Science.gov

Sample records for monomorphic bacteria dna

  1. Preparation of genomic DNA from bacteria.

    PubMed

    Andreou, Lefkothea-Vasiliki

    2013-01-01

    The purpose of this protocol is the isolation of bulk cellular DNA from bacteria (alternatively see Preparation of genomic DNA from Saccharomyces cerevisiae or Isolation of Genomic DNA from Mammalian Cells protocols). PMID:24011042

  2. Phosphorothioate DNA as an antioxidant in bacteria.

    PubMed

    Xie, Xinqiang; Liang, Jingdan; Pu, Tianning; Xu, Fei; Yao, Fen; Yang, Yan; Zhao, Yi-Lei; You, Delin; Zhou, Xiufen; Deng, Zixin; Wang, Zhijun

    2012-10-01

    Diverse bacteria contain DNA with sulfur incorporated stereo-specifically into their DNA backbone at specific sequences (phosphorothioation). We found that in vitro oxidation of phosphorothioate (PT) DNA by hydrogen peroxide (H(2)O(2)) or peracetic acid has two possible outcomes: DNA backbone cleavage or sulfur removal resulting in restoration of normal DNA backbone. The physiological relevance of this redox reaction was investigated by challenging PT DNA hosting Salmonella enterica cells using H(2)O(2). DNA phosphorothioation was found to correlate with increasing resistance to the growth inhibition by H(2)O(2). Resistance to H(2)O(2) was abolished when each of the three dnd genes, required for phosphorothioation, was inactivated. In vivo, PT DNA is more resistant to the double-strand break damage caused by H(2)O(2) than PT-free DNA. Furthermore, sulfur on the modified DNA was consumed and the DNA was converted to PT-free state when the bacteria were incubated with H(2)O(2). These findings are consistent with a hypothesis that phosphorothioation modification endows DNA with reducing chemical property, which protects the hosting bacteria against peroxide, explaining why this modification is maintained by diverse bacteria. PMID:22772986

  3. DNA Uptake by Transformable Bacteria

    SciTech Connect

    Lacks, Sanford A.

    1999-03-31

    The various processes of DNA uptake by cells can be categorized as: viral DNA entry, conjugation, or transformation. Within each category, a variety of mechanisms have been found. However, considerable similarities occur among the different mechanisms of conjugation and, especially, transformation. All of these natural mechanisms of DNA transfer are quite elaborate and involve multiple protein components, as the case may be, of the virus, the donor cell, and the recipient cell. The mechanisms of viral infection and conjugation will be discussed mainly with respect to their relevance to transformation.

  4. DNA UPTAKE BY TRANSFORMABLE BACTERIA

    SciTech Connect

    LACKS,S.A.

    1999-09-07

    The various processes of DNA uptake by cells can be categorized as: viral DNA entry, conjugation, or transformation. Within each category, a variety of mechanisms have been found. However, considerable similarities occur among the different mechanisms of conjugation and, especially, transformation. All of these natural mechanisms of DNA transfer are quite elaborate and involve multiple protein components, as the case may be, of the virus, the donor cell, and the recipient cell. The mechanisms of viral infection and conjugation will be discussed mainly with respect to their relevance to transformation.

  5. Preparation of genomic DNA from bacteria.

    PubMed

    Wilson, K

    2001-11-01

    Most protocols for the preparation of bacterial genomic DNA consist of lysis, followed by incubation with a nonspecific protease and a series of extractions prior to precipitation of the nucleic acids. Such procedures effectively remove contaminating proteins, but are not effective in removing exopolysaccharides which can interfere with the activity of enzymes such as restriction endonucleases and ligases. In this unit, however, the protease incubation is followed by a CTAB extraction whereby CTAB complexes both with polysaccharides and with residual protein, effectively removing both in the subsequent emulsification and extraction. This procedure is effective in producing digestible chromosomal DNA from a variety of gram-negative bacteria, all of which normally produce large amounts of polysaccharides. If large amounts of exceptionally clean DNA are required, the procedure can be scaled up and the DNA purified on a CsCl gradient, as described in the alternate protocol. PMID:18265184

  6. Transfer of DNA from Bacteria to Eukaryotes.

    PubMed

    Lacroix, Benoît; Citovsky, Vitaly

    2016-01-01

    Historically, the members of the Agrobacterium genus have been considered the only bacterial species naturally able to transfer and integrate DNA into the genomes of their eukaryotic hosts. Yet, increasing evidence suggests that this ability to genetically transform eukaryotic host cells might be more widespread in the bacterial world. Indeed, analyses of accumulating genomic data reveal cases of horizontal gene transfer from bacteria to eukaryotes and suggest that it represents a significant force in adaptive evolution of eukaryotic species. Specifically, recent reports indicate that bacteria other than Agrobacterium, such as Bartonella henselae (a zoonotic pathogen), Rhizobium etli (a plant-symbiotic bacterium related to Agrobacterium), or even Escherichia coli, have the ability to genetically transform their host cells under laboratory conditions. This DNA transfer relies on type IV secretion systems (T4SSs), the molecular machines that transport macromolecules during conjugative plasmid transfer and also during transport of proteins and/or DNA to the eukaryotic recipient cells. In this review article, we explore the extent of possible transfer of genetic information from bacteria to eukaryotic cells as well as the evolutionary implications and potential applications of this transfer. PMID:27406565

  7. Transfer of DNA from Bacteria to Eukaryotes

    PubMed Central

    2016-01-01

    ABSTRACT Historically, the members of the Agrobacterium genus have been considered the only bacterial species naturally able to transfer and integrate DNA into the genomes of their eukaryotic hosts. Yet, increasing evidence suggests that this ability to genetically transform eukaryotic host cells might be more widespread in the bacterial world. Indeed, analyses of accumulating genomic data reveal cases of horizontal gene transfer from bacteria to eukaryotes and suggest that it represents a significant force in adaptive evolution of eukaryotic species. Specifically, recent reports indicate that bacteria other than Agrobacterium, such as Bartonella henselae (a zoonotic pathogen), Rhizobium etli (a plant-symbiotic bacterium related to Agrobacterium), or even Escherichia coli, have the ability to genetically transform their host cells under laboratory conditions. This DNA transfer relies on type IV secretion systems (T4SSs), the molecular machines that transport macromolecules during conjugative plasmid transfer and also during transport of proteins and/or DNA to the eukaryotic recipient cells. In this review article, we explore the extent of possible transfer of genetic information from bacteria to eukaryotic cells as well as the evolutionary implications and potential applications of this transfer. PMID:27406565

  8. [Monomorphic post-transplant T-lymphoproliferative disorder after autologous stem cell transplantation for multiple myeloma].

    PubMed

    Ishikawa, Tetsuya; Shimizu, Hiroaki; Takei, Toshifumi; Koya, Hiroko; Iriuchishima, Hirono; Hosiho, Takumi; Hirato, Junko; Kojima, Masaru; Handa, Hiroshi; Nojima, Yoshihisa; Murakami, Hirokazu

    2016-01-01

    We report a rare case of T cell type monomorphic post-transplant lymphoproliferative disorders (PTLD) after autologous stem cell transplantation. A 53-year-old man with multiple myeloma received autologous stem cell transplantation and achieved a very good partial response. Nine months later, he developed a high fever and consciousness disturbance, and had multiple swollen lymph nodes and a high titer of Epstein-Barr (EB) virus DNA in his peripheral blood. Neither CT nor MRI of the brain revealed any abnormalities. Cerebrospinal fluid contained no malignant cells, but the EB virus DNA titer was high. Lymph node biopsy revealed T cell type monomorphic PTLD. Soon after high-dose treatment with methotrexate and cytosine arabinoside, the high fever and consciousness disturbance subsided, and the lymph node swelling and EB virus DNA disappeared. Given the efficacy of chemotherapy in this case, we concluded that the consciousness disturbance had been induced by central nervous system involvement of monomorphic PTLD. PMID:26861102

  9. Failsafe mechanisms couple division and DNA replication in bacteria

    PubMed Central

    Arjes, Heidi A.; Kriel, Allison; Sorto, Nohemy A.; Shaw, Jared T.; Wang, Jue D.; Levin, Petra Anne

    2014-01-01

    Summary The past twenty years have seen tremendous advances in our understanding of the mechanisms underlying bacterial cytokinesis, particularly the composition of the division machinery and the factors controlling its assembly [1]. At the same time, we understand very little about the relationship between cell division and other cell cycle events in bacteria. Here we report that inhibiting division in Bacillus subtilis and Staphylococcus aureus quickly leads to an arrest in the initiation of new rounds of DNA replication followed by a complete arrest in cell growth. Arrested cells are metabolically active but unable to initiate new rounds of either DNA replication or division when shifted to permissive conditions. Inhibiting DNA replication results in entry into a similar quiescent state, in which cells are unable to resume growth or division when returned to permissive conditions. Our data suggest the presence of two failsafe mechanisms: one linking division to the initiation of DNA replication and another linking the initiation of DNA replication to division. These findings contradict the prevailing view of the bacterial cell cycle as a series of coordinated but uncoupled events. Importantly, the terminal nature of the cell cycle arrest validates the bacterial cell cycle machinery as an effective target for antimicrobial development. PMID:25176632

  10. DNA Integrity and Shock Wave Transformation Efficiency of Bacteria and Fungi

    NASA Astrophysics Data System (ADS)

    Loske, Achim M.; Campos-Guillén, Juan; Fernández, Francisco; Pastrana, Xóchitl; Magaña-Ortíz, Denis; Coconi-Linares, Nancy; Ortíz-Vázquez, Elizabeth; Gómez-Lim, Miguel

    Delivery of DNA into bacteria and fungi is essential in medicine and biotechnology to produce metabolites, enzymes, antibiotics and proteins. So far, protocols to genetically transform bacteria and fungi are inefficient and have low reproducibility.

  11. Social amoebae trap and kill bacteria by casting DNA nets

    PubMed Central

    Zhang, Xuezhi; Zhuchenko, Olga; Kuspa, Adam; Soldati, Thierry

    2016-01-01

    Extracellular traps (ETs) from neutrophils are reticulated nets of DNA decorated with anti-microbial granules, and are capable of trapping and killing extracellular pathogens. Various phagocytes of mammals and invertebrates produce ETs, however, the evolutionary history of this DNA-based host defence strategy is unclear. Here we report that Sentinel (S) cells of the multicellular slug stage of the social amoeba Dictyostelium discoideum produce ETs upon stimulation with bacteria or lipopolysaccharide in a reactive oxygen species-dependent manner. The production of ETs by S cells requires a Toll/Interleukin-1 receptor domain-containing protein TirA and reactive oxygen species-generating NADPH oxidases. Disruption of these genes results in decreased clearance of bacterial infections. Our results demonstrate that D. discoideum is a powerful model organism to study the evolution and conservation of mechanisms of cell-intrinsic immunity, and suggest that the origin of DNA-based ETs as an innate immune defence predates the emergence of metazoans. PMID:26927887

  12. Social amoebae trap and kill bacteria by casting DNA nets.

    PubMed

    Zhang, Xuezhi; Zhuchenko, Olga; Kuspa, Adam; Soldati, Thierry

    2016-01-01

    Extracellular traps (ETs) from neutrophils are reticulated nets of DNA decorated with anti-microbial granules, and are capable of trapping and killing extracellular pathogens. Various phagocytes of mammals and invertebrates produce ETs, however, the evolutionary history of this DNA-based host defence strategy is unclear. Here we report that Sentinel (S) cells of the multicellular slug stage of the social amoeba Dictyostelium discoideum produce ETs upon stimulation with bacteria or lipopolysaccharide in a reactive oxygen species-dependent manner. The production of ETs by S cells requires a Toll/Interleukin-1 receptor domain-containing protein TirA and reactive oxygen species-generating NADPH oxidases. Disruption of these genes results in decreased clearance of bacterial infections. Our results demonstrate that D. discoideum is a powerful model organism to study the evolution and conservation of mechanisms of cell-intrinsic immunity, and suggest that the origin of DNA-based ETs as an innate immune defence predates the emergence of metazoans. PMID:26927887

  13. Survival of phosphate-solubilizing bacteria against DNA damaging agents.

    PubMed

    Shrivastava, Manoj; Rajpurohit, Yogendra S; Misra, Hari S; D'Souza, S F

    2010-10-01

    Phosphate-solubilizing bacteria (PSBs) were isolated from different plant rhizosphere soils of various agroecological regions of India. These isolates showed synthesis of pyrroloquinoline quinone (PQQ), production of gluconic acid, and release of phosphorus from insoluble tricalcium phosphate. The bacterial isolates synthesizing PQQ also showed higher tolerance to ultraviolet C radiation and mitomycin C as compared to Escherichia coli but were less tolerant than Deinococcus radiodurans. Unlike E. coli, PSB isolates showed higher tolerance to DNA damage when grown in the absence of inorganic phosphate. Higher tolerance to ultraviolet C radiation and oxidative stress in these PSBs grown under PQQ synthesis inducible conditions, namely phosphate starvation, might suggest the possible additional role of this redox cofactor in the survival of these isolates under extreme abiotic stress conditions. PMID:20962905

  14. A single protocol for extraction of gDNA from bacteria and yeast.

    PubMed

    Vingataramin, Laurie; Frost, Eric H

    2015-03-01

    Guanidine thiocyanate breakage of microorganisms has been the standard initial step in genomic DNA (gDNA) extraction of microbial DNA for two decades, despite the requirement for pretreatments to extract DNA from microorganisms other than Gram-negative bacteria. We report a quick and low-cost gDNA extraction protocol called EtNa that is efficient for bacteria and yeast over a broad range of concentrations. EtNa is based on a hot alkaline ethanol lysis. The solution can be immediately centrifuged to yield a crude gDNA extract suitable for PCR, or it can be directly applied to a silica column for purification. PMID:25757544

  15. Working with DNA & Bacteria in Precollege Science Classrooms.

    ERIC Educational Resources Information Center

    Horn, Toby Mogollon; Frame, Kathy, Ed.

    This document describes ways to work with DNA and host organisms in precollege classrooms. The guidelines are intended to assist the teacher who already has training in working with microbes, DNA, and associated chemicals. The contents of the guidelines include: (1) Permitted DNA molecules, vectors, and recommended host organisms for constructing…

  16. DNA fingerprinting of lactic acid bacteria in sauerkraut fermentations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies using traditional biochemical methods to study the ecology of commercial sauerkraut fermentations revealed that four lactic acid bacteria species, Leuconostoc mesenteroides, Lactobacillus plantarum, Pediococcus pentosaceus, and Lactobacillus brevis were the primary microorganisms in...

  17. How-to-Do-It: A Simple DNA Isolation Technique Using Halophilic Bacteria.

    ERIC Educational Resources Information Center

    Guilfoile, Patrick

    1989-01-01

    Described is a simple technique for isolating DNA from halophilic bacteria. Materials, procedure, and additional experiments are outlined. It is stated that the DNA obtained will be somewhat contaminated with cellular proteins and RNA. Offers a procedure for greater purification. (RT)

  18. Promiscuous DNA and terramycin resistance in American Foulbrood bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Terramycin (TM) is an antibiotic which has been used for decades to control the bacterial disease of honey bees called American Foulbrood (AFB). Within the past few years however, American Foulbrood bacteria resistant to TM have appeared. Broadly, this work gives an overview of bacterial antibiotic-...

  19. A New Method to Extract Dental Pulp DNA: Application to Universal Detection of Bacteria

    PubMed Central

    Tran-Hung, Lam; Tran-Thi, Ny; Aboudharam, Gérard; Raoult, Didier; Drancourt, Michel

    2007-01-01

    Background Dental pulp is used for PCR-based detection of DNA derived from host and bacteremic microorganims. Current protocols require odontology expertise for proper recovery of the dental pulp. Dental pulp specimen exposed to laboratory environment yields contaminants detected using universal 16S rDNA-based detection of bacteria. Methodology/Principal Findings We developed a new protocol by encasing decontaminated tooth into sterile resin, extracting DNA into the dental pulp chamber itself and decontaminating PCR reagents by filtration and double restriction enzyme digestion. Application to 16S rDNA-based detection of bacteria in 144 teeth collected in 86 healthy people yielded a unique sequence in only 14 teeth (9.7%) from 12 individuals (14%). Each individual yielded a unique 16S rDNA sequence in 1–2 teeth per individual. Negative controls remained negative. Bacterial identifications were all confirmed by amplification and sequencing of specific rpoB sequence. Conclusions/Significance The new protocol prevented laboratory contamination of the dental pulp. It allowed the detection of bacteria responsible for dental pulp colonization from blood and periodontal tissue. Only 10% such samples contained 16S rDNA. It provides a new tool for the retrospective diagnostic of bacteremia by allowing the universal detection of bacterial DNA in animal and human, contemporary or ancient tooth. It could be further applied to identification of host DNA in forensic medicine and anthropology. PMID:17957246

  20. Polymorphism, monomorphism, and sequences in conserved microsatellites in primate species.

    PubMed

    Blanquer-Maumont, A; Crouau-Roy, B

    1995-10-01

    Dimeric short tandem repeats are a source of highly polymorphic markers in the mammalian genome. Genetic variation at these hypervariable loci is extensively used for linkage analysis, for the identification of individuals, and may be useful for interpopulation and interspecies studies. In this paper, we analyze the variability and the sequences of a segment including three microsatellites, first described in man, in several species of primates (chimpanzee, orangutan, gibbon, and macaque) using the heterologous primers (man primers). This region is located on the human chromosome 6p, near the tumor necrosis factor genes, in the major histocompatibility complex. The fact that these primers work in all species studied indicates that they are conserved throughout the different lineages of the two superfamilies, the Hominoidea and the Cercopithecidea, represented by the macaques. However, the intervening sequence displays intraspecific and interspecific variability. The sites of base substitutions and the insertion/deletion events are not evenly distributed within this region. The data suggest that it is necessary to have a minimal number of repeats to increase the rate of mutation sufficiently to allow the development of polymorphism. In some species, the microsatellites present single base variations which reduce the number of contiguous repeats, thus apparently slowing the rate of additional slippage events. Species with such variations or a low number of repeats are monomorphic. These microsatellite sequences are informative in the comparison of closely related species and reflect the phylogeny of the Old World monkeys, apes, and man. PMID:7563137

  1. Utility of Filter Paper for Preserving Insects, Bacteria, and Host Reservoir DNA for Molecular Testing

    PubMed Central

    Karimian, F; Sedaghat, MM; Oshaghi, MA; Mohtarami, F; Dehkordi, A Sanei; Koosha, M; Akbari, S; Hashemi-Aghdam, SS

    2011-01-01

    Background: Appropriate methodology for storage biological materials, extraction of DNA, and proper DNA preservation is vital for studies involving genetic analysis of insects, bacteria, and reservoir hosts as well as for molecular diagnostics of pathogens carried by vectors and reservoirs. Here we tried to evaluate the utility of a simple filter paper-based for storage of insects, bacteria, rodent, and human DNAs using PCR assays. Methods: Total body or haemolymph of individual mosquitoes, sand flies or cockroaches squashed or placed on the paper respectively. Extracted DNA of five different bacteria species as well as blood specimens of human and great gerbil Rhombomys opimus was pipetted directly onto filter paper. The papers were stored in room temperature up to 12 months during 2009 until 2011. At monthly intervals, PCR was conducted using a 1-mm disk from the DNA impregnated filter paper as target DNA. PCR amplification was performed against different target genes of the organisms including the ITS2-rDNA of mosquitoes, mtDNA-COI of the sand flies and cockroaches, 16SrRNA gene of the bacteria, and the mtDNA-CytB of the vertebrates. Results: Successful PCR amplification was observed for all of the specimens regardless of the loci, taxon, or time of storage. The PCR amplification were ranged from 462 to 1500 bp and worked well for the specified target gene/s. Time of storage did not affect the amplification up to one year. Conclusion: The filter paper method is a simple and economical way to store, to preserve, and to distribute DNA samples for PCR analysis. PMID:22808417

  2. Effect of bile salts on the DNA and membrane integrity of enteric bacteria.

    PubMed

    Merritt, Megan E; Donaldson, Janet R

    2009-12-01

    Enteric bacteria are able to resist the high concentrations of bile encountered throughout the gastrointestinal tract. Here we review the current mechanisms identified in the enteric bacteria Salmonella, Escherichia coli, Bacillus cereus and Listeria monocytogenes to resist the dangerous effects of bile. We describe the role of membrane transport systems, and their connection with DNA repair pathways, in conferring bile resistance to these enterics. We discuss the findings from recent investigations that indicate bile tolerance is dependent upon being able to resist the detergent properties of bile at both the membrane and DNA level. PMID:19762477

  3. Cultivation-independent detection of autotrophic hydrogen-oxidizing bacteria by DNA stable-isotope probing.

    PubMed

    Pumphrey, Graham M; Ranchou-Peyruse, Anthony; Spain, Jim C

    2011-07-01

    Knallgas bacteria are a physiologically defined group that is primarily studied using cultivation-dependent techniques. Given that current cultivation techniques fail to grow most bacteria, cultivation-independent techniques that selectively detect and identify knallgas bacteria will improve our ability to study their diversity and distribution. We used stable-isotope probing (SIP) to identify knallgas bacteria in rhizosphere soil of legumes and in a microbial mat from Obsidian Pool in Yellowstone National Park. When samples were incubated in the dark, incorporation of (13)CO(2) was H(2) dependent. SIP enabled the detection of knallgas bacteria that were not detected by cultivation, and the majority of bacteria identified in the rhizosphere soils were betaproteobacteria predominantly related to genera previously known to oxidize hydrogen. Bacteria in soil grew on hydrogen at concentrations as low as 100 ppm. A hydB homolog encoding a putative high-affinity NiFe hydrogenase was amplified from (13)C-labeled DNA from both vetch and clover rhizosphere soil. The results indicate that knallgas bacteria can be detected by SIP and populations that respond to different H(2) concentrations can be distinguished. The methods described here should be applicable to a variety of ecosystems and will enable the discovery of additional knallgas bacteria that are resistant to cultivation. PMID:21622787

  4. Sexually Monomorphic Maps and Dimorphic Responses in Rat Genital Cortex.

    PubMed

    Lenschow, Constanze; Copley, Sean; Gardiner, Jayne M; Talbot, Zoe N; Vitenzon, Ariel; Brecht, Michael

    2016-01-11

    Mammalian external genitals show sexual dimorphism [1, 2] and can change size and shape upon sexual arousal. Genitals feature prominently in the oldest pieces of figural art [3] and phallic depictions of penises informed psychoanalytic thought about sexuality [4, 5]. Despite this longstanding interest, the neural representations of genitals are still poorly understood [6]. In somatosensory cortex specifically, many studies did not detect any cortical representation of genitals [7-9]. Studies in humans debate whether genitals are represented displaced below the foot of the cortical body map [10-12] or whether they are represented somatotopically [13-15]. We wondered what a high-resolution mapping of genital representations might tell us about the sexual differentiation of the mammalian brain. We identified genital responses in rat somatosensory cortex in a region previously assigned as arm/leg cortex. Genital responses were more common in males than in females. Despite such response dimorphism, we observed a stunning anatomical monomorphism of cortical penis and clitoris input maps revealed by cytochrome-oxidase-staining of cortical layer 4. Genital representations were somatotopic and bilaterally symmetric, and their relative size increased markedly during puberty. Size, shape, and erect posture give the cortical penis representation a phallic appearance pointing to a role in sexually aroused states. Cortical genital neurons showed unusual multi-body-part responses and sexually dimorphic receptive fields. Specifically, genital neurons were co-activated by distant body regions, which are touched during mounting in the respective sex. Genital maps indicate a deep homology of penis and clitoris representations in line with a fundamentally bi-sexual layout [16] of the vertebrate brain. PMID:26725197

  5. Atomic Resolution Structure of Monomorphic Aβ42 Amyloid Fibrils.

    PubMed

    Colvin, Michael T; Silvers, Robert; Ni, Qing Zhe; Can, Thach V; Sergeyev, Ivan; Rosay, Melanie; Donovan, Kevin J; Michael, Brian; Wall, Joseph; Linse, Sara; Griffin, Robert G

    2016-08-01

    Amyloid-β (Aβ) is a 39-42 residue protein produced by the cleavage of the amyloid precursor protein (APP), which subsequently aggregates to form cross-β amyloid fibrils that are a hallmark of Alzheimer's disease (AD). The most prominent forms of Aβ are Aβ1-40 and Aβ1-42, which differ by two amino acids (I and A) at the C-terminus. However, Aβ42 is more neurotoxic and essential to the etiology of AD. Here, we present an atomic resolution structure of a monomorphic form of AβM01-42 amyloid fibrils derived from over 500 (13)C-(13)C, (13)C-(15)N distance and backbone angle structural constraints obtained from high field magic angle spinning NMR spectra. The structure (PDB ID: 5KK3 ) shows that the fibril core consists of a dimer of Aβ42 molecules, each containing four β-strands in a S-shaped amyloid fold, and arranged in a manner that generates two hydrophobic cores that are capped at the end of the chain by a salt bridge. The outer surface of the monomers presents hydrophilic side chains to the solvent. The interface between the monomers of the dimer shows clear contacts between M35 of one molecule and L17 and Q15 of the second. Intermolecular (13)C-(15)N constraints demonstrate that the amyloid fibrils are parallel in register. The RMSD of the backbone structure (Q15-A42) is 0.71 ± 0.12 Å and of all heavy atoms is 1.07 ± 0.08 Å. The structure provides a point of departure for the design of drugs that bind to the fibril surface and therefore interfere with secondary nucleation and for other therapeutic approaches to mitigate Aβ42 aggregation. PMID:27355699

  6. DNA Microarray Detection of Antimicrobial Resistance Genes in Bacteria Co-Cultured from Swine Feces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One factor leading to the spread of antimicrobial resistance (AR) in bacteria is the horizontal transfer of resistance genes. To study this, a DNA microarray was recently developed to detect these genes. To maximize the capability of this microarray, probes were designed and added to detect all AR g...

  7. 40 CFR 798.5500 - Differential growth inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... recommendations as specified under 40 CFR part 792, subpart J the following specific information should be... repair proficient and repair deficient bacteria: âBacterial DNA damage or repair tests.â 798.5500 Section... inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA damage or repair tests.”...

  8. 40 CFR 798.5500 - Differential growth inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... recommendations as specified under 40 CFR part 792, subpart J the following specific information should be... repair proficient and repair deficient bacteria: âBacterial DNA damage or repair tests.â 798.5500 Section... inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA damage or repair tests.”...

  9. 40 CFR 798.5500 - Differential growth inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... recommendations as specified under 40 CFR part 792, subpart J the following specific information should be... repair proficient and repair deficient bacteria: âBacterial DNA damage or repair tests.â 798.5500 Section... inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA damage or repair tests.”...

  10. 40 CFR 798.5500 - Differential growth inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... recommendations as specified under 40 CFR part 792, subpart J the following specific information should be... repair proficient and repair deficient bacteria: âBacterial DNA damage or repair tests.â 798.5500 Section... inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA damage or repair tests.”...

  11. 40 CFR 798.5500 - Differential growth inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... recommendations as specified under 40 CFR part 792, subpart J the following specific information should be... repair proficient and repair deficient bacteria: âBacterial DNA damage or repair tests.â 798.5500 Section... inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA damage or repair tests.”...

  12. Detection of Tn5-like sequences in kanamycin-resistant stream bacteria and environmental DNA.

    PubMed Central

    Leff, L G; Dana, J R; McArthur, J V; Shimkets, L J

    1993-01-01

    Resistance to kanamycin and neomycin in the bacterial assemblage of a coastal plain stream was detected by growth of colonies on media containing antibiotics. Three of 184 kanamycin-resistant colonies hybridized with a probe containing the nptII gene from transposon Tn5; the nptII gene encodes the enzyme neomycin phosphotransferase and conveys resistance to kanamycin and neomycin. In one of these isolates, the homologous gene was cloned and shown to confer resistance to a kanamycin-sensitive Escherichia coli strain. Since enumeration of bacteria by acridine orange direct counts revealed that less than 0.2% of the bacteria present were cultivated, direct examination of environmental DNA was used to assess abundance of sequences that hybridize to the nptII gene. To examine the resistance potential of bacteria that were not cultured, total DNA was extracted from environmental samples and hybridized with specific probes. The relative amount of eubacterial DNA in each sample was determined by using a eubacterial specific rDNA probe. Then, the abundance of sequences that hybridize to the eubacterial neomycin phosphotransferase gene was determined by hybridization and expressed relative to the total eubacterial DNA in the assemblage. Relative gene abundance was significantly different among assemblages from different habitats (leaves, midchannel sediments, and bank sediments) but did not differ among stream sites. Images PMID:8382021

  13. Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays.

    PubMed

    Polen, Tino; Wendisch, Volker F

    2004-01-01

    DNA microarray technology has become an important research tool for biotechnology and microbiology. It is now possible to characterize genetic diversity and gene expression in a genomewide manner. DNA microarrays have been applied extensively to study the biology of many bacteria including Escherichia coli, but only recently have they been developed for the Gram-positive Corynebacterium glutamicum. Both bacteria are widely used for biotechnological amino acid production. In this article, in addition to the design and generation of microarrays as well as their use in hybridization experiments and subsequent data analysis, we describe recent applications of DNA microarray technology regarding amino acid production in C. glutamicum and E. coli. We also discuss the impact of functional genomics studies on fundamental as well as applied aspects of amino acid production with C. glutamicum and E. coli. PMID:15304751

  14. Identification of DNA Methyltransferase Genes in Human Pathogenic Bacteria by Comparative Genomics.

    PubMed

    Brambila-Tapia, Aniel Jessica Leticia; Poot-Hernández, Augusto Cesar; Perez-Rueda, Ernesto; Rodríguez-Vázquez, Katya

    2016-06-01

    DNA methylation plays an important role in gene expression and virulence in some pathogenic bacteria. In this report, we describe DNA methyltransferases (MTases) present in human pathogenic bacteria and compared them with related species, which are not pathogenic or less pathogenic, based in comparative genomics. We performed a search in the KEGG database of the KEGG database orthology groups associated with adenine and cytosine DNA MTase activities (EC: 2.1.1.37, EC: 2.1.1.113 and EC: 2.1.1.72) in 37 human pathogenic species and 18 non/less pathogenic relatives and performed comparisons of the number of these MTases sequences according to their genome size, the DNA MTase type and with their non-less pathogenic relatives. We observed that Helicobacter pylori and Neisseria spp. presented the highest number of MTases while ten different species did not present a predicted DNA MTase. We also detected a significant increase of adenine MTases over cytosine MTases (2.19 vs. 1.06, respectively, p < 0.001). Adenine MTases were the only MTases associated with restriction modification systems and DNA MTases associated with type I restriction modification systems were more numerous than those associated with type III restriction modification systems (0.84 vs. 0.17, p < 0.001); additionally, there was no correlation with the genome size and the total number of DNA MTases, indicating that the number of DNA MTases is related to the particular evolution and lifestyle of specific species, regulating the expression of virulence genes in some pathogenic bacteria. PMID:27570304

  15. Nonchromosomal Antibiotic Resistance in Bacteria: Genetic Transformation of Escherichia coli by R-Factor DNA*

    PubMed Central

    Cohen, Stanley N.; Chang, Annie C. Y.; Hsu, Leslie

    1972-01-01

    Transformation of E. coli cells treated with CaCl2 to multiple antibiotic resistance by purified R-factor DNA is reported. Drug resistance is expressed in a small fraction of the recipient bacterial population almost immediately after uptake of DNA, but full genetic expression of resistance requires subsequent incubation in drugfree medium before antibiotic challenge. Transformed bacteria acquire a closed circular, transferable DNA species having the resistance, fertility, and sedimentation characteristics of the parent R factor. Covalently-closed, catenated, and open (nicked) circular forms of R-factor DNA are all effective in transformation, but denaturation and sonication abolish the transforming ability of R-factor DNA in this system. PMID:4559594

  16. Principles and concepts of DNA replication in bacteria, archaea, and eukarya.

    PubMed

    O'Donnell, Michael; Langston, Lance; Stillman, Bruce

    2013-07-01

    The accurate copying of genetic information in the double helix of DNA is essential for inheritance of traits that define the phenotype of cells and the organism. The core machineries that copy DNA are conserved in all three domains of life: bacteria, archaea, and eukaryotes. This article outlines the general nature of the DNA replication machinery, but also points out important and key differences. The most complex organisms, eukaryotes, have to coordinate the initiation of DNA replication from many origins in each genome and impose regulation that maintains genomic integrity, not only for the sake of each cell, but for the organism as a whole. In addition, DNA replication in eukaryotes needs to be coordinated with inheritance of chromatin, developmental patterning of tissues, and cell division to ensure that the genome replicates once per cell division cycle. PMID:23818497

  17. Principles and Concepts of DNA Replication in Bacteria, Archaea, and Eukarya

    PubMed Central

    O’Donnell, Michael; Langston, Lance; Stillman, Bruce

    2013-01-01

    The accurate copying of genetic information in the double helix of DNA is essential for inheritance of traits that define the phenotype of cells and the organism. The core machineries that copy DNA are conserved in all three domains of life: bacteria, archaea, and eukaryotes. This article outlines the general nature of the DNA replication machinery, but also points out important and key differences. The most complex organisms, eukaryotes, have to coordinate the initiation of DNA replication from many origins in each genome and impose regulation that maintains genomic integrity, not only for the sake of each cell, but for the organism as a whole. In addition, DNA replication in eukaryotes needs to be coordinated with inheritance of chromatin, developmental patterning of tissues, and cell division to ensure that the genome replicates once per cell division cycle. PMID:23818497

  18. Horizontal DNA transfer from bacteria to eukaryotes and a lesson from experimental transfers.

    PubMed

    Suzuki, Katsunori; Moriguchi, Kazuki; Yamamoto, Shinji

    2015-12-01

    Horizontal gene transfer (HGT) is widespread among bacteria and plays a key role in genome dynamics. HGT is much less common in eukaryotes, but is being reported with increasing frequency in eukaryotes. The mechanism as to how eukaryotes acquired genes from distantly related organisms remains obscure yet. This paper cites examples of bacteria-derived genes found in eukaryotic organisms, and then describes experimental DNA transports to eukaryotes by bacterial type 4 secretion systems in optimized conditions. The mechanisms of the latter are efficient, quite reproducible in vitro and predictable, and thereby would provide insight into natural HGT and to the development of new research tools. PMID:26291765

  19. Diversity of bacteria in ships ballast water as revealed by next generation DNA sequencing.

    PubMed

    Brinkmeyer, Robin

    2016-06-15

    The bacterial diversity in ballast water from five general cargo ships calling at the Port of Houston was determined with ion semiconductor DNA sequencing (Ion Torrent PGM) of PCR amplified 16S rRNA genes. Phylogenetic analysis revealed that the composition of bacteria in ballast water did not resemble that of typical marine habitats or even open ocean waters where BWEs occur. The predominant group of bacteria in ships conducting BWEs was the Roseobacter clade within the Alphaproteobacteria. In contrast, Gammaproteobacteria were predominant in the ship that did not conduct a BWE. All the ships contained human, fish, and terrestrial plant pathogens as well as bacteria indicative of fecal or activated sludge contamination. Most of the 60 pathogens had not been detected in ballast water previously. Among these were the human pathogens Corynebacterium diptheriae and several Legionella species and the fish pathogens Francisella piscicida and Piscirickettsia salmonis. PMID:27076378

  20. Identification of active oxalotrophic bacteria by Bromodeoxyuridine DNA labeling in a microcosm soil experiments.

    PubMed

    Bravo, Daniel; Martin, Gaëtan; David, Maude M; Cailleau, Guillaume; Verrecchia, Eric; Junier, Pilar

    2013-11-01

    The oxalate-carbonate pathway (OCP) leads to a potential carbon sink in terrestrial environments. This process is linked to the activity of oxalotrophic bacteria. Although isolation and molecular characterizations are used to study oxalotrophic bacteria, these approaches do not give information on the active oxalotrophs present in soil undergoing the OCP. The aim of this study was to assess the diversity of active oxalotrophic bacteria in soil microcosms using the Bromodeoxyuridine (BrdU) DNA labeling technique. Soil was collected near an oxalogenic tree (Milicia excelsa). Different concentrations of calcium oxalate (0.5%, 1%, and 4% w/w) were added to the soil microcosms and compared with an untreated control. After 12 days of incubation, a maximal pH of 7.7 was measured for microcosms with oxalate (initial pH 6.4). At this time point, a DGGE profile of the frc gene was performed from BrdU-labeled soil DNA and unlabeled soil DNA. Actinobacteria (Streptomyces- and Kribbella-like sequences), Gammaproteobacteria and Betaproteobacteria were found as the main active oxalotrophic bacterial groups. This study highlights the relevance of Actinobacteria as members of the active bacterial community and the identification of novel uncultured oxalotrophic groups (i.e. Kribbella) active in soils. PMID:24033776

  1. Label free molecular sexing of monomorphic birds using infrared spectroscopic imaging.

    PubMed

    Steiner, Gerald; Preusse, Grit; Zimmerer, Cordelia; Krautwald-Junghanns, Maria-Elisabeth; Sablinskas, Valdas; Fuhrmann, Herbert; Koch, Edmund; Bartels, Thomas

    2016-04-01

    The absence of sexual dimorphism in many birds often makes sex determination difficult. In particular immature birds and adults of monomorphic species show no external sex characteristics. Molecular techniques based on DNA hybridization or polymerase chain reaction (PCR) are standard methods for sex identification. However, these methods are expensive and time consuming procedures and require special sample preparation. Noninvasive methods for a rapid determination of bird's gender are of increasing importance for ornithologists, breeders as well as for successful captive-breeding programs. Fourier transform infrared (FT-IR) spectroscopy is one such technique that can provide gender specific information. In this study, using the example of domestic pigeons (Columba livia f. dom.) we demonstrate that only a small amount of the feather pulp is needed to determine the gender. FT-IR spectroscopic images of feather pulp suspensions were recorded in transmission mode. Principal component analysis (PCA) and linear discriminant analysis (LDA) were performed to identify the sex. The gender related information are described by 2nd and 4th principal component principle component (PC). The 2nd PC represents different amounts of proteins while the 4th PC shows variations within the amide I and amide II bands as well as in the region of phosphate vibrations of nucleic acids. Blood cells of male pigeons exhibit a significantly higher amount of proteins and nucleic acids than those of female pigeons. Feather pulp samples of male species were assigned with 100% accuracy. Seven from eight female samples were assigned correctly while one sample could not be classified. This study demonstrates that the sex of domestic pigeons can be accurately and and rapidly identified by infrared spectroscopic imaging. PMID:26838394

  2. Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing

    NASA Technical Reports Server (NTRS)

    Shi, T.; Reeves, R. H.; Gilichinsky, D. A.; Friedmann, E. I.

