibited cigarette smoke extract (CSE)-induced cell proliferation and ACE2 reduction in rat PASMCs. The results suggest that losartan may be therapeutically useful in the chronic smoking-induced pulmonary vascular remodeling and PAH and ACE2 may be involved as part of its mechanism. Our study might provide insight into the development of new therapeutic interventions for PAH smokers.

  13. Losartan attenuates chronic cigarette smoke exposure-induced pulmonary arterial hypertension in rats: Possible involvement of angiotensin-converting enzyme-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han Suxia; He Guangming; Wang Tao

    Chronic cigarette smoking induces pulmonary arterial hypertension (PAH) by largely unknown mechanisms. Renin-angiotensin system (RAS) is known to function in the development of PAH. Losartan, a specific angiotensin II receptor antagonist, is a well-known antihypertensive drug with a potential role in regulating angiotensin-converting enzyme-2 (ACE2), a recently found regulator of RAS. To determine the effect of losartan on smoke-induced PAH and its possible mechanism, rats were daily exposed to cigarette smoke for 6 months in the absence and in the presence of losartan. Elevated right ventricular systolic pressure (RVSP), thickened wall of pulmonary arteries with apparent medial hypertrophy along withmore » increased angiotensin II (Ang II) and decreased ACE2 levels were observed in smoke-exposed-only rats. Losartan administration ameliorated pulmonary vascular remodeling, inhibited the smoke-induced RVSP and Ang II elevation and partially reversed the ACE2 decrease in rat lungs. In cultured primary pulmonary artery smooth muscle cells (PASMCs) from 3- and 6-month smoke-exposed rats, ACE2 levels were significantly lower than in those from the control rats. Moreover, PASMCs from 6-month exposed rats proliferated more rapidly than those from 3-month exposed or control rats, and cells grew even more rapidly in the presence of DX600, an ACE2 inhibitor. Consistent with the in vivo study, in vitro losartan pretreatment also inhibited cigarette smoke extract (CSE)-induced cell proliferation and ACE2 reduction in rat PASMCs. The results suggest that losartan may be therapeutically useful in the chronic smoking-induced pulmonary vascular remodeling and PAH and ACE2 may be involved as part of its mechanism. Our study might provide insight into the development of new therapeutic interventions for PAH smokers.« less

  14. Regression of pulmonary artery hypertension due to development of a pulmonary arteriovenous malformation

    PubMed Central

    Hasan, Ashfaq; Sastry, B.K.S.; Aleem, M.A.; Reddy, Gokul; Mahmood, Syed

    2014-01-01

    Idiopathic Pulmonary Hypertension (IPAH) is characterized by elevated pulmonary arterial pressure in the absence of an identifiable underlying cause. The condition is usually relentlessly progressive with a short survival in the absence of treatment.1 We describe a patient of IPAH in whom the pulmonary artery pressures significantly abated with complete disappearance of symptoms, following spontaneous development of a pulmonary arterio-venous malformation (PAVM). PMID:25443608

  15. A Non-Invasive Assessment of Cardiopulmonary Hemodynamics with MRI in Pulmonary Hypertension

    PubMed Central

    Bane, Octavia; Shah, Sanjiv J.; Cuttica, Michael J.; Collins, Jeremy D.; Selvaraj, Senthil; Chatterjee, Neil R.; Guetter, Christoph; Carr, James C.; Carroll, Timothy J.

    2015-01-01

    Purpose We propose a method for non-invasive quantification of hemodynamic changes in the pulmonary arteries resulting from pulmonary hypertension (PH). Methods Using a two-element windkessel model, and input parameters derived from standard MRI evaluation of flow, cardiac function and valvular motion, we derive: pulmonary artery compliance (C), mean pulmonary artery pressure (mPAP), pulmonary vascular resistance (PVR), pulmonary capillary wedge pressure (PCWP), time-averaged intra-pulmonary pressure waveforms and pulmonary artery pressures (systolic (sPAP) and diastolic (dPAP)). MRI results were compared directly to reference standard values from right heart catheterization (RHC) obtained in a series of patients with suspected pulmonary hypertension (PH). Results In 7 patients with suspected PH undergoing RHC, MRI and echocardiography, there was no statistically significant difference (p<0.05) between parameters measured by MRI and RHC. Using standard clinical cutoffs to define PH (mPAP ≥ 25 mmHg), MRI was able to correctly identify all patients as having pulmonary hypertension, and to correctly distinguish between pulmonary arterial (mPAP≥ 25 mmHg, PCWP<15 mmHg) and venous hypertension (mPAP ≥ 25 mmHg, PCWP ≥ 15 mmHg) in 5 of 7 cases. Conclusions We have developed a mathematical model capable of quantifying physiological parameters that reflect the severity of PH. PMID:26283577

  16. Development and Characterization of an Inducible Rat Model of Chronic Thromboembolic Pulmonary Hypertension.

    PubMed

    Arias-Loza, Paula-Anahi; Jung, Pius; Abeßer, Marco; Umbenhauer, Sandra; Williams, Tatjana; Frantz, Stefan; Schuh, Kai; Pelzer, Theo

    2016-05-01

    Chronic thromboembolic pulmonary hypertension (CTEPH) is an entity of PH that not only limits patients quality of life but also causes significant morbidity and mortality. The treatment of choice is pulmonary endarterectomy. However numerous patients do not qualify for pulmonary endarterectomy or present with residual vasculopathy post pulmonary endarterectomy and require specific vasodilator treatment. Currently, there is no available specific small animal model of CTEPH that could serve as tool to identify targetable molecular pathways and to test new treatment options. Thus, we generated and standardized a rat model that not only resembles functional and histological features of CTEPH but also emulates thrombi fibrosis. The pulmonary embolism protocol consisted of 3 sequential tail vein injections of fibrinogen/collagen-covered polystyrene microspheres combined with thrombin and administered to 10-week-old male Wistar rats. After the third embolism, rats developed characteristic features of CTEPH including elevated right ventricular systolic pressure, right ventricular cardiomyocyte hypertrophy, pulmonary artery remodeling, increased serum brain natriuretic peptide levels, thrombi fibrosis, and formation of pulmonary cellular-fibrotic lesions. The current animal model seems suitable for detailed study of CTEPH pathophysiology and permits preclinical testing of new pharmacological therapies against CTEPH. © 2016 American Heart Association, Inc.

  17. Altered Redox Balance in the Development of Chronic Hypoxia-induced Pulmonary Hypertension.

    PubMed

    Jernigan, Nikki L; Resta, Thomas C; Gonzalez Bosc, Laura V

    2017-01-01

    Normally, the pulmonary circulation is maintained in a low-pressure, low-resistance state with little resting tone. Pulmonary arteries are thin-walled and rely heavily on pulmonary arterial distension and recruitment for reducing pulmonary vascular resistance when cardiac output is elevated. Under pathophysiological conditions, however, active vasoconstriction and vascular remodeling lead to enhanced pulmonary vascular resistance and subsequent pulmonary hypertension (PH). Chronic hypoxia is a critical pathological factor associated with the development of PH resulting from airway obstruction (COPD, sleep apnea), diffusion impairment (interstitial lung disease), developmental lung abnormalities, or high altitude exposure (World Health Organization [WHO]; Group III). The rise in pulmonary vascular resistance increases right heart afterload causing right ventricular hypertrophy that can ultimately lead to right heart failure in patients with chronic lung disease. PH is typically characterized by diminished paracrine release of vasodilators, antimitogenic factors, and antithrombotic factors (e.g., nitric oxide and protacyclin) and enhanced production of vasoconstrictors and mitogenic factors (e.g., reactive oxygen species and endothelin-1) from the endothelium and lung parenchyma. In addition, phenotypic changes to pulmonary arterial smooth muscle cells (PASMC), including alterations in Ca 2+ homeostasis, Ca 2+ sensitivity, and activation of transcription factors are thought to play prominent roles in the development of both vasoconstrictor and arterial remodeling components of hypoxia-associated PH. These changes in PASMC function are briefly reviewed in Sect. 1 and the influence of altered reactive oxygen species homeostasis on PASMC function discussed in Sects. 2-4.

  18. Warfarin and bosentan interaction in a patient with pulmonary hypertension secondary to bilateral pulmonary emboli.

    PubMed

    Spangler, Mikayla L; Saxena, Shailendra

    2010-01-01

    Bosentan is an endothelin-receptor antagonist that reportedly induces both cytochrome P450 (CYP) 3A4 and CYP2C9 enzymes, which are also involved in warfarin metabolism. We present a case report describing a probable drug interaction between warfarin and bosentan in a patient with pulmonary hypertension. A 52-year-old black female (weight, 77 kg) diagnosed with pulmonary hypertension secondary to bilateral pulmonary emboli had a stable international normalized ratio (INR; target range, 2-3) with a weekly warfarin dose of 52.5 mg for 2 months before the initiation of bosentan therapy. Other concurrent medications included telmisartan/ hydrochlorothiazide 40/12.5 mg once daily and a daily multivitamin (which contained no vitamin K). Three weeks after starting bosentan 62.5 mg BID, a therapeutic INR concentration was reached with a weekly warfarin dose 14% higher (an increase of 7.5 mg/wk) than her weekly warfarin dose before initiation of bosentan. After a brief discontinuation (7 days) and retitration of bosentan and warfarin, the final weekly warfarin dose (75 mg/wk) was 43% greater (an increase of 22.5 mg/wk) than the previously stable dose, which enabled the patient to reach her therapeutic INR goal range of 2 to 3. Bosentan has CYP3A4- and CYP2C9-inducing properties and is therefore likely to cause decreased concentrations of warfarin. We describe here a probable drug interaction between bosentan and warfarin that resulted in a 43% increase in warfarin dose to maintain the patient's therapeutic INR.

  19. Pulmonary hypertension in rheumatic diseases: epidemiology and pathogenesis.

    PubMed

    Shahane, Anupama

    2013-07-01

    The focus of this review is to increase awareness of pulmonary arterial hypertension (PAH) in patients with rheumatic diseases. Epidemiology and pathogenesis of PAH in rheumatic diseases is reviewed, with recommendations for early screening and diagnosis and suggestion of possible role of immunosuppressive therapy in treatment for PAH in rheumatic diseases. A MEDLINE search for articles published between January 1970 and June 2012 was conducted using the following keywords: pulmonary hypertension, scleroderma, systemic sclerosis, pulmonary arterial hypertension, connective tissues disease, systemic lupus erythematosus, mixed connective tissue disease, rheumatoid arthritis, Sjogren's syndrome, vasculitis, sarcoidosis, inflammatory myopathies, dermatomyositis, ankylosing spondylitis, spondyloarthropathies, diagnosis and treatment. Pathogenesis and disease burden of PAH in rheumatic diseases was highlighted, with emphasis on early consideration and workup of PAH. Screening recommendations and treatment were touched upon. PAH is most commonly seen in systemic sclerosis and may be seen in isolation or in association with interstitial lung disease. Several pathophysiologic processes have been identified including an obliterative vasculopathy, veno-occlusive disease, formation of microthrombi and pulmonary fibrosis. PAH in systemic lupus erythematosus is associated with higher prevalence of antiphospholipid and anticardiolipin antibodies and the presence of Raynaud's phenomenon. Endothelial proliferation with vascular remodeling, abnormal coagulation with thrombus formation and immune-mediated vasculopathy are the postulated mechanisms. Improvement with immunosuppressive medications has been reported. Pulmonary fibrosis, extrinsic compression of pulmonary arteries and granulomatous vasculitis have been reported in patients with sarcoidosis. Intimal and medial hyperplasia with luminal narrowing has been observed in Sjogren's syndrome, mixed connective tissue disease and

  20. Pulmonary hypertension in systemic lupus erythematosus: report of four cases and review of the literature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez, H.D.; Kramer, N.

    1981-08-01

    Pulmonary hypertension has been reported rarely in patients with systemic lupus erythematosus (SLE). During the past 31/2 yr we have observed pulmonary hypertension as a major clinical manifestation of their disease in four of 43 patients with well-documented SLE followed at out institution. Pulmonary hypertension could be attributed to underlying lung disease in three and was considered to be primary in the remaining patient. Neither hydralazine nor prednisone administration had any effect on the course of the pulmonary hypertension in these patients. The presence of pulmonary hypertension in the course of active SLE may be more common than previously recognized.

  1. Folic Acid Promotes Recycling of Tetrahydrobiopterin and Protects Against Hypoxia-Induced Pulmonary Hypertension by Recoupling Endothelial Nitric Oxide Synthase.

    PubMed

    Chalupsky, Karel; Kračun, Damir; Kanchev, Ivan; Bertram, Katharina; Görlach, Agnes

    2015-11-10

    Nitric oxide (NO) derived from endothelial NO synthase (eNOS) has been implicated in the adaptive response to hypoxia. An imbalance between 5,6,7,8-tetrahydrobiopterin (BH4) and 7,8-dihydrobiopterin (BH2) can result in eNOS uncoupling and the generation of superoxide instead of NO. Dihydrofolate reductase (DHFR) can recycle BH2 to BH4, leading to eNOS recoupling. However, the role of DHFR and eNOS recoupling in the response to hypoxia is not well understood. We hypothesized that increasing the capacity to recycle BH4 from BH2 would improve NO bioavailability as well as pulmonary vascular remodeling (PVR) and right ventricular hypertrophy (RVH) as indicators of pulmonary hypertension (PH) under hypoxic conditions. In human pulmonary artery endothelial cells and murine pulmonary arteries exposed to hypoxia, eNOS was uncoupled as indicated by reduced superoxide production in the presence of the nitric oxide synthase inhibitor, L-(G)-nitro-L-arginine methyl ester (L-NAME). Concomitantly, NO levels, BH4 availability, and expression of DHFR were diminished under hypoxia. Application of folic acid (FA) restored DHFR levels, NO bioavailability, and BH4 levels under hypoxia. Importantly, FA prevented the development of hypoxia-induced PVR, right ventricular pressure increase, and RVH. FA-induced upregulation of DHFR recouples eNOS under hypoxia by improving BH4 recycling, thus preventing hypoxia-induced PH. FA might serve as a novel therapeutic option combating PH.

  2. Modulation of endothelin receptors in the failing right ventricle of the heart and vasculature of the lung in human pulmonary arterial hypertension.

    PubMed

    Kuc, Rhoda E; Carlebur, Myrna; Maguire, Janet J; Yang, Peiran; Long, Lu; Toshner, Mark; Morrell, Nicholas W; Davenport, Anthony P

    2014-11-24

    In pulmonary arterial hypertension (PAH), increases in endothelin-1 (ET-1) contribute to elevated pulmonary vascular resistance which ultimately causes death by right ventricular (RV) heart failure. ET antagonists are effective in treating PAH but lack efficacy in treating left ventricular (LV) heart failure, where ETA receptors are significantly increased. The aim was to quantify the density of ETA and ETB receptors in cardiopulmonary tissue from PAH patients and the monocrotaline (MCT) rat, which recapitulates some of the pathophysiological features, including increased RV pressure. Radioligand binding assays were used to quantify affinity, density and ratio of ET receptors. In RV from human PAH hearts, there was a significant increase in the ratio of ETA to ETB receptors compared with normal hearts. In the RV of the MCT rat, the ratio also changed but was reversed. In both human and rat, there was no change in LV. In human PAH lungs, ETA receptors were significantly increased in the medial layer of small pulmonary arteries with no change detectable in MCT rat vessels. Current treatments for PAH focus mainly on pulmonary vasodilatation. The increase in ETA receptors in arteries provides a mechanism for the beneficial vasodilator actions of ET antagonists. The increase in the ratio of ETA in RV also implicates changes to ET signalling although it is unclear if ET antagonism is beneficial but the results emphasise the unexploited potential for therapies that target the RV, to improve survival in patients with PAH. Copyright © 2014. Published by Elsevier Inc.

  3. Development of a portable mini-generator to safely produce nitric oxide for the treatment of infants with pulmonary hypertension.

    PubMed

    Yu, Binglan; Ferrari, Michele; Schleifer, Grigorij; Blaesi, Aron H; Wepler, Martin; Zapol, Warren M; Bloch, Donald B

    2018-05-01

    To test the safety of a novel miniaturized device that produces nitric oxide (NO) from air by pulsed electrical discharge, and to demonstrate that the generated NO can be used to vasodilate the pulmonary vasculature in rabbits with chemically-induced pulmonary hypertension. A miniature NO (mini-NO) generator was tested for its ability to produce therapeutic levels (20-80 parts per million (ppm)) of NO, while removing potentially toxic gases and metal particles. We studied healthy 6-month-old New Zealand rabbits weighing 3.4 ± 0.4 kg (mean ± SD, n = 8). Pulmonary hypertension was induced by chemically increasing right ventricular systolic pressure to 28-30 mmHg. The mini-NO generator was placed near the endotracheal tube. Production of NO was triggered by a pediatric airway flowmeter during the first 0.5 s of inspiration. In rabbits with acute pulmonary hypertension, the mini-NO generator produced sufficient NO to induce pulmonary vasodilation. Potentially toxic nitrogen dioxide (NO 2 ) and ozone (O 3 ) were removed by the Ca(OH) 2 scavenger. Metallic particles, released from the electrodes by the electric plasma, were removed by a 0.22 μm filter. While producing 40 ppm NO, the mini-NO generator was cooled by a flow of air (70 ml/min) and the external temperature of the housing did not exceed 31 °C. The mini-NO generator safely produced therapeutic levels of NO from air. The mini-NO generator is an effective and economical approach to producing NO for treating neonatal pulmonary hypertension and will increase the accessibility and therapeutic uses of life-saving NO therapy worldwide. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Pediatric Pulmonary Hypertension: Guidelines From the American Heart Association and American Thoracic Society.

    PubMed

    Abman, Steven H; Hansmann, Georg; Archer, Stephen L; Ivy, D Dunbar; Adatia, Ian; Chung, Wendy K; Hanna, Brian D; Rosenzweig, Erika B; Raj, J Usha; Cornfield, David; Stenmark, Kurt R; Steinhorn, Robin; Thébaud, Bernard; Fineman, Jeffrey R; Kuehne, Titus; Feinstein, Jeffrey A; Friedberg, Mark K; Earing, Michael; Barst, Robyn J; Keller, Roberta L; Kinsella, John P; Mullen, Mary; Deterding, Robin; Kulik, Thomas; Mallory, George; Humpl, Tilman; Wessel, David L

    2015-11-24

    Pulmonary hypertension is associated with diverse cardiac, pulmonary, and systemic diseases in neonates, infants, and older children and contributes to significant morbidity and mortality. However, current approaches to caring for pediatric patients with pulmonary hypertension have been limited by the lack of consensus guidelines from experts in the field. In a joint effort from the American Heart Association and American Thoracic Society, a panel of experienced clinicians and clinician-scientists was assembled to review the current literature and to make recommendations on the diagnosis, evaluation, and treatment of pediatric pulmonary hypertension. This publication presents the results of extensive literature reviews, discussions, and formal scoring of recommendations for the care of children with pulmonary hypertension. © 2015 by the American Heart Association, Inc., and the American Thoracic Society.

  5. Contribution of reactive oxygen species to the pathogenesis of pulmonary arterial hypertension

    PubMed Central

    Naik, Jay S.; Weise-Cross, Laura; Detweiler, Neil D.; Herbert, Lindsay M.; Yellowhair, Tracylyn R.; Resta, Thomas C.

    2017-01-01

    Pulmonary arterial hypertension is associated with a decreased antioxidant capacity. However, neither the contribution of reactive oxygen species to pulmonary vasoconstrictor sensitivity, nor the therapeutic efficacy of antioxidant strategies in this setting are known. We hypothesized that reactive oxygen species play a central role in mediating both vasoconstrictor and arterial remodeling components of severe pulmonary arterial hypertension. We examined the effect of the chemical antioxidant, TEMPOL, on right ventricular systolic pressure, vascular remodeling, and enhanced vasoconstrictor reactivity in both chronic hypoxia and hypoxia/SU5416 rat models of pulmonary hypertension. SU5416 is a vascular endothelial growth factor receptor antagonist and the combination of chronic hypoxia/SU5416 produces a model of severe pulmonary arterial hypertension with vascular plexiform lesions/fibrosis that is not present with chronic hypoxia alone. The major findings from this study are: 1) compared to hypoxia alone, hypoxia/SU5416 exposure caused more severe pulmonary hypertension, right ventricular hypertrophy, adventitial lesion formation, and greater vasoconstrictor sensitivity through a superoxide and Rho kinase-dependent Ca2+ sensitization mechanism. 2) Chronic hypoxia increased medial muscularization and superoxide levels, however there was no effect of SU5416 to augment these responses. 3) Treatment with TEMPOL decreased right ventricular systolic pressure in both hypoxia and hypoxia/SU5416 groups. 4) This effect of TEMPOL was associated with normalization of vasoconstrictor responses, but not arterial remodeling. Rather, medial hypertrophy and adventitial fibrotic lesion formation were more pronounced following chronic TEMPOL treatment in hypoxia/SU5416 rats. Our findings support a major role for reactive oxygen species in mediating enhanced vasoconstrictor reactivity and pulmonary hypertension in both chronic hypoxia and hypoxia/SU5416 rat models, despite a

  6. Type 1 neurofibromatosis and pulmonary hypertension: a report of two cases and a review

    PubMed Central

    Malviya, Amit; Mishra, Sundeep; Kothari, Shyam S

    2012-01-01

    Pulmonary hypertension in type 1 neurofibromatosis is not well known and was previously attributed to diffuse fibrosing alveolitis and parenchymal tumours. More recently, cases of severe pulmonary hypertension due to pulmonary vasculopathy have been described. Involvement of vascular beds, both large and medium calibre vessels, but not pulmonary vasculature, in type 1 neurofibromatosis is well known. The authors describe two such cases and briefly review the literature. Pulmonary arterial hypertension in neurofibromatosis warrants further studies. PMID:27326022

  7. New interventions to treat chronic thromboembolic pulmonary hypertension.

    PubMed

    Jenkins, David

    2018-04-10

    Chronic thromboembolic pulmonary hypertension (CTEPH) can be defined as a type of precapillary pulmonary hypertension (PH) resulting from incomplete resolution of pulmonary embolism. Symptoms are exertional breathlessness and most patients come to a cardiologist's attention with a dilated right heart on echocardiography. Patients with suspected CTEPH should be referred for evaluation to a PH specialist centre to confirm the diagnosis. There are now three treatment options available, dependent on the anatomical level of the obstruction: pulmonary endarterectomy surgery, balloon pulmonary angioplasty and pulmonary arterial hypertension (PAH)-targeted drugs. All reduce pulmonary artery pressure and vascular resistance. Current guidelines recommend surgery as the definitive treatment in technically operable patients. The operation involves deep hypothermic circulatory arrest, but the in-hospital mortality is <5% and the 3-year survival is 90%. Large case series have demonstrated dramatic improvement in haemodynamic parameters with significant symptomatic and prognostic benefits. Balloon pulmonary angioplasty is the newest treatment that has been refined by Japanese cardiologists over the last 5 years. This technique is designed to target more distal subsegmental lesions in inoperable patients and in experienced centres has been shown to deliver equivalent haemodynamic improvement to surgery with low complication rates, but longer term outcome is still under evaluation. A recent randomised controlled trial has demonstrated a reduction in vascular resistance and increase in walk test distance with the PAH-targeted drug Riociguat in patients with inoperable CTEPH, and this drug is now licensed for these patients. It is likely that some patients will benefit from combinations of treatments. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly

  8. RhoA/Rho-kinase signaling: a therapeutic target in pulmonary hypertension.

    PubMed

    Barman, Scott A; Zhu, Shu; White, Richard E

    2009-01-01

    Pulmonary arterial hypertension (PAH) is a devastating disease characterized by progressive elevation of pulmonary arterial pressure and vascular resistance due to pulmonary vasoconstriction and vessel remodeling as well as inflammation. Rho-kinases (ROCKs) are one of the best-described effectors of the small G-protein RhoA, and ROCKs are involved in a variety of cellular functions including muscle cell contraction, proliferation and vascular inflammation through inhibition of myosin light chain phosphatase and activation of downstream mediators. A plethora of evidence in animal models suggests that heightened RhoA/ROCK signaling is important in the pathogenesis of pulmonary hypertension by causing enhanced constriction and remodeling of the pulmonary vasculature. Both animal and clinical studies suggest that ROCK inhibitors are effective for treatment of severe PAH with minimal risk, which supports the premise that ROCKs are important therapeutic targets in pulmonary hypertension and that ROCK inhibitors are a promising new class of drugs for this devastating disease.

  9. New insights in the treatment strategy for pulmonary arterial hypertension.

    PubMed

    Sahara, Makoto; Takahashi, Toshiyuki; Imai, Yasushi; Nakajima, Toshiaki; Yao, Atsushi; Morita, Toshihiro; Hirata, Yasunobu; Nagai, Ryozo

    2006-10-01

    Recent advances in our understanding of the pathophysiological and molecular mechanisms involved in pulmonary arterial hypertension have led to the development of novel and rational pharmacological therapies. In addition to conventional therapy (i.e., supplemental oxygen and calcium channel blockers), prostacyclin or endothelin receptor antagonists have been recommended as a first-line therapy for pulmonary arterial hypertension. However, these treatments have potential limitations with regard to their long-term efficacy and improvement in survival. Furthermore, intravenous prostacyclin (epoprostenol) therapy, which is recommended by most experts for patients with New York Heart Association (NYHA) functional class IV, is complicated, uncomfortable for patients, and expensive because of the cumbersome administration system. Considering these circumstances, it is necessary to develop additional novel therapeutic approaches that target the various components of this multifactorial disease. In this short review, we present an overview of the current treatment options for pulmonary arterial hypertension and describe a case report with primary pulmonary hypertension. A male patient with NYHA functional class IV and showing no response to calcium channel blockers and prostacyclin exhibited significantly improved exercise tolerance and hemodynamics and long-term survival for more than 2.5 years after receiving an oral combination therapy of a phosphodiesterase type 5 inhibitor (sildenafil), phosphodiesterase type 3 inhibitor (pimobendan), and nicorandil. We also discuss the background and plausible potential mechanisms involved in this case, as well as future perspectives in the treatment of pulmonary arterial hypertension.

  10. Amphetamines promote mitochondrial dysfunction and DNA damage in pulmonary hypertension

    PubMed Central

    Chen, Pin-I; Cao, Aiqin; Miyagawa, Kazuya; Tojais, Nancy F.; Hennigs, Jan K.; Li, Caiyun G.; Sweeney, Nathaly M.; Inglis, Audrey S.; Wang, Lingli; Li, Dan; Ye, Matthew; Feldman, Brian J.

    2017-01-01

    Amphetamine (AMPH) or methamphetamine (METH) abuse can cause oxidative damage and is a risk factor for diseases including pulmonary arterial hypertension (PAH). Pulmonary artery endothelial cells (PAECs) from AMPH-associated-PAH patients show DNA damage as judged by γH2AX foci and DNA comet tails. We therefore hypothesized that AMPH induces DNA damage and vascular pathology by interfering with normal adaptation to an environmental perturbation causing oxidative stress. Consistent with this, we found that AMPH alone does not cause DNA damage in normoxic PAECs, but greatly amplifies DNA damage in hypoxic PAECs. The mechanism involves AMPH activation of protein phosphatase 2A, which potentiates inhibition of Akt. This increases sirtuin 1, causing deacetylation and degradation of HIF1α, thereby impairing its transcriptional activity, resulting in a reduction in pyruvate dehydrogenase kinase 1 and impaired cytochrome c oxidase 4 isoform switch. Mitochondrial oxidative phosphorylation is inappropriately enhanced and, as a result of impaired electron transport and mitochondrial ROS increase, caspase-3 is activated and DNA damage is induced. In mice given binge doses of METH followed by hypoxia, HIF1α is suppressed and pulmonary artery DNA damage foci are associated with worse pulmonary vascular remodeling. Thus, chronic AMPH/METH can induce DNA damage associated with vascular disease by subverting the adaptive responses to oxidative stress. PMID:28138562

  11. Diabetes Mellitus Associates with Increased Right Ventricular Afterload and Remodeling in Pulmonary Arterial Hypertension.

    PubMed

    Whitaker, Morgan E; Nair, Vineet; Sinari, Shripad; Dherange, Parinita A; Natarajan, Balaji; Trutter, Lindsey; Brittain, Evan L; Hemnes, Anna R; Austin, Eric D; Patel, Kumar; Black, Stephen M; Garcia, Joe G N; Yuan Md PhD, Jason X; Vanderpool, Rebecca R; Rischard, Franz; Makino, Ayako; Bedrick, Edward J; Desai, Ankit A

    2018-06-01

    Diabetes mellitus is associated with left ventricular hypertrophy and dysfunction. Parallel studies have also reported associations between diabetes mellitus and right ventricular dysfunction and reduced survival in patients with pulmonary arterial hypertension. However, the impact of diabetes mellitus on the pulmonary vasculature has not been well characterized. We hypothesized that diabetes mellitus and hyperglycemia could specifically influence right ventricular afterload and remodeling in patients with Group I pulmonary arterial hypertension, providing a link to their known susceptibility to right ventricular dysfunction. Using an adjusted model for age, sex, pulmonary vascular resistance, and medication use, associations of fasting blood glucose, glycated hemoglobin, and the presence of diabetes mellitus were evaluated with markers of disease severity in 162 patients with pulmonary arterial hypertension. A surrogate measure of increased pulmonary artery stiffness, elevated pulmonary arterial elastance (P = .012), along with reduced log(pulmonary artery capacitance) (P = .006) were significantly associated with the presence of diabetes mellitus in patients with pulmonary arterial hypertension in a fully adjusted model. Similar associations between pulmonary arterial elastance and capacitance were noted with both fasting blood glucose and glycated hemoglobin. Furthermore, right ventricular wall thickness on echocardiography was greater in pulmonary arterial hypertension patients with diabetes, supporting the link between right ventricular remodeling and diabetes. Cumulatively, these data demonstrate that an increase in right ventricular afterload, beyond pulmonary vascular resistance alone, may influence right ventricular remodeling and provide a mechanistic link between the susceptibility to right ventricular dysfunction in patients with both diabetes mellitus and pulmonary arterial hypertension. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Pulmonary endarterectomy: the potentially curative treatment for patients with chronic thromboembolic pulmonary hypertension.

    PubMed

    Jenkins, David

    2015-06-01

    Pulmonary endarterectomy (PEA) is the treatment of choice to relieve pulmonary artery obstruction in patients with chronic thromboembolic pulmonary hypertension (CTEPH). It is a complex surgical procedure with a simple principle: removal of obstructive thromboembolic material from the pulmonary arteries in order to reduce pulmonary vascular resistance, relieve pulmonary hypertension (PH) and alleviate right ventricular dysfunction. In the majority of patients there is symptomatic and prognostic benefit. However, not all patients with CTEPH are suitable for treatment with PEA. Operability assessment is not always easy, being largely subjective and based on experience. It is therefore important that all patients are referred to an experienced CTEPH centre for careful evaluation of suitability for surgery. The most common reason for inoperability is distal vasculopathy accounting for a high proportion of the vascular resistance. Surgery requires cardiopulmonary bypass and periods of deep hypothermic circulatory arrest. Complications include reperfusion lung injury and persistent PH. However, with careful patient selection, surgical technique and post-operative management, PEA is a highly effective treatment with mortality rates <5% at experienced centres. Patients who are unsuitable for surgery may be candidates for medical therapy. Copyright ©ERS 2015.

  13. Efficacy and safety of oral sildenafil in children with Down syndrome and pulmonary hypertension.

    PubMed

    Beghetti, Maurice; Rudzinski, Andrzej; Zhang, Min

    2017-07-04

    Despite the increased risk for pulmonary hypertension in children with Down syndrome, the response to treatment with targeted therapies for pulmonary hypertension in these patients is not well characterized. The Sildenafil in Treatment-naive children, Aged 1-17 years, with pulmonary arterial hypertension (STARTS-1) trial was a dose-ranging study of the short-term efficacy and safety of oral sildenafil in children with pulmonary arterial hypertension. We assessed the safety and efficacy of oral sildenafil in children with Down syndrome and pulmonary arterial hypertension. This was a post-hoc analysis of children with Down syndrome and pulmonary arterial hypertension enrolled in the STARTS-1 trial. Mean pulmonary arterial pressure (mPAP), pulmonary vascular resistance index (PVRI), and cardiac index (CI) were assessed at baseline and following 16 weeks of treatment with sildenafil. Of 234 patients randomized and treated in the STARTS-1 trial, 48 (20.5%) had Down syndrome. Although sildenafil produced dose-related reductions in PVRI and mPAP, compared with placebo, in non-Down syndrome patients and children developmentally able to exercise, this was not satisfactorily marked in patients with Down syndrome. The dose-related reductions in PVRI, compared with placebo, occurred in all subgroups, with the exception of the Down syndrome subgroup. Sildenafil appeared to be well tolerated in the Down syndrome subpopulation and the most frequently reported AEs were similar to those reported for the entire STARTS-1 population. Sildenafil treatment for 16 weeks had no effect on PVRI or mPAP in children with Down syndrome and pulmonary arterial hypertension. The results suggest that children with Down syndrome may be less responsive to sildenafil for pulmonary arterial hypertension, but the incomplete work-up for the etiology of pulmonary arterial hypertension may have introduced a potential bias. Study received, September 8, 2005 (retrospectively registered); Study start

  14. Pulmonary arterial remodeling induced by a Th2 immune response

    PubMed Central

    Daley, Eleen; Emson, Claire; Guignabert, Christophe; de Waal Malefyt, Rene; Louten, Jennifer; Kurup, Viswanath P.; Hogaboam, Cory; Taraseviciene-Stewart, Laimute; Voelkel, Norbert F.; Rabinovitch, Marlene; Grunig, Ekkehard; Grunig, Gabriele

    2008-01-01

    Pulmonary arterial remodeling characterized by increased vascular smooth muscle density is a common lesion seen in pulmonary arterial hypertension (PAH), a deadly condition. Clinical correlation studies have suggested an immune pathogenesis of pulmonary arterial remodeling, but experimental proof has been lacking. We show that immunization and prolonged intermittent challenge via the airways with either of two different soluble antigens induced severe muscularization in small- to medium-sized pulmonary arteries. Depletion of CD4+ T cells, antigen-specific T helper type 2 (Th2) response, or the pathogenic Th2 cytokine interleukin 13 significantly ameliorated pulmonary arterial muscularization. The severity of pulmonary arterial muscularization was associated with increased numbers of epithelial cells and macrophages that expressed a smooth muscle cell mitogen, resistin-like molecule α, but surprisingly, there was no correlation with pulmonary hypertension. Our data are the first to provide experimental proof that the adaptive immune response to a soluble antigen is sufficient to cause severe pulmonary arterial muscularization, and support the clinical observations in pediatric patients and in companion animals that muscularization represents one of several injurious events to the pulmonary artery that may collectively contribute to PAH. PMID:18227220

  15. Pulmonary hypertension and vasculopathy in incontinentia pigmenti: a case report

    PubMed Central

    Alshenqiti, Abduljabbar; Nashabat, Marwan; AlGhoraibi, Hissah; Tamimi, Omar; Alfadhel, Majid

    2017-01-01

    Incontinentia pigmenti (IP; Bloch–Sulzberger syndrome) is a rare, genetic syndrome inherited as an X-linked dominant trait. It primarily affects female infants and is lethal in the majority of males during fetal life. The clinical findings include skin lesions, developmental defects, and defects of the eyes, teeth, skeletal system, and central nervous system. Cardiovascular complications of this disease in general, and pulmonary hypertension in particular, are extremely rare. This report describes the case of a 3-year-old girl with IP complicated by pulmonary arterial hypertension. Extensive cardiology workup done to the patient indicates underlying vasculopathy. This report sheds light on the relationship between IP and pulmonary hypertension, reviews the previously reported cases, and compares them with the reported case. PMID:28533687

  16. Pulmonary hypertension and vasculopathy in incontinentia pigmenti: a case report.

    PubMed

    Alshenqiti, Abduljabbar; Nashabat, Marwan; AlGhoraibi, Hissah; Tamimi, Omar; Alfadhel, Majid

    2017-01-01

    Incontinentia pigmenti (IP; Bloch-Sulzberger syndrome) is a rare, genetic syndrome inherited as an X-linked dominant trait. It primarily affects female infants and is lethal in the majority of males during fetal life. The clinical findings include skin lesions, developmental defects, and defects of the eyes, teeth, skeletal system, and central nervous system. Cardiovascular complications of this disease in general, and pulmonary hypertension in particular, are extremely rare. This report describes the case of a 3-year-old girl with IP complicated by pulmonary arterial hypertension. Extensive cardiology workup done to the patient indicates underlying vasculopathy. This report sheds light on the relationship between IP and pulmonary hypertension, reviews the previously reported cases, and compares them with the reported case.

  17. Severe pulmonary arterial hypertension due to Angiostrongylosus vasorum in a dog

    PubMed Central

    Nicolle, Audrey P.; Chetboul, Valérie; Tessier-Vetzel, Dominique; Sampedrano, Carolina Carlos; Aletti, Edouard; Pouchelon, Jean-Louis

    2006-01-01

    A dog was presented with a history of dyspnea, coughing, and ascites. Angiostrongylosis and severe pulmonary arterial hypertension (PAH) were found, as well as a marked discordance between the electrical and mechanical events of the heart. Pulmonary arterial hypertension related to Angiostrongylus vasorum has rarely been reported. PMID:16933559

  18. Utility of computed tomography in assessment of pulmonary hypertension secondary to biomass smoke exposure

    PubMed Central

    Sertogullarindan, Bunyamin; Bora, Aydin; Yavuz, Alpaslan; Ekin, Selami; Gunbatar, Hulya; Arisoy, Ahmet; Avcu, Serhat; Ozbay, Bulent

    2014-01-01

    Background The aim of this study was to investigate the feasibility of main pulmonary artery diameter quantification by thoracic computerized tomography (CT) in the diagnosis of pulmonary hypertension seconder to biomass smoke exposure. Material/Methods One hundred and four women subjects with biomass smoke exposure and 20 healthy women subjects were enrolled in the prospective study. The correlation between echocardiographic estimation of systolic pulmonary artery pressure and the main pulmonary artery diameter of the cases were studied. Results The main pulmonary artery diameter was 26.9±5.1 in the control subjects and 37.1±6.4 in subjects with biomass smoke exposure. This difference was statistically significant (p<0.001). The systolic pulmonary artery pressure was 22.7±12.4 in the control subjects and 57.3±22 in subjects with biomass smoke exposure. This difference was statistically significant (p<0.001). Systolic pulmonary artery pressure was significantly correlated with the main pulmonary artery diameter (r=0.614, p<0.01). A receiver operating characteristic (ROC) curve analysis showed that a value of 29 mm of the main pulmonary artery diameter differentiated between pulmonary hypertension and non-pulmonary hypertension patients. The sensitivity of the measurement to diagnose pulmonary hypertension was 91% and specificity was 80%. Conclusions Our results indicate that main pulmonary artery diameter measurements by SCT may suggest presence of pulmonary hypertension in biomass smoke exposed women. PMID:24618994

  19. Exercise facilitates early recognition of cardiac and vascular remodeling in chronic thromboembolic pulmonary hypertension in swine.

    PubMed

    Stam, Kelly; van Duin, Richard W B; Uitterdijk, André; Cai, Zongye; Duncker, Dirk J; Merkus, Daphne

    2018-03-01

    Chronic thromboembolic pulmonary hypertension (CTEPH) develops in 4% of patients after pulmonary embolism and is accompanied by an impaired exercise tolerance, which is ascribed to the increased right ventricular (RV) afterload in combination with a ventilation/perfusion (V/Q) mismatch in the lungs. The present study aimed to investigate changes in arterial Po 2 and hemodynamics in response to graded treadmill exercise during development and progression of CTEPH in a novel swine model. Swine were chronically instrumented and received multiple pulmonary embolisms by 1) microsphere infusion (Spheres) over 5 wk, 2) endothelial dysfunction by administration of the endothelial nitric oxide synthase inhibitor N ω -nitro-l-arginine methyl ester (L-NAME) for 7 wk, 3) combined pulmonary embolisms and endothelial dysfunction (L-NAME + Spheres), or 4) served as sham-operated controls (sham). After a 9 wk followup, embolization combined with endothelial dysfunction resulted in CTEPH, as evidenced by mean pulmonary artery pressures of 39.5 ± 5.1 vs. 19.1 ± 1.5 mmHg (Spheres, P < 0.001), 22.7 ± 2.0 mmHg (L-NAME, P < 0.001), and 20.1 ± 1.5 mmHg (sham, P < 0.001), and a decrease in arterial Po 2 that was exacerbated during exercise, indicating V/Q mismatch. RV dysfunction was present after 5 wk of embolization, both at rest (trend toward increased RV end-systolic lumen area, P = 0.085, and decreased stroke volume index, P = 0.042) and during exercise (decreased stroke volume index vs. control, P = 0.040). With sustained pulmonary hypertension, RV hypertrophy (Fulton index P = 0.022) improved RV function at rest and during exercise, but this improvement was insufficient in CTEPH swine to result in an exercise-induced increase in cardiac index. In conclusion, embolization in combination with endothelial dysfunction results in CTEPH in swine. Exercise increased RV afterload, exacerbated the V/Q mismatch, and unmasked RV dysfunction. NEW & NOTEWORTHY Here, we present the first

  20. Pulmonary hypertension-"state of the art" management in 2012.

    PubMed

    Saxena, Anita

    2012-01-01

    Pulmonary artery hypertension (PAH) is a pathological condition of small pulmonary arteries, characterised by vascular proliferation and remodelling. The pulmonary artery pressure and pulmonary vascular resistance progressively rise, leading to right heart failure and death. Pulmonary artery hypertension may be secondary to various conditions, or it may be idiopathic where no underlying cause is identifiable. Earlier, only symptomatic treatment was available for such patients which did not change the natural history of the disease. However, over the years, improvement in understanding the pathogenesis has resulted in the development of targeted approaches to the treatment of PAH. Survival advantage has also been shown with some of the pharmacologic agents. This review article discusses the current management strategy for PAH with special emphasis on an idiopathic variety, in an Indian context. Copyright © 2012 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.

  1. The pathophysiology of pulmonary hypertension in left heart disease.

    PubMed

    Breitling, Siegfried; Ravindran, Krishnan; Goldenberg, Neil M; Kuebler, Wolfgang M

    2015-11-01

    Pulmonary hypertension (PH) is characterized by elevated pulmonary arterial pressure leading to right-sided heart failure and can arise from a wide range of etiologies. The most common cause of PH, termed Group 2 PH, is left-sided heart failure and is commonly known as pulmonary hypertension with left heart disease (PH-LHD). Importantly, while sharing many clinical features with pulmonary arterial hypertension (PAH), PH-LHD differs significantly at the cellular and physiological levels. These fundamental pathophysiological differences largely account for the poor response to PAH therapies experienced by PH-LHD patients. The relatively high prevalence of this disease, coupled with its unique features compared with PAH, signal the importance of an in-depth understanding of the mechanistic details of PH-LHD. The present review will focus on the current state of knowledge regarding the pathomechanisms of PH-LHD, highlighting work carried out both in human trials and in preclinical animal models. Adaptive processes at the alveolocapillary barrier and in the pulmonary circulation, including alterations in alveolar fluid transport, endothelial junctional integrity, and vasoactive mediator secretion will be discussed in detail, highlighting the aspects that impact the response to, and development of, novel therapeutics. Copyright © 2015 the American Physiological Society.

  2. Beta1-adrenoceptor antagonist, metoprolol attenuates cardiac myocyte Ca2+ handling dysfunction in rats with pulmonary artery hypertension.

    PubMed

    Fowler, Ewan D; Drinkhill, Mark J; Norman, Ruth; Pervolaraki, Eleftheria; Stones, Rachel; Steer, Emma; Benoist, David; Steele, Derek S; Calaghan, Sarah C; White, Ed

    2018-07-01

    Right heart failure is the major cause of death in Pulmonary Artery Hypertension (PAH) patients but is not a current, specific therapeutic target. Pre-clinical studies have shown that adrenoceptor blockade can improve cardiac function but the mechanisms of action within right ventricular (RV) myocytes are unknown. We tested whether the β 1 -adrenoceptor blocker metoprolol could improve RV myocyte function in an animal model of PAH, by attenuating adverse excitation-contraction coupling remodeling. PAH with RV failure was induced in rats by monocrotaline injection. When PAH was established, animals were given 10 mg/kg/day metoprolol (MCT + BB) or vehicle (MCT). The median time to the onset of heart failure signs was delayed from 23 days (MCT), to 31 days (MCT + BB). At 23 ± 1 days post-injection, MCT + BB showed improved in vivo cardiac function, measured by echocardiography. RV hypertrophy was reduced despite persistent elevated afterload. RV myocyte contractility during field stimulation was improved at higher pacing frequencies in MCT + BB. Preserved t-tubule structure, more uniform evoked Ca 2+ release, increased SERCA2a expression and faster ventricular repolarization (measured in vivo by telemetry) may account for the improved contractile function. Sarcoplasmic reticulum Ca 2+ overload was prevented in MCT + BB myocytes resulting in fewer spontaneous Ca 2+ waves, with a lower pro-arrhythmic potential. Our novel finding of attenuation of defects in excitation contraction coupling by β 1 -adrenoceptor blockade with delays in the onset of HF, identifies the RV as a promising therapeutic target in PAH. Moreover, our data suggest existing therapies for left ventricular failure may also be beneficial in PAH induced RV failure. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Dependence of Golgi apparatus integrity on nitric oxide in vascular cells: implications in pulmonary arterial hypertension

    PubMed Central

    Lee, Jason E.; Patel, Kirit; Almodóvar, Sharilyn; Tuder, Rubin M.; Flores, Sonia C.

    2011-01-01

    Although reduced bioavailability of nitric oxide (NO) has been implicated in the pathogenesis of pulmonary arterial hypertension (PAH), its consequences on organellar structure and function within vascular cells is largely unexplored. We investigated the effect of reduced NO on the structure of the Golgi apparatus as assayed by giantin or GM130 immunofluorescence in human pulmonary arterial endothelial (HPAECs) and smooth muscle (HPASMCs) cells, bovine PAECs, and human EA.hy926 endothelial cells. Golgi structure was also investigated in cells in tissue sections of pulmonary vascular lesions in idiopathic PAH (IPAH) and in macaques infected with a chimeric simian immunodeficiency virus containing the human immunodeficiency virus (HIV)-nef gene (SHIV-nef) with subcellular three-dimensional (3D) immunoimaging. Compounds with NO scavenging activity including 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), methylene blue, N-acetylcysteine, and hemoglobin markedly fragmented the Golgi in all cell types evaluated as did monocrotaline pyrrole, while LY-83583, sildenafil, fasudil, Y-27632, Tiron, Tempol, or H2O2 did not. Golgi fragmentation by NO scavengers was inhibited by diethylamine NONOate, was evident in HPAECs after selective knockdown of endothelial nitric oxide synthase using small interfering RNA (siRNA), was independent of microtubule organization, required the GTPase dynamin 2, and was accompanied by depletion of α-soluble N-ethylmaleimide-sensitive factor (NSF) acceptor protein (α-SNAP) from Golgi membranes and codispersal of the SNAP receptor (SNARE) Vti1a with giantin. Golgi fragmentation was confirmed in endothelial and smooth muscle cells in pulmonary arterial lesions in IPAH and the SHIV-nef-infected macaque with subcellular 3D immunoimaging. In SHIV-nef-infected macaques Golgi fragmentation was observed in cells containing HIV-nef-bearing endosomes. The observed Golgi fragmentation suggests that NO plays a significant role in

  4. Deletion of Iron Regulatory Protein 1 Causes Polycythemia and Pulmonary Hypertension in Mice through Translational De-repression of HIF2α

    PubMed Central

    Ghosh, Manik C.; Zhang, De-Liang; Jeong, Suh Young; Kovtunovych, Gennadiy; Ollivierre-Wilson, Hayden; Noguchi, Audrey; Tu, Tiffany; Senecal, Thomas; Robinson, Gabrielle; Crooks, Daniel R.; Tong, Wing-Hang; Ramaswamy, Kavitha; Singh, Anamika; Graham, Brian B.; Tuder, Rubin M.; Yu, Zu-Xi; Eckhaus, Michael; Lee, Jaekwon; Springer, Danielle A.; Rouault, Tracey A.

