A generic Approach for Reliability Predictions considering non-uniformly Deterioration Behaviour
NASA Astrophysics Data System (ADS)
Krause, Jakob; Kabitzsch, Klaus
2012-05-01
Predictive maintenance offers the possibility to prognosticate the remaining time until a maintenance action of a machine has to be scheduled. Unfortunately, current predictive maintenance solutions are only suitable for very specific use cases like reliability predictions based on vibration monitoring. Furthermore, they do not consider the fact that machines may deteriorate non-uniformly, depending on external influences (e.g., the work piece material in a milling machine or the changing fruit acid concentration in a bottling plant). In this paper two concepts for a generic predictive maintenance solution which also considers non-uniformly aging behaviour are introduced. The first concept is based on system models representing the health state of a technical system. As these models are usually statically (viz. without a timely dimension) their coefficients are determined periodically and the resulting time series is used as aging indicator. The second concept focuses on external influences (contexts) which change the behaviour of the previous mentioned aging indicators in order to increase the accuracy of reliability predictions. Therefore, context-depended time series models are determined and used to predict machine reliability. Both concepts were evaluated on data of an air ventilation system. Thereby, it could be shown that they are suitable to determine aging indicators in a generic way and to incorporate external influences in the reliability prediction. Through this, the quality of reliability predictions can be significantly increased. In reality this leads to a more accurate scheduling of maintenance actions. Furthermore, the generic character of the solutions makes the concepts suitable for a wide range of aging processes.
Risk and protective behaviours for residential carbon monoxide poisoning
Rupert, Douglas J; Poehlman, Jon A; Damon, Scott A; Williams, Peyton N
2015-01-01
Background Unintentional, non-fire-related carbon monoxide (CO) poisoning is a leading cause of poisoning death and injury in the USA. Residential poisonings caused by faulty furnaces are the most common type of CO exposure. However, these poisonings are largely preventable with annual furnace inspections and CO alarm installation. Objective This study aimed to identify the knowledge, attitudes and beliefs that might lead consumers to adopt these protective behaviours. Methods In August 2009, four focus groups (n=29) were conducted with homeowners in Chicago, Illinois, USA, to identify the knowledge, attitudes and beliefs that lead consumers to adopt risk and protective behaviours. Discussions were transcribed and the findings were analysed using an ordered meta-matrix. Results Focus group participants were aware of CO poisoning and supported the idea of regular furnace inspections. However, few participants consistently scheduled professional inspections for fear of costly repairs and unscrupulous contractors. Participants often owned CO alarms, but many did not locate them properly, nor maintain them. Some participants confused CO and natural gas and were unsure how to react if a CO alarm sounds. Participants stated that incentives, such as discounts and inspector selection tips, would make them more likely to schedule furnace inspections. Participants also identified trustworthy sources for CO education, including realtors, fire departments, home insurance agents and local media outlets. Conclusions Participants’ residential CO risk behaviours are not random but driven by underlying knowledge, attitudes and beliefs. Correcting misperceptions, providing incentives and partnering with trustworthy sources might encourage greater consumer adoption of protective behaviours. PMID:22653781
Radionic Non-Uniform Black Strings
NASA Astrophysics Data System (ADS)
Tamaki, T.; Kanno, S.; Soda, J.
Non-uniform black strings in the two-brane system are investigated using the effective action approach. It is shown that the radion acts as a non-trivial hair of black strings. The stability of solutions is demonstrated using the catastrophe theory. The black strings are shown to be non-uniform.
Non-Uniform Thickness Electroactive Device
NASA Technical Reports Server (NTRS)
Su, Ji (Inventor); Harrison, Joycelyn S. (Inventor)
2006-01-01
An electroactive device comprises at least two layers of material, wherein at least one layer is an electroactive material and wherein at least one layer is of non-uniform thickness. The device can be produced in various sizes, ranging from large structural actuators to microscale or nanoscale devices. The applied voltage to the device in combination with the non-uniform thickness of at least one of the layers (electroactive and/or non-electroactive) controls the contour of the actuated device. The effective electric field is a mathematical function of the local layer thickness. Therefore, the local strain and the local bending/ torsion curvature are also a mathematical function of the local thickness. Hence the thinnest portion of the actuator offers the largest bending and/or torsion response. Tailoring of the layer thicknesses can enable complex motions to be achieved.
The non-uniformity of fossil preservation.
Holland, Steven M
2016-07-19
The fossil record provides the primary source of data for calibrating the origin of clades. Although minimum ages of clades are given by the oldest preserved fossil, these underestimate the true age, which must be bracketed by probabilistic methods based on multiple fossil occurrences. Although most of these methods assume uniform preservation rates, this assumption is unsupported over geological timescales. On geologically long timescales (more than 10 Myr), the origin and cessation of sedimentary basins, and long-term variations in tectonic subsidence, eustatic sea level and sedimentation rate control the availability of depositional facies that preserve the environments in which species lived. The loss of doomed sediments, those with a low probability of preservation, imparts a secular trend to fossil preservation. As a result, the fossil record is spatially and temporally non-uniform. Models of fossil preservation should reflect this non-uniformity by using empirical estimates of fossil preservation that are spatially and temporally partitioned, or by using indirect proxies of fossil preservation. Geologically, realistic models of preservation will provide substantially more reliable estimates of the origination of clades.This article is part of the themed issue 'Dating species divergences using rocks and clocks'. PMID:27325828
Downsampling Non-Uniformly Sampled Data
NASA Astrophysics Data System (ADS)
Eng, Frida; Gustafsson, Fredrik
2007-12-01
Decimating a uniformly sampled signal a factor D involves low-pass antialias filtering with normalized cutoff frequency 1/ D followed by picking out every D th sample. Alternatively, decimation can be done in the frequency domain using the fast Fourier transform (FFT) algorithm, after zero-padding the signal and truncating the FFT. We outline three approaches to decimate non-uniformly sampled signals, which are all based on interpolation. The interpolation is done in different domains, and the inter-sample behavior does not need to be known. The first one interpolates the signal to a uniformly sampling, after which standard decimation can be applied. The second one interpolates a continuous-time convolution integral, that implements the antialias filter, after which every D th sample can be picked out. The third frequency domain approach computes an approximate Fourier transform, after which truncation and IFFT give the desired result. Simulations indicate that the second approach is particularly useful. A thorough analysis is therefore performed for this case, using the assumption that the non-uniformly distributed sampling instants are generated by a stochastic process.
A non-uniform expansion mechanical safety model of the stent.
Yang, J; Huang, N; Du, Q
2009-01-01
Stents have a serial unstable structure that readily leads to non-uniform expansion. Non-uniform expansion in turn creates a stent safety problem. We explain how a stent may be simplified to a serial unstable structure, and present a method to calculate the non-uniform expansion of the stent on the basis of the serial unstable structure. We propose a safety criterion based on the expansion displacement instead of the strain, and explain that the parameter Rd, the ratio of the maximum displacement of the elements to normal displacement, is meaningful to assess the safety level of the stent. We also examine how laser cutting influences non-uniform expansion. The examples illustrate how to calculate the parameter Rd to assess non-uniform expansion of the stent, and demonstrate how the laser cutting offset and strengthening coefficient of the material influence the stent expansion behaviour. The methods are valuable for assessing stent safety due to non-uniform expansion. PMID:19517292
Non-uniform MR image reconstruction based on non-uniform FFT
NASA Astrophysics Data System (ADS)
Liang, Xiao-yun; Zeng, Wei-ming; Dong, Zhi-hua; Zhang, Zhi-jiang; Luo, Li-min
2007-01-01
A Non-Uniform Fast Fourier Transform (NUFFT) based method for non-Cartesian k-space data reconstruction is presented. For Cartesian K-space data, as we all know, image can be reconstructed using 2DFFT directly. But, as far as know, this method has not been universally accepted nowadays because of its inevitable disadvantages. On the contrary, non-Cartesian method is of the advantage over it, so we focused on the method usually. The most straightforward approach for the reconstruction of non-Cartesian data is directly via a Fourier summation. However, the computational complexity of the direct method is usually much greater than an approach that uses the efficient FFT. But the FFT requires that data be sampled on a uniform Cartesian grid in K-space, and a NUFFT based method is of much importance. Finally, experimental results which are compared with existing method are given.
Non-uniform magnetization reversal in nanocomposite magnets
NASA Astrophysics Data System (ADS)
Li, Z. B.; Zhang, M.; Shen, B. G.; Sun, J. R.
2013-03-01
Magnetization reversal and exchange coupling are investigated in Pr-Fe-B melt-spun ribbons. In nanocomposite magnets, not only does the coercivity decrease but also magnetization reversal becomes more non-uniform in hard grains. The non-uniform magnetization reversal, resulting in a deterioration of squareness in hysteresis loop and a drop of the maximum Henkel plot value, mainly is caused by random arrangement of easy axes and intergranular soft regions among hard grains even with well exchange coupling between soft-hard grains in these ribbons. It is expected that the uniformity in magnetization reversal could be improved with the perfection of easy axes alignment in anisotropy nanocomposites.
GaAs MESFET with lateral non-uniform doping
NASA Technical Reports Server (NTRS)
Wang, Y. C.; Bahrami, M.
1983-01-01
An analytical model of the GaAs MESFET with arbitrary non-uniform doping is presented. Numerical results for linear lateral doping profile are given as a special case. Theoretical considerations predict that better device linearity and improved F(T) can be obtained by using linear lateral doping when doping density increases from source to drain.
Effect of non-uniform exchange field in ferromagnetic graphene
Chowdhury, Debashree Basu, B.
2015-04-15
We have presented here the consequences of the non-uniform exchange field on the spin transport issues in spin chiral configuration of ferromagnetic graphene. Taking resort to the spin–orbit coupling (SOC) term and non-uniform exchange coupling term we are successful to express the expression of Hall conductivity in terms of the exchange field and SOC parameters through the Kubo formula approach. However, for a specific configuration of the exchange parameter we have evaluated the Berry curvature of the system. We also have paid attention to the study of SU(2) gauge theory of ferromagnetic graphene. The generation of anti damping spin–orbit torque in spin chiral magnetic graphene is also briefly discussed.
A non-uniform warping theory for beams
NASA Astrophysics Data System (ADS)
El Fatmi, Rached
2007-08-01
This Note proposes a non-uniform warping beam theory including the effects of torsion and shear forces. Based on a displacement model using three warping parameters associated to three St Venant warping functions corresponding to torsion and shear forces, this theory is free from the classical assumptions on the warpings or on the shears, and is valid for any kind of homogeneous elastic and isotropic cross-section. The result on the structural behavior of the beam specifies the effect of the non-symmetry of the cross-section, and the closed form results obtained for the stresses show the contribution of each internal force. Comparison with St Venant beam theory highlights the additional effects due to the non-uniformity of the warping. To cite this article: R. El Fatmi, C. R. Mecanique 335 (2007).
A mechanical model of a non-uniform ionomeric polymer metal composite actuator
NASA Astrophysics Data System (ADS)
Anton, Mart; Aabloo, Alvo; Punning, Andres; Kruusmaa, Maarja
2008-04-01
This paper describes a mechanical model of an IPMC (ionomeric polymer metal composite) actuator in a cantilever beam configuration. The main contribution of our model is that it gives the most detailed description reported so far of the quasistatic mechanical behaviour of the actuator with non-uniform bending at large deflections. We also investigate a case where part of an IPMC actuator is replaced with a rigid elongation and demonstrate that this configuration would make the actuator behave more linearly. The model is experimentally validated with MuscleSheet™ IPMCs, purchased from BioMimetics Inc.
Characterization of non-uniformly totally polarized beams
NASA Astrophysics Data System (ADS)
Martinez-Herrero, R.; Mejías, P. M.; Piquero, G.
2006-02-01
Several overall parameters are introduced to characterize the linear or circular polarization content of a non-uniformly totally polarized beam over the region of its wavefront where the irradiance is significant. These parameters are determined from the values of the Stokes parameters. Experimental examples are also given to check both, the physical meaning of the proposed parameters and the validity of the measurement procedure.
A novel non-uniformity correction method based on ROIC
NASA Astrophysics Data System (ADS)
Chen, Xiaoming; Li, Yujue; Di, Chao; Wang, Xinxing; Cao, Yi
2011-11-01
Infrared focal plane arrays (IRFPA) suffer from inherent low frequency and fixed patter noised (FPN). They are thus limited by their inability to calibrate out individual detector variations including detector dark current (offset) and responsivity (gain). To achieve high quality infrared image by mitigating the FPN of IRFPAs, we have developed a novel non-uniformity correction (NUC) method based on read-out integrated circuit (ROIC). The offset and gain correction coefficients can be calculated by function fitting for the linear relationship between the detector's output and a reference voltage in ROIC. We tested the purposed method using an infrared imaging system using the ULIS 03 19 1 detector with real nonuniformity. A set of 384*288 infrared images with 12 bits was collected to evaluate the performance. With the experiments, the non-uniformity was greatly eliminated. We also used the universe non-uniformity (NU) parameter to estimate the performance. The calculated NU parameters with the two-point calibration (TPC) and the purposed method imply that the purposed method has almost as good performance as TPC.
Naturalness preserved enhancement algorithm for non-uniform illumination images.
Wang, Shuhang; Zheng, Jin; Hu, Hai-Miao; Li, Bo
2013-09-01
Image enhancement plays an important role in image processing and analysis. Among various enhancement algorithms, Retinex-based algorithms can efficiently enhance details and have been widely adopted. Since Retinex-based algorithms regard illumination removal as a default preference and fail to limit the range of reflectance, the naturalness of non-uniform illumination images cannot be effectively preserved. However, naturalness is essential for image enhancement to achieve pleasing perceptual quality. In order to preserve naturalness while enhancing details, we propose an enhancement algorithm for non-uniform illumination images. In general, this paper makes the following three major contributions. First, a lightness-order-error measure is proposed to access naturalness preservation objectively. Second, a bright-pass filter is proposed to decompose an image into reflectance and illumination, which, respectively, determine the details and the naturalness of the image. Third, we propose a bi-log transformation, which is utilized to map the illumination to make a balance between details and naturalness. Experimental results demonstrate that the proposed algorithm can not only enhance the details but also preserve the naturalness for non-uniform illumination images. PMID:23661319
NASA Astrophysics Data System (ADS)
Akiki, G.; Balachandar, S.
2016-02-01
This study presents a technique to incorporate spheres in a channel flow that uses a non-uniform Eulerian grid using immersed boundary methods with direct forcing. An efficient algorithm is presented which distributes the Lagrangian markers non-uniformly to match the fluid grid and keep the number of markers optimized. Also a novel method to calculate the area weights of the Lagrangian markers is given. It is observed that even the best available algorithms for uniform distribution of markers on a sphere result in a finite error. Using vector spherical harmonics, this error is quantified and reduced to machine precision. A series of simulations of a stationary and moving sphere in a periodic channel at Reynolds number range of 1-100 are presented. Results for a sphere in an ambient shear flow in close proximity of a wall are also shown, where the present non-uniform distribution offers an order of magnitude reduction over uniform distribution of Lagrangian markers. Simulations of a random cluster of 640 monodisperse spherical particles show a 77% reduction in Lagrangian markers with an error of 0.135% in computing the total drag.
Wave modeling in a cylindrical non-uniform helicon discharge
Chang, L.; Hole, M. J.; Caneses, J. F.; Blackwell, B. D.; Corr, C. S.; Chen, G.
2012-08-15
A radio frequency field solver based on Maxwell's equations and a cold plasma dielectric tensor is employed to describe wave phenomena observed in a cylindrical non-uniform helicon discharge. The experiment is carried out on a recently built linear plasma-material interaction machine: The magnetized plasma interaction experiment [Blackwell et al., Plasma Sources Sci. Technol. (submitted)], in which both plasma density and static magnetic field are functions of axial position. The field strength increases by a factor of 15 from source to target plate, and the plasma density and electron temperature are radially non-uniform. With an enhancement factor of 9.5 to the electron-ion Coulomb collision frequency, a 12% reduction in the antenna radius, and the same other conditions as employed in the experiment, the solver produces axial and radial profiles of wave amplitude and phase that are consistent with measurements. A numerical study on the effects of axial gradient in plasma density and static magnetic field on wave propagations is performed, revealing that the helicon wave has weaker attenuation away from the antenna in a focused field compared to a uniform field. This may be consistent with observations of increased ionization efficiency and plasma production in a non-uniform field. We find that the relationship between plasma density, static magnetic field strength, and axial wavelength agrees well with a simple theory developed previously. A numerical scan of the enhancement factor to the electron-ion Coulomb collision frequency from 1 to 15 shows that the wave amplitude is lowered and the power deposited into the core plasma decreases as the enhancement factor increases, possibly due to the stronger edge heating for higher collision frequencies.
Non-uniform projection angle processing in computed tomography
NASA Astrophysics Data System (ADS)
Simo, Yanic; Tayag, Tristan J.
In this paper, we present a novel approach for the collection of computed tomography data. Non-uniform increments in projection angle may be used to reduce data acquisition time with minimal reduction in the accuracy of the reconstructed profile. The key is to exploit those projection angles which correspond to regions where the object contains few high spatial frequency components. This technique is applicable to optical phase computed tomography, as well as X-ray computed tomography. We present simulation results on intraocular lenses used in cataract surgery.