    1997-01-01

    Viable bacteria were found in permafrost core samples from the Kolyma-Indigirka lowland of northeast Siberia. The samples were obtained at different depths; the deepest was about 3 million years old. The average temperature of the permafrost is -10 degrees C. Twenty-nine bacterial isolates were characterized by 16S rDNA sequencing and phylogenetic analysis, cell morphology, Gram staining, endospore formation, and growth at 30 degrees C. The majority of the bacterial isolates were rod shaped and grew well at 30 degrees C; but two of them did not grow at or above 28 degrees C, and had optimum growth temperatures around 20 degrees C. Thirty percent of the isolates could form endospores. Phylogenetic analysis revealed that the isolates fell into four categories: high-GC Gram-positive bacteria, beta-proteobacteria, gamma-proteobacteria, and low-GC Gram-positive bacteria. Most high-GC Gram-positive bacteria and beta-proteobacteria, and all gamma-proteobacteria, came from samples with an estimated age of 1.8-3.0 million years (Olyor suite). Most low-GC Gram-positive bacteria came from samples with an estimated age of 5,000-8,000 years (Alas suite).

  3. Algae-bacteria association inferred by 16S rDNA similarity in established microalgae cultures.

    PubMed

    Schwenk, Dagmar; Nohynek, Liisa; Rischer, Heiko

    2014-06-01

    Forty cultivable, visually distinct bacterial cultures were isolated from four Baltic microalgal cultures Chlorella pyrenoidosa, Scenedesmus obliquus, Isochrysis sp., and Nitzschia microcephala, which have been maintained for several years in the laboratory. Bacterial isolates were characterized with respect to morphology, antibiotic susceptibility, and 16S ribosomal DNA sequence. A total of 17 unique bacterial strains, almost all belonging to one of three families, Rhodobacteraceae, Rhizobiaceae, and Erythrobacteraceae, were subsequently isolated. The majority of isolated bacteria belong to Rhodobacteraceae. Literature review revealed that close relatives of the bacteria isolated in this study are not only often found in marine environments associated with algae, but also in lakes, sediments, and soil. Some of them had been shown to interact with organisms in their surroundings. A Basic Local Alignment Search Tool study indicated that especially bacteria isolated from the Isochrysis sp. culture were highly similar to microalgae-associated bacteria. Two of those isolates, I1 and I6, belong to the Cytophaga-Flavobacterium-Bacteroides phylum, members of which are known to occur in close communities with microalgae. An UniFrac analysis revealed that the bacterial community of Isochrysis sp. significantly differs from the other three communities. PMID:24799387

  4. Algae–bacteria association inferred by 16S rDNA similarity in established microalgae cultures

    PubMed Central

    Schwenk, Dagmar; Nohynek, Liisa; Rischer, Heiko

    2014-01-01

    Forty cultivable, visually distinct bacterial cultures were isolated from four Baltic microalgal cultures Chlorella pyrenoidosa, Scenedesmus obliquus, Isochrysis sp., and Nitzschia microcephala, which have been maintained for several years in the laboratory. Bacterial isolates were characterized with respect to morphology, antibiotic susceptibility, and 16S ribosomal DNA sequence. A total of 17 unique bacterial strains, almost all belonging to one of three families, Rhodobacteraceae, Rhizobiaceae, and Erythrobacteraceae, were subsequently isolated. The majority of isolated bacteria belong to Rhodobacteraceae. Literature review revealed that close relatives of the bacteria isolated in this study are not only often found in marine environments associated with algae, but also in lakes, sediments, and soil. Some of them had been shown to interact with organisms in their surroundings. A Basic Local Alignment Search Tool study indicated that especially bacteria isolated from the Isochrysis sp. culture were highly similar to microalgae-associated bacteria. Two of those isolates, I1 and I6, belong to the Cytophaga–Flavobacterium–Bacteroides phylum, members of which are known to occur in close communities with microalgae. An UniFrac analysis revealed that the bacterial community of Isochrysis sp. significantly differs from the other three communities. PMID:24799387

  5. DNA synthesis and tritiated thymidine incorporation by heterotrophic freshwater bacteria in continuous culture

    SciTech Connect

    Ellenbroek, F.M.; Cappenberg, T.E. )

    1991-06-01

    Continuous cultivation of heterotrophic freshwater bacteria was used to assess the relationship between DNA synthesis and tritiated thymidine incorporation. In six different continuous cultures, each inoculated with a grazer-free mixed bacterial sample from Lake Vechten (The Netherlands), tritiated thymidine incorporation into a cold trichloroacetic acid precipitate and bacterial cell production were measured simultaneously. Empirical conversion factors were determined by division of both parameters. They ranged from 0.25 {times} 10{sup 18} to 1.31 {times} 10{sup 18} cells mol of tritiated thymidine{sup {minus}1}. In addition, DNA concentrations were measured by fluorometry with Heochst 33258. The validity of this technique was confirmed. Down to a generation time of 0.67 day, bacterial DNA content showed little variation, with values of 3.8 to 4.9 fg of DNA cell{sup {minus}1}. Theoretical conversion factors, which can be derived from DNA content under several assumptions, were between 0.26 {times} 10{sup 18} and 0.34 {times} 10{sup 18} cells mol of thymidine{sup {minus}1}. Isotope dilution was considered the main factor in the observed discrepancy between the conversion factors. In all experiments, a tritiated thymidine concentration of 20 nM was used. It was concluded that the observed difference resulted from intracellular isotope dilution which cannot be detected by current techniques for isotope dilution analysis.

  6. DISSOLVED FREE AMINO ACIDS, COMBINED AMINO ACIDS, AND DNA AS SOURCES OF CARBON AND NITROGEN TO MARINE BACTERIA

    EPA Science Inventory

    Utilization of naturally-occurring dissolved free and combined mino cids (DFAA and DCAA) and dissolved DNA FD-DNA) was studied in batch cultures of bacteria from 2 shallow marine environments. anta Rosa Sound (SRS), Florida, USA, and Flax Pond (FP), Long Island, New York, USA. n ...

  7. Automated DNA-preparation system for bacteria out of air sampler liquids

    NASA Astrophysics Data System (ADS)

    Gransee, Rainer; Röser, Tina; Drese, Klaus Stefan; Düchs, Dominik; Disqué, Claudia; Zoll, Gudrun; Köhne, Stefan; Ritzi-Lehnert, Marion

    2012-06-01

    Preventing bacterial contaminations is a significant challenge in applications across a variety of industries, e.g. in food processing, the life sciences or biohazard detection. Here we present a fully automated lab-on-a-chip system wherein a disposable microfluidic chip moulded by polymeric injection is inserted into an operating device. Liquid samples, here obtained from an air sampler, can be processed to extract and lyse bacteria, and subsequently to purify their DNA using a silica matrix. After the washing and elution steps, the DNA solution is dispensed into a reaction vessel for further analysis in a conventional laboratory polymerase chain reaction (PCR) device. We demonstrate the workability and efficiency of our approach with results from a 9 ml liquid sample spiked with E. coli.

  8. Deoxynybomycins inhibit mutant DNA gyrase and rescue mice infected with fluoroquinolone-resistant bacteria

    PubMed Central

    Parkinson, Elizabeth I.; Bair, Joseph S.; Nakamura, Bradley A.; Lee, Hyang Y.; Kuttab, Hani I.; Southgate, Emma H.; Lezmi, Stéphane; Lau, Gee W.; Hergenrother, Paul J.

    2015-01-01

    Fluoroquinolones are one of the most commonly prescribed classes of antibiotics, but fluoroquinolone resistance (FQR) is widespread and increasing. Deoxynybomycin (DNM) is a natural-product antibiotic with an unusual mechanism of action, inhibiting the mutant DNA gyrase that confers FQR. Unfortunately, isolation of DNM is difficult and DNM is insoluble in aqueous solutions, making it a poor candidate for development. Here we describe a facile chemical route to produce DNM and its derivatives. These compounds possess excellent activity against FQR methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci clinical isolates and inhibit mutant DNA gyrase in-vitro. Bacteria that develop resistance to DNM are re-sensitized to fluoroquinolones, suggesting that resistance that emerges to DNM would be treatable. Using a DNM derivative, the first in-vivo efficacy of the nybomycin class is demonstrated in a mouse infection model. Overall, the data presented suggest the promise of DNM derivatives for the treatment of FQR infections. PMID:25907309

  9. Classification of Plant Associated Bacteria Using RIF, a Computationally Derived DNA Marker

    PubMed Central

    Schneider, Kevin L.; Marrero, Glorimar; Alvarez, Anne M.; Presting, Gernot G.

    2011-01-01

    A DNA marker that distinguishes plant associated bacteria at the species level and below was derived by comparing six sequenced genomes of Xanthomonas, a genus that contains many important phytopathogens. This DNA marker comprises a portion of the dnaA replication initiation factor (RIF). Unlike the rRNA genes, dnaA is a single copy gene in the vast majority of sequenced bacterial genomes, and amplification of RIF requires genus-specific primers. In silico analysis revealed that RIF has equal or greater ability to differentiate closely related species of Xanthomonas than the widely used ribosomal intergenic spacer region (ITS). Furthermore, in a set of 263 Xanthomonas, Ralstonia and Clavibacter strains, the RIF marker was directly sequenced in both directions with a success rate approximately 16% higher than that for ITS. RIF frameworks for Xanthomonas, Ralstonia and Clavibacter were constructed using 682 reference strains representing different species, subspecies, pathovars, races, hosts and geographic regions, and contain a total of 109 different RIF sequences. RIF sequences showed subspecific groupings but did not place strains of X. campestris or X. axonopodis into currently named pathovars nor R. solanacearum strains into their respective races, confirming previous conclusions that pathovar and race designations do not necessarily reflect genetic relationships. The RIF marker also was sequenced for 24 reference strains from three genera in the Enterobacteriaceae: Pectobacterium, Pantoea and Dickeya. RIF sequences of 70 previously uncharacterized strains of Ralstonia, Clavibacter, Pectobacterium and Dickeya matched, or were similar to, those of known reference strains, illustrating the utility of the frameworks to classify bacteria below the species level and rapidly match unknown isolates to reference strains. The RIF sequence frameworks are available at the online RIF database, RIFdb, and can be queried for diagnostic purposes with RIF sequences obtained

  10. A novel means to develop strain-specific DNA probes for detecting bacteria in the environment.

    PubMed Central

    Matheson, V G; Munakata-Marr, J; Hopkins, G D; McCarty, P L; Tiedje, J M; Forney, L J

    1997-01-01

    A simple means to develop strain-specific DNA probes for use in monitoring the movement and survival of bacteria in natural and laboratory ecosystems was developed. The method employed amplification of genomic DNA via repetitive sequence-based PCR (rep-PCR) using primers specific for repetitive extragenic palindromic (REP) elements, followed by cloning of the amplified fragments. The cloned fragments were screened to identify those which were strain specific, and these were used as probes for total genomic DNA isolated from microbial communities and subjected to rep-PCR. To evaluate the utility of the approach, we developed probes specific for Burkholderia cepacia G4 and used them to determine the persistence of the strain in aquifer sediment microcosms following bioaugmentation. Two of four probes tested were found to specifically hybridize to DNA fragments of the expected sizes in the rep-PCR fingerprint of B. cepacia G4 but not to 64 genetically distinct bacteria previously isolated from the aquifer. One of these probes, a 650-bp fragment, produced a hybridization signal when as few as 10 CFU of B. cepacia G4 were present in a mixture with 10(6) CFU nontarget strains, indicating that the sensitivity of these probes was comparable to those of other PCR-based detection methods. The probes were used to discriminate groundwater and microcosm samples that contained B. cepacia G4 from those which did not. False-positive results were obtained with a few samples, but these were readily identified by using hybridization to the second probe as a confirmation step. The general applicability of the method was demonstrated by constructing probes specific to three other environmental isolates. PMID:9212434

  11. Comparison of DNA extraction kits and modification of DNA elution procedure for the quantitation of subdominant bacteria from piggery effluents with real-time PCR

    PubMed Central

    Desneux, Jérémy; Pourcher, Anne-Marie

    2014-01-01

    Four commercial DNA extraction kits and a minor modification in the DNA elution procedure were evaluated for the quantitation of bacteria in pig manure samples. The PowerSoil®, PowerFecal®, NucleoSpin® Soil kits and QIAamp® DNA Stool Mini kit were tested on raw manure samples and on lagoon effluents for their ability to quantify total bacteria and a subdominant bacteria specific of pig manure contamination: Lactobacillus amylovorus. The NucleoSpin® Soil kit (NS kit), and to a lesser extent the PowerFecal® kit were the most efficient methods. Regardless of the kit utilized, the modified elution procedure increased DNA yield in the lagoon effluent by a factor of 1.4 to 1.8. When tested on 10 piggery effluent samples, compared to the QIAamp kit, the NS kit combined with the modified elution step, increased by a factor up to 1.7 log10 the values of the concentration of L. amylovorus. Regardless of the type of manure, the best DNA quality and the highest concentrations of bacteria were obtained using the NS kit combined with the modification of the elution procedure. The method recommended here significantly improved quantitation of subdominant bacteria in manure. PMID:24838631

  12. Comparison of DNA extraction kits and modification of DNA elution procedure for the quantitation of subdominant bacteria from piggery effluents with real-time PCR.

    PubMed

    Desneux, Jérémy; Pourcher, Anne-Marie

    2014-08-01

    Four commercial DNA extraction kits and a minor modification in the DNA elution procedure were evaluated for the quantitation of bacteria in pig manure samples. The PowerSoil(®), PowerFecal(®), NucleoSpin(®) Soil kits and QIAamp(®) DNA Stool Mini kit were tested on raw manure samples and on lagoon effluents for their ability to quantify total bacteria and a subdominant bacteria specific of pig manure contamination: Lactobacillus amylovorus. The NucleoSpin(®) Soil kit (NS kit), and to a lesser extent the PowerFecal(®) kit were the most efficient methods. Regardless of the kit utilized, the modified elution procedure increased DNA yield in the lagoon effluent by a factor of 1.4 to 1.8. When tested on 10 piggery effluent samples, compared to the QIAamp kit, the NS kit combined with the modified elution step, increased by a factor up to 1.7 log10 the values of the concentration of L. amylovorus. Regardless of the type of manure, the best DNA quality and the highest concentrations of bacteria were obtained using the NS kit combined with the modification of the elution procedure. The method recommended here significantly improved quantitation of subdominant bacteria in manure. PMID:24838631

  13. Relationships between 16S-23S rRNA gene internal transcribed spacer DNA and genomic DNA similarities in the taxonomy of phototrophic bacteria

    NASA Astrophysics Data System (ADS)

    Okamura, K.; Hisada, T.; Takata, K.; Hiraishi, A.

    2013-04-01

    Rapid and accurate identification of microbial species is essential task in microbiology and biotechnology. In prokaryotic systematics, genomic DNA-DNA hybridization is the ultimate tool to determine genetic relationships among bacterial strains at the species level. However, a practical problem in this assay is that the experimental procedure is laborious and time-consuming. In recent years, information on the 16S-23S rRNA gene internal transcribed spacer (ITS) region has been used to classify bacterial strains at the species and intraspecies levels. It is unclear how much information on the ITS region can reflect the genome that contain it. In this study, therefore, we evaluate the quantitative relationship between ITS DNA and entire genomic DNA similarities. For this, we determined ITS sequences of several species of anoxygenic phototrophic bacteria belonging to the order Rhizobiales, and compared with DNA-DNA relatedness among these species. There was a high correlation between the two genetic markers. Based on the regression analysis of this relationship, 70% DNA-DNA relatedness corresponded to 92% ITS sequence similarity. This suggests the usefulness of the ITS sequence similarity as a criterion for determining the genospecies of the phototrophic bacteria. To avoid the effects of polymorphism bias of ITS on similarities, PCR products from all loci of ITS were used directly as genetic probes for comparison. The results of ITS DNA-DNA hybridization coincided well with those of genomic DNA-DNA relatedness. These collective data indicate that the whole ITS DNA-DNA similarity can be used as an alternative to genomic DNA-DNA similarity.

  14. Horizontal Gene Transfer Regulation in Bacteria as a “Spandrel” of DNA Repair Mechanisms

    PubMed Central

    Fall, Saliou; Mercier, Anne; Bertolla, Franck; Calteau, Alexandra; Gueguen, Laurent; Perrière, Guy; Vogel, Timothy M.; Simonet, Pascal

    2007-01-01

    the bacteria to hijack DNA repair mechanisms in order to generate genetic diversity without losing too much genomic stability. PMID:17957239

  15. Different patterns of evolution for duplicated DNA repair genes in bacteria of the Xanthomonadales group

    PubMed Central

    Martins-Pinheiro, Marinalva; Galhardo, Rodrigo S; Lage, Claudia; Lima-Bessa, Keronninn M; Aires, Karina A; Menck, Carlos FM

    2004-01-01

    Background DNA repair genes encode proteins that protect organisms against genetic damage generated by environmental agents and by-products of cell metabolism. The importance of these genes in life maintenance is supported by their high conservation, and the presence of duplications of such genes may be easily traced, especially in prokaryotic genomes. Results The genome sequences of two Xanthomonas species were used as the basis for phylogenetic analyses of genes related to DNA repair that were found duplicated. Although 16S rRNA phylogenetic analyses confirm their classification at the basis of the gamma proteobacteria subdivision, differences were found in the origin of the various genes investigated. Except for lexA, detected as a recent duplication, most of the genes in more than one copy are represented by two highly divergent orthologs. Basically, one of such duplications is frequently positioned close to other gamma proteobacteria, but the second is often positioned close to unrelated bacteria. These orthologs may have occurred from old duplication events, followed by extensive gene loss, or were originated from lateral gene transfer (LGT), as is the case of the uvrD homolog. Conclusions Duplications of DNA repair related genes may result in redundancy and also improve the organisms' responses to environmental challenges. Most of such duplications, in Xanthomonas, seem to have arisen from old events and possibly enlarge both functional and evolutionary genome potentiality. PMID:15333143

  16. The influence of growth patterns on sexual size monomorphism in lemurs.

    PubMed

    Tennenhouse, E M

    2015-09-01

    The lack of sexual size dimorphism among lemurs is puzzling given the high degree of polygyny in this clade. It has been proposed that the unique ecological conditions of Madagascar favour rapid completion of growth, limiting the opportunities for bimaturism and sexual size dimorphism in lemurs. Using recently compiled large data sets on many species across the lemur clade, I examined the prevalence of sexual size monomorphism of body mass among lemurs and tested the hypothesis that limited growth durations constrain sexual size dimorphism. I used segmented regression analyses to accurately model growth in each species. The majority of species analysed exhibited a period of rapid growth followed by a distinct period of slow growth prior to attainment of adult body mass. Whereas the first period of growth was constrained by the need to attain the majority of adult body mass prior to the onset of the infant's first dry season, the subsequent period of slow growth was unconstrained and sufficiently long to promote sexual bimaturism. Sex differences in the duration and rate of growth during this second growth phase appeared to account for the sexual size dimorphism exhibited by three lemur species. Therefore, constraints on growth processes do not limit sexual size dimorphism in lemurs, and other explanations for the prevalence of sexual size monomorphism in this clade should be examined. The importance of considering ontogeny in future investigations of sexual size monomorphism in lemurs is highlighted. PMID:26134876

  17. Cultivation-Independent Detection of Autotrophic Hydrogen-Oxidizing Bacteria by DNA Stable-Isotope Probing ▿

    PubMed Central

    Pumphrey, Graham M.; Ranchou-Peyruse, Anthony; Spain, Jim C.

    2011-01-01

    Knallgas bacteria are a physiologically defined group that is primarily studied using cultivation-dependent techniques. Given that current cultivation techniques fail to grow most bacteria, cultivation-independent techniques that selectively detect and identify knallgas bacteria will improve our ability to study their diversity and distribution. We used stable-isotope probing (SIP) to identify knallgas bacteria in rhizosphere soil of legumes and in a microbial mat from Obsidian Pool in Yellowstone National Park. When samples were incubated in the dark, incorporation of 13CO2 was H2 dependent. SIP enabled the detection of knallgas bacteria that were not detected by cultivation, and the majority of bacteria identified in the rhizosphere soils were betaproteobacteria predominantly related to genera previously known to oxidize hydrogen. Bacteria in soil grew on hydrogen at concentrations as low as 100 ppm. A hydB homolog encoding a putative high-affinity NiFe hydrogenase was amplified from 13C-labeled DNA from both vetch and clover rhizosphere soil. The results indicate that knallgas bacteria can be detected by SIP and populations that respond to different H2 concentrations can be distinguished. The methods described here should be applicable to a variety of ecosystems and will enable the discovery of additional knallgas bacteria that are resistant to cultivation. PMID:21622787

  18. Advantages and limitations of ribosomal RNA PCR and DNA sequencing for identification of bacteria in cardiac valves of danish patients.

    PubMed

    Kemp, Michael; Bangsborg, Jette; Kjerulf, Anne; Schmidt, Thomas Andersen; Christensen, John; Irmukhamedov, Akhmadjon 6; Bruun, Niels Eske; Dargis, Rimtas; Andresen, Keld; Christensen, Jens Jørgen

    2013-01-01

    Studies on the value of culture-independent molecular identification of bacteria in cardiac valves are mostly restricted to comparing agreement of identification to what is obtained by culture to the number of identified bacteria in culture-negative cases. However, evaluation of the usefulness of direct molecular identification should also address weaknesses, their relevance in the given setting, and possible improvements. In this study cardiac valves from 56 Danish patients referred for surgery for infective endocarditis were analysed by microscopy and culture as well as by PCR targeting part of the bacterial 16S rRNA gene followed by DNA sequencing of the PCR product. PCR and DNA sequencing identified significant bacteria in 49 samples from 43 patients, including five out of 13 culture-negative cases. No rare, exotic, or intracellular bacteria were identified. There was a general agreement between bacterial identity obtained by ribosomal PCR and DNA sequencing from the valves and bacterial isolates from blood culture. However, DNA sequencing of the 16S rRNA gene did not discriminate well among non-haemolytic streptococci, especially within the Streptococcus mitis group. Ribosomal PCR with subsequent DNA sequencing is an efficient and reliable method of identifying the cause of IE, but exact species identification of some of the most common causes, i.e. non-haemolytic streptococci, may be improved with other molecular methods. PMID:24403979

  19. [Localization of denitrification genes in plasmid DNA of bacteria Azospirillum brasilense].

    PubMed

    Petrova, L P; Varshalomidze, O É; Shelud'ko, A V; Katsy, E I

    2010-07-01

    In 85-Mda plasmid (p85) of plant-associated bacteria Azospirillum brasilense Sp245 model strain, the genes encoding copper-containing nitrite reductase (nirK); heterodimeric NO-reductase (norCB); NorQ and NorD proteins affecting synthesis and (or) activation of NirK and (or) NO-reductase (norQD); catalytic subunit I ofcytochrom c oxidase (CccoN); presumable NO sensor carrying two hemeerythrine domains (orf181); and an enzyme required for synthesis of presumable NO antagonist, homocystein (metC) were identified. In the same region of p85, orf293 encoding transcriptional regulator of LysR type, orf208 whose protein product carries a formylmethanofuran dehydrogenase subunit E domain, and an orf164-encoding conservative secretory protein with unknown function were also found. Localization of a set of denitrification genes in the plasmid DNA A. brasilense Sp245 adjacent to IS elements ISAzba1 and ISAzba2 indicates potential mobility of these genes and high probability of their horizontal transfer among populations of rhizospheric bacteria. A site homologous to p85 nirK-orf208-orf181 genes was detected in the 115 kb plasmid of A. brasilense Sp7 type strain. PMID:20795494

  20. [Correlation of the DNA nucleotide makeup with the physiological and cytological characteristics of spore-forming anaerobic bacteria].

    PubMed

    Duda, V I; Dobritsa, S V

    1975-01-01

    The nucleotide composition of DNA from 12 studied species of anaerobic bacteria belongs to AT type, with G+C varying from 28.4 to 36.8 mole%. In the anaerobic group of Clostridium bifermentans, a correlation has been established between the nucleotide composition of DNA, the type of appendages on spores, and some physiologo-biochemical characteristics. The nucleotide composition of DNA in the spores of four anaerobic species is shifted toward GC type as compared to DNA in the vegetative cells. Data on the content of GC pairs in DNA of the spores may sometimes be of a higher taxonomic value than the corresponding evidence on DNA of the vegetative cells. PMID:1207507

  1. Role of Protein Phosphorylation in the Regulation of Cell Cycle and DNA-Related Processes in Bacteria

    PubMed Central

    Garcia-Garcia, Transito; Poncet, Sandrine; Derouiche, Abderahmane; Shi, Lei; Mijakovic, Ivan; Noirot-Gros, Marie-Françoise

    2016-01-01

    In all living organisms, the phosphorylation of proteins modulates various aspects of their functionalities. In eukaryotes, protein phosphorylation plays a key role in cell signaling, gene expression, and differentiation. Protein phosphorylation is also involved in the global control of DNA replication during the cell cycle, as well as in the mechanisms that cope with stress-induced replication blocks. Similar to eukaryotes, bacteria use Hanks-type kinases and phosphatases for signal transduction, and protein phosphorylation is involved in numerous cellular processes. However, it remains unclear whether protein phosphorylation in bacteria can also regulate the activity of proteins involved in DNA-mediated processes such as DNA replication or repair. Accumulating evidence supported by functional and biochemical studies suggests that phospho-regulatory mechanisms also take place during the bacterial cell cycle. Recent phosphoproteomics and interactomics studies identified numerous phosphoproteins involved in various aspect of DNA metabolism strongly supporting the existence of such level of regulation in bacteria. Similar to eukaryotes, bacterial scaffolding-like proteins emerged as platforms for kinase activation and signaling. This review reports the current knowledge on the phosphorylation of proteins involved in the maintenance of genome integrity and the regulation of cell cycle in bacteria that reveals surprising similarities to eukaryotes. PMID:26909079

  2. Multiple Origins of Eukaryotic cox15 Suggest Horizontal Gene Transfer from Bacteria to Jakobid Mitochondrial DNA.

    PubMed

    He, Ding; Fu, Cheng-Jie; Baldauf, Sandra L

    2016-01-01

    The most gene-rich and bacterial-like mitochondrial genomes known are those of Jakobida (Excavata). Of these, the most extreme example to date is the Andalucia godoyi mitochondrial DNA (mtDNA), including a cox15 gene encoding the respiratory enzyme heme A synthase (HAS), which is nuclear-encoded in nearly all other mitochondriate eukaryotes. Thus cox15 in eukaryotes appears to be a classic example of mitochondrion-to-nucleus (endosymbiotic) gene transfer, with A. godoyi uniquely retaining the ancestral state. However, our analyses reveal two highly distinct HAS types (encoded by cox15-1 and cox15-2 genes) and identify A. godoyi mitochondrial cox15-encoded HAS as type-1 and all other eukaryotic cox15-encoded HAS as type-2. Molecular phylogeny places the two HAS types in widely separated clades with eukaryotic type-2 HAS clustering with the bulk of α-proteobacteria (>670 sequences), whereas A. godoyi type-1 HAS clusters with an eclectic set of bacteria and archaea including two α-proteobacteria missing from the type-2 clade. This wide phylogenetic separation of the two HAS types is reinforced by unique features of their predicted protein structures. Meanwhile, RNA-sequencing and genomic analyses fail to detect either cox15 type in the nuclear genome of any jakobid including A. godoyi. This suggests that not only is cox15-1 a relatively recent acquisition unique to the Andalucia lineage but also the jakobid last common ancestor probably lacked both cox15 types. These results indicate that uptake of foreign genes by mtDNA is more taxonomically widespread than previously thought. They also caution against the assumption that all α-proteobacterial-like features of eukaryotes are ancient remnants of endosymbiosis. PMID:26412445

  3. Ancient bacteria in permafrost soils fact or artefact? Considerations in recovering microbial DNA from geological ancient settings

    NASA Astrophysics Data System (ADS)

    Willerslev, E.

    2003-04-01

    Several recent reports claim that prokaryotic genetic sequences or viable cultures can survive for millions of years in geological settings. If substantiated, these findings could fundamentally alter views about bacterial physiology, ecology and evolution. However, both the culturing of microbes and the amplification of ancient DNA molecules from fossil remains are beset with difficulties. First, theoretical and empirical studies have shown that small DNA fragments (100 200 bp) do not survive in the geosphere for more than 104 years in temperate environments and 105 years in colder ones due to hydrolytic and oxidative damage. Therefore, the revivals of dormant bacteria with no active DNA repair from remains hundreds of thousands to millions of years old is, from a theoretical point, expected to be difficult, if not impossible. Second, the no specificity of the media used to culture micro organisms, as well as the great sensitivity of PCR, makes the risk of contamination with contemporary ubiquitous microbial cells and exogenous DNA molecules extremely high. Contamination poses risks at all stages of sample processing (e.g.) within the samples themselves, in the chemical reagents, on laboratory disposables or through the air. The high risk of contamination strongly suggests the need for standardized procedures within the field such as independent replication of results. This criterion of authenticity has not yet been full field in any of the studies claiming million year old microbial cultures or DNA. In order to tests the long-term survival of ancient bacteria DNA a study on permafrost was conducted using ancient DNA precautions, controls and criteria. Permafrost must be considered among the most promising environments for long term DNA survival due to its constant low temperatures (-10C to 12C Siberian or 20C Antarctica) and high cell numbers (107). We found that bacteria DNA could reproducibly be obtained from samples dated up to 300-400,000 years B.P. but not

  4. Seasonal Variation in Parental Care Drives Sex-Specific Foraging by a Monomorphic Seabird

    PubMed Central

    Burke, Chantelle M.; Montevecchi, William A.; Regular, Paul M.

    2015-01-01

    Evidence of sex-specific foraging in monomorphic seabirds is increasing though the underlying mechanisms remain poorly understood. We investigate differential parental care as a mechanism for sex-specific foraging in monomorphic Common Murres (Uria aalge), where the male parent alone provisions the chick after colony departure. Using a combination of geolocation-immersion loggers and stable isotopes, we assess two hypotheses: the reproductive role specialization hypothesis and the energetic constraint hypothesis. We compare the foraging behavior of females (n = 15) and males (n = 9) during bi-parental at the colony, post-fledging male-only parental care and winter when parental care is absent. As predicted by the reproductive role specialization hypothesis, we found evidence of sex-specific foraging during post-fledging only, the stage with the greatest divergence in parental care roles. Single-parenting males spent almost twice as much time diving per day and foraged at lower quality prey patches relative to independent females. This implies a potential energetic constraint for males during the estimated 62.8 ± 8.9 days of offspring dependence at sea. Contrary to the predictions of the energetic constraint hypothesis, we found no evidence of sex-specific foraging during biparental care, suggesting that male parents did not forage for their own benefit before colony departure in anticipation of post-fledging energy constraints. We hypothesize that unpredictable prey conditions at Newfoundland colonies in recent years may limit male parental ability to allocate additional time and energy to self-feeding during biparental care, without compromising chick survival. Our findings support differential parental care as a mechanism for sex-specific foraging in monomorphic murres, and highlight the need to consider ecological context in the interpretation of sex-specific foraging behavior. PMID:26575646

  5. Reverse Sample Genome Probing, a New Technique for Identification of Bacteria in Environmental Samples by DNA Hybridization, and Its Application to the Identification of Sulfate-Reducing Bacteria in Oil Field Samples

    PubMed Central

    Voordouw, Gerrit; Voordouw, Johanna K.; Karkhoff-Schweizer, Roxann R.; Fedorak, Phillip M.; Westlake, Donald W. S.

    1991-01-01

    A novel method for the identification of bacteria in environmental samples by DNA hybridization is presented. It is based on the fact that, even within a genus, the genomes of different bacteria may have little overall sequence homology. This allows the use of the labeled genomic DNA of a given bacterium (referred to as a “standard”) to probe for its presence and that of bacteria with highly homologous genomes in total DNA obtained from an environmental sample. Alternatively, total DNA extracted from the sample can be labeled and used to probe filters on which denatured chromosomal DNA from relevant bacterial standards has been spotted. The latter technique is referred to as reverse sample genome probing, since it is the reverse of the usual practice of deriving probes from reference bacteria for analyzing a DNA sample. Reverse sample genome probing allows identification of bacteria in a sample in a single step once a master filter with suitable standards has been developed. Application of reverse sample genome probing to the identification of sulfate-reducing bacteria in 31 samples obtained primarily from oil fields in the province of Alberta has indicated that there are at least 20 genotypically different sulfate-reducing bacteria in these samples. Images PMID:16348574

  6. Development of a DNA macroarray for simultaneous detection of multiple foodborne pathogenic bacteria in fresh chicken meat.

    PubMed

    Kupradit, Chanida; Rodtong, Sureelak; Ketudat-Cairns, Mariena

    2013-12-01

    A DNA macroarray was developed to provide the ability to detect multiple foodborne pathogens in fresh chicken meat. Probes targeted to the 16S rRNA and genus- and species-specific genes, including fimY, ipaH, prfA, and uspA, were selected for the specific detection of Salmonella spp., Shigella spp., Listeria monocytogenes, and Escherichia coli, respectively. The combination of target gene amplification by PCR and a DNA macroarray in our system was able to distinguish all target bacteria from pure cultures with a detection sensitivity of 10⁵ c.f.u. ml⁻¹. The DNA macroarray was also applied to 10 fresh chicken meat samples. The assay validation demonstrated that by combining the enrichment steps for the target bacteria and the DNA macroarray, all 4 target bacteria could be detected simultaneously from the fresh chicken samples. The sensitivity of L. monocytogenes and Shigella boydii detection in the fresh chicken samples was at least 10 and 3 c.f.u. of the initial contamination in 25 g samples, respectively. The advantages of our developed protocol are high accuracy and time reduction when compared to conventional culture. The macroarray developed in our investigation was cost effective compared to modern oligonucleotide microarray techniques because there was no expensive equipment required for the detection of multiple foodborne pathogens. PMID:23754709

  7. Amplification of fluorescently labelled DNA within gram-positive and acid-fast bacteria.

    PubMed

    Vaid, A; Bishop, A H

    1999-10-01

    Representative organisms from a variety of Gram-positive genera were subjected to varying regimes in order to optimise the intracellular amplification of DNA. The bacteria were subjected to treatments with paraformaldehyde, muramidases and mild acid hydrolysis to discover which regime made each organism permeable to the amplification reagents yet allowed retention of the fluorescein-labelled amplified products within the cell. Scanning electron micrographs were used to corroborate the effectiveness of the treatments, as seen by fluorescent photomicrographs, with the damage caused to the bacterial walls. A combination of mutanolysin and lysozyme was found most effective for Bacillus cereus, whereas permeabilisation of Streptomyces coelicolor, Lactococcus lactis and Clostridium sporogenes was most effective when exposed to lysozyme only. Surprisingly, direct amplification with no pre-treatment gave the brightest fluorescence in Mycobacterium phlei. Comparing the techniques of whole cell PCR, primed in situ labelling (PRINS), and cycle PRINS showed that under the conditions used the strongest intensity of fluorescence was obtained with in situ PCR; only L. lactis and M. phlei produced signals with cycle PRINS, fluorescence was not seen for any of the organisms with PRINS. PMID:10520585

  8. Multiple DNA Extractions Coupled with Stable-Isotope Probing of Anthracene-Degrading Bacteria in Contaminated Soil▿†

    PubMed Central

    Jones, Maiysha D.; Singleton, David R.; Sun, Wei; Aitken, Michael D.

    2011-01-01

    In many of the DNA-based stable-isotope probing (SIP) studies published to date in which soil communities were investigated, a single DNA extraction was performed on the soil sample, usually using a commercial DNA extraction kit, prior to recovering the 13C-labeled (heavy) DNA by density-gradient ultracentrifugation. Recent evidence suggests, however, that a single extraction of a soil sample may not lead to representative recovery of DNA from all of the organisms in the sample. To determine whether multiple DNA extractions would affect the DNA yield, the eubacterial 16S rRNA gene copy number, or the identification of anthracene-degrading bacteria, we performed seven successive DNA extractions on the same aliquot of contaminated soil either untreated or enriched with [U-13C]anthracene. Multiple extractions were necessary to maximize the DNA yield and 16S rRNA gene copy number from both untreated and anthracene-enriched soil samples. Sequences within the order Sphingomonadales, but unrelated to any previously described genus, dominated the 16S rRNA gene clone libraries derived from 13C-enriched DNA and were designated “anthracene group 1.” Sequences clustering with Variovorax spp., which were also highly represented, and sequences related to the genus Pigmentiphaga were newly associated with anthracene degradation. The bacterial groups collectively identified across all seven extracts were all recovered in the first extract, although quantitative PCR analysis of SIP-identified groups revealed quantitative differences in extraction patterns. These results suggest that performing multiple DNA extractions on soil samples improves the extractable DNA yield and the number of quantifiable eubacterial 16S rRNA gene copies but have little qualitative effect on the identification of the bacterial groups associated with the degradation of a given carbon source by SIP. PMID:21398486

  9. Amplifiable DNA from Gram-negative and Gram-positive bacteria by a low strength pulsed electric field method

    PubMed Central

    Vitzthum, Frank; Geiger, Georg; Bisswanger, Hans; Elkine, Bentsian; Brunner, Herwig; Bernhagen, Jürgen

    2000-01-01

    An efficient electric field-based procedure for cell disruption and DNA isolation is described. Isoosmotic suspensions of Gram-negative and Gram-positive bacteria were treated with pulsed electric fields of <60 V/cm. Pulses had an exponential decay waveform with a time constant of 3.4 µs. DNA yield was linearly dependent on time or pulse number, with several thousand pulses needed. Electrochemical side-effects and electrophoresis were minimal. The lysates contained non-fragmented DNA which was readily amplifiable by PCR. As the method was not limited to samples of high specific resistance, it should be applicable to physiological fluids and be useful for genomic and DNA diagnostic applications. PMID:10734214

  10. How long can culturable bacteria and total DNA persist in environmental waters? The role of sunlight and solid particles.

