Science.gov

Sample records for monomorphic bacteria dna

  1. Preparation of genomic DNA from bacteria.

    PubMed

    Andreou, Lefkothea-Vasiliki

    2013-01-01

    The purpose of this protocol is the isolation of bulk cellular DNA from bacteria (alternatively see Preparation of genomic DNA from Saccharomyces cerevisiae or Isolation of Genomic DNA from Mammalian Cells protocols). PMID:24011042

  2. Phosphorothioate DNA as an antioxidant in bacteria.

    PubMed

    Xie, Xinqiang; Liang, Jingdan; Pu, Tianning; Xu, Fei; Yao, Fen; Yang, Yan; Zhao, Yi-Lei; You, Delin; Zhou, Xiufen; Deng, Zixin; Wang, Zhijun

    2012-10-01

    Diverse bacteria contain DNA with sulfur incorporated stereo-specifically into their DNA backbone at specific sequences (phosphorothioation). We found that in vitro oxidation of phosphorothioate (PT) DNA by hydrogen peroxide (H(2)O(2)) or peracetic acid has two possible outcomes: DNA backbone cleavage or sulfur removal resulting in restoration of normal DNA backbone. The physiological relevance of this redox reaction was investigated by challenging PT DNA hosting Salmonella enterica cells using H(2)O(2). DNA phosphorothioation was found to correlate with increasing resistance to the growth inhibition by H(2)O(2). Resistance to H(2)O(2) was abolished when each of the three dnd genes, required for phosphorothioation, was inactivated. In vivo, PT DNA is more resistant to the double-strand break damage caused by H(2)O(2) than PT-free DNA. Furthermore, sulfur on the modified DNA was consumed and the DNA was converted to PT-free state when the bacteria were incubated with H(2)O(2). These findings are consistent with a hypothesis that phosphorothioation modification endows DNA with reducing chemical property, which protects the hosting bacteria against peroxide, explaining why this modification is maintained by diverse bacteria. PMID:22772986

  3. DNA UPTAKE BY TRANSFORMABLE BACTERIA

    SciTech Connect

    LACKS,S.A.

    1999-09-07

    The various processes of DNA uptake by cells can be categorized as: viral DNA entry, conjugation, or transformation. Within each category, a variety of mechanisms have been found. However, considerable similarities occur among the different mechanisms of conjugation and, especially, transformation. All of these natural mechanisms of DNA transfer are quite elaborate and involve multiple protein components, as the case may be, of the virus, the donor cell, and the recipient cell. The mechanisms of viral infection and conjugation will be discussed mainly with respect to their relevance to transformation.

  4. DNA Uptake by Transformable Bacteria

    SciTech Connect

    Lacks, Sanford A.

    1999-03-31

    The various processes of DNA uptake by cells can be categorized as: viral DNA entry, conjugation, or transformation. Within each category, a variety of mechanisms have been found. However, considerable similarities occur among the different mechanisms of conjugation and, especially, transformation. All of these natural mechanisms of DNA transfer are quite elaborate and involve multiple protein components, as the case may be, of the virus, the donor cell, and the recipient cell. The mechanisms of viral infection and conjugation will be discussed mainly with respect to their relevance to transformation.

  5. Preparation of genomic DNA from bacteria.

    PubMed

    Wilson, K

    2001-11-01

    Most protocols for the preparation of bacterial genomic DNA consist of lysis, followed by incubation with a nonspecific protease and a series of extractions prior to precipitation of the nucleic acids. Such procedures effectively remove contaminating proteins, but are not effective in removing exopolysaccharides which can interfere with the activity of enzymes such as restriction endonucleases and ligases. In this unit, however, the protease incubation is followed by a CTAB extraction whereby CTAB complexes both with polysaccharides and with residual protein, effectively removing both in the subsequent emulsification and extraction. This procedure is effective in producing digestible chromosomal DNA from a variety of gram-negative bacteria, all of which normally produce large amounts of polysaccharides. If large amounts of exceptionally clean DNA are required, the procedure can be scaled up and the DNA purified on a CsCl gradient, as described in the alternate protocol. PMID:18265184

  6. Transfer of DNA from Bacteria to Eukaryotes.

    PubMed

    Lacroix, Benoît; Citovsky, Vitaly

    2016-01-01

    Historically, the members of the Agrobacterium genus have been considered the only bacterial species naturally able to transfer and integrate DNA into the genomes of their eukaryotic hosts. Yet, increasing evidence suggests that this ability to genetically transform eukaryotic host cells might be more widespread in the bacterial world. Indeed, analyses of accumulating genomic data reveal cases of horizontal gene transfer from bacteria to eukaryotes and suggest that it represents a significant force in adaptive evolution of eukaryotic species. Specifically, recent reports indicate that bacteria other than Agrobacterium, such as Bartonella henselae (a zoonotic pathogen), Rhizobium etli (a plant-symbiotic bacterium related to Agrobacterium), or even Escherichia coli, have the ability to genetically transform their host cells under laboratory conditions. This DNA transfer relies on type IV secretion systems (T4SSs), the molecular machines that transport macromolecules during conjugative plasmid transfer and also during transport of proteins and/or DNA to the eukaryotic recipient cells. In this review article, we explore the extent of possible transfer of genetic information from bacteria to eukaryotic cells as well as the evolutionary implications and potential applications of this transfer. PMID:27406565

  7. Transfer of DNA from Bacteria to Eukaryotes

    PubMed Central

    2016-01-01

    ABSTRACT Historically, the members of the Agrobacterium genus have been considered the only bacterial species naturally able to transfer and integrate DNA into the genomes of their eukaryotic hosts. Yet, increasing evidence suggests that this ability to genetically transform eukaryotic host cells might be more widespread in the bacterial world. Indeed, analyses of accumulating genomic data reveal cases of horizontal gene transfer from bacteria to eukaryotes and suggest that it represents a significant force in adaptive evolution of eukaryotic species. Specifically, recent reports indicate that bacteria other than Agrobacterium, such as Bartonella henselae (a zoonotic pathogen), Rhizobium etli (a plant-symbiotic bacterium related to Agrobacterium), or even Escherichia coli, have the ability to genetically transform their host cells under laboratory conditions. This DNA transfer relies on type IV secretion systems (T4SSs), the molecular machines that transport macromolecules during conjugative plasmid transfer and also during transport of proteins and/or DNA to the eukaryotic recipient cells. In this review article, we explore the extent of possible transfer of genetic information from bacteria to eukaryotic cells as well as the evolutionary implications and potential applications of this transfer. PMID:27406565

  8. [Monomorphic post-transplant T-lymphoproliferative disorder after autologous stem cell transplantation for multiple myeloma].

    PubMed

    Ishikawa, Tetsuya; Shimizu, Hiroaki; Takei, Toshifumi; Koya, Hiroko; Iriuchishima, Hirono; Hosiho, Takumi; Hirato, Junko; Kojima, Masaru; Handa, Hiroshi; Nojima, Yoshihisa; Murakami, Hirokazu

    2016-01-01

    We report a rare case of T cell type monomorphic post-transplant lymphoproliferative disorders (PTLD) after autologous stem cell transplantation. A 53-year-old man with multiple myeloma received autologous stem cell transplantation and achieved a very good partial response. Nine months later, he developed a high fever and consciousness disturbance, and had multiple swollen lymph nodes and a high titer of Epstein-Barr (EB) virus DNA in his peripheral blood. Neither CT nor MRI of the brain revealed any abnormalities. Cerebrospinal fluid contained no malignant cells, but the EB virus DNA titer was high. Lymph node biopsy revealed T cell type monomorphic PTLD. Soon after high-dose treatment with methotrexate and cytosine arabinoside, the high fever and consciousness disturbance subsided, and the lymph node swelling and EB virus DNA disappeared. Given the efficacy of chemotherapy in this case, we concluded that the consciousness disturbance had been induced by central nervous system involvement of monomorphic PTLD. PMID:26861102

  9. Failsafe mechanisms couple division and DNA replication in bacteria

    PubMed Central

    Arjes, Heidi A.; Kriel, Allison; Sorto, Nohemy A.; Shaw, Jared T.; Wang, Jue D.; Levin, Petra Anne

    2014-01-01

    Summary The past twenty years have seen tremendous advances in our understanding of the mechanisms underlying bacterial cytokinesis, particularly the composition of the division machinery and the factors controlling its assembly [1]. At the same time, we understand very little about the relationship between cell division and other cell cycle events in bacteria. Here we report that inhibiting division in Bacillus subtilis and Staphylococcus aureus quickly leads to an arrest in the initiation of new rounds of DNA replication followed by a complete arrest in cell growth. Arrested cells are metabolically active but unable to initiate new rounds of either DNA replication or division when shifted to permissive conditions. Inhibiting DNA replication results in entry into a similar quiescent state, in which cells are unable to resume growth or division when returned to permissive conditions. Our data suggest the presence of two failsafe mechanisms: one linking division to the initiation of DNA replication and another linking the initiation of DNA replication to division. These findings contradict the prevailing view of the bacterial cell cycle as a series of coordinated but uncoupled events. Importantly, the terminal nature of the cell cycle arrest validates the bacterial cell cycle machinery as an effective target for antimicrobial development. PMID:25176632

  10. DNA Integrity and Shock Wave Transformation Efficiency of Bacteria and Fungi

    NASA Astrophysics Data System (ADS)

    Loske, Achim M.; Campos-Guillén, Juan; Fernández, Francisco; Pastrana, Xóchitl; Magaña-Ortíz, Denis; Coconi-Linares, Nancy; Ortíz-Vázquez, Elizabeth; Gómez-Lim, Miguel

    Delivery of DNA into bacteria and fungi is essential in medicine and biotechnology to produce metabolites, enzymes, antibiotics and proteins. So far, protocols to genetically transform bacteria and fungi are inefficient and have low reproducibility.

  11. Social amoebae trap and kill bacteria by casting DNA nets.

    PubMed

    Zhang, Xuezhi; Zhuchenko, Olga; Kuspa, Adam; Soldati, Thierry

    2016-01-01

    Extracellular traps (ETs) from neutrophils are reticulated nets of DNA decorated with anti-microbial granules, and are capable of trapping and killing extracellular pathogens. Various phagocytes of mammals and invertebrates produce ETs, however, the evolutionary history of this DNA-based host defence strategy is unclear. Here we report that Sentinel (S) cells of the multicellular slug stage of the social amoeba Dictyostelium discoideum produce ETs upon stimulation with bacteria or lipopolysaccharide in a reactive oxygen species-dependent manner. The production of ETs by S cells requires a Toll/Interleukin-1 receptor domain-containing protein TirA and reactive oxygen species-generating NADPH oxidases. Disruption of these genes results in decreased clearance of bacterial infections. Our results demonstrate that D. discoideum is a powerful model organism to study the evolution and conservation of mechanisms of cell-intrinsic immunity, and suggest that the origin of DNA-based ETs as an innate immune defence predates the emergence of metazoans. PMID:26927887

  12. Social amoebae trap and kill bacteria by casting DNA nets

    PubMed Central

    Zhang, Xuezhi; Zhuchenko, Olga; Kuspa, Adam; Soldati, Thierry

    2016-01-01

    Extracellular traps (ETs) from neutrophils are reticulated nets of DNA decorated with anti-microbial granules, and are capable of trapping and killing extracellular pathogens. Various phagocytes of mammals and invertebrates produce ETs, however, the evolutionary history of this DNA-based host defence strategy is unclear. Here we report that Sentinel (S) cells of the multicellular slug stage of the social amoeba Dictyostelium discoideum produce ETs upon stimulation with bacteria or lipopolysaccharide in a reactive oxygen species-dependent manner. The production of ETs by S cells requires a Toll/Interleukin-1 receptor domain-containing protein TirA and reactive oxygen species-generating NADPH oxidases. Disruption of these genes results in decreased clearance of bacterial infections. Our results demonstrate that D. discoideum is a powerful model organism to study the evolution and conservation of mechanisms of cell-intrinsic immunity, and suggest that the origin of DNA-based ETs as an innate immune defence predates the emergence of metazoans. PMID:26927887

  13. Survival of phosphate-solubilizing bacteria against DNA damaging agents.

    PubMed

    Shrivastava, Manoj; Rajpurohit, Yogendra S; Misra, Hari S; D'Souza, S F

    2010-10-01

    Phosphate-solubilizing bacteria (PSBs) were isolated from different plant rhizosphere soils of various agroecological regions of India. These isolates showed synthesis of pyrroloquinoline quinone (PQQ), production of gluconic acid, and release of phosphorus from insoluble tricalcium phosphate. The bacterial isolates synthesizing PQQ also showed higher tolerance to ultraviolet C radiation and mitomycin C as compared to Escherichia coli but were less tolerant than Deinococcus radiodurans. Unlike E. coli, PSB isolates showed higher tolerance to DNA damage when grown in the absence of inorganic phosphate. Higher tolerance to ultraviolet C radiation and oxidative stress in these PSBs grown under PQQ synthesis inducible conditions, namely phosphate starvation, might suggest the possible additional role of this redox cofactor in the survival of these isolates under extreme abiotic stress conditions. PMID:20962905

  14. A single protocol for extraction of gDNA from bacteria and yeast.

    PubMed

    Vingataramin, Laurie; Frost, Eric H

    2015-03-01

    Guanidine thiocyanate breakage of microorganisms has been the standard initial step in genomic DNA (gDNA) extraction of microbial DNA for two decades, despite the requirement for pretreatments to extract DNA from microorganisms other than Gram-negative bacteria. We report a quick and low-cost gDNA extraction protocol called EtNa that is efficient for bacteria and yeast over a broad range of concentrations. EtNa is based on a hot alkaline ethanol lysis. The solution can be immediately centrifuged to yield a crude gDNA extract suitable for PCR, or it can be directly applied to a silica column for purification. PMID:25757544

  15. Working with DNA & Bacteria in Precollege Science Classrooms.

    ERIC Educational Resources Information Center

    Horn, Toby Mogollon; Frame, Kathy, Ed.

    This document describes ways to work with DNA and host organisms in precollege classrooms. The guidelines are intended to assist the teacher who already has training in working with microbes, DNA, and associated chemicals. The contents of the guidelines include: (1) Permitted DNA molecules, vectors, and recommended host organisms for constructing…

  16. DNA fingerprinting of lactic acid bacteria in sauerkraut fermentations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies using traditional biochemical methods to study the ecology of commercial sauerkraut fermentations revealed that four lactic acid bacteria species, Leuconostoc mesenteroides, Lactobacillus plantarum, Pediococcus pentosaceus, and Lactobacillus brevis were the primary microorganisms in...

  17. How-to-Do-It: A Simple DNA Isolation Technique Using Halophilic Bacteria.

    ERIC Educational Resources Information Center

    Guilfoile, Patrick

    1989-01-01

    Described is a simple technique for isolating DNA from halophilic bacteria. Materials, procedure, and additional experiments are outlined. It is stated that the DNA obtained will be somewhat contaminated with cellular proteins and RNA. Offers a procedure for greater purification. (RT)

  18. Promiscuous DNA and terramycin resistance in American Foulbrood bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Terramycin (TM) is an antibiotic which has been used for decades to control the bacterial disease of honey bees called American Foulbrood (AFB). Within the past few years however, American Foulbrood bacteria resistant to TM have appeared. Broadly, this work gives an overview of bacterial antibiotic-...

  19. A New Method to Extract Dental Pulp DNA: Application to Universal Detection of Bacteria

    PubMed Central

    Tran-Hung, Lam; Tran-Thi, Ny; Aboudharam, Gérard; Raoult, Didier; Drancourt, Michel

    2007-01-01

    Background Dental pulp is used for PCR-based detection of DNA derived from host and bacteremic microorganims. Current protocols require odontology expertise for proper recovery of the dental pulp. Dental pulp specimen exposed to laboratory environment yields contaminants detected using universal 16S rDNA-based detection of bacteria. Methodology/Principal Findings We developed a new protocol by encasing decontaminated tooth into sterile resin, extracting DNA into the dental pulp chamber itself and decontaminating PCR reagents by filtration and double restriction enzyme digestion. Application to 16S rDNA-based detection of bacteria in 144 teeth collected in 86 healthy people yielded a unique sequence in only 14 teeth (9.7%) from 12 individuals (14%). Each individual yielded a unique 16S rDNA sequence in 1–2 teeth per individual. Negative controls remained negative. Bacterial identifications were all confirmed by amplification and sequencing of specific rpoB sequence. Conclusions/Significance The new protocol prevented laboratory contamination of the dental pulp. It allowed the detection of bacteria responsible for dental pulp colonization from blood and periodontal tissue. Only 10% such samples contained 16S rDNA. It provides a new tool for the retrospective diagnostic of bacteremia by allowing the universal detection of bacterial DNA in animal and human, contemporary or ancient tooth. It could be further applied to identification of host DNA in forensic medicine and anthropology. PMID:17957246

  20. Polymorphism, monomorphism, and sequences in conserved microsatellites in primate species.

    PubMed

    Blanquer-Maumont, A; Crouau-Roy, B

    1995-10-01

    Dimeric short tandem repeats are a source of highly polymorphic markers in the mammalian genome. Genetic variation at these hypervariable loci is extensively used for linkage analysis, for the identification of individuals, and may be useful for interpopulation and interspecies studies. In this paper, we analyze the variability and the sequences of a segment including three microsatellites, first described in man, in several species of primates (chimpanzee, orangutan, gibbon, and macaque) using the heterologous primers (man primers). This region is located on the human chromosome 6p, near the tumor necrosis factor genes, in the major histocompatibility complex. The fact that these primers work in all species studied indicates that they are conserved throughout the different lineages of the two superfamilies, the Hominoidea and the Cercopithecidea, represented by the macaques. However, the intervening sequence displays intraspecific and interspecific variability. The sites of base substitutions and the insertion/deletion events are not evenly distributed within this region. The data suggest that it is necessary to have a minimal number of repeats to increase the rate of mutation sufficiently to allow the development of polymorphism. In some species, the microsatellites present single base variations which reduce the number of contiguous repeats, thus apparently slowing the rate of additional slippage events. Species with such variations or a low number of repeats are monomorphic. These microsatellite sequences are informative in the comparison of closely related species and reflect the phylogeny of the Old World monkeys, apes, and man. PMID:7563137

  1. Utility of Filter Paper for Preserving Insects, Bacteria, and Host Reservoir DNA for Molecular Testing

    PubMed Central

    Karimian, F; Sedaghat, MM; Oshaghi, MA; Mohtarami, F; Dehkordi, A Sanei; Koosha, M; Akbari, S; Hashemi-Aghdam, SS

    2011-01-01

    Background: Appropriate methodology for storage biological materials, extraction of DNA, and proper DNA preservation is vital for studies involving genetic analysis of insects, bacteria, and reservoir hosts as well as for molecular diagnostics of pathogens carried by vectors and reservoirs. Here we tried to evaluate the utility of a simple filter paper-based for storage of insects, bacteria, rodent, and human DNAs using PCR assays. Methods: Total body or haemolymph of individual mosquitoes, sand flies or cockroaches squashed or placed on the paper respectively. Extracted DNA of five different bacteria species as well as blood specimens of human and great gerbil Rhombomys opimus was pipetted directly onto filter paper. The papers were stored in room temperature up to 12 months during 2009 until 2011. At monthly intervals, PCR was conducted using a 1-mm disk from the DNA impregnated filter paper as target DNA. PCR amplification was performed against different target genes of the organisms including the ITS2-rDNA of mosquitoes, mtDNA-COI of the sand flies and cockroaches, 16SrRNA gene of the bacteria, and the mtDNA-CytB of the vertebrates. Results: Successful PCR amplification was observed for all of the specimens regardless of the loci, taxon, or time of storage. The PCR amplification were ranged from 462 to 1500 bp and worked well for the specified target gene/s. Time of storage did not affect the amplification up to one year. Conclusion: The filter paper method is a simple and economical way to store, to preserve, and to distribute DNA samples for PCR analysis. PMID:22808417

  2. Effect of bile salts on the DNA and membrane integrity of enteric bacteria.

    PubMed

    Merritt, Megan E; Donaldson, Janet R

    2009-12-01

    Enteric bacteria are able to resist the high concentrations of bile encountered throughout the gastrointestinal tract. Here we review the current mechanisms identified in the enteric bacteria Salmonella, Escherichia coli, Bacillus cereus and Listeria monocytogenes to resist the dangerous effects of bile. We describe the role of membrane transport systems, and their connection with DNA repair pathways, in conferring bile resistance to these enterics. We discuss the findings from recent investigations that indicate bile tolerance is dependent upon being able to resist the detergent properties of bile at both the membrane and DNA level. PMID:19762477

  3. Cultivation-independent detection of autotrophic hydrogen-oxidizing bacteria by DNA stable-isotope probing.

    PubMed

    Pumphrey, Graham M; Ranchou-Peyruse, Anthony; Spain, Jim C

    2011-07-01

    Knallgas bacteria are a physiologically defined group that is primarily studied using cultivation-dependent techniques. Given that current cultivation techniques fail to grow most bacteria, cultivation-independent techniques that selectively detect and identify knallgas bacteria will improve our ability to study their diversity and distribution. We used stable-isotope probing (SIP) to identify knallgas bacteria in rhizosphere soil of legumes and in a microbial mat from Obsidian Pool in Yellowstone National Park. When samples were incubated in the dark, incorporation of (13)CO(2) was H(2) dependent. SIP enabled the detection of knallgas bacteria that were not detected by cultivation, and the majority of bacteria identified in the rhizosphere soils were betaproteobacteria predominantly related to genera previously known to oxidize hydrogen. Bacteria in soil grew on hydrogen at concentrations as low as 100 ppm. A hydB homolog encoding a putative high-affinity NiFe hydrogenase was amplified from (13)C-labeled DNA from both vetch and clover rhizosphere soil. The results indicate that knallgas bacteria can be detected by SIP and populations that respond to different H(2) concentrations can be distinguished. The methods described here should be applicable to a variety of ecosystems and will enable the discovery of additional knallgas bacteria that are resistant to cultivation. PMID:21622787

  4. Sexually Monomorphic Maps and Dimorphic Responses in Rat Genital Cortex.

    PubMed

    Lenschow, Constanze; Copley, Sean; Gardiner, Jayne M; Talbot, Zoe N; Vitenzon, Ariel; Brecht, Michael

    2016-01-11

    Mammalian external genitals show sexual dimorphism [1, 2] and can change size and shape upon sexual arousal. Genitals feature prominently in the oldest pieces of figural art [3] and phallic depictions of penises informed psychoanalytic thought about sexuality [4, 5]. Despite this longstanding interest, the neural representations of genitals are still poorly understood [6]. In somatosensory cortex specifically, many studies did not detect any cortical representation of genitals [7-9]. Studies in humans debate whether genitals are represented displaced below the foot of the cortical body map [10-12] or whether they are represented somatotopically [13-15]. We wondered what a high-resolution mapping of genital representations might tell us about the sexual differentiation of the mammalian brain. We identified genital responses in rat somatosensory cortex in a region previously assigned as arm/leg cortex. Genital responses were more common in males than in females. Despite such response dimorphism, we observed a stunning anatomical monomorphism of cortical penis and clitoris input maps revealed by cytochrome-oxidase-staining of cortical layer 4. Genital representations were somatotopic and bilaterally symmetric, and their relative size increased markedly during puberty. Size, shape, and erect posture give the cortical penis representation a phallic appearance pointing to a role in sexually aroused states. Cortical genital neurons showed unusual multi-body-part responses and sexually dimorphic receptive fields. Specifically, genital neurons were co-activated by distant body regions, which are touched during mounting in the respective sex. Genital maps indicate a deep homology of penis and clitoris representations in line with a fundamentally bi-sexual layout [16] of the vertebrate brain. PMID:26725197

  5. Atomic Resolution Structure of Monomorphic Aβ42 Amyloid Fibrils.

    PubMed

    Colvin, Michael T; Silvers, Robert; Ni, Qing Zhe; Can, Thach V; Sergeyev, Ivan; Rosay, Melanie; Donovan, Kevin J; Michael, Brian; Wall, Joseph; Linse, Sara; Griffin, Robert G

    2016-08-01

    Amyloid-β (Aβ) is a 39-42 residue protein produced by the cleavage of the amyloid precursor protein (APP), which subsequently aggregates to form cross-β amyloid fibrils that are a hallmark of Alzheimer's disease (AD). The most prominent forms of Aβ are Aβ1-40 and Aβ1-42, which differ by two amino acids (I and A) at the C-terminus. However, Aβ42 is more neurotoxic and essential to the etiology of AD. Here, we present an atomic resolution structure of a monomorphic form of AβM01-42 amyloid fibrils derived from over 500 (13)C-(13)C, (13)C-(15)N distance and backbone angle structural constraints obtained from high field magic angle spinning NMR spectra. The structure (PDB ID: 5KK3 ) shows that the fibril core consists of a dimer of Aβ42 molecules, each containing four β-strands in a S-shaped amyloid fold, and arranged in a manner that generates two hydrophobic cores that are capped at the end of the chain by a salt bridge. The outer surface of the monomers presents hydrophilic side chains to the solvent. The interface between the monomers of the dimer shows clear contacts between M35 of one molecule and L17 and Q15 of the second. Intermolecular (13)C-(15)N constraints demonstrate that the amyloid fibrils are parallel in register. The RMSD of the backbone structure (Q15-A42) is 0.71 ± 0.12 Å and of all heavy atoms is 1.07 ± 0.08 Å. The structure provides a point of departure for the design of drugs that bind to the fibril surface and therefore interfere with secondary nucleation and for other therapeutic approaches to mitigate Aβ42 aggregation. PMID:27355699

  6. DNA Microarray Detection of Antimicrobial Resistance Genes in Bacteria Co-Cultured from Swine Feces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One factor leading to the spread of antimicrobial resistance (AR) in bacteria is the horizontal transfer of resistance genes. To study this, a DNA microarray was recently developed to detect these genes. To maximize the capability of this microarray, probes were designed and added to detect all AR g...

  7. 40 CFR 798.5500 - Differential growth inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... recommendations as specified under 40 CFR part 792, subpart J the following specific information should be... repair proficient and repair deficient bacteria: âBacterial DNA damage or repair tests.â 798.5500 Section... inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA damage or repair tests.”...

  8. 40 CFR 798.5500 - Differential growth inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... recommendations as specified under 40 CFR part 792, subpart J the following specific information should be... repair proficient and repair deficient bacteria: âBacterial DNA damage or repair tests.â 798.5500 Section... inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA damage or repair tests.”...

  9. 40 CFR 798.5500 - Differential growth inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... recommendations as specified under 40 CFR part 792, subpart J the following specific information should be... repair proficient and repair deficient bacteria: âBacterial DNA damage or repair tests.â 798.5500 Section... inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA damage or repair tests.”...

  10. 40 CFR 798.5500 - Differential growth inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... recommendations as specified under 40 CFR part 792, subpart J the following specific information should be... repair proficient and repair deficient bacteria: âBacterial DNA damage or repair tests.â 798.5500 Section... inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA damage or repair tests.”...

  11. 40 CFR 798.5500 - Differential growth inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... recommendations as specified under 40 CFR part 792, subpart J the following specific information should be... repair proficient and repair deficient bacteria: âBacterial DNA damage or repair tests.â 798.5500 Section... inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA damage or repair tests.”...

  12. Detection of Tn5-like sequences in kanamycin-resistant stream bacteria and environmental DNA.

    PubMed Central

    Leff, L G; Dana, J R; McArthur, J V; Shimkets, L J

    1993-01-01

    Resistance to kanamycin and neomycin in the bacterial assemblage of a coastal plain stream was detected by growth of colonies on media containing antibiotics. Three of 184 kanamycin-resistant colonies hybridized with a probe containing the nptII gene from transposon Tn5; the nptII gene encodes the enzyme neomycin phosphotransferase and conveys resistance to kanamycin and neomycin. In one of these isolates, the homologous gene was cloned and shown to confer resistance to a kanamycin-sensitive Escherichia coli strain. Since enumeration of bacteria by acridine orange direct counts revealed that less than 0.2% of the bacteria present were cultivated, direct examination of environmental DNA was used to assess abundance of sequences that hybridize to the nptII gene. To examine the resistance potential of bacteria that were not cultured, total DNA was extracted from environmental samples and hybridized with specific probes. The relative amount of eubacterial DNA in each sample was determined by using a eubacterial specific rDNA probe. Then, the abundance of sequences that hybridize to the eubacterial neomycin phosphotransferase gene was determined by hybridization and expressed relative to the total eubacterial DNA in the assemblage. Relative gene abundance was significantly different among assemblages from different habitats (leaves, midchannel sediments, and bank sediments) but did not differ among stream sites. Images PMID:8382021

  13. Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays.

    PubMed

    Polen, Tino; Wendisch, Volker F

    2004-01-01

    DNA microarray technology has become an important research tool for biotechnology and microbiology. It is now possible to characterize genetic diversity and gene expression in a genomewide manner. DNA microarrays have been applied extensively to study the biology of many bacteria including Escherichia coli, but only recently have they been developed for the Gram-positive Corynebacterium glutamicum. Both bacteria are widely used for biotechnological amino acid production. In this article, in addition to the design and generation of microarrays as well as their use in hybridization experiments and subsequent data analysis, we describe recent applications of DNA microarray technology regarding amino acid production in C. glutamicum and E. coli. We also discuss the impact of functional genomics studies on fundamental as well as applied aspects of amino acid production with C. glutamicum and E. coli. PMID:15304751

  14. Identification of DNA Methyltransferase Genes in Human Pathogenic Bacteria by Comparative Genomics.

    PubMed

    Brambila-Tapia, Aniel Jessica Leticia; Poot-Hernández, Augusto Cesar; Perez-Rueda, Ernesto; Rodríguez-Vázquez, Katya

    2016-06-01

    DNA methylation plays an important role in gene expression and virulence in some pathogenic bacteria. In this report, we describe DNA methyltransferases (MTases) present in human pathogenic bacteria and compared them with related species, which are not pathogenic or less pathogenic, based in comparative genomics. We performed a search in the KEGG database of the KEGG database orthology groups associated with adenine and cytosine DNA MTase activities (EC: 2.1.1.37, EC: 2.1.1.113 and EC: 2.1.1.72) in 37 human pathogenic species and 18 non/less pathogenic relatives and performed comparisons of the number of these MTases sequences according to their genome size, the DNA MTase type and with their non-less pathogenic relatives. We observed that Helicobacter pylori and Neisseria spp. presented the highest number of MTases while ten different species did not present a predicted DNA MTase. We also detected a significant increase of adenine MTases over cytosine MTases (2.19 vs. 1.06, respectively, p < 0.001). Adenine MTases were the only MTases associated with restriction modification systems and DNA MTases associated with type I restriction modification systems were more numerous than those associated with type III restriction modification systems (0.84 vs. 0.17, p < 0.001); additionally, there was no correlation with the genome size and the total number of DNA MTases, indicating that the number of DNA MTases is related to the particular evolution and lifestyle of specific species, regulating the expression of virulence genes in some pathogenic bacteria. PMID:27570304

  15. Principles and concepts of DNA replication in bacteria, archaea, and eukarya.

    PubMed

    O'Donnell, Michael; Langston, Lance; Stillman, Bruce

    2013-07-01

    The accurate copying of genetic information in the double helix of DNA is essential for inheritance of traits that define the phenotype of cells and the organism. The core machineries that copy DNA are conserved in all three domains of life: bacteria, archaea, and eukaryotes. This article outlines the general nature of the DNA replication machinery, but also points out important and key differences. The most complex organisms, eukaryotes, have to coordinate the initiation of DNA replication from many origins in each genome and impose regulation that maintains genomic integrity, not only for the sake of each cell, but for the organism as a whole. In addition, DNA replication in eukaryotes needs to be coordinated with inheritance of chromatin, developmental patterning of tissues, and cell division to ensure that the genome replicates once per cell division cycle. PMID:23818497

  16. Principles and Concepts of DNA Replication in Bacteria, Archaea, and Eukarya

    PubMed Central

    O’Donnell, Michael; Langston, Lance; Stillman, Bruce

    2013-01-01

    The accurate copying of genetic information in the double helix of DNA is essential for inheritance of traits that define the phenotype of cells and the organism. The core machineries that copy DNA are conserved in all three domains of life: bacteria, archaea, and eukaryotes. This article outlines the general nature of the DNA replication machinery, but also points out important and key differences. The most complex organisms, eukaryotes, have to coordinate the initiation of DNA replication from many origins in each genome and impose regulation that maintains genomic integrity, not only for the sake of each cell, but for the organism as a whole. In addition, DNA replication in eukaryotes needs to be coordinated with inheritance of chromatin, developmental patterning of tissues, and cell division to ensure that the genome replicates once per cell division cycle. PMID:23818497

  17. Nonchromosomal Antibiotic Resistance in Bacteria: Genetic Transformation of Escherichia coli by R-Factor DNA*

    PubMed Central

    Cohen, Stanley N.; Chang, Annie C. Y.; Hsu, Leslie

    1972-01-01

    Transformation of E. coli cells treated with CaCl2 to multiple antibiotic resistance by purified R-factor DNA is reported. Drug resistance is expressed in a small fraction of the recipient bacterial population almost immediately after uptake of DNA, but full genetic expression of resistance requires subsequent incubation in drugfree medium before antibiotic challenge. Transformed bacteria acquire a closed circular, transferable DNA species having the resistance, fertility, and sedimentation characteristics of the parent R factor. Covalently-closed, catenated, and open (nicked) circular forms of R-factor DNA are all effective in transformation, but denaturation and sonication abolish the transforming ability of R-factor DNA in this system. PMID:4559594

  18. Horizontal DNA transfer from bacteria to eukaryotes and a lesson from experimental transfers.

    PubMed

    Suzuki, Katsunori; Moriguchi, Kazuki; Yamamoto, Shinji

    2015-12-01

    Horizontal gene transfer (HGT) is widespread among bacteria and plays a key role in genome dynamics. HGT is much less common in eukaryotes, but is being reported with increasing frequency in eukaryotes. The mechanism as to how eukaryotes acquired genes from distantly related organisms remains obscure yet. This paper cites examples of bacteria-derived genes found in eukaryotic organisms, and then describes experimental DNA transports to eukaryotes by bacterial type 4 secretion systems in optimized conditions. The mechanisms of the latter are efficient, quite reproducible in vitro and predictable, and thereby would provide insight into natural HGT and to the development of new research tools. PMID:26291765

  19. Diversity of bacteria in ships ballast water as revealed by next generation DNA sequencing.

    PubMed

    Brinkmeyer, Robin

    2016-06-15

    The bacterial diversity in ballast water from five general cargo ships calling at the Port of Houston was determined with ion semiconductor DNA sequencing (Ion Torrent PGM) of PCR amplified 16S rRNA genes. Phylogenetic analysis revealed that the composition of bacteria in ballast water did not resemble that of typical marine habitats or even open ocean waters where BWEs occur. The predominant group of bacteria in ships conducting BWEs was the Roseobacter clade within the Alphaproteobacteria. In contrast, Gammaproteobacteria were predominant in the ship that did not conduct a BWE. All the ships contained human, fish, and terrestrial plant pathogens as well as bacteria indicative of fecal or activated sludge contamination. Most of the 60 pathogens had not been detected in ballast water previously. Among these were the human pathogens Corynebacterium diptheriae and several Legionella species and the fish pathogens Francisella piscicida and Piscirickettsia salmonis. PMID:27076378

  20. Identification of active oxalotrophic bacteria by Bromodeoxyuridine DNA labeling in a microcosm soil experiments.

    PubMed

    Bravo, Daniel; Martin, Gaëtan; David, Maude M; Cailleau, Guillaume; Verrecchia, Eric; Junier, Pilar

    2013-11-01

    The oxalate-carbonate pathway (OCP) leads to a potential carbon sink in terrestrial environments. This process is linked to the activity of oxalotrophic bacteria. Although isolation and molecular characterizations are used to study oxalotrophic bacteria, these approaches do not give information on the active oxalotrophs present in soil undergoing the OCP. The aim of this study was to assess the diversity of active oxalotrophic bacteria in soil microcosms using the Bromodeoxyuridine (BrdU) DNA labeling technique. Soil was collected near an oxalogenic tree (Milicia excelsa). Different concentrations of calcium oxalate (0.5%, 1%, and 4% w/w) were added to the soil microcosms and compared with an untreated control. After 12 days of incubation, a maximal pH of 7.7 was measured for microcosms with oxalate (initial pH 6.4). At this time point, a DGGE profile of the frc gene was performed from BrdU-labeled soil DNA and unlabeled soil DNA. Actinobacteria (Streptomyces- and Kribbella-like sequences), Gammaproteobacteria and Betaproteobacteria were found as the main active oxalotrophic bacterial groups. This study highlights the relevance of Actinobacteria as members of the active bacterial community and the identification of novel uncultured oxalotrophic groups (i.e. Kribbella) active in soils. PMID:24033776

  1. Label free molecular sexing of monomorphic birds using infrared spectroscopic imaging.

    PubMed

    Steiner, Gerald; Preusse, Grit; Zimmerer, Cordelia; Krautwald-Junghanns, Maria-Elisabeth; Sablinskas, Valdas; Fuhrmann, Herbert; Koch, Edmund; Bartels, Thomas

    2016-04-01

    The absence of sexual dimorphism in many birds often makes sex determination difficult. In particular immature birds and adults of monomorphic species show no external sex characteristics. Molecular techniques based on DNA hybridization or polymerase chain reaction (PCR) are standard methods for sex identification. However, these methods are expensive and time consuming procedures and require special sample preparation. Noninvasive methods for a rapid determination of bird's gender are of increasing importance for ornithologists, breeders as well as for successful captive-breeding programs. Fourier transform infrared (FT-IR) spectroscopy is one such technique that can provide gender specific information. In this study, using the example of domestic pigeons (Columba livia f. dom.) we demonstrate that only a small amount of the feather pulp is needed to determine the gender. FT-IR spectroscopic images of feather pulp suspensions were recorded in transmission mode. Principal component analysis (PCA) and linear discriminant analysis (LDA) were performed to identify the sex. The gender related information are described by 2nd and 4th principal component principle component (PC). The 2nd PC represents different amounts of proteins while the 4th PC shows variations within the amide I and amide II bands as well as in the region of phosphate vibrations of nucleic acids. Blood cells of male pigeons exhibit a significantly higher amount of proteins and nucleic acids than those of female pigeons. Feather pulp samples of male species were assigned with 100% accuracy. Seven from eight female samples were assigned correctly while one sample could not be classified. This study demonstrates that the sex of domestic pigeons can be accurately and and rapidly identified by infrared spectroscopic imaging. PMID:26838394

  2. Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing

    NASA Technical Reports Server (NTRS)

    Shi, T.; Reeves, R. H.; Gilichinsky, D. A.; Friedmann, E. I.

    1997-01-01

    Viable bacteria were found in permafrost core samples from the Kolyma-Indigirka lowland of northeast Siberia. The samples were obtained at different depths; the deepest was about 3 million years old. The average temperature of the permafrost is -10 degrees C. Twenty-nine bacterial isolates were characterized by 16S rDNA sequencing and phylogenetic analysis, cell morphology, Gram staining, endospore formation, and growth at 30 degrees C. The majority of the bacterial isolates were rod shaped and grew well at 30 degrees C; but two of them did not grow at or above 28 degrees C, and had optimum growth temperatures around 20 degrees C. Thirty percent of the isolates could form endospores. Phylogenetic analysis revealed that the isolates fell into four categories: high-GC Gram-positive bacteria, beta-proteobacteria, gamma-proteobacteria, and low-GC Gram-positive bacteria. Most high-GC Gram-positive bacteria and beta-proteobacteria, and all gamma-proteobacteria, came from samples with an estimated age of 1.8-3.0 million years (Olyor suite). Most low-GC Gram-positive bacteria came from samples with an estimated age of 5,000-8,000 years (Alas suite).

  3. Algae-bacteria association inferred by 16S rDNA similarity in established microalgae cultures.

    PubMed

    Schwenk, Dagmar; Nohynek, Liisa; Rischer, Heiko

    2014-06-01

    Forty cultivable, visually distinct bacterial cultures were isolated from four Baltic microalgal cultures Chlorella pyrenoidosa, Scenedesmus obliquus, Isochrysis sp., and Nitzschia microcephala, which have been maintained for several years in the laboratory. Bacterial isolates were characterized with respect to morphology, antibiotic susceptibility, and 16S ribosomal DNA sequence. A total of 17 unique bacterial strains, almost all belonging to one of three families, Rhodobacteraceae, Rhizobiaceae, and Erythrobacteraceae, were subsequently isolated. The majority of isolated bacteria belong to Rhodobacteraceae. Literature review revealed that close relatives of the bacteria isolated in this study are not only often found in marine environments associated with algae, but also in lakes, sediments, and soil. Some of them had been shown to interact with organisms in their surroundings. A Basic Local Alignment Search Tool study indicated that especially bacteria isolated from the Isochrysis sp. culture were highly similar to microalgae-associated bacteria. Two of those isolates, I1 and I6, belong to the Cytophaga-Flavobacterium-Bacteroides phylum, members of which are known to occur in close communities with microalgae. An UniFrac analysis revealed that the bacterial community of Isochrysis sp. significantly differs from the other three communities. PMID:24799387

  4. Algae–bacteria association inferred by 16S rDNA similarity in established microalgae cultures

    PubMed Central

    Schwenk, Dagmar; Nohynek, Liisa; Rischer, Heiko

    2014-01-01

    Forty cultivable, visually distinct bacterial cultures were isolated from four Baltic microalgal cultures Chlorella pyrenoidosa, Scenedesmus obliquus, Isochrysis sp., and Nitzschia microcephala, which have been maintained for several years in the laboratory. Bacterial isolates were characterized with respect to morphology, antibiotic susceptibility, and 16S ribosomal DNA sequence. A total of 17 unique bacterial strains, almost all belonging to one of three families, Rhodobacteraceae, Rhizobiaceae, and Erythrobacteraceae, were subsequently isolated. The majority of isolated bacteria belong to Rhodobacteraceae. Literature review revealed that close relatives of the bacteria isolated in this study are not only often found in marine environments associated with algae, but also in lakes, sediments, and soil. Some of them had been shown to interact with organisms in their surroundings. A Basic Local Alignment Search Tool study indicated that especially bacteria isolated from the Isochrysis sp. culture were highly similar to microalgae-associated bacteria. Two of those isolates, I1 and I6, belong to the Cytophaga–Flavobacterium–Bacteroides phylum, members of which are known to occur in close communities with microalgae. An UniFrac analysis revealed that the bacterial community of Isochrysis sp. significantly differs from the other three communities. PMID:24799387

  5. DNA synthesis and tritiated thymidine incorporation by heterotrophic freshwater bacteria in continuous culture

    SciTech Connect

    Ellenbroek, F.M.; Cappenberg, T.E. )

    1991-06-01

    Continuous cultivation of heterotrophic freshwater bacteria was used to assess the relationship between DNA synthesis and tritiated thymidine incorporation. In six different continuous cultures, each inoculated with a grazer-free mixed bacterial sample from Lake Vechten (The Netherlands), tritiated thymidine incorporation into a cold trichloroacetic acid precipitate and bacterial cell production were measured simultaneously. Empirical conversion factors were determined by division of both parameters. They ranged from 0.25 {times} 10{sup 18} to 1.31 {times} 10{sup 18} cells mol of tritiated thymidine{sup {minus}1}. In addition, DNA concentrations were measured by fluorometry with Heochst 33258. The validity of this technique was confirmed. Down to a generation time of 0.67 day, bacterial DNA content showed little variation, with values of 3.8 to 4.9 fg of DNA cell{sup {minus}1}. Theoretical conversion factors, which can be derived from DNA content under several assumptions, were between 0.26 {times} 10{sup 18} and 0.34 {times} 10{sup 18} cells mol of thymidine{sup {minus}1}. Isotope dilution was considered the main factor in the observed discrepancy between the conversion factors. In all experiments, a tritiated thymidine concentration of 20 nM was used. It was concluded that the observed difference resulted from intracellular isotope dilution which cannot be detected by current techniques for isotope dilution analysis.

  6. DISSOLVED FREE AMINO ACIDS, COMBINED AMINO ACIDS, AND DNA AS SOURCES OF CARBON AND NITROGEN TO MARINE BACTERIA

    EPA Science Inventory

    Utilization of naturally-occurring dissolved free and combined mino cids (DFAA and DCAA) and dissolved DNA FD-DNA) was studied in batch cultures of bacteria from 2 shallow marine environments. anta Rosa Sound (SRS), Florida, USA, and Flax Pond (FP), Long Island, New York, USA. n ...

  7. Deoxynybomycins inhibit mutant DNA gyrase and rescue mice infected with fluoroquinolone-resistant bacteria

    PubMed Central

    Parkinson, Elizabeth I.; Bair, Joseph S.; Nakamura, Bradley A.; Lee, Hyang Y.; Kuttab, Hani I.; Southgate, Emma H.; Lezmi, Stéphane; Lau, Gee W.; Hergenrother, Paul J.

    2015-01-01

    Fluoroquinolones are one of the most commonly prescribed classes of antibiotics, but fluoroquinolone resistance (FQR) is widespread and increasing. Deoxynybomycin (DNM) is a natural-product antibiotic with an unusual mechanism of action, inhibiting the mutant DNA gyrase that confers FQR. Unfortunately, isolation of DNM is difficult and DNM is insoluble in aqueous solutions, making it a poor candidate for development. Here we describe a facile chemical route to produce DNM and its derivatives. These compounds possess excellent activity against FQR methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci clinical isolates and inhibit mutant DNA gyrase in-vitro. Bacteria that develop resistance to DNM are re-sensitized to fluoroquinolones, suggesting that resistance that emerges to DNM would be treatable. Using a DNM derivative, the first in-vivo efficacy of the nybomycin class is demonstrated in a mouse infection model. Overall, the data presented suggest the promise of DNM derivatives for the treatment of FQR infections. PMID:25907309

  8. Automated DNA-preparation system for bacteria out of air sampler liquids

    NASA Astrophysics Data System (ADS)

    Gransee, Rainer; Röser, Tina; Drese, Klaus Stefan; Düchs, Dominik; Disqué, Claudia; Zoll, Gudrun; Köhne, Stefan; Ritzi-Lehnert, Marion

    2012-06-01

    Preventing bacterial contaminations is a significant challenge in applications across a variety of industries, e.g. in food processing, the life sciences or biohazard detection. Here we present a fully automated lab-on-a-chip system wherein a disposable microfluidic chip moulded by polymeric injection is inserted into an operating device. Liquid samples, here obtained from an air sampler, can be processed to extract and lyse bacteria, and subsequently to purify their DNA using a silica matrix. After the washing and elution steps, the DNA solution is dispensed into a reaction vessel for further analysis in a conventional laboratory polymerase chain reaction (PCR) device. We demonstrate the workability and efficiency of our approach with results from a 9 ml liquid sample spiked with E. coli.

  9. A novel means to develop strain-specific DNA probes for detecting bacteria in the environment.

    PubMed Central

    Matheson, V G; Munakata-Marr, J; Hopkins, G D; McCarty, P L; Tiedje, J M; Forney, L J

    1997-01-01

    A simple means to develop strain-specific DNA probes for use in monitoring the movement and survival of bacteria in natural and laboratory ecosystems was developed. The method employed amplification of genomic DNA via repetitive sequence-based PCR (rep-PCR) using primers specific for repetitive extragenic palindromic (REP) elements, followed by cloning of the amplified fragments. The cloned fragments were screened to identify those which were strain specific, and these were used as probes for total genomic DNA isolated from microbial communities and subjected to rep-PCR. To evaluate the utility of the approach, we developed probes specific for Burkholderia cepacia G4 and used them to determine the persistence of the strain in aquifer sediment microcosms following bioaugmentation. Two of four probes tested were found to specifically hybridize to DNA fragments of the expected sizes in the rep-PCR fingerprint of B. cepacia G4 but not to 64 genetically distinct bacteria previously isolated from the aquifer. One of these probes, a 650-bp fragment, produced a hybridization signal when as few as 10 CFU of B. cepacia G4 were present in a mixture with 10(6) CFU nontarget strains, indicating that the sensitivity of these probes was comparable to those of other PCR-based detection methods. The probes were used to discriminate groundwater and microcosm samples that contained B. cepacia G4 from those which did not. False-positive results were obtained with a few samples, but these were readily identified by using hybridization to the second probe as a confirmation step. The general applicability of the method was demonstrated by constructing probes specific to three other environmental isolates. PMID:9212434

  10. Classification of Plant Associated Bacteria Using RIF, a Computationally Derived DNA Marker

    PubMed Central

    Schneider, Kevin L.; Marrero, Glorimar; Alvarez, Anne M.; Presting, Gernot G.

    2011-01-01

    A DNA marker that distinguishes plant associated bacteria at the species level and below was derived by comparing six sequenced genomes of Xanthomonas, a genus that contains many important phytopathogens. This DNA marker comprises a portion of the dnaA replication initiation factor (RIF). Unlike the rRNA genes, dnaA is a single copy gene in the vast majority of sequenced bacterial genomes, and amplification of RIF requires genus-specific primers. In silico analysis revealed that RIF has equal or greater ability to differentiate closely related species of Xanthomonas than the widely used ribosomal intergenic spacer region (ITS). Furthermore, in a set of 263 Xanthomonas, Ralstonia and Clavibacter strains, the RIF marker was directly sequenced in both directions with a success rate approximately 16% higher than that for ITS. RIF frameworks for Xanthomonas, Ralstonia and Clavibacter were constructed using 682 reference strains representing different species, subspecies, pathovars, races, hosts and geographic regions, and contain a total of 109 different RIF sequences. RIF sequences showed subspecific groupings but did not place strains of X. campestris or X. axonopodis into currently named pathovars nor R. solanacearum strains into their respective races, confirming previous conclusions that pathovar and race designations do not necessarily reflect genetic relationships. The RIF marker also was sequenced for 24 reference strains from three genera in the Enterobacteriaceae: Pectobacterium, Pantoea and Dickeya. RIF sequences of 70 previously uncharacterized strains of Ralstonia, Clavibacter, Pectobacterium and Dickeya matched, or were similar to, those of known reference strains, illustrating the utility of the frameworks to classify bacteria below the species level and rapidly match unknown isolates to reference strains. The RIF sequence frameworks are available at the online RIF database, RIFdb, and can be queried for diagnostic purposes with RIF sequences obtained

  11. Comparison of DNA extraction kits and modification of DNA elution procedure for the quantitation of subdominant bacteria from piggery effluents with real-time PCR

    PubMed Central

    Desneux, Jérémy; Pourcher, Anne-Marie

    2014-01-01

    Four commercial DNA extraction kits and a minor modification in the DNA elution procedure were evaluated for the quantitation of bacteria in pig manure samples. The PowerSoil®, PowerFecal®, NucleoSpin® Soil kits and QIAamp® DNA Stool Mini kit were tested on raw manure samples and on lagoon effluents for their ability to quantify total bacteria and a subdominant bacteria specific of pig manure contamination: Lactobacillus amylovorus. The NucleoSpin® Soil kit (NS kit), and to a lesser extent the PowerFecal® kit were the most efficient methods. Regardless of the kit utilized, the modified elution procedure increased DNA yield in the lagoon effluent by a factor of 1.4 to 1.8. When tested on 10 piggery effluent samples, compared to the QIAamp kit, the NS kit combined with the modified elution step, increased by a factor up to 1.7 log10 the values of the concentration of L. amylovorus. Regardless of the type of manure, the best DNA quality and the highest concentrations of bacteria were obtained using the NS kit combined with the modification of the elution procedure. The method recommended here significantly improved quantitation of subdominant bacteria in manure. PMID:24838631

  12. Comparison of DNA extraction kits and modification of DNA elution procedure for the quantitation of subdominant bacteria from piggery effluents with real-time PCR.

    PubMed

    Desneux, Jérémy; Pourcher, Anne-Marie

    2014-08-01

    Four commercial DNA extraction kits and a minor modification in the DNA elution procedure were evaluated for the quantitation of bacteria in pig manure samples. The PowerSoil(®), PowerFecal(®), NucleoSpin(®) Soil kits and QIAamp(®) DNA Stool Mini kit were tested on raw manure samples and on lagoon effluents for their ability to quantify total bacteria and a subdominant bacteria specific of pig manure contamination: Lactobacillus amylovorus. The NucleoSpin(®) Soil kit (NS kit), and to a lesser extent the PowerFecal(®) kit were the most efficient methods. Regardless of the kit utilized, the modified elution procedure increased DNA yield in the lagoon effluent by a factor of 1.4 to 1.8. When tested on 10 piggery effluent samples, compared to the QIAamp kit, the NS kit combined with the modified elution step, increased by a factor up to 1.7 log10 the values of the concentration of L. amylovorus. Regardless of the type of manure, the best DNA quality and the highest concentrations of bacteria were obtained using the NS kit combined with the modification of the elution procedure. The method recommended here significantly improved quantitation of subdominant bacteria in manure. PMID:24838631

  13. Relationships between 16S-23S rRNA gene internal transcribed spacer DNA and genomic DNA similarities in the taxonomy of phototrophic bacteria

    NASA Astrophysics Data System (ADS)

    Okamura, K.; Hisada, T.; Takata, K.; Hiraishi, A.

    2013-04-01

    Rapid and accurate identification of microbial species is essential task in microbiology and biotechnology. In prokaryotic systematics, genomic DNA-DNA hybridization is the ultimate tool to determine genetic relationships among bacterial strains at the species level. However, a practical problem in this assay is that the experimental procedure is laborious and time-consuming. In recent years, information on the 16S-23S rRNA gene internal transcribed spacer (ITS) region has been used to classify bacterial strains at the species and intraspecies levels. It is unclear how much information on the ITS region can reflect the genome that contain it. In this study, therefore, we evaluate the quantitative relationship between ITS DNA and entire genomic DNA similarities. For this, we determined ITS sequences of several species of anoxygenic phototrophic bacteria belonging to the order Rhizobiales, and compared with DNA-DNA relatedness among these species. There was a high correlation between the two genetic markers. Based on the regression analysis of this relationship, 70% DNA-DNA relatedness corresponded to 92% ITS sequence similarity. This suggests the usefulness of the ITS sequence similarity as a criterion for determining the genospecies of the phototrophic bacteria. To avoid the effects of polymorphism bias of ITS on similarities, PCR products from all loci of ITS were used directly as genetic probes for comparison. The results of ITS DNA-DNA hybridization coincided well with those of genomic DNA-DNA relatedness. These collective data indicate that the whole ITS DNA-DNA similarity can be used as an alternative to genomic DNA-DNA similarity.

  14. Horizontal Gene Transfer Regulation in Bacteria as a “Spandrel” of DNA Repair Mechanisms

    PubMed Central

    Fall, Saliou; Mercier, Anne; Bertolla, Franck; Calteau, Alexandra; Gueguen, Laurent; Perrière, Guy; Vogel, Timothy M.; Simonet, Pascal

    2007-01-01

    the bacteria to hijack DNA repair mechanisms in order to generate genetic diversity without losing too much genomic stability. PMID:17957239

  15. Different patterns of evolution for duplicated DNA repair genes in bacteria of the Xanthomonadales group

    PubMed Central

    Martins-Pinheiro, Marinalva; Galhardo, Rodrigo S; Lage, Claudia; Lima-Bessa, Keronninn M; Aires, Karina A; Menck, Carlos FM

    2004-01-01

    Background DNA repair genes encode proteins that protect organisms against genetic damage generated by environmental agents and by-products of cell metabolism. The importance of these genes in life maintenance is supported by their high conservation, and the presence of duplications of such genes may be easily traced, especially in prokaryotic genomes. Results The genome sequences of two Xanthomonas species were used as the basis for phylogenetic analyses of genes related to DNA repair that were found duplicated. Although 16S rRNA phylogenetic analyses confirm their classification at the basis of the gamma proteobacteria subdivision, differences were found in the origin of the various genes investigated. Except for lexA, detected as a recent duplication, most of the genes in more than one copy are represented by two highly divergent orthologs. Basically, one of such duplications is frequently positioned close to other gamma proteobacteria, but the second is often positioned close to unrelated bacteria. These orthologs may have occurred from old duplication events, followed by extensive gene loss, or were originated from lateral gene transfer (LGT), as is the case of the uvrD homolog. Conclusions Duplications of DNA repair related genes may result in redundancy and also improve the organisms' responses to environmental challenges. Most of such duplications, in Xanthomonas, seem to have arisen from old events and possibly enlarge both functional and evolutionary genome potentiality. PMID:15333143

  16. The influence of growth patterns on sexual size monomorphism in lemurs.

    PubMed

    Tennenhouse, E M

    2015-09-01

    The lack of sexual size dimorphism among lemurs is puzzling given the high degree of polygyny in this clade. It has been proposed that the unique ecological conditions of Madagascar favour rapid completion of growth, limiting the opportunities for bimaturism and sexual size dimorphism in lemurs. Using recently compiled large data sets on many species across the lemur clade, I examined the prevalence of sexual size monomorphism of body mass among lemurs and tested the hypothesis that limited growth durations constrain sexual size dimorphism. I used segmented regression analyses to accurately model growth in each species. The majority of species analysed exhibited a period of rapid growth followed by a distinct period of slow growth prior to attainment of adult body mass. Whereas the first period of growth was constrained by the need to attain the majority of adult body mass prior to the onset of the infant's first dry season, the subsequent period of slow growth was unconstrained and sufficiently long to promote sexual bimaturism. Sex differences in the duration and rate of growth during this second growth phase appeared to account for the sexual size dimorphism exhibited by three lemur species. Therefore, constraints on growth processes do not limit sexual size dimorphism in lemurs, and other explanations for the prevalence of sexual size monomorphism in this clade should be examined. The importance of considering ontogeny in future investigations of sexual size monomorphism in lemurs is highlighted. PMID:26134876

  17. Cultivation-Independent Detection of Autotrophic Hydrogen-Oxidizing Bacteria by DNA Stable-Isotope Probing ▿

    PubMed Central

    Pumphrey, Graham M.; Ranchou-Peyruse, Anthony; Spain, Jim C.

    2011-01-01

    Knallgas bacteria are a physiologically defined group that is primarily studied using cultivation-dependent techniques. Given that current cultivation techniques fail to grow most bacteria, cultivation-independent techniques that selectively detect and identify knallgas bacteria will improve our ability to study their diversity and distribution. We used stable-isotope probing (SIP) to identify knallgas bacteria in rhizosphere soil of legumes and in a microbial mat from Obsidian Pool in Yellowstone National Park. When samples were incubated in the dark, incorporation of 13CO2 was H2 dependent. SIP enabled the detection of knallgas bacteria that were not detected by cultivation, and the majority of bacteria identified in the rhizosphere soils were betaproteobacteria predominantly related to genera previously known to oxidize hydrogen. Bacteria in soil grew on hydrogen at concentrations as low as 100 ppm. A hydB homolog encoding a putative high-affinity NiFe hydrogenase was amplified from 13C-labeled DNA from both vetch and clover rhizosphere soil. The results indicate that knallgas bacteria can be detected by SIP and populations that respond to different H2 concentrations can be distinguished. The methods described here should be applicable to a variety of ecosystems and will enable the discovery of additional knallgas bacteria that are resistant to cultivation. PMID:21622787

  18. Advantages and limitations of ribosomal RNA PCR and DNA sequencing for identification of bacteria in cardiac valves of danish patients.

    PubMed

    Kemp, Michael; Bangsborg, Jette; Kjerulf, Anne; Schmidt, Thomas Andersen; Christensen, John; Irmukhamedov, Akhmadjon 6; Bruun, Niels Eske; Dargis, Rimtas; Andresen, Keld; Christensen, Jens Jørgen

    2013-01-01

    Studies on the value of culture-independent molecular identification of bacteria in cardiac valves are mostly restricted to comparing agreement of identification to what is obtained by culture to the number of identified bacteria in culture-negative cases. However, evaluation of the usefulness of direct molecular identification should also address weaknesses, their relevance in the given setting, and possible improvements. In this study cardiac valves from 56 Danish patients referred for surgery for infective endocarditis were analysed by microscopy and culture as well as by PCR targeting part of the bacterial 16S rRNA gene followed by DNA sequencing of the PCR product. PCR and DNA sequencing identified significant bacteria in 49 samples from 43 patients, including five out of 13 culture-negative cases. No rare, exotic, or intracellular bacteria were identified. There was a general agreement between bacterial identity obtained by ribosomal PCR and DNA sequencing from the valves and bacterial isolates from blood culture. However, DNA sequencing of the 16S rRNA gene did not discriminate well among non-haemolytic streptococci, especially within the Streptococcus mitis group. Ribosomal PCR with subsequent DNA sequencing is an efficient and reliable method of identifying the cause of IE, but exact species identification of some of the most common causes, i.e. non-haemolytic streptococci, may be improved with other molecular methods. PMID:24403979

  19. [Localization of denitrification genes in plasmid DNA of bacteria Azospirillum brasilense].

    PubMed

    Petrova, L P; Varshalomidze, O É; Shelud'ko, A V; Katsy, E I

    2010-07-01

    In 85-Mda plasmid (p85) of plant-associated bacteria Azospirillum brasilense Sp245 model strain, the genes encoding copper-containing nitrite reductase (nirK); heterodimeric NO-reductase (norCB); NorQ and NorD proteins affecting synthesis and (or) activation of NirK and (or) NO-reductase (norQD); catalytic subunit I ofcytochrom c oxidase (CccoN); presumable NO sensor carrying two hemeerythrine domains (orf181); and an enzyme required for synthesis of presumable NO antagonist, homocystein (metC) were identified. In the same region of p85, orf293 encoding transcriptional regulator of LysR type, orf208 whose protein product carries a formylmethanofuran dehydrogenase subunit E domain, and an orf164-encoding conservative secretory protein with unknown function were also found. Localization of a set of denitrification genes in the plasmid DNA A. brasilense Sp245 adjacent to IS elements ISAzba1 and ISAzba2 indicates potential mobility of these genes and high probability of their horizontal transfer among populations of rhizospheric bacteria. A site homologous to p85 nirK-orf208-orf181 genes was detected in the 115 kb plasmid of A. brasilense Sp7 type strain. PMID:20795494

  20. [Correlation of the DNA nucleotide makeup with the physiological and cytological characteristics of spore-forming anaerobic bacteria].

    PubMed

    Duda, V I; Dobritsa, S V

    1975-01-01

    The nucleotide composition of DNA from 12 studied species of anaerobic bacteria belongs to AT type, with G+C varying from 28.4 to 36.8 mole%. In the anaerobic group of Clostridium bifermentans, a correlation has been established between the nucleotide composition of DNA, the type of appendages on spores, and some physiologo-biochemical characteristics. The nucleotide composition of DNA in the spores of four anaerobic species is shifted toward GC type as compared to DNA in the vegetative cells. Data on the content of GC pairs in DNA of the spores may sometimes be of a higher taxonomic value than the corresponding evidence on DNA of the vegetative cells. PMID:1207507

  1. Role of Protein Phosphorylation in the Regulation of Cell Cycle and DNA-Related Processes in Bacteria

    PubMed Central

    Garcia-Garcia, Transito; Poncet, Sandrine; Derouiche, Abderahmane; Shi, Lei; Mijakovic, Ivan; Noirot-Gros, Marie-Françoise

    2016-01-01

    In all living organisms, the phosphorylation of proteins modulates various aspects of their functionalities. In eukaryotes, protein phosphorylation plays a key role in cell signaling, gene expression, and differentiation. Protein phosphorylation is also involved in the global control of DNA replication during the cell cycle, as well as in the mechanisms that cope with stress-induced replication blocks. Similar to eukaryotes, bacteria use Hanks-type kinases and phosphatases for signal transduction, and protein phosphorylation is involved in numerous cellular processes. However, it remains unclear whether protein phosphorylation in bacteria can also regulate the activity of proteins involved in DNA-mediated processes such as DNA replication or repair. Accumulating evidence supported by functional and biochemical studies suggests that phospho-regulatory mechanisms also take place during the bacterial cell cycle. Recent phosphoproteomics and interactomics studies identified numerous phosphoproteins involved in various aspect of DNA metabolism strongly supporting the existence of such level of regulation in bacteria. Similar to eukaryotes, bacterial scaffolding-like proteins emerged as platforms for kinase activation and signaling. This review reports the current knowledge on the phosphorylation of proteins involved in the maintenance of genome integrity and the regulation of cell cycle in bacteria that reveals surprising similarities to eukaryotes. PMID:26909079

  2. Multiple Origins of Eukaryotic cox15 Suggest Horizontal Gene Transfer from Bacteria to Jakobid Mitochondrial DNA.

    PubMed

    He, Ding; Fu, Cheng-Jie; Baldauf, Sandra L

    2016-01-01

    The most gene-rich and bacterial-like mitochondrial genomes known are those of Jakobida (Excavata). Of these, the most extreme example to date is the Andalucia godoyi mitochondrial DNA (mtDNA), including a cox15 gene encoding the respiratory enzyme heme A synthase (HAS), which is nuclear-encoded in nearly all other mitochondriate eukaryotes. Thus cox15 in eukaryotes appears to be a classic example of mitochondrion-to-nucleus (endosymbiotic) gene transfer, with A. godoyi uniquely retaining the ancestral state. However, our analyses reveal two highly distinct HAS types (encoded by cox15-1 and cox15-2 genes) and identify A. godoyi mitochondrial cox15-encoded HAS as type-1 and all other eukaryotic cox15-encoded HAS as type-2. Molecular phylogeny places the two HAS types in widely separated clades with eukaryotic type-2 HAS clustering with the bulk of α-proteobacteria (>670 sequences), whereas A. godoyi type-1 HAS clusters with an eclectic set of bacteria and archaea including two α-proteobacteria missing from the type-2 clade. This wide phylogenetic separation of the two HAS types is reinforced by unique features of their predicted protein structures. Meanwhile, RNA-sequencing and genomic analyses fail to detect either cox15 type in the nuclear genome of any jakobid including A. godoyi. This suggests that not only is cox15-1 a relatively recent acquisition unique to the Andalucia lineage but also the jakobid last common ancestor probably lacked both cox15 types. These results indicate that uptake of foreign genes by mtDNA is more taxonomically widespread than previously thought. They also caution against the assumption that all α-proteobacterial-like features of eukaryotes are ancient remnants of endosymbiosis. PMID:26412445

  3. Ancient bacteria in permafrost soils fact or artefact? Considerations in recovering microbial DNA from geological ancient settings

    NASA Astrophysics Data System (ADS)

    Willerslev, E.

    2003-04-01

    Several recent reports claim that prokaryotic genetic sequences or viable cultures can survive for millions of years in geological settings. If substantiated, these findings could fundamentally alter views about bacterial physiology, ecology and evolution. However, both the culturing of microbes and the amplification of ancient DNA molecules from fossil remains are beset with difficulties. First, theoretical and empirical studies have shown that small DNA fragments (100 200 bp) do not survive in the geosphere for more than 104 years in temperate environments and 105 years in colder ones due to hydrolytic and oxidative damage. Therefore, the revivals of dormant bacteria with no active DNA repair from remains hundreds of thousands to millions of years old is, from a theoretical point, expected to be difficult, if not impossible. Second, the no specificity of the media used to culture micro organisms, as well as the great sensitivity of PCR, makes the risk of contamination with contemporary ubiquitous microbial cells and exogenous DNA molecules extremely high. Contamination poses risks at all stages of sample processing (e.g.) within the samples themselves, in the chemical reagents, on laboratory disposables or through the air. The high risk of contamination strongly suggests the need for standardized procedures within the field such as independent replication of results. This criterion of authenticity has not yet been full field in any of the studies claiming million year old microbial cultures or DNA. In order to tests the long-term survival of ancient bacteria DNA a study on permafrost was conducted using ancient DNA precautions, controls and criteria. Permafrost must be considered among the most promising environments for long term DNA survival due to its constant low temperatures (-10C to 12C Siberian or 20C Antarctica) and high cell numbers (107). We found that bacteria DNA could reproducibly be obtained from samples dated up to 300-400,000 years B.P. but not

  4. Seasonal Variation in Parental Care Drives Sex-Specific Foraging by a Monomorphic Seabird

    PubMed Central

    Burke, Chantelle M.; Montevecchi, William A.; Regular, Paul M.

    2015-01-01

    Evidence of sex-specific foraging in monomorphic seabirds is increasing though the underlying mechanisms remain poorly understood. We investigate differential parental care as a mechanism for sex-specific foraging in monomorphic Common Murres (Uria aalge), where the male parent alone provisions the chick after colony departure. Using a combination of geolocation-immersion loggers and stable isotopes, we assess two hypotheses: the reproductive role specialization hypothesis and the energetic constraint hypothesis. We compare the foraging behavior of females (n = 15) and males (n = 9) during bi-parental at the colony, post-fledging male-only parental care and winter when parental care is absent. As predicted by the reproductive role specialization hypothesis, we found evidence of sex-specific foraging during post-fledging only, the stage with the greatest divergence in parental care roles. Single-parenting males spent almost twice as much time diving per day and foraged at lower quality prey patches relative to independent females. This implies a potential energetic constraint for males during the estimated 62.8 ± 8.9 days of offspring dependence at sea. Contrary to the predictions of the energetic constraint hypothesis, we found no evidence of sex-specific foraging during biparental care, suggesting that male parents did not forage for their own benefit before colony departure in anticipation of post-fledging energy constraints. We hypothesize that unpredictable prey conditions at Newfoundland colonies in recent years may limit male parental ability to allocate additional time and energy to self-feeding during biparental care, without compromising chick survival. Our findings support differential parental care as a mechanism for sex-specific foraging in monomorphic murres, and highlight the need to consider ecological context in the interpretation of sex-specific foraging behavior. PMID:26575646

  5. Reverse Sample Genome Probing, a New Technique for Identification of Bacteria in Environmental Samples by DNA Hybridization, and Its Application to the Identification of Sulfate-Reducing Bacteria in Oil Field Samples

    PubMed Central

    Voordouw, Gerrit; Voordouw, Johanna K.; Karkhoff-Schweizer, Roxann R.; Fedorak, Phillip M.; Westlake, Donald W. S.

    1991-01-01

    A novel method for the identification of bacteria in environmental samples by DNA hybridization is presented. It is based on the fact that, even within a genus, the genomes of different bacteria may have little overall sequence homology. This allows the use of the labeled genomic DNA of a given bacterium (referred to as a “standard”) to probe for its presence and that of bacteria with highly homologous genomes in total DNA obtained from an environmental sample. Alternatively, total DNA extracted from the sample can be labeled and used to probe filters on which denatured chromosomal DNA from relevant bacterial standards has been spotted. The latter technique is referred to as reverse sample genome probing, since it is the reverse of the usual practice of deriving probes from reference bacteria for analyzing a DNA sample. Reverse sample genome probing allows identification of bacteria in a sample in a single step once a master filter with suitable standards has been developed. Application of reverse sample genome probing to the identification of sulfate-reducing bacteria in 31 samples obtained primarily from oil fields in the province of Alberta has indicated that there are at least 20 genotypically different sulfate-reducing bacteria in these samples. Images PMID:16348574

  6. Development of a DNA macroarray for simultaneous detection of multiple foodborne pathogenic bacteria in fresh chicken meat.

    PubMed

    Kupradit, Chanida; Rodtong, Sureelak; Ketudat-Cairns, Mariena

    2013-12-01

    A DNA macroarray was developed to provide the ability to detect multiple foodborne pathogens in fresh chicken meat. Probes targeted to the 16S rRNA and genus- and species-specific genes, including fimY, ipaH, prfA, and uspA, were selected for the specific detection of Salmonella spp., Shigella spp., Listeria monocytogenes, and Escherichia coli, respectively. The combination of target gene amplification by PCR and a DNA macroarray in our system was able to distinguish all target bacteria from pure cultures with a detection sensitivity of 10⁵ c.f.u. ml⁻¹. The DNA macroarray was also applied to 10 fresh chicken meat samples. The assay validation demonstrated that by combining the enrichment steps for the target bacteria and the DNA macroarray, all 4 target bacteria could be detected simultaneously from the fresh chicken samples. The sensitivity of L. monocytogenes and Shigella boydii detection in the fresh chicken samples was at least 10 and 3 c.f.u. of the initial contamination in 25 g samples, respectively. The advantages of our developed protocol are high accuracy and time reduction when compared to conventional culture. The macroarray developed in our investigation was cost effective compared to modern oligonucleotide microarray techniques because there was no expensive equipment required for the detection of multiple foodborne pathogens. PMID:23754709

  7. Amplification of fluorescently labelled DNA within gram-positive and acid-fast bacteria.

    PubMed

    Vaid, A; Bishop, A H

    1999-10-01

    Representative organisms from a variety of Gram-positive genera were subjected to varying regimes in order to optimise the intracellular amplification of DNA. The bacteria were subjected to treatments with paraformaldehyde, muramidases and mild acid hydrolysis to discover which regime made each organism permeable to the amplification reagents yet allowed retention of the fluorescein-labelled amplified products within the cell. Scanning electron micrographs were used to corroborate the effectiveness of the treatments, as seen by fluorescent photomicrographs, with the damage caused to the bacterial walls. A combination of mutanolysin and lysozyme was found most effective for Bacillus cereus, whereas permeabilisation of Streptomyces coelicolor, Lactococcus lactis and Clostridium sporogenes was most effective when exposed to lysozyme only. Surprisingly, direct amplification with no pre-treatment gave the brightest fluorescence in Mycobacterium phlei. Comparing the techniques of whole cell PCR, primed in situ labelling (PRINS), and cycle PRINS showed that under the conditions used the strongest intensity of fluorescence was obtained with in situ PCR; only L. lactis and M. phlei produced signals with cycle PRINS, fluorescence was not seen for any of the organisms with PRINS. PMID:10520585

  8. Multiple DNA Extractions Coupled with Stable-Isotope Probing of Anthracene-Degrading Bacteria in Contaminated Soil▿†

    PubMed Central

    Jones, Maiysha D.; Singleton, David R.; Sun, Wei; Aitken, Michael D.