A multilevel Cartesian non-uniform grid time domain algorithm
Meng Jun; Boag, Amir; Lomakin, Vitaliy; Michielssen, Eric
2010-11-01
A multilevel Cartesian non-uniform grid time domain algorithm (CNGTDA) is introduced to rapidly compute transient wave fields radiated by time dependent three-dimensional source constellations. CNGTDA leverages the observation that transient wave fields generated by temporally bandlimited and spatially confined source constellations can be recovered via interpolation from appropriately delay- and amplitude-compensated field samples. This property is used in conjunction with a multilevel scheme, in which the computational domain is hierarchically decomposed into subdomains with sparse non-uniform grids used to obtain the fields. For both surface and volumetric source distributions, the computational cost of CNGTDA to compute the transient field at N{sub s} observation locations from N{sub s} collocated sources for N{sub t} discrete time instances scales as O(N{sub t}N{sub s}logN{sub s}) and O(N{sub t}N{sub s}log{sup 2}N{sub s}) in the low- and high-frequency regimes, respectively. Coupled with marching-on-in-time (MOT) time domain integral equations, CNGTDA can facilitate efficient analysis of large scale time domain electromagnetic and acoustic problems.
Electrostatic adhesion of multiple non-uniformly charged dielectric particles
NASA Astrophysics Data System (ADS)
Kemp, B. A.; Whitney, J. G.
2013-01-01
Charged particle adhesion measurements can be as much as one order of magnitude higher than theoretical calculations. This discrepancy has ignited a debate as to the nature of the physics occurring with microscopic particle adhesion. Attempts to bring calculations closer to measured results have produced models that include multiple particle interactions, dielectric polarization, and non-uniform charge. Individually, each of these models can only produce a 2× to 5× enhancement in predicted adhesion force over simple Coulombic attraction. In this correspondence, an analytical model of electrostatic particle forces is developed, which allows for independent assignment of dielectric constant and non-uniform surface charge distribution to an arbitrary number of particles. Because the model can include an image plane, it is ideal for electrostatic adhesion calculations. Application to a monolayer of printed toner particles predicts nearly an order of magnitude increase in adhesion force over Coulombic attraction. These results are the first analytical results to place predictions of charged particle adhesion on the same order of magnitude with measurements.
Supernova remnant evolution in non-uniform media
NASA Astrophysics Data System (ADS)
Ferreira, S. E. S.; de Jager, O. C.
In this work numerical simulations showing the time evolution of a supernova remnant (SNR) in an uniform and non-uniform intersteller medium (ISM) are presented. For this we use a hydrodynamic model including a kinematic calculation of the interstellar magnetic field. Important parameters include the ejecta mass and energy of the remnant, as well as interstellar medium density and adiabatic index. By varying these we constructed an analytical expression giving the return time of the reverse shock to the origin. We also computed the evolution of the remnant in non-uniform media. As the SNR evolves from one into another medium of higher density a reflection shock is created which is driven back toward the center. As the reflection shock moves inward it also drags some of the compressed ISM field lines with it and heats the inside of the SNR. When a SNR explodes in a medium with a high density and the blast waves propagate into a medium with a lower density a cavity is being blown away changing the geometry of the high density region. Also, once the forward shock moves into the medium of less density, a second reverse shock will start to form in this region.
Evaluating AIRS Radiometric Error in Non-uniform Scenes using MODIS
NASA Astrophysics Data System (ADS)
Pagano, T. S.; Aumann, H. H.
2014-12-01
The Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft was launched on May 4, 2002. AIRS acquires hyperspectral infrared radiances in 2378 channels ranging in wavelength from 3.7-15.4 um with spectral resolution of better than 1200, and spatial resolution of 13.5 km with global daily coverage. The AIRS was designed to measure temperature and water vapor profiles for improvement in weather forecast and improved parameterization of climate processes. Currently the AIRS Level 1B Radiance Products are assimilated by NWP centers worldwide and have shown considerable forecast improvement. AIRS L1 and L2 products are widely used for studying critical climate processes related to water vapor feedback, atmospheric transport and cloud properties. AIRS trace gas products include ozone profiles, carbon monoxide, and the first global maps of mid-tropospheric carbon dioxide. The AIRS radiances are calibrated using a uniform on-board blackbody and full aperture space view. For this reason, all radiometric measurements assume a uniform scene. As with most instruments, the AIRS 2D spatial response functions (tophat functions) are not flat for all channels, nor are they the same. When viewing a non-uniform scene, this causes a radiometric error that is scene dependent and cannot be removed without knowledge of the scene response. The magnitude of the error depends on the non-uniformity of the AIRS spatial response and the non-uniformity of the scene, but typically only affects about 1% of the data. In this effort we use data from the MODIS instrument to provide information on the scene uniformity that can be used to correct the AIRS data. Early results show we can match the AIRS and MODIS radiances to about 0.6K when we include the AIRS tophat functions in the normalization of the MODIS data (Elliott, Proc SPIE 6296, 2006). The method requires use of different infrared bands in MODIS depending on the channels of AIRS being corrected. Resulting improvement in noise and
Single image non-uniformity correction using compressive sensing
NASA Astrophysics Data System (ADS)
Jian, Xian-zhong; Lu, Rui-zhi; Guo, Qiang; Wang, Gui-pu
2016-05-01
A non-uniformity correction (NUC) method for an infrared focal plane array imaging system was proposed. The algorithm, based on compressive sensing (CS) of single image, overcame the disadvantages of "ghost artifacts" and bulk calculating costs in traditional NUC algorithms. A point-sampling matrix was designed to validate the measurements of CS on the time domain. The measurements were corrected using the midway infrared equalization algorithm, and the missing pixels were solved with the regularized orthogonal matching pursuit algorithm. Experimental results showed that the proposed method can reconstruct the entire image with only 25% pixels. A small difference was found between the correction results using 100% pixels and the reconstruction results using 40% pixels. Evaluation of the proposed method on the basis of the root-mean-square error, peak signal-to-noise ratio, and roughness index (ρ) proved the method to be robust and highly applicable.
Periodic envelopes of waves over non-uniform depth
NASA Astrophysics Data System (ADS)
Rajan, Girish K.; Bayram, Saziye; Henderson, Diane M.
2016-04-01
The envelope of narrow-banded, periodic, surface-gravity waves propagating in one dimension over water of finite, non-uniform depth may be modeled by the Djordjević and Redekopp ["On the development of packets of surface gravity waves moving over an uneven bottom," Z. Angew. Math. Phys. 29, 950-962 (1978)] equation (DRE). Here we find five approximate solutions of the DRE that are in the form of Jacobi-elliptic functions and discuss them within the framework of ocean swell. We find that in all cases, the maximum envelope-amplitude decreases/increases when the wave group propagates on water of decreasing/increasing depth. In the limit of the elliptic modulus approaching one, three of the solutions reduce to the envelope soliton solution. In the limit of the elliptic modulus approaching zero, two of the solutions reduce to an envelope-amplitude that is uniform in an appropriate reference frame.
Coupled Serial and Parallel Non-uniform SQUIDs
Longhini, Patrick; In, Visarath; Berggren, Susan; Palacios, Antonio; Leese de Escobar, Anna
2011-04-19
In this work we numerical model series and parallel non-uniform superconducting quantum interference device (SQUID) array. Previous work has shown that series SQUID array constructed with a random distribution of loop sizes, (i.e. different areas for each SQUID loop) there exists a unique 'anti-peak' at the zero magnetic field for the voltage versus applied magnetic field (V-B). Similar results extend to a parallel SQUID array where the difference lies in the arrangement of the Josephson junctions. Other system parameter such as bias current, the number of loops, and mutual inductances are varied to demonstrate the change in dynamic range and linearity of the V-B response. Application of the SQUID array as a low noise amplifier (LNA) would increase link margins and affect the entire communication system. For unmanned aerial vehicles (UAVs), size, weight and power are limited, the SQUID array would allow use of practical 'electrically small' antennas that provide acceptable gain.
Effect on Non-Uniform Heat Generation on Thermionic Reactions
Schock, Alfred
2012-01-19
The penalty resulting from non-uniform heat generation in a thermionic reactor is examined. Operation at sub-optimum cesium pressure is shown to reduce this penalty, but at the risk of a condition analogous to burnout. For high pressure diodes, a simple empirical correlation between current, voltage and heat flux is developed and used to analyze the performance penalty associated with two different heat flux profiles, for series-and parallel-connected converters. The results demonstrate that series-connected converters require much finer power flattening than parallel converters. For example, a ±10% variation in heat generation across a series array can result in a 25 to 50% power penalty.
Compensation for non-uniform attenuation in SPECT brain imaging
Glick, S.J.; King, M.A.; Pan, T.S.
1994-05-01
Photon attenuation is a major limitation in performing quantitative SPECT brain imaging. A number of methods have been proposed for compensation of attenuation in regions of the body that can be modelled as a uniform attenuator. The magnitude of the errors introduced into reconstructed brain images by assuming the head to be a uniform attenuator are uncertain (the skull, sinus cavities and head holder all have different attenuation properties than brain tissue). Brain imaging is unique in that the radioisotope, for the most part, is taken up within a uniform attenuation medium (i.e., brain tissue) which is surrounded by bone (i.e., the skull) of a different density. Using this observation, Bellini`s method for attenuation compensation (which is an exact solution to the exponential Radon transform) has been modified to account for the different attenuation properties of the skull. To test this modified Bellini method, a simple mathematical phantom was designed to model the brain and a skull of varying thickness less than 7.5 mm. To model brain imaging with Tc-99m HMPAO, the attenuation coefficient of the brain tissue and skull were set to 0.15 cm{sup -1} and 0.22 cm{sup -1} respectively. A ray-driven projector which accounted for non-uniform attenuation was used to simulate projection data from 128 views. The detector response and scatter were not simulated. It was observed that reconstructions processed with uniform attenuation compensation (i.e., where it was assumed that the brain tissue and the skull had the same attenuation coefficient) provided errors of 6-20%, whereas those processed with the non-uniform Bellini algorithm were biased by only 0-5%.
Restoration of non-uniform exposure motion blurred image
NASA Astrophysics Data System (ADS)
Luo, Yuanhong; Xu, Tingfa; Wang, Ningming; Liu, Feng
2014-11-01
Restoring motion-blurred image is the key technologies in the opto-electronic detection system. The imaging sensors such as CCD and infrared imaging sensor, which are mounted on the motion platforms, quickly move together with the platforms of high speed. As a result, the images become blur. The image degradation will cause great trouble for the succeeding jobs such as objects detection, target recognition and tracking. So the motion-blurred images must be restoration before detecting motion targets in the subsequent images. On the demand of the real weapon task, in order to deal with targets in the complex background, this dissertation uses the new theories in the field of image processing and computer vision to research the new technology of motion deblurring and motion detection. The principle content is as follows: 1) When the prior knowledge about degradation function is unknown, the uniform motion blurred images are restored. At first, the blur parameters, including the motion blur extent and direction of PSF(point spread function), are estimated individually in domain of logarithmic frequency. The direction of PSF is calculated by extracting the central light line of the spectrum, and the extent is computed by minimizing the correction between the fourier spectrum of the blurred image and a detecting function. Moreover, in order to remove the strip in the deblurred image, windows technique is employed in the algorithm, which makes the deblurred image clear. 2) According to the principle of infrared image non-uniform exposure, a new restoration model for infrared blurred images is developed. The fitting of infrared image non-uniform exposure curve is performed by experiment data. The blurred images are restored by the fitting curve.
Supernova remnant evolution in uniform and non-uniform media
NASA Astrophysics Data System (ADS)
Ferreira, S. E. S.; de Jager, O. C.
2008-01-01
Aims:In this work numerical simulations showing the time evolution of supernova remnants (SNRs) in uniform and non-uniform interstellar medium (ISM) are presented. Methods: We use a hydrodynamic model including a kinematic calculation of the interstellar magnetic field. Important parameters influencing SNR evolution include the ejecta mass and energy of the remnant, as well as the ISM density and adiabatic index. Results: By varying these parameters we constructed an analytical expression giving the return time of the SNR reverse shock to the origin, in terms of these parameters. We also found that the reverse shock spends half of its time moving outward and the other half returning to the origin. Also computed is SNR evolution in non-uniform media where the blast wave moves from one medium into either a less or more dense medium. As the SNR moves into a medium of higher density a reflection wave is created at the interface between the two media which is driven back toward the center. This drives mass via a nonspherical flow away from the discontinuity. As this wave moves inward it also drags some of the ISM field lines (if the field is parallel with the interface) with it and heats the inside of the SNR resulting in larger temperatures in this region. When a SNR explodes in a medium with a high density and the blast wave propagates into a medium with a lower density, a cavity is being blown away changing the geometry of the high density region. Also, once the forward shock moves into the medium of less density a second reverse shock will start to evolve in this region.
10 CFR 835.205 - Determination of compliance for non-uniform exposure of the skin.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Determination of compliance for non-uniform exposure of the skin. 835.205 Section 835.205 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and External Exposure § 835.205 Determination of compliance for non-uniform exposure of the skin. (a) Non-uniform exposures of...
Gridding and fast Fourier transformation on non-uniformly sparse sampled multidimensional NMR data.
Jiang, Bin; Jiang, Xianwang; Xiao, Nan; Zhang, Xu; Jiang, Ling; Mao, Xi-an; Liu, Maili
2010-05-01
For multidimensional NMR method, indirect dimensional non-uniform sparse sampling can dramatically shorten acquisition time of the experiments. However, the non-uniformly sampled NMR data cannot be processed directly using fast Fourier transform (FFT). We show that the non-uniformly sampled NMR data can be reconstructed to Cartesian grid with the gridding method that has been wide applied in MRI, and sequentially be processed using FFT. The proposed gridding-FFT (GFFT) method increases the processing speed sharply compared with the previously proposed non-uniform Fourier Transform, and may speed up application of the non-uniform sparse sampling approaches. PMID:20236843
Gridding and fast Fourier transformation on non-uniformly sparse sampled multidimensional NMR data
NASA Astrophysics Data System (ADS)
Jiang, Bin; Jiang, Xianwang; Xiao, Nan; Zhang, Xu; Jiang, Ling; Mao, Xi-an; Liu, Maili
2010-05-01
For multidimensional NMR method, indirect dimensional non-uniform sparse sampling can dramatically shorten acquisition time of the experiments. However, the non-uniformly sampled NMR data cannot be processed directly using fast Fourier transform (FFT). We show that the non-uniformly sampled NMR data can be reconstructed to Cartesian grid with the gridding method that has been wide applied in MRI, and sequentially be processed using FFT. The proposed gridding-FFT (GFFT) method increases the processing speed sharply compared with the previously proposed non-uniform Fourier Transform, and may speed up application of the non-uniform sparse sampling approaches.
Non-uniform system response detection for hyperspectral imaging systems
NASA Astrophysics Data System (ADS)
Castorena, Juan; Morrison, Jason; Paliwal, Jitendra; Erkinbaev, Chyngyz
2015-11-01
Near infrared (NIR) hyperspectral imaging (HSI) has established itself as a powerful non-destructive tool for the chemical analysis of heterogeneous samples. However, one of the main disadvantages of NIR HSI is that the technique suffers from instrumentation-related problems, which in turn affect the acquired images. In general, focal plane array (FPA) based hyperspectral systems are affected by spatial and spectral non-uniform response, the presence of defective sensors (e.g. dead or saturated sensors), and temporal and spatial (e.g. dark current) noise. Another issue is each new camera system needs to be calibrated to assess its specific responses to light. To correct for these issues, we used known standards to measure the response of the sensors and capture the location of the field of view and defective sensors using linear and quadratic models. The parameters of these models were then used as input features for classification of sensor responses using a k-means algorithm. The results conclude that linear models are insufficiently precise for calibration but estimate sufficiently accurately the system's response and functionality. Specifically, it was shown that the classification method discriminates non-responsive regions effectively.
Efficient single image non-uniformity correction algorithm
NASA Astrophysics Data System (ADS)
Tendero, Y.; Gilles, J.; Landeau, S.; Morel, J. M.
2010-10-01
This paper introduces a new way to correct the non-uniformity (NU) in uncooled infrared-type images. The main defect of these uncooled images is the lack of a column (resp. line) time-dependent cross-calibration, resulting in a strong column (resp. line) and time dependent noise. This problem can be considered as a 1D flicker of the columns inside each frame. Thus, classic movie deflickering algorithms can be adapted, to equalize the columns (resp. the lines). The proposed method therefore applies to the series formed by the columns of an infrared image a movie deflickering algorithm. The obtained single image method works on static images, and therefore requires no registration, no camera motion compensation, and no closed aperture sensor equalization. Thus, the method has only one camera dependent parameter, and is landscape independent. This simple method will be compared to a state of the art total variation single image correction on raw real and simulated images. The method is real time, requiring only two operations per pixel. It involves no test-pattern calibration and produces no "ghost artifacts".