    PubMed

    Gutiérrez-Cacciabue, Dolores; Cid, Alicia G; Rajal, Verónica B

    2016-01-01

    In this work, sunlight inactivation of two indicator bacteria in freshwater, with and without solid particles, was studied and the persistence of culturable cells and total DNA was compared. Environmental water was used to prepare two matrices, with and without solid particles, which were spiked with Escherichia coli and Enterococcus faecalis. These matrices were used to prepare microcosm bags that were placed in two containers: one exposed to sunlight and the other in the dark. During one month, samples were removed from each container and detection was done by membrane filter technique and real-time PCR. Kinetic parameters were calculated to assess sunlight effect. Indicator bacteria without solid particles exposed to sunlight suffered an immediate decay (<4h) compared with the ones which were shielded from them. In addition, the survival of both bacteria with solid particles varied depending on the situation analyzed (T99 from 3 up to 60days), being always culturable E. coli more persistent than E. faecalis. On the other side, E. faecalis DNA persisted much longer than culturable cells (T99>40h in the dark with particles). In this case active cells were more prone to sunlight than total DNA and the protective effect of solid particles was also observed. Results highlight that the effects caused by the parameters which describe the behavior of culturable microorganisms and total DNA in water are different and must be included in simulation models but without forgetting that these parameters will also depend on bacterial properties, sensitizers, composition, type, and uses of the aquatic environment under assessment. PMID:26379262

  11. Identification of Benzo[a]pyrene-Metabolizing Bacteria in Forest Soils by Using DNA-Based Stable-Isotope Probing

    PubMed Central

    Song, Mengke; Jiang, Longfei; Zhang, Dayi; Wang, Yujie; Zhang, Gan

    2015-01-01

    DNA-based stable-isotope probing (DNA-SIP) was used in this study to investigate the uncultivated bacteria with benzo[a]pyrene (BaP) metabolism capacities in two Chinese forest soils (Mt. Maoer in Heilongjiang Province and Mt. Baicaowa in Hubei Province). We characterized three different phylotypes with responsibility for BaP degradation, none of which were previously reported as BaP-degrading microorganisms by SIP. In Mt. Maoer soil microcosms, the putative BaP degraders were classified as belonging to the genus Terrimonas (family Chitinophagaceae, order Sphingobacteriales), whereas Burkholderia spp. were the key BaP degraders in Mt. Baicaowa soils. The addition of metabolic salicylate significantly increased BaP degradation efficiency in Mt. Maoer soils, and the BaP-metabolizing bacteria shifted to the microorganisms in the family Oxalobacteraceae (genus unclassified). Meanwhile, salicylate addition did not change either BaP degradation or putative BaP degraders in Mt. Baicaowa. Polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase (PAH-RHD) genes were amplified, sequenced, and quantified in the DNA-SIP 13C heavy fraction to further confirm the BaP metabolism. By illuminating the microbial diversity and salicylate additive effects on BaP degradation across different soils, the results increased our understanding of BaP natural attenuation and provided a possible approach to enhance the bioremediation of BaP-contaminated soils. PMID:26253666

  12. High-throughput DNA microarray detection of pathogenic bacteria in shallow well groundwater in the Kathmandu Valley, Nepal.

    PubMed

    Inoue, Daisuke; Hinoura, Takuji; Suzuki, Noriko; Pang, Junqin; Malla, Rabin; Shrestha, Sadhana; Chapagain, Saroj Kumar; Matsuzawa, Hiroaki; Nakamura, Takashi; Tanaka, Yasuhiro; Ike, Michihiko; Nishida, Kei; Sei, Kazunari

    2015-01-01

    Because of heavy dependence on groundwater for drinking water and other domestic use, microbial contamination of groundwater is a serious problem in the Kathmandu Valley, Nepal. This study investigated comprehensively the occurrence of pathogenic bacteria in shallow well groundwater in the Kathmandu Valley by applying DNA microarray analysis targeting 941 pathogenic bacterial species/groups. Water quality measurements found significant coliform (fecal) contamination in 10 of the 11 investigated groundwater samples and significant nitrogen contamination in some samples. The results of DNA microarray analysis revealed the presence of 1-37 pathogen species/groups, including 1-27 biosafety level 2 ones, in 9 of the 11 groundwater samples. While the detected pathogens included several feces- and animal-related ones, those belonging to Legionella and Arthrobacter, which were considered not to be directly associated with feces, were detected prevalently. This study could provide a rough picture of overall pathogenic bacterial contamination in the Kathmandu Valley, and demonstrated the usefulness of DNA microarray analysis as a comprehensive screening tool of a wide variety of pathogenic bacteria. PMID:25146188

  13. Phylogenetic Diversity of Lactic Acid Bacteria Associated with Paddy Rice Silage as Determined by 16S Ribosomal DNA Analysis

    PubMed Central

    Ennahar, Saïd; Cai, Yimin; Fujita, Yasuhito

    2003-01-01

    A total of 161 low-G+C-content gram-positive bacteria isolated from whole-crop paddy rice silage were classified and subjected to phenotypic and genetic analyses. Based on morphological and biochemical characters, these presumptive lactic acid bacterium (LAB) isolates were divided into 10 groups that included members of the genera Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus, and Weissella. Analysis of the 16S ribosomal DNA (rDNA) was used to confirm the presence of the predominant groups indicated by phenotypic analysis and to determine the phylogenetic affiliation of representative strains. The virtually complete 16S rRNA gene was PCR amplified and sequenced. The sequences from the various LAB isolates showed high degrees of similarity to those of the GenBank reference strains (between 98.7 and 99.8%). Phylogenetic trees based on the 16S rDNA sequence displayed high consistency, with nodes supported by high bootstrap values. With the exception of one species, the genetic data was in agreement with the phenotypic identification. The prevalent LAB, predominantly homofermentative (66%), consisted of Lactobacillus plantarum (24%), Lactococcus lactis (22%), Leuconostoc pseudomesenteroides (20%), Pediococcus acidilactici (11%), Lactobacillus brevis (11%), Enterococcus faecalis (7%), Weissella kimchii (3%), and Pediococcus pentosaceus (2%). The present study, the first to fully document rice-associated LAB, showed a very diverse community of LAB with a relatively high number of species involved in the fermentation process of paddy rice silage. The comprehensive 16S rDNA-based approach to describing LAB community structure was valuable in revealing the large diversity of bacteria inhabiting paddy rice silage and enabling the future design of appropriate inoculants aimed at improving its fermentation quality. PMID:12514026

  14. DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats

    PubMed Central

    de Lange, Orlando; Wolf, Christina; Thiel, Philipp; Krüger, Jens; Kleusch, Christian; Kohlbacher, Oliver; Lahaye, Thomas

    2015-01-01

    Transcription Activator-Like Effectors (TALEs) of Xanthomonas bacteria are programmable DNA binding proteins with unprecedented target specificity. Comparative studies into TALE repeat structure and function are hindered by the limited sequence variation among TALE repeats. More sequence-diverse TALE-like proteins are known from Ralstonia solanacearum (RipTALs) and Burkholderia rhizoxinica (Bats), but RipTAL and Bat repeats are conserved with those of TALEs around the DNA-binding residue. We study two novel marine-organism TALE-like proteins (MOrTL1 and MOrTL2), the first to date of non-terrestrial origin. We have assessed their DNA-binding properties and modelled repeat structures. We found that repeats from these proteins mediate sequence specific DNA binding conforming to the TALE code, despite low sequence similarity to TALE repeats, and with novel residues around the BSR. However, MOrTL1 repeats show greater sequence discriminating power than MOrTL2 repeats. Sequence alignments show that there are only three residues conserved between repeats of all TALE-like proteins including the two new additions. This conserved motif could prove useful as an identifier for future TALE-likes. Additionally, comparing MOrTL repeats with those of other TALE-likes suggests a common evolutionary origin for the TALEs, RipTALs and Bats. PMID:26481363

  15. Genetic encoding of DNA nanostructures and their self-assembly in living bacteria

    PubMed Central

    Elbaz, Johann; Yin, Peng; Voigt, Christopher A.

    2016-01-01

    The field of DNA nanotechnology has harnessed the programmability of DNA base pairing to direct single-stranded DNAs (ssDNAs) to assemble into desired 3D structures. Here, we show the ability to express ssDNAs in Escherichia coli (32–205 nt), which can form structures in vivo or be purified for in vitro assembly. Each ssDNA is encoded by a gene that is transcribed into non-coding RNA containing a 3′-hairpin (HTBS). HTBS recruits HIV reverse transcriptase, which nucleates DNA synthesis and is aided in elongation by murine leukemia reverse transcriptase. Purified ssDNA that is produced in vivo is used to assemble large 1D wires (300 nm) and 2D sheets (5.8 μm2) in vitro. Intracellular assembly is demonstrated using a four-ssDNA crossover nanostructure that recruits split YFP when properly assembled. Genetically encoding DNA nanostructures provides a route for their production as well as applications in living cells. PMID:27091073

  16. Monomorphic ants undergo within-colony morphological changes along the metal-pollution gradient.

    PubMed

    Grześ, Irena M; Okrutniak, Mateusz; Woch, Marcin W

    2015-04-01

    In ants, intra and inter-colony variation in body size can be considerable, even in monomorphic species. It has been previously shown that size-related parameters can be environmentally sensitive. The shape of the body size distribution curve is, however, rarely investigated. In this study, we measured head widthes of the black garden ant Lasius niger workers using digital methods. The ants were sampled from 51 colonies originating from 19 sites located along a metal pollution gradient, established in a former mining area in Poland. Total zinc concentrations in random samples of small invertebrates were used as a measure of site pollution levels. We found that the skewness of head size distribution grows significantly in line with the pollution level of the site, ranging from values slightly below zero (about -0.5) in the least polluted site up to a positive value (about 1.5) in the most polluted site. This result indicates that the frequency of small ants grows as pollution levels increase. The coefficient of variation, as well as the measures of central tendency, was not related to the pollution level. Four hypotheses explaining the obtained results are proposed. The bias towards the higher frequency of small workers may result from energy limitation and/or metal toxicity, but may also have an adaptive function. PMID:25395324

  17. Focal Monomorphic Ventricular Tachycardia As The First Manifestation Of Amyloid Cardiomyopathy

    PubMed Central

    Seethala, Srikanth; Jain, Sandeep; Ohori, N. Paul; Monaco, Sara; Lacomis, Joan; Crock, Frederick; Nemec, Jan

    2010-01-01

    52-year-old patient presented with palpitation and well tolerated monomorphic ventricular tachycardia. He had normal echocardiogram and coronary angiogram 3 months prior to presentation. Surface EKG revealed regular wide-complex tachycardia with right bundle branch block morphology and right inferior axis. In conjunction with recent negative cardiac evaluation, this suggested idiopathic focal ventricular tachycardia from anterolateral basal left ventricle. CARTO based activation mapping confirmed the presence of VT focus in that area. Radiofrequency ablation at the site of perfect pacemap resulted in a partial suppression of the focus. Echocardiogram was subsequently performed because of progressive dyspnea. It revealed asymmetrical thickening of posterolateral left ventricle, with delayed enhancement on contrast magnetic resonance imaging. Fine needle aspiration of abdominal fat stained with Congo red confirmed the diagnosis of systemic AL amyloidosis due to IgG λ-light chain deposition. Consequently, the patient underwent placement of implantable defibrillator and hematopoetic stem cell transplantation. He remains in excellent functional status 18 months after presentation. PMID:20234811

  18. DNA analysis of fecal bacteria to augment an epikarst dye trace study at Crump's Cave, Kentucky

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A rainfall simulation experiment was performed to investigate the transport behavior of fecal-derived bacteria through shallow karst soils and through the epikarst. The experiment was conducted at Cave Springs Cavern located just south of Mammoth Cave National Park on the Sinkhole Plain of South Cen...

  19. Bridgehead invasion of a monomorphic plant pathogenic bacterium: Xanthomonas citri pv. citri, an emerging citrus pathogen in Mali and Burkina Faso.

    PubMed

    Leduc, A; Traoré, Y N; Boyer, K; Magne, M; Grygiel, P; Juhasz, C C; Boyer, C; Guerin, F; Wonni, I; Ouedraogo, L; Vernière, C; Ravigné, V; Pruvost, O

    2015-11-01

    Molecular epidemiology studies further our understanding of migrations of phytopathogenic bacteria, the major determining factor in their emergence. Asiatic citrus canker, caused by Xanthomonas citri pv. citri, was recently reported in Mali and Burkina Faso, a region remote from other contaminated areas. To identify the origin and pathways of these emergences, we used two sets of markers, minisatellites and microsatellites, for investigating different evolutionary scales. Minisatellite typing suggested the introduction of two groups of strains in Mali (DAPC 1 and DAPC 2), consistent with microsatellite typing. DAPC 2 was restricted to Bamako district, whereas DAPC 1 strains were found much more invasive. The latter strains formed a major clonal complex based on microsatellite data with the primary and secondary founders detected in commercial citrus nurseries and orchards. This suggests that human activities played a major role in the spread of DAPC 1 strains via the movement of contaminated propagative material, further supported by the frequent lack of differentiation between populations from geographically distant nurseries and orchards. Approximate Bayesian Computation analyses supported the hypothesis that strains from Burkina Faso resulted from a bridgehead invasion from Mali. Multi-locus variable number of tandem repeat analysis and Approximate Bayesian Computation are useful for understanding invasion routes and pathways of monomorphic bacterial pathogens. PMID:25866121

  20. Assessment of methods to recover DNA from bacteria, fungi and archaea in complex environmental samples.

    PubMed

    Guillén-Navarro, Karina; Herrera-López, David; López-Chávez, Mariana Y; Cancino-Gómez, Máximo; Reyes-Reyes, Ana L

    2015-11-01

    DNA extraction from environmental samples is a critical step for metagenomic analysis to study microbial communities, including those considered uncultivable. Nevertheless, obtaining good quality DNA in sufficient quantities for downstream methodologies is not always possible, and it depends on the complexity and stability of each ecosystem, which could be more problematic for samples from tropical regions because those ecosystems are less stable and more complex. Three laboratory methods for the extraction of nucleic acids from samples representing unstable (decaying coffee pulp and mangrove sediments) and relatively stable (compost and soil) environments were tested. The results were compared with those obtained using two commercial DNA extraction kits. The quality of the extracted DNA was evaluated by PCR amplification to verify the recovery of bacterial, archaeal, and fungal genetic material. The laboratory method that gave the best results used a lysis procedure combining physical, chemical, and enzymatic steps. PMID:26014885

  1. High-Voltage Electroporation of Bacteria: Genetic Transformation of Campylobacter jejuni with Plasmid DNA

    NASA Astrophysics Data System (ADS)

    Miller, Jeff F.; Dower, William J.; Tompkins, Lucy S.

    1988-02-01

    Electroporation permits the uptake of DNA by mammalian cells and plant protoplasts because it induces transient permeability of the cell membrane. We investigated the utility of high-voltage electroporation as a method for genetic transformation of intact bacterial cells by using the enteric pathogen Campylobacter jejuni as a model system. This report demonstrates that the application of high-voltage discharges to bacterial cells permits genetic transformation. Our method involves exposure of a Campylobacter cell suspension to a high-voltage exponential decay discharge (5-13 kV/cm) for a brief period of time (resistance-capacitance time constant = 2.4-26 msec) in the presence of plasmid DNA. Electrical transformation of C. jejuni results in frequencies as high as 1.2 × 106 transformants per μ g of DNA. We have investigated the effects of pulse amplitude and duration, cell growth conditions, divalent cations, and DNA concentration on the efficiency of transformation. Transformants of C. jejuni obtained by electroporation contained structurally intact plasmid molecules. In addition, evidence is presented that indicates that C. jejuni possesses DNA restriction and modification systems. The use of electroporation as a method for transforming other bacterial species and guidelines for its implementation are also discussed.

  2. Analysis of several methods for the extraction of high quality DNA from acetic acid bacteria in wine and vinegar for characterization by PCR-based methods.

    PubMed

    Jara, C; Mateo, E; Guillamón, J M; Torija, M J; Mas, A

    2008-12-10

    Acetic acid bacteria (AAB) are fastidious microorganisms with poor recovery in culture. Culture-independent methods are currently under examination. Good DNA extraction is a strict requirement of these methods. We compared five methods for extracting the DNA of AAB directly from wine and vinegar samples. Four matrices (white wine, red wine, superficial vinegar and submerged vinegar) contaminated with two AAB strains belonging to Acetobacter pasteurianus and Gluconacetobacter hansenii were assayed. To improve the yield and quality of the extracted DNA, a sample treatment (washing with polyvinyl pyrrolidone or NaCl) was also tested. DNA quality was measured by amplification of the 16S rRNA gene with conventional PCR. DNA recovery rate was assessed by real-time PCR. DNA amplification was always successful with the Wizard method though DNA recovery was poor. A CTAB-based method and NucleoSpin protocol extracted the highest DNA recoveries from wine and vinegar samples. Both of these methods require treatment to recover suitable DNA for amplification with maximum recovery. Both may therefore be good solutions for DNA extraction in wine and vinegar samples. DNA extraction of Ga hansenii was more effective than that of A. pasteurianus. The fastest and cheapest method we evaluated (the Thermal shock protocol) produced the worst results both for DNA amplification and DNA recovery. PMID:18950887

  3. Genome-wide study predicts promoter-G4 DNA motifs regulate selective functions in bacteria: radioresistance of D. radiodurans involves G4 DNA-mediated regulation

    PubMed Central

    Beaume, Nicolas; Pathak, Rajiv; Yadav, Vinod Kumar; Kota, Swathi; Misra, Hari S.; Gautam, Hemant K.; Chowdhury, Shantanu

    2013-01-01

    A remarkable number of guanine-rich sequences with potential to adopt non-canonical secondary structures called G-quadruplexes (or G4 DNA) are found within gene promoters. Despite growing interest, regulatory role of quadruplex DNA motifs in intrinsic cellular function remains poorly understood. Herein, we asked whether occurrence of potential G4 (PG4) DNA in promoters is associated with specific function(s) in bacteria. Using a normalized promoter-PG4-content (PG4P) index we analysed >60 000 promoters in 19 well-annotated species for (a) function class(es) and (b) gene(s) with enriched PG4P. Unexpectedly, PG4-associated functional classes were organism specific, suggesting that PG4 motifs may impart specific function to organisms. As a case study, we analysed radioresistance. Interestingly, unsupervised clustering using PG4P of 21 genes, crucial for radioresistance, grouped three radioresistant microorganisms including Deinococcus radiodurans. Based on these predictions we tested and found that in presence of nanomolar amounts of the intracellular quadruplex-binding ligand N-methyl mesoporphyrin (NMM), radioresistance of D. radiodurans was attenuated by ∼60%. In addition, important components of the RecF recombinational repair pathway recA, recF, recO, recR and recQ genes were found to harbour promoter-PG4 motifs and were also down-regulated in presence of NMM. Together these results provide first evidence that radioresistance may involve G4 DNA-mediated regulation and support the rationale that promoter-PG4s influence selective functions. PMID:23161683

  4. Presence of Periodontopathic Bacteria DNA in Atheromatous Plaques from Coronary and Carotid Arteries

    PubMed Central

    Szulc, Malgorzata; Kustrzycki, Wojciech; Janczak, Dariusz; Michalowska, Dagmara; Baczynska, Dagmara; Radwan-Oczko, Malgorzata

    2015-01-01

    Objectives. Interest in periodontitis as a potential risk factor for atherosclerosis and its complications resulted from the fact that the global prevalence of periodontal diseases is significant and periodontitis may induce a chronic inflammatory response. Many studies have analyzed the potential impact of the Porphyromonas gingivalis, major pathogen of periodontitis, on general health. The purpose of this study was to find the presence of the Porphyromonas gingivalis DNA in the atherosclerotic plaques of coronary and carotid arteries and in the periodontal pockets in patients with chronic periodontitis, who underwent surgery because of vascular diseases. Methods and Results. The study population consisted of 91 patients with coronary artery disease or scheduled for carotid endarterectomy. The presence of Porphyromonas gingivalis DNA in atheromatous plaques and in subgingival samples was determined by PCR. Bacterial DNA was found in 21 of 91 (23%) samples taken from vessels and in 47 of 63 (74.6%) samples from periodontal pockets. Conclusions. Porphyromonas gingivalis DNA is frequently found in atheromatous plaques of patients with periodontitis. That is why more research should be conducted to prove if this periopathogen may have an impact on endothelium of patients at risk of atherosclerosis. PMID:26504835

  5. Use of DNA Markers for Investigating Sources of Bacteria in Contaminated Ground Water: Wooster Township, Wayne County, Ohio

    USGS Publications Warehouse

    Dumouchelle, Denise H.

    2006-01-01

    In 2004, a public-health nuisance was declared by the Wayne County Board of Health in the Scenic Heights Drive-Batdorf Road area of Wooster Township, Wayne County, Ohio, because of concerns about the safety of water from local wells. Repeated sampling had detected the presence of fecal-indicator bacteria and elevated nitrate concentrations. In June 2006, the U.S. Geological Survey (USGS), in cooperation with the Ohio Environmental Protection Agency (Ohio EPA), collected and analyzed samples from some of the affected wells to help investigate the possibility of human-origin bacterial contamination. Water samples from 12 wells and 5 home sewage-treatment systems (HSTS) were collected. Bromide concentrations were determined in samples from the 12 wells. Samples from 5 of the 12 wells were analyzed for wastewater compounds. Total coliform, enterococci and Escherichia coli (E. coli) bacteria concentrations were determined for samples from 8 of the 12 wells. In addition, two microbial source-tracking tools that employ DNA markers were used on samples from several wells and a composite sample of water from five septic tanks. The DNA markers from the Enterococcus faecium species and the order Bacteroidales are associated with specific sources, either human or ruminant sources. Bromide concentrations ranged from 0.04 to 0.18 milligrams per liter (mg/L). No wastewater compounds were detected at concentrations above the reporting limits. Samples from the 12 wells also were collected by Ohio EPA and analyzed for chloride and nitrate. Chloride concentrations ranged from 12.6 to 61.6 mg/L and nitrate concentrations ranged from 2.34 to 11.9 mg/L (as N). Total coliforms and enterococci were detected in samples from 8 wells, at concentrations from 2 to 200 colony-forming units per 100 milliliters (CFU/100 mL) and 0.5 to 17 CFU/100 mL, respectively. E. coli were detected in samples from three of the eight wells, at concentrations of 1 or 2 CFU/100 mL. Tests for the human

  6. Assessment of titanium dioxide nanoparticle effects in bacteria: association, uptake, mutagenicity, co-mutagenicity and DNA repair inhibition.

    PubMed

    Butler, Kimberly S; Casey, Brendan J; Garborcauskas, Garret V M; Dair, Benita J; Elespuru, Rosalie K

    2014-07-01

    Due to their unique properties, the use of nanoparticles (NPs) is expanding; these same properties may affect their potential risk to humans. However, standard methods for genotoxicity assessment may not be adequate for NPs; altered tests reported here have been developed to address perceived inadequacies. The bacterial reverse mutation assay is an essential part of the battery of tests to determine genotoxicity. The utility of this test for assessing NPs is currently questioned, due to negative results seemingly caused by failure of particle uptake. To probe uptake issues, we examined the physical state in different media, dose and time dependent association, uptake and mutagenicity of titanium dioxide (TiO2) NPs in Salmonella typhimurium and Escherichia coli. The NPs suspended in water were characterized using dynamic light scattering, NP tracking analysis and transmission electron microscopy. NP association with bacteria was assessed by flow cytometry. Association was found to be time and dose dependent, with maximal association by 60 min. Therefore mutagenicity was assessed after a 60 min pre-incubation in a miniaturized assay demonstrating enhanced sensitivity. To assess potential indirect effects on bacterial mutagenicity, the effect of TiO2 NPs on the action of standard mutagens or on DNA repair capability was also investigated. TiO2 NPs did not affect mutant yields in standard strains of S. typhimurium or E. coli, including those detecting oxidative damage, using the modified methods. Nor did TiO2 NPs affect the action of standard mutagens or DNA excision repair capability. Despite particle association with the bacteria, subsequent analysis using electron microscopy and energy dispersive x-ray spectroscopy indicated that the NPs were not internalized. This work demonstrates that additional studies, including flow cytometry, are valuable tools for understanding the action of NPs in biological systems. PMID:24769488

  7. Development of species-specific hybridization probes for marine luminous bacteria by using in vitro DNA amplification

    SciTech Connect

    Wimpee, C.F.; Nadeau, T.L.; Nealson, K.H. )

    1991-05-01

    By using two highly conserved regions of the luxA gene as primers, polymerase chain reaction amplification methods were used to prepare species-specific probes against the luciferase gene from four major groups of marine luminous bacteria. Laboratory studies with test strains indicated that three of the four probes cross-reacted with themselves and with one or more of the other species at low stringencies but were specific for members of their own species at high stringencies. The fourth probe, generated from Vibrio harveyi DNA, a cross-reacted with DNAs from two closely related species, V. orientalis and V. vulnificus. When nonluminous cultures were tested with the species-specific probes, no false-positive results were observed, even at low stringencies. Two field isolates were correctly identified as Photobacterium phosphoreum by using the species-specific hybridization probes at high stringency. A mixed probe (four different hybridization probes) used at low stringency gave positive results with all of the luminous bacteria tested, including the terrestrial species Xenorhabdus luminescens, and the taxonomically distinct marine bacterial species Shewanella hanedai; minimal cross-hybridization with these species was seen at higher stringencies.

  8. Research in Undergraduate Instruction: A Biotech Lab Project for Recombinant DNA Protein Expression in Bacteria

    NASA Astrophysics Data System (ADS)

    Brockman, Mark; Ordman, Alfred B.; Campbell, A. Malcolm

    1996-06-01

    In the sophomore-level Molecular Biology and Biotechnology course at Beloit College, students learn basic methods in molecular biology in the context of pursuing a semester-long original research project. We are exploring how DNA sequence affects expression levels of proteins. A DNA fragment encoding all or part of the guanylate monokinase (gmk) sequence is cloned into pSP73 and expressed in E. coli. A monoclonal antibody is made to gmk. The expression level of gmk is determined by SDS gel elctrophoresis, a Western blot, and an ELISA assay. Over four years, an increase in enrollment in the course from 9 to 34 students, the 85% of majors pursuing advanced degrees, and course evaluations all support the conclusion that involving students in research during undergraduate courses encourages them to pursue careers in science.

  9. Novel Phenanthrene-Degrading Bacteria Identified by DNA-Stable Isotope Probing

    PubMed Central

    Luo, Chunling; Zhang, Dayi; Zhang, Gan

    2015-01-01

    Microorganisms responsible for the degradation of phenanthrene in a clean forest soil sample were identified by DNA-based stable isotope probing (SIP). The soil was artificially amended with either 12C- or 13C-labeled phenanthrene, and soil DNA was extracted on days 3, 6 and 9. Terminal restriction fragment length polymorphism (TRFLP) results revealed that the fragments of 219- and 241-bp in HaeIII digests were distributed throughout the gradient profile at three different sampling time points, and both fragments were more dominant in the heavy fractions of the samples exposed to the 13C-labeled contaminant. 16S rRNA sequencing of the 13C-enriched fraction suggested that Acidobacterium spp. within the class Acidobacteria, and Collimonas spp. within the class Betaproteobacteria, were directly involved in the uptake and degradation of phenanthrene at different times. To our knowledge, this is the first report that the genus Collimonas has the ability to degrade PAHs. Two PAH-RHDα genes were identified in 13C-labeled DNA. However, isolation of pure cultures indicated that strains of Staphylococcus sp. PHE-3, Pseudomonas sp. PHE-1, and Pseudomonas sp. PHE-2 in the soil had high phenanthrene-degrading ability. This emphasizes the role of a culture-independent method in the functional understanding of microbial communities in situ. PMID:26098417

  10. Genus-specific profile of acetic acid bacteria by 16S rDNA PCR-DGGE.

    PubMed

    De Vero, Luciana; Giudici, Paolo

    2008-06-30

    An effective method for grouping acetic acid bacteria (AAB) genera was defined and evaluated as a tool for preliminary screening of the major AAB species involved in vinegar production. Acetobacter, Gluconobacter, Gluconacetobacter, Asaia, Neoasaia, Saccharibacter, Frateuria and Kozakia AAB strains were screened on the basis of the 16S rDNA sequences using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) technique. The DGGE profile of all the strains tested, consisted of one single band of approximately 330 bp for each strain and allowed their clustering. The results obtained clearly reflected in silico phylogenetic analysis of the AAB species used in this study, in fact, the species with a higher 16S rDNA sequence homology showed a similar electrophoretic profile. In particular almost all the species belonging to the genus Gluconacetobacter showed a DGGE pattern nearly identical and well distinct from all the other AAB genera. Furthermore by PCR-DGGE it was possible to clearly group the species more frequently recovered from vinegar fermentation which are mainly distributed in the genera Acetobacter, Gluconobacter and Gluconacetobacter. PMID:17919758

  11. RRNA and dnaK relationships of Bradyrhizobium sp. nodule bacteria from four papilionoid legume trees in Costa Rica.

    PubMed

    Parker, Matthew A

    2004-05-01

    Enzyme electrophoresis and sequencing of rRNA and dnaK genes revealed high genetic diversity among root nodule bacteria from the Costa Rican trees Andira inermis, Dalbergia retusa, Platymiscium pinnatum (Papilionoideae tribe Dalbergieae) and Lonchocarpus atropurpureus (Papilionoideae tribe Millettieae). A total of 21 distinct multilocus genotypes [ETs (electrophoretic types)] was found among the 36 isolates analyzed, and no ETs were shared in common by isolates from different legume hosts. However, three of the ETs from D. retusa were identical to Bradyrhizobium sp. isolates detected in prior studies of several other legume genera in both Costa Rica and Panama. Nearly full-length 16S rRNA sequences and partial 23S rRNA sequences confirmed that two isolates from D. retusa were highly similar or identical to Bradyrhizobium strains isolated from the legumes Erythrina and Clitoria (Papilionoideae tribe Phaseoleae) in Panama. rRNA sequences for five isolates from L. atropurpureus, P. pinnatum and A. inermis were not closely related to any currently known strains from Central America or elsewhere, but had affinities to the reference strains Bradyrhizobium japonicum USDA 110 (three isolates) or to B. elkanii USDA 76 (two isolates). A phylogenetic tree for 21 Bradyrhizobium strains based on 603 bp of the dnaK gene showed several significant conflicts with the rRNA tree, suggesting that genealogical relationships may have been altered by lateral gene transfer events. PMID:15214639

  12. Horizontal DNA Transfer Mechanisms of Bacteria as Weapons of Intragenomic Conflict.

    PubMed

    Croucher, Nicholas J; Mostowy, Rafal; Wymant, Christopher; Turner, Paul; Bentley, Stephen D; Fraser, Christophe

    2016-03-01

    Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that

  13. Horizontal DNA Transfer Mechanisms of Bacteria as Weapons of Intragenomic Conflict

    PubMed Central

    Croucher, Nicholas J.; Mostowy, Rafal; Wymant, Christopher; Turner, Paul; Bentley, Stephen D.; Fraser, Christophe

    2016-01-01

    Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell–cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing “arms race.” Reduced rates of transformation have also been observed in cells infected by MGEs that

  14. On-chip concentration of bacteria using a 3D dielectrophoretic chip and subsequent laser-based DNA extraction in the same chip

    NASA Astrophysics Data System (ADS)

    Cho, Yoon-Kyoung; Kim, Tae-hyeong; Lee, Jeong-Gun

    2010-06-01

    We report the on-chip concentration of bacteria using a dielectrophoretic (DEP) chip with 3D electrodes and subsequent laser-based DNA extraction in the same chip. The DEP chip has a set of interdigitated Au post electrodes with 50 µm height to generate a network of non-uniform electric fields for the efficient trapping by DEP. The metal post array was fabricated by photolithography and subsequent Ni and Au electroplating. Three model bacteria samples (Escherichia coli, Staphylococcus epidermidis, Streptococcus mutans) were tested and over 80-fold concentrations were achieved within 2 min. Subsequently, on-chip DNA extraction from the concentrated bacteria in the 3D DEP chip was performed by laser irradiation using the laser-irradiated magnetic bead system (LIMBS) in the same chip. The extracted DNA was analyzed with silicon chip-based real-time polymerase chain reaction (PCR). The total process of on-chip bacteria concentration and the subsequent DNA extraction can be completed within 10 min including the manual operation time.

  15. Moricandia arvensis extracts protect against DNA damage, mutagenesis in bacteria system and scavenge the superoxide anion.

    PubMed

    Skandrani, Ines; Bouhlel, Ines; Limem, Ilef; Boubaker, Jihed; Bhouri, Wissem; Neffati, Aicha; Ben Sghaier, Mohamed; Kilani, Soumaya; Ghedira, Kamel; Ghedira-Chekir, Leila

    2009-02-01

    The mutagenic potential of total aqueous, total oligomers flavonoids (TOF), ethyl acetate (EA), chloroform (Chl), petroleum ether (PE) and methanol (MeOH) extracts from aerial parts of Moricandia arvensis was assessed using Ames Salmonella tester strains TA100 and TA1535 with and without metabolic activation (S9), and using plasmid pBluescript DNA assay. None of the different extracts produced a mutagenic effect, except aqueous extract when incubated with Salmonella typhimurium TA100 after metabolic activation. Likewise, the antimutagenicity of the same extracts was tested using the "Ames test". Our results showed that M. arvensis extracts possess antimutagenic effects against sodium azide (SA) in the two tested Salmonella assay systems, except metabolized aqueous and PE extracts when tested with S. typhimurium TA100 assay system. Different extracts were also found to be effective in protecting plasmid DNA against the strand breakage induced by hydroxyl radicals, except PE and aqueous extracts. Antioxidant capacity of the tested extracts was evaluated using the enzymatic (xanthine/xanthine oxidase assay) (X/XOD) and the non enzymatic (NBT/Riboflavine assay) systems. TOF extract was the more effective one in inhibiting both xanthine oxidase activity and NBT reduction. PMID:19015021

  16. Intrastrand triplex DNA repeats in bacteria: a source of genomic instability.

    PubMed

    Holder, Isabelle T; Wagner, Stefanie; Xiong, Peiwen; Sinn, Malte; Frickey, Tancred; Meyer, Axel; Hartig, Jörg S

    2015-12-01

    Repetitive nucleic acid sequences are often prone to form secondary structures distinct from B-DNA. Prominent examples of such structures are DNA triplexes. We observed that certain intrastrand triplex motifs are highly conserved and abundant in prokaryotic genomes. A systematic search of 5246 different prokaryotic plasmids and genomes for intrastrand triplex motifs was conducted and the results summarized in the ITxF database available online at http://bioinformatics.uni-konstanz.de/utils/ITxF/. Next we investigated biophysical and biochemical properties of a particular G/C-rich triplex motif (TM) that occurs in many copies in more than 260 bacterial genomes by CD and nuclear magnetic resonance spectroscopy as well as in vivo footprinting techniques. A characterization of putative properties and functions of these unusually frequent nucleic acid motifs demonstrated that the occurrence of the TM is associated with a high degree of genomic instability. TM-containing genomic loci are significantly more rearranged among closely related Escherichia coli strains compared to control sites. In addition, we found very high frequencies of TM motifs in certain Enterobacteria and Cyanobacteria that were previously described as genetically highly diverse. In conclusion we link intrastrand triplex motifs with the induction of genomic instability. We speculate that the observed instability might be an adaptive feature of these genomes that creates variation for natural selection to act upon. PMID:26450966

  17. Intrastrand triplex DNA repeats in bacteria: a source of genomic instability

    PubMed Central

    Holder, Isabelle T.; Wagner, Stefanie; Xiong, Peiwen; Sinn, Malte; Frickey, Tancred; Meyer, Axel; Hartig, Jörg S.

    2015-01-01

    Repetitive nucleic acid sequences are often prone to form secondary structures distinct from B-DNA. Prominent examples of such structures are DNA triplexes. We observed that certain intrastrand triplex motifs are highly conserved and abundant in prokaryotic genomes. A systematic search of 5246 different prokaryotic plasmids and genomes for intrastrand triplex motifs was conducted and the results summarized in the ITxF database available online at http://bioinformatics.uni-konstanz.de/utils/ITxF/. Next we investigated biophysical and biochemical properties of a particular G/C-rich triplex motif (TM) that occurs in many copies in more than 260 bacterial genomes by CD and nuclear magnetic resonance spectroscopy as well as in vivo footprinting techniques. A characterization of putative properties and functions of these unusually frequent nucleic acid motifs demonstrated that the occurrence of the TM is associated with a high degree of genomic instability. TM-containing genomic loci are significantly more rearranged among closely related Escherichia coli strains compared to control sites. In addition, we found very high frequencies of TM motifs in certain Enterobacteria and Cyanobacteria that were previously described as genetically highly diverse. In conclusion we link intrastrand triplex motifs with the induction of genomic instability. We speculate that the observed instability might be an adaptive feature of these genomes that creates variation for natural selection to act upon. PMID:26450966

  18. Chronic cough and tachycardia-induced cardiomyopathy in a patient with idiopathic frequent, monomorphic premature ventricular contractions.