    2011-01-01

    In many of the DNA-based stable-isotope probing (SIP) studies published to date in which soil communities were investigated, a single DNA extraction was performed on the soil sample, usually using a commercial DNA extraction kit, prior to recovering the 13C-labeled (heavy) DNA by density-gradient ultracentrifugation. Recent evidence suggests, however, that a single extraction of a soil sample may not lead to representative recovery of DNA from all of the organisms in the sample. To determine whether multiple DNA extractions would affect the DNA yield, the eubacterial 16S rRNA gene copy number, or the identification of anthracene-degrading bacteria, we performed seven successive DNA extractions on the same aliquot of contaminated soil either untreated or enriched with [U-13C]anthracene. Multiple extractions were necessary to maximize the DNA yield and 16S rRNA gene copy number from both untreated and anthracene-enriched soil samples. Sequences within the order Sphingomonadales, but unrelated to any previously described genus, dominated the 16S rRNA gene clone libraries derived from 13C-enriched DNA and were designated “anthracene group 1.” Sequences clustering with Variovorax spp., which were also highly represented, and sequences related to the genus Pigmentiphaga were newly associated with anthracene degradation. The bacterial groups collectively identified across all seven extracts were all recovered in the first extract, although quantitative PCR analysis of SIP-identified groups revealed quantitative differences in extraction patterns. These results suggest that performing multiple DNA extractions on soil samples improves the extractable DNA yield and the number of quantifiable eubacterial 16S rRNA gene copies but have little qualitative effect on the identification of the bacterial groups associated with the degradation of a given carbon source by SIP. PMID:21398486

  9. Amplifiable DNA from Gram-negative and Gram-positive bacteria by a low strength pulsed electric field method

    PubMed Central

    Vitzthum, Frank; Geiger, Georg; Bisswanger, Hans; Elkine, Bentsian; Brunner, Herwig; Bernhagen, Jürgen

    2000-01-01

    An efficient electric field-based procedure for cell disruption and DNA isolation is described. Isoosmotic suspensions of Gram-negative and Gram-positive bacteria were treated with pulsed electric fields of <60 V/cm. Pulses had an exponential decay waveform with a time constant of 3.4 µs. DNA yield was linearly dependent on time or pulse number, with several thousand pulses needed. Electrochemical side-effects and electrophoresis were minimal. The lysates contained non-fragmented DNA which was readily amplifiable by PCR. As the method was not limited to samples of high specific resistance, it should be applicable to physiological fluids and be useful for genomic and DNA diagnostic applications. PMID:10734214

  10. How long can culturable bacteria and total DNA persist in environmental waters? The role of sunlight and solid particles.

    PubMed

    Gutiérrez-Cacciabue, Dolores; Cid, Alicia G; Rajal, Verónica B

    2016-01-01

    In this work, sunlight inactivation of two indicator bacteria in freshwater, with and without solid particles, was studied and the persistence of culturable cells and total DNA was compared. Environmental water was used to prepare two matrices, with and without solid particles, which were spiked with Escherichia coli and Enterococcus faecalis. These matrices were used to prepare microcosm bags that were placed in two containers: one exposed to sunlight and the other in the dark. During one month, samples were removed from each container and detection was done by membrane filter technique and real-time PCR. Kinetic parameters were calculated to assess sunlight effect. Indicator bacteria without solid particles exposed to sunlight suffered an immediate decay (<4h) compared with the ones which were shielded from them. In addition, the survival of both bacteria with solid particles varied depending on the situation analyzed (T99 from 3 up to 60days), being always culturable E. coli more persistent than E. faecalis. On the other side, E. faecalis DNA persisted much longer than culturable cells (T99>40h in the dark with particles). In this case active cells were more prone to sunlight than total DNA and the protective effect of solid particles was also observed. Results highlight that the effects caused by the parameters which describe the behavior of culturable microorganisms and total DNA in water are different and must be included in simulation models but without forgetting that these parameters will also depend on bacterial properties, sensitizers, composition, type, and uses of the aquatic environment under assessment. PMID:26379262

  11. Identification of Benzo[a]pyrene-Metabolizing Bacteria in Forest Soils by Using DNA-Based Stable-Isotope Probing

    PubMed Central

    Song, Mengke; Jiang, Longfei; Zhang, Dayi; Wang, Yujie; Zhang, Gan

    2015-01-01

    DNA-based stable-isotope probing (DNA-SIP) was used in this study to investigate the uncultivated bacteria with benzo[a]pyrene (BaP) metabolism capacities in two Chinese forest soils (Mt. Maoer in Heilongjiang Province and Mt. Baicaowa in Hubei Province). We characterized three different phylotypes with responsibility for BaP degradation, none of which were previously reported as BaP-degrading microorganisms by SIP. In Mt. Maoer soil microcosms, the putative BaP degraders were classified as belonging to the genus Terrimonas (family Chitinophagaceae, order Sphingobacteriales), whereas Burkholderia spp. were the key BaP degraders in Mt. Baicaowa soils. The addition of metabolic salicylate significantly increased BaP degradation efficiency in Mt. Maoer soils, and the BaP-metabolizing bacteria shifted to the microorganisms in the family Oxalobacteraceae (genus unclassified). Meanwhile, salicylate addition did not change either BaP degradation or putative BaP degraders in Mt. Baicaowa. Polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase (PAH-RHD) genes were amplified, sequenced, and quantified in the DNA-SIP 13C heavy fraction to further confirm the BaP metabolism. By illuminating the microbial diversity and salicylate additive effects on BaP degradation across different soils, the results increased our understanding of BaP natural attenuation and provided a possible approach to enhance the bioremediation of BaP-contaminated soils. PMID:26253666

  12. High-throughput DNA microarray detection of pathogenic bacteria in shallow well groundwater in the Kathmandu Valley, Nepal.

    PubMed

    Inoue, Daisuke; Hinoura, Takuji; Suzuki, Noriko; Pang, Junqin; Malla, Rabin; Shrestha, Sadhana; Chapagain, Saroj Kumar; Matsuzawa, Hiroaki; Nakamura, Takashi; Tanaka, Yasuhiro; Ike, Michihiko; Nishida, Kei; Sei, Kazunari

    2015-01-01

    Because of heavy dependence on groundwater for drinking water and other domestic use, microbial contamination of groundwater is a serious problem in the Kathmandu Valley, Nepal. This study investigated comprehensively the occurrence of pathogenic bacteria in shallow well groundwater in the Kathmandu Valley by applying DNA microarray analysis targeting 941 pathogenic bacterial species/groups. Water quality measurements found significant coliform (fecal) contamination in 10 of the 11 investigated groundwater samples and significant nitrogen contamination in some samples. The results of DNA microarray analysis revealed the presence of 1-37 pathogen species/groups, including 1-27 biosafety level 2 ones, in 9 of the 11 groundwater samples. While the detected pathogens included several feces- and animal-related ones, those belonging to Legionella and Arthrobacter, which were considered not to be directly associated with feces, were detected prevalently. This study could provide a rough picture of overall pathogenic bacterial contamination in the Kathmandu Valley, and demonstrated the usefulness of DNA microarray analysis as a comprehensive screening tool of a wide variety of pathogenic bacteria. PMID:25146188

  13. Phylogenetic Diversity of Lactic Acid Bacteria Associated with Paddy Rice Silage as Determined by 16S Ribosomal DNA Analysis

    PubMed Central

    Ennahar, Saïd; Cai, Yimin; Fujita, Yasuhito

    2003-01-01

    A total of 161 low-G+C-content gram-positive bacteria isolated from whole-crop paddy rice silage were classified and subjected to phenotypic and genetic analyses. Based on morphological and biochemical characters, these presumptive lactic acid bacterium (LAB) isolates were divided into 10 groups that included members of the genera Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus, and Weissella. Analysis of the 16S ribosomal DNA (rDNA) was used to confirm the presence of the predominant groups indicated by phenotypic analysis and to determine the phylogenetic affiliation of representative strains. The virtually complete 16S rRNA gene was PCR amplified and sequenced. The sequences from the various LAB isolates showed high degrees of similarity to those of the GenBank reference strains (between 98.7 and 99.8%). Phylogenetic trees based on the 16S rDNA sequence displayed high consistency, with nodes supported by high bootstrap values. With the exception of one species, the genetic data was in agreement with the phenotypic identification. The prevalent LAB, predominantly homofermentative (66%), consisted of Lactobacillus plantarum (24%), Lactococcus lactis (22%), Leuconostoc pseudomesenteroides (20%), Pediococcus acidilactici (11%), Lactobacillus brevis (11%), Enterococcus faecalis (7%), Weissella kimchii (3%), and Pediococcus pentosaceus (2%). The present study, the first to fully document rice-associated LAB, showed a very diverse community of LAB with a relatively high number of species involved in the fermentation process of paddy rice silage. The comprehensive 16S rDNA-based approach to describing LAB community structure was valuable in revealing the large diversity of bacteria inhabiting paddy rice silage and enabling the future design of appropriate inoculants aimed at improving its fermentation quality. PMID:12514026

  14. DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats

    PubMed Central

    de Lange, Orlando; Wolf, Christina; Thiel, Philipp; Krüger, Jens; Kleusch, Christian; Kohlbacher, Oliver; Lahaye, Thomas

    2015-01-01

    Transcription Activator-Like Effectors (TALEs) of Xanthomonas bacteria are programmable DNA binding proteins with unprecedented target specificity. Comparative studies into TALE repeat structure and function are hindered by the limited sequence variation among TALE repeats. More sequence-diverse TALE-like proteins are known from Ralstonia solanacearum (RipTALs) and Burkholderia rhizoxinica (Bats), but RipTAL and Bat repeats are conserved with those of TALEs around the DNA-binding residue. We study two novel marine-organism TALE-like proteins (MOrTL1 and MOrTL2), the first to date of non-terrestrial origin. We have assessed their DNA-binding properties and modelled repeat structures. We found that repeats from these proteins mediate sequence specific DNA binding conforming to the TALE code, despite low sequence similarity to TALE repeats, and with novel residues around the BSR. However, MOrTL1 repeats show greater sequence discriminating power than MOrTL2 repeats. Sequence alignments show that there are only three residues conserved between repeats of all TALE-like proteins including the two new additions. This conserved motif could prove useful as an identifier for future TALE-likes. Additionally, comparing MOrTL repeats with those of other TALE-likes suggests a common evolutionary origin for the TALEs, RipTALs and Bats. PMID:26481363

  15. Genetic encoding of DNA nanostructures and their self-assembly in living bacteria

    PubMed Central

    Elbaz, Johann; Yin, Peng; Voigt, Christopher A.

    2016-01-01

    The field of DNA nanotechnology has harnessed the programmability of DNA base pairing to direct single-stranded DNAs (ssDNAs) to assemble into desired 3D structures. Here, we show the ability to express ssDNAs in Escherichia coli (32–205 nt), which can form structures in vivo or be purified for in vitro assembly. Each ssDNA is encoded by a gene that is transcribed into non-coding RNA containing a 3′-hairpin (HTBS). HTBS recruits HIV reverse transcriptase, which nucleates DNA synthesis and is aided in elongation by murine leukemia reverse transcriptase. Purified ssDNA that is produced in vivo is used to assemble large 1D wires (300 nm) and 2D sheets (5.8 μm2) in vitro. Intracellular assembly is demonstrated using a four-ssDNA crossover nanostructure that recruits split YFP when properly assembled. Genetically encoding DNA nanostructures provides a route for their production as well as applications in living cells. PMID:27091073

  16. Monomorphic ants undergo within-colony morphological changes along the metal-pollution gradient.

    PubMed

    Grześ, Irena M; Okrutniak, Mateusz; Woch, Marcin W

    2015-04-01

    In ants, intra and inter-colony variation in body size can be considerable, even in monomorphic species. It has been previously shown that size-related parameters can be environmentally sensitive. The shape of the body size distribution curve is, however, rarely investigated. In this study, we measured head widthes of the black garden ant Lasius niger workers using digital methods. The ants were sampled from 51 colonies originating from 19 sites located along a metal pollution gradient, established in a former mining area in Poland. Total zinc concentrations in random samples of small invertebrates were used as a measure of site pollution levels. We found that the skewness of head size distribution grows significantly in line with the pollution level of the site, ranging from values slightly below zero (about -0.5) in the least polluted site up to a positive value (about 1.5) in the most polluted site. This result indicates that the frequency of small ants grows as pollution levels increase. The coefficient of variation, as well as the measures of central tendency, was not related to the pollution level. Four hypotheses explaining the obtained results are proposed. The bias towards the higher frequency of small workers may result from energy limitation and/or metal toxicity, but may also have an adaptive function. PMID:25395324

  17. Focal Monomorphic Ventricular Tachycardia As The First Manifestation Of Amyloid Cardiomyopathy

    PubMed Central

    Seethala, Srikanth; Jain, Sandeep; Ohori, N. Paul; Monaco, Sara; Lacomis, Joan; Crock, Frederick; Nemec, Jan

    2010-01-01

    52-year-old patient presented with palpitation and well tolerated monomorphic ventricular tachycardia. He had normal echocardiogram and coronary angiogram 3 months prior to presentation. Surface EKG revealed regular wide-complex tachycardia with right bundle branch block morphology and right inferior axis. In conjunction with recent negative cardiac evaluation, this suggested idiopathic focal ventricular tachycardia from anterolateral basal left ventricle. CARTO based activation mapping confirmed the presence of VT focus in that area. Radiofrequency ablation at the site of perfect pacemap resulted in a partial suppression of the focus. Echocardiogram was subsequently performed because of progressive dyspnea. It revealed asymmetrical thickening of posterolateral left ventricle, with delayed enhancement on contrast magnetic resonance imaging. Fine needle aspiration of abdominal fat stained with Congo red confirmed the diagnosis of systemic AL amyloidosis due to IgG λ-light chain deposition. Consequently, the patient underwent placement of implantable defibrillator and hematopoetic stem cell transplantation. He remains in excellent functional status 18 months after presentation. PMID:20234811

  18. DNA analysis of fecal bacteria to augment an epikarst dye trace study at Crump's Cave, Kentucky

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A rainfall simulation experiment was performed to investigate the transport behavior of fecal-derived bacteria through shallow karst soils and through the epikarst. The experiment was conducted at Cave Springs Cavern located just south of Mammoth Cave National Park on the Sinkhole Plain of South Cen...

  19. Bridgehead invasion of a monomorphic plant pathogenic bacterium: Xanthomonas citri pv. citri, an emerging citrus pathogen in Mali and Burkina Faso.

    PubMed

    Leduc, A; Traoré, Y N; Boyer, K; Magne, M; Grygiel, P; Juhasz, C C; Boyer, C; Guerin, F; Wonni, I; Ouedraogo, L; Vernière, C; Ravigné, V; Pruvost, O

    2015-11-01

    Molecular epidemiology studies further our understanding of migrations of phytopathogenic bacteria, the major determining factor in their emergence. Asiatic citrus canker, caused by Xanthomonas citri pv. citri, was recently reported in Mali and Burkina Faso, a region remote from other contaminated areas. To identify the origin and pathways of these emergences, we used two sets of markers, minisatellites and microsatellites, for investigating different evolutionary scales. Minisatellite typing suggested the introduction of two groups of strains in Mali (DAPC 1 and DAPC 2), consistent with microsatellite typing. DAPC 2 was restricted to Bamako district, whereas DAPC 1 strains were found much more invasive. The latter strains formed a major clonal complex based on microsatellite data with the primary and secondary founders detected in commercial citrus nurseries and orchards. This suggests that human activities played a major role in the spread of DAPC 1 strains via the movement of contaminated propagative material, further supported by the frequent lack of differentiation between populations from geographically distant nurseries and orchards. Approximate Bayesian Computation analyses supported the hypothesis that strains from Burkina Faso resulted from a bridgehead invasion from Mali. Multi-locus variable number of tandem repeat analysis and Approximate Bayesian Computation are useful for understanding invasion routes and pathways of monomorphic bacterial pathogens. PMID:25866121

  20. Assessment of methods to recover DNA from bacteria, fungi and archaea in complex environmental samples.

    PubMed

    Guillén-Navarro, Karina; Herrera-López, David; López-Chávez, Mariana Y; Cancino-Gómez, Máximo; Reyes-Reyes, Ana L

    2015-11-01

    DNA extraction from environmental samples is a critical step for metagenomic analysis to study microbial communities, including those considered uncultivable. Nevertheless, obtaining good quality DNA in sufficient quantities for downstream methodologies is not always possible, and it depends on the complexity and stability of each ecosystem, which could be more problematic for samples from tropical regions because those ecosystems are less stable and more complex. Three laboratory methods for the extraction of nucleic acids from samples representing unstable (decaying coffee pulp and mangrove sediments) and relatively stable (compost and soil) environments were tested. The results were compared with those obtained using two commercial DNA extraction kits. The quality of the extracted DNA was evaluated by PCR amplification to verify the recovery of bacterial, archaeal, and fungal genetic material. The laboratory method that gave the best results used a lysis procedure combining physical, chemical, and enzymatic steps. PMID:26014885

  1. High-Voltage Electroporation of Bacteria: Genetic Transformation of Campylobacter jejuni with Plasmid DNA

    NASA Astrophysics Data System (ADS)

    Miller, Jeff F.; Dower, William J.; Tompkins, Lucy S.

    1988-02-01

    Electroporation permits the uptake of DNA by mammalian cells and plant protoplasts because it induces transient permeability of the cell membrane. We investigated the utility of high-voltage electroporation as a method for genetic transformation of intact bacterial cells by using the enteric pathogen Campylobacter jejuni as a model system. This report demonstrates that the application of high-voltage discharges to bacterial cells permits genetic transformation. Our method involves exposure of a Campylobacter cell suspension to a high-voltage exponential decay discharge (5-13 kV/cm) for a brief period of time (resistance-capacitance time constant = 2.4-26 msec) in the presence of plasmid DNA. Electrical transformation of C. jejuni results in frequencies as high as 1.2 × 106 transformants per μ g of DNA. We have investigated the effects of pulse amplitude and duration, cell growth conditions, divalent cations, and DNA concentration on the efficiency of transformation. Transformants of C. jejuni obtained by electroporation contained structurally intact plasmid molecules. In addition, evidence is presented that indicates that C. jejuni possesses DNA restriction and modification systems. The use of electroporation as a method for transforming other bacterial species and guidelines for its implementation are also discussed.

  2. Analysis of several methods for the extraction of high quality DNA from acetic acid bacteria in wine and vinegar for characterization by PCR-based methods.

    PubMed

    Jara, C; Mateo, E; Guillamón, J M; Torija, M J; Mas, A

    2008-12-10

    Acetic acid bacteria (AAB) are fastidious microorganisms with poor recovery in culture. Culture-independent methods are currently under examination. Good DNA extraction is a strict requirement of these methods. We compared five methods for extracting the DNA of AAB directly from wine and vinegar samples. Four matrices (white wine, red wine, superficial vinegar and submerged vinegar) contaminated with two AAB strains belonging to Acetobacter pasteurianus and Gluconacetobacter hansenii were assayed. To improve the yield and quality of the extracted DNA, a sample treatment (washing with polyvinyl pyrrolidone or NaCl) was also tested. DNA quality was measured by amplification of the 16S rRNA gene with conventional PCR. DNA recovery rate was assessed by real-time PCR. DNA amplification was always successful with the Wizard method though DNA recovery was poor. A CTAB-based method and NucleoSpin protocol extracted the highest DNA recoveries from wine and vinegar samples. Both of these methods require treatment to recover suitable DNA for amplification with maximum recovery. Both may therefore be good solutions for DNA extraction in wine and vinegar samples. DNA extraction of Ga hansenii was more effective than that of A. pasteurianus. The fastest and cheapest method we evaluated (the Thermal shock protocol) produced the worst results both for DNA amplification and DNA recovery. PMID:18950887

  3. Genome-wide study predicts promoter-G4 DNA motifs regulate selective functions in bacteria: radioresistance of D. radiodurans involves G4 DNA-mediated regulation

    PubMed Central

    Beaume, Nicolas; Pathak, Rajiv; Yadav, Vinod Kumar; Kota, Swathi; Misra, Hari S.; Gautam, Hemant K.; Chowdhury, Shantanu

    2013-01-01

    A remarkable number of guanine-rich sequences with potential to adopt non-canonical secondary structures called G-quadruplexes (or G4 DNA) are found within gene promoters. Despite growing interest, regulatory role of quadruplex DNA motifs in intrinsic cellular function remains poorly understood. Herein, we asked whether occurrence of potential G4 (PG4) DNA in promoters is associated with specific function(s) in bacteria. Using a normalized promoter-PG4-content (PG4P) index we analysed >60 000 promoters in 19 well-annotated species for (a) function class(es) and (b) gene(s) with enriched PG4P. Unexpectedly, PG4-associated functional classes were organism specific, suggesting that PG4 motifs may impart specific function to organisms. As a case study, we analysed radioresistance. Interestingly, unsupervised clustering using PG4P of 21 genes, crucial for radioresistance, grouped three radioresistant microorganisms including Deinococcus radiodurans. Based on these predictions we tested and found that in presence of nanomolar amounts of the intracellular quadruplex-binding ligand N-methyl mesoporphyrin (NMM), radioresistance of D. radiodurans was attenuated by ∼60%. In addition, important components of the RecF recombinational repair pathway recA, recF, recO, recR and recQ genes were found to harbour promoter-PG4 motifs and were also down-regulated in presence of NMM. Together these results provide first evidence that radioresistance may involve G4 DNA-mediated regulation and support the rationale that promoter-PG4s influence selective functions. PMID:23161683

  4. Presence of Periodontopathic Bacteria DNA in Atheromatous Plaques from Coronary and Carotid Arteries

    PubMed Central

    Szulc, Malgorzata; Kustrzycki, Wojciech; Janczak, Dariusz; Michalowska, Dagmara; Baczynska, Dagmara; Radwan-Oczko, Malgorzata

    2015-01-01

    Objectives. Interest in periodontitis as a potential risk factor for atherosclerosis and its complications resulted from the fact that the global prevalence of periodontal diseases is significant and periodontitis may induce a chronic inflammatory response. Many studies have analyzed the potential impact of the Porphyromonas gingivalis, major pathogen of periodontitis, on general health. The purpose of this study was to find the presence of the Porphyromonas gingivalis DNA in the atherosclerotic plaques of coronary and carotid arteries and in the periodontal pockets in patients with chronic periodontitis, who underwent surgery because of vascular diseases. Methods and Results. The study population consisted of 91 patients with coronary artery disease or scheduled for carotid endarterectomy. The presence of Porphyromonas gingivalis DNA in atheromatous plaques and in subgingival samples was determined by PCR. Bacterial DNA was found in 21 of 91 (23%) samples taken from vessels and in 47 of 63 (74.6%) samples from periodontal pockets. Conclusions. Porphyromonas gingivalis DNA is frequently found in atheromatous plaques of patients with periodontitis. That is why more research should be conducted to prove if this periopathogen may have an impact on endothelium of patients at risk of atherosclerosis. PMID:26504835

  5. Use of DNA Markers for Investigating Sources of Bacteria in Contaminated Ground Water: Wooster Township, Wayne County, Ohio

    USGS Publications Warehouse

    Dumouchelle, Denise H.

    2006-01-01

    In 2004, a public-health nuisance was declared by the Wayne County Board of Health in the Scenic Heights Drive-Batdorf Road area of Wooster Township, Wayne County, Ohio, because of concerns about the safety of water from local wells. Repeated sampling had detected the presence of fecal-indicator bacteria and elevated nitrate concentrations. In June 2006, the U.S. Geological Survey (USGS), in cooperation with the Ohio Environmental Protection Agency (Ohio EPA), collected and analyzed samples from some of the affected wells to help investigate the possibility of human-origin bacterial contamination. Water samples from 12 wells and 5 home sewage-treatment systems (HSTS) were collected. Bromide concentrations were determined in samples from the 12 wells. Samples from 5 of the 12 wells were analyzed for wastewater compounds. Total coliform, enterococci and Escherichia coli (E. coli) bacteria concentrations were determined for samples from 8 of the 12 wells. In addition, two microbial source-tracking tools that employ DNA markers were used on samples from several wells and a composite sample of water from five septic tanks. The DNA markers from the Enterococcus faecium species and the order Bacteroidales are associated with specific sources, either human or ruminant sources. Bromide concentrations ranged from 0.04 to 0.18 milligrams per liter (mg/L). No wastewater compounds were detected at concentrations above the reporting limits. Samples from the 12 wells also were collected by Ohio EPA and analyzed for chloride and nitrate. Chloride concentrations ranged from 12.6 to 61.6 mg/L and nitrate concentrations ranged from 2.34 to 11.9 mg/L (as N). Total coliforms and enterococci were detected in samples from 8 wells, at concentrations from 2 to 200 colony-forming units per 100 milliliters (CFU/100 mL) and 0.5 to 17 CFU/100 mL, respectively. E. coli were detected in samples from three of the eight wells, at concentrations of 1 or 2 CFU/100 mL. Tests for the human

  6. Assessment of titanium dioxide nanoparticle effects in bacteria: association, uptake, mutagenicity, co-mutagenicity and DNA repair inhibition.

    PubMed

    Butler, Kimberly S; Casey, Brendan J; Garborcauskas, Garret V M; Dair, Benita J; Elespuru, Rosalie K

    2014-07-01

    Due to their unique properties, the use of nanoparticles (NPs) is expanding; these same properties may affect their potential risk to humans. However, standard methods for genotoxicity assessment may not be adequate for NPs; altered tests reported here have been developed to address perceived inadequacies. The bacterial reverse mutation assay is an essential part of the battery of tests to determine genotoxicity. The utility of this test for assessing NPs is currently questioned, due to negative results seemingly caused by failure of particle uptake. To probe uptake issues, we examined the physical state in different media, dose and time dependent association, uptake and mutagenicity of titanium dioxide (TiO2) NPs in Salmonella typhimurium and Escherichia coli. The NPs suspended in water were characterized using dynamic light scattering, NP tracking analysis and transmission electron microscopy. NP association with bacteria was assessed by flow cytometry. Association was found to be time and dose dependent, with maximal association by 60 min. Therefore mutagenicity was assessed after a 60 min pre-incubation in a miniaturized assay demonstrating enhanced sensitivity. To assess potential indirect effects on bacterial mutagenicity, the effect of TiO2 NPs on the action of standard mutagens or on DNA repair capability was also investigated. TiO2 NPs did not affect mutant yields in standard strains of S. typhimurium or E. coli, including those detecting oxidative damage, using the modified methods. Nor did TiO2 NPs affect the action of standard mutagens or DNA excision repair capability. Despite particle association with the bacteria, subsequent analysis using electron microscopy and energy dispersive x-ray spectroscopy indicated that the NPs were not internalized. This work demonstrates that additional studies, including flow cytometry, are valuable tools for understanding the action of NPs in biological systems. PMID:24769488

  7. Development of species-specific hybridization probes for marine luminous bacteria by using in vitro DNA amplification

    SciTech Connect

    Wimpee, C.F.; Nadeau, T.L.; Nealson, K.H. )

    1991-05-01

    By using two highly conserved regions of the luxA gene as primers, polymerase chain reaction amplification methods were used to prepare species-specific probes against the luciferase gene from four major groups of marine luminous bacteria. Laboratory studies with test strains indicated that three of the four probes cross-reacted with themselves and with one or more of the other species at low stringencies but were specific for members of their own species at high stringencies. The fourth probe, generated from Vibrio harveyi DNA, a cross-reacted with DNAs from two closely related species, V. orientalis and V. vulnificus. When nonluminous cultures were tested with the species-specific probes, no false-positive results were observed, even at low stringencies. Two field isolates were correctly identified as Photobacterium phosphoreum by using the species-specific hybridization probes at high stringency. A mixed probe (four different hybridization probes) used at low stringency gave positive results with all of the luminous bacteria tested, including the terrestrial species Xenorhabdus luminescens, and the taxonomically distinct marine bacterial species Shewanella hanedai; minimal cross-hybridization with these species was seen at higher stringencies.

  8. Research in Undergraduate Instruction: A Biotech Lab Project for Recombinant DNA Protein Expression in Bacteria

    NASA Astrophysics Data System (ADS)

    Brockman, Mark; Ordman, Alfred B.; Campbell, A. Malcolm

    1996-06-01

    In the sophomore-level Molecular Biology and Biotechnology course at Beloit College, students learn basic methods in molecular biology in the context of pursuing a semester-long original research project. We are exploring how DNA sequence affects expression levels of proteins. A DNA fragment encoding all or part of the guanylate monokinase (gmk) sequence is cloned into pSP73 and expressed in E. coli. A monoclonal antibody is made to gmk. The expression level of gmk is determined by SDS gel elctrophoresis, a Western blot, and an ELISA assay. Over four years, an increase in enrollment in the course from 9 to 34 students, the 85% of majors pursuing advanced degrees, and course evaluations all support the conclusion that involving students in research during undergraduate courses encourages them to pursue careers in science.

  9. Novel Phenanthrene-Degrading Bacteria Identified by DNA-Stable Isotope Probing

    PubMed Central

    Luo, Chunling; Zhang, Dayi; Zhang, Gan

    2015-01-01

    Microorganisms responsible for the degradation of phenanthrene in a clean forest soil sample were identified by DNA-based stable isotope probing (SIP). The soil was artificially amended with either 12C- or 13C-labeled phenanthrene, and soil DNA was extracted on days 3, 6 and 9. Terminal restriction fragment length polymorphism (TRFLP) results revealed that the fragments of 219- and 241-bp in HaeIII digests were distributed throughout the gradient profile at three different sampling time points, and both fragments were more dominant in the heavy fractions of the samples exposed to the 13C-labeled contaminant. 16S rRNA sequencing of the 13C-enriched fraction suggested that Acidobacterium spp. within the class Acidobacteria, and Collimonas spp. within the class Betaproteobacteria, were directly involved in the uptake and degradation of phenanthrene at different times. To our knowledge, this is the first report that the genus Collimonas has the ability to degrade PAHs. Two PAH-RHDα genes were identified in 13C-labeled DNA. However, isolation of pure cultures indicated that strains of Staphylococcus sp. PHE-3, Pseudomonas sp. PHE-1, and Pseudomonas sp. PHE-2 in the soil had high phenanthrene-degrading ability. This emphasizes the role of a culture-independent method in the functional understanding of microbial communities in situ. PMID:26098417

  10. RRNA and dnaK relationships of Bradyrhizobium sp. nodule bacteria from four papilionoid legume trees in Costa Rica.

    PubMed

    Parker, Matthew A

    2004-05-01

    Enzyme electrophoresis and sequencing of rRNA and dnaK genes revealed high genetic diversity among root nodule bacteria from the Costa Rican trees Andira inermis, Dalbergia retusa, Platymiscium pinnatum (Papilionoideae tribe Dalbergieae) and Lonchocarpus atropurpureus (Papilionoideae tribe Millettieae). A total of 21 distinct multilocus genotypes [ETs (electrophoretic types)] was found among the 36 isolates analyzed, and no ETs were shared in common by isolates from different legume hosts. However, three of the ETs from D. retusa were identical to Bradyrhizobium sp. isolates detected in prior studies of several other legume genera in both Costa Rica and Panama. Nearly full-length 16S rRNA sequences and partial 23S rRNA sequences confirmed that two isolates from D. retusa were highly similar or identical to Bradyrhizobium strains isolated from the legumes Erythrina and Clitoria (Papilionoideae tribe Phaseoleae) in Panama. rRNA sequences for five isolates from L. atropurpureus, P. pinnatum and A. inermis were not closely related to any currently known strains from Central America or elsewhere, but had affinities to the reference strains Bradyrhizobium japonicum USDA 110 (three isolates) or to B. elkanii USDA 76 (two isolates). A phylogenetic tree for 21 Bradyrhizobium strains based on 603 bp of the dnaK gene showed several significant conflicts with the rRNA tree, suggesting that genealogical relationships may have been altered by lateral gene transfer events. PMID:15214639

  11. Genus-specific profile of acetic acid bacteria by 16S rDNA PCR-DGGE.

    PubMed

    De Vero, Luciana; Giudici, Paolo

    2008-06-30

    An effective method for grouping acetic acid bacteria (AAB) genera was defined and evaluated as a tool for preliminary screening of the major AAB species involved in vinegar production. Acetobacter, Gluconobacter, Gluconacetobacter, Asaia, Neoasaia, Saccharibacter, Frateuria and Kozakia AAB strains were screened on the basis of the 16S rDNA sequences using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) technique. The DGGE profile of all the strains tested, consisted of one single band of approximately 330 bp for each strain and allowed their clustering. The results obtained clearly reflected in silico phylogenetic analysis of the AAB species used in this study, in fact, the species with a higher 16S rDNA sequence homology showed a similar electrophoretic profile. In particular almost all the species belonging to the genus Gluconacetobacter showed a DGGE pattern nearly identical and well distinct from all the other AAB genera. Furthermore by PCR-DGGE it was possible to clearly group the species more frequently recovered from vinegar fermentation which are mainly distributed in the genera Acetobacter, Gluconobacter and Gluconacetobacter. PMID:17919758

  12. Horizontal DNA Transfer Mechanisms of Bacteria as Weapons of Intragenomic Conflict.

    PubMed

    Croucher, Nicholas J; Mostowy, Rafal; Wymant, Christopher; Turner, Paul; Bentley, Stephen D; Fraser, Christophe

    2016-03-01

    Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that

  13. Horizontal DNA Transfer Mechanisms of Bacteria as Weapons of Intragenomic Conflict

    PubMed Central

    Croucher, Nicholas J.; Mostowy, Rafal; Wymant, Christopher; Turner, Paul; Bentley, Stephen D.; Fraser, Christophe

    2016-01-01

    Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell–cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing “arms race.” Reduced rates of transformation have also been observed in cells infected by MGEs that

  14. On-chip concentration of bacteria using a 3D dielectrophoretic chip and subsequent laser-based DNA extraction in the same chip

    NASA Astrophysics Data System (ADS)

    Cho, Yoon-Kyoung; Kim, Tae-hyeong; Lee, Jeong-Gun

    2010-06-01

    We report the on-chip concentration of bacteria using a dielectrophoretic (DEP) chip with 3D electrodes and subsequent laser-based DNA extraction in the same chip. The DEP chip has a set of interdigitated Au post electrodes with 50 µm height to generate a network of non-uniform electric fields for the efficient trapping by DEP. The metal post array was fabricated by photolithography and subsequent Ni and Au electroplating. Three model bacteria samples (Escherichia coli, Staphylococcus epidermidis, Streptococcus mutans) were tested and over 80-fold concentrations were achieved within 2 min. Subsequently, on-chip DNA extraction from the concentrated bacteria in the 3D DEP chip was performed by laser irradiation using the laser-irradiated magnetic bead system (LIMBS) in the same chip. The extracted DNA was analyzed with silicon chip-based real-time polymerase chain reaction (PCR). The total process of on-chip bacteria concentration and the subsequent DNA extraction can be completed within 10 min including the manual operation time.

  15. Intrastrand triplex DNA repeats in bacteria: a source of genomic instability.

    PubMed

    Holder, Isabelle T; Wagner, Stefanie; Xiong, Peiwen; Sinn, Malte; Frickey, Tancred; Meyer, Axel; Hartig, Jörg S

    2015-12-01

    Repetitive nucleic acid sequences are often prone to form secondary structures distinct from B-DNA. Prominent examples of such structures are DNA triplexes. We observed that certain intrastrand triplex motifs are highly conserved and abundant in prokaryotic genomes. A systematic search of 5246 different prokaryotic plasmids and genomes for intrastrand triplex motifs was conducted and the results summarized in the ITxF database available online at http://bioinformatics.uni-konstanz.de/utils/ITxF/. Next we investigated biophysical and biochemical properties of a particular G/C-rich triplex motif (TM) that occurs in many copies in more than 260 bacterial genomes by CD and nuclear magnetic resonance spectroscopy as well as in vivo footprinting techniques. A characterization of putative properties and functions of these unusually frequent nucleic acid motifs demonstrated that the occurrence of the TM is associated with a high degree of genomic instability. TM-containing genomic loci are significantly more rearranged among closely related Escherichia coli strains compared to control sites. In addition, we found very high frequencies of TM motifs in certain Enterobacteria and Cyanobacteria that were previously described as genetically highly diverse. In conclusion we link intrastrand triplex motifs with the induction of genomic instability. We speculate that the observed instability might be an adaptive feature of these genomes that creates variation for natural selection to act upon. PMID:26450966

  16. Intrastrand triplex DNA repeats in bacteria: a source of genomic instability

    PubMed Central

    Holder, Isabelle T.; Wagner, Stefanie; Xiong, Peiwen; Sinn, Malte; Frickey, Tancred; Meyer, Axel; Hartig, Jörg S.

    2015-01-01

    Repetitive nucleic acid sequences are often prone to form secondary structures distinct from B-DNA. Prominent examples of such structures are DNA triplexes. We observed that certain intrastrand triplex motifs are highly conserved and abundant in prokaryotic genomes. A systematic search of 5246 different prokaryotic plasmids and genomes for intrastrand triplex motifs was conducted and the results summarized in the ITxF database available online at http://bioinformatics.uni-konstanz.de/utils/ITxF/. Next we investigated biophysical and biochemical properties of a particular G/C-rich triplex motif (TM) that occurs in many copies in more than 260 bacterial genomes by CD and nuclear magnetic resonance spectroscopy as well as in vivo footprinting techniques. A characterization of putative properties and functions of these unusually frequent nucleic acid motifs demonstrated that the occurrence of the TM is associated with a high degree of genomic instability. TM-containing genomic loci are significantly more rearranged among closely related Escherichia coli strains compared to control sites. In addition, we found very high frequencies of TM motifs in certain Enterobacteria and Cyanobacteria that were previously described as genetically highly diverse. In conclusion we link intrastrand triplex motifs with the induction of genomic instability. We speculate that the observed instability might be an adaptive feature of these genomes that creates variation for natural selection to act upon. PMID:26450966

  17. Moricandia arvensis extracts protect against DNA damage, mutagenesis in bacteria system and scavenge the superoxide anion.

    PubMed

    Skandrani, Ines; Bouhlel, Ines; Limem, Ilef; Boubaker, Jihed; Bhouri, Wissem; Neffati, Aicha; Ben Sghaier, Mohamed; Kilani, Soumaya; Ghedira, Kamel; Ghedira-Chekir, Leila

    2009-02-01

    The mutagenic potential of total aqueous, total oligomers flavonoids (TOF), ethyl acetate (EA), chloroform (Chl), petroleum ether (PE) and methanol (MeOH) extracts from aerial parts of Moricandia arvensis was assessed using Ames Salmonella tester strains TA100 and TA1535 with and without metabolic activation (S9), and using plasmid pBluescript DNA assay. None of the different extracts produced a mutagenic effect, except aqueous extract when incubated with Salmonella typhimurium TA100 after metabolic activation. Likewise, the antimutagenicity of the same extracts was tested using the "Ames test". Our results showed that M. arvensis extracts possess antimutagenic effects against sodium azide (SA) in the two tested Salmonella assay systems, except metabolized aqueous and PE extracts when tested with S. typhimurium TA100 assay system. Different extracts were also found to be effective in protecting plasmid DNA against the strand breakage induced by hydroxyl radicals, except PE and aqueous extracts. Antioxidant capacity of the tested extracts was evaluated using the enzymatic (xanthine/xanthine oxidase assay) (X/XOD) and the non enzymatic (NBT/Riboflavine assay) systems. TOF extract was the more effective one in inhibiting both xanthine oxidase activity and NBT reduction. PMID:19015021

  18. Chronic cough and tachycardia-induced cardiomyopathy in a patient with idiopathic frequent, monomorphic premature ventricular contractions.

    PubMed

    Hasdemir, Can; Musayev, Oktay; Kehribar, Demet Yalcin; Kartal, Yildirim; Can, Levent H

    2013-05-01

    A 70-year-old woman presented with a 1-year history of dry cough. Extensive work-up ruled out common causes of chronic cough. She was found to have very frequent, monomorphic premature ventricular contractions (PVCs) and mild-to-moderate left ventricular systolic dysfunction. Propafenone 450 mg/day resulted in complete resolution of her cough and disappearance of PVCs within 24 hours of initiation. One month after the initiation of propafenone therapy, left ventricular ejection fraction normalized and her chronic cough resolved completely. PMID:21967685

  19. Coxiella burnetii DNA, but not viable bacteria, in dairy products in France.

    PubMed

    Eldin, Carole; Angelakis, Emmanouil; Renvoisé, Aurélie; Raoult, Didier

    2013-04-01

    Transmission by the oral route of Coxiella burnetii is controversial. Our objective was to evaluate dairy products in the transmission of Q fever. Pasteurized, unpasteurized, and thermized dairy products were tested for C. burnetii by using a quantitative polymerase chain reaction specific for IS1111 and IS30A spacers, culturing in human embryonic lung fibroblasts cells, and inoculation into BALB/c mice. We tested 201 products and C. burnetii was identified in 64%. Cow milk origin products were more frequently positive than goat or ewe products (P = 0.006 and P = 0.0001, respectively), and industrial food was more frequently positive than artisanal food (P < 0.0001). Food made from unpasteurized milk contained higher bacteria concentrations than food made from pasteurized milk (P = 0.02). All cultures were negative and mice did not show signs of illness. Farm animals are highly infected in France but consumption of cheese and yogurt does not seem to pose a public health risk for transmission of Q fever. PMID:23382158

  20. Theoretical models for the regulation of DNA replication in fast-growing bacteria

    NASA Astrophysics Data System (ADS)

    Creutziger, Martin; Schmidt, Mischa; Lenz, Peter

    2012-09-01

    Growing in always changing environments, Escherichia coli cells are challenged by the task to coordinate growth and division. In particular, adaption of their growth program to the surrounding medium has to guarantee that the daughter cells obtain fully replicated chromosomes. Replication is therefore to be initiated at the right time, which is particularly challenging in media that support fast growth. Here, the mother cell initiates replication not only for the daughter but also for the granddaughter cells. This is possible only if replication occurs from several replication forks that all need to be correctly initiated. Despite considerable efforts during the last 40 years, regulation of this process is still unknown. Part of the difficulty arises from the fact that many details of the relevant molecular processes are not known. Here, we develop a novel theoretical strategy for dealing with this general problem: instead of analyzing a single model, we introduce a wide variety of 128 different models that make different assumptions about the unknown processes. By comparing the predictions of these models we are able to identify the key quantities that allow the experimental discrimination of the different models. Analysis of these quantities yields that out of the 128 models 94 are not consistent with available experimental data. From the remaining 34 models we are able to conclude that mass growth and DNA replication need either to be truly coupled, by coupling DNA replication initiation to the event of cell division, or to the amount of accumulated mass. Finally, we make suggestions for experiments to further reduce the number of possible regulation scenarios.

  1. Comprehensive census of bacteria in clean rooms by using DNA microarray and cloning methods.

    PubMed

    La Duc, Myron T; Osman, Shariff; Vaishampayan, Parag; Piceno, Yvette; Andersen, Gary; Spry, J A; Venkateswaran, Kasthuri

    2009-10-01

    A census of clean room surface-associated bacterial populations was derived from the results of both the cloning and sequencing of 16S rRNA genes and DNA microarray (PhyloChip) analyses. Samples from the Lockheed Martin Aeronautics Multiple Testing Facility (LMA-MTF), the Kennedy Space Center Payload Hazard and Servicing Facility (KSC-PHSF), and the Jet Propulsion Laboratory Spacecraft Assembly Facility (JPL-SAF) clean rooms were collected during the various assembly phases of the Phoenix and Mars Science Laboratory (MSL) spacecraft. Clone library-derived analyses detected a larger bacterial diversity prior to the arrival of spacecraft hardware in these clean room facilities. PhyloChip results were in agreement with this trend but also unveiled the presence of anywhere from 9- to 70-fold more bacterial taxa than cloning approaches. Among the facilities sampled, the JPL-SAF (MSL mission) housed a significantly less diverse bacterial population than either the LMA-MTF or KSC-PHSF (Phoenix mission). Bacterial taxa known to thrive in arid conditions were frequently detected in MSL-associated JPL-SAF samples, whereas proteobacterial lineages dominated Phoenix-associated KSC-PHSF samples. Comprehensive bacterial censuses, such as that reported here, will help space-faring nations preemptively identify contaminant biomatter that may compromise extraterrestrial life detection experiments. The robust nature and high sensitivity of DNA microarray technologies should prove beneficial to a wide range of scientific, electronic, homeland security, medical, and pharmaceutical applications and to any other ventures with a vested interest in monitoring and controlling contamination in exceptionally clean environments. PMID:19700540

  2. Effect of DNA extraction procedure, repeated extraction and ethidium monoazide (EMA)/propidium monoazide (PMA) treatment on overall DNA yield and impact on microbial fingerprints for bacteria, fungi and archaea in a reference soil

    PubMed Central

    Wagner, Andreas O.; Praeg, Nadine; Reitschuler, Christoph; Illmer, Paul

    2015-01-01

    Different DNA extraction protocols were evaluated on a reference soil. A wide difference was found in the total extractable DNA as derived from different extraction protocols. Concerning the DNA yield phenol–chloroform–isomyl alcohol extraction resulted in high DNA yield but also in a remarkable co-extraction of contaminants making PCR from undiluted DNA extracts impossible. By comparison of two different extraction kits, the Macherey&Nagel SoilExtract II kit resulted in the highest DNA yields when buffer SL1 and the enhancer solution were applied. The enhancer solution not only significantly increased the DNA yield but also the amount of co-extracted contaminates, whereas additional disintegration strategies did not. Although a three times repeated DNA extraction increased the total amount of extracted DNA, microbial fingerprints were merely affected. However, with the 5th extraction this changed. A reduction of total DGGE band numbers was observed for archaea and fungi, whereas for bacteria the diversity increased. The application of ethidium monoazide (EMA) or propidium monoazide (PMA) treatment aiming on the selective removal of soil DNA derived from cells lacking cell wall integrity resulted in a significant reduction of total extracted DNA, however, the hypothesized effect on microbial fingerprints failed to appear indicating the need for further investigations. PMID:26339125

  3. A prophage-encoded actin-like protein required for efficient viral DNA replication in bacteria.

    PubMed

    Donovan, Catriona; Heyer, Antonia; Pfeifer, Eugen; Polen, Tino; Wittmann, Anja; Krämer, Reinhard; Frunzke, Julia; Bramkamp, Marc

    2015-05-26

    In host cells, viral replication is localized at specific subcellular sites. Viruses that infect eukaryotic and prokaryotic cells often use host-derived cytoskeletal structures, such as the actin skeleton, for intracellular positioning. Here, we describe that a prophage, CGP3, integrated into the genome of Corynebacterium glutamicum encodes an actin-like protein, AlpC. Biochemical characterization confirms that AlpC is a bona fide actin-like protein and cell biological analysis shows that AlpC forms filamentous structures upon prophage induction. The co-transcribed adaptor protein, AlpA, binds to a consensus sequence in the upstream promoter region of the alpAC operon and also interacts with AlpC, thus connecting circular phage DNA to the actin-like filaments. Transcriptome analysis revealed that alpA and alpC are among the early induced genes upon excision of the CGP3 prophage. Furthermore, qPCR analysis of mutant strains revealed that both AlpA and AlpC are required for efficient phage replication. Altogether, these data emphasize that AlpAC are crucial for the spatio-temporal organization of efficient viral replication. This is remarkably similar to actin-assisted membrane localization of eukaryotic viruses that use the actin cytoskeleton to concentrate virus particles at the egress sites and provides a link of evolutionary conserved interactions between intracellular virus transport and actin. PMID:25916847

  4. A prophage-encoded actin-like protein required for efficient viral DNA replication in bacteria

    PubMed Central

    Donovan, Catriona; Heyer, Antonia; Pfeifer, Eugen; Polen, Tino; Wittmann, Anja; Krämer, Reinhard; Frunzke, Julia; Bramkamp, Marc

    2015-01-01

    In host cells, viral replication is localized at specific subcellular sites. Viruses that infect eukaryotic and prokaryotic cells often use host-derived cytoskeletal structures, such as the actin skeleton, for intracellular positioning. Here, we describe that a prophage, CGP3, integrated into the genome of Corynebacterium glutamicum encodes an actin-like protein, AlpC. Biochemical characterization confirms that AlpC is a bona fide actin-like protein and cell biological analysis shows that AlpC forms filamentous structures upon prophage induction. The co-transcribed adaptor protein, AlpA, binds to a consensus sequence in the upstream promoter region of the alpAC operon and also interacts with AlpC, thus connecting circular phage DNA to the actin-like filaments. Transcriptome analysis revealed that alpA and alpC are among the early induced genes upon excision of the CGP3 prophage. Furthermore, qPCR analysis of mutant strains revealed that both AlpA and AlpC are required for efficient phage replication. Altogether, these data emphasize that AlpAC are crucial for the spatio-temporal organization of efficient viral replication. This is remarkably similar to actin-assisted membrane localization of eukaryotic viruses that use the actin cytoskeleton to concentrate virus particles at the egress sites and provides a link of evolutionary conserved interactions between intracellular virus transport and actin. PMID:25916847

  5. The art of strain improvement of industrial lactic acid bacteria without the use of recombinant DNA technology.

    PubMed

    Derkx, Patrick M F; Janzen, Thomas; Sørensen, Kim I; Christensen, Jeffrey E; Stuer-Lauridsen, Birgitte; Johansen, Eric

    2014-08-29

    The food industry is constantly striving to develop new products to fulfil the ever changing demands of consumers and the strict requirements of regulatory agencies. For foods based on microbial fermentation, this pushes the boundaries of microbial performance and requires the constant development of new starter cultures with novel properties. Since the use of ingredients in the food industry is tightly regulated and under close scrutiny by consumers, the use of recombinant DNA technology to improve microbial performance is currently not an option. As a result, the focus for improving strains for microbial fermentation is on classical strain improvement methods. Here we review the use of these techniques to improve the functionality of lactic acid bacteria starter cultures for application in industrial-scale food production. Methods will be described for improving the bacteriophage resistance of specific strains, improving their texture forming ability, increasing their tolerance to stress and modulating both the amount and identity of acids produced during fermentation. In addition, approaches to eliminating undesirable properties will be described. Techniques include random mutagenesis, directed evolution and dominant selection schemes. PMID:25186244

  6. The art of strain improvement of industrial lactic acid bacteria without the use of recombinant DNA technology

    PubMed Central

    2014-01-01

    The food industry is constantly striving to develop new products to fulfil the ever changing demands of consumers and the strict requirements of regulatory agencies. For foods based on microbial fermentation, this pushes the boundaries of microbial performance and requires the constant development of new starter cultures with novel properties. Since the use of ingredients in the food industry is tightly regulated and under close scrutiny by consumers, the use of recombinant DNA technology to improve microbial performance is currently not an option. As a result, the focus for improving strains for microbial fermentation is on classical strain improvement methods. Here we review the use of these techniques to improve the functionality of lactic acid bacteria starter cultures for application in industrial-scale food production. Methods will be described for improving the bacteriophage resistance of specific strains, improving their texture forming ability, increasing their tolerance to stress and modulating both the amount and identity of acids produced during fermentation. In addition, approaches to eliminating undesirable properties will be described. Techniques include random mutagenesis, directed evolution and dominant selection schemes. PMID:25186244

  7. From bacteria to humans: lessons learned from a reductionist's view of ultraviolet light-induced DNA lesions.

    PubMed

    Trosko, J E

    2001-01-01

    What follows is a personal remembrance of how Dr. Richard Setlow influenced me as a young postdoctoral fellow at Oak Ridge National laboratory between 1963 and 1966. The narrative tries to place my "maturation" as a young, inexperienced scientist in the context of the cultural upheaval caused by the Vietnam war, of a Northerner facing a "culture-shock" living in the South and in a revolution in molecular and radiation biology taking place at Oak Ridge National Laboratory at that time. The unique historic juxtaposition of Dr. Setlow's contribution of the discovery of UV-induced pyrimidine dimers in bacterial DNA, being potentially the molecular lesion responsible for cell killing and mutagenesis, occurring as I was at Oak Ridge, and the wonderful working relationship I had with William Carrier, his technician, led to our discovery with James Regan that normal human cells repaired these lesion from their DNA. Amazingly, because of Dr. Setlow's challenge to me about my thoughts of the implications of his findings in bacteria, the chance visit to Oak Ridge National Laboratory by Dr. James Cleaver and my background as a human geneticist provided me the extraordinary opportunity to carry out a collaboration to test if human cancer prone syndromes might be deficient in the repair of these UV-induced DNA lesions. With our finding that the direct demonstration of a lack of repair of UV-induced pyrimidine dimers in cells from the skin cancer prone syndrome, xeroderma pigmentosum, opened up a new paradigm for the understanding of the molecular mechanism of carcinogenesis of both radiation and chemical carcinogenesis. From this investigator's vantage point in the history of the understanding of carcinogenesis, which has led us to the present point of "oncogenes" and "tumor suppressor genes", the old adage by Newton, "I only saw further because I stood on the shoulder of giants", is so applicable here. Dr. Setlow's shoulders were indeed among those of all of us that have made

  8. Detection of Sequence Polymorphism in Rubus Occidentalis L. Monomorphic Microsatellite Markers by High Resolution Melting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microsatellite, or simple sequence repeat (SSR) markers, are valuable as co-dominant genetic markers with a variety of applications such as DNA fingerprinting, linkage mapping, and population structure analysis. Development of microsatellite primers through the identification of appropriate repeate...

  9. In Situ Detection of Bacteria within Paraffin-embedded Tissues Using a Digoxin-labeled DNA Probe Targeting 16S rRNA.

    PubMed

    Choi, Yun Sik; Kim, Yong Cheol; Baek, Keum Jin; Choi, Youngnim

    2015-01-01

    The presence of bacteria within the pocket epithelium and underlying connective tissue in gingival biopsies from patients with periodontitis has been reported using various methods, including electron microscopy, immunohistochemistry or immunofluorescence using bacteria-specific antibodies, and fluorescent in situ hybridization (FISH) using a fluorescence-labeled oligonucleotide probe. Nevertheless, these methods are not widely used due to technical limitation or difficulties. Here a method to localize bacteria within paraffin-embedded tissues using DIG-labeled DNA probes has been introduced. The paraffin-embedded tissues are the most common form of biopsy tissues available from pathology banks. Bacteria can be detected either in a species-specific or universal manner. Bacterial signals are detected as either discrete forms (coccus, rod, fusiform, and hairy form) of bacteria or dispersed forms. The technique allows other histological information to be obtained: the epithelia, connective tissue, inflammatory infiltrates, and blood vessels are well distinguished. This method can be used to study the role of bacteria in various diseases, such as periodontitis, cancers, and inflammatory immune diseases. PMID:26066790

  10. Distribution of human-specific bacteroidales and fecal indicator bacteria in an urban watershed impacted by sewage pollution, determined using RNA- and DNA-based quantitative PCR assays.

    PubMed

    Kapoor, Vikram; Pitkänen, Tarja; Ryu, Hodon; Elk, Michael; Wendell, David; Santo Domingo, Jorge W

    2015-01-01

    The identification of fecal pollution sources is commonly carried out using DNA-based methods. However, there is evidence that DNA can be associated with dead cells or present as "naked DNA" in the environment. Furthermore, it has been shown that rRNA-targeted reverse transcription-quantitative PCR (RT-qPCR) assays can be more sensitive than rRNA gene-based qPCR assays since metabolically active cells usually contain higher numbers of ribosomes than quiescent cells. To this end, we compared the detection frequency of host-specific markers and fecal bacteria using RNA-based RT-qPCR and DNA-based qPCR methods for water samples collected in sites impacted by combined sewer overflows. As a group, fecal bacteria were more frequently detected in most sites using RNA-based methods. Specifically, 8, 87, and 85% of the samples positive for general enterococci, Enterococcus faecalis, and Enterococcus faecium markers, respectively, were detected using RT-qPCR, but not with the qPCR assay counterpart. On average, two human-specific Bacteroidales markers were not detected when using DNA in 12% of the samples, while they were positive for all samples when using RNA (cDNA) as the template. Moreover, signal intensity was up to three orders of magnitude higher in RT-qPCR assays than in qPCR assays. The human-specific Bacteroidales markers exhibited moderate correlation with conventional fecal indicators using RT-qPCR results, suggesting the persistence of nonhuman sources of fecal pollution or the presence of false-positive signals. In general, the results from this study suggest that RNA-based assays can increase the detection sensitivity of fecal bacteria in urban watersheds impacted with human fecal sources. PMID:25326295

  11. Image findings of monomorphic non-hogdkin lymphoproliferative disorder in a post renal transplant patient diagnosed with fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography

    PubMed Central

    Kamaleshwaran, Koramadai Karuppusamy; Rajasekar, Thirugnanam; Shibu, Deepu; Radhakrishnan, Edathurthy Kalarikal; Shinto, Ajit Sugunan

    2014-01-01

    Post-transplant lymphoproliferative disorder (PTLD) is a heterogeneous group of lymphoid proliferations caused by immunosuppression after solid organ or bone marrow transplantation. PTLD is categorized by early lesion, polymorphic PTLD and monomorphic PTLD. Fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography (F-18 FDG-PET/CT) scans have clinical significance in the evaluation of PTLD following renal transplantation. We report imaging findings of a monomorphic non-Hodgkin lymphoma, post renal transplant seen on FDG PET/CT in a 32-year-old lactating woman. Whole body FDG- ET/CT demonstrated uptake in right external iliac and inguinal lymph nodes. PMID:25210292

  12. Image findings of monomorphic non-hogdkin lymphoproliferative disorder in a post renal transplant patient diagnosed with fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography.

    PubMed

    Kamaleshwaran, Koramadai Karuppusamy; Rajasekar, Thirugnanam; Shibu, Deepu; Radhakrishnan, Edathurthy Kalarikal; Shinto, Ajit Sugunan

    2014-07-01

    Post-transplant lymphoproliferative disorder (PTLD) is a heterogeneous group of lymphoid proliferations caused by immunosuppression after solid organ or bone marrow transplantation. PTLD is categorized by early lesion, polymorphic PTLD and monomorphic PTLD. Fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography (F-18 FDG-PET/CT) scans have clinical significance in the evaluation of PTLD following renal transplantation. We report imaging findings of a monomorphic non-Hodgkin lymphoma, post renal transplant seen on FDG PET/CT in a 32-year-old lactating woman. Whole body FDG- ET/CT demonstrated uptake in right external iliac and inguinal lymph nodes. PMID:25210292

  13. Oligo-DNA Custom Macroarray for Monitoring Major Pathogenic and Non-Pathogenic Fungi and Bacteria in the Phyllosphere of Apple Trees

    PubMed Central

    He, Ying-Hong; Isono, Sayaka; Shibuya, Makoto; Tsuji, Masaharu; Adkar Purushothama, Charith-Raj; Tanaka, Kazuaki; Sano, Teruo

    2012-01-01

    Background To monitor the richness in microbial inhabitants in the phyllosphere of apple trees cultivated under various cultural and environmental conditions, we developed an oligo-DNA macroarray for major pathogenic and non-pathogenic fungi and bacteria inhabiting the phyllosphere of apple trees. Methods and Findings First, we isolated culturable fungi and bacteria from apple orchards by an agar-plate culture method, and detected 32 fungal and 34 bacterial species. Alternaria, Aureobasidium, Cladosporium, Rhodotorula, Cystofilobasidium, and Epicoccum genera were predominant among the fungi, and Bacillus, Pseudomonas, Sphingomonas, Methylobacterium, and Pantoea genera were predominant among the bacteria. Based on the data, we selected 29 major non-pathogenic and 12 phytopathogenic fungi and bacteria as the targets of macroarray. Forty-one species-specific 40-base pair long oligo-DNA sequences were selected from the nucleotide sequences of rDNA-internal transcribed spacer region for fungi and 16S rDNA for bacteria. The oligo-DNAs were fixed on nylon membrane and hybridized with digoxigenin-labeled cRNA probes prepared for each species. All arrays except those for Alternaria, Bacillus, and their related species, were specifically hybridized. The array was sensitive enough to detect 103 CFU for Aureobasidium pullulans and Bacillus cereus. Nucleotide sequencing of 100 each of independent fungal rDNA-ITS and bacterial 16S-rDNA sequences from apple tree was in agreement with the macroarray data obtained using the same sample. Finally, we analyzed the richness in the microbial inhabitants in the samples collected from apple trees in four orchards. Major apple pathogens that cause scab, Alternaria blotch, and Marssonina blotch were detected along with several non-phytopathogenic fungal and bacterial inhabitants. Conclusions The macroarray technique presented here is a strong tool to monitor the major microbial species and the community structures in the phyllosphere of

  14. Hydrocarbon-degrading bacteria enriched by the Deepwater Horizon oil spill identified by cultivation and DNA-SIP

    PubMed Central

    Gutierrez, Tony; Singleton, David R; Berry, David; Yang, Tingting; Aitken, Michael D; Teske, Andreas

    2013-01-01

    The massive influx of crude oil into the Gulf of Mexico during the Deepwater Horizon (DWH) disaster triggered dramatic microbial community shifts in surface oil slick and deep plume waters. Previous work had shown several taxa, notably DWH Oceanospirillales, Cycloclasticus and Colwellia, were found to be enriched in these waters based on their dominance in conventional clone and pyrosequencing libraries and were thought to have had a significant role in the degradation of the oil. However, this type of community analysis data failed to provide direct evidence on the functional properties, such as hydrocarbon degradation of organisms. Using DNA-based stable-isotope probing with uniformly 13C-labelled hydrocarbons, we identified several aliphatic (Alcanivorax, Marinobacter)- and polycyclic aromatic hydrocarbon (Alteromonas, Cycloclasticus, Colwellia)-degrading bacteria. We also isolated several strains (Alcanivorax, Alteromonas, Cycloclasticus, Halomonas, Marinobacter and Pseudoalteromonas) with demonstrable hydrocarbon-degrading qualities from surface slick and plume water samples collected during the active phase of the spill. Some of these organisms accounted for the majority of sequence reads representing their respective taxa in a pyrosequencing data set constructed from the same and additional water column samples. Hitherto, Alcanivorax was not identified in any of the previous water column studies analysing the microbial response to the spill and we discuss its failure to respond to the oil. Collectively, our data provide unequivocal evidence on the hydrocarbon-degrading qualities for some of the dominant taxa enriched in surface and plume waters during the DWH oil spill, and a more complete understanding of their role in the fate of the oil. PMID:23788333

  15. Distribution of Human-Specific Bacteroidales and Fecal Indicator Bacteria in an Urban Watershed Impacted by Sewage Pollution, Determined Using RNA- and DNA-Based Quantitative PCR Assays

    PubMed Central

    Kapoor, Vikram; Pitkänen, Tarja; Ryu, Hodon; Elk, Michael

    2014-01-01

    The identification of fecal pollution sources is commonly carried out using DNA-based methods. However, there is evidence that DNA can be associated with dead cells or present as “naked DNA” in the environment. Furthermore, it has been shown that rRNA-targeted reverse transcription-quantitative PCR (RT-qPCR) assays can be more sensitive than rRNA gene-based qPCR assays since metabolically active cells usually contain higher numbers of ribosomes than quiescent cells. To this end, we compared the detection frequency of host-specific markers and fecal bacteria using RNA-based RT-qPCR and DNA-based qPCR methods for water samples collected in sites impacted by combined sewer overflows. As a group, fecal bacteria were more frequently detected in most sites using RNA-based methods. Specifically, 8, 87, and 85% of the samples positive for general enterococci, Enterococcus faecalis, and Enterococcus faecium markers, respectively, were detected using RT-qPCR, but not with the qPCR assay counterpart. On average, two human-specific Bacteroidales markers were not detected when using DNA in 12% of the samples, while they were positive for all samples when using RNA (cDNA) as the template. Moreover, signal intensity was up to three orders of magnitude higher in RT-qPCR assays than in qPCR assays. The human-specific Bacteroidales markers exhibited moderate correlation with conventional fecal indicators using RT-qPCR results, suggesting the persistence of nonhuman sources of fecal pollution or the presence of false-positive signals. In general, the results from this study suggest that RNA-based assays can increase the detection sensitivity of fecal bacteria in urban watersheds impacted with human fecal sources. PMID:25326295

  16. High resolution melting detects sequence polymorphism in rubus occidentalis L. monomorphic microsatellite markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microsatellite, or simple sequence repeat (SSR) markers, are valuable as co-dominant genetic markers with a variety of applications such as DNA fingerprinting, linkage mapping, and population structure analysis. However, primer pairs designed from the regions that flank SSRs often generate fragment...

  17. Seasonal Sexual Segregation by Monomorphic Sooty Shearwaters Puffinus griseus Reflects Different Reproductive Roles during the Pre-Laying Period

    PubMed Central

    Hedd, April; Montevecchi, William A.; Phillips, Richard A.; Fifield, David A.

    2014-01-01

    Tracking technology has revolutionized knowledge of seabird movements; yet, few studies have examined sex differences in distribution and behavior of small to medium-sized, sexually-monomorphic seabirds. Application of bird-borne geolocation-immersion loggers revealed seasonal segregation in the sexually-monomorphic Sooty Shearwater Puffinus griseus, mainly in the pre-laying period, when there were clear differences in reproductive roles. Shearwaters first returned to the Falkland Islands on 27 Sept±8 d; males, on average, 8 d earlier than females. Prior to egg-laying, distribution at sea, colony attendance and behaviour depended on sex. Males foraged locally over the southern Patagonian Shelf and Burdwood Bank, spending mainly single days at sea and intervening nights in the burrow. Females, who flew for more of the day during this time, foraged in more distant areas of the northern Patagonian Shelf and Argentine Basin that were deeper, warmer and relatively more productive. Attendance of females at the colony was also more variable than that of males and, overall, males were present for significantly more of the pre-laying period (38 vs. 19% of time). Sex differences were reduced following egg-laying, with males and females using similar foraging areas and making trips of similar mean duration in incubation (7.6±2.7 d) and chick-rearing (1.4±1.3 d). Congruence continued into the non-breeding period, with both sexes showing similar patterns of activity and areas of occupancy in the NW Atlantic. Thus, seasonal changes in reproductive roles influenced patterns of sexual segregation; this occurred only early in the season, when male Sooty Shearwaters foraged locally, returning regularly to the colony to defend (or maintain) the burrow or the mate, while females concentrated on building resources for egg development in distant and relatively more productive waters. PMID:24416429

  18. Seasonal sexual segregation by monomorphic Sooty Shearwaters Puffinus griseus reflects different reproductive roles during the pre-laying period.

    PubMed

    Hedd, April; Montevecchi, William A; Phillips, Richard A; Fifield, David A

    2014-01-01

    Tracking technology has revolutionized knowledge of seabird movements; yet, few studies have examined sex differences in distribution and behavior of small to medium-sized, sexually-monomorphic seabirds. Application of bird-borne geolocation-immersion loggers revealed seasonal segregation in the sexually-monomorphic Sooty Shearwater Puffinus griseus, mainly in the pre-laying period, when there were clear differences in reproductive roles. Shearwaters first returned to the Falkland Islands on 27 Sept±8 d; males, on average, 8 d earlier than females. Prior to egg-laying, distribution at sea, colony attendance and behaviour depended on sex. Males foraged locally over the southern Patagonian Shelf and Burdwood Bank, spending mainly single days at sea and intervening nights in the burrow. Females, who flew for more of the day during this time, foraged in more distant areas of the northern Patagonian Shelf and Argentine Basin that were deeper, warmer and relatively more productive. Attendance of females at the colony was also more variable than that of males and, overall, males were present for significantly more of the pre-laying period (38 vs. 19% of time). Sex differences were reduced following egg-laying, with males and females using similar foraging areas and making trips of similar mean duration in incubation (7.6±2.7 d) and chick-rearing (1.4±1.3 d). Congruence continued into the non-breeding period, with both sexes showing similar patterns of activity and areas of occupancy in the NW Atlantic. Thus, seasonal changes in reproductive roles influenced patterns of sexual segregation; this occurred only early in the season, when male Sooty Shearwaters foraged locally, returning regularly to the colony to defend (or maintain) the burrow or the mate, while females concentrated on building resources for egg development in distant and relatively more productive waters. PMID:24416429

  19. An increase in negative supercoiling in bacteria reveals topology-reacting gene clusters and a homeostatic response mediated by the DNA topoisomerase I gene

    PubMed Central

    Ferrándiz, María-José; Martín-Galiano, Antonio J.; Arnanz, Cristina; Camacho-Soguero, Isabel; Tirado-Vélez, José-Manuel; de la Campa, Adela G.