Investigation of non-uniform materials under pressure
NASA Astrophysics Data System (ADS)
Shchennikov, Vladimir; Korobeynikov, Igor; Morozova, Natalia; Shchennikov, Vsevolod, Jr.; Voronin, Vladimir; Berger, Ivan; Laboratory of electronic properties of matter at high pressures Team; Laboratory of neutron investigation of matter Team; Laboratory of micromechanics Team
2013-06-01
The approach is considered of the investigation of non-uniform (NU) materials at high pressure (P). Under P a material may become NU due to phase transition (PT). At topological insulators the properties may include the contributions both of the bulk states as well as of the surface ones as at NU material etc.. The approach is based on the model of multi-phase system with ordered phase inclusions of variably configuration (A) and concentration (C), and the experimental data are presented for: i) the substances near PT, ii) some ceramics, iii) the certain natural minerals. Si, ZnX, PbX, SmX (X - Te, Se, S), GaP, iron ores, and (WC)xCo1-x hard alloys etc. have been investigated under P up to 30 GPa. It was shown that the model allows to describe resistance (R) and thermoelectric power (S), etc. in the vicinity of PT. For hard alloys WC-Co the elastic modulus has been fitted using the model, and A has been estimated to be distinguished from the simple isotropic case. In the iron ores the A and the C of various components (Fe, FeyOx, MgO,Mg2SiO4, etc.) has been estimated due to the using of the new approach based on the different depth of penetration of X-ray and neutron radiation, and also on different dependences of S, R on C, A.
Terrestrial carbon cycle affected by non-uniform climate warming
NASA Astrophysics Data System (ADS)
Xia, Jianyang; Chen, Jiquan; Piao, Shilong; Ciais, Philippe; Luo, Yiqi; Wan, Shiqiang
2014-03-01
Feedbacks between the terrestrial carbon cycle and climate change could affect many ecosystem functions and services, such as food production, carbon sequestration and climate regulation. The rate of climate warming varies on diurnal and seasonal timescales. A synthesis of global air temperature data reveals a greater rate of warming in winter than in summer in northern mid and high latitudes, and the inverse pattern in some tropical regions. The data also reveal a decline in the diurnal temperature range over 51% of the global land area and an increase over only 13%, because night-time temperatures in most locations have risen faster than daytime temperatures. Analyses of satellite data, model simulations and in situ observations suggest that the impact of seasonal warming varies between regions. For example, spring warming has largely stimulated ecosystem productivity at latitudes between 30° and 90° N, but suppressed productivity in other regions. Contrasting impacts of day- and night-time warming on plant carbon gain and loss are apparent in many regions. We argue that ascertaining the effects of non-uniform climate warming on terrestrial ecosystems is a key challenge in carbon cycle research.
Dynamic mode decomposition for non-uniformly sampled data
NASA Astrophysics Data System (ADS)
Leroux, Romain; Cordier, Laurent
2016-05-01
We propose an original approach to estimate dynamic mode decomposition (DMD) modes from non-uniformly sampled data. The proposed strategy processes a time-resolved sequence of flow snapshots in three steps. First, a reduced-order modeling of the non-missing data is made by proper orthogonal decomposition to obtain a low-order description of the state space. Second, the missing data are determined with maximum likelihood by coupling a linear dynamical state-space model with the Expectation-Maximization algorithm. Third, the DMD modes are finally estimated on the reconstructed data with a multiple linear regression method called orthonormalized partial least squares regression. This methodology is assessed for the flow past a NACA0012 airfoil at 20° of angle of attack and a Reynolds number of 103. The flow measurements are obtained with time-resolved particle image velocimetry and artificially subsampled at different ratios of missing data. The results show that the proposed method can reproduce the dominant DMD modes and the main structures of the flow fields for 50 and 75 % of missing data.
Nanomagnetic logic with non-uniform states of clocking
NASA Astrophysics Data System (ADS)
Puliafito, Vito; Giordano, Anna; Azzerboni, Bruno; Finocchio, Giovanni
2016-04-01
Nanomagnetic logic transmits information along a path of nanomagnets. The basic mechanism to drive such a transmission, known as clocking, can be achieved by exploiting the spin-Hall effect (SHE), as recently observed in experiments on Ta/CoFeB/MgO multilayers (Bhowmik et al 2014 Nat. Nano 9 59). This paper shows the fundamental mechanism of the spin-Hall driven clocking by using a full micromagnetic framework and considering two different devices, Ta/CoFeB/MgO and Pt/CoFeB/MgO. The former is used for a direct comparison of the numerical results with the experiments while the latter permits the effect of the Dzyaloshinskii-Moriya interaction (DMI) in the clocking mechanism to be predicted. Results show that the clocking state is non-uniform and it is characterized by the presence of domains separated by Bloch (Néel) domain walls depending on the absence (presence) of the DMI. Our findings point out that for the design of nanomagnetic logic a full micromagnetic approach is necessary.
Non-uniform dose distributions in cranial radiation therapy
NASA Astrophysics Data System (ADS)
Bender, Edward T.
Radiation treatments are often delivered to patients with brain metastases. For those patients who receive radiation to the entire brain, there is a risk of long-term neuro-cognitive side effects, which may be due to damage to the hippocampus. In clinical MRI and CT scans it can be difficult to identify the hippocampus, but once identified it can be partially spared from radiation dose. Using deformable image registration we demonstrate a semi-automatic technique for obtaining an estimated location of this structure in a clinical MRI or CT scan. Deformable image registration is a useful tool in other areas such as adaptive radiotherapy, where the radiation oncology team monitors patients during the course of treatment and adjusts the radiation treatments if necessary when the patient anatomy changes. Deformable image registration is used in this setting, but there is a considerable level of uncertainty. This work represents one of many possible approaches at investigating the nature of these uncertainties utilizing consistency metrics. We will show that metrics such as the inverse consistency error correlate with actual registration uncertainties. Specifically relating to brain metastases, this work investigates where in the brain metastases are likely to form, and how the primary cancer site is related. We will show that the cerebellum is at high risk for metastases and that non-uniform dose distributions may be advantageous when delivering prophylactic cranial irradiation for patients with small cell lung cancer in complete remission.
A non-uniform distribution of the nearest brown dwarfs
NASA Astrophysics Data System (ADS)
Bihain, G.; Scholz, R.-D.
2016-05-01
Context. The census of solar neighbours is still complemented by new discoveries, mainly of very low-mass, faint dwarfs, close to or within the substellar domain. These discoveries contribute to a better understanding of the field population; its origin in terms of Galactic dynamics and (sub)stellar formation and evolution. Also, the nearest stars and brown dwarfs at any given age allow the most precise direct characterization, including the search for planetary companions. Aims: We aim to further assess the substellar census on the Galactic plane. Methods: We projected the 136 stars and 26 brown dwarfs known at <6.5 pc on the Galactic plane and evaluated their distributions. Results: Stars present a uniform- and brown dwarfs a non-uniform distribution, with 21 objects behind the Sun and only five ahead relative to the direction of rotation of the Galaxy. This substellar configuration has a probability of 0.098+10.878-0.098% relative to uniformity. The helio- and geocentric nature of the distribution suggests it might result in part from an observational bias, which if compensated for by future discoveries, might increase the brown-dwarf-to-star ratio, shifting it closer to values found in some star forming regions.
SPECT scatter modelling in non-uniform attenuating objects
NASA Astrophysics Data System (ADS)
Beekman, Freek J.; den Harder, Johan M.; Viergever, Max A.; van Rijk, Peter P.
1997-06-01
SPECT quantitation and image contrast are degraded by photon scatter. Water equivalent depths (WEDs) have been used by several investigators to model scatter responses in non-uniform attenuators. The drawback of this approach is the occurrence of undesired fluctuations in the shape of the scatter responses, as is shown by measurements. An improvement of the WED method is presented, based on the assumption that only a part of the scattering object (the region in the `scatter cone') contributes significantly to the detected scatter events. The remaining part of the object is treated as a uniform medium. The extension of the WED method with extra-conical invariance is evaluated by projection measurements of a phantom with a source. Shapes of scatter responses predicted by the method are found to agree better with the measurements than those predicted by conventional WEDs.
Dynamics of Non-Uniformity Loads of Afc Drives
NASA Astrophysics Data System (ADS)
Dolipski, Marian; Remiorz, Eryk; Sobota, Piotr
2014-03-01
The length of armoured face conveyors currently used in hard coal mines most often ranges between 200 m and 300 m. The machines are equipped with a main and auxiliary drive. Asynchronous motors mounted in conveyor drives feature the capacity of several hundreds of kilowatts. The non-uniform distribution of loads onto individual drives is observed in practice. The numerical value of loads distribution onto the individual armoured face conveyor drives is represented by a drive load distribution factor. It is defined as a ratio between the load of an electric motor installed in a given drive and the total conveyor load. The article presents a physical armoured face conveyor model intended for examining dynamic phenomena influencing the load non-uniformity of drives. Motion in this physical model is described with the system of (4 · j + 5) non-linear ordinary differential quotations of the second order. A mathematical model is obtained by adding functions describing the interwork of sprocket drums with chains and functions approximating the mechanical characteristics of asynchronous motors powered by means of frequency inverters. A large number of computer simulations was performed using this model enabling to study the impact on the load non-uniformity of drives of such parameters as motor slip, motor supply voltage drop, variations in supply voltage frequency, differences in the gear ratio of transmissions and differentiation in the pitch of scraper chain links along the chain contour. Długość przenośników zgrzebłowych ścianowych stosowanych obecnie w kopalniach węgla kamiennego najczęściej mieści się w przedziale od 200 m do 300 m. Maszyny te wyposażone są zawsze w napęd główny i pomocniczy, przy czym pierwszy z nich wyniesiony jest do chodnika podścianowego. Silniki napędowe o mocy kilkuset kilowatów napędzają bęben łańcuchowy przez sprzęgło i przekładnię zębatą. Z kolei bębny łańcuchowe poruszają łańcuch zgrzebłowy, kt
Illumination non-uniformity of spirally wobbling beam in heavy ion fusion
NASA Astrophysics Data System (ADS)
Suzuki, T.; Noguchi, K.; Kurosaki, T.; Barada, D.; Kawata, S.; Ma, Y. Y.; Ogoyski, A. I.
2016-03-01
In inertial confinement fusion, the driver beam illumination non-uniformity leads a degradation of fusion energy output. The illumination non-uniformity allowed is less than a few percent in inertial fusion target implosion. Heavy ion beam (HIB) accelerator provides a capability to oscillate a beam axis with a high frequency. The wobbling beams may provide a new method to reduce or smooth the beam illumination non-uniformity. In this paper the HIBs wobbling illumination scheme was optimized.
Coherent electron backscattering interference in non-uniform disordered systems
NASA Astrophysics Data System (ADS)
Chang, L.; Wu, G. Y.
2011-08-01
We study the coherent electron backscattering interference in the presence of electron dephasing in 2D/3D non-uniform (NU) disordered systems, within our virtual electron trap scattering (VETS) model, where the dephasing rate 1/ τφ is taken to be due to the inelastic electron-electron or electron-phonon scattering. A possible saturation mechanism of apparent electronic dephasing is examined. The system considered is composed of two kinds of subsystems, namely, L-islands and H-region with contrasting diffusion constants, of which the L-islands (of low diffusion constant) act as virtual electron traps randomly dispersed in the percolating H-background (of high diffusion constant). The physics of VETS model is characterized by the two important dwell times, τf and τb, with τf/ τb being the mean duration for which an electron wanders in the H-region/L-island before it leaves the region, respectively. In order to make connection with experiments, we introduce the notion of an effective system of uniform ( U) disorder with a dephasing time τφ(effective), which simulates in the aspect of backscattering the NU system being studied. The effective dephasing time τφ(effective) thus introduced is a function of τφ, and the function, τφ(effective)( τφ), is derived and examined. If τb≫ τf, an interesting phenomenon occurs in the range of temperature ( T) where the true dephasing time τφ( T) lies between τf and τb, i.e., τf< τφ( T)< τb. In this case, we obtain τφ(effective)( τφ)≈ τf, which is insensitive to the variation in τφ (or T) and shows the signature of τφ(effective) saturation. However, at the further lowered temperature where τφ( T)≥ τb, τφ(effective) rises up sharply without being saturated.
Finite difference methods with non-uniform meshes for nonlinear fractional differential equations
NASA Astrophysics Data System (ADS)
Li, Changpin; Yi, Qian; Chen, An
2016-07-01
In this article, finite difference methods with non-uniform meshes for solving nonlinear fractional differential equations are presented, where the non-equidistant stepsize is non-decreasing. The rectangle formula and trapezoid formula are proposed based on the non-uniform meshes. Combining the above two methods, we then establish the predictor-corrector scheme. The error and stability analysis are carefully investigated. At last, numerical examples are carried out to verify the theoretical analysis. Besides, the comparisons between non-uniform and uniform meshes are given, where the non-uniform meshes show the better performance when dealing with the less smooth problems.
NASA Astrophysics Data System (ADS)
Jin, Minglei; Jin, Weiqi; Li, Yiyang; Li, Shuo
2015-08-01
In this paper, we propose a novel scene-based non-uniformity correction algorithm for infrared image processing-temporal high-pass non-uniformity correction algorithm based on grayscale mapping (THP and GM). The main sources of non-uniformity are: (1) detector fabrication inaccuracies; (2) non-linearity and variations in the read-out electronics and (3) optical path effects. The non-uniformity will be reduced by non-uniformity correction (NUC) algorithms. The NUC algorithms are often divided into calibration-based non-uniformity correction (CBNUC) algorithms and scene-based non-uniformity correction (SBNUC) algorithms. As non-uniformity drifts temporally, CBNUC algorithms must be repeated by inserting a uniform radiation source which SBNUC algorithms do not need into the view, so the SBNUC algorithm becomes an essential part of infrared imaging system. The SBNUC algorithms' poor robustness often leads two defects: artifacts and over-correction, meanwhile due to complicated calculation process and large storage consumption, hardware implementation of the SBNUC algorithms is difficult, especially in Field Programmable Gate Array (FPGA) platform. The THP and GM algorithm proposed in this paper can eliminate the non-uniformity without causing defects. The hardware implementation of the algorithm only based on FPGA has two advantages: (1) low resources consumption, and (2) small hardware delay: less than 20 lines, it can be transplanted to a variety of infrared detectors equipped with FPGA image processing module, it can reduce the stripe non-uniformity and the ripple non-uniformity.
10 CFR 835.205 - Determination of compliance for non-uniform exposure of the skin.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Determination of compliance for non-uniform exposure of the skin. 835.205 Section 835.205 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and External Exposure § 835.205 Determination of compliance for non-uniform...
10 CFR 835.205 - Determination of compliance for non-uniform exposure of the skin.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Determination of compliance for non-uniform exposure of the skin. 835.205 Section 835.205 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and External Exposure § 835.205 Determination of compliance for non-uniform...
10 CFR 835.205 - Determination of compliance for non-uniform exposure of the skin.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Determination of compliance for non-uniform exposure of the skin. 835.205 Section 835.205 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and External Exposure § 835.205 Determination of compliance for non-uniform...
10 CFR 835.205 - Determination of compliance for non-uniform exposure of the skin.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Determination of compliance for non-uniform exposure of the skin. 835.205 Section 835.205 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and External Exposure § 835.205 Determination of compliance for non-uniform...
The effect of a non-uniform turning kernel on ant trail morphology.
Vincent, Andrew D; Myerscough, Mary R
2004-10-01
An ordinary differential equation model is constructed for the formation of pheromone trails by ants on a pre-determined network. At each junction of the trails the probability that an ant will turn through any particular angle is given by a turning kernel. We prove analytically using analogies with thermodynamics that turning behaviour determines trail morphology when the turning kernel is steep. We conjecture that this is also true in general for non-uniform turning kernels and present numerical simulations as evidence. Using this conjecture we show the existence of three types of collective foraging: individuals exploring without the use of a trail network, and two distinct types of trail networks; one that consists of low pheromone concentration trails that bend, branch and dissipate and one that consists of high pheromone concentration, straight, unbranched trails. We show that the form of the pheromone response function is crucial in determining the existence and stability of the steady states corresponding to these three foraging strategies, and examine the bifurcations between different trail morphologies as a function of turning kernel steepness for a particular response function. PMID:15657796
Validation of a heat conduction model for finite domain, non-uniformly heated, laminate bodies
NASA Astrophysics Data System (ADS)
Desgrosseilliers, Louis; Kabbara, Moe; Groulx, Dominic; White, Mary Anne
2016-07-01
Infrared thermographic validation is shown for a closed-form analytical heat conduction model for non-uniformly heated, laminate bodies with an insulated domain boundary. Experiments were conducted by applying power to rectangular electric heaters and cooled by natural convection in air, but also apply to constant-temperature heat sources and forced convection. The model accurately represents two-dimensional laminate heat conduction behaviour giving rise to heat spreading using one-dimensional equations for the temperature distributions and heat transfer rates under steady-state and pseudo-steady-state conditions. Validation of the model with an insulated boundary (complementing previous studies with an infinite boundary) provides useful predictions of heat spreading performance and simplified temperature uniformity calculations (useful in log-mean temperature difference style heat exchanger calculations) for real laminate systems such as found in electronics heat sinks, multi-ply stovetop cookware and interface materials for supercooled salt hydrates. Computational determinations of implicit insulated boundary condition locations in measured data, required to assess model equation validation, were also demonstrated. Excellent goodness of fit was observed (both root-mean-square error and R 2 values), in all cases except when the uncertainty of low temperatures measured via infrared thermography hindered the statistical significance of the model fit. The experimental validation in all other cases supports use of the model equations in design calculations and heat exchange simulations.