    PubMed

    Hasdemir, Can; Musayev, Oktay; Kehribar, Demet Yalcin; Kartal, Yildirim; Can, Levent H

    2013-05-01

    A 70-year-old woman presented with a 1-year history of dry cough. Extensive work-up ruled out common causes of chronic cough. She was found to have very frequent, monomorphic premature ventricular contractions (PVCs) and mild-to-moderate left ventricular systolic dysfunction. Propafenone 450 mg/day resulted in complete resolution of her cough and disappearance of PVCs within 24 hours of initiation. One month after the initiation of propafenone therapy, left ventricular ejection fraction normalized and her chronic cough resolved completely. PMID:21967685

  19. Coxiella burnetii DNA, but not viable bacteria, in dairy products in France.

    PubMed

    Eldin, Carole; Angelakis, Emmanouil; Renvoisé, Aurélie; Raoult, Didier

    2013-04-01

    Transmission by the oral route of Coxiella burnetii is controversial. Our objective was to evaluate dairy products in the transmission of Q fever. Pasteurized, unpasteurized, and thermized dairy products were tested for C. burnetii by using a quantitative polymerase chain reaction specific for IS1111 and IS30A spacers, culturing in human embryonic lung fibroblasts cells, and inoculation into BALB/c mice. We tested 201 products and C. burnetii was identified in 64%. Cow milk origin products were more frequently positive than goat or ewe products (P = 0.006 and P = 0.0001, respectively), and industrial food was more frequently positive than artisanal food (P < 0.0001). Food made from unpasteurized milk contained higher bacteria concentrations than food made from pasteurized milk (P = 0.02). All cultures were negative and mice did not show signs of illness. Farm animals are highly infected in France but consumption of cheese and yogurt does not seem to pose a public health risk for transmission of Q fever. PMID:23382158

  20. Theoretical models for the regulation of DNA replication in fast-growing bacteria

    NASA Astrophysics Data System (ADS)

    Creutziger, Martin; Schmidt, Mischa; Lenz, Peter

    2012-09-01

    Growing in always changing environments, Escherichia coli cells are challenged by the task to coordinate growth and division. In particular, adaption of their growth program to the surrounding medium has to guarantee that the daughter cells obtain fully replicated chromosomes. Replication is therefore to be initiated at the right time, which is particularly challenging in media that support fast growth. Here, the mother cell initiates replication not only for the daughter but also for the granddaughter cells. This is possible only if replication occurs from several replication forks that all need to be correctly initiated. Despite considerable efforts during the last 40 years, regulation of this process is still unknown. Part of the difficulty arises from the fact that many details of the relevant molecular processes are not known. Here, we develop a novel theoretical strategy for dealing with this general problem: instead of analyzing a single model, we introduce a wide variety of 128 different models that make different assumptions about the unknown processes. By comparing the predictions of these models we are able to identify the key quantities that allow the experimental discrimination of the different models. Analysis of these quantities yields that out of the 128 models 94 are not consistent with available experimental data. From the remaining 34 models we are able to conclude that mass growth and DNA replication need either to be truly coupled, by coupling DNA replication initiation to the event of cell division, or to the amount of accumulated mass. Finally, we make suggestions for experiments to further reduce the number of possible regulation scenarios.

  1. Comprehensive census of bacteria in clean rooms by using DNA microarray and cloning methods.

    PubMed

    La Duc, Myron T; Osman, Shariff; Vaishampayan, Parag; Piceno, Yvette; Andersen, Gary; Spry, J A; Venkateswaran, Kasthuri

    2009-10-01

    A census of clean room surface-associated bacterial populations was derived from the results of both the cloning and sequencing of 16S rRNA genes and DNA microarray (PhyloChip) analyses. Samples from the Lockheed Martin Aeronautics Multiple Testing Facility (LMA-MTF), the Kennedy Space Center Payload Hazard and Servicing Facility (KSC-PHSF), and the Jet Propulsion Laboratory Spacecraft Assembly Facility (JPL-SAF) clean rooms were collected during the various assembly phases of the Phoenix and Mars Science Laboratory (MSL) spacecraft. Clone library-derived analyses detected a larger bacterial diversity prior to the arrival of spacecraft hardware in these clean room facilities. PhyloChip results were in agreement with this trend but also unveiled the presence of anywhere from 9- to 70-fold more bacterial taxa than cloning approaches. Among the facilities sampled, the JPL-SAF (MSL mission) housed a significantly less diverse bacterial population than either the LMA-MTF or KSC-PHSF (Phoenix mission). Bacterial taxa known to thrive in arid conditions were frequently detected in MSL-associated JPL-SAF samples, whereas proteobacterial lineages dominated Phoenix-associated KSC-PHSF samples. Comprehensive bacterial censuses, such as that reported here, will help space-faring nations preemptively identify contaminant biomatter that may compromise extraterrestrial life detection experiments. The robust nature and high sensitivity of DNA microarray technologies should prove beneficial to a wide range of scientific, electronic, homeland security, medical, and pharmaceutical applications and to any other ventures with a vested interest in monitoring and controlling contamination in exceptionally clean environments. PMID:19700540

  2. Effect of DNA extraction procedure, repeated extraction and ethidium monoazide (EMA)/propidium monoazide (PMA) treatment on overall DNA yield and impact on microbial fingerprints for bacteria, fungi and archaea in a reference soil

    PubMed Central

    Wagner, Andreas O.; Praeg, Nadine; Reitschuler, Christoph; Illmer, Paul

    2015-01-01

    Different DNA extraction protocols were evaluated on a reference soil. A wide difference was found in the total extractable DNA as derived from different extraction protocols. Concerning the DNA yield phenol–chloroform–isomyl alcohol extraction resulted in high DNA yield but also in a remarkable co-extraction of contaminants making PCR from undiluted DNA extracts impossible. By comparison of two different extraction kits, the Macherey&Nagel SoilExtract II kit resulted in the highest DNA yields when buffer SL1 and the enhancer solution were applied. The enhancer solution not only significantly increased the DNA yield but also the amount of co-extracted contaminates, whereas additional disintegration strategies did not. Although a three times repeated DNA extraction increased the total amount of extracted DNA, microbial fingerprints were merely affected. However, with the 5th extraction this changed. A reduction of total DGGE band numbers was observed for archaea and fungi, whereas for bacteria the diversity increased. The application of ethidium monoazide (EMA) or propidium monoazide (PMA) treatment aiming on the selective removal of soil DNA derived from cells lacking cell wall integrity resulted in a significant reduction of total extracted DNA, however, the hypothesized effect on microbial fingerprints failed to appear indicating the need for further investigations. PMID:26339125

  3. A prophage-encoded actin-like protein required for efficient viral DNA replication in bacteria.

    PubMed

    Donovan, Catriona; Heyer, Antonia; Pfeifer, Eugen; Polen, Tino; Wittmann, Anja; Krämer, Reinhard; Frunzke, Julia; Bramkamp, Marc

    2015-05-26

    In host cells, viral replication is localized at specific subcellular sites. Viruses that infect eukaryotic and prokaryotic cells often use host-derived cytoskeletal structures, such as the actin skeleton, for intracellular positioning. Here, we describe that a prophage, CGP3, integrated into the genome of Corynebacterium glutamicum encodes an actin-like protein, AlpC. Biochemical characterization confirms that AlpC is a bona fide actin-like protein and cell biological analysis shows that AlpC forms filamentous structures upon prophage induction. The co-transcribed adaptor protein, AlpA, binds to a consensus sequence in the upstream promoter region of the alpAC operon and also interacts with AlpC, thus connecting circular phage DNA to the actin-like filaments. Transcriptome analysis revealed that alpA and alpC are among the early induced genes upon excision of the CGP3 prophage. Furthermore, qPCR analysis of mutant strains revealed that both AlpA and AlpC are required for efficient phage replication. Altogether, these data emphasize that AlpAC are crucial for the spatio-temporal organization of efficient viral replication. This is remarkably similar to actin-assisted membrane localization of eukaryotic viruses that use the actin cytoskeleton to concentrate virus particles at the egress sites and provides a link of evolutionary conserved interactions between intracellular virus transport and actin. PMID:25916847

  4. A prophage-encoded actin-like protein required for efficient viral DNA replication in bacteria

    PubMed Central

    Donovan, Catriona; Heyer, Antonia; Pfeifer, Eugen; Polen, Tino; Wittmann, Anja; Krämer, Reinhard; Frunzke, Julia; Bramkamp, Marc

    2015-01-01

    In host cells, viral replication is localized at specific subcellular sites. Viruses that infect eukaryotic and prokaryotic cells often use host-derived cytoskeletal structures, such as the actin skeleton, for intracellular positioning. Here, we describe that a prophage, CGP3, integrated into the genome of Corynebacterium glutamicum encodes an actin-like protein, AlpC. Biochemical characterization confirms that AlpC is a bona fide actin-like protein and cell biological analysis shows that AlpC forms filamentous structures upon prophage induction. The co-transcribed adaptor protein, AlpA, binds to a consensus sequence in the upstream promoter region of the alpAC operon and also interacts with AlpC, thus connecting circular phage DNA to the actin-like filaments. Transcriptome analysis revealed that alpA and alpC are among the early induced genes upon excision of the CGP3 prophage. Furthermore, qPCR analysis of mutant strains revealed that both AlpA and AlpC are required for efficient phage replication. Altogether, these data emphasize that AlpAC are crucial for the spatio-temporal organization of efficient viral replication. This is remarkably similar to actin-assisted membrane localization of eukaryotic viruses that use the actin cytoskeleton to concentrate virus particles at the egress sites and provides a link of evolutionary conserved interactions between intracellular virus transport and actin. PMID:25916847

  5. The art of strain improvement of industrial lactic acid bacteria without the use of recombinant DNA technology.

    PubMed

    Derkx, Patrick M F; Janzen, Thomas; Sørensen, Kim I; Christensen, Jeffrey E; Stuer-Lauridsen, Birgitte; Johansen, Eric

    2014-08-29

    The food industry is constantly striving to develop new products to fulfil the ever changing demands of consumers and the strict requirements of regulatory agencies. For foods based on microbial fermentation, this pushes the boundaries of microbial performance and requires the constant development of new starter cultures with novel properties. Since the use of ingredients in the food industry is tightly regulated and under close scrutiny by consumers, the use of recombinant DNA technology to improve microbial performance is currently not an option. As a result, the focus for improving strains for microbial fermentation is on classical strain improvement methods. Here we review the use of these techniques to improve the functionality of lactic acid bacteria starter cultures for application in industrial-scale food production. Methods will be described for improving the bacteriophage resistance of specific strains, improving their texture forming ability, increasing their tolerance to stress and modulating both the amount and identity of acids produced during fermentation. In addition, approaches to eliminating undesirable properties will be described. Techniques include random mutagenesis, directed evolution and dominant selection schemes. PMID:25186244

  6. The art of strain improvement of industrial lactic acid bacteria without the use of recombinant DNA technology

    PubMed Central

    2014-01-01

    The food industry is constantly striving to develop new products to fulfil the ever changing demands of consumers and the strict requirements of regulatory agencies. For foods based on microbial fermentation, this pushes the boundaries of microbial performance and requires the constant development of new starter cultures with novel properties. Since the use of ingredients in the food industry is tightly regulated and under close scrutiny by consumers, the use of recombinant DNA technology to improve microbial performance is currently not an option. As a result, the focus for improving strains for microbial fermentation is on classical strain improvement methods. Here we review the use of these techniques to improve the functionality of lactic acid bacteria starter cultures for application in industrial-scale food production. Methods will be described for improving the bacteriophage resistance of specific strains, improving their texture forming ability, increasing their tolerance to stress and modulating both the amount and identity of acids produced during fermentation. In addition, approaches to eliminating undesirable properties will be described. Techniques include random mutagenesis, directed evolution and dominant selection schemes. PMID:25186244

  7. From bacteria to humans: lessons learned from a reductionist's view of ultraviolet light-induced DNA lesions.

    PubMed

    Trosko, J E

    2001-01-01

    What follows is a personal remembrance of how Dr. Richard Setlow influenced me as a young postdoctoral fellow at Oak Ridge National laboratory between 1963 and 1966. The narrative tries to place my "maturation" as a young, inexperienced scientist in the context of the cultural upheaval caused by the Vietnam war, of a Northerner facing a "culture-shock" living in the South and in a revolution in molecular and radiation biology taking place at Oak Ridge National Laboratory at that time. The unique historic juxtaposition of Dr. Setlow's contribution of the discovery of UV-induced pyrimidine dimers in bacterial DNA, being potentially the molecular lesion responsible for cell killing and mutagenesis, occurring as I was at Oak Ridge, and the wonderful working relationship I had with William Carrier, his technician, led to our discovery with James Regan that normal human cells repaired these lesion from their DNA. Amazingly, because of Dr. Setlow's challenge to me about my thoughts of the implications of his findings in bacteria, the chance visit to Oak Ridge National Laboratory by Dr. James Cleaver and my background as a human geneticist provided me the extraordinary opportunity to carry out a collaboration to test if human cancer prone syndromes might be deficient in the repair of these UV-induced DNA lesions. With our finding that the direct demonstration of a lack of repair of UV-induced pyrimidine dimers in cells from the skin cancer prone syndrome, xeroderma pigmentosum, opened up a new paradigm for the understanding of the molecular mechanism of carcinogenesis of both radiation and chemical carcinogenesis. From this investigator's vantage point in the history of the understanding of carcinogenesis, which has led us to the present point of "oncogenes" and "tumor suppressor genes", the old adage by Newton, "I only saw further because I stood on the shoulder of giants", is so applicable here. Dr. Setlow's shoulders were indeed among those of all of us that have made

  8. In Situ Detection of Bacteria within Paraffin-embedded Tissues Using a Digoxin-labeled DNA Probe Targeting 16S rRNA.

    PubMed

    Choi, Yun Sik; Kim, Yong Cheol; Baek, Keum Jin; Choi, Youngnim

    2015-01-01

    The presence of bacteria within the pocket epithelium and underlying connective tissue in gingival biopsies from patients with periodontitis has been reported using various methods, including electron microscopy, immunohistochemistry or immunofluorescence using bacteria-specific antibodies, and fluorescent in situ hybridization (FISH) using a fluorescence-labeled oligonucleotide probe. Nevertheless, these methods are not widely used due to technical limitation or difficulties. Here a method to localize bacteria within paraffin-embedded tissues using DIG-labeled DNA probes has been introduced. The paraffin-embedded tissues are the most common form of biopsy tissues available from pathology banks. Bacteria can be detected either in a species-specific or universal manner. Bacterial signals are detected as either discrete forms (coccus, rod, fusiform, and hairy form) of bacteria or dispersed forms. The technique allows other histological information to be obtained: the epithelia, connective tissue, inflammatory infiltrates, and blood vessels are well distinguished. This method can be used to study the role of bacteria in various diseases, such as periodontitis, cancers, and inflammatory immune diseases. PMID:26066790

  9. Detection of Sequence Polymorphism in Rubus Occidentalis L. Monomorphic Microsatellite Markers by High Resolution Melting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microsatellite, or simple sequence repeat (SSR) markers, are valuable as co-dominant genetic markers with a variety of applications such as DNA fingerprinting, linkage mapping, and population structure analysis. Development of microsatellite primers through the identification of appropriate repeate...

  10. Distribution of human-specific bacteroidales and fecal indicator bacteria in an urban watershed impacted by sewage pollution, determined using RNA- and DNA-based quantitative PCR assays.

    PubMed

    Kapoor, Vikram; Pitkänen, Tarja; Ryu, Hodon; Elk, Michael; Wendell, David; Santo Domingo, Jorge W

    2015-01-01

    The identification of fecal pollution sources is commonly carried out using DNA-based methods. However, there is evidence that DNA can be associated with dead cells or present as "naked DNA" in the environment. Furthermore, it has been shown that rRNA-targeted reverse transcription-quantitative PCR (RT-qPCR) assays can be more sensitive than rRNA gene-based qPCR assays since metabolically active cells usually contain higher numbers of ribosomes than quiescent cells. To this end, we compared the detection frequency of host-specific markers and fecal bacteria using RNA-based RT-qPCR and DNA-based qPCR methods for water samples collected in sites impacted by combined sewer overflows. As a group, fecal bacteria were more frequently detected in most sites using RNA-based methods. Specifically, 8, 87, and 85% of the samples positive for general enterococci, Enterococcus faecalis, and Enterococcus faecium markers, respectively, were detected using RT-qPCR, but not with the qPCR assay counterpart. On average, two human-specific Bacteroidales markers were not detected when using DNA in 12% of the samples, while they were positive for all samples when using RNA (cDNA) as the template. Moreover, signal intensity was up to three orders of magnitude higher in RT-qPCR assays than in qPCR assays. The human-specific Bacteroidales markers exhibited moderate correlation with conventional fecal indicators using RT-qPCR results, suggesting the persistence of nonhuman sources of fecal pollution or the presence of false-positive signals. In general, the results from this study suggest that RNA-based assays can increase the detection sensitivity of fecal bacteria in urban watersheds impacted with human fecal sources. PMID:25326295

  11. Image findings of monomorphic non-hogdkin lymphoproliferative disorder in a post renal transplant patient diagnosed with fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography

    PubMed Central

    Kamaleshwaran, Koramadai Karuppusamy; Rajasekar, Thirugnanam; Shibu, Deepu; Radhakrishnan, Edathurthy Kalarikal; Shinto, Ajit Sugunan

    2014-01-01

    Post-transplant lymphoproliferative disorder (PTLD) is a heterogeneous group of lymphoid proliferations caused by immunosuppression after solid organ or bone marrow transplantation. PTLD is categorized by early lesion, polymorphic PTLD and monomorphic PTLD. Fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography (F-18 FDG-PET/CT) scans have clinical significance in the evaluation of PTLD following renal transplantation. We report imaging findings of a monomorphic non-Hodgkin lymphoma, post renal transplant seen on FDG PET/CT in a 32-year-old lactating woman. Whole body FDG- ET/CT demonstrated uptake in right external iliac and inguinal lymph nodes. PMID:25210292

  12. Image findings of monomorphic non-hogdkin lymphoproliferative disorder in a post renal transplant patient diagnosed with fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography.

    PubMed

    Kamaleshwaran, Koramadai Karuppusamy; Rajasekar, Thirugnanam; Shibu, Deepu; Radhakrishnan, Edathurthy Kalarikal; Shinto, Ajit Sugunan

    2014-07-01

    Post-transplant lymphoproliferative disorder (PTLD) is a heterogeneous group of lymphoid proliferations caused by immunosuppression after solid organ or bone marrow transplantation. PTLD is categorized by early lesion, polymorphic PTLD and monomorphic PTLD. Fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography (F-18 FDG-PET/CT) scans have clinical significance in the evaluation of PTLD following renal transplantation. We report imaging findings of a monomorphic non-Hodgkin lymphoma, post renal transplant seen on FDG PET/CT in a 32-year-old lactating woman. Whole body FDG- ET/CT demonstrated uptake in right external iliac and inguinal lymph nodes. PMID:25210292

  13. Oligo-DNA Custom Macroarray for Monitoring Major Pathogenic and Non-Pathogenic Fungi and Bacteria in the Phyllosphere of Apple Trees

    PubMed Central

    He, Ying-Hong; Isono, Sayaka; Shibuya, Makoto; Tsuji, Masaharu; Adkar Purushothama, Charith-Raj; Tanaka, Kazuaki; Sano, Teruo

    2012-01-01

    Background To monitor the richness in microbial inhabitants in the phyllosphere of apple trees cultivated under various cultural and environmental conditions, we developed an oligo-DNA macroarray for major pathogenic and non-pathogenic fungi and bacteria inhabiting the phyllosphere of apple trees. Methods and Findings First, we isolated culturable fungi and bacteria from apple orchards by an agar-plate culture method, and detected 32 fungal and 34 bacterial species. Alternaria, Aureobasidium, Cladosporium, Rhodotorula, Cystofilobasidium, and Epicoccum genera were predominant among the fungi, and Bacillus, Pseudomonas, Sphingomonas, Methylobacterium, and Pantoea genera were predominant among the bacteria. Based on the data, we selected 29 major non-pathogenic and 12 phytopathogenic fungi and bacteria as the targets of macroarray. Forty-one species-specific 40-base pair long oligo-DNA sequences were selected from the nucleotide sequences of rDNA-internal transcribed spacer region for fungi and 16S rDNA for bacteria. The oligo-DNAs were fixed on nylon membrane and hybridized with digoxigenin-labeled cRNA probes prepared for each species. All arrays except those for Alternaria, Bacillus, and their related species, were specifically hybridized. The array was sensitive enough to detect 103 CFU for Aureobasidium pullulans and Bacillus cereus. Nucleotide sequencing of 100 each of independent fungal rDNA-ITS and bacterial 16S-rDNA sequences from apple tree was in agreement with the macroarray data obtained using the same sample. Finally, we analyzed the richness in the microbial inhabitants in the samples collected from apple trees in four orchards. Major apple pathogens that cause scab, Alternaria blotch, and Marssonina blotch were detected along with several non-phytopathogenic fungal and bacterial inhabitants. Conclusions The macroarray technique presented here is a strong tool to monitor the major microbial species and the community structures in the phyllosphere of

  14. Hydrocarbon-degrading bacteria enriched by the Deepwater Horizon oil spill identified by cultivation and DNA-SIP

    PubMed Central

    Gutierrez, Tony; Singleton, David R; Berry, David; Yang, Tingting; Aitken, Michael D; Teske, Andreas

    2013-01-01

    The massive influx of crude oil into the Gulf of Mexico during the Deepwater Horizon (DWH) disaster triggered dramatic microbial community shifts in surface oil slick and deep plume waters. Previous work had shown several taxa, notably DWH Oceanospirillales, Cycloclasticus and Colwellia, were found to be enriched in these waters based on their dominance in conventional clone and pyrosequencing libraries and were thought to have had a significant role in the degradation of the oil. However, this type of community analysis data failed to provide direct evidence on the functional properties, such as hydrocarbon degradation of organisms. Using DNA-based stable-isotope probing with uniformly 13C-labelled hydrocarbons, we identified several aliphatic (Alcanivorax, Marinobacter)- and polycyclic aromatic hydrocarbon (Alteromonas, Cycloclasticus, Colwellia)-degrading bacteria. We also isolated several strains (Alcanivorax, Alteromonas, Cycloclasticus, Halomonas, Marinobacter and Pseudoalteromonas) with demonstrable hydrocarbon-degrading qualities from surface slick and plume water samples collected during the active phase of the spill. Some of these organisms accounted for the majority of sequence reads representing their respective taxa in a pyrosequencing data set constructed from the same and additional water column samples. Hitherto, Alcanivorax was not identified in any of the previous water column studies analysing the microbial response to the spill and we discuss its failure to respond to the oil. Collectively, our data provide unequivocal evidence on the hydrocarbon-degrading qualities for some of the dominant taxa enriched in surface and plume waters during the DWH oil spill, and a more complete understanding of their role in the fate of the oil. PMID:23788333

  15. Distribution of Human-Specific Bacteroidales and Fecal Indicator Bacteria in an Urban Watershed Impacted by Sewage Pollution, Determined Using RNA- and DNA-Based Quantitative PCR Assays

    PubMed Central

    Kapoor, Vikram; Pitkänen, Tarja; Ryu, Hodon; Elk, Michael

    2014-01-01

    The identification of fecal pollution sources is commonly carried out using DNA-based methods. However, there is evidence that DNA can be associated with dead cells or present as “naked DNA” in the environment. Furthermore, it has been shown that rRNA-targeted reverse transcription-quantitative PCR (RT-qPCR) assays can be more sensitive than rRNA gene-based qPCR assays since metabolically active cells usually contain higher numbers of ribosomes than quiescent cells. To this end, we compared the detection frequency of host-specific markers and fecal bacteria using RNA-based RT-qPCR and DNA-based qPCR methods for water samples collected in sites impacted by combined sewer overflows. As a group, fecal bacteria were more frequently detected in most sites using RNA-based methods. Specifically, 8, 87, and 85% of the samples positive for general enterococci, Enterococcus faecalis, and Enterococcus faecium markers, respectively, were detected using RT-qPCR, but not with the qPCR assay counterpart. On average, two human-specific Bacteroidales markers were not detected when using DNA in 12% of the samples, while they were positive for all samples when using RNA (cDNA) as the template. Moreover, signal intensity was up to three orders of magnitude higher in RT-qPCR assays than in qPCR assays. The human-specific Bacteroidales markers exhibited moderate correlation with conventional fecal indicators using RT-qPCR results, suggesting the persistence of nonhuman sources of fecal pollution or the presence of false-positive signals. In general, the results from this study suggest that RNA-based assays can increase the detection sensitivity of fecal bacteria in urban watersheds impacted with human fecal sources. PMID:25326295

  16. High resolution melting detects sequence polymorphism in rubus occidentalis L. monomorphic microsatellite markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microsatellite, or simple sequence repeat (SSR) markers, are valuable as co-dominant genetic markers with a variety of applications such as DNA fingerprinting, linkage mapping, and population structure analysis. However, primer pairs designed from the regions that flank SSRs often generate fragment...

  17. Seasonal Sexual Segregation by Monomorphic Sooty Shearwaters Puffinus griseus Reflects Different Reproductive Roles during the Pre-Laying Period

    PubMed Central

    Hedd, April; Montevecchi, William A.; Phillips, Richard A.; Fifield, David A.

    2014-01-01

    Tracking technology has revolutionized knowledge of seabird movements; yet, few studies have examined sex differences in distribution and behavior of small to medium-sized, sexually-monomorphic seabirds. Application of bird-borne geolocation-immersion loggers revealed seasonal segregation in the sexually-monomorphic Sooty Shearwater Puffinus griseus, mainly in the pre-laying period, when there were clear differences in reproductive roles. Shearwaters first returned to the Falkland Islands on 27 Sept±8 d; males, on average, 8 d earlier than females. Prior to egg-laying, distribution at sea, colony attendance and behaviour depended on sex. Males foraged locally over the southern Patagonian Shelf and Burdwood Bank, spending mainly single days at sea and intervening nights in the burrow. Females, who flew for more of the day during this time, foraged in more distant areas of the northern Patagonian Shelf and Argentine Basin that were deeper, warmer and relatively more productive. Attendance of females at the colony was also more variable than that of males and, overall, males were present for significantly more of the pre-laying period (38 vs. 19% of time). Sex differences were reduced following egg-laying, with males and females using similar foraging areas and making trips of similar mean duration in incubation (7.6±2.7 d) and chick-rearing (1.4±1.3 d). Congruence continued into the non-breeding period, with both sexes showing similar patterns of activity and areas of occupancy in the NW Atlantic. Thus, seasonal changes in reproductive roles influenced patterns of sexual segregation; this occurred only early in the season, when male Sooty Shearwaters foraged locally, returning regularly to the colony to defend (or maintain) the burrow or the mate, while females concentrated on building resources for egg development in distant and relatively more productive waters. PMID:24416429

  18. Seasonal sexual segregation by monomorphic Sooty Shearwaters Puffinus griseus reflects different reproductive roles during the pre-laying period.

    PubMed

    Hedd, April; Montevecchi, William A; Phillips, Richard A; Fifield, David A

    2014-01-01

    Tracking technology has revolutionized knowledge of seabird movements; yet, few studies have examined sex differences in distribution and behavior of small to medium-sized, sexually-monomorphic seabirds. Application of bird-borne geolocation-immersion loggers revealed seasonal segregation in the sexually-monomorphic Sooty Shearwater Puffinus griseus, mainly in the pre-laying period, when there were clear differences in reproductive roles. Shearwaters first returned to the Falkland Islands on 27 Sept±8 d; males, on average, 8 d earlier than females. Prior to egg-laying, distribution at sea, colony attendance and behaviour depended on sex. Males foraged locally over the southern Patagonian Shelf and Burdwood Bank, spending mainly single days at sea and intervening nights in the burrow. Females, who flew for more of the day during this time, foraged in more distant areas of the northern Patagonian Shelf and Argentine Basin that were deeper, warmer and relatively more productive. Attendance of females at the colony was also more variable than that of males and, overall, males were present for significantly more of the pre-laying period (38 vs. 19% of time). Sex differences were reduced following egg-laying, with males and females using similar foraging areas and making trips of similar mean duration in incubation (7.6±2.7 d) and chick-rearing (1.4±1.3 d). Congruence continued into the non-breeding period, with both sexes showing similar patterns of activity and areas of occupancy in the NW Atlantic. Thus, seasonal changes in reproductive roles influenced patterns of sexual segregation; this occurred only early in the season, when male Sooty Shearwaters foraged locally, returning regularly to the colony to defend (or maintain) the burrow or the mate, while females concentrated on building resources for egg development in distant and relatively more productive waters. PMID:24416429

  19. An increase in negative supercoiling in bacteria reveals topology-reacting gene clusters and a homeostatic response mediated by the DNA topoisomerase I gene

    PubMed Central

    Ferrándiz, María-José; Martín-Galiano, Antonio J.; Arnanz, Cristina; Camacho-Soguero, Isabel; Tirado-Vélez, José-Manuel; de la Campa, Adela G.

    2016-01-01

    We studied the transcriptional response to an increase in DNA supercoiling in Streptococcus pneumoniae by using seconeolitsine, a new topoisomerase I inhibitor. A homeostatic response allowing recovery of supercoiling was observed in cells treated with subinhibitory seconeolitsine concentrations. Supercoiling increases of 40.7% (6 μM) and 72.9% (8 μM) were lowered to 8.5% and 44.1%, respectively. Likewise, drug removal facilitated the recovery of cell viability and DNA-supercoiling. Transcription of topoisomerase I depended on the supercoiling level. Also specific binding of topoisomerase I to the gyrase A gene promoter was detected by chromatin-immunoprecipitation. The transcriptomic response to 8 μM seconeolitsine had two stages. An early stage, associated to an increase in supercoiling, affected 10% of the genome. A late stage, manifested by supercoiling recovery, affected 2% of the genome. Nearly 25% of the early responsive genes formed 12 clusters with a coordinated transcription. Clusters were 6.7–31.4 kb in length and included 9–22 responsive genes. These clusters partially overlapped with those observed under DNA relaxation, suggesting that bacteria manage supercoiling stress using pathways with common components. This is the first report of a coordinated global transcriptomic response that is triggered by an increase in DNA supercoiling in bacteria. PMID:27378778

  20. The High Prevalence and Diversity of Chlamydiales DNA within Ixodes ricinus Ticks Suggest a Role for Ticks as Reservoirs and Vectors of Chlamydia-Related Bacteria

    PubMed Central

    Pilloux, Ludovic; Aeby, Sébastien; Gaümann, Rahel; Burri, Caroline; Beuret, Christian

    2015-01-01

    The Chlamydiales order is composed of nine families of strictly intracellular bacteria. Among them, Chlamydia trachomatis, C. pneumoniae, and C. psittaci are established human pathogens, whereas Waddlia chondrophila and Parachlamydia acanthamoebae have emerged as new pathogens in humans. However, despite their medical importance, their biodiversity and ecology remain to be studied. Even if arthropods and, particularly, ticks are well known to be vectors of numerous infectious agents such as viruses and bacteria, virtually nothing is known about ticks and chlamydia. This study investigated the prevalence of Chlamydiae in ticks. Specifically, 62,889 Ixodes ricinus ticks, consolidated into 8,534 pools, were sampled in 172 collection sites throughout Switzerland and were investigated using pan-Chlamydiales quantitative PCR (qPCR) for the presence of Chlamydiales DNA. Among the pools, 543 (6.4%) gave positive results and the estimated prevalence in individual ticks was 0.89%. Among those pools with positive results, we obtained 16S rRNA sequences for 359 samples, allowing classification of Chlamydiales DNA at the family level. A high level of biodiversity was observed, since six of the nine families belonging to the Chlamydiales order were detected. Those most common were Parachlamydiaceae (33.1%) and Rhabdochlamydiaceae (29.2%). “Unclassified Chlamydiales” (31.8%) were also often detected. Thanks to the huge amount of Chlamydiales DNA recovered from ticks, this report opens up new perspectives on further work focusing on whole-genome sequencing to increase our knowledge about Chlamydiales biodiversity. This report of an epidemiological study also demonstrates the presence of Chlamydia-related bacteria within Ixodes ricinus ticks and suggests a role for ticks in the transmission of and as a reservoir for these emerging pathogenic Chlamydia-related bacteria. PMID:26386066

  1. PprA Protein Is Involved in Chromosome Segregation via Its Physical and Functional Interaction with DNA Gyrase in Irradiated Deinococcus radiodurans Bacteria

    PubMed Central

    Devigne, Alice; Guérin, Philippe; Lisboa, Johnny; Quevillon-Cheruel, Sophie; Armengaud, Jean; Sommer, Suzanne; Bouthier de la Tour, Claire

    2016-01-01

    ABSTRACT PprA, a radiation-induced Deinococcus-specific protein, was previously shown to be required for cell survival and accurate chromosome segregation after exposure to ionizing radiation. Here, we used an in vivo approach to determine, by shotgun proteomics, putative PprA partners coimmunoprecipitating with PprA when cells were exposed to gamma rays. Among them, we found the two subunits of DNA gyrase and, thus, chose to focus our work on characterizing the activities of the deinococcal DNA gyrase in the presence or absence of PprA. Loss of PprA rendered cells hypersensitive to novobiocin, an inhibitor of the B subunit of DNA gyrase. We showed that treatment of bacteria with novobiocin resulted in induction of the radiation desiccation response (RDR) regulon and in defects in chromosome segregation that were aggravated by the absence of PprA. In vitro, the deinococcal DNA gyrase, like other bacterial DNA gyrases, possesses DNA negative supercoiling and decatenation activities. These two activities are inhibited in vitro by novobiocin and nalidixic acid, whereas PprA specifically stimulates the decatenation activity of DNA gyrase. Together, these results suggest that PprA plays a major role in chromosome decatenation via its interaction with the deinococcal DNA gyrase when D. radiodurans cells are recovering from exposure to ionizing radiation. IMPORTANCE D. radiodurans is one of the most radiation-resistant organisms known. This bacterium is able to cope with high levels of DNA lesions generated by exposure to extreme doses of ionizing radiation and to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Here, we identified partners of PprA, a radiation-induced Deinococcus-specific protein, previously shown to be required for radioresistance. Our study leads to three main findings: (i) PprA interacts with DNA gyrase after irradiation, (ii) treatment of cells with novobiocin results in defects in chromosome segregation

  2. Characterization of single-stranded DNA-binding proteins from the psychrophilic bacteria Desulfotalea psychrophila, Flavobacterium psychrophilum, Psychrobacter arcticus, Psychrobacter cryohalolentis, Psychromonas ingrahamii, Psychroflexus torquis, and Photobacterium profundum

    PubMed Central

    2014-01-01

    Background Single-stranded DNA-binding proteins (SSBs) play essential roles in DNA replication, recombination and repair in Bacteria, Archaea and Eukarya. In recent years, there has been an increasing interest in SSBs, since they find numerous applications in diverse molecular biology and analytical methods. Results We report the characterization of single-stranded DNA-binding proteins from the psychrophilic bacteria Desulfotalea psychrophila (DpsSSB), Flavobacterium psychrophilum (FpsSSB), Psychrobacter arcticus (ParSSB), Psychrobacter cryohalolentis (PcrSSB), Psychromonas ingrahamii (PinSSB), Photobacterium profundum (PprSSB), and Psychroflexus torquis (PtoSSB). The proteins show a high differential within the molecular mass of their monomers and the length of their amino acid sequences. The high level of identity and similarity in respect to the EcoSSB is related to the OB-fold and some of the last amino acid residues. They are functional as homotetramers, with each monomer encoding one single stranded DNA binding domain (OB-fold). The fluorescence titrations indicated that the length of the ssDNA-binding site size is approximately 30 ± 2 nucleotides for the PinSSB, 31 ± 2 nucleotides for the DpsSSB, and 32 ± 2 nucleotides for the ParSSB, PcrSSB, PprSSB and PtoSSB. They also demonstrated that it is salt independent. However, when the ionic strength was changed from low salt to high, binding-mode transition was observed for the FpsSSB, at 31 ± 2 nucleotides and 45 ± 2 nucleotides, respectively. As expected, the SSB proteins under study cause duplex DNA destabilization. The greatest decrease in duplex DNA melting temperature was observed in the presence of the PtoSSB 17°C. The SSBs in question possess relatively high thermostability for proteins derived from cold-adapted bacteria. Conclusion The results showed that SSB proteins from psychrophilic microorganisms are typical bacterial SSBs and possess relatively high thermostability

  3. Bacteria capable of degrading anthracene, phenanthrene, and fluoranthene as revealed by DNA based stable-isotope probing in a forest soil.

    PubMed

    Song, Mengke; Jiang, Longfei; Zhang, Dayi; Luo, Chunling; Wang, Yan; Yu, Zhiqiang; Yin, Hua; Zhang, Gan

    2016-05-01

    Information on microorganisms possessing the ability to metabolize different polycyclic aromatic hydrocarbons (PAHs) in complex environments helps in understanding PAHs behavior in natural environment and developing bioremediation strategies. In the present study, stable-isotope probing (SIP) was applied to investigate degraders of PAHs in a forest soil with the addition of individually (13)C-labeled phenanthrene, anthracene, and fluoranthene. Three distinct phylotypes were identified as the active phenanthrene-, anthracene- and fluoranthene-degrading bacteria. The putative phenanthrene degraders were classified as belonging to the genus Sphingomona. For anthracene, bacteria of the genus Rhodanobacter were the putative degraders, and in the microcosm amended with fluoranthene, the putative degraders were identified as belonging to the phylum Acidobacteria. Our results from DNA-SIP are the first to directly link Rhodanobacter- and Acidobacteria-related bacteria with anthracene and fluoranthene degradation, respectively. The results also illustrate the specificity and diversity of three- and four-ring PAHs degraders in forest soil, contributes to our understanding on natural PAHs biodegradation processes, and also proves the feasibility and practicality of DNA-based SIP for linking functions with identity especially uncultured microorganisms in complex microbial biota. PMID:26808242

  4. History of infection with different male-killing bacteria in the two-spot ladybird beetle Adalia bipunctata revealed through mitochondrial DNA sequence analysis.