    2016-01-01

    We studied the transcriptional response to an increase in DNA supercoiling in Streptococcus pneumoniae by using seconeolitsine, a new topoisomerase I inhibitor. A homeostatic response allowing recovery of supercoiling was observed in cells treated with subinhibitory seconeolitsine concentrations. Supercoiling increases of 40.7% (6 μM) and 72.9% (8 μM) were lowered to 8.5% and 44.1%, respectively. Likewise, drug removal facilitated the recovery of cell viability and DNA-supercoiling. Transcription of topoisomerase I depended on the supercoiling level. Also specific binding of topoisomerase I to the gyrase A gene promoter was detected by chromatin-immunoprecipitation. The transcriptomic response to 8 μM seconeolitsine had two stages. An early stage, associated to an increase in supercoiling, affected 10% of the genome. A late stage, manifested by supercoiling recovery, affected 2% of the genome. Nearly 25% of the early responsive genes formed 12 clusters with a coordinated transcription. Clusters were 6.7–31.4 kb in length and included 9–22 responsive genes. These clusters partially overlapped with those observed under DNA relaxation, suggesting that bacteria manage supercoiling stress using pathways with common components. This is the first report of a coordinated global transcriptomic response that is triggered by an increase in DNA supercoiling in bacteria. PMID:27378778

  20. The High Prevalence and Diversity of Chlamydiales DNA within Ixodes ricinus Ticks Suggest a Role for Ticks as Reservoirs and Vectors of Chlamydia-Related Bacteria

    PubMed Central

    Pilloux, Ludovic; Aeby, Sébastien; Gaümann, Rahel; Burri, Caroline; Beuret, Christian

    2015-01-01

    The Chlamydiales order is composed of nine families of strictly intracellular bacteria. Among them, Chlamydia trachomatis, C. pneumoniae, and C. psittaci are established human pathogens, whereas Waddlia chondrophila and Parachlamydia acanthamoebae have emerged as new pathogens in humans. However, despite their medical importance, their biodiversity and ecology remain to be studied. Even if arthropods and, particularly, ticks are well known to be vectors of numerous infectious agents such as viruses and bacteria, virtually nothing is known about ticks and chlamydia. This study investigated the prevalence of Chlamydiae in ticks. Specifically, 62,889 Ixodes ricinus ticks, consolidated into 8,534 pools, were sampled in 172 collection sites throughout Switzerland and were investigated using pan-Chlamydiales quantitative PCR (qPCR) for the presence of Chlamydiales DNA. Among the pools, 543 (6.4%) gave positive results and the estimated prevalence in individual ticks was 0.89%. Among those pools with positive results, we obtained 16S rRNA sequences for 359 samples, allowing classification of Chlamydiales DNA at the family level. A high level of biodiversity was observed, since six of the nine families belonging to the Chlamydiales order were detected. Those most common were Parachlamydiaceae (33.1%) and Rhabdochlamydiaceae (29.2%). “Unclassified Chlamydiales” (31.8%) were also often detected. Thanks to the huge amount of Chlamydiales DNA recovered from ticks, this report opens up new perspectives on further work focusing on whole-genome sequencing to increase our knowledge about Chlamydiales biodiversity. This report of an epidemiological study also demonstrates the presence of Chlamydia-related bacteria within Ixodes ricinus ticks and suggests a role for ticks in the transmission of and as a reservoir for these emerging pathogenic Chlamydia-related bacteria. PMID:26386066

  1. PprA Protein Is Involved in Chromosome Segregation via Its Physical and Functional Interaction with DNA Gyrase in Irradiated Deinococcus radiodurans Bacteria

    PubMed Central

    Devigne, Alice; Guérin, Philippe; Lisboa, Johnny; Quevillon-Cheruel, Sophie; Armengaud, Jean; Sommer, Suzanne; Bouthier de la Tour, Claire

    2016-01-01

    ABSTRACT PprA, a radiation-induced Deinococcus-specific protein, was previously shown to be required for cell survival and accurate chromosome segregation after exposure to ionizing radiation. Here, we used an in vivo approach to determine, by shotgun proteomics, putative PprA partners coimmunoprecipitating with PprA when cells were exposed to gamma rays. Among them, we found the two subunits of DNA gyrase and, thus, chose to focus our work on characterizing the activities of the deinococcal DNA gyrase in the presence or absence of PprA. Loss of PprA rendered cells hypersensitive to novobiocin, an inhibitor of the B subunit of DNA gyrase. We showed that treatment of bacteria with novobiocin resulted in induction of the radiation desiccation response (RDR) regulon and in defects in chromosome segregation that were aggravated by the absence of PprA. In vitro, the deinococcal DNA gyrase, like other bacterial DNA gyrases, possesses DNA negative supercoiling and decatenation activities. These two activities are inhibited in vitro by novobiocin and nalidixic acid, whereas PprA specifically stimulates the decatenation activity of DNA gyrase. Together, these results suggest that PprA plays a major role in chromosome decatenation via its interaction with the deinococcal DNA gyrase when D. radiodurans cells are recovering from exposure to ionizing radiation. IMPORTANCE D. radiodurans is one of the most radiation-resistant organisms known. This bacterium is able to cope with high levels of DNA lesions generated by exposure to extreme doses of ionizing radiation and to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Here, we identified partners of PprA, a radiation-induced Deinococcus-specific protein, previously shown to be required for radioresistance. Our study leads to three main findings: (i) PprA interacts with DNA gyrase after irradiation, (ii) treatment of cells with novobiocin results in defects in chromosome segregation

  2. Characterization of single-stranded DNA-binding proteins from the psychrophilic bacteria Desulfotalea psychrophila, Flavobacterium psychrophilum, Psychrobacter arcticus, Psychrobacter cryohalolentis, Psychromonas ingrahamii, Psychroflexus torquis, and Photobacterium profundum

    PubMed Central

    2014-01-01

    Background Single-stranded DNA-binding proteins (SSBs) play essential roles in DNA replication, recombination and repair in Bacteria, Archaea and Eukarya. In recent years, there has been an increasing interest in SSBs, since they find numerous applications in diverse molecular biology and analytical methods. Results We report the characterization of single-stranded DNA-binding proteins from the psychrophilic bacteria Desulfotalea psychrophila (DpsSSB), Flavobacterium psychrophilum (FpsSSB), Psychrobacter arcticus (ParSSB), Psychrobacter cryohalolentis (PcrSSB), Psychromonas ingrahamii (PinSSB), Photobacterium profundum (PprSSB), and Psychroflexus torquis (PtoSSB). The proteins show a high differential within the molecular mass of their monomers and the length of their amino acid sequences. The high level of identity and similarity in respect to the EcoSSB is related to the OB-fold and some of the last amino acid residues. They are functional as homotetramers, with each monomer encoding one single stranded DNA binding domain (OB-fold). The fluorescence titrations indicated that the length of the ssDNA-binding site size is approximately 30 ± 2 nucleotides for the PinSSB, 31 ± 2 nucleotides for the DpsSSB, and 32 ± 2 nucleotides for the ParSSB, PcrSSB, PprSSB and PtoSSB. They also demonstrated that it is salt independent. However, when the ionic strength was changed from low salt to high, binding-mode transition was observed for the FpsSSB, at 31 ± 2 nucleotides and 45 ± 2 nucleotides, respectively. As expected, the SSB proteins under study cause duplex DNA destabilization. The greatest decrease in duplex DNA melting temperature was observed in the presence of the PtoSSB 17°C. The SSBs in question possess relatively high thermostability for proteins derived from cold-adapted bacteria. Conclusion The results showed that SSB proteins from psychrophilic microorganisms are typical bacterial SSBs and possess relatively high thermostability

  3. Bacteria capable of degrading anthracene, phenanthrene, and fluoranthene as revealed by DNA based stable-isotope probing in a forest soil.

    PubMed

    Song, Mengke; Jiang, Longfei; Zhang, Dayi; Luo, Chunling; Wang, Yan; Yu, Zhiqiang; Yin, Hua; Zhang, Gan

    2016-05-01

    Information on microorganisms possessing the ability to metabolize different polycyclic aromatic hydrocarbons (PAHs) in complex environments helps in understanding PAHs behavior in natural environment and developing bioremediation strategies. In the present study, stable-isotope probing (SIP) was applied to investigate degraders of PAHs in a forest soil with the addition of individually (13)C-labeled phenanthrene, anthracene, and fluoranthene. Three distinct phylotypes were identified as the active phenanthrene-, anthracene- and fluoranthene-degrading bacteria. The putative phenanthrene degraders were classified as belonging to the genus Sphingomona. For anthracene, bacteria of the genus Rhodanobacter were the putative degraders, and in the microcosm amended with fluoranthene, the putative degraders were identified as belonging to the phylum Acidobacteria. Our results from DNA-SIP are the first to directly link Rhodanobacter- and Acidobacteria-related bacteria with anthracene and fluoranthene degradation, respectively. The results also illustrate the specificity and diversity of three- and four-ring PAHs degraders in forest soil, contributes to our understanding on natural PAHs biodegradation processes, and also proves the feasibility and practicality of DNA-based SIP for linking functions with identity especially uncultured microorganisms in complex microbial biota. PMID:26808242

  4. Time-Resolved DNA Stable Isotope Probing Links Desulfobacterales- and Coriobacteriaceae-Related Bacteria to Anaerobic Degradation of Benzene under Methanogenic Conditions

    PubMed Central

    Noguchi, Mana; Kurisu, Futoshi; Kasuga, Ikuro; Furumai, Hiroaki

    2014-01-01

    To identify the microorganisms involved in benzene degradation, DNA-stable isotope probing (SIP) with 13C-benzene was applied to a methanogenic benzene-degrading enrichment culture. Pyrosequencing of ribosomal RNA (rRNA) gene sequences revealed that the community structure was highly complex in spite of a 3-year incubation only with benzene. The culture degraded 98% of approximately 1 mM 13C-benzene and mineralized 72% of that within 63 d. The terminal restriction fragment length polymorphism (T-RFLP) profiles of the buoyant density fractions revealed the incorporation of 13C into two phylotypes after 64 d. These two phylotypes were determined to be Desulfobacterales- and Coriobacteriaceae-related bacteria by cloning and sequencing of the 16S rRNA gene in the 13C-labeled DNA abundant fraction. Comparative pyrosequencing analysis of the buoyant density fractions of 12C- and 13C-labeled samples indicated the incorporation of 13C into three bacterial and one archaeal OTUs related to Desulfobacterales, Coriobacteriales, Rhodocyclaceae, and Methanosarcinales. The first two OTUs included the bacteria detected by T-RFLP-cloning-sequencing analysis. Furthermore, time-resolved SIP analysis confirmed that the activity of all these microbes appeared at the earliest stage of degradation. In this methanogenic culture, Desulfobacterales- and Coriobacteriaceae-related bacteria were most likely to be the major benzene degraders. PMID:24909708

  5. History of infection with different male-killing bacteria in the two-spot ladybird beetle Adalia bipunctata revealed through mitochondrial DNA sequence analysis.

    PubMed Central

    v d Schulenburg, J Hinrich G; Hurst, Gregory D D; Tetzlaff, Dagmar; Booth, Gwendolen E; Zakharov, Ilia A; Majerus, Michael E N

    2002-01-01

    The two-spot ladybird beetle Adalia bipunctata (Coleoptera: Coccinellidae) is host to four different intracellular maternally inherited bacteria that kill male hosts during embryogenesis: one each of the genus Rickettsia (alpha-Proteobacteria) and Spiroplasma (Mollicutes) and two distinct strains of Wolbachia (alpha-Proteobacteria). The history of infection with these male-killers was explored using host mitochondrial DNA, which is linked with the bacteria due to joint maternal inheritance. Two variable regions, 610 bp of cytochrome oxidase subunit I and 563 bp of NADH dehydrogenase subunit 5, were isolated from 52 A. bipunctata with known infection status and different geographic origin from across Eurasia. Two outgroup taxa were also considered. DNA sequence analysis revealed that the distribution of mitochondrial haplotypes is not associated with geography. Rather, it correlates with infection status, confirming linkage disequilibrium between mitochondria and bacteria. The data strongly suggest that the Rickettsia male-killer invaded the host earlier than the other taxa. Further, the male-killing Spiroplasma is indicated to have undergone a recent and extensive spread through host populations. In general, male-killing in A. bipunctata seems to represent a highly dynamic system, which should prove useful in future studies on the evolutionary dynamics of this peculiar type of symbiont-host association. PMID:11901123

  6. Disordered nucleiome: Abundance of intrinsic disorder in the DNA- and RNA-binding proteins in 1121 species from Eukaryota, Bacteria and Archaea.

    PubMed

    Wang, Chen; Uversky, Vladimir N; Kurgan, Lukasz

    2016-05-01

    Intrinsically disordered proteins (IDPs) are abundant in various proteomes, where they play numerous important roles and complement biological activities of ordered proteins. Among functions assigned to IDPs are interactions with nucleic acids. However, often, such assignments are made based on the guilty-by-association principle. The validity of the extension of these correlations to all nucleic acid binding proteins has never been analyzed on a large scale across all domains of life. To fill this gap, we perform a comprehensive computational analysis of the abundance of intrinsic disorder and intrinsically disordered domains in nucleiomes (∼548 000 nucleic acid binding proteins) of 1121 species from Archaea, Bacteria and Eukaryota. Nucleiome is a whole complement of proteins involved in interactions with nucleic acids. We show that relative to other proteins in the corresponding proteomes, the DNA-binding proteins have significantly increased disorder content and are significantly enriched in disordered domains in Eukaryotes but not in Archaea and Bacteria. The RNA-binding proteins are significantly enriched in the disordered domains in Bacteria, Archaea and Eukaryota, while the overall abundance of disorder in these proteins is significantly increased in Bacteria, Archaea, animals and fungi. The high abundance of disorder in nucleiomes supports the notion that the nucleic acid binding proteins often require intrinsic disorder for their functions and regulation. PMID:27037624

  7. Silent subtype 3 pituitary adenomas are not always silent and represent poorly differentiated monomorphous plurihormonal Pit-1 lineage adenomas.

    PubMed

    Mete, Ozgur; Gomez-Hernandez, Karen; Kucharczyk, Walter; Ridout, Rowena; Zadeh, Gelareh; Gentili, Fred; Ezzat, Shereen; Asa, Sylvia L

    2016-02-01

    Originally classified as a variant of silent corticotroph adenoma, silent subtype 3 adenomas are a distinct histologic variant of pituitary adenoma of unknown cytogenesis. We reviewed the clinical, biochemical, radiological, immunohistochemical and ultrastructural features of 31 silent subtype 3 adenomas to clarify their cellular origin. Among 25 with clinical and/or radiological data, all were macroadenomas; there was cavernous sinus invasion in 30% of cases and involvement of the clivus in 17% of cases. Almost 90% of patients were symptomatic; 67% had mass effect symptoms, 37% were hypogonadal and 8% had secondary adrenal insufficiency. Significant hormonal excess in 29% of cases included hyperthyroidism in 17%, acromegaly in 8% and hyperprolactinemia above 150 μg/l in 4%. Two individuals with hyperprolactinemia who were younger than 30 years had multiple endocrine neoplasia type 1. Immunohistochemically, all 31 tumors were diffusely positive for the pituitary lineage-specific transcription factor Pit-1. Although three only expressed Pit-1, others revealed variable positivity for one or more hormones of Pit-1 cell lineage (growth hormone, prolactin, thyroid-stimulating hormone), as well as alpha-subunit and estrogen receptor. Most tumors exhibited perinuclear reactivity for keratins with the CAM5.2 antibody; scattered fibrous bodies were noted in five (16%) tumors. The mean MIB-1 labeling index was 4% (range, 1-9%). Fourteen cases examined by electron microscopy were composed of a monomorphous population of large polygonal or elongated cells with nuclear spheridia. Sixty-five percent of patients had residual disease after surgery; after a mean follow-up of 48.4 months (median 41.5; range=2-171) disease progression was documented in 53% of those cases. These data identify silent subtype 3 adenomas as aggressive monomorphous plurihormonal adenomas of Pit-1 lineage that may be associated with hyperthyroidism, acromegaly or galactorrhea and amenorrhea. Our

  8. Development and applications of a DNA labeling method with magnetic nanoparticles to study the role of horizontal gene transfer events between bacteria in soil pollutant bioremediation processes.

    PubMed

    Pivetal, J; Frénéa-Robin, M; Haddour, N; Vézy, C; Zanini, L F; Ciuta, G; Dempsey, N M; Dumas-Bouchiat, F; Reyne, G; Bégin-Colin, S; Felder-Flesh, D; Ghobril, C; Pourroy, G; Simonet, P

    2015-12-01

    Horizontal gene transfers are critical mechanisms of bacterial evolution and adaptation that are involved to a significant level in the degradation of toxic molecules such as xenobiotic pesticides. However, understanding how these mechanisms are regulated in situ and how they could be used by man to increase the degradation potential of soil microbes is compromised by conceptual and technical limitations. This includes the physical and chemical complexity and heterogeneity in such environments leading to an extreme bacterial taxonomical diversity and a strong redundancy of genes and functions. In addition, more than 99 % of soil bacteria fail to develop colonies in vitro, and even new DNA-based investigation methods (metagenomics) are not specific and sensitive enough to consider lysis recalcitrant bacteria and those belonging to the rare biosphere. The objective of the ANR funded project “Emergent” was to develop a new culture independent approach to monitor gene transfer among soil bacteria by labeling plasmid DNA with magnetic nanoparticles in order to specifically capture and isolate recombinant cells using magnetic microfluidic devices. We showed the feasibility of the approach by using electrotransformation to transform a suspension of Escherichia coli cells with biotin-functionalized plasmid DNA molecules linked to streptavidin-coated superparamagnetic nanoparticles. Our results have demonstrated that magnetically labeled cells could be specifically retained on micromagnets integrated in a microfluidic channel and that an efficient selective separation can be achieved with the microfluidic device. Altogether, the project offers a promising alternative to traditional culture-based approaches for deciphering the extent of horizontal gene transfer events mediated by electro or natural genetic transformation mechanisms in complex environments such as soil. PMID:26498963

  9. A Novel High-Throughput Cell-Based Assay Aimed at Identifying Inhibitors of DNA Metabolism in Bacteria

    PubMed Central

    Fan, Jun; de Jonge, Boudewijn L. M.; MacCormack, Kathy; Sriram, Shubha; McLaughlin, Robert E.; Plant, Helen; Preston, Marian; Fleming, Paul R.; Albert, Robert; Foulk, Melinda

    2014-01-01

    Bacterial biosensor strains can be useful tools for the discovery and characterization of antibacterial compounds. A plasmid-based reporter vector containing a transcriptional fusion between the recA promoter and green fluorescence protein gene was introduced into an Escherichia coli ΔtolC strain to create a biosensor strain that selectively senses inhibitors of DNA metabolism via the SOS response. The strain was used to develop a high-throughput assay to identify new inhibitors of DNA metabolism. Screening of the AstraZeneca compound library with this strain identified known inhibitors of DNA metabolism, as well as novel chemotypes. The cellular target of one novel series was elucidated as DNA gyrase through genetic characterization of laboratory-generated resistant mutants followed by 50% inhibitory concentration measurements in a DNA gyrase activity assay. These studies validated the use of this antibiotic biosensor strain to identify novel selective inhibitors of DNA metabolism by high-throughput screening. PMID:25246396

  10. Kinetics of killing Listeria monocytogenes by macrophages: correlation of /sup 3/H-DNA release from labeled bacteria and changes in numbers of viable organisms by mathematical model

    SciTech Connect

    Davies, W.A.

    1982-12-01

    Conventional methods of assessing antibacterial activities of macrophages by viable counting are limited by the precision of the statistics and are difficult to interpret quantitatively because of unrestrained extracellular growth of bacteria. An alternative technique based on the release of radioactive DNA from labeled bacteria has been offered as overcoming these drawbacks. To assess it for use with macrophages I have made a correlation with the conventional viable counting method using a mathematical model. Opsonized Listeria monocytogenes labeled with /sup 3/H-thymidine were exposed to rat macrophages for periods up to 4 hr. Numbers of viable bacteria determined after sonication increased exponentially in the absence of live cells and this growth rate was progressively inhibited by increasing numbers of macrophages. After a lag period of 30-60 min soluble /sup 3/H appeared in the supernatant, the amount increasing with time and numbers of macrophages. To correlate these data I developed a mathematical model that considered that changes in numbers of viable organisms were due to the difference between rates of 1) growth of extracellular bacteria and 2) killing within the macrophage. On the basis of this model curves of best fit to the viable counts data were used to predict the release of radioactivity, assuming that death of a bacterium led to the total release of its label. These predictions and the experimental data agreed well, the lag period of 30-60 min between death of the bacterium and release of radioactivity being consistent with intracellular digestion. Release of soluble radioactivity appears to be an accurate reflection of the number of bacteria killed within the macrophage.

  11. Sex-specific senescence in body mass of a monogamous and monomorphic mammal: the case of Alpine marmots.

    PubMed

    Tafani, Marion; Cohas, Aurélie; Bonenfant, Christophe; Gaillard, Jean-Michel; Lardy, Sophie; Allainé, Dominique

    2013-06-01

    Sex-specific senescence has been commonly reported in highly dimorphic and polygynous species. However, whether between-sex differences in senescence occur in monogamous and monomorphic species is poorly known. In this study, we used an extensive dataset of 20 years of mass measurements on free-ranging male and female Alpine marmots (Marmota marmota), a medium-sized, long-lived, social and hibernating mammal, to assess sex-specific patterns of senescence in body mass. We tested for the occurrence of both a decrease in body mass scaled to absolute age (called chronological senescence) and a decrease in body mass scaled to individual age at death (called terminal decline). Whereas males showed evidence of both chronological senescence and terminal decline in body mass, females did not show any detectable senescence in body mass. This unexpected between-sex difference of senescence in a species subject to weak sexual selection might be shaped either by costs of an asymmetric intra-sex competition for mates or by costs of social thermoregulation. PMID:23224789

  12. The Structure and Stability of the Monomorphic HLA-G Are Influenced by the Nature of the Bound Peptide

    SciTech Connect

    Walpole, Nicholas G.; Kjer-Nielsen, Lars; Kostenko, Lyudmila; McCluskey, James; Brooks, Andrew G.; Rossjohn, Jamie; Clements, Craig S.

    2010-03-26

    The highly polymorphic major histocompatibility complex class Ia (MHC-Ia) molecules present a broad array of peptides to the clonotypically diverse {alpha}{beta} T-cell receptors. In contrast, MHC-Ib molecules exhibit limited polymorphism and bind a more restricted peptide repertoire, in keeping with their major role in innate immunity. Nevertheless, some MHC-Ib molecules do play a role in adaptive immunity. While human leukocyte antigen E (HLA-E), the MHC-Ib molecule, binds a very restricted repertoire of peptides, the peptide binding preferences of HLA-G, the class Ib molecule, are less stringent, although the basis by which HLA-G can bind various peptides is unclear. To investigate how HLA-G can accommodate different peptides, we compared the structure of HLA-G bound to three naturally abundant self-peptides (RIIPRHLQL, KGPPAALTL and KLPQAFYIL) and their thermal stabilities. The conformation of HLA-G{sup KGPPAALTL} was very similar to that of the HLA-G{sup RIIPRHLQL} structure. However, the structure of HLA-G{sup KLPQAFYIL} not only differed in the conformation of the bound peptide but also caused a small shift in the {alpha}2 helix of HLA-G. Furthermore, the relative stability of HLA-G was observed to be dependent on the nature of the bound peptide. These peptide-dependent effects on the substructure of the monomorphic HLA-G are likely to impact on its recognition by receptors of both innate and adaptive immune systems.

  13. Identification of Metabolically Active Bacteria in the Gut of the Generalist Spodoptera littoralis via DNA Stable Isotope Probing Using 13C-Glucose

    PubMed Central

    Boland, Wilhelm

    2013-01-01

    Guts of most insects are inhabited by complex communities of symbiotic nonpathogenic bacteria. Within such microbial communities it is possible to identify commensal or mutualistic bacteria species. The latter ones, have been observed to serve multiple functions to the insect, i.e. helping in insect reproduction1, boosting the immune response2, pheromone production3, as well as nutrition, including the synthesis of essential amino acids4, among others.     Due to the importance of these associations, many efforts have been made to characterize the communities down to the individual members. However, most of these efforts were either based on cultivation methods or relied on the generation of 16S rRNA gene fragments which were sequenced for final identification. Unfortunately, these approaches only identified the bacterial species present in the gut and provided no information on the metabolic activity of the microorganisms. To characterize the metabolically active bacterial species in the gut of an insect, we used stable isotope probing (SIP) in vivo employing 13C-glucose as a universal substrate. This is a promising culture-free technique that allows the linkage of microbial phylogenies to their particular metabolic activity. This is possible by tracking stable, isotope labeled atoms from substrates into microbial biomarkers, such as DNA and RNA5. The incorporation of 13C isotopes into DNA increases the density of the labeled DNA compared to the unlabeled (12C) one. In the end, the 13C-labeled DNA or RNA is separated by density-gradient ultracentrifugation from the 12C-unlabeled similar one6. Subsequent molecular analysis of the separated nucleic acid isotopomers provides the connection between metabolic activity and identity of the species. Here, we present the protocol used to characterize the metabolically active bacteria in the gut of a generalist insect (our model system), Spodoptera littoralis (Lepidoptera, Noctuidae). The phylogenetic analysis of the DNA

  14. Common mechanisms of DNA translocation motors in bacteria and viruses using one-way revolution mechanism without rotation.

    PubMed

    Guo, Peixuan; Zhao, Zhengyi; Haak, Jeannie; Wang, Shaoying; Wu, Dong; Meng, Bing; Weitao, Tao

    2014-01-01

    Biomotors were once described into two categories: linear motor and rotation motor. Recently, a third type of biomotor with revolution mechanism without rotation has been discovered. By analogy, rotation resembles the Earth rotating on its axis in a complete cycle every 24h, while revolution resembles the Earth revolving around the Sun one circle per 365 days (see animations http://nanobio.uky.edu/movie.html). The action of revolution that enables a motor free of coiling and torque has solved many puzzles and debates that have occurred throughout the history of viral DNA packaging motor studies. It also settles the discrepancies concerning the structure, stoichiometry, and functioning of DNA translocation motors. This review uses bacteriophages Phi29, HK97, SPP1, P22, T4, and T7 as well as bacterial DNA translocase FtsK and SpoIIIE or the large eukaryotic dsDNA viruses such as mimivirus and vaccinia virus as examples to elucidate the puzzles. These motors use ATPase, some of which have been confirmed to be a hexamer, to revolve around the dsDNA sequentially. ATP binding induces conformational change and possibly an entropy alteration in ATPase to a high affinity toward dsDNA; but ATP hydrolysis triggers another entropic and conformational change in ATPase to a low affinity for DNA, by which dsDNA is pushed toward an adjacent ATPase subunit. The rotation and revolution mechanisms can be distinguished by the size of channel: the channels of rotation motors are equal to or smaller than 2 nm, that is the size of dsDNA, whereas channels of revolution motors are larger than 3 nm. Rotation motors use parallel threads to operate with a right-handed channel, while revolution motors use a left-handed channel to drive the right-handed DNA in an anti-chiral arrangement. Coordination of several vector factors in the same direction makes viral DNA-packaging motors unusually powerful and effective. Revolution mechanism that avoids DNA coiling in translocating the lengthy genomic

  15. A non-invasive method for studying viral DNA delivery to bacteria reveals key requirements for phage SPP1 DNA entry in Bacillus subtilis cells.

    PubMed

    Fernandes, Sofia; Labarde, Audrey; Baptista, Catarina; Jakutytè, Lina; Tavares, Paulo; São-José, Carlos

    2016-08-01

    Bacteriophages use most frequently a tail apparatus to create a channel across the entire bacterial cell envelope to transfer the viral genome to the host cell cytoplasm, initiating infection. Characterization of this critical step remains a major challenge due to the difficulty to monitor DNA entry in the bacterium and its requirements. In this work we developed a new method to study phage DNA entry that has the potential to be extended to many tailed phages. Its application to study genome delivery of bacteriophage SPP1 into Bacillus subtilis disclosed a key role of the host cell membrane potential in the DNA entry process. An energized B. subtilis membrane and a millimolar concentration of calcium ions are shown to be major requirements for SPP1 DNA entry following the irreversible binding of phage particles to the receptor YueB. PMID:27179995

  16. Similarities between the DNA replication initiators of Gram-negative bacteria plasmids (RepA) and eukaryotes (Orc4p)/archaea (Cdc6p).

    PubMed

    Giraldo, R; Diaz-Orejas, R

    2001-04-24

    The proteins responsible for the initiation of DNA replication are thought to be essentially unrelated in bacteria and archaea/eukaryotes. Here we show that RepA, the initiator from the Pseudomonas plasmid pPS10, and the C-terminal domain of ScOrc4p, a subunit of Saccharomyces cerevisiae (Sc) origin recognition complex (ORC), share sequence similarities. Based on biochemical and spectroscopic evidence, these similarities include common structural elements, such as a winged-helix domain and a leucine-zipper dimerization motif. We have also found that ScOrc4p, as previously described for RepA-type initiators, interacts with chaperones of the Hsp70 family both in vitro and in vivo, most probably to regulate the assembly of active ORC. In evolutionary terms, our results are compatible with the recruitment of the same protein module for initiation of DNA replication by the ancestors of present-day Gram-negative bacteria plasmids, archaea, and eukaryotes. PMID:11296251

  17. Analysis of the distribution and evolution of the ATP-dependent DNA ligases of bacteria delineates a distinct phylogenetic group 'Lig E'.

    PubMed

    Williamson, Adele; Hjerde, Erik; Kahlke, Tim

    2016-01-01

    Prior to the discovery of a minimal ATP-dependent DNA ligase in Haemophilus influenzae, bacteria were thought to only possess a NAD-dependent ligase, which was involved in sealing of Okazaki fragments. We now know that a diverse range of bacterial species possess up to six of these accessory bacterial ATP-dependent DNA ligases (b-ADLs), which vary in size and enzymatic domain associations. Here we compare the domain structure of different types of b-ADLs and investigate their distribution among the bacterial domain to describe possible evolutionary trajectories that gave rise to the sequence and structural diversity of these enzymes. Previous biochemical and genetic analyses have delineated three main classes of these enzymes: Lig B, Lig C and Lig D, which appear to have descended from a common ancestor within the bacterial domain. In the present study, we delineate a fourth group of b-ADLs, Lig E, which possesses a number of unique features at the primary and tertiary structural levels. The biochemical characteristics, domain structure and inferred extracellular location sets this group apart from the other b-ADLs. The results presented here indicate that the Lig E type ligases were horizontally transferred into bacteria in a separate event from other b-ADLs possibly from a bacteriophage. PMID:26412580

  18. Common Mechanisms of DNA translocation motors in Bacteria and Viruses Using One-way Revolution Mechanism without Rotation

    PubMed Central

    Guo, Peixuan; Zhao, Zhengyi; Haak, Jeannie; Wang, Shaoying; Weitao, Tao

    2014-01-01

    Biomotors were once classified into two categories: linear motor and rotation motor. For decades, the viral DNA-packaging motor has been popularly believed to be a five-fold rotation motor. Recently, a third type of biomotor with revolution mechanism without rotation has been discovered. By analogy, rotation resembles the Earth rotating on its axis in a complete cycle every 24 hours, while revolution resembles the Earth revolving around the Sun one circle per 365 days (see animations http://nanobio.uky.edu/movie.html). The action of revolution that enables a motor free of coiling and torque has solved many puzzles and debates that have occurred throughout the history of viral DNA packaging motor studies. It also settles the discrepancies concerning the structure, stoichiometry, and functioning of DNA translocation motors. This review uses bacteriophages Phi29, HK97, SPP1, P22, T4, T7 as well as bacterial DNA translocase FtsK and SpoIIIE as examples to elucidate the puzzles. These motors use a ATPase, some of which have been confirmed to be a hexamer, to revolve around the dsDNA sequentially. ATP binding induces conformational change and possibly an entropy alteration in ATPase to a high affinity toward dsDNA; but ATP hydrolysis triggers another entropic and conformational change in ATPase to a low affinity for DNA, by which dsDNA is pushed toward an adjacent ATPase subunit. The rotation and revolution mechanisms can be distinguished by the size of channel: the channels of rotation motors are equal to or smaller than 2 nm, whereas channels of revolution motors are larger than 3 nm. Rotation motors use parallel threads to operate with a right-handed channel, while revolution motors use a left-handed channel to drive the right-handed DNA in an anti-parallel arrangement. Coordination of several vector factors in the same direction makes viral DNA-packaging motors unusually powerful and effective. Revolution mechanism avoids DNA coiling in translocating the lengthy

  19. USE OF COMPETITIVE DNA HYBRIDIZATION TO IDENTIFY DIFFERENCES IN THE GENOMES OF TWO CLOSELY RELATED FECAL INDICATOR BACTERIA

    EPA Science Inventory

    Although recent technological advances in DNA sequencing and computational biology now allow scientists to compare entire microbial genomes, comparisons of closely related bacterial species and individual isolates by whole-genome sequencing approaches remains prohibitively expens...

  20. Seasonal Succession Leads to Habitat-Dependent Differentiation in Ribosomal RNA:DNA Ratios among Freshwater Lake Bacteria

    PubMed Central

    Denef, Vincent J.; Fujimoto, Masanori; Berry, Michelle A.; Schmidt, Marian L.

    2016-01-01

    Relative abundance profiles of bacterial populations measured by sequencing DNA or RNA of marker genes can widely differ. These differences, made apparent when calculating ribosomal RNA:DNA ratios, have been interpreted as variable activities of bacterial populations. However, inconsistent correlations between ribosomal RNA:DNA ratios and metabolic activity or growth rates have led to a more conservative interpretation of this metric as the cellular protein synthesis potential (PSP). Little is known, particularly in freshwater systems, about how PSP varies for specific taxa across temporal and spatial environmental gradients and how conserved PSP is across bacterial phylogeny. Here, we generated 16S rRNA gene sequencing data using simultaneously extracted DNA and RNA from fractionated (free-living and particulate) water samples taken seasonally along a eutrophic freshwater estuary to oligotrophic pelagic transect in Lake Michigan. In contrast to previous reports, we observed frequent clustering of DNA and RNA data from the same sample. Analysis of the overlap in taxa detected at the RNA and DNA level indicated that microbial dormancy may be more common in the estuary, the particulate fraction, and during the stratified period. Across spatiotemporal gradients, PSP was often conserved at the phylum and class levels. PSPs for specific taxa were more similar across habitats in spring than in summer and fall. This was most notable for PSPs of the same taxa when located in the free-living or particulate fractions, but also when contrasting surface to deep, and estuary to Lake Michigan communities. Our results show that community composition assessed by RNA and DNA measurements are more similar than previously assumed in freshwater systems. However, the similarity between RNA and DNA measurements and taxa-specific PSPs that drive community-level similarities are conditional on spatiotemporal factors. PMID:27199936

  1. Seasonal succession leads to habitat-dependent differentiation in ribosomal RNA:DNA ratios among freshwater lake bacteria

    DOE PAGESBeta

    Denef, Vincent J.; Fujimoto, Masanori; Berry, Michelle A.; Schmidt, Marian L.

    2016-04-29

    Relative abundance profiles of bacterial populations measured by sequencing DNA or RNA of marker genes can widely differ. These differences, made apparent when calculating ribosomal RNA:DNA ratios, have been interpreted as variable activities of bacterial populations. However, inconsistent correlations between ribosomal RNA:DNA ratios and metabolic activity or growth rates have led to a more conservative interpretation of this metric as the cellular protein synthesis potential (PSP). Little is known, particularly in freshwater systems, about how PSP varies for specific taxa across temporal and spatial environmental gradients and how conserved PSP is across bacterial phylogeny. Here, we generated 16S rRNA genemore » sequencing data using simultaneously extracted DNA and RNA from fractionated (free-living and particulate) water samples taken seasonally along a eutrophic freshwater estuary to oligotrophic pelagic transect in Lake Michigan. In contrast to previous reports, we observed frequent clustering of DNA and RNA data from the same sample. Analysis of the overlap in taxa detected at the RNA and DNA level indicated that microbial dormancy may be more common in the estuary, the particulate fraction, and during the stratified period. Across spatiotemporal gradients, PSP was often conserved at the phylum and class levels. PSPs for specific taxa were more similar across habitats in spring than in summer and fall. This was most notable for PSPs of the same taxa when located in the free-living or particulate fractions, but also when contrasting surface to deep, and estuary to Lake Michigan communities. Our results show that community composition assessed by RNA and DNA measurements are more similar than previously assumed in freshwater systems. Furthermore, the similarity between RNA and DNA measurements and taxa-specific PSPs that drive community-level similarities are conditional on spatiotemporal factors.« less

  2. Enumeration of Tn5 mutant bacteria in soil by using a most- probable-number-DNA hybridization procedure and antibiotic resistance.

    PubMed Central

    Fredrickson, J K; Bezdicek, D F; Brockman, F J; Li, S W

    1988-01-01

    Investigations were made into the utility of DNA hybridization in conjunction with a microdilution most-probable-number procedure for the enumeration of Rhizobium spp. and Pseudomonas putida in soil. Isolates of Rhizobium spp. and P. putida carrying the transposon Tn5 were added to sterile and nonsterile Burbank sandy loam soil and enumerated over time. Soil populations of rhizobia were enumerated by colony hybridization, most-probable-number-DNA hybridization procedure, plate counts, plant infectivity most probable number, and fluorescent antibody counts. Population values compared well for all methods at 5 and 30 days after the addition of cells, although the fluorescent antibody method tended to overestimate the viable population. In nonsterile soil, most-probable-number-DNA hybridization procedure enumerated as few as 10 P. putida Tn5 cells g of soil-1 and 100 R. leguminosarum bv. phaseoli Tn5 cells g of soil-1 and should have utility for following the fate of genetically engineered microorganisms released to the environment. Among the Kmr isolates containing Tn5, approximately 5% gave a dark, more intense autoradiograph when probed with 32P-labeled pGS9 DNA, which facilitated their detection in soil. Hybridization with a pCU101 probe (pGS9 without Tn5) indicated that donor plasmid sequences were being maintained in the bacterial chromosome. Transposon-associated antibiotic resistance was also utilized as a phenotypic marker. Tn5 vector-integrate mutants were successfully enumerated at low populations (10 to 100 cells g of soil-1) in soil by both phenotypic (Kmr) and genotypic (DNA probe) analysis. However, determination of the stability of Tn5 or Tn5 and vector sequences in the bacteria is necessary. Images PMID:2833161

  3. Design and Performance Testing of a DNA Extraction Assay for Sensitive and Reliable Quantification of Acetic Acid Bacteria Directly in Red Wine Using Real Time PCR.

    PubMed

    Longin, Cédric; Guilloux-Benatier, Michèle; Alexandre, Hervé

    2016-01-01

    Although strategies exist to prevent AAB contamination, the increased interest for wines with low sulfite addition leads to greater AAB spoilage. Hence, there is a real need for a rapid, specific, sensitive, and reliable method for detecting these spoilage bacteria. All these requirements are met by real time Polymerase Chain Reaction (or quantitative PCR; qPCR). Here, we compare existing methods of isolating DNA and their adaptation to a red wine matrix. Two different protocols for isolating DNA and three PCR mix compositions were tested to select the best method. The addition of insoluble polyvinylpolypyrrolidone (PVPP) at 1% (v/v) during DNA extraction using a protocol succeeded in eliminating PCR inhibitors from red wine. We developed a bacterial internal control which was efficient in avoiding false negative results due to decreases in the efficiency of DNA isolation and/or amplification. The specificity, linearity, repeatability, and reproducibility of the method were evaluated. A standard curve was established for the enumeration of AAB inoculated into red wines. The limit of quantification in red wine was 3.7 log AAB/mL and about 2.8 log AAB/mL when the volume of the samples was increased from 1 to 10 mL. Thus, the DNA extraction method developed in this paper allows sensitive and reliable AAB quantification without underestimation thanks to the presence of an internal control. Moreover, monitoring of both the AAB population and the amount of acetic acid in ethanol medium and red wine highlighted that a minimum about 6.0 log cells/mL of AAB is needed to significantly increase the production of acetic acid leading to spoilage. PMID:27313572

  4. Design and Performance Testing of a DNA Extraction Assay for Sensitive and Reliable Quantification of Acetic Acid Bacteria Directly in Red Wine Using Real Time PCR

    PubMed Central

    Longin, Cédric; Guilloux-Benatier, Michèle; Alexandre, Hervé

    2016-01-01

    Although strategies exist to prevent AAB contamination, the increased interest for wines with low sulfite addition leads to greater AAB spoilage. Hence, there is a real need for a rapid, specific, sensitive, and reliable method for detecting these spoilage bacteria. All these requirements are met by real time Polymerase Chain Reaction (or quantitative PCR; qPCR). Here, we compare existing methods of isolating DNA and their adaptation to a red wine matrix. Two different protocols for isolating DNA and three PCR mix compositions were tested to select the best method. The addition of insoluble polyvinylpolypyrrolidone (PVPP) at 1% (v/v) during DNA extraction using a protocol succeeded in eliminating PCR inhibitors from red wine. We developed a bacterial internal control which was efficient in avoiding false negative results due to decreases in the efficiency of DNA isolation and/or amplification. The specificity, linearity, repeatability, and reproducibility of the method were evaluated. A standard curve was established for the enumeration of AAB inoculated into red wines. The limit of quantification in red wine was 3.7 log AAB/mL and about 2.8 log AAB/mL when the volume of the samples was increased from 1 to 10 mL. Thus, the DNA extraction method developed in this paper allows sensitive and reliable AAB quantification without underestimation thanks to the presence of an internal control. Moreover, monitoring of both the AAB population and the amount of acetic acid in ethanol medium and red wine highlighted that a minimum about 6.0 log cells/mL of AAB is needed to significantly increase the production of acetic acid leading to spoilage. PMID:27313572

  5. A Monomorphic Haplotype of Chromosome Ia Is Associated with Widespread Success in Clonal and Nonclonal Populations of Toxoplasma gondii

    PubMed Central

    Khan, Asis; Miller, Natalie; Roos, David S.; Dubey, J. P.; Ajzenberg, Daniel; Dardé, Marie Laure; Ajioka, James W.; Rosenthal, Benjamin; Sibley, L. David

    2011-01-01

    ABSTRACT Toxoplasma gondii is a common parasite of animals that also causes a zoonotic infection in humans. Previous studies have revealed a strongly clonal population structure that is shared between North America and Europe, while South American strains show greater genetic diversity and evidence of sexual recombination. The common inheritance of a monomorphic version of chromosome Ia (referred to as ChrIa*) among three clonal lineages from North America and Europe suggests that inheritance of this chromosome might underlie their recent clonal expansion. To further examine the diversity and distribution of ChrIa, we have analyzed additional strains with greater geographic diversity. Our findings reveal that the same haplotype of ChrIa* is found in the clonal lineages from North America and Europe and in older lineages in South America, where sexual recombination is more common. Although lineages from all three continents harbor the same conserved ChrIa* haplotype, strains from North America and Europe are genetically separate from those in South America, and these respective geographic regions show limited evidence of recent mixing. Genome-wide, array-based profiling of polymorphisms provided evidence for an ancestral flow from particular older southern lineages that gave rise to the clonal lineages now dominant in the north. Collectively, these data indicate that ChrIa* is widespread among nonclonal strains in South America and has more recently been associated with clonal expansion of specific lineages in North America and Europe. These findings have significant implications for the spread of genetic loci influencing transmission and virulence in pathogen populations. PMID:22068979

  6. DNA.

    ERIC Educational Resources Information Center

    Felsenfeld, Gary

    1985-01-01

    Structural form, bonding scheme, and chromatin structure of and gene-modification experiments with deoxyribonucleic acid (DNA) are described. Indicates that DNA's double helix is variable and also flexible as it interacts with regulatory and other molecules to transfer hereditary messages. (DH)

  7. Molecular characterization by amplified ribosomal DNA restriction analysis and antimicrobial potential of endophytic fungi isolated from Luehea divaricata (Malvaceae) against plant pathogenic fungi and pathogenic bacteria.

    PubMed

    Bernardi-Wenzel, J; Garcia, A; Azevedo, J L; Pamphile, J A

    2013-01-01

    Luehea divaricata is an important plant in popular medicine; it is used for its depurative, anti-inflammatory, and other therapeutic activities. We evaluated the antimicrobial activity of endophytic fungi isolated from leaves of L. divaricata against phytopathogens and pathogenic bacteria, and characterized the isolates based on amplified ribosomal DNA restriction analysis (ARDRA). The in vitro antagonistic activity of these endophytes against the phytopathogen Alternaria alternata was assayed by dual culture technique. Based on this evaluation of antimicrobial activity, we extracted secondary metabolites from nine endophytic fungi by partitioning in ethyl acetate and methanol. These were tested against the phytopathogens A. alternata, Colletotrichum sp and Moniliophthora perniciosa, and against the human pathogenic bacteria Escherichia coli and Staphylococcus aureus. Molecular characterization by ARDRA technique was used for phylogenetic analysis, based on comparison with sequences in GenBank. The endophytes had varied effects on A. alternata. One isolate produced an inhibition halo against M. perniciosa and against E. coli. This antibiosis activity indicates a role in the protection of the plant against microbial pathogens in nature, with potential for pharmaceutical and agricultural applications. Based on ARDRA, the 13 isolates were grouped. We found three different haplotypes of Phomopsis sp, showing interspecific variability. It appears that examination of the microbial community associated with medicinal plants of tropical regions has potential as a useful strategy to look for species with biotechnological applications. PMID:24301768

  8. Geographic Separation of Domestic and Wild Strains of Toxoplasma gondii in French Guiana Correlates with a Monomorphic Version of Chromosome1a

    PubMed Central

    Khan, Asis; Ajzenberg, Daniel; Mercier, Aurélien; Demar, Magalie; Simon, Stéphane; Dardé, Marie Laure; Wang, Qiuling; Verma, Shiv Kumar; Rosenthal, Benjamin M.; Dubey, Jitender P.; Sibley, L. David

    2014-01-01

    Background Previous studies have stressed the genetic divergence and high pathogenicity of strains of T. gondii from French Guiana. Although strains from coastal, human adapted environments (so called anthropized) resemble those found in other regions of the Caribbean, strains collected from inland jungle environment are genetically quite diverse. To better understand the composition of these distinct strain types, we undertook a more in depth analysis of T. gondii strains from French Guiana including profiling of chromosome 1a (Chr1a), which is often shared as a single monomorphic haplotype among lineages that are otherwise genetically distinct. Methodology/Principal Findings Comparison of intron sequences from selectively neutral genes indicated that anthropized strains were most closely related to clonal type III strains from North America, although wider RFLP analysis revealed that they are natural hybrids. In contrast, strains isolated from the jungle were genetically very diverse. Remarkably, nearly all anthropized strains contained the monomorphic version of Chr1a while wild stains were extremely divergent. The presence of the monomorphic Chr1a strongly correlated with greater transmission in domestic cats, although there were several exceptions, indicating that other factors also contribute. Anthropized strains also varied in their virulence in laboratory mice, and this pattern could not be explained by the simple combination of previously identified virulence factors, indicating that other genetic determinants influence pathogenicity. Conclusions/Significance Our studies underscore the marked genetic separation of anthropized and wild strains of T. gondii in French Guiana and provide additional evidence that the presence of Chr1a is associated with successful expansion of widely different lineages within diverse geographic areas. The predominance of Chr1a among strains in the anthropized environment suggests that it may confer an advantage for transmission

  9. Culturable bacteria present in the fluid of the hooded-pitcher plant Sarracenia minor based on 16S rDNA gene sequence data.

    PubMed

    Siragusa, Alex J; Swenson, Janice E; Casamatta, Dale A

    2007-08-01

    The culturable microbial community within the pitcher fluid of 93 Sarracenia minor carnivorous plants was examined over a 2-year study. Many aspects of the plant/bacterial/insect interaction within the pitcher fluid are minimally understood because the bacterial taxa present in these pitchers have not been identified. Thirteen isolates were characterized by 16S rDNA sequencing and subsequent phylogenetic analysis. The Proteobacteria were the most abundant taxa and included representatives from Serratia, Achromobacter, and Pantoea. The Actinobacteria Micrococcus was also abundant while Bacillus, Lactococcus, Chryseobacterium, and Rhodococcus were infrequently encountered. Several isolates conformed to species identifiers (>98% rDNA gene sequence similarity) including Serratia marcescens (isolates found in 27.5% of pitchers), Achromobacter xylosoxidans (37.6%), Micrococcus luteus (40.9%), Bacillus cereus (isolates found in 10.2%), Bacillus thuringiensis (5.4%), Lactococcus lactis (17.2%), and Rhodococcus equi (2.2%). Species-area curves suggest that sampling efforts were sufficient to recover a representative culturable bacterial community. The bacteria present represent a diverse community probably as a result of introduction by insect vectors, but the ecological significance remains under explored. PMID:17380356

  10. Mechanisms of recombination and function of DNA in bacteria. Progress report, January 15, 1983-January 17, 1984

    SciTech Connect

    Guild, W.R.

    1984-01-01

    Studies on gene transfer in pneumococcus are described. Specifically transformation by chromosomal and plasmid DNAs, transfection by phage and plasmid DNA, and the novel kind of conjugative transfer of drug resistance elements among the chromosomes of streptococci are examined. Some of these elements appear to be transposons. There are numerous questions about their structure, functions, and relation to plasmids and other better characterized genetic elements. The experiments involve extensive use of transformation, cloning in both pneumococcal and E. coli systems, and analysis of DNAs by gel electrophoresis. For restriction mapping, we have concentrated on the insertion carrying genes for resistance to chloramphenicol and tetracycline.

  11. Protective role of probiotic lactic acid bacteria against dietary fumonisin B1-induced toxicity and DNA-fragmentation in sprague-dawley rats.

    PubMed

    Khalil, Ashraf A; Abou-Gabal, Ashgan E; Abdellatef, Amira A; Khalid, Ahmed E

    2015-08-18

    The genus Fusarium, especially F. verticillioides and F. proliferatum, has been found in several agricultural products worldwide, especially in maize. Regardless the occurrence of symptoms, the presence of Fusarium in maize constitutes an imminent risk due to its ability to produce fumonisins, mycotoxins with proven carcinogenic effect on rats, swine, and equines and already classified as possible carcinogens to humans. The toxicity of incremental levels of fumonisin B1 (FB1), that is, 50, 100, and 200 mg FB1/kg diet, and the role of Lactobacillus delbrueckii subsp. lactis DSM 20076 (LL) and Pediococcus acidilactici NNRL B-5627 (PA) supplementation in counteracting the FB1 effects in intoxicated rats were monitored over a period of 4 weeks. Effects on the feed intake and body weight gain were noticed. A significant (p ≤ 0.05) increase in the level of liver and kidney functions markers and DNA fragmentation was also noticed in rat groups T100 and T200. The lactic acid bacteria (LAB) supplementation could bring back the normal serum biochemical parameters in rats fed on fumonisin B1-contaminated diets (T50 and T100) compared to FB1-treated groups. In rats of high-dosage dietary groups supplemented with LAB (T200-LL and T200-PA), the supplementation reduced the serum activity levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and creatinine by 11.3, 11.9, 32, and 20%, respectively. DNA fragmentations were observed in the rat group treated with 200 mg FB1 after 3 weeks, while fragmentation was noticed in treated groups with 100 and 200 mg FB1 after 4 weeks. No DNA fragmentation was apparent in FB1-treated rats co-administered the LL or PA strain. These results suggest that in male rats consuming diets containing FB1, there is a time- and dose-dependent increase in serum enzyme activities and DNA lesions. Moreover, Lb. delbrueckii subsp. lactis (LL) and P. acidilactici (PA) strains have a protective effect

  12. In situ DNA hybridized chain reaction (FISH-HCR) as a better method for quantification of bacteria and archaea within marine sediment

    NASA Astrophysics Data System (ADS)

    Buongiorno, J.; Lloyd, K. G.; Shumaker, A.; Schippers, A.; Webster, G.; Weightman, A.; Turner, S.

    2015-12-01

    Nearly 75% of the Earth's surface is covered by marine sediment that is home to an estimated 2.9 x 1029 microbial cells. A substantial impediment to understanding the abundance and distribution of cells within marine sediment is the lack of a consistent and reliable method for their taxon-specific quantification. Catalyzed reporter fluorescent in situ hybridization (CARD-FISH) provides taxon-specific enumeration, but this process requires passing a large enzyme through cell membranes, decreasing its precision relative to general cell counts using a small DNA stain. In 2015, Yamaguchi et al. developed FISH hybridization chain reaction (FISH-HCR) as an in situ whole cell detection method for environmental microorganisms. FISH-HCR amplifies the fluorescent signal, as does CARD-FISH, but it allows for milder cell permeation methods that might prevent yield loss. To compare FISH-HCR to CARD-FISH, we examined bacteria and archaea cell counts within two sediment cores, Lille Belt (~78 meters deep) and Landsort Deep (90 meters deep), which were retrieved from the Baltic Sea Basin during IODP Expedition 347. Preliminary analysis shows that CARD-FISH counts are below the quantification limit for most depths across both cores. By contrast, quantification of cells was possible with FISH-HCR in all examined depths. When quantification with CARD-FISH was above the limit of detection, counts with FISH-HCR were up to 11 fold higher for Bacteria and 3 fold higher for Archaea from the same sediment sample. Further, FISH-HCR counts follow the trends of on board counts nicely, indicating that FISH-HCR may better reflect the cellular abundance within marine sediment than other quantification methods, including qPCR. Using FISH-HCR, we found that archaeal cell counts were on average greater than bacterial cell counts, but within the same order of magnitude.

  13. DNA

    ERIC Educational Resources Information Center

    Stent, Gunther S.

    1970-01-01

    This history for molecular genetics and its explanation of DNA begins with an analysis of the Golden Jubilee essay papers, 1955. The paper ends stating that the higher nervous system is the one major frontier of biological inquiry which still offers some romance of research. (Author/VW)

  14. Anaerobic bacteria

    MedlinePlus

    Anaerobic bacteria are bacteria that do not live or grow when oxygen is present. In humans, these ... Goldstein EJ. Diseases caused by non-spore forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman's ...

  15. Sensitive Visual Detection of AHPND Bacteria Using Loop-Mediated Isothermal Amplification Combined with DNA-Functionalized Gold Nanoparticles as Probes

    PubMed Central

    Arunrut, Narong; Kampeera, Jantana; Sirithammajak, Sarawut; Sanguanrut, Piyachat; Proespraiwong, Porranee; Suebsing, Rungkarn; Kiatpathomchai, Wansika

    2016-01-01

    Acute hepatopancreatic necrosis disease (AHPND) is a component cause of early mortality syndrome (EMS) of shrimp. In 2013, the causative agent was found to be unique isolates of Vibrio parahaemolyticus (VPAHPND) that contained a 69 kbp plasmid (pAP1) carrying binary Pir-like toxin genes PirvpA and PirvpB. In Thailand, AHPND was first recognized in 2012, prior to knowledge of the causative agent, and it subsequently led to a precipitous drop in shrimp production. After VPAHPND was characterized, a major focus of the AHPND control strategy was to monitor broodstock shrimp and post larvae for freedom from VPAHPND by nucleic acid amplification methods, most of which required use of expensive and sophisticated equipment not readily available in a shrimp farm setting. Here, we describe a simpler but equally sensitive approach for detection of VPAHPND based on loop-mediated isothermal amplification (LAMP) combined with unaided visual reading of positive amplification products using a DNA-functionalized, ssDNA-labled nanogold probe (AuNP). The target for the special set of six LAMP primers used was the VPAHPND PirvpA gene. The LAMP reaction was carried out at 65°C for 45 min followed by addition of the red AuNP solution and further incubation at 65°C for 5 min, allowing any PirvpA gene amplicons present to hybridize with the probe. Hybridization protected the AuNP against aggregation, so that the solution color remained red upon subsequent salt addition (positive test result) while unprotected AuNP aggregated and underwent a color change from red to blue and eventually precipitated (negative result). The total assay time was approximately 50 min. The detection limit (100 CFU) was comparable to that of other commonly-used methods for nested PCR detection of VPAHPND and 100-times more sensitive than 1-step PCR detection methods (104 CFU) that used amplicon detection by electrophoresis or spectrophotometry. There was no cross reaction with DNA templates derived from non

  16. Development of a real-time PCR method for the detection of fossil 16S rDNA fragments of phototrophic sulfur bacteria in the sediments of Lake Cadagno.

    PubMed

    Ravasi, D F; Peduzzi, S; Guidi, V; Peduzzi, R; Wirth, S B; Gilli, A; Tonolla, M

    2012-05-01

    Lake Cadagno is a crenogenic meromictic lake situated in the southern range of the Swiss Alps characterized by a compact chemocline that has been the object of many ecological studies. The population dynamics of phototrophic sulfur bacteria in the chemocline has been monitored since 1994 with molecular methods such as 16S rRNA gene clone library analysis. To reconstruct paleo-microbial community dynamics, we developed a quantitative real-time PCR methodology for specific detection of 16S rRNA gene sequences of purple and green sulfur bacteria populations from sediment samples. We detected fossil 16S rDNA of nine populations of phototrophic sulfur bacteria down to 9-m sediment depth, corresponding to about 9500 years of the lake's biogeological history. These results provide the first evidence for the presence of 16S rDNA of anoxygenic phototrophic bacteria in Holocene sediments of an alpine meromictic lake and indicate that the water column stratification and the bacterial plume were already present in Lake Cadagno thousands of years ago. The finding of Chlorobium clathratiforme remains in all the samples analyzed shows that this population, identified in the water column only in 2001, was already a part of the lake's biota in the past. PMID:22433067

  17. DNase I and Proteinase K eliminate DNA from injured or dead bacteria but not from living bacteria in microbial reference systems and natural drinking water biofilms for subsequent molecular biology analyses.

    PubMed

    Villarreal, Jessica Varela; Jungfer, Christina; Obst, Ursula; Schwartz, Thomas

    2013-09-01

    Molecular techniques, such as polymerase chain reaction (PCR) and quantitative PCR (qPCR), are very sensitive, but may detect total DNA present in a sample, including extracellular DNA (eDNA) and DNA coming from live and dead cells. DNase I is an endonuclease that non-specifically cleaves single- and double-stranded DNA. This enzyme was tested in this study to analyze its capacity of digesting DNA coming from dead cells with damaged cell membranes, leaving DNA from living cells with intact cell membranes available for DNA-based methods. For this purpose, an optimized DNase I/Proteinase K (DNase/PK) protocol was developed. Intact Staphylococcus aureus cells, heat-killed Pseudomonas aeruginosa cells, free genomic DNA of Salmonella enterica, and a mixture of these targets were treated according to the developed DNase/PK protocol. In parallel, these samples were treated with propidium monoazide (PMA) as an already described assay for live-dead discrimination. Quantitative PCR and PCR-DGGE of the eubacterial 16S rDNA fragment were used to test the ability of the DNase/PK and PMA treatments to distinguish DNA coming from cells with intact cell membranes in the presence of DNA from dead cells and free genomic DNA. The methods were applied to three months old autochthonous drinking water biofilms from a pilot facility built at a German waterworks. Shifts in the DNA patterns observed after DGGE analysis demonstrated the applicability of DNase/PK as well as of the PMA treatment for natural biofilm investigation. However, the DNase/PK treatment demonstrated some practical advantages in comparison with the PMA treatment for live/dead discrimination of bacterial targets in drinking water systems. PMID:23811209

  18. Cloning and identification of a novel NhaD-type Na+/H+ antiporter from metagenomic DNA of the halophilic bacteria in soil samples around Daban Salt Lake.

    PubMed

    Zhang, Hua; Wang, Zhenhui; Wang, Lei; Mu, Ren; Zou, Zhi; Yuan, Kun; Wang, Yuekun; Wu, Haiping; Jiang, Juquan; Yang, Lifu

    2014-01-01

    In this study, metagenomic DNA was screened for the Na(+)/H(+) antiporter gene from the halophilic bacteria in Daban Salt Lake by selection in Escherichia coli KNabc lacking three major Na(+)/H(+) antiporters. One gene designated as Hb_nhaD encoding a novel NhaD-type Na(+)/H(+) antiporter was finally cloned. The presence of Hb_NhaD conferred tolerance of E. coli KNabc to up to 0.5 M NaCl and 0.2 M LiCl, and an alkaline pH. Hb_NhaD has the highest identity (70.6%) with a putative NhaD-type Na(+)/H(+) antiporter from an uncharacterized Clostridiaceae species, and also has lower identity with known NhaD-type Na(+)/H(+) antiporters from Halomonas elongata (20.8%), Alkalimonas amylolytica (19.0%), Vibrio parahaemolyticus (18.9%) and Vibrio cholerae (18.7 %). pH-dependent Na(+)(Li(+))/H(+) antiport activity was detected from everted membrane vesicles prepared from E. coli KNabc carrying Hb_nhaD. Hb_NhaD exhibited very high Na(+)(Li(+))/H(+) antiport activity over a wide pH range from 6.5 to 9.0 with the highest activity at pH 7.0 which is significantly different from those of the above known NhaD-type Na(+)/H(+) antiporters. Also, the apparent K m values of Hb_NhaD for Na(+) and Li(+) at pH 7.0 were determined to be 1.31 and 2.16, respectively. Based on the above results, we proposed that Hb_NhaD should be categorized as a novel NhaD-type Na(+)/H(+) antiporter. PMID:24297704

  19. Detection of fecal bacteria and source tracking identifiers in environmental waters using rRNA-based RT-qPCR and rDNA-based qPCR assays.

    PubMed

    Pitkänen, Tarja; Ryu, Hodon; Elk, Michael; Hokajärvi, Anna-Maria; Siponen, Sallamaari; Vepsäläinen, Asko; Räsänen, Pia; Santo Domingo, Jorge W

    2013-01-01

    In this study, we evaluated the use of RT-qPCR assays targeting rRNA gene sequences for the detection of fecal bacteria in water samples. We challenged the RT-qPCR assays against RNA extracted from sewage effluent (n = 14), surface water (n = 30), and treated source water (n = 15) samples. Additionally, we applied the same assays using DNA as the qPCR template. The targeted fecal bacteria were present in most of the samples tested, although in several cases, the detection frequency increased when RNA was used as the template. For example, the majority of samples that tested positive for E. coli and Campylobacter spp. in surface waters, and for human-specific Bacteroidales, E. coli, and Enterococcus spp. in treated source waters were only detected when rRNA was used as the original template. The difference in detection frequency using rRNA or rDNA (rRNA gene) was sample- and assay-dependent, suggesting that the abundance of active and nonactive populations differed between samples. Statistical analyses for each population exhibiting multiple quantifiable results showed that the rRNA copy numbers were significantly higher than the rDNA counterparts (p < 0.05). Moreover, the detection frequency of rRNA-based assays were in better agreement with the culture-based results of E. coli, intestinal enterococci, and thermotolerant Campylobacter spp. in surface waters than that of rDNA-based assays, suggesting that rRNA signals were associated to active bacterial populations. Our data show that using rRNA-based approaches significantly increases detection sensitivity for common fecal bacteria in environmental waters. These findings have important implications for microbial water quality monitoring and public health risk assessments. PMID:24187936

  20. Simple & Safe Genomic DNA Isolation.

    ERIC Educational Resources Information Center

    Moss, Robert; Solomon, Sondra

    1991-01-01

    A procedure for purifying DNA using either bacteria or rat liver is presented. Directions for doing a qualitative DNA assay using diphenylamine and a quantitative DNA assay using spectroscopy are included. (KR)

  1. Isolation and Identification of Concrete Environment Bacteria

    NASA Astrophysics Data System (ADS)

    Irwan, J. M.; Anneza, L. H.; Othman, N.; Husnul, T.; Alshalif, A. F.

    2016-07-01

    This paper presents the isolation and molecular method for bacteria identification through PCR and DNA sequencing. Identification of the bacteria species is required in order to fully utilize the bacterium capability for precipitation of calcium carbonate in concrete. This process is to enable the addition of suitable catalyst according to the bacterium enzymatic pathway that is known through the bacteria species used. The objective of this study is to isolate, enriched and identify the bacteria species. The bacteria in this study was isolated from fresh urine and acid mine drainage water, Kota Tinggi, Johor. Enrichment of the isolated bacteria was conducted to ensure the bacteria survivability in concrete. The identification of bacteria species was done through polymerase chain reaction (PCR) and rRDNA sequencing. The isolation and enrichment of the bacteria was done successfully. Whereas, the results for bacteria identification showed that the isolated bacteria strains are Bacillus sp and Enterococus faecalis.

  2. Development of a Broad-Range 23S rDNA Real-Time PCR Assay for the Detection and Quantification of Pathogenic Bacteria in Human Whole Blood and Plasma Specimens

    PubMed Central

    Gaibani, Paolo; Mariconti, Mara; Bua, Gloria; Bonora, Sonia; Sassera, Davide; Landini, Maria Paola; Mulatto, Patrizia; Novati, Stefano; Bandi, Claudio; Sambri, Vittorio

    2013-01-01

    Molecular methods are important tools in the diagnosis of bloodstream bacterial infections, in particular in patients treated with antimicrobial therapy, due to their quick turn-around time. Here we describe a new broad-range real-time PCR targeting the 23S rDNA gene and capable to detect as low as 10 plasmid copies per reaction of targeted bacterial 23S rDNA gene. Two commercially available DNA extraction kits were evaluated to assess their efficiency for the extraction of plasma and whole blood samples spiked with different amount of either Staphylococcus aureus or Escherichia coli, in order to find the optimal extraction method to be used. Manual QIAmp extraction method with enzyme pre-treatment resulted the most sensitive for detection of bacterial load. Sensitivity of this novel assay ranged between 10 and 103 CFU per PCR reaction for E. coli and S. aureus in human whole blood samples depending on the extraction methods used. Analysis of plasma samples showed a 10- to 100-fold reduction of bacterial 23S rDNA in comparison to the corresponding whole blood specimens, thus indicating that whole blood is the preferential sample type to be used in this real-time PCR protocol. Our results thus show that the 23S rDNA gene represents an optimal target for bacteria quantification in human whole blood. PMID:23586027

  3. Cost-Effective Pooling of DNA from Nasopharyngeal Swab Samples for Large-Scale Detection of Bacteria by Real-Time PCR

    PubMed Central

    Edouard, Sophie; Prudent, Elsa; Gautret, Philippe; Memish, Ziad A.

    2014-01-01

    We investigated the potential of pooling DNA from nasopharyngeal specimens to reduce the cost of real-time PCR (RT-PCR) for bacterial detection. Lyophilization is required to reconcentrate DNA. This strategy yields a high specificity (86%) and a high sensitivity (96%). We estimate that compared to individual testing, 37% fewer RT-PCR tests are needed. PMID:25552360

  4. Gut bacteria of the Pacific coast wireworm, Limonius canus, inferred from 16s rDNA sequences and their implications for control.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A multitude of bacteria have been isolated from the guts of several insect species. Some of these have been modified to interfere with the development of the host insect or interfere with the development and transmission of plant and animal pathogens transmitted by the host insect. A survey of the g...

  5. [Vector cardiographic evaluation of monomorphic ventricular tachycardia; its relation to the type of cardiopathy, vagal tonus and the prevalence of late potentials].

    PubMed

    Rosas Peralta, M; Casanova Garcés, J M; González Hermosillo, J A

    1994-01-01

    The most common cause of sudden death is malignant ventricular arrhytHmia. In order to identify the predictive value of the vectospatial evaluation in the surface electrocardiogram during a monomorphic ventricular tachycardia (MVT), and the equilibrium state of AutonomOus Nervous System (ANS), 89 patients of both sexes were studied with mean age of 47 +/- 16.2 years. They were grouped as follows: Group I included 43 patients (P), with a coronary heart disease; Group II (n = 24P) with a noncoronary myocardiopathy and Group III (n = 22P) with unknown origin MVT (Cryptogenic). Relationship between QRS configuration in the frontal plane (QRSf) during MVT episode with transverse plane, cardiac position in the chest X-rays, presence and duration of late potentials (LPs) in their two types of analysis (time domain and spectral mapping by high-resolution electrocardiogram), heart rate variability and ejection fraction by echocardiography were determined in all patients. The QRSf configuration with left bundle-branch block (LBBB) was the most common in group I, the sustained MVT (SMVT) + LBBB was associated with both prevalence and duration of late potentials (p = 0.005), low-rate heart variability and ejection fraction < 40%. SMVT + LBBB was the most common type in group III and if it has shown and inferior axis, an elevated rate of LPs (+) was seen. Situation that oriented to an arrhythmogenic right ventricular dysplasia. Low amplitude signals with short duration in the time domain were seen in group I with LBBB; and with SMVT + RBBB in group II. We suggest that vectospatial evaluation of QRSf during a MVT is a greater importance in the risk stratification for sudden death and it can guide to anatomic origin and the diagnosis-therapeutic approach. PMID:8179433

  6. Magnetic Bacteria.

    ERIC Educational Resources Information Center

    Nelson, Jane Bray; Nelson, Jim

    1992-01-01

    Describes the history of Richard Blakemore's discovery of magnetotaxic organisms. Discusses possible reasons why the magnetic response in bacteria developed. Proposes research experiments integrating biology and physics in which students investigate problems using cultures of magnetotaxic organisms. (MDH)

  7. Anaerobic bacteria

    MedlinePlus

    Brook I, Goldstein EJ. Diseases caused by non-spore forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2015:chap 297. Stedman's Online ...

  8. Fructose Utilization in Lactococcus lactis as a Model for Low-GC Gram-Positive Bacteria: Its Regulator, Signal, and DNA-Binding Site

    PubMed Central

    Barrière, Charlotte; Veiga-da-Cunha, Maria; Pons, Nicolas; Guédon, Eric; van Hijum, Sacha A. F. T.; Kok, Jan; Kuipers, Oscar P.; Ehrlich, Dusko S.; Renault, Pierre

    2005-01-01

    In addition to its role as carbon and energy source, fructose metabolism was reported to affect other cellular processes, such as biofilm formation by streptococci and bacterial pathogenicity in plants. Fructose genes encoding a 1-phosphofructokinase and a phosphotransferase system (PTS) fructose-specific enzyme IIABC component reside commonly in a gene cluster with a DeoR family regulator in various gram-positive bacteria. We present a comprehensive study of fructose metabolism in Lactococcus lactis, including a systematic study of fru mutants, global messenger analysis, and a molecular characterization of its regulation. The fru operon is regulated at the transcriptional level by both FruR and CcpA and at the metabolic level by inducer exclusion. The FruR effector is fructose-1-phosphate (F1P), as shown by combined analysis of transcription and measurements of the intracellular F1P pools in mutants either unable to produce this metabolite or accumulating it. The regulation of the fru operon by FruR requires four adjacent 10-bp direct repeats. The well-conserved organization of the fru promoter region in various low-GC gram-positive bacteria, including CRE boxes as well as the newly defined FruR motif, suggests that the regulation scheme defined in L. lactis could be applied to these bacteria. Transcriptome profiling of fruR and fruC mutants revealed that the effect of F1P and FruR regulation is limited to the fru operon in L. lactis. This result is enforced by the fact that no other targets for FruR were found in the available low-GC gram-positive bacteria genomes, suggesting that additional phenotypical effects due to fructose metabolism do not rely directly on FruR control, but rather on metabolism. PMID:15901699

  9. A Novel HURRAH Protocol Reveals High Numbers of Monomorphic MHC Class II Loci and Two Asymmetric Multi-Locus Haplotypes in the Père David's Deer

    PubMed Central

    Wan, Qiu-Hong; Zhang, Pei; Ni, Xiao-Wei; Wu, Hai-Long; Chen, Yi-Yan; Kuang, Ye-Ye; Ge, Yun-Fa; Fang, Sheng-Guo

    2011-01-01

    The Père David's deer is a highly inbred, but recovered, species, making it interesting to consider their adaptive molecular evolution from an immunological perspective. Prior to this study, genomic sequencing was the only method for isolating all functional MHC genes within a certain species. Here, we report a novel protocol for isolating MHC class II loci from a species, and its use to investigate the adaptive evolution of this endangered deer at the level of multi-locus haplotypes. This protocol was designated “HURRAH” based on its various steps and used to estimate the total number of MHC class II loci. We confirmed the validity of this novel protocol in the giant panda and then used it to examine the Père David's deer. Our results revealed that the Père David's deer possesses nine MHC class II loci and therefore has more functional MHC class II loci than the eight genome-sequenced mammals for which full MHC data are currently available. This could potentially account at least in part for the strong survival ability of this species in the face of severe bottlenecking. The results from the HURRAH protocol also revealed that: (1) All of the identified MHC class II loci were monomorphic at their antigen-binding regions, although DRA was dimorphic at its cytoplasmic tail; and (2) these genes constituted two asymmetric functional MHC class II multi-locus haplotypes: DRA1*01 ∼ DRB1 ∼ DRB3 ∼ DQA1 ∼ DQB2 (H1) and DRA1*02 ∼ DRB2 ∼ DRB4 ∼ DQA2 ∼ DQB1 (H2). The latter finding indicates that the current members of the deer species have lost the powerful ancestral MHC class II haplotypes of nine or more loci, and have instead fixed two relatively weak haplotypes containing five genes. As a result, the Père David's deer are currently at risk for increased susceptibility to infectious pathogens. PMID:21267075

  10. Methanotrophic bacteria.

    PubMed Central

    Hanson, R S; Hanson, T E

    1996-01-01

    Methane-utilizing bacteria (methanotrophs) are a diverse group of gram-negative bacteria that are related to other members of the Proteobacteria. These bacteria are classified into three groups based on the pathways used for assimilation of formaldehyde, the major source of cell carbon, and other physiological and morphological features. The type I and type X methanotrophs are found within the gamma subdivision of the Proteobacteria and employ the ribulose monophosphate pathway for formaldehyde assimilation, whereas type II methanotrophs, which employ the serine pathway for formaldehyde assimilation, form a coherent cluster within the beta subdivision of the Proteobacteria. Methanotrophic bacteria are ubiquitous. The growth of type II bacteria appears to be favored in environments that contain relatively high levels of methane, low levels of dissolved oxygen, and limiting concentrations of combined nitrogen and/or copper. Type I methanotrophs appear to be dominant in environments in which methane is limiting and combined nitrogen and copper levels are relatively high. These bacteria serve as biofilters for the oxidation of methane produced in anaerobic environments, and when oxygen is present in soils, atmospheric methane is oxidized. Their activities in nature are greatly influenced by agricultural practices and other human activities. Recent evidence indicates that naturally occurring, uncultured methanotrophs represent new genera. Methanotrophs that are capable of oxidizing methane at atmospheric levels exhibit methane oxidation kinetics different from those of methanotrophs available in pure cultures. A limited number of methanotrophs have the genetic capacity to synthesize a soluble methane monooxygenase which catalyzes the rapid oxidation of environmental pollutants including trichloroethylene. PMID:8801441

  11. Studies on DNA binding behaviour of biologically active transition metal complexes of new tetradentate N2O2 donor Schiff bases: Inhibitory activity against bacteria

    NASA Astrophysics Data System (ADS)

    Sobha, S.; Mahalakshmi, R.; Raman, N.