Validation of a heat conduction model for finite domain, non-uniformly heated, laminate bodies
NASA Astrophysics Data System (ADS)
Desgrosseilliers, Louis; Kabbara, Moe; Groulx, Dominic; White, Mary Anne
2015-08-01
Infrared thermographic validation is shown for a closed-form analytical heat conduction model for non-uniformly heated, laminate bodies with an insulated domain boundary. Experiments were conducted by applying power to rectangular electric heaters and cooled by natural convection in air, but also apply to constant-temperature heat sources and forced convection. The model accurately represents two-dimensional laminate heat conduction behaviour giving rise to heat spreading using one-dimensional equations for the temperature distributions and heat transfer rates under steady-state and pseudo-steady-state conditions. Validation of the model with an insulated boundary (complementing previous studies with an infinite boundary) provides useful predictions of heat spreading performance and simplified temperature uniformity calculations (useful in log-mean temperature difference style heat exchanger calculations) for real laminate systems such as found in electronics heat sinks, multi-ply stovetop cookware and interface materials for supercooled salt hydrates. Computational determinations of implicit insulated boundary condition locations in measured data, required to assess model equation validation, were also demonstrated. Excellent goodness of fit was observed (both root-mean-square error and R 2 values), in all cases except when the uncertainty of low temperatures measured via infrared thermography hindered the statistical significance of the model fit. The experimental validation in all other cases supports use of the model equations in design calculations and heat exchange simulations.
Adaptive non-uniformity correction method based on temperature for infrared detector array
NASA Astrophysics Data System (ADS)
Zhang, Zhijie; Yue, Song; Hong, Pu; Jia, Guowei; Lei, Bo
2013-09-01
The existence of non-uniformities in the responsitivity of the element array is a severe problem typical to common infrared detector. These non-uniformities result in a "curtain'' like fixed pattern noises (FPN) that appear in the image. Some random noise can be restrained by the method kind of equalization method. But the fixed pattern noise can only be removed by .non uniformity correction method. The produce of non uniformities of detector array is the combined action of infrared detector array, readout circuit, semiconductor device performance, the amplifier circuit and optical system. Conventional linear correction techniques require costly recalibration due to the drift of the detector or changes in temperature. Therefore, an adaptive non-uniformity method is needed to solve this problem. A lot factors including detectors and environment conditions variety are considered to analyze and conduct the cause of detector drift. Several experiments are designed to verify the guess. Based on the experiments, an adaptive non-uniformity correction method is put forward in this paper. The strength of this method lies in its simplicity and low computational complexity. Extensive experimental results demonstrate the disadvantage of traditional non-uniformity correct method is conquered by the proposed scheme.
Pixel response non-uniformity correction for multi-TDICCD camera based on FPGA
NASA Astrophysics Data System (ADS)
Zhai, Guofang
2013-10-01
A non-uniformity correction algorithm is proposed and implemented on a Field-Programmable Gate Array (FPGA) hardware platform to solve a pixel response non-uniformity(PRNU) problem of multi Time Delay and Integration Charge Couple Device(TDICCD) camera. The non-uniformity are introduced and the synthetical correction algorithm is presented, in which the two-point correction method is used in a single channel, gain averaging correction method among multi-channel and the sceneadaptive correction method among multi-TDICCD. Then, the correction algorithm is designed. Finally, analyzing the FPGA ability for fix-point processing, the correction algorithm is optimized, and implemented on FPGA. Testing results indicate that the non-uniformity can be decreased from 8.27% to 0.51% for three TDICCDs camera's images with the proposed correction algorithm, proving that this correction algorithm is with high real-time performance, great engineering realization and satisfaction for the system requirements.
Surface morphology driven non-uniform magnetism in epitaxial BiMnO3
NASA Astrophysics Data System (ADS)
Jeen, Hyoungjeen; Hae Kwak, In; Biswas, Amlan
2016-08-01
Thin films of BiMnO3 were grown on (001) SrTiO3 substrates by fine tuning the growth conditions. The films are epitaxial and impurity-free, but show island growth mode. From detailed magnetization measurements and surface analysis, we found evidence of morphology driven non-uniform magnetism. The non-uniform magnetism resulted in reduced saturation magnetization, reduced Curie temperature (T C), and nonlinear Arrott plots. In spite of non-uniform magnetism, the temperature dependence of magnetization showed conventional mean field behavior near T C. Our data suggest that non-uniform strain leads to coexistence of separate ferromagnetic and ferroelectric regions in BiMnO3 films which is not observed in bulk samples.
Overall parameters for the characterization of non-uniformly totally polarized beams
NASA Astrophysics Data System (ADS)
Martínez-Herrero, R.; Mejías, P. M.; Piquero, G.
2006-09-01
Several overall parameters are introduced to characterize the linear or circular polarization content of a non-uniformly totally polarized beam over the region of its wavefront where the irradiance is significant. These figures of merit are determined from the values of the Stokes parameters. The physical meaning of the proposed parameters is tested by computing some numerical examples, and their measurability is checked by considering non-uniformly totally polarized fields generated after propagation through uniaxial anisotropic materials.
Dielectrophoresis device and method having non-uniform arrays for manipulating particles
Cummings, Eric B.; Fintschenko, Yolanda; Simmons, Blake
2008-09-02
Microfluidic devices according to embodiments of the present invention include an inlet port, an outlet port, and a channel or chamber having a non-uniform array of insulating features on one or more surfaces. Electrodes are provided for generation of a spatially non-uniform electric field across the array. A voltage source, which may be an A.C. and/or a D.C. voltage source may be coupled to the electrodes for the generation of the electric field.
NASA Astrophysics Data System (ADS)
Zhang, Shuanglei; Wang, Tao; Xu, Chun; Chen, Fansheng
2015-04-01
In the infrared focal plane array (IRFPA) imaging system, the non-uniformity (NU) of IRFPA directly affects the quality of infrared images. Especially applying in the infrared weak small targets detection and tracking system, the impact of the spatial noise caused by the non-uniformity of IRFPA detector, often more serious than the temporal noise of imaging system. In order to effectively correct the non-uniformity of IRFPA detector, we firstly analyze main factors that cause the non-uniformity of IRFPA detector in imaging. Secondly, according to photoelectric conversion mechanism of IRFPA detector, and the analysis of the process of the target energy accumulation and transfer, we propose a calculation method of pixels' integral capacitance. Then according to the calculation results, we correct the original IR image preliminary. Finally, we validate this non-uniformity correction algorithm by processing IR images collected from actual IRFPA imaging system. Results show that the algorithm can effectively restrain the non-uniformity caused by the differences of the pixels' capacitance.
The Impact of Non-Uniform Cloud Cover on Transit Transmission Spectra
NASA Astrophysics Data System (ADS)
Line, Michael; Parmentier, Vivien
2015-12-01
Clouds play a substantial role in sculpting transit transmission spectra as they tend to mute or entirely mask spectral features. Many investigations have treated clouds as globally uniform with a single “1D” structure. However, we have learned from albedo phase curves (e.g., Kepler 7) that cloud coverage can be spatially inhomogeneous across the planetary disk. Non-uniform cloud coverage is also supported by brown dwarf variability observations which suggest the presence of “patchy clouds”. We also see non-uniform cloud coverage within our own solar system planets (e.g., belts and zones on Jupiter, ITCZ on earth etc.). Given the mounting evidence for spatially variable cloud coverage, it is prudent that we at least explore the role that non-uniform cloud coverage can have on transit transmission spectra. In this investigation we demonstrate how non-uniform cloud coverage on the terminator can influence transit transmission spectra and the potential biases incurred if non-uniform cloud coverage is not taken into account in spectral retrievals. For instance, a high altitude opaque cloud covering the entire morning terminator, along with a perfectly clear evening terminator can mimic a high mean molecular weight transmission spectrum in a hot Jupiter. Finally, we present the impact that non-uniform cloud coverage may have on transit light curves.
Johnston, Kaleena; Jinha, Azim; Herzog, Walter
2016-01-01
The sarcomere length non-uniformity theory (SLNT) is a widely accepted explanation for residual force enhancement (RFE). RFE is the increase in steady-state isometric force following active muscle stretching. The SLNT predicts that active stretching of a muscle causes sarcomere lengths (SL) to become non-uniform, with some sarcomeres stretched beyond actin–myosin filament overlap (popping), causing RFE. Despite being widely known, this theory has never been directly tested. We performed experiments on isolated rabbit muscle myofibrils (n = 12) comparing SL non-uniformities for purely isometric reference contractions (I-state) and contractions following active stretch producing RFE (FE-state). Myofibrils were activated isometrically along the descending limb of the force–length relationship (mean ± 1 standard deviation (SD) = 2.8 ± 0.3 µm sarcomere−1). Once the I-state was reached, myofibrils were shortened to an SL on the plateau of the force–length relationship (2.4 µm sarcomere−1), and then were actively stretched to the reference length (2.9 ± 0.3 µm sarcomere−1). We observed RFE in all myofibrils (39 ± 15%), and saw varying amounts of non-uniformity (1 SD = 0.9 ± 0.5 µm) that was not significantly correlated with the amount of RFE, but through pairwise comparisons was found to be significantly greater than the non-uniformity measured for the I-state (0.7 ± 0.4 µm). Three myofibrils exhibited no increase in non-uniformity. Active stretching was accompanied by sarcomere popping in four myofibrils, and seven had popped sarcomeres in the I-state. These results suggest that, while non-uniformities are present with RFE, they are also present in the I-state. Furthermore, non-uniformity is not associated with the magnitude of RFE, and myofibrils that had no increase in non-uniformity with stretch still showed normal RFE. Therefore, it appears that SL non-uniformity is a normal associate of muscle
Johnston, Kaleena; Jinha, Azim; Herzog, Walter
2016-03-01
The sarcomere length non-uniformity theory (SLNT) is a widely accepted explanation for residual force enhancement (RFE). RFE is the increase in steady-state isometric force following active muscle stretching. The SLNT predicts that active stretching of a muscle causes sarcomere lengths (SL) to become non-uniform, with some sarcomeres stretched beyond actin-myosin filament overlap (popping), causing RFE. Despite being widely known, this theory has never been directly tested. We performed experiments on isolated rabbit muscle myofibrils (n = 12) comparing SL non-uniformities for purely isometric reference contractions (I-state) and contractions following active stretch producing RFE (FE-state). Myofibrils were activated isometrically along the descending limb of the force-length relationship (mean ± 1 standard deviation (SD) = 2.8 ± 0.3 µm sarcomere(-1)). Once the I-state was reached, myofibrils were shortened to an SL on the plateau of the force-length relationship (2.4 µm sarcomere(-1)), and then were actively stretched to the reference length (2.9 ± 0.3 µm sarcomere(-1)). We observed RFE in all myofibrils (39 ± 15%), and saw varying amounts of non-uniformity (1 SD = 0.9 ± 0.5 µm) that was not significantly correlated with the amount of RFE, but through pairwise comparisons was found to be significantly greater than the non-uniformity measured for the I-state (0.7 ± 0.4 µm). Three myofibrils exhibited no increase in non-uniformity. Active stretching was accompanied by sarcomere popping in four myofibrils, and seven had popped sarcomeres in the I-state. These results suggest that, while non-uniformities are present with RFE, they are also present in the I-state. Furthermore, non-uniformity is not associated with the magnitude of RFE, and myofibrils that had no increase in non-uniformity with stretch still showed normal RFE. Therefore, it appears that SL non-uniformity is a normal associate of muscle
Modelling photon transport in non-uniform media for SPECT with a vectorized Monte Carlo code.
Smith, M F
1993-10-01
A vectorized Monte Carlo code has been developed for modelling photon transport in non-uniform media for single-photon-emission computed tomography (SPECT). The code is designed to compute photon detection kernels, which are used to build system matrices for simulating SPECT projection data acquisition and for use in matrix-based image reconstruction. Non-uniform attenuating and scattering regions are constructed from simple three-dimensional geometric shapes, in which the density and mass attenuation coefficients are individually specified. On a Stellar GS1000 computer, Monte Carlo simulations are performed between 1.6 and 2.0 times faster when the vector processor is utilized than when computations are performed in scalar mode. Projection data acquired with a clinical SPECT gamma camera for a line source in a non-uniform thorax phantom are well modelled by Monte Carlo simulations. The vectorized Monte Carlo code was used to stimulate a 99Tcm SPECT myocardial perfusion study, and compensations for non-uniform attenuation and the detection of scattered photons improve activity estimation. The speed increase due to vectorization makes Monte Carlo simulation more attractive as a tool for modelling photon transport in non-uniform media for SPECT. PMID:8248288
Numerical simulation of the impact of urban non-uniformity on precipitation
NASA Astrophysics Data System (ADS)
Song, Yuqiang; Liu, Hongnian; Wang, Xueyuan; Zhang, Ning; Sun, Jianning
2016-06-01
To evaluate the influence of urban non-uniformity on precipitation, the area of a city was divided into three categories (commercial, high-density residential, and low-density residential) according to the building density data from Landsat satellites. Numerical simulations of three corresponding scenarios (urban non-uniformity, urban uniformity, and non-urban) were performed in Nanjing using the WRF model. The results demonstrate that the existence of the city results in more precipitation, and that urban heterogeneity enhances this phenomenon. For the urban non-uniformity, uniformity, and non-urban experiments, the mean cumulative summer precipitation was 423.09 mm, 407.40 mm, and 389.67 mm, respectively. Urban non-uniformity has a significant effect on the amount of heavy rainfall in summer. The cumulative precipitation from heavy rain in the summer for the three numerical experiments was 278.2 mm, 250.6 mm, and 236.5 mm, respectively. In the nonuniformity experiments, the amount of precipitation between 1500 and 2200 (LST) increased significantly. Furthermore, the adoption of urban non-uniformity into the WRF model could improve the numerical simulation of summer rain and its daily variation.
Effects of Non-Uniform Fuel Distribution on Detonation Tube Performance
NASA Technical Reports Server (NTRS)
Perkins, H. Douglas; Sung, Chih-Jen
2003-01-01
A pulse detonation engine uses a series of high frequency intermittent detonation tubes to generate thrust. The process of filling the detonation tube with fuel and air for each cycle may yield non-uniform mixtures. Uniform mixing is commonly assumed when calculating detonation tube thrust performance. In this study, detonation cycles featuring idealized non-uniform H2/air mixtures were analyzed using a two-dimensional Navier-Stokes computational fluid dynamics code with detailed chemistry. Mixture non-uniformities examined included axial equivalence ratio gradients, transverse equivalence ratio gradients, and partially fueled tubes. Three different average test section equivalence ratios were studied; one stoichiometric, one fuel lean, and one fuel rich. All mixtures were detonable throughout the detonation tube. Various mixtures representing the same average test section equivalence ratio were shown to have specific impulses within 1% of each other, indicating that good fuel/air mixing is not a prerequisite for optimal detonation tube performance under the conditions investigated.
NASA Astrophysics Data System (ADS)
Dhiman, Joginder Singh; Sharma, Rajni
2016-03-01
The self-gravitating instability of an infinitely extending axisymmetric cylinder of viscoelastic medium permeated with non uniform magnetic field and rotation is studied for both the strongly coupled plasma (SCP) and weakly coupled plasma (WCP). The non uniform magnetic field and rotation are considered to act along the axial direction of the cylinder. The normal mode method of perturbations is applied to obtain the dispersion relation. The condition for the onset of gravitational instability has been derived from the dispersion relation under both strongly and weakly coupling limits. It is found that the Jeans criterion for gravitational collapse gets modified due to the presence of shear and bulk viscosities for the SCP, however, the magnetic field and rotation whether uniform or non uniform has no effect on the Jeans criterion of an infinitely extending axisymmetric cylinder of a self-gravitating viscoelastic medium.
Carbon monoxide sensor and method of use thereof
McDaniel; Anthony H. , Medlin; J. Will , Bastasz; Robert J.
2007-09-04
Carbon monoxide sensors suitable for use in hydrogen feed streams and methods of use thereof are disclosed. The sensors are palladium metal/insulator/semiconductor (Pd-MIS) sensors which may possess a gate metal layer having uniform, Type 1, or non-uniform, Type 2, film morphology. Type 1 sensors display an increased sensor response in the presence of carbon monoxide while Type 2 sensors display a decreased response to carbon monoxide. The methods and sensors disclosed herein are particularly suitable for use in proton exchange membrane fuel cells (PEMFCs).
Research of improved sparse grid non-uniformity correction technologies for infrared resistor array
NASA Astrophysics Data System (ADS)
Du, Hui-jie; Zhao, Hong-ming; Gao, Yang; Yu, Hong; Zhang, Yi
2015-10-01
Infrared resistor arrays perform a vital role in the hardware in the loop testing of infrared seekers. Infrared resistor arrays composed of large numbers of suspended resistor elements are commonly used to produce dynamic two-dimensional images of infrared radiation. Due to inconsistencies in the fabrication process of the resistor arrays, the temperature each resistor elements reaches for a given input voltage is variable and this leads to more significant radiance differences, these differences result in spatially-distributed radiance non-uniformity. Therefore, in order to obtain an available infrared image, non-uniformity correction (NUC) is necessary. In this paper, the non-uniformity characters of the infrared resistor arrays are analyzed base on measured data and then an improved sparse grid method for engineering are discussed and analyzed. First of all, the NUC camera has a strong influence on the effectiveness of the infrared resistor arrays NUC procedure. According to the actual fact and the laboratory condition, we presented an alternative method for collecting resistor arrays intended to reduce the influence causing by the NUC camera. Secondly, based on the measured non-uniformity data, we obtain the response characteristics of the infrared resistor arrays. In each gray level, we take two points or several points correction algorithm to calculate the gain data and the offset data, and then the linear look-up table is established. Finally, through MATLAB we develop the correction software, and we can obtain the driving output conveniently. The result shows that the image quality has a remarkable improvement after non-uniformity correction, the non-uniformity correction flow and algorithm preferably satisfies the requirement of the high confidence infrared imaging simulation.