    PubMed Central

    v d Schulenburg, J Hinrich G; Hurst, Gregory D D; Tetzlaff, Dagmar; Booth, Gwendolen E; Zakharov, Ilia A; Majerus, Michael E N

    2002-01-01

    The two-spot ladybird beetle Adalia bipunctata (Coleoptera: Coccinellidae) is host to four different intracellular maternally inherited bacteria that kill male hosts during embryogenesis: one each of the genus Rickettsia (alpha-Proteobacteria) and Spiroplasma (Mollicutes) and two distinct strains of Wolbachia (alpha-Proteobacteria). The history of infection with these male-killers was explored using host mitochondrial DNA, which is linked with the bacteria due to joint maternal inheritance. Two variable regions, 610 bp of cytochrome oxidase subunit I and 563 bp of NADH dehydrogenase subunit 5, were isolated from 52 A. bipunctata with known infection status and different geographic origin from across Eurasia. Two outgroup taxa were also considered. DNA sequence analysis revealed that the distribution of mitochondrial haplotypes is not associated with geography. Rather, it correlates with infection status, confirming linkage disequilibrium between mitochondria and bacteria. The data strongly suggest that the Rickettsia male-killer invaded the host earlier than the other taxa. Further, the male-killing Spiroplasma is indicated to have undergone a recent and extensive spread through host populations. In general, male-killing in A. bipunctata seems to represent a highly dynamic system, which should prove useful in future studies on the evolutionary dynamics of this peculiar type of symbiont-host association. PMID:11901123

  5. Time-Resolved DNA Stable Isotope Probing Links Desulfobacterales- and Coriobacteriaceae-Related Bacteria to Anaerobic Degradation of Benzene under Methanogenic Conditions

    PubMed Central

    Noguchi, Mana; Kurisu, Futoshi; Kasuga, Ikuro; Furumai, Hiroaki

    2014-01-01

    To identify the microorganisms involved in benzene degradation, DNA-stable isotope probing (SIP) with 13C-benzene was applied to a methanogenic benzene-degrading enrichment culture. Pyrosequencing of ribosomal RNA (rRNA) gene sequences revealed that the community structure was highly complex in spite of a 3-year incubation only with benzene. The culture degraded 98% of approximately 1 mM 13C-benzene and mineralized 72% of that within 63 d. The terminal restriction fragment length polymorphism (T-RFLP) profiles of the buoyant density fractions revealed the incorporation of 13C into two phylotypes after 64 d. These two phylotypes were determined to be Desulfobacterales- and Coriobacteriaceae-related bacteria by cloning and sequencing of the 16S rRNA gene in the 13C-labeled DNA abundant fraction. Comparative pyrosequencing analysis of the buoyant density fractions of 12C- and 13C-labeled samples indicated the incorporation of 13C into three bacterial and one archaeal OTUs related to Desulfobacterales, Coriobacteriales, Rhodocyclaceae, and Methanosarcinales. The first two OTUs included the bacteria detected by T-RFLP-cloning-sequencing analysis. Furthermore, time-resolved SIP analysis confirmed that the activity of all these microbes appeared at the earliest stage of degradation. In this methanogenic culture, Desulfobacterales- and Coriobacteriaceae-related bacteria were most likely to be the major benzene degraders. PMID:24909708

  6. Disordered nucleiome: Abundance of intrinsic disorder in the DNA- and RNA-binding proteins in 1121 species from Eukaryota, Bacteria and Archaea.

    PubMed

    Wang, Chen; Uversky, Vladimir N; Kurgan, Lukasz

    2016-05-01

    Intrinsically disordered proteins (IDPs) are abundant in various proteomes, where they play numerous important roles and complement biological activities of ordered proteins. Among functions assigned to IDPs are interactions with nucleic acids. However, often, such assignments are made based on the guilty-by-association principle. The validity of the extension of these correlations to all nucleic acid binding proteins has never been analyzed on a large scale across all domains of life. To fill this gap, we perform a comprehensive computational analysis of the abundance of intrinsic disorder and intrinsically disordered domains in nucleiomes (∼548 000 nucleic acid binding proteins) of 1121 species from Archaea, Bacteria and Eukaryota. Nucleiome is a whole complement of proteins involved in interactions with nucleic acids. We show that relative to other proteins in the corresponding proteomes, the DNA-binding proteins have significantly increased disorder content and are significantly enriched in disordered domains in Eukaryotes but not in Archaea and Bacteria. The RNA-binding proteins are significantly enriched in the disordered domains in Bacteria, Archaea and Eukaryota, while the overall abundance of disorder in these proteins is significantly increased in Bacteria, Archaea, animals and fungi. The high abundance of disorder in nucleiomes supports the notion that the nucleic acid binding proteins often require intrinsic disorder for their functions and regulation. PMID:27037624

  7. Silent subtype 3 pituitary adenomas are not always silent and represent poorly differentiated monomorphous plurihormonal Pit-1 lineage adenomas.

    PubMed

    Mete, Ozgur; Gomez-Hernandez, Karen; Kucharczyk, Walter; Ridout, Rowena; Zadeh, Gelareh; Gentili, Fred; Ezzat, Shereen; Asa, Sylvia L

    2016-02-01

    Originally classified as a variant of silent corticotroph adenoma, silent subtype 3 adenomas are a distinct histologic variant of pituitary adenoma of unknown cytogenesis. We reviewed the clinical, biochemical, radiological, immunohistochemical and ultrastructural features of 31 silent subtype 3 adenomas to clarify their cellular origin. Among 25 with clinical and/or radiological data, all were macroadenomas; there was cavernous sinus invasion in 30% of cases and involvement of the clivus in 17% of cases. Almost 90% of patients were symptomatic; 67% had mass effect symptoms, 37% were hypogonadal and 8% had secondary adrenal insufficiency. Significant hormonal excess in 29% of cases included hyperthyroidism in 17%, acromegaly in 8% and hyperprolactinemia above 150 μg/l in 4%. Two individuals with hyperprolactinemia who were younger than 30 years had multiple endocrine neoplasia type 1. Immunohistochemically, all 31 tumors were diffusely positive for the pituitary lineage-specific transcription factor Pit-1. Although three only expressed Pit-1, others revealed variable positivity for one or more hormones of Pit-1 cell lineage (growth hormone, prolactin, thyroid-stimulating hormone), as well as alpha-subunit and estrogen receptor. Most tumors exhibited perinuclear reactivity for keratins with the CAM5.2 antibody; scattered fibrous bodies were noted in five (16%) tumors. The mean MIB-1 labeling index was 4% (range, 1-9%). Fourteen cases examined by electron microscopy were composed of a monomorphous population of large polygonal or elongated cells with nuclear spheridia. Sixty-five percent of patients had residual disease after surgery; after a mean follow-up of 48.4 months (median 41.5; range=2-171) disease progression was documented in 53% of those cases. These data identify silent subtype 3 adenomas as aggressive monomorphous plurihormonal adenomas of Pit-1 lineage that may be associated with hyperthyroidism, acromegaly or galactorrhea and amenorrhea. Our

  8. Development and applications of a DNA labeling method with magnetic nanoparticles to study the role of horizontal gene transfer events between bacteria in soil pollutant bioremediation processes.

    PubMed

    Pivetal, J; Frénéa-Robin, M; Haddour, N; Vézy, C; Zanini, L F; Ciuta, G; Dempsey, N M; Dumas-Bouchiat, F; Reyne, G; Bégin-Colin, S; Felder-Flesh, D; Ghobril, C; Pourroy, G; Simonet, P

    2015-12-01

    Horizontal gene transfers are critical mechanisms of bacterial evolution and adaptation that are involved to a significant level in the degradation of toxic molecules such as xenobiotic pesticides. However, understanding how these mechanisms are regulated in situ and how they could be used by man to increase the degradation potential of soil microbes is compromised by conceptual and technical limitations. This includes the physical and chemical complexity and heterogeneity in such environments leading to an extreme bacterial taxonomical diversity and a strong redundancy of genes and functions. In addition, more than 99 % of soil bacteria fail to develop colonies in vitro, and even new DNA-based investigation methods (metagenomics) are not specific and sensitive enough to consider lysis recalcitrant bacteria and those belonging to the rare biosphere. The objective of the ANR funded project “Emergent” was to develop a new culture independent approach to monitor gene transfer among soil bacteria by labeling plasmid DNA with magnetic nanoparticles in order to specifically capture and isolate recombinant cells using magnetic microfluidic devices. We showed the feasibility of the approach by using electrotransformation to transform a suspension of Escherichia coli cells with biotin-functionalized plasmid DNA molecules linked to streptavidin-coated superparamagnetic nanoparticles. Our results have demonstrated that magnetically labeled cells could be specifically retained on micromagnets integrated in a microfluidic channel and that an efficient selective separation can be achieved with the microfluidic device. Altogether, the project offers a promising alternative to traditional culture-based approaches for deciphering the extent of horizontal gene transfer events mediated by electro or natural genetic transformation mechanisms in complex environments such as soil. PMID:26498963

  9. A Novel High-Throughput Cell-Based Assay Aimed at Identifying Inhibitors of DNA Metabolism in Bacteria

    PubMed Central

    Fan, Jun; de Jonge, Boudewijn L. M.; MacCormack, Kathy; Sriram, Shubha; McLaughlin, Robert E.; Plant, Helen; Preston, Marian; Fleming, Paul R.; Albert, Robert; Foulk, Melinda

    2014-01-01

    Bacterial biosensor strains can be useful tools for the discovery and characterization of antibacterial compounds. A plasmid-based reporter vector containing a transcriptional fusion between the recA promoter and green fluorescence protein gene was introduced into an Escherichia coli ΔtolC strain to create a biosensor strain that selectively senses inhibitors of DNA metabolism via the SOS response. The strain was used to develop a high-throughput assay to identify new inhibitors of DNA metabolism. Screening of the AstraZeneca compound library with this strain identified known inhibitors of DNA metabolism, as well as novel chemotypes. The cellular target of one novel series was elucidated as DNA gyrase through genetic characterization of laboratory-generated resistant mutants followed by 50% inhibitory concentration measurements in a DNA gyrase activity assay. These studies validated the use of this antibiotic biosensor strain to identify novel selective inhibitors of DNA metabolism by high-throughput screening. PMID:25246396

  10. Kinetics of killing Listeria monocytogenes by macrophages: correlation of /sup 3/H-DNA release from labeled bacteria and changes in numbers of viable organisms by mathematical model

    SciTech Connect

    Davies, W.A.

    1982-12-01

    Conventional methods of assessing antibacterial activities of macrophages by viable counting are limited by the precision of the statistics and are difficult to interpret quantitatively because of unrestrained extracellular growth of bacteria. An alternative technique based on the release of radioactive DNA from labeled bacteria has been offered as overcoming these drawbacks. To assess it for use with macrophages I have made a correlation with the conventional viable counting method using a mathematical model. Opsonized Listeria monocytogenes labeled with /sup 3/H-thymidine were exposed to rat macrophages for periods up to 4 hr. Numbers of viable bacteria determined after sonication increased exponentially in the absence of live cells and this growth rate was progressively inhibited by increasing numbers of macrophages. After a lag period of 30-60 min soluble /sup 3/H appeared in the supernatant, the amount increasing with time and numbers of macrophages. To correlate these data I developed a mathematical model that considered that changes in numbers of viable organisms were due to the difference between rates of 1) growth of extracellular bacteria and 2) killing within the macrophage. On the basis of this model curves of best fit to the viable counts data were used to predict the release of radioactivity, assuming that death of a bacterium led to the total release of its label. These predictions and the experimental data agreed well, the lag period of 30-60 min between death of the bacterium and release of radioactivity being consistent with intracellular digestion. Release of soluble radioactivity appears to be an accurate reflection of the number of bacteria killed within the macrophage.

  11. Identification of Metabolically Active Bacteria in the Gut of the Generalist Spodoptera littoralis via DNA Stable Isotope Probing Using 13C-Glucose

    PubMed Central

    Boland, Wilhelm

    2013-01-01

    Guts of most insects are inhabited by complex communities of symbiotic nonpathogenic bacteria. Within such microbial communities it is possible to identify commensal or mutualistic bacteria species. The latter ones, have been observed to serve multiple functions to the insect, i.e. helping in insect reproduction1, boosting the immune response2, pheromone production3, as well as nutrition, including the synthesis of essential amino acids4, among others.     Due to the importance of these associations, many efforts have been made to characterize the communities down to the individual members. However, most of these efforts were either based on cultivation methods or relied on the generation of 16S rRNA gene fragments which were sequenced for final identification. Unfortunately, these approaches only identified the bacterial species present in the gut and provided no information on the metabolic activity of the microorganisms. To characterize the metabolically active bacterial species in the gut of an insect, we used stable isotope probing (SIP) in vivo employing 13C-glucose as a universal substrate. This is a promising culture-free technique that allows the linkage of microbial phylogenies to their particular metabolic activity. This is possible by tracking stable, isotope labeled atoms from substrates into microbial biomarkers, such as DNA and RNA5. The incorporation of 13C isotopes into DNA increases the density of the labeled DNA compared to the unlabeled (12C) one. In the end, the 13C-labeled DNA or RNA is separated by density-gradient ultracentrifugation from the 12C-unlabeled similar one6. Subsequent molecular analysis of the separated nucleic acid isotopomers provides the connection between metabolic activity and identity of the species. Here, we present the protocol used to characterize the metabolically active bacteria in the gut of a generalist insect (our model system), Spodoptera littoralis (Lepidoptera, Noctuidae). The phylogenetic analysis of the DNA

  12. Sex-specific senescence in body mass of a monogamous and monomorphic mammal: the case of Alpine marmots.

    PubMed

    Tafani, Marion; Cohas, Aurélie; Bonenfant, Christophe; Gaillard, Jean-Michel; Lardy, Sophie; Allainé, Dominique

    2013-06-01

    Sex-specific senescence has been commonly reported in highly dimorphic and polygynous species. However, whether between-sex differences in senescence occur in monogamous and monomorphic species is poorly known. In this study, we used an extensive dataset of 20 years of mass measurements on free-ranging male and female Alpine marmots (Marmota marmota), a medium-sized, long-lived, social and hibernating mammal, to assess sex-specific patterns of senescence in body mass. We tested for the occurrence of both a decrease in body mass scaled to absolute age (called chronological senescence) and a decrease in body mass scaled to individual age at death (called terminal decline). Whereas males showed evidence of both chronological senescence and terminal decline in body mass, females did not show any detectable senescence in body mass. This unexpected between-sex difference of senescence in a species subject to weak sexual selection might be shaped either by costs of an asymmetric intra-sex competition for mates or by costs of social thermoregulation. PMID:23224789

  13. The Structure and Stability of the Monomorphic HLA-G Are Influenced by the Nature of the Bound Peptide

    SciTech Connect

    Walpole, Nicholas G.; Kjer-Nielsen, Lars; Kostenko, Lyudmila; McCluskey, James; Brooks, Andrew G.; Rossjohn, Jamie; Clements, Craig S.

    2010-03-26

    The highly polymorphic major histocompatibility complex class Ia (MHC-Ia) molecules present a broad array of peptides to the clonotypically diverse {alpha}{beta} T-cell receptors. In contrast, MHC-Ib molecules exhibit limited polymorphism and bind a more restricted peptide repertoire, in keeping with their major role in innate immunity. Nevertheless, some MHC-Ib molecules do play a role in adaptive immunity. While human leukocyte antigen E (HLA-E), the MHC-Ib molecule, binds a very restricted repertoire of peptides, the peptide binding preferences of HLA-G, the class Ib molecule, are less stringent, although the basis by which HLA-G can bind various peptides is unclear. To investigate how HLA-G can accommodate different peptides, we compared the structure of HLA-G bound to three naturally abundant self-peptides (RIIPRHLQL, KGPPAALTL and KLPQAFYIL) and their thermal stabilities. The conformation of HLA-G{sup KGPPAALTL} was very similar to that of the HLA-G{sup RIIPRHLQL} structure. However, the structure of HLA-G{sup KLPQAFYIL} not only differed in the conformation of the bound peptide but also caused a small shift in the {alpha}2 helix of HLA-G. Furthermore, the relative stability of HLA-G was observed to be dependent on the nature of the bound peptide. These peptide-dependent effects on the substructure of the monomorphic HLA-G are likely to impact on its recognition by receptors of both innate and adaptive immune systems.

  14. Common mechanisms of DNA translocation motors in bacteria and viruses using one-way revolution mechanism without rotation.

    PubMed

    Guo, Peixuan; Zhao, Zhengyi; Haak, Jeannie; Wang, Shaoying; Wu, Dong; Meng, Bing; Weitao, Tao

    2014-01-01

    Biomotors were once described into two categories: linear motor and rotation motor. Recently, a third type of biomotor with revolution mechanism without rotation has been discovered. By analogy, rotation resembles the Earth rotating on its axis in a complete cycle every 24h, while revolution resembles the Earth revolving around the Sun one circle per 365 days (see animations http://nanobio.uky.edu/movie.html). The action of revolution that enables a motor free of coiling and torque has solved many puzzles and debates that have occurred throughout the history of viral DNA packaging motor studies. It also settles the discrepancies concerning the structure, stoichiometry, and functioning of DNA translocation motors. This review uses bacteriophages Phi29, HK97, SPP1, P22, T4, and T7 as well as bacterial DNA translocase FtsK and SpoIIIE or the large eukaryotic dsDNA viruses such as mimivirus and vaccinia virus as examples to elucidate the puzzles. These motors use ATPase, some of which have been confirmed to be a hexamer, to revolve around the dsDNA sequentially. ATP binding induces conformational change and possibly an entropy alteration in ATPase to a high affinity toward dsDNA; but ATP hydrolysis triggers another entropic and conformational change in ATPase to a low affinity for DNA, by which dsDNA is pushed toward an adjacent ATPase subunit. The rotation and revolution mechanisms can be distinguished by the size of channel: the channels of rotation motors are equal to or smaller than 2 nm, that is the size of dsDNA, whereas channels of revolution motors are larger than 3 nm. Rotation motors use parallel threads to operate with a right-handed channel, while revolution motors use a left-handed channel to drive the right-handed DNA in an anti-chiral arrangement. Coordination of several vector factors in the same direction makes viral DNA-packaging motors unusually powerful and effective. Revolution mechanism that avoids DNA coiling in translocating the lengthy genomic

  15. A non-invasive method for studying viral DNA delivery to bacteria reveals key requirements for phage SPP1 DNA entry in Bacillus subtilis cells.

    PubMed

    Fernandes, Sofia; Labarde, Audrey; Baptista, Catarina; Jakutytè, Lina; Tavares, Paulo; São-José, Carlos

    2016-08-01

    Bacteriophages use most frequently a tail apparatus to create a channel across the entire bacterial cell envelope to transfer the viral genome to the host cell cytoplasm, initiating infection. Characterization of this critical step remains a major challenge due to the difficulty to monitor DNA entry in the bacterium and its requirements. In this work we developed a new method to study phage DNA entry that has the potential to be extended to many tailed phages. Its application to study genome delivery of bacteriophage SPP1 into Bacillus subtilis disclosed a key role of the host cell membrane potential in the DNA entry process. An energized B. subtilis membrane and a millimolar concentration of calcium ions are shown to be major requirements for SPP1 DNA entry following the irreversible binding of phage particles to the receptor YueB. PMID:27179995

  16. Similarities between the DNA replication initiators of Gram-negative bacteria plasmids (RepA) and eukaryotes (Orc4p)/archaea (Cdc6p).

    PubMed

    Giraldo, R; Diaz-Orejas, R

    2001-04-24

    The proteins responsible for the initiation of DNA replication are thought to be essentially unrelated in bacteria and archaea/eukaryotes. Here we show that RepA, the initiator from the Pseudomonas plasmid pPS10, and the C-terminal domain of ScOrc4p, a subunit of Saccharomyces cerevisiae (Sc) origin recognition complex (ORC), share sequence similarities. Based on biochemical and spectroscopic evidence, these similarities include common structural elements, such as a winged-helix domain and a leucine-zipper dimerization motif. We have also found that ScOrc4p, as previously described for RepA-type initiators, interacts with chaperones of the Hsp70 family both in vitro and in vivo, most probably to regulate the assembly of active ORC. In evolutionary terms, our results are compatible with the recruitment of the same protein module for initiation of DNA replication by the ancestors of present-day Gram-negative bacteria plasmids, archaea, and eukaryotes. PMID:11296251

  17. Analysis of the distribution and evolution of the ATP-dependent DNA ligases of bacteria delineates a distinct phylogenetic group 'Lig E'.

    PubMed

    Williamson, Adele; Hjerde, Erik; Kahlke, Tim

    2016-01-01

    Prior to the discovery of a minimal ATP-dependent DNA ligase in Haemophilus influenzae, bacteria were thought to only possess a NAD-dependent ligase, which was involved in sealing of Okazaki fragments. We now know that a diverse range of bacterial species possess up to six of these accessory bacterial ATP-dependent DNA ligases (b-ADLs), which vary in size and enzymatic domain associations. Here we compare the domain structure of different types of b-ADLs and investigate their distribution among the bacterial domain to describe possible evolutionary trajectories that gave rise to the sequence and structural diversity of these enzymes. Previous biochemical and genetic analyses have delineated three main classes of these enzymes: Lig B, Lig C and Lig D, which appear to have descended from a common ancestor within the bacterial domain. In the present study, we delineate a fourth group of b-ADLs, Lig E, which possesses a number of unique features at the primary and tertiary structural levels. The biochemical characteristics, domain structure and inferred extracellular location sets this group apart from the other b-ADLs. The results presented here indicate that the Lig E type ligases were horizontally transferred into bacteria in a separate event from other b-ADLs possibly from a bacteriophage. PMID:26412580

  18. Common Mechanisms of DNA translocation motors in Bacteria and Viruses Using One-way Revolution Mechanism without Rotation

    PubMed Central

    Guo, Peixuan; Zhao, Zhengyi; Haak, Jeannie; Wang, Shaoying; Weitao, Tao

    2014-01-01

    Biomotors were once classified into two categories: linear motor and rotation motor. For decades, the viral DNA-packaging motor has been popularly believed to be a five-fold rotation motor. Recently, a third type of biomotor with revolution mechanism without rotation has been discovered. By analogy, rotation resembles the Earth rotating on its axis in a complete cycle every 24 hours, while revolution resembles the Earth revolving around the Sun one circle per 365 days (see animations http://nanobio.uky.edu/movie.html). The action of revolution that enables a motor free of coiling and torque has solved many puzzles and debates that have occurred throughout the history of viral DNA packaging motor studies. It also settles the discrepancies concerning the structure, stoichiometry, and functioning of DNA translocation motors. This review uses bacteriophages Phi29, HK97, SPP1, P22, T4, T7 as well as bacterial DNA translocase FtsK and SpoIIIE as examples to elucidate the puzzles. These motors use a ATPase, some of which have been confirmed to be a hexamer, to revolve around the dsDNA sequentially. ATP binding induces conformational change and possibly an entropy alteration in ATPase to a high affinity toward dsDNA; but ATP hydrolysis triggers another entropic and conformational change in ATPase to a low affinity for DNA, by which dsDNA is pushed toward an adjacent ATPase subunit. The rotation and revolution mechanisms can be distinguished by the size of channel: the channels of rotation motors are equal to or smaller than 2 nm, whereas channels of revolution motors are larger than 3 nm. Rotation motors use parallel threads to operate with a right-handed channel, while revolution motors use a left-handed channel to drive the right-handed DNA in an anti-parallel arrangement. Coordination of several vector factors in the same direction makes viral DNA-packaging motors unusually powerful and effective. Revolution mechanism avoids DNA coiling in translocating the lengthy

  19. USE OF COMPETITIVE DNA HYBRIDIZATION TO IDENTIFY DIFFERENCES IN THE GENOMES OF TWO CLOSELY RELATED FECAL INDICATOR BACTERIA

    EPA Science Inventory

    Although recent technological advances in DNA sequencing and computational biology now allow scientists to compare entire microbial genomes, comparisons of closely related bacterial species and individual isolates by whole-genome sequencing approaches remains prohibitively expens...

  20. Seasonal Succession Leads to Habitat-Dependent Differentiation in Ribosomal RNA:DNA Ratios among Freshwater Lake Bacteria

    PubMed Central

    Denef, Vincent J.; Fujimoto, Masanori; Berry, Michelle A.; Schmidt, Marian L.

    2016-01-01

    Relative abundance profiles of bacterial populations measured by sequencing DNA or RNA of marker genes can widely differ. These differences, made apparent when calculating ribosomal RNA:DNA ratios, have been interpreted as variable activities of bacterial populations. However, inconsistent correlations between ribosomal RNA:DNA ratios and metabolic activity or growth rates have led to a more conservative interpretation of this metric as the cellular protein synthesis potential (PSP). Little is known, particularly in freshwater systems, about how PSP varies for specific taxa across temporal and spatial environmental gradients and how conserved PSP is across bacterial phylogeny. Here, we generated 16S rRNA gene sequencing data using simultaneously extracted DNA and RNA from fractionated (free-living and particulate) water samples taken seasonally along a eutrophic freshwater estuary to oligotrophic pelagic transect in Lake Michigan. In contrast to previous reports, we observed frequent clustering of DNA and RNA data from the same sample. Analysis of the overlap in taxa detected at the RNA and DNA level indicated that microbial dormancy may be more common in the estuary, the particulate fraction, and during the stratified period. Across spatiotemporal gradients, PSP was often conserved at the phylum and class levels. PSPs for specific taxa were more similar across habitats in spring than in summer and fall. This was most notable for PSPs of the same taxa when located in the free-living or particulate fractions, but also when contrasting surface to deep, and estuary to Lake Michigan communities. Our results show that community composition assessed by RNA and DNA measurements are more similar than previously assumed in freshwater systems. However, the similarity between RNA and DNA measurements and taxa-specific PSPs that drive community-level similarities are conditional on spatiotemporal factors. PMID:27199936

  1. Seasonal succession leads to habitat-dependent differentiation in ribosomal RNA:DNA ratios among freshwater lake bacteria

    DOE PAGESBeta

    Denef, Vincent J.; Fujimoto, Masanori; Berry, Michelle A.; Schmidt, Marian L.

    2016-04-29

    Relative abundance profiles of bacterial populations measured by sequencing DNA or RNA of marker genes can widely differ. These differences, made apparent when calculating ribosomal RNA:DNA ratios, have been interpreted as variable activities of bacterial populations. However, inconsistent correlations between ribosomal RNA:DNA ratios and metabolic activity or growth rates have led to a more conservative interpretation of this metric as the cellular protein synthesis potential (PSP). Little is known, particularly in freshwater systems, about how PSP varies for specific taxa across temporal and spatial environmental gradients and how conserved PSP is across bacterial phylogeny. Here, we generated 16S rRNA genemore » sequencing data using simultaneously extracted DNA and RNA from fractionated (free-living and particulate) water samples taken seasonally along a eutrophic freshwater estuary to oligotrophic pelagic transect in Lake Michigan. In contrast to previous reports, we observed frequent clustering of DNA and RNA data from the same sample. Analysis of the overlap in taxa detected at the RNA and DNA level indicated that microbial dormancy may be more common in the estuary, the particulate fraction, and during the stratified period. Across spatiotemporal gradients, PSP was often conserved at the phylum and class levels. PSPs for specific taxa were more similar across habitats in spring than in summer and fall. This was most notable for PSPs of the same taxa when located in the free-living or particulate fractions, but also when contrasting surface to deep, and estuary to Lake Michigan communities. Our results show that community composition assessed by RNA and DNA measurements are more similar than previously assumed in freshwater systems. Furthermore, the similarity between RNA and DNA measurements and taxa-specific PSPs that drive community-level similarities are conditional on spatiotemporal factors.« less

  2. Design and Performance Testing of a DNA Extraction Assay for Sensitive and Reliable Quantification of Acetic Acid Bacteria Directly in Red Wine Using Real Time PCR

    PubMed Central

    Longin, Cédric; Guilloux-Benatier, Michèle; Alexandre, Hervé

    2016-01-01

    Although strategies exist to prevent AAB contamination, the increased interest for wines with low sulfite addition leads to greater AAB spoilage. Hence, there is a real need for a rapid, specific, sensitive, and reliable method for detecting these spoilage bacteria. All these requirements are met by real time Polymerase Chain Reaction (or quantitative PCR; qPCR). Here, we compare existing methods of isolating DNA and their adaptation to a red wine matrix. Two different protocols for isolating DNA and three PCR mix compositions were tested to select the best method. The addition of insoluble polyvinylpolypyrrolidone (PVPP) at 1% (v/v) during DNA extraction using a protocol succeeded in eliminating PCR inhibitors from red wine. We developed a bacterial internal control which was efficient in avoiding false negative results due to decreases in the efficiency of DNA isolation and/or amplification. The specificity, linearity, repeatability, and reproducibility of the method were evaluated. A standard curve was established for the enumeration of AAB inoculated into red wines. The limit of quantification in red wine was 3.7 log AAB/mL and about 2.8 log AAB/mL when the volume of the samples was increased from 1 to 10 mL. Thus, the DNA extraction method developed in this paper allows sensitive and reliable AAB quantification without underestimation thanks to the presence of an internal control. Moreover, monitoring of both the AAB population and the amount of acetic acid in ethanol medium and red wine highlighted that a minimum about 6.0 log cells/mL of AAB is needed to significantly increase the production of acetic acid leading to spoilage. PMID:27313572

  3. Enumeration of Tn5 mutant bacteria in soil by using a most- probable-number-DNA hybridization procedure and antibiotic resistance.

    PubMed Central

    Fredrickson, J K; Bezdicek, D F; Brockman, F J; Li, S W

    1988-01-01

    Investigations were made into the utility of DNA hybridization in conjunction with a microdilution most-probable-number procedure for the enumeration of Rhizobium spp. and Pseudomonas putida in soil. Isolates of Rhizobium spp. and P. putida carrying the transposon Tn5 were added to sterile and nonsterile Burbank sandy loam soil and enumerated over time. Soil populations of rhizobia were enumerated by colony hybridization, most-probable-number-DNA hybridization procedure, plate counts, plant infectivity most probable number, and fluorescent antibody counts. Population values compared well for all methods at 5 and 30 days after the addition of cells, although the fluorescent antibody method tended to overestimate the viable population. In nonsterile soil, most-probable-number-DNA hybridization procedure enumerated as few as 10 P. putida Tn5 cells g of soil-1 and 100 R. leguminosarum bv. phaseoli Tn5 cells g of soil-1 and should have utility for following the fate of genetically engineered microorganisms released to the environment. Among the Kmr isolates containing Tn5, approximately 5% gave a dark, more intense autoradiograph when probed with 32P-labeled pGS9 DNA, which facilitated their detection in soil. Hybridization with a pCU101 probe (pGS9 without Tn5) indicated that donor plasmid sequences were being maintained in the bacterial chromosome. Transposon-associated antibiotic resistance was also utilized as a phenotypic marker. Tn5 vector-integrate mutants were successfully enumerated at low populations (10 to 100 cells g of soil-1) in soil by both phenotypic (Kmr) and genotypic (DNA probe) analysis. However, determination of the stability of Tn5 or Tn5 and vector sequences in the bacteria is necessary. Images PMID:2833161

  4. Design and Performance Testing of a DNA Extraction Assay for Sensitive and Reliable Quantification of Acetic Acid Bacteria Directly in Red Wine Using Real Time PCR.

    PubMed

    Longin, Cédric; Guilloux-Benatier, Michèle; Alexandre, Hervé

    2016-01-01

    Although strategies exist to prevent AAB contamination, the increased interest for wines with low sulfite addition leads to greater AAB spoilage. Hence, there is a real need for a rapid, specific, sensitive, and reliable method for detecting these spoilage bacteria. All these requirements are met by real time Polymerase Chain Reaction (or quantitative PCR; qPCR). Here, we compare existing methods of isolating DNA and their adaptation to a red wine matrix. Two different protocols for isolating DNA and three PCR mix compositions were tested to select the best method. The addition of insoluble polyvinylpolypyrrolidone (PVPP) at 1% (v/v) during DNA extraction using a protocol succeeded in eliminating PCR inhibitors from red wine. We developed a bacterial internal control which was efficient in avoiding false negative results due to decreases in the efficiency of DNA isolation and/or amplification. The specificity, linearity, repeatability, and reproducibility of the method were evaluated. A standard curve was established for the enumeration of AAB inoculated into red wines. The limit of quantification in red wine was 3.7 log AAB/mL and about 2.8 log AAB/mL when the volume of the samples was increased from 1 to 10 mL. Thus, the DNA extraction method developed in this paper allows sensitive and reliable AAB quantification without underestimation thanks to the presence of an internal control. Moreover, monitoring of both the AAB population and the amount of acetic acid in ethanol medium and red wine highlighted that a minimum about 6.0 log cells/mL of AAB is needed to significantly increase the production of acetic acid leading to spoilage. PMID:27313572

  5. A Monomorphic Haplotype of Chromosome Ia Is Associated with Widespread Success in Clonal and Nonclonal Populations of Toxoplasma gondii

    PubMed Central

    Khan, Asis; Miller, Natalie; Roos, David S.; Dubey, J. P.; Ajzenberg, Daniel; Dardé, Marie Laure; Ajioka, James W.; Rosenthal, Benjamin; Sibley, L. David

    2011-01-01

    ABSTRACT Toxoplasma gondii is a common parasite of animals that also causes a zoonotic infection in humans. Previous studies have revealed a strongly clonal population structure that is shared between North America and Europe, while South American strains show greater genetic diversity and evidence of sexual recombination. The common inheritance of a monomorphic version of chromosome Ia (referred to as ChrIa*) among three clonal lineages from North America and Europe suggests that inheritance of this chromosome might underlie their recent clonal expansion. To further examine the diversity and distribution of ChrIa, we have analyzed additional strains with greater geographic diversity. Our findings reveal that the same haplotype of ChrIa* is found in the clonal lineages from North America and Europe and in older lineages in South America, where sexual recombination is more common. Although lineages from all three continents harbor the same conserved ChrIa* haplotype, strains from North America and Europe are genetically separate from those in South America, and these respective geographic regions show limited evidence of recent mixing. Genome-wide, array-based profiling of polymorphisms provided evidence for an ancestral flow from particular older southern lineages that gave rise to the clonal lineages now dominant in the north. Collectively, these data indicate that ChrIa* is widespread among nonclonal strains in South America and has more recently been associated with clonal expansion of specific lineages in North America and Europe. These findings have significant implications for the spread of genetic loci influencing transmission and virulence in pathogen populations. PMID:22068979

  6. DNA.

    ERIC Educational Resources Information Center

    Felsenfeld, Gary

    1985-01-01

    Structural form, bonding scheme, and chromatin structure of and gene-modification experiments with deoxyribonucleic acid (DNA) are described. Indicates that DNA's double helix is variable and also flexible as it interacts with regulatory and other molecules to transfer hereditary messages. (DH)

  7. Molecular characterization by amplified ribosomal DNA restriction analysis and antimicrobial potential of endophytic fungi isolated from Luehea divaricata (Malvaceae) against plant pathogenic fungi and pathogenic bacteria.

    PubMed

    Bernardi-Wenzel, J; Garcia, A; Azevedo, J L; Pamphile, J A

    2013-01-01

    Luehea divaricata is an important plant in popular medicine; it is used for its depurative, anti-inflammatory, and other therapeutic activities. We evaluated the antimicrobial activity of endophytic fungi isolated from leaves of L. divaricata against phytopathogens and pathogenic bacteria, and characterized the isolates based on amplified ribosomal DNA restriction analysis (ARDRA). The in vitro antagonistic activity of these endophytes against the phytopathogen Alternaria alternata was assayed by dual culture technique. Based on this evaluation of antimicrobial activity, we extracted secondary metabolites from nine endophytic fungi by partitioning in ethyl acetate and methanol. These were tested against the phytopathogens A. alternata, Colletotrichum sp and Moniliophthora perniciosa, and against the human pathogenic bacteria Escherichia coli and Staphylococcus aureus. Molecular characterization by ARDRA technique was used for phylogenetic analysis, based on comparison with sequences in GenBank. The endophytes had varied effects on A. alternata. One isolate produced an inhibition halo against M. perniciosa and against E. coli. This antibiosis activity indicates a role in the protection of the plant against microbial pathogens in nature, with potential for pharmaceutical and agricultural applications. Based on ARDRA, the 13 isolates were grouped. We found three different haplotypes of Phomopsis sp, showing interspecific variability. It appears that examination of the microbial community associated with medicinal plants of tropical regions has potential as a useful strategy to look for species with biotechnological applications. PMID:24301768

  8. Geographic Separation of Domestic and Wild Strains of Toxoplasma gondii in French Guiana Correlates with a Monomorphic Version of Chromosome1a

    PubMed Central

    Khan, Asis; Ajzenberg, Daniel; Mercier, Aurélien; Demar, Magalie; Simon, Stéphane; Dardé, Marie Laure; Wang, Qiuling; Verma, Shiv Kumar; Rosenthal, Benjamin M.; Dubey, Jitender P.; Sibley, L. David

    2014-01-01

    Background Previous studies have stressed the genetic divergence and high pathogenicity of strains of T. gondii from French Guiana. Although strains from coastal, human adapted environments (so called anthropized) resemble those found in other regions of the Caribbean, strains collected from inland jungle environment are genetically quite diverse. To better understand the composition of these distinct strain types, we undertook a more in depth analysis of T. gondii strains from French Guiana including profiling of chromosome 1a (Chr1a), which is often shared as a single monomorphic haplotype among lineages that are otherwise genetically distinct. Methodology/Principal Findings Comparison of intron sequences from selectively neutral genes indicated that anthropized strains were most closely related to clonal type III strains from North America, although wider RFLP analysis revealed that they are natural hybrids. In contrast, strains isolated from the jungle were genetically very diverse. Remarkably, nearly all anthropized strains contained the monomorphic version of Chr1a while wild stains were extremely divergent. The presence of the monomorphic Chr1a strongly correlated with greater transmission in domestic cats, although there were several exceptions, indicating that other factors also contribute. Anthropized strains also varied in their virulence in laboratory mice, and this pattern could not be explained by the simple combination of previously identified virulence factors, indicating that other genetic determinants influence pathogenicity. Conclusions/Significance Our studies underscore the marked genetic separation of anthropized and wild strains of T. gondii in French Guiana and provide additional evidence that the presence of Chr1a is associated with successful expansion of widely different lineages within diverse geographic areas. The predominance of Chr1a among strains in the anthropized environment suggests that it may confer an advantage for transmission

  9. Culturable bacteria present in the fluid of the hooded-pitcher plant Sarracenia minor based on 16S rDNA gene sequence data.