    A series of Cu(II), Ni(II) and Zn(II) complexes of the type ML have been synthesized with Schiff bases derived from o-acetoacetotoluidide, 2-hydroxybenzaldehyde and o-phenylenediamine/1,4-diaminobutane. The complexes are insoluble in common organic solvents but soluble in DMF and DMSO. The measured molar conductance values in DMSO indicate that the complexes are non-electrolytic in nature. All the six metal complexes have been fully characterized with the help of elemental analyses, molecular weights, molar conductance values, magnetic moments and spectroscopic data. The analytical data helped to elucidate the structure of the metal complexes. The Schiff bases are found to act as tetradentate ligands using N2O2 donor set of atoms leading to a square-planar geometry for the complexes around all the metal ions. The binding properties of metal complexes with DNA were investigated by absorption spectra, viscosity measurements and cyclic voltammetry. Detailed analysis reveals that the metal complexes intercalate into the DNA base stack as intercalators. All the metal complexes cleave the pUC19 DNA in presence of H2O2. The Schiff bases and their complexes have been screened for their antibacterial activity against five bacterial strains (Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus epidermidis, Klebsiella pneumoniae) by disk diffusion method. All the metal complexes have potent biocidal activity than the free ligands.

  12. Transformation of gram positive bacteria by sonoporation

    DOEpatents

    Yang, Yunfeng; Li, Yongchao

    2014-03-11

    The present invention provides a sonoporation-based method that can be universally applied for delivery of compounds into Gram positive bacteria. Gram positive bacteria which can be transformed by sonoporation include, for example, Bacillus, Streptococcus, Acetobacterium, and Clostridium. Compounds which can be delivered into Gram positive bacteria via sonoporation include nucleic acids (DNA or RNA), proteins, lipids, carbohydrates, viruses, small organic and inorganic molecules, and nano-particles.

  13. Studies of the repair of O/sup 6/-alkylguanine and O/sup 4/-alkylthymine in DNA by alkyltransferases from mammalian cells and bacteria

    SciTech Connect

    Pegg, A.E.; Dolan, M.E.; Acchitano, D.; Morimoto, K.

    1985-10-01

    O/sup 6/-Methylguanine in DNA is repaired by the action of a protein termed O/sup 6/-alkylguanine-DNA alkyltransferase (AT) which transfers the methyl group to a cysteine residue in its own sequence. Since the cysteine which is methylated is not regenerated rapidly, if at all, the capacity for repair of O/sup 6/-methylguanine is limited by the number of molecules of the AT available within the cell. The level and inducibility of the AT differed greatly in different mammalian cell types and species with the highest levels in human tissues and in liver and the lowest levels in brain. In E. coli such exposure increased the activity more than 100-fold. The protein isolated from E. coli removed methyl groups much more rapidly than the larger alkyl groups but the mammalian AT isolated from rat liver showed much less difference in rate with adducts of different size. Ethyl and n-propyl groups were removed by the rat liver AT only three to four times more slowly than methyl groups. Another important difference between the bacterial and mammalian ATs is that the bacterial protein was also able to remove methyl groups from the O/sup 4/-position of thymine in methylated DNA or poly(dT) but the AT from rat liver or human fibroblasts did not repair O/sup 4/-methylthymidine. These results indicate that the results obtained with the E. coli system may not be a suitable model for extrapolation to predictions of the effects of alkylating agents in initiating tumors or mutations in mammalian cells.

  14. Two New Computational Methods for Universal DNA Barcoding: A Benchmark Using Barcode Sequences of Bacteria, Archaea, Animals, Fungi, and Land Plants

    PubMed Central

    Tanabe, Akifumi S.; Toju, Hirokazu

    2013-01-01

    Taxonomic identification of biological specimens based on DNA sequence information (a.k.a. DNA barcoding) is becoming increasingly common in biodiversity science. Although several methods have been proposed, many of them are not universally applicable due to the need for prerequisite phylogenetic/machine-learning analyses, the need for huge computational resources, or the lack of a firm theoretical background. Here, we propose two new computational methods of DNA barcoding and show a benchmark for bacterial/archeal 16S, animal COX1, fungal internal transcribed spacer, and three plant chloroplast (rbcL, matK, and trnH-psbA) barcode loci that can be used to compare the performance of existing and new methods. The benchmark was performed under two alternative situations: query sequences were available in the corresponding reference sequence databases in one, but were not available in the other. In the former situation, the commonly used “1-nearest-neighbor” (1-NN) method, which assigns the taxonomic information of the most similar sequences in a reference database (i.e., BLAST-top-hit reference sequence) to a query, displays the highest rate and highest precision of successful taxonomic identification. However, in the latter situation, the 1-NN method produced extremely high rates of misidentification for all the barcode loci examined. In contrast, one of our new methods, the query-centric auto-k-nearest-neighbor (QCauto) method, consistently produced low rates of misidentification for all the loci examined in both situations. These results indicate that the 1-NN method is most suitable if the reference sequences of all potentially observable species are available in databases; otherwise, the QCauto method returns the most reliable identification results. The benchmark results also indicated that the taxon coverage of reference sequences is far from complete for genus or species level identification in all the barcode loci examined. Therefore, we need to

  15. Two new computational methods for universal DNA barcoding: a benchmark using barcode sequences of bacteria, archaea, animals, fungi, and land plants.

    PubMed

    Tanabe, Akifumi S; Toju, Hirokazu

    2013-01-01

    Taxonomic identification of biological specimens based on DNA sequence information (a.k.a. DNA barcoding) is becoming increasingly common in biodiversity science. Although several methods have been proposed, many of them are not universally applicable due to the need for prerequisite phylogenetic/machine-learning analyses, the need for huge computational resources, or the lack of a firm theoretical background. Here, we propose two new computational methods of DNA barcoding and show a benchmark for bacterial/archeal 16S, animal COX1, fungal internal transcribed spacer, and three plant chloroplast (rbcL, matK, and trnH-psbA) barcode loci that can be used to compare the performance of existing and new methods. The benchmark was performed under two alternative situations: query sequences were available in the corresponding reference sequence databases in one, but were not available in the other. In the former situation, the commonly used "1-nearest-neighbor" (1-NN) method, which assigns the taxonomic information of the most similar sequences in a reference database (i.e., BLAST-top-hit reference sequence) to a query, displays the highest rate and highest precision of successful taxonomic identification. However, in the latter situation, the 1-NN method produced extremely high rates of misidentification for all the barcode loci examined. In contrast, one of our new methods, the query-centric auto-k-nearest-neighbor (QCauto) method, consistently produced low rates of misidentification for all the loci examined in both situations. These results indicate that the 1-NN method is most suitable if the reference sequences of all potentially observable species are available in databases; otherwise, the QCauto method returns the most reliable identification results. The benchmark results also indicated that the taxon coverage of reference sequences is far from complete for genus or species level identification in all the barcode loci examined. Therefore, we need to accelerate

  16. Quick identification of acetic acid bacteria based on nucleotide sequences of the 16S-23S rDNA internal transcribed spacer region and of the PQQ-dependent alcohol dehydrogenase gene.

    PubMed

    Trcek, Janja

    2005-10-01

    Acetic acid bacteria (AAB) are well known for oxidizing different ethanol-containing substrates into various types of vinegar. They are also used for production of some biotechnologically important products, such as sorbose and gluconic acids. However, their presence is not always appreciated since certain species also spoil wine, juice, beer and fruits. To be able to follow AAB in all these processes, the species involved must be identified accurately and quickly. Because of inaccuracy and very time-consuming phenotypic analysis of AAB, the application of molecular methods is necessary. Since the pairwise comparison among the 16S rRNA gene sequences of AAB shows very high similarity (up to 99.9%) other DNA-targets should be used. Our previous studies showed that the restriction analysis of 16S-23S rDNA internal transcribed spacer region is a suitable approach for quick affiliation of an acetic acid bacterium to a distinct group of restriction types and also for quick identification of a potentially novel species of acetic acid bacterium (Trcek & Teuber 2002; Trcek 2002). However, with the exception of two conserved genes, encoding tRNAIle and tRNAAla, the sequences of 16S-23S rDNA are highly divergent among AAB species. For this reason we analyzed in this study a gene encoding PQQ-dependent ADH as a possible DNA-target. First we confirmed the expression of subunit I of PQQ-dependent ADH (AdhA) also in Asaia, the only genus of AAB which exhibits little or no ADH-activity. Further we analyzed the partial sequences of adhA among some representative species of the genera Acetobacter, Gluconobacter and Gluconacetobacter. The conserved and variable regions in these sequences made possible the construction of A. acetispecific oligonucleotide the specificity of which was confirmed in PCR-reaction using 45 well-defined strains of AAB as DNA-templates. The primer was also successfully used in direct identification of A. aceti from home made cider vinegar as well as for

  17. Evaluation of direct 16S rDNA sequencing as a metagenomics-based approach to screening bacteria in bottled water.

    PubMed

    Hansen, Trine; Skånseng, Beate; Hoorfar, Jeffrey; Löfström, Charlotta

    2013-09-01

    Deliberate or accidental contamination of food, feed, and water supplies poses a threat to human health worldwide. A rapid and sensitive detection technique that could replace the current labor-intensive and time-consuming culture-based methods is highly desirable. In addition to species-specific assays, such as PCR, there is a need for generic methods to screen for unknown pathogenic microorganisms in samples. This work presents a metagenomics-based direct-sequencing approach for detecting unknown microorganisms, using Bacillus cereus (as a model organism for B. anthracis) in bottled water as an example. Total DNA extraction and 16S rDNA gene sequencing were used in combination with principle component analysis and multicurve resolution to study detection level and possibility for identification. Results showed a detection level of 10(5) to 10(6) CFU/L. Using this method, it was possible to separate 2 B. cereus strains by the principal component plot, despite the close sequence resemblance. A linear correlation between the artificial contamination level and the relative amount of the Bacillus artificial contaminant in the metagenome was observed, and a relative amount value above 0.5 confirmed the presence of Bacillus. The analysis also revealed that background flora in the bottled water varied between the different water types that were included in the study. This method has the potential to be adapted to other biological matrices and bacterial pathogens for fast screening of unknown bacterial threats in outbreak situations. PMID:23971801

  18. Bacteria Counter

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Science Applications, Inc.'s ATP Photometer makes a rapid and accurate count of the bacteria in a body fluid sample. Instrument provides information on the presence and quantity of bacteria by measuring the amount of light emitted by the reaction between two substances. Substances are ATP adenosine triphosphate and luciferase. The reactants are applied to a human body sample and the ATP Photometer observes the intensity of the light emitted displaying its findings in a numerical output. Total time lapse is usually less than 10 minutes, which represents a significant time savings in comparison of other techniques. Other applications are measuring organisms in fresh and ocean waters, determining bacterial contamination of foodstuffs, biological process control in the beverage industry, and in assay of activated sewage sludge.

  19. Identification of Nitrogen-Incorporating Bacteria in Petroleum-Contaminated Arctic Soils by Using [15N]DNA-Based Stable Isotope Probing and Pyrosequencing ▿ †

    PubMed Central

    Bell, Terrence H.; Yergeau, Etienne; Martineau, Christine; Juck, David; Whyte, Lyle G.; Greer, Charles W.

    2011-01-01

    Arctic soils are increasingly susceptible to petroleum hydrocarbon contamination, as exploration and exploitation of the Arctic increase. Bioremediation in these soils is challenging due to logistical constraints and because soil temperatures only rise above 0°C for ∼2 months each year. Nitrogen is often added to contaminated soil in situ to stimulate the existing microbial community, but little is known about how the added nutrients are used by these microorganisms. Microbes vary widely in their ability to metabolize petroleum hydrocarbons, so the question becomes: which hydrocarbon-degrading microorganisms most effectively use this added nitrogen for growth? Using [15N]DNA-based stable isotope probing, we determined which taxonomic groups most readily incorporated nitrogen from the monoammonium phosphate added to contaminated and uncontaminated soil in Canadian Forces Station-Alert, Nunavut, Canada. Fractions from each sample were amplified with bacterial 16S rRNA and alkane monooxygenase B (alkB) gene-specific primers and then sequenced using lage-scale parallel-pyrosequencing. Sequence data was combined with 16S rRNA and alkB gene C quantitative PCR data to measure the presence of various phylogenetic groups in fractions at different buoyant densities. Several families of Proteobacteria and Actinobacteria that are directly involved in petroleum degradation incorporated the added nitrogen in contaminated soils, but it was the DNA of Sphingomonadaceae that was most enriched in 15N. Bacterial growth in uncontaminated soils was not stimulated by nutrient amendment. Our results suggest that nitrogen uptake efficiency differs between bacterial groups in contaminated soils. A better understanding of how groups of hydrocarbon-degraders contribute to the catabolism of petroleum will facilitate the design of more targeted bioremediation treatments. PMID:21498745

  20. Putative prophages related to lytic tailless marine dsDNA phage PM2 are widespread in the genomes of aquatic bacteria

    PubMed Central

    Krupovič, Mart; Bamford, Dennis H

    2007-01-01

    Background The origin and evolution of viruses is currently a heavily discussed issue. One element in this discussion is the innate viral "self" concept, which suggests that viral structures and functions can be divided into two categories. The first category consists of genetic determinants that are inherited from a viral ancestor and encode the viral "self". The second group consists of another set of structures and functions, the "nonself", which is interchangeable between different viruses and can be obtained via lateral gene transfer. Comparing the structures and sequences of the "self" elements, we have proposed that viruses can be grouped into lineages regardless of which domain of life (bacteria, archaea, eukarya) they infect. It has also been suggested that viruses are ancient and possibly predate modern cells. Results Here we identified thirteen putative prophages (viral genomes integrated into bacterial chromosome) closely related to the virulent icosahedral tailless lipid-containing bacteriophage PM2. Using the comparative genomics approach, we present evidence to support the viral "self" hypothesis and divide genes of the bacteriophage PM2 and related prophages into "self" and "nonself" categories. Conclusion We show here that the previously proposed most conserved viral "self" determinants, the major coat protein and the packaging ATPase, were the only proteins that could be recognized in all detected corticoviral elements. We also argue here that the genes needed for viral genome replication, as well as for host cell lysis, belong to the "nonself" category of genes. Furthermore, we suggest that abundance of PM2-like viruses in the aquatic environment as well as their importance in the ecology of aquatic microorganisms might have been underestimated. PMID:17634101

  1. Deterioration to extinction of wastewater bacteria by non-thermal atmospheric pressure air plasma as assessed by 16S rDNA-DGGE fingerprinting

    PubMed Central

    El-Sayed, Wael S.; Ouf, Salama A.; Mohamed, Abdel-Aleam H.

    2015-01-01

    The use of cold plasma jets for inactivation of a variety of microorganisms has recently been evaluated via culture-based methods. Accordingly, elucidation of the role of cold plasma in decontamination would be inaccurate because most microbial populations within a system remain unexplored owing to the high amount of yet uncultured bacteria. The impact of cold atmospheric plasma on the bacterial community structure of wastewater from two different industries was investigated by metagenomic-based polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) utilizing 16S rRNA genes. Three doses of atmospheric pressure dielectric barrier discharge plasma were applied to wastewater samples on different time scales. DGGE revealed that the bacterial community gradually changed and overall abundance decreased to extinction upon plasma treatment. The bacterial community in food processing wastewater contained 11 key operational taxonomic units that remained almost completely unchanged when exposed to plasma irradiation at 75.5 mA for 30 or 60 s. However, when exposure time was extended to 90 s, only Escherichia coli, Coliforms, Aeromonas sp., Vibrio sp., and Pseudomonas putida survived. Only E. coli, Aeromonas sp., Vibrio sp., and P. putida survived treatment at 81.94 mA for 90 s. Conversely, all bacterial groups were completely eliminated by treatment at 85.34 mA for either 60 or 90 s. Dominant bacterial groups in leather processing wastewater also changed greatly upon exposure to plasma at 75.5 mA for 30 or 60 s, with Enterobacter aerogenes, Klebsiella sp., Pseudomonas stutzeri, and Acidithiobacillus ferrooxidans being sensitive to and eliminated from the community. At 90 s of exposure, all groups were affected except for Pseudomonas sp. and Citrobacter freundii. The same trend was observed for treatment at 81.94 mA. The variability in bacterial community response to different plasma treatment protocols revealed that plasma had a selective impact on bacterial

  2. Molecular analysis of deep subsurface bacteria

    SciTech Connect

    Jimenez Baez, L.E.

    1989-09-01

    Deep sediments samples from site C10a, in Appleton, and sites, P24, P28, and P29, at the Savannah River Site (SRS), near Aiken, South Carolina were studied to determine their microbial community composition, DNA homology and mol %G+C. Different geological formations with great variability in hydrogeological parameters were found across the depth profile. Phenotypic identification of deep subsurface bacteria underestimated the bacterial diversity at the three SRS sites, since bacteria with the same phenotype have different DNA composition and less than 70% DNA homology. Total DNA hybridization and mol %G+C analysis of deep sediment bacterial isolates suggested that each formation is comprised of different microbial communities. Depositional environment was more important than site and geological formation on the DNA relatedness between deep subsurface bacteria, since more 70% of bacteria with 20% or more of DNA homology came from the same depositional environments. Based on phenotypic and genotypic tests Pseudomonas spp. and Acinetobacter spp.-like bacteria were identified in 85 million years old sediments. This suggests that these microbial communities might have been adapted during a long period of time to the environmental conditions of the deep subsurface.

  3. DNA Methylation

    PubMed Central

    Marinus, M.G.; Løbner-Olesen, A.

    2014-01-01

    The DNA of E. coli contains 19,120 6-methyladenines and 12,045 5-methylcytosines in addition to the four regular bases and these are formed by the postreplicative action of three DNA methyltransferases. The majority of the methylated bases are formed by the Dam and Dcm methyltransferases encoded by the dam (DNA adenine methyltransferase) and dcm (DNA cytosine methyltransferase) genes. Although not essential, Dam methylation is important for strand discrimination during repair of replication errors, controlling the frequency of initiation of chromosome replication at oriC, and regulation of transcription initiation at promoters containing GATC sequences. In contrast, there is no known function for Dcm methylation although Dcm recognition sites constitute sequence motifs for Very Short Patch repair of T/G base mismatches. In certain bacteria (e.g., Vibrio cholerae, Caulobacter crescentus) adenine methylation is essential and in C. crescentus, it is important for temporal gene expression which, in turn, is required for coordinating chromosome initiation, replication and division. In practical terms, Dam and Dcm methylation can inhibit restriction enzyme cleavage; decrease transformation frequency in certain bacteria; decrease the stability of short direct repeats; are necessary for site-directed mutagenesis; and to probe eukaryotic structure and function. PMID:26442938

  4. Back To Bacteria.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    1997-01-01

    Explores new research about bacteria. Discusses bacterial genomes, archaea, unusual environments, evolution, pathogens, bacterial movement, biofilms, bacteria in the body, and a bacterial obsession. Contains 29 references. (JRH)

  5. Magnetic bacteria against MIC

    SciTech Connect

    Javaherdashti, R.

    1997-12-01

    In this article, it is suggested to use the sensitivity of magnetotactic bacteria to changes of magnetic field direction and the natural ability of this bacteria in rapid growth during relatively short time intervals against corrosion-enhancing bacteria and especially sulfate-reducing bacteria. If colonies of sulfate-reducing bacteria could be packed among magnetotactic bacteria, then, by applying sufficiently powerful magnetic field (about 0.5 gauss), all of these bacteria (magnetic and non-magnetic) will be oriented towards an Anti-bacteria agent (oxygen or biocide). So, Microbiologically-Influenced Corrosion in the system would be controlled to a large extent.

  6. Functional Encyclopedia of Bacteria and Archaea

    SciTech Connect

    Blow, M. J.; Deutschbauer, A. M.; Hoover, C. A.; Lamson, J.; Lamson, J.; Price, M. N.; Waters, J.; Wetmore, K. M.; Bristow, J.; Arkin, A. P.

    2013-03-20

    Bacteria and Archaea exhibit a huge diversity of metabolic capabilities with fundamental importance in the environment, and potential applications in biotechnology. However, the genetic bases of these capabilities remain unclear due largely to an absence of technologies that link DNA sequence to molecular function. To address this challenge, we are developing a pipeline for high throughput annotation of gene function using mutagenesis, growth assays and DNA sequencing. By applying this pipeline to annotate gene function in 50 diverse microbes we hope to discover thousands of new gene functions and produce a proof of principle `Functional Encyclopedia of Bacteria and Archaea?.

  7. Molecular characterization of a bovine Y-specific DNA sequence conserved in taurine and zebu breeds.

    PubMed

    Alves, Beatriz C A; Mayer, Mário G; Taber, Anna Paula; Egito, Andréa A; Fagundes, Valéria; McElreavey, Ken; Moreira-Filho, Carlos A

    2006-06-01

    The identification of new bovine male-specific DNA sequences is of great interest because the bovine Y chromosome remains poorly characterized in terms of physical and genetic maps. Since taurine and zebu Y chromosomes are structurally different, the identification of Y-specific sequences present in both sub-species is particularly important: these sequences are of evolutionary significance and can be broadly used for embryo sexing. In this work, we initially used the random amplified polymorphic DNA (RAPD) technique to search for male-specific sequences present as monomorphic markers in genomic DNA from zebu and taurine bulls. A male-specific RAPD band was found to be present and highly conserved in both sub-species, as demonstrated by Southern blotting, fluorescent in situ hybridization (FISH) and DNA sequencing. In a previous work, a pair of primers derived from this marker was successfully used in taurine and zebu embryo sexing. PMID:17286047

  8. Recombinant DNA means and method

    SciTech Connect

    Alford, B.L.; Mao, J.I.; Moir, D.T.; Taunton-Rigby, A.; Vovis, G.F.

    1987-05-19

    This patent describes a transformed living cell selected from the group consisting of fungi, yeast and bacteria, and containing genetic material derived from recombinant DNA material and coding for bovine rennin.

  9. Comparison of mitochondrial DNA control region sequence and microsatellite DNA analyses in estimating population structure and gene flow rates in Atlantic sturgeon Acipenser oxyrinchus

    USGS Publications Warehouse

    Wirgin, I.; Waldman, J.; Stabile, J.; Lubinski, B.; King, T.

    2002-01-01

    Atlantic sturgeon Acipenser oxyrinchus is large, long-lived, and anadromous with subspecies distributed along the Atlantic (A. oxyrinchus oxyrinchus) and Gulf of Mexico (A. o. desotoi) coasts of North America. Although it is not certain if extirpation of some population units has occurred, because of anthropogenic influences abundances of all populations are low compared with historical levels. Informed management of A. oxyrinchus demands a detailed knowledge of its population structure, levels of genetic diversity, and likelihood to home to natal rivers. We compared the use of mitochondrial DNA (mtDNA) control region sequence and microsatellite nuclear DNA (nDNA) analyses in identifying the stock structure and homing fidelity of Atlantic and Gulf coast populations of A. oxyrinchus. The approaches were concordant in that they revealed moderate to high levels of genetic diversity and suggested that populations of Atlantic sturgeon are highly structured. At least six genetically distinct management units were detected using the two approaches among the rivers surveyed. Mitochondrial DNA sequences revealed a significant cline in haplotype diversity along the Atlantic coast with monomorphism observed in Canadian populations. High levels of nDNA diversity were also observed among populations along the Atlantic coast, including the two Canadian populations, probably resulting from the more rapid rate of mutational and evolutionary change at microsatellite loci. Estimates of gene flow among populations were similar between both approaches with the exception that because of mtDNA monomorphism in Canadian populations, gene flow estimates between them were unobtainable. Analyses of both genomes provided high resolution and confidence in characterizing the population structure of Atlantic sturgeon. Microsatellite analysis was particularly informative in delineating population structure in rivers that were recently glaciated and may prove diagnostic in rivers that are

  10. High efficiency recombineering in lactic acid bacteria

    PubMed Central

    van Pijkeren, Jan-Peter; Britton, Robert A.

    2012-01-01

    The ability to efficiently generate targeted point mutations in the chromosome without the need for antibiotics, or other means of selection, is a powerful strategy for genome engineering. Although oligonucleotide-mediated recombineering (ssDNA recombineering) has been utilized in Escherichia coli for over a decade, the successful adaptation of ssDNA recombineering to Gram-positive bacteria has not been reported. Here we describe the development and application of ssDNA recombineering in lactic acid bacteria. Mutations were incorporated in the chromosome of Lactobacillus reuteri and Lactococcus lactis without selection at frequencies ranging between 0.4% and 19%. Whole genome sequence analysis showed that ssDNA recombineering is specific and not hypermutagenic. To highlight the utility of ssDNA recombineering we reduced the intrinsic vancomymycin resistance of L. reuteri >100-fold. By creating a single amino acid change in the d-Ala-d-Ala ligase enzyme we reduced the minimum inhibitory concentration for vancomycin from >256 to 1.5 µg/ml, well below the clinically relevant minimum inhibitory concentration. Recombineering thus allows high efficiency mutagenesis in lactobacilli and lactococci, and may be used to further enhance beneficial properties and safety of strains used in medicine and industry. We expect that this work will serve as a blueprint for the adaptation of ssDNA recombineering to other Gram-positive bacteria. PMID:22328729

  11. Phenotypic switching in bacteria

    NASA Astrophysics Data System (ADS)

    Merrin, Jack

    Living matter is a non-equilibrium system in which many components work in parallel to perpetuate themselves through a fluctuating environment. Physiological states or functionalities revealed by a particular environment are called phenotypes. Transitions between phenotypes may occur either spontaneously or via interaction with the environment. Even in the same environment, genetically identical bacteria can exhibit different phenotypes of a continuous or discrete nature. In this thesis, we pursued three lines of investigation into discrete phenotypic heterogeneity in bacterial populations: the quantitative characterization of the so-called bacterial persistence, a theoretical model of phenotypic switching based on those measurements, and the design of artificial genetic networks which implement this model. Persistence is the phenotype of a subpopulation of bacteria with a reduced sensitivity to antibiotics. We developed a microfluidic apparatus, which allowed us to monitor the growth rates of individual cells while applying repeated cycles of antibiotic treatments. We were able to identify distinct phenotypes (normal and persistent) and characterize the stochastic transitions between them. We also found that phenotypic heterogeneity was present prior to any environmental cue such as antibiotic exposure. Motivated by the experiments with persisters, we formulated a theoretical model describing the dynamic behavior of several discrete phenotypes in a periodically varying environment. This theoretical framework allowed us to quantitatively predict the fitness of dynamic populations and to compare survival strategies according to environmental time-symmetries. These calculations suggested that persistence is a strategy used by bacterial populations to adapt to fluctuating environments. Knowledge of the phenotypic transition rates for persistence may provide statistical information about the typical environments of bacteria. We also describe a design of artificial

  12. Oligonucleotide recombination in gram negative bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report describes several key aspects of a novel form of RecA-independent homologous recombination. We found that synthetic single stranded DNA oligonucleotides (oligos) introduced into bacteria by transformation can site-specifically recombine with bacterial chromosomes in the absence of any a...

  13. Ejecting Phage DNA against Cellular Turgor Pressure

    PubMed Central

    Marion, Sanjin; Šiber, Antonio

    2014-01-01

    We examine in vivo ejection of noncondensed DNA from tailed bacteriophages into bacteria. The ejection is dominantly governed by the physical conditions in the bacteria. The confinement of the DNA in the virus capsid only slightly helps the ejection, becoming completely irrelevant during its last stages. A simple calculation based on the premise of condensed DNA in the cell enables us to estimate the maximal bacterial turgor pressure against which the ejection can still be fully realized. The calculated pressure (∼5 atm) shows that the ejection of DNA into Gram-negative bacteria could proceed spontaneously, i.e., without the need to invoke active mechanisms. PMID:25418173

  14. Bacteria isolated from amoebae/bacteria consortium

    DOEpatents

    Tyndall, Richard L.

    1995-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  15. Bacteria isolated from amoebae/bacteria consortium

    DOEpatents

    Tyndall, R.L.

    1995-05-30

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  16. Glass bead transformation method for gram-positive bacteria

    PubMed Central

    Rattanachaikunsopon, Pongsak; Phumkhachorn, Parichat

    2009-01-01

    A simple, inexpensive and reproducible transformation method was developed for Gram-positive bacteria. It was based on agitation of bacterial protoplasts with glass beads in the presence of DNA and polyethylene glycol. By using this method, introduction of pGK12 into protoplasts of several strains of Gram-positive bacteria was achieved. PMID:24031442

  17. Metabolic engineering of bacteria.

    PubMed

    Kumar, Ravi R; Prasad, Satish

    2011-07-01

    Yield and productivity are critical for the economics and viability of a bioprocess. In metabolic engineering the main objective is the increase of a target metabolite production through genetic engineering. Metabolic engineering is the practice of optimizing genetic and regulatory processes within cells to increase the production of a certain substance. In the last years, the development of recombinant DNA technology and other related technologies has provided new tools for approaching yields improvement by means of genetic manipulation of biosynthetic pathway. Industrial microorganisms like Escherichia coli, Actinomycetes, etc. have been developed as biocatalysts to provide new or to optimize existing processes for the biotechnological production of chemicals from renewable plant biomass. The factors like oxygenation, temperature and pH have been traditionally controlled and optimized in industrial fermentation in order to enhance metabolite production. Metabolic engineering of bacteria shows a great scope in industrial application as well as such technique may also have good potential to solve certain metabolic disease and environmental problems in near future. PMID:22754024

  18. Regulatory RNAs in Bacteria

    PubMed Central

    Waters, Lauren S.; Storz, Gisela

    2011-01-01

    RNA regulators in bacteria are a heterogenous group of molecules that act by various mechanisms to modulate a wide range of physiological responses. One class comprises riboswitches, which are parts of the mRNAs they regulate. These leader sequences fold into structures amenable to conformational changes upon the binding of small molecules. Riboswitches thus sense and respond to the availability of various nutrients in the cell. Other small transcripts bind to proteins, among them global regulators, and antagonize their functions. The largest and most extensively studied set of small RNA regulators act through base pairing with RNAs, usually modulating the translation and stability of mRNAs. The majority of these small RNAs regulate responses to changes in environmental conditions. Finally, a recently discovered group of RNA regulators, known as the CRISPR RNAs, contain short regions of homology to bacteriophage and plasmid sequences. CRISPR RNAs interfere with bacteriophage infection and plasmid conjugation by targeting the homologous foreign DNA through an unknown mechanism. Here we discuss what is known about these RNA regulators, as well as the many intriguing questions that remain to be addressed. PMID:19239884

  19. Bacteria Inactivation During Lithotripsy

    NASA Astrophysics Data System (ADS)

    del Sol Quintero, María; Mora, Ulises; Gutiérrez, Jorge; Mues, Enrique; Castaño, Eduardo; Fernández, Francisco; Loske, Achim M.

    2006-09-01

    The influence of extracorporeal and intracorporeal lithotripsy on the viability of bacteria contained inside artificial kidney stones was investigated in vitro. Two different bacteria were exposed to the action of one extracorporeal shock wave generator and four intracorporeal lithotripters.

  20. CHAPTER IV-2 BACTERIA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Entomopathogenic bacteria provide an alternative to chemical pesticides used in insect control programs. Today, the principal microbial insecticides utilize spore forming bacteria or toxins produced by these bacteria as their active ingredients, either in formulations or by incorporation of toxin g...

  1. A method to capture large DNA fragments from genomic DNA.

    PubMed

    Ball, Geneviève; Filloux, Alain; Voulhoux, Romé

    2014-01-01

    The gene capture technique is a powerful tool that allows the cloning of large DNA regions (up to 80 kb), such as entire genomic islands, without using restriction enzymes or DNA amplification. This technique takes advantage of the high recombinant capacity of the yeast. A "capture" vector containing both ends of the target DNA region must first be constructed. The target region is then captured by co-transformation and recombination in yeast between the "capture" vector and appropriate genomic DNA. The selected recombinant plasmid can be verified by sequencing and transferred in the bacteria for multiple applications. This chapter describes a protocol specifically adapted for Pseudomonas aeruginosa genomic DNA capture. PMID:24818928

  2. Detection of fecal bacteria and source tracking identifiers in environmental waters using rRNA-based RT-qPCR and rDNA-based qPCR assays

    EPA Science Inventory

    The identification of fecal pollution sources is commonly performed using DNA-based methods. However, there is evidence that DNA can be associated with dead cells or present as “naked DNA” in the environment. To this end, we compared the detection frequency of host specific marke...

  3. The use of dimorphic Alu insertions in human DNA fingerprinting

    SciTech Connect

    Novick, G.E.; Gonzalez, T.; Garrison, J.; Novick, C.C.; Herrera, R.J.; Batzer, M.A.; Deininger, P.L.

    1992-12-04

    We have characterized certain Human Specific Alu Insertions as either dimorphic (TPA25, PV92, APO), sightly dimorphic (C2N4 and C4N4) or monomorphic (C3N1, C4N6, C4N2, C4N5, C4N8), based on studies of Caucasian, Asian, American Black and African Black populations. Our approach is based upon: (1) PCR amplification using primers directed to the sequences that flank the site of insertion of the different Alu elements studied; (2) gel electrophoresis and scoring according to the presence or absence of an Alu insertion in one or both homologous chromosomes; (3) allelic frequencies calculated and compared according to Hardy-Weinberg equilibrium. Our DNA fingerprinting procedure using PCR amplification of dimorphic Human Specific Alu insertions, is stable enough to be used not only as a tool for genetic mapping but also to characterize populations, study migrational patterns and track the inheritance of human genetic disorders.

  4. Diversity of Bacteria at Healthy Human Conjunctiva

    PubMed Central

    Dong, Qunfeng; Brulc, Jennifer M.; Iovieno, Alfonso; Bates, Brandon; Garoutte, Aaron; Miller, Darlene; Revanna, Kashi V.; Gao, Xiang; Antonopoulos, Dionysios A.; Slepak, Vladlen Z.

    2011-01-01

    Purpose. Ocular surface (OS) microbiota contributes to infectious and autoimmune diseases of the eye. Comprehensive analysis of microbial diversity at the OS has been impossible because of the limitations of conventional cultivation techniques. This pilot study aimed to explore true diversity of human OS microbiota using DNA sequencing-based detection and identification of bacteria. Methods. Composition of the bacterial community was characterized using deep sequencing of the 16S rRNA gene amplicon libraries generated from total conjunctival swab DNA. The DNA sequences were classified and the diversity parameters measured using bioinformatics software ESPRIT and MOTHUR and tools available through the Ribosomal Database Project-II (RDP-II). Results. Deep sequencing of conjunctival rDNA from four subjects yielded a total of 115,003 quality DNA reads, corresponding to 221 species-level phylotypes per subject. The combined bacterial community classified into 5 phyla and 59 distinct genera. However, 31% of all DNA reads belonged to unclassified or novel bacteria. The intersubject variability of individual OS microbiomes was very significant. Regardless, 12 genera—Pseudomonas, Propionibacterium, Bradyrhizobium, Corynebacterium, Acinetobacter, Brevundimonas, Staphylococci, Aquabacterium, Sphingomonas, Streptococcus, Streptophyta, and Methylobacterium—were ubiquitous among the analyzed cohort and represented the putative “core” of conjunctival microbiota. The other 47 genera accounted for <4% of the classified portion of this microbiome. Unexpectedly, healthy conjunctiva contained many genera that are commonly identified as ocular surface pathogens. Conclusions. The first DNA sequencing-based survey of bacterial population at the conjunctiva have revealed an unexpectedly diverse microbial community. All analyzed samples contained ubiquitous (core) genera that included commensal, environmental, and opportunistic pathogenic bacteria. PMID:21571682

  5. Genomics of Probiotic Bacteria

    NASA Astrophysics Data System (ADS)

    O'Flaherty, Sarah; Goh, Yong Jun; Klaenhammer, Todd R.

    Probiotic bacteria from the Lactobacillus and Bifidobacterium species belong to the Firmicutes and the Actinobacteria phylum, respectively. Lactobacilli are members of the lactic acid bacteria (LAB) group, a broadly defined family of microorganisms that ferment various hexoses into primarily lactic acid. Lactobacilli are typically low G + C gram-positive species which are phylogenetically diverse, with over 100 species documented to date. Bifidobacteria are heterofermentative, high G + C content bacteria with about 30 species of bifidobacteria described to date.

  6. Lactic acid bacteria isolated from soy sauce mash in Thailand.

    PubMed

    Tanasupawat, Somboon; Thongsanit, Jaruwan; Okada, Sanae; Komagata, Kazuo

    2002-08-01

    Fourteen sphere-shaped and 30 rod-shaped lactic acid bacteria were isolated from soy sauce mash of two factories in Thailand. These strains were separated into two groups, Group A and Group B, by cell shape and DNA-DNA similarity. Group A contained 14 tetrad-forming strains, and these strains were identified as Tetragenococcus halophilus by DNA similarity. Group B contained 30 rod-shaped bacteria, and they were further divided into four Subgroups, B1, B2, B3, and B4, and three ungrouped strains by phenotypic characteristics and DNA similarity. Subgroup B1 contained 16 strains, and these strains were identified as Lactobacillus acidipiscis by DNA similarity. Subgroup B2 included two strains, and the strains were identified as Lactobacillus farciminis by DNA similarity. Subgroup B3 contained five strains. The strains had meso-diaminopimelic acid in the cell wall, and were identified as Lactobacillus pentosus by DNA similarity. The strains tested produced DL-lactic acid from D-glucose. Subgroup B4 contained four strains. The strains had meso-diaminopimelic acid in the cell wall, and they were identified as Lactobacillus plantarum by DNA similarity. Two ungrouped strains were homofermentative, and one was heterofermentative. They showed a low degree of DNA similarity with the type strains tested, and were left unnamed. The distribution of lactic acid bacteria in soy sauce mash in Thailand is discussed. PMID:12469319

  7. Bleach vs. Bacteria

    MedlinePlus

    ... Inside Life Science > Bleach vs. Bacteria Inside Life Science View All Articles | Inside Life Science Home Page Bleach vs. Bacteria By Sharon Reynolds ... For Proteins, Form Shapes Function This Inside Life Science article also appears on LiveScience . Learn about related ...

  8. Bacteria turn tiny gears

    SciTech Connect

    2009-01-01

    Swarms of bacteria turn two 380-micron long gears, opening the possibility of building hybrid biological machines at the microscopic scale. Read more at Wired: http://www.wired.com/wiredscience/2009/12/bacterial-micro-machine/#more-15684 or Scientific American: http://www.scientificamerican.com/article.cfm?id=brownian-motion-bacteria

  9. Cell Size Regulation in Bacteria

    NASA Astrophysics Data System (ADS)

    Amir, Ariel

    2014-05-01

    Various bacteria such as the canonical gram negative Escherichia coli or the well-studied gram positive Bacillus subtilis divide symmetrically after they approximately double their volume. Their size at division is not constant, but is typically distributed over a narrow range. Here, we propose an analytically tractable model for cell size control, and calculate the cell size and interdivision time distributions, as well as the correlations between these variables. We suggest ways of extracting the model parameters from experimental data, and show that existing data for E. coli supports partial size control, and a particular explanation: a cell attempts to add a constant volume from the time of initiation of DNA replication to the next initiation event. This hypothesis accounts for the experimentally observed correlations between mother and daughter cells as well as the exponential dependence of size on growth rate.

  10. Structural investigation into physiological DNA phosphorothioate modification

    PubMed Central

    Lan, Wenxian; Hu, Zhongpei; Shen, Jie; Wang, Chunxi; Jiang, Feng; Liu, Huili; Long, Dewu; Liu, Maili; Cao, Chunyang

    2016-01-01

    DNA phosphorothioate (PT) modification, with sulfur replacing a nonbridging phosphate oxygen in a sequence and stereo specific manner, is a novel physiological variation in bacteria. But what effects on DNA properties PT modification has is still unclear. To address this, we prepared three double-stranded (ds) DNA decamers, d(CGPXGCCGCCGA) with its complementary strand d(TCGGCGPXGCCG) (where X = O or S, i.e., PT-free dsDNA, [Sp, Sp]-PT dsDNA or [Rp, Rp]-PT dsDNA) located in gene of Streptomyces lividans. Their melting temperature (Tm) measurement indicates that [Rp, Rp]-PT dsDNA is most unstable. Their electron transfer potential detection presents an order of anti-oxidation properties: Sp-PT DNA > Rp-PT DNA > PT-free DNA. Their NMR structures demonstrate that PT modification doesn’t change their B-form conformation. The sulfur in [Rp, Rp]-PT dsDNA locates in the major groove, with steric effects on protons in the sugar close to modification sites, resulting in its unstability, and facilitating its selectively interactions with ScoMcrA. We thought that PT modification was dialectical to the bacteria. It protects the hosting bacteria by working as antioxidant against H2O2, and acts as a marker, directing restriction enzyme observed in other hosts, like ScoMcrA, to correctly cleave the PT modified DNA, so that bacteria cannot spread and survive. PMID:27169778

  11. Molecular analysis of deep subsurface bacteria

    SciTech Connect

    Jimenez, L.E.

    1989-11-01

    Deep sediments samples from site C10a, in Appelton, and sites, P24, P28, and P29, at the Savannah River Site (SRS), near Aiken, South Carolina, were studied to determine their microbial community composition, DNA homology and mol %G+C. Additional studies were done in adjacent groundwater wells at the 3 SRS sites. Different geological formations with great variability in hydrogeological parameters were found across the depth profile. Sediment age ranged from 37 to 85 million years old. Bacterial densities by acridine orange direct counts (AODC) and viable counts on 1% PTYG media were significantly higher at deep sediments than in groundwater wells. Metabolic tests of bacterial isolates showed no significant difference between both habitats. However, sediment isolates showed higher percentages in the carbon assimilation tests than groundwater isolates. Phenotypic identification of deep subsurface bacteria underestimated the bacterial diversity at the three SRS sites, since bacteria with the same phenotype have different DNA composition and less than 70% DNA homology. The mol %G+C of deep subsurface bacteria ranged from 20 to 77%, with more than 60% and 12% of the isolates tested showing values similar to the {ital Pseudomonas} spp. and {ital Acinetobacter} spp., respectively. 200 refs., 18 figs., 24 tabs.

  12. Precision genome engineering in lactic acid bacteria

    PubMed Central

    2014-01-01

    Innovative new genome engineering technologies for manipulating chromosomes have appeared in the last decade. One of these technologies, recombination mediated genetic engineering (recombineering) allows for precision DNA engineering of chromosomes and plasmids in Escherichia coli. Single-stranded DNA recombineering (SSDR) allows for the generation of subtle mutations without the need for selection and without leaving behind any foreign DNA. In this review we discuss the application of SSDR technology in lactic acid bacteria, with an emphasis on key factors that were critical to move this technology from E. coli into Lactobacillus reuteri and Lactococcus lactis. We also provide a blueprint for how to proceed if one is attempting to establish SSDR technology in a lactic acid bacterium. The emergence of CRISPR-Cas technology in genome engineering and its potential application to enhancing SSDR in lactic acid bacteria is discussed. The ability to perform precision genome engineering in medically and industrially important lactic acid bacteria will allow for the genetic improvement of strains without compromising safety. PMID:25185700

  13. Molecular analysis of deep-subsurface bacteria

    SciTech Connect

    Jimenez, L. )

    1990-07-01

    Bacterial isolates from deep-sediment samples from three sites at the Savannah River site, near Aiken, S.C., were studied to determine their microbial community composition and DNA structure by using total DNA hybridization and moles percent G+C. Standard phenotypic identification underestimated the bacterial diversity at the three sites, since isolates with the same phenotype had different DNA structures in terms of moles percent G+C and DNA homology. The G+C content of deep-subsurface bacteria ranged from 20 to 77 mol%. More than 60% of the isolates tested had G+C values similar to those of Pseudomonas spp., and 12% had values similar to those of Acinetobacter spp. No isolates from deeper formations showed the same DNA composition as isolates from upper formations. Total-DNA hybridization and DNA base composition analysis provided a better resolution than phenotypic tests for the understanding of the diversity and structure of deep-subsurface bacterial communities. On the basis of the moles percent G+C values, deep-subsurface isolates tested seemed to belong to the families Pseudomonadaceae and Neisseriaceae, which might reflect a long period of adaptation to the environmental conditions of the deep subsurface.

  14. In vitro antibacterial activity of AZD0914, a new spiropyrimidinetrione DNA gyrase/topoisomerase inhibitor with potent activity against Gram-positive, fastidious Gram-Negative, and atypical bacteria.

    PubMed

    Huband, Michael D; Bradford, Patricia A; Otterson, Linda G; Basarab, Gregory S; Kutschke, Amy C; Giacobbe, Robert A; Patey, Sara A; Alm, Richard A; Johnstone, Michele R; Potter, Marie E; Miller, Paul F; Mueller, John P

    2015-01-01

    AZD0914 is a new spiropyrimidinetrione bacterial DNA gyrase/topoisomerase inhibitor with potent in vitro antibacterial activity against key Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus pyogenes, and Streptococcus agalactiae), fastidious Gram-negative (Haemophilus influenzae and Neisseria gonorrhoeae), atypical (Legionella pneumophila), and anaerobic (Clostridium difficile) bacterial species, including isolates with known resistance to fluoroquinolones. AZD0914 works via inhibition of DNA biosynthesis and accumulation of double-strand cleavages; this mechanism of inhibition differs from those of other marketed antibacterial compounds. AZD0914 stabilizes and arrests the cleaved covalent complex of gyrase with double-strand broken DNA under permissive conditions and thus blocks religation of the double-strand cleaved DNA to form fused circular DNA. Whereas this mechanism is similar to that seen with fluoroquinolones, it is mechanistically distinct. AZD0914 exhibited low frequencies of spontaneous resistance in S. aureus, and if mutants were obtained, the mutations mapped to gyrB. Additionally, no cross-resistance was observed for AZD0914 against recent bacterial clinical isolates demonstrating resistance to fluoroquinolones or other drug classes, including macrolides, β-lactams, glycopeptides, and oxazolidinones. AZD0914 was bactericidal in both minimum bactericidal concentration and in vitro time-kill studies. In in vitro checkerboard/synergy testing with 17 comparator antibacterials, only additivity/indifference was observed. The potent in vitro antibacterial activity (including activity against fluoroquinolone-resistant isolates), low frequency of resistance, lack of cross-resistance, and bactericidal activity of AZD0914 support its continued development. PMID:25385112

  15. In Vitro Antibacterial Activity of AZD0914, a New Spiropyrimidinetrione DNA Gyrase/Topoisomerase Inhibitor with Potent Activity against Gram-Positive, Fastidious Gram-Negative, and Atypical Bacteria

    PubMed Central

    Bradford, Patricia A.; Otterson, Linda G.; Basarab, Gregory S.; Kutschke, Amy C.; Giacobbe, Robert A.; Patey, Sara A.; Alm, Richard A.; Johnstone, Michele R.; Potter, Marie E.; Miller, Paul F.; Mueller, John P.

    2014-01-01

    AZD0914 is a new spiropyrimidinetrione bacterial DNA gyrase/topoisomerase inhibitor with potent in vitro antibacterial activity against key Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus pyogenes, and Streptococcus agalactiae), fastidious Gram-negative (Haemophilus influenzae and Neisseria gonorrhoeae), atypical (Legionella pneumophila), and anaerobic (Clostridium difficile) bacterial species, including isolates with known resistance to fluoroquinolones. AZD0914 works via inhibition of DNA biosynthesis and accumulation of double-strand cleavages; this mechanism of inhibition differs from those of other marketed antibacterial compounds. AZD0914 stabilizes and arrests the cleaved covalent complex of gyrase with double-strand broken DNA under permissive conditions and thus blocks religation of the double-strand cleaved DNA to form fused circular DNA. Whereas this mechanism is similar to that seen with fluoroquinolones, it is mechanistically distinct. AZD0914 exhibited low frequencies of spontaneous resistance in S. aureus, and if mutants were obtained, the mutations mapped to gyrB. Additionally, no cross-resistance was observed for AZD0914 against recent bacterial clinical isolates demonstrating resistance to fluoroquinolones or other drug classes, including macrolides, β-lactams, glycopeptides, and oxazolidinones. AZD0914 was bactericidal in both minimum bactericidal concentration and in vitro time-kill studies. In in vitro checkerboard/synergy testing with 17 comparator antibacterials, only additivity/indifference was observed. The potent in vitro antibacterial activity (including activity against fluoroquinolone-resistant isolates), low frequency of resistance, lack of cross-resistance, and bactericidal activity of AZD0914 support its continued development. PMID:25385112

  16. Inactivation of biofilm bacteria.

    PubMed Central

    LeChevallier, M W; Cawthon, C D; Lee, R G

    1988-01-01

    The current project was developed to examine inactivation of biofilm bacteria and to characterize the interaction of biocides with pipe surfaces. Unattached bacteria were quite susceptible to the variety of disinfectants tested. Viable bacterial counts were reduced 99% by exposure to 0.08 mg of hypochlorous acid (pH 7.0) per liter (1 to 2 degrees C) for 1 min. For monochloramine, 94 mg/liter was required to kill 99% of the bacteria within 1 min. These results were consistent with those found by other investigators. Biofilm bacteria grown on the surfaces of granular activated carbon particles, metal coupons, or glass microscope slides were 150 to more than 3,000 times more resistant to hypochlorous acid (free chlorine, pH 7.0) than were unattached cells. In contrast, resistance of biofilm bacteria to monochloramine disinfection ranged from 2- to 100-fold more than that of unattached cells. The results suggested that, relative to inactivation of unattached bacteria, monochloramine was better able to penetrate and kill biofilm bacteria than free chlorine. For free chlorine, the data indicated that transport of the disinfectant into the biofilm was a major rate-limiting factor. Because of this phenomenon, increasing the level of free chlorine did not increase disinfection efficiency. Experiments where equal weights of disinfectants were used suggested that the greater penetrating power of monochloramine compensated for its limited disinfection activity. These studies showed that monochloramine was as effective as free chlorine for inactivation of biofilm bacteria. The research provides important insights into strategies for control of biofilm bacteria. Images PMID:2849380

  17. Exploiting CRISPR-Cas immune systems for genome editing in bacteria.

    PubMed

    Barrangou, Rodolphe; van Pijkeren, Jan-Peter

    2016-02-01

    The CRISPR-Cas immune system is a DNA-encoded, RNA-mediated, DNA-targeting defense mechanism, which provides sequence-specific targeting of DNA. This molecular machinery can be engineered into the sgRNA:Cas9 technology, for programmable cleavage of DNA. Following the genesis of double-stranded DNA breaks, the DNA repair machinery generates mutations at the cleavage site using various pathways. This technology has revolutionized eukaryotic genome editing, and we are at the cusp of full exploitation in bacteria. Here, we discuss the potential of CRISPR-based technologies for use in bacteria, and highlight the application of single stranded DNA recombineering combined with CRISPR-Cas selection to edit the genome of a probiotic organism. We envision that CRISPR-Cas technologies will play a key role in the development of next-generation industrial bacteria. PMID:26629846

  18. Multidrug Resistance in Bacteria

    PubMed Central

    Nikaido, Hiroshi

    2010-01-01

    Large amounts of antibiotics used for human therapy, as well as for farm animals and even for fish in aquaculture, resulted in the selection of pathogenic bacteria resistant to multiple drugs. Multidrug resistance in bacteria may be generated by one of two mechanisms. First, these bacteria may accumulate multiple genes, each coding for resistance to a single drug, within a single cell. This accumulation occurs typically on resistance (R) plasmids. Second, multidrug resistance may also occur by the increased expression of genes that code for multidrug efflux pumps, extruding a wide range of drugs. This review discusses our current knowledge on the molecular mechanisms involved in both types of resistance. PMID:19231985

  19. Antibiotics from predatory bacteria

    PubMed Central

    Korp, Juliane; Vela Gurovic, María S

    2016-01-01

    Summary Bacteria, which prey on other microorganisms, are commonly found in the environment. While some of these organisms act as solitary hunters, others band together in large consortia before they attack their prey. Anecdotal reports suggest that bacteria practicing such a wolfpack strategy utilize antibiotics as predatory weapons. Consistent with this hypothesis, genome sequencing revealed that these micropredators possess impressive capacities for natural product biosynthesis. Here, we will present the results from recent chemical investigations of this bacterial group, compare the biosynthetic potential with that of non-predatory bacteria and discuss the link between predation and secondary metabolism. PMID:27340451

  20. Antibiotics from predatory bacteria.

    PubMed

    Korp, Juliane; Vela Gurovic, María S; Nett, Markus

    2016-01-01

    Bacteria, which prey on other microorganisms, are commonly found in the environment. While some of these organisms act as solitary hunters, others band together in large consortia before they attack their prey. Anecdotal reports suggest that bacteria practicing such a wolfpack strategy utilize antibiotics as predatory weapons. Consistent with this hypothesis, genome sequencing revealed that these micropredators possess impressive capacities for natural product biosynthesis. Here, we will present the results from recent chemical investigations of this bacterial group, compare the biosynthetic potential with that of non-predatory bacteria and discuss the link between predation and secondary metabolism. PMID:27340451

  1. Isolation of isoprene degrading bacteria from soils, development of isoA gene probes and identification of the active isoprene-degrading soil community using DNA-stable isotope probing.

    PubMed

    El Khawand, Myriam; Crombie, Andrew T; Johnston, Antonia; Vavlline, Dmitrii V; McAuliffe, Joseph C; Latone, Jacob A; Primak, Yuliya A; Lee, Sang-Kyu; Whited, Gregg M; McGenity, Terry J; Murrell, J Colin

    2016-09-01

    Emissions of biogenic volatile organic compounds (bVOCs), are an important element in the global carbon cycle, accounting for a significant proportion of fixed carbon. They contribute directly and indirectly to global warming and climate change and have a major effect on atmospheric chemistry. Plants emit isoprene to the atmosphere in similar quantities to emissions of methane from all sources and each accounts for approximately one third of total VOCs. Although methanotrophs, capable of growth on methane, have been intensively studied, we know little of isoprene biodegradation. Here, we report the isolation of two isoprene-degrading strains from the terrestrial environment and describe the design and testing of polymerase chain reaction (PCR) primers targeting isoA, the gene encoding the active-site component of the conserved isoprene monooxygenase, which are capable of retrieving isoA sequences from isoprene-enriched environmental samples. Stable isotope probing experiments, using biosynthesized (13) C-labelled isoprene, identified the active isoprene-degrading bacteria in soil. This study identifies novel isoprene-degrading strains using both culture-dependent and, for the first time, culture-independent methods and provides the tools and foundations for continued investigation of the biogeography and molecular ecology of isoprene-degrading bacteria. PMID:27102583

  2. Widespread distribution of ability to oxidize manganese among freshwater bacteria.

    PubMed

    Gregory, E; Staley, J T

    1982-08-01

    Manganese-oxidizing heterotrophic bacteria were found to comprise a significant proportion of the bacterial community of Lake Washington (Seattle, Wash.) and Lake Virginia (Winter Park, Fla.). Identification of these freshwater bacteria showed that members of a variety of genera are capable of oxidizing manganese. Isolates maintained in the laboratory spontaneously lost the ability to oxidize manganese. A direct correlation was found between the presence of plasmid DNA and the ability of the organism to oxidize manganese. PMID:16346084

  3. Indicator For Pseudomonas Bacteria

    NASA Technical Reports Server (NTRS)

    Margalit, Ruth

    1990-01-01

    Characteristic protein extracted and detected. Natural protein marker found in Pseudomonas bacteria. Azurin, protein containing copper readily extracted, purified, and used to prepare antibodies. Possible to develop simple, fast, and accurate test for marker carried out in doctor's office.

  4. Bacteria subsisting on antibiotics.

    PubMed

    Dantas, Gautam; Sommer, Morten O A; Oluwasegun, Rantimi D; Church, George M

    2008-04-01

    Antibiotics are a crucial line of defense against bacterial infections. Nevertheless, several antibiotics are natural products of microorganisms that have as yet poorly appreciated ecological roles in the wider environment. We isolated hundreds of soil bacteria with the capacity to grow on antibiotics as a sole carbon source. Of 18 antibiotics tested, representing eight major classes of natural and synthetic origin, 13 to 17 supported the growth of clonal bacteria from each of 11 diverse soils. Bacteria subsisting on antibiotics are surprisingly phylogenetically diverse, and many are closely related to human pathogens. Furthermore, each antibiotic-consuming isolate was resistant to multiple antibiotics at clinically relevant concentrations. This phenomenon suggests that this unappreciated reservoir of antibiotic-resistance determinants can contribute to the increasing levels of multiple antibiotic resistance in pathogenic bacteria. PMID:18388292

  5. Gut bacteria and cancer

    PubMed Central

    Erdman, Susan E.; Poutahidis, Theofilos

    2015-01-01

    Microbiota on the mucosal surfaces of the gastrointestinal (GI) tract greatly outnumber the cells in the human body. Effects of antibiotics indicate that GI tract bacteria may be determining the fate of distal cancers. Recent data implicate dysregulated host responses to enteric bacteria leading to cancers in extra-intestinal sites. Together these findings point to novel anti-cancer strategies aimed at promoting GI tract homeostasis. PMID:26050963

  6. Aerobic Anoxygenic Phototrophic Bacteria

    PubMed Central

    Yurkov, Vladimir V.; Beatty, J. Thomas

    1998-01-01

    The aerobic anoxygenic phototrophic bacteria are a relatively recently discovered bacterial group. Although taxonomically and phylogenetically heterogeneous, these bacteria share the following distinguishing features: the presence of bacteriochlorophyll a incorporated into reaction center and light-harvesting complexes, low levels of the photosynthetic unit in cells, an abundance of carotenoids, a strong inhibition by light of bacteriochlorophyll synthesis, and the inability to grow photosynthetically under anaerobic conditions. Aerobic anoxygenic phototrophic bacteria are classified in two marine (Erythrobacter and Roseobacter) and six freshwater (Acidiphilium, Erythromicrobium, Erythromonas, Porphyrobacter, Roseococcus, and Sandaracinobacter) genera, which phylogenetically belong to the α-1, α-3, and α-4 subclasses of the class Proteobacteria. Despite this phylogenetic information, the evolution and ancestry of their photosynthetic properties are unclear. We discuss several current proposals for the evolutionary origin of aerobic phototrophic bacteria. The closest phylogenetic relatives of aerobic phototrophic bacteria include facultatively anaerobic purple nonsulfur phototrophic bacteria. Since these two bacterial groups share many properties, yet have significant differences, we compare and contrast their physiology, with an emphasis on morphology and photosynthetic and other metabolic processes. PMID:9729607

  7. Cleaving DNA with DNA

    NASA Astrophysics Data System (ADS)

    Carmi, Nir; Balkhi, Shameelah R.; Breaker, Ronald R.

    1998-03-01

    A DNA structure is described that can cleave single-stranded DNA oligonucleotides in the presence of ionic copper. This ``deoxyribozyme'' can self-cleave or can operate as a bimolecular complex that simultaneously makes use of duplex and triplex interactions to bind and cleave separate DNA substrates. Bimolecular deoxyribozyme-mediated strand scission proceeds with a kobs of 0.2 min-1, whereas the corresponding uncatalyzed reaction could not be detected. The duplex and triplex recognition domains can be altered, making possible the targeted cleavage of single-stranded DNAs with different nucleotide sequences. Several small synthetic DNAs were made to function as simple ``restriction enzymes'' for the site-specific cleavage of single-stranded DNA.

  8. Natural soil reservoirs for human pathogenic and fecal indicator bacteria

    USGS Publications Warehouse

    Boschiroli, Maria L; Falkinham, Joseph; Favre-Bonte, Sabine; Nazaret, Sylvie; Piveteau, Pascal; Sadowsky, Michael J.; Byappanahalli, Muruleedhara; Delaquis, Pascal; Hartmann, Alain

    2016-01-01

    Soils receive inputs of human pathogenic and indicator bacteria through land application of animal manures or sewage sludge, and inputs by wildlife. Soil is an extremely heterogeneous substrate and contains meso- and macrofauna that may be reservoirs for bacteria of human health concern. The ability to detect and quantify bacteria of human health concern is important in risk assessments and in evaluating the efficacy of agricultural soil management practices that are protective of crop quality and protective of adjacent water resources. The present chapter describes the distribution of selected Gram-positive and Gram-negative bacteria in soils. Methods for detecting and quantifying soilborne bacteria including extraction, enrichment using immunomagnetic capture, culturing, molecular detection and deep sequencing of metagenomic DNA to detect pathogens are overviewed. Methods for strain phenotypic and genotypic characterization are presented, as well as how comparison with clinical isolates can inform the potential for human health risk.

  9. Thermal control of virulence factors in bacteria: A hot topic

    PubMed Central

    Lam, Oliver; Wheeler, Jun; Tang, Christoph M

    2014-01-01

    Pathogenic bacteria sense environmental cues, including the local temperature, to control the production of key virulence factors. Thermal regulation can be achieved at the level of DNA, RNA or protein and although many virulence factors are subject to thermal regulation, the exact mechanisms of control are yet to be elucidated in many instances. Understanding how virulence factors are regulated by temperature presents a significant challenge, as gene expression and protein production are often influenced by complex regulatory networks involving multiple transcription factors in bacteria. Here we highlight some recent insights into thermal regulation of virulence in pathogenic bacteria. We focus on bacteria which cause disease in mammalian hosts, which are at a significantly higher temperature than the outside environment. We outline the mechanisms of thermal regulation and how understanding this fundamental aspect of the biology of bacteria has implications for pathogenesis and human health. PMID:25494856

  10. Utilization of hexamethylenetetramine (urotropine) by bacteria and yeasts.

    PubMed

    Middelhoven, Wouter J; van Doesburg, Wim

    2007-02-01

    A slow growing bacterial population able to utilize hexamethylelenetetramine (urotropine) as sole source of carbon, nitrogen and energy was isolated from soil. From this crude enrichment culture two bacteria were isolated and identified as Brevundimonas diminuta and a Phyllobacterium sp. by sequencing of 16S ribosomal DNA. These bacteria also grew on urotropine but at a lower rate than the enrichment culture. Addition of glucose to the latter resulted in growth of some yeasts that overgrew the bacteria. Assimilation of urotropine as sole nitrogen source is very common among yeasts, 46 out of 60 species tested showed this characteristic. PMID:17043911

  11. Platelet Interaction with Bacteria

    PubMed Central

    Clawson, C. C.

    1973-01-01

    The interaction of several common strains of bacteria with rabbit or human platelets in vitro has been examined sequentially with scanning and transmission electron microscopy. Bacteria were added to platelets in their native plasma or to washed platelets in a balanced salt solution at ratios of about 1:1 or at low bacteria to platelet ratios (down to 1:100). The platelet-bacterial interaction (PBI) was studied with recording nephelometry. Matched samples were fixed for microscopy at various points in the aggregation response. The results support these conclusions: a) Bacteria stimulate platelet aggregation by direct contact and adhesion with the platelet surface. b) Adhesion between the two cell types requires divalent cations, occurs through fusion of normal cell-surface coats and appears identical in the presence or absence of extracellular plasma protein. c) The morphologic transformation of platelets during PBI is identical to that produced by collagen. d) During PBI the bacteria are incorporated into the forming platelet aggregates and reside predominantly intercellularly. e) Phagocytosis of bacteria by a single platelet is very rare. f) Bacteria which have resided within platelet aggregates for one hour are unaltered morphologically. g) PBI occurs even at very low bacterial numbers and produces platelet-bacterial aggregates in small numbers without stimulating generalized platelet aggregation. Methods for concentration of thrombocytopenic plasma and washing human platelets are presented. ImagesFig 6Fig 7Fig 8Fig 9Fig 10Fig 11Fig 1Fig 2Fig 12Fig 13Fig 3Fig 14Fig 4Fig 5 PMID:4632008

  12. The fecal bacteria

    USGS Publications Warehouse

    Sadowsky, Michael J., (Edited By); Whitman, Richard L.

    2011-01-01

    The Fecal Bacteria offers a balanced, integrated discussion of fecal bacteria and their presence and ecology in the intestinal tract of mammals, in the environment, and in the food supply. This volume covers their use in examining and assessing water quality in order to offer protection from illnesses related to swimming in or ingesting contaminated water, in addition to discussing their use in engineering considerations of water quality, modeling, monitoring, and regulations. Fecal bacteria are additionally used as indicators of contamination of ready-to-eat foods and fresh produce. The intestinal environment, the microbial community structure of the gut microbiota, and the physiology and genomics of this broad group of microorganisms are explored in the book. With contributions from an internationally recognized group of experts, the book integrates medicine, public health, environmental, and microbiological topics in order to provide a unique, holistic understanding of fecal bacteria. Moreover, it shows how the latest basic science and applied research findings are helping to solve problems and develop effective management strategies. For example, readers will discover how the latest tools and molecular approaches have led to our current understanding of fecal bacteria and enabled us to improve human health and water quality. The Fecal Bacteria is recommended for microbiologists, clinicians, animal scientists, engineers, environmental scientists, food safety experts, water quality managers, and students. It will help them better understand fecal bacteria and use their knowledge to protect human and environmental health. They can also apply many of the techniques and molecular tools discussed in this book to the study of a broad range of microorganisms in a variety of habitats.

  13. Diversification of DnaA dependency for DNA replication in cyanobacterial evolution.

    PubMed

    Ohbayashi, Ryudo; Watanabe, Satoru; Ehira, Shigeki; Kanesaki, Yu; Chibazakura, Taku; Yoshikawa, Hirofumi

    2016-05-01

    Regulating DNA replication is essential for all living cells. The DNA replication initiation factor DnaA is highly conserved in prokaryotes and is required for accurate initiation of chromosomal replication at oriC. DnaA-independent free-living bacteria have not been identified. The dnaA gene is absent in plastids and some symbiotic bacteria, although it is not known when or how DnaA-independent mechanisms were acquired. Here, we show that the degree of dependency of DNA replication on DnaA varies among cyanobacterial species. Deletion of the dnaA gene in Synechococcus elongatus PCC 7942 shifted DNA replication from oriC to a different site as a result of the integration of an episomal plasmid. Moreover, viability during the stationary phase was higher in dnaA disruptants than in wild-type cells. Deletion of dnaA did not affect DNA replication or cell growth in Synechocystis sp. PCC 6803 or Anabaena sp. PCC 7120, indicating that functional dependency on DnaA was already lost in some nonsymbiotic cyanobacterial lineages during diversification. Therefore, we proposed that cyanobacteria acquired DnaA-independent replication mechanisms before symbiosis and such an ancestral cyanobacterium was the sole primary endosymbiont to form a plastid precursor. PMID:26517699

  14. Stress-Induced Mutagenesis in Bacteria

    PubMed Central

    Foster, Patricia L.

    2009-01-01

    Bacteria spend their lives buffeted by changing environmental conditions. To adapt to and survive these stresses, bacteria have global response systems that result in sweeping changes in gene expression and cellular metabolism. These responses are controlled by master regulators, which include: alternative sigma factors, such as RpoS and RpoH; small molecule effectors, such as ppGpp; gene repressors such as LexA; and, inorganic molecules, such as polyphosphate. The response pathways extensively overlap and are induced to various extents by the same environmental stresses. These stresses include nutritional deprivation, DNA damage, temperature shift, and exposure to antibiotics. All of these global stress responses include functions that can increase genetic variability. In particular, up-regulation and activation of error-prone DNA polymerases, down-regulation of error-correcting enzymes, and movement of mobile genetic elements are common features of several stress responses. The result is that under a variety of stressful conditions, bacteria are induced for genetic change. This transient mutator state may be important for adaptive evolution. PMID:17917873

  15. DNA repair

    SciTech Connect

    Friedberg, E.C.; Hanawalt, P.C. )

    1988-01-01

    Topics covered in this book included: Eukaryote model systems for DNA repair study; Sensitive detection of DNA lesions and their repair; and Defined DNA sequence probes for analysis of mutagenesis and repair.

  16. The RecQ DNA helicases in DNA Repair

    PubMed Central

    Bernstein, Kara A.; Gangloff, Serge; Rothstein, Rodney

    2014-01-01

    The RecQ helicases are conserved from bacteria to humans and play a critical role in genome stability. In humans, loss of RecQ gene function is associated with cancer predisposition and/or premature aging. Recent data have shown that the RecQ helicases function during two distinct steps during DNA repair; DNA end resection and resolution of double Holliday junctions (dHJs). RecQ functions in these different processing steps has important implications for its role in repair of double-strand breaks (DSBs) that occur during DNA replication, meiosis and at specific genomic loci such as telomeres. PMID:21047263

  17. Ice-Nucleating Bacteria

    NASA Astrophysics Data System (ADS)

    Obata, Hitoshi

    Since the discovery of ice-nucleating bacteria in 1974 by Maki et al., a large number of studies on the biological characteristics, ice-nucleating substance, ice nucleation gene and frost damage etc. of the bacteria have been carried out. Ice-nucleating bacteria can cause the freezing of water at relatively warm temperature (-2.3°C). Tween 20 was good substrates for ice-nucleating activity of Pseudomonas fluorescens KUIN-1. Major fatty acids of Isolate (Pseudomonas fluorescens) W-11 grown at 30°C were palmitic, cis-9-hexadecenoic and cis-11-octadecenoic which amounted to 90% of the total fatty acids. Sequence analysis shows that an ice nucleation gene from Pseudomonas fluorescens is related to the gene of Pseudomonas syringae.

  18. [Innovative treatments for multidrug-resistant bacteria].

    PubMed

    Pierre, Tattevin; Aurélien, Lorleac'h; Matthieu, Revest

    2014-03-01

    The spread of multidrug-resistant bacteria has accelerated sharply in the last decade. According to the World Health Organization they are responsible for an estimated 25 000 deaths in Europe each year. In addition, few new antibiotics are under development, raising the spectrum of a return to the "pre-antibiotic era". Non antibiotic antibacterial agents have recently attracted renewed interest. The most promising candidates are: i) phages (bacteria-infecting viruses) have been widely used in Eastern European countries since the 1930s but come up against logistic and regulatory obstacles due to the evolutionary nature of these biologic agents, while convincing clinical data are lacking; ii) bacteriocines are smallantibacterialpeptidesproducedby numerous bacteria; some have a rapid bactericidal effect, good tolerability, and a limited impact on the commensal flora; however, clinical use of bacteriocines is complicated by their fragility, poor penetration, and substantial risk of resistance selection ; iii) antisense oligonucleo tides act by inactivating genes through specific interaction with a complementary DNA or RNA fragment, potentially allowing specific inhibition of selected bacterial virulence factors. However, this therapeutic class may be more suitable for viral or genetic diseases than for multidrug-resistant bacterial infections, owing to the difficulty of delivering them inside bacteria. PMID:26427289

  19. Horizontal gene transfer between bacteria and animals.

    PubMed

    Dunning Hotopp, Julie C

    2011-04-01

    Horizontal gene transfer is increasingly described between bacteria and animals. Such transfers that are vertically inherited have the potential to influence the evolution of animals. One classic example is the transfer of DNA from mitochondria and chloroplasts to the nucleus after the acquisition of these organelles by eukaryotes. Even today, many of the described instances of bacteria-to-animal transfer occur as part of intimate relationships such as those of endosymbionts and their invertebrate hosts, particularly insects and nematodes, while numerous transfers are also found in asexual animals. Both of these observations are consistent with modern evolutionary theory, in particular the serial endosymbiotic theory and Muller's ratchet. Although it is tempting to suggest that these particular lifestyles promote horizontal gene transfer, it is difficult to ascertain given the nonrandom sampling of animal genome sequencing projects and the lack of a systematic analysis of animal genomes for such transfers. PMID:21334091

  20. PATHOGENICITY OF BIOFILM BACTERIA

    EPA Science Inventory

    There is a paucity of information concerning any link between the microorganisms commonly found in biofilms of drinking water systems and their impacts on human health. For bacteria, culture-based techniques detect only a limited number of the total microorganisms associated wit...