    2013-01-01

    SUMMARY Iron regulatory proteins 1 and 2 (Irps) post-transcriptionally control the expression of transcripts that contain iron responsive element (IRE) sequences, including ferritin, ferroportin, transferrin receptor and hypoxia inducible factor 2α (HIF2α). We report here that mice with targeted deletion of Irp1 developed pulmonary hypertension and polycythemia that was exacerbated by a low iron diet. Hematocrits increased to 65% in iron-starved mice, and many polycythemic mice died of abdominal hemorrhages. Irp1 deletion enhanced HIF2α protein expression in kidneys of Irp1−/− mice, which led to increased erythropoietin (EPO) expression, polycythemia and concomitant tissue iron deficiency. Increased HIF2α expression in pulmonary endothelial cells induced high expression of endothelin-1, likely contributing to the pulmonary hypertension of Irp1−/− mice. Our results reveal why anemia is an early physiological consequence of iron deficiency, highlight the physiological significance of Irp1 in regulating erythropoiesis and iron distribution, and provide important insights into the molecular pathogenesis of pulmonary hypertension. PMID:23395173

  5. Folic Acid Promotes Recycling of Tetrahydrobiopterin and Protects Against Hypoxia-Induced Pulmonary Hypertension by Recoupling Endothelial Nitric Oxide Synthase

    PubMed Central

    Chalupsky, Karel; Kračun, Damir; Kanchev, Ivan; Bertram, Katharina

    2015-01-01

    Abstract Aims: Nitric oxide (NO) derived from endothelial NO synthase (eNOS) has been implicated in the adaptive response to hypoxia. An imbalance between 5,6,7,8-tetrahydrobiopterin (BH4) and 7,8-dihydrobiopterin (BH2) can result in eNOS uncoupling and the generation of superoxide instead of NO. Dihydrofolate reductase (DHFR) can recycle BH2 to BH4, leading to eNOS recoupling. However, the role of DHFR and eNOS recoupling in the response to hypoxia is not well understood. We hypothesized that increasing the capacity to recycle BH4 from BH2 would improve NO bioavailability as well as pulmonary vascular remodeling (PVR) and right ventricular hypertrophy (RVH) as indicators of pulmonary hypertension (PH) under hypoxic conditions. Results: In human pulmonary artery endothelial cells and murine pulmonary arteries exposed to hypoxia, eNOS was uncoupled as indicated by reduced superoxide production in the presence of the nitric oxide synthase inhibitor, L-(G)-nitro-L-arginine methyl ester (L-NAME). Concomitantly, NO levels, BH4 availability, and expression of DHFR were diminished under hypoxia. Application of folic acid (FA) restored DHFR levels, NO bioavailability, and BH4 levels under hypoxia. Importantly, FA prevented the development of hypoxia-induced PVR, right ventricular pressure increase, and RVH. Innovation: FA-induced upregulation of DHFR recouples eNOS under hypoxia by improving BH4 recycling, thus preventing hypoxia-induced PH. Conclusion: FA might serve as a novel therapeutic option combating PH. Antioxid. Redox Signal. 23, 1076–1091. PMID:26414244

  6. Noninvasive Doppler Tissue Measurement of Pulmonary Artery Compliance in Children with Pulmonary Hypertension

    PubMed Central

    Dyer, Karrie; Lanning, Craig; Das, Bibhuti; Lee, Po-Feng; Ivy, D. Dunbar; Valdes-Cruz, Lilliam; Shandas, Robin

    2007-01-01

    Background We have shown previously that input impedance of the pulmonary vasculature provides a comprehensive characterization of right ventricular afterload by including compliance. However, impedance-based compliance assessment requires invasive measurements. Here, we develop and validate a noninvasive method to measure pulmonary artery (PA) compliance using ultrasound color M-mode (CMM) Doppler tissue imaging (DTI). Methods Dynamic compliance (Cdyn) of the PA was obtained from CMM DTI and continuous wave Doppler measurement of the tricuspid regurgitant velocity. Cdyn was calculated as: [(Ds − Dd)/(Dd × Ps)] × 104; where Ds = systolic diameter, Dd = diastolic diameter, and Ps = systolic pressure. The method was validated both in vitro and in 13 patients in the catheterization laboratory, and then tested on 27 pediatric patients with pulmonary hypertension, with comparison with 10 age-matched control subjects. Cdyn was also measured in an additional 13 patients undergoing reactivity studies. Results Instantaneous diameter measured using CMM DTI agreed well with intravascular ultrasound measurements in the in vitro models. Clinically, Cdyn calculated by CMM DTI agreed with Cdyn calculated using invasive techniques (23.4 ± 16.8 vs 29.1 ± 20.6%/100 mm Hg; P = not significant). Patients with pulmonary hypertension had significantly lower peak wall velocity values and lower Cdyn values than control subjects (P < .01). Cdyn values followed an exponentially decaying relationship with PA pressure, indicating the nonlinear stress–strain behavior of these arteries. Reactivity in Cdyn agreed with reactivity measured using impedance techniques. Conclusion The Cdyn method provides a noninvasive means of assessing PA compliance and should be useful as an additional measure of vascular reactivity subsequent to pulmonary vascular resistance in patients with pulmonary hypertension. PMID:16581479

  7. Metabolic Profiling of Right Ventricular-Pulmonary Vascular Function Reveals Circulating Biomarkers of Pulmonary Hypertension.

    PubMed

    Lewis, Gregory D; Ngo, Debby; Hemnes, Anna R; Farrell, Laurie; Domos, Carly; Pappagianopoulos, Paul P; Dhakal, Bishnu P; Souza, Amanda; Shi, Xu; Pugh, Meredith E; Beloiartsev, Arkadi; Sinha, Sumita; Clish, Clary B; Gerszten, Robert E

    2016-01-19

    Pulmonary hypertension and associated right ventricular (RV) dysfunction are important determinants of morbidity and mortality, which are optimally characterized by invasive hemodynamic measurements. This study sought to determine whether metabolite profiling could identify plasma signatures of right ventricular-pulmonary vascular (RV-PV) dysfunction. We measured plasma concentrations of 105 metabolites using targeted mass spectrometry in 71 individuals (discovery cohort) who underwent comprehensive physiological assessment with right-sided heart catheterization and radionuclide ventriculography at rest and during exercise. Our findings were validated in a second cohort undergoing invasive hemodynamic evaluations (n = 71), as well as in an independent cohort with or without known pulmonary arterial (PA) hypertension (n = 30). In the discovery cohort, 21 metabolites were associated with 2 or more hemodynamic indicators of RV-PV function (i.e., resting right atrial pressure, mean PA pressure, pulmonary vascular resistance [PVR], and PVR and PA pressure-flow response [ΔPQ] during exercise). We identified novel associations of RV-PV dysfunction with circulating indoleamine 2,3-dioxygenase (IDO)-dependent tryptophan metabolites (TMs), tricarboxylic acid intermediates, and purine metabolites and confirmed previously described associations with arginine-nitric oxide metabolic pathway constituents. IDO-TM levels were inversely related to RV ejection fraction and were particularly well correlated with exercise PVR and ΔPQ. Multisite sampling demonstrated transpulmonary release of IDO-TMs. IDO-TMs also identified RV-PV dysfunction in a validation cohort with known risk factors for pulmonary hypertension and in patients with established PA hypertension. Metabolic profiling identified reproducible signatures of RV-PV dysfunction, highlighting both new biomarkers and pathways for further functional characterization. Copyright © 2016 American College of Cardiology

  8. Prostacyclin and milrinone by aerosolization improve pulmonary hemodynamics in newborn lambs with experimental pulmonary hypertension.

    PubMed

    Kumar, Vasanth H; Swartz, Daniel D; Rashid, Nasir; Lakshminrusimha, Satyan; Ma, Changxing; Ryan, Rita M; Morin, Frederick C

    2010-09-01

    Aerosolized prostacyclin (PGI2) produces selective pulmonary vasodilation in patients with pulmonary hypertension (PH). The response to PGI2 may be increased by phosphodiesterase type 3 inhibitors such as milrinone. We studied the dose response effects of aerosolized PGI2 and aerosolized milrinone both alone and in combination on pulmonary and systemic hemodynamics in newborn lambs with Nomega-nitro-L-arginine methyl ester (L-NAME)-induced PH. We hypothesized that coaerosolization of PGI2 with milrinone would additively decrease pulmonary vascular resistance (PVR), prolong the duration of action of PGI2, and selectively dilate the pulmonary vasculature. Near-term lambs were delivered by C-section and instrumented and PH was induced by L-NAME (bolus 25 mg/kg; infusion 10 mg.kg(-1).h(-1)) and indomethacin. In the first set of experiments, PGI2 was aerosolized at random doses of 2, 20, 100, 200, 500, and 1,000 ng.kg(-1).min(-1) followed by milrinone at doses of 0.1, 1, and 10 microg.kg(-1).min(-1) over 10 min. In the second set of experiments, milrinone at 1 microg.kg(-1).min(-1) was aerosolized in combination with PGI2 at doses of 20, 100, and 200 ng.kg(-1).min(-1) over 10 min. Pulmonary arterial pressures (PAP) and PVR decreased significantly with increasing doses of aerosolized PGI2 and milrinone. The combination of PGI2 and milrinone significantly reduced PAP and PVR more than either of the drugs aerosolized alone. Addition of milrinone significantly increased the duration of action of PGI2. When aerosolized independently, PGI2 and milrinone selectively dilated the pulmonary vasculature but the combination did not. Milrinone enhances the vasodilatory effects of PGI2 on the pulmonary vasculature but caution must be exercised regarding systemic hypotension.

  9. Dose-Response Head-to-Head Comparison of Inodilators Dobutamine, Milrinone, and Levosimendan in Chronic Experimental Pulmonary Hypertension.

    PubMed

    Tavares-Silva, Marta; Alaa, Mohamed; Leite, Sara; Oliveira-Pinto, José; Lopes, Lucas; Leite-Moreira, Adelino F; Lourenço, André P

    2017-09-01

    The choice of inodilator drug in the acute management of patients with pulmonary hypertension (PH) having right ventricular (RV) failure remains unsettled and challenging. Comprehensive experimental evaluations may provide further insight and fundamental translational research clues to support inodilator selection and clinical trial design. Our aim was to compare acute dose-response hemodynamic effects of inodilators dobutamine (DOB), milrinone (MIL), and levosimendan (LEV) in chronic experimental PH. Seven-week-old male Wistar rats were randomly injected with 60 mg·kg -1 monocrotaline (MCT) or vehicle (Ctrl, n = 7) and underwent systemic and pulmonary artery (PA) pressure and RV pressure-volume (PV) hemodynamic evaluation under halogenate anesthesia 24 to 30 days after injection. The MCT-injected animals (n = 7 each) randomly received dose-response infusions of DOB (1, 3, 6 and 12 μg·kg -1 ·min -1 ), MIL (MIL: 1, 3, 6 and 12 μg·kg -1 ·min -1 ), or LEV (0.3, 0.6, 1.2 and 2.4 μg·kg -1 ·min -1 ). Load-independent indexes were obtained by inferior vena cava occlusion at baseline and after the last dose. All inodilators increased RV ejection fraction, preload recruitable stroke work, and ventricular-vascular coupling without jeopardizing perfusion pressure. Dobutamine raised heart rate and PA pressure. Only LEV increased cardiac index and decreased PA elastance and pulmonary vascular resistance (PVR). Moreover, only LEV downward-shifted the end-diastolic PV relationship, thereby improving RV compliance. Adding sildenafil to LEV further decreased PVR. Levosimendan had beneficial acute systolic and diastolic functional effects in experimental chronic PH and RV afterload compared to DOB and MIL. It should be further tested in clinical trials enrolling patients with PH in the perioperative and critical care settings.

  10. Prevention and treatment of the chronic thromboembolic pulmonary hypertension.

    PubMed

    Pesavento, Raffaele; Prandoni, Paolo

    2018-04-01

    Chronic thromboembolic pulmonary hypertension (CTEPH) is an uncommon and late complication of pulmonary embolism resulting from misguided remodelling of residual pulmonary thromboembolic material and small-vessel arteriopathy. CTEPH is the only form of pulmonary hypertension (PH) potentially curable by pulmonary endarterectomy (PEA). Unfortunately, several patients have either an unacceptable risk-benefit ratio for undergoing the surgical intervention or develop persistent PH after PEA. Novel medical and endovascular therapies can be considered for them. The soluble guanylate cyclase stimulator riociguat is recommended for the treatment of patients with inoperable disease or with recurrent/persistent PH after PEA. Other drugs developed for the treatment of other forms of PH, as prostanoids, phosphodiesterase-5 inhibitors and endothelin receptor antagonists have been used in the treatment of CTEPH, with limited benefit. Balloon pulmonary angioplasty is a novel and promising technique and is progressively emerging from the pioneering phase. Highly specialized training level and complex protocols of postoperative care are mandatory to consolidate the technical success of the surgical and endovascular intervention. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Downregulation of MicroRNA-126 Contributes to the Failing Right Ventricle in Pulmonary Arterial Hypertension.

    PubMed

    Potus, François; Ruffenach, Grégoire; Dahou, Abdellaziz; Thebault, Christophe; Breuils-Bonnet, Sandra; Tremblay, Ève; Nadeau, Valérie; Paradis, Renée; Graydon, Colin; Wong, Ryan; Johnson, Ian; Paulin, Roxane; Lajoie, Annie C; Perron, Jean; Charbonneau, Eric; Joubert, Philippe; Pibarot, Philippe; Michelakis, Evangelos D; Provencher, Steeve; Bonnet, Sébastien

    2015-09-08

    Right ventricular (RV) failure is the most important factor of both morbidity and mortality in pulmonary arterial hypertension (PAH). However, the underlying mechanisms resulting in the failed RV in PAH remain unknown. There is growing evidence that angiogenesis and microRNAs are involved in PAH-associated RV failure. We hypothesized that microRNA-126 (miR-126) downregulation decreases microvessel density and promotes the transition from a compensated to a decompensated RV in PAH. We studied RV free wall tissues from humans with normal RV (n=17), those with compensated RV hypertrophy (n=8), and patients with PAH with decompensated RV failure (n=14). Compared with RV tissues from patients with compensated RV hypertrophy, patients with decompensated RV failure had decreased miR-126 expression (quantitative reverse transcription-polymerase chain reaction; P<0.01) and capillary density (CD31(+) immunofluorescence; P<0.001), whereas left ventricular tissues were not affected. miR-126 downregulation was associated with increased Sprouty-related EVH1 domain-containing protein 1 (SPRED-1), leading to decreased activation of RAF (phosphorylated RAF/RAF) and mitogen-activated protein kinase (MAPK); (phosphorylated MAPK/MAPK), thus inhibiting the vascular endothelial growth factor pathway. In vitro, Matrigel assay showed that miR-126 upregulation increased angiogenesis of primary cultured endothelial cells from patients with decompensated RV failure. Furthermore, in vivo miR-126 upregulation (mimic intravenous injection) improved cardiac vascular density and function of monocrotaline-induced PAH animals. RV failure in PAH is associated with a specific molecular signature within the RV, contributing to a decrease in RV vascular density and promoting the progression to RV failure. More importantly, miR-126 upregulation in the RV improves microvessel density and RV function in experimental PAH. © 2015 American Heart Association, Inc.

  12. Prediction of target genes for miR-140-5p in pulmonary arterial hypertension using bioinformatics methods.

    PubMed

    Li, Fangwei; Shi, Wenhua; Wan, Yixin; Wang, Qingting; Feng, Wei; Yan, Xin; Wang, Jian; Chai, Limin; Zhang, Qianqian; Li, Manxiang

    2017-12-01

    The expression of microRNA (miR)-140-5p is known to be reduced in both pulmonary arterial hypertension (PAH) patients and monocrotaline-induced PAH models in rat. Identification of target genes for miR-140-5p with bioinformatics analysis may reveal new pathways and connections in PAH. This study aimed to explore downstream target genes and relevant signaling pathways regulated by miR-140-5p to provide theoretical evidences for further researches on role of miR-140-5p in PAH. Multiple downstream target genes and upstream transcription factors (TFs) of miR-140-5p were predicted in the analysis. Gene ontology (GO) enrichment analysis indicated that downstream target genes of miR-140-5p were enriched in many biological processes, such as biological regulation, signal transduction, response to chemical stimulus, stem cell proliferation, cell surface receptor signaling pathways. Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analysis found that downstream target genes were mainly located in Notch, TGF-beta, PI3K/Akt, and Hippo signaling pathway. According to TF-miRNA-mRNA network, the important downstream target genes of miR-140-5p were PPI, TGF-betaR1, smad4, JAG1, ADAM10, FGF9, PDGFRA, VEGFA, LAMC1, TLR4, and CREB. After thoroughly reviewing published literature, we found that 23 target genes and seven signaling pathways were truly inhibited by miR-140-5p in various tissues or cells; most of these verified targets were in accordance with our present prediction. Other predicted targets still need further verification in vivo and in vitro .

  13. Autonomic nervous system involvement in pulmonary arterial hypertension.

    PubMed

    Vaillancourt, Mylène; Chia, Pamela; Sarji, Shervin; Nguyen, Jason; Hoftman, Nir; Ruffenach, Gregoire; Eghbali, Mansoureh; Mahajan, Aman; Umar, Soban

    2017-12-04

    Pulmonary arterial hypertension (PAH) is a chronic pulmonary vascular disease characterized by increased pulmonary vascular resistance (PVR) leading to right ventricular (RV) failure. Autonomic nervous system involvement in the pathogenesis of PAH has been demonstrated several years ago, however the extent of this involvement is not fully understood. PAH is associated with increased sympathetic nervous system (SNS) activation, decreased heart rate variability, and presence of cardiac arrhythmias. There is also evidence for increased renin-angiotensin-aldosterone system (RAAS) activation in PAH patients associated with clinical worsening. Reduction of neurohormonal activation could be an effective therapeutic strategy for PAH. Although therapies targeting adrenergic receptors or RAAS signaling pathways have been shown to reverse cardiac remodeling and improve outcomes in experimental pulmonary hypertension (PH)-models, the effectiveness and safety of such treatments in clinical settings have been uncertain. Recently, novel direct methods such as cervical ganglion block, pulmonary artery denervation (PADN), and renal denervation have been employed to attenuate SNS activation in PAH. In this review, we intend to summarize the multiple aspects of autonomic nervous system involvement in PAH and overview the different pharmacological and invasive strategies used to target autonomic nervous system for the treatment of PAH.

  14. Effects of exercise training on pulmonary hemodynamics, functional capacity and inflammation in pulmonary hypertension

    PubMed Central

    Richter, Manuel J.; Grimminger, Jan; Krüger, Britta; Ghofrani, Hossein A.; Mooren, Frank C.; Gall, Henning; Pilat, Christian; Krüger, Karsten

    2017-01-01

    Pulmonary hypertension (PH) is characterized by severe exercise limitation mainly attributed to the impairment of right ventricular function resulting from a concomitant elevation of pulmonary vascular resistance and pressure. The unquestioned cornerstone in the management of patients with pulmonary arterial hypertension (PAH) is specific vasoactive medical therapy to improve pulmonary hemodynamics and strengthen right ventricular function. Nevertheless, evidence for a beneficial effect of exercise training (ET) on pulmonary hemodynamics and functional capacity in patients with PH has been growing during the past decade. Beneficial effects of ET on regulating factors, inflammation, and metabolism have also been described. Small case-control studies and randomized clinical trials in larger populations of patients with PH demonstrated substantial improvements in functional capacity after ET. These findings were accompanied by several studies that suggested an effect of ET on inflammation, although a direct link between this effect and the therapeutic benefit of ET in PH has not yet been demonstrated. On this background, the aim of the present review is to describe current concepts regarding the effects of exercise on the pulmonary circulation and pathophysiological limitations, as well as the clinical and mechanistic effects of exercise in patients with PH. PMID:28680563

  15. EGF receptor tyrosine kinase inhibitors diminish transforming growth factor-alpha-induced pulmonary fibrosis.

    PubMed

    Hardie, William D; Davidson, Cynthia; Ikegami, Machiko; Leikauf, George D; Le Cras, Timothy D; Prestridge, Adrienne; Whitsett, Jeffrey A; Korfhagen, Thomas R

    2008-06-01

    Transforming growth factor-alpha (TGF-alpha) is a ligand for the EGF receptor (EGFR). EGFR activation is associated with fibroproliferative processes in human lung disease and animal models of pulmonary fibrosis. We determined the effects of EGFR tyrosine kinase inhibitors gefitinib (Iressa) and erlotinib (Tarceva) on the development and progression of TGF-alpha-induced pulmonary fibrosis. Using a doxycycline-regulatable transgenic mouse model of lung-specific TGF-alpha expression, we determined effects of treatment with gefitinib and erlotinib on changes in lung histology, total lung collagen, pulmonary mechanics, pulmonary hypertension, and expression of genes associated with synthesis of ECM and vascular remodeling. Induction in the lung of TGF-alpha caused progressive pulmonary fibrosis over an 8-wk period. Daily administration of gefitinib or erlotinib prevented development of fibrosis, reduced accumulation of total lung collagen, prevented weight loss, and prevented changes in pulmonary mechanics. Treatment of mice with gefitinib 4 wk after the induction of TGF-alpha prevented further increases in and partially reversed total collagen levels and changes in pulmonary mechanics and pulmonary hypertension. Increases in expression of genes associated with synthesis of ECM as well as decreases of genes associated with vascular remodeling were also prevented or partially reversed. Administration of gefitinib or erlotinib did not cause interstitial fibrosis or increases in lavage cell counts. Administration of small molecule EGFR tyrosine kinase inhibitors prevented further increases in and partially reversed pulmonary fibrosis induced directly by EGFR activation without inducing inflammatory cell influx or additional lung injury.

  16. JAK2 mediates lung fibrosis, pulmonary vascular remodelling and hypertension in idiopathic pulmonary fibrosis: an experimental study.

    PubMed

    Milara, Javier; Ballester, Beatriz; Morell, Anselm; Ortiz, José L; Escrivá, Juan; Fernández, Estrella; Perez-Vizcaino, Francisco; Cogolludo, Angel; Pastor, Enrique; Artigues, Enrique; Morcillo, Esteban; Cortijo, Julio

    2018-06-01

    Pulmonary hypertension (PH) is a common disorder in patients with idiopathic pulmonary fibrosis (IPF) and portends a poor prognosis. Recent studies using vasodilators approved for PH have failed in improving IPF mainly due to ventilation ( V )/perfusion ( Q ) mismatching and oxygen desaturation. Janus kinase type 2 (JAK2) is a non-receptor tyrosine kinase activated by a broad spectrum of profibrotic and vasoactive mediators, but its role in PH associated to PH is unknown. The study of JAK2 as potential target to treat PH in IPF. JAK2 expression was increased in pulmonary arteries (PAs) from IPF (n=10; 1.93-fold; P=0.0011) and IPF+PH (n=9; 2.65-fold; P<0.0001) compared with PA from control subjects (n=10). PA remodelling was evaluated in human pulmonary artery endothelial cells (HPAECs) and human pulmonary artery smooth muscle cells (HPASMCs) from patients with IPF in vitro treated with the JAK2 inhibitor JSI-124 or siRNA-JAK2 and stimulated with transforming growth factor beta. Both JSI-124 and siRNA-JAK2 inhibited the HPAEC to mesenchymal transition and the HPASMCs to myofibroblast transition and proliferation. JAK2 inhibition induced small PA relaxation in precision-cut lung slice experiments. PA relaxation was dependent of the large conductance calcium-activated potassium channel (BK Ca ). JAK2 inhibition activated BK Ca channels and reduced intracellular Ca 2+ . JSI-124 1 mg/kg/day, reduced bleomycin-induced lung fibrosis, PA remodelling, right ventricular hypertrophy, PA hypertension and V / Q mismatching in rats. The animal studies followed the ARRIVE guidelines. JAK2 participates in PA remodelling and tension and may be an attractive target to treat IPF associated to PH. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Noninvasive Doppler tissue measurement of pulmonary artery compliance in children with pulmonary hypertension.

    PubMed

    Dyer, Karrie; Lanning, Craig; Das, Bibhuti; Lee, Po-Feng; Ivy, D Dunbar; Valdes-Cruz, Lilliam; Shandas, Robin

    2006-04-01

    We have shown previously that input impedance of the pulmonary vasculature provides a comprehensive characterization of right ventricular afterload by including compliance. However, impedance-based compliance assessment requires invasive measurements. Here, we develop and validate a noninvasive method to measure pulmonary artery (PA) compliance using ultrasound color M-mode (CMM) Doppler tissue imaging (DTI). Dynamic compliance (C(dyn)) of the PA was obtained from CMM DTI and continuous wave Doppler measurement of the tricuspid regurgitant velocity. C(dyn) was calculated as: [(D(s) - D(d))/(D(d) x P(s))] x 10(4); where D(s) = systolic diameter, D(d) = diastolic diameter, and P(s) = systolic pressure. The method was validated both in vitro and in 13 patients in the catheterization laboratory, and then tested on 27 pediatric patients with pulmonary hypertension, with comparison with 10 age-matched control subjects. C(dyn) was also measured in an additional 13 patients undergoing reactivity studies. Instantaneous diameter measured using CMM DTI agreed well with intravascular ultrasound measurements in the in vitro models. Clinically, C(dyn) calculated by CMM DTI agreed with C(dyn) calculated using invasive techniques (23.4 +/- 16.8 vs 29.1 +/- 20.6%/100 mm Hg; P = not significant). Patients with pulmonary hypertension had significantly lower peak wall velocity values and lower C(dyn) values than control subjects (P < .01). C(dyn) values followed an exponentially decaying relationship with PA pressure, indicating the nonlinear stress-strain behavior of these arteries. Reactivity in C(dyn) agreed with reactivity measured using impedance techniques. The C(dyn) method provides a noninvasive means of assessing PA compliance and should be useful as an additional measure of vascular reactivity subsequent to pulmonary vascular resistance in patients with pulmonary hypertension.

  18. Saudi guidelines on the diagnosis and treatment of pulmonary hypertension: 2014 updates

    PubMed Central

    Idrees, Majdy M.; Saleemi, Sarfraz; Azem, M Ali; Aldammas, Saleh; Alhazmi, Manal; Khan, Javid; Gari, Abdulgafour; Aldabbagh, Maha; Sakkijha, Husam; Aldalaan, Abdulla; Alnajashi, Khalid; Alhabeeb, Waleed; Nizami, Imran; Kouatli, Amjad; Chehab, May; Tamimi, Omar; Banjar, Hanaa; Kashour, Tarek; Lopes, Antonio; Minai, Omar; Hassoun, Paul; Pasha, Qadar; Mayer, Eckhard; Butrous, Ghazwan; Bhagavathula, Sastry; Ghio, Stefano; Swiston, John; Boueiz, Adel; Tonelli, Adriano; Levy, Robert D.

    2014-01-01

    The Saudi Association for Pulmonary Hypertension (previously called Saudi Advisory Group for Pulmonary Hypertension) has published the first Saudi Guidelines on Diagnosis and Treatment of Pulmonary Arterial Hypertension back in 2008.[1] That guideline was very detailed and extensive and reviewed most aspects of pulmonary hypertension (PH). One of the disadvantages of such detailed guidelines is the difficulty that some of the readers who just want to get a quick guidance or looking for a specific piece of information might face. All efforts were made to develop this guideline in an easy-to-read form, making it very handy and helpful to clinicians dealing with PH patients to select the best management strategies for the typical patient suffering from a specific condition. This Guideline was designed to provide recommendations for problems frequently encountered by practicing clinicians involved in management of PH. This publication targets mainly adult and pediatric PH-treating physicians, but can also be used by other physicians interested in PH. PMID:25076987

  19. Diagnosis, Evaluation and Treatment of Pulmonary Arterial Hypertension in Children

    PubMed Central

    Frank, Benjamin S.

    2018-01-01

    Pulmonary Hypertension (PH), the syndrome of elevated pressure in the pulmonary arteries, is associated with significant morbidity and mortality for affected children. PH is associated with a wide variety of potential underlying causes, including cardiac, pulmonary, hematologic and rheumatologic abnormalities. Regardless of the cause, for many patients the natural history of PH involves progressive elevation in pulmonary arterial resistance and pressure, right ventricular dysfunction, and eventually heart failure. In recent years, a number of pulmonary arterial hypertension (PAH)-targeted therapies have become available to reduce pulmonary artery pressure and improve outcome. A growing body of evidence in both the adult and pediatric literature demonstrates enhanced quality of life, functional status, and survival among treated patients. This review provides a description of select etiologies of PH seen in pediatrics and an update on the most recent data pertaining to evaluation and management of children with PH/PAH. The available evidence for specific classes of PAH-targeted therapies in pediatrics is additionally discussed. PMID:29570688

  20. Brief report: effect of ambrisentan treatment on exercise-induced pulmonary hypertension in systemic sclerosis: a prospective single-center, open-label pilot study.

    PubMed

    Saggar, Rajeev; Khanna, D; Shapiro, S; Furst, D E; Maranian, P; Clements, P; Abtin, F; Dua, Shiv; Belperio, J; Saggar, Rajan

    2012-12-01

    Exercise-induced pulmonary hypertension (ePH) may represent an early, clinically relevant phase in the spectrum of pulmonary vascular disease. The purpose of this pilot study was to describe the changes in hemodynamics and exercise capacity in patients with systemic sclerosis (SSc) spectrum-associated ePH treated with open-label daily ambrisentan. Patients were treated with ambrisentan, 5 mg or 10 mg once daily, for 24 weeks. At baseline and 24 weeks, patients with SSc spectrum disorders exercised in a supine position, on a lower extremity cycle ergometer. All patients had normal hemodynamics at rest. We defined baseline ePH as a mean pulmonary artery pressure of >30 mm Hg with maximum exercise and a transpulmonary gradient (TPG) of >15 mm Hg. The primary end point was change in pulmonary vascular resistance (PVR) with exercise. Secondary end points included an improvement from baseline in 6-minute walking distance, health-related quality of life assessments, and cardiopulmonary hemodynamics. Of the 12 enrolled patients, 11 completed the study. At 24 weeks there were improvements in mean exercise PVR (85.8 dynes × second/cm(5) ; P = 0.003) and mean distance covered during 6-minute walk (44.5 meters; P = 0.0007). Improvements were also observed in mean exercise cardiac output (1.4 liters/minute; P = 0.006), mean pulmonary artery pressure (-4.1 mm Hg; P = 0.02), and total pulmonary resistance (-93.0 dynes × seconds/cm(5) ; P = 0.0008). Three patients developed resting pulmonary arterial hypertension during the 24 weeks. Exercise hemodynamics and exercise capacity in patients with SSc spectrum-associated ePH improved over 24 weeks with exposure to ambrisentan. Placebo-controlled studies are needed to confirm whether this is a drug-related effect and to determine optimal therapeutic regimens for patients with ePH. Copyright © 2012 by the American College of Rheumatology.

  1. Right ventricle performances with echocardiography and 99mTc myocardial perfusion imaging in pulmonary arterial hypertension patients.

    PubMed

    Liu, Jie; Fei, Lei; Huang, Guang-Qing; Shang, Xiao-Ke; Liu, Mei; Pei, Zhi-Jun; Zhang, Yong-Xue

    2018-05-01

    Right heart catheterization is commonly used to measure right ventricle hemodynamic parameters and is the gold standard for pulmonary arterial hypertension diagnosis; however, it is not suitable for patients' long-term follow-up. Non-invasive echocardiography and nuclear medicine have been applied to measure right ventricle anatomy and function, but the guidelines for the usefulness of clinical parameters remain to be established. The goal of this study is to identify reliable clinical parameters of right ventricle function in pulmonary arterial hypertension patients and analyze the relationship of these clinical parameters with the disease severity of pulmonary arterial hypertension. In this study, 23 normal subjects and 23 pulmonary arterial hypertension patients were recruited from January 2015 to March 2016. Pulmonary arterial hypertension patients were classified into moderate and severe pulmonary arterial hypertension groups according to their mean pulmonary arterial pressure levels. All the subjects were subjected to physical examination, chest X-ray, 12-lead electrocardiogram, right heart catheterization, two-dimensional echocardiography, and technetium 99m ( 99m Tc) myocardial perfusion imaging. Compared to normal subjects, the right heart catheterization indexes including right ventricle systolic pressure, right ventricle end diastolic pressure, pulmonary artery systolic pressure, pulmonary artery diastolic pressure, pulmonary vascular resistance, and right ventricle end systolic pressure increased in pulmonary arterial hypertension patients and were correlated with mean pulmonary arterial pressure levels. Echocardiography parameters, including tricuspid regurgitation peak velocity, tricuspid regurgitation pressure gradient, tricuspid annular plane systolic excursion and fractional area, right ventricle-myocardial performance index, were significantly associated with the mean pulmonary arterial pressure levels in pulmonary arterial hypertension patients

  2. Lung Transplantation in Patients with Pulmonary Hypertension

    MedlinePlus

    ... Pulmonary Hypertension Consensus Statements Issued by the Scientific Leadership Council Download & Print PDF DISCLAIMER: This information is ... on our new PHPN/PHCR or Support Group Leadership Institute portal? Reset your password here . Login Username ...

  3. Elabela/Toddler Is an Endogenous Agonist of the Apelin APJ Receptor in the Adult Cardiovascular System, and Exogenous Administration of the Peptide Compensates for the Downregulation of Its Expression in Pulmonary Arterial Hypertension

    PubMed Central

    Yang, Peiran; Read, Cai; Kuc, Rhoda E.; Buonincontri, Guido; Southwood, Mark; Torella, Rubben; Upton, Paul D.; Crosby, Alexi; Sawiak, Stephen J.; Carpenter, T. Adrian; Glen, Robert C.; Morrell, Nicholas W.; Maguire, Janet J.

    2017-01-01

    Background: Elabela/toddler (ELA) is a critical cardiac developmental peptide that acts through the G-protein–coupled apelin receptor, despite lack of sequence similarity to the established ligand apelin. Our aim was to investigate the receptor pharmacology, expression pattern, and in vivo function of ELA peptides in the adult cardiovascular system, to seek evidence for alteration in pulmonary arterial hypertension (PAH) in which apelin signaling is downregulated, and to demonstrate attenuation of PAH severity with exogenous administration of ELA in a rat model. Methods: In silico docking analysis, competition binding experiments, and downstream assays were used to characterize ELA receptor binding in human heart and signaling in cells expressing the apelin receptor. ELA expression in human cardiovascular tissues and plasma was determined using real-time quantitative polymerase chain reaction, dual-labeling immunofluorescent staining, and immunoassays. Acute cardiac effects of ELA-32 and [Pyr1]apelin-13 were assessed by MRI and cardiac catheterization in anesthetized rats. Cardiopulmonary human and rat tissues from PAH patients and monocrotaline- and Sugen/hypoxia-exposed rats were used to show changes in ELA expression in PAH. The effect of ELA treatment on cardiopulmonary remodeling in PAH was investigated in the monocrotaline rat model. Results: ELA competed for binding of apelin in human heart with overlap for the 2 peptides indicated by in silico modeling. ELA activated G-protein– and β-arrestin–dependent pathways. We detected ELA expression in human vascular endothelium and plasma. Comparable to apelin, ELA increased cardiac contractility, ejection fraction, and cardiac output and elicited vasodilatation in rat in vivo. ELA expression was reduced in cardiopulmonary tissues from PAH patients and PAH rat models, respectively. ELA treatment significantly attenuated elevation of right ventricular systolic pressure and right ventricular hypertrophy and

  4. Elabela/Toddler Is an Endogenous Agonist of the Apelin APJ Receptor in the Adult Cardiovascular System, and Exogenous Administration of the Peptide Compensates for the Downregulation of Its Expression in Pulmonary Arterial Hypertension.

    PubMed

    Yang, Peiran; Read, Cai; Kuc, Rhoda E; Buonincontri, Guido; Southwood, Mark; Torella, Rubben; Upton, Paul D; Crosby, Alexi; Sawiak, Stephen J; Carpenter, T Adrian; Glen, Robert C; Morrell, Nicholas W; Maguire, Janet J; Davenport, Anthony P

    2017-03-21

    Elabela/toddler (ELA) is a critical cardiac developmental peptide that acts through the G-protein-coupled apelin receptor, despite lack of sequence similarity to the established ligand apelin. Our aim was to investigate the receptor pharmacology, expression pattern, and in vivo function of ELA peptides in the adult cardiovascular system, to seek evidence for alteration in pulmonary arterial hypertension (PAH) in which apelin signaling is downregulated, and to demonstrate attenuation of PAH severity with exogenous administration of ELA in a rat model. In silico docking analysis, competition binding experiments, and downstream assays were used to characterize ELA receptor binding in human heart and signaling in cells expressing the apelin receptor. ELA expression in human cardiovascular tissues and plasma was determined using real-time quantitative polymerase chain reaction, dual-labeling immunofluorescent staining, and immunoassays. Acute cardiac effects of ELA-32 and [Pyr 1 ]apelin-13 were assessed by MRI and cardiac catheterization in anesthetized rats. Cardiopulmonary human and rat tissues from PAH patients and monocrotaline- and Sugen/hypoxia-exposed rats were used to show changes in ELA expression in PAH. The effect of ELA treatment on cardiopulmonary remodeling in PAH was investigated in the monocrotaline rat model. ELA competed for binding of apelin in human heart with overlap for the 2 peptides indicated by in silico modeling. ELA activated G-protein- and β-arrestin-dependent pathways. We detected ELA expression in human vascular endothelium and plasma. Comparable to apelin, ELA increased cardiac contractility, ejection fraction, and cardiac output and elicited vasodilatation in rat in vivo. ELA expression was reduced in cardiopulmonary tissues from PAH patients and PAH rat models, respectively. ELA treatment significantly attenuated elevation of right ventricular systolic pressure and right ventricular hypertrophy and pulmonary vascular remodeling in

  5. Pulmonary Hypertensive Crisis on Induction of Anesthesia.

    PubMed

    Schisler, Travis; Marquez, Jose M; Hilmi, Ibtesam; Subramaniam, Kathirvel

    2017-03-01

    Anesthesia for lung transplantation remains one of the highest risk surgeries in the domain of the cardiothoracic anesthesiologist. End-stage lung disease, pulmonary hypertension, and right heart dysfunction as well as other comorbid disease factors predispose the patient to cardiovascular, respiratory and metabolic dysfunction during general anesthesia. Perhaps the highest risk phase of surgery in the patient with severe pulmonary hypertension is during the induction of anesthesia when the removal of intrinsic sympathetic tone and onset of positive pressure ventilation can decompensate a severely compromised cardiovascular system. Severe hypotension, cardiac arrest, and death have been reported previously. Here we present 2 high-risk patients for lung transplantation, their anesthetic induction course, and outcomes. We offer suggestions for the safe management of anesthetic induction to mitigate against hemodynamic and respiratory complications.

  6. STARS knockout attenuates hypoxia-induced pulmonary arterial hypertension by suppressing pulmonary arterial smooth muscle cell proliferation.

    PubMed

    Shi, Zhaoling; Wu, Huajie; Luo, Jianfeng; Sun, Xin

    2017-03-01

    STARS (STriated muscle Activator of Rho Signaling) is a sarcomeric protein, which expressed early in cardiac development and involved in pathological remodeling. Abundant evidence indicated that STARS could regulate cell proliferation, but it's exact function remains unclear. In this study, we aimed to investigate the role of STARS in the proliferation of pulmonary arterial smooth muscle cells (PASMC) and the potential effect on the progression of pulmonary arterial hypertension (PAH). In this study, we established a PAH mouse model through chronic hypoxia exposure as reflected by the increased RVSP and RVHI. Western blot and RT-qPCR detected the increased STARS protein and mRNA levels in PAH mice. Next, we cultured the primary PASMC from PAH mice. After STARS overexpression in PASMC, STARS, SRF and Egr-1 were up-regulated significantly. The MTT assay revealed an increase in cell proliferation. Flow cytometry showed a marked inhibition of cell apoptosis. However, STARS silence in PASMC exerted opposite effects with STARS overexpression. SRF siRNA transfection blocked the effects of STARS overexpression in PASMC. In order to further confirm the role of STARS in PAH mice in vivo, we exposed STARS knockout mice to hypoxia and found lower RVSP and RVHI in knockout mice as compared with controls. Our results not only suggest that STARS plays a crucial role in the development of PAH by increasing the proliferation of PASMC through activation of the SRF/Egr-1 pathway, but also provides a new mechanism for hypoxia-induced PAH. In addition, STARS may represent a potential treatment target. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension.

    PubMed

    Rabinovitch, Marlene; Guignabert, Christophe; Humbert, Marc; Nicolls, Mark R

    2014-06-20

    This review summarizes an expanding body of knowledge indicating that failure to resolve inflammation and altered immune processes underlie the development of pulmonary arterial hypertension. The chemokines and cytokines implicated in pulmonary arterial hypertension that could form a biomarker platform are discussed. Pre-clinical studies that provide the basis for dysregulated immunity in animal models of the disease are reviewed. In addition, we present therapies that target inflammatory/immune mechanisms that are currently enrolling patients, and discuss others in development. We show how genetic and metabolic abnormalities are inextricably linked to dysregulated immunity and adverse remodeling in the pulmonary arteries. © 2014 American Heart Association, Inc.

  8. Melatonin Decreases Pulmonary Vascular Remodeling and Oxygen Sensitivity in Pulmonary Hypertensive Newborn Lambs

    PubMed Central

    Astorga, Cristian R.; González-Candia, Alejandro; Candia, Alejandro A.; Figueroa, Esteban G.; Cañas, Daniel; Ebensperger, Germán; Reyes, Roberto V.; Llanos, Aníbal J.; Herrera, Emilio A.

    2018-01-01

    Background: Chronic hypoxia and oxidative stress during gestation lead to pulmonary hypertension of the neonate (PHN), a condition characterized by abnormal pulmonary arterial reactivity and remodeling. Melatonin has strong antioxidant properties and improves pulmonary vascular function. Here, we aimed to study the effects of melatonin on the function and structure of pulmonary arteries from PHN lambs. Methods: Twelve lambs (Ovis aries) gestated and born at highlands (3,600 m) were instrumented with systemic and pulmonary catheters. Six of them were assigned to the control group (CN, oral vehicle) and 6 were treated with melatonin (MN, 1 mg.kg−1.d−1) during 10 days. At the end of treatment, we performed a graded oxygenation protocol to assess cardiopulmonary responses to inspired oxygen variations. Further, we obtained lung and pulmonary trunk samples for histology, molecular biology, and immunohistochemistry determinations. Results: Melatonin reduced the in vivo pulmonary pressor response to oxygenation changes. In addition, melatonin decreased cellular density of the media and diminished the proliferation marker KI67 in resistance vessels and pulmonary trunk (p < 0.05). This was associated with a decreased in the remodeling markers α-actin (CN 1.28 ± 0.18 vs. MN 0.77 ± 0.04, p < 0.05) and smoothelin-B (CN 2.13 ± 0.31 vs. MN 0.88 ± 0.27, p < 0.05). Further, melatonin increased vascular density by 134% and vascular luminal surface by 173% (p < 0.05). Finally, melatonin decreased nitrotyrosine, an oxidative stress marker, in small pulmonary vessels (CN 5.12 ± 0.84 vs. MN 1.14 ± 0.34, p < 0.05). Conclusion: Postnatal administration of melatonin blunts the cardiopulmonary response to hypoxia, reduces the pathological vascular remodeling, and increases angiogenesis in pulmonary hypertensive neonatal lambs.These effects improve the pulmonary vascular structure and function in the neonatal period under chronic hypoxia. PMID:29559926

  9. Unexpected pulmonary hypertensive crisis after surgery for ocular malignant melanoma.

    PubMed

    Sato, Kaori; Saji, Tsutomu; Kaneko, Taku; Takahashi, Kei; Sugi, Kaoru

    2014-11-24

    To report a case of unexpected pulmonary hypertensive crisis caused by endothelin release from melanoma cells after surgery for choroidal melanoma. A 56-year-old man suddenly developed dyspnea after resection of choroidal melanoma. Worsening hypoxia required intensive treatment, including percutaneous cardiopulmonary support, after which a series of tests were immediately performed. The tentative diagnosis was idiopathic pulmonary arterial hypertension. Previous studies noted a significant association between melanoma and endothelin (ET)-1. We hypothesized that a substantial amount of ET-1 had been released from malignant melanoma cells during resection, thus triggering the pulmonary hypertensive crisis in our patient. The patient fully recovered after intensive treatment and administration of the endothelin receptor antagonist bosentan. The success of bosentan treatment, along with the extremely high level of ET-1 on pathologic analysis, confirmed our hypothesis regarding the increase in plasma ET-1 level. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Benefits from the correction of vitamin D deficiency in patients with pulmonary hypertension.

    PubMed

    Mirdamadi, Ahmad; Moshkdar, Pouya

    2016-01-01

    Vitamin D (Vit D) is linked to various conditions including musculoskeletal, metabolic and cardiopulmonary diseases. However, it is not clear whether correction of vit D deficiency exerts any beneficial effect in patients with pulmonary hypertension. This study was a prospective uncontrolled longitudinal study. Patients with pulmonary hypertension and vit D deficiency were enrolled into this study. All patients in addition to standard treatment for pulmonary hypertension received cholecalciferol at a dose of 50,000 IU weekly plus calcicare (at a dose of 200 mg magnesium + 8 mg zinc + 400 IU vit D) daily for 3 months. Serum level of 25-hydroxy vit D, serum level of pro-brain natriuretic peptide, six minute walk test (6MWT), peak and mean pulmonary artery pressure, right ventricular size and function, ejection fraction (EF) and New York Heart Association (NYHA) functional class were measured at baseline and after 3 months of treatment. Twenty-two patients with pulmonary hypertension and vit D deficiency were enrolled into the study. At endpoint, the serum vit D level increased significantly to 54.8 ng/ml, the mean of baseline distance of 6MWT increased significantly to 81.6 m and the RV size significantly improved. The mean pulmonary artery pressure also improved after the intervention, but their changes did not reach to statistically significant levels. Vit D replacement therapy in patients with pulmonary arterial hypertension and vit D deficiency results in significant improvement of right ventricular size and 6 MWT. Moreover, mean pulmonary artery pressure improves nonsignificantly. This issue requires further studies with long-term follow-up period.

  11. Metabolic perturbations of postnatal growth restriction and hyperoxia-induced pulmonary hypertension in a bronchopulmonary dysplasia model

    USDA-ARS?s Scientific Manuscript database

    Introduction: Neonatal pulmonary hypertension (PH) is a common manifestation of bronchopulmonary dysplasia (BPD) and contributes to increased morbidity and mortality of preterm birth. Postnatal growth restriction and hyperoxia are independent contributors to PH development, as indicated by our previ...

  12. Takotsubo cardiomyopathy after treatment of pulmonary arterial hypertension

    PubMed Central

    Cork, David P.; Mehrotra, Amit K.; Gomberg-Maitland, Mardi

    2012-01-01

    Pulmonary arterial hypertension is a fatal disease. Intravenous prostanoids are often utilized for long-term management of patients. The therapy requires a significant commitment and change in lifestyle for both the patient and family. Takotsubo cardiomyopathy, transient apical ballooning syndrome, has been reported in association with emotional and physical stress. This case report describes a patient with pulmonary arterial hypertension who developed Takotsubo cardiomyopathy after treatment initiation with intravenous treprostinil. Over time, the syndrome resolved and the patient had return of normal left ventricular function. Takotsubo cardiomyopathy should be recognized as a potential, rare complication of therapy initiation due to the severity of the illness and the emotional stress of the disease. PMID:23130109

  13. Grape seed procyanidin extract attenuates hypoxic pulmonary hypertension by inhibiting oxidative stress and pulmonary arterial smooth muscle cells proliferation.

    PubMed

    Jin, Haifeng; Liu, Mingcheng; Zhang, Xin; Pan, Jinjin; Han, Jinzhen; Wang, Yudong; Lei, Haixin; Ding, Yanchun; Yuan, Yuhui

    2016-10-01

    Hypoxia-induced oxidative stress and excessive proliferation of pulmonary artery smooth muscle cells (PASMCs) play important roles in the pathological process of hypoxic pulmonary hypertension (HPH). Grape seed procyanidin extract (GSPE) possesses antioxidant properties and has beneficial effects on the cardiovascular system. However, the effect of GSPE on HPH remains unclear. In this study, adult Sprague-Dawley rats were exposed to intermittent chronic hypoxia for 4 weeks to mimic a severe HPH condition. Hemodynamic and pulmonary pathomorphology data showed that chronic hypoxia significantly increased right ventricular systolic pressures (RVSP), weight of the right ventricle/left ventricle plus septum (RV/LV+S) ratio and median width of pulmonary arteries. GSPE attenuated the elevation of RVSP, RV/LV+S, and reduced the pulmonary vascular structure remodeling. GSPE also increased the levels of SOD and reduced the levels of MDA in hypoxia-induced HPH model. In addition, GSPE suppressed Nox4 mRNA levels, ROS production and PASMCs proliferation. Meanwhile, increased expression of phospho-STAT3, cyclin D1, cyclin D3 and Ki67 in PASMCs caused by hypoxia was down-regulated by GSPE. These results suggested that GSPE might potentially prevent HPH via antioxidant and antiproliferative mechanisms. Copyright © 2016. Published by Elsevier Inc.

  14. Role of Transcription Factors in Pulmonary Artery Smooth Muscle Cells: An Important Link to Hypoxic Pulmonary Hypertension.

    PubMed

    Di Mise, Annarita; Wang, Yong-Xiao; Zheng, Yun-Min

    2017-01-01

    Hypoxia, namely a lack of oxygen in the blood, induces pulmonary vasoconstriction and vasoremodeling, which serve as essential pathologic factors leading to pulmonary hypertension (PH). The underlying molecular mechanisms are uncertain; however, pulmonary artery smooth muscle cells (PASMCs) play an essential role in hypoxia-induced pulmonary vasoconstriction, vasoremodeling, and PH. Hypoxia causes oxidative damage to DNAs, proteins, and lipids. This damage (oxidative stress) modulates the activity of ion channels and elevates the intracellular calcium concentration ([Ca 2+ ] i , Ca 2+ signaling) of PASMCs. The oxidative stress and increased Ca 2+ signaling mutually interact with each other, and synergistically results in a variety of cellular responses. These responses include functional and structural abnormalities of mitochondria, sarcoplasmic reticulum, and nucleus; cell contraction, proliferation, migration, and apoptosis, as well as generation of vasoactive substances, inflammatory molecules, and growth factors that mediate the development of PH. A number of studies reveal that various transcription factors (TFs) play important roles in hypoxia-induced oxidative stress, disrupted PAMSC Ca 2+ signaling and the development and progress of PH. It is believed that in the pathogenesis of PH, hypoxia facilitates these roles by mediating the expression of multiple genes. Therefore, the identification of specific genes and their transcription factors implicated in PH is necessary for the complete understanding of the underlying molecular mechanisms. Moreover, this identification may aid in the development of novel and effective therapeutic strategies for PH.