    PubMed

    Siragusa, Alex J; Swenson, Janice E; Casamatta, Dale A

    2007-08-01

    The culturable microbial community within the pitcher fluid of 93 Sarracenia minor carnivorous plants was examined over a 2-year study. Many aspects of the plant/bacterial/insect interaction within the pitcher fluid are minimally understood because the bacterial taxa present in these pitchers have not been identified. Thirteen isolates were characterized by 16S rDNA sequencing and subsequent phylogenetic analysis. The Proteobacteria were the most abundant taxa and included representatives from Serratia, Achromobacter, and Pantoea. The Actinobacteria Micrococcus was also abundant while Bacillus, Lactococcus, Chryseobacterium, and Rhodococcus were infrequently encountered. Several isolates conformed to species identifiers (>98% rDNA gene sequence similarity) including Serratia marcescens (isolates found in 27.5% of pitchers), Achromobacter xylosoxidans (37.6%), Micrococcus luteus (40.9%), Bacillus cereus (isolates found in 10.2%), Bacillus thuringiensis (5.4%), Lactococcus lactis (17.2%), and Rhodococcus equi (2.2%). Species-area curves suggest that sampling efforts were sufficient to recover a representative culturable bacterial community. The bacteria present represent a diverse community probably as a result of introduction by insect vectors, but the ecological significance remains under explored. PMID:17380356

  10. Mechanisms of recombination and function of DNA in bacteria. Progress report, January 15, 1983-January 17, 1984

    SciTech Connect

    Guild, W.R.

    1984-01-01

    Studies on gene transfer in pneumococcus are described. Specifically transformation by chromosomal and plasmid DNAs, transfection by phage and plasmid DNA, and the novel kind of conjugative transfer of drug resistance elements among the chromosomes of streptococci are examined. Some of these elements appear to be transposons. There are numerous questions about their structure, functions, and relation to plasmids and other better characterized genetic elements. The experiments involve extensive use of transformation, cloning in both pneumococcal and E. coli systems, and analysis of DNAs by gel electrophoresis. For restriction mapping, we have concentrated on the insertion carrying genes for resistance to chloramphenicol and tetracycline.

  11. Protective role of probiotic lactic acid bacteria against dietary fumonisin B1-induced toxicity and DNA-fragmentation in sprague-dawley rats.

    PubMed

    Khalil, Ashraf A; Abou-Gabal, Ashgan E; Abdellatef, Amira A; Khalid, Ahmed E

    2015-08-18

    The genus Fusarium, especially F. verticillioides and F. proliferatum, has been found in several agricultural products worldwide, especially in maize. Regardless the occurrence of symptoms, the presence of Fusarium in maize constitutes an imminent risk due to its ability to produce fumonisins, mycotoxins with proven carcinogenic effect on rats, swine, and equines and already classified as possible carcinogens to humans. The toxicity of incremental levels of fumonisin B1 (FB1), that is, 50, 100, and 200 mg FB1/kg diet, and the role of Lactobacillus delbrueckii subsp. lactis DSM 20076 (LL) and Pediococcus acidilactici NNRL B-5627 (PA) supplementation in counteracting the FB1 effects in intoxicated rats were monitored over a period of 4 weeks. Effects on the feed intake and body weight gain were noticed. A significant (p ≤ 0.05) increase in the level of liver and kidney functions markers and DNA fragmentation was also noticed in rat groups T100 and T200. The lactic acid bacteria (LAB) supplementation could bring back the normal serum biochemical parameters in rats fed on fumonisin B1-contaminated diets (T50 and T100) compared to FB1-treated groups. In rats of high-dosage dietary groups supplemented with LAB (T200-LL and T200-PA), the supplementation reduced the serum activity levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and creatinine by 11.3, 11.9, 32, and 20%, respectively. DNA fragmentations were observed in the rat group treated with 200 mg FB1 after 3 weeks, while fragmentation was noticed in treated groups with 100 and 200 mg FB1 after 4 weeks. No DNA fragmentation was apparent in FB1-treated rats co-administered the LL or PA strain. These results suggest that in male rats consuming diets containing FB1, there is a time- and dose-dependent increase in serum enzyme activities and DNA lesions. Moreover, Lb. delbrueckii subsp. lactis (LL) and P. acidilactici (PA) strains have a protective effect

  12. In situ DNA hybridized chain reaction (FISH-HCR) as a better method for quantification of bacteria and archaea within marine sediment

    NASA Astrophysics Data System (ADS)

    Buongiorno, J.; Lloyd, K. G.; Shumaker, A.; Schippers, A.; Webster, G.; Weightman, A.; Turner, S.

    2015-12-01

    Nearly 75% of the Earth's surface is covered by marine sediment that is home to an estimated 2.9 x 1029 microbial cells. A substantial impediment to understanding the abundance and distribution of cells within marine sediment is the lack of a consistent and reliable method for their taxon-specific quantification. Catalyzed reporter fluorescent in situ hybridization (CARD-FISH) provides taxon-specific enumeration, but this process requires passing a large enzyme through cell membranes, decreasing its precision relative to general cell counts using a small DNA stain. In 2015, Yamaguchi et al. developed FISH hybridization chain reaction (FISH-HCR) as an in situ whole cell detection method for environmental microorganisms. FISH-HCR amplifies the fluorescent signal, as does CARD-FISH, but it allows for milder cell permeation methods that might prevent yield loss. To compare FISH-HCR to CARD-FISH, we examined bacteria and archaea cell counts within two sediment cores, Lille Belt (~78 meters deep) and Landsort Deep (90 meters deep), which were retrieved from the Baltic Sea Basin during IODP Expedition 347. Preliminary analysis shows that CARD-FISH counts are below the quantification limit for most depths across both cores. By contrast, quantification of cells was possible with FISH-HCR in all examined depths. When quantification with CARD-FISH was above the limit of detection, counts with FISH-HCR were up to 11 fold higher for Bacteria and 3 fold higher for Archaea from the same sediment sample. Further, FISH-HCR counts follow the trends of on board counts nicely, indicating that FISH-HCR may better reflect the cellular abundance within marine sediment than other quantification methods, including qPCR. Using FISH-HCR, we found that archaeal cell counts were on average greater than bacterial cell counts, but within the same order of magnitude.

  13. DNA

    ERIC Educational Resources Information Center

    Stent, Gunther S.

    1970-01-01

    This history for molecular genetics and its explanation of DNA begins with an analysis of the Golden Jubilee essay papers, 1955. The paper ends stating that the higher nervous system is the one major frontier of biological inquiry which still offers some romance of research. (Author/VW)

  14. Anaerobic bacteria

    MedlinePlus

    Anaerobic bacteria are bacteria that do not live or grow when oxygen is present. In humans, these ... Goldstein EJ. Diseases caused by non-spore forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman's ...

  15. Sensitive Visual Detection of AHPND Bacteria Using Loop-Mediated Isothermal Amplification Combined with DNA-Functionalized Gold Nanoparticles as Probes

    PubMed Central

    Arunrut, Narong; Kampeera, Jantana; Sirithammajak, Sarawut; Sanguanrut, Piyachat; Proespraiwong, Porranee; Suebsing, Rungkarn; Kiatpathomchai, Wansika

    2016-01-01

    Acute hepatopancreatic necrosis disease (AHPND) is a component cause of early mortality syndrome (EMS) of shrimp. In 2013, the causative agent was found to be unique isolates of Vibrio parahaemolyticus (VPAHPND) that contained a 69 kbp plasmid (pAP1) carrying binary Pir-like toxin genes PirvpA and PirvpB. In Thailand, AHPND was first recognized in 2012, prior to knowledge of the causative agent, and it subsequently led to a precipitous drop in shrimp production. After VPAHPND was characterized, a major focus of the AHPND control strategy was to monitor broodstock shrimp and post larvae for freedom from VPAHPND by nucleic acid amplification methods, most of which required use of expensive and sophisticated equipment not readily available in a shrimp farm setting. Here, we describe a simpler but equally sensitive approach for detection of VPAHPND based on loop-mediated isothermal amplification (LAMP) combined with unaided visual reading of positive amplification products using a DNA-functionalized, ssDNA-labled nanogold probe (AuNP). The target for the special set of six LAMP primers used was the VPAHPND PirvpA gene. The LAMP reaction was carried out at 65°C for 45 min followed by addition of the red AuNP solution and further incubation at 65°C for 5 min, allowing any PirvpA gene amplicons present to hybridize with the probe. Hybridization protected the AuNP against aggregation, so that the solution color remained red upon subsequent salt addition (positive test result) while unprotected AuNP aggregated and underwent a color change from red to blue and eventually precipitated (negative result). The total assay time was approximately 50 min. The detection limit (100 CFU) was comparable to that of other commonly-used methods for nested PCR detection of VPAHPND and 100-times more sensitive than 1-step PCR detection methods (104 CFU) that used amplicon detection by electrophoresis or spectrophotometry. There was no cross reaction with DNA templates derived from non

  16. Development of a real-time PCR method for the detection of fossil 16S rDNA fragments of phototrophic sulfur bacteria in the sediments of Lake Cadagno.

    PubMed

    Ravasi, D F; Peduzzi, S; Guidi, V; Peduzzi, R; Wirth, S B; Gilli, A; Tonolla, M

    2012-05-01

    Lake Cadagno is a crenogenic meromictic lake situated in the southern range of the Swiss Alps characterized by a compact chemocline that has been the object of many ecological studies. The population dynamics of phototrophic sulfur bacteria in the chemocline has been monitored since 1994 with molecular methods such as 16S rRNA gene clone library analysis. To reconstruct paleo-microbial community dynamics, we developed a quantitative real-time PCR methodology for specific detection of 16S rRNA gene sequences of purple and green sulfur bacteria populations from sediment samples. We detected fossil 16S rDNA of nine populations of phototrophic sulfur bacteria down to 9-m sediment depth, corresponding to about 9500 years of the lake's biogeological history. These results provide the first evidence for the presence of 16S rDNA of anoxygenic phototrophic bacteria in Holocene sediments of an alpine meromictic lake and indicate that the water column stratification and the bacterial plume were already present in Lake Cadagno thousands of years ago. The finding of Chlorobium clathratiforme remains in all the samples analyzed shows that this population, identified in the water column only in 2001, was already a part of the lake's biota in the past. PMID:22433067

  17. DNase I and Proteinase K eliminate DNA from injured or dead bacteria but not from living bacteria in microbial reference systems and natural drinking water biofilms for subsequent molecular biology analyses.

    PubMed

    Villarreal, Jessica Varela; Jungfer, Christina; Obst, Ursula; Schwartz, Thomas

    2013-09-01

    Molecular techniques, such as polymerase chain reaction (PCR) and quantitative PCR (qPCR), are very sensitive, but may detect total DNA present in a sample, including extracellular DNA (eDNA) and DNA coming from live and dead cells. DNase I is an endonuclease that non-specifically cleaves single- and double-stranded DNA. This enzyme was tested in this study to analyze its capacity of digesting DNA coming from dead cells with damaged cell membranes, leaving DNA from living cells with intact cell membranes available for DNA-based methods. For this purpose, an optimized DNase I/Proteinase K (DNase/PK) protocol was developed. Intact Staphylococcus aureus cells, heat-killed Pseudomonas aeruginosa cells, free genomic DNA of Salmonella enterica, and a mixture of these targets were treated according to the developed DNase/PK protocol. In parallel, these samples were treated with propidium monoazide (PMA) as an already described assay for live-dead discrimination. Quantitative PCR and PCR-DGGE of the eubacterial 16S rDNA fragment were used to test the ability of the DNase/PK and PMA treatments to distinguish DNA coming from cells with intact cell membranes in the presence of DNA from dead cells and free genomic DNA. The methods were applied to three months old autochthonous drinking water biofilms from a pilot facility built at a German waterworks. Shifts in the DNA patterns observed after DGGE analysis demonstrated the applicability of DNase/PK as well as of the PMA treatment for natural biofilm investigation. However, the DNase/PK treatment demonstrated some practical advantages in comparison with the PMA treatment for live/dead discrimination of bacterial targets in drinking water systems. PMID:23811209

  18. Cloning and identification of a novel NhaD-type Na+/H+ antiporter from metagenomic DNA of the halophilic bacteria in soil samples around Daban Salt Lake.

    PubMed

    Zhang, Hua; Wang, Zhenhui; Wang, Lei; Mu, Ren; Zou, Zhi; Yuan, Kun; Wang, Yuekun; Wu, Haiping; Jiang, Juquan; Yang, Lifu

    2014-01-01

    In this study, metagenomic DNA was screened for the Na(+)/H(+) antiporter gene from the halophilic bacteria in Daban Salt Lake by selection in Escherichia coli KNabc lacking three major Na(+)/H(+) antiporters. One gene designated as Hb_nhaD encoding a novel NhaD-type Na(+)/H(+) antiporter was finally cloned. The presence of Hb_NhaD conferred tolerance of E. coli KNabc to up to 0.5 M NaCl and 0.2 M LiCl, and an alkaline pH. Hb_NhaD has the highest identity (70.6%) with a putative NhaD-type Na(+)/H(+) antiporter from an uncharacterized Clostridiaceae species, and also has lower identity with known NhaD-type Na(+)/H(+) antiporters from Halomonas elongata (20.8%), Alkalimonas amylolytica (19.0%), Vibrio parahaemolyticus (18.9%) and Vibrio cholerae (18.7 %). pH-dependent Na(+)(Li(+))/H(+) antiport activity was detected from everted membrane vesicles prepared from E. coli KNabc carrying Hb_nhaD. Hb_NhaD exhibited very high Na(+)(Li(+))/H(+) antiport activity over a wide pH range from 6.5 to 9.0 with the highest activity at pH 7.0 which is significantly different from those of the above known NhaD-type Na(+)/H(+) antiporters. Also, the apparent K m values of Hb_NhaD for Na(+) and Li(+) at pH 7.0 were determined to be 1.31 and 2.16, respectively. Based on the above results, we proposed that Hb_NhaD should be categorized as a novel NhaD-type Na(+)/H(+) antiporter. PMID:24297704

  19. Detection of fecal bacteria and source tracking identifiers in environmental waters using rRNA-based RT-qPCR and rDNA-based qPCR assays.

    PubMed

    Pitkänen, Tarja; Ryu, Hodon; Elk, Michael; Hokajärvi, Anna-Maria; Siponen, Sallamaari; Vepsäläinen, Asko; Räsänen, Pia; Santo Domingo, Jorge W

    2013-01-01

    In this study, we evaluated the use of RT-qPCR assays targeting rRNA gene sequences for the detection of fecal bacteria in water samples. We challenged the RT-qPCR assays against RNA extracted from sewage effluent (n = 14), surface water (n = 30), and treated source water (n = 15) samples. Additionally, we applied the same assays using DNA as the qPCR template. The targeted fecal bacteria were present in most of the samples tested, although in several cases, the detection frequency increased when RNA was used as the template. For example, the majority of samples that tested positive for E. coli and Campylobacter spp. in surface waters, and for human-specific Bacteroidales, E. coli, and Enterococcus spp. in treated source waters were only detected when rRNA was used as the original template. The difference in detection frequency using rRNA or rDNA (rRNA gene) was sample- and assay-dependent, suggesting that the abundance of active and nonactive populations differed between samples. Statistical analyses for each population exhibiting multiple quantifiable results showed that the rRNA copy numbers were significantly higher than the rDNA counterparts (p < 0.05). Moreover, the detection frequency of rRNA-based assays were in better agreement with the culture-based results of E. coli, intestinal enterococci, and thermotolerant Campylobacter spp. in surface waters than that of rDNA-based assays, suggesting that rRNA signals were associated to active bacterial populations. Our data show that using rRNA-based approaches significantly increases detection sensitivity for common fecal bacteria in environmental waters. These findings have important implications for microbial water quality monitoring and public health risk assessments. PMID:24187936

  20. Simple & Safe Genomic DNA Isolation.

    ERIC Educational Resources Information Center

    Moss, Robert; Solomon, Sondra

    1991-01-01

    A procedure for purifying DNA using either bacteria or rat liver is presented. Directions for doing a qualitative DNA assay using diphenylamine and a quantitative DNA assay using spectroscopy are included. (KR)

  1. Isolation and Identification of Concrete Environment Bacteria

    NASA Astrophysics Data System (ADS)

    Irwan, J. M.; Anneza, L. H.; Othman, N.; Husnul, T.; Alshalif, A. F.

    2016-07-01

    This paper presents the isolation and molecular method for bacteria identification through PCR and DNA sequencing. Identification of the bacteria species is required in order to fully utilize the bacterium capability for precipitation of calcium carbonate in concrete. This process is to enable the addition of suitable catalyst according to the bacterium enzymatic pathway that is known through the bacteria species used. The objective of this study is to isolate, enriched and identify the bacteria species. The bacteria in this study was isolated from fresh urine and acid mine drainage water, Kota Tinggi, Johor. Enrichment of the isolated bacteria was conducted to ensure the bacteria survivability in concrete. The identification of bacteria species was done through polymerase chain reaction (PCR) and rRDNA sequencing. The isolation and enrichment of the bacteria was done successfully. Whereas, the results for bacteria identification showed that the isolated bacteria strains are Bacillus sp and Enterococus faecalis.

  2. Development of a Broad-Range 23S rDNA Real-Time PCR Assay for the Detection and Quantification of Pathogenic Bacteria in Human Whole Blood and Plasma Specimens

    PubMed Central

    Gaibani, Paolo; Mariconti, Mara; Bua, Gloria; Bonora, Sonia; Sassera, Davide; Landini, Maria Paola; Mulatto, Patrizia; Novati, Stefano; Bandi, Claudio; Sambri, Vittorio

    2013-01-01

    Molecular methods are important tools in the diagnosis of bloodstream bacterial infections, in particular in patients treated with antimicrobial therapy, due to their quick turn-around time. Here we describe a new broad-range real-time PCR targeting the 23S rDNA gene and capable to detect as low as 10 plasmid copies per reaction of targeted bacterial 23S rDNA gene. Two commercially available DNA extraction kits were evaluated to assess their efficiency for the extraction of plasma and whole blood samples spiked with different amount of either Staphylococcus aureus or Escherichia coli, in order to find the optimal extraction method to be used. Manual QIAmp extraction method with enzyme pre-treatment resulted the most sensitive for detection of bacterial load. Sensitivity of this novel assay ranged between 10 and 103 CFU per PCR reaction for E. coli and S. aureus in human whole blood samples depending on the extraction methods used. Analysis of plasma samples showed a 10- to 100-fold reduction of bacterial 23S rDNA in comparison to the corresponding whole blood specimens, thus indicating that whole blood is the preferential sample type to be used in this real-time PCR protocol. Our results thus show that the 23S rDNA gene represents an optimal target for bacteria quantification in human whole blood. PMID:23586027

  3. Cost-Effective Pooling of DNA from Nasopharyngeal Swab Samples for Large-Scale Detection of Bacteria by Real-Time PCR

    PubMed Central

    Edouard, Sophie; Prudent, Elsa; Gautret, Philippe; Memish, Ziad A.

    2014-01-01

    We investigated the potential of pooling DNA from nasopharyngeal specimens to reduce the cost of real-time PCR (RT-PCR) for bacterial detection. Lyophilization is required to reconcentrate DNA. This strategy yields a high specificity (86%) and a high sensitivity (96%). We estimate that compared to individual testing, 37% fewer RT-PCR tests are needed. PMID:25552360

  4. Gut bacteria of the Pacific coast wireworm, Limonius canus, inferred from 16s rDNA sequences and their implications for control.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A multitude of bacteria have been isolated from the guts of several insect species. Some of these have been modified to interfere with the development of the host insect or interfere with the development and transmission of plant and animal pathogens transmitted by the host insect. A survey of the g...

  5. [Vector cardiographic evaluation of monomorphic ventricular tachycardia; its relation to the type of cardiopathy, vagal tonus and the prevalence of late potentials].

    PubMed

    Rosas Peralta, M; Casanova Garcés, J M; González Hermosillo, J A

    1994-01-01

    The most common cause of sudden death is malignant ventricular arrhytHmia. In order to identify the predictive value of the vectospatial evaluation in the surface electrocardiogram during a monomorphic ventricular tachycardia (MVT), and the equilibrium state of AutonomOus Nervous System (ANS), 89 patients of both sexes were studied with mean age of 47 +/- 16.2 years. They were grouped as follows: Group I included 43 patients (P), with a coronary heart disease; Group II (n = 24P) with a noncoronary myocardiopathy and Group III (n = 22P) with unknown origin MVT (Cryptogenic). Relationship between QRS configuration in the frontal plane (QRSf) during MVT episode with transverse plane, cardiac position in the chest X-rays, presence and duration of late potentials (LPs) in their two types of analysis (time domain and spectral mapping by high-resolution electrocardiogram), heart rate variability and ejection fraction by echocardiography were determined in all patients. The QRSf configuration with left bundle-branch block (LBBB) was the most common in group I, the sustained MVT (SMVT) + LBBB was associated with both prevalence and duration of late potentials (p = 0.005), low-rate heart variability and ejection fraction < 40%. SMVT + LBBB was the most common type in group III and if it has shown and inferior axis, an elevated rate of LPs (+) was seen. Situation that oriented to an arrhythmogenic right ventricular dysplasia. Low amplitude signals with short duration in the time domain were seen in group I with LBBB; and with SMVT + RBBB in group II. We suggest that vectospatial evaluation of QRSf during a MVT is a greater importance in the risk stratification for sudden death and it can guide to anatomic origin and the diagnosis-therapeutic approach. PMID:8179433

  6. Magnetic Bacteria.

    ERIC Educational Resources Information Center

    Nelson, Jane Bray; Nelson, Jim

    1992-01-01

    Describes the history of Richard Blakemore's discovery of magnetotaxic organisms. Discusses possible reasons why the magnetic response in bacteria developed. Proposes research experiments integrating biology and physics in which students investigate problems using cultures of magnetotaxic organisms. (MDH)

  7. Anaerobic bacteria

    MedlinePlus

    Brook I, Goldstein EJ. Diseases caused by non-spore forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2015:chap 297. Stedman's Online ...

  8. Fructose Utilization in Lactococcus lactis as a Model for Low-GC Gram-Positive Bacteria: Its Regulator, Signal, and DNA-Binding Site

    PubMed Central

    Barrière, Charlotte; Veiga-da-Cunha, Maria; Pons, Nicolas; Guédon, Eric; van Hijum, Sacha A. F. T.; Kok, Jan; Kuipers, Oscar P.; Ehrlich, Dusko S.; Renault, Pierre

    2005-01-01

    In addition to its role as carbon and energy source, fructose metabolism was reported to affect other cellular processes, such as biofilm formation by streptococci and bacterial pathogenicity in plants. Fructose genes encoding a 1-phosphofructokinase and a phosphotransferase system (PTS) fructose-specific enzyme IIABC component reside commonly in a gene cluster with a DeoR family regulator in various gram-positive bacteria. We present a comprehensive study of fructose metabolism in Lactococcus lactis, including a systematic study of fru mutants, global messenger analysis, and a molecular characterization of its regulation. The fru operon is regulated at the transcriptional level by both FruR and CcpA and at the metabolic level by inducer exclusion. The FruR effector is fructose-1-phosphate (F1P), as shown by combined analysis of transcription and measurements of the intracellular F1P pools in mutants either unable to produce this metabolite or accumulating it. The regulation of the fru operon by FruR requires four adjacent 10-bp direct repeats. The well-conserved organization of the fru promoter region in various low-GC gram-positive bacteria, including CRE boxes as well as the newly defined FruR motif, suggests that the regulation scheme defined in L. lactis could be applied to these bacteria. Transcriptome profiling of fruR and fruC mutants revealed that the effect of F1P and FruR regulation is limited to the fru operon in L. lactis. This result is enforced by the fact that no other targets for FruR were found in the available low-GC gram-positive bacteria genomes, suggesting that additional phenotypical effects due to fructose metabolism do not rely directly on FruR control, but rather on metabolism. PMID:15901699

  9. A Novel HURRAH Protocol Reveals High Numbers of Monomorphic MHC Class II Loci and Two Asymmetric Multi-Locus Haplotypes in the Père David's Deer

    PubMed Central

    Wan, Qiu-Hong; Zhang, Pei; Ni, Xiao-Wei; Wu, Hai-Long; Chen, Yi-Yan; Kuang, Ye-Ye; Ge, Yun-Fa; Fang, Sheng-Guo

    2011-01-01

    The Père David's deer is a highly inbred, but recovered, species, making it interesting to consider their adaptive molecular evolution from an immunological perspective. Prior to this study, genomic sequencing was the only method for isolating all functional MHC genes within a certain species. Here, we report a novel protocol for isolating MHC class II loci from a species, and its use to investigate the adaptive evolution of this endangered deer at the level of multi-locus haplotypes. This protocol was designated “HURRAH” based on its various steps and used to estimate the total number of MHC class II loci. We confirmed the validity of this novel protocol in the giant panda and then used it to examine the Père David's deer. Our results revealed that the Père David's deer possesses nine MHC class II loci and therefore has more functional MHC class II loci than the eight genome-sequenced mammals for which full MHC data are currently available. This could potentially account at least in part for the strong survival ability of this species in the face of severe bottlenecking. The results from the HURRAH protocol also revealed that: (1) All of the identified MHC class II loci were monomorphic at their antigen-binding regions, although DRA was dimorphic at its cytoplasmic tail; and (2) these genes constituted two asymmetric functional MHC class II multi-locus haplotypes: DRA1*01 ∼ DRB1 ∼ DRB3 ∼ DQA1 ∼ DQB2 (H1) and DRA1*02 ∼ DRB2 ∼ DRB4 ∼ DQA2 ∼ DQB1 (H2). The latter finding indicates that the current members of the deer species have lost the powerful ancestral MHC class II haplotypes of nine or more loci, and have instead fixed two relatively weak haplotypes containing five genes. As a result, the Père David's deer are currently at risk for increased susceptibility to infectious pathogens. PMID:21267075

  10. Methanotrophic bacteria.

    PubMed Central

    Hanson, R S; Hanson, T E

    1996-01-01

    Methane-utilizing bacteria (methanotrophs) are a diverse group of gram-negative bacteria that are related to other members of the Proteobacteria. These bacteria are classified into three groups based on the pathways used for assimilation of formaldehyde, the major source of cell carbon, and other physiological and morphological features. The type I and type X methanotrophs are found within the gamma subdivision of the Proteobacteria and employ the ribulose monophosphate pathway for formaldehyde assimilation, whereas type II methanotrophs, which employ the serine pathway for formaldehyde assimilation, form a coherent cluster within the beta subdivision of the Proteobacteria. Methanotrophic bacteria are ubiquitous. The growth of type II bacteria appears to be favored in environments that contain relatively high levels of methane, low levels of dissolved oxygen, and limiting concentrations of combined nitrogen and/or copper. Type I methanotrophs appear to be dominant in environments in which methane is limiting and combined nitrogen and copper levels are relatively high. These bacteria serve as biofilters for the oxidation of methane produced in anaerobic environments, and when oxygen is present in soils, atmospheric methane is oxidized. Their activities in nature are greatly influenced by agricultural practices and other human activities. Recent evidence indicates that naturally occurring, uncultured methanotrophs represent new genera. Methanotrophs that are capable of oxidizing methane at atmospheric levels exhibit methane oxidation kinetics different from those of methanotrophs available in pure cultures. A limited number of methanotrophs have the genetic capacity to synthesize a soluble methane monooxygenase which catalyzes the rapid oxidation of environmental pollutants including trichloroethylene. PMID:8801441

  11. Studies on DNA binding behaviour of biologically active transition metal complexes of new tetradentate N2O2 donor Schiff bases: Inhibitory activity against bacteria

    NASA Astrophysics Data System (ADS)

    Sobha, S.; Mahalakshmi, R.; Raman, N.

    A series of Cu(II), Ni(II) and Zn(II) complexes of the type ML have been synthesized with Schiff bases derived from o-acetoacetotoluidide, 2-hydroxybenzaldehyde and o-phenylenediamine/1,4-diaminobutane. The complexes are insoluble in common organic solvents but soluble in DMF and DMSO. The measured molar conductance values in DMSO indicate that the complexes are non-electrolytic in nature. All the six metal complexes have been fully characterized with the help of elemental analyses, molecular weights, molar conductance values, magnetic moments and spectroscopic data. The analytical data helped to elucidate the structure of the metal complexes. The Schiff bases are found to act as tetradentate ligands using N2O2 donor set of atoms leading to a square-planar geometry for the complexes around all the metal ions. The binding properties of metal complexes with DNA were investigated by absorption spectra, viscosity measurements and cyclic voltammetry. Detailed analysis reveals that the metal complexes intercalate into the DNA base stack as intercalators. All the metal complexes cleave the pUC19 DNA in presence of H2O2. The Schiff bases and their complexes have been screened for their antibacterial activity against five bacterial strains (Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus epidermidis, Klebsiella pneumoniae) by disk diffusion method. All the metal complexes have potent biocidal activity than the free ligands.

  12. Transformation of gram positive bacteria by sonoporation

    DOEpatents

    Yang, Yunfeng; Li, Yongchao

    2014-03-11

    The present invention provides a sonoporation-based method that can be universally applied for delivery of compounds into Gram positive bacteria. Gram positive bacteria which can be transformed by sonoporation include, for example, Bacillus, Streptococcus, Acetobacterium, and Clostridium. Compounds which can be delivered into Gram positive bacteria via sonoporation include nucleic acids (DNA or RNA), proteins, lipids, carbohydrates, viruses, small organic and inorganic molecules, and nano-particles.

  13. Studies of the repair of O/sup 6/-alkylguanine and O/sup 4/-alkylthymine in DNA by alkyltransferases from mammalian cells and bacteria

    SciTech Connect

    Pegg, A.E.; Dolan, M.E.; Acchitano, D.; Morimoto, K.

    1985-10-01

    O/sup 6/-Methylguanine in DNA is repaired by the action of a protein termed O/sup 6/-alkylguanine-DNA alkyltransferase (AT) which transfers the methyl group to a cysteine residue in its own sequence. Since the cysteine which is methylated is not regenerated rapidly, if at all, the capacity for repair of O/sup 6/-methylguanine is limited by the number of molecules of the AT available within the cell. The level and inducibility of the AT differed greatly in different mammalian cell types and species with the highest levels in human tissues and in liver and the lowest levels in brain. In E. coli such exposure increased the activity more than 100-fold. The protein isolated from E. coli removed methyl groups much more rapidly than the larger alkyl groups but the mammalian AT isolated from rat liver showed much less difference in rate with adducts of different size. Ethyl and n-propyl groups were removed by the rat liver AT only three to four times more slowly than methyl groups. Another important difference between the bacterial and mammalian ATs is that the bacterial protein was also able to remove methyl groups from the O/sup 4/-position of thymine in methylated DNA or poly(dT) but the AT from rat liver or human fibroblasts did not repair O/sup 4/-methylthymidine. These results indicate that the results obtained with the E. coli system may not be a suitable model for extrapolation to predictions of the effects of alkylating agents in initiating tumors or mutations in mammalian cells.

  14. Two New Computational Methods for Universal DNA Barcoding: A Benchmark Using Barcode Sequences of Bacteria, Archaea, Animals, Fungi, and Land Plants

    PubMed Central

    Tanabe, Akifumi S.; Toju, Hirokazu

    2013-01-01

    Taxonomic identification of biological specimens based on DNA sequence information (a.k.a. DNA barcoding) is becoming increasingly common in biodiversity science. Although several methods have been proposed, many of them are not universally applicable due to the need for prerequisite phylogenetic/machine-learning analyses, the need for huge computational resources, or the lack of a firm theoretical background. Here, we propose two new computational methods of DNA barcoding and show a benchmark for bacterial/archeal 16S, animal COX1, fungal internal transcribed spacer, and three plant chloroplast (rbcL, matK, and trnH-psbA) barcode loci that can be used to compare the performance of existing and new methods. The benchmark was performed under two alternative situations: query sequences were available in the corresponding reference sequence databases in one, but were not available in the other. In the former situation, the commonly used “1-nearest-neighbor” (1-NN) method, which assigns the taxonomic information of the most similar sequences in a reference database (i.e., BLAST-top-hit reference sequence) to a query, displays the highest rate and highest precision of successful taxonomic identification. However, in the latter situation, the 1-NN method produced extremely high rates of misidentification for all the barcode loci examined. In contrast, one of our new methods, the query-centric auto-k-nearest-neighbor (QCauto) method, consistently produced low rates of misidentification for all the loci examined in both situations. These results indicate that the 1-NN method is most suitable if the reference sequences of all potentially observable species are available in databases; otherwise, the QCauto method returns the most reliable identification results. The benchmark results also indicated that the taxon coverage of reference sequences is far from complete for genus or species level identification in all the barcode loci examined. Therefore, we need to

  15. Two new computational methods for universal DNA barcoding: a benchmark using barcode sequences of bacteria, archaea, animals, fungi, and land plants.

    PubMed

    Tanabe, Akifumi S; Toju, Hirokazu

    2013-01-01

    Taxonomic identification of biological specimens based on DNA sequence information (a.k.a. DNA barcoding) is becoming increasingly common in biodiversity science. Although several methods have been proposed, many of them are not universally applicable due to the need for prerequisite phylogenetic/machine-learning analyses, the need for huge computational resources, or the lack of a firm theoretical background. Here, we propose two new computational methods of DNA barcoding and show a benchmark for bacterial/archeal 16S, animal COX1, fungal internal transcribed spacer, and three plant chloroplast (rbcL, matK, and trnH-psbA) barcode loci that can be used to compare the performance of existing and new methods. The benchmark was performed under two alternative situations: query sequences were available in the corresponding reference sequence databases in one, but were not available in the other. In the former situation, the commonly used "1-nearest-neighbor" (1-NN) method, which assigns the taxonomic information of the most similar sequences in a reference database (i.e., BLAST-top-hit reference sequence) to a query, displays the highest rate and highest precision of successful taxonomic identification. However, in the latter situation, the 1-NN method produced extremely high rates of misidentification for all the barcode loci examined. In contrast, one of our new methods, the query-centric auto-k-nearest-neighbor (QCauto) method, consistently produced low rates of misidentification for all the loci examined in both situations. These results indicate that the 1-NN method is most suitable if the reference sequences of all potentially observable species are available in databases; otherwise, the QCauto method returns the most reliable identification results. The benchmark results also indicated that the taxon coverage of reference sequences is far from complete for genus or species level identification in all the barcode loci examined. Therefore, we need to accelerate

  16. Quick identification of acetic acid bacteria based on nucleotide sequences of the 16S-23S rDNA internal transcribed spacer region and of the PQQ-dependent alcohol dehydrogenase gene.