  1. Antibiotic-Resistant Bacteria.

    ERIC Educational Resources Information Center

    Longenecker, Nevin E.; Oppenheimer, Dan

    1982-01-01

    A study conducted by high school advanced bacteriology students appears to confirm the hypothesis that the incremental administration of antibiotics on several species of bacteria (Escherichia coli, Staphylococcus epidermis, Bacillus sublitus, Bacillus megaterium) will allow for the development of antibiotic-resistant strains. (PEB)

  2. R-body-producing bacteria.

    PubMed Central

    Pond, F R; Gibson, I; Lalucat, J; Quackenbush, R L

    1989-01-01

    Until 10 years ago, R bodies were known only as diagnostic features by which endosymbionts of paramecia were identified as kappa particles. They were thought to be limited to the cytoplasm of two species in the Paramecium aurelia species complex. Now, R bodies have been found in free-living bacteria and other Paramecium species. The organisms now known to form R bodies include the cytoplasmic kappa endosymbionts of P. biaurelia and P. tetraurelia, the macronuclear kappa endosymbionts of P. caudatum, Pseudomonas avenae (a free-living plant pathogen), Pseudomonas taeniospiralis (a hydrogen-oxidizing soil microorganism), Rhodospirillum centenum (a photosynthetic bacterium), and a soil bacterium, EPS-5028, which is probably a pseudomonad. R bodies themselves fall into five distinct groups, distinguished by size, the morphology of the R-body ribbons, and the unrolling behavior of wound R bodies. In recent years, the inherent difficulties in studying the organization and assembly of R bodies by the obligate endosymbiont kappa, have been alleviated by cloning and expressing genetic determinants for these R bodies (type 51) in Escherichia coli. Type 51 R-body synthesis requires three low-molecular-mass polypeptides. One of these is modified posttranslationally, giving rise to 12 polypeptide species, which are the major structural subunits of the R body. R bodies are encoded in kappa species by extrachromosomal elements. Type 51 R bodies, produced in Caedibacter taeniospiralis, are encoded by a plasmid, whereas bacteriophage genomes probably control R-body synthesis in other kappa species. However, there is no evidence that either bacteriophages or plasmids are present in P. avenae or P. taeniospiralis. No sequence homology was detected between type 51 R-body-encoding DNA and DNA from any R-body-producing species, except C. varicaedens 1038. The evolutionary relatedness of different types of R bodies remains unknown. Images PMID:2651865

  3. Ultrasensitive Detection of Bacteria by Targeting Abundant Transcripts.

    PubMed

    Wang, Xinhui; Li, Xinran; Liu, Shiwei; Ren, Hang; Yang, Mingjuan; Ke, Yuehua; Huang, Liuyu; Liu, Chao; Liu, Bo; Chen, Zeliang

    2016-01-01

    Molecular detection assays are increasingly becoming routine diagnostic techniques for bacterial infection; however, their sensitivities are restricted by the low concentrations of bacteria in clinical samples. Here, we report a new paradigm for ultrasensitive detection of bacteria. The principle of this approach is that by choosing highly transcribed genes as signature sequences and detecting both DNA and its RNA transcripts, assay sensitivity can be greatly improved. First, signature genes with abundant transcripts were screened by RNA-Seq. We confirmed that RT-PCR efficiently amplifies both DNA and RNA, while PCR amplifies only DNA. Unexpectedly, we found that the RNA extraction efficiency is relatively low, while simplified denaturation was more appropriate for transcript detection. For highly transcribed genes, RT-PCR consistently generated lower cycle threshold (Ct) values than those of PCR. The sensitivity of RT-PCR targeting abundant transcripts could detect quantities as low as one bacterium, which was not possible using PCR. Amplification of different genes among several other common bacteria also confirmed that transcript detection by RT-PCR is more sensitive than is DNA detection by PCR. Therefore, abundant transcript detection represents a universal strategy for ultrasensitive detection of bacteria. PMID:26848029

  4. Ultrasensitive Detection of Bacteria by Targeting Abundant Transcripts

    PubMed Central

    Wang, Xinhui; Li, Xinran; Liu, Shiwei; Ren, Hang; Yang, Mingjuan; Ke, Yuehua; Huang, Liuyu; Liu, Chao; Liu, Bo; Chen, Zeliang

    2016-01-01

    Molecular detection assays are increasingly becoming routine diagnostic techniques for bacterial infection; however, their sensitivities are restricted by the low concentrations of bacteria in clinical samples. Here, we report a new paradigm for ultrasensitive detection of bacteria. The principle of this approach is that by choosing highly transcribed genes as signature sequences and detecting both DNA and its RNA transcripts, assay sensitivity can be greatly improved. First, signature genes with abundant transcripts were screened by RNA-Seq. We confirmed that RT-PCR efficiently amplifies both DNA and RNA, while PCR amplifies only DNA. Unexpectedly, we found that the RNA extraction efficiency is relatively low, while simplified denaturation was more appropriate for transcript detection. For highly transcribed genes, RT-PCR consistently generated lower cycle threshold (Ct) values than those of PCR. The sensitivity of RT-PCR targeting abundant transcripts could detect quantities as low as one bacterium, which was not possible using PCR. Amplification of different genes among several other common bacteria also confirmed that transcript detection by RT-PCR is more sensitive than is DNA detection by PCR. Therefore, abundant transcript detection represents a universal strategy for ultrasensitive detection of bacteria. PMID:26848029

  5. DNA charge transport within the cell.

    PubMed

    Grodick, Michael A; Muren, Natalie B; Barton, Jacqueline K

    2015-02-01

    The unique characteristics of DNA charge transport (CT) have prompted an examination of roles for this chemistry within a biological context. Not only can DNA CT facilitate long-range oxidative damage of DNA, but redox-active proteins can couple to the DNA base stack and participate in long-range redox reactions using DNA CT. DNA transcription factors with redox-active moieties such as SoxR and p53 can use DNA CT as a form of redox sensing. DNA CT chemistry also provides a means to monitor the integrity of the DNA, given the sensitivity of DNA CT to perturbations in base stacking as arise with mismatches and lesions. Enzymes that utilize this chemistry include an interesting and ever-growing class of DNA-processing enzymes involved in DNA repair, replication, and transcription that have been found to contain 4Fe-4S clusters. DNA repair enzymes containing 4Fe-4S clusters, that include endonuclease III (EndoIII), MutY, and DinG from bacteria, as well as XPD from archaea, have been shown to be redox-active when bound to DNA, share a DNA-bound redox potential, and can be reduced and oxidized at long-range via DNA CT. Interactions between DNA and these proteins in solution, in addition to genetics experiments within Escherichia coli, suggest that DNA-mediated CT can be used as a means of cooperative signaling among DNA repair proteins that contain 4Fe-4S clusters as a first step in finding DNA damage, even within cells. On the basis of these data, we can consider also how DNA-mediated CT may be used as a means of signaling to coordinate DNA processing across the genome. PMID:25606780

  6. Plasmid incidence in bacteria from deep subsurface sediments.

    PubMed

    Fredrickson, J K; Hicks, R J; Li, S W; Brockman, F J

    1988-12-01

    Bacteria were isolated from deep terrestrial subsurface sediments underlying the coastal plain of South Carolina. A total of 163 isolates from deep sediments, surface soil, and return drill muds were examined for plasmid DNA content and resistance to the antibiotics penicillin, ampicillin, carbenicillin, streptomycin, kanamycin, and tetracycline. MICs of Cu, Cr, and Hg for each isolate were also determined. The overall frequency of plasmid occurrence in the subsurface bacteria was 33%. Resistance was most frequent to penicillin (70% of all isolates), ampicillin (49%), and carbenicillin (32%) and was concluded to be related to the concentrations of the individual antibiotics in the disks used for assaying resistance and to the production of low levels of beta-lactamase. The frequencies of resistance to penicillin and ampicillin were significantly greater for isolates bearing plasmids than for plasmidless isolates; however, resistance was not transferable to penicillin-sensitive Escherichia coli. Hybridization of subsurface bacterial plasmids and chromosomal DNA with a whole-TOL-plasmid (pWWO) probe revealed some homology of subsurface bacterial plasmid and chromosomal DNAs, indicating a potential for those bacteria to harbor catabolic genes on plasmids or chromosomes. The incidences of antibiotic resistance and MICs of metals for subsurface bacteria were significantly different from those for drill mud bacteria, ruling out the possibility that bacteria from sediments were derived from drill muds. PMID:16347789

  7. Caenorhabditis elegans responses to bacteria from its natural habitats

    PubMed Central

    Rowedder, Holli; Braendle, Christian; Félix, Marie-Anne; Ruvkun, Gary

    2016-01-01

    Most Caenorhabditis elegans studies have used laboratory Escherichia coli as diet and microbial environment. Here we characterize bacteria of C. elegans' natural habitats of rotting fruits and vegetation to provide greater context for its physiological responses. By the use of 16S ribosomal DNA (rDNA)-based sequencing, we identified a large variety of bacteria in C. elegans habitats, with phyla Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria being most abundant. From laboratory assays using isolated natural bacteria, C. elegans is able to forage on most bacteria (robust growth on ∼80% of >550 isolates), although ∼20% also impaired growth and arrested and/or stressed animals. Bacterial community composition can predict wild C. elegans population states in both rotting apples and reconstructed microbiomes: alpha-Proteobacteria-rich communities promote proliferation, whereas Bacteroidetes or pathogens correlate with nonproliferating dauers. Combinatorial mixtures of detrimental and beneficial bacteria indicate that bacterial influence is not simply nutritional. Together, these studies provide a foundation for interrogating how bacteria naturally influence C. elegans physiology. PMID:27317746

  8. Caenorhabditis elegans responses to bacteria from its natural habitats.

    PubMed

    Samuel, Buck S; Rowedder, Holli; Braendle, Christian; Félix, Marie-Anne; Ruvkun, Gary

    2016-07-01

    Most Caenorhabditis elegans studies have used laboratory Escherichia coli as diet and microbial environment. Here we characterize bacteria of C. elegans' natural habitats of rotting fruits and vegetation to provide greater context for its physiological responses. By the use of 16S ribosomal DNA (rDNA)-based sequencing, we identified a large variety of bacteria in C. elegans habitats, with phyla Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria being most abundant. From laboratory assays using isolated natural bacteria, C. elegans is able to forage on most bacteria (robust growth on ∼80% of >550 isolates), although ∼20% also impaired growth and arrested and/or stressed animals. Bacterial community composition can predict wild C. elegans population states in both rotting apples and reconstructed microbiomes: alpha-Proteobacteria-rich communities promote proliferation, whereas Bacteroidetes or pathogens correlate with nonproliferating dauers. Combinatorial mixtures of detrimental and beneficial bacteria indicate that bacterial influence is not simply nutritional. Together, these studies provide a foundation for interrogating how bacteria naturally influence C. elegans physiology. PMID:27317746

  9. PhaR, a protein of unknown function conserved among short-chain-length polyhydroxyalkanoic acids producing bacteria, is a DNA-binding protein and represses Paracoccus denitrificans phaP expression in vitro.

    PubMed

    Maehara, A; Doi, Y; Nishiyama, T; Takagi, Y; Ueda, S; Nakano, H; Yamane, T

    2001-06-12

    A putative regulatory protein, PhaR, which was identified in the polyhydroxyalkanoic acid synthetic locus (phaZCPR) in Paracoccus denitrificans, was investigated. The PhaR protein purified from a recombinant Escherichia coli was estimated to be 22 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, being consistent with the mass calculated from the nucleotide sequence. The molecular mass was determined to be 93 kDa by size-exclusion chromatography, suggesting that the protein formed a tetramer. A gel mobility shift assay showed that PhaR specifically bound to the intergenic region of phaC--phaP. In a cell-free protein synthesis system using E. coli S30 extract, the expression of the phaP gene was repressed by the addition of purified PhaR. These results suggest that PhaR is a DNA-binding protein and may play a role in the regulation of phaP gene expression. PMID:11410342

  10. Radiobiological effects of heavy ions and protons. [on cells of mammals, bacteria and viruses

    NASA Technical Reports Server (NTRS)

    Ryzhov, N. I.; Vorozhtsova, S. V.; Krasavin, Y. A.; Mashinskaya, T. Y.; Savchenko, N. Y.; Fedorov, B. S.; Khlaponina, V. F.; Shelegedin, V. N.; Gut, L.; Sabo, L.

    1974-01-01

    Radiobiological effects of heavy ions and protons are studied on cells of mammals, bacteria, viruses and DNA of bacteria. Results show that the dose effect dependence bears an exponential character; the reduction of RBE as LET of particle increases reflects the different character of microdistribution of absorbed energy in biological objects with different levels of biological organization.

  11. Recombinant bacteria for mosquito control.

    PubMed

    Federici, B A; Park, H-W; Bideshi, D K; Wirth, M C; Johnson, J J

    2003-11-01

    Bacterial insecticides have been used for the control of nuisance and vector mosquitoes for more than two decades. Nevertheless, due primarily to their high cost and often only moderate efficacy, these insecticides remain of limited use in tropical countries where mosquito-borne diseases are prevalent. Recently, however, recombinant DNA techniques have been used to improve bacterial insecticide efficacy by markedly increasing the synthesis of mosquitocidal proteins and by enabling new endotoxin combinations from different bacteria to be produced within single strains. These new strains combine mosquitocidal Cry and Cyt proteins of Bacillus thuringiensis with the binary toxin of Bacillus sphaericus, improving efficacy against Culex species by 10-fold and greatly reducing the potential for resistance through the presence of Cyt1A. Moreover, although intensive use of B. sphaericus against Culex populations in the field can result in high levels of resistance, most of this can be suppressed by combining this bacterial species with Cyt1A; the latter enables the binary toxin of this species to enter midgut epithelial cells via the microvillar membrane in the absence of a midgut receptor. The availability of these novel strains and newly discovered mosquitocidal proteins, such as the Mtx toxins of B. sphaericus, offers the potential for constructing a range of recombinant bacterial insecticides for more effective control of the mosquito vectors of filariasis, Dengue fever and malaria. PMID:14506223

  12. Fluorometric Determination of Deoxyribonucleic Acid in Bacteria with Ethidium Bromide

    PubMed Central

    Donkersloot, J. A.; Robrish, S. A.; Krichevsky, M. I.

    1972-01-01

    A simple, sensitive, and rapid method is presented for the determination of deoxyribonucleic acid (DNA) in both gram-positive and gram-negative bacteria. It is based upon the fluorometric determination of DNA with ethidium bromide after alkaline digestion of the bacteria to hydrolyze the interfering ribonucleic acid. The assay takes less than 2 hr. Its sensitivity is at least 0.2 μg of DNA in a final solution of 4 ml and it uses commonly available filter or double monochromator fluorometers. Judicious choice of light source and filters allows an additional 10-fold increase in sensitivity with a filter fluorometer. Turbidity caused by bacteria or insoluble polysaccharides does not interfere with the fluorescence measurements. There was no significant difference between the results obtained with this method and those obtained with the indole and diphenylamine methods when these assays were applied to Escherichia coli and sucrose- or glucose-grown Streptococcus mutans. The method was also tested by determining the specific growth rate of E. coli. This new procedure should be especially useful for the determination of bacterial DNA in dilute suspensions and for the estimation of bacterial growth or DNA replication where more conventional methods are not applicable or sensitive enough. PMID:4561101

  13. How-to-Do-It: Recombinant DNA Made Easy II. Gene, Gene, Who's Got the Gene?

    ERIC Educational Resources Information Center

    Thomson, Robert G.

    1989-01-01

    Described is an activity in which students are able to determine that DNA can be transferred between bacteria and should be able to predict the type of DNA transferred. Methods, materials, and results are discussed. (CW)

  14. Small Talk: Cell-to-Cell Communication in Bacteria

    ScienceCinema

    Bassler, Bonnie [Princeton University, Princeton, New Jersey, United States

    2010-01-08

    Cell-cell communication in bacteria involves the production, release, and subsequent detection of chemical signaling molecules called autoinducers. This process, called quorum sensing, allows bacteria to regulate gene expression on a population-wide scale. Processes controlled by quorum sensing are usually ones that are unproductive when undertaken by an individual bacterium but become effective when undertaken by the group. For example, quorum sensing controls bioluminescence, secretion of virulence factors, biofilm formation, sporulation, and the exchange of DNA. Thus, quorum sensing is a mechanism that allows bacteria to function as multi-cellular organisms. Bacteria make, detect, and integrate information from multiple autoinducers, some of which are used exclusively for intra-species communication while others enable communication between species. Research is now focused on the development of therapies that interfere with quorum sensing to control bacterial virulence.

  15. Phylogenetic analysis on the soil bacteria distributed in karst forest

    PubMed Central

    Zhou, JunPei; Huang, Ying; Mo, MingHe

    2009-01-01

    Phylogenetic composition of bacterial community in soil of a karst forest was analyzed by culture-independent molecular approach. The bacterial 16S rRNA gene was amplified directly from soil DNA and cloned to generate a library. After screening the clone library by RFLP, 16S rRNA genes of representative clones were sequenced and the bacterial community was analyzed phylogenetically. The 16S rRNA gene inserts of 190 clones randomly selected were analyzed by RFLP and generated 126 different RFLP types. After sequencing, 126 non-chimeric sequences were obtained, generating 113 phylotypes. Phylogenetic analysis revealed that the bacteria distributed in soil of the karst forest included the members assigning into Proteobacteria, Acidobacteria, Planctomycetes, Chloroflexi (Green nonsulfur bacteria), Bacteroidetes, Verrucomicrobia, Nitrospirae, Actinobacteria (High G+C Gram-positive bacteria), Firmicutes (Low G+C Gram-positive bacteria) and candidate divisions (including the SPAM and GN08). PMID:24031430

  16. Small Talk: Cell-to-Cell Communication in Bacteria

    SciTech Connect

    Bassler, Bonnie

    2008-12-03

    Cell-cell communication in bacteria involves the production, release, and subsequent detection of chemical signaling molecules called autoinducers. This process, called quorum sensing, allows bacteria to regulate gene expression on a population-wide scale. Processes controlled by quorum sensing are usually ones that are unproductive when undertaken by an individual bacterium but become effective when undertaken by the group. For example, quorum sensing controls bioluminescence, secretion of virulence factors, biofilm formation, sporulation, and the exchange of DNA. Thus, quorum sensing is a mechanism that allows bacteria to function as multi-cellular organisms. Bacteria make, detect, and integrate information from multiple autoinducers, some of which are used exclusively for intra-species communication while others enable communication between species. Research is now focused on the development of therapies that interfere with quorum sensing to control bacterial virulence.

  17. Small Talk: Cell-to-Cell Communication in Bacteria

    SciTech Connect

    Bassler, Bonnie

    2008-05-14

    Cell-cell communication in bacteria involves the production, release, and subsequent detection of chemical signaling molecules called autoinducers. This process, called quorum sensing, allows bacteria to regulate gene expression on a population-wide scale. Processes controlled by quorum sensing are usually ones that are unproductive when undertaken by an individual bacterium but become effective when undertaken by the group. For example, quorum sensing controls bioluminescence, secretion of virulence factors, biofilm formation, sporulation, and the exchange of DNA. Thus, quorum sensing is a mechanism that allows bacteria to function as multi-cellular organisms. Bacteria make, detect, and integrate information from multiple autoinducers, some of which are used exclusively for intra-species communication while others enable communication between species. Research is now focused on the development of therapies that interfere with quorum sensing to control bacterial virulence.

  18. Lipoprotein sorting in bacteria.

    PubMed

    Okuda, Suguru; Tokuda, Hajime

    2011-01-01

    Bacterial lipoproteins are synthesized as precursors in the cytoplasm and processed into mature forms on the cytoplasmic membrane. A lipid moiety attached to the N terminus anchors these proteins to the membrane surface. Many bacteria are predicted to express more than 100 lipoproteins, which play diverse functions on the cell surface. The Lol system, composed of five proteins, catalyzes the localization of Escherichia coli lipoproteins to the outer membrane. Some lipoproteins play vital roles in the sorting of other lipoproteins, lipopolysaccharides, and β-barrel proteins to the outer membrane. On the basis of results from biochemical, genetic, and structural studies, we discuss the biogenesis of lipoproteins in bacteria, their importance in cellular functions, and the molecular mechanisms underlying efficient sorting of hydrophobic lipoproteins to the outer membrane through the hydrophilic periplasm. PMID:21663440

  19. Sociomicrobiology and Pathogenic Bacteria.

    PubMed

    Xavier, Joao B

    2016-06-01

    The study of microbial pathogenesis has been primarily a reductionist science since Koch's principles. Reductionist approaches are essential to identify the causal agents of infectious disease, their molecular mechanisms of action, and potential drug targets, and much of medicine's success in the treatment of infectious disease stems from that approach. But many bacteria-caused diseases cannot be explained by a single bacterium. Several aspects of bacterial pathogenesis will benefit from a more holistic approach that takes into account social interaction among bacteria of the same species and between species in consortia such as the human microbiome. The emerging discipline of sociomicrobiology provides a framework to dissect microbial interactions in single and multi-species communities without compromising mechanistic detail. The study of bacterial pathogenesis can benefit greatly from incorporating concepts from other disciplines such as social evolution theory and microbial ecology, where communities, their interactions with hosts, and with the environment play key roles. PMID:27337482

  20. Manufacture of Probiotic Bacteria

    NASA Astrophysics Data System (ADS)

    Muller, J. A.; Ross, R. P.; Fitzgerald, G. F.; Stanton, C.

    Lactic acid bacteria (LAB) have been used for many years as natural biopreservatives in fermented foods. A small group of LAB are also believed to have beneficial health effects on the host, so called probiotic bacteria. Probiotics have emerged from the niche industry from Asia into European and American markets. Functional foods are one of the fastest growing markets today, with estimated growth to 20 billion dollars worldwide by 2010 (GIA, 2008). The increasing demand for probiotics and the new food markets where probiotics are introduced, challenges the industry to produce high quantities of probiotic cultures in a viable and stable form. Dried concentrated probiotic cultures are the most convenient form for incorporation into functional foods, given the ease of storage, handling and transport, especially for shelf-stable functional products. This chapter will discuss various aspects of the challenges associated with the manufacturing of probiotic cultures.

  1. Exopolysaccharides from marine bacteria

    NASA Astrophysics Data System (ADS)

    Chi, Zhenming; Fang, Yan

    2005-01-01

    Microbial polysaccharides represent a class of important products of growing interest for many sectors of industry. In recent years, there has been a growing interest in isolating new exopolysaccharides (EPSs)-producing bacteria from marine environments, particularly from various extreme marine environments. Many new marine microbial EPSs with novel chemical compositions, properties and structures have been found to have potential applications in fields such as adhesives, textiles, Pharmaceuticals and medicine for anti-cancer, food additives, oil recovery and metal removal in mining and industrial waste treatments, etc This paper gives a brief summary of the information about the EPSs produced by marine bacteria, including their chemical compositions, properties and structures, together with their potential applications in industry.

  2. Diversity of endophytic bacteria in medicinally important Nepenthes species

    PubMed Central

    Bhore, Subhash J.; Komathi, Vijayan; Kandasamy, Kodi I.

    2013-01-01

    Background: Nepenthes species are used in traditional medicines to treat various health ailments. However, we do not know which types of endophytic bacteria (EB) are associated with Nepenthes spp. Objective: The objective of this study was to isolate and to identify EB associated with Nepenthes spp. Materials and Methods: Surface-sterilized leaf and stem tissues from nine Nepenthes spp. collected from Peninsular Malaysia were used to isolate EB. Isolates were identified using the polymerase chain reaction-amplified 16S ribosomal DNA (rDNA) sequence similarity based method. Results: Cultivable, 96 isolates were analyzed; and the 16S rDNA sequences analysis suggest that diverse bacterial species are associated with Nepenthes spp. Majority (55.2%) of the isolates were from Bacillus genus, and Bacillus cereus was the most dominant (14.6%) among isolates. Conclusion: Nepenthes spp. do harbor a wide array of cultivable endophytic bacteria. PMID:24082746

  3. Bacteria in Confined Spaces

    NASA Astrophysics Data System (ADS)

    Wilking, Connie; Weitz, David

    2010-03-01

    Bacterial cells can display differentiation between several developmental pathways, from planktonic to matrix-producing, depending upon the colony conditions. We study the confinement of bacteria in hydrogels as well as in liquid-liquid double emulsion droplets and observe the growth and morphology of these colonies as a function of time and environment. Our results can give insight into the behavior of bacterial colonies in confined spaces that can have applications in the areas of food science, cosmetics, and medicine.

  4. Denitrification by extremely halophilic bacteria

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Tomlinson, G. A.

    1985-01-01

    Extremely halophilic bacteria were isolated from widely separated sites by anaerobic enrichment in the presence of nitrate. The anaerobic growth of several of these isolates was accompanied by the production of nitrite, nitrous oxide, and dinitrogen. These results are a direct confirmation of the existence of extremely halophilic denitrifying bacteria, and suggest that such bacteria may be common inhabitants of hypersaline environments.

  5. Growing Unculturable Bacteria

    PubMed Central

    2012-01-01

    The bacteria that can be grown in the laboratory are only a small fraction of the total diversity that exists in nature. At all levels of bacterial phylogeny, uncultured clades that do not grow on standard media are playing critical roles in cycling carbon, nitrogen, and other elements, synthesizing novel natural products, and impacting the surrounding organisms and environment. While molecular techniques, such as metagenomic sequencing, can provide some information independent of our ability to culture these organisms, it is essentially impossible to learn new gene and pathway functions from pure sequence data. A true understanding of the physiology of these bacteria and their roles in ecology, host health, and natural product production requires their cultivation in the laboratory. Recent advances in growing these species include coculture with other bacteria, recreating the environment in the laboratory, and combining these approaches with microcultivation technology to increase throughput and access rare species. These studies are unraveling the molecular mechanisms of unculturability and are identifying growth factors that promote the growth of previously unculturable organisms. This minireview summarizes the recent discoveries in this area and discusses the potential future of the field. PMID:22661685

  6. Biocide tolerance in bacteria.

    PubMed

    Ortega Morente, Elena; Fernández-Fuentes, Miguel Angel; Grande Burgos, Maria José; Abriouel, Hikmate; Pérez Pulido, Rubén; Gálvez, Antonio

    2013-03-01

    Biocides have been employed for centuries, so today a wide range of compounds showing different levels of antimicrobial activity have become available. At the present time, understanding the mechanisms of action of biocides has also become an important issue with the emergence of bacterial tolerance to biocides and the suggestion that biocide and antibiotic resistance in bacteria might be linked. While most of the mechanisms providing antibiotic resistance are agent specific, providing resistance to a single antimicrobial or class of antimicrobial, there are currently numerous examples of efflux systems that accommodate and, thus, provide tolerance to a broad range of structurally unrelated antimicrobials, both antibiotics and biocides. If biocide tolerance becomes increasingly common and it is linked to antibiotic resistance, not only resistant (even multi-resistant) bacteria could be passed along the food chain, but also there are resistance determinants that can spread and lead to the emergence of new resistant microorganisms, which can only be detected and monitored when the building blocks of resistance traits are understood on the molecular level. This review summarizes the main advances reached in understanding the mechanism of action of biocides, the mechanisms of bacterial resistance to both biocides and antibiotics, and the incidence of biocide tolerance in bacteria of concern to human health and the food industry. PMID:23340387

  7. Acetoin metabolism in bacteria.

    PubMed

    Xiao, Zijun; Xu, Ping

    2007-01-01

    Acetoin is an important physiological metabolite excreted by many microorganisms. The excretion of acetoin, which can be diagnosed by the Voges Proskauer test and serves as a microbial classification marker, has its vital physiological meanings to these microbes mainly including avoiding acification, participating in the regulation of NAD/NADH ratio, and storaging carbon. The well-known anabolism of acetoin involves alpha-acetolactat synthase and alpha-acetolactate decarboxylase; yet its catabolism still contains some differing views, although much attention has been focused on it and great advances have been achieved. Current findings in catabolite control protein A (CcpA) mediated carbon catabolite repression may provide a fuller understanding of the control mechanism in bacteria. In this review, we first examine the acetoin synthesis pathways and its physiological meanings and relevancies; then we discuss the relationship between the two conflicting acetoin cleavage pathways, the enzymes of the acetoin dehydrogenase enzyme system, major genes involved in acetoin degradation, and the CcpA mediated acetoin catabolite repression pathway; in the end we discuss the genetic engineering progresses concerning applications. To date, this is the first integrated review on acetoin metabolism in bacteria, especially with regard to catabolic aspects. The apperception of the generation and dissimilation of acetoin in bacteria will help provide a better understanding of microbial strategies in the struggle for resources, which will consequently better serve the utilization of these microbes. PMID:17558661

  8. Structural and Thermodynamic Signatures of DNA Recognition by Mycobacterium tuberculosis DnaA

    SciTech Connect

    Tsodikov, Oleg V.; Biswas, Tapan

    2011-09-06

    An essential protein, DnaA, binds to 9-bp DNA sites within the origin of replication oriC. These binding events are prerequisite to forming an enigmatic nucleoprotein scaffold that initiates replication. The number, sequences, positions, and orientations of these short DNA sites, or DnaA boxes, within the oriCs of different bacteria vary considerably. To investigate features of DnaA boxes that are important for binding Mycobacterium tuberculosis DnaA (MtDnaA), we have determined the crystal structures of the DNA binding domain (DBD) of MtDnaA bound to a cognate MtDnaA-box (at 2.0 {angstrom} resolution) and to a consensus Escherichia coli DnaA-box (at 2.3 {angstrom}). These structures, complemented by calorimetric equilibrium binding studies of MtDnaA DBD in a series of DnaA-box variants, reveal the main determinants of DNA recognition and establish the [T/C][T/A][G/A]TCCACA sequence as a high-affinity MtDnaA-box. Bioinformatic and calorimetric analyses indicate that DnaA-box sequences in mycobacterial oriCs generally differ from the optimal binding sequence. This sequence variation occurs commonly at the first 2 bp, making an in vivo mycobacterial DnaA-box effectively a 7-mer and not a 9-mer. We demonstrate that the decrease in the affinity of these MtDnaA-box variants for MtDnaA DBD relative to that of the highest-affinity box TTGTCCACA is less than 10-fold. The understanding of DnaA-box recognition by MtDnaA and E. coli DnaA enables one to map DnaA-box sequences in the genomes of M. tuberculosis and other eubacteria.

  9. Cloning a Eukaryotic DNA Glycosylase Repair Gene by the Suppression of a DNA Repair Defect in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Chen, Jin; Derfler, Bruce; Maskati, Azmat; Samson, Leona

    1989-10-01

    If eukaryotic genes could protect bacteria with defects in DNA repair, this effect could be exploited for the isolation of eukaryotic DNA repair genes. We have thus cloned a DNA repair gene from Saccharomyces cerevisiae that directs the synthesis of a DNA glycosylase that specifically releases 3-methyladenine from alkylated DNA and in so doing protects alkylation-sensitive Escherichia coli from killing by methylating agents. The cloned yeast gene was then used to generate a mutant strain of S. cerevisiae that carries a defect in the glycosylase gene and is extremely sensitive to DNA methylation. This approach may allow the isolation of a large number of eukaryotic DNA repair genes.

  10. Structural investigation into physiological DNA phosphorothioate modification.

    PubMed

    Lan, Wenxian; Hu, Zhongpei; Shen, Jie; Wang, Chunxi; Jiang, Feng; Liu, Huili; Long, Dewu; Liu, Maili; Cao, Chunyang

    2016-01-01

    DNA phosphorothioate (PT) modification, with sulfur replacing a nonbridging phosphate oxygen in a sequence and stereo specific manner, is a novel physiological variation in bacteria. But what effects on DNA properties PT modification has is still unclear. To address this, we prepared three double-stranded (ds) DNA decamers, d(CG(PX)GCCGCCGA) with its complementary strand d(TCGGCG(PX)GCCG) (where X = O or S, i.e., PT-free dsDNA, [Sp, Sp]-PT dsDNA or [Rp, Rp]-PT dsDNA) located in gene of Streptomyces lividans. Their melting temperature (Tm) measurement indicates that [Rp, Rp]-PT dsDNA is most unstable. Their electron transfer potential detection presents an order of anti-oxidation properties: Sp-PT DNA > Rp-PT DNA > PT-free DNA. Their NMR structures demonstrate that PT modification doesn't change their B-form conformation. The sulfur in [Rp, Rp]-PT dsDNA locates in the major groove, with steric effects on protons in the sugar close to modification sites, resulting in its unstability, and facilitating its selectively interactions with ScoMcrA. We thought that PT modification was dialectical to the bacteria. It protects the hosting bacteria by working as antioxidant against H2O2, and acts as a marker, directing restriction enzyme observed in other hosts, like ScoMcrA, to correctly cleave the PT modified DNA, so that bacteria cannot spread and survive. PMID:27169778

  11. Mitochondrial DNA.

    ERIC Educational Resources Information Center

    Wright, Russell G.; Bottino, Paul J.

    1986-01-01

    Provides background information for teachers on mitochondrial DNA, pointing out that it may have once been a free-living organism. Includes a ready-to-duplicate exercise titled "Using Microchondrial DNA to Measure Evolutionary Distance." (JN)

  12. The Origin And Spread Of Airborne Bacteria

    NASA Astrophysics Data System (ADS)

    Henderson-Begg, S. K.; Moffett, B. F.

    2009-12-01

    The presence of bacteria in clouds may affect their radiation and precipitation properties as some species are able to catalyse the freezing of water at high temperatures (-2C to -10C). Where cloud-borne bacteria originate and the distances they are able to travel in the air remains a mystery. In this study we have attempted to address these issues by comparing metagenomic DNA sequences from air samples with those from other environmental sources. Air samples were collected on 1 July 2009 from a hill top at Thursley Nature Reserve in Surrey, United Kingdom, a rural site, 31 miles from the nearest stretch of coastline, and on 6 July 2009 from the top of a six storey building in Stratford on the East end of London, 38 miles from the nearest coastal area. Samples were collected using the Karcher DS5500 vacuum into a liquid filled collection vessel at an air flow rate of 3.3 m3 min-1 over a 4 hour period. Samples were then concentrated and the bacterial content was investigated by PCR, cloning and sequencing of 16S rRNA genes. During the collection period on 1 July the Royston Weather Station in the South East of England recorded wind speed of 1.9 miles/hour in an Easterly direction, with no cloud cover, relative humidity of 74% and atmospheric pressure of 1021.6 mB. On 6 July wind speed was 9.8 miles/hour in a South Westerly direction, there was light cloud cover, relative humidity was 73.8% and atmospheric pressure was 1002.8 mB. Twenty cloned 16S PCR products from each air sample were sequenced. The species identification of each clone is shown in Table 1. The diversity of bacteria found at both sites was similar, with Stenotrophomona and Pedobacteria species dominating both samples. When the DNA sequences were blasted against the environmental samples database, all sequences were found to display greatest homology to metagenomic DNA from marine sources. This may suggest that the most numerous bacteria in air samples originate in the oceans. Taking account of the

  13. Multitasking SecB chaperones in bacteria

    PubMed Central

    Sala, Ambre; Bordes, Patricia; Genevaux, Pierre

    2014-01-01

    Protein export in bacteria is facilitated by the canonical SecB chaperone, which binds to unfolded precursor proteins, maintains them in a translocation competent state and specifically cooperates with the translocase motor SecA to ensure their proper targeting to the Sec translocon at the cytoplasmic membrane. Besides its key contribution to the Sec pathway, SecB chaperone tasking is critical for the secretion of the Sec-independent heme-binding protein HasA and actively contributes to the cellular network of chaperones that control general proteostasis in Escherichia coli, as judged by the significant interplay found between SecB and the trigger factor, DnaK and GroEL chaperones. Although SecB is mainly a proteobacterial chaperone associated with the presence of an outer membrane and outer membrane proteins, secB-like genes are also found in Gram-positive bacteria as well as in certain phages and plasmids, thus suggesting alternative functions. In addition, a SecB-like protein is also present in the major human pathogen Mycobacterium tuberculosis where it specifically controls a stress-responsive toxin–antitoxin system. This review focuses on such very diverse chaperone functions of SecB, both in E. coli and in other unrelated bacteria. PMID:25538690

  14. DNA Banking

    SciTech Connect

    Reilly, P.R. )

    1992-11-01

    The author is involved in the ethical, legal, and social issues of banking of DNA and data from DNA analysis. In his attempt to determine the extent of DNA banking in the U.S., the author surveyed some commercial companies performing DNA banking services. This article summarizes the results of that survey, with special emphasis on the procedures the companies use to protect the privacy of individuals. 4 refs.

  15. Bacteria counting method based on polyaniline/bacteria thin film.

    PubMed

    Zhihua, Li; Xuetao, Hu; Jiyong, Shi; Xiaobo, Zou; Xiaowei, Huang; Xucheng, Zhou; Tahir, Haroon Elrasheid; Holmes, Mel; Povey, Malcolm

    2016-07-15

    A simple and rapid bacteria counting method based on polyaniline (PANI)/bacteria thin film was proposed. Since the negative effects of immobilized bacteria on the deposition of PANI on glass carbon electrode (GCE), PANI/bacteria thin films containing decreased amount of PANI would be obtained when increasing the bacteria concentration. The prepared PANI/bacteria film was characterized with cyclic voltammetry (CV) technique to provide quantitative index for the determination of the bacteria count, and electrochemical impedance spectroscopy (EIS) was also performed to further investigate the difference in the PANI/bacteria films. Good linear relationship of the peak currents of the CVs and the log total count of bacteria (Bacillus subtilis) could be established using the equation Y=-30.413X+272.560 (R(2)=0.982) over the range of 5.3×10(4) to 5.3×10(8)CFUmL(-1), which also showed acceptable stability, reproducibility and switchable ability. The proposed method was feasible for simple and rapid counting of bacteria. PMID:26921555

  16. Plasmid incidence in bacteria from deep subsurface sediments

    SciTech Connect

    Fredrickson, J.K.; Hicks, R.J.; Li, S.W.; Brockman, F.J. )

    1988-12-01

    Bacteria were isolated from deep terrestrial subsurface sediments underlying the coastal plain of South Carolina. A total of 163 isolates from deep sediments, surface soil, and return drill muds were examined for plasmid DNA content and resistance to the antibiotics penicillin, ampicillin, carbenicillin, streptomycin, kanamycin, and tetracycline. MICs of Cu{sup 2+}, Cr{sup 3+}, and Hg{sup 2+} for each isolate were also determined. The overall frequency of plasmid occurrence in the subsurface bacteria was 33%. Resistance was most frequent to penicillin (70% of all isolates), ampicillin (49%), and carbenicillin (32%) and was concluded to be related to the concentrations of the individual antibiotics in the disks used for assaying resistance and to the production of low levels of {beta}-lactamase. The frequencies of resistance to penicillin and ampicillin were significantly greater for isolates bearing plasmids than for plasmidless isolates; however, resistance was not transferable to penicillin-sensitive Escherichia coli. Hybridization of subsurface bacterial plasmids and chromosomal DNA with a whole-TOL-plasmid (pWWO) probe revealed some homology of subsurface bacterial plasmid and chromosomal DNAs, indicating a potential for those bacterial to harbor catabolic genes on plasmids or chromosomes. The incidences of antibiotic resistance and MICs of metals for subsurface bacteria were significantly different from those drill mud bacteria, ruling out the possibility that bacteria from sediments were derived from drill muds.

  17. Bacteria in solitary confinement.

    PubMed

    Mullineaux, Conrad W

    2015-02-15

    Even in clonal bacterial cultures, individual bacteria can show substantial stochastic variation, leading to pitfalls in the interpretation of data derived from millions of cells in a culture. In this issue of the Journal of Bacteriology, as part of their study on osmoadaptation in a cyanobacterium, Nanatani et al. describe employing an ingenious microfluidic device that gently cages individual cells (J Bacteriol 197:676-687, 2015, http://dx.doi.org/10.1128/JB.02276-14). The device is a welcome addition to the toolkit available to probe the responses of individual cells to environmental cues. PMID:25488297

  18. Bacteria in Solitary Confinement

    PubMed Central

    2014-01-01

    Even in clonal bacterial cultures, individual bacteria can show substantial stochastic variation, leading to pitfalls in the interpretation of data derived from millions of cells in a culture. In this issue of the Journal of Bacteriology, as part of their study on osmoadaptation in a cyanobacterium, Nanatani et al. describe employing an ingenious microfluidic device that gently cages individual cells (J Bacteriol 197:676–687, 2015, http://dx.doi.org/10.1128/JB.02276-14). The device is a welcome addition to the toolkit available to probe the responses of individual cells to environmental cues. PMID:25488297

  19. Surface layers of bacteria.

    PubMed Central

    Beveridge, T J; Graham, L L

    1991-01-01

    Since bacteria are so small, microscopy has traditionally been used to study them as individual cells. To this end, electron microscopy has been a most powerful tool for studying bacterial surfaces; the viewing of macromolecular arrangements of some surfaces is now possible. This review compares older conventional electron-microscopic methods with new cryotechniques currently available and the results each has produced. Emphasis is not placed on the methodology but, rather, on the importance of the results in terms of our perception of the makeup and function of bacterial surfaces and their interaction with the surrounding environment. Images PMID:1723487

  20. Bioprobes Based on Aptamer and Silica Fluorescent Nanoparticles for Bacteria Salmonella typhimurium Detection.

    PubMed

    Wang, Qiu-Yue; Kang, Yan-Jun

    2016-12-01

    In this study, we have developed an efficient method based on single-stranded DNA (ssDNA) aptamers along with silica fluorescence nanoparticles for bacteria Salmonella typhimurium detection. Carboxyl-modified Tris(2,2'-bipyridyl)dichlororuthenium(II) hexahydrate (RuBPY)-doped silica nanoparticles (COOH-FSiNPs) were prepared using reverse microemulsion method, and the streptavidin was conjugated to the surface of the prepared COOH-FSiNPs. The bacteria S. typhimurium was incubated with a specific ssDNA biotin-labeled aptamer, and then the aptamer-bacteria conjugates were treated with the synthetic streptavidin-conjugated silica fluorescence nanoprobes (SA-FSiNPs). The results under fluorescence microscopy show that SA-FSiNPs can be applied effectively for the labeling of bacteria S. typhimurium with great photostable property. To further verify the specificity of SA-FSiNPs out of multiple bacterial conditions, variant concentrations of bacteria mixtures composed of bacteria S. typhimurium, Escherichia coli, and Bacillus subtilis were treated with SA-FSiNPs.In addition, the feasibility of SA-FSiNPs for bacteria S. typhimurium detection in chicken samples was assessed. All the results display that the established aptamer-based nanoprobes exhibit the superiority for bacteria S. typhimurium detection, which is referentially significant for wider application prospects in pathogen detection. PMID:26983430

  1. Dna Sequencing

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1995-04-25

    A method for sequencing a strand of DNA, including the steps off: providing the strand of DNA; annealing the strand with a primer able to hybridize to the strand to give an annealed mixture; incubating the mixture with four deoxyribonucleoside triphosphates, a DNA polymerase, and at least three deoxyribonucleoside triphosphates in different amounts, under conditions in favoring primer extension to form nucleic acid fragments complementory to the DNA to be sequenced; labelling the nucleic and fragments; separating them and determining the position of the deoxyribonucleoside triphosphates by differences in the intensity of the labels, thereby to determine the DNA sequence.

  2. Beneficial bacteria inhibit cachexia

    PubMed Central

    Varian, Bernard J.; Goureshetti, Sravya; Poutahidis, Theofilos; Lakritz, Jessica R.; Levkovich, Tatiana; Kwok, Caitlin; Teliousis, Konstantinos; Ibrahim, Yassin M.; Mirabal, Sheyla; Erdman, Susan E.

    2016-01-01

    Muscle wasting, known as cachexia, is a debilitating condition associated with chronic inflammation such as during cancer. Beneficial microbes have been shown to optimize systemic inflammatory tone during good health; however, interactions between microbes and host immunity in the context of cachexia are incompletely understood. Here we use mouse models to test roles for bacteria in muscle wasting syndromes. We find that feeding of a human commensal microbe, Lactobacillus reuteri, to mice is sufficient to lower systemic indices of inflammation and inhibit cachexia. Further, the microbial muscle-building phenomenon extends to normal aging as wild type animals exhibited increased growth hormone levels and up-regulation of transcription factor Forkhead Box N1 [FoxN1] associated with thymus gland retention and longevity. Interestingly, mice with a defective FoxN1 gene (athymic nude) fail to inhibit sarcopenia after L. reuteri therapy, indicating a FoxN1-mediated mechanism. In conclusion, symbiotic bacteria may serve to stimulate FoxN1 and thymic functions that regulate inflammation, offering possible alternatives for cachexia prevention and novel insights into roles for microbiota in mammalian ontogeny and phylogeny. PMID:26933816

  3. Beneficial bacteria inhibit cachexia.

    PubMed

    Varian, Bernard J; Goureshetti, Sravya; Poutahidis, Theofilos; Lakritz, Jessica R; Levkovich, Tatiana; Kwok, Caitlin; Teliousis, Konstantinos; Ibrahim, Yassin M; Mirabal, Sheyla; Erdman, Susan E

    2016-03-15

    Muscle wasting, known as cachexia, is a debilitating condition associated with chronic inflammation such as during cancer. Beneficial microbes have been shown to optimize systemic inflammatory tone during good health; however, interactions between microbes and host immunity in the context of cachexia are incompletely understood. Here we use mouse models to test roles for bacteria in muscle wasting syndromes. We find that feeding of a human commensal microbe, Lactobacillus reuteri, to mice is sufficient to lower systemic indices of inflammation and inhibit cachexia. Further, the microbial muscle-building phenomenon extends to normal aging as wild type animals exhibited increased growth hormone levels and up-regulation of transcription factor Forkhead Box N1 [FoxN1] associated with thymus gland retention and longevity. Interestingly, mice with a defective FoxN1 gene (athymic nude) fail to inhibit sarcopenia after L. reuteri therapy, indicating a FoxN1-mediated mechanism. In conclusion, symbiotic bacteria may serve to stimulate FoxN1 and thymic functions that regulate inflammation, offering possible alternatives for cachexia prevention and novel insights into roles for microbiota in mammalian ontogeny and phylogeny. PMID:26933816

  4. Chemical communication in bacteria

    NASA Astrophysics Data System (ADS)

    Suravajhala, Srinivasa Sandeep; Saini, Deepak; Nott, Prabhu

    Luminescence in Vibrio fischeri is a model for quorum-sensing-gene-regulation in bacteria. We study luminescence response of V. fischeri to both internal and external cues at the single cell and population level. Experiments with ES114, a wild-type strain, and ainS mutant show that luminescence induction in cultures is not always proportional to cell-density and there is always a basal level of luminescence. At any given concentration of the exogenously added signals, C6-HSL and C8-HSL, luminescence per cell reaches a maximum during the exponential phase and decreases thereafter. We hypothesize that (1) C6-HSL production and LuxR activity are not proportional to cell-density, and (2) there is a shift in equilibrium from C6-HSL to C8-HSL during the later stages of growth of the culture. RT-PCR analysis of luxI and luxR shows that the expression of these genes is maximum corresponding to the highest level of luminescence. The shift in equilibrium is shown by studying competitive binding of C6-HSL and C8-HSL to LuxR. We argue that luminescence is a unicellular behaviour, and an intensive property like per cell luminescence is more important than gross luminescence of the population in understanding response of bacteria to chemical signalling. Funding from the Department of Science and Technology, India is acknowledged.

  5. Nitrogen control in bacteria.

    PubMed Central

    Merrick, M J; Edwards, R A

    1995-01-01

    Nitrogen metabolism in prokaryotes involves the coordinated expression of a large number of enzymes concerned with both utilization of extracellular nitrogen sources and intracellular biosynthesis of nitrogen-containing compounds. The control of this expression is determined by the availability of fixed nitrogen to the cell and is effected by complex regulatory networks involving regulation at both the transcriptional and posttranslational levels. While the most detailed studies to date have been carried out with enteric bacteria, there is a considerable body of evidence to show that the nitrogen regulation (ntr) systems described in the enterics extend to many other genera. Furthermore, as the range of bacteria in which the phenomenon of nitrogen control is examined is being extended, new regulatory mechanisms are also being discovered. In this review, we have attempted to summarize recent research in prokaryotic nitrogen control; to show the ubiquity of the ntr system, at least in gram-negative organisms; and to identify those areas and groups of organisms about which there is much still to learn. PMID:8531888

  6. Bacteria Responsive Antibacterial Surfaces for Indwelling Device Infections

    PubMed Central

    Traba, Christian; Liang, Jun F.

    2014-01-01

    Indwelling device infections now represents life-threatening circumstances as a result of the biofilms’ tolerance to antibiotic treatments. Current antibiotic impregnation approaches through sustained antibiotic release have some unsolved problems which include short life-span, narrowed antibacterial spectrum, ineffectiveness towards resistant mutants, and the potential to hasten the antibiotic resistance process. In this study, bacteria responsive anti-biofilm surfaces were developed using bioactive peptides with proved activity to antibiotic resistant bacteria and biofilms. Resulting surfaces were stable under physiological conditions and in the presence of high concentrations of salts (0.5 M NaCl) and biomacromolcules (1.0% DNA and 2.0% alginate), and thus showed good biocompatibility to various tissue cells. However, lytic peptide immobilized surfaces could sense bacteria adhesion and kill attached bacteria effectively and specifically, so biofilms were unable to develop on the lytic peptide immobilized surfaces. Bacteria responsive catheters remained biofilm free for up to a week. Therefore, the bacteria responsive antibacterial surfaces developed in this study represent new opportunities for indwelling device infections. PMID:25481445

  7. Phage-bacteria interaction network in human oral microbiome.

    PubMed

    Wang, Jinfeng; Gao, Yuan; Zhao, Fangqing

    2016-07-01

    Although increasing knowledge suggests that bacteriophages play important roles in regulating microbial ecosystems, phage-bacteria interaction in human oral cavities remains less understood. Here we performed a metagenomic analysis to explore the composition and variation of oral dsDNA phage populations and potential phage-bacteria interaction. A total of 1,711 contigs assembled with more than 100 Gb shotgun sequencing data were annotated to 104 phages based on their best BLAST matches against the NR database. Bray-Curtis dissimilarities demonstrated that both phage and bacterial composition are highly diverse between periodontally healthy samples but show a trend towards homogenization in diseased gingivae samples. Significantly, according to the CRISPR arrays that record infection relationship between bacteria and phage, we found certain oral phages were able to invade other bacteria besides their putative bacterial hosts. These cross-infective phages were positively correlated with commensal bacteria while were negatively correlated with major periodontal pathogens, suggesting possible connection between these phages and microbial community structure in oral cavities. By characterizing phage-bacteria interaction as networks rather than exclusively pairwise predator-prey relationships, our study provides the first insight into the participation of cross-infective phages in forming human oral microbiota. PMID:26036920

  8. DNA Immunization

    PubMed Central

    Wang, Shixia; Lu, Shan

    2013-01-01

    DNA immunization was discovered in early 1990s and its use has been expanded from vaccine studies to a broader range of biomedical research, such as the generation of high quality polyclonal and monoclonal antibodies as research reagents. In this unit, three common DNA immunization methods are described: needle injection, electroporation and gene gun. In addition, several common considerations related to DNA immunization are discussed. PMID:24510291

  9. Visualization of yeast chromosomal DNA

    NASA Technical Reports Server (NTRS)

    Lubega, Seth

    1990-01-01

    The DNA molecule is the most significant life molecule since it codes the blue print for other structural and functional molecules of all living organisms. Agarose gel electrophoresis is now being widely used to separate DNA of virus, bacteria, and lower eukaryotes. The task was undertaken of reviewing the existing methods of DNA fractionation and microscopic visualization of individual chromosonal DNA molecules by gel electrophoresis as a basis for a proposed study to investigate the feasibility of separating DNA molecules in free fluids as an alternative to gel electrophoresis. Various techniques were studied. On the molecular level, agarose gel electrophoresis is being widely used to separate chromosomal DNA according to molecular weight. Carl and Olson separate and characterized the entire karyotype of a lab strain of Saccharomyces cerevisiae. Smith et al. and Schwartz and Koval independently reported the visualization of individual DNA molecules migrating through agarose gel matrix during electrophoresis. The techniques used by these researchers are being reviewed in the lab as a basis for the proposed studies.

  10. Elasticity-mediated nematiclike bacterial organization in model extracellular DNA matrix.

    PubMed

    Smalyukh, Ivan I; Butler, John; Shrout, Joshua D; Parsek, Matthew R; Wong, Gerard C L

    2008-09-01

    DNA is a common extracellular matrix component of bacterial biofilms. We find that bacteria can spontaneously order in a matrix of aligned concentrated DNA, in which rod-shaped cells of Pseudomonas aeruginosa follow the orientation of extended DNA chains. The alignment of bacteria is ensured by elasticity and liquid crystalline properties of the DNA matrix. These findings show how behavior of planktonic bacteria may be modified in extracellular polymeric substances of biofilms and illustrate the potential of using complex fluids to manipulate embedded nanosized and microsized active particles. PMID:18850984

  11. Development of Mucosal Vaccines Based on Lactic Acid Bacteria

    NASA Astrophysics Data System (ADS)

    Bermúdez-Humarán, Luis G.; Innocentin, Silvia; Lefèvre, Francois; Chatel, Jean-Marc; Langella, Philippe

    Today, sufficient data are available to support the use of lactic acid bacteria (LAB), notably lactococci and lactobacilli, as delivery vehicles for the development of new mucosal vaccines. These non-pathogenic Gram-positive bacteria have been safely consumed by humans for centuries in fermented foods. They thus constitute an attractive alternative to the attenuated pathogens (most popular live vectors actually studied) which could recover their pathogenic potential and are thus not totally safe for use in humans. This chapter reviews the current research and advances in the use of LAB as live delivery vectors of proteins of interest for the development of new safe mucosal vaccines. The use of LAB as DNA vaccine vehicles to deliver DNA directly to antigen-presenting cells of the immune system is also discussed.

  12.  Acetobacter bacteria are found in Zhenjiang vinegar grains.

    PubMed

    Wang, C Y; Zhang, J; Gui, Z Z

    2015-01-01

    Zhenjiang vinegar, the grains of which contain a unique microbial flora, is one of the four famous traditional Chinese vinegars. We investigated the components of Zhenjiang vinegar grains. Unique acetic acid bacteria were randomly isolated from Zhenjiang vinegar grains, and the obtained strains were qualitatively analyzed to compare their capacities for acetate decomposition and acid production. Acetic acid bacteria with a high acid-producing rate were identified by 16S rDNA sequencing, and further confirmation was performed using the Basic Local Alignment Search Tool comparison method. Six significant strains of acetic acid bacteria were isolated. Qualitative analysis showed that these strains produced no brown precipitate and had a capacity for acetate decomposition. Based on physiological and biochemical evaluation, the two strains with the highest acid yield were sequenced, and the results identified strain W1 as Acetobacter aceti and strain W6 as A. pasteurianus. PMID:26125697

  13. Characterization of acetic acid bacteria in "traditional balsamic vinegar".

    PubMed

    Gullo, Maria; Caggia, Cinzia; De Vero, Luciana; Giudici, Paolo

    2006-02-01

    This study evaluated the glucose tolerance of acetic acid bacteria strains isolated from Traditional Balsamic Vinegar. The results showed that the greatest hurdle to acetic acid bacteria growth is the high sugar concentration, since the majority of the isolated strains are inhibited by 25% of glucose. Sugar tolerance is an important technological trait because Traditional Balsamic Vinegar is made with concentrated cooked must. On the contrary, ethanol concentration of the cooked and fermented must is less significant for acetic acid bacteria growth. A tentative identification of the isolated strains was done by 16S-23S-5S rDNA PCR/RFLP technique and the isolated strains were clustered: 32 strains belong to Gluconacetobacter xylinus group, two strains to Acetobacter pasteurianus group and one to Acetobacter aceti. PMID:16214251

  14. Bacteriocins from Gram-Negative Bacteria: A Classification?

    NASA Astrophysics Data System (ADS)

    Rebuffat, Sylvie

    Bacteria produce an arsenal of toxic peptides and proteins, which are termed bacteriocins and play a role in mediating the dynamics of microbial populations and communities. Bacteriocins from Gram-negative bacteria arise mainly from Enterobacteriaceae. They assemble into two main families: high molecular mass modular proteins (30-80 kDa) termed colicins and low molecular mass peptides (between 1 and 10 kDa) termed microcins. The production of colicins is mediated by the SOS response regulon, which plays a role in the response of many bacteria to DNA damages. Microcins are highly stable hydrophobic peptides that are produced under stress conditions, particularly nutrient depletion. Colicins and microcins are found essentially in Escherichia coli, but several other Gram-negative species also produce bacteriocin-like substances. This chapter presents the basis of a classification of colicins and microcins.

  15. Swimming bacteria in liquid crystal

    NASA Astrophysics Data System (ADS)

    Sokolov, Andrey; Zhou, Shuang; Aranson, Igor; Lavrentovich, Oleg

    2014-03-01

    Dynamics of swimming bacteria can be very complex due to the interaction between the bacteria and the fluid, especially when the suspending fluid is non-Newtonian. Placement of swimming bacteria in lyotropic liquid crystal produces a new class of active materials by combining features of two seemingly incompatible constituents: self-propelled live bacteria and ordered liquid crystals. Here we present fundamentally new phenomena caused by the coupling between direction of bacterial swimming, bacteria-triggered flows and director orientations. Locomotion of bacteria may locally reduce the degree of order in liquid crystal or even trigger nematic-isotropic phase transition. Microscopic flows generated by bacterial flagella disturb director orientation. Emerged birefringence patterns allow direct optical observation and quantitative characterization of flagella dynamics. At high concentration of bacteria we observed the emergence of self-organized periodic texture caused by bacteria swimming. Our work sheds new light on self-organization in hybrid bio-mechanical systems and can lead to valuable biomedical applications. Was supported by the US DOE, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under the Contract No. DE AC02-06CH11357.

  16. Detection of the apr gene in proteolytic psychrotrophic bacteria isolated from refrigerated raw milk.

    PubMed

    Martins, Maurilio L; de Araújo, Elza F; Mantovani, Hilário C; Moraes, Célia A; Vanetti, Maria C D

    2005-07-15

    Bacteria of the genus Pseudomonas have been associated with the spoilage of raw milk and dairy products due to the production of thermostable proteolytic enzymes. The apr gene encodes for alkaline metalloprotease in Pseudomonas and other related bacteria. Its presence in psychrotrophic proteolytic bacteria isolated from raw milk collected from cooling tanks was verified. A polymerase chain reaction (PCR) technique was used with degenerate primers. Total DNA from 112 isolates was pooled in different groups and then used as template for the amplification reactions. Controls consisted of DNA extracted from 26 cultures. An expected DNA fragment of 194 bp was detected in groups that contained bacteria identified as Pseudomonas. The PCR product was observed only when DNA from control cultures of Pseudomonas aeruginosa, Pseudomonas fluorescens, Serratia marcescens and Aeromonas hydrophila were used. A detection limit assay indicated that the apr gene could be directly amplified from pasteurized milk inoculated with 10(8) CFU/ml of P. fluorescens. With this method it was possible to detect proteolytic bacteria at 10(5) CFU/ml in reconstituted skim milk powder if cells were recovered for DNA extraction before amplification. PMID:15992619

  17. Membrane-associated DNA Transport Machines

    PubMed Central

    Burton, Briana; Dubnau, David

    2010-01-01

    DNA pumps play important roles in bacteria during cell division and during the transfer of genetic material by conjugation and transformation. The FtsK/SpoIIIE proteins carry out the translocation of double-stranded DNA to ensure complete chromosome segregation during cell division. In contrast, the complex molecular machines that mediate conjugation and genetic transformation drive the transport of single stranded DNA. The transformation machine also processes this internalized DNA and mediates its recombination with the resident chromosome during and after uptake, whereas the conjugation apparatus processes DNA before transfer. This article reviews these three types of DNA pumps, with attention to what is understood of their molecular mechanisms, their energetics and their cellular localizations. PMID:20573715

  18. The bacterial DnaA-trio replication origin element specifies single-stranded DNA initiator binding.

    PubMed

    Richardson, Tomas T; Harran, Omar; Murray, Heath

    2016-06-16

    DNA replication is tightly controlled to ensure accurate inheritance of genetic information. In all organisms, initiator proteins possessing AAA+ (ATPases associated with various cellular activities) domains bind replication origins to license new rounds of DNA synthesis. In bacteria the master initiator protein, DnaA, is highly conserved and has two crucial DNA binding activities. DnaA monomers recognize the replication origin (oriC) by binding double-stranded DNA sequences (DnaA-boxes); subsequently, DnaA filaments assemble and promote duplex unwinding by engaging and stretching a single DNA strand. While the specificity for duplex DnaA-boxes by DnaA has been appreciated for over 30 years, the sequence specificity for single-strand DNA binding has remained unknown. Here we identify a new indispensable bacterial replication origin element composed of a repeating trinucleotide motif that we term the DnaA-trio. We show that the function of the DnaA-trio is to stabilize DnaA filaments on a single DNA strand, thus providing essential precision to this binding mechanism. Bioinformatic analysis detects DnaA-trios in replication origins throughout the bacterial kingdom, indicating that this element is part of the core oriC structure. The discovery and characterization of the novel DnaA-trio extends our fundamental understanding of bacterial DNA replication initiation, and because of the conserved structure of AAA+ initiator proteins these findings raise the possibility of specific recognition motifs within replication origins of higher organisms. PMID:27281207

  19. Endosymbiotic Bacteria in the Parasitic Ciliate Ichthyophthirius multifiliis▿

    PubMed Central

    Sun, H. Y.; Noe, J.; Barber, J.; Coyne, R. S.; Cassidy-Hanley, D.; Clark, T. G.; Findly, R. C.; Dickerson, H. W.

    2009-01-01

    Endosymbiotic bacteria were identified in the parasitic ciliate Ichthyophthirius multifiliis, a common pathogen of freshwater fish. PCR amplification of DNA prepared from two isolates of I. multifiliis, using primers that bind conserved sequences in bacterial 16S rRNA genes, generated an ∼1,460-bp DNA product, which was cloned and sequenced. Sequence analysis demonstrated that 16S rRNA gene sequences from three classes of bacteria were present in the PCR product. These included Alphaproteobacteria (Rickettsiales), Sphingobacteria, and Flavobacterium columnare. DAPI (4′,6-diamidino-2-phenylindole) staining showed endosymbionts dispersed throughout the cytoplasm of trophonts and, in most, but not all theronts. Endosymbionts were observed by transmission electron microscopy in the cytoplasm, surrounded by a prominent, electron-translucent halo characteristic of Rickettsia. Fluorescence in situ hybridization demonstrated that bacteria from the Rickettsiales and Sphingobacteriales classes are endosymbionts of I. multifiliis, found in the cytoplasm, but not in the macronucleus or micronucleus. In contrast, F. columnare was not detected by fluorescence in situ hybridization. It likely adheres to I. multifiliis through association with cilia. The role that endosymbiotic bacteria play in the life history of I. multifiliis is not known. PMID:19820157

  20. Phylogenetic analysis of anaerobic thermophilic bacteria: aid for their reclassification.

    PubMed Central

    Rainey, F A; Ward, N L; Morgan, H W; Toalster, R; Stackebrandt, E

    1993-01-01

    Small subunit rDNA sequences were determined for 20 species of the genera Acetogenium, Clostridium, Thermoanaerobacter, Thermoanaerobacterium, Thermoanaerobium, and Thermobacteroides, 3 non-validly described species, and 5 isolates of anaerobic thermophilic bacteria, providing a basis for a phylogenetic analysis of these organisms. Several species contain a version of the molecule significantly longer than that of Escherichia coli because of the presence of inserts. On the basis of normal evolutionary distances, the phylogenetic tree indicates that all bacteria investigated in this study with a maximum growth temperature above 65 degrees C form a supercluster within the subphylum of gram-positive bacteria that also contains Clostridium thermosaccharolyticum and Clostridium thermoaceticum, which have been previously sequenced. This supercluster appears to be equivalent in its phylogenetic depth to the supercluster of mesophilic clostridia and their nonspore-forming relatives. Several phylogenetically and phenotypically coherent clusters that are defined by sets of signature nucleotides emerge within the supercluster of thermophiles. Clostridium thermobutyricum and Clostridium thermopalmarium are members of Clostridium group I. A phylogenetic tree derived from transversion distances demonstrated the artificial clustering of some organisms with high rDNA G+C moles percent, i.e., Clostridium fervidus and the thermophilic, cellulolytic members of the genus Clostridium. The results of this study can be used as an aid for future taxonomic restructuring of anaerobic sporogenous and asporogenous thermophillic, gram-positive bacteria. PMID:7687600

  1. DNA ALTERATIONS

    EPA Science Inventory

    The exposure of an organism to genotoxic chemicals may induce a cascade of genetic events. nitially, structural alterations to DNA are formed. ext, the DNA damage is processed and subsequently expressed in mutant gene products. inally, diseases result from the genetic damage. he ...

  2. PHYLOGENETIC TREE OF 16S RIBOSOMAL RNA SEQUENCES FROM SULFATE-REDUCING BACTERIA IN A SANDY MARINE ENVIRONMENT

    EPA Science Inventory

    Phylogenetic divergence among sulfate-reducing bacteria in an estuarine sediment sample was investigated by PCR amplification and comparison of partial 16S rDNA sequences. wenty unique 16S RDNA sequences were found, 12 from delta subclass bacteria based on overall sequence simila...

  3. cpDNA microsatellite markers for Lemna minor (Araceae): Phylogeographic implications1

    PubMed Central

    Wani, Gowher A.; Shah, Manzoor A.; Reshi, Zafar A.; Atangana, Alain R.; Khasa, Damase P.

    2014-01-01

    • Premise of the study: A lack of genetic markers impedes our understanding of the population biology of Lemna minor. Thus, the development of appropriate genetic markers for L. minor promises to be highly useful for population genetic studies and for addressing other life history questions regarding the species. • Methods and Results: For the first time, we characterized nine polymorphic and 24 monomorphic chloroplast microsatellite markers in L. minor using DNA samples of 26 individuals sampled from five populations in Kashmir and of 17 individuals from three populations in Quebec. Initially, we designed 33 primer pairs, which were tested on genomic DNA from natural populations. Nine loci provided markers with two alleles. Based on genotyping of the chloroplast DNA fragments from 43 sampled individuals, we identified one haplotype in Quebec and 11 haplotypes in Kashmir, of which one occurs in 56% of the genotypes, one in 8%, and nine in 4%, respectively. There was a maximum of two alleles per locus. • Conclusions: These new chloroplast microsatellite markers for L. minor and haplotype distribution patterns indicate a complex phylogeographic history that merits further investigation. PMID:25202636

  4. Physical mode of bacteria and virus coevolution

    NASA Astrophysics Data System (ADS)

    Han, Pu; Niestemski, Liang; Deem, Michael

    2013-03-01

    Single-cell hosts such as bacteria or archaea possess an adaptive, heritable immune system that protects them from viral invasion. This system, known as the CRISPR-Cas system, allows the host to recognize and incorporate short foreign DNA or RNA sequences from viruses or plasmids. The sequences form what are called ``spacers'' in the CRISPR. Spacers in the CRISPR loci provide a record of the host and predator coevolution history. We develop a physical model to study the dynamics of this coevolution due to immune pressure. Hosts and viruses reproduce, die, and evolve due to viral infection pressure, host immune pressure, and mutation. We will discuss the differing effects of point mutation and recombination on CRISPR evolution. We will also discuss the effect of different spacer deletion mechanisms. We will describe population structure of hosts and viruses, how spacer diversity depends on position within CRISPR, and match of the CRISPR spacers to the virus population.

  5. Sociomicrobiology and pathogenic bacteria

    PubMed Central

    Xavier, Joao B.

    2015-01-01

    The study of microbial pathogenesis has been primarily a reductionist science since Koch's principles. Reductionist approaches are essential to identify the causal agents of infectious disease, their molecular mechanisms of action and potential drug targets, and much of medicine's success in the treatment of infectious disease comes from this approach. But many bacterial caused diseases cannot be explained by focusing on a single bacterium. Many aspects of bacterial pathogenesis will benefit from a more holistic approach that takes into account social interaction within bacteria of the same species and between different species in consortia such as the human microbiome. I discuss recent advances in the emerging discipline of sociomicrobiology and how it provides a framework to dissect microbial interactions in single and multispecies communities without compromising mechanistic detail. The study of bacterial pathogenesis can benefit greatly from incorporating concepts from other disciplines such as social evolution theory and microbial ecology where communities, their interactions with hosts and with the environment play key roles. PMID:27337482

  6. A direct pre-screen for marine bacteria producing compounds inhibiting quorum sensing reveals diverse planktonic bacteria that are bioactive.

    PubMed

    Linthorne, Jamie S; Chang, Barbara J; Flematti, Gavin R; Ghisalberti, Emilio L; Sutton, David C

    2015-02-01

    A promising new strategy in antibacterial research is inhibition of the bacterial communication system termed quorum sensing. In this study, a novel and rapid pre-screening method was developed to detect the production of chemical inhibitors of this system (quorum-quenching compounds) by bacteria isolated from marine and estuarine waters. This method involves direct screening of mixed populations on an agar plate, facilitating specific isolation of bioactive colonies. The assay showed that between 4 and 46 % of culturable bacteria from various samples were bioactive, and of the 95 selectively isolated bacteria, 93.7 % inhibited Vibrio harveyi bioluminescence without inhibiting growth, indicating potential production of quorum-quenching compounds. Of the active isolates, 21 % showed further activity against quorum-sensing-regulated pigment production by Serratia marcescens. The majority of bioactive isolates were identified by 16S ribosomal DNA (rDNA) amplification and sequencing as belonging to the genera Vibrio and Pseudoalteromonas. Extracts of two strongly bioactive Pseudoalteromonas isolates (K1 and B2) were quantitatively assessed for inhibition of growth and quorum-sensing-regulated processes in V. harveyi, S. marcescens and Chromobacterium violaceum. Extracts of the isolates reduced V. harveyi bioluminescence by as much as 98 % and C. violaceum pigment production by 36 % at concentrations which had no adverse effect on growth. The activity found in the extracts indicated that the isolates may produce quorum-quenching compounds. This study further supports the suggestion that quorum quenching may be a common attribute among culturable planktonic marine and estuarine bacteria. PMID:25082352

  7. Freeing Water from Viruses and Bacteria

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Four years ago, Argonide Corporation, a company focused on the research, production, and marketing of specialty nano materials, was seeking to develop applications for its NanoCeram[R] fibers. Only 2 nanometers in diameter, these nano aluminum oxide fibers possessed unusual bio-adhesive properties. When formulated into a filter material, the electropositive fibers attracted and retained electro-negative particles such as bacteria and viruses in water-based solutions. This technology caught the interest of NASA as a possible solution for improved water filtration in space cabins. NASA's Johnson Space Center awarded Sanford, Florida-based Argonide a Phase I Small Business Innovation Research (SBIR) contract to determine the feasibility of using the company's filter for purifying recycled space cabin water. Since viruses and bacteria can be carried aboard space cabins by space crews, the ability to detect and remove these harmful substances is a concern for NASA. The Space Agency also desired an improved filter to polish the effluent from condensed and waste water, producing potable drinking water. During its Phase I partnership with NASA, Argonide developed a laboratory-size filter capable of removing greater than 99.9999 percent of bacteria and viruses from water at flow rates more than 200 times faster than virus-rated membranes that remove particles by sieving. Since the new filter s pore size is rather large compared to other membranes, it is also less susceptible to clogging by small particles. In September 2002, Argonide began a Phase II SBIR project with Johnson to develop a full-size cartridge capable of serving a full space crew. This effort, which is still ongoing, enabled the company to demonstrate that its filter media is an efficient absorbent for DNA and RNA.

  8. Interactions between Diatoms and Bacteria

    PubMed Central

    Amin, Shady A.; Parker, Micaela S.

    2012-01-01

    Summary: Diatoms and bacteria have cooccurred in common habitats for hundreds of millions of years, thus fostering specific associations and interactions with global biogeochemical consequences. Diatoms are responsible for one-fifth of the photosynthesis on Earth, while bacteria remineralize a large portion of this fixed carbon in the oceans. Through their coexistence, diatoms and bacteria cycle nutrients between oxidized and reduced states, impacting bioavailability and ultimately feeding higher trophic levels. Here we present an overview of how diatoms and bacteria interact and the implications of these interactions. We emphasize that heterotrophic bacteria in the oceans that are consistently associated with diatoms are confined to two phyla. These consistent bacterial associations result from encounter mechanisms that occur within a microscale environment surrounding a diatom cell. We review signaling mechanisms that occur in this microenvironment to pave the way for specific interactions. Finally, we discuss known interactions between diatoms and bacteria and exciting new directions and research opportunities in this field. Throughout the review, we emphasize new technological advances that will help in the discovery of new interactions. Deciphering the languages of diatoms and bacteria and how they interact will inform our understanding of the role these organisms have in shaping the ocean and how these interactions may change in future oceans. PMID:22933565

  9. [DNA computing].