  15. Perioperative management of pulmonary hypertension during lung transplantation (a lesson for other anaesthesia settings).

    PubMed

    Rabanal, J M; Real, M I; Williams, M

    2014-10-01

    Patients with pulmonary hypertension are some of the most challenging for an anaesthesiologist to manage. Pulmonary hypertension in patients undergoing surgical procedures is associated with high morbidity and mortality due to right ventricular failure, arrhythmias and ischaemia leading to haemodynamic instability. Lung transplantation is the only therapeutic option for end-stage lung disease. Patients undergoing lung transplantation present a variety of challenges for anaesthesia team, but pulmonary hypertension remains the most important. The purpose of this article is to review the anaesthetic management of pulmonary hypertension during lung transplantation, with particular emphasis on the choice of anaesthesia, pulmonary vasodilator therapy, inotropic and vasopressor therapy, and the most recent intraoperative monitoring recommendations to optimize patient care. Copyright © 2013 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Published by Elsevier España. All rights reserved.

  16. [From acute pulmonary embolism to chronic thromboembolic pulmonary hypertension: Pathobiology and pathophysiology].

    PubMed

    Beltrán-Gámez, Miguel E; Sandoval-Zárate, Julio; Pulido, Tomás

    Chronic thromboembolic pulmonary hypertension (CTEPH) represents a unique subtype of pulmonary hypertension characterized by the presence of mechanical obstruction of the major pulmonary vessels caused by venous thromboembolism. CTEPH is a progressive and devastating disease if not treated, and is the only subset of PH potentially curable by a surgical procedure known as pulmonary endarterectomy. The clot burden and pulmonary embolism recurrence may contribute to the development of CTEPH however only few thrombophilic factors have been found to be associated. A current hypothesis is that CTEPH results from the incomplete resolution and organization of thrombus modified by inflammatory, immunologic and genetic mechanisms, leading to the development of fibrotic stenosis and adaptive vascular remodeling of resistance vessels. The causes of thrombus non-resolution have yet to be fully clarified. CTEPH patients often display severe PH that cannot be fully explained by the degree of pulmonary vascular obstruction apparent on imaging studies. In such cases, the small vessel disease and distal obstructive thrombotic lesions beyond the sub-segmental level may contribute for out of proportion elevated PVR. The processes implicated in the development of arteriopathy and micro-vascular changes might explain the progressive nature of PH and gradual clinical deterioration with poor prognosis, as well as lack of correlation between measurable hemodynamic parameters and vascular obstruction even in the absence of recurrent venous thromboembolism. This review summarizes the most relevant up-to-date aspects on pathobiology and pathophysiology of CTEPH. Copyright © 2016 Instituto Nacional de Cardiología Ignacio Chávez. Publicado por Masson Doyma México S.A. All rights reserved.

  17. Heterotaxy syndrome with severe pulmonary hypertension in an adult.

    PubMed

    Brandenburg, Vincent M; Krueger, Stefan; Haage, Patrick; Mertens, Peter; Riehl, Jochen

    2002-05-01

    Heterotaxy syndrome is a rare clinical entity in adults, characterized by situs ambiguus, congenital heart defects, and splenic malformations. We report the case of an adult with heterotaxy syndrome (including situs ambiguus, bilateral superior vena cava, hypoplastic right-sided spleen and portosystemic shunts) presenting with dyspnea due to severe pulmonary hypertension. Vasodilatory therapy was initiated, leading to marked reduction of clinical symptoms. This case exhibits 2 particular and partially novel features: primary diagnosis of heterotaxy syndrome may be delayed until adulthood, and heterotaxy syndrome may be associated with pulmonary hypertension, possibly on the basis of longstanding portosystemic shunts.

  18. Prevention of pulmonary hypoplasia and pulmonary vascular remodeling by antenatal simvastatin treatment in nitrofen-induced congenital diaphragmatic hernia.

    PubMed

    Makanga, Martine; Maruyama, Hidekazu; Dewachter, Celine; Da Costa, Agnès Mendes; Hupkens, Emeline; de Medina, Geoffrey; Naeije, Robert; Dewachter, Laurence

    2015-04-01

    Congenital diaphragmatic hernia (CDH) has a high mortality rate mainly due to lung hypoplasia and persistent pulmonary hypertension of the newborn (PPHN). Simvastatin has been shown to prevent the development of pulmonary hypertension (PH) in experimental models of PH. We, therefore, hypothesized that antenatal simvastatin would attenuate PPHN in nitrofen-induced CDH in rats. The efficacy of antenatal simvastatin was compared with antenatal sildenafil, which has already been shown to improve pathological features of PPHN in nitrofen-induced CDH. On embryonic day (E) 9.5, nitrofen or vehicle was administered to pregnant Sprague-Dawley rats. On E11, nitrofen-treated rats were randomly assigned to antenatal simvastatin (20 mg·kg(-1)·day(-1) orally), antenatal sildenafil (100 mg·kg(-1)·day(-1) orally), or placebo administration from E11 to E21. On E21, fetuses were delivered by cesarean section, killed, and checked for left-sided CDH. Lung tissue was then harvested for further pathobiological evaluation. In nitrofen-induced CDH, simvastatin failed to reduce the incidence of nitrofen-induced CDH in the offspring and to increase the body weight, but improved the lung-to-body weight ratio and lung parenchyma structure. Antenatal simvastatin restored the pulmonary vessel density and external diameter, and reduced the pulmonary arteriolar remodeling compared with nitrofen-induced CDH. This was associated with decreased lung expression of endothelin precursor, endothelin type A and B receptors, endothelial and inducible nitric oxide synthase, together with restored lung activation of apoptotic processes mainly in the epithelium. Antenatal simvastatin presented similar effects as antenatal therapy with sildenafil on nitrofen-induced CDH. Antenatal simvastatin improves pathological features of lung hypoplasia and PPHN in experimental nitrofen-induced CDH. Copyright © 2015 the American Physiological Society.

  19. Prevention of pulmonary hypoplasia and pulmonary vascular remodeling by antenatal simvastatin treatment in nitrofen-induced congenital diaphragmatic hernia

    PubMed Central

    Makanga, Martine; Maruyama, Hidekazu; Dewachter, Celine; Da Costa, Agnès Mendes; Hupkens, Emeline; de Medina, Geoffrey; Naeije, Robert

    2015-01-01

    Congenital diaphragmatic hernia (CDH) has a high mortality rate mainly due to lung hypoplasia and persistent pulmonary hypertension of the newborn (PPHN). Simvastatin has been shown to prevent the development of pulmonary hypertension (PH) in experimental models of PH. We, therefore, hypothesized that antenatal simvastatin would attenuate PPHN in nitrofen-induced CDH in rats. The efficacy of antenatal simvastatin was compared with antenatal sildenafil, which has already been shown to improve pathological features of PPHN in nitrofen-induced CDH. On embryonic day (E) 9.5, nitrofen or vehicle was administered to pregnant Sprague-Dawley rats. On E11, nitrofen-treated rats were randomly assigned to antenatal simvastatin (20 mg·kg−1·day−1 orally), antenatal sildenafil (100 mg·kg−1·day−1 orally), or placebo administration from E11 to E21. On E21, fetuses were delivered by cesarean section, killed, and checked for left-sided CDH. Lung tissue was then harvested for further pathobiological evaluation. In nitrofen-induced CDH, simvastatin failed to reduce the incidence of nitrofen-induced CDH in the offspring and to increase the body weight, but improved the lung-to-body weight ratio and lung parenchyma structure. Antenatal simvastatin restored the pulmonary vessel density and external diameter, and reduced the pulmonary arteriolar remodeling compared with nitrofen-induced CDH. This was associated with decreased lung expression of endothelin precursor, endothelin type A and B receptors, endothelial and inducible nitric oxide synthase, together with restored lung activation of apoptotic processes mainly in the epithelium. Antenatal simvastatin presented similar effects as antenatal therapy with sildenafil on nitrofen-induced CDH. Antenatal simvastatin improves pathological features of lung hypoplasia and PPHN in experimental nitrofen-induced CDH. PMID:25617377

  20. Pulmonary arterial capacitance in children with idiopathic pulmonary arterial hypertension and pulmonary arterial hypertension associated with congenital heart disease: relation to pulmonary vascular resistance, exercise capacity, and survival.

    PubMed

    Sajan, Imran; Manlhiot, Cedric; Reyes, Janette; McCrindle, Brian W; Humpl, Tilman; Friedberg, Mark K

    2011-09-01

    Pediatric pulmonary arterial hypertension (PAH), whether idiopathic PAH (iPAH) or PAH associated with congenital heart disease (aPAH), carries high morbidity and mortality. Low pulmonary arterial capacitance (PAC), defined as right ventricular stroke volume/pulmonary artery pulse pressure, is a risk factor for mortality in adults with PAH. However, the relation of PAC to pulmonary vascular resistance (PVR), exercise endurance, and survival is poorly defined in children. Catheterization and clinical data of children with PAH (mean pulmonary artery pressure >25 mm Hg) were reviewed. Children with pulmonary shunts, stents, collaterals, or pulmonary venous hypertension were excluded. Primary outcomes were 6-minute walk distance and freedom from death/lung transplant. Forty-seven patients were studied. Nineteen (43%) had iPAH, and 28 (57%) had aPAH (7.1 ± 6.2 vs 8.4 ± 5.5 years, P = .45). Patients with iPAH had higher PVR indexed for body surface area (PVRi), lower indexed PAC (PACi), lower exercise tolerance, and lower freedom from death/lung transplant than patients with aPAH. Both higher PVRi (P < .0001) and lower PACi (P = .02) were associated with shorter 6-minute walk distance. A PACi <0.70 mL/mm Hg per square meter or >1.25 mL/mm Hg per square meter and a PVRi >13 Wood units × m(2) were associated with decreased freedom from death or lung transplant. The relationships between PVRi and PACi and survival were independent of each other and not confounded by etiologic group. Low PACi and high PVRi are independently associated with low 6-minute walk distance and survival in children with PAH. Therefore, both should be assessed for better prognostication and management in this high-risk population. Copyright © 2011 Mosby, Inc. All rights reserved.

  1. L-citrulline provides a novel strategy for treating chronic pulmonary hypertension in newborn infants

    PubMed Central

    Fike, Candice D.; Summar, Marshall; Aschner, Judy L.

    2014-01-01

    Effective therapies are urgently needed for infants with forms of pulmonary hypertension that develop or persist beyond the first week of life. The L-arginine nitric oxide (NO) precursor, L-citrulline, improves NO signalling and ameliorates pulmonary hypertension in newborn animal models. In vitro studies demonstrate that manipulating L-citrulline transport alters NO production. Conclusion Strategies that increase the supply and transport of L-citrulline merit pursuit as novel approaches to managing infants with chronic, progressive pulmonary hypertension. PMID:24862864

  2. Comparison of pharmacological activity of macitentan and bosentan in preclinical models of systemic and pulmonary hypertension.

    PubMed

    Iglarz, Marc; Bossu, Alexandre; Wanner, Daniel; Bortolamiol, Céline; Rey, Markus; Hess, Patrick; Clozel, Martine

    2014-11-24

    The endothelin (ET) system is a tissular system, as the production of ET isoforms is mostly autocrine or paracrine. Macitentan is a novel dual ETA/ETB receptor antagonist with enhanced tissue distribution and sustained receptor binding properties designed to achieve a more efficacious ET receptor blockade. To determine if these features translate into improved efficacy in vivo, a study was designed in which rats with either systemic or pulmonary hypertension and equipped with telemetry were given macitentan on top of maximally effective doses of another dual ETA/ETB receptor antagonist, bosentan, which does not display sustained receptor occupancy and shows less tissue distribution. After establishing dose-response curves of both compounds in conscious, hypertensive Dahl salt-sensitive and pulmonary hypertensive bleomycin-treated rats, macitentan was administered on top of the maximal effective dose of bosentan. In hypertensive rats, macitentan 30 mg/kg further decreased mean arterial blood pressure (MAP) by 19 mm Hg when given on top of bosentan 100 mg/kg (n=9, p<0.01 vs. vehicle). Conversely, bosentan given on top of macitentan failed to induce an additional MAP decrease. In pulmonary hypertensive rats, macitentan 30 mg/kg further decreased mean pulmonary artery pressure (MPAP) by 4 mm Hg on top of bosentan (n=8, p<0.01 vs. vehicle), whereas a maximal effective dose of bosentan given on top of macitentan did not cause any additional MPAP decrease. The add-on effect of macitentan on top of bosentan in two pathological models confirms that this novel compound can achieve a superior blockade of ET receptors and provides evidence for greater maximal efficacy. Copyright © 2014. Published by Elsevier Inc.

  3. Pulmonary vascular response to exercise in symptomatic heart failure with reduced ejection fraction and pulmonary hypertension.

    PubMed

    Verbrugge, Frederik H; Dupont, Matthias; Bertrand, Philippe B; Nijst, Petra; Grieten, Lars; Dens, Joseph; Verhaert, David; Janssens, Stefan; Tang, W H Wilson; Mullens, Wilfried

    2015-03-01

    To study pulmonary vascular response patterns to exercise in heart failure with reduced ejection fraction (HFrEF) and pulmonary hypertension (PH). In this prospective single-centre cohort study, consecutive symptomatic HFrEF patients (n = 40) with mean pulmonary arterial pressure (MPAP) ≥25 mmHg, pulmonary artery wedge pressure (PAWP) >15 mmHg, and cardiac index <2.5 L/min.m(2) , received protocol-driven titrated sodium nitroprusside (SNP) and diuretics to reach mean arterial blood pressure 65-75 mmHg and PAWP ≤15 mmHg. Patients performed symptom-limited supine bicycle testing under continued SNP administration. Afterwards, SNP was gradually withdrawn, renin-angiotensin system blockers uptitrated, and hydralazine added to maintain haemodynamic targets. Subsequently, bicycle testing was repeated. Patients presented with pulmonary vascular resistance (PVR) = 3.8 ± 1.4 Wood Units at rest, decreasing to 2.9 ± 0.9 Wood Units after decongestion, with PH was completely reversed (MPAP <25 mmHg) in 22%. From rest to maximal exercise, the cardiac index did not change significantly (P = 0.334 under SNP; P-value = 0.552 under oral therapy). A dynamic exercise-induced PVR increase >3.5 Wood Units was noted in 19 patients (48%) under oral therapy vs. five (13%) under SNP. Such exercise-induced PVR increase was associated with a 33% relative decrease in right ventricular stroke work index (P = 0.037). Even after thorough decongestion and under continuous afterload reduction, PH secondary to HFrEF is completely reversible in only a minority of patients. Others demonstrate an exercise-induced PVR increase, associated with impaired right ventricular stroke work, which might be ameliorated by nitric oxide donor support. © 2014 The Authors. European Journal of Heart Failure © 2014 European Society of Cardiology.

  4. Extract from Mimosa pigra attenuates chronic experimental pulmonary hypertension.

    PubMed

    Rakotomalala, G; Agard, C; Tonnerre, P; Tesse, A; Derbré, S; Michalet, S; Hamzaoui, J; Rio, M; Cario-Toumaniantz, C; Richomme, P; Charreau, B; Loirand, G; Pacaud, P

    2013-06-21

    Different parts of Mimosa pigra (MPG) are used in traditional medicine in Madagascar, tropical Africa, South America and Indonesia for various troubles including cardiovascular disorders. To investigate the mechanisms underlying the vascular effects of MPG by assessing in vitro its antioxidant and anti-inflammatory properties, and its vascular relaxing effects, and in vivo, its action on hypoxic pulmonary hypertension (PAH) in rats. The antioxidant activity of MPG leaf hydromethanolic extract was determined by using both the 1,1-diphenyl-2-picrylhydrazyl radical scavenging and the oxygen radical absorbance capacity in vitro assays. Anti-inflammatory properties were assayed on TNFα-induced VCAM-1 expression in endothelial cells. The vasorelaxant effect of MPG extract was studied on rat arterial rings pre-contracted with phenylephrine (1μM) in the presence or absence of the endothelium. In vivo MPG extract effects were analyzed in chronic hypoxic PAH, obtained by housing male Wistar rats, orally treated or not with MPG extract (400mg/kg/d), in a hypobaric chamber for 21 days. MPG leaf extract had antioxidant and anti-inflammatory properties. It induced endothelium-dependent, NO-mediated relaxation of rat aorta and pulmonary artery. In vivo, chronic MPG treatment reduced hypoxic PAH in rat by decreasing by 22.3% the pulmonary arterial pressure and by 20.0% and 23.9% the pulmonary artery and cardiac remodelling, respectively. This effect was associated with a restoration of endothelium function and a 2.3-fold increase in endothelial NO synthase phosphorylation. MPG leaf hydromethanolic extract contained tryptophan and flavonoids, including quercetin glycosides. Both compounds also efficiently limit hypoxia-induced PAH. Our results show endothelial protective action of MPG leaf hydromethanolic extract which is likely to be due to its antioxidant action. MPG successfully attenuated the development of PAH, thus demonstrating the protective effect of MPG on

  5. Associations between thoracic radiographic changes and severity of pulmonary arterial hypertension diagnosed in 60 dogs via Doppler echocardiography: A retrospective study.

    PubMed

    Adams, Dustin S; Marolf, Angela J; Valdés-Martínez, Alejandro; Randall, Elissa K; Bachand, Annette M

    2017-07-01

    Doppler echocardiography is a noninvasive method for estimating and grading pulmonary arterial hypertension. No current literature associates significance of radiographic findings with severity of pulmonary arterial hypertension. We hypothesized that the number and conspicuity of radiographic findings suggestive of pulmonary arterial hypertension would be greater based on the severity of pulmonary arterial hypertension. Dogs with pulmonary arterial hypertension and normal control dogs were included in this retrospective, case control study. Three radiologists blinded to echocardiographic results scored thoracic radiographs for right ventricular and main pulmonary artery enlargement and pulmonary lobar artery enlargement, tortuosity, and blunting by multiple methods. Presence or absence of each finding was scored in an additive fashion and averaged for each grade of pulmonary arterial hypertension severity. Seventy-one dogs (60 dogs with pulmonary arterial hypertension and 11 control dogs) of which some had multiple studies were included: 20 mild, 21 moderate, 25 severe, and 11 absent pulmonary arterial hypertension. The following radiographic findings were significantly associated with increasing pulmonary arterial hypertension severity: right ventricular enlargement by "reverse D" and "3/5-2/5 cardiac ratio" methods, main pulmonary artery enlargement, and caudal lobar artery enlargement by the "3rd rib" method. Mean scores for severe pulmonary arterial hypertension and normal dogs were significantly different (P-value < 0.0001). Mean scores between different pulmonary arterial hypertension grades increased with severity but were not statistically significant. Individually and in combination, radiographic findings performed poorly in differentiating severity of pulmonary arterial hypertension. Findings indicated that thoracic radiographs should be utilized in conjunction with Doppler echocardiography in a complete diagnostic work-up for dogs with suspected

  6. The Intersection of Pulmonary Hypertension and Solid Organ Transplantation.

    PubMed

    Frost, Adaani E

    2016-01-01

    Pulmonary hypertension (PH) is a complication and marker of disease severity in many parenchymal lung diseases. It also is a frequent complication of portal hypertension and negatively impacts survival with liver transplant. Pulmonary hypertension is frequently diagnosed in patients with end-stage renal disease who are undergoing dialysis, and it has recently been demonstrated to adversely affect posttransplant outcome in this patient population even though the mechanism of PH is substantially different from that associated with liver disease. The presence of PH in patients with heart failure is frequent, and the necessity for PH therapy prior to heart transplant has evolved in the last decade. We review the frequency of and risk factors for PH in recipients of and candidates for lung, liver, heart, and renal transplants as well as the impact of this diagnosis on posttransplant outcomes.

  7. Administration of antioxidant peptide SS-31 attenuates transverse aortic constriction-induced pulmonary arterial hypertension in mice.

    PubMed

    Lu, Hung-I; Huang, Tien-Hung; Sung, Pei-Hsun; Chen, Yung-Lung; Chua, Sarah; Chai, Han-Yan; Chung, Sheng-Ying; Liu, Chu-Feng; Sun, Cheuk-Kwan; Chang, Hsueh-Wen; Zhen, Yen-Yi; Lee, Fan-Yen; Yip, Hon-Kan

    2016-05-01

    Antioxidant peptide SS-31 is a class of cell-permeable small peptides, which selectively resides on the inner mitochondrial membrane and possesses intrinsic mitochondrial protective capacities. In this study we investigated the therapeutic effects of antioxidant peptide SS-31 on transverse aortic constriction (TAC)-induced pulmonary arterial hypertension (PAH) in a murine model. Adult male mice were divided into 3 groups: sham-operated mice, TAC mice, and TAC+SS-31 mice that underwent TAC surgery and received SS-31 (2 mg/d, ip) for 60 d. The right ventricular systolic blood pressure (RVSBP) was measured on d 60 prior to sacrificing the mice; then their right heart and lung tissues were collected for histological and biochemical examinations. Lung injury scores were defined by the increased crowded area and decreased number of alveolar sacs. TAC mice showed significantly higher RVSBP compared with sham-operated mice, the elevation was substantially suppressed in TAC+SS-31 mice. The same pattern of changes was found in pulmonary levels of oxidative stress proteins (NOX-1/NOX-2/oxidized proteins), cytosolic cytochrome c, biomarkers related to inflammation (MMP-9/TNF-α/iNOS), calcium overload index (TRPC1, 2, 4, 6), apoptosis (mitochondrial BAX, cleaved caspase 3/PARP), fibrosis (Smad3/TGF-β), hypoxic (HIF-1α), DNA damage (γ-H2AX) and endothelial function (eNOS/ET-1R), as well as in lung injury score, number of muscularized vessels in lungs, number of TRPC1(+) and HIF-1α(+) cells in pulmonary artery, and number of γ-H2AX(+) and Ki-67(+) cells in lung parenchyma. An opposite pattern of changes was observed in pulmonary anti-fibrotic markers (Smad1/5, BMP-2), number of small vessels, and number of alveolar sacs. In contrast, the levels of antioxidant proteins (HO-1/NQO-1/GR/GPx) in lung parenchyma were progressively and significantly increased from sham-operated mice, TAC mice to TAC+SS-31 mice. Antioxidant peptide SS-31 administration effectively attenuates TAC-induced

  8. GPCRs in pulmonary arterial hypertension: tipping the balance.

    PubMed

    Iyinikkel, Jean; Murray, Fiona

    2018-02-21

    Pulmonary arterial hypertension (PAH) is a progressive, fatal disease characterised by increased pulmonary vascular resistance and excessive proliferation of pulmonary artery smooth muscle cells (PASMC). GPCRs, which are attractive pharmacological targets, are important regulators of pulmonary vascular tone and PASMC phenotype. PAH is associated with the altered expression and function of a number of GPCRs in the pulmonary circulation, which leads to the vasoconstriction and proliferation of PASMC and thereby contributes to the imbalance of pulmonary vascular tone associated with PAH; drugs targeting GPCRs are currently used clinically to treat PAH and extensive preclinical work supports the utility of a number of additional GPCRs. Here we review how GPCR expression and function changes with PAH and discuss why GPCRs continue to be relevant drug targets for the disease. © 2018 The British Pharmacological Society.

  9. Pulmonary Arterial Hypertension and Neonatal Arterial Switch Surgery for Correction of Transposition of the Great Arteries.

    PubMed

    Domínguez Manzano, Paula; Mendoza Soto, Alberto; Román Barba, Violeta; Moreno Galdó, Antonio; Galindo Izquierdo, Alberto

    2016-09-01

    There are few reports of the appearance of pulmonary arterial hypertension following arterial switch surgery in the neonatal period to correct transposition of the great arteries. We assessed the frequency and clinical pattern of this complication in our series of patients. Our database was reviewed to select patients with transposition of the great arteries corrected by neonatal arterial switch at our hospital and who developed pulmonary hypertension over time. We identified 2 (1.3%) patients with transposition of the great arteries successfully repaired in the first week of life who later experienced pulmonary arterial hypertension. The first patient was a 7-year-old girl diagnosed with severe pulmonary hypertension at age 8 months who did not respond to medical treatment and required lung transplantation. The anatomic pathology findings were consistent with severe pulmonary arterial hypertension. The second patient was a 24-month-old boy diagnosed with severe pulmonary hypertension at age 13 months who did not respond to medical therapy. Pulmonary hypertension is a rare but very severe complication that should be investigated in all patients with transposition of the great arteries who have undergone neonatal arterial switch, in order to start early aggressive therapy for affected patients, given the poor therapeutic response and poor prognosis involved. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  10. Current management of primary pulmonary hypertension.

    PubMed

    Klings, E S; Farber, H W

    2001-01-01

    Primary pulmonary hypertension (PPH) is a rare disorder with an annual incidence of 1 to 2 per million people. The aetiology of this disorder is unknown, but it appears to result from an abnormal interaction of environmental and genetic factors leading to a vasculopathy. The pulmonary arteries in these patients exhibit a spectrum of pathological lesions ranging from the early medial hypertrophy to the end-stage fibrotic plexiform lesions. This characteristic pathology is also observed in pulmonary hypertension resulting from connective tissue disease (particularly systemic sclerosis), HIV infection, portal hypertension and certain toxins. PPH is a condition that is difficult to diagnose and treat, with a median survival of 2.8 years in historical studies. One of the difficulties in treating patients with PHH is that the subacute nature of disease presentation often prevents an accurate diagnosis during the early stages of the illness. Progressive dyspnoea on exertion is the most common presenting symptom. Diagnostic evaluation should include electrocardiography, chest radiograph and echocardiography, and laboratory and other studies to evaluate for secondary causes (e.g. pulmonary function tests, chest computed tomography and ventilation/perfusion scans, pulmonary arteriogram, cardiopulmonary testing, right heart catherisation). PHH is a disorder for which there is no known cure. Current medical and surgical treatment options for patients with PHH include anticoagulation, vasodilators and transplantation. Calcium channel antagonists are currently the oral drugs of choice for the treatment of patients with New York Heart Association (NYHA) Class II disease. These agents, in particular the dihydropyridine compounds, have beneficial effects on haemodynamics and right ventricular function, and possibly increased survival. Epoprostenol is administered by intravenous infusion, and studies have demonstrated short- and long-term improvements in symptoms, haemodynamics and

  11. Hypoxia induces arginase II expression and increases viable human pulmonary artery smooth muscle cell numbers via AMPKα1 signaling

    PubMed Central

    Xue, Jianjing; Nelin, Leif D.

    2017-01-01

    Pulmonary artery smooth muscle cell (PASMC) proliferation is one of the hallmark features of hypoxia-induced pulmonary hypertension. With only supportive treatment options available for this life-threatening disease, treating and preventing the proliferation of PASMCs is a viable therapeutic option. A key promoter of hypoxia-induced increases in the number of viable human PASMCs is arginase II, with attenuation of viable cell numbers following pharmacologic inhibition or siRNA knockdown of the enzyme. Additionally, increased levels of arginase have been demonstrated in the pulmonary vasculature of patients with pulmonary hypertension. The signaling pathways responsible for the hypoxic induction of arginase II in PASMCs, however, remain unknown. Hypoxia is a recognized activator of AMPK, which is known to be expressed in human PASMCs (hPASMCs). Activation of AMPK by hypoxia has been shown to promote cell survival in PASMCs. In addition, pharmacologic agents targeting AMPK have been shown to attenuate chronic hypoxia-induced pulmonary hypertension in animal models. The present studies tested the hypothesis that hypoxia-induced arginase II expression in hPASMCs is mediated through AMPK signaling. We found that pharmacologic inhibitors of AMPK, as well as siRNA knockdown of AMPKα1, prevented hypoxia-induced arginase II. The hypoxia-induced increase in viable hPASMC numbers was also prevented following both pharmacologic inhibition and siRNA knockdown of AMPK. Furthermore, we demonstrate that overexpression of AMPK induced arginase II protein expression and viable cells numbers in hPASMCs. PMID:28213467

  12. A Feline HFpEF Model with Pulmonary Hypertension and Compromised Pulmonary Function.

    PubMed

    Wallner, Markus; Eaton, Deborah M; Berretta, Remus M; Borghetti, Giulia; Wu, Jichuan; Baker, Sandy T; Feldsott, Eric A; Sharp, Thomas E; Mohsin, Sadia; Oyama, Mark A; von Lewinski, Dirk; Post, Heiner; Wolfson, Marla R; Houser, Steven R

    2017-11-29

    Heart Failure with preserved Ejection Fraction (HFpEF) represents a major public health problem. The causative mechanisms are multifactorial and there are no effective treatments for HFpEF, partially attributable to the lack of well-established HFpEF animal models. We established a feline HFpEF model induced by slow-progressive pressure overload. Male domestic short hair cats (n = 20), underwent either sham procedures (n = 8) or aortic constriction (n = 12) with a customized pre-shaped band. Pulmonary function, gas exchange, and invasive hemodynamics were measured at 4-months post-banding. In banded cats, echocardiography at 4-months revealed concentric left ventricular (LV) hypertrophy, left atrial (LA) enlargement and dysfunction, and LV diastolic dysfunction with preserved systolic function, which subsequently led to elevated LV end-diastolic pressures and pulmonary hypertension. Furthermore, LV diastolic dysfunction was associated with increased LV fibrosis, cardiomyocyte hypertrophy, elevated NT-proBNP plasma levels, fluid and protein loss in pulmonary interstitium, impaired lung expansion, and alveolar-capillary membrane thickening. We report for the first time in HFpEF perivascular fluid cuff formation around extra-alveolar vessels with decreased respiratory compliance. Ultimately, these cardiopulmonary abnormalities resulted in impaired oxygenation. Our findings support the idea that this model can be used for testing novel therapeutic strategies to treat the ever growing HFpEF population.

  13. Pulmonary Hypertension and Computed Tomography Measurement of Small Pulmonary Vessels in Severe Emphysema

    PubMed Central

    Matsuoka, Shin; Washko, George R.; Yamashiro, Tsuneo; Estepar, Raul San Jose; Diaz, Alejandro; Silverman, Edwin K.; Hoffman, Eric; Fessler, Henry E.; Criner, Gerard J.; Marchetti, Nathaniel; Scharf, Steven M.; Martinez, Fernando J.; Reilly, John J.; Hatabu, Hiroto

    2010-01-01

    Rationale: Vascular alteration of small pulmonary vessels is one of the characteristic features of pulmonary hypertension in chronic obstructive pulmonary disease. The in vivo relationship between pulmonary hypertension and morphological alteration of the small pulmonary vessels has not been assessed in patients with severe emphysema. Objectives: We evaluated the correlation of total cross-sectional area of small pulmonary vessels (CSA) assessed on computed tomography (CT) scans with the degree of pulmonary hypertension estimated by right heart catheterization. Methods: In 79 patients with severe emphysema enrolled in the National Emphysema Treatment Trial (NETT), we measured CSA less than 5 mm2 (CSA<5) and 5 to 10 mm2 (CSA5−10), and calculated the percentage of total CSA for the lung area (%CSA<5 and %CSA5–10, respectively). The correlations of %CSA<5 and %CSA5–10 with pulmonary arterial mean pressure (\\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}\\overline{Ppa}\\end{equation*}\\end{document}) obtained by right heart catheterization were evaluated. Multiple linear regression analysis using \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}\\overline{Ppa}\\end{equation*}\\end{document} as the dependent outcome was also performed. Measurements and Main Results: The %CSA<5 had a significant negative correlation with \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage

  14. Pulmonary Veno-Occlusive Disease: A Newly Recognized Cause of Severe Pulmonary Hypertension in Dogs.

    PubMed

    Williams, K; Andrie, K; Cartoceti, A; French, S; Goldsmith, D; Jennings, S; Priestnall, S L; Wilson, D; Jutkowitz, A

    2016-07-01

    Pulmonary hypertension is a well-known though poorly characterized disease in veterinary medicine. In humans, pulmonary veno-occlusive disease (PVOD) is a rare cause of severe pulmonary hypertension with a mean survival time of 2 years without lung transplantation. Eleven adult dogs (5 males, 6 females; median age 10.5 years, representing various breeds) were examined following the development of severe respiratory signs. Lungs of affected animals were evaluated morphologically and with immunohistochemistry for alpha smooth muscle actin, desmin, CD31, CD3, CD20, and CD204. All dogs had pulmonary lesions consistent with PVOD, consisting of occlusive remodeling of small- to medium-sized pulmonary veins, foci of pulmonary capillary hemangiomatosis (PCH), and accumulation of hemosiderophages; 6 of 11 dogs had substantial pulmonary arterial medial and intimal thickening. Ultrastructural examination and immunohistochemistry showed that smooth muscle cells contributed to the venous occlusion. Increased expression of CD31 was evident in regions of PCH indicating increased numbers of endothelial cells in these foci. Spindle cells strongly expressing alpha smooth muscle actin and desmin co-localized with foci of PCH; similar cells were present but less intensely labeled elsewhere in non-PCH alveoli. B cells and macrophages, detected by immunohistochemistry, were not co-localized with the venous lesions of canine PVOD; small numbers of CD3-positive T cells were occasionally in and around the wall of remodeled veins. These findings indicate a condition in dogs with clinically severe respiratory disease and pathologic features resembling human PVOD, including foci of pulmonary venous remodeling and PCH. © The Author(s) 2016.

  15. High incidence of primary pulmonary hypertension associated with appetite suppressants in Belgium.

    PubMed

    Delcroix, M; Kurz, X; Walckiers, D; Demedts, M; Naeije, R

    1998-08-01

    Primary pulmonary hypertension is a rare, progressive and incurable disease, which has been associated with the intake of appetite suppressant drugs. The importance of this association was evaluated in Belgium while this country still had no restriction on the prescription of appetite suppressants. Thirty-five patients with primary pulmonary hypertension and 85 matched controls were recruited over 32 months (1992-1994) in Belgium. Exposure to appetite-suppressants was assessed on the basis of hospital records and standardized interview. Twenty-three of the patients had previously taken appetite suppressants, mainly fenfluramines, as compared with only 5 of the controls (66 versus 6%, p<0.0001). Five patients died before the interview, all of them had taken appetite suppressants. In 8 patients the diagnosis of primary pulmonary hypertension was uncertain, 5 of them had taken appetite suppressants. The patients who had been exposed to appetite suppressants tended to be on average more severely ill, and to have a shorter median delay between onset of symptoms and diagnosis. A policy of unrestricted prescription of appetite suppressants may lead to a high incidence of associated primary pulmonary hypertension. Intake of appetite suppressants may accelerate the progression of the disease.

  16. Pulmonary hypertensive crisis following ethanol sclerotherapy for a complex vascular malformation.

    PubMed

    Cordero-Schmidt, G; Wallenstein, M B; Ozen, M; Shah, N A; Jackson, E; Hovsepian, D M; Palma, J P

    2014-09-01

    Anhydrous ethanol is a commonly used sclerotic agent for treating vascular malformations. We describe the case of a full-term 15-day-old female with a complex venolymphatic malformation involving the face and orbit. During treatment of the lesion with ethanol sclerotherapy, she suffered acute pulmonary hypertensive crisis. We discuss the pathophysiology of pulmonary hypertension related to ethanol sclerotherapy, and propose that hemolysis plays a significant role. Recommendations for evaluation, monitoring and management of this complication are also discussed.

  17. Immune regulation of systemic hypertension, pulmonary arterial hypertension, and preeclampsia: shared disease mechanisms and translational opportunities.

    PubMed

    Jafri, Salema; Ormiston, Mark L

    2017-12-01

    Systemic hypertension, preeclampsia, and pulmonary arterial hypertension (PAH) are diseases of high blood pressure in the systemic or pulmonary circulation. Beyond the well-defined contribution of more traditional pathophysiological mechanisms, such as changes in the renin-angiotensin-aldosterone system, to the development of these hypertensive disorders, there is substantial clinical evidence supporting an important role for inflammation and immunity in the pathogenesis of each of these three conditions. Over the last decade, work in small animal models, bearing targeted deficiencies in specific cytokines or immune cell subsets, has begun to clarify the immune-mediated mechanisms that drive changes in vascular structure and tone in hypertensive disease. By summarizing the clinical and experimental evidence supporting a contribution of the immune system to systemic hypertension, preeclampsia, and PAH, the current review highlights the cellular and molecular pathways that are common to all three hypertensive disorders. These mechanisms are centered on an imbalance in CD4 + helper T cell populations, defined by excessive Th17 responses and impaired T reg activity, as well as the excessive activation or impairment of additional immune cell types, including macrophages, dendritic cells, CD8 + T cells, B cells, and natural killer cells. The identification of common immune mechanisms in systemic hypertension, preeclampsia, and PAH raises the possibility of new therapeutic strategies that target the immune component of hypertension across multiple disorders. Copyright © 2017 the American Physiological Society.

  18. [Effects of Fluoxetine on Nogo Expression and Collagen Production with Decrease of Pulmonary Artery Pressure in Rats with Right Ventricular Failure.

    PubMed

    Ran, Xun; Zhao, Jian-Xun; Nie, Hu; Chen, Yu-Cheng

    2016-11-01

    To investigate the effect of fluoxetine on neurite growth inhibitor (Nogo) expession and collagen production of cardiac tissue in rats with right heart failure and pulmonary hypertension. Thirty one male SD rats were randomly divided into the treatment group,right heart failure group and normal control group.The rats in the treatment group and right heart failure group received intrapertioneal injection of monocrotaline (MCT,60 mg/kg) to induce pulmonary hypertension and right heart failure.After 21 days,the rats in treatment group were given fluoxetine of 10 mg/(kg×d) by gavage per day for 21 days,the rats in the other two groups were given saline.HE staining was used to observe the pulmonary artery and right ventricular myocardial tissue in rats.The collagen formation in right ventricular myocardium was observed by Masson staining.The expressions of Nogo-A, Nogo-B ,type1collagen and type 3 collagen mRNA in myocardium were measured by real-time fluorescence quantitative PCR,while the semi quantitative measurement of Nogo protein level was detected by Western blot. After the intervention of fluoxetine,pulmonary artery stenosis was significantly reduced,myocardial tissue lesion decreased,collagen synthesis decreased in right ventricular myocardium.RT-PCR showed that mRNA of Nogo-A decreased,and mRNA of Nogo-B increased ( P <0.05).Western blot showed that the expression of Nogo-A protein decreased,while Nogo-B1 protein expression increased ( P <0.05),Nogo-B2 expression was not significantly changed ( P >0.05). Nogo may affect the collagen synthesis in right heart failure,and partly involved in myocardial fibrosis.

  19. Pulmonary hypertension in children with sickle cell disease.

    PubMed

    Zuckerman, Warren A; Rosenzweig, Erika B

    2011-04-01

    Pulmonary hypertension and cor pulmonale have long been known to be complications of sickle cell disease, thought mostly to affect the adult population. Recently, pediatric studies in sickle cell patients have uncovered a similar prevalence of elevated tricuspid regurgitation jet velocities, a finding consistent with increased right-sided pressures, when compared with adult counterparts. Implications on mortality to date, while significant in the adult sickle cell population, appear to be unsubstantiated in children and adolescents. We review the recent literature in an attempt to discuss the prevalence, etiology and implications of an elevated tricuspid regurgitation jet velocity in pediatric sickle cell patients. We also suggest screening, diagnostics, treatment and follow-up plans that may improve the disease burden of pulmonary hypertension in both pediatric and adult sickle cell populations.

  20. Radiographic findings in pulmonary hypertension from unresolved embolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodruff, W.W. III; Hoeck, B.E.; Chitwood, W.R. Jr.

    1985-04-01

    Pulmonary artery hypertension with chronic pulmonary embolism is an uncommon entity that is potentially treatable with pulmonary embolectomy. Although the classic radiographic features have been described, several recent investigators report a significant percentage of these patients with normal chest radiographs. In a series of 22 patients, no normal radiographs were seen. Findings included cardiomegaly (86.4%) with right-sided enlargement (68.4%), right descending pulmonary artery enlargement (54.5%), azygos vein enlargement (27.3%), mosaic oligemia (68.2%), chronic volume loss (27.3%), atelectasis and/or effusion (22.7%), and pleural thickening (13.6%). Good correlation with specific areas of diminished vascularity was seen on chest radiographs compared with pulmonarymore » angiograms.« less

  1. Sildenafil therapy in thalassemia patients with Doppler-defined risk of pulmonary hypertension

    PubMed Central

    Morris, Claudia R.; Kim, Hae-Young; Wood, John; Porter, John B.; Klings, Elizabeth S.; Trachtenberg, Felicia L.; Sweeters, Nancy; Olivieri, Nancy F.; Kwiatkowski, Janet L.; Virzi, Lisa; Singer, Sylvia T.; Taher, Ali; Neufeld, Ellis J.; Thompson, Alexis A.; Sachdev, Vandana; Larkin, Sandra; Suh, Jung H.; Kuypers, Frans A.; Vichinsky, Elliott P.

    2013-01-01

    Pulmonary hypertension is a common but often overlooked complication associated with thalassemia syndromes. There are limited data on the safety and efficacy of selective pulmonary vasodilators in this at-risk population. We, therefore, designed a 12-week, open-label, phase 1/2, pilot-scale, proof-of-principle trial of sildenafil therapy in 10 patients with β-thalassemia and at increased risk of pulmonary hypertension based on an elevated tricuspid regurgitant jet velocity >2.5 m/s on Doppler-echocardiography. Variables compared at baseline and after 12 weeks of sildenafil treatment included Doppler-echocardiographic parameters, 6-minute walked distance, Borg Dyspnea Score, New York Heart Association functional class, pulmonary function, and laboratory parameters. Treatment with sildenafil resulted in a significant decrease in tricuspid regurgitant jet velocity by 13.3% (3.0±0.7 versus 2.6±0.5 m/s, P=0.04), improved left ventricular end systolic/diastolic volume, and a trend towards a improved New York Heart Association functional class. No significant change in 6-minute walked distance was noted. Sildenafil was well tolerated, although minor expected adverse events were commonly reported. The total dose of sildenafil (mg) was strongly correlated with percent change in nitric oxide metabolite concentration in the plasma (ρ=0.80, P=0.01). There were also significant increases in plasma and erythrocyte arginine concentrations. Our study suggests that sildenafil is safe and may improve pulmonary hemodynamics in patients at risk of pulmonary hypertension; however, it was not demonstrated to improve the distance walked in 6 minutes. Clinical trials are needed to identify the best treatment strategy for pulmonary hypertension in patients with β-thalassemia. (clinicaltrials.gov identifier: NCT00872170) PMID:23585527

  2. Reversible pulmonary hypertension in Whipple disease: a case report with clinicopathological implications, and literature review.

    PubMed

    Lyle, Pamela L; Weber, Robert D; Bogarin, Javier; Kircher, Tobias

    2009-01-01

    Whipple disease is a rare multisystemic disorder of infectious aetiology caused by Tropheryma whipplei. Pulmonary hypertension is a rare association for which the underlying pathophysiological mechanism is unclear. Our patient was a 54-year-old man with a 1-year history of progressive polyarticular arthritis, and worsening respiratory and gastrointestinal symptoms. Pulmonary artery catheterisation demonstrated moderate-to-severe pulmonary hypertension. Duodenal biopsies, with electron microscopy, were diagnostic of Whipple disease. Involvement by Whipple disease was also evident in the stomach, bone marrow and pulmonary pleura. A 2-week course of intravenous ceftriaxone was initiated and this was followed by a 1-year course of trimethoprim/sulfamethoxazole (160/800), once daily. Nine months into antibiotic treatment, a repeat echocardiogram showed normalisation of the size and function of the cardiac chambers, including the right atrium and right ventricle. There was complete resolution of the severe tricuspid insufficiency and pulmonary hypertension. Whipple disease is not generally considered as a possible cause of pulmonary hypertension but such awareness is important given that it may be potentially reversible with antibiotic therapy.

  3. Reversible pulmonary hypertension in Whipple disease: a case report with clinicopathological implications, and literature review

    PubMed Central

    Lyle, Pamela L; Weber, Robert D; Bogarin, Javier; Kircher, Tobias

    2009-01-01

    Whipple disease is a rare multisystemic disorder of infectious aetiology caused by Tropheryma whipplei. Pulmonary hypertension is a rare association for which the underlying pathophysiological mechanism is unclear. Our patient was a 54-year-old man with a 1-year history of progressive polyarticular arthritis, and worsening respiratory and gastrointestinal symptoms. Pulmonary artery catheterisation demonstrated moderate-to-severe pulmonary hypertension. Duodenal biopsies, with electron microscopy, were diagnostic of Whipple disease. Involvement by Whipple disease was also evident in the stomach, bone marrow and pulmonary pleura. A 2-week course of intravenous ceftriaxone was initiated and this was followed by a 1-year course of trimethoprim/sulfamethoxazole (160/800), once daily. Nine months into antibiotic treatment, a repeat echocardiogram showed normalisation of the size and function of the cardiac chambers, including the right atrium and right ventricle. There was complete resolution of the severe tricuspid insufficiency and pulmonary hypertension. Whipple disease is not generally considered as a possible cause of pulmonary hypertension but such awareness is important given that it may be potentially reversible with antibiotic therapy. PMID:21686934

  4. Losartan exerts no protective effects against acute pulmonary embolism-induced hemodynamic changes.

    PubMed

    Dias, Carlos A; Neto-Neves, Evandro M; Montenegro, Marcelo F; Tanus-Santos, Jose E

    2012-02-01

    The acute obstruction of pulmonary vessels by venous thrombi is a critical condition named acute pulmonary embolism (APE). During massive APE, severe pulmonary hypertension may lead to death secondary to right heart failure and circulatory shock. APE-induced pulmonary hypertension is aggravated by active pulmonary vasoconstriction. While blocking the effects of some vasoconstrictors exerts beneficial effects, no previous study has examined whether angiotensin II receptor blockers protect against the hemodynamic changes associated with APE. We examined the effects exerted by losartan on APE-induced hemodynamic changes. Hemodynamic evaluations were performed in non-embolized lambs treated with saline (n = 4) and in lambs that were embolized with silicon microspheres and treated with losartan (30 mg/kg followed by 1 mg/kg/h, n = 5) or saline (n = 7) infusions. The plasma and lung angiotensin-converting enzyme (ACE) activity were assessed using a fluorometric method. APE increased mean pulmonary arterial pressure (MPAP) and pulmonary vascular resistance index (PVRI) by 21 ± 2 mmHg and 375 ± 20 dyn s cm⁻⁵ m⁻², respectively (P < 0.05). Losartan decreased MPAP significantly (by approximately 15%), without significant changes in PVRI and tended to decrease cardiac index (P > 0.05). Lung and plasma ACE activity were similar in both embolized and non-embolized animals. Our findings show evidence of lack of activation of the renin-angiotensin system during APE. The lack of significant effects of losartan on the pulmonary vascular resistance suggests that losartan does not protect against the hemodynamic changes found during APE.

  5. Micro-CT image-derived metrics quantify arterial wall distensibility reduction in a rat model of pulmonary hypertension

    NASA Astrophysics Data System (ADS)

    Johnson, Roger H.; Karau, Kelly L.; Molthen, Robert C.; Haworth, Steven T.; Dawson, Christopher A.

    2000-04-01

    We developed methods to quantify arterial structural and mechanical properties in excised rat lungs and applied them to investigate the distensibility decrease accompanying chronic hypoxia-induced pulmonary hypertension. Lungs of control and hypertensive (three weeks 11% O2) animals were excised and a contrast agent introduced before micro-CT imaging with a special purpose scanner. For each lung, four 3D image data sets were obtained, each at a different intra-arterial contrast agent pressure. Vessel segment diameters and lengths were measured at all levels in the arterial tree hierarchy, and these data used to generate features sensitive to distensibility changes. Results indicate that measurements obtained from 3D micro-CT images can be used to quantify vessel biomechanical properties in this rat model of pulmonary hypertension and that distensibility is reduced by exposure to chronic hypoxia. Mechanical properties can be assessed in a localized fashion and quantified in a spatially-resolved way or as a single parameter describing the tree as a whole. Micro-CT is a nondestructive way to rapidly assess structural and mechanical properties of arteries in small animal organs maintained in a physiological state. Quantitative features measured by this method may provide valuable insights into the mechanisms causing the elevated pressures in pulmonary hypertension of differing etiologies and should become increasingly valuable tools in the study of complex phenotypes in small-animal models of important diseases such as hypertension.