Analysis of axially non-uniform loss distribution in 3-phase induction motor considering skew effect
Kown, B.I.; Kim, B.T.; Jun, C.S.; Park, S.C. )
1999-05-01
This paper discusses the phenomena of the axially non-uniform distribution of magnetic flux densities and losses in a 3-phase squirrel cage induction motor of which the rotor bars are skewed. A 2-dimensional complex finite element method taking account of the effects of the skewed rotor bars is utilized for the analysis of characteristics such as copper and iron losses and the loss distributions are examined. The summing up values of non-uniform losses resulted from the finite element analysis are compared with measurement values.
Photocathode non-uniformity contribution to the energy resolution of scintillators.
Mottaghian, M; Koohi-Fayegh, R; Ghal-Eh, N; Etaati, G R
2010-06-01
This paper introduces the basics of the light transport simulation in scintillators and the wavelength-dependencies in the process. The non-uniformity measurement of the photocathode surface is undertaken, showing that for the photocathode used in this study the quantum efficiency falls to about 4 % of its maximum value, especially in areas far from the centre. The wavelength- and position-dependent quantum efficiency is implemented in the Monte Carlo light transport code, showing that, the contribution of the photocathode non-uniformity to the energy resolution is estimated to be around 18 %, when all position- and wavelength-dependencies are included. PMID:20167795
Interaction of high intensity laser with non-uniform clusters and enhanced X-ray emission
Liu, C. S.; Tripathi, V. K.; Kumar, Manoj
2014-10-15
Laser irradiated clusters with non-uniform density variation are shown to broaden surface plasmon resonance very significantly. As the clusters get heated and expand hydro-dynamically, the Bremsstrahlung X-ray emission yield passes through a maximum in time. The maximum yield decreases with increase in non-uniformity in the electron density inside the clusters. At higher laser intensity, the nonlinearity in laser cluster interaction may arise even prior to electron heating, via the relativistic mass variation and the nonlinear restoration force on electrons. For clusters with radius less than one tenth of the laser wavelength, the restoration force nonlinearity dominates.
The Pierce diode with an external circuit: II, Non-uniform equilibria
Lawson, W.S.
1987-07-22
The non-uniform (non-linear) equilibria of the classical (short circuit) Pierce diode and the extended (series RLC external circuit) Pierce diode are described theoretically, and explored via computer simulation. It is found that most equilibria are correctly predicted by theory, but that the continuous set of equilibria of the classical Pierce diode at ..cap alpha.. = 2..pi.. are not observed. The stability characteristics of the non-uniform equilibria are also worked out, and are consistent with the simulations. 8 refs., 22 figs., 3 tabs.
Compression gain of spin wave signals in a magnonic YIG waveguide with thermal non-uniformity
NASA Astrophysics Data System (ADS)
Kolokoltsev, O.; Gómez-Arista, Ivan; Qureshi, N.; Acevedo, A.; Ordóñez-Romero, César L.; Grishin, A.
2015-03-01
We report on the observation of the compression gain of the signals carried by surface spin waves (MSSWs) in yittrium iron garnet films as a result of non-uniform optical heating of the spin wave medium. Efficient gain takes place if a frequency downshift of the spin wave spectrum induced by the heating is compensated by the corresponding non-uniformity of the bias magnetic field. It is proposed that the effect can be understood in part as an interaction between spin waves and a thermally induced potential well in the sample.
Some applications of the characteristics non-uniform Doppler to radar
NASA Astrophysics Data System (ADS)
Gray, John E.; Breaux, Nancy A.; Hansen, Jeremiah J.
2016-05-01
Since the inception of coherent waveforms, it has been realized that the effect of non-uniform motion of a non-point like object can induce structure in the return spectrum of the waveform that can be exploited. The non-uniform Doppler spectrum has useful information that can be found in the spreading of the Doppler spectrum for the motion models: acceleration, jerk, quadric, and exponential slowdown as examples well as a characteristic of periodic motion. We illustrate this with examples relevant to automotive radar, tracking meteors with ambient sources, characterizing moving sources and other relevant examples.
Propagation characteristics of a non-uniformly Hermite-Gaussian correlated beam
NASA Astrophysics Data System (ADS)
Song, Zhenzhen; Liu, Zhengjun; Zhou, Keya; Sun, Qiongge; Liu, Shutian
2016-01-01
We introduce a new kind of partially coherent beam, non-uniformly Hermite-Gaussian correlated beam, by employing a non-uniformly Hermite function to modulate the spectral degree of coherence. The evolution of such scalar beam on propagation in free space and turbulent atmosphere are investigated. It is demonstrated that the spectral intensity distributions exhibit extraordinary propagation characteristics, such as self-focusing and laterally shifted intensity maxima. The position of the maximum intensity and the intensity profile can be controlled by the order of the Hermite function. The results can be useful in free-space optical communications and beam shaping.
Additive non-uniform random sampling in superimposed fiber Bragg grating strain gauge
NASA Astrophysics Data System (ADS)
Ma, Y. C.; Liu, H. Y.; Yan, S. B.; Yang, Y. H.; Yang, M. W.; Li, J. M.; Tang, J.
2013-05-01
This paper demonstrates an additive non-uniform random sampling and interrogation method for dynamic and/or static strain gauge using a reflection spectrum from two superimposed fiber Bragg gratings (FBGs). The superimposed FBGs are designed to generate non-equidistant space of a sensing pulse train in the time domain during dynamic strain gauge. By combining centroid finding with smooth filtering methods, both the interrogation speed and accuracy are improved. A 1.9 kHz dynamic strain is measured by generating an additive non-uniform randomly distributed 2 kHz optical sensing pulse train from a mean 500 Hz triangular periodically changing scanning frequency.
Improving performance of LMS non-uniformity correction by sigma filter
NASA Astrophysics Data System (ADS)
Liang, Chaobing; Sang, Hongshi
2013-10-01
Spatial smoothing filters are usually used in LMS-based non-uniformity correction methods to get an estimation of true scene. Edge-smearing of these filters is the main reason for `ghosting' artifacts. A method based on sigma filter is proposed, which can improve accuracy of non-uniformity and mitigate `ghosting' artifacts. Sigma filter is also used to detect abnormal pixels and adaptively adjust learning rate. Tests with simulated data and real infrared sequences have shown that the proposed method outperforms other representative LMS-based methods.
Phase Transitions in a Non-Uniformly Stressed Iron Borate Single Crystal
NASA Astrophysics Data System (ADS)
Dzhuraev, D. R.; Niyazov, L. N.; Sokolov, B. Yu.
2016-05-01
Based on the Landau thermodynamic theory, phase transformations observed in a FeBO3 single crystal subject to spatially non-uniform mechanical stresses are analyzed. It is demonstrated that the main results of theoretical consideration of structural and magnetic phase transitions in the examined crystal do not contradict with the available experimental data.
The Implementation of non-uniformity correction in multi-TDICCD imaging system
NASA Astrophysics Data System (ADS)
Zhai, Guofang; Cheng, Yun; Han, Zhixue; Wang, Dong
2015-10-01
Abstract—a non-uniformity correction algorithm is proposed and implemented on a Field-Programmable Gate Array (FPGA) hardware platform to solve a problem of pixel response non-uniformity(PRNU) for multiple Time Delay and Integration Charge Couple Device(TDICCD) camera. The non-uniformity is introduced and a synthetical correction algorithm is presented, in which the two-point correction method is applied to a single channel, gain averaging correction method among multi-channel and scene-adaptive correction method among multiple-TDICCD. Then, the correction algorithm is generated. Finally, the FPGA ability for fix-point processing is analyzed; the correction algorithm is optimized, and implemented on FPGA. Testing results indicate that the non-uniformity can be decreased from 8.27% to 0.51% for three TDICCDs camera's images with this proposed correction algorithm, proving that this correction algorithm is with high real-time performance, great engineering realization and satisfaction for the system requirements.
English Non-Uniformity: A Non-Adult Form of Ethnic English.
ERIC Educational Resources Information Center
Stout, Steven Owen
The paper examines interpretive aspects of English non-uniformity among fifth and sixth grade Native Americans at Laguna Elementary School, Laguna, New Mexico. Speaker assessments of instances of uninflected "be" are ordered to form an implicational scale. The variability in the students' assessment pattern is compared to previous inter-ethnic…
Travelling waves in boundary-controlled, non-uniform, cascaded lumped systems
NASA Astrophysics Data System (ADS)
O'Connor, William J.; Zhu, Ming
2013-08-01
A companion paper considers travelling and standing waves in cascaded, lumped, mass-spring systems, controlled by two boundary actuators, one at each end, when the system is uniform. It first proposes definitions of waves in finite lumped systems. It then shows how to control the actuators to establish desired waves from rest, and to maintain them despite disturbances. The present paper extends this work to the more general, non-uniform case, when mass and spring values can be arbitrary. A special "bi-uniform" case is first studied, consisting of two different uniform cascaded systems in series, with an obvious, uncontrolled, impedance mismatch where they meet. The paper shows how boundary actuator control systems can be designed to establish, and robustly maintain, apparently pure travelling waves of constant amplitude in either the first or the second uniform section, in each case with an appropriate, partial, standing wave pattern in the other section. Then a more general non-uniform case is studied. A definition of a "pure travelling wave" in non-uniform systems is proposed. Curiously, it does not imply constant amplitude motion. It does however yield maximum power transfer between boundary actuators. The definition, and its implementation in a control system, involves extending the notions of "pure" travelling waves, of standing waves, and of input and output impedances of sources and loads, when applied to non-uniform lumped systems. Practical, robust control strategies are presented for all cases.
Algebraic grid adaptation method using non-uniform rational B-spline surface modeling
NASA Technical Reports Server (NTRS)
Yang, Jiann-Cherng; Soni, B. K.
1992-01-01
An algebraic adaptive grid system based on equidistribution law and utilized by the Non-Uniform Rational B-Spline (NURBS) surface for redistribution is presented. A weight function, utilizing a properly weighted boolean sum of various flow field characteristics is developed. Computational examples are presented to demonstrate the success of this technique.
Output-only modal identification by compressed sensing: Non-uniform low-rate random sampling
NASA Astrophysics Data System (ADS)
Yang, Yongchao; Nagarajaiah, Satish
2015-05-01
Modal identification or testing of structures consists of two phases, namely, data acquisition and data analysis. Some structures, such as aircrafts, high-speed machines, and plate-like civil structures, have active modes in the high-frequency range when subjected to high-speed or broadband excitation in their operational conditions. In the data acquisition stage, the Shannon-Nyquist sampling theorem indicates that capturing the high-frequency modes (signals) requires uniform high-rate sampling, resulting in sensing too many samples, which potentially impose burdens on the data transfer (especially in wireless platform) and data analysis stage. This paper explores a new-emerging, alternative, signal sampling and analysis technique, compressed sensing, and investigates the feasibility of a new method for output-only modal identification of structures in a non-uniform low-rate random sensing framework based on a combination of compressed sensing (CS) and blind source separation (BSS). Specifically, in the data acquisition stage, CS sensors sample few non-uniform low-rate random measurements of the structural responses signals, which turn out to be sufficient to capture the underlying mode information. Then in the data analysis stage, the proposed method uses the BSS technique, complexity pursuit (CP) recently explored by the authors, to directly decouple the non-uniform low-rate random samples of the structural responses, simultaneously yielding the mode shape matrix as well as the non-uniform low-rate random samples of the modal responses. Finally, CS with ℓ1-minimization recovers the uniform high-rate modal response from the CP-decoupled non-uniform low-rate random samples of the modal response, thereby enabling estimation of the frequency and damping ratio. Because CS sensors are currently in laboratory prototypes and not yet commercially available, their functionality-randomly sensing few non-uniform samples-is simulated in this study, which is performed on the
The Gas Motion Due To Non-Uniform Heating By 3He(n,p)3H Reactions In The Nuclear-Pumped3He -Lasers
NASA Astrophysics Data System (ADS)
Çetin, Füsun
2007-04-01
In the nuclear pumped-lasers, the passage of these energetic charged particles through gas results in a non-uniform volumetric energy deposition. This spatial non-uniformity induces a gas motion, which results in density and hence refractive index gradients that affects the laser's optical behaviour. The motion of 3He gas in a closed cavity is studied when it experiences transient and spatially non-uniform volumetric heating caused by the passage of 3He(n,p)3H reaction products. Gas motion is described by the radial velocity field of gas flow. Spatial and temporal variations of radial gas velocity are calculated for various tube parameters by using a dynamic energy deposition model. In the calculations, it is assumed that the laser tube is irradiated with neutrons from the pulse at a peak power of 1200 MW corresponding to a maximum thermal neutron flux of 8×1016 n / cm2sn in the central channel of ITU TRIGA Mark II Reactor. Results are examined.
The Gas Motion Due To Non-Uniform Heating By 3He(n,p)3H Reactions In The Nuclear-Pumped3He -Lasers
Cetin, Fuesun
2007-04-23
In the nuclear pumped-lasers, the passage of these energetic charged particles through gas results in a non-uniform volumetric energy deposition. This spatial non-uniformity induces a gas motion, which results in density and hence refractive index gradients that affects the laser's optical behaviour. The motion of 3He gas in a closed cavity is studied when it experiences transient and spatially non-uniform volumetric heating caused by the passage of 3He(n,p)3H reaction products. Gas motion is described by the radial velocity field of gas flow. Spatial and temporal variations of radial gas velocity are calculated for various tube parameters by using a dynamic energy deposition model. In the calculations, it is assumed that the laser tube is irradiated with neutrons from the pulse at a peak power of 1200 MW corresponding to a maximum thermal neutron flux of 8x1016 n / cm2sn in the central channel of ITU TRIGA Mark II Reactor. Results are examined.
Energy-Efficient Algorithm for Sensor Networks with Non-Uniform Maximum Transmission Range
Yu, Yimin; Song, Chao; Liu, Ming; Gong, Haigang
2011-01-01
In wireless sensor networks (WSNs), the energy hole problem is a key factor affecting the network lifetime. In a circular multi-hop sensor network (modeled as concentric coronas), the optimal transmission ranges of all coronas can effectively improve network lifetime. In this paper, we investigate WSNs with non-uniform maximum transmission ranges, where sensor nodes deployed in different regions may differ in their maximum transmission range. Then, we propose an Energy-efficient algorithm for Non-uniform Maximum Transmission range (ENMT), which can search approximate optimal transmission ranges of all coronas in order to prolong network lifetime. Furthermore, the simulation results indicate that ENMT performs better than other algorithms. PMID:22163950
Node Non-Uniform Deployment Based on Clustering Algorithm for Underwater Sensor Networks
Jiang, Peng; Liu, Jun; Wu, Feng
2015-01-01
A node non-uniform deployment based on clustering algorithm for underwater sensor networks (UWSNs) is proposed in this study. This algorithm is proposed because optimizing network connectivity rate and network lifetime is difficult for the existing node non-uniform deployment algorithms under the premise of improving the network coverage rate for UWSNs. A high network connectivity rate is achieved by determining the heterogeneous communication ranges of nodes during node clustering. Moreover, the concept of aggregate contribution degree is defined, and the nodes with lower aggregate contribution degrees are used to substitute the dying nodes to decrease the total movement distance of nodes and prolong the network lifetime. Simulation results show that the proposed algorithm can achieve a better network coverage rate and network connectivity rate, as well as decrease the total movement distance of nodes and prolong the network lifetime. PMID:26633408
Node Non-Uniform Deployment Based on Clustering Algorithm for Underwater Sensor Networks.
Jiang, Peng; Liu, Jun; Wu, Feng
2015-01-01
A node non-uniform deployment based on clustering algorithm for underwater sensor networks (UWSNs) is proposed in this study. This algorithm is proposed because optimizing network connectivity rate and network lifetime is difficult for the existing node non-uniform deployment algorithms under the premise of improving the network coverage rate for UWSNs. A high network connectivity rate is achieved by determining the heterogeneous communication ranges of nodes during node clustering. Moreover, the concept of aggregate contribution degree is defined, and the nodes with lower aggregate contribution degrees are used to substitute the dying nodes to decrease the total movement distance of nodes and prolong the network lifetime. Simulation results show that the proposed algorithm can achieve a better network coverage rate and network connectivity rate, as well as decrease the total movement distance of nodes and prolong the network lifetime. PMID:26633408
The development of non-uniform deposition of holes in gate oxides
Freitag, R.K.; Dozier, C.M.; Brown, D.B.; Burke, E.A.