    PubMed

    Błasiak, Janusz; Krasiński, Tadeusz; Popławski, Tomasz; Sakowski, Sebastian

    2011-01-01

    Biocomputers can be an alternative for traditional "silicon-based" computers, which continuous development may be limited due to further miniaturization (imposed by the Heisenberg Uncertainty Principle) and increasing the amount of information between the central processing unit and the main memory (von Neuman bottleneck). The idea of DNA computing came true for the first time in 1994, when Adleman solved the Hamiltonian Path Problem using short DNA oligomers and DNA ligase. In the early 2000s a series of biocomputer models was presented with a seminal work of Shapiro and his colleguas who presented molecular 2 state finite automaton, in which the restriction enzyme, FokI, constituted hardware and short DNA oligomers were software as well as input/output signals. DNA molecules provided also energy for this machine. DNA computing can be exploited in many applications, from study on the gene expression pattern to diagnosis and therapy of cancer. The idea of DNA computing is still in progress in research both in vitro and in vivo and at least promising results of these research allow to have a hope for a breakthrough in the computer science. PMID:21735816

  10. Sampling bacteria with a laser

    NASA Astrophysics Data System (ADS)

    Schwarzwälder, Kordula; Rutschmann, Peter

    2014-05-01

    Water quality is a topic of high interest and it's getting more and more important due to climate change and the implementation of European Water Framework Directive (WFD). One point of interest here is the inflow of bacteria into a river caused by combined sewer overflows which lead untreated wastewater including bacteria directly into a river. These bacteria remain in the river for a certain time, they settle down and can be remobilised again. In our study we want to investigate these processes of sedimentation and resuspension and use the results for the development of a software module coupled with the software Flow3D. Thereby we should be able to simulate and therefore predict the water quality influenced by combined sewer overflows. Hence we need to get information about the bacteria transport and fate. We need to know about the size of the bacteria or of the bacteria clumps and the size of the particles the bacteria are attached to. The agglomerates lead to different characteristics and velocities of settlement. The timespan during this bacteria can be detected in the bulk phase depends on many factors like the intensity of UV light, turbidity of the water, the temperature of the water, if there are grazers and a lot more. The size, density and composition of the agglomerates is just a part of all these influencing factors, but it is extremely difficult to differ between the other effects if we have no information about the simple sedimentation in default of these basic information. However we have a big problem getting the data. The chaining between bacteria or bacteria and particles is not too strong, so filtering the water to get a sieving curve may destroy these connections. We did some experiments similar to PIV (particle image velocimetry) measurements and evaluated the pictures with a macro written for the software ImageJ. Doing so we were able to get the concentration of bacteria in the water and collect information about the size of the bacteria. We

  11. Recombinant DNA products: Insulin, interferon and growth hormone

    SciTech Connect

    Bollon, A.P.

    1984-01-01

    This book provides the discussion of products of biotechnology of recombinant DNA. The contents include: Recombinant DNA techniques; isolation, cloning, and expression of genes; from somatostatin to human insulin; yeast; an alternative organism for foreign protein production; background in human interferon; preclinical assessment of biological properties of recombinant DNA derived human interferons; human clinical trials of bacteria-derived human ..cap alpha.. interferon.f large scale production of human alpha interferon from bacteria; direct expression of human growth hormone in escherichia coli with the lipoprotein promoter; biological actions in humans of recombinant DNA synthesized human growth hormone; NIH guidelines for research involving recombinant DNA molecules; appendix; viral vectors and the NHY guidelines; FDA's role in approval and regulation of recombinant DNA drugs; and index.

  12. The Awakening of DNA Repair at Yale

    PubMed Central

    Hanawalt, Philip C.

    2013-01-01

    As a graduate student with Professor Richard Setlow at Yale in the late 1950s, I studied the effects of ultraviolet and visible light on the syntheses of DNA, RNA, and protein in bacteria. I reflect upon my research in the Yale Biophysics Department, my subsequent postdoctoral experiences, and the eventual analyses in the laboratories of Setlow, Paul Howard-Flanders, and myself that constituted the discovery of the ubiquitous pathway of DNA excision repair in the early 1960s. I then offer a brief perspective on a few more recent developments in the burgeoning DNA repair field and their relationships to human disease. PMID:24348216

  13. A Comparative Structure/Function Analysis of Two Type IV Pilin DNA Receptors Defines a Novel Mode of DNA Binding.

    PubMed

    Berry, Jamie-Lee; Xu, Yingqi; Ward, Philip N; Lea, Susan M; Matthews, Stephen J; Pelicic, Vladimir

    2016-06-01

    DNA transformation is a widespread process allowing bacteria to capture free DNA by using filamentous nano-machines composed of type IV pilins. These proteins can act as DNA receptors as demonstrated by the finding that Neisseria meningitidis ComP minor pilin has intrinsic DNA-binding ability. ComP binds DNA better when it contains the DNA-uptake sequence (DUS) motif abundant in this species genome, playing a role in its trademark ability to selectively take up its own DNA. Here, we report high-resolution structures for meningococcal ComP and Neisseria subflava ComPsub, which recognize different DUS motifs. We show that they are structurally identical type IV pilins that pack readily into filament models and display a unique DD region delimited by two disulfide bonds. Functional analysis of ComPsub defines a new mode of DNA binding involving the DD region, adapted for exported DNA receptors. PMID:27161979

  14. Distribution and Diversity of Symbiotic Thermophiles, Symbiobacterium thermophilum and Related Bacteria, in Natural Environments

    PubMed Central

    Ueda, Kenji; Ohno, Michiyo; Yamamoto, Kaori; Nara, Hanae; Mori, Yujiro; Shimada, Masafumi; Hayashi, Masahiko; Oida, Hanako; Terashima, Yuko; Nagata, Mitsuyo; Beppu, Teruhiko

    2001-01-01

    Symbiobacterium thermophilum is a tryptophanase-positive thermophile which shows normal growth only in coculture with its supporting bacteria. Analysis of the 16S rRNA gene (rDNA) indicated that the bacterium belongs to a novel phylogenetic branch at the outermost position of the gram-positive bacterial group without clustering to any other known genus. Here we describe the distribution and diversity of S. thermophilum and related bacteria in the environment. Thermostable tryptophanase activity and amplification of the specific 16S rDNA fragment were effectively employed to detect the presence of Symbiobacterium. Enrichment with kanamycin raised detection sensitivity. Mixed cultures of thermophiles containing Symbiobacterium species were frequently obtained from compost, soil, animal feces, and contents in the intestinal tracts, as well as feeds. Phylogenetic analysis and denaturing gradient gel electrophoresis of the specific 16S rDNA amplicons revealed a diversity of this group of bacteria in the environment. PMID:11525967

  15. Priming DNA replication from triple helix oligonucleotides: possible threestranded DNA in DNA polymerases.

    PubMed

    Lestienne, Patrick P

    2011-01-01

    Triplex associate with a duplex DNA presenting the same polypurine or polypyrimidine-rich sequence in an antiparallel orientation. So far, triplex forming oligonucleotides (TFOs) are known to inhibit transcription, replication, and to induce mutations. A new property of TFO is reviewed here upon analysis of DNA breakpoint yielding DNA rearrangements; the synthesized sequence of the first direct repeat displays a skewed polypurine- rich sequence. This synthesized sequence can bind the second homologous duplex sequence through the formation of a triple helix, which is able to prime further DNA replication. In these case, the d(G)-rich Triple Helix Primers (THP) bind the homologous strand in a parallel manner, possibly via a RecA-like mechanism. This novel property is shared by all tested DNA polymerases: phage, retrovirus, bacteria, and human. These features may account for illegitimate initiation of replication upon single-strand breakage and annealing to a homologous sequence where priming may occur. Our experiments suggest that DNA polymerases can bind three instead of two polynucleotide strands in their catalytic centre. PMID:22229092

  16. Priming DNA Replication from Triple Helix Oligonucleotides: Possible Threestranded DNA in DNA Polymerases

    PubMed Central

    Lestienne, Patrick P.

    2011-01-01

    Triplex associate with a duplex DNA presenting the same polypurine or polypyrimidine-rich sequence in an antiparallel orientation. So far, triplex forming oligonucleotides (TFOs) are known to inhibit transcription, replication, and to induce mutations. A new property of TFO is reviewed here upon analysis of DNA breakpoint yielding DNA rearrangements; the synthesized sequence of the first direct repeat displays a skewed polypurine- rich sequence. This synthesized sequence can bind the second homologous duplex sequence through the formation of a triple helix, which is able to prime further DNA replication. In these case, the d(G)-rich Triple Helix Primers (THP) bind the homologous strand in a parallel manner, possibly via a RecA-like mechanism. This novel property is shared by all tested DNA polymerases: phage, retrovirus, bacteria, and human. These features may account for illegitimate initiation of replication upon single-strand breakage and annealing to a homologous sequence where priming may occur. Our experiments suggest that DNA polymerases can bind three instead of two polynucleotide strands in their catalytic centre. PMID:22229092

  17. Dancing DNA.

    ERIC Educational Resources Information Center

    Pennisi, Elizabeth

    1991-01-01

    An imaging technique that uses fluorescent dyes and allows scientists to track DNA as it moves through gels or in solution is described. The importance, opportunities, and implications of this technique are discussed. (KR)

  18. DNA: Polymer and molecular code

    NASA Astrophysics Data System (ADS)

    Shivashankar, G. V.

    1999-10-01

    gene expression a prime example of a biological code. We developed a novel method of making DNA micro- arrays, the so-called DNA chip. Using the optical tweezer concept, we were able to pattern biomolecules on a solid substrate, developing a new type of sub-micron laser lithography. A laser beam is focused onto a thin gold film on a glass substrate. Laser ablation of gold results in local aggregation of nanometer scale beads conjugated with small DNA oligonucleotides, with sub-micron resolution. This leads to specific detection of cDNA and RNA molecules. We built a simple micro-array fabrication and detection in the laboratory, based on this method, to probe addressable pools (genes, proteins or antibodies). We have lately used molecular beacons (single stranded DNA with a stem-loop structure containing a fluorophore and quencher), for the direct detection of unlabelled mRNA. As a first step towards a study of the dynamics of the biological code, we have begun to examine the patterns of gene expression during virus (T7 phage) infection of E-coli bacteria.

  19. Clinical microbiology of coryneform bacteria.

    PubMed Central

    Funke, G; von Graevenitz, A; Clarridge, J E; Bernard, K A

    1997-01-01

    Coryneform bacteria are aerobically growing, asporogenous, non-partially-acid-fast, gram-positive rods of irregular morphology. Within the last few years, there has been a massive increase in the number of publications related to all aspects of their clinical microbiology. Clinical microbiologists are often confronted with making identifications within this heterogeneous group as well as with considerations of the clinical significance of such isolates. This review provides comprehensive information on the identification of coryneform bacteria and outlines recent changes in taxonomy. The following genera are covered: Corynebacterium, Turicella, Arthrobacter, Brevibacterium, Dermabacter. Propionibacterium, Rothia, Exiguobacterium, Oerskovia, Cellulomonas, Sanguibacter, Microbacterium, Aureobacterium, "Corynebacterium aquaticum," Arcanobacterium, and Actinomyces. Case reports claiming disease associations of coryneform bacteria are critically reviewed. Minimal microbiological requirements for publications on disease associations of coryneform bacteria are proposed. PMID:8993861

  20. Magnetosome biogenesis in magnetotactic bacteria.

    PubMed

    Uebe, René; Schüler, Dirk

    2016-09-13

    Magnetotactic bacteria derive their magnetic orientation from magnetosomes, which are unique organelles that contain nanometre-sized crystals of magnetic iron minerals. Although these organelles have evident potential for exciting biotechnological applications, a lack of genetically tractable magnetotactic bacteria had hampered the development of such tools; however, in the past decade, genetic studies using two model Magnetospirillum species have revealed much about the mechanisms of magnetosome biogenesis. In this Review, we highlight these new insights and place the molecular mechanisms of magnetosome biogenesis in the context of the complex cell biology of Magnetospirillum spp. Furthermore, we discuss the diverse properties of magnetosome biogenesis in other species of magnetotactic bacteria and consider the value of genetically 'magnetizing' non-magnetotactic bacteria. Finally, we discuss future prospects for this highly interdisciplinary and rapidly advancing field. PMID:27620945

  1. Environmental sources of fecal bacteria

    USGS Publications Warehouse

    Byappanahalli, Muruleedhara N.; Ishii, Satoshi

    2011-01-01

    This chapter provides a review of the research on environmental occurrences of faecal indicator bacteria in a variety of terrestrial and aquatic habitats under different geographic and climatic conditions, and discusses how these external sources may affect surface water quality.

  2. Biopreservation by lactic acid bacteria.

    PubMed

    Stiles, M E

    1996-10-01

    Biopreservation refers to extended storage life and enhanced safety of foods using the natural microflora and (or) their antibacterial products. Lactic acid bacteria have a major potential for use in biopreservation because they are safe to consume and during storage they naturally dominate the microflora of many foods. In milk, brined vegetables, many cereal products and meats with added carbohydrate, the growth of lactic acid bacteria produces a new food product. In raw meats and fish that are chill stored under vacuum or in an environment with elevated carbon dioxide concentration, the lactic acid bacteria become the dominant population and preserve the meat with a "hidden' fermentation. The same applies to processed meats provided that the lactic acid bacteria survive the heat treatment or they are inoculated onto the product after heat treatment. This paper reviews the current status and potential for controlled biopreservation of foods. PMID:8879414

  3. Biodegradation of DNA and nucleotides to nucleosides and free bases.

    PubMed

    Kruszewska, Hanna; Misicka, Aleksandra; Chmielowiec, Urszula

    2004-01-01

    Thirty-two different microorganisms were examined in order to check their ability to degrade an exogenous DNA. Bacteria from species: Stenotrophomonas maltophilia, Brevundimonas diminuta, Bacillus subtilis, Mycobacterium butyricum and fungus Fusarium moniliforme were capable to degrade DNA to nucleic bases or their derivatives. Degradation of DNA by S. maltophilia resulted in formation of free bases, such as hypoxanthine, thymine, uracil and xanthine. The optimum concentration of DNA seemed to be 3 mg ml(-1). The mode of degradation of DNA nucleotides depended on the type of nucleotide and its concentration, but nucleic bases or their derivatives were always formed at the end of the reaction process. PMID:14751311

  4. Isolation of methanotrophic bacteria from termite gut.

    PubMed

    Reuss, Julia; Rachel, Reinhard; Kämpfer, Peter; Rabenstein, Andreas; Küver, Jan; Dröge, Stefan; König, Helmut

    2015-10-01

    The guts of termites feature suitable conditions for methane oxidizing bacteria (MOB) with their permanent production of CH4 and constant supply of O2 via tracheae. In this study, we have isolated MOB from the gut contents of the termites Incisitermes marginipennis, Mastotermes darwiniensis, and Neotermes castaneus for the first time. The existence of MOB was indicated by detecting pmoA, the gene for the particulate methane monooxygenase, in the DNA of gut contents. Fluorescence in situ hybridization and quantitative real-time polymerase chain reaction supported those findings. The MOB cell titer was determined to be 10(2)-10(3) per gut. Analyses of the 16S rDNA from isolates indicated close similarity to the genus Methylocystis. After various physiological tests and fingerprinting methods, no exact match to a known species was obtained, indicating the isolation of new MOB species. However, MALDI-TOF MS analyses revealed a close relationship to Methylocystis bryophila and Methylocystis parvus. PMID:26411892

  5. Elimination of bioweapons agents from forensic samples during extraction of human DNA.

    PubMed

    Timbers, Jason; Wilkinson, Della; Hause, Christine C; Smith, Myron L; Zaidi, Mohsin A; Laframboise, Denis; Wright, Kathryn E

    2014-11-01

    Collection of DNA for genetic profiling is a powerful means for the identification of individuals responsible for crimes and terrorist acts. Biologic hazards, such as bacteria, endospores, toxins, and viruses, could contaminate sites of terrorist activities and thus could be present in samples collected for profiling. The fate of these hazards during DNA isolation has not been thoroughly examined. Our goals were to determine whether the DNA extraction process used by the Royal Canadian Mounted Police eliminates or neutralizes these agents and if not, to establish methods that render samples safe without compromising the human DNA. Our results show that bacteria, viruses, and toxins were reduced to undetectable levels during DNA extraction, but endospores remained viable. Filtration of samples after DNA isolation eliminated viable spores from the samples but left DNA intact. We also demonstrated that contamination of samples with some bacteria, endospores, and toxins for longer than 1 h compromised the ability to complete genetic profiling. PMID:25069670

  6. Purification of DNA for bacterial productivity estimates. [Escherichia coli

    SciTech Connect

    Burnison, B.K.; Nuttley, D.J. )

    1990-02-01

    (methyl-{sup 3}H)thymidine-labeled DNA from natural populations of aquatic bacteria was completely separated from RNA and protein by hydroxylapatite chromatography. The procedure was validated by monitoring increases in Escherichia coli cell count, A{sup 550}, DNA concentration, and thymidine incorporation into DNA isolated by the proposed technique. The procedure can be used in the field and does not rely on the use of acid-base hydrolysis or volatile organic solvents.

  7. Intraplaque hemorrhage, a potential consequence of periodontal bacteria gathering in human carotid atherothrombosis.

    PubMed

    Brun, Adrian; Rangé, Hélène; Prouvost, Bastien; Meilhac, Olivier; Mazighi, Mikael; Amarenco, Pierre; Lesèche, Guy; Bouchard, Philippe; Michel, Jean-Baptiste

    2016-01-01

    Periodontal diseases are multifactorial inflammatory diseases, caused by a bacterial biofilm involving both innate and adaptative immunity, characterized by the destruction of tooth-supporting tissues. In the context of periodontitis, the spread of weak pathogenic bacteria into the bloodstream has been described. These bacteria will preferentially localize to existing clot within the circulation. Atherothrombosis of the carotid arteries is a local pathology and a common cause of cerebral infarction. Intraplaque hemorrhages render the lesion more prone to clinical complications such as stroke. The main objective of this study is to explore the biological relationship between carotid intraplaque hemorrhage and periodontal diseases. This study included consecutive patients with symptomatic or asymptomatic carotid stenosis, admitted for endarterectomy surgical procedure (n=41). In conditioned media of the carotid samples collected, markers of neutrophil activation (myeloperoxidase or MPO, DNA-MPO complexes) and hemoglobin were quantified. To investigate the presence of DNA from periodontal bacteria in atherosclerotic plaque, PCR analysis using specific primers was performed. Our preliminary results indicate an association between neutrophil activation and intraplaque hemorrhages, reflected by the release of MPO (p<0,01) and MPO-DNA complexes (p<0,05). Presence of DNA from periodontitis-associated bacteria was found in 32/41 (78%) atheromatous plaque samples. More specifically, DNA from Pg, Tf, Pi, Aa was found in 46%, 24%, 34% and 68% of the samples, respectively. Hemoglobin levels were higher in conditioned media in carotid samples where the bacteria were found, but this was not statistically significant. Our data confirm the relationship between intraplaque hemorrhage and neutrophil activation. In addition, the presence of periodontal bacteria DNA in carotid atheromatous plaque, may contribute to this activation. Further analysis is needed to fully explore the raw

  8. [Nosocomial bacteria: profiles of resistance].

    PubMed

    Sow, A I

    2005-01-01

    Nosocomial infections may be parasitic, mycosal or viral, but bacterial infections are more frequent. They are transmitted by hands or by oral route. This paper describes the main bacteria responsive of nosocomial infections, dominated by Staphylococcus, enterobacteria and Pseudomonas aeruginosa. The author relates natural and savage profiles of these bacterias, characterized by multiresistance due to large use of antibiotics. Knowledge of natural resistance and verification of aquired resistance permit to well lead probabilist antibiotherapy. PMID:16190117

  9. The Mechanical World of Bacteria

    PubMed Central

    Persat, Alexandre; Nadell, Carey D.; Kim, Minyoung Kevin; Ingremeau, Francois; Siryaporn, Albert; Drescher, Knut; Wingreen, Ned S.; Bassler, Bonnie L.; Gitai, Zemer; Stone, Howard A.

    2015-01-01

    Summary In the wild, bacteria are predominantly associated with surfaces as opposed to existing as free-swimming, isolated organisms. They are thus subject to surface-specific mechanics including hydrodynamic forces, adhesive forces, the rheology of their surroundings and transport rules that define their encounters with nutrients and signaling molecules. Here, we highlight the effects of mechanics on bacterial behaviors on surfaces at multiple length scales, from single bacteria to the development of multicellular bacterial communities such as biofilms. PMID:26000479

  10. Unravelling DNA

    NASA Astrophysics Data System (ADS)

    Conroy, Rs; Danilowicz, C.

    2004-04-01

    The forces involved in the biology of life are carefully balanced between stopping thermal fluctuations ripping our DNA apart and having bonds weak enough to allow enzymes to function. The application of recently developed techniques for measuring piconewton forces and imaging at the nanometre scale on a molecule-by-molecule basis has dramatically increased the impact of single-molecule biophysics. This article describes the most commonly used techniques for imaging and manipulating single biomolecules. Using these techniques, the mechanical properties of DNA can be investigated, for example through measurements of the forces required to stretch and unzip the DNA double helix. These properties determine the ease with which DNA can be folded into the cell nucleus and the size and complexity of the accompanying cellular machinery. Part of this cellular machinery is enzymes, which manipulate, repair and transcribe the DNA helix. Enzymatic function is increasingly being investigated at the single molecule level to give better understanding of the forces and processes involved in the genetic cycle. One of the challenges is to transfer this understanding of single molecules into living systems. Already there have been some notable successes, such as the development of techniques for gene expression through the application of mechanical forces to cells, and the imaging and control of viral infection of a cell. This understanding and control of DNA has also been used to design molecules, which can self-assemble into a range of structures.

  11. Bacteriophage Infection of Model Metal Reducing Bacteria

    NASA Astrophysics Data System (ADS)

    Weber, K. A.; Bender, K. S.; Gandhi, K.; Coates, J. D.

    2008-12-01

    Microbially-mediated metal reduction plays a significant role controlling contaminant mobility in aqueous, soil, and sedimentary environments. From among environmentally relevant microorganisms mediating metal reduction, Geobacter spp. have been identified as predominant metal-reducing bacteria under acetate- oxidizing conditions. Due to the significance of these bacteria in environmental systems, it is necessary to understand factors influencing their metabolic physiology. Examination of the annotated finished genome sequence of G. sulfurreducens PCA, G. uraniumreducens Rf4, G. metallireduceans GS-15 as well as a draft genome sequence of Geobacter sp. FRC-32 have identified gene sequences of putative bacteriophage origin. Presence of these sequences indicates that these bacteria are susceptible to phage infection. Polymerase chain reaction (PCR) primer sets designed tested for the presence of 12 of 25 annotated phage-like sequences in G. sulfurreducens PCA and 9 of 17 phage-like sequences in FRC- 32. The following genes were successfully amplified in G. sulfurreducens PCA: prophage type transcription regulator, phage-induced endonuclease, phage tail sheath, 2 phage tail proteins, phage protein D, phage base plate protein, phage-related DNA polymerase, integrase, phage transcriptional regulator, and Cro-like transcription regulator. Nine of the following sequences were present in FRC-32: 4 separate phage- related proteins, phage-related tail component, viron core protein, phage Mu protein, phage base plate, and phage tail sheath. In addition to the bioinformatics evidence, incubation of G. sulfurreducens PCA with 1 μg mL-1 mytomycin C (mutagen stimulating prophage induction) during mid-log phase resulted in significant cell lysis relative to cultures that remained unamended. Cell lysis was concurrent with an increase in viral like particles enumerated using epifluorescent microscopy. In addition, samples collected following this lytic event (~44hours) were

  12. Cable Bacteria in Freshwater Sediments

    PubMed Central

    Kristiansen, Michael; Frederiksen, Rasmus B.; Dittmer, Anders Lindequist; Bjerg, Jesper Tataru; Trojan, Daniela; Schreiber, Lars; Damgaard, Lars Riis; Schramm, Andreas; Nielsen, Lars Peter

    2015-01-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures and electric fields indicated electron transfer between vertically separated anodic and cathodic half-reactions. Fluorescence in situ hybridization revealed the presence of Desulfobulbaceae filaments. In addition, in situ measurements of oxygen, pH, and electric potential distributions in the waterlogged banks of Giber Å demonstrated the presence of distant electric redox coupling in naturally occurring freshwater sediment. At the same site, filamentous Desulfobulbaceae with cable bacterium morphology were found to be present. Their 16S rRNA gene sequence placed them as a distinct sister group to the known marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary origin of the cable phenotype within Desulfobulbaceae with subsequent diversification into a freshwater and a marine lineage. PMID:26116678

  13. Filtrating forms of soil bacteria

    NASA Astrophysics Data System (ADS)

    Van'kova, A. A.; Ivanov, P. I.; Emtsev, V. T.

    2013-03-01

    Filtrating (ultramicroscopic) forms (FF) of bacteria were studied in a soddy-podzolic soil and the root zone of alfalfa plants as part of populations of the most widespread physiological groups of soil bacteria. FF were obtained by filtering soil solutions through membrane filters with a pore diameter of 0.22 μm. It was established that the greater part of the bacteria in the soil and in the root zone of the plants has an ultramicroscopic size: the average diameter of the cells is 0.3 μm, and their length is 0.6 μm, which is significantly less than the cell size of banal bacteria. The number of FF varies within a wide range depending on the physicochemical conditions of the habitat. The FF number's dynamics in the soil is of a seasonal nature; i.e., the number of bacteria found increases in the summer and fall and decreases in the winter-spring period. In the rhizosphere of the alfalfa, over the vegetation period, the number of FF and their fraction in the total mass of the bacteria increase. A reverse tendency is observed in the rhizoplane. The morphological particularities (identified by an electron microscopy) and the nature of the FF indicate their physiological activity.

  14. Bioreporter bacteria for landmine detection

    SciTech Connect

    Burlage, R.S.; Youngblood, T.; Lamothe, D.

    1998-04-01

    Landmines (and other UXO) gradually leak explosive chemicals into the soil at significant concentrations. Bacteria, which have adapted to scavenge low concentrations of nutrients, can detect these explosive chemicals. Uptake of these chemicals results in the triggering of specific bacterial genes. The authors have created genetically recombinant bioreporter bacteria that detect small concentrations of energetic chemicals. These bacteria are genetically engineered to produce a bioluminescent signal when they contact specific explosives. A gene for a brightly fluorescent compound can be substituted for increased sensitivity. By finding the fluorescent bacteria, you find the landmine. Detection might be accomplished using stand-off illumination of the minefield and GPS technology, which would result in greatly reduced risk to the deminers. Bioreporter technology has been proven at the laboratory scale, and will be tested under field conditions in the near future. They have created a bacterial strain that detects sub-micromolar concentrations of o- and p-nitrotoluene. Related bacterial strains were produced using standard laboratory protocols, and bioreporters of dinitrotoluene and trinitrotoluene were produced, screening for activity with the explosive compounds. Response time is dependent on the growth rate of the bacteria. Although frill signal production may require several hours, the bacteria can be applied over vast areas and scanned quickly, producing an equivalent detection speed that is very fast. This technology may be applicable to other needs, such as locating buried explosives at military and ordnance/explosive manufacturing facilities.

  15. Cable Bacteria in Freshwater Sediments.

    PubMed

    Risgaard-Petersen, Nils; Kristiansen, Michael; Frederiksen, Rasmus B; Dittmer, Anders Lindequist; Bjerg, Jesper Tataru; Trojan, Daniela; Schreiber, Lars; Damgaard, Lars Riis; Schramm, Andreas; Nielsen, Lars Peter

    2015-09-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures and electric fields indicated electron transfer between vertically separated anodic and cathodic half-reactions. Fluorescence in situ hybridization revealed the presence of Desulfobulbaceae filaments. In addition, in situ measurements of oxygen, pH, and electric potential distributions in the waterlogged banks of Giber Å demonstrated the presence of distant electric redox coupling in naturally occurring freshwater sediment. At the same site, filamentous Desulfobulbaceae with cable bacterium morphology were found to be present. Their 16S rRNA gene sequence placed them as a distinct sister group to the known marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary origin of the cable phenotype within Desulfobulbaceae with subsequent diversification into a freshwater and a marine lineage. PMID:26116678

  16. Bioprobes Based on Aptamer and Silica Fluorescent Nanoparticles for Bacteria Salmonella typhimurium Detection

    NASA Astrophysics Data System (ADS)

    Wang, Qiu-Yue; Kang, Yan-Jun

    2016-03-01

    In this study, we have developed an efficient method based on single-stranded DNA (ssDNA) aptamers along with silica fluorescence nanoparticles for bacteria Salmonella typhimurium detection. Carboxyl-modified Tris(2,2'-bipyridyl)dichlororuthenium(II) hexahydrate (RuBPY)-doped silica nanoparticles (COOH-FSiNPs) were prepared using reverse microemulsion method, and the streptavidin was conjugated to the surface of the prepared COOH-FSiNPs. The bacteria S. typhimurium was incubated with a specific ssDNA biotin-labeled aptamer, and then the aptamer-bacteria conjugates were treated with the synthetic streptavidin-conjugated silica fluorescence nanoprobes (SA-FSiNPs). The results under fluorescence microscopy show that SA-FSiNPs can be applied effectively for the labeling of bacteria S. typhimurium with great photostable property. To further verify the specificity of SA-FSiNPs out of multiple bacterial conditions, variant concentrations of bacteria mixtures composed of bacteria S. typhimurium, Escherichia coli, and Bacillus subtilis were treated with SA-FSiNPs.

  17. Anaerobic carboxydotrophic bacteria in geothermal springs identified using stable isotope probing.

    PubMed

    Brady, Allyson L; Sharp, Christine E; Grasby, Stephen E; Dunfield, Peter F

    2015-01-01

    Carbon monoxide (CO) is a potential energy and carbon source for thermophilic bacteria in geothermal environments. Geothermal sites ranging in temperature from 45 to 65°C were investigated for the presence and activity of anaerobic CO-oxidizing bacteria. Anaerobic CO oxidation potentials were measured at up to 48.9 μmoles CO g(-1) (wet weight) day(-1) within five selected sites. Active anaerobic carboxydotrophic bacteria were identified using (13)CO DNA stable isotope probing (SIP) combined with pyrosequencing of 16S rRNA genes amplified from labeled DNA. Bacterial communities identified in heavy DNA fractions were predominated by Firmicutes, which comprised up to 95% of all sequences in (13)CO incubations. The predominant bacteria that assimilated (13)C derived from CO were closely related (>98% 16S rRNA gene sequence identity) to genera of known carboxydotrophs including Thermincola, Desulfotomaculum, Thermolithobacter, and Carboxydocella, although a few species with lower similarity to known bacteria were also found that may represent previously unconfirmed CO-oxidizers. While the distribution was variable, many of the same OTUs were identified across sample sites from different temperature regimes. These results show that bacteria capable of using CO as a carbon source are common in geothermal springs, and that thermophilic carboxydotrophs are probably already quite well known from cultivation studies. PMID:26388850

  18. Anaerobic carboxydotrophic bacteria in geothermal springs identified using stable isotope probing

    PubMed Central

    Brady, Allyson L.; Sharp, Christine E.; Grasby, Stephen E.; Dunfield, Peter F.

    2015-01-01

    Carbon monoxide (CO) is a potential energy and carbon source for thermophilic bacteria in geothermal environments. Geothermal sites ranging in temperature from 45 to 65°C were investigated for the presence and activity of anaerobic CO-oxidizing bacteria. Anaerobic CO oxidation potentials were measured at up to 48.9 μmoles CO g−1 (wet weight) day−1 within five selected sites. Active anaerobic carboxydotrophic bacteria were identified using 13CO DNA stable isotope probing (SIP) combined with pyrosequencing of 16S rRNA genes amplified from labeled DNA. Bacterial communities identified in heavy DNA fractions were predominated by Firmicutes, which comprised up to 95% of all sequences in 13CO incubations. The predominant bacteria that assimilated 13C derived from CO were closely related (>98% 16S rRNA gene sequence identity) to genera of known carboxydotrophs including Thermincola, Desulfotomaculum, Thermolithobacter, and Carboxydocella, although a few species with lower similarity to known bacteria were also found that may represent previously unconfirmed CO-oxidizers. While the distribution was variable, many of the same OTUs were identified across sample sites from different temperature regimes. These results show that bacteria capable of using CO as a carbon source are common in geothermal springs, and that thermophilic carboxydotrophs are probably already quite well known from cultivation studies. PMID:26388850

  19. Use of Bromodeoxyuridine Immunocapture To Identify Active Bacteria Associated with Arbuscular Mycorrhizal Hyphae

    PubMed Central

    Artursson, Veronica; Jansson, Janet K.

    2003-01-01

    Arbuscular mycorrhizae are beneficial for crops grown under low-till management systems. Increasingly, it is becoming apparent that bacteria associated with mycorrhizae can enhance the beneficial relationship between mycorrhizae and plants. However, it has been difficult to study these relationships by conventional techniques. In this study actively growing bacteria were identified in soil from an undisturbed fallow field known to contain arbuscular mycorrhizae by using molecular tools to eliminate the need for cultivation. A thymidine analog, bromodeoxyuridine (BrdU), was added to the soil and incubated for 2 days. DNA was extracted, and the newly synthesized DNA was isolated by immunocapture of the BrdU-containing DNA. The active bacteria in the community were identified by 16S rRNA gene PCR amplification and DNA sequence analysis. Based on 16S rRNA gene sequence information, a selective medium was chosen to isolate the corresponding active bacteria. Bacillus cereus strain VA1, one of the bacteria identified by the BrdU method, was isolated from the soil and tagged with green fluorescent protein. By using confocal microscopy, this bacterium was shown to clearly attach to arbuscular mycorrhizal hyphae. This study was the first to use this combination of molecular and traditional approaches to isolate, identify, and visualize a specific bacterium that is active in fallow soil and associates with arbuscular mycorrhizal hyphae. PMID:14532082

  20. 76 FR 44339 - Office of Biotechnology Activities; Recombinant DNA Research: Action Under the NIH Guidelines for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ... HUMAN SERVICES National Institutes of Health Office of Biotechnology Activities; Recombinant DNA Research: Action Under the NIH Guidelines for Research Involving Recombinant DNA Molecules (NIH Guidelines... attenuated strains of bacteria and viruses that are frequently used in recombinant DNA research. OBA is...

  1. What Is Mitochondrial DNA?

    MedlinePlus

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  2. DNA Repair and Genome Maintenance in Bacillus subtilis

    PubMed Central

    Lenhart, Justin S.; Schroeder, Jeremy W.; Walsh, Brian W.

    2012-01-01

    Summary: From microbes to multicellular eukaryotic organisms, all cells contain pathways responsible for genome maintenance. DNA replication allows for the faithful duplication of the genome, whereas DNA repair pathways preserve DNA integrity in response to damage originating from endogenous and exogenous sources. The basic pathways important for DNA replication and repair are often conserved throughout biology. In bacteria, high-fidelity repair is balanced with low-fidelity repair and mutagenesis. Such a balance is important for maintaining viability while providing an opportunity for the advantageous selection of mutations when faced with a changing environment. Over the last decade, studies of DNA repair pathways in bacteria have demonstrated considerable differences between Gram-positive and Gram-negative organisms. Here we review and discuss the DNA repair, genome maintenance, and DNA damage checkpoint pathways of the Gram-positive bacterium Bacillus subtilis. We present their molecular mechanisms and compare the functions and regulation of several pathways with known information on other organisms. We also discuss DNA repair during different growth phases and the developmental program of sporulation. In summary, we present a review of the function, regulation, and molecular mechanisms of DNA repair and mutagenesis in Gram-positive bacteria, with a strong emphasis on B. subtilis. PMID:22933559

  3. Methods for Baiting and Enriching Fungus-Feeding (Mycophagous) Rhizosphere Bacteria

    PubMed Central

    Ballhausen, Max-Bernhard; van Veen, Johannes A.; Hundscheid, Maria P. J.; de Boer, Wietse

    2015-01-01

    Mycophagous soil bacteria are able to obtain nutrients from living fungal hyphae. However, with exception of the soil bacterial genus Collimonas, occurrence of this feeding strategy has not been well examined. Evaluation of the importance of mycophagy in soil bacterial communities requires targeted isolation methods. In this study, we compared two different approaches to obtain mycophagous bacteria from rhizospheric soil. A short-term method based on baiting for bacteria that can rapidly adhere to fungal hyphae and a long-term method based on the enrichment of bacteria on fungal hyphae via repeated transfer. Hyphae-adhering bacteria were isolated, identified by 16S rDNA sequencing and tested for antifungal activity and the ability to feed on fungi as the sole source of carbon. Both methods yielded a range of potentially mycophagous bacterial isolates with little phylogenetic overlap. We also found indications for feeding preferences among the potentially mycophagous bacteria. Our results indicate that mycophagy could be an important growth strategy for rhizosphere bacteria. To our surprise, we found several potential plant pathogenic bacteria among the mycophagous isolates. We discuss the possible benefits that these bacteria might gain from colonizing fungal hyphae. PMID:26733962

  4. Molecular Evidence for Metabolically Active Bacteria in the Atmosphere

    PubMed Central

    Klein, Ann M.; Bohannan, Brendan J. M.; Jaffe, Daniel A.; Levin, David A.; Green, Jessica L.

    2016-01-01

    Bacterial metabolisms are responsible for critical chemical transformations in nearly all environments, including oceans, freshwater, and soil. Despite the ubiquity of bacteria in the atmosphere, little is known about the metabolic functioning of atmospheric bacterial communities. To gain a better understanding of the metabolism of bacterial communities in the atmosphere, we used a combined empirical and model-based approach to investigate the structure and composition of potentially active bacterial communities in air sampled at a high elevation research station. We found that the composition of the putatively active bacterial community (assayed via rRNA) differed significantly from the total bacterial community (assayed via rDNA). Rare taxa in the total (rDNA) community were disproportionately active relative to abundant taxa, and members of the order Rhodospirillales had the highest potential for activity. We developed theory to explore the effects of random sampling from the rRNA and rDNA communities on observed differences between the communities. We found that random sampling, particularly in cases where active taxa are rare in the rDNA community, will give rise to observed differences in community composition including the occurrence of “phantom taxa”, taxa which are detected in the rRNA community but not the rDNA community. We show that the use of comparative rRNA/rDNA techniques can reveal the structure and composition of the metabolically active portion of bacterial communities. Our observations suggest that metabolically active bacteria exist in the atmosphere and that these communities may be involved in the cycling of organic compounds in the atmosphere. PMID:27252689

  5. [Molecular and immunological detection of bacteria applied to bio-terrorism].

    PubMed

    Pelletier, N; La Scola, B

    2010-09-01

    Following the episode of letters containing anthrax in the USA in 2001, the fight against bio-terrorism became a priority for many countries (including France). The detection of bacteria in bio-terrorism settings is a major component of this fight. Indeed, the early detection of these bio-terrorism agents leads to an appropriate treatment and to a reduced transmission of the disease. Bacteria are important bio-terrorism agents, and the techniques used for their detection are constantly evolving. In this review, after describing the main bacteria that can be used for bio-terrorism, we also describe the techniques available for their detection: DNA or antigen detection. PMID:20400254

  6. Genetic Organization of the Vibrio harveyi dnaA Gene Region and Analysis of the Function of the V. harveyi DnaA Protein in Escherichia coli

    PubMed Central

    Berenstein, Dvora; Olesen, Kirsten; Speck, Christian; Skovgaard, Ole

    2002-01-01

    The Vibrionaceae family is distantly related to Enterobacteriaceae within the group of bacteria possessing the Dam methylase system. We have cloned, sequenced, and analyzed the dnaA gene region of Vibrio harveyi and found that although the organization of the V. harveyi dnaA region differs from that of Escherichia coli, the expression of both genes is autoregulated and ATP-DnaA binds cooperatively to ATP-DnaA boxes in the dnaA promoter region. The DnaA proteins of V. harveyi and E. coli are interchangeable and function nearly identically in controlling dnaA transcription and the initiation of chromosomal DNA replication despite the evolutionary distance between these bacteria. PMID:11948168

  7. Phylogenetic Diversity of Bacteria Associated with the Marine Sponge Rhopaloeides odorabile†

    PubMed Central

    Webster, Nicole S.; Wilson, Kate J.; Blackall, Linda L.; Hill, Russell T.

    2001-01-01

    Molecular techniques were employed to document the microbial diversity associated with the marine sponge Rhopaloeides odorabile. The phylogenetic affiliation of sponge-associated bacteria was assessed by 16S rRNA sequencing of cloned DNA fragments. Fluorescence in situ hybridization (FISH) was used to confirm the presence of the predominant groups indicated by 16S rDNA analysis. The community structure was extremely diverse with representatives of the Actinobacteria, low-G+C gram-positive bacteria, the β- and γ-subdivisions of the Proteobacteria, Cytophaga/Flavobacterium, green sulfur bacteria, green nonsulfur bacteria, planctomycetes, and other sequence types with no known close relatives. FISH probes revealed the spatial location of these bacteria within the sponge tissue, in some cases suggesting possible symbiotic functions. The high proportion of 16S rRNA sequences derived from novel actinomycetes is good evidence for the presence of an indigenous marine actinomycete assemblage in R. odorabile. High microbial diversity was inferred from low duplication of clones in a library with 70 representatives. Determining the phylogenetic affiliation of sponge-associated microorganisms by 16S rRNA analysis facilitated the rational selection of culture media and isolation conditions to target specific groups of well-represented bacteria for laboratory culture. Novel media incorporating sponge extracts were used to isolate bacteria not previously recovered from this sponge. PMID:11133476

  8. Genetic Diversity and Association Characters of Bacteria Isolated from Arbuscular Mycorrhizal Fungal Spore Walls

    PubMed Central

    Selvakumar, Gopal; Krishnamoorthy, Ramasamy; Kim, Kiyoon; Sa, Tong-Min

    2016-01-01

    Association between arbuscular mycorrhizal fungi (AMF) and bacteria has long been studied. However, the factors influencing their association in the natural environment is still unknown. This study aimed to isolate bacteria associated with spore walls of AMF and identify their potential characters for association. Spores collected from coastal reclamation land were differentiated based on their morphology and identified by 18S rDNA sequencing as Funneliformis caledonium, Racocetra alborosea and Funneliformis mosseae. Bacteria associated with AMF spore walls were isolated after treating them with disinfection solution at different time intervals. After 0, 10 and 20 min of spore disinfection, 86, 24 and 10 spore associated bacteria (SAB) were isolated, respectively. BOX-PCR fingerprinting analysis showed that diverse bacterial communities were associated to AMF spores. Bacteria belonging to the same genera could associate with different AMF spores. Gram positive bacteria were more closely associated with AMF spores. Isolated SAB were characterized and tested for spore association characters such as chitinase, protease, cellulase enzymes and exopolysaccharide production (EPS). Among the 120 SAB, 113 SAB were able to show one or more characters for association and seven SAB did not show any association characters. The 16S rDNA sequence of SAB revealed that bacteria belonging to the phyla Firmicutes, Proteobacteria, Actinobacteria and Bactereiodes were associated with AMF spore walls. PMID:27479250

  9. Ancient DNA

    PubMed Central

    Willerslev, Eske; Cooper, Alan

    2004-01-01

    In the past two decades, ancient DNA research has progressed from the retrieval of small fragments of mitochondrial DNA from a few late Holocene specimens, to large-scale studies of ancient populations, phenotypically important nuclear loci, and even whole mitochondrial genome sequences of extinct species. However, the field is still regularly marred by erroneous reports, which underestimate the extent of contamination within laboratories and samples themselves. An improved understanding of these processes and the effects of damage on ancient DNA templates has started to provide a more robust basis for research. Recent methodological advances have included the characterization of Pleistocene mammal populations and discoveries of DNA preserved in ancient sediments. Increasingly, ancient genetic information is providing a unique means to test assumptions used in evolutionary and population genetics studies to reconstruct the past. Initial results have revealed surprisingly complex population histories, and indicate that modern phylogeographic studies may give misleading impressions about even the recent evolutionary past. With the advent and uptake of appropriate methodologies, ancient DNA is now positioned to become a powerful tool in biological research and is also evolving new and unexpected uses, such as in the search for extinct or extant life in the deep biosphere and on other planets. PMID:15875564

  10. DNA vaccines

    NASA Astrophysics Data System (ADS)

    Gregersen, Jens-Peter

    2001-12-01

    Immunization by genes encoding immunogens, rather than with the immunogen itself, has opened up new possibilities for vaccine research and development and offers chances for new applications and indications for future vaccines. The underlying mechanisms of antigen processing, immune presentation and regulation of immune responses raise high expectations for new and more effective prophylactic or therapeutic vaccines, particularly for vaccines against chronic or persistent infectious diseases and tumors. Our current knowledge and experience of DNA vaccination is summarized and critically reviewed with particular attention to basic immunological mechanisms, the construction of plasmids, screening for protective immunogens to be encoded by these plasmids, modes of application, pharmacokinetics, safety and immunotoxicological aspects. DNA vaccines have the potential to accelerate the research phase of new vaccines and to improve the chances of success, since finding new immunogens with the desired properties is at least technically less demanding than for conventional vaccines. However, on the way to innovative vaccine products, several hurdles have to be overcome. The efficacy of DNA vaccines in humans appears to be much less than indicated by early studies in mice. Open questions remain concerning the persistence and distribution of inoculated plasmid DNA in vivo, its potential to express antigens inappropriately, or the potentially deleterious ability to insert genes into the host cell's genome. Furthermore, the possibility of inducing immunotolerance or autoimmune diseases also needs to be investigated more thoroughly, in order to arrive at a well-founded consensus, which justifies the widespread application of DNA vaccines in a healthy population.

  11. Direct nanomaterial-DNA contact effects on DNA and mutation induction.

    PubMed

    Thongkumkoon, P; Sangwijit, K; Chaiwong, C; Thongtem, S; Singjai, P; Yu, L D

    2014-04-01

    The toxicity of nanomaterials has been well known, but mechanisms involved have been little known. This study was aimed at looking at direct interaction between nanomaterials and naked DNA for some fundamental understanding. Two different types of nanomaterials, carbon nanotubes (CNTs) and tungsten trioxide (WO₃) nanoplates, were simply mixed with naked DNA plasmid, respectively, in two different contact modes, dry or wet (in solution), for varied time periods. DNA topological forms were analyzed for changes using gel electrophoresis and fluoro-spectrometry. The nanomaterial-contacted DNA was transferred into bacteria Escherichia coli (E. coli) cells for mutation observation. Certain types and degrees of DNA damage were observed, such as single strand break and double strand break, and bacterial mutation was confirmed. The DNA damage increased with the contacting time in an exponential manner and increased more rapidly in the initial stage for the wet contact. The nanomaterials-contacted DNA transferred bacteria had about less than 10% survival but almost 100% mutation for the surviving cells. The CNTs were more offensive than the metal oxide nanomaterials. The mutation spectrum from the DNA sequencing analysis showed that DNA point mutation was dominated by transversion, which was dominated by guanine changes in the wet contact condition while by cytosine changes in the dry contact condition. The point mutation occurrence in the wet contact was more than in the dry contact, confirming the wet contact more active and thus dangerous than dry contact. This experiment, although as a model study, revealed that direct simple contacts between nanomaterials and DNA could cause DNA changes and thus induce mutations which might potentially lead to cancers, diseases and genetic changes. This could be a mechanism for nanomaterial genotoxicity to the cells and also provided a caution to applications in using nanomaterials for DNA delivery. PMID:24503012

  12. Detection of Bacteria Using Fluorogenic DNAzymes

    PubMed Central

    Aguirre, Sergio D.; Ali, M. Monsur; Kanda, Pushpinder; Li, Yingfu

    2012-01-01

    widely examined in recent years as molecular tools for biosensing applications.6-8 Our laboratory has established in vitro selection procedures for isolating RNA-cleaving fluorescent DNAzymes (RFDs; Fig. 1) and investigated the use of RFDs as analytical tools.17-29 RFDs catalyze the cleavage of a DNA-RNA chimeric substrate at a single ribonucleotide junction (R) that is flanked by a fluorophore (F) and a quencher (Q). The close proximity of F and Q renders the uncleaved substrate minimal fluorescence. However, the cleavage event leads to the separation of F and Q, which is accompanied by significant increase of fluorescence intensity. More recently, we developed a method of isolating RFDs for bacterial detection.5 These special RFDs were isolated to "light up" in the presence of the crude extracellular mixture (CEM) left behind by a specific type of bacteria in their environment or in the media they are cultured (Fig. 1). The use of crude mixture circumvents the tedious process of purifying and identifying a suitable target from the microbe of interest for biosensor development (which could take months or years to complete). The use of extracellular targets means the assaying procedure is simple because there is no need for steps to obtain intracellular targets. Using the above approach, we derived an RFD that cleaves its substrate (FS1; Fig. 2A) only in the presence of the CEM produced by E. coli (CEM-EC).5 This E. coli-sensing RFD, named RFD-EC1 (Fig. 2A), was found to be strictly responsive to CEM-EC but nonresponsive to CEMs from a host of other bacteria (Fig. 3). Here we present the key experimental procedures for setting up E. coli detection assays using RFD-EC1 and representative results. PMID:22688431

  13. quenched-smFISH: Counting small RNA in Pathogenic Bacteria

    NASA Astrophysics Data System (ADS)

    Shepherd, Douglas; Li, Nan; Micheva-Viteva, Sofiya; Munsky, Brian; Hong-Geller, Elizabeth; Werner, James

    2014-03-01

    Here, we present a modification to single-molecule fluorescence in situ hybridization, quenched smFISH (q-smFISH), that enables quantitative detection and analysis of small RNA (sRNA) expressed in bacteria. We show that short nucleic acid targets can be detected when the background of unbound singly dye-labeled DNA oligomers is reduced through hybridization with a set of complementary DNA oligomers labeled with a fluorescence quencher. Exploiting an automated, multi-color wide-field microscope and GPU-accelerated data analysis package, we analyzed the statistics of sRNA expression in thousands of individual Yersinia pseudotuberculosis and Yersinia pestis bacteria before and during a simulated infection. Before infection, we find only a small fraction of either bacteria express the small RNAs YSR35 or YSP8. The copy numbers of these RNA are increased during simulated infection, suggesting a role in pathogenesis. The ability to directly quantify expression level changes of sRNA in single cells as a function of external stimuli provides key information on the role of sRNA in bacterial regulatory networks.

  14. Antibacterial activity of caffeine against plant pathogenic bacteria.

    PubMed

    Sledz, Wojciech; Los, Emilia; Paczek, Agnieszka; Rischka, Jacek; Motyka, Agata; Zoledowska, Sabina; Piosik, Jacek; Lojkowska, Ewa

    2015-01-01

    The objective of the present study was to evaluate the antibacterial properties of a plant secondary metabolite - caffeine. Caffeine is present in over 100 plant species. Antibacterial activity of caffeine was examined against the following plant-pathogenic bacteria: Ralstonia solanacearum (Rsol), Clavibacter michiganesis subsp. sepedonicus (Cms), Dickeya solani (Dsol), Pectobacterium atrosepticum (Pba), Pectobacterium carotovorum subsp. carotovorum (Pcc), Pseudomonas syringae pv. tomato (Pst), and Xanthomonas campestris subsp. campestris (Xcc). MIC and MBC values ranged from 5 to 20 mM and from 43 to 100 mM, respectively. Caffeine increased the bacterial generation time of all tested species and caused changes in cell morphology. The influence of caffeine on the synthesis of DNA, RNA and proteins was investigated in cultures of plant pathogenic bacteria with labelled precursors: [(3)H]thymidine, [(3)H]uridine or (14)C leucine, respectively. RNA biosynthesis was more affected than DNA or protein biosynthesis in bacterial cells treated with caffeine. Treatment of Pba with caffeine for 336 h did not induce resistance to this compound. Caffeine application reduced disease symptoms caused by Dsol on chicory leaves, potato slices, and whole potato tubers. The data presented indicate caffeine as a potential tool for the control of diseases caused by plant-pathogenic bacteria, especially under storage conditions. PMID:26307771

  15. Genetics of bacteria that utilize one-carbon compounds

    SciTech Connect

    Hanson, R.S.

    1989-11-01

    Methylotrophic bacteria that grow on the one-carbon compounds; methane, methanol, methylamines and dichloromethane are a morphologically and physiologically diverse group of eubacteria. The 16S rRNA molecules of several gram-negative methylotrophs have been sequenced. Two phylogenetically related groups containing type I and type II methylotrophs have been identified. Each group contains two subgroups of bacteria. DNA probes homologous to 16S rRNA's of each group of methanotrophs have been synthesized and have been shown to hybridize only to the 16S rRNA's from target bacteria. We have mapped the positions of 15 genes controlling the synthesis of methanol dehydrogenase, cytochrome C{sub L} and other functions required for the oxidation of methanol to formaldehyde in three species of type II methanotrophs. We have isolated a DNA-binding protein that binds to a cloned 172 bp sequence that is located upstream from the MDH structural gene. The function of this protein in the regulation of MDH synthesis will be investigated. The gene encoding the methane monooxygenase B component of {ital Methylosinus trichosporium} OB3b has been cloned and expressed in {ital Escherichia coli}. We intend to clone and map all five genes required for the expression of soluble MMO activity in {ital M. trichosporium} OB3b and to study the regulation of their synthesis. 5 refs.

  16. Mitochondrial DNA and Y-chromosome diversity in East Adriatic sheep.

    PubMed

    Ferencakovic, M; Curik, I; Pérez-Pardal, L; Royo, L J; Cubric-Curik, V; Fernández, I; Alvarez, I; Kostelic, A; Sprem, N; Krapinec, K; Goyache, F

    2013-04-01

    Variation in mitochondrial DNA (mtDNA) and Y-chromosome haplotypes was analysed in nine domestic sheep breeds (159 rams) and 21 mouflon (Ovis musimon) sampled in the East Adriatic. Mitochondrial DNA analyses revealed a high frequency of type B haplotypes, predominantly in European breeds, and a very low frequency of type A haplotypes, which are more frequent in some Asian breeds. Mitochondrial haplotype Hmt-3 was the most frequent (26.4%), and 37.1%, 20.8% and 7.6% of rams had haplotypes one, two and three mutations remote from Hmt-3 respectively. In contrast, Y-chromosome analyses revealed extraordinary paternal allelic richness: HY-6, 89.3%; HY-8, 5.0%; HY-18, 3.1%; HY-7, 1.3%; and HY-5, 1.3%. In fact, the number of haplotypes observed is comparable to the number found in Turkish breeds and greater than the number found in European breeds so far. Haplotype HY-18 (A-oY1/135-SRYM18), identified here for the first time, provides a link between the haplotype HY-12 (A-oY1/139-SRYM18) found in a few rams in Turkey and haplotype HY-9 (A-oY1/131-SRYM18) found in one ram in Ethiopia. All mouflons had type B mtDNA haplotypes, including the private haplotype (Hmt-55), and all were paternally monomorphic for haplotype HY-6. Our data support a quite homogeneous maternal origin of East Adriatic sheep, which is a characteristic of European breeds. At the same time, the high number of haplotypes found was surprising and intriguing, and it begs for further analysis. Simultaneous analysis of mtDNA and Y-chromosome information allowed us to detect a large discrepancy between maternal and paternal lineages in some populations. This is most likely the result of breeder efforts to 'upgrade' local populations using rams with different paternal origins. PMID:22762153

  17. Unexpected photoreactivation of Vibrio harveyi bacteria living in ionization environment

    NASA Astrophysics Data System (ADS)

    Alifano, P.; Nassisi, V.; Siciliano, M. V.; Talà, A.; Tredici, S. M.

    2011-05-01

    Bacteria undergoing environmental effects is extremely interesting for structural, mechanistic, and evolutionary implications. Luminescent bacteria that have evolved in a specific ambient have developed particular responses and their behavior can give us new suggestions on the task and production of luciferina proteins. To analyze the UV interaction under controlled laboratory conditions, we used photoluminescent bacterial strains belonging to a new species evolutionarily close to Vibrio harveyi sampled from a coastal cave with a high radon content that generates ionizing radiation. The survival of the bacterial strains was analyzed, in the light and in the dark, following a variety of genotoxic treatments including UV radiation exposure. The strains were irradiated by a germicide lamp. The results demonstrated that most of the strains exhibited a low rate of survival after the UV exposure. After irradiation by visible light following the UV exposure, all strains showed a high capability of photoreactivation when grown. This capability was quite unexpected because these bacteria were sampled from a dark ambient without UV radiation. This leads us to hypothesize that the photoreactivation in these bacteria might have been evolved to repair DNA lesions also induced by different radiation sources other than UV (e.g., x-ray) and that the luminescent bacteria might use their own light emission to carry out the photoreactivation. The high capability of photoreactivation of these bacteria was also justified by the results of deconvolution. The deconvolution was applied to the emission spectra and it was able to show evidence of different light peaks. The presence of the visible peak could control the photolysis enzyme.

  18. Unexpected photoreactivation of Vibrio harveyi bacteria living in ionization environment

    SciTech Connect

    Alifano, P.; Tala, A.; Tredici, S. M.; Nassisi, V.; Siciliano, M. V.

    2011-05-15

    Bacteria undergoing environmental effects is extremely interesting for structural, mechanistic, and evolutionary implications. Luminescent bacteria that have evolved in a specific ambient have developed particular responses and their behavior can give us new suggestions on the task and production of luciferina proteins. To analyze the UV interaction under controlled laboratory conditions, we used photoluminescent bacterial strains belonging to a new species evolutionarily close to Vibrio harveyi sampled from a coastal cave with a high radon content that generates ionizing radiation. The survival of the bacterial strains was analyzed, in the light and in the dark, following a variety of genotoxic treatments including UV radiation exposure. The strains were irradiated by a germicide lamp. The results demonstrated that most of the strains exhibited a low rate of survival after the UV exposure. After irradiation by visible light following the UV exposure, all strains showed a high capability of photoreactivation when grown. This capability was quite unexpected because these bacteria were sampled from a dark ambient without UV radiation. This leads us to hypothesize that the photoreactivation in these bacteria might have been evolved to repair DNA lesions also induced by different radiation sources other than UV (e.g., x-ray) and that the luminescent bacteria might use their own light emission to carry out the photoreactivation. The high capability of photoreactivation of these bacteria was also justified by the results of deconvolution. The deconvolution was applied to the emission spectra and it was able to show evidence of different light peaks. The presence of the visible peak could control the photolysis enzyme.

  19. DNA codes

    SciTech Connect

    Torney, D. C.

    2001-01-01

    We have begun to characterize a variety of codes, motivated by potential implementation as (quaternary) DNA n-sequences, with letters denoted A, C The first codes we studied are the most reminiscent of conventional group codes. For these codes, Hamming similarity was generalized so that the score for matched letters takes more than one value, depending upon which letters are matched [2]. These codes consist of n-sequences satisfying an upper bound on the similarities, summed over the letter positions, of distinct codewords. We chose similarity 2 for matches of letters A and T and 3 for matches of the letters C and G, providing a rough approximation to double-strand bond energies in DNA. An inherent novelty of DNA codes is 'reverse complementation'. The latter may be defined, as follows, not only for alphabets of size four, but, more generally, for any even-size alphabet. All that is required is a matching of the letters of the alphabet: a partition into pairs. Then, the reverse complement of a codeword is obtained by reversing the order of its letters and replacing each letter by its match. For DNA, the matching is AT/CG because these are the Watson-Crick bonding pairs. Reversal arises because two DNA sequences form a double strand with opposite relative orientations. Thus, as will be described in detail, because in vitro decoding involves the formation of double-stranded DNA from two codewords, it is reasonable to assume - for universal applicability - that the reverse complement of any codeword is also a codeword. In particular, self-reverse complementary codewords are expressly forbidden in reverse-complement codes. Thus, an appropriate distance between all pairs of codewords must, when large, effectively prohibit binding between the respective codewords: to form a double strand. Only reverse-complement pairs of codewords should be able to bind. For most applications, a DNA code is to be bi-partitioned, such that the reverse-complementary pairs are separated

  20. Methylotrophic bacteria in sustainable agriculture.

    PubMed

    Kumar, Manish; Tomar, Rajesh Singh; Lade, Harshad; Paul, Diby

    2016-07-01

    Excessive use of chemical fertilizers to increase production from available land has resulted in deterioration of soil quality. To prevent further soil deterioration, the use of methylotrophic bacteria that have the ability to colonize different habitats, including soil, sediment, water, and both epiphytes and endophytes as host plants, has been suggested for sustainable agriculture. Methylotrophic bacteria are known to play a significant role in the biogeochemical cycle in soil ecosystems, ultimately fortifying plants and sustaining agriculture. Methylotrophs also improve air quality by using volatile organic compounds such as dichloromethane, formaldehyde, methanol, and formic acid. Additionally, methylotrophs are involved in phosphorous, nitrogen, and carbon cycling and can help reduce global warming. In this review, different aspects of the interaction between methylotrophs and host plants are discussed, including the role of methylotrophs in phosphorus acquisition, nitrogen fixation, phytohormone production, iron chelation, and plant growth promotion, and co-inoculation of these bacteria as biofertilizers for viable agriculture practices. PMID:27263015

  1. Tunable protein degradation in bacteria.

    PubMed

    Cameron, D Ewen; Collins, James J

    2014-12-01

    Tunable control of protein degradation in bacteria would provide a powerful research tool. Here we use components of the Mesoplasma florum transfer-messenger RNA system to create a synthetic degradation system that provides both independent control of steady-state protein level and inducible degradation of targeted proteins in Escherichia coli. We demonstrate application of this system in synthetic circuit development and control of core bacterial processes and antibacterial targets, and we transfer the system to Lactococcus lactis to establish its broad functionality in bacteria. We create a 238-member library of tagged essential proteins in E. coli that can serve as both a research tool to study essential gene function and an applied system for antibiotic discovery. Our synthetic protein degradation system is modular, does not require disruption of host systems and can be transferred to diverse bacteria with minimal modification. PMID:25402616

  2. Genetic transfer in acidophilic bacteria

    SciTech Connect

    Roberto, F.F.; Glenn, A.W.; Bulmer, D.; Ward, T.E.

    1990-01-01

    There is increasing interest in the use of microorganisms to recover metals from ores, as well as to remove sulfur from coal. These so-called bioleaching processes are mediated by a number of bacteria. The best-studied of these organisms are acidophiles including Thiobacillus and Acidiphilium species. Our laboratory has focused on developing genetic strategies to allow the manipulation of acidophilic bacteria to improve and augment their utility in large scale operations. We have recently been successful in employing conjugation for interbacterial transfer of genetic information, as well as in directly transforming Acidiphilium by use of electroporation. We are now testing the properties of IncPl, IncW and IncQ plasmid vectors in Acidiphilium to determine their relative usefulness in routine manipulation of acidophiles and transfer between organisms. This study also allows us to determine the natural ability of these bacteria to transfer genetic material amongst themselves in their particular environment. 21 refs., 3 figs., 2 tabs.

  3. Parotitis due to anaerobic bacteria.

    PubMed

    Matlow, A; Korentager, R; Keystone, E; Bohnen, J

    1988-01-01

    Although Staphylococcus aureus remains the pathogen most commonly implicated in acute suppurative parotitis, the pathogenic role of gram-negative facultative anaerobic bacteria and strict anaerobic organisms in this disease is becoming increasingly recognized. This report describes a case of parotitis due to Bacteroides disiens in an elderly woman with Sjögren's syndrome. Literature reports on seven additional cases of suppurative parotitis due to anaerobic bacteria are reviewed. Initial therapy of acute suppurative parotitis should include coverage for S. aureus and, in a very ill patient, coverage of gram-negative facultative organisms with antibiotics such as cloxacillin and an aminoglycoside. A failure to respond clinically to such a regimen or isolation of anaerobic bacteria should lead to the consideration of the addition of clindamycin or penicillin. PMID:3287567

  4. DNA repair in Mycoplasma gallisepticum

    PubMed Central

    2013-01-01

    Background DNA repair is essential for the maintenance of genome stability in all living beings. Genome size as well as the repertoire and abundance of DNA repair components may vary among prokaryotic species. The bacteria of the Mollicutes class feature a small genome size, absence of a cell wall, and a parasitic lifestyle. A small number of genes make Mollicutes a good model for a “minimal cell” concept. Results In this work we studied the DNA repair system of Mycoplasma gallisepticum on genomic, transcriptional, and proteomic levels. We detected 18 out of 22 members of the DNA repair system on a protein level. We found that abundance of the respective mRNAs is less than one per cell. We studied transcriptional response of DNA repair genes of M. gallisepticum at stress conditions including heat, osmotic, peroxide stresses, tetracycline and ciprofloxacin treatment, stationary phase and heat stress in stationary phase. Conclusions Based on comparative genomic study, we determined that the DNA repair system M. gallisepticum includes a sufficient set of proteins to provide a cell with functional nucleotide and base excision repair and mismatch repair. We identified SOS-response in M. gallisepticum on ciprofloxacin, which is a known SOS-inducer, tetracycline and heat stress in the absence of established regulators. Heat stress was found to be the strongest SOS-inducer. We found that upon transition to stationary phase of culture growth transcription of DNA repair genes decreases dramatically. Heat stress does not induce SOS-response in a stationary phase. PMID:24148612

  5. Oxygen sensing strategies in mammals and bacteria.

    PubMed

    Taabazuing, Cornelius Y; Hangasky, John A; Knapp, Michael J

    2014-04-01

    The ability to sense and adapt to changes in pO2 is crucial for basic metabolism in most organisms, leading to elaborate pathways for sensing hypoxia (low pO2). This review focuses on the mechanisms utilized by mammals and bacteria to sense hypoxia. While responses to acute hypoxia in mammalian tissues lead to altered vascular tension, the molecular mechanism of signal transduction is not well understood. In contrast, chronic hypoxia evokes cellular responses that lead to transcriptional changes mediated by the hypoxia inducible factor (HIF), which is directly controlled by post-translational hydroxylation of HIF by the non-heme Fe(II)/αKG-dependent enzymes FIH and PHD2. Research on PHD2 and FIH is focused on developing inhibitors and understanding the links between HIF binding and the O2 reaction in these enzymes. Sulfur speciation is a putative mechanism for acute O2-sensing, with special focus on the role of H2S. This sulfur-centered model is discussed, as are some of the directions for further refinement of this model. In contrast to mammals, bacterial O2-sensing relies on protein cofactors that either bind O2 or oxidatively decompose. The sensing modality for bacterial O2-sensors is either via altered DNA binding affinity of the sensory protein, or else due to the actions of a two-component signaling cascade. Emerging data suggests that proteins containing a hemerythrin-domain, such as FBXL5, may serve to connect iron sensing to O2-sensing in both bacteria and humans. As specific molecular machinery becomes identified, these hypoxia sensing pathways present therapeutic targets for diseases including ischemia, cancer, or bacterial infection. PMID:24468676

  6. Oxygen Sensing Strategies in Mammals and Bacteria

    PubMed Central

    Taabazuing, Cornelius Y.; Hangasky, John A.; Knapp, Michael J.

    2014-01-01

    The ability to sense and adapt to changes in pO2 is crucial for basic metabolism in most organisms, leading to elaborate pathways for sensing hypoxia (low pO2). This review focuses on the mechanisms utilized by mammals and bacteria to sense hypoxia. While responses to acute hypoxia in mammalian tissues lead to altered vascular tension, the molecular mechanism of signal transduction is not well understood. In contrast, chronic hypoxia evokes cellular responses that lead to transcriptional changes mediated by the hypoxia inducible factor (HIF), which is directly controlled by post-translational hydroxylation of HIF by the non-heme Fe(II)/αKG-dependent enzymes FIH and PHD2. Research on PHD2 and FIH is focused on developing inhibitors and understanding the links between HIF binding and the O2 reaction in these enzymes. Sulfur speciation is a putative mechanism for acute O2-sensing, with special focus on the role of H2S. This sulfur-centered model is discussed, as are some of the directions for further refinement of this model. In contrast to mammals, bacterial O2-sensing relies on protein cofactors that either bind O2 or oxidatively decompose. The sensing modality for bacterial O2-sensors is either via altered DNA binding affinity of the sensory protein, or else due to the actions of a two-component signaling cascade. Emerging data suggests that proteins containing a hemerythrin-domain, such as FBXL5, may serve to connect iron sensing to O2-sensing in both bacteria and humans. As specific molecular machinery becomes identified, these hypoxia sensing pathways present therapeutic targets for diseases including ischemia, cancer, or bacterial infection. PMID:24468676

  7. Research on bacteria in the mainstream of biology.

    PubMed

    Magasanik, B

    1988-06-10

    The study of the genetics, biochemistry, and physiology of bacteria during the last 40 years has provided the concepts and methods for the study of cells of all types at the molecular level. Although much is already known about the mechanisms bacteria use to regulate the expression of their genes, a great deal more remains to be discovered that will have relevance to both prokaryotic and eukaryotic cells. Similarly, the study in bacteria of the transactions of DNA, of the synthesis and function of the cell membrane, of differentiation, and of the interaction with eukaryotic cells will undoubtedly produce results of general importance. The advantages of using bacteria for these studies include their simple noncompartmented structure, the accessibility of their genetic material, and the possibility of correlating the expression of a gene in the intact cell with its expression in a system composed of highly purified components. Finally, the comparative study of a wide variety of microorganisms may result in a better understanding of the evolution of prokaryotes and eukaryotes and lead to a comprehensive theory of cell biology. PMID:3287618

  8. Diversity of Denitrifying Bacteria in the San Francisco Bay

    NASA Astrophysics Data System (ADS)

    Atluri, A.; Lee, J.; Francis, C. A.

    2012-12-01

    We compared the diversity of communities of denitrifying bacteria from the San Francisco Bay to investigate whether environmental factors affect diversity. To do this, we studied the sequence diversity of the marker gene nirK. nirK codes for the enzyme nitrite reductase which helps reduce nitrite to nitric oxide, an important step in denitrification. Sediment samples were collected spatially from five different locations and temporally during the four different seasons along a salinity gradient in the bay. After collecting samples and extracting DNA from them, we used PCR to amplify our gene of interest, created clone libraries for sequencing, and compared phylogenetic trees from the different communities. Based on several phylogenetic analyses on our tree and environments, we saw that denitrifying bacteria from the North and Central Bay form distinct spatial clusters; Central Bay communities are very similar to each other, while communities from the North Bay are more distinct from each other and from communities in the Central Bay. Bacteria from site 8.1M (Carquinez Strait) showed the most cm-scale spatial diversity, and there was the most species richness during the winter. All this suggests that diversity of communities of denitrifying bacteria may be affected by spatial and temporal environmental factors.

  9. Use of genetically modified bacteria to modulate adaptive immunity.

    PubMed

    Bueno, Susan M; González, Pablo A; Kalergis, Alexis M

    2009-06-01

    Infectious diseases caused by virulent bacteria are a significant cause of morbidity and mortality worldwide, especially in developing countries. However, attenuated strains derived from pathogenic bacteria, such as Salmonella, are highly immunogenic and can be used as vaccines to promote immunity against parental pathogenic bacteria strains. Further, they can be genetically manipulated to either express foreign antigens or deliver exogenous DNA, in order to induce immunity against other pathogens or antigens. Contrarily, specific structural modifications in attenuated Salmonella have allowed the generation of strains that can be well tolerated by the immune system and reduce inflammatory responses. It is thought that those strains could be considered as vectors to promote specific immune tolerance for certain auto-antigens or allergens and reduce unwanted or self-reactive immune responses. In addition, some structural features of Salmonella can contribute to defining the nature and type of polarization of the adaptive immune response induced after immunization, which can be considered as a tool to modulate antigen-specific immunity. In this article we discuss recent advances in the understanding of immune system modulation by molecular components of bacteria and their exploitation for the rational induction of pathogen immunity or antigen-specific tolerance. PMID:19519362

  10. DNA computing.

    PubMed

    Gibbons, A; Amos, M; Hodgson, D

    1997-02-01

    DNA computation is a novel and exciting recent development at the interface of computer science and molecular biology. We describe the current activity in this field following the seminal work of Adleman, who recently showed how techniques of molecular biology may be applied to the solution of a computationally intractable problem. PMID:9013647

  11. DNA Music.

    ERIC Educational Resources Information Center

    Miner, Carol; della Villa, Paula

    1997-01-01

    Describes an activity in which students reverse-translate proteins from their amino acid sequences back to their DNA sequences then assign musical notes to represent the adenine, guanine, cytosine, and thymine bases. Data is obtained from the National Institutes of Health (NIH) on the Internet. (DDR)

  12. DNA Investigations.

    ERIC Educational Resources Information Center

    Mayo, Ellen S.; Bertino, Anthony J.