  6. Chronic thromboembolic pulmonary hypertension (CTEPH): results from an international prospective registry.

    PubMed

    Pepke-Zaba, Joanna; Delcroix, Marion; Lang, Irene; Mayer, Eckhard; Jansa, Pavel; Ambroz, David; Treacy, Carmen; D'Armini, Andrea M; Morsolini, Marco; Snijder, Repke; Bresser, Paul; Torbicki, Adam; Kristensen, Bent; Lewczuk, Jerzy; Simkova, Iveta; Barberà, Joan A; de Perrot, Marc; Hoeper, Marius M; Gaine, Sean; Speich, Rudolf; Gomez-Sanchez, Miguel A; Kovacs, Gabor; Hamid, Abdul Monem; Jaïs, Xavier; Simonneau, Gérald

    2011-11-01

    Chronic thromboembolic pulmonary hypertension (CTEPH) is often a sequel of venous thromboembolism with fatal natural history; however, many cases can be cured by pulmonary endarterectomy. The clinical characteristics and current management of patients enrolled in an international CTEPH registry was investigated. The international registry included 679 newly diagnosed (≤6 months) consecutive patients with CTEPH, from February 2007 until January 2009. Diagnosis was confirmed by right heart catheterization, ventilation-perfusion lung scintigraphy, computerized tomography, and/or pulmonary angiography. At diagnosis, a median of 14.1 months had passed since first symptoms; 427 patients (62.9%) were considered operable, 247 (36.4%) nonoperable, and 5 (0.7%) had no operability data; 386 patients (56.8%, ranging from 12.0%- 60.9% across countries) underwent surgery. Operable patients did not differ from nonoperable patients relative to symptoms, New York Heart Association class, and hemodynamics. A history of acute pulmonary embolism was reported for 74.8% of patients (77.5% operable, 70.0% nonoperable). Associated conditions included thrombophilic disorder in 31.9% (37.1% operable, 23.5% nonoperable) and splenectomy in 3.4% of patients (1.9% operable, 5.7% nonoperable). At the time of CTEPH diagnosis, 37.7% of patients initiated at least 1 pulmonary arterial hypertension-targeted therapy (28.3% operable, 53.8% nonoperable). Pulmonary endarterectomy was performed with a 4.7% documented mortality rate. Despite similarities in clinical presentation, operable and nonoperable CTEPH patients may have distinct associated medical conditions. Operability rates vary considerably across countries, and a substantial number of patients (operable and nonoperable) receive off-label pulmonary arterial hypertension-targeted treatments.

  7. Pulmonary hypertension as a risk factor for death in patients with sickle cell disease.

    PubMed

    Gladwin, Mark T; Sachdev, Vandana; Jison, Maria L; Shizukuda, Yukitaka; Plehn, Jonathan F; Minter, Karin; Brown, Bernice; Coles, Wynona A; Nichols, James S; Ernst, Inez; Hunter, Lori A; Blackwelder, William C; Schechter, Alan N; Rodgers, Griffin P; Castro, Oswaldo; Ognibene, Frederick P

    2004-02-26

    The prevalence of pulmonary hypertension in adults with sickle cell disease, the mechanism of its development, and its prospective prognostic significance are unknown. We performed Doppler echocardiographic assessments of pulmonary-artery systolic pressure in 195 consecutive patients (82 men and 113 women; mean [+/-SD] age, 36+/-12 years). Pulmonary hypertension was prospectively defined as a tricuspid regurgitant jet velocity of at least 2.5 m per second. Patients were followed for a mean of 18 months, and data were censored at the time of death or loss to follow-up. Doppler-defined pulmonary hypertension occurred in 32 percent of patients. Multiple logistic-regression analysis, with the use of the dichotomous variable of a tricuspid regurgitant jet velocity of less than 2.5 m per second or 2.5 m per second or more, identified a self-reported history of cardiovascular or renal complications, increased systolic blood pressure, high lactate dehydrogenase levels (a marker of hemolysis), high levels of alkaline phosphatase, and low transferrin levels as significant independent correlates of pulmonary hypertension. The fetal hemoglobin level, white-cell count, and platelet count and the use of hydroxyurea therapy were unrelated to pulmonary hypertension. A tricuspid regurgitant jet velocity of at least 2.5 m per second, as compared with a velocity of less than 2.5 m per second, was strongly associated with an increased risk of death (rate ratio, 10.1; 95 percent confidence interval, 2.2 to 47.0; P<0.001) and remained so after adjustment for other possible risk factors in a proportional-hazards regression model. Pulmonary hypertension, diagnosed by Doppler echocardiography, is common in adults with sickle cell disease. It appears to be a complication of chronic hemolysis, is resistant to hydroxyurea therapy, and confers a high risk of death. Therapeutic trials targeting this population of patients are indicated. Copyright 2004 Massachusetts Medical Society

  8. Early Macrophage Recruitment and Alternative Activation Are Critical for the Later Development of Hypoxia-induced Pulmonary Hypertension

    PubMed Central

    Vergadi, Eleni; Chang, Mun Seog; Lee, Changjin; Liang, Olin; Liu, Xianlan; Fernandez-Gonzalez, Angeles; Mitsialis, S. Alex; Kourembanas, Stella

    2011-01-01

    Background Lung inflammation precedes the development of hypoxia-induced pulmonary hypertension (HPH); however its role in the pathogenesis of HPH is poorly understood. We sought to characterize the hypoxic inflammatory response and elucidate its role in the development of HPH. We also aimed to investigate the mechanisms by which heme oxygenase-1 (HO-1), an anti-inflammatory enzyme, is protective in HPH. Methods and Results We generated bitransgenic mice that overexpress human HO-1 under doxycycline (dox) control in an inducible, lung-specific manner. Hypoxic exposure of mice in the absence of dox resulted in early transient accumulation of monocytes/macrophages in the bronchoalveolar lavage. Alveolar macrophages acquired an alternatively activated phenotype (M2) in response to hypoxia, characterized by the expression of Found in Inflammatory Zone-1, Arginase-1 and Chitinase-3-like-3. A brief, two-day pulse of dox delayed but did not prevent the peak of hypoxic inflammation, and could not protect from HPH. In contrast, a seven-day dox treatment sustained high HO-1 levels during the entire period of hypoxic inflammation, inhibited macrophage accumulation and activation, induced macrophage IL-10 expression, and prevented the development of HPH. Supernatants from hypoxic M2 macrophages promoted proliferation of pulmonary artery smooth muscle cells while treatment with carbon monoxide, a HO-1 enzymatic product, abrogated this effect. Conclusions Early recruitment and alternative activation of macrophages in hypoxic lungs is critical for the later development of HPH. HO-1 may confer protection from HPH by effectively modifing macrophage activation state in hypoxia. PMID:21518986

  9. Cigarette Smoke-Induced Emphysema and Pulmonary Hypertension Can Be Prevented by Phosphodiesterase 4 and 5 Inhibition in Mice

    PubMed Central

    Pichl, Alexandra; Bednorz, Mariola; Ghofrani, Hossein Ardeschir; Schermuly, Ralph Theo; Seeger, Werner; Grimminger, Friedrich; Weissmann, Norbert

    2015-01-01

    Rationale Chronic obstructive pulmonary disease (COPD) is a widespread disease, with no curative therapies available. Recent findings suggest a key role of NO and sGC-cGMP signaling for the pathogenesis of the disease. Previous data suggest a downregulation/inactivation of the cGMP producing soluble guanylate cyclase, and sGC stimulation prevented cigarette smoke-induced emphysema and pulmonary hypertension (PH) in mice. We thus aimed to investigate if the inhibition of the cGMP degrading phosphodiesterase (PDE)5 has similar effects. Results were compared to the effects of a PDE 4 inhibitor (cAMP elevating) and a combination of both. Methods C57BL6/J mice were chronically exposed to cigarette smoke and in parallel either treated with Tadalafil (PDE5 inhibitor), Piclamilast (PDE4 inhibitor) or both. Functional measurements (lung compliance, hemodynamics) and structural investigations (alveolar and vascular morphometry) as well as the heart ratio were determined after 6 months of tobacco smoke exposure. In addition, the number of alveolar macrophages in the respective lungs was counted. Results Preventive treatment with Tadalafil, Piclamilast or a combination of both almost completely prevented the development of emphysema, the increase in lung compliance, tidal volume, structural remodeling of the lung vasculature, right ventricular systolic pressure, and right ventricular hypertrophy induced by cigarette smoke exposure. Single, but not combination treatment prevented or reduced smoke-induced increase in alveolar macrophages. Conclusion Cigarette smoke-induced emphysema and PH could be prevented by inhibition of the phosphodiesterases 4 and 5 in mice. PMID:26058042

  10. The role of inflammation in hypoxic pulmonary hypertension: from cellular mechanisms to clinical phenotypes

    PubMed Central

    Poth, Jens M.; Fini, Mehdi A.; Olschewski, Andrea; El Kasmi, Karim C.; Stenmark, Kurt R.

    2014-01-01

    Hypoxic pulmonary hypertension (PH) comprises a heterogeneous group of diseases sharing the common feature of chronic hypoxia-induced pulmonary vascular remodeling. The disease is usually characterized by mild to moderate pulmonary vascular remodeling that is largely thought to be reversible compared with the progressive irreversible disease seen in World Health Organization (WHO) group I disease. However, in these patients, the presence of PH significantly worsens morbidity and mortality. In addition, a small subset of patients with hypoxic PH develop “out-of-proportion” severe pulmonary hypertension characterized by pulmonary vascular remodeling that is irreversible and similar to that in WHO group I disease. In all cases of hypoxia-related vascular remodeling and PH, inflammation, particularly persistent inflammation, is thought to play a role. This review focuses on the effects of hypoxia on pulmonary vascular cells and the signaling pathways involved in the initiation and perpetuation of vascular inflammation, especially as they relate to vascular remodeling and transition to chronic irreversible PH. We hypothesize that the combination of hypoxia and local tissue factors/cytokines (“second hit”) antagonizes tissue homeostatic cellular interactions between mesenchymal cells (fibroblasts and/or smooth muscle cells) and macrophages and arrests these cells in an epigenetically locked and permanently activated proremodeling and proinflammatory phenotype. This aberrant cellular cross-talk between mesenchymal cells and macrophages promotes transition to chronic nonresolving inflammation and vascular remodeling, perpetuating PH. A better understanding of these signaling pathways may lead to the development of specific therapeutic targets, as none are currently available for WHO group III disease. PMID:25416383

  11. Priming with ceramide-1 phosphate promotes the therapeutic effect of mesenchymal stem/stromal cells on pulmonary artery hypertension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Jisun; Department of Physiology, University of Ulsan College of Medicine, Seoul; Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 88 Olympic-ro 43 gil, Songpa-gu, Seoul 05505

    Some molecules enriched in damaged organs can contribute to tissue repair by stimulating the mobilization of stem cells. These so-called “priming” factors include bioactive lipids, complement components, and cationic peptides. However, their therapeutic significance remains to be determined. Here, we show that priming of mesenchymal stromal/stem cells (MSCs) with ceramide-1 phosphate (C1P), a bioactive lipid, enhances their therapeutic efficacy in pulmonary artery hypertension (PAH). Human bone marrow (BM)-derived MSCs treated with 100 or 200 μM C1P showed improved migration activity in Transwell assays compared with non-primed MSCs and concomitantly activated MAPK{sup p42/44} and AKT signaling cascades. Although C1P priming had little effectmore » on cell surface marker phenotypes and the multipotency of MSCs, it potentiated their proliferative, colony-forming unit-fibroblast, and anti-inflammatory activities. In a monocrotaline-induced PAH animal model, a single administration of human MSCs primed with C1P significantly attenuated the PAH-related increase in right ventricular systolic pressure, right ventricular hypertrophy, and thickness of α-smooth muscle actin-positive cells around the vessel wall. Thus, this study shows that C1P priming increases the effects of MSC therapy by enhancing the migratory, self-renewal, and anti-inflammatory activity of MSCs and that MSC therapy optimized with priming protocols might be a promising option for the treatment of PAH patients. - Highlights: • Human BM-derived MSCs primed with C1P have enhanced migratory activity. • C1P primed MSCs increase proliferation, self-renewal, and anti-inflammatory capacity. • C1P priming enhances the therapeutic capacity of MSCs in a PAH animal model.« less

  12. Impact of sildenafil on survival of patients with idiopathic pulmonary arterial hypertension.

    PubMed

    Zeng, Wei-Jie; Sun, Yun-Juan; Gu, Qing; Xiong, Chang-Ming; Li, Jian-Jun; He, Jian-Guo

    2012-09-01

    It has been reported that short-term sildenafil therapy is safe and effective for patients with pulmonary arterial hypertension. However, data regarding the impact of sildenafil on the survival of patients with idiopathic pulmonary arterial hypertension remain limited. The study was conducted on 77 patients with newly diagnosed idiopathic pulmonary arterial hypertension at Fu Wai Hospital between September 2005 and September 2009. Patients were divided into 2 groups: the sildenafil group and the conventional group. Nine patients treated with sildenafil were re-evaluated by right heart catheterization after 3 months. Our data demonstrated that the 6-minute walk distance, World Health Organization functional class, mixed venous oxygen saturation, and hemodynamics significantly improved after 3 months of sildenafil therapy (P < .05). The baseline characteristics of the sildenafil group were similar to those of the conventional group. The 1-, 2-, and 3-year survival rates in the sildenafil group were 88%, 72%, and 68% compared with 61%, 36%, and 27% in the conventional group (P < .001). The absence of sildenafil therapy, lower body mass index, and lower mixed venous oxygen saturation were found to be independent predictors of mortality. In conclusion, sildenafil therapy was found to be associated with improved survival in patients with idiopathic pulmonary arterial hypertension.

  13. Plasma proteome analysis in patients with pulmonary arterial hypertension: an observational cohort study.

    PubMed

    Rhodes, Christopher J; Wharton, John; Ghataorhe, Pavandeep; Watson, Geoffrey; Girerd, Barbara; Howard, Luke S; Gibbs, J Simon R; Condliffe, Robin; Elliot, Charles A; Kiely, David G; Simonneau, Gerald; Montani, David; Sitbon, Olivier; Gall, Henning; Schermuly, Ralph T; Ghofrani, H Ardeschir; Lawrie, Allan; Humbert, Marc; Wilkins, Martin R

    2017-09-01

    Idiopathic and heritable pulmonary arterial hypertension form a rare but molecularly heterogeneous disease group. We aimed to measure and validate differences in plasma concentrations of proteins that are associated with survival in patients with idiopathic or heritable pulmonary arterial hypertension to improve risk stratification. In this observational cohort study, we enrolled patients with idiopathic or heritable pulmonary arterial hypertension from London (UK; cohorts 1 and 2), Giessen (Germany; cohort 3), and Paris (France; cohort 4). Blood samples were collected at routine clinical appointment visits, clinical data were collected within 30 days of blood sampling, and biochemical data were collected within 7 days of blood sampling. We used an aptamer-based assay of 1129 plasma proteins, and patient clinical details were concealed to the technicians. We identified a panel of prognostic proteins, confirmed with alternative targeted assays, which we evaluated against the established prognostic risk equation for pulmonary arterial hypertension derived from the REVEAL registry. All-cause mortality was the primary endpoint. 20 proteins differentiated survivors and non-survivors in 143 consecutive patients with idiopathic or heritable pulmonary arterial hypertension with 2 years' follow-up (cohort 1) and in a further 75 patients with 2·5 years' follow-up (cohort 2). Nine proteins were both prognostic independent of plasma NT-proBNP concentrations and confirmed by targeted assays. The functions of these proteins relate to myocardial stress, inflammation, pulmonary vascular cellular dysfunction and structural dysregulation, iron status, and coagulation. A cutoff-based score using the panel of nine proteins provided prognostic information independent of the REVEAL equation, improving the C statistic from area under the curve 0·83 (for REVEAL risk score, 95% CI 0·77-0·89; p<0·0001) to 0·91 (for panel and REVEAL 0·87-0·96; p<0·0001) and improving

  14. Management of patients with pulmonary arterial hypertension due to congenital heart disease: recent advances and future directions.

    PubMed

    Blok, Ilja M; van Riel, Annelieke C M J; Mulder, Barbara J M; Bouma, Berto J

    2015-12-01

    Pulmonary arterial hypertension is a serious complication of adult congenital heart disease associated with systemic-to-pulmonary shunts. Although early shunt closure restricts development of pulmonary arterial hypertension, patients remain at risk even after repair. The development of pulmonary arterial hypertension is associated with a markedly increased morbidity and mortality. It is important to identify patients with a poor prognosis using disease specific markers. Echocardiography and biomarkers arise as practical tools to determine the risk of mortality. Although pulmonary arterial hypertension cannot be cured, four classes of disease-targeting therapies are currently available and several promising therapies are being studied. There is a shift in drug studies towards more clinically relevant endpoints such as time to clinical worsening and morbidity and mortality events.

  15. Vasovagal response secondary to permanent contraception device in pulmonary arterial hypertension

    PubMed Central

    Cope, Jessica; Alnuaimat, Hassan

    2015-01-01

    Abstract Adequate contraception is an essential component of managing pulmonary hypertension in women of childbearing age. Intrauterine devices are a popular contraceptive choice for many women but are associated with a risk of vagal response upon placement in certain patients with pulmonary hypertension, which may not be well tolerated. More recently, newer permanent contraception devices have emerged in the market, such as the Essure. We describe the first case, to our knowledge, of vagal-associated response due to an Essure device placement. PMID:26697184

  16. 3-Bromopyruvate reverses hypoxia-induced pulmonary arterial hypertension through inhibiting glycolysis: In vitro and in vivo studies.

    PubMed

    Chen, Fangzheng; Wang, Heng; Lai, Jiadan; Cai, Shujing; Yuan, Linbo

    2018-05-04

    Pulmonary arterial smooth muscle cell (PASMC) proliferation is vital to pulmonary vascular remodeling in pulmonary arterial hypertension (PAH) pathogenesis, and inhibiting PASMC metabolism could serve as a new possible therapy to reverse the process. 3-Bromopyruvate (3-BrPA) is an effective glycolysis inhibitor with its effect in PAH remains unclear. Our study aims to assess the therapeutic effect of 3-BrPA in PAH rats and investigate the possible mechanism of 3-BrPA in PASMC proliferation and apoptosis. 27 healthy SD rats were grouped and treated with hypoxia/normoxia and administration of 3-BrPA/physiological saline. Mean pulmonary artery pressure (mPAP) and cardiac output (CO) were measured and pulmonary vascular resistance (PVR) was calculated. Right ventricular hypertrophy index (RVHI) was calculated to evaluate the right ventricular hypertrophy degree. The percentage of medial wall area (WA%) and medial wall thickness (WT%) were measured by image analysis. PASMCs groups received hypoxia/normoxia treatments and 3-BrPA/physiological saline. PASMC proliferation and migration were respectively detected by CCK-8 and cell wound scratch assay. Hexokinase II (HK-2) expression and lactate level were respectively measured by Western Blotting and lactate test kit to detect glycolysis. mPAP, PVR, PVHI, WA% and WT% in rats increased after the hypoxia treatment, but were lower compared to rats received 3-BrPA in hypoxia environment. HK-2 expression, lactate concentration, OD value and scratch areas in PASMCs increased after the hypoxia treatment, but were decreased after the administration of 3-BrPA. 3-BrPA can inhibit PASMC proliferation and migration by inhibiting glycolysis, and is effective in reversing the vascular remodeling in hypoxia-induced PAH rats. Copyright © 2017. Published by Elsevier B.V.

  17. Factors affecting the response to exercise in patients with severe pulmonary arterial hypertension.

    PubMed

    Flox-Camacho, Angela; Escribano-Subías, Pilar; Jiménez-López Guarch, Carmen; Fernández-Vaquero, Almudena; Martín-Ríos, Dolores; de la Calzada-Campo, Carlos Sáenz

    2011-01-01

    Ergospirometry objectively quantifies exercise capacity. Up until now, the response to exercise evaluated by ergospirometry in patients with pulmonary arterial hypertension has only been described in recently diagnosed.patients. Our aim is to describe the response to exercise in patients with severe pulmonary arterial hypertension under specific treatment and define which parameters determine their exercise capacity. A cross-sectional study was performed on 80 patients, 57 women, aged 45 (14), with severe pulmonary arterial hypertension (48 idiopathic, 14 related to toxic rapeseed oil, 13 to connective tissue disease, 5 to human immunodeficiency virus), mean pulmonary pressure at diagnosis 61(15)mmHg and after 49(33) months under treatment since diagnosis. Biomarkers were measured and echocardiography and ergospirometry were performed the same day. Our patients, under specific treatment, showed the typical behaviour of patients with pulmonary arterial hypertension with less limitation of both aerobic capacity and ventilatory efficiency. Being male (p=0.004), high ventilatory equivalent for carbon dioxide at anaerobic threshold (p<0.001) or biomarkers (p=0.006) were the strongest predictors of impaired peak oxygen uptake in multivariate analysis, whereas for an impaired percentage achieved of predicted value were right ventricle diastolic diameter (p<0.001), months of treatment (p=0.01) and high ventilatory equivalent for CO(2) (p<0.001). In pulmonary arterial hypertension, right ventricle dysfunction (expressed by its dilation or high NTproBNP) and impaired ventilatory inefficiency as well as being male or a short time under treatment can be considered as determining factors of impaired exercise capacity. Copyright © 2010 SEPAR. Published by Elsevier Espana. All rights reserved.

  18. S-Nitrosylation and the Development of Pulmonary Hypertension

    DTIC Science & Technology

    2009-02-14

    GSNO-R associates with eNOS; overexpression of GSNO-R alters eNOS phosphorylation at serine 1177, a residue implicated in eNOS activation; castration ...prevents the development of PAH in response to unregulated delivery of SNOs; and GSNO-R activity in castrated mice is equal to that of female mice...hypertension in normal cattle . Circ Res 10: 172-177, 1962. 10. Vogel JHK, weaver WF, Rose RL, Blount SG Jr. Grover RG. Pulmonary hypertension on

  19. Infantile Hepatic Hemangioendothelioma: An Uncommon Cause of Persistent Pulmonary Hypertension in a Newborn Infant.

    PubMed

    Chatmethakul, Trassanee; Bhat, Ramachandra; Alkaabi, Maryam; Siddiqui, Abdul; Peevy, Keith; Zayek, Michael

    2016-07-01

    Multifocal and diffuse infantile hepatic hemangioendotheliomas commonly present with signs of high-output congestive heart failure. In addition, prolonged persistent pulmonary overcirculation eventually leads to the development of pulmonary hypertension at a later age. We report a 2-day old, full-term infant with multifocal, large infantile hepatic hemangioendothelioma, who presented with an early onset of pulmonary hypertension, managed successfully with supportive care and systemic therapy directed toward the involution of infantile hepatic hemangioendothelioma.

  20. Tyrosine kinase inhibitors in pulmonary arterial hypertension: a double-edge sword?

    PubMed

    Godinas, Laurent; Guignabert, Christophe; Seferian, Andrei; Perros, Frederic; Bergot, Emmanuel; Sibille, Yves; Humbert, Marc; Montani, David

    2013-10-01

    New treatments for pulmonary arterial hypertension (PAH) are a crucial need. The increased proliferation, migration, and survival of pulmonary vascular cells within the pulmonary artery wall in PAH have allowed successful transposition of pathophysiological elements from oncologic researches. Next steps will require translation of these biological advances in PAH therapeutic arsenal and guidelines. This review synthesizes recent data concerning the role of receptor tyrosine kinases and their inhibitors in PAH, with implications in animal models and humans. Results of clinical trials are now accumulating to establish beneficial role of tyrosine kinase inhibitors (TKIs) in PAH and further findings are expected in the near future. Beside this curative approach, evidences of a possible TKI-induced cardiotoxicity are emerging. These safety issues raise concern about a potential amplified harmful effect in PAH, a pathology characterized by an underlying cardiac dysfunction. In addition, analyses of PAH registries shed light on a selective pulmonary vascular toxicity triggered by TKIs, especially dasatinib. These possible dual effects of the TKIs in PAH need to be taken in account for future pharmacological development of this therapeutic class in PAH. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  1. Pulmonary Hypertension in Heart Failure Patients: Pathophysiology and Prognostic Implications.

    PubMed

    Guazzi, Marco; Labate, Valentina

    2016-12-01

    Pulmonary hypertension (PH) due to left heart disease (LHD), i.e., group 2 PH, is the most common reason for increased pressures in the pulmonary circuit. Although recent guidelines incorporate congenital heart disease in this classification, left-sided heart diseases of diastolic and systolic origin including valvular etiology are the vast majority. In these patients, an increased left-sided filling pressure triggers a multistage hemodynamic evolution that ends into right ventricular failure through an initial passive increase in pulmonary artery pressure complicated over time by pulmonary vasoconstriction, endothelial dysfunction, and remodeling of the small-resistance pulmonary arteries. Regardless of the underlying left heart pathology, when present, PH-LHD is associated with more severe symptoms, worse exercise tolerance, and outcome, especially when right ventricular dysfunction and failure are part of the picture. Compared with group 1 and other forms of pulmonary arterial hypertension, PH-LHD is more often seen in elderly patients with a higher prevalence of cardiovascular comorbidities and most, if not all, of the features of metabolic syndrome, especially in case of HF preserved ejection fraction. In this review, we provide an update on current knowledge and some potential challenges about the pathophysiology and established prognostic implications of group 2 PH in patients with HF of either preserved or reduced ejection fraction.

  2. Diagnostic Approach to Pulmonary Hypertension in Premature Neonates

    PubMed Central

    2017-01-01

    Bronchopulmonary dysplasia (BPD) is a form of chronic lung disease in premature infants following respiratory distress at birth. With increasing survival of extremely low birth weight infants, alveolar simplification is the defining lung characteristic of infants with BPD, and along with pulmonary hypertension, increasingly contributes to both respiratory morbidity and mortality in these infants. Growth restricted infants, infants born to mothers with oligohydramnios or following prolonged preterm rupture of membranes are at particular risk for early onset pulmonary hypertension. Altered vascular and alveolar growth particularly in canalicular and early saccular stages of lung development following mechanical ventilation and oxygen therapy, results in developmental lung arrest leading to BPD with pulmonary hypertension (PH). Early recognition of PH in infants with risk factors is important for optimal management of these infants. Screening tools for early diagnosis of PH are evolving; however, echocardiography is the mainstay for non-invasive diagnosis of PH in infants. Cardiac computed tomography (CT) and magnetic resonance are being used as imaging modalities, however their role in improving outcomes in these patients is uncertain. Follow-up of infants at risk for PH will help not only in early diagnosis, but also in appropriate management of these infants. Aggressive management of lung disease, avoidance of hypoxemic episodes, and optimal nutrition determine the progression of PH, as epigenetic factors may have significant effects, particularly in growth-restricted infants. Infants with diagnosis of PH are managed with pulmonary vasodilators and those resistant to therapy need to be worked up for the presence of cardio-vascular anomalies. The management of infants and toddlers with PH, especially following premature birth is an emerging field. Nonetheless, combination therapies in a multi-disciplinary setting improves outcomes for these infants. PMID:28837121

  3. Role of Hypoxia-Induced Brain Derived Neurotrophic Factor in Human Pulmonary Artery Smooth Muscle

    PubMed Central

    Hartman, William; Helan, Martin; Smelter, Dan; Sathish, Venkatachalem; Thompson, Michael; Pabelick, Christina M.; Johnson, Bruce; Prakash, Y. S.

    2015-01-01

    Background Hypoxia effects on pulmonary artery structure and function are key to diseases such as pulmonary hypertension. Recent studies suggest that growth factors called neurotrophins, particularly brain-derived neurotrophic factor (BDNF), can influence lung structure and function, and their role in the pulmonary artery warrants further investigation. In this study, we examined the effect of hypoxia on BDNF in humans, and the influence of hypoxia-enhanced BDNF expression and signaling in human pulmonary artery smooth muscle cells (PASMCs). Methods and Results 48h of 1% hypoxia enhanced BDNF and TrkB expression, as well as release of BDNF. In arteries of patients with pulmonary hypertension, BDNF expression and release was higher at baseline. In isolated PASMCs, hypoxia-induced BDNF increased intracellular Ca2+ responses to serotonin: an effect altered by HIF1α inhibition or by neutralization of extracellular BDNF via chimeric TrkB-Fc. Enhanced BDNF/TrkB signaling increased PASMC survival and proliferation, and decreased apoptosis following hypoxia. Conclusions Enhanced expression and signaling of the BDNF-TrkB system in PASMCs is a potential mechanism by which hypoxia can promote changes in pulmonary artery structure and function. Accordingly, the BDNF-TrkB system could be a key player in the pathogenesis of hypoxia-induced pulmonary vascular diseases, and thus a potential target for therapy. PMID:26192455

  4. Age is not a good predictor of irreversibility of pulmonary hypertension in congenital cardiac malformations with left-to-right shunt.

    PubMed

    Hosseinpour, Amir-Reza; Perez, Marie-Hélène; Longchamp, David; Cotting, Jacques; Sekarski, Nicole; Hurni, Michel; Prêtre, René; Di Bernardo, Stefano

    2018-03-01

    Congenital cardiac malformations with high pulmonary blood flow and pressure due to left-to-right shunts are usually repaired in early infancy for both the benefits of early relief of heart failure and the fear that the concomitant pulmonary hypertension may become irreversible unless these defects are corrected at an early age. Age, however, has been a poor predictor of irreversibility of pulmonary hypertension in our experience, which is presented here. A retrospective observational study. We defined "late" as age ≥2 years. We examined clinical, echocardiographic, and hemodynamic data from all patients aged ≥2 years with such malformations referred to us from 2004 untill 2015. Department of Pediatric Cardiology and Cardiac Surgery, University Hospital of Vaud, Lausanne, Switzerland. There were 39 patients, aged 2-35 years (median: 5 years), without chromosomal abnormalities. All had malformations amenable to biventricular repair, and all had high systolic right ventricular pressures by echocardiography prior to referral. All patients underwent catheterization for assessment of pulmonary hypertension. If this was reversible, surgical correction was offered. (1) Operability based on reversibility of pulmonary hypertension. (2) When surgery was offered, mortality and evidence of persisting postoperative pulmonary hypertension were examined. Eighteen patients had no pulmonary hypertension, 5 of variable ages were inoperable due to irreversible pulmonary hypertension, and 16 had reversible pulmonary hypertension. Therefore, 34 patients underwent corrective surgery, with no immediate or late mortality. Pulmonary arterial and right ventricular pressures decreased noticeably in all operated patients. This is sustained to date; they are all asymptomatic with no echocardiographic evidence of pulmonary hypertension at a median follow-up of 7 years (range 2-13 years). Pulmonary hypertension may still be reversible in many surprisingly old patients with left

  5. Vascular Endothelial Cell-Specific Connective Tissue Growth Factor (CTGF) Is Necessary for Development of Chronic Hypoxia-Induced Pulmonary Hypertension.

    PubMed

    Pi, Liya; Fu, Chunhua; Lu, Yuanquing; Zhou, Junmei; Jorgensen, Marda; Shenoy, Vinayak; Lipson, Kenneth E; Scott, Edward W; Bryant, Andrew J

    2018-01-01

    Chronic hypoxia frequently complicates the care of patients with interstitial lung disease, contributing to the development of pulmonary hypertension (PH), and premature death. Connective tissue growth factor (CTGF), a matricellular protein of the Cyr61/CTGF/Nov (CCN) family, is known to exacerbate vascular remodeling within the lung. We have previously demonstrated that vascular endothelial-cell specific down-regulation of CTGF is associated with protection against the development of PH associated with hypoxia, though the mechanism for this effect is unknown. In this study, we generated a transgenic mouse line in which the Ctgf gene was floxed and deleted in vascular endothelial cells that expressed Cre recombinase under the control of VE-Cadherin promoter (eCTGF KO mice). Lack of vascular endothelial-derived CTGF protected against the development of PH secondary to chronic hypoxia, as well as in another model of bleomycin-induced pulmonary hypertension. Importantly, attenuation of PH was associated with a decrease in infiltrating inflammatory cells expressing CD11b or integrin α M (ITGAM), a known adhesion receptor for CTGF, in the lungs of hypoxia-exposed eCTGF KO mice. Moreover, these pathological changes were associated with activation of-Rho GTPase family member-cell division control protein 42 homolog (Cdc42) signaling, known to be associated with alteration in endothelial barrier function. These data indicate that endothelial-specific deletion of CTGF results in protection against development of chronic-hypoxia induced PH. This protection is conferred by both a decrease in inflammatory cell recruitment to the lung, and a reduction in lung Cdc42 activity. Based on our studies, CTGF inhibitor treatment should be investigated in patients with PH associated with chronic hypoxia secondary to chronic lung disease.

  6. World Health Organization Group I Pulmonary Hypertension: Epidemiology and Pathophysiology.

    PubMed

    Prins, Kurt W; Thenappan, Thenappan

    2016-08-01

    Pulmonary arterial hypertension (PAH) is a debilitating disease characterized by pathologic remodeling of the resistance pulmonary arteries, ultimately leading to right ventricular (RV) failure and death. In this article we discuss the definition of PAH, the initial epidemiology based on the National Institutes of Health Registry, and the updated epidemiology gleaned from contemporary registries, pathogenesis of pulmonary vascular dysfunction and proliferation, and RV failure in PAH. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. [A case of systemic lupus erythematosus with pulmonary hypertension].

    PubMed

    Nakano, K; Tanaka, Y; Aso, M; Saito, K; Fujii, K; Takazawa, A; Ota, T

    2000-06-01

    A 15 year-old girl was admitted to the hospital because of fever, polyarthlargia, dry cough, dyspnea, butterfly rash and multiple oral aphthas. The diagnosis of systemic lupus erythematosus (SLE) was made based on renal disorders, pancytopenia, positive antinuclear antibody and positive for antibodies to double-stranded DNA. On admission, she developed progressive dyspnea with highly active SLE. The patient was complicated with both pulmonary hypertension (PH) and interstitial pneumonitis (IP), judging from increased pulmonary sound by an auscultation, interstitial shadows especially at bilateral lower lung and enlarged shadow of right atrium in a chest rentgenogram, ground glass pattern of bilateral middle to lower lung in a chest computed tomographic scan, increased pulmonary artery pressure, 53 mmHg, by an ultrasound cardiograph (UCG). Combination of methylprednisolone pulse therapy, cyclosporin A and plasma exchanges was effectively administered, which resulted in improvement of disease activity of SLE, IP and PH. However, two months later, although disease activity of SLE was completely reduced, recurrence of PH by UCG and multiple pulmonary embolism (PE) which was observed by a chest rentgenogram and a pulmonary blood flow scintigraphy was further complicated. Administration of cyclophosphamide pulse therapy and warfarin therapy improved both PE and PH. The patient had PH at the different clinical course of SLE; 1) PH maybe induced by severe IP at the active phase of SLE and 2) PH brought about from multiple PE at the inactive phase of SLE. Thus, the case is thought to be suggestive of elucidating the pathogenesis of PH of several systemic autoimmune diseases including SLE.

  8. Pressure-wire-guided percutaneous transluminal pulmonary angioplasty: a breakthrough in catheter-interventional therapy for chronic thromboembolic pulmonary hypertension.

    PubMed

    Inami, Takumi; Kataoka, Masaharu; Shimura, Nobuhiko; Ishiguro, Haruhisa; Yanagisawa, Ryoji; Fukuda, Keiichi; Yoshino, Hideaki; Satoh, Toru

    2014-11-01

    This study sought to prove the safety and effectiveness of pressure-wire-guided percutaneous transluminal pulmonary angioplasty (PTPA). PTPA has been demonstrated to be effective for treatment of chronic thromboembolic pulmonary hypertension. However, a major and occasionally fatal complication after PTPA is reperfusion pulmonary edema. To avoid this, we developed the PEPSI (Pulmonary Edema Predictive Scoring Index). The pressure wire has been used to detect insufficiency of flow in a vessel. We included 350 consecutive PTPA sessions in 103 patients with chronic thromboembolic pulmonary hypertension from January 1, 2009 to December 31, 2013. During these 5 years, 140 PTPA sessions were performed without guidance, 65 with guidance of PEPSI alone, and 145 with both PEPSI and pressure-wire guidance. Each PTPA session was finished after achieving PEPSI scores of <35.4 with PEPSI guidance and each target lesion achieving distal mean pulmonary arterial pressure <35 mm Hg with pressure-wire guidance. The occurrence of clinically critical reperfusion pulmonary edema and vessel injuries were lowest in the group using the guidance of both pressure wire and PEPSI (0% and 6.9%, respectively). Furthermore, the group guided by pressure wire and PEPSI accomplished the same hemodynamic improvements with fewer numbers of target lesions treated and sessions performed. The combined approach using pressure wire and PEPSI produced more efficient clinical results and greatly reduced reperfusion pulmonary edema and vessel complications. This is further evidence that PTPA is an alternative strategy for treating chronic thromboembolic pulmonary hypertension. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  9. Regional myocardial extraction of a radioiodinated branched chain fatty acid during right ventricular pressure overload due to acute pulmonary hypertension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurford, W.; Lowenstein, E.; Zapol, W.

    1985-05-01

    To determine whether branched chain fatty acid extraction is reduced during right ventricular (RV) dysfunction due to acute pulmonary artery hypertension, studies were done in 6 anesthetized dogs. Regional branched chain fatty acid extraction was measured by comparing the myocardial uptake of I-125 labeled 15-(p-(iodophenyl))-3-methylpentadecanoic acid (I-PDA) to myocardial blood flow. Acute pulmonary hypertension was induced by incremental intravenous injection of 100 micron diameter glass beads into six pentobarbital anesthetized, mechanically ventilated dogs. Myocardial blood flow was measured by radiolabeled microspheres both under baseline conditions and during pulmonary hypertension. Mean RV pressure rose from 12 +- 2 (mean +- SEM)more » to 30 +-3mmHg resulting in a 225 +- 16% increase in RV stroke work. RV ejection fraction, as assessed by gated blood pool scans fell from 39 +- 2 to 18 +- 2%. Left ventricular (LV) pressures, stroke work and ejection fraction were unchanged. Myocardial blood flow increased 132 + 59% in the RV free wall and 67 +- 22% in the RV septum. LV blood flow was unchanged. Despite increased RV work and myocardial blood flow, no differences were noted in the branched chain fatty acid extraction ratios among LV or RV free walls or septum. The authors conclude that early RV dysfunction associated with pulmonary artery hypertension is not due to inadequate myocardial blood flow or branched chain fatty acid extraction.« less

  10. Persistent pulmonary hypertension of the newborn.

    PubMed

    Nair, P M C; Bataclan, Maria Flordeliz A

    2004-06-01

    This article attempts to define a complicated, yet not rare disease of the neonate, which presents with extreme hypoxemia due to increased pulmonary vascular resistance, resulting in diversion of the pulmonary venous blood through persistent fetal channels, namely ductus arteriosus and foramen ovale. Pathophysiology, diagnostic approach and the various modalities of management are analyzed. Persistent pulmonary hypertension of the newborn is multi-factorial, which is reflected in the management as well. These babies are extremely labile to hypoxia and should be stabilized with minimum handling. One hundred percent oxygen and ventilation are the mainstay of treatment. The role of hyperventilation, alkalinization, various non-specific vasodilators such as tolazoline, magnesium sulphate, selective vasodilators such as inhaled nitric oxide, adenosine and the role of high frequency oscillatory ventilation and extra corporeal membrane oxygenation are discussed. With the newer modalities of management, the outlook has improved with mortality of less than 20% and fewer long-term deficits.

  11. Effects of different tidal volumes in pulmonary and extrapulmonary lung injury with or without intraabdominal hypertension.

    PubMed

    Santos, Cíntia L; Moraes, Lillian; Santos, Raquel S; Oliveira, Mariana G; Silva, Johnatas D; Maron-Gutierrez, Tatiana; Ornellas, Débora S; Morales, Marcelo M; Capelozzi, Vera L; Jamel, Nelson; Pelosi, Paolo; Rocco, Patricia R M; Garcia, Cristiane S N B

    2012-03-01

    We hypothesized that: (1) intraabdominal hypertension increases pulmonary inflammatory and fibrogenic responses in acute lung injury (ALI); (2) in the presence of intraabdominal hypertension, higher tidal volume reduces lung damage in extrapulmonary ALI, but not in pulmonary ALI. Wistar rats were randomly allocated to receive Escherichia coli lipopolysaccharide intratracheally (pulmonary ALI) or intraperitoneally (extrapulmonary ALI). After 24 h, animals were randomized into subgroups without or with intraabdominal hypertension (15 mmHg) and ventilated with positive end expiratory pressure = 5 cmH(2)O and tidal volume of 6 or 10 ml/kg during 1 h. Lung and chest wall mechanics, arterial blood gases, lung and distal organ histology, and interleukin (IL)-1β, IL-6, caspase-3 and type III procollagen (PCIII) mRNA expressions in lung tissue were analyzed. With intraabdominal hypertension, (1) chest-wall static elastance increased, and PCIII, IL-1β, IL-6, and caspase-3 expressions were more pronounced than in animals with normal intraabdominal pressure in both ALI groups; (2) in extrapulmonary ALI, higher tidal volume was associated with decreased atelectasis, and lower IL-6 and caspase-3 expressions; (3) in pulmonary ALI, higher tidal volume led to higher IL-6 expression; and (4) in pulmonary ALI, liver, kidney, and villi cell apoptosis was increased, but not affected by tidal volume. Intraabdominal hypertension increased inflammation and fibrogenesis in the lung independent of ALI etiology. In extrapulmonary ALI associated with intraabdominal hypertension, higher tidal volume improved lung morphometry with lower inflammation in lung tissue. Conversely, in pulmonary ALI associated with intraabdominal hypertension, higher tidal volume increased IL-6 expression.

  12. Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology.

    PubMed

    Vonk-Noordegraaf, Anton; Haddad, François; Chin, Kelly M; Forfia, Paul R; Kawut, Steven M; Lumens, Joost; Naeije, Robert; Newman, John; Oudiz, Ronald J; Provencher, Steve; Torbicki, Adam; Voelkel, Norbert F; Hassoun, Paul M

    2013-12-24

    Survival in patients with pulmonary arterial hypertension (PAH) is closely related to right ventricular (RV) function. Although pulmonary load is an important determinant of RV systolic function in PAH, there remains a significant variability in RV adaptation to pulmonary hypertension. In this report, the authors discuss the emerging concepts of right heart pathobiology in PAH. More specifically, the discussion focuses on the following questions. 1) How is right heart failure syndrome best defined? 2) What are the underlying molecular mechanisms of the failing right ventricle in PAH? 3) How are RV contractility and function and their prognostic implications best assessed? 4) What is the role of targeted RV therapy? Throughout the report, the authors highlight differences between right and left heart failure and outline key areas of future investigation. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  13. Fatal persistent pulmonary hypertension presenting late in the neonatal period.

    PubMed Central

    Raine, J; Hislop, A A; Redington, A N; Haworth, S G; Shinebourne, E A

    1991-01-01

    Two cases of fatal idiopathic persistent pulmonary hypertension presented late in the neonatal period. Lungs were examined histologically by light and electron microscopy, and immunocytochemical studies were used to identify nerves. There was extension of medial smooth muscle distally along the arterial pathway so that most precapillary arteries had completely muscular walls, which in some cases completely obliterated the vessel lumen. Enlarged endothelial cells also contributed to the reduction in the size of the lumen. Nerve fibres accompanying muscular arteries were found in the alveolar region, more distal than is normal. The predominant neuropeptide was the vasoconstrictor tyrosine. Possible aetiological factors in persistent pulmonary hypertension of the newborn are increased muscularity of the peripheral pulmonary arteries antenatally, an increase in the number of vasoconstrictor nerves, or an imbalance in the production of leukotrienes and prostacyclins in the perinatal period. Images Figure 1 Figure 2 Figure 3 PMID:2025031

  14. Chronic Thromboembolic Pulmonary Hypertension: Experience from a Single Center in Mexico.

    PubMed

    Al-Naamani, Nadine; Espitia H, Gaudalupe; Velazquez-Moreno, Hugo; Macuil-Chazaro, Benjamin; Serrano-Lopez, Arturo; Vega-Barrientos, Ricardo S; Hill, Nicholas S; Preston, Ioana R

    2016-04-01

    Chronic thromboembolic pulmonary hypertension (CTEPH) is characterized by precapillary pulmonary hypertension secondary to vaso-occlusive pulmonary vasculopathy and is classified as Pulmonary Hypertension Group 4. The aim of this study is to report the clinical experience of CTEPH in Mexico. Consecutive patients diagnosed with CTEPH were identified from the Registro de Pacientes con Hipertension Pulmonar del Instituto de Seguridad y Servicio Social de los Trabajadores del Estado (REPHPISSSTE) registry between January 2009 and February 2014. Right heart catheterization was not routinely performed prior to August 2010 in the work-up of CTEPH. We identified 50 patients with CTEPH; their median age was 63 years and 58 % were female. Patients had multiple associated co-morbidities and moderate hemodynamic impairment. All patients were treated with anticoagulation. Despite surgical evaluation for pulmonary endarterectomy (PEA), only one patient underwent PEA given the lack of infrastructure for post-operative care and lack of insurance for this procedure. Most of the patients were treated with sildenafil, bosentan, or both, with increasing use of rivaroxaban and sildenafil in recent years. The overall survival of the cohort was similar to that reported in other international registries, despite the limitations of care imposed by drug availability and surgical feasibility. This is the first report on the CTEPH experience in Mexico. It highlights the similarity of patients in the REPHPISSSTE registry to those in international registries as well as the challenges that clinicians face in a resource-limited setting.

  15. Chronic Thromboembolic Pulmonary Hypertension: Experience from a Single Center in Mexico

    PubMed Central

    Al-Naamani, Nadine; Espitia H, Gaudalupe; Velazquez-Moreno, Hugo; Macuil-Chazaro, Benjamin; Serrano-Lopez, Arturo; Vega-Barrientos, Ricardo S.; Hill, Nicholas S.

    2017-01-01

    Introduction Chronic thromboembolic pulmonary hypertension (CTEPH) is characterized by precapillary pulmonary hypertension secondary to vaso-occlusive pulmonary vasculopathy and is classified as Pulmonary Hypertension Group 4. The aim of this study is to report the clinical experience of CTEPH in Mexico. Methods Consecutive patients diagnosed with CTEPH were identified from the Registro de Pacientes con Hipertension Pulmonar del Instituto de Seguridad y Servicio Social de los Trabajadores del Estado (REPHPISSSTE) registry between January 2009 and February 2014. Right heart catheterization was not routinely performed prior to August 2010 in the work-up of CTEPH. Results We identified 50 patients with CTEPH; their median age was 63 years and 58 % were female. Patients had multiple associated co-morbidities and moderate hemodynamic impairment. All patients were treated with anticoagulation. Despite surgical evaluation for pulmonary endarterectomy (PEA), only one patient underwent PEA given the lack of infrastructure for post-operative care and lack of insurance for this procedure. Most of the patients were treated with sildenafil, bosentan, or both, with increasing use of rivaroxaban and sildenafil in recent years. The overall survival of the cohort was similar to that reported in other international registries, despite the limitations of care imposed by drug availability and surgical feasibility. Conclusion This is the first report on the CTEPH experience in Mexico. It highlights the similarity of patients in the REPHPISSSTE registry to those in international registries as well as the challenges that clinicians face in a resource-limited setting. PMID:26748498

  16. Pulmonary hypertension and predominant right heart failure in thyrotoxicosis.

    PubMed

    Paran, Yael; Nimrod, Adi; Goldin, Yelena; Justo, Dan

    2006-05-01

    In this report we discuss a patient with predominant right heart failure and pulmonary hypertension, caused by thyrotoxicosis due to Graves disease, which deteriorated to asystole, due to amiodarone administration for rapid atrial fibrillation.

  17. The Hypoxic Response Contributes to Altered Gene Expression and Pre-Capillary Pulmonary Hypertension in Patients with Sickle Cell Disease

    PubMed Central

    Zhang, Xu; Zhang, Wei; Ma, Shwu-Fan; Desai, Ankit A.; Saraf, Santosh; Miasniakova, Galina; Sergueeva, Adelina; Ammosova, Tatiana; Xu, Min; Nekhai, Sergei; Abbasi, Taimur; Casanova, Nancy G.; Steinberg, Martin H.; Baldwin, Clinton T.; Sebastiani, Paola; Prchal, Josef T.; Kittles, Rick; Garcia, Joe G. N.; Machado, Roberto F.; Gordeuk, Victor R.