    PubMed

    Trcek, Janja

    2005-10-01

    Acetic acid bacteria (AAB) are well known for oxidizing different ethanol-containing substrates into various types of vinegar. They are also used for production of some biotechnologically important products, such as sorbose and gluconic acids. However, their presence is not always appreciated since certain species also spoil wine, juice, beer and fruits. To be able to follow AAB in all these processes, the species involved must be identified accurately and quickly. Because of inaccuracy and very time-consuming phenotypic analysis of AAB, the application of molecular methods is necessary. Since the pairwise comparison among the 16S rRNA gene sequences of AAB shows very high similarity (up to 99.9%) other DNA-targets should be used. Our previous studies showed that the restriction analysis of 16S-23S rDNA internal transcribed spacer region is a suitable approach for quick affiliation of an acetic acid bacterium to a distinct group of restriction types and also for quick identification of a potentially novel species of acetic acid bacterium (Trcek & Teuber 2002; Trcek 2002). However, with the exception of two conserved genes, encoding tRNAIle and tRNAAla, the sequences of 16S-23S rDNA are highly divergent among AAB species. For this reason we analyzed in this study a gene encoding PQQ-dependent ADH as a possible DNA-target. First we confirmed the expression of subunit I of PQQ-dependent ADH (AdhA) also in Asaia, the only genus of AAB which exhibits little or no ADH-activity. Further we analyzed the partial sequences of adhA among some representative species of the genera Acetobacter, Gluconobacter and Gluconacetobacter. The conserved and variable regions in these sequences made possible the construction of A. acetispecific oligonucleotide the specificity of which was confirmed in PCR-reaction using 45 well-defined strains of AAB as DNA-templates. The primer was also successfully used in direct identification of A. aceti from home made cider vinegar as well as for

  17. Evaluation of direct 16S rDNA sequencing as a metagenomics-based approach to screening bacteria in bottled water.

    PubMed

    Hansen, Trine; Skånseng, Beate; Hoorfar, Jeffrey; Löfström, Charlotta

    2013-09-01

    Deliberate or accidental contamination of food, feed, and water supplies poses a threat to human health worldwide. A rapid and sensitive detection technique that could replace the current labor-intensive and time-consuming culture-based methods is highly desirable. In addition to species-specific assays, such as PCR, there is a need for generic methods to screen for unknown pathogenic microorganisms in samples. This work presents a metagenomics-based direct-sequencing approach for detecting unknown microorganisms, using Bacillus cereus (as a model organism for B. anthracis) in bottled water as an example. Total DNA extraction and 16S rDNA gene sequencing were used in combination with principle component analysis and multicurve resolution to study detection level and possibility for identification. Results showed a detection level of 10(5) to 10(6) CFU/L. Using this method, it was possible to separate 2 B. cereus strains by the principal component plot, despite the close sequence resemblance. A linear correlation between the artificial contamination level and the relative amount of the Bacillus artificial contaminant in the metagenome was observed, and a relative amount value above 0.5 confirmed the presence of Bacillus. The analysis also revealed that background flora in the bottled water varied between the different water types that were included in the study. This method has the potential to be adapted to other biological matrices and bacterial pathogens for fast screening of unknown bacterial threats in outbreak situations. PMID:23971801

  18. Bacteria Counter

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Science Applications, Inc.'s ATP Photometer makes a rapid and accurate count of the bacteria in a body fluid sample. Instrument provides information on the presence and quantity of bacteria by measuring the amount of light emitted by the reaction between two substances. Substances are ATP adenosine triphosphate and luciferase. The reactants are applied to a human body sample and the ATP Photometer observes the intensity of the light emitted displaying its findings in a numerical output. Total time lapse is usually less than 10 minutes, which represents a significant time savings in comparison of other techniques. Other applications are measuring organisms in fresh and ocean waters, determining bacterial contamination of foodstuffs, biological process control in the beverage industry, and in assay of activated sewage sludge.

  19. Identification of Nitrogen-Incorporating Bacteria in Petroleum-Contaminated Arctic Soils by Using [15N]DNA-Based Stable Isotope Probing and Pyrosequencing ▿ †

    PubMed Central

    Bell, Terrence H.; Yergeau, Etienne; Martineau, Christine; Juck, David; Whyte, Lyle G.; Greer, Charles W.

    2011-01-01

    Arctic soils are increasingly susceptible to petroleum hydrocarbon contamination, as exploration and exploitation of the Arctic increase. Bioremediation in these soils is challenging due to logistical constraints and because soil temperatures only rise above 0°C for ∼2 months each year. Nitrogen is often added to contaminated soil in situ to stimulate the existing microbial community, but little is known about how the added nutrients are used by these microorganisms. Microbes vary widely in their ability to metabolize petroleum hydrocarbons, so the question becomes: which hydrocarbon-degrading microorganisms most effectively use this added nitrogen for growth? Using [15N]DNA-based stable isotope probing, we determined which taxonomic groups most readily incorporated nitrogen from the monoammonium phosphate added to contaminated and uncontaminated soil in Canadian Forces Station-Alert, Nunavut, Canada. Fractions from each sample were amplified with bacterial 16S rRNA and alkane monooxygenase B (alkB) gene-specific primers and then sequenced using lage-scale parallel-pyrosequencing. Sequence data was combined with 16S rRNA and alkB gene C quantitative PCR data to measure the presence of various phylogenetic groups in fractions at different buoyant densities. Several families of Proteobacteria and Actinobacteria that are directly involved in petroleum degradation incorporated the added nitrogen in contaminated soils, but it was the DNA of Sphingomonadaceae that was most enriched in 15N. Bacterial growth in uncontaminated soils was not stimulated by nutrient amendment. Our results suggest that nitrogen uptake efficiency differs between bacterial groups in contaminated soils. A better understanding of how groups of hydrocarbon-degraders contribute to the catabolism of petroleum will facilitate the design of more targeted bioremediation treatments. PMID:21498745

  20. Putative prophages related to lytic tailless marine dsDNA phage PM2 are widespread in the genomes of aquatic bacteria

    PubMed Central

    Krupovič, Mart; Bamford, Dennis H

    2007-01-01

    Background The origin and evolution of viruses is currently a heavily discussed issue. One element in this discussion is the innate viral "self" concept, which suggests that viral structures and functions can be divided into two categories. The first category consists of genetic determinants that are inherited from a viral ancestor and encode the viral "self". The second group consists of another set of structures and functions, the "nonself", which is interchangeable between different viruses and can be obtained via lateral gene transfer. Comparing the structures and sequences of the "self" elements, we have proposed that viruses can be grouped into lineages regardless of which domain of life (bacteria, archaea, eukarya) they infect. It has also been suggested that viruses are ancient and possibly predate modern cells. Results Here we identified thirteen putative prophages (viral genomes integrated into bacterial chromosome) closely related to the virulent icosahedral tailless lipid-containing bacteriophage PM2. Using the comparative genomics approach, we present evidence to support the viral "self" hypothesis and divide genes of the bacteriophage PM2 and related prophages into "self" and "nonself" categories. Conclusion We show here that the previously proposed most conserved viral "self" determinants, the major coat protein and the packaging ATPase, were the only proteins that could be recognized in all detected corticoviral elements. We also argue here that the genes needed for viral genome replication, as well as for host cell lysis, belong to the "nonself" category of genes. Furthermore, we suggest that abundance of PM2-like viruses in the aquatic environment as well as their importance in the ecology of aquatic microorganisms might have been underestimated. PMID:17634101

  1. Molecular analysis of deep subsurface bacteria

    SciTech Connect

    Jimenez Baez, L.E.

    1989-09-01

    Deep sediments samples from site C10a, in Appleton, and sites, P24, P28, and P29, at the Savannah River Site (SRS), near Aiken, South Carolina were studied to determine their microbial community composition, DNA homology and mol %G+C. Different geological formations with great variability in hydrogeological parameters were found across the depth profile. Phenotypic identification of deep subsurface bacteria underestimated the bacterial diversity at the three SRS sites, since bacteria with the same phenotype have different DNA composition and less than 70% DNA homology. Total DNA hybridization and mol %G+C analysis of deep sediment bacterial isolates suggested that each formation is comprised of different microbial communities. Depositional environment was more important than site and geological formation on the DNA relatedness between deep subsurface bacteria, since more 70% of bacteria with 20% or more of DNA homology came from the same depositional environments. Based on phenotypic and genotypic tests Pseudomonas spp. and Acinetobacter spp.-like bacteria were identified in 85 million years old sediments. This suggests that these microbial communities might have been adapted during a long period of time to the environmental conditions of the deep subsurface.

  2. Deterioration to extinction of wastewater bacteria by non-thermal atmospheric pressure air plasma as assessed by 16S rDNA-DGGE fingerprinting

    PubMed Central

    El-Sayed, Wael S.; Ouf, Salama A.; Mohamed, Abdel-Aleam H.

    2015-01-01

    The use of cold plasma jets for inactivation of a variety of microorganisms has recently been evaluated via culture-based methods. Accordingly, elucidation of the role of cold plasma in decontamination would be inaccurate because most microbial populations within a system remain unexplored owing to the high amount of yet uncultured bacteria. The impact of cold atmospheric plasma on the bacterial community structure of wastewater from two different industries was investigated by metagenomic-based polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) utilizing 16S rRNA genes. Three doses of atmospheric pressure dielectric barrier discharge plasma were applied to wastewater samples on different time scales. DGGE revealed that the bacterial community gradually changed and overall abundance decreased to extinction upon plasma treatment. The bacterial community in food processing wastewater contained 11 key operational taxonomic units that remained almost completely unchanged when exposed to plasma irradiation at 75.5 mA for 30 or 60 s. However, when exposure time was extended to 90 s, only Escherichia coli, Coliforms, Aeromonas sp., Vibrio sp., and Pseudomonas putida survived. Only E. coli, Aeromonas sp., Vibrio sp., and P. putida survived treatment at 81.94 mA for 90 s. Conversely, all bacterial groups were completely eliminated by treatment at 85.34 mA for either 60 or 90 s. Dominant bacterial groups in leather processing wastewater also changed greatly upon exposure to plasma at 75.5 mA for 30 or 60 s, with Enterobacter aerogenes, Klebsiella sp., Pseudomonas stutzeri, and Acidithiobacillus ferrooxidans being sensitive to and eliminated from the community. At 90 s of exposure, all groups were affected except for Pseudomonas sp. and Citrobacter freundii. The same trend was observed for treatment at 81.94 mA. The variability in bacterial community response to different plasma treatment protocols revealed that plasma had a selective impact on bacterial

  3. DNA Methylation

    PubMed Central

    Marinus, M.G.; Løbner-Olesen, A.

    2014-01-01

    The DNA of E. coli contains 19,120 6-methyladenines and 12,045 5-methylcytosines in addition to the four regular bases and these are formed by the postreplicative action of three DNA methyltransferases. The majority of the methylated bases are formed by the Dam and Dcm methyltransferases encoded by the dam (DNA adenine methyltransferase) and dcm (DNA cytosine methyltransferase) genes. Although not essential, Dam methylation is important for strand discrimination during repair of replication errors, controlling the frequency of initiation of chromosome replication at oriC, and regulation of transcription initiation at promoters containing GATC sequences. In contrast, there is no known function for Dcm methylation although Dcm recognition sites constitute sequence motifs for Very Short Patch repair of T/G base mismatches. In certain bacteria (e.g., Vibrio cholerae, Caulobacter crescentus) adenine methylation is essential and in C. crescentus, it is important for temporal gene expression which, in turn, is required for coordinating chromosome initiation, replication and division. In practical terms, Dam and Dcm methylation can inhibit restriction enzyme cleavage; decrease transformation frequency in certain bacteria; decrease the stability of short direct repeats; are necessary for site-directed mutagenesis; and to probe eukaryotic structure and function. PMID:26442938

  4. Back To Bacteria.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    1997-01-01

    Explores new research about bacteria. Discusses bacterial genomes, archaea, unusual environments, evolution, pathogens, bacterial movement, biofilms, bacteria in the body, and a bacterial obsession. Contains 29 references. (JRH)

  5. Magnetic bacteria against MIC

    SciTech Connect

    Javaherdashti, R.

    1997-12-01

    In this article, it is suggested to use the sensitivity of magnetotactic bacteria to changes of magnetic field direction and the natural ability of this bacteria in rapid growth during relatively short time intervals against corrosion-enhancing bacteria and especially sulfate-reducing bacteria. If colonies of sulfate-reducing bacteria could be packed among magnetotactic bacteria, then, by applying sufficiently powerful magnetic field (about 0.5 gauss), all of these bacteria (magnetic and non-magnetic) will be oriented towards an Anti-bacteria agent (oxygen or biocide). So, Microbiologically-Influenced Corrosion in the system would be controlled to a large extent.

  6. Functional Encyclopedia of Bacteria and Archaea

    SciTech Connect

    Blow, M. J.; Deutschbauer, A. M.; Hoover, C. A.; Lamson, J.; Lamson, J.; Price, M. N.; Waters, J.; Wetmore, K. M.; Bristow, J.; Arkin, A. P.

    2013-03-20

    Bacteria and Archaea exhibit a huge diversity of metabolic capabilities with fundamental importance in the environment, and potential applications in biotechnology. However, the genetic bases of these capabilities remain unclear due largely to an absence of technologies that link DNA sequence to molecular function. To address this challenge, we are developing a pipeline for high throughput annotation of gene function using mutagenesis, growth assays and DNA sequencing. By applying this pipeline to annotate gene function in 50 diverse microbes we hope to discover thousands of new gene functions and produce a proof of principle `Functional Encyclopedia of Bacteria and Archaea?.

  7. Molecular characterization of a bovine Y-specific DNA sequence conserved in taurine and zebu breeds.

    PubMed

    Alves, Beatriz C A; Mayer, Mário G; Taber, Anna Paula; Egito, Andréa A; Fagundes, Valéria; McElreavey, Ken; Moreira-Filho, Carlos A

    2006-06-01

    The identification of new bovine male-specific DNA sequences is of great interest because the bovine Y chromosome remains poorly characterized in terms of physical and genetic maps. Since taurine and zebu Y chromosomes are structurally different, the identification of Y-specific sequences present in both sub-species is particularly important: these sequences are of evolutionary significance and can be broadly used for embryo sexing. In this work, we initially used the random amplified polymorphic DNA (RAPD) technique to search for male-specific sequences present as monomorphic markers in genomic DNA from zebu and taurine bulls. A male-specific RAPD band was found to be present and highly conserved in both sub-species, as demonstrated by Southern blotting, fluorescent in situ hybridization (FISH) and DNA sequencing. In a previous work, a pair of primers derived from this marker was successfully used in taurine and zebu embryo sexing. PMID:17286047

  8. Recombinant DNA means and method

    SciTech Connect

    Alford, B.L.; Mao, J.I.; Moir, D.T.; Taunton-Rigby, A.; Vovis, G.F.

    1987-05-19

    This patent describes a transformed living cell selected from the group consisting of fungi, yeast and bacteria, and containing genetic material derived from recombinant DNA material and coding for bovine rennin.

  9. Comparison of mitochondrial DNA control region sequence and microsatellite DNA analyses in estimating population structure and gene flow rates in Atlantic sturgeon Acipenser oxyrinchus

    USGS Publications Warehouse

    Wirgin, I.; Waldman, J.; Stabile, J.; Lubinski, B.; King, T.

    2002-01-01

    Atlantic sturgeon Acipenser oxyrinchus is large, long-lived, and anadromous with subspecies distributed along the Atlantic (A. oxyrinchus oxyrinchus) and Gulf of Mexico (A. o. desotoi) coasts of North America. Although it is not certain if extirpation of some population units has occurred, because of anthropogenic influences abundances of all populations are low compared with historical levels. Informed management of A. oxyrinchus demands a detailed knowledge of its population structure, levels of genetic diversity, and likelihood to home to natal rivers. We compared the use of mitochondrial DNA (mtDNA) control region sequence and microsatellite nuclear DNA (nDNA) analyses in identifying the stock structure and homing fidelity of Atlantic and Gulf coast populations of A. oxyrinchus. The approaches were concordant in that they revealed moderate to high levels of genetic diversity and suggested that populations of Atlantic sturgeon are highly structured. At least six genetically distinct management units were detected using the two approaches among the rivers surveyed. Mitochondrial DNA sequences revealed a significant cline in haplotype diversity along the Atlantic coast with monomorphism observed in Canadian populations. High levels of nDNA diversity were also observed among populations along the Atlantic coast, including the two Canadian populations, probably resulting from the more rapid rate of mutational and evolutionary change at microsatellite loci. Estimates of gene flow among populations were similar between both approaches with the exception that because of mtDNA monomorphism in Canadian populations, gene flow estimates between them were unobtainable. Analyses of both genomes provided high resolution and confidence in characterizing the population structure of Atlantic sturgeon. Microsatellite analysis was particularly informative in delineating population structure in rivers that were recently glaciated and may prove diagnostic in rivers that are

  10. High efficiency recombineering in lactic acid bacteria

    PubMed Central

    van Pijkeren, Jan-Peter; Britton, Robert A.

    2012-01-01

    The ability to efficiently generate targeted point mutations in the chromosome without the need for antibiotics, or other means of selection, is a powerful strategy for genome engineering. Although oligonucleotide-mediated recombineering (ssDNA recombineering) has been utilized in Escherichia coli for over a decade, the successful adaptation of ssDNA recombineering to Gram-positive bacteria has not been reported. Here we describe the development and application of ssDNA recombineering in lactic acid bacteria. Mutations were incorporated in the chromosome of Lactobacillus reuteri and Lactococcus lactis without selection at frequencies ranging between 0.4% and 19%. Whole genome sequence analysis showed that ssDNA recombineering is specific and not hypermutagenic. To highlight the utility of ssDNA recombineering we reduced the intrinsic vancomymycin resistance of L. reuteri >100-fold. By creating a single amino acid change in the d-Ala-d-Ala ligase enzyme we reduced the minimum inhibitory concentration for vancomycin from >256 to 1.5 µg/ml, well below the clinically relevant minimum inhibitory concentration. Recombineering thus allows high efficiency mutagenesis in lactobacilli and lactococci, and may be used to further enhance beneficial properties and safety of strains used in medicine and industry. We expect that this work will serve as a blueprint for the adaptation of ssDNA recombineering to other Gram-positive bacteria. PMID:22328729

  11. Phenotypic switching in bacteria

    NASA Astrophysics Data System (ADS)

    Merrin, Jack

    Living matter is a non-equilibrium system in which many components work in parallel to perpetuate themselves through a fluctuating environment. Physiological states or functionalities revealed by a particular environment are called phenotypes. Transitions between phenotypes may occur either spontaneously or via interaction with the environment. Even in the same environment, genetically identical bacteria can exhibit different phenotypes of a continuous or discrete nature. In this thesis, we pursued three lines of investigation into discrete phenotypic heterogeneity in bacterial populations: the quantitative characterization of the so-called bacterial persistence, a theoretical model of phenotypic switching based on those measurements, and the design of artificial genetic networks which implement this model. Persistence is the phenotype of a subpopulation of bacteria with a reduced sensitivity to antibiotics. We developed a microfluidic apparatus, which allowed us to monitor the growth rates of individual cells while applying repeated cycles of antibiotic treatments. We were able to identify distinct phenotypes (normal and persistent) and characterize the stochastic transitions between them. We also found that phenotypic heterogeneity was present prior to any environmental cue such as antibiotic exposure. Motivated by the experiments with persisters, we formulated a theoretical model describing the dynamic behavior of several discrete phenotypes in a periodically varying environment. This theoretical framework allowed us to quantitatively predict the fitness of dynamic populations and to compare survival strategies according to environmental time-symmetries. These calculations suggested that persistence is a strategy used by bacterial populations to adapt to fluctuating environments. Knowledge of the phenotypic transition rates for persistence may provide statistical information about the typical environments of bacteria. We also describe a design of artificial

  12. Oligonucleotide recombination in gram negative bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report describes several key aspects of a novel form of RecA-independent homologous recombination. We found that synthetic single stranded DNA oligonucleotides (oligos) introduced into bacteria by transformation can site-specifically recombine with bacterial chromosomes in the absence of any a...

  13. Ejecting Phage DNA against Cellular Turgor Pressure

    PubMed Central

    Marion, Sanjin; Šiber, Antonio

    2014-01-01

    We examine in vivo ejection of noncondensed DNA from tailed bacteriophages into bacteria. The ejection is dominantly governed by the physical conditions in the bacteria. The confinement of the DNA in the virus capsid only slightly helps the ejection, becoming completely irrelevant during its last stages. A simple calculation based on the premise of condensed DNA in the cell enables us to estimate the maximal bacterial turgor pressure against which the ejection can still be fully realized. The calculated pressure (∼5 atm) shows that the ejection of DNA into Gram-negative bacteria could proceed spontaneously, i.e., without the need to invoke active mechanisms. PMID:25418173

  14. Bacteria isolated from amoebae/bacteria consortium

    DOEpatents

    Tyndall, Richard L.

    1995-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  15. Bacteria isolated from amoebae/bacteria consortium

    DOEpatents

    Tyndall, R.L.

    1995-05-30

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  16. Glass bead transformation method for gram-positive bacteria

    PubMed Central

    Rattanachaikunsopon, Pongsak; Phumkhachorn, Parichat

    2009-01-01

    A simple, inexpensive and reproducible transformation method was developed for Gram-positive bacteria. It was based on agitation of bacterial protoplasts with glass beads in the presence of DNA and polyethylene glycol. By using this method, introduction of pGK12 into protoplasts of several strains of Gram-positive bacteria was achieved. PMID:24031442

  17. Metabolic engineering of bacteria.

    PubMed

    Kumar, Ravi R; Prasad, Satish

    2011-07-01

    Yield and productivity are critical for the economics and viability of a bioprocess. In metabolic engineering the main objective is the increase of a target metabolite production through genetic engineering. Metabolic engineering is the practice of optimizing genetic and regulatory processes within cells to increase the production of a certain substance. In the last years, the development of recombinant DNA technology and other related technologies has provided new tools for approaching yields improvement by means of genetic manipulation of biosynthetic pathway. Industrial microorganisms like Escherichia coli, Actinomycetes, etc. have been developed as biocatalysts to provide new or to optimize existing processes for the biotechnological production of chemicals from renewable plant biomass. The factors like oxygenation, temperature and pH have been traditionally controlled and optimized in industrial fermentation in order to enhance metabolite production. Metabolic engineering of bacteria shows a great scope in industrial application as well as such technique may also have good potential to solve certain metabolic disease and environmental problems in near future. PMID:22754024

  18. Regulatory RNAs in Bacteria

    PubMed Central

    Waters, Lauren S.; Storz, Gisela

    2011-01-01

    RNA regulators in bacteria are a heterogenous group of molecules that act by various mechanisms to modulate a wide range of physiological responses. One class comprises riboswitches, which are parts of the mRNAs they regulate. These leader sequences fold into structures amenable to conformational changes upon the binding of small molecules. Riboswitches thus sense and respond to the availability of various nutrients in the cell. Other small transcripts bind to proteins, among them global regulators, and antagonize their functions. The largest and most extensively studied set of small RNA regulators act through base pairing with RNAs, usually modulating the translation and stability of mRNAs. The majority of these small RNAs regulate responses to changes in environmental conditions. Finally, a recently discovered group of RNA regulators, known as the CRISPR RNAs, contain short regions of homology to bacteriophage and plasmid sequences. CRISPR RNAs interfere with bacteriophage infection and plasmid conjugation by targeting the homologous foreign DNA through an unknown mechanism. Here we discuss what is known about these RNA regulators, as well as the many intriguing questions that remain to be addressed. PMID:19239884

  19. Bacteria Inactivation During Lithotripsy

    NASA Astrophysics Data System (ADS)

    del Sol Quintero, María; Mora, Ulises; Gutiérrez, Jorge; Mues, Enrique; Castaño, Eduardo; Fernández, Francisco; Loske, Achim M.

    2006-09-01

    The influence of extracorporeal and intracorporeal lithotripsy on the viability of bacteria contained inside artificial kidney stones was investigated in vitro. Two different bacteria were exposed to the action of one extracorporeal shock wave generator and four intracorporeal lithotripters.

  20. CHAPTER IV-2 BACTERIA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Entomopathogenic bacteria provide an alternative to chemical pesticides used in insect control programs. Today, the principal microbial insecticides utilize spore forming bacteria or toxins produced by these bacteria as their active ingredients, either in formulations or by incorporation of toxin g...

  1. A method to capture large DNA fragments from genomic DNA.

    PubMed

    Ball, Geneviève; Filloux, Alain; Voulhoux, Romé

    2014-01-01

    The gene capture technique is a powerful tool that allows the cloning of large DNA regions (up to 80 kb), such as entire genomic islands, without using restriction enzymes or DNA amplification. This technique takes advantage of the high recombinant capacity of the yeast. A "capture" vector containing both ends of the target DNA region must first be constructed. The target region is then captured by co-transformation and recombination in yeast between the "capture" vector and appropriate genomic DNA. The selected recombinant plasmid can be verified by sequencing and transferred in the bacteria for multiple applications. This chapter describes a protocol specifically adapted for Pseudomonas aeruginosa genomic DNA capture. PMID:24818928

  2. Detection of fecal bacteria and source tracking identifiers in environmental waters using rRNA-based RT-qPCR and rDNA-based qPCR assays

    EPA Science Inventory

    The identification of fecal pollution sources is commonly performed using DNA-based methods. However, there is evidence that DNA can be associated with dead cells or present as “naked DNA” in the environment. To this end, we compared the detection frequency of host specific marke...

  3. The use of dimorphic Alu insertions in human DNA fingerprinting

    SciTech Connect

    Novick, G.E.; Gonzalez, T.; Garrison, J.; Novick, C.C.; Herrera, R.J.; Batzer, M.A.; Deininger, P.L.

    1992-12-04

    We have characterized certain Human Specific Alu Insertions as either dimorphic (TPA25, PV92, APO), sightly dimorphic (C2N4 and C4N4) or monomorphic (C3N1, C4N6, C4N2, C4N5, C4N8), based on studies of Caucasian, Asian, American Black and African Black populations. Our approach is based upon: (1) PCR amplification using primers directed to the sequences that flank the site of insertion of the different Alu elements studied; (2) gel electrophoresis and scoring according to the presence or absence of an Alu insertion in one or both homologous chromosomes; (3) allelic frequencies calculated and compared according to Hardy-Weinberg equilibrium. Our DNA fingerprinting procedure using PCR amplification of dimorphic Human Specific Alu insertions, is stable enough to be used not only as a tool for genetic mapping but also to characterize populations, study migrational patterns and track the inheritance of human genetic disorders.

  4. Diversity of Bacteria at Healthy Human Conjunctiva

    PubMed Central

    Dong, Qunfeng; Brulc, Jennifer M.; Iovieno, Alfonso; Bates, Brandon; Garoutte, Aaron; Miller, Darlene; Revanna, Kashi V.; Gao, Xiang; Antonopoulos, Dionysios A.; Slepak, Vladlen Z.

    2011-01-01

    Purpose. Ocular surface (OS) microbiota contributes to infectious and autoimmune diseases of the eye. Comprehensive analysis of microbial diversity at the OS has been impossible because of the limitations of conventional cultivation techniques. This pilot study aimed to explore true diversity of human OS microbiota using DNA sequencing-based detection and identification of bacteria. Methods. Composition of the bacterial community was characterized using deep sequencing of the 16S rRNA gene amplicon libraries generated from total conjunctival swab DNA. The DNA sequences were classified and the diversity parameters measured using bioinformatics software ESPRIT and MOTHUR and tools available through the Ribosomal Database Project-II (RDP-II). Results. Deep sequencing of conjunctival rDNA from four subjects yielded a total of 115,003 quality DNA reads, corresponding to 221 species-level phylotypes per subject. The combined bacterial community classified into 5 phyla and 59 distinct genera. However, 31% of all DNA reads belonged to unclassified or novel bacteria. The intersubject variability of individual OS microbiomes was very significant. Regardless, 12 genera—Pseudomonas, Propionibacterium, Bradyrhizobium, Corynebacterium, Acinetobacter, Brevundimonas, Staphylococci, Aquabacterium, Sphingomonas, Streptococcus, Streptophyta, and Methylobacterium—were ubiquitous among the analyzed cohort and represented the putative “core” of conjunctival microbiota. The other 47 genera accounted for <4% of the classified portion of this microbiome. Unexpectedly, healthy conjunctiva contained many genera that are commonly identified as ocular surface pathogens. Conclusions. The first DNA sequencing-based survey of bacterial population at the conjunctiva have revealed an unexpectedly diverse microbial community. All analyzed samples contained ubiquitous (core) genera that included commensal, environmental, and opportunistic pathogenic bacteria. PMID:21571682

  5. Genomics of Probiotic Bacteria

    NASA Astrophysics Data System (ADS)

    O'Flaherty, Sarah; Goh, Yong Jun; Klaenhammer, Todd R.

    Probiotic bacteria from the Lactobacillus and Bifidobacterium species belong to the Firmicutes and the Actinobacteria phylum, respectively. Lactobacilli are members of the lactic acid bacteria (LAB) group, a broadly defined family of microorganisms that ferment various hexoses into primarily lactic acid. Lactobacilli are typically low G + C gram-positive species which are phylogenetically diverse, with over 100 species documented to date. Bifidobacteria are heterofermentative, high G + C content bacteria with about 30 species of bifidobacteria described to date.

  6. Lactic acid bacteria isolated from soy sauce mash in Thailand.

    PubMed

    Tanasupawat, Somboon; Thongsanit, Jaruwan; Okada, Sanae; Komagata, Kazuo

    2002-08-01

    Fourteen sphere-shaped and 30 rod-shaped lactic acid bacteria were isolated from soy sauce mash of two factories in Thailand. These strains were separated into two groups, Group A and Group B, by cell shape and DNA-DNA similarity. Group A contained 14 tetrad-forming strains, and these strains were identified as Tetragenococcus halophilus by DNA similarity. Group B contained 30 rod-shaped bacteria, and they were further divided into four Subgroups, B1, B2, B3, and B4, and three ungrouped strains by phenotypic characteristics and DNA similarity. Subgroup B1 contained 16 strains, and these strains were identified as Lactobacillus acidipiscis by DNA similarity. Subgroup B2 included two strains, and the strains were identified as Lactobacillus farciminis by DNA similarity. Subgroup B3 contained five strains. The strains had meso-diaminopimelic acid in the cell wall, and were identified as Lactobacillus pentosus by DNA similarity. The strains tested produced DL-lactic acid from D-glucose. Subgroup B4 contained four strains. The strains had meso-diaminopimelic acid in the cell wall, and they were identified as Lactobacillus plantarum by DNA similarity. Two ungrouped strains were homofermentative, and one was heterofermentative. They showed a low degree of DNA similarity with the type strains tested, and were left unnamed. The distribution of lactic acid bacteria in soy sauce mash in Thailand is discussed. PMID:12469319

  7. Bleach vs. Bacteria

    MedlinePlus

    ... Inside Life Science > Bleach vs. Bacteria Inside Life Science View All Articles | Inside Life Science Home Page Bleach vs. Bacteria By Sharon Reynolds ... For Proteins, Form Shapes Function This Inside Life Science article also appears on LiveScience . Learn about related ...

  8. Bacteria turn tiny gears

    SciTech Connect

    2009-01-01

    Swarms of bacteria turn two 380-micron long gears, opening the possibility of building hybrid biological machines at the microscopic scale. Read more at Wired: http://www.wired.com/wiredscience/2009/12/bacterial-micro-machine/#more-15684 or Scientific American: http://www.scientificamerican.com/article.cfm?id=brownian-motion-bacteria

  9. Structural investigation into physiological DNA phosphorothioate modification

    PubMed Central

    Lan, Wenxian; Hu, Zhongpei; Shen, Jie; Wang, Chunxi; Jiang, Feng; Liu, Huili; Long, Dewu; Liu, Maili; Cao, Chunyang

    2016-01-01

    DNA phosphorothioate (PT) modification, with sulfur replacing a nonbridging phosphate oxygen in a sequence and stereo specific manner, is a novel physiological variation in bacteria. But what effects on DNA properties PT modification has is still unclear. To address this, we prepared three double-stranded (ds) DNA decamers, d(CGPXGCCGCCGA) with its complementary strand d(TCGGCGPXGCCG) (where X = O or S, i.e., PT-free dsDNA, [Sp, Sp]-PT dsDNA or [Rp, Rp]-PT dsDNA) located in gene of Streptomyces lividans. Their melting temperature (Tm) measurement indicates that [Rp, Rp]-PT dsDNA is most unstable. Their electron transfer potential detection presents an order of anti-oxidation properties: Sp-PT DNA > Rp-PT DNA > PT-free DNA. Their NMR structures demonstrate that PT modification doesn’t change their B-form conformation. The sulfur in [Rp, Rp]-PT dsDNA locates in the major groove, with steric effects on protons in the sugar close to modification sites, resulting in its unstability, and facilitating its selectively interactions with ScoMcrA. We thought that PT modification was dialectical to the bacteria. It protects the hosting bacteria by working as antioxidant against H2O2, and acts as a marker, directing restriction enzyme observed in other hosts, like ScoMcrA, to correctly cleave the PT modified DNA, so that bacteria cannot spread and survive. PMID:27169778

  10. Cell Size Regulation in Bacteria

    NASA Astrophysics Data System (ADS)

    Amir, Ariel

    2014-05-01

    Various bacteria such as the canonical gram negative Escherichia coli or the well-studied gram positive Bacillus subtilis divide symmetrically after they approximately double their volume. Their size at division is not constant, but is typically distributed over a narrow range. Here, we propose an analytically tractable model for cell size control, and calculate the cell size and interdivision time distributions, as well as the correlations between these variables. We suggest ways of extracting the model parameters from experimental data, and show that existing data for E. coli supports partial size control, and a particular explanation: a cell attempts to add a constant volume from the time of initiation of DNA replication to the next initiation event. This hypothesis accounts for the experimentally observed correlations between mother and daughter cells as well as the exponential dependence of size on growth rate.

  11. Molecular analysis of deep subsurface bacteria

    SciTech Connect

    Jimenez, L.E.

    1989-11-01

    Deep sediments samples from site C10a, in Appelton, and sites, P24, P28, and P29, at the Savannah River Site (SRS), near Aiken, South Carolina, were studied to determine their microbial community composition, DNA homology and mol %G+C. Additional studies were done in adjacent groundwater wells at the 3 SRS sites. Different geological formations with great variability in hydrogeological parameters were found across the depth profile. Sediment age ranged from 37 to 85 million years old. Bacterial densities by acridine orange direct counts (AODC) and viable counts on 1% PTYG media were significantly higher at deep sediments than in groundwater wells. Metabolic tests of bacterial isolates showed no significant difference between both habitats. However, sediment isolates showed higher percentages in the carbon assimilation tests than groundwater isolates. Phenotypic identification of deep subsurface bacteria underestimated the bacterial diversity at the three SRS sites, since bacteria with the same phenotype have different DNA composition and less than 70% DNA homology. The mol %G+C of deep subsurface bacteria ranged from 20 to 77%, with more than 60% and 12% of the isolates tested showing values similar to the {ital Pseudomonas} spp. and {ital Acinetobacter} spp., respectively. 200 refs., 18 figs., 24 tabs.

  12. Precision genome engineering in lactic acid bacteria

    PubMed Central

    2014-01-01

    Innovative new genome engineering technologies for manipulating chromosomes have appeared in the last decade. One of these technologies, recombination mediated genetic engineering (recombineering) allows for precision DNA engineering of chromosomes and plasmids in Escherichia coli. Single-stranded DNA recombineering (SSDR) allows for the generation of subtle mutations without the need for selection and without leaving behind any foreign DNA. In this review we discuss the application of SSDR technology in lactic acid bacteria, with an emphasis on key factors that were critical to move this technology from E. coli into Lactobacillus reuteri and Lactococcus lactis. We also provide a blueprint for how to proceed if one is attempting to establish SSDR technology in a lactic acid bacterium. The emergence of CRISPR-Cas technology in genome engineering and its potential application to enhancing SSDR in lactic acid bacteria is discussed. The ability to perform precision genome engineering in medically and industrially important lactic acid bacteria will allow for the genetic improvement of strains without compromising safety. PMID:25185700

  13. Molecular analysis of deep-subsurface bacteria

    SciTech Connect

    Jimenez, L. )

    1990-07-01

    Bacterial isolates from deep-sediment samples from three sites at the Savannah River site, near Aiken, S.C., were studied to determine their microbial community composition and DNA structure by using total DNA hybridization and moles percent G+C. Standard phenotypic identification underestimated the bacterial diversity at the three sites, since isolates with the same phenotype had different DNA structures in terms of moles percent G+C and DNA homology. The G+C content of deep-subsurface bacteria ranged from 20 to 77 mol%. More than 60% of the isolates tested had G+C values similar to those of Pseudomonas spp., and 12% had values similar to those of Acinetobacter spp. No isolates from deeper formations showed the same DNA composition as isolates from upper formations. Total-DNA hybridization and DNA base composition analysis provided a better resolution than phenotypic tests for the understanding of the diversity and structure of deep-subsurface bacterial communities. On the basis of the moles percent G+C values, deep-subsurface isolates tested seemed to belong to the families Pseudomonadaceae and Neisseriaceae, which might reflect a long period of adaptation to the environmental conditions of the deep subsurface.

  14. In vitro antibacterial activity of AZD0914, a new spiropyrimidinetrione DNA gyrase/topoisomerase inhibitor with potent activity against Gram-positive, fastidious Gram-Negative, and atypical bacteria.

    PubMed

    Huband, Michael D; Bradford, Patricia A; Otterson, Linda G; Basarab, Gregory S; Kutschke, Amy C; Giacobbe, Robert A; Patey, Sara A; Alm, Richard A; Johnstone, Michele R; Potter, Marie E; Miller, Paul F; Mueller, John P

    2015-01-01

    AZD0914 is a new spiropyrimidinetrione bacterial DNA gyrase/topoisomerase inhibitor with potent in vitro antibacterial activity against key Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus pyogenes, and Streptococcus agalactiae), fastidious Gram-negative (Haemophilus influenzae and Neisseria gonorrhoeae), atypical (Legionella pneumophila), and anaerobic (Clostridium difficile) bacterial species, including isolates with known resistance to fluoroquinolones. AZD0914 works via inhibition of DNA biosynthesis and accumulation of double-strand cleavages; this mechanism of inhibition differs from those of other marketed antibacterial compounds. AZD0914 stabilizes and arrests the cleaved covalent complex of gyrase with double-strand broken DNA under permissive conditions and thus blocks religation of the double-strand cleaved DNA to form fused circular DNA. Whereas this mechanism is similar to that seen with fluoroquinolones, it is mechanistically distinct. AZD0914 exhibited low frequencies of spontaneous resistance in S. aureus, and if mutants were obtained, the mutations mapped to gyrB. Additionally, no cross-resistance was observed for AZD0914 against recent bacterial clinical isolates demonstrating resistance to fluoroquinolones or other drug classes, including macrolides, β-lactams, glycopeptides, and oxazolidinones. AZD0914 was bactericidal in both minimum bactericidal concentration and in vitro time-kill studies. In in vitro checkerboard/synergy testing with 17 comparator antibacterials, only additivity/indifference was observed. The potent in vitro antibacterial activity (including activity against fluoroquinolone-resistant isolates), low frequency of resistance, lack of cross-resistance, and bactericidal activity of AZD0914 support its continued development. PMID:25385112

  15. In Vitro Antibacterial Activity of AZD0914, a New Spiropyrimidinetrione DNA Gyrase/Topoisomerase Inhibitor with Potent Activity against Gram-Positive, Fastidious Gram-Negative, and Atypical Bacteria

    PubMed Central

    Bradford, Patricia A.; Otterson, Linda G.; Basarab, Gregory S.; Kutschke, Amy C.; Giacobbe, Robert A.; Patey, Sara A.; Alm, Richard A.; Johnstone, Michele R.; Potter, Marie E.; Miller, Paul F.; Mueller, John P.