    1991-01-01

    Presents a simulation activity that allow students to work through the exercise of DNA profiling and to grapple with some analytical and ethical questions involving a couple arranging with a surrogate mother to have a baby. Can be used to teach the principles of restriction enzyme digestion, gel electrophoresis, and probe hybridization. (MDH)

  13. Identification of cellulolytic bacteria in soil by stable isotope probing.

    PubMed

    Haichar, Feth El Zahar; Achouak, Wafa; Christen, Richard; Heulin, Thierry; Marol, Christine; Marais, Marie-France; Mougel, Christophe; Ranjard, Lionel; Balesdent, Jérôme; Berge, Odile

    2007-03-01

    Plant residues, mainly made up of cellulose, are the largest fraction of organic carbon material in terrestrial ecosystems. Soil microorganisms are mainly responsible for the transfer of this carbon to the atmosphere, but their contribution is not accurately known. The aim of the present study was to identify bacterial populations that are actively involved in cellulose degradation, using the DNA-stable isotope probing (DNA-SIP) technique. (13)C-cellulose was produced by Acetobacter xylinus and incubated in soil for 7, 14, 30 and 90 days. Total DNA was extracted from the soil, the (13)C-labelled (heavy) and unlabelled (light) DNA fractions were separated by ultracentrifugation, and the structure of active bacterial communities was analysed by bacterial-automated ribosomal intergenic spacer analysis (B-ARISA) and characterized with denaturing gradient gel electrophoresis (DGGE). Cellulose degradation was associated with significant changes in bacterial community structure issued from heavy DNA, leading to the appearance of new bands and increase in relative intensities of other bands until day 30. The majority of bands decreased in relative intensity at day 90. Sequencing and phylogenetic analysis of 10 of these bands in DGGE profiles indicated that most sequences were closely related to sequences from organisms known for their ability to degrade cellulose or to uncultured soil bacteria. PMID:17298363

  14. Vertical Distribution of Heterotrophic Bacteria and Their Culturability In The Northeastern Atlantic (pomme 0 Cruise)

    NASA Astrophysics Data System (ADS)

    Denis, M.; Moumas, M.; Bianchi, M.

    In the frame of POMME (Programme Océanographie Multidisciplinaire Méso- Echelle) a French oceanographic programme in the Northeastern Atlantic (39-45N and 15-21W), the vertical distribution of heterotrophic bacteria and their culturability were investigated by combining different independent approaches during the POMME 0 cruise in fall 2000. Bacterial abundances and biomasses were determined by flow cytometric analysis of seawater samples, fixed, frozen and stored in liquid nitrogen un- til their analysis in the laboratory. Cells were stained with the green fluorescent probe SYBR Green IIZ´ (Molecular Probes), a specific probe for nucleic acids. The enumer- ated bacteria were pooled into two fractions according to their DNA content. Bacteria with the higher DNA content (HDNA) are considered as the fraction potentially able of undergoing division, whereas cells with the lower DNA content (LDNA) constitute an inactive fraction (Gasol et al., 1999). The viability of the collected bacteria was determined by using the method of Bianchi &Giuliano (1996) based on the formation of micro-colonies. The percentages of dividing bacteria were calculated with respect to the numbers of HDNA bacteria instead of the total counts which contained the irrel- evant LDNA cells. The percentage of dividing bacteria was larger when the bacteria population was dominated by HDNA bacteria. This result suggests that a bacterial population composed mainly of HDNA cells will have a larger capacity to divide than otherwise. The distribution of the bacterial activity at the sampled stations showed that conditions for the heterotrophic bacteria development were more favorable in the south western zone of the study area. The observed bacterial abundances were in the range 3.7 104 - 5.3 105 cells cm-3. The percentages of the LDNA fractions were in the range 40 - 90%, suggesting the occurrence of a declining ecosystem. The installa- tion of an oligotrophic system was supported by the observation of

  15. Methods for Engineering Sulfate Reducing Bacteria of the Genus Desulfovibrio

    SciTech Connect

    Chhabra, Swapnil R; Keller, Kimberly L.; Wall, Judy D.

    2011-03-15

    Sulfate reducing bacteria are physiologically important given their nearly ubiquitous presence and have important applications in the areas of bioremediation and bioenergy. This chapter provides details on the steps used for homologous-recombination mediated chromosomal manipulation of Desulfovibrio vulgaris Hildenborough, a well-studied sulfate reducer. More specifically, we focus on the implementation of a 'parts' based approach for suicide vector assembly, important aspects of anaerobic culturing, choices for antibiotic selection, electroporation-based DNA transformation, as well as tools for screening and verifying genetically modified constructs. These methods, which in principle may be extended to other sulfate-reducing bacteria, are applicable for functional genomics investigations, as well as metabolic engineering manipulations.

  16. Transport of microspheres and indigenous bacteria through a sandy aquifer: Results of natural- and forced-gradient tracer experiments

    USGS Publications Warehouse

    Harvey, R.W.; George, L.H.; Smith, R.L.; LeBlanc, D.R.

    1989-01-01

    Transport of indigenous bacteria through sandy aquifer sediments was investigated in forced- and natural-gradient tracer teste. A diverse population of bacteria was collected and concentrated from groundwater at the site, stained with a DNA-specific fluorochrome, and injected back into the aquifer. Included with the injectate were a conservative tracer (Br- or Cl-) and bacteria-sized (0.2-1.3-??m) microspheres having carboxylated, carbonyl, or neutral surfaces. Transport of stained bacteria and all types and size classes of microspheres was evident. In the natural-gradient test, both surface characteristics and size of microspheres affected attenuation. Surface characteristics had the greatest effect upon retardation. Peak break-through of DAPI-stained bacteria (forced-gradient experiment) occurred well in advance of bromide at the more distal sampler. Transport behavior of bacteria was substantially different from that of carboxylated microspheres of comparable size. ?? 1988 American Chemical Society.

  17. Influence of Chicken Manure Fertilization on Antibiotic-Resistant Bacteria in Soil and the Endophytic Bacteria of Pakchoi.

    PubMed

    Yang, Qingxiang; Zhang, Hao; Guo, Yuhui; Tian, Tiantian

    2016-01-01

    Animal manure is commonly used as fertilizer for agricultural crops worldwide, even though it is believed to contribute to the spread of antibiotic resistance from animal intestines to the soil environment. However, it is unclear whether and how there is any impact of manure fertilization on populations and community structure of antibiotic-resistant endophytic bacteria (AREB) in plant tissues. To investigate the effect of manure and organic fertilizer on endophytic bacterial communities, pot experiments were performed with pakchoi grown with the following treatments: (1) non-treated; (2) chicken manure-treated and (3) organic fertilizer-treated. Manure or organic fertilizer significantly increased the abundances of total cultivable endophytic bacteria (TCEB) and AREB in pakchoi, and the effect of chicken manure was greater than that of organic fertilizer. Further, 16S rDNA sequencing and the phylogenetic analysis indicated that chicken manure or organic fertilizer application increased the populations of multiple antibiotic-resistant bacteria (MARB) in soil and multiple antibiotic-resistant endophytic bacteria (MAREB) in pakchoi. The identical multiple antibiotic-resistant bacterial populations detected in chicken manure, manure- or organic fertilizer-amended soil and the vegetable endophytic system were Brevundimonas diminuta, Brachybacterium sp. and Bordetella sp., suggesting that MARB from manure could enter and colonize the vegetable tissues through manure fertilization. The fact that some human pathogens with multiple antibiotic resistance were detected in harvested vegetables after growing in manure-amended soil demonstrated a potential threat to human health. PMID:27376311

  18. Influence of Chicken Manure Fertilization on Antibiotic-Resistant Bacteria in Soil and the Endophytic Bacteria of Pakchoi

    PubMed Central

    Yang, Qingxiang; Zhang, Hao; Guo, Yuhui; Tian, Tiantian

    2016-01-01

    Animal manure is commonly used as fertilizer for agricultural crops worldwide, even though it is believed to contribute to the spread of antibiotic resistance from animal intestines to the soil environment. However, it is unclear whether and how there is any impact of manure fertilization on populations and community structure of antibiotic-resistant endophytic bacteria (AREB) in plant tissues. To investigate the effect of manure and organic fertilizer on endophytic bacterial communities, pot experiments were performed with pakchoi grown with the following treatments: (1) non-treated; (2) chicken manure-treated and (3) organic fertilizer-treated. Manure or organic fertilizer significantly increased the abundances of total cultivable endophytic bacteria (TCEB) and AREB in pakchoi, and the effect of chicken manure was greater than that of organic fertilizer. Further, 16S rDNA sequencing and the phylogenetic analysis indicated that chicken manure or organic fertilizer application increased the populations of multiple antibiotic-resistant bacteria (MARB) in soil and multiple antibiotic-resistant endophytic bacteria (MAREB) in pakchoi. The identical multiple antibiotic-resistant bacterial populations detected in chicken manure, manure- or organic fertilizer-amended soil and the vegetable endophytic system were Brevundimonas diminuta, Brachybacterium sp. and Bordetella sp., suggesting that MARB from manure could enter and colonize the vegetable tissues through manure fertilization. The fact that some human pathogens with multiple antibiotic resistance were detected in harvested vegetables after growing in manure-amended soil demonstrated a potential threat to human health. PMID:27376311

  19. Natural Transformation of Azotobacter vinelandii by Adsorbed Chromosomal DNA: Role of Adsorbed DNA Conformation

    NASA Astrophysics Data System (ADS)

    Lv, N.; Zilles, J.; Nguyen, H.

    2008-12-01

    Recent increases in antibiotic resistance among pathogenic microorganisms and the accompanying public health concerns result both from the widespread use of antibiotics and from the transfer of antibiotic resistance genes among microorganisms. To understand the transfer of antibiotic resistance genes and identify efficient measures to minimize these transfers, an interdisciplinary approach was used to identify physical and chemical factors that control the fate and biological availability of extracellular DNA. Quartz crystal microbalance with dissipation (QCM-D) was used to study extracellular DNA adsorption and the conformation of the adsorbed DNA on silica and natural organic matter (NOM) surfaces. Solution chemistry was varied systematically to investigate the role of adsorbed DNA conformation on transformation. Gene transfer was assessed under the same conditions using natural transformation of chromosomal DNA into the soil bacteria Azotobacter vinelandii. DNA adsorbed to both silica and NOM surfaces has a more compact and rigid conformation in the presence of Ca2+ compared to Na+. Extracellular DNA adsorbed on silica and NOM surfaces transformed A. vinelandii. The transformation efficiency of adsorbed DNA was up to 4 orders of magnitude lower than that of dissolved DNA. Preliminary results suggest that the presence of Ca2+ in groundwater (e.g. hardness) reduces the availability of adsorbed DNA for transformation.

  20. DNA polymerases drive DNA sequencing-by-synthesis technologies: both past and present

    PubMed Central

    Chen, Cheng-Yao

    2014-01-01

    Next-generation sequencing (NGS) technologies have revolutionized modern biological and biomedical research. The engines responsible for this innovation are DNA polymerases; they catalyze the biochemical reaction for deriving template sequence information. In fact, DNA polymerase has been a cornerstone of DNA sequencing from the very beginning. Escherichia coli DNA polymerase I proteolytic (Klenow) fragment was originally utilized in Sanger’s dideoxy chain-terminating DNA sequencing chemistry. From these humble beginnings followed an explosion of organism-specific, genome sequence information accessible via public database. Family A/B DNA polymerases from mesophilic/thermophilic bacteria/archaea were modified and tested in today’s standard capillary electrophoresis (CE) and NGS sequencing platforms. These enzymes were selected for their efficient incorporation of bulky dye-terminator and reversible dye-terminator nucleotides respectively. Third generation, real-time single molecule sequencing platform requires slightly different enzyme properties. Enterobacterial phage ϕ29 DNA polymerase copies long stretches of DNA and possesses a unique capability to efficiently incorporate terminal phosphate-labeled nucleoside polyphosphates. Furthermore, ϕ29 enzyme has also been utilized in emerging DNA sequencing technologies including nanopore-, and protein-transistor-based sequencing. DNA polymerase is, and will continue to be, a crucial component of sequencing technologies. PMID:25009536

  1. Photosynthetic reaction centers in bacteria

    SciTech Connect

    Norris, J.R. Univ. of Chicago, IL ); Schiffer, M. )

    1990-07-30

    The photochemistry of photosynthesis begins in complexes called reaction centers. These have become model systems to study the fundamental process by which plants and bacteria convert and store solar energy as chemical free energy. In green plants, photosynthesis occurs in two systems, each of which contains a different reaction center, working in series. In one, known as photosystem 1, oxidized nicotinamide adenine dinucleotide phosphate (NADP[sup +]) is reduced to NADPH for use in a series of dark reactions called the Calvin cycle, named for Nobel Laureate Melvin Calvin, by which carbon dioxide is converted into useful fuels such as carbohydrates and sugars. In the other half of the photosynthetic machinery of green plants, called photosystem 2, water is oxidized to produce molecular oxygen. A different form of photosynthesis occurs in photosynthetic bacteria, which typically live at the bottom of ponds and feed on organic debris. Two main types of photosynthetic bacteria exist: purple and green. Neither type liberates oxygen from water. Instead, the bacteria feed on organic media or inorganic materials, such as sulfides, which are easier to reduce or oxidize than carbon dioxide or water. Perhaps in consequence, their photosynthetic machinery is simpler than that of green, oxygen-evolving plants and their primary photochemistry is better understood.

  2. Manipulating Genetic Material in Bacteria

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Lisa Crawford, a graduate research assistant from the University of Toledo, works with Laurel Karr of Marshall Space Flight Center (MSFC) in the molecular biology laboratory. They are donducting genetic manipulation of bacteria and yeast for the production of large amount of desired protein. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  3. Are extreme halophiles actually 'bacteria'

    NASA Technical Reports Server (NTRS)

    Magrum, L. J.; Luehrsen, K. R.; Woese, C. R.

    1978-01-01

    Comparative cataloging of the 16S rRNA of Halobacterium halobium indicates that the organism did not arise, as a halophilic adaptation, from some typical bacterium. Rather, H. halobium is a member of the Archaebacteria, an ancient group of organisms that are no more related to typical bacteria than they are to eucaryotes.

  4. Antibacterial susceptibility of plaque bacteria.

    PubMed

    Newman, M G; Hulem, C; Colgate, J; Anselmo, C

    1979-07-01

    Selected anaerobic, capnophilic and facultative bacteria isolated from patients with various forms of periodontal health and disease were tested for their susceptibility to antibiotics and antimicrobial agents. Specific bactericidal and minimum inhibitory concentrations were compared to disc zone diameters, thereby generating new standards for the potential selection of antimicrobial agents. PMID:286720

  5. Marine bacteria which produce tetrodotoxin.

    PubMed Central

    Simidu, U; Noguchi, T; Hwang, D F; Shida, Y; Hashimoto, K

    1987-01-01

    A number of type strains of marine bacteria, including members of the family Vibrionaceae, were cultured and examined for tetrodotoxin productivity by high-performance liquid chromatography and gas chromatography-mass spectrometry. Most of the Vibrionaceae strains produced tetrodotoxin, anhydrotetrodotoxin, or both. PMID:3310884

  6. Endobiotic bacteria and their pathogenic potential in cnidarian tentacles

    NASA Astrophysics Data System (ADS)

    Schuett, Christian; Doepke, Hilke

    2010-09-01

    Endobiotic bacteria colonize the tentacles of cnidaria. This paper provides first insight into the bacterial spectrum and its potential of pathogenic activities inside four cnidarian species. Sample material originating from Scottish waters comprises the jellyfish species Cyanea capillata and C. lamarckii, hydrozoa Tubularia indivisa and sea anemone Sagartia elegans. Mixed cultures of endobiotic bacteria, pure cultures selected on basis of haemolysis, but also lyophilized samples were prepared from tentacles and used for DGGE-profiling with subsequent phylogenetic analysis of 16S rDNA fragments. Bacteria were detected in each of the cnidarian species tested. Twenty-one bacterial species including four groups of closely related organisms were found in culture material. The species within these groups could not be differentiated from each other (one group of Pseudoalteromonas spp., two groups of Shewanella spp., one group of Vibrio spp.). Each of the hosts exhibits a specific endobacterial spectrum. Solely Cyanea lamarckii harboured Moritella viscosa. Only in Cyanea capillata, members of the Shewanella group #2 and the species Pseudoalteromonas arctica, Shewanella violacea, Sulfitobacter pontiacus and Arcobacter butzleri were detected. Hydrozoa Tubularia indivisa provided an amazingly wide spectrum of nine bacterial species. Exclusively, in the sea anemone Sagartia elegans, the bacterial species P. aliena was found. Overall eleven bacterial species detected were described recently as novel species. Four 16S rDNA fragments generated from lyophilized material displayed extremely low relationship to their next neighbours. These organisms are regarded as members of the endobiotic “terra incognita”. Since the origin of cnidarian toxins is unclear, the possible pathogenic activity of endobiotic bacteria has to be taken into account. Literature data show that their next neighbours display an interesting diversity of haemolytic, septicaemic and necrotic actions including

  7. Isolation and identification of bacteria associated with the surfaces of several algal species

    NASA Astrophysics Data System (ADS)

    Wang, Zifeng; Xiao, Tian; Pang, Shaojun; Liu, Min; Yue, Haidong

    2009-09-01

    We conducted this study to assess the diversity of bacteria associated with the surfaces of algae based on 16S rDNA sequence analyses. Twelve strains of bacteria were obtained from the surfaces of the following four species of algae: Gracilaria textorii, Ulva pertusa, Laminaria japonica, and Polysiphonia urceolata. The isolated strains of bacteria can be divided into two groups: Halomonas and Vibrio, in physiology, biochemical characteristics and 16S rDNA sequence analyses. The phylogenetic tree constructed based on 16S rDNA sequences of the isolates shows four obvious clusters, Halomonas venusta, Vibrio tasmaniensis, Vibrio lentus, and Vibrio splendidus. Isolates from the surface of P. urceolata are more abundant and diverse, of which strains P9 and P28 have a 16S rDNA sequence very similar (97.5%-99.8%) to that of V. splendidus. On the contrary, the isolates from the surfaces of G. textorii, U. pertusa and L. japonica are quite simple and distribute on different branches of the phylogenetic tree. In overall, the results of this study indicate that the genetic relationships among the isolates are quite close and display a certain level of host species specificity, and alga-associated bacteria species are algal species specific.

  8. Comparison of phenotypic and molecular tests to identify lactic acid bacteria

    PubMed Central

    Moraes, Paula Mendonça; Perin, Luana Martins; Júnior, Abelardo Silva; Nero, Luís Augusto

    2013-01-01

    Twenty-nine lactic acid bacteria (LAB) isolates were submitted for identification using Biolog, API50CHL, 16S rDNA sequencing, and species-specific PCR reactions. The identification results were compared, and it was concluded that a polyphasic approach is necessary for proper LAB identification, being the molecular analyzes the most reliable. PMID:24159291

  9. PCR detection and quantitation of predominant anaerobic bacteria in human and animal fecal samples

    SciTech Connect

    Wang, Rong-Fu; Cao, Wei-Wen; Cerniglia, C.E.

    1996-04-01

    PCR procedures based on 16S rRNA genen sequence specific for 12 anaerobic bacteria that predominate in the human intestinal tract were developed and used for quantitative detection of these species in human feces and animal feces. The reported PCR procedure including the fecal sample preparation method is simplified and rapid and eliminates the DNA isolation steps.

  10. INTERNAL AMPLIFICATION CONTROL FOR USE IN QUANTITATIVE POLYMERASE CHAIN REACTION FECAL INDICATOR BACTERIA ASSAYS

    EPA Science Inventory

    Quantitative polymerase chain reaction (QPCR) can be used as a rapid method for detecting fecal indicator bacteria. Because false negative results can be caused by PCR inhibitors that co-extract with the DNA samples, an internal amplification control (IAC) should be run with eac...

  11. Visual evidence of horizontal gene transfer between plants and bacteria in the phytosphere of transplastomic tobacco.

    PubMed

    Pontiroli, Alessandra; Rizzi, Aurora; Simonet, Pascal; Daffonchio, Daniele; Vogel, Timothy M; Monier, Jean-Michel

    2009-05-01

    Plant surfaces, colonized by numerous and diverse bacterial species, are often considered hot spots for horizontal gene transfer (HGT) between plants and bacteria. Plant DNA released during the degradation of plant tissues can persist and remain biologically active for significant periods of time, suggesting that soil or plant-associated bacteria could be in direct contact with plant DNA. In addition, nutrients released during the decaying process may provide a copiotrophic environment conducive for opportunistic microbial growth. Using Acinetobacter baylyi strain BD413 and transplastomic tobacco plants harboring the aadA gene as models, the objective of this study was to determine whether specific niches could be shown to foster bacterial growth on intact or decaying plant tissues, to develop a competence state, and to possibly acquire exogenous plant DNA by natural transformation. Visualization of HGT in situ was performed using A. baylyi strain BD413(rbcL-DeltaPaadA::gfp) carrying a promoterless aadA::gfp fusion. Both antibiotic resistance and green fluorescence phenotypes were restored in recombinant bacterial cells after homologous recombination with transgenic plant DNA. Opportunistic growth occurred on decaying plant tissues, and a significant proportion of the bacteria developed a competence state. Quantification of transformants clearly supported the idea that the phytosphere constitutes a hot spot for HGT between plants and bacteria. The nondisruptive approach used to visualize transformants in situ provides new insights into environmental factors influencing HGT for plant tissues. PMID:19329660

  12. Isolation and biochemical analysis of Mucor bacilliformis monomorphic mutants.

    PubMed Central

    Ruiz-Herrera, J; Ruiz, A; Lopez-Romero, E

    1983-01-01

    Fourteen stable mutants of Mucor bacilliformis which grew yeastlike under both aerobic and anaerobic conditions were isolated after treatment of growing mycelium with N-methyl-N'-nitro-N-nitrosoguanidine. Biochemical characterization of the mutants included determination of growth in different carbon and nitrogen sources, determination of sensitivity of respiration to cyanide and salicylhydroxamate, analysis of cytochrome spectra, determination of glutamate dehydrogenases, glutamine synthase, and ornithine decarboxylase activities, and measurement of cyclic AMP levels. Data showed that all mutants were defective in some aspect of oxidative metabolism and had low levels of ornithine decarboxylase, whereas other characters were variable. It was concluded that morphological transition in M. bacilliformis is probably associated with mitochondrial functions and expression of ornithine decarboxylase, but may be independent of cyclic AMP and glutamate dehydrogenase levels. The importance of genetic studies in the analysis of dimorphism is stressed. PMID:6137477

  13. Method for producing intact plants containing foreign DNA

    SciTech Connect

    Simpson, R.B.; Margossian, L.J.

    1987-04-14

    An in vivo method is described for transforming and regenerating whole dicotyledenous plants comprising: infecting a dicotyledenous plant (P) with Rhizobiaceae bacteria containing virulence functions; a first plasmid containing T-DNA terminal sequences flanking oncogenic factors capable of inducing a shoot-bearing shooty tumor on plant (P), and a second plasmid containing T-DNA terminal sequences flanking heterologous transfer DNA capable of being integrated into nuclear DNA of plant (P) cells wherein the second plasmid does not contain any oncogenic factors; maintaining the infected dicotyledenous plant (P) until shoot-bearing shooty tumor develops on the dicotyledenous plant (P); selecting those shoots, or progeny wherein the progeny are selected from the group consisting of seeds or tubers, that contain transformed cells having heterologous transfer DNA but not any tumorous DNA integrated into their genomes; and utilizing the selected shoots, or progeny to produce whole plants that contain cells having heterologous transfer DNA integrated into their genomes.

  14. The DNA-Uptake Process of Naturally Competent Vibrio cholerae.

    PubMed

    Matthey, Noémie; Blokesch, Melanie

    2016-02-01

    The sophisticated DNA-uptake machinery used during natural transformation is still poorly characterized, especially in Gram-negative bacteria where the transforming DNA has to cross two membranes as well as the peptidoglycan layer before entering the cytoplasm. The DNA-uptake machinery was hypothesized to take the form of a pseudopilus, which, upon repeated cycles of extension and retraction, would pull external DNA towards the cell surface or into the periplasmic space, followed by translocation across the cytoplasmic membrane. In this review, we summarize recent advances on the DNA-uptake machinery of V. cholerae, highlighting the presence of an extended competence-induced pilus and the contribution of a conserved DNA-binding protein that acts as a ratchet and reels DNA into the periplasm. PMID:26614677

  15. Charting the Structure and Energetics of Packaged DNA in Bacteriophages

    NASA Astrophysics Data System (ADS)

    Qiu, Xiangyun; Rau, Donald C.; Parsegian, V. Adrian; Fang, Li Tai; Knobler, Charles M.; Gelbart, William M.

    2009-03-01

    Many bacterial viruses resort to pressure in order to infect bacteria, e.g., lambda phage stores its dsDNA genome at surprisingly high pressure and then uses this pressure to drive delivery of the genome. We report on a biophysical interrogation of the DNA configuration and pressure in lambda phage by combining structural and thermodynamic measurements with theoretical modeling. Changes in DNA organization in the capsid are monitored using solution small angle x-ray scattering (SAXS). We vary the DNA-DNA repulsion and DNA bending contributions to the capsid pressure by changing salt concentrations and packaged length, and augment SAXS data with osmotic stress measurements to elicit the evolving structure and energetics of the packaged DNA.

  16. Diversity and Detection of Nitrate Assimilation Genes in Marine Bacteria

    PubMed Central

    Allen, Andrew E.; Booth, Melissa G.; Frischer, Marc E.; Verity, Peter G.; Zehr, Jonathan P.; Zani, Sabino

    2001-01-01

    A PCR approach was used to construct a database of nasA genes (called narB genes in cyanobacteria) and to detect the genetic potential for heterotrophic bacterial nitrate utilization in marine environments. A nasA-specific PCR primer set that could be used to selectively amplify the nasA gene from heterotrophic bacteria was designed. Using seawater DNA extracts obtained from microbial communities in the South Atlantic Bight, the Barents Sea, and the North Pacific Gyre, we PCR amplified and sequenced nasA genes. Our results indicate that several groups of heterotrophic bacterial nasA genes are common and widely distributed in oceanic environments. PMID:11679368

  17. The evaluation and implementation of match criteria for forensic analysis of DNA.

    PubMed

    Laber, T L; Iverson, J T; Liberty, J A; Giese, S A

    1995-11-01

    This study describes a method for establishing match criteria used in forensic DNA typing. The validity of applying different match criteria based upon the molecular weight of a DNA band is discussed. The match criteria presented allow visually matching DNA patterns to be confirmed by computer assisted image analysis over the entire range of the sizing ladder. Approximately 5000 intragel and 5000 intergel comparisons were made between the restriction fragment length polymorphism (RFLP) DNA band sizes obtained from casework, mock cases, and environmentally insulted samples and the band sizes obtained from their corresponding bloodstain standards (controls). Analyses of these data suggested that fragments located in different molecular weight size regions of an analytical gel required different match criteria for assessing a visual match. The results of these analyses support the use of the following match criteria: Intragel 0.5-10 kb = +/- 1.7%, 10-15 kb = +/- 3.2%, 15-22.6 kb = +/- 5.8%; Intergel and blind control 0.5-10 kb = +/- 3.0%, 10-15 kb = +/- 4.2%, 15-22.6 kb = +/- 10.0%; and human cell-line K562 and the monomorphic locus D7Z2 = +/- 2.5%. Each match criterion was also evaluated with respect to the distance in millimeters between matching bands throughout the 0.5-22.6 kb molecular weight size range. Applying these match criteria to different gel regions has been shown to be valid and reliable in comparisons conducted on more than 10,000 validation samples, in over 500 forensic cases and in more than 200 searches of a criminal sexual offender (CSO) database containing over 5000 individuals. PMID:8522913

  18. Rapid Screening Method for Detection of Bacteria in Platelet Concentrates

    PubMed Central

    Ribault, S.; Harper, K.; Grave, L.; Lafontaine, C.; Nannini, P.; Raimondo, A.; Faure, I. Besson

    2004-01-01

    Public awareness has long focused on the risks of the transmission of viral agents through blood product transfusion. This risk, however, pales in comparison to the less publicized danger associated with the transfusion of blood products contaminated with bacteria, in particular, platelet concentrates. Up to 1,000 cases of clinical sepsis after the transfusion of platelet concentrates are reported annually in the United States. The condition is characterized by acute reaction symptoms and the rapid onset of septicemia and carries a 20 to 40% mortality rate. The urgent need for a method for the routine screening of platelet concentrates to improve patient safety has long been recognized. We describe the development of a rapid and highly sensitive method for screening for bacteria in platelet concentrates for transfusion. No culture period is required; and the entire procedure, from the time of sampling to the time that the final result is obtained, takes less than 90 min. The method involves three basic stages: the selective removal of platelets by filtration following activation with a monoclonal antibody, DNA-specific fluorescent labeling of bacteria, and concentration of the bacteria on a membrane surface for enumeration by solid-phase cytometry. The method offers a universal means of detection of live, nondividing, or dead gram-negative and gram-positive bacteria in complex cellular blood products. The sensitivity is higher than those of the culture-based methods available at present, with a detection limit of 10 to 102 CFU/ml, depending upon the bacterial strain. PMID:15131147

  19. Rapid screening method for detection of bacteria in platelet concentrates.

    PubMed

    Ribault, S; Harper, K; Grave, L; Lafontaine, C; Nannini, P; Raimondo, A; Faure, I Besson

    2004-05-01

    Public awareness has long focused on the risks of the transmission of viral agents through blood product transfusion. This risk, however, pales in comparison to the less publicized danger associated with the transfusion of blood products contaminated with bacteria, in particular, platelet concentrates. Up to 1,000 cases of clinical sepsis after the transfusion of platelet concentrates are reported annually in the United States. The condition is characterized by acute reaction symptoms and the rapid onset of septicemia and carries a 20 to 40% mortality rate. The urgent need for a method for the routine screening of platelet concentrates to improve patient safety has long been recognized. We describe the development of a rapid and highly sensitive method for screening for bacteria in platelet concentrates for transfusion. No culture period is required; and the entire procedure, from the time of sampling to the time that the final result is obtained, takes less than 90 min. The method involves three basic stages: the selective removal of platelets by filtration following activation with a monoclonal antibody, DNA-specific fluorescent labeling of bacteria, and concentration of the bacteria on a membrane surface for enumeration by solid-phase cytometry. The method offers a universal means of detection of live, nondividing, or dead gram-negative and gram-positive bacteria in complex cellular blood products. The sensitivity is higher than those of the culture-based methods available at present, with a detection limit of 10 to 10(2) CFU/ml, depending upon the bacterial strain. PMID:15131147

  20. Environment or kin: whence do bees obtain acidophilic bacteria?

    PubMed

    McFrederick, Quinn S; Wcislo, William T; Taylor, Douglas R; Ishak, Heather D; Dowd, Scot E; Mueller, Ulrich G

    2012-04-01

    As honey bee populations decline, interest in pathogenic and mutualistic relationships between bees and microorganisms has increased. Honey bees and bumble bees appear to have a simple intestinal bacterial fauna that includes acidophilic bacteria. Here, we explore the hypothesis that sweat bees can acquire acidophilic bacteria from the environment. To quantify bacterial communities associated with two species of North American and one species of Neotropical sweat bees, we conducted 16S rDNA amplicon 454 pyrosequencing of bacteria associated with the bees, their brood cells and their nests. Lactobacillus spp. were the most abundant bacteria in many, but not all, of the samples. To determine whether bee-associated lactobacilli can also be found in the environment, we reconstructed the phylogenetic relationships of the genus Lactobacillus. Previously described groups that associate with Bombus and Apis appeared relatively specific to these genera. Close relatives of several bacteria that have been isolated from flowers, however, were isolated from bees. Additionally, all three sweat bee species associated with lactobacilli related to flower-associated lactobacilli. These data suggest that there may be at least two different means by which bees acquire putative probiotics. Some lactobacilli appear specific to corbiculate apids, possibly because they are largely maternally inherited (vertically transmitted). Other lactobacilli, however, may be regularly acquired from environmental sources such as flowers. Sweat bee-associated lactobacilli were found to be abundant in the pollen and frass inside the nests of halictids, suggesting that they could play a role in suppressing the growth of moulds and other spoilage organisms. PMID:22340254

  1. Killer Pigments in Bacteria: An Ecological Nightmare.

    ERIC Educational Resources Information Center

    Benathen, Isaiah A.; Saccardi, Marion

    2000-01-01

    Describes an alternative to teaching ecology by using bacteria to test competitor survival. Students observe a time-dependent selective killing of other unrelated bacteria by Pseudomonas aeruginosa. (SAH)

  2. Smokeless Tobacco May Contain Potentially Harmful Bacteria

    MedlinePlus

    ... 160769.html Smokeless Tobacco May Contain Potentially Harmful Bacteria Infections, diarrhea and vomiting are possible consequences, FDA ... products can harbor several species of potentially harmful bacteria, researchers warn. Two types in particular -- Bacillus licheniformis ...

  3. Heterologous surface display on lactic acid bacteria: non-GMO alternative?

    PubMed Central

    Zadravec, Petra; Štrukelj, Borut; Berlec, Aleš

    2015-01-01

    Lactic acid bacteria (LAB) are food-grade hosts for surface display with potential applications in food and therapy. Alternative approaches to surface display on LAB would avoid the use of recombinant DNA technology and genetically-modified organism (GMO)-related regulatory requirements. Non-covalent surface display of proteins can be achieved by fusing them to various cell-wall binding domains, of which the Lysine motif domain (LysM) is particularly well studied. Fusion proteins have been isolated from recombinant bacteria or from their growth medium and displayed on unmodified bacteria, enabling heterologous surface display. This was demonstrated on non-viable cells devoid of protein content, termed bacteria-like particles, and on various species of genus Lactobacillus. Of the latter, Lactobacillus salivarius ATCC 11741 was recently shown to be particularly amenable for LysM-mediated display. Possible regulatory implications of heterologous surface display are discussed, particularly those relevant for the European Union. PMID:25880164

  4. Sand Beach Bacteria: Enumeration and Characterization

    PubMed Central

    Khiyama, H. M.; Makemson, J. C.

    1973-01-01

    Bacteria in the water-saturated sand of a relatively unpolluted sand beach were enumerated by direct microscope and viable counting. The number of interstitial bacteria was estimated to be a significant fraction of the total number of bacteria present. Three hundred sixty-two strains were isolated and submitted to cultural and biochemical tests. Fermentational abilities and the production of indole suggested that a significant number of these bacteria were symbiotically associated with resident metazoans. PMID:4356458

  5. Re-engineering bacteria for ethanol production

    DOEpatents

    Yomano, Lorraine P; York, Sean W; Zhou, Shengde; Shanmugam, Keelnatham; Ingram, Lonnie O

    2014-05-06

    The invention provides recombinant bacteria, which comprise a full complement of heterologous ethanol production genes. Expression of the full complement of heterologous ethanol production genes causes the recombinant bacteria to produce ethanol as the primary fermentation product when grown in mineral salts medium, without the addition of complex nutrients. Methods for producing the recombinant bacteria and methods for producing ethanol using the recombinant bacteria are also disclosed.

  6. Sand beach bacteria: enumeration and characterization.

    PubMed

    Khiyama, H M; Makemson, J C

    1973-09-01

    Bacteria in the water-saturated sand of a relatively unpolluted sand beach were enumerated by direct microscope and viable counting. The number of interstitial bacteria was estimated to be a significant fraction of the total number of bacteria present. Three hundred sixty-two strains were isolated and submitted to cultural and biochemical tests. Fermentational abilities and the production of indole suggested that a significant number of these bacteria were symbiotically associated with resident metazoans. PMID:4356458

  7. Genetics of Lactic Acid Bacteria

    NASA Astrophysics Data System (ADS)

    Zagorec, Monique; Anba-Mondoloni, Jamila; Coq, Anne-Marie Crutz-Le; Champomier-Vergès, Marie-Christine

    Many meat (or fish) products, obtained by the fermentation of meat originating from various animals by the flora that naturally contaminates it, are part of the human diet since millenaries. Historically, the use of bacteria as starters for the fermentation of meat, to produce dry sausages, was thus performed empirically through the endogenous micro-biota, then, by a volunteer addition of starters, often performed by back-slopping, without knowing precisely the microbial species involved. It is only since about 50 years that well defined bacterial cultures have been used as starters for the fermentation of dry sausages. Nowadays, the indigenous micro-biota of fermented meat products is well identified, and the literature is rich of reports on the identification of lactic acid bacteria (LAB) present in many traditional fermented products from various geographical origin, obtained without the addition of commercial starters (See Talon, Leroy, & Lebert, 2007, and references therein).

  8. Volatilization of Mercury By Bacteria

    PubMed Central

    Magos, L.; Tuffery, A. A.; Clarkson, T. W.

    1964-01-01

    Volatilization of mercury has been observed from various biological media (tissue homogenates, infusion broth, plasma, urine) containing mercuric chloride. That micro-organisms were responsible was indicated by the finding that the rates of volatilization were highly variable, that a latent period often preceded volatilization, that toluene inhibited the process, and that the capacity to volatilize mercury could be transferred from one biological medium to another. Two species of bacteria when isolated and cultured from these homogenates were able to volatilize mercury. Two other bacteria, one of which was isolated from the local water supply, were also highly active. The volatile mercury was identified as mercury vapour. The importance of these findings in relation to the storage of urine samples prior to mercury analysis is discussed. PMID:14249899

  9. Swimming bacteria power microscopic gears

    PubMed Central

    Sokolov, Andrey; Apodaca, Mario M.; Grzybowski, Bartosz A.; Aranson, Igor S.

    2010-01-01

    Whereas the laws of thermodynamics prohibit extraction of useful work from the Brownian motion of particles in equilibrium, these motions can be “rectified” under nonequilibrium conditions, for example, in the presence of asymmetric geometrical obstacles. Here, we describe a class of systems in which aerobic bacteria Bacillus subtilis moving randomly in a fluid film power submillimeter gears and primitive systems of gears decorated with asymmetric teeth. The directional rotation is observed only in the regime of collective bacterial swimming and the gears’ angular velocities depend on and can be controlled by the amount of oxygen available to the bacteria. The ability to harness and control the power of collective motions appears an important requirement for further development of mechanical systems driven by microorganisms. PMID:20080560

  10. Swimming bacteria power microscopic gears

    SciTech Connect

    Sokolov, Andrey; Apodaca, Mario M.; Grzybowski, Bartosz A.; Aranson, Igor S.

    2010-01-19

    Whereas the laws of thermodynamics prohibit extraction of useful work from the Brownian motion of particles in equilibrium, these motions can be “rectified” under nonequilibrium conditions, for example, in the presence of asymmetric geometrical obstacles. Here, we describe a class of systems in which aerobic bacteria Bacillus subtilis moving randomly in a fluid film power submillimeter gears and primitive systems of gears decorated with asymmetric teeth. The directional rotation is observed only in the regime of collective bacterial swimming and the gears’ angular velocities depend on and can be controlled by the amount of oxygen available to the bacteria. The ability to harness and control the power of collective motions appears an important requirement for further development of mechanical systems driven by microorganisms.

  11. Swimming bacteria power microscopic gears.

    SciTech Connect

    Sokolov, A.; Apodaca, M. M.; Grzybowski, B. A.; Aranson, I. S.; Materials Science Division; Princeton Univ.; Northwestern Univ.

    2010-01-19

    Whereas the laws of thermodynamics prohibit extraction of useful work from the Brownian motion of particles in equilibrium, these motions can be 'rectified' under nonequilibrium conditions, for example, in the presence of asymmetric geometrical obstacles. Here, we describe a class of systems in which aerobic bacteria Bacillus subtilis moving randomly in a fluid film power submillimeter gears and primitive systems of gears decorated with asymmetric teeth. The directional rotation is observed only in the regime of collective bacterial swimming and the gears angular velocities depend on and can be controlled by the amount of oxygen available to the bacteria. The ability to harness and control the power of collective motions appears an important requirement for further development of mechanical systems driven by microorganisms.

  12. Swimming bacteria at complex interfaces

    NASA Astrophysics Data System (ADS)

    Lopez, Diego; Lauga, Eric

    2013-11-01

    Swimming microorganisms such as bacteria often move in confined geometries. Such confinement can be caused by the presence of solid boundaries, free surfaces, or liquid interfaces. It is well established that confinement affects significantly locomotion, generating additional forces and torques on the bacteria. In the presence of a solid boundary (imposing a no-slip condition), microorganisms using helical propulsion undergo circular motion (clockwise in the case of E. coli). Conversely, close to a free (no-shear) surface the circular motion is reversed. However, realistic interfaces are complex, and experimental results do not always agree with theoretical predictions. In this work, we show, using analytical modeling, how different complex interfaces affect a nearby bacterium and modify its swimming kinematics. IUSTI UMR 7343, Polytech Marseille, France.

  13. Endocytosis of Viruses and Bacteria

    PubMed Central

    Cossart, Pascale; Helenius, Ari

    2014-01-01

    Of the many pathogens that infect humans and animals, a large number use cells of the host organism as protected sites for replication. To reach the relevant intracellular compartments, they take advantage of the endocytosis machinery and exploit the network of endocytic organelles for penetration into the cytosol or as sites of replication. In this review, we discuss the endocytic entry processes used by viruses and bacteria and compare the strategies used by these dissimilar classes of pathogens. PMID:25085912

  14. Bacteria turn a tiny gear

    SciTech Connect

    2009-01-01

    Thousands of tiny Bacillus subtillis bacteria turn a single gear, just 380 microns across. (A human hair is about 100 microns across.) The method could be used to create micro-machines. Argonne National Laboratory scientist Igor Aronson pioneered this technique. Read more at the New York Times: http://ow.ly/ODfI or at Argonne: http://ow.ly/ODfa Video courtesy Igor Aronson.

  15. Anaerobic bacteria from hypersaline environments.

    PubMed Central

    Ollivier, B; Caumette, P; Garcia, J L; Mah, R A

    1994-01-01

    Strictly anaerobic halophiles, namely fermentative, sulfate-reducing, homoacetogenic, phototrophic, and methanogenic bacteria are involved in the oxidation of organic carbon in hypersaline environments. To date, six anaerobic fermentative genera, containing nine species, have been described. Two of them are homoacetogens. Six species belong to the family Haloanaerobiaceae, as indicated by their unique 16S rRNA oligonucleotide sequences. Desulfohalobium retbaense and Desulfovibrio halophilus represent the only two moderately halophilic sulfate reducers so far reported. Among anoxygenic phototrophic anaerobes, a few purple bacteria with optimal growth at salinities between 6 and 11% NaCl have been isolated from hypersaline habitats. They belong to the genera Rhodospirillum, Chromatium, Thiocapsa, and Ectothiorhodospira. The commonest organisms isolated so far are Chromatium salexigens, Thiocapsa halophila, and Rhodospirillum salinarum. Extremely halophilic purple bacteria have most commonly been isolated from alkaline brines and require about 20 to 25% NaCl for optimal growth. They belong to the family Ectothiorodhospiraceae. Their osmoregulation involves synthesis or uptake of compatible solutes such as glycine-betaine that accumulate in their cytoplasm. The existence of methanogens in hypersaline environments is related to the presence of noncompetitive substrates such as methylamines, which originate mainly from the breakdown of osmoregulatory amines. Methanogenesis probably does not contribute to the mineralization of carbohydrates at NaCl concentrations higher than 15%. Above this concentration, sulfate reduction is probably the main way to oxidize H2 (although at rates too low to use up all the H2 formed) and occupies a terminal function kn the degradation of carbohydrates. Three genera and five species of halophilic methylotrophic methanogens have been reported. A bloom of phototrophic bacteria in the marine salterns of Salins-de-Giraud, located on the

  16. Cambrian calcareous algae and bacteria

    NASA Astrophysics Data System (ADS)

    Luchinina, Veronica A.; Terleev, A. A.

    2003-01-01

    Individual calcareous algae were known in Riphean. Their mass distribution is connected to the beginning of Cambrian. Despite of a long history of study, the nature of this group long time remained not clear. The new unique finds of algae from East Sayan region have shown, that primary carbonate thallus disappeared in the process of fossilization, and after it the calcareous cover formed by association of bacteria and cyanobacteria only.

  17. Laser-Based Identification of Pathogenic Bacteria

    ERIC Educational Resources Information Center

    Rehse, Steven J.

    2009-01-01

    Bacteria are ubiquitous in our world. From our homes, to our work environment, to our own bodies, bacteria are the omnipresent although often unobserved companions to human life. Physicists are typically untroubled professionally by the presence of these bacteria, as their study usually falls safely outside the realm of our typical domain. In the…

  18. Simple chamber facilitates chemiluminescent detection of bacteria

    NASA Technical Reports Server (NTRS)

    Marts, E. C.; Wilkins, J. R.

    1970-01-01

    Test chamber enables rapid estimation of bacteria in a test sample through the reaction of luminol and an oxidant with the cytochrome C portion of certain species of bacteria. Intensity of the light emitted in the reaction is a function of the specific bacteria in the test sample.

  19. Chemical signature of magnetotactic bacteria

    PubMed Central

    Amor, Matthieu; Busigny, Vincent; Durand-Dubief, Mickaël; Tharaud, Mickaël; Ona-Nguema, Georges; Gélabert, Alexandre; Alphandéry, Edouard; Menguy, Nicolas; Benedetti, Marc F.; Chebbi, Imène; Guyot, François

    2015-01-01

    There are longstanding and ongoing controversies about the abiotic or biological origin of nanocrystals of magnetite. On Earth, magnetotactic bacteria perform biomineralization of intracellular magnetite nanoparticles under a controlled pathway. These bacteria are ubiquitous in modern natural environments. However, their identification in ancient geological material remains challenging. Together with physical and mineralogical properties, the chemical composition of magnetite was proposed as a promising tracer for bacterial magnetofossil identification, but this had never been explored quantitatively and systematically for many trace elements. Here, we determine the incorporation of 34 trace elements in magnetite in both cases of abiotic aqueous precipitation and of production by the magnetotactic bacterium Magnetospirillum magneticum strain AMB-1. We show that, in biomagnetite, most elements are at least 100 times less concentrated than in abiotic magnetite and we provide a quantitative pattern of this depletion. Furthermore, we propose a previously unidentified method based on strontium and calcium incorporation to identify magnetite produced by magnetotactic bacteria in the geological record. PMID:25624469

  20. DNA Microarrays

    NASA Astrophysics Data System (ADS)

    Nguyen, C.; Gidrol, X.

    Genomics has revolutionised biological and biomedical research. This revolution was predictable on the basis of its two driving forces: the ever increasing availability of genome sequences and the development of new technology able to exploit them. Up until now, technical limitations meant that molecular biology could only analyse one or two parameters per experiment, providing relatively little information compared with the great complexity of the systems under investigation. This gene by gene approach is inadequate to understand biological systems containing several thousand genes. It is essential to have an overall view of the DNA, RNA, and relevant proteins. A simple inventory of the genome is not sufficient to understand the functions of the genes, or indeed the way that cells and organisms work. For this purpose, functional studies based on whole genomes are needed. Among these new large-scale methods of molecular analysis, DNA microarrays provide a way of studying the genome and the transcriptome. The idea of integrating a large amount of data derived from a support with very small area has led biologists to call these chips, borrowing the term from the microelectronics industry. At the beginning of the 1990s, the development of DNA chips on nylon membranes [1, 2], then on glass [3] and silicon [4] supports, made it possible for the first time to carry out simultaneous measurements of the equilibrium concentration of all the messenger RNA (mRNA) or transcribed RNA in a cell. These microarrays offer a wide range of applications, in both fundamental and clinical research, providing a method for genome-wide characterisation of changes occurring within a cell or tissue, as for example in polymorphism studies, detection of mutations, and quantitative assays of gene copies. With regard to the transcriptome, it provides a way of characterising differentially expressed genes, profiling given biological states, and identifying regulatory channels.

  1. DNA Damage Responses in Prokaryotes: Regulating Gene Expression, Modulating Growth Patterns, and Manipulating Replication Forks

    PubMed Central

    Kreuzer, Kenneth N.

    2013-01-01

    Recent advances in the area of bacterial DNA damage responses are reviewed here. The SOS pathway is still the major paradigm of bacterial DNA damage response, and recent studies have clarified the mechanisms of SOS induction and key physiological roles of SOS including a very major role in genetic exchange and variation. When considering diverse bacteria, it is clear that SOS is not a uniform pathway with one purpose, but rather a platform that has evolved for differing functions in different bacteria. Relating in part to the SOS response, the field has uncovered multiple apparent cell-cycle checkpoints that assist cell survival after DNA damage and remarkable pathways that induce programmed cell death in bacteria. Bacterial DNA damage responses are also much broader than SOS, and several important examples of LexA-independent regulation will be reviewed. Finally, some recent advances that relate to the replication and repair of damaged DNA will be summarized. PMID:24097899

  2. Metagenomic Analysis Reveals Symbiotic Relationship among Bacteria in Microcystis-Dominated Community

    PubMed Central

    Xie, Meili; Ren, Minglei; Yang, Chen; Yi, Haisi; Li, Zhe; Li, Tao; Zhao, Jindong

    2016-01-01

    Microcystis bloom, a cyanobacterial mass occurrence often found in eutrophicated water bodies, is one of the most serious threats to freshwater ecosystems worldwide. In nature, Microcystis forms aggregates or colonies that contain heterotrophic bacteria. The Microcystis-bacteria colonies were persistent even when they were maintained in lab culture for a long period. The relationship between Microcystis and the associated bacteria was investigated by a metagenomic approach in this study. We developed a visualization-guided method of binning for genome assembly after total colony DNA sequencing. We found that the method was effective in grouping sequences and it did not require reference genome sequence. Individual genomes of the colony bacteria were obtained and they provided valuable insights into microbial community structures. Analysis of metabolic pathways based on these genomes revealed that while all heterotrophic bacteria were dependent upon Microcystis for carbon and energy, Vitamin B12 biosynthesis, which is required for growth by Microcystis, was accomplished in a cooperative fashion among the bacteria. Our analysis also suggests that individual bacteria in the colony community contributed a complete pathway for degradation of benzoate, which is inhibitory to the cyanobacterial growth, and its ecological implication for Microcystis bloom is discussed. PMID:26870018

  3. Isolation of marine bacteria with antimicrobial activities from cultured and field-collected soft corals.

    PubMed

    Chen, Yu-Hsin; Kuo, Jimmy; Sung, Ping-Jung; Chang, Yu-Chia; Lu, Mei-Chin; Wong, Tit-Yee; Liu, Jong-Kang; Weng, Ching-Feng; Twan, Wen-Hung; Kuo, Fu-Wen

    2012-12-01

    Bacteria associated with eight field-collected and five cultured soft corals of Briareum sp., Sinularia sp., Sarcophyton sp., Nephtheidae sp., and Lobophytum sp. were screened for their abilities in producing antimicrobial metabolites. Field-collected coral samples were collected from Nanwan Bay in southern Taiwan. Cultured corals were collected from the cultivating tank at National Museum of Marine Biology and Aquarium. A total of 1,526 and 1,138 culturable, heterotrophic bacteria were isolated from wild and cultured corals, respectively; seawater requirement and antimicrobial activity were then assessed. There is no significant difference between the ratio of seawater-requiring bacteria on the wild and cultured corals. The ratio of antibiotic-producing bacteria within the seawater-requiring bacteria did not differ between the corals. Nineteen bacterial strains that showed high antimicrobial activity were selected for 16S rDNA sequencing. Three strains could be assigned at the family level (Rhodobacteraceae). The remaining 16 strains belong to eight genera: Marinobacterium (2 strains), Pseudoalteromonas (1), Vibrio (5), Enterovibrio (1), Tateyamaria (1), Labrenzia (2), and Pseudovibrio (4). The crude extract from bacteria strains CGH2XX was found to have high cytotoxicity against the cancer cell line HL-60 (IC(50) = 0.94 μg/ml) and CCRF-CEM (IC(50) = 1.19 μg/ml). Our results demonstrate that the marine bacteria from corals have great potential in the discovery of useful medical molecules. PMID:22872580

  4. Raingarden Soil Bacteria Community Response to Lab Simulated Salt-Enriched Artificial Stormwater

    NASA Astrophysics Data System (ADS)

    Endreny, T. A.

    2014-12-01

    Cold climate cities with green infrastructure depend on soil bacteria to remove nutrients from road salt-enriched stormwater. Our research examined how bacterial communities in laboratory columns containing bioretention media responded to varying concentrations of salt exposure from artificial stormwater and the effect of bacteria and salt on column effluent concentrations. We used a factorial design with two bacteria treatments (sterile, nonsterile) and three salt concentrations (935, 315, and 80 ppm), including a deionized water control. Columns were repeatedly saturated with stormwater or deionized and then drained throughout 5 wk, with the last week of effluent analyzed for water chemistry. To examine bacterial communities, we extracted DNA from column bioretention media at time 0 and at week 5 and used molecular profiling techniques to examine bacterial community changes. We found that bacterial community taxa changed between time 0 and week 5 and that there was significant separation between taxa among salt treatments. Bacteria evenness was significantly affected by stormwater treatment, but there were no differences in bacterial richness or diversity. Soil bacteria and salt treatments had a significant effect on the effluent concentration of NO3, PO4, Cu, Pb, and Zn based on ANOVA tests. The presence of bacteria reduced effluent NO3 and Zn concentrations by as much as 150 and 25%, respectively, while having a mixed effect on effluent PO4 concentrations. Our results demonstrate how stormwater can affect bacterial communities and how the presence of soil bacteria improves pollutant removal by green infrastructure.

  5. Bioretention column study of bacteria community response to salt-enriched artificial stormwater.

    PubMed

    Endreny, Theodore; Burke, David J; Burchhardt, Kathleen M; Fabian, Mark W; Kretzer, Annette M

    2012-01-01

    Cold climate cities with green infrastructure depend on soil bacteria to remove nutrients from road salt-enriched stormwater. Our research examined how bacterial communities in laboratory columns containing bioretention media responded to varying concentrations of salt exposure from artificial stormwater and the effect of bacteria and salt on column effluent concentrations. We used a factorial design with two bacteria treatments (sterile, nonsterile) and three salt concentrations (935, 315, and 80 ppm), including a deionized water control. Columns were repeatedly saturated with stormwater or deionized and then drained throughout 5 wk, with the last week of effluent analyzed for water chemistry. To examine bacterial communities, we extracted DNA from column bioretention media at time 0 and at week 5 and used molecular profiling techniques to examine bacterial community changes. We found that bacterial community taxa changed between time 0 and week 5 and that there was significant separation between taxa among salt treatments. Bacteria evenness was significantly affected by stormwater treatment, but there were no differences in bacterial richness or diversity. Soil bacteria and salt treatments had a significant effect on the effluent concentration of NO, PO, Cu, Pb, and Zn based on ANOVA tests. The presence of bacteria reduced effluent NO and Zn concentrations by as much as 150 and 25%, respectively, while having a mixed effect on effluent PO concentrations. Our results demonstrate how stormwater can affect bacterial communities and how the presence of soil bacteria improves pollutant removal by green infrastructure. PMID:23128752

  6. Hexameric ring structure of the N-terminal domain of Mycobacterium tuberculosis DnaB helicase

    SciTech Connect

    Biswas, Tapan; Tsodikov, Oleg V.

    2009-01-15

    Hexameric DnaB helicase unwinds the DNA double helix during replication of genetic material in bacteria. DnaB is an essential bacterial protein; therefore, it is an important potential target for antibacterial drug discovery. We report a crystal structure of the N-terminal region of DnaB from the pathogen Mycobacterium tuberculosis (MtDnaBn), determined at 2.0 {angstrom} resolution. This structure provides atomic resolution details of formation of the hexameric ring of DnaB by two distinct interfaces. An extensive hydrophobic interface stabilizes a dimer of MtDnaBn by forming a four-helix bundle. The other, less extensive, interface is formed between the dimers, connecting three of them into a hexameric ring. On the basis of crystal packing interactions between MtDnaBn rings, we suggest a model of a helicase-primase complex that explains previously observed effects of DnaB mutations on DNA priming.

  7. DNA maintenance in plastids and mitochondria of plants

    PubMed Central

    Oldenburg, Delene J.; Bendich, Arnold J.

    2015-01-01

    The DNA molecules in plastids and mitochondria of plants have been studied for over 40 years. Here, we review the data on the circular or linear form, replication, repair, and persistence of the organellar DNA (orgDNA) in plants. The bacterial origin of orgDNA appears to have profoundly influenced ideas about the properties of chromosomal DNA molecules in these organelles to the point of dismissing data inconsistent with ideas from the 1970s. When found at all, circular genome-sized molecules comprise a few percent of orgDNA. In cells active in orgDNA replication, most orgDNA is found as linear and branched-linear forms larger than the size of the genome, likely a consequence of a virus-like DNA replication mechanism. In contrast to the stable chromosomal DNA molecules in bacteria and the plant nucleus, the molecular integrity of orgDNA declines during leaf development at a rate that varies among plant species. This decline is attributed to degradation of damaged-but-not-repaired molecules, with a proposed repair cost-saving benefit most evident in grasses. All orgDNA maintenance activities are proposed to occur on the nucleoid tethered to organellar membranes by developmentally-regulated proteins. PMID:26579143

  8. Effects of physiological self-crowding of DNA on shape and biological properties of DNA molecules with various levels of supercoiling

    PubMed Central

    Benedetti, Fabrizio; Japaridze, Aleksandre; Dorier, Julien; Racko, Dusan; Kwapich, Robert; Burnier, Yannis; Dietler, Giovanni; Stasiak, Andrzej

    2015-01-01

    DNA in bacterial chromosomes and bacterial plasmids is supercoiled. DNA supercoiling is essential for DNA replication and gene regulation. However, the density of supercoiling in vivo is circa twice smaller than in deproteinized DNA molecules isolated from bacteria. What are then the specific advantages of reduced supercoiling density that is maintained in vivo? Using Brownian dynamics simulations and atomic force microscopy we show here that thanks to physiological DNA–DNA crowding DNA molecules with reduced supercoiling density are still sufficiently supercoiled to stimulate interaction between cis-regulatory elements. On the other hand, weak supercoiling permits DNA molecules to modulate their overall shape in response to physiological changes in DNA crowding. This plasticity of DNA shapes may have regulatory role and be important for the postreplicative spontaneous segregation of bacterial chromosomes. PMID:25653164

  9. Wrinkled DNA.

    PubMed Central

    Arnott, S; Chandrasekaran, R; Puigjaner, L C; Walker, J K; Hall, I H; Birdsall, D L; Ratliff, R L

    1983-01-01

    The B form of poly d(GC):poly d(GC) in orthorhombic microcrystallites in oriented fibers has a secondary structure in which a dinucleotide is the repeated motif rather than a mononucleotide as in standard, smooth B DNA. One set of nucleotides (probably GpC) has the same conformations as the smooth form but the alternate (CpG) nucleotides have a different conformation at C3'-O3'. This leads to a distinctive change in the orientation of the phosphate groups. Similar perturbations can be detected in other poly d(PuPy):poly d(PuPy) DNAs such as poly d(IC):poly d(IC) and poly d(AT):poly d(AT) in their D forms which have tetragonal crystal environments. This suggests that such perturbations are intrinsic to all stretches of duplex DNA where purines and pyrimidines alternate and may play a role in the detection and exploitation of such sequences by regulatory proteins. Images PMID:6572358

  10. Optical DNA

    NASA Astrophysics Data System (ADS)

    Vijaywargi, Deepak; Lewis, Dave; Kirovski, Darko

    A certificate of authenticity (COA) is an inexpensive physical object with a random and unique structure S which is hard to near-exactly replicate. An inexpensive device should be able to scan object’s physical “fingerprint,” a set of features that represents S. In this paper, we explore one set of requirements that optical media such as DVDs should satisfy, to be considered as COAs. As manufacturing of such media produces inevitable errors, we use the locations and count of these errors as a “fingerprint” for each optical disc: its optical DNA. The “fingerprint” is signed using publisher’s private-key and the resulting signature is stored onto the optical medium using a post-production process. Standard DVD players with altered firmware that includes publisher’s public-key, should be able to verify the authenticity of DVDs protected with optical DNA. Our key finding is that for the proposed protocol, only DVDs with exceptional wear-and-tear characteristics would result in an inexpensive and viable anti-counterfeiting technology.

  11. Transcription of foreign DNA in Escherichia coli

    PubMed Central

    Warren, René L.; Freeman, John D.; Levesque, Roger C.; Smailus, Duane E.; Flibotte, Stephane; Holt, Robert A.

    2008-01-01

    Propagation of heterologous DNA in E. coli host cells is central to molecular biology. DNA constructs are often engineered for expression of recombinant protein in E. coli, but the extent of incidental transcription arising from natural regulatory sequences in cloned DNA remains underexplored. Here, we have used programmable microarrays and RT-PCR to measure, comprehensively, the transcription of H. influenzae, P. aeruginosa, and human DNA propagating in E. coli as bacterial artificial chromosomes. We find evidence that at least half of all H. influenzae genes are transcribed in E. coli. Highly transcribed genes are principally involved in energy metabolism, and their proximal promoter regions are significantly enriched with E. coli σ70 (also known as RpoD) binding sites. H. influenzae genes acquired from an ancient bacteriophage Mu insertion are also highly transcribed. Compared with H. influenzae, a smaller proportion of P. aeruginosa genes are transcribed in E. coli, and in E. coli there is punctuated transcription of human DNA. The presence of foreign DNA in E. coli disturbs the host transcriptional profile, with expression of the E. coli phage shock protein operon and the flagellar gene cluster being particularly strongly up-regulated. While cross-species transcriptional activation is expected to be enabling for horizontal gene transfer in bacteria, incidental expression of toxic genes can be problematic for DNA cloning. Ongoing characterization of cross-expression will help inform the design of biosynthetic gene clusters and synthetic microbial genomes. PMID:18701636

  12. Activity and Regulation of Archaeal DNA Alkyltransferase

    PubMed Central

    Perugino, Giuseppe; Vettone, Antonella; Illiano, Giuseppina; Valenti, Anna; Ferrara, Maria C.; Rossi, Mosè; Ciaramella, Maria

    2012-01-01

    Agents that form methylation adducts in DNA are highly mutagenic and carcinogenic, and organisms have evolved specialized cellular pathways devoted to their repair, including DNA alkyltransferases. These are proteins conserved in eucarya, bacteria and archaea, acting by a unique reaction mechanism, which leads to direct repair of DNA alkylation damage and irreversible protein alkylation. The alkylated form of DNA alkyltransferases is inactive, and in eukaryotes, it is rapidly directed to degradation. We report here in vitro and in vivo studies on the DNA alkyltransferase from the thermophilic archaeon Sulfolobus solfataricus (SsOGT). The development of a novel, simple, and sensitive fluorescence-based assay allowed a careful characterization of the SsOGT biochemical and DNA binding activities. In addition, transcriptional and post-translational regulation of SsOGT by DNA damage was studied. We show that although the gene transcription is induced by alkylating agent treatment, the protein is degraded in vivo by an alkylation-dependent mechanism. These experiments suggest a striking conservation, from archaea to humans, of this important pathway safeguarding genome stability. PMID:22167184

  13. Papillary-cystic tumor of the pancreas in a young woman: fine-needle aspiration cytology, ultrastructure and DNA analysis.

    PubMed

    Skarda, J S; Honick, A B; Gibbins, C S; Josselson, A R; Rishi, M

    1994-01-01

    A case of papillary-cystic tumor (PCT) of the pancreas in a young woman is reported. Fine-needle aspiration (FNA) was done preoperatively under ultrasound guidance. The aspirate showed numerous delicate papillary fragments, dyscohesive and monomorphic tumor cells with folded nuclear membranes, and foamy macrophages. A diagnosis of PCT of the pancreas was made based on clinical, radiologic, and cytologic findings. The patient underwent distal pancreatectomy without complications. The histopathologic examination of the surgical tissue confirmed the diagnosis of PCT of the pancreas. The tumor cells were faintly positive with mucicarmine and periodic acid-schiff (PAS) stains. Immunocytochemistry using Ki67 monoclonal antibody showed a cycling index of 0.1 percent, supporting the clinical observation of low metastatic and recurrence rates of this rare tumor. DNA analysis of the tumor showed a DNA index of 1.09 (diploid) and an S-phase fraction of 5.38%. The tumor cells were positive for progesterone receptors (> 15 fmol/mg protein) but negative for estrogen receptors (< 15 fmol/mg protein). Abundant mitochondria, prominent endoplasmic reticulum and few junctional complexes were noted on electron microscopy. Emphasis is placed on accurate diagnosis based on preoperative FNA cytology in order to maximize cure rates while minimizing surgical risk and complications. PMID:8005036

  14. Evaluation of lactic acid bacteria for sourdough fermentation of amaranth.

    PubMed

    Sterr, Yasemin; Weiss, Agnes; Schmidt, Herbert

    2009-11-30

    Spontaneous fermented sourdoughs prepared from five amaranth flours were investigated for the presence of lactic acid bacteria predominating the autochthonous microbiota and thus may be suitable as starter cultures. The doughs were fermented with daily back-slopping on a laboratory scale at 30 degrees C for 10 days. Each day, pH-values and total titratable acidity degrees were determined and samples were analyzed for lactic acid bacteria and yeasts by cultural methods. The identity of the strains was tracked with randomly amplified polymorphic DNA-PCR during fermentation. Taxonomic identity of the strains was revealed by sequence analysis of 16S rDNA. Sugar and organic acid profiles of fermented doughs were determined with HPLC. The strains Lactobacillus plantarum RTa12, L. sakei RTa14, and Pediococcus pentosaceus RTa11 were selected and applied as starters in laboratory scale fermentations. All strains were predominant in repeated experiments, both as single strains and in combination, regardless of the amaranth flour used. The competitiveness of the strains L. plantarum RTa12 and P. pentosaceus RTa11 was characterized in further growth experiments. Both strains facilitated fast declines of pH-values, overgrew the autochthonous microbiota, and allowed stable fermentation characteristics at different temperatures. Thus, the characterized strains may be considered as candidates for amaranth sourdough starter cultures. PMID:19783060

  15. Size sensors in bacteria, cell cycle control, and size control

    PubMed Central

    Robert, Lydia

    2015-01-01

    Bacteria proliferate by repetitive cycles of cellular growth and division. The progression into the cell cycle is admitted to be under the control of cell size. However, the molecular basis of this regulation is still unclear. Here I will discuss which mechanisms could allow coupling growth and division by sensing size and transmitting this information to the division machinery. Size sensors could act at different stages of the cell cycle. During septum formation, mechanisms controlling the formation of the Z ring, such as MinCD inhibition or Nucleoid Occlusion (NO) could participate in the size-dependence of the division process. In addition or alternatively, the coupling of growth and division may occur indirectly through the control of DNA replication initiation. The relative importance of these different size-sensing mechanisms could depend on the environmental and genetic context. The recent demonstration of an incremental strategy of size control in bacteria, suggests that DnaA-dependent control of replication initiation could be the major size control mechanism limiting cell size variation. PMID:26074903

  16. Cloning of the human DNA methyltransferase gene

    SciTech Connect

    Ramchanani, S.K.; Rouleau, J.; Szyf, M.

    1994-09-01

    During the process of carcinogenesis it has been observed that DNA methylation is deregulated. At least two levels of regulation of the mouse DNA MeTase have been shown: at the transcriptional level, via its promoter, and at the post transcriptional level in a cell cycle dependent fashion. The sequence of the complete DNA MeTase gene and identification of the promoter has not yet been reported. Using a probe generated by PCR of the human DNA MeTase cDNA, a human genomic library was screened and a clone of approximately 22 kilobases (kb) was isolated. It was found that this clone contains the complete coding sequence of the DNA MeTase enzyme. Sequence analysis along with restriction enzyme digests have allowed us to construct a partial map of the physical structure of the human DNA MeTase gene. This partial structure has already revealed some interesting aspects related to the genetic evolution of the human DNA MeTase. First, the proposed catalytic domain of the human DNA MeTase is extremely homologous to all other cytosine DNA MeTases, even to those that are found in bacteria, and this catalytic domain is conserved within one complete exon in the human gene. This is very different from the structure of the 5{prime} region of the gene, which is fragmented into numerous little introns and exons. Within one of the small introns that have been identified, a trinucleotide repeat of ATG occurs (9 times in a row), and this repeat is upstream of the proposed start site of translation. Trinucleotide repeat expansion has been shown to be a genetic hot spot for mutation, but even more interesting is the nature of the repeat, ATG, which is the translation start codon; this repeat appears to be in frame with the {open_quotes}normal{close_quotes} coding sequence, the implications being that possible alternative methyltransferases may be translated under certain conditions such as cancer.

  17. Fast detection and identification of bacteria in potable water

    NASA Astrophysics Data System (ADS)

    Heller, C.; Reidt, U.; Helwig, A.; Müller, G.; Meixner, L.; Neumeier, K.; Lindner, P.; Molz, R.; Wolf, H.; Zullei-Seibert, N.; Preuß, G.; Friedberger, A.

    2009-05-01

    The quality and safety of drinking water is of major importance for human life. Current analytical methods recognizing viable bacteria in potable water are time consuming due to a required cultivation step. Fast and automated detection of water borne pathogenic microorganisms with high sensitivity and selectivity is still a challenging task. We report on a novel biosensor system using micromechanical filters with nano sized pores to capture and enrich bacteria on the filter surface. Thus the accumulated organisms are accessible to different detection methods using fluorescent probes. Depending on the kind of detection - specific (identification of a certain species) or unspecific (total amount of cells) - different assays are applied. For non-specific detection we use fluorescent dyes that bind to or intercalate in the DNA molecules of the bacteria. Upon binding, the fluorescent signal of the dyes increases by a factor of 1000 or more. Additionally, we use enzyme substrates for the detection of active cells. The whole detection process is automated by integrating the microsieves into a fluidic system together with a high performance fluorescence detector. To ensure realistic conditions, real potable water, i.e. including particles, has been spiked with defined amounts of microorganisms. Thus, sampling, enriching and detection of microorganisms - all with a single micromechanical filter - is not only possible with ideal media, e.g. laboratory buffer solutions, but also with tap water. These results show the potential of microfilters for several applications in fast pathogen detection.

  18. An introduction to nitric oxide sensing and response in bacteria.

    PubMed

    Stern, Andrew M; Zhu, Jun

    2014-01-01

    Nitric oxide (NO) is a radical gas that has been intensively studied for its role as a bacteriostatic agent. NO reacts in complex ways with biological molecules, especially metal centers and other radicals, to generate other bioactive compounds that inhibit enzymes, oxidize macromolecules, and arrest bacterial growth. Bacteria encounter not only NO derived from the host during infection but also NO derived from other bacteria and inorganic sources. The transcriptional responses used by bacteria to respond to NO are diverse but usually involve an iron-containing transcription factor that binds NO and alters its affinity for either DNA or factors involved in transcription, leading to the production of enzymatic tolerance systems. Some of these systems, such as flavohemoglobin and flavorubredoxin, directly remove NO. Some do not but are still important for NO tolerance through other mechanisms. The targets of NO that are protected by these systems include many metabolic pathways such as the tricarboxylic acid cycle and branched chain amino acid synthesis. This chapter discusses these topics and others and serves as a general introduction to microbial NO biology. PMID:24581392

  19. Mutagenic DNA repair in enterobacteria

    SciTech Connect

    Sedgwick, S.G. ); Chao Ho; Woodgate, R. )

    1991-09-01

    Sixteen species of enterobacteria have been screened for mutagenic DNA repair activity. In Escherichia coli, mutagenic DNA repair is encoded by the umuDC operon. Synthesis of UmuD and UmuC proteins is induced as part of the SOS response to DNA damage, and after induction, the UmuD protein undergoes an autocatalytic cleavage to produce the carboxy-terminal UmuD{prime} fragment needed for induced mutagenesis. The presence of a similar system in other species was examined by using a combined approach of inducible-mutagenesis assays, cross-reactivity to E. coli UmuD and UmuD{prime} antibodies to test for induction and cleavage of UmuD-like proteins, and hybridization with E. coli and Salmonella typhimurium u mu DNA probes to map umu-like genes. The results indicate a more widespread distribution of mutagenic DNA repair in other species than was previously thought. They also show that umu loci can be more complex in other species than in E. coli. Differences in UV-induced mutability of more than 200-fold were seen between different species of enteric bacteria and even between multiple natural isolates of E. coli, and yet some of the species which display a poorly mutable phenotype still have umu-like genes and proteins. It is suggested that umuDC genes can be curtailed in their mutagenic activities but that they may still participate in some other, unknown process which provides the continued stimulus for their retention.