    2014-01-01

    Background We postulated that the hypoxic response in sickle cell disease (SCD) contributes to altered gene expression and pulmonary hypertension, a complication associated with early mortality. Methods and Results To identify genes regulated by the hypoxic response and not other effects of chronic anemia, we compared expression variation in peripheral blood mononuclear cells from 13 SCD subjects with hemoglobin SS genotype and 15 Chuvash polycythemia subjects (VHLR200W homozygotes with constitutive up-regulation of hypoxia inducible factors in the absence of anemia or hypoxia). At 5% false discovery rate, 1040 genes exhibited >1.15 fold change in both conditions; 297 were up-regulated and 743 down-regulated including MAPK8 encoding a mitogen-activated protein kinase important for apoptosis, T-cell differentiation and inflammatory responses. Association mapping with a focus on local regulatory polymorphisms in 61 SCD patients identified expression quantitative trait loci (eQTL) for 103 of these hypoxia response genes. In a University of Illinois SCD cohort the A allele of a MAPK8 eQTL, rs10857560, was associated with pre-capillary pulmonary hypertension defined as mean pulmonary artery pressure ≥25 and pulmonary capillary wedge pressure ≤15 mm Hg at right heart catheterization (allele frequency=0.66; OR=13.8, P=0.00036, n=238). This association was confirmed in an independent Walk-PHaSST cohort (allele frequency=0.65; OR=11.3, P=0.0025, n=519). The homozygous AA genotype of rs10857560 was associated with decreased MAPK8 expression and present in all 14 identified pre-capillary pulmonary hypertension cases among the combined 757 patients. Conclusions Our study demonstrates a prominent hypoxic transcription component in SCD and a MAPK8 eQTL associated with pre-capillary pulmonary hypertension. PMID:24515990

  18. The use of iloprost in early pregnancy in patients with pulmonary arterial hypertension.

    PubMed

    Elliot, C A; Stewart, P; Webster, V J; Mills, G H; Hutchinson, S P; Howarth, E S; Bu'lock, F A; Lawson, R A; Armstrong, I J; Kiely, D G

    2005-07-01

    In patients with pulmonary hypertension, pregnancy is associated with a high risk of maternal death. Such patients are counselled to avoid pregnancy, or if it occurs, are offered early interruption. Some patients, however, decide to continue with their pregnancy and others may present with symptoms for the first time whilst pregnant. Pulmonary vasodilator therapy provides a treatment option for these high-risk patients. The present study describes three patients with pulmonary arterial hypertension of various aetiologies who were treated with the prostacyclin analogue iloprost during pregnancy, and the post-partum period. Nebulised iloprost commenced as early as 8 weeks of gestation and patients were admitted to hospital between 24-36 weeks of gestation. All pregnancies were completed with a duration of between 25-36 weeks and all deliveries were by caesarean section under local anaesthetic. All patients delivered children free from congenital abnormalities, and there was no post-partum maternal or infant mortality. In conclusion, although pregnancy is strongly advised against in those with pulmonary hypertension, the current authors have achieved a successful outcome for mother and foetus with a multidisciplinary approach and targeted pulmonary vascular therapy.

  19. Partial anomalous pulmonary venous connection with suspected pulmonary hypertension in a cat.

    PubMed

    Nicolson, Geoff; Daley, Michael; Makara, Mariano; Beijerink, Niek

    2015-12-01

    Partial anomalous pulmonary venous connection has previously been reported in the dog, but never in a cat. A 14-month-old Devon Rex cat was presented for echocardiography to evaluate a heart murmur noticed during a routine examination. The pertinent finding was right-sided cardiomegaly in the absence of an atrial septal defect or tricuspid regurgitation; pulmonary hypertension was suspected. A thoracic computed tomographic angiography study identified a partial anomalous pulmonary venous connection with the lobar veins of the left caudal, right middle, right caudal and accessory lung lobes draining into the caudal vena cava. The resultant volume overload is an easily overlooked differential diagnosis for right-sided cardiac enlargement. This is the first such report of this anomaly in a cat. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Combined usage of inhaled and intravenous milrinone in pulmonary hypertension after heart valve surgery.

    PubMed

    Carev, Mladen; Bulat, Cristijan; Karanović, Nenad; Lojpur, Mihajlo; Jercić, Antonio; Nenadić, Denis; Marovih, Zlatko; Husedzinović, Ino; Letica, Dalibor

    2010-09-01

    Secondary pulmonary hypertension is a frequent condition after heart valve surgery. It may significantly complicate the perioperative management and increase patients' morbidity and mortality. The treatment has not been yet completely defined principally because of lack of the selectivity of drugs for the pulmonary vasculature. The usage of inhaled milrinone could be the possible therapeutic option. Inodilator milrinone is commonly used intravenously for patients with pulmonary hypertension and ventricular dysfunction in cardiac surgery. The decrease in systemic vascular resistance frequently necessitates concomitant use of norepinephrine. Pulmonary vasodilators might be more effective and also devoid of potentially dangerous systemic side effects if applied by inhalation, thus acting predominantly on pulmonary circulation. There are only few reports of inhaled milrinone usage in adult post cardiac surgical patients. We reported 2 patients with severe pulmonary hypertension after valve surgery. Because of desperate clinical situation, we decided to use the combination of inhaled and intravenous milrinone. Inhaled milrinone was delivered by means of pneumatic medication nebulizer dissolved with saline in final concentration of 0.5 mg/ml. The nebulizer was attached to the inspiratory limb of the ventilator circuit, just before the Y-piece. We obtained satisfactory reduction in mean pulmonary artery pressure in both patients, and they were successfully extubated and discharged. Although it is a very small sample of patients, we conclude that the combination of inhaled and intravenous milrinone could be an effective treatment of secondary pulmonary hypertension in high-risk cardiac valve surgery patient. The exact indications for inhaled milrinone usage, optimal concentrations for this route, and the beginning and duration of treatment are yet to be determined.

  1. One year efficacy and safety of oral sildenafil treatment in severe pulmonary hypertension.

    PubMed

    Samarzija, Miroslav; Zuljević, Ervin; Jakopović, Marko; Sever, Branko; Knezević, Aleksandar; Dumija, Zeljko; Vidjak, Vinko; Samija, Mirko

    2009-09-01

    Severe pulmonary hypertension is a progressive disease which leads to limitations of functional status and poor survival. We evaluated efficacy and safety of a short (3 months) and a long term (12 months) sildenafil treatment in patients with severe pulmonary hypertension. We treated 12 patients with pulmonary hypertension with oral sildenafil. Patients were followed at three time points, at baseline, and after 3 and 12 months of treatment. Primary end point was improvement in functional exercise capacity assesed by 6-minute walk test, and secondary end points were changes in right ventricle hemodynamics. We found significant improvement in 6-minute walk test distance from 357 +/- 193 m at baseline to 431 +/- 179 m after three months and further improvement to 501 +/- 159 m after 12 months (p < 0.01); decrease in right ventricule pressure from 107 +/- 42 mmHg at baseline to 87 +/- 32 mmHg after 12 months (p < 0.01); and, decrease in right ventricule diameter from 3.2 +/- 1.1 cm to 2.76 +/- 0.86 cm after twelve months (p < 0.01). Drug-related adverse events were mild and transient in our group of patients. Long-term (12 months) sildenafil treatment is effective and safe in our patients with idiopathic and chronic thrombo-embolic pulmonary hypertension.

  2. New Concepts in the Invasive and Non Invasive Evaluation of Remodelling of the Right Ventricle and Pulmonary Vasculature in Pulmonary Arterial Hypertension

    PubMed Central

    Domingo, Enric; Aguilar, Rio; López-Meseguer, Manuel; Teixidó, Gisela; Vazquez, Manuel; Roman, Antonio

    2009-01-01

    Pulmonary arterial hypertension (PAH) is a rare fatal disease defined as a sustained elevation of pulmonary arterial pressure to more than 25 mmHg at rest, with a mean pulmonary-capillary wedge pressure and left ventricular enddiastolic pressure of less than 15 mmHg at rest. Histopathology of PAH is founded on structural modifications on the vascular wall of small pulmonary arteries characterized by thickening of all its layers. These changes, named as vascular remodelling, include vascular proliferation, fibrosis, and vessel obstruction. In clinical practice the diagnosis of PAH relies on measurements of pulmonary vascular pressure and cardiac output, and calculation of pulmonary vascular resistances. Direct evaluation of pulmonary vascular structure is not routinely performed in pulmonary hypertension since current imaging techniques are limited and since little is known about the relationship between structural changes and functional characteristics of the pulmonary vasculature. Intravascular ultrasound studies in patients with pulmonary hypertension have shown a thicker middle layer, increased wall-thickness ratio and diminished pulsatility than in control patients. Optical Coherence Tomography, a new high resolution imaging modality that has proven its superiority over intravascular ultrasound (IVUS) for the detection and characterization of coronary atherosclerotic plaque composition, may potentially be a useful technique for the in vivo study of the pulmonary arterial wall. In addition current progress in Echo Doppler technique will quantify right ventricular function with parameters independent of loading conditions and not requiring volumetric approximations of the complex geometry of the right ventricle. This would allow the in vivo study of right ventricular and pulmonary artery remodelling in PAH. PMID:19452037

  3. Current pathophysiological concepts and management of pulmonary hypertension.

    PubMed

    Lourenço, André P; Fontoura, Dulce; Henriques-Coelho, Tiago; Leite-Moreira, Adelino F

    2012-03-22

    Pulmonary hypertension (PH), increasingly recognized as a major health burden, remains underdiagnosed due mainly to the unspecific symptoms. Pulmonary arterial hypertension (PAH) has been extensively investigated. Pathophysiological knowledge derives mostly from experimental models. Paradoxically, common non-PAH PH forms remain largely unexplored. Drugs targeting lung vascular tonus became available during the last two decades, notwithstanding the disease progresses in many patients. The aim of this review is to summarize recent advances in epidemiology, pathophysiology and management with particular focus on associated myocardial and systemic compromise and experimental therapeutic possibilities. PAH, currently viewed as a panvasculopathy, is due to a crosstalk between endothelial and smooth muscle cells, inflammatory activation and altered subcellular pathways. Cardiac cachexia and right ventricular compromise are fundamental determinants of PH prognosis. Combined vasodilator therapy is already mainstay for refractory cases, but drugs directed at these new pathophysiological pathways may constitute a significant advance. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Tension bulla: a cause of reversible pulmonary hypertension.

    PubMed

    Waxman, Michael J; Waxman, Jacob D; Forman, John M

    2015-01-01

    A tension pneumothorax represents a medical emergency warranting urgent diagnosis and treatment. A rapidly expanding bulla may resemble the same clinical presentation but requires an entirely different treatment. A 53-year-old woman presented with increasing shortness of breath and her physical examination and chest x-ray were interpreted as showing a tension pneumothorax. A chest tube was placed which did not resolve the process. Placement of a second chest tube was likewise unsuccessful. A chest CT was then performed and was interpreted as showing an unresolved tension pneumothorax, despite seemingly adequate placement of the 2 chest tubes. Further review of the CT showed the border of a giant bulla and a tentative diagnosis was made of a rapidly expanding bulla with tension physiology. Echocardiogram revealed significant pulmonary hypertension. The bulla was surgically excised, the patient had marked improvement in her clinical symptoms and signs, and echocardiographic follow-up showed complete resolution of the pulmonary hypertension.

  5. [Clinical and laboratory characteristics of patients with pulmonary hypertension and pulmonary vascular complications hospitalized at the Instituto Nacional de Salud del Niño].

    PubMed

    Ormeño Julca, Alexis Jose; Alvarez Murillo, Carlos Melchor; Amoretti Alvino, Pedro Miguel; Florian Florian, Angel Aladino; Castro Johanson, Rosa Aurora; Celi Perez, Maria Danisa; Huamán Prado, Olga Rocío

    2017-01-01

    The hepatopulmonary syndrome (HPS) and portopulmonary hypertension (PPHN) are distinct pulmonary vascular complications of portal hypertension (PHT) and are associated with increased morbidity and mortality. To describe the clinical and laboratory characteristics of patients with pulmonary hypertension and pulmonary vascular complications hospitalized at the Instituto Nacional de Salud del Niño. We included patients with HTP hospitalized from January 2012 to June 2013 and that during its evolution progressed with SHP or HTPP. For analysis, they were divided into a first group of patients with liver cirrhosis and a second group with extrahepatic portal vein obstruction. Of 22 patients with HPT 45.5% were male and the age range was between 1 month and 17 years. The etiology in the group of cirrhosis (n=14) was: autoimmune hepatitis (35.7%), cryptogenic cirrhosis (35.7%), inborn error of metabolism (14.3%), chronic viral hepatitis C (7.15%) virus and atresia extra-hepatic bile ducts (7.15%). Pulmonary vascular complications more frequently occurred in patients with liver cirrhosis (1 case of HPS and a case of PPHTN). They most often dyspnea, asthenia, edema, malnutrition, ascites, hypersplenism and gastrointestinal bleeding from esophageal varices was found. Also, they had elevated ALT values, alkaline phosphatase and serum albumin values decreased. In children with pulmonary hypertension, pulmonary vascular complications are rare. In the evaluation of these patients pulse oximetry should be included to detect hypoxemia and ubsequently a Doppler echocardiography and contrast echocardiography necessary. Dueto the finding of systolic pulmonary hypertension it is necessary to perform right heart catheterization.

  6. The pathophysiology of chronic thromboembolic pulmonary hypertension.

    PubMed

    Simonneau, Gérald; Torbicki, Adam; Dorfmüller, Peter; Kim, Nick

    2017-03-31

    Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare, progressive pulmonary vascular disease that is usually a consequence of prior acute pulmonary embolism. CTEPH usually begins with persistent obstruction of large and/or middle-sized pulmonary arteries by organised thrombi. Failure of thrombi to resolve may be related to abnormal fibrinolysis or underlying haematological or autoimmune disorders. It is now known that small-vessel abnormalities also contribute to haemodynamic compromise, functional impairment and disease progression in CTEPH. Small-vessel disease can occur in obstructed areas, possibly triggered by unresolved thrombotic material, and downstream from occlusions, possibly because of excessive collateral blood supply from high-pressure bronchial and systemic arteries. The molecular processes underlying small-vessel disease are not completely understood and further research is needed in this area. The degree of small-vessel disease has a substantial impact on the severity of CTEPH and postsurgical outcomes. Interventional and medical treatment of CTEPH should aim to restore normal flow distribution within the pulmonary vasculature, unload the right ventricle and prevent or treat small-vessel disease. It requires early, reliable identification of patients with CTEPH and use of optimal treatment modalities in expert centres. Copyright ©ERS 2017.

  7. Exercise physiological responses to drug treatments in chronic thromboembolic pulmonary hypertension.

    PubMed

    Charalampopoulos, Athanasios; Gibbs, J Simon R; Davies, Rachel J; Gin-Sing, Wendy; Murphy, Kevin; Sheares, Karen K; Pepke-Zaba, Joanna; Jenkins, David P; Howard, Luke S

    2016-09-01

    We tested the hypothesis that patients with chronic thromboembolic pulmonary hypertension (CTEPH) that was deemed to be inoperable were more likely to respond to drugs for treating pulmonary arterial hypertension (PAH) by using cardiopulmonary exercise (CPX) testing than those with CTEPH that was deemed to be operable. We analyzed CPX testing data of all patients with CTEPH who were treated with PAH drugs and had undergone CPX testing before and after treatment at a single pulmonary hypertension center between February 2009 and March 2013. Suitability for pulmonary endarterectomy (PEA) was decided by experts in PEA who were associated with a treatment center. The group with inoperable CTEPH included 16 patients, the operable group included 26 patients. There were no differences in demographics and baseline hemodynamic data between the groups. Unlike patients in the operable group, after drug treatment patients with inoperable CTEPH had a significantly higher peak V̇o2 (P < 0.001), work load (P = 0.002), and oxygen pulse (P < 0.001). In terms of gas exchange, there was an overall net trend toward improved V̇e/V̇co2 in the group with inoperable CTEPH, with an increased PaCO2 (P = 0.01), suggesting reduced hyperventilation. No changes were observed in patients with operable CTEPH. In conclusion, treatment with PAH drug therapy reveals important pathophysiological differences between inoperable and operable CTEPH, with significant pulmonary vascular and cardiac responses in inoperable disease. Drug effects on exercise function observed in inoperable CTEPH cannot be translated to all forms of CTEPH. Copyright © 2016 the American Physiological Society.

  8. Oral therapies for pulmonary arterial hypertension: endothelin receptor antagonists and phosphodiesterase-5 inhibitors.

    PubMed

    Channick, Richard; Preston, Iona; Klinger, James R

    2013-12-01

    The development of orally active pulmonary vasodilators has been a major breakthrough in the treatment of pulmonary arterial hypertension (PAH). Orally active medications greatly enhanced patient access to PAH treatment and increased an interest in the diagnosis and treatment of this disease that still continues. Four different orally active drugs are currently available for the treatment of PAH and several more are undergoing evaluation. This article discusses the mechanisms by which endothelin receptor antagonists and phosphodiesterase-5 inhibitors mitigate pulmonary hypertensive responses, and reviews the most recent data concerning their efficacy and limitations in the treatment of PAH. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Pulmonary Hypertension in Bronchopulmonary Dysplasia

    PubMed Central

    Berkelhamer, Sara K.; Mestan, Karen K.; Steinhorn, Robin H.

    2013-01-01

    Pulmonary hypertension (PH) is a common complication of neonatal respiratory diseases including bronchopulmonary dysplasia (BPD), and recent studies have increased awareness that PH worsens the clinical course, morbidity and mortality of BPD. Recent evidence indicates that up to 18% of all extremely low birth weight infants will develop some degree of PH during their hospitalization, and the incidence rises to 25–40% of infants with established BPD. Risk factors are not yet well understood, but new evidence shows that fetal growth restriction is a significant predictor of PH. Echocardiography remains the primary method for evaluation for BPD-associated PH, and the development of standardized screening timelines and techniques for identification of infants with BPD-associated PH remains an important ongoing topic of investigation. The use of pulmonary vasodilator medications such as nitric oxide, sildenafil, and others in the BPD population is steadily growing, but additional studies are needed regarding their long-term safety and efficacy. PMID:23582967

  10. Pre-transplant reversible pulmonary hypertension predicts higher risk for mortality after cardiac transplantation.

    PubMed

    Butler, Javed; Stankewicz, Mark A; Wu, Jack; Chomsky, Don B; Howser, Renee L; Khadim, Ghazanfar; Davis, Stacy F; Pierson, Richard N; Wilson, John R

    2005-02-01

    Pre-transplant fixed pulmonary hypertension is associated with higher post-transplant mortality. In this study, we assessed the significance of pre-transplant reversible pulmonary hypertension in patients undergoing cardiac transplantation. Overall, we studied 182 patients with baseline normal pulmonary pressures or reversible pulmonary hypertension, defined as a decrease in pulmonary vascular resistance (PVR) to < or =2.5 Wood units (WU), who underwent cardiac transplantation. Multiple recipient and donor characteristics were assessed to identify independent predictors of mortality. The average duration of follow-up was 42 +/- 28 months. Forty patients (22%) died during the follow-up period. Baseline hemodynamics for alive vs dead patients were as follows: pulmonary artery systolic (PAS) 42 +/- 15 vs 52 +/- 15 mm Hg; PA diastolic 21 +/- 9 vs 25 +/- 9 mm Hg; PA mean 28 +/- 11 vs 35 +/- 10 mm Hg; transpulmonary gradient (TPG) 9 +/- 4 vs 11 +/- 7 mm Hg (all p < 0.05); total pulmonary resistance 7.7 +/- 4.8 vs 8.8 +/- 3.2 WU (p = 0.08); and PVR 2.3 +/- 1.5 vs 2.9 +/- 1.6 WU (p = 0.06). In an unadjusted analysis, patients with PAS >50 mm Hg had a higher risk of death (odds ratio [OR] 5.96, 95% confidence interval [CI] 1.46 to 19.84 as compared with PAS < or =30 mm Hg). There was no significant difference in survival among patients with baseline PVR <2.5, 2.5 to 4.0 or >4.0 WU, but patients with TPG > or =16 had a higher risk of mortality (OR 4.93, 95% CI 1.84 to 13.17). PAS pressure was an independent predictor of mortality (OR 1.04, 95% CI 1.02 to 1.06). Recipient body mass index, history of sternotomy; and donor ischemic time were the other independent predictors of mortality. Pre-transplant pulmonary hypertension, even when reversible to a PVR of < or =2.5 WU, is associated with a higher mortality post-transplant.

  11. Pulmonary hypertension in children with congenital heart disease (PAH-CHD, PPHVD-CHD). Expert consensus statement on the diagnosis and treatment of paediatric pulmonary hypertension. The European Paediatric Pulmonary Vascular Disease Network, endorsed by ISHLT and DGPK.

    PubMed

    Kozlik-Feldmann, Rainer; Hansmann, Georg; Bonnet, Damien; Schranz, Dietmar; Apitz, Christian; Michel-Behnke, Ina

    2016-05-01

    Pulmonary arterial hypertension associated with congenital heart disease (PAH-CHD) is a complex disease that presents with a broad spectrum of morphological and haemodynamic findings of varying severity. Recently, the aspect of paediatric pulmonary hypertensive vascular disease (PPHVD) has been introduced to expand the understanding of the full spectrum of pulmonary hypertension and increased pulmonary vascular resistance. Evaluation and treatment of PAH-CHD/PPHVD-CHD can be divided into in different topics. First, defining criteria for operability and initiation of advanced therapies preoperatively and postoperatively is an unresolved issue. Second, management of Eisenmenger syndrome is still an important question, with recent evidence on the severity of the disease and a more rapidly progressive course than previously described. Third, the Fontan circulation with no subpulmonary ventricle requires a distinct discussion, definition and classification since even a mild rise in pulmonary vascular resistance may lead to the so-called failing Fontan situation. Patients with CHD and single-ventricle physiology (Fontan/total cavopulmonary anastomosis) require a particularly stepwise and individualised approach. This consensus statement is on the current evidence for the most accurate evaluation and treatment of increased pulmonary artery pressure and resistance, as well as ventricular dysfunction, in children with congenital heart defects, and provides according practical recommendations. To optimise preoperative and postoperative management in patients with PAH-CHD, diagnostic and treatment algorithms are provided. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  12. Long-Term Health Outcomes in High-Altitude Pulmonary Hypertension

    PubMed Central

    Abbott, Cheryl; Meadows, Christina A.; Roach, Robert C.; Honigman, Benjamin; Bull, Todd M.

    2017-01-01

    Abstract Robinson, Jeffrey C., Cheryl Abbott, Christina A. Meadows, Robert C. Roach, Benjamin Honigman, and Todd M. Bull. Long-term health outcomes in high-altitude pulmonary hypertension. High Alt Med Biol. 18:61–66, 2017. Background: High-altitude pulmonary hypertension (HAPH) is one of several known comorbidities that effect populations living at high altitude, but there have been no studies looking at long-term health consequences of HAPH. We aimed to determine whether HAPH during adolescence predisposes to significant pulmonary hypertension (PH) later in life, as well as identify how altitude exposure and HAPH correlate with functional class and medical comorbidities. Methods: We utilized a previously published cohort of 28 adolescents from Leadville, Colorado, that underwent right heart catheterization at 10,150 ft (3094 m) in 1962, with many demonstrating PH as defined by resting mean pulmonary arterial pressure ≥25 mmHg. We located participants of the original study and had living subjects complete demographic and health surveys to assess for the presence of PH and other medical comorbidities, along with current functional status. Results: Seventy-five percent of the individuals who participated in the original study were located. Those with HAPH in the past were more prone to have exertional limitation corresponding to WHO functional class >1. Fifty-five years following the original study, we found no significant differences in prevalence of medical comorbidities, including PH, among those with and without HAPH in their youth. Conclusions: Surveyed individuals did not report significant PH, but those with HAPH in their youth were more likely to report functional limitation. With a significant worldwide population living at moderate and high altitudes, further study of long-term health consequences is warranted. PMID:28061144

  13. Drug Treatment of Pulmonary Hypertension in Children

    PubMed Central

    Vorhies, Erika E; Ivy, David Dunbar

    2013-01-01

    Pulmonary arterial hypertension (PAH) is a rare disease in infants and children that is associated with significant morbidity and mortality. The disease is characterized by progressive pulmonary vascular functional and structural changes resulting in increased pulmonary vascular resistance and eventual right heart failure and death. In the majority of pediatric patients, PAH is idiopathic or associated with congenital heart disease and rarely is associated with other conditions such as connective tissue or thromboembolic disease. Although treatment of the underlying disease and reversal of advanced structural changes has not yet been achieved with current therapy, quality of life and survival have been improved significantly. Targeted pulmonary vasodilator therapies, including endothelin receptor antagonists, prostacyclin analogues and phosphodiesterase type 5 inhibitors, have demonstrated hemodynamic and functional improvement in children. The management of pediatric PAH remains challenging as treatment decisions continue to depend largely on results from evidence-based adult studies and the clinical experience of pediatric experts. This article reviews the current drug therapies and their use in the management of PAH in children. PMID:24114695

  14. Antenatal Saireito (TJ-114) Can Improve Pulmonary Hypoplasia and Pulmonary Vascular Remodeling in Nitrofen-Induced Congenital Diaphragmatic Hernia.

    PubMed

    Hirako, Shima; Tsuda, Hiroyuki; Kotani, Tomomi; Sumigama, Seiji; Mano, Yukio; Nakano, Tomoko; Imai, Kenji; Li, Hua; Toyokuni, Shinya; Kikkawa, Fumitaka

    2016-09-01

    Congenital diaphragmatic hernia (CDH) can induce lung hypoplasia and pulmonary hypertension and is associated with high mortality. The purpose of this study is to examine the efficacy and safety of antenatal Saireito (TJ-114), a traditional Japanese herbal medicine, in a rat CDH model. Sprague-Dawley rats were exposed to an herbicide (nitrofen, 100 mg) on embryonic day 9 (E9) to induce CDH, and antenatal Saireito (2000 mg/kg/day) was orally administered from E10 to E20. On E21, fetuses were delivered. Antenatal Saireito significantly decreased the incidence of CDH (p < 0.01), increased lung volume (p < 0.01), improved alveolarization and pulmonary artery remodeling using histological analysis, and improved respiratory function using gasometric analysis (pH; p < 0.05, and PCO2 ; p < 0.01). In addition, antenatal Saireito significantly decreased endothelin-1 and endothelin receptor A expression in the pulmonary arteries. Taken together, our results demonstrated that antenatal Saireito can improve fetal pulmonary hypoplasia and pulmonary vascular remodeling and, as a result, can improve respiratory function in a rat CDH model. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Magnetic Resonance Characterization of Cardiac Adaptation and Myocardial Fibrosis in Pulmonary Hypertension Secondary to Systemic-To-Pulmonary Shunt.

    PubMed

    Pereda, Daniel; García-Lunar, Inés; Sierra, Federico; Sánchez-Quintana, Damián; Santiago, Evelyn; Ballesteros, Constanza; Encalada, Juan F; Sánchez-González, Javier; Fuster, Valentín; Ibáñez, Borja; García-Álvarez, Ana

    2016-09-01

    Pulmonary hypertension (PH) and right ventricular (RV) dysfunction are strong predictors of morbidity and mortality among patients with congenital heart disease. Early detection of RV involvement may be useful in the management of these patients. We aimed to assess progressive cardiac adaptation and quantify myocardial extracellular volume in an experimental porcine model of PH because of aorto-pulmonary shunt using cardiac magnetic resonance (CMR). To characterize serial cardiac adaptation, 12 pigs (aorto-pulmonary shunt [n=6] or sham operation [n=6]) were evaluated monthly with right heart catheterization, CMR, and computed tomography during 4 months, followed by pathology analysis. Extracellular volume by CMR in different myocardial regions was studied in 20 animals (aorto-pulmonary shunt [n=10] or sham operation [n=10]) 3 months after the intervention. All shunted animals developed PH. CMR evidenced progressive RV hypertrophy and dysfunction secondary to increased afterload and left ventricular dilatation secondary to volume overload. Shunt flow by CMR strongly correlated with PH severity, left ventricular end-diastolic pressure, and left ventricular dilatation. T1-mapping sequences demonstrated increased extracellular volume at the RV insertion points, the interventricular septum, and the left ventricular lateral wall, reproducing the pattern of fibrosis found on pathology. Extracellular volume at the RV insertion points strongly correlated with pulmonary hemodynamics and RV dysfunction. Prolonged systemic-to-pulmonary shunting in growing piglets induces PH with biventricular remodeling and myocardial fibrosis that can be detected and monitored using CMR. These results may be useful for the diagnosis and management of congenital heart disease patients with pulmonary overcirculation. © 2016 American Heart Association, Inc.

  16. The evaluation of pulmonary hypertension using right ventricular myocardial isovolumic relaxation time.

    PubMed

    Dambrauskaite, Virginija; Delcroix, Marion; Claus, Piet; Herbots, Lieven; Palecek, Tomas; D'hooge, Jan; Bijnens, Bart; Rademakers, Frank; Sutherland, George R

    2005-11-01

    Right ventricular (RV) blood pool-derived isovolumic relaxation time (IVRT) correlates well with systolic pulmonary arterial pressure (PAP). However, because of complex parameter derivation, the method is rarely used. The aim of this study was to validate the measurement of myocardial velocity imaging-derived RV IVRT (IVRT') against invasively measured PAP. Transthoracic echocardiography with myocardial velocity imaging and right heart catheterization were performed in 33 patients with pulmonary hypertension. Blood pool IVRT and myocardial IVRTs for the tricuspid valve annulus ring, basal and apical RV free wall segments were measured and compared with data from 33 age- and sex-matched control subjects. Measured IVRTs were significantly longer in patients with pulmonary hypertension than in control subjects. The strongest correlation (R = 0.74, P < .0001) was found between systolic PAP and the heart rate-corrected IVRT' derived from the basal RV free wall segment. The basal segment IVRT' corrected for heart rate correlates well with the invasive PAP measurement and, therefore, can be used to predict systolic PAP. It can even be considered as an alternative to tricuspid regurgitation-derived PAP systolic when tricuspid regurgitation is nonrecordable. A proposed method to derive systolic PAP should be used while screening the patients at risk for pulmonary hypertension, monitoring the disease progression and the effect of treatment.

  17. [Pulmonary hypertensive crisis in children with idiopathic pulmonary arterial hypertension undergoing cardiac catheterization: the risk factors and clinical aspects].

    PubMed

    Zhang, C; Zhu, Y; Li, Q Q; Gu, H

    2018-06-02

    Objective: To investigate the risk factors, clinical features, treatments, and prevention of pulmonary hypertensive crisis (PHC) in children with idiopathic pulmonary arterial hypertension (IPAH) undergoing cardiac catheterization. Methods: This retrospective study included 67 children who were diagnosed with IPAH and underwent cardiac catheterization between April 2009 and June 2017 in Beijing Anzhen Hospital. The medical histories, clinical manifestations, treatments, and outcomes were characterized. Statistical analyses were performed using t test, χ(2) test and a multiple Logistic regression analysis. Results: During cardiac catheterization, five children developed PHC who presented with markedly elevated pulmonary artery pressure and central venous pressure, decline in systemic arterial pressure and oxygen saturation. Heart rate decreased in 4 cases and increased in the remaining one. After the treatments including cardiopulmonary resuscitation, pulmonary vasodilator therapy, improving cardiac output and blood pressure, and correction of acidosis, 4 of the 5 cases recovered, while 1 died of severe right heart failure with irreversible PHC 3 days after operation. Potential PHC was considered in 7 other patients, whose pulmonary artery pressure increased and exceeded systemic arterial pressure, oxygen saturation decreased, and central venous pressure and vital signs were relatively stable. Univariate analysis showed that the risk factors of PHC in children with IPAH undergoing cardiac catheterization were younger age ( t= 3.160, P= 0.004), low weight ( t= 4.004, P< 0.001), general anesthesia (χ(2)=4.970, P= 0.026), history of syncope (χ(2)=4.948, P= 0.026), and WHO cardiac functional class Ⅲ or Ⅳ (χ(2)=19.013, P< 0.001). Multivariate Logistic regression analysis revealed that worse WHO cardiac functional class ( Wald =13.128, P< 0.001, OR= 15.076, 95% CI : 3.475-65.418) was the independent risk factor of PHC. Conclusions: PHC is a severe and extremely

  18. Multidetector computed tomography shows reverse cardiac remodeling after double lung transplantation for pulmonary hypertension.

    PubMed

    Mandich Crovetto, D; Alonso Charterina, S; Jiménez López-Guarch, C; Pont Vilalta, M; Pérez Núñez, M; de Pablo Gafas, A; Escribano Subías, P

    2016-01-01

    To use multidetector computed tomography (MDCT) to evaluate the structural changes in the right heart and pulmonary arteries that occur in patients with severe pulmonary hypertension treated by double lung transplantation. This was a retrospective study of 21 consecutive patients diagnosed with severe pulmonary hypertension who underwent double lung transplantation at our center between 2010 and 2014. We analyzed the last MDCT study done before lung transplantation and the first MDCT study done after lung transplantation. We recorded the following variables: diameter of the pulmonary artery trunk, ratio of the diameter of the pulmonary artery trunk to the diameter of the ascending aorta, diameter of the right ventricle, ratio of the diameter of the left ventricle to the diameter of the right ventricle, and eccentricity index. Statistical analysis consisted of the comparison of the means of the variables recorded. In all cases analyzed, the MDCT study done a mean of 24±14 days after double lung transplantation showed a significant reduction in the size of the right heart chambers, with improved indices of ventricular interdependency index, and reduction in the size of the pulmonary artery trunk (p<0.001 for all the variables analyzed). Patients with pulmonary hypertension treated by double lung transplantation present early reverse remodeling of the changes in the structures of the right heart and pulmonary arterial tree. MDCT is useful for detecting these changes. Copyright © 2016 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Continuous inhaled iloprost in a neonate with d-transposition of the great arteries and severe pulmonary arterial hypertension.

    PubMed

    Dykes, John C; Torres, Marilyn; Alexander, Plato J

    2016-03-01

    This report describes the case of a neonate with d-transposition of the great arteries and severe pulmonary arterial hypertension stabilised in the post-operative period with continuous iloprost nebulisation. To our knowledge, this is the first documented method of treating post-operative severe pulmonary arterial hypertension with continuous inhaled iloprost in a patient with complex CHD. We found this method of delivering the drug very effective in stabilising haemodynamic swings in the setting of severe pulmonary arterial hypertension.

  20. Pressure-Flow During Exercise Catheterization Predicts Survival in Pulmonary Hypertension.

    PubMed

    Hasler, Elisabeth D; Müller-Mottet, Séverine; Furian, Michael; Saxer, Stéphanie; Huber, Lars C; Maggiorini, Marco; Speich, Rudolf; Bloch, Konrad E; Ulrich, Silvia

    2016-07-01

    Pulmonary hypertension manifests with impaired exercise capacity. Our aim was to investigate whether the mean pulmonary arterial pressure to cardiac output relationship (mPAP/CO) predicts transplant-free survival in patients with pulmonary arterial hypertension (PAH) and inoperable chronic thromboembolic pulmonary hypertension (CTEPH). Hemodynamic data according to right heart catheterization in patients with PAH and CTEPH at rest and during supine incremental cycle exercise were analyzed. Transplant-free survival and predictive value of hemodynamics were assessed by using Kaplan-Meier and Cox regression analyses. Seventy patients (43 female; 54 with PAH, 16 with CTEPH; median (quartiles) age, 65 [50; 73] years; mPAP, 34 [29; 44] mm Hg; cardiac index, 2.8 [2.3; 3.5] [L/min]/m(2)) were followed up for 610 (251; 1256) days. Survival at 1, 3, 5, and 7 years was 89%, 81%, 71%, and 59%. Age, World Health Organization-functional class, 6-min walk test, and mixed-venous oxygen saturation (but not resting hemodynamics) predicted transplant-free survival. Maximal workload (hazard ratio [HR], 0.94 [95% CI, 0.89-0.99]; P = .027), peak cardiac index (HR, 0.51 [95% CI, 0.27-0.95]; P = .034), change in cardiac index, 0.25 [95% CI, 0.06-0.94]; P = .040), and mPAP/CO (HR, 1.02 [95% CI, 1.01-1.03]; P = .003) during exercise predicted survival. Values for mPAP/CO predicted 3-year transplant-free survival with an area under the curve of 0.802 (95% CI, 0.66-0.95; P = .004). In this collective of patients with PAH or CTEPH, the pressure-flow relationship during exercise predicted transplant-free survival and correlated with established markers of disease severity and outcome. Right heart catheterization during exercise may provide important complementary prognostic information in the management of pulmonary hypertension. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  1. Heart Rate and Oxygen Saturation Change Patterns During 6-min Walk Test in Subjects With Chronic Thromboembolic Pulmonary Hypertension.

    PubMed

    Inagaki, Takeshi; Terada, Jiro; Yahaba, Misuzu; Kawata, Naoko; Jujo, Takayuki; Nagashima, Kengo; Sakao, Seiichiro; Tanabe, Nobuhiro; Tatsumi, Koichiro

    2018-05-01

    The 6-min walk test (6MWT) is commonly performed to assess functional status in patients with chronic thromboembolic pulmonary hypertension. However, changes in heart rate and oxygen saturation (S pO 2 ) patterns during 6MWT in patients with chronic thromboembolic pulmonary hypertension remain unclear. Thirty-one subjects with chronic thromboembolic pulmonary hypertension were retrospectively evaluated to examine the relationships between the change in heart rate (Δheart rate), heart rate acceleration time, slope of heart rate acceleration, heart rate recovery during the first minute after 6MWT (HRR1), change in S pO 2 (ΔS pO 2 ), S pO 2 reduction time, and S pO 2 recovery time during 6MWT, and the severity of pulmonary hemodynamics assessed by right heart catheterization and echocardiography. Subjects with severe chronic thromboembolic pulmonary hypertension had significantly longer heart rate acceleration time (144.9 ± 63.9 s vs 96.0 ± 42.5 s, P = .033), lower Δheart rate (47.4 ± 16.9 vs 61.8 ± 13.6 beats, P = .02), and lower HRR1 (13.3 ± 9.0 beats vs 27.1 ± 9.2 beats, P < .001) compared to subjects with mild chronic thromboembolic pulmonary hypertension. Subjects with severe chronic thromboembolic pulmonary hypertension also had significantly longer S pO 2 reduction time (178.3 ± 70.3 s vs 134.3 ± 58.4 s, P = .03) and S pO 2 recovery time (107.6 ± 35.3 s vs 69.8 ± 32.7 s, P = .004) than did subjects with mild chronic thromboembolic pulmonary hypertension. Multivariate linear regression analysis showed only mean pulmonary arterial pressure independently was associated with heart rate acceleration time and slope of heart rate acceleration. Heart rate and S pO 2 change patterns during 6MWT are predominantly associated with pulmonary hemodynamics in subjects with chronic thromboembolic pulmonary hypertension. Evaluating heart rate and S pO 2 change patterns during 6MWT may serve as a safe and convenient way to follow the change in pulmonary hemodynamics

  2. Pulmonary hypertension registry of Kerala, India (PRO-KERALA) - Clinical characteristics and practice patterns.

    PubMed

    Harikrishnan, S; Sanjay, G; Ashishkumar, M; Menon, Jaideep; Rajesh, Gopalan Nair; Kumar, Raman Krishna; George Koshy, A; Attacheril, Thankachan V; George, Raju; Punnoose, Eapen; Ashraf, S M; Arun, S R; Cholakkal, Mohammed; Jeemon, Panniyammakal

    2018-08-15

    Epidemiological data on pulmonary hypertension (PH) are scarce from developing countries including India. We established a multi-center registry of PH, the PRO-KERALA registry, in Kerala, India. Fifty hospitals enrolled consecutive adult (>18 years) patients for one year. Echocardiographic criteria (right ventricular systolic pressure - RVSP > 50 mmHg) or invasively obtained mean pulmonary artery pressure > 25 mmHg was the criteria for entry. There were 2003 patients (52% Women, mean age 56 ± 16.1 years) enrolled. The mean RVSP was 68.2 (SD = 17.9) mmHg. Majority of the study participants (59%) belonged to group 2 of the WHO Nice Classification 2013 (PH secondary to left heart disease). One-fifth (21.2%) belonged to group 1, while 13.3%, 3.8% and 2.4% of the study population belonged to groups 3, 4 and 5 respectively. More than a quarter (27%) reported PH due to left heart disease with valvular disease etiology; while 20.7% had coronary artery disease. The other common etiological factors were chronic obstructive pulmonary disease (10.6%), congenital heart disease (14.6%), idiopathic pulmonary hypertension (5.8%), and chronic thromboembolic pulmonary hypertension (3.8%). Only one of two patients with pulmonary artery hypertension was receiving PH specific therapies. The use of combination therapy was negligible and PH-specific therapies were prescribed off-label to a small proportion of patients too. PRO-KERALA is the first PH registry from South Asia and the second largest globally. Left heart diseases attribute to three fifths of patients with PH. Utilization rates of PH specific drug therapies are remarkably lower than the Western population. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Pulmonary Arterial Hypertension: A Focus on Infused Prostacyclins.

    PubMed

    Stewart, Traci

    2016-01-01

    Pulmonary arterial hypertension (PAH) is characterized by vasoconstriction and cell proliferation in the pulmonary vasculature. Guideline-driven interventions with infused prostacyclin treatment are the mainstay for patients with advanced symptoms. Infused prostacyclin therapy is complex. It is critical to manage prostacyclin therapy with precision because boluses or interruptions can be fatal. Education of patients and inpatient staff nurses is necessary to prevent negative outcomes. Nurses are an essential part of the multidisciplinary team caring for patients with PAH. The diagnostic evaluation and treatment of PAH are reviewed here, and challenges associated with the care of patients on prostacyclin therapy are discussed.

  4. Fulminant antenatal pulmonary oedema in a woman with hypertension and superimposed preeclampsia

    PubMed Central

    Kubota-Sjogren, Yukiko; Nelson-Piercy, Catherine

    2015-01-01

    An asymptomatic 40-year-old para 1 black African woman with pre-existing hypertension and a booking blood pressure of 120/80 mm Hg, was admitted with superimposed preeclampsia diagnosed because of worsening hypertension and significant proteinuria at 27+5 weeks gestation. Antenatally, her blood pressure was controlled with labetalol, and blood tests including serum creatinine were within normal limits for pregnancy. Three days later, the patient developed severe hypertension despite treatment, and reported sudden onset severe shortness of breath; oxygen saturations on air dropped to 93%. Auscultation revealed widespread crepitations leading to a working diagnosis of pulmonary oedema. Despite appropriate management, respiratory function continued to deteriorate and she required intubation, ventilation and emergency caesarean section under general anaesthesia. A live male infant was delivered floppy and was intubated and resuscitated. He awaits discharge home on oxygen. The mother's pulmonary oedema resolved postpartum. Echocardiogram showed left ventricular hypertrophy but normal left ventricular function and the patient's hypertension is being controlled on medication. PMID:26607194

  5. Pulmonary hypertension in chronic obstructive pulmonary disease and interstitial lung diseases.

    PubMed

    Weitzenblum, Emmanuel; Chaouat, Ari; Canuet, Matthieu; Kessler, Romain

    2009-08-01

    Pulmonary hypertension (PH) is a common complication of chronic respiratory diseases and particularly of chronic obstructive pulmonary disease (COPD) and interstitial lung diseases (ILD). Owing to its frequency COPD is by far the most common cause of PH. It is generally a mild to moderate PH, pulmonary artery mean pressure (PAP) usually ranging between 20 and 25 mm Hg, but PH may worsen during exercise, sleep, and particularly during exacerbations of the disease. These acute increases in PAP may lead to the development of right heart failure. A small proportion of COPD patients may present "disproportionate" PH defined by a resting PAP >35 to 40 mm Hg. The prognosis is particularly poor in these patients. PH is relatively frequent in advanced ILD and particularly in idiopathic pulmonary fibrosis. As in COPD the diagnosis is suggested by Doppler echocardiography, but the confirmation still requires right heart catheterization. As in COPD, functional (alveolar hypoxia) and morphological factors (vascular remodeling, destruction of the pulmonary parenchyma) explain the elevation of pulmonary vascular resistance that leads to PH. Also as in COPD PH is most often mild to moderate. In ILD the presence of PH predicts a poor prognosis. The treatment of PH relies on long-term oxygen therapy. "New" vasodilator drugs have rarely been used in COPD and ILD patients exhibiting severe PH. In advanced ILD the presence of PH is a supplemental argument for considering lung transplantation.

  6. [The role of N-acetylcysteine against the injury of pulmonary artery induced by LPS].

    PubMed

    Huang, Xin-li; Ling, Yi-ling; Zhu, Tie-nian

    2002-11-01

    To investigate the alleviating effect of N-acetylcysteine (NAC) on lung injury induced by lipopolysaccharides (LPS) and its mechanism. The effects of NAC on changes of the pulmonary arterial reactivity and the ultrastructure of pulmonary arterial endothelium induced by LPS were observed with the isolated artery ring technique and scanning electron microscope (SEM). Malondialdehyde (MDA), nitric oxide (NO) contents and superoxide dismutase (SOD) activity of pulmonary artery tissues were detected. The exposure of pulmonary artery to LPS (4 microg/ml, 7 h) led to reduction of endothelium-dependent relaxation response to acetylcholine (ACh), which was reversed by the concomitant exposure to NAC (0.5 mmol/L, 7 h), whereas NAC itself had no effect on the response. Significant structural injury were observed under SEM in LPS group and alleviated the changes in LPS + NAC group. The MDA, NO contents increased but SOD activity decreased in LPS group, which were reversed by the concomitant exposure to NAC. NAC protects pulmonary artery endothelium and enhances endothelium-dependent relaxation response of pulmonary artery by antioxidation effect, which may be one of the mechanisms of its reversing pulmonary artery hypertension and following lung injury induced by LPS.

  7. A Case of Pulmonary Hypertension Due to Fistulas Between Multiple Systemic Arteries and the Right Pulmonary Artery in an Adult Discovered for Occulted Dyspnoea.

    PubMed

    Li, Ji-Feng; Zhai, Zhen-Guo; Kuang, Tu-Guang; Liu, Min; Ma, Zhan-Hong; Li, Yi-Dan; Yang, Yuan-Hua

    2017-08-01

    Pulmonary hypertension (PH) can be caused by a fistula between the systemic and pulmonary arteries. Here, we report a case of PH due to multiple fistulas between systemic arteries and the right pulmonary artery where the ventilation/perfusion scan showed no perfusion in the right lung. A 32-year-old male patient was hospitalised for community-acquired pneumonia. After treatment with antibiotics, the pneumonia was alleviated but dyspnoea persisted. Pulmonary hypertension was diagnosed using right heart catheterisation, which detected the mean pulmonary artery pressure as 37mmHg. The anomalies were confirmed by contrast-enhanced CT scan (CT pulmonary angiography), systemic arterial angiography and pulmonary angiography. Following embolisation of the largest fistula, the haemodynamics and oxygen dynamics did not improve, and even worsened to some extent. After supportive therapy including diuretics and oxygen, the patient's dyspnoea, WHO function class and right heart function by transthoracic echocardiography all improved during follow-up. Pulmonary hypertension can be present even when the right lung perfusion is lost. Closure of fistulas by embolisation, when those fistulas act as the proliferating vessels, may be harmful. Copyright © 2017 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  8. Protective effect of pulmonary hypertension against right-sided tamponade in pericardial effusion.

    PubMed

    Khan, M Usman; Khouzam, Rami N

    2015-01-01

    Patients with pericardial effusion are susceptible to cardiac tamponade. A compressing circumferential pericardial effusion typically results in an equalization of intracardiac and pericardial pressure during diastole and a progressive collapse of the right atrium and ventricle. Pulmonary hypertension that increases the afterload of the right ventricle may result in elevated pressures initially in the right ventricle and subsequently in the right atrium. This may lead to right ventricular hypertrophy and a pathologic structural and functional remodeling of both right heart chambers. Conversely, elevated pressures within the right heart chambers caused by longstanding pulmonary hypertension may resist and protect against tamponade of these chambers in the setting of a coexisting pericardial effusion. In such cases, a sudden reduction in pulmonary arterial pressures may result in tamponade of the right heart chambers.

  9. Cutis laxa and fatal pulmonary hypertension: a newly recognized syndrome?

    PubMed Central

    Brunetti-Pierri, Nicola; Piccolo, Pasquale; Morava, Eva; Wevers, Ron A.; McGuirk, Megan; Johnson, Yvette R.; Urban, Zsolt; Dishop, Megan K.; Potocki, Lorraine

    2015-01-01

    Cutis laxa is a connective tissue disorder with distinctive lax, redundant, and inelastic skin. It is a genetically heterogenous disorder with autosomal dominant and recessive patterns of inheritance. We report a patient with cutis laxa supported by clinical, microscopic, and ultrastructural findings. Molecular analysis of fibulin-4 and -5, of the α2 subunit of the V-type H+ ATPase, and of the component of the oligomeric Golgi complex 7 (COG7) genes excluded the type I and type II autosomal recessive forms of cutis laxa, and congenital disorders of glycosylation associated with cutis laxa. Remarkably, our patient also presented severe and lethal pulmonary hypertension as a newborn. This case with cutis laxa, severe pulmonary hypertension, and no detectable mutations in fibulin-4 and -5 genes may represent a previously unrecognized syndrome. PMID:21285876

  10. Multi-view approach for the diagnosis of pulmonary hypertension using transthoracic echocardiography.

    PubMed

    Schneider, Matthias; Pistritto, Anna Maria; Gerges, Christian; Gerges, Mario; Binder, Christina; Lang, Irene; Maurer, Gerald; Binder, Thomas; Goliasch, Georg

    2018-05-01

    Pulmonary hypertension (PH) is a disease with severe morbidity and mortality. Echocardiography plays an essential role in the screening of PH. The quality of the acquired continuous wave Doppler signal is the major limitation of the method and can greatly affect the accuracy of estimated pulmonary pressures. The aim of this study was to evaluate the clinical need to image from multiple ultrasound windows in patients with suspected pulmonary hypertension. We prospectively evaluated 65 patients (43% male, mean age 67.2 years) with echocardiography and right heart catheterization. 17% had invasively normal pulmonary pressures, 83% had pulmonary hypertension. Peak tricuspid regurgitation (TR) velocity was imaged in five echocardiographic views. Sufficient Doppler signal was recorded in 94% of the patients. Correlation for overall peak TR velocity with invasively measured systolic pulmonary artery pressure was r = 0.83 (p < 0.001). Considering all five imaging windows resulted in a sensitivity of 87%, and a specificity of 91% for correct diagnosis of PH with an AUC of 0.89, which was significantly better as compared to sole imaging from the right ventricular modified apical four-chamber view (AUC 0.85, p = 0.0395). Additional imaging from atypical views changed the overall peak TR velocity in 32% of the patients. A multiple-view approach changed the echocardiographic diagnosis of PH in 11% of the patients as opposed to sole imaging from an apical four-chamber view. This study comprehensively assessed the impact on clinical decision making when evaluating patients with an echocardiographic multiplane approach for suspected PH. This approach substantially increased sensitivity without a decrease in specificity.