1988-12-01
The subthreshold technique was used to study irradiated MOS transistors at 80 K. Stretchout of the subthreshold curve demonstrated production of lateral non-uniformities (LNUs) in the hole distribution. The LNUs were analyzed in terms of (a) a parallel transistor model, and (b) the statistics of the non-uniform distribution of dose deposition in the SiO/sub 2/. The results confirm the hypothesis that at 80 K the principal source of LNUs is the granularity in dose deposition. The relative standard deviation for the deposited dose is larger for thin oxides, for 10 kev x-rays (as opposed to Co-60), and at low doses. These physical phenomena are predicted to have a significant effect at room temperature also.
Selective exfoliation of single-layer graphene from non-uniform graphene grown on Cu.
Lim, Jae-Young; Lee, Jae-Hyun; Jang, Hyeon-Sik; Joo, Won-Jae; Hwang, SungWoo; Whang, Dongmok
2015-11-13
Graphene growth on a copper surface via metal-catalyzed chemical vapor deposition has several advantages in terms of providing high-quality graphene with the potential for scale-up, but the product is usually inhomogeneous due to the inability to control the graphene layer growth. The non-uniform regions strongly affect the reliability of the graphene in practical electronic applications. Herein, we report a novel graphene transfer method that allows for the selective exfoliation of single-layer graphene from non-uniform graphene grown on a Cu foil. Differences in the interlayer bonding energy are exploited to mechanically separate only the top single-layer graphene and transfer this to an arbitrary substrate. The dry-transferred single-layer grapheme showed electrical characteristics that were more uniform than those of graphene transferred using conventional wet-etching transfer steps. PMID:26491038
The non-uniform distribution of the perihelia of near-Earth objects
NASA Astrophysics Data System (ADS)
JeongAhn, Youngmin; Malhotra, R.
2013-10-01
We show that each sub-group of NEOs (Amors, Apollos and Atens) has different observational selection effects that cause distinctive features in the apparent distribution of their angular elements. We also reveal that the NEOs' perihelia (argument of perihelion ω and longitude of perihelion π) have intrinsically non-uniform distributions caused by secular planetary perturbations: ω is non-uniform for the Apollo asteroids because of secular dynamics associated with eccentricity-ω coupling, and the Amors' π distribution is peaked along the secularly forced eccentricity vector. These secular effects are dominated by Jupiter's perturbations, and it is remarkable that this strongly chaotic population of minor planets reveals the presence of Jupiter in its angular distributions.
Non-uniformity effects of the inter-foil distance on GEM detector performance
NASA Astrophysics Data System (ADS)
Yan, Huang; Han, YI; Zhi-Gang, Xiao; Zhao, Zhang; Wen-Jing, Cheng; Li-Ming, Lü; Wei-Hua, Yan; Ren-Sheng, Wang; Hong-Jie, Li; Yan, Zhang; Li-Min, Duan; Rong-Jiang, Hu; Chen-Gui, Lu; He-Run, Yang; Peng, Ma; Hai-Yan, Gao
2016-04-01
The non-uniformity effect of the inter-foil distance has been studied using a gaseous electron multiplication (GEM) detector with sensitive area of 50mm × 50mm. A gradient of the inter-foil distance is introduced by using spacers with different heights at the two ends of the foil gap. While the cluster size and the intrinsic spatial resolution show insignificant dependence on the inter-foil distance, the gain exhibits an approximately linear dependence on the inter-foil distance. From the slope, a quantitative relationship between the change of the inter-foil distance and the change of the gain is derived, which can be used as a method to evaluate the non-uniformity of the foil gap in the application of large-area GEM detectors. Supported by National Natural Science Foundation of China (11375094, U1332207, 11120101004), and by Tsinghua University Initiative Scientific Research Program
Lin, Changyu; Zou, Ding; Liu, Tao; Djordjevic, Ivan B
2016-08-01
A mutual information inspired nonbinary coded modulation design with non-uniform shaping is proposed. Instead of traditional power of two signal constellation sizes, we design 5-QAM, 7-QAM and 9-QAM constellations, which can be used in adaptive optical networks. The non-uniform shaping and LDPC code rate are jointly considered in the design, which results in a better performance scheme for the same SNR values. The matched nonbinary (NB) LDPC code is used for this scheme, which further improves the coding gain and the overall performance. We analyze both coding performance and system SNR performance. We show that the proposed NB LDPC-coded 9-QAM has more than 2dB gain in symbol SNR compared to traditional LDPC-coded star-8-QAM. On the other hand, the proposed NB LDPC-coded 5-QAM and 7-QAM have even better performance than LDPC-coded QPSK. PMID:27505775
Effect of Thermal Gradient on Vibration of Non-uniform Visco-elastic Rectangular Plate
NASA Astrophysics Data System (ADS)
Khanna, Anupam; Kaur, Narinder
2016-04-01
Here, a theoretical model is presented to analyze the effect of bilinear temperature variations on vibration of non-homogeneous visco-elastic rectangular plate with non-uniform thickness. Non-uniformity in thickness of the plate is assumed linear in one direction. Since plate's material is considered as non-homogeneous, authors characterized non-homogeneity in poisson ratio and density of the plate's material exponentially in x-direction. Plate is supposed to be clamped at the ends. Deflection for first two modes of vibration is calculated by using Rayleigh-Ritz technique and tabulated for various values of plate's parameters i.e. taper constant, aspect ratio, non-homogeneity constants and thermal gradient. Comparison of present findings with existing literature is also provided in tabular and graphical manner.
Selective exfoliation of single-layer graphene from non-uniform graphene grown on Cu
NASA Astrophysics Data System (ADS)
Lim, Jae-Young; Lee, Jae-Hyun; Jang, Hyeon-Sik; Joo, Won-Jae; Hwang, SungWoo; Whang, Dongmok
2015-11-01
Graphene growth on a copper surface via metal-catalyzed chemical vapor deposition has several advantages in terms of providing high-quality graphene with the potential for scale-up, but the product is usually inhomogeneous due to the inability to control the graphene layer growth. The non-uniform regions strongly affect the reliability of the graphene in practical electronic applications. Herein, we report a novel graphene transfer method that allows for the selective exfoliation of single-layer graphene from non-uniform graphene grown on a Cu foil. Differences in the interlayer bonding energy are exploited to mechanically separate only the top single-layer graphene and transfer this to an arbitrary substrate. The dry-transferred single-layer graphene showed electrical characteristics that were more uniform than those of graphene transferred using conventional wet-etching transfer steps.
Applications of anisotropic slipline theory with non-uniform lattice rotation
NASA Astrophysics Data System (ADS)
Pandey, Animesh; Gupta, Anurag
2016-06-01
Anisotropic slipline theory, with non-uniform lattice rotation field, is used to discuss new slipline solutions for the plane strain problems of punch indentation and mode 1 stationary crack in a ductile single crystal with piecewise linear yield locus. The proposed solution allows for both linear dislocation arrays and sectors with bulk dislocation density. Such features provide considerable latitude in the number of allowable stress discontinuities, and their orientation, when compared to the solutions which assume uniform lattice rotation.
Phase-locked laser array having a non-uniform spacing between lasing regions
NASA Technical Reports Server (NTRS)
Ackley, Donald E. (Inventor)
1986-01-01
A phase-locked semiconductor array wherein the lasing regions of the array are spaced an effective distance apart such that the modes of oscillation of the different lasing regions are phase-locked to one another. The center-to-center spacing between the lasing regions is non-uniform. This variation in spacing perturbs the preferred 180.degree. phase difference between adjacent lasing regions thereby providing an increased yield of arrays exhibiting a single-lobed, far-field radiation pattern.
Beam moments and angular momentum in non-uniformly polarized beams
NASA Astrophysics Data System (ADS)
Serna, Julio; Piquero, Gemma
2009-05-01
The angular momentum of non-uniformly totally polarized beams is investigated using methods from the beam characterization approach. The relationship between the elements of the beam matrix for the two components of the field and the angular momentum is given. The unconventional distribution of the polarization across the beam profile could result in contributions to both the spin and orbital terms of the angular momentum. To illustrate this, a particular example with a vortex beam is considered.
Proposals for the generation of angular momentum from non-uniformly polarized beams
NASA Astrophysics Data System (ADS)
Alonso, Mara; Piquero, Gemma; Serna, Julio
2012-04-01
Several optical arrangements using non-uniformly polarized fields are proposed for generating beams with spin and/or orbital angular momentum. By choosing adequately the input beam polarization and the characteristics of the different proposed set-ups we can control the overall angular momentum of the output beam at will. The orbital angular momentum is analyzed with the beam moments theory and the spin term is evaluated using the averaged s3 Stokes parameter.
An introduction to the theory of NON-uniformity of hygrothermal constituent of the environment
NASA Astrophysics Data System (ADS)
Jokl, M. V.
1989-12-01
Non-uniformity of the hygrothermal constituent of the environment (NUN) causes problems not only of hot workplaces in industry, but also in lightweight buildings, and air-conditioned and even ventilated buildings. It is almost impossible to avoid cold draughts, unilateral thermal radiation etc. in such situations. The theory and definition of NUN in space and in time, and NUN climatic (convective, radiant, perspiratory) and NUN conductive are described.
An introduction to the theory of NON-uniformity of hygrothermal constituent of the environment.
Jokl, M V
1989-12-01
Non-uniformity of the hygrothermal constituent of the environment (NUN) causes problems not only of hot workplaces in industry, but also in lightweight buildings, and air-conditioned and even ventilated buildings. It is almost impossible to avoid cold draughts, unilateral thermal radiation etc. in such situations. The theory and definition of NUN in space and in time, and NUN climatic (convective, radiant, perspiratory) and NUN conductive are described. PMID:2613363
Non-uniform composite representation of hydroelectric systems for long-term hydrothermal scheduling
Cruz, G. da Jr.; Soares, S.
1995-12-31
This paper presents a non-uniform composite representation of hydroelectric systems for use in long-term hydrothermal scheduling. This representation was developed from reservoir operational rules based on optimal reservoir trajectories obtained with a deterministic hydrothermal scheduling algorithm. A test system consisting of {tau} large hydroelectric plants of the Southeast Brazilian Power System with 12,572 MW of installed power capacity was selected for a case study. Operational cost comparisons with the classical uniform composite representation reveal significant savings.
NASA Astrophysics Data System (ADS)
Lee, Jungeon; Kyung, Chong-Min
2013-06-01
There are some difficulties in the development of uncooled focal plane array (FPA) detectors due to the absence of full simulation model which reflects the characterization of FPA detectors by variations of various parameters. In this paper we propose the simulator for the both readout integrated circuit (ROIC) and bolometer FPA which is based on a thermal equivalence equation of bolometer and mathematical modeling of optical and electrical part in infrared sensor system. The simulator shows the characteristics and the behaviors of individual components of infrared sensor system in the transient-state and steady-state. We present here the simulation results for output characteristics of detectors owing to variations of parameters induced non-uniformity in FPA detectors and find the dominant parameter to be the leading source non-uniformity in FPA detectors. We also present the simulation results for some typical ROICs to cancel the bias-heating which wastes most of the dynamic range of infrared sensor system. These show the effectiveness of compensation for the bias-heating according to variations of parameters. Using the proposed simulator we can expect the quantitative amount of non-uniformity due to the statistical variations in various processing steps and design of ROIC components. It can be used for the systematic design of infrared sensor system which cannot be performed in fabrication procedure.
Bubble Detachment in Variable Gravity Under the Influence of a Non-Uniform Electric Field
NASA Technical Reports Server (NTRS)
Chang, Shinan; Herman, Cila; Iacona, Estelle
2002-01-01
The objective of the study reported in this paper is to investigate the effects of variable, reduced gravity on the formation and detachment behavior of individual air bubbles under the influence of a non-uniform electric field. For this purpose, variable gravity experiments were carried out in parabolic nights. The non-uniform electric field was generated by a spherical electrode and a plate electrode. The effect of the magnitude of the non-uniform electric field and gravity level on bubble formation, development and detachment at an orifice was investigated. An image processing code was developed that allows the measurement of bubble volume, dimensions and contact angle at detachment. The results of this research can be used to explore the possibility of enhancing boiling heat transfer in the variable and low gravity environments by substituting the buoyancy force with a force induced by the electric field. The results of experiments and measurements indicate that the level of gravity significantly affects bubble shape, size and frequency. The electric field magnitude also influences bubble detachment, however, its impact is not as profound as that of variable gravity for the range of electric field magnitudes investigated in the present study.
Non-uniform cosine modulated filter banks using meta-heuristic algorithms in CSD space.
Kalathil, Shaeen; Elias, Elizabeth
2015-11-01
This paper presents an efficient design of non-uniform cosine modulated filter banks (CMFB) using canonic signed digit (CSD) coefficients. CMFB has got an easy and efficient design approach. Non-uniform decomposition can be easily obtained by merging the appropriate filters of a uniform filter bank. Only the prototype filter needs to be designed and optimized. In this paper, the prototype filter is designed using window method, weighted Chebyshev approximation and weighted constrained least square approximation. The coefficients are quantized into CSD, using a look-up-table. The finite precision CSD rounding, deteriorates the filter bank performances. The performances of the filter bank are improved using suitably modified meta-heuristic algorithms. The different meta-heuristic algorithms which are modified and used in this paper are Artificial Bee Colony algorithm, Gravitational Search algorithm, Harmony Search algorithm and Genetic algorithm and they result in filter banks with less implementation complexity, power consumption and area requirements when compared with those of the conventional continuous coefficient non-uniform CMFB. PMID:26644921
Rapid analysis of non-uniformly sampled pulsed field gradient data for velocity estimation.
Raghavan, K; Park, J C; Pavlovskaya, G E; Gibbs, S J
2001-06-01
Bretthorst's recent generalization of the Lomb-Scargle periodogram shows that a sufficient statistic for frequency estimation from non-uniformly, but simultaneously sampled quadrature data is equivalent to the FFT of those data with the missing samples replaced by zeros. We have applied this concept to the rapid analysis of pulsed field gradient MRI data which have been non-uniformly sampled in the velocity encoding wave vector q. For a small number of q samples, it is more computationally efficient to calculate the periodogram directly rather than using the FFT algorithm with a large number of zeros. The algorithm we have implemented for finding the peak of the generalized periodogram is simple and robust; it involves repeated apodization and grid searching of the periodogram until the desired velocity resolution is achieved. The final estimate is refined by quadratic interpolation. We have tested the method for fully developed Poiseuille flow of a Newtonian fluid and have demonstrated substantial improvement in the precision of velocity measurement achievable in a fixed acquisition time with non-uniform sampling. The method is readily extendible to multidimensional data. Analysis of a 256 by 256 pixel image with 8 q samples and an effective velocity resolution of better than 1/680 of the Nyquist range requires approximately 1 minute computation time on a 400 MHz SUN Ultrasparc II processor. PMID:11672628
The magneto-optical properties of non-uniform graphene nanoribbons
NASA Astrophysics Data System (ADS)
Chung, Hsien-Ching; Lin, Ming-Fa
2015-03-01
When synthesizing few-layer graphene nanoribbons (GNRs), non-uniform GNRs would be made simultaneously. Recently, the non-uniform GNRs, which is a stack of two GNRs with unequal widths, have been fabricated by mechanically exfoliated from bulk graphite. Some theoretical predictions have been reported, such as gap opening and transport properties. Under the influence of magnetic fields, magnetic quantization takes place and drastically changes the electronic properties. By tuning the geometric configuration, four categories of magneto-electronic spectra are exhibited. (1) The spectrum is mostly contributed by quasi-Landau levels (QLLs) of monolayer GNRs. (2) The spectrum displays two groups of QLLs, and the non-uniform GNR behaves like a bilayer one. (3) An intermediate category, the spectrum is composite disordered. (4) The spectrum presents the coexistence of monolayer and bilayer spectra. In this work, the magneto-electronic and optical properties for different geometric configurations are given, such as energy dispersions, density of states, wave functions, and magneto-absorption spectra are presented. Furthermore, the transformation between monolayer and bilayer spectra as well as the coexistence of monolayer and bilayer spectra are discussed in detail. One of us (Hsien-Ching Chung) thanks Ming-Hui Chung and Su-Ming Chen for financial support. This work was supported in part by the National Science Council of Taiwan under Grant Number 98-2112-M-006-013-MY4.
Effect of non-uniform surface resistance on the quality factor of superconducting niobium cavity
NASA Astrophysics Data System (ADS)
Tan, Weiwei; Lu, Xiangyang; Yang, Ziqin; Zhao, Jifei; Yang, Deyu; Yang, Yujia
2016-08-01
The formula Rs = G /Q0 is commonly used in the calculation of the surface resistance of radio frequency niobium superconducting cavities. The applying of such equation is under the assumption that surface resistance is consistent over the cavity. However, the distribution of the magnetic field varies over the cavity. The magnetic field in the equator is much higher than that in the iris. According to Thermal Feedback Theory, it leads non-uniform distribution of the density of heat flux, which results in a different temperature distribution along the cavity inter surface. The BCS surface resistance, which depends largely on the temperature, is different in each local inner surface. In this paper, the effect of surface non-uniform resistance on the quality factor has been studied, through the calculation of Q0 in the original definition of it. The results show that it is necessary to consider the non-uniform distribution of magnetic field when the accelerating field is above 20 MV/m for TESLA cavities. Also, the effect of inhomogeneity of residual resistance on the quality factor is discussed. Its distribution barely affects the quality factor.