  20. DNA mimicry by proteins.

    PubMed

    Dryden, D T F; Tock, M R

    2006-04-01

    It has been discovered recently, via structural and biophysical analyses, that proteins can mimic DNA structures in order to inhibit proteins that would normally bind to DNA. Mimicry of the phosphate backbone of DNA, the hydrogen-bonding properties of the nucleotide bases and the bending and twisting of the DNA double helix are all present in the mimics discovered to date. These mimics target a range of proteins and enzymes such as DNA restriction enzymes, DNA repair enzymes, DNA gyrase and nucleosomal and nucleoid-associated proteins. The unusual properties of these protein DNA mimics may provide a foundation for the design of targeted inhibitors of DNA-binding proteins. PMID:16545103

  1. Coincident plasmids and antimicrobial resistance in marine bacteria isolated from polluted and unpolluted Atlantic Ocean Samples

    SciTech Connect

    Baya, A.M.; Brayton, P.R.; Brown, V.L.; Grimes, D.J.; Russek-Cohen, E.; Colwell, R.R.

    1986-06-01

    Sewage effluent and outfall confluence samples were collected at the Barceloneta Regional Treatment Plant in Barceloneta, Puerto Rico; outfall confluence samples at Ocean City, Md., were also collected. Samples from uncontaminated open ocean areas served as clean-water controls. Bacteria were enriched in marine broth 2216 amended with 1 ..mu..g of one of a set of chemical selected for study per ml: nitrobenzene, dibutyl phthalate, m-cresol, o-cresol, 4-nitroaniline, bis(tributyltin) oxide, and quinone. MICs of the chemicals were determined individually for all isolates. Bacterial isolates were evaluated for resistance to nine different antibiotics and for the presence of plasmid DNA. Treated sewage was found to contain large numbers of bacteria simultaneously possessing antibiotic resistance, chemical resistance, and multiple bands of plasmic DNA. Bacteria resistant to penicillin, erythromycin, nalidixic acid, ampicillin, m-cresol, quinone, and bis(tributyltin) oxide were detected in nearly all samples, but only sewage outfall confluence samples yielded bacterial isolates that were resistant to streptomycin. Bacteria resistant to a combination of antibiotics, including kanamycin, chloramphenicol, gentamicin, and tetracycline, were isolated only from sewage effluent samples. It is concluded that bacterial isolates derived from toxic chemical wastes more frequently contain plasmid DNA and demonstrate antimicrobial resistance than do bacterial isolates from domestic sewage-impacted waters or from uncontaminated open ocean sites.

  2. Gall-ID: tools for genotyping gall-causing phytopathogenic bacteria

    PubMed Central

    Tabima, Javier F.; Grunwald, Niklaus J.

    2016-01-01

    Understanding the population structure and genetic diversity of plant pathogens, as well as the effect of agricultural practices on pathogen evolution, is important for disease management. Developments in molecular methods have contributed to increase the resolution for accurate pathogen identification, but those based on analysis of DNA sequences can be less straightforward to use. To address this, we developed Gall-ID, a web-based platform that uses DNA sequence information from 16S rDNA, multilocus sequence analysis and whole genome sequences to group disease-associated bacteria to their taxonomic units. Gall-ID was developed with a particular focus on gall-forming bacteria belonging to Agrobacterium, Pseudomonas savastanoi, Pantoea agglomerans, and Rhodococcus. Members of these groups of bacteria cause growth deformation of plants, and some are capable of infecting many species of field, orchard, and nursery crops. Gall-ID also enables the use of high-throughput sequencing reads to search for evidence for homologs of characterized virulence genes, and provides downloadable software pipelines for automating multilocus sequence analysis, analyzing genome sequences for average nucleotide identity, and constructing core genome phylogenies. Lastly, additional databases were included in Gall-ID to help determine the identity of other plant pathogenic bacteria that may be in microbial communities associated with galls or causative agents in other diseased tissues of plants. The URL for Gall-ID is http://gall-id.cgrb.oregonstate.edu/. PMID:27547538

  3. Gall-ID: tools for genotyping gall-causing phytopathogenic bacteria.

    PubMed

    Davis Ii, Edward W; Weisberg, Alexandra J; Tabima, Javier F; Grunwald, Niklaus J; Chang, Jeff H

    2016-01-01

    Understanding the population structure and genetic diversity of plant pathogens, as well as the effect of agricultural practices on pathogen evolution, is important for disease management. Developments in molecular methods have contributed to increase the resolution for accurate pathogen identification, but those based on analysis of DNA sequences can be less straightforward to use. To address this, we developed Gall-ID, a web-based platform that uses DNA sequence information from 16S rDNA, multilocus sequence analysis and whole genome sequences to group disease-associated bacteria to their taxonomic units. Gall-ID was developed with a particular focus on gall-forming bacteria belonging to Agrobacterium, Pseudomonas savastanoi, Pantoea agglomerans, and Rhodococcus. Members of these groups of bacteria cause growth deformation of plants, and some are capable of infecting many species of field, orchard, and nursery crops. Gall-ID also enables the use of high-throughput sequencing reads to search for evidence for homologs of characterized virulence genes, and provides downloadable software pipelines for automating multilocus sequence analysis, analyzing genome sequences for average nucleotide identity, and constructing core genome phylogenies. Lastly, additional databases were included in Gall-ID to help determine the identity of other plant pathogenic bacteria that may be in microbial communities associated with galls or causative agents in other diseased tissues of plants. The URL for Gall-ID is http://gall-id.cgrb.oregonstate.edu/. PMID:27547538

  4. Coincident plasmids and antimicrobial resistance in marine bacteria isolated from polluted and unpolluted Atlantic Ocean samples.

    PubMed Central

    Baya, A M; Brayton, P R; Brown, V L; Grimes, D J; Russek-Cohen, E; Colwell, R R

    1986-01-01

    Sewage effluent and outfall confluence samples were collected at the Barceloneta Regional Treatment Plant in Barceloneta, Puerto Rico; outfall confluence samples at Ocean City, Md., were also collected. Samples from uncontaminated open ocean areas served as clean-water controls. Bacteria were enriched in marine broth 2216 amended with 1 microgram of one of a set of chemicals selected for study per ml: nitrobenzene, dibutyl phthalate, m-cresol, o-cresol, 4-nitroaniline, bis(tributyltin) oxide, and quinone. MICs of the chemicals were determined individually for all isolates. Bacterial isolates were evaluated for resistance to nine different antibiotics and for the presence of plasmid DNA. Treated sewage was found to contain large numbers of bacteria simultaneously possessing antibiotic resistance, chemical resistance, and multiple bands of plasmid DNA. Bacteria resistant to penicillin, erythromycin, nalidixic acid, ampicillin, m-cresol, quinone, and bis(tributyltin) oxide were detected in nearly all samples, but only sewage outfall confluence samples yielded bacterial isolates that were resistant to streptomycin. Bacteria resistant to a combination of antibiotics, including kanamycin, chloramphenicol, gentamicin, and tetracycline, were isolated only from sewage effluent samples. It is concluded that bacterial isolates derived from toxic chemical wastes more frequently contain plasmid DNA and demonstrate antimicrobial resistance than do bacterial isolates from domestic sewage-impacted waters or from uncontaminated open ocean sites. PMID:3755317

  5. The interferon response to intracellular DNA: why so many receptors?

    PubMed

    Unterholzner, Leonie

    2013-11-01

    The detection of intracellular DNA has emerged to be a key event in the innate immune response to viruses and intracellular bacteria, and during conditions of sterile inflammation and autoimmunity. One of the consequences of the detection of DNA as a 'stranger' and a 'danger' signal is the production of type I interferons and pro-inflammatory cytokines. Much work has been dedicated to the elucidation of the signalling cascades that activate this DNA-induced gene expression programme. However, while many proteins have been proposed to act as sensors for intracellular DNA in recent years, none has been met with universal acceptance, and a theory linking all the recent observations is, as yet, lacking. This review presents the evidence for the various interferon-inducing DNA receptors proposed to date, and examines the hypotheses that might explain why so many different receptors appear to be involved in the innate immune recognition of intracellular DNA. PMID:23962476

  6. EMSA Analysis of DNA Binding By Rgg Proteins

    PubMed Central

    LaSarre, Breah; Federle, Michael J.

    2016-01-01

    In bacteria, interaction of various proteins with DNA is essential for the regulation of specific target gene expression. Electrophoretic mobility shift assay (EMSA) is an in vitro approach allowing for the visualization of these protein-DNA interactions. Rgg proteins comprise a family of transcriptional regulators widespread among the Firmicutes. Some of these proteins function independently to regulate target gene expression, while others have now been demonstrated to function as effectors of cell-to-cell communication, having regulatory activities that are modulated via direct interaction with small signaling peptides. EMSA analysis can be used to assess DNA binding of either type of Rgg protein. EMSA analysis of Rgg protein activity has facilitated in vitro confirmation of regulatory targets, identification of precise DNA binding sites via DNA probe mutagenesis, and characterization of the mechanism by which some cognate signaling peptides modulate Rgg protein function (e.g. interruption of DNA-binding in some cases).

  7. Prion extraction methods: comparison of bead beating, ultrasonic disruption and repeated freeze-thaw methodologies for the recovery of functional renilla-prion fusion protein from bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecular DNA technology allows for production of mammalian proteins in bacteria at sufficient quantities for downstream use and analysis. Variation in design and engineering of DNA expression vectors imparts selective alterations resulting in the generation of fusion proteins with intrinsic report...

  8. Prion extraction methods: comparison of bead beating, ultrasonic disruption and repeated freeze-thaw methodologies for the recovery of functional renilla-prion fusion protein from bacteria.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecular DNA technology allows for production of mammalian proteins in bacteria at sufficient quantities for downstream use and analysis. Variation in design and engineering of DNA expression vectors imparts selective alterations resulting in the generation of fusion proteins with intrinsic report...

  9. Identification of bacteria coexisting with anammox bacteria in an upflow column type reactor.

    PubMed

    Qiao, Sen; Kawakubo, Yuki; Cheng, Yingjun; Nishiyama, Takashi; Fujii, Takao; Furukawa, Kenji

    2009-02-01

    Anammox process has attracted considerable attention in the recent years as an alternative to conventional nitrogen removal technologies. In this study, a column type reactor using a novel net type acrylic fiber (Biofix) support material was used for anammox treatment. The Biofix reactor was operated at a temperature of 25 degrees C (peak summer temperature, 31.5 degrees C). During more than 340 days of operation for synthetic wastewater treatment, the nitrogen loading rates of the reactor were increased to 3.6 kg-N/m(3)/d with TN removal efficiencies reaching 81.3%. When the reactor was used for raw anaerobic sludge digester liquor treatment, an average TN removal efficiency of 72% was obtained with highest removal efficiency of 81.6% at a nitrogen loading rate of 2.2 kg-N/m(3)/d. Results of extracellular polymeric substances (EPS) quantification revealed that protein was the most abundant component in the granular sludge and was found to be almost twice than that in the sludge attached to the biomass carriers. The anammox granules in the Biofix reactor illustrated a dense morphology substantiated by scanning electron microscopy and EPS results. The results of DNA analyses indicated that the anammox strain KSU-1 might prefer relatively low nutrient levels, while the anammox strain KU2 strain might be better suited at high nutrient concentration. Other types of bacteria were also identified with the potential of consuming dissolved oxygen in the influent and facilitating survival of anammox bacteria under aerobic conditions. PMID:18651231

  10. Genetic relatedness of artichoke (Cynara scolymus L.) hybrids using random amplified polymorphic DNA (RAPD) fingerprinting.

    PubMed

    Sharaf-Eldin, M A; Al-Tamimi, A; Alam, P; Elkholy, S F; Jordan, J R

    2015-01-01

    The artichoke (Cynara scolymus L.) is an important food and medicinal crop that is cultivated in Mediterranean countries. Morphological characteristics, such as head shape and diameter, leaf shape, and bract shape, are mainly affected by environmental conditions. A molecular marker approach was used to analyze the degree of polymorphism between artichoke hybrid lines. The degree of genetic difference among three artichoke hybrids was evaluated using random amplified polymorphic DNA-PCR (RAPD-PCR). In this study, the DNA fingerprints of three artichoke lines (A13-010, A11-018, and A12-179) were generated, and a total of 10 decamer primers were applied for RAPD-PCR analyses. Polymorphism  (16.66 to 62.50%) was identified using eight arbitrary decamers and total genomic DNA extracted from the hybrids. Of the 59 loci detected, there were 25 polymorphic and 34 monomorphic loci. Jaccard's similarity index (JSI) ranged between 1.0 and 0.84. Based on the unweighted pair group method with arithmetic mean (UPGMA) similarity matrix and dendrogram, the results indicated that two hybrids (A13-010 and A11-018) were closely related to each other, and the A12-179 line showed more divergence. When identifying correct accessions, consideration of the genetic variation and genetic relationships among the genotypes are required. The RAPD-PCR fingerprinting of artichoke lines clearly showed that it is possible to analyze the RAPD patterns for correlation between genetic means and differences or resemblance between close accessions (A13-010 and A11- 018) at the genomic level. PMID:26782491

  11. Distribution of Xanthomonas oryzae pv. oryzae DNA modification systems in Asia.

    PubMed

    Choi, S H; Vera Cruz, C M; Leach, J E

    1998-05-01

    The presence or absence of two DNA modification systems, XorI and XorII, in 195 strains of Xanthomonas oryzae pv. oryzae collected from different major rice-growing countries of Asia was assessed. All four possible phenotypes (XorI+ XorII+, XorI+ XorII-, XorI- XorII+ and XorI- XorII-) were detected in the population at a ratio of approximately 1:2:2:2. The XorI+ XorII+ and XorI- XorII+ phenotypes were observed predominantly in strains from southeast Asia (Philippines, Malaysia, and Indonesia), whereas strains with the phenotypes XorI- XorII- and XorI+ XorII- were distributed in south Asia (India and Nepal) and northeast Asia (China, Korea, and Japan), respectively. Based on the prevalence and geographic distribution of the XorI and XorII systems, we suggest that the XorI modification system originated in northeast Asia and was later introduced to southeast Asia, while the XorII system originated in southeast Asia and moved to northeast Asia and south Asia. Genomic DNA from all tested strains of X. oryzae pv. oryzae that were resistant to digestion by endonuclease XorII or its isoschizomer PvuI also hybridized with a 7.0-kb clone that contained the XorII modification system, whereas strains that were digested by XorII or PvuI lacked DNA that hybridized with the clone. Size polymorphisms were observed in fragments that hybridized with the 7.0-kb clone. However, a single hybridization pattern generally was found in XorII+ strains within a country, indicating clonal maintenance of the XorII methyl-transferase gene locus. The locus was monomorphic for X. oryzae pv. oryzae strains from the Philippines and all strains from Indonesia and Korea. PMID:9572933

  12. Lysozyme coated DNA and DNA/SWNT fibers by solution spinning.

    PubMed

    Nepal, Dhriti; Minus, Marilyn L; Kumar, Satish

    2011-07-01

    DNA fibers were prepared by solution spinning of DNA in a lysozyme (LSZ) coagulation/gelation bath. Strong positive charges carried by LSZ protein condensed the DNA (strong negative charged) molecules resulting in self-assembly and the formation of fibrillar structures in a gel-like network. DNA/LSZ fibril formation was found to be dependent on the ratio of DNA to LSZ. A minimum 0.1 wt.-% of LSZ was necessary to condense 0.1 wt.-% of DNA into micro-fibrils. Macroscopic fiber spinning was possible by introducing a 0.1 wt.-% DNA aqueous solution into a 0.2 wt.-% LSZ coagulation bath which resulted in fibers with ≈20 µm diameter. Single-walled carbon nanotubes (SWNT) were also incorporated into these fibers to explore the possibility for creating hybrid materials. All DNA-based fibers exhibit strong birefringence confirming molecular orientation along the fiber axis. Due to the presence of LSZ, the fibers exhibit antimicrobial activity against bacteria like Micrococcus lysodeikticus. PMID:21472979

  13. Nutritional Control of DNA Replication Initiation through the Proteolysis and Regulated Translation of DnaA.

    PubMed

    Leslie, David J; Heinen, Christian; Schramm, Frederic D; Thüring, Marietta; Aakre, Christopher D; Murray, Sean M; Laub, Michael T; Jonas, Kristina

    2015-07-01

    Bacteria can arrest their own growth and proliferation upon nutrient depletion and under various stressful conditions to ensure their survival. However, the molecular mechanisms responsible for suppressing growth and arresting the cell cycle under such conditions remain incompletely understood. Here, we identify post-transcriptional mechanisms that help enforce a cell-cycle arrest in Caulobacter crescentus following nutrient limitation and during entry into stationary phase by limiting the accumulation of DnaA, the conserved replication initiator protein. DnaA is rapidly degraded by the Lon protease following nutrient limitation. However, the rate of DnaA degradation is not significantly altered by changes in nutrient availability. Instead, we demonstrate that decreased nutrient availability downregulates dnaA translation by a mechanism involving the 5' untranslated leader region of the dnaA transcript; Lon-dependent proteolysis of DnaA then outpaces synthesis, leading to the elimination of DnaA and the arrest of DNA replication. Our results demonstrate how regulated translation and constitutive degradation provide cells a means of precisely and rapidly modulating the concentration of key regulatory proteins in response to environmental inputs. PMID:26134530

  14. Nutritional Control of DNA Replication Initiation through the Proteolysis and Regulated Translation of DnaA

    PubMed Central

    Schramm, Frederic D.; Thüring, Marietta; Aakre, Christopher D.; Murray, Sean M.; Laub, Michael T.; Jonas, Kristina

    2015-01-01

    Bacteria can arrest their own growth and proliferation upon nutrient depletion and under various stressful conditions to ensure their survival. However, the molecular mechanisms responsible for suppressing growth and arresting the cell cycle under such conditions remain incompletely understood. Here, we identify post-transcriptional mechanisms that help enforce a cell-cycle arrest in Caulobacter crescentus following nutrient limitation and during entry into stationary phase by limiting the accumulation of DnaA, the conserved replication initiator protein. DnaA is rapidly degraded by the Lon protease following nutrient limitation. However, the rate of DnaA degradation is not significantly altered by changes in nutrient availability. Instead, we demonstrate that decreased nutrient availability downregulates dnaA translation by a mechanism involving the 5' untranslated leader region of the dnaA transcript; Lon-dependent proteolysis of DnaA then outpaces synthesis, leading to the elimination of DnaA and the arrest of DNA replication. Our results demonstrate how regulated translation and constitutive degradation provide cells a means of precisely and rapidly modulating the concentration of key regulatory proteins in response to environmental inputs. PMID:26134530

  15. Bacteria detection instrument and method

    NASA Technical Reports Server (NTRS)

    Renner, W.; Fealey, R. D. (Inventor)

    1972-01-01

    A method and apparatus for screening a sample fluid for bacterial presence are disclosed wherein the fluid sample is mixed with culture media of sufficient quantity to permit bacterial growth in order to obtain a test solution. The concentration of oxygen dissolved in the test solution is then monitored using the potential difference between a reference electrode and a noble metal electrode which are in contact with the test solution. The change in oxygen concentration which occurs during a period of time as indicated by the electrode potential difference is compared with a detection criterion which exceeds the change which would occur absent bacteria.

  16. Bacteria and vampirism in cinema.

    PubMed

    Castel, O; Bourry, A; Thévenot, S; Burucoa, C

    2013-09-01

    A vampire is a non-dead and non-alive chimerical creature, which, according to various folklores and popular superstitions, feeds on blood of the living to draw vital force. Vampires do not reproduce by copulation, but by bite. Vampirism is thus similar to a contagious disease contracted by intravascular inoculation with a suspected microbial origin. In several vampire films, two real bacteria were staged, better integrated than others in popular imagination: Yersinia pestis and Treponema pallidum. Bacillus vampiris was created for science-fiction. These films are attempts to better define humans through one of their greatest fears: infectious disease. PMID:23916557

  17. Turning Bacteria Suspensions into Superfluids

    NASA Astrophysics Data System (ADS)

    López, Héctor Matías; Gachelin, Jérémie; Douarche, Carine; Auradou, Harold; Clément, Eric

    2015-07-01

    The rheological response under simple shear of an active suspension of Escherichia coli is determined in a large range of shear rates and concentrations. The effective viscosity and the time scales characterizing the bacterial organization under shear are obtained. In the dilute regime, we bring evidence for a low-shear Newtonian plateau characterized by a shear viscosity decreasing with concentration. In the semidilute regime, for particularly active bacteria, the suspension displays a "superfluidlike" transition where the viscous resistance to shear vanishes, thus showing that, macroscopically, the activity of pusher swimmers organized by shear is able to fully overcome the dissipative effects due to viscous loss.

  18. DNA binding, photo-induced DNA cleavage and cytotoxicity studies of lomefloxacin and its transition metal complexes

    NASA Astrophysics Data System (ADS)

    Ragheb, Mohamed A.; Eldesouki, Mohamed A.; Mohamed, Mervat S.

    2015-03-01

    This work was focused on a study of the DNA binding and cleavage properties of lomefloxacin (LMF) and its ternary transition metal complexes with glycine. The nature of the binding interactions between compounds and calf thymus DNA (CT-DNA) was studied by electronic absorption spectra, fluorescence spectra and thermal denaturation experiments. The obtained results revealed that LMF and its complexes could interact with CT-DNA via partial/moderate intercalative mode. Furthermore, the DNA cleavage activities of the compounds were investigated by gel electrophoresis. Mechanistic studies of DNA cleavage suggest that singlet oxygen (1O2) is likely to be the cleaving agent via an oxidative pathway, except for Cu(II) complex which proceeds via both oxidative and hydrolytic pathways. Antimicrobial and antitumor activities of the compounds were also studied against some kinds of bacteria, fungi and human cell lines.

  19. Comparison of different protocols for the extraction of microbial DNA from reef corals

    PubMed Central

    Santos, H.F.; Carmo, F.L.; Leite, D.C.A.; Jesus, H.E.; Maalouf, P. De Carvalho; Almeida, C.; Soriano, A.U.; Altomari, D.; Suhett, L.; Vólaro, V.; Valoni, E.; Francisco, M.; Vieira, J.; Rocha, R.; Sardinha, B.L.; Mendes, L.B.; João, R.R.; Lacava, B.; Jesus, R.F.; Sebastian, G.V.; Pessoa, A.; van Elsas, J.D.; Rezende, R.P.; Pires, D.O.; Duarte, G.; Castro, C.B.; Rosado, A.S.; Peixoto, R.S.

    2012-01-01

    This study aimed to test different protocols for the extraction of microbial DNA from the coral Mussismilia harttii. Four different commercial kits were tested, three of them based on methods for DNA extraction from soil (FastDNA SPIN Kit for soil, MP Bio, PowerSoil DNA Isolation Kit, MoBio, and ZR Soil Microbe DNA Kit, Zymo Research) and one kit for DNA extraction from plants (UltraClean Plant DNA Isolation Kit, MoBio). Five polyps of the same colony of M. harttii were macerated and aliquots were submitted to DNA extraction by the different kits. After extraction, the DNA was quantified and PCR-DGGE was used to study the molecular fingerprint of Bacteria and Eukarya. Among the four kits tested, the ZR Soil Microbe DNA Kit was the most efficient with respect to the amount of DNA extracted, yielding about three times more DNA than the other kits. Also, we observed a higher number and intensities of DGGE bands for both Bacteria and Eukarya with the same kit. Considering these results, we suggested that the ZR Soil Microbe DNA Kit is the best adapted for the study of the microbial communities of corals. PMID:24031859

  20. Programmed evolution for optimization of orthogonal metabolic output in bacteria.

    PubMed

    Eckdahl, Todd T; Campbell, A Malcolm; Heyer, Laurie J; Poet, Jeffrey L; Blauch, David N; Snyder, Nicole L; Atchley, Dustin T; Baker, Erich J; Brown, Micah; Brunner, Elizabeth C; Callen, Sean A; Campbell, Jesse S; Carr, Caleb J; Carr, David R; Chadinha, Spencer A; Chester, Grace I; Chester, Josh; Clarkson, Ben R; Cochran, Kelly E; Doherty, Shannon E; Doyle, Catherine; Dwyer, Sarah; Edlin, Linnea M; Evans, Rebecca A; Fluharty, Taylor; Frederick, Janna; Galeota-Sprung, Jonah; Gammon, Betsy L; Grieshaber, Brandon; Gronniger, Jessica; Gutteridge, Katelyn; Henningsen, Joel; Isom, Bradley; Itell, Hannah L; Keffeler, Erica C; Lantz, Andrew J; Lim, Jonathan N; McGuire, Erin P; Moore, Alexander K; Morton, Jerrad; Nakano, Meredith; Pearson, Sara A; Perkins, Virginia; Parrish, Phoebe; Pierson, Claire E; Polpityaarachchige, Sachith; Quaney, Michael J; Slattery, Abagael; Smith, Kathryn E; Spell, Jackson; Spencer, Morgan; Taye, Telavive; Trueblood, Kamay; Vrana, Caroline J; Whitesides, E Tucker

    2015-01-01

    Current use of microbes for metabolic engineering suffers from loss of metabolic output due to natural selection. Rather than combat the evolution of bacterial populations, we chose to embrace what makes biological engineering unique among engineering fields - evolving materials. We harnessed bacteria to compute solutions to the biological problem of metabolic pathway optimization. Our approach is called Programmed Evolution to capture two concepts. First, a population of cells is programmed with DNA code to enable it to compute solutions to a chosen optimization problem. As analog computers, bacteria process known and unknown inputs and direct the output of their biochemical hardware. Second, the system employs the evolution of bacteria toward an optimal metabolic solution by imposing fitness defined by metabolic output. The current study is a proof-of-concept for Programmed Evolution applied to the optimization of a metabolic pathway for the conversion of caffeine to theophylline in E. coli. Introduced genotype variations included strength of the promoter and ribosome binding site, plasmid copy number, and chaperone proteins. We constructed 24 strains using all combinations of the genetic variables. We used a theophylline riboswitch and a tetracycline resistance gene to link theophylline production to fitness. After subjecting the mixed population to selection, we measured a change in the distribution of genotypes in the population and an increased conversion of caffeine to theophylline among the most fit strains, demonstrating Programmed Evolution. Programmed Evolution inverts the standard paradigm in metabolic engineering by harnessing evolution instead of fighting it. Our modular system enables researchers to program bacteria and use evolution to determine the combination of genetic control elements that optimizes catabolic or anabolic output and to maintain it in a population of cells. Programmed Evolution could be used for applications in energy

  1. Programmed Evolution for Optimization of Orthogonal Metabolic Output in Bacteria

    PubMed Central

    Eckdahl, Todd T.; Campbell, A. Malcolm; Heyer, Laurie J.; Poet, Jeffrey L.; Blauch, David N.; Snyder, Nicole L.; Atchley, Dustin T.; Baker, Erich J.; Brown, Micah; Brunner, Elizabeth C.; Callen, Sean A.; Campbell, Jesse S.; Carr, Caleb J.; Carr, David R.; Chadinha, Spencer A.; Chester, Grace I.; Chester, Josh; Clarkson, Ben R.; Cochran, Kelly E.; Doherty, Shannon E.; Doyle, Catherine; Dwyer, Sarah; Edlin, Linnea M.; Evans, Rebecca A.; Fluharty, Taylor; Frederick, Janna; Galeota-Sprung, Jonah; Gammon, Betsy L.; Grieshaber, Brandon; Gronniger, Jessica; Gutteridge, Katelyn; Henningsen, Joel; Isom, Bradley; Itell, Hannah L.; Keffeler, Erica C.; Lantz, Andrew J.; Lim, Jonathan N.; McGuire, Erin P.; Moore, Alexander K.; Morton, Jerrad; Nakano, Meredith; Pearson, Sara A.; Perkins, Virginia; Parrish, Phoebe; Pierson, Claire E.; Polpityaarachchige, Sachith; Quaney, Michael J.; Slattery, Abagael; Smith, Kathryn E.; Spell, Jackson; Spencer, Morgan; Taye, Telavive; Trueblood, Kamay; Vrana, Caroline J.; Whitesides, E. Tucker

    2015-01-01

    Current use of microbes for metabolic engineering suffers from loss of metabolic output due to natural selection. Rather than combat the evolution of bacterial populations, we chose to embrace what makes biological engineering unique among engineering fields – evolving materials. We harnessed bacteria to compute solutions to the biological problem of metabolic pathway optimization. Our approach is called Programmed Evolution to capture two concepts. First, a population of cells is programmed with DNA code to enable it to compute solutions to a chosen optimization problem. As analog computers, bacteria process known and unknown inputs and direct the output of their biochemical hardware. Second, the system employs the evolution of bacteria toward an optimal metabolic solution by imposing fitness defined by metabolic output. The current study is a proof-of-concept for Programmed Evolution applied to the optimization of a metabolic pathway for the conversion of caffeine to theophylline in E. coli. Introduced genotype variations included strength of the promoter and ribosome binding site, plasmid copy number, and chaperone proteins. We constructed 24 strains using all combinations of the genetic variables. We used a theophylline riboswitch and a tetracycline resistance gene to link theophylline production to fitness. After subjecting the mixed population to selection, we measured a change in the distribution of genotypes in the population and an increased conversion of caffeine to theophylline among the most fit strains, demonstrating Programmed Evolution. Programmed Evolution inverts the standard paradigm in metabolic engineering by harnessing evolution instead of fighting it. Our modular system enables researchers to program bacteria and use evolution to determine the combination of genetic control elements that optimizes catabolic or anabolic output and to maintain it in a population of cells. Programmed Evolution could be used for applications in energy

  2. Collective Motion of Spherical Bacteria

    PubMed Central

    Rabani, Amit; Ariel, Gil; Be'er, Avraham

    2013-01-01

    A large variety of motile bacterial species exhibit collective motions while inhabiting liquids or colonizing surfaces. These collective motions are often characterized by coherent dynamic clusters, where hundreds of cells move in correlated whirls and jets. Previously, all species that were known to form such motion had a rod-shaped structure, which enhances the order through steric and hydrodynamic interactions. Here we show that the spherical motile bacteria Serratia marcescens exhibit robust collective dynamics and correlated coherent motion while grown in suspensions. As cells migrate to the upper surface of a drop, they form a monolayer, and move collectively in whirls and jets. At all concentrations, the distribution of the bacterial speed was approximately Rayleigh with an average that depends on concentration in a non-monotonic way. Other dynamical parameters such as vorticity and correlation functions are also analyzed and compared to rod-shaped bacteria from the same strain. Our results demonstrate that self-propelled spherical objects do form complex ordered collective motion. This opens a door for a new perspective on the role of cell aspect ratio and alignment of cells with regards to collective motion in nature. PMID:24376741

  3. DMTB: the magnetotactic bacteria database

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Lin, W.

    2012-12-01

    Magnetotactic bacteria (MTB) are of interest in biogeomagnetism, rock magnetism, microbiology, biomineralization, and advanced magnetic materials because of their ability to synthesize highly ordered intracellular nano-sized magnetic minerals, magnetite or greigite. Great strides for MTB studies have been made in the past few decades. More than 600 articles concerning MTB have been published. These rapidly growing data are stimulating cross disciplinary studies in such field as biogeomagnetism. We have compiled the first online database for MTB, i.e., Database of Magnestotactic Bacteria (DMTB, http://database.biomnsl.com). It contains useful information of 16S rRNA gene sequences, oligonucleotides, and magnetic properties of MTB, and corresponding ecological metadata of sampling sites. The 16S rRNA gene sequences are collected from the GenBank database, while all other data are collected from the scientific literature. Rock magnetic properties for both uncultivated and cultivated MTB species are also included. In the DMTB database, data are accessible through four main interfaces: Site Sort, Phylo Sort, Oligonucleotides, and Magnetic Properties. References in each entry serve as links to specific pages within public databases. The online comprehensive DMTB will provide a very useful data resource for researchers from various disciplines, e.g., microbiology, rock magnetism and paleomagnetism, biogeomagnetism, magnetic material sciences and others.

  4. Medicinal smoke reduces airborne bacteria.

    PubMed

    Nautiyal, Chandra Shekhar; Chauhan, Puneet Singh; Nene, Yeshwant Laxman

    2007-12-01

    This study represents a comprehensive analysis and scientific validation of our ancient knowledge about the effect of ethnopharmacological aspects of natural products' smoke for therapy and health care on airborne bacterial composition and dynamics, using the Biolog microplate panels and Microlog database. We have observed that 1h treatment of medicinal smoke emanated by burning wood and a mixture of odoriferous and medicinal herbs (havan sámagri=material used in oblation to fire all over India), on aerial bacterial population caused over 94% reduction of bacterial counts by 60 min and the ability of the smoke to purify or disinfect the air and to make the environment cleaner was maintained up to 24h in the closed room. Absence of pathogenic bacteria Corynebacterium urealyticum, Curtobacterium flaccumfaciens, Enterobacter aerogenes (Klebsiella mobilis), Kocuria rosea, Pseudomonas syringae pv. persicae, Staphylococcus lentus, and Xanthomonas campestris pv. tardicrescens in the open room even after 30 days is indicative of the bactericidal potential of the medicinal smoke treatment. We have demonstrated that using medicinal smoke it is possible to completely eliminate diverse plant and human pathogenic bacteria of the air within confined space. PMID:17913417

  5. Immunomodulatory effect of probiotic bacteria.

    PubMed

    Bodera, Pawel; Chcialowski, Andrzej

    2009-01-01

    Probiotics are usually defined as live microbial food ingredients beneficial to health which comprise of normal commensally bacteria as a part of the healthy human gut micro flora. The gut microflora is an important component of the gut defense barrier and have been shown to induce and maintain oral tolerance in experimental animal models. Functional foods, including probiotic bacteria, are an attractive medium for maintaining the steady nutritional state of the host with defective gut barrier functions. The gut-associated lymphoid tissue (GALT) embraces a crucial component of the total immunological capacity of the host in recognizing and selectively handling alien antigens for the initiation of immune responses. Normalization of increased intestinal permeability and altered gut micro ecology can ensure improvement of the function of the gut barrier. Probiotics do modify the composition of the gut microflora and, as a consequence, they have been shown to influence both intestinal and body functions. This review also discussed some patent related to the field. PMID:19149747

  6. Effects of Wolbachia on mitochondrial DNA variation in populations of Athetis lepigone (Lepidoptera: Noctuidae) in China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wolbachia are endosymbiotic bacteria that infect arthropods and incompatibility among strains can affect gene flow within host insect populations, that can result in significant host mitochondrial DNA (MtD) variation. The effects of Wolbachia infection on mtDNA variation was studied in Athetis lepi...

  7. Comparison of different methods for isolation of bacterial DNA from retail oyster tissues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oysters are filter-feeders that bio-accumulate bacteria in water while feeding. To evaluate the bacterial genomic DNA extracted from retail oyster tissues, including the gills and digestive glands, four isolation methods were used. Genomic DNA extraction was performed using the Allmag™ Blood Genomic...

  8. DNA Mapping Made Simple: An Intellectual Activity about the Genetic Modification of Organisms

    ERIC Educational Resources Information Center

    Marques, Miguel; Arrabaca, Joao; Chagas, Isabel

    2004-01-01

    Since the discovery of the DNA double helix (in 1953 by Watson and Crick), technologies have been developed that allow scientists to manipulate the genome of bacteria to produce human hormones, as well as the genome of crop plants to achieve high yield and enhanced flavor. The universality of the genetic code has allowed DNA isolated from a…

  9. Mitochondrial DNA replacement versus nuclear DNA persistence

    NASA Astrophysics Data System (ADS)

    Serva, Maurizio

    2006-10-01

    In this paper we consider two populations whose generations are not overlapping and whose size is large. The number of males and females in both populations is constant. Any generation is replaced by a new one and any individual has two parents concerning nuclear DNA and a single one (the mother) concerning mtDNA. Moreover, at any generation some individuals migrate from the first population to the second. In a finite random time T, the mtDNA of the second population is completely replaced by the mtDNA of the first. In the same time, the nuclear DNA is not completely replaced and a fraction F of the ancient nuclear DNA persists. We compute both T and F. Since this study shows that complete replacement of mtDNA in a population is compatible with the persistence of a large fraction of nuclear DNA, it may have some relevance for the 'out of Africa'/multiregional debate in palaeoanthropology.

  10. DNA modifications: Another stable base in DNA

    NASA Astrophysics Data System (ADS)

    Brazauskas, Pijus; Kriaucionis, Skirmantas

    2014-12-01

    Oxidation of 5-methylcytosine has been proposed to mediate active and passive DNA demethylation. Tracking the history of DNA modifications has now provided the first solid evidence that 5-hydroxymethylcytosine is a stable epigenetic modification.

  11. A Bioenergetic Basis for Membrane Divergence in Archaea and Bacteria

    PubMed Central

    Sojo, Víctor; Pomiankowski, Andrew; Lane, Nick

    2014-01-01

    Membrane bioenergetics are universal, yet the phospholipid membranes of archaea and bacteria—the deepest branches in the tree of life—are fundamentally different. This deep divergence in membrane chemistry is reflected in other stark differences between the two domains, including ion pumping and DNA replication. We resolve this paradox by considering the energy requirements of the last universal common ancestor (LUCA). We develop a mathematical model based on the premise that LUCA depended on natural proton gradients. Our analysis shows that such gradients can power carbon and energy metabolism, but only in leaky cells with a proton permeability equivalent to fatty acid vesicles. Membranes with lower permeability (equivalent to modern phospholipids) collapse free-energy availability, precluding exploitation of natural gradients. Pumping protons across leaky membranes offers no advantage, even when permeability is decreased 1,000-fold. We hypothesize that a sodium-proton antiporter (SPAP) provided the first step towards modern membranes. SPAP increases the free energy available from natural proton gradients by ∼60%, enabling survival in 50-fold lower gradients, thereby facilitating ecological spread and divergence. Critically, SPAP also provides a steadily amplifying advantage to proton pumping as membrane permeability falls, for the first time favoring the evolution of ion-tight phospholipid membranes. The phospholipids of archaea and bacteria incorporate different stereoisomers of glycerol phosphate. We conclude that the enzymes involved took these alternatives by chance in independent populations that had already evolved distinct ion pumps. Our model offers a quantitatively robust explanation for why membrane bioenergetics are universal, yet ion pumps and phospholipid membranes arose later and independently in separate populations. Our findings elucidate the paradox that archaea and bacteria share DNA transcription, ribosomal translation, and ATP synthase

  12. Multilocus sequence analysis supports the taxonomic position of Astragalus glycyphyllos symbionts based on DNA-DNA hybridization.

    PubMed

    Gnat, Sebastian; Małek, Wanda; Oleńska, Ewa; Wdowiak-Wróbel, Sylwia; Kalita, Michał; Rogalski, Jerzy; Wójcik, Magdalena

    2016-04-01

    In this study, the phylogenetic relationship and taxonomic status of six strains, representing different phenons and genomic groups of Astragalus glycyphyllos symbionts, originating from Poland, were established by comparative analysis of five concatenated housekeeping gene sequences (atpD, dnaK, glnA, recA and rpoB), DNA-DNA hybridization and total DNA G+C content. Maximum-likelihood phylogenetic analysis of combined atpD, dnaK, glnA, recA and rpoB sequence data placed the studied bacteria into the clade comprising the genus Mesorhizobium. In the core gene phylograms, four A. glycyphyllos nodule isolates (AG1, AG7, AG15 and AG27) formed a cluster common with Mesorhizobium ciceri, whereas the two other A. glycyphyllos symbionts (AG17 and AG22) were grouped together with Mesorhizobium amorphae and M. septentrionale. The species position of the studied bacteria was clarified by DNA-DNA hybridization. The DNA-DNA relatedness between isolates AG1, AG7, AG15 and AG27 and reference strain M. ciceri USDA 3383T was 76.4-84.2 %, and all these A. glycyphyllos nodulators were defined as members of the genomospecies M. ciceri. DNA-DNA relatedness for isolates AG17 and AG22 and the reference strain M. amorphae ICMP 15022T was 77.5 and 80.1 %, respectively. We propose that the nodule isolates AG17 and AG22 belong to the genomic species M. amorphae. Additionally, it was found that the total DNA G+C content of the six test A. glycyphyllos symbionts was 59.4-62.1 mol%, within the range for species of the genus Mesorhizobium. PMID:26704062

  13. Detection of Alicyclobacillus species in fruit juice using a random genomic DNA microarray chip.

    PubMed

    Jang, Jun Hyeong; Kim, Sun-Joong; Yoon, Bo Hyun; Ryu, Jee-Hoon; Gu, Man Bock; Chang, Hyo-Ihl

    2011-06-01

    This study describes a method using a DNA microarray chip to rapidly and simultaneously detect Alicyclobacillus species in orange juice based on the hybridization of genomic DNA with random probes. Three food spoilage bacteria were used in this study: Alicyclobacillus acidocaldarius, Alicyclobacillus acidoterrestris, and Alicyclobacillus cycloheptanicus. The three Alicyclobacillus species were adjusted to 2 × 10(3) CFU/ml and inoculated into pasteurized 100% pure orange juice. Cy5-dCTP labeling was used for reference signals, and Cy3-dCTP was labeled for target genomic DNA. The molar ratio of 1:1 of Cy3-dCTP and Cy5-dCTP was used. DNA microarray chips were fabricated using randomly fragmented DNA of Alicyclobacillus spp. and were hybridized with genomic DNA extracted from Bacillus spp. Genomic DNA extracted from Alicyclobacillus spp. showed a significantly higher hybridization rate compared with DNA of Bacillus spp., thereby distinguishing Alicyclobacillus spp. from Bacillus spp. The results showed that the microarray DNA chip containing randomly fragmented genomic DNA was specific and clearly identified specific food spoilage bacteria. This microarray system is a good tool for rapid and specific detection of thermophilic spoilage bacteria, mainly Alicyclobacillus spp., and is useful and applicable to the fruit juice industry. PMID:21669070

  14. Two Different Rickettsial Bacteria Invading Volvox carteri

    PubMed Central

    Kawafune, Kaoru; Hongoh, Yuichi; Hamaji, Takashi; Sakamoto, Tomoaki; Kurata, Tetsuya; Hirooka, Shunsuke; Miyagishima, Shin-ya; Nozaki, Hisayoshi

    2015-01-01

    Background Bacteria of the family Rickettsiaceae are principally associated with arthropods. Recently, endosymbionts of the Rickettsiaceae have been found in non-phagotrophic cells of the volvocalean green algae Carteria cerasiformis, Pleodorina japonica, and Volvox carteri. Such endosymbionts were present in only C. cerasiformis strain NIES-425 and V. carteri strain UTEX 2180, of various strains of Carteria and V. carteri examined, suggesting that rickettsial endosymbionts may have been transmitted to only a few algal strains very recently. However, in preliminary work, we detected a sequence similar to that of a rickettsial gene in the nuclear genome of V. carteri strain EVE. Methodology/Principal Findings Here we explored the origin of the rickettsial gene-like sequences in the endosymbiont-lacking V. carteri strain EVE, by performing comparative analyses on 13 strains of V. carteri. By reference to our ongoing genomic sequence of rickettsial endosymbionts in C. cerasiformis strain NIES-425 cells, we confirmed that an approximately 9-kbp DNA sequence encompassing a region similar to that of four rickettsial genes was present in the nuclear genome of V. carteri strain EVE. Phylogenetic analyses, and comparisons of the synteny of rickettsial gene-like sequences from various strains of V. carteri, indicated that the rickettsial gene-like sequences in the nuclear genome of V. carteri strain EVE were closely related to rickettsial gene sequences of P. japonica, rather than those of V. carteri strain UTEX 2180. Conclusion/Significance At least two different rickettsial organisms may have invaded the V. carteri lineage, one of which may be the direct ancestor of the endosymbiont of V. carteri strain UTEX 2180, whereas the other may be closely related to the endosymbiont of P. japonica. Endosymbiotic gene transfer from the latter rickettsial organism may have occurred in an ancestor of V. carteri. Thus, the rickettsiae may be widely associated with V. carteri, and

  15. Investigating the presence of predatory bacteria on algal bloom samples using a T6SS gene marker.

    NASA Astrophysics Data System (ADS)

    Hendricks, J.; Sison-Mangus, M.; Mehic, S.; McMahon, E.

    2015-12-01

    Predation is considered to be a major driving force in evolution and ecology, which has been observed affecting individual organisms, communities, and entire ecosystems. The type VI secretion system (T6SS) is an intermembranal protein complex identified in certain bacteria, which appears to have evolved strictly as a mechanism of predation. The effects of bacteria on phytoplankton physiology are still understudied, however, studies have shown that the interactions between bacteria that inhabit the phycosphere of phytoplankton can possibly result in coevolution of native host and microbiota. It is unclear if bacteria can prey upon other bacteria to gain advantages during periods of high phytoplankton density. Here, we investigate the predatory interactions between bacteria and analyze environmental samples for the presence of predatory bacterial genes in an effort to understand bacteria-bacteria and phytoplankton interactions during algal blooms. DNA were extracted from bacterial samples collected weekly from size-fractionated samples using 3.0 um and 0.2 um membrane filters at the Santa Cruz wharf. PCR amplification and gel visualization for the presence of T6SS gene was carried out on bloom and non-bloom samples. Moreover, we carried out a lab- based experiment to observe bacteria-bacteria interaction that may hint for the presence of predatory behavior between bacterial taxa. We observed what appeared to be a predatory biofilm formation between certain bacterial species. These bacteria, however, did not contain the T6SS genes. On the contrary the T6SS gene was discovered in some of the bloom samples gathered from the Santa Cruz wharf. It is still unclear if the predatory mechanisms facilitate the abundance of certain groups of bacteria that contain the T6SS genes during algal blooms, but our evidence suggest that bacterial predation through T6SS mechanism is present during bloom events.

  16. Outer-Inner Membrane Vesicles Naturally Secreted by Gram-Negative Pathogenic Bacteria

    PubMed Central

    Pérez-Cruz, Carla; Delgado, Lidia; López-Iglesias, Carmen; Mercade, Elena

    2015-01-01

    Outer-inner membrane vesicles (O-IMVs) were recently described as a new type of membrane vesicle secreted by the Antarctic bacterium Shewanella vesiculosa M7T. Their formation is characterized by the protrusion of both outer and plasma membranes, which pulls cytoplasmic components into the vesicles. To demonstrate that this is not a singular phenomenon in a bacterium occurring in an extreme environment, the identification of O-IMVs in pathogenic bacteria was undertaken. With this aim, a structural study by Transmission Electron Microscopy (TEM) and Cryo-transmission electron microscopy (Cryo-TEM) was carried out, confirming that O-IMVs are also secreted by Gram-negative pathogenic bacteria such as Neisseria gonorrhoeae, Pseudomonas aeruginosa PAO1 and Acinetobacter baumannii AB41, in which they represent between 0.23% and 1.2% of total vesicles produced. DNA and ATP, which are components solely found in the cell cytoplasm, were identified within membrane vesicles of these strains. The presence of DNA inside the O-IMVs produced by N. gonorrhoeae was confirmed by gold DNA immunolabeling with a specific monoclonal IgM against double-stranded DNA. A proteomic analysis of N. gonorrhoeae-derived membrane vesicles identified proteins from the cytoplasm and plasma membrane. This confirmation of O-IMV extends the hitherto uniform definition of membrane vesicles in Gram-negative bacteria and explains the presence of components in membrane vesicles such as DNA, cytoplasmic and inner membrane proteins, as well as ATP, detected for the first time. The production of these O-IMVs by pathogenic Gram-negative bacteria opens up new areas of study related to their involvement in lateral gene transfer, the transfer of cytoplasmic proteins, as well as the functionality and role of ATP detected in these new vesicles. PMID:25581302

  17. SMC complexes: from DNA to chromosomes.

    PubMed

    Uhlmann, Frank

    2016-07-01

    SMC (structural maintenance of chromosomes) complexes - which include condensin, cohesin and the SMC5-SMC6 complex - are major components of chromosomes in all living organisms, from bacteria to humans. These ring-shaped protein machines, which are powered by ATP hydrolysis, topologically encircle DNA. With their ability to hold more than one strand of DNA together, SMC complexes control a plethora of chromosomal activities. Notable among these are chromosome condensation and sister chromatid cohesion. Moreover, SMC complexes have an important role in DNA repair. Recent mechanistic insight into the function and regulation of these universal chromosomal machines enables us to propose molecular models of chromosome structure, dynamics and function, illuminating one of the fundamental entities in biology. PMID:27075410

  18. Synthesis of DNA

    DOEpatents

    Mariella, Jr., Raymond P.

    2008-11-18

    A method of synthesizing a desired double-stranded DNA of a predetermined length and of a predetermined sequence. Preselected sequence segments that will complete the desired double-stranded DNA are determined. Preselected segment sequences of DNA that will be used to complete the desired double-stranded DNA are provided. The preselected segment sequences of DNA are assembled to produce the desired double-stranded DNA.

  19. Sperm DNA oxidative damage and DNA adducts.

    PubMed

    Jeng, Hueiwang Anna; Pan, Chih-Hong; Chao, Mu-Rong; Lin, Wen-Yi

    2015-12-01

    The objective of this study was to investigate DNA damage and adducts in sperm from coke oven workers who have been exposed to polycyclic aromatic hydrocarbons. A longitudinal study was conducted with repeated measurements during spermatogenesis. Coke-oven workers (n=112) from a coke-oven plant served the PAH-exposed group, while administrators and security personnel (n=67) served the control. Routine semen parameters (concentration, motility, vitality, and morphology) were analyzed simultaneously; the assessment of sperm DNA integrity endpoints included DNA fragmentation, bulky DNA adducts, and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dGuo). The degree of sperm DNA fragmentation was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and sperm chromatin structure assay (SCSA). The PAH-exposed group had a significant increase in bulky DNA adducts and 8-oxo-dGuo compared to the control subjects (Ps=0.002 and 0.045, respectively). Coke oven workers' percentages of DNA fragmentation and denaturation from the PAH-exposed group were not significantly different from those of the control subjects (Ps=0.232 and 0.245, respectively). Routine semen parameters and DNA integrity endpoints were not correlated. Concentrations of 8-oxo-dGuo were positively correlated with percentages of DNA fragmentation measured by both TUNEL and SCSA (Ps=0.045 and 0.034, respectively). However, the concentrations of 8-oxo-dGuo and percentages of DNA fragmentation did not correlate with concentrations of bulky DNA adducts. In summary, coke oven workers with chronic exposure to PAHs experienced decreased sperm DNA integrity. Oxidative stress could contribute to the degree of DNA fragmentation. Bulky DNA adducts may be independent of the formation of DNA fragmentation and oxidative adducts in sperm. Monitoring sperm DNA integrity is recommended as a part of the process of assessing the impact of occupational and environmental toxins on sperm

  20. Soj/ParA stalls DNA replication by inhibiting helix formation of the initiator protein DnaA.

    PubMed

    Scholefield, Graham; Errington, Jeff; Murray, Heath

    2012-03-21

    Control of DNA replication initiation is essential for normal cell growth. A unifying characteristic of DNA replication initiator proteins across the kingdoms of life is their distinctive AAA+ nucleotide-binding domains. The bacterial initiator DnaA assembles into a right-handed helical oligomer built upon interactions between neighbouring AAA+ domains, that in vitro stretches DNA to promote replication origin opening. The Bacillus subtilis protein Soj/ParA has previously been shown to regulate DnaA-dependent DNA replication initiation; however, the mechanism underlying this control was unknown. Here, we report that Soj directly interacts with the AAA+ domain of DnaA and specifically regulates DnaA helix assembly. We also provide critical biochemical evidence indicating that DnaA assembles into a helical oligomer in vivo and that the frequency of replication initiation correlates with the extent of DnaA oligomer formation. This work defines a significant new regulatory mechanism for the control of DNA replication initiation in bacteria. PMID:22286949

  1. UV Radiation Damage and Bacterial DNA Repair Systems

    ERIC Educational Resources Information Center

    Zion, Michal; Guy, Daniel; Yarom, Ruth; Slesak, Michaela

    2006-01-01

    This paper reports on a simple hands-on laboratory procedure for high school students in studying both radiation damage and DNA repair systems in bacteria. The sensitivity to ultra-violet (UV) radiation of both "Escherichia coli" and "Serratia marcescens" is tested by radiating them for varying time periods. Two growth temperatures are used in…

  2. Extracellular Xylella fastidiosa genomic DNA enhances biofilm formation in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Xylella fastidiosa (Xf) is a Gram negative, xylem-limited bacterium that causes Pierce’s Disease (PD) of grapevine, as well as other diseases of economically important crops and landscape plants. Many bacteria produce large amounts of extracellular DNA, which may function as a matrix component in b...

  3. DNA-sensing inflammasomes: regulation of bacterial host defense and the gut microbiota.

    PubMed

    Man, Si Ming; Karki, Rajendra; Kanneganti, Thirumala-Devi

    2016-06-01

    DNA sensors are formidable immune guardians of the host. At least 14 cytoplasmic DNA sensors have been identified in recent years, each with specialized roles in driving inflammation and/or cell death. Of these, AIM2 is a sensor of dsDNA, and forms an inflammasome complex to activate the cysteine protease caspase-1, mediates the release of the proinflammatory cytokines IL-1β and IL-18, and induces pyroptosis. The inflammasome sensor NLRP3 can also respond to DNA in the forms of oxidized mitochondrial DNA and the DNA derivative RNA:DNA hybrids produced by bacteria, whereas the putative inflammasome sensor IFI16 responds to viral DNA in the nucleus. Although inflammasomes provoke inflammation for anti-microbial host defense, they must also maintain homeostasis with commensal microbiota. Here, we outline recent advances highlighting the complex relationship between DNA-sensing inflammasomes, bacterial host defense and the gut microbiota. PMID:27056948

  4. DNA encoding a DNA repair protein

    DOEpatents

    Petrini, John H.; Morgan, William Francis; Maser, Richard Scott; Carney, James Patrick

    2006-08-15

    An isolated and purified DNA molecule encoding a DNA repair protein, p95, is provided, as is isolated and purified p95. Also provided are methods of detecting p95 and DNA encoding p95. The invention further provides p95 knock-out mice.

  5. DNA polymerases and cancer

    PubMed Central

    Lange, Sabine S.; Takata, Kei-ichi; Wood, Richard D.

    2013-01-01

    There are fifteen different DNA polymerases encoded in mammalian genomes, which are specialized for replication, repair or the tolerance of DNA damage. New evidence is emerging for lesion-specific and tissue-specific functions of DNA polymerases. Many point mutations that occur in cancer cells arise from the error-generating activities of DNA polymerases. However, the ability of some of these enzymes to bypass DNA damage may actually defend against chromosome instability in cells and at least one DNA polymerase, POLζ, is a suppressor of spontaneous tumorigenesis. Because DNA polymerases can help cancer cells tolerate DNA damage, some of these enzymes may be viable targets for therapeutic strategies. PMID:21258395

  6. Relevance of extracellular DNA in rhizosphere

    NASA Astrophysics Data System (ADS)

    Pietramellara, Giacomo; Ascher, Judith; Baraniya, Divyashri; Arfaioli, Paola; Ceccherini, Maria Teresa; Hawes, Martha

    2013-04-01

    One of the most promising areas for future development is the manipulation of the rhizosphere to produce sustainable and efficient agriculture production systems. Using Omics approaches, to define the distinctive features of eDNA systems and structures, will facilitate progress in rhizo-enforcement and biocontrol studies. The relevance of these studies results clear when we consider the plethora of ecological functions in which eDNA is involved. This fraction can be actively extruded by living cells or discharged during cellular lysis and may exert a key role in the stability and variability of the soil bacterial genome, resulting also a source of nitrogen and phosphorus for plants due to the root's capacity to directly uptake short DNA fragments. The adhesive properties of the DNA molecule confer to eDNA the capacity to inhibit or kill pathogenic bacteria by cation limitation induction, and to facilitate formation of biofilm and extracellular traps (ETs), that may protect microorganisms inhabiting biofilm and plant roots against pathogens and allelopathic substances. The ETs are actively extruded by root border cells when they are dispersed in the rhizosphere, conferring to plants the capacity to extend an endogenous pathogen defence system outside the organism. Moreover, eDNA could be involved in rhizoremediation in heavy metal polluted soil acting as a bioflotation reagent.

  7. Amyloid-DNA composites of bacterial biofilms stimulate autoimmunity

    PubMed Central

    Gallo, Paul M.; Rapsinski, Glenn J.; Wilson, R. Paul; Oppong, Gertrude O.; Sriram, Uma; Goulian, Mark; Buttaro, Bettina; Caricchio, Roberto; Gallucci, Stefania; Tükel, Çagla

    2015-01-01

    SUMMARY Research on the human microbiome has established that commensal and pathogenic bacteria can influence obesity, cancer, and autoimmunity through mechanisms mostly unknown. We found that a component of bacterial biofilms, the amyloid protein curli, irreversibly formed fibers with bacterial DNA during biofilm formation. This interaction accelerated amyloid polymerization and created potent immunogenic complexes that activated immune cells, including dendritic cells, to produce cytokines such as Type I interferons, which are pathogenic in systemic lupus erythematosus (SLE). When given systemically, curli-DNA composites triggered immune activation and production of autoantibodies in lupus-prone and wild-type mice. We also found that the infection of lupus-prone mice with curli-producing bacteria triggered higher autoantibody titers compared to curli-deficient bacteria. These data provide a mechanism by which the microbiome and biofilm-producing enteric infections may contribute to the progression of SLE and point to a potential molecular target for treatment of autoimmunity. PMID:26084027

  8. Inhibitory effect of short cationic homopeptides against Gram-negative bacteria.

    PubMed

    Carvajal-Rondanelli, Patricio; Aróstica, Mónica; Marshall, Sergio Hernan; Albericio, Fernando; Álvarez, Claudio Andrés; Ojeda, Claudia; Aguilar, Luis Felipe; Guzmán, Fanny

    2016-06-01

    Previous work demonstrated that Lys homopeptides with an odd number of residues (9, 11 and 13) were capable of inhibiting the growth of Gram-positive bacteria in a broader spectrum and more efficiently than those with an even number of Lys residues or Arg homopeptides of the same size. Indeed, all Gram-positive bacteria tested were totally inhibited by 11-residue Lys homopeptides. In the present work, a wide variety of Gram-negative bacteria were used to evaluate the inhibitory activity of chemically synthesized homopeptides of L-Lys and L-Arg ranging from 7 to 14 residues. Gram-negative bacteria were comparatively more resistant than Gram-positive bacteria to Lys homopeptides with an odd number of residues, but exhibited a similar inhibition pattern than on Gram-positive bacteria. CD spectra for the odd-numbered Lys homopeptides in anionic lipid dimyristoylphosphatidylglycerol, and Escherichia coli membrane extract increased polyproline II content, as compared to those measured in phosphate buffer solution. Lys and Arg homopeptides were covalently linked to rhodamine to visualize the peptide interactions with E. coli cells using confocal laser scanning microscopy. Analysis of Z-stack images showed that Arg homopeptides indeed appear to be localized intracellularly, while the Lys homopeptide is localized exclusively on the plasma membrane. Moreover, these Lys homopeptides induced membrane disruption since the Sytox fluorophore was able to bind to the DNA in E. coli cultures. PMID:26922474

  9. UV-absorbing bacteria in coral mucus and their response to simulated temperature elevations

    NASA Astrophysics Data System (ADS)

    Ravindran, J.; Kannapiran, E.; Manikandan, B.; Francis, K.; Arora, Shruti; Karunya, E.; Kumar, Amit; Singh, S. K.; Jose, Jiya

    2013-12-01

    Reef-building corals encompass various strategies to defend against harmful ultraviolet (UV) radiation. Coral mucus contains UV-absorbing compounds and has rich prokaryotic diversity associated with it. In this study, we isolated and characterized the UV-absorbing bacteria from the mucus of the corals Porites lutea and Acropora hyacinthus during the pre-summer and summer seasons. A total of 17 UV-absorbing bacteria were isolated and sequenced. The UV-absorbing bacteria showed UV absorption at wavelengths ranging from λ max = 333 nm to λ min = 208 nm. Analysis of the DNA sequences revealed that the majority of the UV-absorbing bacteria belonged to the family Firmicutes and the remaining belonged to the family Proteobacteria (class Gammaproteobacteria). Comparison of the sequences with the curated database yielded four distinct bacterial groups belonging to the genus Bacillus, Staphylococcus, Salinicoccus and Vibrio. The absorption peaks for the UV-absorbing bacteria shifted to the UV-A range (320-400 nm) when they were incubated at higher temperatures. Deciphering the complex relationship between corals and their associated bacteria will help us to understand their adaptive strategies to various stresses.

  10. Study of Lactic Acid Bacteria Community From Raw Milk of Iranian One Humped Camel and Evaluation of Their Probiotic Properties

    PubMed Central

    Davati, Nafiseh; Tabatabaee Yazdi, Farideh; Zibaee, Saeed; Shahidi, Fakhri; Edalatian, Mohammad Reza

    2015-01-01

    Background: Camel milk is amongst valuable food sources in Iran. On the other hand, due to the presence of probiotic bacteria and bacteriocin producers in camel milk, probiotic bacteria can be isolated and identified from this food product. Objectives: The objectives of the present research were the isolation and molecular identification of lactic acid bacteria from camel milk and evaluation of their probiotic properties. Materials and Methods: A total of ten samples of camel milk were collected from the Golestan province of Iran under aseptic conditions. Bacteria were isolated by culturing the samples on selective medium. Isolates were identified by amplification of the 16S rDNA and Internal Transcribed Spacer (ITS) region between the 16S and 23S rRNA genes by Polymerase Chain Reaction (PCR) and were then screened and grouped by the Amplified Ribosomal DNA Restriction Analysis (ARDRA) method. To evaluate probiotic properties, representative isolates of different ARDRA profiles were analyzed. The antimicrobial activity of Lactic Acid Bacteria (LAB) against Pediococcus pentosaceus, Escherichia coli and Bacillus cereus was examined by the agar diffusion assay. Acid and bile tolerance of isolates were evaluated. Results: A total of 64 isolates were analyzed based on biochemical tests and morphological characteristics. The most frequently isolated LAB was Enterococci. Weissella, Leuconostoc, Lactobacilli and Pediococci were less frequently found. Based on restriction analysis of the ITS, the isolates were grouped into nine different ARDRA patterns that were identified by ribosomal DNA sequencing as P. pentosaceus, Enterococcus faecium strain Y-2, E. faecium strain JZ1-1, E. faecium strain E6, E. durans, E. lactis, Leuconostoc mesenteroides, Lactobacillus casei and Weissella cibaria. The results showed that antimicrobial activity of the tested isolates was remarkable and P. pentosaceus showed the most antibacterial activity. In addition, E. durans, E. lactis, L. casei

  11. Bacteria cell properties and grain size impact on bacteria transport and deposition in porous media.

    PubMed

    Bai, Hongjuan; Cochet, Nelly; Pauss, André; Lamy, Edvina

    2016-03-01

    The simultaneous role of bacteria cell properties and porous media grain size on bacteria transport and deposition behavior was investigated in this study. Transport column experiments and numerical HYDRUS-1D simulations of three bacteria with different cell properties (Escherichia coli, Klebsiella oxytoca, and Rhodococcus rhodochrous) were carried out on two sandy media with different grain sizes, under saturated steady state flow conditions. Each bacterium was characterized by cell size and shape, cell motility, electrophoretic mobility, zeta potential, hydrophobicity and potential of interaction with the sand surface. Cell characteristics affected bacteria transport behavior in the fine sand, but similar bacteria breakthroughs and retardation factors observed in the coarse sand, indicated that bacteria transport was more depended on grain size than on bacteria cell properties. Retention decreased with increasing hydrophobicity and increased with increasing electrophoretic mobility of bacteria for both sand. The increasing sand grain size resulted in a decrease of bacteria retention, except for the motile E. coli, indicating that retention of this strain was more dependent on cell motility than on the sand grain size. Bacteria deposition coefficients obtained from numerical simulations of the retention profiles indicated that straining was an important mechanism affecting bacteria deposition of E. coli and Klebsiella sp., in the fine sand, but the attachment had the same importance as straining for R. rhodochrous. The results obtained in the coarse sand did not permit to discriminate the predominant mechanism of bacteria deposition and the relative implication of bacteria cell properties of this process. PMID:26705829

  12. Spectroscopic diagnostics for bacteria in biologic sample

    DOEpatents

    El-Sayed, Mostafa A.; El-Sayed, Ivan H.

    2002-01-01

    A method to analyze and diagnose specific bacteria in a biologic sample using spectroscopy is disclosed. The method includes obtaining the spectra of a biologic sample of a non-infected patient for use as a reference, subtracting the reference from the spectra of an infected sample, and comparing the fingerprint regions of the resulting differential spectrum with reference spectra of bacteria in saline. Using this diagnostic technique, specific bacteria can be identified sooner and without culturing, bacteria-specific antibiotics can be prescribed sooner, resulting in decreased likelihood of antibiotic resistance and an overall reduction of medical costs.

  13. [Urease activity of bacteria in urine].

    PubMed

    Arai, Y; Takeuchi, H; Tomoyoshi, T; Tatewaki, K

    1989-02-01

    Urea splitting bacteria are related to the formation of struvite or apatite. We investigated the urease activity of bacteria by two methods; the direct measurement of urease activity of viable bacteria and sonicated bacteria from amounts of ammonia by the indophenol method, and the measurement of urease activity by alkalization of infected urine. Proteus mirabilis and Pseudomonas aeruginosa had moderate activity of urease, and Morganella morganii and Staphylococcus epidermidis had the most powerful activity. P. mirabilis caused the strongest alkalization in infected urine. PMID:2500012

  14. Numerical dominance of a group of marine bacteria in the alpha-subclass of the class Proteobacteria in coastal seawater.

    PubMed Central

    González, J M; Moran, M A

    1997-01-01

    A cluster of marine bacteria within the alpha-3 subclass of the class Proteobacteria accounted for up to 28% of the 16S ribosomal DNA (rDNA) sequences in seawater samples from the coast of the southeastern United States. Two independent oligonucleotide probes targeting 16S rDNA of this "marine alpha" cluster indicate that the group dominates bacterioplankton communities in estuarine and nearshore regions of the southeastern U.S. coast. Marine alpha bacteria decline predictably in abundance with decreasing salinity along estuarine transsects and are not detectable in low-salinity (5%) or freshwater samples. Sequences of 16S rDNA obtained from seawater by PCR with one group-specific oligonucleotide as a primer confirm that the oligonucleotide targets only members of this phylogenetic cluster. Likewise, sequences of 16S rDNA obtained from seawater by PCR with several different pairs of nonspecific primers show an unusually high abundance of marine alpha sequences (52 to 84%) among the clones, which possibly indicates a PCR bias toward the group. Members of the marine alpha group were readily cultured from coastal seawater, accounting for 40% of the colonies isolated on low-nutrient marine agar, based on hybridizations with the group-specific 16S rDNA probe and on sequence analysis. This is the first description of a numerically dominant cluster of coastal bacteria, identified by molecular techniques, that can be readily cultured and studied in the laboratory. PMID:9361410

  15. Improving diversity in cultures of bacteria from an extreme environment.

    PubMed

    Vester, Jan Kjølhede; Glaring, Mikkel Andreas; Stougaard, Peter

    2013-08-01

    The ikaite columns in the Ikka Fjord in Greenland represent one of the few permanently cold and alkaline environments on Earth, and the interior of the columns is home to a bacterial community adapted to these extreme conditions. The community is characterized by low cell numbers imbedded in a calcium carbonate matrix, making extraction of bacterial cells and DNA a challenge and limiting molecular and genomic studies of this environment. To utilize this genetic resource, cultivation at high pH and low temperature was studied as a method for obtaining biomass and DNA from the fraction of this community that would not otherwise be amenable to genetic analyses. The diversity and community dynamics in mixed cultures of bacteria from ikaite columns was investigated using denaturing gradient gel electrophoresis and pyrosequencing of 16S rDNA. Both medium composition and incubation time influenced the diversity of the culture and many hitherto uncharacterized genera could be brought into culture by extended incubation time. Extended incubation time also gave rise to a more diverse community with a significant number of rare species not detected in the initial community. PMID:23899002

  16. The relationship between microbial DNA concentrations and swimming associated health effects at a tropical environment bathing beach

    EPA Science Inventory

    The relationship between microbial DNA concentrations and swimming associated health effects at a tropical environment bathing beach. Timothy 1. Wade, presenter. Co-authors: Alfred P. Dufour, Kristen Brenner, Rich Haugland, Larry Wymer, Elizabeth Sams Fecal indicator bacteria (F...

  17. Development of a fast PCR protocol enabling rapid generation of AmpFℓSTR® Identifiler® profiles for genotyping of human DNA

    PubMed Central

    2012-01-01

    Background Traditional PCR methods for forensic STR genotyping require approximately 2.5 to 4 hours to complete, contributing a significant portion of the time required to process forensic DNA samples. The purpose of this study was to develop and validate a fast PCR protocol that enabled amplification of the 16 loci targeted by the AmpFℓSTR® Identifiler® primer set, allowing decreased cycling times. Methods Fast PCR conditions were achieved by substituting the traditional Taq polymerase for SpeedSTAR™ HS DNA polymerase which is designed for fast PCR, by upgrading to a thermal cycler with faster temperature ramping rates and by modifying cycling parameters (less time at each temperature) and adopting a two-step PCR approach. Results The total time required for the optimized protocol is 26 min. A total of 147 forensically relevant DNA samples were amplified using the fast PCR protocol for Identifiler. Heterozygote peak height ratios were not affected by fast PCR conditions, and full profiles were generated for single-source DNA amounts between 0.125 ng and 2.0 ng. Individual loci in profiles produced with the fast PCR protocol exhibited average n-4 stutter percentages ranging from 2.5 ± 0.9% (THO1) to 9.9 ± 2.7% (D2S1338). No increase in non-adenylation or other amplification artefacts was observed. Minor contributor alleles in two-person DNA mixtures were reliably discerned. Low level cross-reactivity (monomorphic peaks) was observed with some domestic animal DNA. Conclusions The fast PCR protocol presented offers a feasible alternative to current amplification methods and could aid in reducing the overall time in STR profile production or could be incorporated into a fast STR genotyping procedure for time-sensitive situations. PMID:22394458

  18. Modeling Political Populations with Bacteria

    NASA Astrophysics Data System (ADS)

    Cleveland, Chris; Liao, David

    2011-03-01

    Results from lattice-based simulations of micro-environments with heterogeneous nutrient resources reveal that competition between wild-type and GASP rpoS819 strains of E. Coli offers mutual benefit, particularly in nutrient deprived regions. Our computational model spatially maps bacteria populations and energy sources onto a set of 3D lattices that collectively resemble the topology of North America. By implementing Wright-Fishcer re- production into a probabilistic leap-frog scheme, we observe populations of wild-type and GASP rpoS819 cells compete for resources and, yet, aid each other's long term survival. The connection to how spatial political ideologies map in a similar way is discussed.

  19. [Surface layers of methanotrophic bacteria].

    PubMed

    Khmelenina, V N; Suzina, N E; Trotsenko, Iu A

    2013-01-01

    Structural and functional characteristics of the regular glycoprotein layers in prokaryotes are analyzed with a special emphasis on aerobic methanotrophic bacteria. S-layers are present at the surfaces of Methylococcus, Methylothermus, and Methylomicrobium cells. Different Methylomicrobium species either synthesize S-layers with planar (p2, p4) symmetry or form cup-shaped or conicalstructures with hexagonal (p6) symmetry. A unique, copper-binding polypeptide 'CorA'/MopE (27/45 kDa), which is coexpressed with the diheme periplasmic cytochrome c peroxidase 'CorB'/Mca (80 kDa) was found in Methylomicrobium album BG8, Methylomicrobium alcaliphilum 20Z, and Methylococcus capsulatus Bath. This tandem of the surface proteins is functionally analogous to a new siderophore, methanobactin. Importantly, no 'CorA'/MopE homologue was found in methanotrophs not forming S-layers. The role of surface proteins in copper metabolism and initial methane oxidation is discussed. PMID:25509389

  20. Bacteria in chronic maxillary sinusitis.

    PubMed

    Karma, P; Jokipii, L; Sipilä, P; Luotonen, J; Jokipii, A M

    1979-07-01

    Sixty-one chronically inflamed maxillary sinuses produced 131 bacterial strains from mucosal pieces that were taken during a Caldwell-Luc operation and cultured aerobically and anaerobically. Sinus secretions showed only 62 and nasal secretions 106 bacterial strains. Fourteen mucosal strains, including 11 Haemophilus influenzae, grew heavily. None of 24 mucosal anaerobes showed heavy growth. Of 52 antral mucosae with culturable bacteria, 37 disclosed mixed and 15 pure growth. The bacteriological characteristics of the diseased sinus and the nose did not correlate. The duration or extent of the disease, the macroscopic appearance of the diseased sinus, or the presence or absence of allergy were unrelated to bacteriological findings, except that H influenzae was concentrated in purulent sinuses. Intraoperative culture of antral mucosa seems to give the most reliable picture of the bacteriological condition in chronic maxillary sinusitis. PMID:313206