  11. Lung tissue remodelling in MCT-induced pulmonary hypertension: a proposal for a novel scoring system and changes in extracellular matrix and fibrosis associated gene expression.

    PubMed

    Franz, Marcus; Grün, Katja; Betge, Stefan; Rohm, Ilonka; Ndongson-Dongmo, Bernadin; Bauer, Reinhard; Schulze, P Christian; Lichtenauer, Michael; Petersen, Iver; Neri, Dario; Berndt, Alexander; Jung, Christian

    2016-12-06

    Pulmonary hypertension (PH) is associated with vasoconstriction and remodelling. We studied lung tissue remodelling in a rat model of PH with special focus on histology and extracellular matrix (ECM) remodelling. After induction of PH by monocrotaline, lung tissue was analysed histologically, by gene expression analysis and immunofluorescence labelling of ED-A domain containing fibronectin (ED-A+ Fn), B domain containing tenascin-C (B+ Tn-C) as well as alpha-smooth muscle actin (α-SMA). Serum concentrations of ED-A+ Fn were determined by ELISA. Systolic right ventricular pressure (RVPsys) values were significantly elevated in PH (n = 18; 75 ± 26.4 mmHg) compared to controls (n = 10; 29 ± 19.3 mmHg; p = 0.015). The histological sum-score was significantly increased in PH (8.0 ± 2.2) compared to controls (2.5 ± 1.6; p < 0.001). Gene expression analysis revealed relevant induction of several key genes of extracellular matrix remodelling. Increased protein deposition of ED-A+ Fn but not of B+ Tn-C and α-SMA in lung tissue was found in PH (2.88 ± 3.19 area%) compared to controls (1.32 ± 0.16 area%; p = 0.030). Serum levels of ED-A+ Fn were significantly higher in PH (p = 0.007) positively correlating with RVPsys (r = 0.618, p = 0.019). We here present a novel histological scoring system to assess lung tissue remodelling in PH. Gene expression analysis revealed induction of candidate genes involved in collagen matrix turnover, fibrosis and vascular remodelling. The stable increased tissue deposition of ED-A+ Fn in PH as well as its dynamics in serum suggests a role as a promising novel biomarker and potential therapeutic target.

  12. VEGF ameliorates pulmonary hypertension through inhibition of endothelial apoptosis in experimental lung fibrosis in rats

    PubMed Central

    Farkas, Laszlo; Farkas, Daniela; Ask, Kjetil; Möller, Antje; Gauldie, Jack; Margetts, Peter; Inman, Mark; Kolb, Martin

    2009-01-01

    Idiopathic pulmonary fibrosis (IPF) can lead to the development of secondary pulmonary hypertension (PH) and ultimately death. Despite this known association, the precise mechanism of disease remains unknown. Using a rat model of IPF, we explored the role of the proangiogenic and antiapoptotic growth factor VEGF in the vascular remodeling that underlies PH. In this model, adenoviral delivery of active TGF-β1 induces pulmonary arterial remodeling, loss of the microvasculature in fibrotic areas, and increased pulmonary arterial pressure (PAP). Immunohistochemistry and mRNA analysis revealed decreased levels of VEGF and its receptor, which were inversely correlated with PAP and endothelial cell apoptosis in both the micro- and macrovasculature. Treatment of IPF rats with adenoviral delivery of VEGF resulted in reduced endothelial apoptosis, increased vascularization, and improved PAP due to reduced remodeling but worsened PF. These data show that experimental pulmonary fibrosis (PF) leads to loss of the microvasculature through increased apoptosis and to remodeling of the pulmonary arteries, with both processes resulting in PH. As administration of VEGF ameliorated the PH in this model but concomitantly aggravated the fibrogenic process, VEGF-based therapies should be used with caution. PMID:19381013

  13. Submaximal Exercise Pulmonary Gas Exchange in Left Heart Disease Patients With Different Forms of Pulmonary Hypertension.

    PubMed

    Taylor, Bryan J; Smetana, Michael R; Frantz, Robert P; Johnson, Bruce D

    2015-08-01

    We determined whether pulmonary gas exchange indices during submaximal exercise are different in heart failure (HF) patients with combined post- and pre-capillary pulmonary hypertension (PPC-PH) versus HF patients with isolated post-capillary PH (IPC-PH) or no PH. Pulmonary hemodynamics and pulmonary gas exchange were assessed during rest and submaximal exercise in 39 HF patients undergoing right heart catheterization. After hemodynamic evaluation, patients were classified as having no PH (n = 11), IPC-PH (n = 12), or PPC-PH (n = 16). At an equivalent oxygen consumption, end-tidal CO2 (PETCO2) and arterial oxygen saturation (SaO2) were greater in no-PH and IPC-PH versus PPC-PH patients (36.1 ± 3.2 vs. 31.7 ± 4.5 vs. 26.2 ± 4.7 mm Hg and 97 ± 2 vs. 96 ± 3 vs. 91 ± 1%, respectively). Conversely, dead-space ventilation (VD/VT) and the ventilatory equivalent for carbon dioxide (V˙(E)/V˙CO2 ratio) were lower in no-PH and IPC-PH versus PPC-PH patients (0.37 ± 0.05 vs. 0.38 ± 0.04 vs. 0.47 ± 0.03 and 38 ± 5 vs. 42 ± 8 vs. 51 ± 8, respectively). The exercise-induced change in V(D)/V(T), V˙(E)/V˙CO2 ratio, and PETCO2 correlated significantly with the change in mean pulmonary arterial pressure, diastolic pressure difference, and transpulmonary pressure gradient in PPC-PH patients only. Noninvasive pulmonary gas exchange indices during submaximal exercise are different in HF patients with combined post- and pre-capillary PH compared with patients with isolated post-capillary PH or no PH. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. [Estimation of pulmonary hypertension in lung and valvular heart diseases by perfusion lung scintigraphy].

    PubMed

    Fujii, T; Tanaka, M; Yazaki, Y; Kitabayashi, H; Koizumi, T; Kubo, K; Sekiguchi, M; Yano, K

    1999-06-01

    To estimate pulmonary hypertension, we measured postural differences in pulmonary blood flow for the lateral decubitus positions on perfusion lung scintigrams with Tc-99 m macro-aggregated albumin, applying the method devised by Tanaka et al (Eur J Nucl Med 17: 320-326, 1990). Utilizing a scintillation camera coupled to a minicomputer system, changes in the distribution of pulmonary blood flow caused by gravitational effects, namely, changes in the total count ratios for the right lung versus the left lung in the right and left lateral decubitus positions (R/L), were obtained for 44 patients with lung disease, 95 patients with valvular heart disease, and 23 normal subjects. Mean standard deviation in the R/L ratios was 3.09 +/- 1.28 for the normal subjects, 1.97 +/- 0.89 for the patients with lung disease, and 1.59 +/- 0.59 for the patients with valvular heart disease. The R/L ratios correlated with mean pulmonary arterial pressure and cardio-thoracic ratios in the lung disease and valvular heart disease groups, with pulmonary arteriolar resistance in the former, and with pulmonary capillary wedge pressure in the latter. Defining pulmonary hypertension (> 20 mmHg) as an R/L ratio of less than 1.81, which is the mean-1 standard deviation for normal subjects, the sensitivity and the specificity of the R/L ratio for the diagnosis of pulmonary hypertension were 62.9% and 76.2%, respectively, for the lung disease patients, and 80.3% and 61.8%, respectively, for the valvular heart disease patients. This method seems to be useful for the pathophysiologic evaluation of pulmonary perfusion in cases of lung disease and valvular heart disease.

  15. High-altitude pulmonary hypertension is associated with a free radical-mediated reduction in pulmonary nitric oxide bioavailability

    PubMed Central

    Bailey, Damian M; Dehnert, Christoph; Luks, Andrew M; Menold, Elmar; Castell, Christian; Schendler, Guido; Faoro, Vitalie; Gutowski, Mariusz; Evans, Kevin A; Taudorf, Sarah; James, Philip E; McEneny, J; Young, Ian S; Swenson, Erik R; Mairbäurl, Heimo; Bärtsch, Peter; Berger, Marc M

    2010-01-01

    High altitude (HA)-induced pulmonary hypertension may be due to a free radical-mediated reduction in pulmonary nitric oxide (NO) bioavailability. We hypothesised that the increase in pulmonary artery systolic pressure (PASP) at HA would be associated with a net transpulmonary output of free radicals and corresponding loss of bioactive NO metabolites. Twenty-six mountaineers provided central venous and radial arterial samples at low altitude (LA) and following active ascent to 4559 m (HA). PASP was determined by Doppler echocardiography, pulmonary blood flow by inert gas re-breathing, and vasoactive exchange via the Fick principle. Acute mountain sickness (AMS) and high-altitude pulmonary oedema (HAPE) were diagnosed using clinical questionnaires and chest radiography. Electron paramagnetic resonance spectroscopy, ozone-based chemiluminescence and ELISA were employed for plasma detection of the ascorbate free radical (A·−), NO metabolites and 3-nitrotyrosine (3-NT). Fourteen subjects were diagnosed with AMS and three of four HAPE-susceptible subjects developed HAPE. Ascent decreased the arterio-central venous concentration difference (a-cvD) resulting in a net transpulmonary loss of ascorbate, α-tocopherol and bioactive NO metabolites (P < 0.05 vs. LA). This was accompanied by an increased a-cvD and net output of A·− and lipid hydroperoxides (P < 0.05 vs. sea level, SL) that correlated against the rise in PASP (r= 0.56–0.62, P < 0.05) and arterial 3-NT (r= 0.48–0.63, P < 0.05) that was more pronounced in HAPE. These findings suggest that increased PASP and vascular resistance observed at HA are associated with a free radical-mediated reduction in pulmonary NO bioavailability. PMID:20876202

  16. Pulmonary Hypertension with Left Heart Disease: Prevalence, Temporal Shifts in Etiologies and Outcome.

    PubMed

    Weitsman, Tatyana; Weisz, Giora; Farkash, Rivka; Klutstein, Marc; Butnaru, Adi; Rosenmann, David; Hasin, Tal

    2017-11-01

    Pulmonary hypertension has many causes. While it is conventionally thought that the most prevalent is left heart disease, little information about its proportion, causes, and implications on outcome is available. Between 1993 and 2015, 12,115 of 66,949 (18%) first adult transthoracic echocardiograms were found to have tricuspid incompetence gradient ≥40 mm Hg, a pulmonary hypertension surrogate. Left heart disease was identified in 8306 (69%) and included valve malfunction in 4115 (49%), left ventricular systolic dysfunction in 2557 (31%), and diastolic dysfunction in 1776 (21%). Patients with left heart disease, as compared with those without left heart disease, were of similar age, fewer were females (50% vs 63% P <.0001), and they had higher tricuspid incompetence gradient (median 48 mm Hg [interquartile range 43, 55] vs 46 mm Hg [42, 54] P <.0001). In reviewing trends over 20 years, the relative proportions of systolic dysfunction decreased and diastolic dysfunction increased (P for trend <.001), while valve malfunction remained the most prevalent cause of pulmonary hypertension with left heart disease. Independent predictors of mortality were age (hazard ratio [HR] 1.05; 95% CI, 1.04-1.05; P <.0001), tricuspid incompetence gradient (HR 1.02; 95% CI, 1.01-1.02, P <.0001 per mm Hg increase), and female sex (HR 0.87; 95% CI, 0.83-0.91, P <.0001). Overall, left heart disease was not an independent risk factor for mortality (HR 1.04; 95% CI, 0.99-1.09; P = .110), but patients with left ventricular systolic dysfunction and with combined systolic dysfunction and valve malfunction had increased mortality compared with patients with pulmonary hypertension but without left heart disease (HR 1.30; 95% CI, 1.20-1.42 and HR 1.44; 95% CI, 1.33-1.55, respectively; P <.0001 for both). Pulmonary hypertension was found to be associated with left heart disease in 69% of patients. Among these patients, valve malfunction and diastolic dysfunction emerged as prominent causes

  17. Pulmonary hypertension due to left heart disease causes intrapulmonary venous arterialization in rats.

    PubMed

    Fujimoto, Yoshitaka; Urashima, Takashi; Kawachi, Fumie; Akaike, Toru; Kusakari, Yoichiro; Ida, Hiroyuki; Minamisawa, Susumu

    2017-11-01

    A rat model of left atrial stenosis-associated pulmonary hypertension due to left heart diseases was prepared to elucidate its mechanism. Five-week-old Sprague-Dawley rats were randomly divided into 2 groups: left atrial stenosis and sham-operated control. Echocardiography was performed 2, 4, 6, and 10 weeks after surgery, and cardiac catheterization and organ excision were subsequently performed at 10 weeks after surgery. Left ventricular inflow velocity, measured by echocardiography, significantly increased in the left atrial stenosis group compared with that in the sham-operated control group (2.2 m/s, interquartile range [IQR], 1.9-2.2 and 1.1 m/s, IQR, 1.1-1.2, P < .01), and the right ventricular pressure-to-left ventricular systolic pressure ratio significantly increased in the left atrial stenosis group compared with the sham-operated control group (0.52, IQR, 0.54-0.60 and 0.22, IQR, 0.15-0.27, P < .01). The right ventricular weight divided by body weight was significantly greater in the left atrial stenosis group than in the sham-operated control group (0.54 mg/g, IQR, 0.50-0.59 and 0.39 mg/g, IQR, 0.38-0.43, P < .01). Histologic examination revealed medial hypertrophy of the pulmonary vein was thickened by 1.6 times in the left atrial stenosis group compared with the sham-operated control group. DNA microarray analysis and real-time polymerase chain reaction revealed that transforming growth factor-β mRNA was significantly elevated in the left atrial stenosis group. The protein levels of transforming growth factor-β and endothelin-1 were increased in the lung of the left atrial stenosis group by Western blot analyses. We successfully established a novel, feasible rat model of pulmonary hypertension due to left heart diseases by generating left atrial stenosis. Although pulmonary hypertension was moderate, the pulmonary hypertension due to left heart diseases model rats demonstrated characteristic intrapulmonary venous arterialization and

  18. Chronic thromboembolic pulmonary hypertension: Reversal of pulmonary hypertension but not sleep disordered breathing following pulmonary endarterectomy.

    PubMed

    La Rovere, Maria Teresa; Fanfulla, Francesco; Taurino, Anna Eugenia; Bruschi, Claudio; Maestri, Roberto; Robbi, Elena; Maestroni, Rita; Pronzato, Caterina; Pin, Maurizio; D'Armini, Andrea M; Pinna, Gian Domenico

    2018-08-01

    It has been hypothesized that pre-capillary pulmonary hypertension (PH) may trigger sleep disordered breathing (SDB). In patients with chronic thromboembolic PH (CTEPH), pulmonary endarterectomy (PEA) is potentially effective to improve PH. We assessed the pre- and post-operative prevalence of SDB in CTEPH patients submitted to PEA and the relationship between SDB and clinical, pulmonary and hemodynamic factors. Unattended cardiorespiratory recording was performed the night before and one month after elective PEA in 50 patients. Before the intervention SDB prevalence (obstructive or central AHI ≥ 5/h) was 64%: 18 patients (66% female) had No-SDB, 22 (68% female) had dominant obstructive (dOSA), and 10 (20% female) had dominant central sleep apnea (dCSA). There were no differences in risk factors and the need for supplemental oxygen. Mean right atrial (mRAP) and pulmonary artery pressures (mPAP) showed a more compromised profile from No-SDB to dOSA and dCSA (mRAP: 5.5 ± 3.9 vs 7.0 ± 4.5 vs 9.7 ± 4.3 mm Hg (p = 0.054), mPAP: 39 ± 12 vs 48 ± 11 vs 51 ± 16 mm Hg (p = 0.0.47)). By contrast, cardiac index did not differ. At post-intervention, the prevalence of SDB was 68%: 16 patients had No-SDB, while 30 had dOSA and 4 dCSA, with no relationship with the relief from PH. Interestingly, 5 patients with previous CSA moved to the OSA group and 2 normalized. Prevalence of SDB is high in patients with CTEPH even after resolution of PH. Our data support the hypothesis that pre-capillary PH may trigger CSA but not OSA, and suggest that OSA may play a role in the development of CTEPH. Copyright © 2018. Published by Elsevier B.V.

  19. A consensus approach to the classification of pediatric pulmonary hypertensive vascular disease: Report from the PVRI Pediatric Taskforce, Panama 2011

    PubMed Central

    del Cerro, Maria Jesus; Abman, Steven; Diaz, Gabriel; Freudenthal, Alexandra Heath; Freudenthal, Franz; Harikrishnan, S.; Haworth, Sheila G.; Ivy, Dunbar; Lopes, Antonio A.; Raj, J. Usha; Sandoval, Julio; Stenmark, Kurt; Adatia, Ian

    2011-01-01

    Current classifications of pulmonary hypertension have contributed a great deal to our understanding of pulmonary vascular disease, facilitated drug trials, and improved our understanding of congenital heart disease in adult survivors. However, these classifications are not applicable readily to pediatric disease. The classification system that we propose is based firmly in clinical practice. The specific aims of this new system are to improve diagnostic strategies, to promote appropriate clinical investigation, to improve our understanding of disease pathogenesis, physiology and epidemiology, and to guide the development of human disease models in laboratory and animal studies. It should be also an educational resource. We emphasize the concepts of perinatal maladaptation, maldevelopment and pulmonary hypoplasia as causative factors in pediatric pulmonary hypertension. We highlight the importance of genetic, chromosomal and multiple congenital malformation syndromes in the presentation of pediatric pulmonary hypertension. We divide pediatric pulmonary hypertensive vascular disease into 10 broad categories. PMID:21874158

  20. Pulmonary veins in the normal lung and pulmonary hypertension due to left heart disease

    PubMed Central

    Hunt, James M.; Bethea, Brian; Liu, Xiang; Gandjeva, Aneta; Mammen, Pradeep P. A.; Stacher, Elvira; Gandjeva, Marina R.; Parish, Elisabeth; Perez, Mario; Smith, Lynelle; Graham, Brian B.; Kuebler, Wolfgang M.

    2013-01-01

    Despite the importance of pulmonary veins in normal lung physiology and the pathobiology of pulmonary hypertension with left heart disease (PH-LHD), pulmonary veins remain largely understudied. Difficult to identify histologically, lung venous endothelium or smooth muscle cells display no unique characteristic functional and structural markers that distinguish them from pulmonary arteries. To address these challenges, we undertook a search for unique molecular markers in pulmonary veins. In addition, we addressed the expression pattern of a candidate molecular marker and analyzed the structural pattern of vascular remodeling of pulmonary veins in a rodent model of PH-LHD and in lung tissue of patients with PH-LHD obtained at time of placement on a left ventricular assist device. We detected urokinase plasminogen activator receptor (uPAR) expression preferentially in normal pulmonary veins of mice, rats, and human lungs. Expression of uPAR remained elevated in pulmonary veins of rats with PH-LHD; however, we also detected induction of uPAR expression in remodeled pulmonary arteries. These findings were validated in lungs of patients with PH-LHD. In selected patients with sequential lung biopsy at the time of removal of the left ventricular assist device, we present early data suggesting improvement in pulmonary hemodynamics and venous remodeling, indicating potential regression of venous remodeling in response to assist device treatment. Our data indicate that remodeling of pulmonary veins is an integral part of PH-LHD and that pulmonary veins share some key features present in remodeled yet not normotensive pulmonary arteries. PMID:24039255

  1. Distinctive metabolomic fingerprint in scleroderma patients with pulmonary arterial hypertension.

    PubMed

    Deidda, Martino; Piras, Cristina; Cadeddu Dessalvi, Christian; Locci, Emanuela; Barberini, Luigi; Orofino, Susanne; Musu, Mario; Mura, Mario Nicola; Manconi, Paolo Emilio; Finco, Gabriele; Atzori, Luigi; Mercuro, Giuseppe

    2017-08-15

    Pulmonary arterial hypertension (PAH) in systemic sclerosis (SS) identifies a poor prognosis subset of patients. Recent studies suggested a "metabolic theory" on the development of pulmonary arterial hypertension. On this basis we performed a metabolomic study in order to evaluate whether differences in pulmonary arterial blood metabolites were identifiable in SS patients with increased pulmonary vascular resistance (PVR). We studied 18 SS patients (age 58.7±15.6years) free of pulmonary fibrosis who underwent a right heart catheterization (RHC). A blood sample was collected during the RHC in the distal peripheral circulation of the pulmonary arteries to perform the metabolomic analysis. Based on PVR we divided the population into Group A (n=8; PVR=1.16±0.23WU) and Group B (n=10; PVR=2.67±0.67WU; p<0.001 vs Group A). No significant differences were identified in terms of anthropometric, clinical, echo and therapeutic characteristics. At RHC the 2 groups showed a difference in mean pulmonary pressure values (Group A: 20±4mmHg; Group B: 27±3.4mmHg; p=0.03), with mild PAH in Group B. We applied an OSC-PLS-DA with a clear clusterization; SSc patients with PAH showed an increase in acetate, alanine, lactate, and lipoprotein levels and a decrease in γ-aminobutyrate, arginine, betaine, choline, creatine, creatinine, glucose, glutamate, glutamine, glycine, histidine, phenylalanine, and tyrosine levels CONCLUSIONS: Our results suggest that, despite similar clinical and disease-related parameters, SSc patients who develop PAH have an unfavorable metabolic profile able to cause an impaired production of metabolites with protective effects on endothelial cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Preliminary experience with combined inhaled milrinone and prostacyclin in cardiac surgical patients with pulmonary hypertension.

    PubMed

    Laflamme, Maxime; Perrault, Louis P; Carrier, Michel; Elmi-Sarabi, Mahsa; Fortier, Annik; Denault, André Y

    2015-02-01

    To retrospectively evaluate the effects of combined inhaled prostacyclin and milrinone to reduce the severity of pulmonary hypertension when administered prior to cardiopulmonary bypass. Retrospective case control analysis of high-risk patients undergoing cardiac surgery. Single cardiac center. Sixty one adult cardiac surgical patients with pulmonary hypertension, 40 of whom received inhalation therapy. Inhaled milrinone and inhaled prostacyclin were administered before cardiopulmonary bypass (CPB). Administration of both inhaled prostacyclin and milrinone was associated with reductions in central venous pressure, and mean pulmonary artery pressure, increases in cardiac index, heart rate, and the mean arterial-to-mean pulmonary artery pressure ratio (p < 0.05), with no significant change in mean arterial pressure. The rate of difficult and complex separation from CPB was 51% in the inhaled group and 70% in the control group (p = 0.1638). Postoperative vasoactive requirement was reduced at 12 hours (35.9 v 73.7% p<0.01) and 24 hours (25.6 v 57.9% p<0.05) postoperatively in the combined inhaled agent group. Hospital length of stay and mortality were similar between the groups. Preemptive treatment of pulmonary hypertension with a combination of inhaled prostacyclin and milrinone before CPB was associated with a reduction in the severity of pulmonary hypertension. In addition, a significant reduction in vasoactive support in the intensive care unit during the first 24 hours after cardiac surgery was observed. The impact of this strategy on postoperative survival needs to be determined. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Increased activation of NADPH oxidase 4 in the pulmonary vasculature in experimental diaphragmatic hernia.

    PubMed

    Gosemann, Jan-H; Friedmacher, Florian; Hunziker, Manuela; Alvarez, Luis; Corcionivoschi, Nicolae; Puri, Prem

    2013-01-01

    Persistent pulmonary hypertension remains a major cause of mortality and morbidity in congenital diaphragmatic hernia (CDH). NADPH oxidases (Nox) are the main source of superoxide production in vasculature. Nox4 is highly expressed in the smooth muscle and endothelial cells of the vascular wall and increased activity has been reported in the pulmonary vasculature of both experimental and human pulmonary hypertension. Peroxisome proliferator-activated receptor (PPARγ) is a key regulator of Nox4 expression. Targeted depletion of PPARγ results in pulmonary hypertension phenotype whereas activation of PPARγ attenuates pulmonary hypertension and reduces Nox4 production. The nitrofen-induced CDH model is an established model to study the pathogenesis of pulmonary hypertension in CDH. It has been previously reported that PPARγ-signaling is disrupted during late gestation and H(2)O(2) production is increased in nitrofen-induced CDH. We designed this study to investigate the hypothesis that Nox4 expression and activation is increased and vascular PPARγ is decreased in nitrofen-induced CDH. Pregnant rats were treated with either nitrofen or vehicle on gestational day 9 (D9). Fetuses were sacrificed on D21 and divided into control and CDH. RT-PCR, western blotting and confocal-immunofluorescence-double-staining were performed to determine pulmonary expression levels of PPARγ, Nox4 and Nox4-activation (p22(phox)). There was a marked increase in medial and adventitial thickness in pulmonary arteries of all sizes in CDH compared to controls. Pulmonary Nox4 levels were significantly increased whereas PPARγ levels were decreased in nitrofen-induced CDH compared to controls. Western blotting revealed increased pulmonary protein expression of the Nox4-activating subunit p22(phox) and decreased protein expression of PPARγ in CDH compared to controls. Confocal-microscopy confirmed markedly increased pulmonary expression of the Nox4 activating subunit p22(phox) accompanied by

  4. Computational Simulation of the Pulmonary Arteries and its Role in the Study of Pediatric Pulmonary Hypertension

    PubMed Central

    Hunter, Kendall S.; Feinstein, Jeffrey A.; Ivy, D. Dunbar; Shandas, Robin

    2010-01-01

    The hemodynamic state of the pulmonary arteries is challenging to routinely measure in children due to the vascular circuit's position in the lungs. The resulting relative scarcity of quantitative clinical diagnostic and prognostic information impairs management of diseases such as pulmonary hypertension, or high blood pressure of the pulmonary circuit, and invites new techniques of measurement. Here we examine recent applications of macro-scale computational mechanics methods for fluids and solids – traditionally used by engineers in the design and virtual testing of complex metal and composite structures – applied to study the pulmonary vasculature, both in healthy and diseased states. In four subject areas, we briefly outline advances in computational methodology and provide examples of clinical relevance. PMID:21499523

  5. Evaluation of the Microcirculation in Chronic Thromboembolic Pulmonary Hypertension Patients: The Impact of Pulmonary Arterial Remodeling on Postoperative and Follow-Up Pulmonary Arterial Pressure and Vascular Resistance.

    PubMed

    Jujo, Takayuki; Sakao, Seiichiro; Ishibashi-Ueda, Hatsue; Ishida, Keiichi; Naito, Akira; Sugiura, Toshihiko; Shigeta, Ayako; Tanabe, Nobuhiro; Masuda, Masahisa; Tatsumi, Koichiro

    2015-01-01

    Chronic thromboembolic pulmonary hypertension (CTEPH) is generally recognized to be caused by persistent organized thrombi that occlude the pulmonary arteries. The aim of this study was to investigate the characteristics of small vessel remodeling and its impact on the hemodynamics in CTEPH patients. Hemodynamic data were obtained from right heart catheterization in 17 CTEPH patients before pulmonary endarterectomy (PEA). Lung tissue specimens were obtained at the time of PEA. Pathological observations and evaluation of quantitative changes in pulmonary muscular arteries and veins were performed using light microscopy on 423 slides in 17 patients. The relationship between the results and the hemodynamics of CTEPH was investigated. Pulmonary arteriopathy and venopathy were recognized in most cases, although no plexiform lesions and no capillary-hemangiomatosis-like lesions were detected in any of the specimens. The severity of pulmonary arteriopathy was correlated with pulmonary vascular resistance (PVR) in the postoperative and follow-up periods. The PVR and mean pulmonary arterial pressure were significantly higher in the high-obstruction group than in the low-obstruction group. The findings in pulmonary venopathy were similar to the findings seen in pulmonary veno-occlusive disease in some cases, although severe venopathy was only observed in a portion of the pulmonary veins. There was a significant correlation between the extent of pulmonary arteriopathy and venopathy, although an effect of pulmonary venopathy to hemodynamics, including pulmonary arterial wedged pressure (PAWP), could not be identified. The vascular remodeling of the pulmonary muscular arteries was closely associated with the hemodynamics of CTEPH. Severe pulmonary arteriopathy might be related to residual pulmonary hypertension after PEA. Those altered pulmonary arteries might be a new target for the persistent PH after the operation.

  6. miR-1 is increased in pulmonary hypertension and downregulates Kv1.5 channels in rat pulmonary arteries.

    PubMed

    Mondejar-Parreño, Gema; Callejo, María; Barreira, Bianca; Morales-Cano, Daniel; Esquivel-Ruiz, Sergio; Moreno, Laura; Cogolludo, Angel; Perez-Vizcaino, Francisco

    2018-05-02

    ■The expression of miR-1 is increased in lungs from the Hyp/Su5416 PAH rat model. ■PASMC from this animal model are more depolarised and show decreased expression and activity of Kv1.5. ■miR-1 directly targets Kv1.5 channels, reduces Kv1.5 activity and induces membrane depolarization. ■Antagomir-1 prevents Kv1.5 channel downregulation and the depolarization induced by hypoxia/Su5416 exposition. Impairment of voltage-dependent potassium channel (Kv) plays a central role in the development of cardiovascular diseases, including pulmonary arterial hypertension (PAH). MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the 3'-UTR region of specific mRNAs. The aim of this study was to analyze the effects of miR-1 on Kv channel function in pulmonary arteries (PA). Kv channel activity was studied in PA from healthy animals transfected with miR-1 or scrambled-miR. Kv currents were studied using the whole-cell configuration of patch-clamp technique. The characterization of the Kv1.5 currents was performed with the selective inhibitor DPO-1. miR-1 expression was increased and Kv1.5 channels were decreased in lungs from a rat model of PAH induced by hypoxia and Su5416. miR-1 transfection increased cell capacitance, reduced Kv1.5 currents and induced membrane depolarization in isolated pulmonary artery smooth muscle cells (PASMCs). Luciferase reporter assay indicated that KCNA5, which encodes Kv1.5 channels, is a direct target gene of miR-1. Incubation of PA with Su5416 and hypoxia (3% O 2 ) increased miR-1 and induced a decline in Kv1.5 currents, which was prevented by antagomiR-1. In conclusion, these data indicate that miR-1 induces PASMC hypertrophy and reduces the activity and expression of Kv channels, suggesting a pathophysiological role in PAH. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Benefits of skeletal-muscle exercise training in pulmonary arterial hypertension: The WHOLEi+12 trial.

    PubMed

    González-Saiz, Laura; Fiuza-Luces, Carmen; Sanchis-Gomar, Fabian; Santos-Lozano, Alejandro; Quezada-Loaiza, Carlos A; Flox-Camacho, Angela; Munguía-Izquierdo, Diego; Ara, Ignacio; Santalla, Alfredo; Morán, María; Sanz-Ayan, Paz; Escribano-Subías, Pilar; Lucia, Alejandro

    2017-03-15

    Pulmonary arterial hypertension is often associated with skeletal-muscle weakness. The purpose of this randomized controlled trial was to determine the effects of an 8-week intervention combining muscle resistance, aerobic and inspiratory pressure-load exercises on upper/lower-body muscle power and other functional variables in patients with this disease. Participants were allocated to a control (standard care) or intervention (exercise) group (n=20 each, 45±12 and 46±11years, 60% women and 10% patients with chronic thromboembolic pulmonary hypertension per group). The intervention included five, three and six supervised (inhospital) sessions/week of aerobic, resistance and inspiratory muscle training, respectively. The primary endpoint was peak muscle power during bench/leg press; secondary outcomes included N-terminal pro-brain natriuretic peptide levels, 6-min walking distance, five-repetition sit-to-stand test, maximal inspiratory pressure, cardiopulmonary exercise testing variables (e.g., peak oxygen uptake), health-related quality of life, physical activity levels, and safety. Adherence to training sessions averaged 94±0.5% (aerobic), 98±0.3% (resistance) and 91±1% (inspiratory training). Analysis of variance showed a significant interaction (group×time) effect for leg/bench press (P<0.001/P=0.002), with both tests showing an improvement in the exercise group (P<0.001) but not in controls (P>0.1). We found a significant interaction effect (P<0.001) for five-repetition sit-to-stand test, maximal inspiratory pressure and peak oxygen uptake (P<0.001), indicating a training-induced improvement. No major adverse event was noted due to exercise. An 8-week exercise intervention including aerobic, resistance and specific inspiratory muscle training is safe for patients with pulmonary arterial hypertension and yields significant improvements in muscle power and other functional variables. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Evidence for the involvement of type I interferon in pulmonary arterial hypertension.

    PubMed

    George, Peter M; Oliver, Eduardo; Dorfmuller, Peter; Dubois, Olivier D; Reed, Daniel M; Kirkby, Nicholas S; Mohamed, Nura A; Perros, Frederic; Antigny, Fabrice; Fadel, Elie; Schreiber, Benjamin E; Holmes, Alan M; Southwood, Mark; Hagan, Guy; Wort, Stephen J; Bartlett, Nathan; Morrell, Nicholas W; Coghlan, John G; Humbert, Marc; Zhao, Lan; Mitchell, Jane A

    2014-02-14

    Evidence is increasing of a link between interferon (IFN) and pulmonary arterial hypertension (PAH). Conditions with chronically elevated endogenous IFNs such as systemic sclerosis are strongly associated with PAH. Furthermore, therapeutic use of type I IFN is associated with PAH. This was recognized at the 2013 World Symposium on Pulmonary Hypertension where the urgent need for research into this was highlighted. To explore the role of type I IFN in PAH. Cells were cultured using standard approaches. Cytokines were measured by ELISA. Gene and protein expression were measured using reverse transcriptase polymerase chain reaction, Western blotting, and immunohistochemistry. The role of type I IFN in PAH in vivo was determined using type I IFN receptor knockout (IFNAR1(-/-)) mice. Human lung cells responded to types I and II but not III IFN correlating with relevant receptor expression. Type I, II, and III IFN levels were elevated in serum of patients with systemic sclerosis associated PAH. Serum interferon γ inducible protein 10 (IP10; CXCL10) and endothelin 1 were raised and strongly correlated together. IP10 correlated positively with pulmonary hemodynamics and serum brain natriuretic peptide and negatively with 6-minute walk test and cardiac index. Endothelial cells grown out of the blood of PAH patients were more sensitive to the effects of type I IFN than cells from healthy donors. PAH lung demonstrated increased IFNAR1 protein levels. IFNAR1(-/-) mice were protected from the effects of hypoxia on the right heart, vascular remodeling, and raised serum endothelin 1 levels. These data indicate that type I IFN, via an action of IFNAR1, mediates PAH.

  9. The association between body mass index and obesity with survival in pulmonary arterial hypertension.

    PubMed

    Weatherald, Jason; Huertas, Alice; Boucly, Athénaïs; Guignabert, Christophe; Taniguchi, Yu; Adir, Yochai; Jevnikar, Mitja; Savale, Laurent; Jaïs, Xavier; Peng, Mingkai; Simonneau, Gérald; Montani, David; Humbert, Marc; Sitbon, Olivier

    2018-05-22

    An obesity paradox, wherein obese patients have lower mortality, has been described in cardiopulmonary diseases, including pulmonary arterial hypertension (PAH). Our objective was to determine whether obesity and body mass index (BMI) are associated with mortality in patients with PAH. We assessed incident patients with idiopathic, drug-induced, and heritable PAH from the French PAH Registry. Cox regression and Kaplan-Meier analysis were used to assess the association between BMI and obesity with all-cause mortality. Of 1255 patients included, 30% were obese. A higher proportion of females (65.1% vs 53.4%, p<0.01), drug-induced PAH (28.9% vs 9.2%, p<0.01), systemic hypertension, diabetes, and hypothyroidism were present in the obese group. More obese patients were in New York Heart Association class III (66.4% vs. 57.1%), fewer were class IV (11.8% vs 16.9%) (p<0.01), and 6-minute walk distance was lower (276±121 vs 324±146, p<0.01). Right atrial pressure, pulmonary wedge pressure and cardiac index were higher while pulmonary vascular resistance was lower in obese patients. Neither BMI (HR 0.99, 95%CI 0.97-1.01, p=0.41) nor obesity (HR 1.0, 95%CI 0.99-1.01, p=0.46) were associated with mortality in multivariable analyses. There was a significant interaction between age and obesity such that mortality increased among morbidly obese patients under 65 years old (HR 3.01, 95%CI 1.56-5.79, p=0.001). Obesity was not associated with mortality in the overall population, but there was an age-obesity interaction with increased mortality among young morbidly obese patients. These results have implications for active weight management in younger morbidly obese patients who are otherwise candidates for lung transplantation. Copyright © 2018. Published by Elsevier Inc.

  10. Hip Fracture in a Patient With Severe Pulmonary Hypertension

    PubMed Central

    Friedman, Susan M.; White, R. James; Finkelstein, Steven M.; Kellam, James; Allen, Egan F.; Sip, Anna K.; Stanton, Rebecca

    2012-01-01

    This case presents a discussion of an 80-year-old woman with severe pulmonary hypertension (PH) on chronic intravenous treprostinil infusion and oxygen therapy who presents with a subcapital hip fracture. Care is closely coordinated by an interdisciplinary team, including her PH specialist, in order to optimize her outcome. PMID:23569707

  11. Value of two-dimensional echocardiography in the identification of pulmonary hypertension in chronic obstructive lung disease.

    PubMed

    Bertoli, L; Mantero, A; Alpago, R; Graziina, A; Tamponi, M; Pezzano, A

    1989-01-01

    Thirty-three patients suffering from chronic obstructive lung disease (COLD) were submitted to right heart two-dimensional echocardiographic (2D-ECHO) and hemodynamic study. By the subcostal approach, the right ventricle outflow tract including the pulmonary vessels was visualized in 85% of the patients. Most parameters measured on the right ventricle and pulmonary vessels were significantly higher than those recorded in the healthy control group. Very significant correlations were observed between the mean pulmonary artery pressure (PAP) and the following 2D-ECHO parameters: diameter of the pulmonary artery at valve level (r = 0.62; p less than 0.001); supravalvular diameter of the pulmonary artery (r = 0.44; p less than 0.03); diameter of the left branch of the pulmonary artery (r = 0.48; p less than 0.05); diameter of the right branch of the pulmonary artery (r = 0.39; p less than 0.05), and between the PAP and PaO2 (r = -0.66; p less than 0.001). Furthermore, the sensitivity, specificity, and accuracy of 2D-ECHO measurements were calculated to assess the presence of pulmonary hypertension. Overall sensitivity was 65%, specificity 75%, and accuracy 67%. However, by combining the value of PaO2 with that of the pulmonary valve by means of the multiple regression analysis, sensitivity increased to 84% in identifying pulmonary hypertension. Such data demonstrate that the 2D-ECHO study of the right heart in COLD patients has to carefully measure the dimensions of the pulmonary valve and the great pulmonary vessels, as their modification are mainly linked with the presence of pulmonary hypertension.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Prevalence and treatment of persistent pulmonary hypertension in the newborn in a Mexican pediatric hospital.

    PubMed

    Ortiz, Mario I; Estévez-Castillo, Ramón; Bautista-Rivas, Martha M; Romo-Hernández, Georgina; López-Cadena, Juan M; Copca-García, José A

    2010-01-01

    Persistent pulmonary hypertension of the newborn is defined as the failure of the normal circulatory transition that occurs after birth. It is a syndrome characterized by marked pulmonary hypertension that causes hypoxemia and right-to-left extra-pulmonary shunting of blood. In the treatment of persistent pulmonary hypertension of the newborn, the goal is to increase oxygen flow to the baby's organs to prevent serious health problems. Treatment may include medication, mechanical ventilation and respiratory therapy. We performed a retrospective, descriptive and transversal study to investigate the prevalence and treatment of neonatal patients with persistent pulmonary hypertension who were admitted at the Hospital del Niño DIF from 2004 to 2008. Data, collected from hospital charts, included demographic, clinical course and use of medication. A total of 38 patients were included (prevalence of 5.7%). The average age of patients was 8.4 +/- 1.4 days. The mortality rate was 42.1%. Data were collected and 45 different drugs were given to the pediatric patients. The median number of drugs/inpatient was 8.3 (1-18). The therapeutic class most prescribed was anti-infective (29.9% of all the prescriptions), followed by cardiovascular and renal drugs (26.4% of all the prescriptions) and gastrointestinal agents (14.6% of all the prescriptions). Ranitidine was the drug most commonly used, followed by ampicillin and midazolam. We found a high mortality rate and as in many studies, the therapeutic class most used were anti-infectives.

  13. Supplementation of iron in pulmonary hypertension: Rationale and design of a phase II clinical trial in idiopathic pulmonary arterial hypertension

    PubMed Central

    Howard, Luke S.G.E.; Watson, Geoffrey M.J.; Wharton, John; Rhodes, Christopher J.; Chan, Kakit; Khengar, Rajeshree; Robbins, Peter A.; Kiely, David G.; Condliffe, Robin; Elliott, Charlie A.; Pepke-Zaba, Joanna; Sheares, Karen; Morrell, Nicholas W.; Davies, Rachel; Ashby, Deborah; Gibbs, J. Simon R.; Wilkins, Martin R.

    2013-01-01

    Our aim is to assess the safety and potential clinical benefit of intravenous iron (Ferinject) infusion in iron deficient patients with idiopathic pulmonary arterial hypertension (IPAH). Iron deficiency in the absence of anemia (1) is common in patients with IPAH; (2) is associated with inappropriately raised levels of hepcidin, the key regulator of iron homeostasis; and (3) correlates with disease severity and worse clinical outcomes. Oral iron absorption may be impeded by reduced absorption due to elevated hepcidin levels. The safety and benefits of parenteral iron replacement in IPAH are unknown. Supplementation of Iron in Pulmonary Hypertension (SIPHON) is a Phase II, multicenter, double-blind, randomized, placebo-controlled, crossover clinical trial of iron in IPAH. At least 60 patients will be randomized to intravenous ferric carboxymaltose (Ferinject) or saline placebo with a crossover point after 12 weeks of treatment. The primary outcome will be the change in resting pulmonary vascular resistance from baseline at 12 weeks, measured by cardiac catheterization. Secondary measures include resting and exercise hemodynamics and exercise performance from serial bicycle incremental and endurance cardiopulmonary exercise tests. Other secondary measurements include serum iron indices, 6-Minute Walk Distance, WHO functional class, quality of life score, N-terminal pro-brain natriuretic peptide (NT-proBNP), and cardiac anatomy and function from cardiac magnetic resonance. We propose that intravenous iron replacement will improve hemodynamics and clinical outcomes in IPAH. If the data supports a potentially useful therapeutic effect and suggest this drug is safe, the study will be used to power a Phase III study to address efficacy. PMID:23662181

  14. Prognostic value of cardiovascular magnetic resonance imaging measurements corrected for age and sex in idiopathic pulmonary arterial hypertension.

    PubMed

    Swift, Andrew J; Rajaram, Smitha; Campbell, Michael J; Hurdman, Judith; Thomas, Steve; Capener, Dave; Elliot, Charlie; Condliffe, Robin; Wild, Jim M; Kiely, David G

    2014-01-01

    There are limited data on the prognostic value of cardiovascular magnetic resonance measurements in idiopathic pulmonary arterial hypertension, with no studies investigating the impact of correction of cardiovascular magnetic resonance indices for age and sex on prognostic value. Consecutive patients with idiopathic pulmonary arterial hypertension underwent cardiovascular magnetic resonance imaging at 1.5T. Steady-state free precession cardiac volumes and mass measurements were corrected for age, sex, and body surface area according to reference data and prognostic significance assessed. A total of 80 patients with idiopathic pulmonary arterial hypertension were identified, and 23 patients died during the mean follow-up of 32±14 months. Corrected for age, sex, and body surface area, right ventricular end-systolic volume (P=0.004) strongly predicted mortality, independent of World Health Organization functional class, mean right atrial pressure, cardiac index, and mixed venous oxygen saturations. Consideration should be given to correcting cardiovascular magnetic resonance measures for age, sex, and body surface area, particularly given the changing demographics of patients with idiopathic pulmonary arterial hypertension. Corrected right ventricular end-systolic volume is a strong prognostic marker in idiopathic pulmonary arterial hypertension, independent of invasively derived measurements, mean right atrial pressure cardiac index, and mixed venous oxygen saturations.

  15. Inhaled NO therapy increases blood nitrite, nitrate and S-nitrosohemoglobin concentrations in infants with pulmonary hypertension

    PubMed Central

    Ibrahim, Yomna I.; Ninnis, Janet R.; Hopper, Andrew O.; Deming, Douglas D.; Zhang, Amy X.; Herring, Jason L.; Sowers, Lawrence C.; McMahon, Timothy J.; Power, Gordon G.; Blood, Arlin B.

    2011-01-01

    Objective To measure the circulating concentrations of nitric oxide (NO) adducts with NO bioactivity following inhaled NO therapy in infants with pulmonary hypertension. Study design In this single center study five sequential blood samples were collected from infants with pulmonary hypertension before, during and after therapy with iNO (n=17). Samples were collected from a control group of hospitalized infants without pulmonary hypertension (n=16) and from healthy adults for comparison (n=12). Results After beginning iNO (20 ppm) whole blood nitrite increased about two-fold within two hours (P<0.01). Whole blood nitrate increased to four-fold higher than baseline during treatment with 20ppm iNO (P<0.01). S-nitrosohemoglobin (SNO-Hb) increased measurably after beginning iNO (P<0.01) whereas iron nitrosyl hemoglobin and total Hb-bound NO-species compounds did not change. Conclusion Treatment of pulmonary hypertensive infants with iNO results in increases in nitrite, nitrate, and SNO-Hb in circulating blood. We speculate that these compounds may be carriers of NO bioactivity throughout the body and account for peripheral effects of iNO in the brain, heart and other organs. PMID:21907348

  16. Functional classification of pulmonary hypertension in children: Report from the PVRI pediatric taskforce, Panama 2011.

    PubMed

    Lammers, Astrid E; Adatia, Ian; Cerro, Maria Jesus Del; Diaz, Gabriel; Freudenthal, Alexandra Heath; Freudenthal, Franz; Harikrishnan, S; Ivy, Dunbar; Lopes, Antonio A; Raj, J Usha; Sandoval, Julio; Stenmark, Kurt; Haworth, Sheila G

    2011-08-02

    The members of the Pediatric Task Force of the Pulmonary Vascular Research Institute (PVRI) were aware of the need to develop a functional classification of pulmonary hypertension in children. The proposed classification follows the same pattern and uses the same criteria as the Dana Point pulmonary hypertension specific classification for adults. Modifications were necessary for children, since age, physical growth and maturation influences the way in which the functional effects of a disease are expressed. It is essential to encapsulate a child's clinical status, to make it possible to review progress with time as he/she grows up, as consistently and as objectively as possible. Particularly in younger children we sought to include objective indicators such as thriving, need for supplemental feeds and the record of school or nursery attendance. This helps monitor the clinical course of events and response to treatment over the years. It also facilitates the development of treatment algorithms for children. We present a consensus paper on a functional classification system for children with pulmonary hypertension, discussed at the Annual Meeting of the PVRI in Panama City, February 2011.

  17. Connective tissue disease-associated pulmonary arterial hypertension

    PubMed Central

    Howard, Luke S.