NASA Astrophysics Data System (ADS)
Fu, Jianyu; Shang, Haiping; Shi, Haitao; Li, Zhigang; Ou, Yi; Chen, Dapeng; Zhang, Qingchuan
2016-02-01
An optical readout focal plane array (FPA) usually has a differently tilted reflector/absorber at the initial state due to the micromachining technique. The angular deviation of the reflector/absorber has a strong impact on the optical sensitivity non-uniformity, which is a key factor which affects the imaging uniformity. In this study, a theoretical analysis has been developed, and it is found that the stress matching in SiO2-Aluminum (Al) bilayer leg could make a contribution towards reducing the optical sensitivity non-uniformity. Ion implantation of phosphorus (P) has been utilized to control the stress in SiO2 film. By controlling the implantation energy and dose, the stress and stress stability are modified. The optical readout FPA has been successfully fabricated with the stress-control technique based on P+ implantation. It is demonstrated that the gray response non-uniformity of optical readout FPA has decreased from 25.69% to 10.7%.
Vianello, E. A.; Almeida, C. E. de
2008-07-15
In brachytherapy, one of the elements to take into account for measurements free in air is the non-uniformity of the photon fluence due to the beam divergence that causes a steep dose gradient near the source. The correction factors for this phenomenon have been usually evaluated by two available theories by Kondo and Randolph [Radiat. Res. 13, 37-60 (1960)] and Bielajew [Phys. Med. Biol. 35, 517-538 (1990)], both conceived for point sources. This work presents the experimental validation of the Monte Carlo calculations made by Rodriguez and deAlmeida [Phys. Med. Biol. 49, 1705-1709 (2004)] for the non-uniformity correction specifically for a Cs-137 linear source measured using a Farmer type ionization chamber. The experimental values agree very well with the Monte Carlo calculations and differ from the results predicted by both theoretical models widely used. This result confirms that for linear sources there are some important differences at short distances from the source and emphasizes that those theories should not be used for linear sources. The data provided in this study confirm the limitations of the mentioned theories when linear sources are used. Considering the difficulties and uncertainties associated with the experimental measurements, it is recommended to use the Monte Carlo data to assess the non-uniformity factors for linear sources in situations that require this knowledge.
Correlation-based methods in calibrating an FBG sensor with strain field non-uniformity
NASA Astrophysics Data System (ADS)
Cieszczyk, S.
2015-12-01
Fibre Bragg gratings have many sensing applications, mainly for measuring strain and temperature. The physical quantity that influences grating uniformly along its length causes a related shift of the Bragg wavelength. Many peak detection algorithms have been proposed, among which the most popular are the detection of maximum intensity, the centroid detection, the least square method, the cross-correlation, auto-correlation and fast phase correlation. Nonuniform gratings elongation is a cause of spectrum deformation. The introduction of non-uniformity can be intentional or appear as an unintended effect of placing sensing elements in the tested structure. Heterogeneous impacts on grating may result in additional errors and the difficulty in tracking the Bragg wavelength based on a distorted spectrum. This paper presents the application of correlation methods of peak wavelength shifts estimation for non-uniform Bragg grating elongation. The autocorrelation, cross-correlation and fast phase correlation algorithms are considered and experimental spectra measured for axisymmetric strain field along the Bragg grating are analyzed. The strain profile consists of constant and variable components. The results of this study indicate the properties of correlation algorithms applied to moderately non-uniform elongation of an FBG sensor.
NASA Astrophysics Data System (ADS)
Chang, En-Chiang; Mikolas, David; Lin, Pao-Te; Schenk, Tony; Wu, Chien-Li; Sung, Cheng-Kuo; Fu, Chien-Chung
2013-11-01
The non-uniform intensity profile of Gaussian-like laser beams used in interference lithography (IL) leads to a non-uniform dose and feature size distribution across the sample. Previously described methods to improve dose uniformity are reviewed. However, here we examine the behavior of the non-uniformity from the viewpoint of photoresist response rather than the IL system configuration. Samples with a fixed intra-sample dose profile were exposed with an increasing average dose. A line/space pattern with a period of 240 nm across an area of 2 × 2 cm2 was produced using IL on identical samples using a HeCd laser operated at 325 nm and a Lloyd’s mirror IL system. A binary model of photoresist response predicts that the absolute range of line widths in nanometers should be significantly reduced as the overall sample dose is increased. We have experimentally verified a reduction in the range of line widths within a given sample from 50 to 16 nm as the overall dose is increased by only 60%. This resulted in a drop in the narrowest line width from 120 to 65 nm. An etch process is demonstrated to increase the line width by generating a wider secondary chrome hard mask from the narrowly patterned primary chrome hard mask. The subsequent fabrication of a silicon nanoimprint mold is used as a demonstration of the technique.
Comparison of FBP and Iterative Algorithms with Non-Uniform Angular Sampling
Zeng, Gengsheng L.
2014-01-01
Some people may believe that the filtered backprojection (FBP) algorithm does not work if the projection data are measured non-uniformly. Some may also believe that iterative algorithms can automatically handle the non-uniformly sampled data in the projector/backprojector. This paper claims that the FBP algorithm can effectively handle the situation where the angular sampling is not uniform. This paper compares the images that are reconstructed by both the FBP and the iterative Landweber algorithms when the angular sampling is nonuniform. When the iteration number is low, the iterative algorithms do not handle the non-uniform sampling properly. A weighting strategy is then suggested and it makes the image resolution more isotropic. In few-view tomography, the FBP and iterative algorithms both perform poorly if no other prior information is used. We have made the following observations: 1) When using an iterative algorithm, one must use early solutions due to noise amplification. 2) An early solution can have anisotropic spatial resolution if the angular sampling is not uniform. 3) The anisotropic resolution problem can be solved by introducing angle dependent weighting, which is not noise dependent. 4) The weighting is not effective when the iteration number is large. The weighting only affects the early solutions, and does not affect the converged solution. 5) When the iteration number is large, the model-mismatch errors are amplified and cause artifacts in the image. 6) The FBP algorithm is not sensitive to the model-mismatch errors, and does not have the “early solution” problems. 7) In few-view tomography, both FBP and iterative algorithms perform poorly, while the FBP algorithm gives a sharper image than the iterative algorithm does. PMID:25678716
Axial development and radial non-uniformity of flow in packed columns.
Park, Jaekeun C; Raghavan, Karthik; Gibbs, Stephen J
2002-02-01
Flow inhomogeneity and axial development in low-pressure chromatographic columns have been studied by magnetic resonance imaging velocimetry. The columns studied included (a) an 11.7-mm I.D. column packed with either 50 microm diameter porous polyacrylamide, or 99 or 780 microm diameter impermeable polystyrene beads, and (b) a 5-mm I.D. column commercially packed with 10 microm polymeric beads. The packing methods included gravity settling, slurry packing, ultrasonication, and dry packing with vibration. The magnetic resonance method used averaged apparent fluid velocity over both column cross-sections and fluid displacements greater than one particle diameter and hence permits assessment of macroscopic flow non-uniformities. The results confirm that now non-uniformities induced by the conical distributor of the 11.7-mm I.D. column or the presence of voids at the column entrance relax on a length scale of the column radius. All of the 11.7-mm I.D. columns examined exhibit near wall channeling within a few particle diameters of the wall. The origins of this behavior are demonstrated by imaging of the radial dependence of the local porosity for a column packed with 780 microm beads. Columns packed with the 99-microm beads exhibit reduced flow in a region extending from ten to three-to-five particle diameters from the wall. This velocity reduction is consistent with a reduced porosity of 0.35 in this region as compared to approximately 0.43 in the bulk of the column. Ultrasonicated and dry-packed columns exhibit enhanced flow in a region located between approximately eight and 20 particle diameters from the wall. This enhancement maybe caused by packing density inhomogeneity and/or particle size segregation caused by vibration during the packing process. No significant non-uniformities on length scales of 20 microm or greater were observed in the commercially packed column packed with 10 microm particles. PMID:11860146
Mobilization of phenol and dichlorophenol in unsaturated soils by non-uniform electrokinetics.
Luo, Qishi; Zhang, Xihui; Wang, Hui; Qian, Yi
2005-06-01
The poor mobility of organic pollutants in contaminated sites frequently results in slow remediation processes. Organics, especially hydrophobic compounds, are generally retained strongly in soil matrix as a result of sorption, sequestration, or even formation into non-aqueous-phase liquids and their mobility is thus greatly reduced. The objective of this study was to evaluate the feasibility of using non-uniform electrokinetic transport processes to enhance the mobility of organic pollutants in unsaturated soils with no injection reagents. Phenol and 2,4-dichlorophenol (2,4-DCP), and kaolin and a natural sandy loam soil were selected as model organics and soils, respectively. The results showed that non-uniform electrokinetics can accelerate the desorption and movement of phenol and 2,4-DCP in unsaturated soils. Electromigration and electroosmotic flow were the main driving forces, and their role in the mobilization of phenol and 2,4-DCP varied with soil pH. The movement of 2,4-DCP in the sandy loam towards the anode (about 1.0 cmd(-1)V(-1)) was 1.0-1.5 cmd(-1)V(-1) slower than that in the kaolin soil, but about 0.5 cmd(-1)V(-1) greater than that of phenol in the sandy loam. When the sandy loam was adjusted to pH 9.3, the movement of phenol and 2,4-DCP towards the anode was about twice and five times faster than that at pH 7.7, respectively. The results also demonstrated that the movement of phenol and 2,4-DCP in soils can be easily controlled by regulating the operational mode of electric field. It is believed that non-uniform electrokinetics has the potential for practical application to in situ remediation of organics-contaminated sites. PMID:15857640
Re-defining the cerebellar cortex as an assembly of non-uniform Purkinje cell microcircuits
Cerminara, Nadia L; Lang, Eric J; Sillitoe, Roy V; Apps, Richard
2015-01-01
The adult mammalian cerebellar cortex is generally assumed to have a uniform cytoarchitecture. Differences in cerebellar function are thought to arise, in the main, through distinct patterns of input and output connectivity, rather than as a result of variations in cortical microcircuitry. However, evidence from anatomical, physiological and genetic studies is increasingly challenging this orthodoxy and there are now various lines of evidence that the cerebellar cortex is non uniform. Here we develop the hypothesis that regional differences in cerebellar cortical microcircuit properties lead to important differences in information processing. PMID:25601779
Forensic use of photo response non-uniformity of imaging sensors and a counter method.
Dirik, Ahmet Emir; Karaküçük, Ahmet
2014-01-13
Analogous to use of bullet scratches in forensic science, the authenticity of a digital image can be verified through the noise characteristics of an imaging sensor. In particular, photo-response non-uniformity noise (PRNU) has been used in source camera identification (SCI). However, this technique can be used maliciously to track or inculpate innocent people. To impede such tracking, PRNU noise should be suppressed significantly. Based on this motivation, we propose a counter forensic method to deceive SCI. Experimental results show that it is possible to impede PRNU-based camera identification for various imaging sensors while preserving the image quality. PMID:24515007
NASA Astrophysics Data System (ADS)
Piquero, Gemma; Vargas-Balbuena, Javier
2004-11-01
We provide a simple theoretical study of beams non-uniformly polarized across their transverse sections which can be introduced in undergraduate optics courses. In order to generate such beams we propose to use a slightly convergent (or divergent) linearly and uniformly polarized beam impinging on an anisotropic uniaxial material with the beam propagation direction along the optic axis. Analytical expressions for the Jones vector, Stokes parameters, ellipticity and azimuth at each point of the transverse section, perpendicular to the propagation direction, are obtained at the output of this system. By means of these parameters a detailed description of the state of polarization across the transverse profile is given.
Pull-in analysis of non-uniform microcantilever beams under large deflection
NASA Astrophysics Data System (ADS)
Singh, Sajal Sagar; Pal, Prem; Pandey, Ashok Kumar
2015-11-01
Cantilever beams under the influence of electrostatic force form an important subclass of microelectromechanical system (MEMS) and nanoelectromechanical system. Most of the studies concerning these micro-nano resonators are centered around uniform cantilever beams. In this paper, we have investigated another class of micro-resonators consisting of non-uniform cantilever beams. The study is focused around investigating pull-in voltage and resonance frequency of non-uniform cantilever beams when they operate in the linear regime about different static equilibriums. In this paper, we term this frequency as "linear frequency." Calculation of the linear frequency is done at different static equilibriums corresponding to different DC voltages. We have studied two classes of beams, one with increasing cross sectional area from the clamped edge (diverging beam) and other with decreasing cross sectional area from the clamped edge (converging beam). Within each class, we have investigated beams with linear as well as quartic variation in width. We start by obtaining Euler beam equation for non-uniform cantilever beams considering large deflection and their corresponding exact mode shapes from the linear equation. Subsequently, using the Galerkin method based on single mode approximation, we obtain static and dynamic modal equations for finding pull-in voltage and resonance frequency as a function of DC voltage, respectively. We found that the linear frequency of converging beams increases with increase in non-uniform parameter (α) while those of diverging beams decreases with α. A similar trend is observed for pull-in voltage. Within the converging class, beams with quartic variation in width show significant increase in both frequency and pull-in voltage as compared to corresponding linearly tapered beams. In quantitative terms, converging beams with quartic variation in width and α=-0.6 showed an increase in linear frequency by a factor of 2.5 times and pull-in voltage
Badent, R.; Kist, K.; Schwab, A.J.
1996-12-31
This paper deals with the investigation of prebreakdown phenomenon in insulating oil in weakly non-uniform fields of rod-plane geometries with gaps up to 100 mm under impulse voltages of both polarities up to 700 kV. As with the point-plane configuration, the rod-plane geometry shows a decrease of the time to breakdown with increasing voltage rate-of-rise. At a specific rate, a significantly shorter breakdown time is observed both for positive and negative polarities. Beyond this discontinuity range breakdown time decreases again but with lower rates.
Non-uniform FFT for the finite element computation of the micromagnetic scalar potential
NASA Astrophysics Data System (ADS)
Exl, L.; Schrefl, T.
2014-08-01
We present a quasi-linearly scaling, first order polynomial finite element method for the solution of the magnetostatic open boundary problem by splitting the magnetic scalar potential. The potential is determined by solving a Dirichlet problem and evaluation of the single layer potential by a fast approximation technique based on Fourier approximation of the kernel function. The latter approximation leads to a generalization of the well-known convolution theorem used in finite difference methods. We address it by a non-uniform FFT approach. Overall, our method scales O(M+N+Nlog N) for N nodes and M surface triangles. We confirm our approach by several numerical tests.
Non-uniform absorption of terahertz radiation on superconducting hot electron bolometer microbridges
Miao, W.; Zhang, W.; Zhong, J. Q.; Shi, S. C.; Delorme, Y.; Lefevre, R.; Feret, A.; Vacelet, T.
2014-02-03
We interpret the experimental observation of a frequency-dependence of superconducting hot electron bolometer (HEB) mixers by taking into account the non-uniform absorption of the terahertz radiation on the superconducting HEB microbridge. The radiation absorption is assumed to be proportional to the local surface resistance of the HEB microbridge, which is computed using the Mattis-Bardeen theory. With this assumption the dc and mixing characteristics of a superconducting niobium-nitride (NbN) HEB device have been modeled at frequencies below and above the equilibrium gap frequency of the NbN film.
Zaunbrecher, K.; Johnston, S.; Yan, F.; Sites, J.
2011-07-01
It is the purpose of this research to develop specific imaging techniques that have the potential to be fast, in-line tools for quality control in thin-film CdTe solar cells. Electroluminescence (EL) and photoluminescence (PL) are two techniques that are currently under investigation on CdTe small area devices made at Colorado State University. It is our hope to significantly advance the understanding of EL and PL measurements as applied to CdTe. Qualitative analysis of defects and non-uniformities is underway on CdTe using EL, PL, and other imaging techniques.
Image retargeting using non-uniform scaling with adaptive local search window
NASA Astrophysics Data System (ADS)
Wang, Shanshan; Abdel-Dayem, Amr
2011-10-01
This paper presents a new content-aware image-retargeting scheme, based on non-uniform scaling, to adaptively adjust the image's dimensions for various screen sizes. Based on an importance map, the energy contribution for each line in the reduced dimension to the overall energy within the image is computed. Then, the image is adaptively mapped and resampled based on the energy contribution function. Experimental results showed that the performance of the proposed scheme is comparable to seam carving in visual quality. However, it is computationally less expensive.
A simple model for characterizing non-uniform fibre-based composites and networks.
Chatterjee, Avik P
2011-04-20
A mean-field model is presented that describes non-uniformities in the spatial distribution of fibres in networks and composites in terms of fluctuations in the local composition. The mean pore radius, specific surface area, lineal path function, and chord length probability density are expressed as functions of the fibre volume fraction within a heuristic formalism. The impact of statistical heterogeneities in the fibre distribution upon the elastic moduli is assessed within the semi-empirical Reuss-Voigt-Hill averaging scheme. Results from illustrative calculations suggest that such macroscopically averaged material properties are particularly sensitive to variations in the mean pore radius. PMID:21436504
The impact of non-uniform capsid charge density on virus assembly
NASA Astrophysics Data System (ADS)
Li, Siyu; Erdemci-Tandogan, Gonca; Wagner, Jef; Zandi, Roya
Many spherical viruses efficiently encapsulate their genome into shells (capsids) with icosahedral symmetry. Under many circumstances, this process is spontaneous and is primarily driven by the electrostatic interaction between positively charged capsid proteins and negatively charged genome. Through the free energy minimization of a generic potential, we calculate the optimal encapsulated genome length. In this talk, I will present our results due to a non-uniform charge distribution on the shell and its impact on the optimal size of encapsulated genome. This work was supported by the National Science Foundation through Grant No. DMR-13-10687.