    2014-01-01

    AZD0914 is a new spiropyrimidinetrione bacterial DNA gyrase/topoisomerase inhibitor with potent in vitro antibacterial activity against key Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus pyogenes, and Streptococcus agalactiae), fastidious Gram-negative (Haemophilus influenzae and Neisseria gonorrhoeae), atypical (Legionella pneumophila), and anaerobic (Clostridium difficile) bacterial species, including isolates with known resistance to fluoroquinolones. AZD0914 works via inhibition of DNA biosynthesis and accumulation of double-strand cleavages; this mechanism of inhibition differs from those of other marketed antibacterial compounds. AZD0914 stabilizes and arrests the cleaved covalent complex of gyrase with double-strand broken DNA under permissive conditions and thus blocks religation of the double-strand cleaved DNA to form fused circular DNA. Whereas this mechanism is similar to that seen with fluoroquinolones, it is mechanistically distinct. AZD0914 exhibited low frequencies of spontaneous resistance in S. aureus, and if mutants were obtained, the mutations mapped to gyrB. Additionally, no cross-resistance was observed for AZD0914 against recent bacterial clinical isolates demonstrating resistance to fluoroquinolones or other drug classes, including macrolides, β-lactams, glycopeptides, and oxazolidinones. AZD0914 was bactericidal in both minimum bactericidal concentration and in vitro time-kill studies. In in vitro checkerboard/synergy testing with 17 comparator antibacterials, only additivity/indifference was observed. The potent in vitro antibacterial activity (including activity against fluoroquinolone-resistant isolates), low frequency of resistance, lack of cross-resistance, and bactericidal activity of AZD0914 support its continued development. PMID:25385112

  16. Exploiting CRISPR-Cas immune systems for genome editing in bacteria.

    PubMed

    Barrangou, Rodolphe; van Pijkeren, Jan-Peter

    2016-02-01

    The CRISPR-Cas immune system is a DNA-encoded, RNA-mediated, DNA-targeting defense mechanism, which provides sequence-specific targeting of DNA. This molecular machinery can be engineered into the sgRNA:Cas9 technology, for programmable cleavage of DNA. Following the genesis of double-stranded DNA breaks, the DNA repair machinery generates mutations at the cleavage site using various pathways. This technology has revolutionized eukaryotic genome editing, and we are at the cusp of full exploitation in bacteria. Here, we discuss the potential of CRISPR-based technologies for use in bacteria, and highlight the application of single stranded DNA recombineering combined with CRISPR-Cas selection to edit the genome of a probiotic organism. We envision that CRISPR-Cas technologies will play a key role in the development of next-generation industrial bacteria. PMID:26629846

  17. Inactivation of biofilm bacteria.

    PubMed Central

    LeChevallier, M W; Cawthon, C D; Lee, R G

    1988-01-01

    The current project was developed to examine inactivation of biofilm bacteria and to characterize the interaction of biocides with pipe surfaces. Unattached bacteria were quite susceptible to the variety of disinfectants tested. Viable bacterial counts were reduced 99% by exposure to 0.08 mg of hypochlorous acid (pH 7.0) per liter (1 to 2 degrees C) for 1 min. For monochloramine, 94 mg/liter was required to kill 99% of the bacteria within 1 min. These results were consistent with those found by other investigators. Biofilm bacteria grown on the surfaces of granular activated carbon particles, metal coupons, or glass microscope slides were 150 to more than 3,000 times more resistant to hypochlorous acid (free chlorine, pH 7.0) than were unattached cells. In contrast, resistance of biofilm bacteria to monochloramine disinfection ranged from 2- to 100-fold more than that of unattached cells. The results suggested that, relative to inactivation of unattached bacteria, monochloramine was better able to penetrate and kill biofilm bacteria than free chlorine. For free chlorine, the data indicated that transport of the disinfectant into the biofilm was a major rate-limiting factor. Because of this phenomenon, increasing the level of free chlorine did not increase disinfection efficiency. Experiments where equal weights of disinfectants were used suggested that the greater penetrating power of monochloramine compensated for its limited disinfection activity. These studies showed that monochloramine was as effective as free chlorine for inactivation of biofilm bacteria. The research provides important insights into strategies for control of biofilm bacteria. Images PMID:2849380

  18. Multidrug Resistance in Bacteria

    PubMed Central

    Nikaido, Hiroshi

    2010-01-01

    Large amounts of antibiotics used for human therapy, as well as for farm animals and even for fish in aquaculture, resulted in the selection of pathogenic bacteria resistant to multiple drugs. Multidrug resistance in bacteria may be generated by one of two mechanisms. First, these bacteria may accumulate multiple genes, each coding for resistance to a single drug, within a single cell. This accumulation occurs typically on resistance (R) plasmids. Second, multidrug resistance may also occur by the increased expression of genes that code for multidrug efflux pumps, extruding a wide range of drugs. This review discusses our current knowledge on the molecular mechanisms involved in both types of resistance. PMID:19231985

  19. Antibiotics from predatory bacteria

    PubMed Central

    Korp, Juliane; Vela Gurovic, María S

    2016-01-01

    Summary Bacteria, which prey on other microorganisms, are commonly found in the environment. While some of these organisms act as solitary hunters, others band together in large consortia before they attack their prey. Anecdotal reports suggest that bacteria practicing such a wolfpack strategy utilize antibiotics as predatory weapons. Consistent with this hypothesis, genome sequencing revealed that these micropredators possess impressive capacities for natural product biosynthesis. Here, we will present the results from recent chemical investigations of this bacterial group, compare the biosynthetic potential with that of non-predatory bacteria and discuss the link between predation and secondary metabolism. PMID:27340451

  20. Antibiotics from predatory bacteria.

    PubMed

    Korp, Juliane; Vela Gurovic, María S; Nett, Markus

    2016-01-01

    Bacteria, which prey on other microorganisms, are commonly found in the environment. While some of these organisms act as solitary hunters, others band together in large consortia before they attack their prey. Anecdotal reports suggest that bacteria practicing such a wolfpack strategy utilize antibiotics as predatory weapons. Consistent with this hypothesis, genome sequencing revealed that these micropredators possess impressive capacities for natural product biosynthesis. Here, we will present the results from recent chemical investigations of this bacterial group, compare the biosynthetic potential with that of non-predatory bacteria and discuss the link between predation and secondary metabolism. PMID:27340451

  1. Isolation of isoprene degrading bacteria from soils, development of isoA gene probes and identification of the active isoprene-degrading soil community using DNA-stable isotope probing.

    PubMed

    El Khawand, Myriam; Crombie, Andrew T; Johnston, Antonia; Vavlline, Dmitrii V; McAuliffe, Joseph C; Latone, Jacob A; Primak, Yuliya A; Lee, Sang-Kyu; Whited, Gregg M; McGenity, Terry J; Murrell, J Colin

    2016-09-01

    Emissions of biogenic volatile organic compounds (bVOCs), are an important element in the global carbon cycle, accounting for a significant proportion of fixed carbon. They contribute directly and indirectly to global warming and climate change and have a major effect on atmospheric chemistry. Plants emit isoprene to the atmosphere in similar quantities to emissions of methane from all sources and each accounts for approximately one third of total VOCs. Although methanotrophs, capable of growth on methane, have been intensively studied, we know little of isoprene biodegradation. Here, we report the isolation of two isoprene-degrading strains from the terrestrial environment and describe the design and testing of polymerase chain reaction (PCR) primers targeting isoA, the gene encoding the active-site component of the conserved isoprene monooxygenase, which are capable of retrieving isoA sequences from isoprene-enriched environmental samples. Stable isotope probing experiments, using biosynthesized (13) C-labelled isoprene, identified the active isoprene-degrading bacteria in soil. This study identifies novel isoprene-degrading strains using both culture-dependent and, for the first time, culture-independent methods and provides the tools and foundations for continued investigation of the biogeography and molecular ecology of isoprene-degrading bacteria. PMID:27102583

  2. Widespread distribution of ability to oxidize manganese among freshwater bacteria.

    PubMed

    Gregory, E; Staley, J T

    1982-08-01

    Manganese-oxidizing heterotrophic bacteria were found to comprise a significant proportion of the bacterial community of Lake Washington (Seattle, Wash.) and Lake Virginia (Winter Park, Fla.). Identification of these freshwater bacteria showed that members of a variety of genera are capable of oxidizing manganese. Isolates maintained in the laboratory spontaneously lost the ability to oxidize manganese. A direct correlation was found between the presence of plasmid DNA and the ability of the organism to oxidize manganese. PMID:16346084

  3. Indicator For Pseudomonas Bacteria

    NASA Technical Reports Server (NTRS)

    Margalit, Ruth

    1990-01-01

    Characteristic protein extracted and detected. Natural protein marker found in Pseudomonas bacteria. Azurin, protein containing copper readily extracted, purified, and used to prepare antibodies. Possible to develop simple, fast, and accurate test for marker carried out in doctor's office.

  4. Bacteria subsisting on antibiotics.

    PubMed

    Dantas, Gautam; Sommer, Morten O A; Oluwasegun, Rantimi D; Church, George M

    2008-04-01

    Antibiotics are a crucial line of defense against bacterial infections. Nevertheless, several antibiotics are natural products of microorganisms that have as yet poorly appreciated ecological roles in the wider environment. We isolated hundreds of soil bacteria with the capacity to grow on antibiotics as a sole carbon source. Of 18 antibiotics tested, representing eight major classes of natural and synthetic origin, 13 to 17 supported the growth of clonal bacteria from each of 11 diverse soils. Bacteria subsisting on antibiotics are surprisingly phylogenetically diverse, and many are closely related to human pathogens. Furthermore, each antibiotic-consuming isolate was resistant to multiple antibiotics at clinically relevant concentrations. This phenomenon suggests that this unappreciated reservoir of antibiotic-resistance determinants can contribute to the increasing levels of multiple antibiotic resistance in pathogenic bacteria. PMID:18388292

  5. Gut bacteria and cancer

    PubMed Central

    Erdman, Susan E.; Poutahidis, Theofilos

    2015-01-01

    Microbiota on the mucosal surfaces of the gastrointestinal (GI) tract greatly outnumber the cells in the human body. Effects of antibiotics indicate that GI tract bacteria may be determining the fate of distal cancers. Recent data implicate dysregulated host responses to enteric bacteria leading to cancers in extra-intestinal sites. Together these findings point to novel anti-cancer strategies aimed at promoting GI tract homeostasis. PMID:26050963

  6. Aerobic Anoxygenic Phototrophic Bacteria

    PubMed Central

    Yurkov, Vladimir V.; Beatty, J. Thomas

    1998-01-01

    The aerobic anoxygenic phototrophic bacteria are a relatively recently discovered bacterial group. Although taxonomically and phylogenetically heterogeneous, these bacteria share the following distinguishing features: the presence of bacteriochlorophyll a incorporated into reaction center and light-harvesting complexes, low levels of the photosynthetic unit in cells, an abundance of carotenoids, a strong inhibition by light of bacteriochlorophyll synthesis, and the inability to grow photosynthetically under anaerobic conditions. Aerobic anoxygenic phototrophic bacteria are classified in two marine (Erythrobacter and Roseobacter) and six freshwater (Acidiphilium, Erythromicrobium, Erythromonas, Porphyrobacter, Roseococcus, and Sandaracinobacter) genera, which phylogenetically belong to the α-1, α-3, and α-4 subclasses of the class Proteobacteria. Despite this phylogenetic information, the evolution and ancestry of their photosynthetic properties are unclear. We discuss several current proposals for the evolutionary origin of aerobic phototrophic bacteria. The closest phylogenetic relatives of aerobic phototrophic bacteria include facultatively anaerobic purple nonsulfur phototrophic bacteria. Since these two bacterial groups share many properties, yet have significant differences, we compare and contrast their physiology, with an emphasis on morphology and photosynthetic and other metabolic processes. PMID:9729607

  7. Cleaving DNA with DNA

    NASA Astrophysics Data System (ADS)

    Carmi, Nir; Balkhi, Shameelah R.; Breaker, Ronald R.

    1998-03-01

    A DNA structure is described that can cleave single-stranded DNA oligonucleotides in the presence of ionic copper. This ``deoxyribozyme'' can self-cleave or can operate as a bimolecular complex that simultaneously makes use of duplex and triplex interactions to bind and cleave separate DNA substrates. Bimolecular deoxyribozyme-mediated strand scission proceeds with a kobs of 0.2 min-1, whereas the corresponding uncatalyzed reaction could not be detected. The duplex and triplex recognition domains can be altered, making possible the targeted cleavage of single-stranded DNAs with different nucleotide sequences. Several small synthetic DNAs were made to function as simple ``restriction enzymes'' for the site-specific cleavage of single-stranded DNA.

  8. Natural soil reservoirs for human pathogenic and fecal indicator bacteria

    USGS Publications Warehouse

    Boschiroli, Maria L; Falkinham, Joseph; Favre-Bonte, Sabine; Nazaret, Sylvie; Piveteau, Pascal; Sadowsky, Michael J.; Byappanahalli, Muruleedhara; Delaquis, Pascal; Hartmann, Alain

    2016-01-01

    Soils receive inputs of human pathogenic and indicator bacteria through land application of animal manures or sewage sludge, and inputs by wildlife. Soil is an extremely heterogeneous substrate and contains meso- and macrofauna that may be reservoirs for bacteria of human health concern. The ability to detect and quantify bacteria of human health concern is important in risk assessments and in evaluating the efficacy of agricultural soil management practices that are protective of crop quality and protective of adjacent water resources. The present chapter describes the distribution of selected Gram-positive and Gram-negative bacteria in soils. Methods for detecting and quantifying soilborne bacteria including extraction, enrichment using immunomagnetic capture, culturing, molecular detection and deep sequencing of metagenomic DNA to detect pathogens are overviewed. Methods for strain phenotypic and genotypic characterization are presented, as well as how comparison with clinical isolates can inform the potential for human health risk.

  9. Thermal control of virulence factors in bacteria: A hot topic

    PubMed Central

    Lam, Oliver; Wheeler, Jun; Tang, Christoph M

    2014-01-01

    Pathogenic bacteria sense environmental cues, including the local temperature, to control the production of key virulence factors. Thermal regulation can be achieved at the level of DNA, RNA or protein and although many virulence factors are subject to thermal regulation, the exact mechanisms of control are yet to be elucidated in many instances. Understanding how virulence factors are regulated by temperature presents a significant challenge, as gene expression and protein production are often influenced by complex regulatory networks involving multiple transcription factors in bacteria. Here we highlight some recent insights into thermal regulation of virulence in pathogenic bacteria. We focus on bacteria which cause disease in mammalian hosts, which are at a significantly higher temperature than the outside environment. We outline the mechanisms of thermal regulation and how understanding this fundamental aspect of the biology of bacteria has implications for pathogenesis and human health. PMID:25494856

  10. Utilization of hexamethylenetetramine (urotropine) by bacteria and yeasts.

    PubMed

    Middelhoven, Wouter J; van Doesburg, Wim

    2007-02-01

    A slow growing bacterial population able to utilize hexamethylelenetetramine (urotropine) as sole source of carbon, nitrogen and energy was isolated from soil. From this crude enrichment culture two bacteria were isolated and identified as Brevundimonas diminuta and a Phyllobacterium sp. by sequencing of 16S ribosomal DNA. These bacteria also grew on urotropine but at a lower rate than the enrichment culture. Addition of glucose to the latter resulted in growth of some yeasts that overgrew the bacteria. Assimilation of urotropine as sole nitrogen source is very common among yeasts, 46 out of 60 species tested showed this characteristic. PMID:17043911

  11. The fecal bacteria

    USGS Publications Warehouse

    Sadowsky, Michael J., (Edited By); Whitman, Richard L.

    2011-01-01

    The Fecal Bacteria offers a balanced, integrated discussion of fecal bacteria and their presence and ecology in the intestinal tract of mammals, in the environment, and in the food supply. This volume covers their use in examining and assessing water quality in order to offer protection from illnesses related to swimming in or ingesting contaminated water, in addition to discussing their use in engineering considerations of water quality, modeling, monitoring, and regulations. Fecal bacteria are additionally used as indicators of contamination of ready-to-eat foods and fresh produce. The intestinal environment, the microbial community structure of the gut microbiota, and the physiology and genomics of this broad group of microorganisms are explored in the book. With contributions from an internationally recognized group of experts, the book integrates medicine, public health, environmental, and microbiological topics in order to provide a unique, holistic understanding of fecal bacteria. Moreover, it shows how the latest basic science and applied research findings are helping to solve problems and develop effective management strategies. For example, readers will discover how the latest tools and molecular approaches have led to our current understanding of fecal bacteria and enabled us to improve human health and water quality. The Fecal Bacteria is recommended for microbiologists, clinicians, animal scientists, engineers, environmental scientists, food safety experts, water quality managers, and students. It will help them better understand fecal bacteria and use their knowledge to protect human and environmental health. They can also apply many of the techniques and molecular tools discussed in this book to the study of a broad range of microorganisms in a variety of habitats.

  12. Platelet Interaction with Bacteria

    PubMed Central

    Clawson, C. C.

    1973-01-01

    The interaction of several common strains of bacteria with rabbit or human platelets in vitro has been examined sequentially with scanning and transmission electron microscopy. Bacteria were added to platelets in their native plasma or to washed platelets in a balanced salt solution at ratios of about 1:1 or at low bacteria to platelet ratios (down to 1:100). The platelet-bacterial interaction (PBI) was studied with recording nephelometry. Matched samples were fixed for microscopy at various points in the aggregation response. The results support these conclusions: a) Bacteria stimulate platelet aggregation by direct contact and adhesion with the platelet surface. b) Adhesion between the two cell types requires divalent cations, occurs through fusion of normal cell-surface coats and appears identical in the presence or absence of extracellular plasma protein. c) The morphologic transformation of platelets during PBI is identical to that produced by collagen. d) During PBI the bacteria are incorporated into the forming platelet aggregates and reside predominantly intercellularly. e) Phagocytosis of bacteria by a single platelet is very rare. f) Bacteria which have resided within platelet aggregates for one hour are unaltered morphologically. g) PBI occurs even at very low bacterial numbers and produces platelet-bacterial aggregates in small numbers without stimulating generalized platelet aggregation. Methods for concentration of thrombocytopenic plasma and washing human platelets are presented. ImagesFig 6Fig 7Fig 8Fig 9Fig 10Fig 11Fig 1Fig 2Fig 12Fig 13Fig 3Fig 14Fig 4Fig 5 PMID:4632008

  13. Diversification of DnaA dependency for DNA replication in cyanobacterial evolution.

    PubMed

    Ohbayashi, Ryudo; Watanabe, Satoru; Ehira, Shigeki; Kanesaki, Yu; Chibazakura, Taku; Yoshikawa, Hirofumi

    2016-05-01

    Regulating DNA replication is essential for all living cells. The DNA replication initiation factor DnaA is highly conserved in prokaryotes and is required for accurate initiation of chromosomal replication at oriC. DnaA-independent free-living bacteria have not been identified. The dnaA gene is absent in plastids and some symbiotic bacteria, although it is not known when or how DnaA-independent mechanisms were acquired. Here, we show that the degree of dependency of DNA replication on DnaA varies among cyanobacterial species. Deletion of the dnaA gene in Synechococcus elongatus PCC 7942 shifted DNA replication from oriC to a different site as a result of the integration of an episomal plasmid. Moreover, viability during the stationary phase was higher in dnaA disruptants than in wild-type cells. Deletion of dnaA did not affect DNA replication or cell growth in Synechocystis sp. PCC 6803 or Anabaena sp. PCC 7120, indicating that functional dependency on DnaA was already lost in some nonsymbiotic cyanobacterial lineages during diversification. Therefore, we proposed that cyanobacteria acquired DnaA-independent replication mechanisms before symbiosis and such an ancestral cyanobacterium was the sole primary endosymbiont to form a plastid precursor. PMID:26517699

  14. Stress-Induced Mutagenesis in Bacteria

    PubMed Central

    Foster, Patricia L.

    2009-01-01

    Bacteria spend their lives buffeted by changing environmental conditions. To adapt to and survive these stresses, bacteria have global response systems that result in sweeping changes in gene expression and cellular metabolism. These responses are controlled by master regulators, which include: alternative sigma factors, such as RpoS and RpoH; small molecule effectors, such as ppGpp; gene repressors such as LexA; and, inorganic molecules, such as polyphosphate. The response pathways extensively overlap and are induced to various extents by the same environmental stresses. These stresses include nutritional deprivation, DNA damage, temperature shift, and exposure to antibiotics. All of these global stress responses include functions that can increase genetic variability. In particular, up-regulation and activation of error-prone DNA polymerases, down-regulation of error-correcting enzymes, and movement of mobile genetic elements are common features of several stress responses. The result is that under a variety of stressful conditions, bacteria are induced for genetic change. This transient mutator state may be important for adaptive evolution. PMID:17917873

  15. DNA repair

    SciTech Connect

    Friedberg, E.C.; Hanawalt, P.C. )

    1988-01-01

    Topics covered in this book included: Eukaryote model systems for DNA repair study; Sensitive detection of DNA lesions and their repair; and Defined DNA sequence probes for analysis of mutagenesis and repair.

  16. The RecQ DNA helicases in DNA Repair

    PubMed Central

    Bernstein, Kara A.; Gangloff, Serge; Rothstein, Rodney

    2014-01-01

    The RecQ helicases are conserved from bacteria to humans and play a critical role in genome stability. In humans, loss of RecQ gene function is associated with cancer predisposition and/or premature aging. Recent data have shown that the RecQ helicases function during two distinct steps during DNA repair; DNA end resection and resolution of double Holliday junctions (dHJs). RecQ functions in these different processing steps has important implications for its role in repair of double-strand breaks (DSBs) that occur during DNA replication, meiosis and at specific genomic loci such as telomeres. PMID:21047263

  17. Ice-Nucleating Bacteria

    NASA Astrophysics Data System (ADS)

    Obata, Hitoshi

    Since the discovery of ice-nucleating bacteria in 1974 by Maki et al., a large number of studies on the biological characteristics, ice-nucleating substance, ice nucleation gene and frost damage etc. of the bacteria have been carried out. Ice-nucleating bacteria can cause the freezing of water at relatively warm temperature (-2.3°C). Tween 20 was good substrates for ice-nucleating activity of Pseudomonas fluorescens KUIN-1. Major fatty acids of Isolate (Pseudomonas fluorescens) W-11 grown at 30°C were palmitic, cis-9-hexadecenoic and cis-11-octadecenoic which amounted to 90% of the total fatty acids. Sequence analysis shows that an ice nucleation gene from Pseudomonas fluorescens is related to the gene of Pseudomonas syringae.

  18. [Innovative treatments for multidrug-resistant bacteria].

    PubMed

    Pierre, Tattevin; Aurélien, Lorleac'h; Matthieu, Revest

    2014-03-01

    The spread of multidrug-resistant bacteria has accelerated sharply in the last decade. According to the World Health Organization they are responsible for an estimated 25 000 deaths in Europe each year. In addition, few new antibiotics are under development, raising the spectrum of a return to the "pre-antibiotic era". Non antibiotic antibacterial agents have recently attracted renewed interest. The most promising candidates are: i) phages (bacteria-infecting viruses) have been widely used in Eastern European countries since the 1930s but come up against logistic and regulatory obstacles due to the evolutionary nature of these biologic agents, while convincing clinical data are lacking; ii) bacteriocines are smallantibacterialpeptidesproducedby numerous bacteria; some have a rapid bactericidal effect, good tolerability, and a limited impact on the commensal flora; however, clinical use of bacteriocines is complicated by their fragility, poor penetration, and substantial risk of resistance selection ; iii) antisense oligonucleo tides act by inactivating genes through specific interaction with a complementary DNA or RNA fragment, potentially allowing specific inhibition of selected bacterial virulence factors. However, this therapeutic class may be more suitable for viral or genetic diseases than for multidrug-resistant bacterial infections, owing to the difficulty of delivering them inside bacteria. PMID:26427289

  19. Horizontal gene transfer between bacteria and animals.

    PubMed

    Dunning Hotopp, Julie C

    2011-04-01

    Horizontal gene transfer is increasingly described between bacteria and animals. Such transfers that are vertically inherited have the potential to influence the evolution of animals. One classic example is the transfer of DNA from mitochondria and chloroplasts to the nucleus after the acquisition of these organelles by eukaryotes. Even today, many of the described instances of bacteria-to-animal transfer occur as part of intimate relationships such as those of endosymbionts and their invertebrate hosts, particularly insects and nematodes, while numerous transfers are also found in asexual animals. Both of these observations are consistent with modern evolutionary theory, in particular the serial endosymbiotic theory and Muller's ratchet. Although it is tempting to suggest that these particular lifestyles promote horizontal gene transfer, it is difficult to ascertain given the nonrandom sampling of animal genome sequencing projects and the lack of a systematic analysis of animal genomes for such transfers. PMID:21334091

  20. PATHOGENICITY OF BIOFILM BACTERIA

    EPA Science Inventory

    There is a paucity of information concerning any link between the microorganisms commonly found in biofilms of drinking water systems and their impacts on human health. For bacteria, culture-based techniques detect only a limited number of the total microorganisms associated wit...

  1. Antibiotic-Resistant Bacteria.

    ERIC Educational Resources Information Center

    Longenecker, Nevin E.; Oppenheimer, Dan

    1982-01-01

    A study conducted by high school advanced bacteriology students appears to confirm the hypothesis that the incremental administration of antibiotics on several species of bacteria (Escherichia coli, Staphylococcus epidermis, Bacillus sublitus, Bacillus megaterium) will allow for the development of antibiotic-resistant strains. (PEB)

  2. DNA charge transport within the cell.

    PubMed

    Grodick, Michael A; Muren, Natalie B; Barton, Jacqueline K

    2015-02-01

    The unique characteristics of DNA charge transport (CT) have prompted an examination of roles for this chemistry within a biological context. Not only can DNA CT facilitate long-range oxidative damage of DNA, but redox-active proteins can couple to the DNA base stack and participate in long-range redox reactions using DNA CT. DNA transcription factors with redox-active moieties such as SoxR and p53 can use DNA CT as a form of redox sensing. DNA CT chemistry also provides a means to monitor the integrity of the DNA, given the sensitivity of DNA CT to perturbations in base stacking as arise with mismatches and lesions. Enzymes that utilize this chemistry include an interesting and ever-growing class of DNA-processing enzymes involved in DNA repair, replication, and transcription that have been found to contain 4Fe-4S clusters. DNA repair enzymes containing 4Fe-4S clusters, that include endonuclease III (EndoIII), MutY, and DinG from bacteria, as well as XPD from archaea, have been shown to be redox-active when bound to DNA, share a DNA-bound redox potential, and can be reduced and oxidized at long-range via DNA CT. Interactions between DNA and these proteins in solution, in addition to genetics experiments within Escherichia coli, suggest that DNA-mediated CT can be used as a means of cooperative signaling among DNA repair proteins that contain 4Fe-4S clusters as a first step in finding DNA damage, even within cells. On the basis of these data, we can consider also how DNA-mediated CT may be used as a means of signaling to coordinate DNA processing across the genome. PMID:25606780

  3. R-body-producing bacteria.

    PubMed Central

    Pond, F R; Gibson, I; Lalucat, J; Quackenbush, R L

    1989-01-01

    Until 10 years ago, R bodies were known only as diagnostic features by which endosymbionts of paramecia were identified as kappa particles. They were thought to be limited to the cytoplasm of two species in the Paramecium aurelia species complex. Now, R bodies have been found in free-living bacteria and other Paramecium species. The organisms now known to form R bodies include the cytoplasmic kappa endosymbionts of P. biaurelia and P. tetraurelia, the macronuclear kappa endosymbionts of P. caudatum, Pseudomonas avenae (a free-living plant pathogen), Pseudomonas taeniospiralis (a hydrogen-oxidizing soil microorganism), Rhodospirillum centenum (a photosynthetic bacterium), and a soil bacterium, EPS-5028, which is probably a pseudomonad. R bodies themselves fall into five distinct groups, distinguished by size, the morphology of the R-body ribbons, and the unrolling behavior of wound R bodies. In recent years, the inherent difficulties in studying the organization and assembly of R bodies by the obligate endosymbiont kappa, have been alleviated by cloning and expressing genetic determinants for these R bodies (type 51) in Escherichia coli. Type 51 R-body synthesis requires three low-molecular-mass polypeptides. One of these is modified posttranslationally, giving rise to 12 polypeptide species, which are the major structural subunits of the R body. R bodies are encoded in kappa species by extrachromosomal elements. Type 51 R bodies, produced in Caedibacter taeniospiralis, are encoded by a plasmid, whereas bacteriophage genomes probably control R-body synthesis in other kappa species. However, there is no evidence that either bacteriophages or plasmids are present in P. avenae or P. taeniospiralis. No sequence homology was detected between type 51 R-body-encoding DNA and DNA from any R-body-producing species, except C. varicaedens 1038. The evolutionary relatedness of different types of R bodies remains unknown. Images PMID:2651865

  4. Ultrasensitive Detection of Bacteria by Targeting Abundant Transcripts

    PubMed Central

    Wang, Xinhui; Li, Xinran; Liu, Shiwei; Ren, Hang; Yang, Mingjuan; Ke, Yuehua; Huang, Liuyu; Liu, Chao; Liu, Bo; Chen, Zeliang

    2016-01-01

    Molecular detection assays are increasingly becoming routine diagnostic techniques for bacterial infection; however, their sensitivities are restricted by the low concentrations of bacteria in clinical samples. Here, we report a new paradigm for ultrasensitive detection of bacteria. The principle of this approach is that by choosing highly transcribed genes as signature sequences and detecting both DNA and its RNA transcripts, assay sensitivity can be greatly improved. First, signature genes with abundant transcripts were screened by RNA-Seq. We confirmed that RT-PCR efficiently amplifies both DNA and RNA, while PCR amplifies only DNA. Unexpectedly, we found that the RNA extraction efficiency is relatively low, while simplified denaturation was more appropriate for transcript detection. For highly transcribed genes, RT-PCR consistently generated lower cycle threshold (Ct) values than those of PCR. The sensitivity of RT-PCR targeting abundant transcripts could detect quantities as low as one bacterium, which was not possible using PCR. Amplification of different genes among several other common bacteria also confirmed that transcript detection by RT-PCR is more sensitive than is DNA detection by PCR. Therefore, abundant transcript detection represents a universal strategy for ultrasensitive detection of bacteria. PMID:26848029

  5. Ultrasensitive Detection of Bacteria by Targeting Abundant Transcripts.

    PubMed

    Wang, Xinhui; Li, Xinran; Liu, Shiwei; Ren, Hang; Yang, Mingjuan; Ke, Yuehua; Huang, Liuyu; Liu, Chao; Liu, Bo; Chen, Zeliang

    2016-01-01

    Molecular detection assays are increasingly becoming routine diagnostic techniques for bacterial infection; however, their sensitivities are restricted by the low concentrations of bacteria in clinical samples. Here, we report a new paradigm for ultrasensitive detection of bacteria. The principle of this approach is that by choosing highly transcribed genes as signature sequences and detecting both DNA and its RNA transcripts, assay sensitivity can be greatly improved. First, signature genes with abundant transcripts were screened by RNA-Seq. We confirmed that RT-PCR efficiently amplifies both DNA and RNA, while PCR amplifies only DNA. Unexpectedly, we found that the RNA extraction efficiency is relatively low, while simplified denaturation was more appropriate for transcript detection. For highly transcribed genes, RT-PCR consistently generated lower cycle threshold (Ct) values than those of PCR. The sensitivity of RT-PCR targeting abundant transcripts could detect quantities as low as one bacterium, which was not possible using PCR. Amplification of different genes among several other common bacteria also confirmed that transcript detection by RT-PCR is more sensitive than is DNA detection by PCR. Therefore, abundant transcript detection represents a universal strategy for ultrasensitive detection of bacteria. PMID:26848029

  6. Caenorhabditis elegans responses to bacteria from its natural habitats.

    PubMed

    Samuel, Buck S; Rowedder, Holli; Braendle, Christian; Félix, Marie-Anne; Ruvkun, Gary

    2016-07-01

    Most Caenorhabditis elegans studies have used laboratory Escherichia coli as diet and microbial environment. Here we characterize bacteria of C. elegans' natural habitats of rotting fruits and vegetation to provide greater context for its physiological responses. By the use of 16S ribosomal DNA (rDNA)-based sequencing, we identified a large variety of bacteria in C. elegans habitats, with phyla Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria being most abundant. From laboratory assays using isolated natural bacteria, C. elegans is able to forage on most bacteria (robust growth on ∼80% of >550 isolates), although ∼20% also impaired growth and arrested and/or stressed animals. Bacterial community composition can predict wild C. elegans population states in both rotting apples and reconstructed microbiomes: alpha-Proteobacteria-rich communities promote proliferation, whereas Bacteroidetes or pathogens correlate with nonproliferating dauers. Combinatorial mixtures of detrimental and beneficial bacteria indicate that bacterial influence is not simply nutritional. Together, these studies provide a foundation for interrogating how bacteria naturally influence C. elegans physiology. PMID:27317746

  7. Plasmid incidence in bacteria from deep subsurface sediments.

    PubMed

    Fredrickson, J K; Hicks, R J; Li, S W; Brockman, F J

    1988-12-01

    Bacteria were isolated from deep terrestrial subsurface sediments underlying the coastal plain of South Carolina. A total of 163 isolates from deep sediments, surface soil, and return drill muds were examined for plasmid DNA content and resistance to the antibiotics penicillin, ampicillin, carbenicillin, streptomycin, kanamycin, and tetracycline. MICs of Cu, Cr, and Hg for each isolate were also determined. The overall frequency of plasmid occurrence in the subsurface bacteria was 33%. Resistance was most frequent to penicillin (70% of all isolates), ampicillin (49%), and carbenicillin (32%) and was concluded to be related to the concentrations of the individual antibiotics in the disks used for assaying resistance and to the production of low levels of beta-lactamase. The frequencies of resistance to penicillin and ampicillin were significantly greater for isolates bearing plasmids than for plasmidless isolates; however, resistance was not transferable to penicillin-sensitive Escherichia coli. Hybridization of subsurface bacterial plasmids and chromosomal DNA with a whole-TOL-plasmid (pWWO) probe revealed some homology of subsurface bacterial plasmid and chromosomal DNAs, indicating a potential for those bacteria to harbor catabolic genes on plasmids or chromosomes. The incidences of antibiotic resistance and MICs of metals for subsurface bacteria were significantly different from those for drill mud bacteria, ruling out the possibility that bacteria from sediments were derived from drill muds. PMID:16347789

  8. Caenorhabditis elegans responses to bacteria from its natural habitats

    PubMed Central

    Rowedder, Holli; Braendle, Christian; Félix, Marie-Anne; Ruvkun, Gary

    2016-01-01

    Most Caenorhabditis elegans studies have used laboratory Escherichia coli as diet and microbial environment. Here we characterize bacteria of C. elegans' natural habitats of rotting fruits and vegetation to provide greater context for its physiological responses. By the use of 16S ribosomal DNA (rDNA)-based sequencing, we identified a large variety of bacteria in C. elegans habitats, with phyla Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria being most abundant. From laboratory assays using isolated natural bacteria, C. elegans is able to forage on most bacteria (robust growth on ∼80% of >550 isolates), although ∼20% also impaired growth and arrested and/or stressed animals. Bacterial community composition can predict wild C. elegans population states in both rotting apples and reconstructed microbiomes: alpha-Proteobacteria-rich communities promote proliferation, whereas Bacteroidetes or pathogens correlate with nonproliferating dauers. Combinatorial mixtures of detrimental and beneficial bacteria indicate that bacterial influence is not simply nutritional. Together, these studies provide a foundation for interrogating how bacteria naturally influence C. elegans physiology. PMID:27317746

  9. PhaR, a protein of unknown function conserved among short-chain-length polyhydroxyalkanoic acids producing bacteria, is a DNA-binding protein and represses Paracoccus denitrificans phaP expression in vitro.

    PubMed

    Maehara, A; Doi, Y; Nishiyama, T; Takagi, Y; Ueda, S; Nakano, H; Yamane, T

    2001-06-12

    A putative regulatory protein, PhaR, which was identified in the polyhydroxyalkanoic acid synthetic locus (phaZCPR) in Paracoccus denitrificans, was investigated. The PhaR protein purified from a recombinant Escherichia coli was estimated to be 22 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, being consistent with the mass calculated from the nucleotide sequence. The molecular mass was determined to be 93 kDa by size-exclusion chromatography, suggesting that the protein formed a tetramer. A gel mobility shift assay showed that PhaR specifically bound to the intergenic region of phaC--phaP. In a cell-free protein synthesis system using E. coli S30 extract, the expression of the phaP gene was repressed by the addition of purified PhaR. These results suggest that PhaR is a DNA-binding protein and may play a role in the regulation of phaP gene expression. PMID:11410342

  10. Radiobiological effects of heavy ions and protons. [on cells of mammals, bacteria and viruses

    NASA Technical Reports Server (NTRS)

    Ryzhov, N. I.; Vorozhtsova, S. V.; Krasavin, Y. A.; Mashinskaya, T. Y.; Savchenko, N. Y.; Fedorov, B. S.; Khlaponina, V. F.; Shelegedin, V. N.; Gut, L.; Sabo, L.

    1974-01-01

    Radiobiological effects of heavy ions and protons are studied on cells of mammals, bacteria, viruses and DNA of bacteria. Results show that the dose effect dependence bears an exponential character; the reduction of RBE as LET of particle increases reflects the different character of microdistribution of absorbed energy in biological objects with different levels of biological organization.