    2015-01-01

    Although rare in its idiopathic form, pulmonary arterial hypertension (PAH) is not uncommon in association with various associated medical conditions, most notably connective tissue disease (CTD). In particular, it develops in approximately 10% of patients with systemic sclerosis and so these patients are increasingly screened to enable early detection. The response of patients with systemic sclerosis to PAH-specific therapy appears to be worse than in other forms of PAH. Survival in systemic sclerosis-associated PAH is inferior to that observed in idiopathic PAH. Potential reasons for this include differences in age, the nature of the underlying pulmonary vasculopathy and the ability of the right ventricle to cope with increased afterload between patients with systemic sclerosis-associated PAH and idiopathic PAH, while coexisting cardiac and pulmonary disease is common in systemic sclerosis-associated PAH. Other forms of connective tissue-associated PAH have been less well studied, however PAH associated with systemic lupus erythematosus (SLE) has a better prognosis than systemic sclerosis-associated PAH and likely responds to immunosuppression. PMID:25705389

  18. Standards and Methodological Rigor in Pulmonary Arterial Hypertension Preclinical and Translational Research.

    PubMed

    Provencher, Steeve; Archer, Stephen L; Ramirez, F Daniel; Hibbert, Benjamin; Paulin, Roxane; Boucherat, Olivier; Lacasse, Yves; Bonnet, Sébastien

    2018-03-30

    Despite advances in our understanding of the pathophysiology and the management of pulmonary arterial hypertension (PAH), significant therapeutic gaps remain for this devastating disease. Yet, few innovative therapies beyond the traditional pathways of endothelial dysfunction have reached clinical trial phases in PAH. Although there are inherent limitations of the currently available models of PAH, the leaky pipeline of innovative therapies relates, in part, to flawed preclinical research methodology, including lack of rigour in trial design, incomplete invasive hemodynamic assessment, and lack of careful translational studies that replicate randomized controlled trials in humans with attention to adverse effects and benefits. Rigorous methodology should include the use of prespecified eligibility criteria, sample sizes that permit valid statistical analysis, randomization, blinded assessment of standardized outcomes, and transparent reporting of results. Better design and implementation of preclinical studies can minimize inherent flaws in the models of PAH, reduce the risk of bias, and enhance external validity and our ability to distinguish truly promising therapies form many false-positive or overstated leads. Ideally, preclinical studies should use advanced imaging, study several preclinical pulmonary hypertension models, or correlate rodent and human findings and consider the fate of the right ventricle, which is the major determinant of prognosis in human PAH. Although these principles are widely endorsed, empirical evidence suggests that such rigor is often lacking in pulmonary hypertension preclinical research. The present article discusses the pitfalls in the design of preclinical pulmonary hypertension trials and discusses opportunities to create preclinical trials with improved predictive value in guiding early-phase drug development in patients with PAH, which will need support not only from researchers, peer reviewers, and editors but also from

  19. Serial Sonographic Assessment of Pulmonary Edema in Patients With Hypertensive Acute Heart Failure.

    PubMed

    Martindale, Jennifer L; Secko, Michael; Kilpatrick, John F; deSouza, Ian S; Paladino, Lorenzo; Aherne, Andrew; Mehta, Ninfa; Conigiliaro, Alyssa; Sinert, Richard

    2018-02-01

    Objective measures of clinical improvement in patients with acute heart failure (AHF) are lacking. The aim of this study was to determine whether repeated lung sonography could semiquantitatively capture changes in pulmonary edema (B-lines) in patients with hypertensive AHF early in the course of treatment. We conducted a feasibility study in a cohort of adults with acute onset of dyspnea, severe hypertension in the field or at triage (systolic blood pressure ≥ 180 mm Hg), and a presumptive diagnosis of AHF. Patients underwent repeated dyspnea and lung sonographic assessments using a 10-cm visual analog scale (VAS) and an 8-zone scanning protocol. Lung sonographic assessments were performed at the time of triage, initial VAS improvement, and disposition from the emergency department. Sonographic pulmonary edema was independently scored offline in a randomized and blinded fashion by using a scoring method that accounted for both the sum of discrete B-lines and degree of B-line fusion. Sonographic pulmonary edema scores decreased significantly from initial to final sonographic assessments (P < .001). The median percentage decrease among the 20 included patient encounters was 81% (interquartile range, 55%-91%). Although sonographic pulmonary edema scores correlated with VAS scores (ρ = 0.64; P < .001), the magnitude of the change in these scores did not correlate with each other (ρ = -0.04; P = .89). Changes in sonographic pulmonary edema can be semiquantitatively measured by serial 8-zone lung sonography using a scoring method that accounts for B-line fusion. Sonographic pulmonary edema improves in patients with hypertensive AHF during the initial hours of treatment. © 2017 by the American Institute of Ultrasound in Medicine.

  20. Redox Signaling and Persistent Pulmonary Hypertension of the Newborn.

    PubMed

    Sharma, Megha; Afolayan, Adeleye J

    2017-01-01

    Reactive oxygen species (ROS) are redox-signaling molecules that are critically involved in regulating endothelial cell functions, host defense, aging, and cellular adaptation. Mitochondria are the major sources of ROS and important sources of redox signaling in pulmonary circulation. It is becoming increasingly evident that increased mitochondrial oxidative stress and aberrant signaling through redox-sensitive pathways play a direct causative role in the pathogenesis of many cardiopulmonary disorders including persistent pulmonary hypertension of the newborn (PPHN). This chapter highlights redox signaling in endothelial cells, antioxidant defense mechanism, cell responses to oxidative stress, and their contributions to disease pathogenesis.

  1. Evaluation of the Microcirculation in Chronic Thromboembolic Pulmonary Hypertension Patients: The Impact of Pulmonary Arterial Remodeling on Postoperative and Follow-Up Pulmonary Arterial Pressure and Vascular Resistance

    PubMed Central

    Ishida, Keiichi; Naito, Akira; Sugiura, Toshihiko; Shigeta, Ayako; Tanabe, Nobuhiro; Masuda, Masahisa; Tatsumi, Koichiro

    2015-01-01

    Background Chronic thromboembolic pulmonary hypertension (CTEPH) is generally recognized to be caused by persistent organized thrombi that occlude the pulmonary arteries. The aim of this study was to investigate the characteristics of small vessel remodeling and its impact on the hemodynamics in CTEPH patients. Methods and Results Hemodynamic data were obtained from right heart catheterization in 17 CTEPH patients before pulmonary endarterectomy (PEA). Lung tissue specimens were obtained at the time of PEA. Pathological observations and evaluation of quantitative changes in pulmonary muscular arteries and veins were performed using light microscopy on 423 slides in 17 patients. The relationship between the results and the hemodynamics of CTEPH was investigated. Pulmonary arteriopathy and venopathy were recognized in most cases, although no plexiform lesions and no capillary-hemangiomatosis-like lesions were detected in any of the specimens. The severity of pulmonary arteriopathy was correlated with pulmonary vascular resistance (PVR) in the postoperative and follow-up periods. The PVR and mean pulmonary arterial pressure were significantly higher in the high-obstruction group than in the low-obstruction group. The findings in pulmonary venopathy were similar to the findings seen in pulmonary veno-occlusive disease in some cases, although severe venopathy was only observed in a portion of the pulmonary veins. There was a significant correlation between the extent of pulmonary arteriopathy and venopathy, although an effect of pulmonary venopathy to hemodynamics, including pulmonary arterial wedged pressure (PAWP), could not be identified. Conclusion The vascular remodeling of the pulmonary muscular arteries was closely associated with the hemodynamics of CTEPH. Severe pulmonary arteriopathy might be related to residual pulmonary hypertension after PEA. Those altered pulmonary arteries might be a new target for the persistent PH after the operation. PMID:26252755

  2. [Pulmonary involvement in systemic sclerosis. Alveolitis, fibrosis and pulmonar arterial hypertension].

    PubMed

    Navarro, Carmen

    2006-11-01

    Pulmonary involvement in systemic sclerosis. Alveolitis, fibrosis and pulmonar arterial hypertension Lung disease is present in most of the patients with systemic sclerosis and is now the most important cause of mortality. Interstitial lung disease and pulmonary hypertension are, so far, the main disorders found and both are difficult to detect at the earliest stages. However, diagnostic tools such as immunological test, lung function test, high resolution CT, bronchoalveolar lavage, echocardiography, right-side cardiac catheterization, or lung biopsy are necessary to accurately evaluate the clinical status and allow to improve the management organ-specific ad hoc. Progress in immunological and vascular therapies as well as other emergence drugs offer new expectations to scleroderma patients. Copyright © 2006 Elsevier España S.L. Barcelona. Published by Elsevier Espana. All rights reserved.

  3. CT derived left atrial size identifies left heart disease in suspected pulmonary hypertension: Derivation and validation of predictive thresholds.

    PubMed

    Currie, Benjamin J; Johns, Chris; Chin, Matthew; Charalampopolous, Thanos; Elliot, Charlie A; Garg, Pankaj; Rajaram, Smitha; Hill, Catherine; Wild, Jim W; Condliffe, Robin A; Kiely, David G; Swift, Andy J

    2018-06-01

    Patients with pulmonary hypertension due to left heart disease (PH-LHD) have overlapping clinical features with pulmonary arterial hypertension making diagnosis reliant on right heart catheterization (RHC). This study aimed to investigate computed tomography pulmonary angiography (CTPA) derived cardiopulmonary structural metrics, in comparison to magnetic resonance imaging (MRI) for the diagnosis of left heart disease in patients with suspected pulmonary hypertension. Patients with suspected pulmonary hypertension who underwent CTPA, MRI and RHC were identified. Measurements of the cardiac chambers and vessels were recorded from CTPA and MRI. The diagnostic thresholds of individual measurements to detect elevated pulmonary arterial wedge pressure (PAWP) were identified in a derivation cohort (n = 235). Individual CT and MRI derived metrics were tested in validation cohort (n = 211). 446 patients, of which 88 had left heart disease. Left atrial area was a strong predictor of elevated PAWP>15 mm Hg and PAWP>18 mm Hg, area under curve (AUC) 0.854, and AUC 0.873 respectively. Similar accuracy was also identified for MRI derived LA volume, AUC 0.852 and AUC 0.878 for PAWP > 15 and 18 mm Hg, respectively. Left atrial area of 26.8 cm 2 and 30.0 cm 2 were optimal specific thresholds for identification of PAWP > 15 and 18 mm Hg, had sensitivity of 60%/53% and specificity 89%/94%, respectively in a validation cohort. CTPA and MRI derived left atrial size identifies left heart disease in suspected pulmonary hypertension with high specificity. The proposed diagnostic thresholds for elevated left atrial area on routine CTPA may be a useful to indicate the diagnosis of left heart disease in suspected pulmonary hypertension. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Fasudil and DETA NONOate, Loaded in a Peptide-Modified Liposomal Carrier, Slow PAH Progression upon Pulmonary Delivery.

    PubMed

    Rashid, Jahidur; Nahar, Kamrun; Raut, Snehal; Keshavarz, Ali; Ahsan, Fakhrul

    2018-05-07

    We investigated the feasibility of a combination therapy comprising fasudil, a Rho-kinase inhibitor, and DETA NONOate (diethylenetriamine NONOate, DN), a long-acting nitric oxide donor, both loaded in liposomes modified with a homing peptide, CAR (CARSKNKDC), in the treatment of pulmonary arterial hypertension (PAH). We first prepared and characterized unmodified and CAR-modified liposomes of fasudil and DN. Using individual drugs alone or a mixture of fasudil and DN as controls, we studied the efficacy of the two liposomal preparations in reducing mean pulmonary arterial pressure (mPAP) in monocrotaline (MCT) and SUGEN-hypoxia-induced PAH rats. We also conducted morphometric studies (degree of muscularization, arterial medial wall thickness, and collagen deposition) after treating the PAH rats with test and control formulations. When the rats were treated acutely and chronically, the reduction in mPAP was more pronounced in the liposomal formulation-treated rats than in plain drug-treated rats. CAR-modified liposomes were more selective in reducing mPAP than unmodified liposomes of the drugs. Both drugs, formulated in CAR-modified liposomes, reduced the degree of muscularization, medial arterial wall thickness, and collagen deposition more than the combination of plain drugs did. As seen with the in vivo data, CAR-modified liposomes of fasudil or DN increased the levels of the vasodilatory signaling molecule, cGMP, in the smooth muscle cells of PAH-afflicted human pulmonary arteries. Overall, fasudil and DN, formulated in liposomes, could be used as a combination therapy for a better management of PAH.

  5. Causes and circumstances of death in pulmonary arterial hypertension.

    PubMed

    Tonelli, Adriano R; Arelli, Vineesha; Minai, Omar A; Newman, Jennie; Bair, Nancy; Heresi, Gustavo A; Dweik, Raed A

    2013-08-01

    The causes and circumstances surrounding death are understudied in patients with pulmonary arterial hypertension (PAH). We sought to determine the specific reasons and characteristics surrounding the death of patients with PAH. All deaths of patients with pulmonary hypertension (PH) followed in the Cleveland Clinic Pulmonary Vascular Program were prospectively reviewed by the PH team. A total of 84 patients with PAH (age 58 ± 14 yr; 73% females) who died between June 2008 and May 2012 were included. PH was determined to be the direct cause of death (right heart failure or sudden death) in 37 (44%) patients; PH contributed to but did not directly cause death in 37 (44%) patients; and the death was not related to PH in the remaining cases (n = 7; 8.3%). In three (3.6%) patients the final cause of death could not be adequately assessed. Most patients died in a healthcare environment and most received PH-specific therapies. In our cohort, 50% of all patients with PAH and 75.7% of those who died of right heart failure received parenteral prostanoid therapy. Less than half of patients had advanced healthcare directives. Most patients with PAH in our cohort died of their disease; however, right ventricular failure or sudden death was the sole cause of death in less than half of patients.

  6. [Pulmonary arterial hypertension in women].

    PubMed

    Sanchez, O; Marié, E; Lerolle, U; Wermert, D; Israël-Biet, D; Meyer, G

    2008-04-01

    Pulmonary arterial hypertension (PAH) is a rare condition characterized by sustained elevation in pulmonary arterial resistance leading to right heart failure. PAH afflicts predominantly women. Echocardiography is the initial investigation of choice for non-invasive detection of PAH but right-heart catheterization is necessary to confirm the diagnosis. Conventional treatment includes non-specific drugs (warfarin, diuretics, oxygen). The endothelin-1 receptor antagonist bosentan, the phosphodiesterase-5 inhibitor sildenafil, and prostanoids have been shown to improve symptoms, exercise capacity and haemodynamics. Intravenous prostacyclin is the first-line treatment for the most severely affected patients. Despite the most modern treatment the overall mortality rate of pregnant women with severe PAH remains high. Therefore, pregnancy is contraindicated in women with PAH and an effective method of contraception is recommended in women of childbearing age. Therapeutic abortion should be offered, particularly when early deterioration occurs. If this option is not accepted, intravenous prostacyclin should be considered promptly. Recent advances in the management of PAH have markedly improved prognosis and have resulted in more women of childbearing age considering pregnancy. A multidisciplinary approach should give new insights into cardiopulmonary, obstetric and anaesthetic management during pregnancy, delivery and the post-partum period.

  7. Pulmonary Hypertension and Vascular Abnormalities in Bronchopulmonary Dysplasia

    PubMed Central

    Mourani, Peter M.; Abman, Steven H.

    2015-01-01

    Advances in the care of preterm infants have improved survival of infants born at earlier gestational ages. Yet, these infants remain at risk for the chronic lung disease of infancy, bronchopulmonary dysplasia (BPD), which results in prolonged need for supplemental oxygen, recurrent respiratory exacerbations, and exercise intolerance. Recent investigations have highlighted the important contribution of the developing pulmonary circulation to lung development, demonstrating that these infants are also at risk for pulmonary vascular disease (PVD), including pulmonary hypertension (PH) and pulmonary vascular abnormalities, which contributes significantly to morbidity and mortality. In the past few years, several epidemiological studies have delineated the incidence of PH in preterm infants and the impact on outcomes. However, these studies have also highlighted gaps in our understanding of PVD in BPD, including universally accepted definitions, approaches to diagnosis and treatment, and patient outcomes. Associated pulmonary vascular and cardiac abnormalities are increasingly recognized complications contributing to PH in these infants, but incidence of these lesions and degree of contribution to disease remains unknown. Therapeutic strategies for PVD in BPD are largely untested, but recent evidence presents the rationale for the approach to diagnosis and treatment of BPD infants with PH that can be evaluated in future studies. PMID:26593082

  8. Impact of Balloon Pulmonary Angioplasty on Hemodynamics and Clinical Outcomes in Patients with Chronic Thromboembolic Pulmonary Hypertension: the Initial Korean Experience.

    PubMed

    Kwon, Woochan; Yang, Jeong Hoon; Park, Taek Kyu; Chang, Sung A; Jung, Dong Seop; Cho, Young Seok; Kim, Sung Mok; Kim, Tae Jung; Park, Hye Yoon; Choi, Seung Hyuk; Kim, Duk Kyung

    2018-01-22

    The treatment of choice for chronic thromboembolic pulmonary hypertension (CTEPH) is pulmonary endarterectomy (PEA). However, not all patients are eligible for PEA, and some patients experience recurrence of pulmonary hypertension even after PEA. Patients who underwent balloon pulmonary angioplasty (BPA) between December 2015 and April 2017 were enrolled from the Samsung Medical Center CTEPH registry. Enrolled patients underwent right heart catheterization, echocardiography, and 6-minute walk distance (6MWD) at baseline, 4 and 24 weeks after their first BPA session. We compared clinical and hemodynamic parameters at the baseline and last BPA session. Fifty-two BPA sessions were performed in 15 patients, six of whom had a history of PEA. BPA resulted in improvements in World Health Organization (WHO) functional class (2.9 ± 0.8 to 1.7 ± 0.6, P = 0.002), 6MWD (387.0 ± 86.4 to 453.4 ± 64.8 m, P = 0.01), tricuspid annular plane systolic excursion (14.1 ± 3.6 to 15.6 ± 4.3 mm, P = 0.03) and hemodynamics, including a decline in mean pulmonary artery pressure (41.1 ± 13.1 to 32.1 ± 9.5 mmHg, P < 0.001) and in pulmonary vascular resistance (607.4 ± 452.3 to 406.7 ± 265.4 dyne.sec.cm⁻⁵, P = 0.01) but not in cardiac index (2.94 ± 0.79 to 2.96 ± 0.93 L/min/m², P = 0.92). Six cases of complications were recorded, including two cases of reperfusion injury. BPA might be a safe and effective treatment strategy for both inoperable CTEPH patients and patients with residual pulmonary hypertension after PEA. © 2018 The Korean Academy of Medical Sciences.

  9. Baicalin Inhibits Hypoxia-Induced Pulmonary Artery Smooth Muscle Cell Proliferation via the AKT/HIF-1α/p27-Associated Pathway

    PubMed Central

    Zhang, Lin; Pu, Zhichen; Wang, Junsong; Zhang, Zhifeng; Hu, Dongmei; Wang, Junjie

    2014-01-01

    Baicalin, a flavonoid compound purified from the dry roots of Scutellaria baicalensis Georgi, has been shown to possess various pharmacological actions. Previous studies have revealed that baicalin inhibits the growth of cancer cells through the induction of apoptosis. Pulmonary arterial hypertension (PAH) is a devastating disease characterized by enhanced pulmonary artery smooth muscle cell (PASMCs) proliferation and suppressed apoptosis. However, the potential mechanism of baicalin in the regulation of PASMC proliferation and the prevention of cardiovascular diseases remains unexplored. To test the effects of baicalin on hypoxia, we used rats treated with or without baicalin (100 mg·kg−1 each rat) at the beginning of the third week after hypoxia. Hemodynamic and pulmonary pathomorphology data showed that right ventricular systolic pressures (RVSP), the weight of the right ventricle/left ventricle plus septum (RV/LV + S) ratio and the medial width of pulmonary arterioles were much higher in chronic hypoxia. However, baicalin treatment repressed the elevation of RVSP, RV/LV + S and attenuated the pulmonary vascular structure remodeling (PVSR) of pulmonary arterioles induced by chronic hypoxia. Additionally, baicalin (10 and 20 μmol·L−1) treatment suppressed the proliferation of PASMCs and attenuated the expression of hypoxia-inducible factor-α (HIF-α) under hypoxia exposure. Meanwhile, baicalin reversed the hypoxia-induced reduction of p27 and increased AKT/protein kinase B phosphorylation p-AKT both in vivo and in vitro. These results suggested that baicalin could effectively attenuate PVSR and hypoxic pulmonary hypertension. PMID:24821539

  10. Neonatal thyrotoxicosis presenting as persistent pulmonary hypertension

    PubMed Central

    Obeid, Rawad; Kalra, Vaneet Kumar; Arora, Prem; Quist, Felix; Moltz, Kathleen C; Chouthai, Nitin Shashikant

    2012-01-01

    Neonatal hyperthyroidism is a rare condition caused either by transplacental passage of thyroid-stimulating immunoglobulins from a mother with Graves’ disease or by activating mutations of the thyrotropin receptors and α-subunit of G-protein. The clinical features may vary. We report a case of neonatal thyrotoxicosis in an infant born to a mother with Graves’ disease, who presented with cardiorespiratory failure and persistent pulmonary hypertension (PPHN). PPHN resolved with specific antithyroid treatment and extracorporeal membrane oxygenation was not required. PMID:22669869

  11. When to Offer Genetic Testing for Pulmonary Arterial Hypertension

    PubMed Central

    Chung, Wendy K.; Austin, Eric D.; Best, D. Hunter; Brown, Lynette M.; Elliott, C. Gregory

    2015-01-01

    Genetic testing is poised to play a greater role in the diagnosis and management of pulmonary arterial hypertension (PAH). Physicians who manage PAH should know the heritable PAH phenotypes, inheritance patterns, and responsible genes. They also should know indications, potential risks and benefits, and the issues surrounding genetic counselling and testing for patients with PAH. PMID:25840103

  12. Hyperthyroidism enhances 5-HT-induced contraction of the rat pulmonary artery: role of calcium-activated chloride channel activation.

    PubMed

    Oriowo, Mabayoje A; Oommen, Elsie; Khan, Islam

    2011-11-01

    Experimentally-induced hyperthyroidism in rodents is associated with signs and symptoms of pulmonary hypertension. The main objective of the present study was to investigate the effect of thyroxine-induced pulmonary hypertension on the contractile response of the pulmonary artery to 5-HT and the possible underlying signaling pathway. 5-HT concentration-dependently contracted artery segments from control and thyroxine-treated rats with pD(2) values of 5.04 ± 0.19 and 5.34 ± 0.14, respectively. The maximum response was significantly greater in artery segments from thyroxine-treated rats. Neither BW 723C86 (5-HT(2B)-receptor agonist) nor CP 93129 (5-HT(1B)-receptor agonist) contracted ring segments of the pulmonary artery from control and thyroxine-treated rats at concentrations up to 10(-4)M. There was no significant difference in the level of expression of 5-HT(2A)-receptor protein between the two groups. Ketanserin (3 × 10(-8)M) produced a rightward shift of the concentration-response curve to 5-HT in both groups with equal potency (-logK(B) values were 8.1 ± 0.2 and 7.9 ± 0.1 in control and thyroxine-treated rats, respectively). Nifedipine (10(-6)M) inhibited 5-HT-induced contractions in artery segments from control and thyroxine-treated rats and was more effective against 5-HT-induced contraction in artery segments for thyroxine-treated rats. The calcium-activated chloride channel blocker, niflumic acid (10(-4)M) also inhibited 5-HT-induced contractions in artery segments from control and thyroxine-treated rats and was more effective against 5-HT-induced contraction in artery segments for thyroxine-treated rats. It was concluded that hyperthyroidism enhanced 5-HT-induced contractions of the rat pulmonary artery by a mechanism involving increased activity of calcium-activated chloride channels. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Chronic Embolic Pulmonary Hypertension Caused by Pulmonary Embolism and Vascular Endothelial Growth Factor Inhibition.

    PubMed

    Neto-Neves, Evandro M; Brown, Mary B; Zaretskaia, Maria V; Rezania, Samin; Goodwill, Adam G; McCarthy, Brian P; Persohn, Scott A; Territo, Paul R; Kline, Jeffrey A

    2017-04-01

    Our understanding of the pathophysiological basis of chronic thromboembolic pulmonary hypertension (CTEPH) will be accelerated by an animal model that replicates the phenotype of human CTEPH. Sprague-Dawley rats were administered a combination of a single dose each of plastic microspheres and vascular endothelial growth factor receptor antagonist in polystyrene microspheres (PE) + tyrosine kinase inhibitor SU5416 (SU) group. Shams received volume-matched saline; PE and SU groups received only microspheres or SU5416, respectively. PE + SU rats exhibited sustained pulmonary hypertension (62 ± 13 and 53 ± 14 mmHg at 3 and 6 weeks, respectively) with reduction of the ventriculoarterial coupling in vivo coincident with a large decrement in peak rate of oxygen consumption during aerobic exercise, respectively. PE + SU produced right ventricular hypokinesis, dilation, and hypertrophy observed on echocardiography, and 40% reduction in right ventricular contractile function in isolated perfused hearts. High-resolution computed tomographic pulmonary angiography and Ki-67 immunohistochemistry revealed abundant lung neovascularization and cellular proliferation in PE that was distinctly absent in the PE + SU group. We present a novel rodent model to reproduce much of the known phenotype of CTEPH, including the pivotal pathophysiological role of impaired vascular endothelial growth factor-dependent vascular remodeling. This model may reveal a better pathophysiological understanding of how PE transitions to CTEPH in human treatments. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  14. Doppler-Defined Pulmonary Hypertension in Sickle Cell Anemia in Kurdistan, Iraq.

    PubMed

    Al-Allawi, Nasir; Mohammad, Ameen M; Jamal, Shakir

    2016-01-01

    To determine the frequency, clinical and laboratory associations of pulmonary hypertension in Iraqi Kurds with sickle cell anemia, a total of ninety four such patients attending a major hemoglobinopathy center in Iraqi Kurdistan were enrolled. All patients were re-evaluated clinically and had their blood counts, HbF, serum ferritin, LDH, renal and liver function assessed. Transthoracic Doppler echocardiography with measurement of tricuspid valve regurgitant jet velocity (TRV) was performed. A TRV in excess of 2.8 m/s was considered for the purposes of this study as indicative of pulmonary hypertension (PH). The prevalence of TRV in excess of 2.8m/s was 10.6%. By univariate analysis: significantly higher reticulocyte count, more frequent blood transfusions and pain episodes were encountered in the PH group as compared to the non-PH group (p = 0.001, 0.045 and 0.02 respectively). Moreover, PH patients had significantly higher mean right atrial area, left atrial size, E wave/A wave ratio and ejection fraction by echocardiography (p = 0.027, 0.037, <0.001 and 0.008 respectively). Except for reticulocyte count none of the other parameters remained significant by multivariate analysis (p = 0.024). In conclusion the current study revealed that pulmonary hypertension is rather frequent among Iraqi Kurds with sickle cell anemia, and identified reticulocyte count as an independently associated parameter with PH in this population. Future prospective studies including right heart catheterization and appropriate medical intervention are warranted.

  15. Doppler-Defined Pulmonary Hypertension in Sickle Cell Anemia in Kurdistan, Iraq

    PubMed Central

    Jamal, Shakir

    2016-01-01

    To determine the frequency, clinical and laboratory associations of pulmonary hypertension in Iraqi Kurds with sickle cell anemia, a total of ninety four such patients attending a major hemoglobinopathy center in Iraqi Kurdistan were enrolled. All patients were re-evaluated clinically and had their blood counts, HbF, serum ferritin, LDH, renal and liver function assessed. Transthoracic Doppler echocardiography with measurement of tricuspid valve regurgitant jet velocity (TRV) was performed. A TRV in excess of 2.8 m/s was considered for the purposes of this study as indicative of pulmonary hypertension (PH). The prevalence of TRV in excess of 2.8m/s was 10.6%. By univariate analysis: significantly higher reticulocyte count, more frequent blood transfusions and pain episodes were encountered in the PH group as compared to the non-PH group (p = 0.001, 0.045 and 0.02 respectively). Moreover, PH patients had significantly higher mean right atrial area, left atrial size, E wave/A wave ratio and ejection fraction by echocardiography (p = 0.027, 0.037, <0.001 and 0.008 respectively). Except for reticulocyte count none of the other parameters remained significant by multivariate analysis (p = 0.024). In conclusion the current study revealed that pulmonary hypertension is rather frequent among Iraqi Kurds with sickle cell anemia, and identified reticulocyte count as an independently associated parameter with PH in this population. Future prospective studies including right heart catheterization and appropriate medical intervention are warranted. PMID:27583566

  16. Milrinone for persistent pulmonary hypertension of the newborn.

    PubMed

    Bassler, Dirk; Kreutzer, Karen; McNamara, Patrick; Kirpalani, Haresh

    2010-11-10

    Persistent pulmonary hypertension of the newborn (PPHN) is a clinical syndrome characterized by suboptimal oxygenation as a result of sustained elevation in pulmonary vascular resistance after birth. Currently, the therapeutic mainstay for PPHN is optimal lung inflation and selective vasodilatation with inhaled nitric oxide (iNO). However, iNO is not available in all countries and not all infants will respond to iNO. Milrinone is a phosphodiesterase III inhibitor which induces pulmonary vasodilatation by its actions through a cyclic adenylate monophosphate mediated signaling pathway. To assess efficacy and safety in infants with PPHN either treated with: milrinone compared with placebo or no treatment; milrinone compared with iNO; milrinone as an adjunct to iNO compared with iNO alone; milrinone compared with potential treatments for PPHN other than iNO. We searched the Cochrane Central Register of Controlled Trials (The Cochrane Library, Issue 2, 2010), MEDLINE and EMBASE databases from their inception until January 2010. We searched the reference lists of potentially relevant studies without any language restriction. Fully published randomized controlled trials (RCTs) and quasi-RCTs comparing milrinone with placebo, iNO or potential treatments other than iNO in neonates with PPHN were included if trials reported any clinical outcome. We found no studies meeting the criteria for inclusion in this review. We found no studies meeting the criteria for inclusion in this review. The efficacy and safety of milrinone in the treatment of PPHN are not known and its use should be restricted within the context of RCTs. Such studies should address a comparison of milrinone with placebo (in clinical situations where iNO is not available) or, in well resourced countries, should compare milrinone with iNO or as an adjunct to iNO compared with iNO alone.

  17. Inhaled nitric oxide therapy increases blood nitrite, nitrate, and s-nitrosohemoglobin concentrations in infants with pulmonary hypertension.

    PubMed

    Ibrahim, Yomna I; Ninnis, Janet R; Hopper, Andrew O; Deming, Douglas D; Zhang, Amy X; Herring, Jason L; Sowers, Lawrence C; McMahon, Timothy J; Power, Gordon G; Blood, Arlin B

    2012-02-01

    To measure the circulating concentrations of nitric oxide (NO) adducts with NO bioactivity after inhaled NO (iNO) therapy in infants with pulmonary hypertension. In this single center study, 5 sequential blood samples were collected from infants with pulmonary hypertension before, during, and after therapy with iNO (n = 17). Samples were collected from a control group of hospitalized infants without pulmonary hypertension (n = 16) and from healthy adults for comparison (n = 12). After beginning iNO (20 ppm) whole blood nitrite levels increased approximately two-fold within 2 hours (P<.01). Whole blood nitrate levels increased to 4-fold higher than baseline during treatment with 20 ppm iNO (P<.01). S-nitrosohemoglobin increased measurably after beginning iNO (P<.01), whereas iron nitrosyl hemoglobin and total hemoglobin-bound NO-species compounds did not change. Treatment of pulmonary hypertensive infants with iNO results in increases in levels of nitrite, nitrate, and S-nitrosohemoglobin in circulating blood. We speculate that these compounds may be carriers of NO bioactivity throughout the body and account for peripheral effects of iNO in the brain, heart, and other organs. Copyright © 2012 Mosby, Inc. All rights reserved.

  18. Prognostic value of exercise pulmonary haemodynamics in pulmonary arterial hypertension.

    PubMed

    Chaouat, Ari; Sitbon, Olivier; Mercy, Magalie; Ponçot-Mongars, Raphaëlle; Provencher, Steeve; Guillaumot, Anne; Gomez, Emmanuel; Selton-Suty, Christine; Malvestio, Pascale; Regent, Denis; Paris, Christophe; Hervé, Philippe; Chabot, François

    2014-09-01

    The aim of the study was to investigate the prognostic value of right heart catheterisation variables measured during exercise. 55 incident patients with idiopathic, familial or anorexigen-associated pulmonary arterial hypertension (PAH) underwent right heart catheterisation at rest and during exercise and 6-min walk testing before PAH treatment initiation. Patients were treated according to recommendations within the next 2 weeks. Right heart catheterisation was repeated 3-5 months into the PAH treatment in 20 patients. Exercise cardiac index decreased gradually as New York Heart Association (NYHA) functional class increased whereas cardiac index at rest was not significantly different across NYHA groups. Baseline 6-min walk distance correlated significantly with exercise and change in cardiac index from rest to exercise (r=0.414 and r=0.481, respectively; p<0.01). Change in 6-min walk distance from baseline to 3-5 months under PAH treatment was highly correlated with change in exercise cardiac index (r=0.746, p<0.001). The most significant baseline covariates associated with survival were change in systolic pulmonary artery pressure from rest to exercise and exercise cardiac index (hazard ratio 0.56 (95% CI 0.37-0.86) and 0.14 (95% CI 0.05-0.43), respectively). Change in pulmonary haemodynamics during exercise is an important tool for assessing disease severity and may help devise optimal treat-to-target strategies. ©ERS 2014.

  19. Activation of renin-angiotensin-aldosterone system (RAAS) in the lung of smoking-induced pulmonary arterial hypertension (PAH) rats.

    PubMed

    Yuan, Yi-Ming; Luo, Li; Guo, Zhen; Yang, Ming; Ye, Ren-Song; Luo, Chuan

    2015-06-01

    To explore the role of the renin-angiotensin-aldosterone system (RAAS) in the pathogenesis of pulmonary arterial hypertension (PAH) induced by chronic exposure to cigarette smoke. 48 healthy male SD rats were randomly divided into four groups (12/group): control group (group A); inhibitor alone group (group B); cigarette induction group (group C); cigarette induction + inhibitor group (group D). After the establishment of smoking-induced PAH rat model, the right ventricular systolic pressure (RVSP) was detected using an inserted catheter; western blotting was used to detect the protein expression of angiotensin-converting enzyme-2 (ACE2) and angiotensin-converting enzyme (ACE); expression levels of angiotensin II (AngII) in lung tissue were measured by radioimmunoassay. After six months of cigarette exposure, the RVSP of chronic cigarette induction group was significantly higher than that of the control group; expression levels of AngII and ACE increased in lung tissues, but ACE2 expression levels reduced. Compared with cigarette exposure group, after losartan treatment, RVSP, ACE and AngII obviously decreased (P<0.05), and ACE2 expression levels significantly increased. Chronic cigarette exposure may result in PAH and affect the protein expression of ACE2 and ACE in lung tissue, suggesting that ACE2 and ACE play an important role in the pathogenesis of smoking-induced PAH. © The Author(s) 2015.

  20. Management of pulmonary arterial hypertension with a focus on combination therapies.

    PubMed

    Benza, Raymond L; Park, Myung H; Keogh, Anne; Girgis, Reda E

    2007-05-01

    Pulmonary arterial hypertension (PAH) is a rare but frequently fatal condition marked by vasoconstriction and vascular remodeling within small pulmonary arteries. The pathobiology of PAH involves imbalances in a multitude of endogenous mediators, which promote aberrant cellular growth, vasoconstriction and hemostasis within the pulmonary vascular tree. The mechanisms promoting these pathologic effects are complex. This complexity is highlighted by the many overlapping secondary messenger systems through which these mediators work. In light of this natural redundancy, it is not surprising that many of the drugs used to treat PAH, which have shown short-term efficacy, fall "short of the mark" in reversing or halting the progression of this disease in the long run. This very redundancy in pathways makes the case for the use of combination of drugs with differing mechanisms of action to treat PAH. Similar to what is now accepted as the standard of care for the treatment of cancer and left ventricular dysfunction, combination therapy has the greatest promise for inducing the most complete vascular remodeling of the pulmonary vasculature by "shutting down" as many of these pathologic pathways as possible. Combination therapies involving existing therapies or new agents with improved pharmacokinetic and/or pharmacodynamic properties represent an emerging clinical paradigm for patients with sub-optimally managed disease. As emerging data in this field of therapy comes to fruition, further reductions in the morbidity and mortality associated with PAH will manifest. The goal of this report is to review the philosophy of combination therapy and present the available data in this area of study.

  1. Lung to head ratio in infants with congenital diaphragmatic hernia does not predict long term pulmonary hypertension.

    PubMed

    Garcia, Alejandro V; Fingeret, Abbey L; Thirumoorthi, Arul S; Hahn, Eunice; Leskowitz, Matthew J; Aspelund, Gudrun; Krishnan, Usha S; Stolar, Charles J H

    2013-01-01

    Lung-to-head ratio (LHR) has been used for antenatal evaluation of infants with congenital diaphragmatic hernia (CDH). We hypothesized that LHR was predictive of acute and chronic pulmonary hypertension in infants with CDH. Echocardiograms on all inborn infants with CDH (December 2001-March 2011) were reviewed. Echocardiograms at 1 and 3 months post-repair and most recent follow-up were assessed for presence of pulmonary hypertension (PAH). LHR, gestational age, birth weight, extracorporeal membrane oxygenation (ECMO), and death rate were obtained. Bivariate and multivariate analyses were performed. 106 infants with CDH had LHR obtained at median 28 weeks gestation (median LHR=1.25 [range 0.4-5.3]). Median follow-up was 26.6 months (range 4.6-97.5). The long-term incidence of pulmonary hypertension was 16%. LHR was significantly associated with pulmonary hypertension at one month (p=0.0001) but not at 3 months (p=0.22) or long-term (p=0.54). LHR was predictive of ECMO use (p=0.01) and death (p=0.001). The overall incidence of PAH in infants with CDH decreases over time. Prenatal LHR predicts PAH at one month but not long-term in infants with CDH. The ability for LHR to predict PAH at one month but not long term may suggest remodeling of the pulmonary vasculature over time. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Right Heart End-Systolic Remodeling Index Strongly Predicts Outcomes in Pulmonary Arterial Hypertension: Comparison With Validated Models.

    PubMed

    Amsallem, Myriam; Sweatt, Andrew J; Aymami, Marie C; Kuznetsova, Tatiana; Selej, Mona; Lu, HongQuan; Mercier, Olaf; Fadel, Elie; Schnittger, Ingela; McConnell, Michael V; Rabinovitch, Marlene; Zamanian, Roham T; Haddad, Francois

    2017-06-01

    Right ventricular (RV) end-systolic dimensions provide information on both size and function. We investigated whether an internally scaled index of end-systolic dimension is incremental to well-validated prognostic scores in pulmonary arterial hypertension. From 2005 to 2014, 228 patients with pulmonary arterial hypertension were prospectively enrolled. RV end-systolic remodeling index (RVESRI) was defined by lateral length divided by septal height. The incremental values of RV free wall longitudinal strain and RVESRI to risk scores were determined. Mean age was 49±14 years, 78% were female, 33% had connective tissue disease, 52% were in New York Heart Association class ≥III, and mean pulmonary vascular resistance was 11.2±6.4 WU. RVESRI and right atrial area were strongly connected to the other right heart metrics. Three zones of adaptation (adapted, maladapted, and severely maladapted) were identified based on the RVESRI to RV systolic pressure relationship. During a mean follow-up of 3.9±2.4 years, the primary end point of death, transplant, or admission for heart failure was reached in 88 patients. RVESRI was incremental to risk prediction scores in pulmonary arterial hypertension, including the Registry to Evaluate Early and Long-Term PAH Disease Management score, the Pulmonary Hypertension Connection equation, and the Mayo Clinic model. Using multivariable analysis, New York Heart Association class III/IV, RVESRI, and log NT-proBNP (N-Terminal Pro-B-Type Natriuretic Peptide) were retained (χ 2 , 62.2; P <0.0001). Changes in RVESRI at 1 year (n=203) were predictive of outcome; patients initiated on prostanoid therapy showed the greatest improvement in RVESRI. Among right heart metrics, RVESRI demonstrated the best test-retest characteristics. RVESRI is a simple reproducible prognostic marker in patients with pulmonary arterial hypertension. © 2017 American Heart Association, Inc.

  3. Pulmonary hypertension in patients with chronic obstructive pulmonary disease: advances in pathophysiology and management.

    PubMed

    Barberà, Joan Albert; Blanco, Isabel

    2009-06-18

    Pulmonary hypertension (PH) is an important complication in the natural history of chronic obstructive pulmonary disease (COPD). Its presence is associated with reduced survival and greater use of healthcare resources. The prevalence of PH is high in patients with advanced COPD, whereas in milder forms it might not be present at rest but may develop during exercise. In COPD, PH is usually of moderate severity and progresses slowly, without altering right ventricular function in the majority of patients. Nevertheless, a small subgroup of patients (1-3%) may present with out-of-proportion PH, that is, with pulmonary arterial pressure largely exceeding the severity of airway impairment. These patients depict a clinical picture similar to more severe forms of PH and have higher mortality rates. PH in COPD is caused by the remodelling of pulmonary arteries, which is characterized by the intimal proliferation of poorly differentiated smooth muscle cells and the deposition of elastic and collagen fibres. The sequence of changes that lead to PH in COPD begins at early disease stages by the impairment of endothelial function, which is associated with impaired release of endothelium-derived vasodilating agents (nitric oxide, prostacyclin) and increased expression of growth factors. Products contained in cigarette smoke play a critical role in the initiation of pulmonary endothelial cell alterations. Recognition of PH can be difficult because symptoms due to PH are not easy to differentiate from the clinical picture of COPD. Suspicion of PH should be high if clinical deterioration is not matched by the decline in pulmonary function, and in the presence of profound hypoxaemia or markedly reduced carbon monoxide diffusing capacity. Patients with suspected PH should be evaluated by Doppler echocardiography and, if confirmed, undergo right-heart catheterization in those circumstances where the result of the procedure can determine clinical management. To date, long-term oxygen

  4. Renal replacement therapy in patients with severe precapillary pulmonary hypertension with acute right heart failure.

    PubMed

    Sztrymf, Benjamin; Prat, Dominique; Jacobs, Frédéric M; Brivet, François G; O'Callaghan, Dermot S; Price, Laura C; Jais, Xavier; Sitbon, Olivier; Simonneau, Gérald; Humbert, Marc

    2013-01-01

    Renal replacement therapy has been suggested as a therapeutic option in the setting of acute right ventricular failure in patients with severe precapillary pulmonary hypertension. However, there are few data supporting this strategy. To describe the clinical course and the prognosis of pulmonary hypertensive patients undergoing renal replacement therapy in the setting of acute right heart failure. This was a single-center retrospective study over an 11-year period. Data were collected from all patients with chronic precapillary pulmonary hypertension requiring catecholamine infusions for clinical worsening and acute kidney injury that necessitated renal replacement therapy. Fourteen patients were included. At admission, patients had a blood urea of 28.2 mmol/l (22.3-41.2), a creatinine level of 496 µmol/l (304-590), and a mean urine output in the 24 h preceding hospitalization of 200 ml (0-650). Sixty-eight renal replacement therapy sessions were performed, 36 of which were continuous and 32 of which were intermittent. Systemic hypotension occurred in 16/32 intermittent and 16/36 continuous sessions (p = 0.9). Two patients died during a continuous session. The intensive care unit-related, 1-, and 3-month mortality was 46.7, 66.7, and 73.3%, respectively. Renal replacement therapy is feasible in the setting of acute right ventricular failure in patients with severe precapillary pulmonary hypertension but is associated with a poor prognosis. The best modality and timing in this population remain to be defined. Copyright © 2012 S. Karger AG, Basel.

  5. Hemolysis in sickle cell mice causes pulmonary hypertension due to global impairment in nitric oxide bioavailability

    PubMed Central

    Champion, Hunter C.; Campbell-Lee, Sally A.; Bivalacqua, Trinity J.; Manci, Elizabeth A.; Diwan, Bhalchandra A.; Schimel, Daniel M.; Cochard, Audrey E.; Wang, Xunde; Schechter, Alan N.; Noguchi, Constance T.; Gladwin, Mark T.

    2007-01-01

    Pulmonary hypertension is a highly prevalent complication of sickle cell disease and is a strong risk factor for early mortality. However, the pathophysiologic mechanisms leading to pulmonary vasculopathy remain unclear. Transgenic mice provide opportunities for mechanistic studies of vascular pathophysiology in an animal model. By microcardiac catheterization, all mice expressing exclusively human sickle hemoglobin had pulmonary hypertension, profound pulmonary and systemic endothelial dysfunction, and vascular instability characterized by diminished responses to authentic nitric oxide (NO), NO donors, and endothelium-dependent vasodilators and enhanced responses to vasoconstrictors. However, endothelium-independent vasodilation in sickle mice was normal. Mechanisms of vasculopathy in sickle mice involve global dysregulation of the NO axis: impaired constitutive nitric oxide synthase activity (NOS) with loss of endothelial NOS (eNOS) dimerization, increased NO scavenging by plasma hemoglobin and superoxide, increased arginase activity, and depleted intravascular nitrite reserves. Light microscopy and computed tomography revealed no plexogenic arterial remodeling or thrombi/emboli. Transplanting sickle marrow into wild-type mice conferred the same phenotype, and similar pathobiology was observed in a nonsickle mouse model of acute alloimmune hemolysis. Although the time course is shorter than typical pulmonary hypertension in human sickle cell disease, these results demonstrate that hemolytic anemia is sufficient to produce endothelial dysfunction and global dysregulation of NO. PMID:17158223

  6. Elevation of Plasma Cell-Free Hemoglobin in Pulmonary Arterial Hypertension

    PubMed Central

    Janz, David R.; Austin, Eric D.; Bastarache, Julie A.; Wheeler, Lisa A.; Ware, Lorraine B.; Hemnes, Anna R.

    2014-01-01

    BACKGROUND: Cell-free hemoglobin (CFH) is a potent nitric oxide scavenger associated with poor outcomes in several diseases. Pulmonary arterial hypertension (PAH) is characterized by reduced nitric oxide availability. We hypothesized that CFH would be elevated in PAH and would associate with hemodynamics and clinical outcomes. METHODS: We measured CFH in 200 consecutively evaluated patients with PAH, 16 unaffected bone morphogenetic receptor protein type 2 (BMPR2) mutation carriers, 19 healthy subjects, and 29 patients with pulmonary venous hypertension (PVH). CFH values were tested for association with hemodynamics, time to hospitalization, and death. RESULTS: CFH was elevated in patients with PAH and BMPR2 carriers compared with healthy subjects and patients with PVH (P ≤ .01 all comparisons). There were no differences in CFH across PAH subtypes. CFH modestly correlated with mean pulmonary artery pressure (ρ = 0.16, P = .03) and pulmonary vascular resistance (ρ = 0.21, P = .01) and inversely with cardiac index (ρ = −0.18, P = .02) in patients with PAH. CFH was not associated with hemodynamic response to nitric oxide or death. Patients with the highest CFH levels had increased risk of PAH-related hospitalization when adjusted for age, sex, and PAH cause (hazard ratio, 1.69; 95% CI ,1.08-2.66; P = .02). CONCLUSIONS: CFH is elevated in patients with PAH and BMPR2 carriers compared with healthy subjects and patients with PVH. Elevated CFH levels are independently associated with an increased risk of hospitalization. Further study is required to understand the mechanism of CFH elevation and the potential pathologic contribution of CFH in PAH. PMID:24945582

  7. Pulmonary veno-occlusive disease and pulmonary capillary hemangiomatosis.

    PubMed

    Ortiz-Bautista, Carlos; Hernández-González, Ignacio; Escribano-Subías, Pilar

    2017-03-22

    Pulmonary veno-occlusive disease is a rare cause of pulmonary hypertension which is part, together with pulmonary capillary hemangiomatosis, of the special designation (subgroup 1') within pulmonary hypertension group 1 in the latest classification of the pulmonary hypertension World Symposium. Recent discovery that gene mutations in eukaryotic translation initiation factor 2 alpha kinase 4 (EIF2AK4) are responsible for inherited forms of pulmonary veno-occlusive disease has changed the role of genetic testing, acquiring relevant importance in the diagnosis of these patients. Despite the advances in genetic, cellular and molecular basis knowledge in the last decade, pulmonary veno-occlusive disease remains as a rare aetiology of pulmonary hypertension without any effective medical treatment approved and poor outcomes. This document aims to review the advances occurred in the understanding of pulmonary veno-occlusive disease in the last years. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  8. Role for miR-204 in human pulmonary arterial hypertension

    PubMed Central

    Courboulin, Audrey; Paulin, Roxane; Giguère, Nellie J.; Saksouk, Nehmé; Perreault, Tanya; Meloche, Jolyane; Paquet, Eric R.; Biardel, Sabrina; Provencher, Steeve; Côté, Jacques; Simard, Martin J.

    2011-01-01

    Pulmonary arterial hypertension (PAH) is characterized by enhanced proliferation and reduced apoptosis of pulmonary artery smooth muscle cells (PASMCs). Because microRNAs have been recently implicated in the regulation of cell proliferation and apoptosis, we hypothesized that these regulatory molecules might be implicated in the etiology of PAH. In this study, we show that miR-204 expression in PASMCs is down-regulated in both human and rodent PAH. miR-204 down-regulation correlates with PAH severity and accounts for the proliferative and antiapoptotic phenotypes of PAH-PASMCs. STAT3 activation suppresses miR-204 expression, and miR-204 directly targets SHP2 expression, thereby SHP2 up-regulation, by miR-204 down-regulation, activates the Src kinase and nuclear factor of activated T cells (NFAT). STAT3 also directly induces NFATc2 expression. NFAT and SHP2 were needed to sustain PAH-PASMC proliferation and resistance to apoptosis. Finally, delivery of synthetic miR-204 to the lungs of animals with PAH significantly reduced disease severity. This study uncovers a new regulatory pathway involving miR-204 that is critical to the etiology of PAH and indicates that reestablishing miR-204 expression should be explored as a potential new therapy for this disease. PMID:21321078

  9. Dynamic Action Potential Restitution Contributes to Mechanical Restitution in Right Ventricular Myocytes From Pulmonary Hypertensive Rats.

    PubMed

    Hardy, Matthew E L; Pervolaraki, Eleftheria; Bernus, Olivier; White, Ed

    2018-01-01

    We investigated the steepened dynamic action potential duration (APD) restitution of rats with pulmonary artery hypertension (PAH) and right ventricular (RV) failure and tested whether the observed APD restitution properties were responsible for negative mechanical restitution in these myocytes. PAH and RV failure were provoked in male Wistar rats by a single injection of monocrotaline (MCT) and compared with saline-injected animals (CON). Action potentials were recorded from isolated RV myocytes at stimulation frequencies between 1 and 9 Hz. Action potential waveforms recorded at 1 Hz were used as voltage clamp profiles (action potential clamp) at stimulation frequencies between 1 and 7 Hz to evoke rate-dependent currents. Voltage clamp profiles mimicking typical CON and MCT APD restitution were applied and cell shortening simultaneously monitored. Compared with CON myocytes, MCT myocytes were hypertrophied; had less polarized diastolic membrane potentials; had action potentials that were triggered by decreased positive current density and shortened by decreased negative current density; APD was longer and APD restitution steeper. APD90 restitution was unchanged by exposure to the late Na + -channel blocker (5 μM) ranolazine or the intracellular Ca 2+ buffer BAPTA. Under AP clamp, stimulation frequency-dependent inward currents were smaller in MCT myocytes and were abolished by BAPTA. In MCT myocytes, increasing stimulation frequency decreased contraction amplitude when depolarization duration was shortened, to mimic APD restitution, but not when depolarization duration was maintained. We present new evidence that the membrane potential of PAH myocytes is less stable than normal myocytes, being more easily perturbed by external currents. These observations can explain increased susceptibility to arrhythmias. We also present novel evidence that negative APD restitution is at least in part responsible for the negative mechanical restitution in PAH myocytes. Thus

  10. Pulmonary Hypertension Surveillance

    PubMed Central

    Schieb, Linda J.; Ayala, Carma; Talwalkar, Anjali; Levant, Shaleah

    2014-01-01

    Pulmonary hypertension (PH) is an uncommon but progressive condition, and much of what we know about it comes from specialized disease registries. With expanding research into the diagnosis and treatment of PH, it is important to provide updated surveillance on the impact of this disease on hospitalizations and mortality. This study, which builds on previous PH surveillance of mortality and hospitalization, analyzed mortality data from the National Vital Statistics System and data from the National Hospital Discharge Survey between 2001 and 2010. PH deaths were identified using International Classification of Diseases, Tenth Revision codes I27.0, I27.2, I27.8, or I27.9 as any contributing cause of death on the death certificate. Hospital discharges associated with PH were identified using International Classification of Diseases, Ninth Revision, Clinical Modification codes 416.0, 416.8, or 416.9 as one of up to seven listed medical diagnoses. The decline in death rates associated with PH among men from 1980 to 2005 has reversed and now shows a significant increasing trend. Similarly, the death rates for women with PH have continued to increase significantly during the past decade. PH-associated mortality rates for those aged 85 years and older have accelerated compared with rates for younger age groups. There have been significant declines in PH-associated mortality rates for those with pulmonary embolism and emphysema. Rates of hospitalization for PH have increased significantly for both men and women during the past decade; for those aged 85 years and older, hospitalization rates have nearly doubled. Continued surveillance helps us understand and address the evolving trends in hospitalization and mortality associated with PH and PH-associated conditions, especially regarding sex, age, and race/ethnicity disparities. PMID:24700091

  11. 2014 Guidelines of Taiwan Society of Cardiology (TSOC) for the Management of Pulmonary Arterial Hypertension

    PubMed Central

    Hsu, Chih-Hsin; Ho, Wan-Jing; Huang, Wei-Chun; Chiu, Yu-Wei; Hsu, Tsu-Shiu; Kuo, Ping-Hung; Hsu, Hsao-Hsun; Chang, Jia-Kan; Cheng, Chin-Chang; Lai, Chao-Lun; Liang, Kae-Woei; Lin, Shoa-Lin; Sung, Hsao-Hsun; Tsai, Wei-Chuan; Weng, Ken-Pen; Hsieh, Kai-Sheng; Yin, Wei-Hsian; Lin, Shing-Jong; Wang, Kuo-Yang

    2014-01-01

    Pulmonary hypertension (PH) is a hemodynamic and pathophysiologic condition, defined as a mean pulmonary arterial pressure exceeding 25 mmHg at rest. According to the recent classifications, it is grouped into pulmonary arterial hypertension (PAH), heart-related, lung-related, thromboembolic, and miscellaneous PH. In the past two decades, tremendous advances have occurred in the field of PH. These include (1) development of clinical diagnostic algorithm and a monitoring strategy dedicated to PAH, (2) defining strong rationales for screening at-risk populations, (3) advent of pulmonary specific drugs which makes PAH manageable, (4) recognition of needs of having proper strategy of combining existing pulmonary specific drugs, and/or potential novel drugs, (5) pursuit of clinical trials with optimal surrogate endpoints and study durations, (6) recognition of critical roles of PH/right ventricular function, as well as interdependence of ventricles in different conditions, especially those with various phenotypes of heart failure, and (7) for rare diseases, putting equal importance on carefully designed observation studies, various registries, etc., besides double blind randomized studies. In addition, ongoing basic and clinical research has led to further understanding of relevant physiology, pathophysiology, epidemiology and genetics of PH/PAH. This guidelines from the working group of Pulmonary Hypertension of the Taiwan Society of Cardiology is to provide updated guidelines based on the most recent international guidelines as well as Taiwan’s domestic research on PH. The guidelines are mainly for the management of PAH (Group 1) ; however the majority of content can be helpful for managing other types of PH. PMID:27122817

  12. Experimental and theoretical studies on the characterization of monocrotaline by infrared and Raman spectroscopies

    NASA Astrophysics Data System (ADS)

    Oliveira, Ramon Prata; Demuner, Antonio Jacinto; Alvarenga, Elson Santiago; Parma, Monica Cropo; Barbosa, Luiz Claudio Almeida; de Moura Guimarães, Luciano; Aguiar, Alex Ramos

    2017-05-01

    The use of plants in folk medicine has a long and ancient history in the treatment of various diseases. Currently, a large proportion of commercial drugs are based on natural products or are synthetic compounds inspired on such natural substances. Therefore, in this communication to aid that research, structural and spectroscopic analysis of the natural pyrrolizidine alkaloid called monocrotaline was carried out. Pyrrolizidine alkaloids that are commonly found in the Boraginaceae and Asteraceae families are among the great diversity of secondary metabolites which are produced by plants to act as a defense mechanism against herbivores and microbes. In the present study, the natural product, monocrotaline, an alkaloid isolated from the leaves of Crotalaria paulina, with potential application in medicine, was characterized by infrared (IR) and Raman spectroscopy with the support of Density Functional Theory (DFT) calculations. IR and Raman spectra of monocrotaline were recorded at room temperature ranging from 4000 to 400 cm-1. DFT calculations with the hybrid functional B3LYP and the basis set 6-31 + G(d,p) were performed with the purpose of obtaining information on the structural and vibrational properties of this structure. A perfect fit between the experimentally measured frequencies of the IR and Raman spectra and the calculated values were observed, and we have performed the complete identification of monocrotaline by these techniques.

  13. Three-dimensional Echocardiography of Right Ventricular Function Correlates with Severity of Pediatric Pulmonary Hypertension.

    PubMed

    Jone, Pei-Ni; Patel, Sonali S; Cassidy, Courtney; Ivy, David Dunbar

    2016-12-01

    Right ventricular function and biomarkers of B-type natriuretic peptide (BNP) and N-Terminal pro-BNP (NT pro-BNP) are used to determine the severity of right ventricular failure and outcomes from pulmonary hypertension. Real-time three-dimensional echocardiography (3DE) is a novel quantitative measure of the right ventricle and decreases the geometric assumptions from conventional two-dimensional echocardiography (2DE). We correlated right ventricular functional measures using 2DE and single-beat 3DE with biomarkers and hemodynamics to determine the severity of pediatric pulmonary hypertension. We retrospectively evaluated 35 patients (mean age 12.67 ± 5.78 years) with established pulmonary hypertension who had echocardiograms and biomarkers on the same day. Ten out of 35 patients had hemodynamic evaluation within 3 days. 2DE evaluation included tricuspid annular plane systolic excursion (TAPSE), right ventricular myocardial performance index from tissue Doppler imaging (RV TDI MPI), and right ventricular fractional area change (FAC). Three-dimensional echocardiography evaluation included right ventricular ejection fraction (EF), end-systolic volume, and end-diastolic volume. The quality of the 3DE was graded as good, fair, or poor. Pearson correlation coefficients were utilized to evaluate between biomarkers and echocardiographic parameters and between hemodynamics and echocardiography. Three-dimensional echocardiography and FAC correlated significantly with BNP and NT pro-BNP. TAPSE and RV TDI MPI did not correlate significantly with biomarkers. 3D right ventricular EF correlated significantly with hemodynamics. Two-dimensional echocardiography did not correlate with hemodynamics. Single-beat 3DE is a noninvasive, feasible tool in the quantification of right ventricular function and maybe more accurate than conventional 2DE in evaluating severity of pulmonary hypertension. © 2016 Wiley Periodicals, Inc.

  14. Right Ventricular Hemodynamics in Patients with Pulmonary Hypertension

    NASA Astrophysics Data System (ADS)

    Browning, James; Fenster, Brett; Hertzberg, Jean; Schroeder, Joyce

    2012-11-01

    Recent advances in cardiac magnetic resonance imaging (CMR) have allowed for characterization of blood flow in the right ventricle (RV), including calculation of vorticity and circulation, and qualitative visual assessment of coherent flow patterns. In this study, we investigate qualitative and quantitative differences in right ventricular hemodynamics between subjects with pulmonary hypertension (PH) and normal controls. Fifteen (15) PH subjects and 10 age-matched controls underwent same day 3D time resolved CMR and echocardiography. Echocardiography was used to determine right ventricular diastolic function as well as pulmonary artery systolic pressure (PASP). Velocity vectors, vorticity vectors, and streamlines in the RV were visualized in Paraview and total RV Early (E) and Atrial (A) wave diastolic vorticity was quantified. Visualizations of blood flow in the RV are presented for PH and normal subjects. The hypothesis that PH subjects exhibit different RV vorticity levels than normals during diastole is tested and the relationship between RV vorticity and PASP is explored. The mechanics of RV vortex formation are discussed within the context of pulmonary arterial pressure and right ventricular diastolic function coincident with PH.

  15. Magnetic Resonance Imaging in the Prognostic Evaluation of Patients with Pulmonary Arterial Hypertension

    PubMed Central

    Capener, Dave; Johns, Chris; Hamilton, Neil; Rothman, Alex; Elliot, Charlie; Condliffe, Robin; Charalampopoulos, Athanasios; Rajaram, Smitha; Lawrie, Allan; Campbell, Michael J.; Wild, Jim M.; Kiely, David G.

    2017-01-01

    Rationale: Prognostication is important when counseling patients and defining treatment strategies in pulmonary arterial hypertension (PAH). Objectives: To determine the value of magnetic resonance imaging (MRI) metrics for prediction of mortality in PAH. Methods: Consecutive patients with PAH undergoing MRI were identified from the ASPIRE (Assessing the Spectrum of Pulmonary Hypertension Identified at a Referral Centre) pulmonary hypertension registry. Measurements and Main Results: During the follow-up period of 42 (range, 17–142) months 576 patients were studied and 221 (38%) died. A derivation cohort (n = 288; 115 deaths) and validation cohort (n = 288; 106 deaths) were identified. We used multivariate Cox regression and found two independent MRI predictors of death (P < 0.01): right ventricular end-systolic volume index adjusted for age and sex, and the relative area change of the pulmonary artery. A model of MRI and clinical data constructed from the derivation cohort predicted mortality in the validation cohort at 1 year (sensitivity, 70 [95% confidence interval (CI), 53–83]; specificity, 62 [95% CI, 62–68]; positive predictive value [PPV], 24 [95% CI, 16–32]; negative predictive value [NPV], 92 [95% CI, 87–96]) and at 3 years (sensitivity, 77 [95% CI, 67–85]; specificity, 73 [95% CI, 66–85]; PPV, 56 [95% CI, 47–65]; and NPV, 87 [95% CI, 81–92]). The model was more accurate in patients with idiopathic PAH at 3 years (sensitivity, 89 [95% CI, 65–84]; specificity, 76 [95% CI, 65–84]; PPV, 60 [95% CI, 46–74]; and NPV, 94 [95% CI, 85–98]). Conclusions: MRI measurements reflecting right ventricular structure and stiffness of the proximal pulmonary vasculature are independent predictors of outcome in PAH. In combination with clinical data MRI has moderate prognostic accuracy in the evaluation of patients with PAH. PMID:28328237

  16. Interstitial pneumonia and pulmonary hypertension associated with suspected ehrlichiosis in a dog.

    PubMed

    Toom, Marjolein Lisette den; Dobak, Tetyda Paulina; Broens, Els Marion; Valtolina, Chiara

    2016-07-07

    In dogs with canine monocytic ehrlichiosis (CME), respiratory signs are uncommon and clinical and radiographic signs of interstitial pneumonia are poorly described. However, in human monocytic ehrlichiosis, respiratory signs are common and signs of interstitial pneumonia are well known. Pulmonary hypertension (PH) is classified based on the underlying disease and its treatment is aimed at reducing the clinical signs and, if possible, addressing the primary disease process. PH is often irreversible, but can be reversible if it is secondary to a treatable underlying etiology. CME is currently not generally recognized as one of the possible diseases leading to interstitial pneumonia and secondary PH in dogs. Only one case of PH associated with CME has been reported worldwide. A seven-year-old, male intact, mixed breed dog was presented with 2 weeks history of lethargy and dyspnea. The dog previously lived in the Cape Verdean islands. Physical examination showed signs of right-sided congestive heart failure and poor peripheral perfusion. Thoracic radiography showed moderate right-sided cardiomegaly with dilation of the main pulmonary artery and a mild diffuse interstitial lung pattern with peribronchial cuffing. Echocardiography showed severe pulmonary hypertension with an estimated pressure gradient of 136 mm Hg. On arterial blood gas analysis, severe hypoxemia was found and complete blood count revealed moderate regenerative anemia and severe thrombocytopenia. A severe gamma hyperglobulinemia was also documented. Serology for Ehrlichia canis was highly positive. Treatment with oxygen supplementation, a typed packed red blood cell transfusion and medical therapy with doxycycline, pimobendan and sildenafil was initiated and the dog improved clinically. Approximately 2 weeks later, there was complete resolution of all clinical signs and marked improvement of the PH. This report illustrates that CME might be associated with significant pulmonary disease and should be

  17. EIF2AK4 Mutations in Patients Diagnosed With Pulmonary Arterial Hypertension.

    PubMed

    Best, D Hunter; Sumner, Kelli L; Smith, Benjamin P; Damjanovich-Colmenares, Kristy; Nakayama, Ikue; Brown, Lynette M; Ha, Youna; Paul, Eleri; Morris, Ashley; Jama, Mohamed A; Dodson, Mark W; Bayrak-Toydemir, Pinar; Elliott, C Gregory

    2017-04-01

    Differentiating pulmonary venoocclusive disease (PVOD) and pulmonary capillary hemangiomatosis (PCH) from idiopathic pulmonary arterial hypertension (IPAH) or heritable pulmonary arterial hypertension (HPAH) is important clinically. Mutations in eukaryotic translation initiation factor 2 alpha kinase 4 (EIF2AK4) cause heritable PVOD and PCH, whereas mutations in other genes cause HPAH. The aim of this study was to describe the frequency of pathogenic EIF2AK4 mutations in patients diagnosed clinically with IPAH or HPAH. Sanger sequencing and deletion/duplication analysis were performed to detect mutations in the bone morphogenetic protein receptor type II (BMPR2) gene in 81 patients diagnosed at 30 North American medical centers with IPAH (n = 72) or HPAH (n = 9). BMPR2 mutation-negative patients (n = 67) were sequenced for mutations in four other genes (ACVRL1, ENG, CAV1, and KCNK3) known to cause HPAH. Patients negative for mutations in all known PAH genes (n = 66) were then sequenced for mutations in EIF2AK4. We assessed the pathogenicity of EIF2AK4 mutations and reviewed clinical characteristics of patients with pathogenic EIF2AK4 mutations. Pathogenic BMPR2 mutations were identified in 8 of 72 (11.1%) patients with IPAH and 6 of 9 (66.7%) patients with HPAH. A novel homozygous EIF2AK4 mutation (c.257+4A>C) was identified in 1 of 9 (11.1%) patients diagnosed with HPAH. The novel EIF2AK4 mutation (c.257+4A>C) was homozygous in two sisters with severe pulmonary hypertension. None of the 72 patients with IPAH had biallelic EIF2AK4 mutations. Pathogenic biallelic EIF2AK4 mutations are rarely identified in patients diagnosed with HPAH. Identification of pathogenic biallelic EIF2AK4 mutations can aid clinicians in differentiating HPAH from heritable PVOD or PCH. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  18. Impaired systemic oxygen extraction in treated exercise pulmonary hypertension: a new engine in an old car?

    PubMed

    Faria-Urbina, Mariana; Oliveira, Rudolf K F; Segrera, Sergio A; Lawler, Laurie; Waxman, Aaron B; Systrom, David M

    2018-01-01

    Ambrisentan in 22 patients with pulmonary hypertension diagnosed during exercise (ePH) improved pulmonary hemodynamics; however, there was only a trend toward increased maximum oxygen uptake (VO 2 max) secondary to decreased maximum exercise systemic oxygen extraction (Ca-vO 2 ). We speculate that improved pulmonary hemodynamics at maximum exercise "unmasked" a pre-existing skeletal muscle abnormality.

  19. Drug induced hypertension--An unappreciated cause of secondary hypertension.

    PubMed

    Grossman, Alon; Messerli, Franz H; Grossman, Ehud

    2015-09-15

    Most patients with hypertension have essential hypertension or well-known forms of secondary hypertension, such as renal disease, renal artery stenosis, or common endocrine diseases (hyperaldosteronism or pheochromocytoma). Physicians are less aware of drug induced hypertension. A variety of therapeutic agents or chemical substances may increase blood pressure. When a patient with well controlled hypertension is presented with acute blood pressure elevation, use of drug or chemical substance which increases blood pressure should be suspected. Drug-induced blood pressure increases are usually minor and short-lived, although rare hypertensive emergencies associated with use of certain drugs have been reported. Careful evaluation of prescription and non-prescription medications is crucial in the evaluation of the hypertensive individual and may obviate the need for expensive and unnecessary evaluations. Discontinuation of the offending agent will usually achieve adequate blood pressure control. When use of a chemical agent which increases blood pressure is mandatory, anti-hypertensive therapy may facilitate continued use of this agent. We summarize the therapeutic agents or chemical substances that elevate blood pressure and their mechanisms of action. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Treatment of pulmonary hypertension with left heart disease: a concise review.

    PubMed

    Desai, Anish; Desouza, Shilpa A

    2017-01-01

    Pulmonary hypertension (PH) is defined by a mean pulmonary artery pressure ≥ 25 mmHg, as determined by right heart catheterization. Pulmonary arterial hypertension (PAH) can no longer be considered an orphan disease given the increase in awareness and availability of new drugs. PH carries with it a dismal prognosis and leads to significant morbidity and mortality. Symptoms can range from dyspnea, fatigue and chest pain to right ventricular failure and death. PH is divided into five groups by the World Health Organization (WHO), based on etiology. The most common cause of PH in developed countries is left heart disease (group 2), owing to the epidemic of heart failure (HF). The data regarding prevalence, diagnosis and treatment of patients with group 2 PH is unclear as large, prospective, randomized controlled trials and standardized protocols do not exist. Current guidelines do not support the use of PAH-specific therapy in patients with group 2 PH. Prostacyclins, endothelin receptor antagonists, phosphodiesterase-5 inhibitors and guanylate cyclase stimulators have been tried in treatment of patients with HF and/or group 2 PH with mixed results. This review summarizes and critically appraises the evidence for diagnosis and treatment of patients with group 2 PH/HF and suggests directions for future research.

  1. Serotonin contributes to high pulmonary vascular tone in a sheep model of persistent pulmonary hypertension of the newborn

    PubMed Central

    Gien, Jason; Roe, Gates; Isenberg, Nicole; Kailey, Jenai; Abman, Steven H.

    2013-01-01

    Although past studies demonstrate that altered serotonin (5-HT) signaling is present in adults with idiopathic pulmonary arterial hypertension, whether serotonin contributes to the pathogenesis of persistent pulmonary hypertension of the newborn (PPHN) is unknown. We hypothesized that 5-HT contributes to increased pulmonary vascular resistance (PVR) in a sheep model of PPHN and that selective 5-HT reuptake inhibitor (SSRI) treatment increases PVR in this model. We studied the hemodynamic effects of 5-HT, ketanserin (5-HT2A receptor antagonist), and sertraline, an SSRI, on pulmonary hemodynamics of the late gestation fetal sheep with PPHN caused by prolonged constriction of the ductus arteriosis. Brief intrapulmonary infusions of 5-HT increased PVR from 1.0 ± 0.07 (baseline) to 1.4 ± 0.22 mmHg/ml per minute of treatment (P < 0.05). Ketanserin decreased PVR from 1.1 ± 0.15 (baseline) to 0.82 ± 0.09 mmHg/ml per minute of treatment (P < 0.05). Sertraline increased PVR from 1.1 ± 0.17 (baseline) to 1.4 ± 0.17 mmHg/ml per minute of treatment (P = 0.01). In addition, we studied 5-HT production and activity in vitro in experimental PPHN. Compared with controls, pulmonary artery endothelial cells from fetal sheep with PPHN exhibited increased expression of tryptophan hydroxylase 1 and 5-HT production by twofold and 56%, respectively. Compared with controls, 5-HT2A R expression was increased in lung homogenates and pulmonary artery smooth muscle cell lysates by 35% and 32%, respectively. We concluded that increased 5-HT contributes to high PVR in experimental PPHN through activation of the 5-HT2A receptor and that SSRI infusion further increases PVR in this model. PMID:23605003

  2. A 50-year-old woman with haemoptysis, cough and tachypnea: cholesterol pneumonia accompanying with pulmonary artery hypertension.

    PubMed

    Li, Mengxi; Zhang, Nuofu; Zhou, Ying; Li, Jinhui; Gu, Yingying; Wang, Jian; Liu, Chunli

    2017-03-01

    Lipoid pneumonia is an uncommon disease caused by the presence of lipid in the alveoli. Here we described a case of a 50-year-old woman with haemoptysis, cough and tachypnea, who was diagnosed with cholesterol pneumonia accompanying with pulmonary artery hypertension. The extremely high pulmonary artery pressure achieved, in this case, is alarming and should alert the physicians that the cholesterol pneumonia may be one of the underlying causes of pulmonary artery hypertension. After a treatment of methylprednisolone, her clinical symptoms were significantly improved, which suggested that steroid might be a promising therapeutic for patients with cholesterol pneumonia. © 2015 John Wiley & Sons Ltd.

  3. Pulmonary artery relative area change detects mild elevations in pulmonary vascular resistance and predicts adverse outcome in pulmonary hypertension.

    PubMed

    Swift, Andrew J; Rajaram, Smitha; Condliffe, Robin; Capener, Dave; Hurdman, Judith; Elliot, Charlie; Kiely, David G; Wild, Jim M

    2012-10-01

    The aim of this study was to evaluate the clinical use of magnetic resonance imaging measurements related to pulmonary artery stiffness in the evaluation of pulmonary hypertension (PH). A total of 134 patients with suspected PH underwent right heart catheterization (RHC) and magnetic resonance imaging on a 1.5-T scanner within 2 days. Phase contrast imaging at the pulmonary artery trunk and cine cardiac views were acquired. Pulmonary artery area change (AC), relative AC (RAC), compliance (AC/pulse pressure from RHC), distensibility (RAC/pulse pressure from RHC), right ventricular functional indices, and right ventricular mass were all derived. Regression curve fitting identified the statistical model of best fit between RHC measurements and pulmonary artery stiffness indices. The diagnostic accuracy and prognostic value of noninvasive AC and RAC were also assessed. The relationship between pulmonary vascular resistance and pulmonary artery RAC was best reflected by an inverse linear model. Patients with mild elevation in pulmonary vascular resistance (<4 Woods units) demonstrated reduced RAC (P = 0.02) and increased right ventricular mass index (P < 0.0001) without significant loss of right ventricular function (P = 0.17). At follow-up of 0 to 40 months, 18 patients with PH had died (16%). Analysis of Kaplan-Meier plots showed that both AC and RAC predicted mortality (log-rank test, P = 0.046 and P = 0.012, respectively). Area change and RAC were also predictors of mortality using univariate Cox proportional hazards regression analysis (P = 0.046 and P = 0.03, respectively). Noninvasive assessment of pulmonary artery RAC is a marker sensitive to early increased vascular resistance in PH and is a predictor of adverse outcome.

  4. Importance of Pulmonary Vein Preferential Fibrosis for Atrial Fibrillation Promotion in Hypertensive Rat Hearts.

    PubMed

    Iwasaki, Yu-Ki; Yamashita, Takeshi; Sekiguchi, Akiko; Hayami, Noriyuki; Shimizu, Wataru

    2016-06-01

    Hypertension is one of the independent risk factors for atrial fibrillation (AF). Pulmonary veins (PVs) play an important role as the substrate for AF and triggers of AF. The purpose of this study was to determine the structural remodelling of the PVs and its effect on promoting AF in hypertensive (HT) rat hearts. Eighteen-week-old Dahl salt-sensitive HT rats and their controls were used for histological and immunohistological analyses, and electrophysiological studies were performed in Langendorff perfused hearts. Masson-trichrome staining revealed that hypertension significantly increased the fibrosis in the PVs, particularly in subendocardial and perivascular areas, compared with that in control rats, however, at this early stage of hypertension, left atrial fibrosis was not prominent. In the HT rat hearts with PVs, electrical stimulation significantly increased the number of repetitive atrial firing and atrial tachycardia inducibility, which significantly diminished after the excision of the PVs. An immunofluorescent analysis revealed that HT rats had PV specific endocardial smooth muscle actin (αSMA)-positive cells with remarkable proliferation of platelet-derived growth factor (PDGF)-C and vascular endothelial growth factor (VEGF), which was lacking in the left atrial structures of the control and the HT rats. Pretreatment with imatinib, a PDGF receptor activity blocker, in HT rats reduced the αSMA-positive cell proliferation and fibrosis in the PVs and also induced a significant reduction in VEGF expression. Also, the drug pretreatment effectively prevented repetitive atrial firing promotion without affecting the blood pressure. PV preferential fibrosis might play an important role in the arrhythmogenic substrate of AF in HT rat hearts. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  5. Two-dimensional knowledge-based volumetric reconstruction of the right ventricle documents short-term improvement in pulmonary hypertension.

    PubMed

    Schwaiger, Johannes P; Knight, Daniel S; Kaier, Thomas; Gallimore, Adele; Denton, Christopher P; Schreiber, Benjamin E; Handler, Clive; Coghlan, John G

    2017-06-01

    Data are scarce about short-term right ventricular changes in pulmonary hypertension. Two-dimensional knowledge-based reconstruction of the right ventricle with 2D echocardiography (2DKBR) has been shown to be a valid alternative to Cardiac MRI. In this longitudinal study 25 pulmonary hypertension patients underwent 2DKBR of the right ventricle, assessment of NT-proBNP levels and functional class at baseline and after a mean follow-up of 6.1 months. Patients were followed up clinically for a further mean of 8.2 months. The majority of patients had connective tissue disease (CTD) associated pulmonary arterial hypertension (n=15) or chronic thromboembolic pulmonary hypertension (CTEPH; n=6). A total of 15 patients underwent an intervention, either new targeted therapy, escalation of targeted therapy or pulmonary endarterectomy. A total of 10 clinically stable patients were routinely followed up without any change in therapy. There were significant improvements in the right ventricular end-diastolic volume index (111±29 mL/m² vs 100±36 mL/m²; P=.038), end-systolic volume index (72±23 mL/m² vs 61±25 mL/m²; P=.001), and ejection fraction (35±10% vs 40±9%; P=.030). Changes in NT-proBNP levels correlated strongest with changes in end-systolic volume index (r=-.77; P=<.0001). Four patients experienced clinical worsening during extended follow-up, dilatation of the right ventricle was associated with clinical worsening. In a CTD and CTEPH dominated patient population significant reverse remodeling and improvement of ejection fraction occurred despite a short follow-up and was paralleled by significant changes in NT-proBNP levels. Further right ventricular dilatation was associated with worse clinical outcome. 2DKBR is a feasible substitute for Cardiac MRI to follow-up right ventricular indices in pulmonary hypertension. © 2017, Wiley Periodicals, Inc.

  6. Systemic Sclerosis-Associated Pulmonary Arterial Hypertension

    PubMed Central

    Chaisson, Neal F.

    2013-01-01

    Pulmonary arterial hypertension (PAH) is the leading cause of death in systemic sclerosis (SSc) and affects up to 12% of all patients with SSc, with a 50% mortality rate within 3 years of PAH diagnosis. Compared with the idiopathic form of PAH (IPAH), patients with SSc-associated PAH (SSc-PAH) have a threefold increased risk of death and may receive a diagnosis late in the course of disease because of insidious onset and the high prevalence of cardiac, musculoskeletal, and pulmonary parenchymal comorbidities. Treatment with conventional forms of PAH therapy often yield poor results compared with IPAH cohorts; unfortunately, the exact reasons behind this remain poorly understood but likely include variations in the pathologic mechanisms, differences in cardiovascular response to increasing afterload, and inadequate strategies to detect and treat SSc-PAH early in its course. Current methods for screening and longitudinal evaluation of SSc-PAH, such as the 6-min walk test, transthoracic echocardiography, and MRI, each have notable advantages and disadvantages. We provide an up-to-date, focused review of SSc-PAH and how it differs from IPAH, including pathogenesis, appropriate screening for disease onset, and new approaches to treatment and longitudinal assessment of this disease. PMID:24081346

  7. Pulmonary Hypertension in Lambs Transfused with Stored Blood is Prevented by Breathing Nitric Oxide

    PubMed Central

    Baron, David M.; Yu, Binglan; Lei, Chong; Bagchi, Aranya; Beloiartsev, Arkadi; Stowell, Christopher P.; Steinbicker, Andrea U.; Malhotra, Rajeev; Bloch, Kenneth D.; Zapol, Warren M.

    2012-01-01

    Background During extended storage, erythrocytes undergo functional changes. These changes reduce the viability of erythrocytes leading to release of oxyhemoglobin, a potent scavenger of nitric oxide. We hypothesized that transfusion of ovine packed erythrocytes (PRBC) stored for prolonged periods would induce pulmonary vasoconstriction in lambs, and that reduced vascular nitric oxide concentrations would increase this vasoconstrictor effect. Methods We developed a model of autologous stored blood transfusion in lambs (n=36). Leukoreduced blood was stored for either 2 days (fresh PRBC) or 40 days (stored PRBC). Fresh or stored PRBC were transfused into donors instrumented for awake hemodynamic measurements. Hemodynamic effects of PRBC transfusion were also studied after infusion of NG-nitro-L-arginine methyl-ester (25 mg/kg) or during inhalation of nitric oxide (80 ppm). Results Cell-free hemoglobin levels were higher in the supernatant of stored PRBC than in supernatant of fresh PRBC (Mean±SD, 148±20 versus 41±13 mg/dl, respectively, P<0.001). Pulmonary artery pressure during transfusion of stored PRBC transiently increased from 13±1 to 18±1 mmHg (P<0.001) and was associated with increased plasma hemoglobin concentrations. NG-nitro-L-arginine methyl-ester potentiated the increase in pulmonary arterial pressure induced by transfusing stored PRBC, whereas inhalation of nitric oxide prevented the vasoconstrictor response. Conclusions Our results suggest that patients with reduced vascular nitric oxide levels due to endothelial dysfunction may be more susceptible to adverse effects of transfusing blood stored for prolonged periods. These patients might benefit from transfusion of fresh PRBC, when available, or inhaled nitric oxide supplementation to prevent the pulmonary hypertension associated with transfusion of stored PRBC. PMID:22293717

  8. Quantitative MR imaging of pulmonary hypertension: A practical approach to the current state of the art

    PubMed Central

    Swift, Andrew J.; Wild, Jim M.; Nagle, Scott K.; Roldán-Alzate, Alejandro; François, Christopher J.; Fain, Sean; Johnson, Kevin; Capener, Dave; van Beek, Edwin J. R.; Kiely, David G.; Wang, Kang; Schiebler, Mark L.

    2014-01-01

    Pulmonary hypertension (PH) is a condition of varied aetiology, commonly associated with a poor clinical outcome. Patients are categorised on the basis of pathophysiological, clinical, radiological and therapeutic similarities. Pulmonary arterial hypertension (PAH) is often diagnosed late in its disease course with outcome dependent on aetiology, disease severity and response to treatment. Recent advances in quantitative MR imaging allow for a better initial characterization and measurement of the morphologic and flow related changes that accompany the response of the heart-lung axis to prolonged elevation of pulmonary arterial pressure and resistance and provide a reproducible, comprehensive and non-invasive means of assessing the course of the disease and response to treatment. Typical features of pulmonary arterial hypertension (PAH) occur primarily as a result of increased pulmonary vascular resistance and resultant increased RV afterload. Several MRI derived diagnostic markers have emerged, such as ventricular mass index (VMI), interventricular septal configuration and average pulmonary artery velocity having reported diagnostic accuracy similar to Doppler echocardiography. Furthermore, prognostic markers have been identified with independent predictive value for identification of treatment failure. Such markers include: large right ventricular end-diastolic volume index (RVEDVI), low left ventricular end diastolic volume index (LVEDVI), low right ventricular ejection fraction (RVEF) and relative area change of the pulmonary trunk. MRI is ideally suited to longitudinal follow-up of patients with PAH due to its non-invasive nature, high reproducibility and has the advantage over other biomarkers in PAH due to its sensitivity to change in morphological, functional and flow related parameters. Further study the role of MR imaging as a biomarker in the clinical environment is warranted. PMID:24552882

  9. Increased pulmonary RhoA expression in the nitrofen-induced congenital diaphragmatic hernia rat model.

    PubMed

    Takayasu, Hajime; Masumoto, Kouji; Hagiwara, Koki; Sasaki, Takato; Ono, Kentaro; Jimbo, Takahiro; Uesugi, Toru; Gotoh, Chikashi; Urita, Yasuhisa; Shinkai, Toko; Tanaka, Hideaki

    2015-09-01

    Persistent pulmonary hypertension remains a major cause of mortality and morbidity in cases of congenital diaphragmatic hernia (CDH). Recently, RhoA/Rho-kinase-mediated vasoconstriction has been reported to be important in the pathogenesis of pulmonary hypertension (PH). Several recent reports have described that fasudil, a potent Rho-kinase inhibitor and vasodilator, could represent a potential therapeutic option for PH. We designed this study to investigate the hypothesis that the expression level of RhoA is increased in the nitrofen-induced CDH rat model. The expression level of Wnt11, an activator of RhoA, was also evaluated. Pregnant rats were treated with or without nitrofen on gestational day 9 (D9). Fetuses were sacrificed on D17, D19 and D21 and were divided into control and CDH groups. Quantitative real-time polymerase chain reaction was performed to determine the pulmonary gene expression levels of both Wnt11 and RhoA. An immunofluorescence study was also performed to evaluate the expression and localization of RhoA. The relative mRNA expression levels of pulmonary Wnt11 and RhoA on D21 were significantly increased in the CDH group compared with the control group (p=0.016 and p=0.008, respectively). The immunofluorescence study confirmed the overexpression of RhoA in the pulmonary vessels of CDH rats on D21. Our results provide evidence that the RhoA/Rho-kinase-mediated pathway is involved in the pathogenesis of PH in the nitrofen-induced CDH rat model. Our data also suggest that the fasudil, a Rho-kinase inhibitor, could represent a therapeutic option for the treatment of PH in CDH. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Superoxide Dismutase Mimetic, MnTE-2-PyP, Attenuates Chronic Hypoxia-Induced Pulmonary Hypertension, Pulmonary Vascular Remodeling, and Activation of the NALP3 Inflammasome

    PubMed Central

    Villegas, Leah R.; Kluck, Dylan; Field, Carlie; Oberley-Deegan, Rebecca E.; Woods, Crystal; Yeager, Michael E.; El Kasmi, Karim C.; Savani, Rashmin C.; Bowler, Russell P.

    2013-01-01

    Abstract Aims: Pulmonary hypertension (PH) is characterized by an oxidant/antioxidant imbalance that promotes abnormal vascular responses. Reactive oxygen species, such as superoxide (O2•−), contribute to the pathogenesis of PH and vascular responses, including vascular remodeling and inflammation. This study sought to investigate the protective role of a pharmacological catalytic antioxidant, a superoxide dismutase (SOD) mimetic (MnTE-2-PyP), in hypoxia-induced PH, vascular remodeling, and NALP3 (NACHT, LRR, and PYD domain-containing protein 3)–mediated inflammation. Results: Mice (C57/BL6) were exposed to hypobaric hypoxic conditions, while subcutaneous injections of MnTE-2-PyP (5 mg/kg) or phosphate-buffered saline (PBS) were given 3× weekly for up to 35 days. SOD mimetic-treated groups demonstrated protection against increased right ventricular systolic pressure, indirect measurements of pulmonary artery pressure, and RV hypertrophy. Vascular remodeling was assessed by Ki67 staining to detect vascular cell proliferation, α-smooth muscle actin staining to analyze small vessel muscularization, and hyaluronan (HA) measurements to assess extracellular matrix modulation. Activation of the NALP3 inflammasome pathway was measured by NALP3 expression, caspase-1 activation, and interleukin 1-beta (IL-1β) and IL-18 production. Hypoxic exposure increased PH, vascular remodeling, and NALP3 inflammasome activation in PBS-treated mice, while mice treated with MnTE-2-PyP showed an attenuation in each of these endpoints. Innovation: This study is the first to demonstrate activation of the NALP3 inflammasome with cleavage of caspase-1 and release of active IL-1 β and IL-18 in chronic hypoxic PH, as well as its attenuation by the SOD mimetic, MnTE-2-PyP. Conclusion: The ability of the SOD mimetic to scavenge extracellular O2•− supports our previous observations in EC-SOD-overexpressing mice that implicate extracellular oxidant/antioxidant imbalance in hypoxic PH

  11. [Pulmonary arterial hypertension associated to human immunodeficiency virus].

    PubMed

    Sandoval-Gutiérrez, José Luis; Santos-Martínez, Luis Efren; Rodríguez-Silverio, Juan; Baranda-Tovar, Francisco Martín; Rivera-Rosales, Rosa María; Flores-Murrieta, Francisco Javier

    2015-01-01

    From the advent of the highly effective antiretroviral treatment, the life expectancy of patients with human immunodeficiency virus has increased significantly. At present, the causes of death are non-infectious complications. Between them, the pulmonary arterial hypertension has a special importance. It is important early detection to establish the therapeutic, with the objective of preventing a fatal outcome to future. Copyright © 2013 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  12. [Supervised exercise training in patients with pulmonary arterial hypertension - analyses of the effectiveness and safety].

    PubMed

    Saxer, S; Rhyner, M; Treder, U; Speich, R; van Gestel, A J R

    2012-02-01

    Both in today's scientific research and in clinical practice, there exists a need to address the uncertainty concerning the effectiveness and safety of cardiopulmonary exercise training (CPET) in patients with pulmonary arterial hypertension (PAH). It is commonly believed that CPET may be dangerous for patients with PAH, because increasing pressure on the pulmonary arteries may worsen right-sided heart failure. Recently, the first clinical trials on exercise training in patients with pulmonary hypertension reported promising results. Extension of the walking distance at the 6-minute walk test improved quality of life, endurance capacity and a reduction in symptoms were observed after CPET. Furthermore, CPET was well tolerated by the patients in five clinical trials. In conclusion, it may be postulated that CPET is an effective therapy in patients with PAH and was tendentially well tolerated by the patients.

  13. [Percutaneous closure of ductus arteriosus and muscular ventricular defect with amplatzer occluder in a patient with severe pulmonary hypertension].

    PubMed

    García-Montes, José Antonio; Zabal Cerdeira, Carlos; Calderón-Colmenero, Juan; Espínola, Nilda; Fernández de la Reguera, Guillermo; Buendía Hernández, Alfonso

    2005-01-01

    Surgical treatment of multiple muscular ventricular septal defects with associated lesions and severe pulmonary hypertension has a high morbility and mortality. Closure of these defects by the Amplatzer muscular VSD occluder is an alternative to surgery, avoiding the need of cardiopulmonary bypass. We present the case of a 38 year-old woman with signs of heart failure in NYHA functional class IV, with two muscular ventricular septal defects, patent ductus arteriosus and severe pulmonary hypertension, that were treated with three Amplatzer muscular VSD occluders, with significant reduction of pulmonary pressure and functional class improvement.

  14. [Case of pulmonary edema due to excessive hypertension following extubation].

    PubMed

    Takabayashi, Reina; Tajiri, Osamu; Ito, Hiroyuki; Yago, Yasuko

    2010-12-01

    A 54-year-old man had emergency laparoscopic chelecystectomy for acute cholecystitis. General inflammatory change (CRP 26.6 mg x dl(-1), WBC 26,800) was noted preoperatively. Anesthesia was induced with propofol and remifentanil and maintained with sevoflurane in oxygen and remifentanil. Operation was performed uneventfully within 128 min. At the end of the surgery, 0.1 mg of fentanyl was administrated. After confirming adequate respiration and oxygenation, endotracheal tube was removed. At that period, hypertension (SBP 220 mmHg) and tachycardia (HR 122 beats x min(-1)) developed. Soon thereafter, he became agitated and complained of dyspnea with desaturation (Spo2 < 70%). After reintubation, massive pinkish babbly secretion flowed out from the endotracheal tube. Chest X-ray revealed diffuse bilateral infiltration of the lungs without cardiomegaly. He was transferred to the intensive care unit for mechanical ventilation. His condition improved progressively and was extubated on the POD 6. The cause of pulmonary edema is thought to be profound centralization of circulating volume associated with catecholamine-induced vasoconstriction due to rapid disappearance of remifentanil effect. Adequate analgesia is necessary during remifentanil-based anesthesia especially in patients suffering from general inflammatory changes.

  15. Spontaneous Tricuspid Valve Chordal Rupture in Idiopathic Pulmonary Hypertension.

    PubMed

    Rodrigues, Ana Clara Tude; Afonso, José E; Cordovil, Adriana; Monaco, Claudia; Piveta, Rafael; Cordovil, Rodrigo; Fischer, Claudio H; Vieira, Marcelo; Lira-Filho, Edgar; Morhy, Samira S

    2016-03-01

    Rupture of tricuspid valve is unusual, occurring mainly in the setting of blunt trauma or endomyocardial biopsy. Spontaneous tricuspid valve chordal rupture is particularly rare. We report herein a case of a patient with severe pulmonary hypertension, on the lung transplantation waiting list, who presented with spontaneous chordal rupture, exacerbation of tricuspid insufficiency and worsening of clinical status. Diagnosis and treatment, along with possible mechanisms for this complication, are discussed. © 2015, Wiley Periodicals, Inc.

  16. [Clinical utility of inhaled iloprost in pulmonary arterial hypertension].

    PubMed

    Santos-Martínez, Luis Efren; Moreno-Ruiz, Luis Antonio; Jiménez-Santos, Moisés; Olmos-Temois, Sergio Gabriel; Bojorquez-Guerrero, Luis Armando; Baranda-Tovar, Francisco Martín

    2014-01-01

    Inhaled iloprost is a drug from the group of prostacyclins used in the treatment of pulmonary arterial hypertension. Its efficacy and safety have allowed its use as monotherapy and combination therapy. This review describes the product characteristics, amenable to treatment groups, and updated clinical evidence of drug use. Copyright © 2013 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  17. Interventional and surgical therapeutic strategies for pulmonary arterial hypertension: Beyond palliative treatments.

    PubMed

    Sandoval, Julio; Gomez-Arroyo, Jose; Gaspar, Jorge; Pulido-Zamudio, Tomas

    2015-10-01

    Despite significant advances in pharmacological treatments, pulmonary arterial hypertension remains an incurable disease with an unreasonably high morbidity and mortality. Although specific pharmacotherapies have shifted the survival curves of patients and improved exercise endurance as well as quality of life, it is also true that these pharmacological interventions are not always accessible (particularly in developing countries) and, perhaps most importantly, not all patients respond similarly to these drugs. Furthermore, many patients will continue to deteriorate and will eventually require an additional, non-pharmacological, intervention. In this review we analyze the role of atrial septostomy and Potts anastomosis in the management of patients with pulmonary arterial hypertension, we summarize the current worldwide clinical experience (case reports and case series), and discuss why these interventional/surgical strategies might have a therapeutic role beyond that of a "bridge" to transplantation. Copyright © 2015 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  18. Gallic acid attenuates pulmonary fibrosis in a mouse model of transverse aortic contraction-induced heart failure.

    PubMed

    Jin, Li; Piao, Zhe Hao; Sun, Simei; Liu, Bin; Ryu, Yuhee; Choi, Sin Young; Kim, Gwi Ran; Kim, Hyung-Seok; Kee, Hae Jin; Jeong, Myung Ho

    2017-12-01

    Gallic acid, a trihydroxybenzoic acid found in tea and other plants, attenuates cardiac hypertrophy, fibrosis, and hypertension in animal models. However, the role of gallic acid in heart failure remains unknown. In this study, we show that gallic acid administration prevents heart failure-induced pulmonary fibrosis. Heart failure induced in mice, 8weeks after transverse aortic constriction (TAC) surgery, was confirmed by echocardiography. Treatment for 2weeks with gallic acid but not furosemide prevented cardiac dysfunction in mice. Gallic acid significantly inhibited TAC-induced pathological changes in the lungs, such as increased lung mass, pulmonary fibrosis, and damaged alveolar morphology. It also decreased the expression of fibrosis-related genes, including collagen types I and III, fibronectin, connective tissue growth factor (CTGF), and phosphorylated Smad3. Further, it inhibited the expression of epithelial-mesenchymal transition (EMT)-related genes, such as N-cadherin, vimentin, E-cadherin, SNAI1, and TWIST1. We suggest that gallic acid has therapeutic potential for the treatment of heart failure-induced pulmonary fibrosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Pregnancy outcomes in pulmonary arterial hypertension in the modern management era.

    PubMed

    Jaïs, Xavier; Olsson, Karen M; Barbera, Joan A; Blanco, Isabel; Torbicki, Adam; Peacock, Andrew; Vizza, C Dario; Macdonald, Peter; Humbert, Marc; Hoeper, Marius M

    2012-10-01

    Previous studies have reported mortality rates of up to 56% associated with pregnancy in pulmonary arterial hypertension (PAH) but the management of this disease has changed considerably in recent years. We compiled a multinational, prospective registry to examine the contemporary outcome of pregnancies in patients with PAH. During a 3-yr period, the 13 participating centres reported 26 pregnancies. Three (12%) females died and one (4%) developed right heart failure requiring urgent heart-lung transplantation. There were eight abortions; two spontaneous and six induced. 16 (62%) pregnancies were successful, i.e. the females delivered healthy babies without complications. These females had well controlled PAH (pulmonary vascular resistance (PVR) 500 ± 352 dyn·s·cm(-5)); eight of them were long-term responders to calcium channel blockers. In contrast, the females who died or required transplantation had poorly controlled PAH (PVR 1,667 ± 209 dyn·s·cm(-5)). Pregnancy remains associated with a substantial mortality rate in PAH. However, our results indicate that the outcome of pregnancy in PAH has improved, at least when PAH is well controlled, and particularly in long-term responders to calcium channel blockers. These data must be confirmed by larger series before the general recommendation to avoid pregnancy in all patients with PAH is reconsidered.

  20. Cefminox, a Dual Agonist of Prostacyclin Receptor and Peroxisome Proliferator-Activated Receptor-Gamma Identified by Virtual Screening, Has Therapeutic Efficacy against Hypoxia-Induced Pulmonary Hypertension in Rats

    PubMed Central

    Xia, Jingwen; Yang, Li; Dong, Liang; Niu, Mengjie; Zhang, Shengli; Yang, Zhiwei; Wumaier, Gulinuer; Li, Ying; Wei, Xiaomin; Gong, Yi; Zhu, Ning; Li, Shengqing

    2018-01-01

    Prostacyclin receptor (IP) and peroxisome proliferator-activated receptor-gamma (PPARγ) are both potential targets for treatment of pulmonary arterial hypertension (PAH). Expression of IP and PPARγ decreases in PAH, suggesting that screening of dual agonists of IP and PPARγ might be an efficient method for drug discovery. Virtual screening (VS) of potential IP–PPARγ dual-targeting agonists was performed in the ZINC database. Ten of the identified compounds were further screened, and cefminox was found to dramatically inhibit growth of PASMCs with no obvious cytotoxicity. Growth inhibition by cefminox was partially reversed by both the IP antagonist RO113842 and the PPARγ antagonist GW9662. Investigation of the underlying mechanisms of action demonstrated that cefminox inhibits the protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway through up-regulation of the expression of phosphatase and tensin homolog (PTEN, which is inhibited by GW9662), and enhances cyclic adenosine monophosphate (cAMP) production in PASMCs (which is inhibited by RO113842). In a rat model of hypoxia-induced pulmonary hypertension, cefminox displayed therapeutic efficacy not inferior to that of the prostacyclin analog iloprost or the PPARγ agonist rosiglitazone. Our results identified cefminox as a dual agonist of IP and PPARγ that significantly inhibits PASMC proliferation by up-regulation of PTEN and cAMP, suggesting that it has potential for treatment of PAH. PMID:29527168