NASA Astrophysics Data System (ADS)
Starke, E.; Marschner, U.; Pfeifer, G.; Fischer, W.-J.; Flatau, A. B.
2010-04-01
In this paper an electromechanical network model of a magnetostrictive unimorph structure, acting as solenoid coil core, is developed. For typical applications a non-uniform stress distribution in the magnetostrictive layer results which is simulated via FEM. This phenomenon leads to a spatial varying electromechanical transduction coefficient for large deflections and was taken into account by coupled finite electromechanical network elements. By simplifying the finite network model an easy to use new network model is obtained which enables the fast analysis of the system and optimization of sensor and actor properties.
A dispersion relation in bidust acoustic wave in non uniform stratified plasma
Valdeblanquez, E.
2006-12-04
Low frequencies waves are studied in plasma with two kind of dusty grains. Also considered are stratified plasma with layers of different densities to that of the main plasma. In this analysis each dust species is treated with a simplified model of fluid equations, and electrons and ions are determined by a Boltzmann factor. Relative velocities between each species and the non uniform plasma is considered in order to study instabilities. In cases in which the speed or the density of current of the charged dust grains is zero, the dispersion equation is recovered.
Adhesion of voids to bimetal interfaces with non-uniform energies
Zheng, Shijian; Shao, Shuai; Zhang, Jian; Wang, Yongqiang; Demkowicz, Michael J.; Beyerlein, Irene J.; Mara, Nathan A.
2015-01-01
Interface engineering has become an important strategy for designing radiation-resistant materials. Critical to its success is fundamental understanding of the interactions between interfaces and radiation-induced defects, such as voids. Using transmission electron microscopy, here we report an interesting phenomenon in their interaction, wherein voids adhere to only one side of the bimetal interfaces rather than overlapping them. We show that this asymmetrical void-interface interaction is a consequence of differing surface energies of the two metals and non-uniformity in their interface formation energy. Specifically, voids grow within the phase of lower surface energy and wet only the high-interface energy regions. Furthermore, because this outcome cannot be accounted for by wetting of interfaces with uniform internal energy, our report provides experimental evidence that bimetal interfaces contain non-uniform internal energy distributions. This work also indicates that to design irradiation-resistant materials, we can avoid void-interface overlap via tuning the configurations of interfaces. PMID:26486278
Adhesion of voids to bimetal interfaces with non-uniform energies
NASA Astrophysics Data System (ADS)
Zheng, Shijian; Shao, Shuai; Zhang, Jian; Wang, Yongqiang; Demkowicz, Michael J.; Beyerlein, Irene J.; Mara, Nathan A.
2015-10-01
Interface engineering has become an important strategy for designing radiation-resistant materials. Critical to its success is fundamental understanding of the interactions between interfaces and radiation-induced defects, such as voids. Using transmission electron microscopy, here we report an interesting phenomenon in their interaction, wherein voids adhere to only one side of the bimetal interfaces rather than overlapping them. We show that this asymmetrical void-interface interaction is a consequence of differing surface energies of the two metals and non-uniformity in their interface formation energy. Specifically, voids grow within the phase of lower surface energy and wet only the high-interface energy regions. Furthermore, because this outcome cannot be accounted for by wetting of interfaces with uniform internal energy, our report provides experimental evidence that bimetal interfaces contain non-uniform internal energy distributions. This work also indicates that to design irradiation-resistant materials, we can avoid void-interface overlap via tuning the configurations of interfaces.
Adhesion of voids to bimetal interfaces with non-uniform energies
Zheng, Shijian; Shao, Shuai; Zhang, Jian; Wang, Yongqiang; Demkowicz, Michael J.; Beyerlein, Irene J.; Mara, Nathan A.
2015-10-21
Interface engineering has become an important strategy for designing radiation-resistant materials. Critical to its success is fundamental understanding of the interactions between interfaces and radiation-induced defects, such as voids. Using transmission electron microscopy, here we report an interesting phenomenon in their interaction, wherein voids adhere to only one side of the bimetal interfaces rather than overlapping them. We show that this asymmetrical void-interface interaction is a consequence of differing surface energies of the two metals and non-uniformity in their interface formation energy. Specifically, voids grow within the phase of lower surface energy and wet only the high-interface energy regions. Furthermore,more » because this outcome cannot be accounted for by wetting of interfaces with uniform internal energy, our report provides experimental evidence that bimetal interfaces contain non-uniform internal energy distributions. Ultimately, this work also indicates that to design irradiation-resistant materials, we can avoid void-interface overlap via tuning the configurations of interfaces.« less
Adhesion of voids to bimetal interfaces with non-uniform energies
Zheng, Shijian; Shao, Shuai; Zhang, Jian; Wang, Yongqiang; Demkowicz, Michael J.; Beyerlein, Irene J.; Mara, Nathan A.
2015-10-21
Interface engineering has become an important strategy for designing radiation-resistant materials. Critical to its success is fundamental understanding of the interactions between interfaces and radiation-induced defects, such as voids. Using transmission electron microscopy, here we report an interesting phenomenon in their interaction, wherein voids adhere to only one side of the bimetal interfaces rather than overlapping them. We show that this asymmetrical void-interface interaction is a consequence of differing surface energies of the two metals and non-uniformity in their interface formation energy. Specifically, voids grow within the phase of lower surface energy and wet only the high-interface energy regions. Furthermore, because this outcome cannot be accounted for by wetting of interfaces with uniform internal energy, our report provides experimental evidence that bimetal interfaces contain non-uniform internal energy distributions. Ultimately, this work also indicates that to design irradiation-resistant materials, we can avoid void-interface overlap via tuning the configurations of interfaces.
Finite volume analysis the thermal behavior of electrode non-uniformity
NASA Astrophysics Data System (ADS)
Ye, Wei-Biao
2016-08-01
Non-uniformity in electrode thickness can result in quality control defectively. To quantitatively detect the non-uniformity of electrode thickness during the manufacturing processes. A heat transfer model based on heat conduction equation has been employed to provide the computational study. The effects of boundary conditions of adiabatic and periodic walls along coating direction, electrode thickness changes from 3.9 to 30.0 %, and two types of located region in thickness changes, as well as anode and cathode material properties on temperature change percents are analyzed and discussed in detail. The relationship between thickness changes percents and temperature change percents of electrode is established. It is found that the thickness changes have a sensitivity of 1 % changes in electrode thickness will result in 1 % in temperature changes at an inherent time point. The selected time points are 0.008 or 0.01 s for cathode and 0.004 s for anode. The minimum thickness change percent 3.9 % will be detected. Further, the comparison of the computational results with experimental ones shows the validity of the heat conduction model.
Gravitational Influences on Flame Propagation Through Non-Uniform, Premixed Gas Systems
NASA Technical Reports Server (NTRS)
Miller, Fletcher J.; Easton, John; Marchese, Anthony; Hovermann, Fred
2003-01-01
Flame propagation through non-uniformly premixed (or layered) gases has importance both in useful combustion systems and in unintentional fires. As summarized recently and in previous Microgravity Workshop papers, non-uniform premixed gas combustion receives scant attention compared to the more usual limiting cases of diffusion or uniformly premixed flames, especially regarding the role gravity plays. This paper summarizes our recent findings on gravitational effects on layered combustion along a floor, in which the fuel concentration gradient exists normal to the direction of flame spread. In an effort to understand the mechanism by which the flames spread faster in microgravity (and much faster, in laboratory coordinates, than the laminar burning velocity for uniform mixtures), we have begun making pressure measurements across the spreading flame front that are described here. Earlier researchers, testing in 1g, claimed that hydrostatic pressure differences could account for the rapid spread rates. Additionally, we present the development of a new apparatus to study flame spread in free (i.e., far from walls), non-homogeneous fuel layers formed in a flow tunnel behind an airfoil that has been tested in normal gravity.
Non-Uniform Contrast and Noise Correction for Coded Source Neutron Imaging
Santos-Villalobos, Hector J; Bingham, Philip R
2012-01-01
Since the first application of neutron radiography in the 1930s, the field of neutron radiography has matured enough to develop several applications. However, advances in the technology are far from concluded. In general, the resolution of scintillator-based detection systems is limited to the $10\\mu m$ range, and the relatively low neutron count rate of neutron sources compared to other illumination sources restricts time resolved measurement. One path toward improved resolution is the use of magnification; however, to date neutron optics are inefficient, expensive, and difficult to develop. There is a clear demand for cost-effective scintillator-based neutron imaging systems that achieve resolutions of $1 \\mu m$ or less. Such imaging system would dramatically extend the application of neutron imaging. For such purposes a coded source imaging system is under development. The current challenge is to reduce artifacts in the reconstructed coded source images. Artifacts are generated by non-uniform illumination of the source, gamma rays, dark current at the imaging sensor, and system noise from the reconstruction kernel. In this paper, we describe how to pre-process the coded signal to reduce noise and non-uniform illumination, and how to reconstruct the coded signal with three reconstruction methods correlation, maximum likelihood estimation, and algebraic reconstruction technique. We illustrates our results with experimental examples.
Effects of magnetic field on the interaction between terahertz wave and non-uniform plasma slab
NASA Astrophysics Data System (ADS)
Tian, Yuan; Ai, Xia; Han, YiPing; Guo, LiXin
2015-10-01
In this paper, the interaction between terahertz electromagnetic wave and a non-uniform magnetized plasma slab is investigated. Different from most of the published literatures, the plasma employed in this work is inhomogeneous in both collision frequency and electron density. Profiles are introduced to describe the non-uniformity of the plasma slab. At the same time, magnetic field is applied to the background of the plasma slab. It came out with an interesting phenomenon that there would be a valley in the absorption band as the plasma's electromagnetic characteristic is affected by the magnetic field. In addition, the valley located just near the middle of the absorption peak. The cause of the valley's appearance is inferred in this paper. And the influences of the variables, such as magnetic field strength, electron density, and collision frequency, are discussed in detail. The objective of this work is also pointed out, such as the applications in flight communication, stealth, emissivity, plasma diagnose, and other areas of plasma.
Detecting damage in non-uniform beams using the dereverberated transfer function response
NASA Astrophysics Data System (ADS)
Purekar, A. S.; Pines, D. J.; Purekar, A. S.
2000-08-01
Delamination damage in composite rotorcraft flexbeams caused by excessive vibratory and fatigue loads can lead to degradation in flapwise and lagwise performance of the rotor blade. In addition, delaminations can result in rapid fatigue failure of these tailored composite elements leading to catastrophic results. A novel damage detection strategy is evaluated in this work which attempts to exploit the dereverberated transfer function response of beams with tapered geometries. This approach avoids high fidelity finite element models of damaged one-dimensional beams with non-uniform geometries. To obtain the dereverberated transfer function response, a virtual control force is applied to the reverberated transfer function response to remove resonant and anti-resonant dynamics associated with the beam's boundary conditions. Magnitude and phase characteristics between each actuator and sensor can then be used to infer changing structural properties. Analytical and experimental results suggest that this approach can be used to quantitatively and qualitatively infer delamination damage in non-uniform beams. Experimental results are displayed for beams with varying thickness and width tapers.
Mixed convection flow with non-uniform heat source/sink in a doubly stratified magnetonanofluid
NASA Astrophysics Data System (ADS)
Mehmood, K.; Hussain, S.; Sagheer, M.
2016-06-01
In this study, we explore the unsteady flow of viscous nanofluid driven by an inclined stretching sheet. The novelty of the present study is to account for the effect of a non-uniform heat source/sink in a thermally and solutally stratified magnetonanofluid. Governing system of nonlinear partial differential equations is converted into a system of nonlinear ordinary differential equations. Solution of the transformed system is obtained using RK4 method with shooting technique. It is observed that increase in the values of thermal and mass stratification parameter reduce the velocity profile and increase in the values of variable thermal conductivity parameter and non-uniform heat source/sink parameters enhance the temperature distribution. Moreover, skin friction coefficient, Nusselt number and Sherwood number are discussed. Obtained results are displayed both graphically and in tabular form to illustrate the effect of different parameters on the velocity, temperature and concentration profiles. Numerical results are compared with previous published results and found to be in good agreement for special cases of the emerging parameters.
On the existence of free energy densities in non-uniform fluids
NASA Astrophysics Data System (ADS)
Lovett, Ronald; Baus, Marc
1992-02-01
The perception that unambigous constructions of local thermodynamic quantities cannot be given in equilibrium but non-uniform fluids has grown out of the recognition that many distinct thermodynamic fields satisfy the existing prescriptions for these quantities. That is, the existing prescriptions for thermodynamic fields underdetermine these quantities. It is shown that in many important cases, however, the requirement that thermodynamic consistency - the hallmark of classical thermodynamics-hold on all spatial scales does lead to a complete specification of free energy densities. The development presented requires-as in thermodynamics in general-a clear view of what fields actually fix the state of a non-uniform system. In the absence of a clear experimental foundation, the present development is built upon the statistical mechanical framework supporting density functional methods. It is noted that the identification of the free energy density as a stress tensor component is clouded by the fact that the traditional stress tensor formulation actually underdetermines a stress tensor. While this confusion should have no thermodynamic consequences it is also noted that the boundary conditions which play an essential role in constructing a thermodynamically meaningful stress tensor are not explicitly stated in general.
Gravitational Influences on Flame Propagation through Non-Uniform, Premixed Gas Systems
NASA Technical Reports Server (NTRS)
Miller, Fletcher J.; Easton, John; Ross, Howard D.; Marchese, Anthony; Perry, David; Kulis, Michael
2001-01-01
Flame propagation through non-uniformly premixed (or layered) gases has importance both in useful combustion systems and in unintentional fires. As summarized previously, non-uniform premixed gas combustion receives scant attention compared to the more usual limiting cases of diffusion or uniformly premixed flames, especially regarding the role gravity plays. This paper summarizes our progress on furthering the knowledge of layered combustion, in which a fuel concentration gradient exists normal to the direction of flame spread. We present experimental and numerical results for flame spread through propanol-air layers formed near the flash point temperature (25 C) or near the stoichiometric temperature (33 C). Both the model and experimental results show that the removal of gravity results in a faster spreading flame, by as much as 80% depending on conditions. This is exactly the opposite effect as that predicted by an earlier model reported. We also found that having a gallery lid results in faster flame spread, an effect more pronounced at normal gravity, demonstrating the importance of enclosure geometry. Also reported here is the beginning of our spectroscopic measurements of fuel vapor.
Readout integrated circuit for microbolometer with an analog non-uniformity correction
NASA Astrophysics Data System (ADS)
Hwang, C. H.; Woo, D. H.; Lee, Y. S.; Lee, H. C.
2005-10-01
We have developed a microbolometer readout integrated circuit (ROIC) that corrects the non-uniformity in analog operation and acts in both normal mode and edge detection mode. A capacitive transimpedance amplifier (CTIA) has been employed as the input circuit of the microbolometer. Generally, when fabricating microbolometer focal plane arrays (FPAs), offset-error and gain-error in the inter-microbolometer are induced by fabrication error. They are shown as fixed pattern noise (FPN) in the infrared image. In the present study, a circuit correcting the offset-error and the gain-error in the normal mode by controlling the bias and the integration capacitance of the CTIA is proposed. This circuit does not require an additional DSP chip, and the non-uniformity is corrected before the analog to digital conversion (ADC). Thus, it can utilize 3-4 bits lower ADC compared to the conventional readout circuit. In the edge detection mode, after correcting the gain-error in two adjacent pixels, edge detection can be realized by subtracting their signal without the DSP. We have designed the suggested circuit to output a 10bit level effective infrared signal using 0.35um 2-poly 3-metal CMOS technology.
Effects of magnetic field on the interaction between terahertz wave and non-uniform plasma slab
Tian, Yuan; Han, YiPing; Guo, LiXin; Ai, Xia
2015-10-15
In this paper, the interaction between terahertz electromagnetic wave and a non-uniform magnetized plasma slab is investigated. Different from most of the published literatures, the plasma employed in this work is inhomogeneous in both collision frequency and electron density. Profiles are introduced to describe the non-uniformity of the plasma slab. At the same time, magnetic field is applied to the background of the plasma slab. It came out with an interesting phenomenon that there would be a valley in the absorption band as the plasma's electromagnetic characteristic is affected by the magnetic field. In addition, the valley located just near the middle of the absorption peak. The cause of the valley's appearance is inferred in this paper. And the influences of the variables, such as magnetic field strength, electron density, and collision frequency, are discussed in detail. The objective of this work is also pointed out, such as the applications in flight communication, stealth, emissivity, plasma diagnose, and other areas of plasma.
Velocity controlled sound field reproduction by non-uniformly spaced loudspeakers
NASA Astrophysics Data System (ADS)
Shin, Mincheol; Nelson, Philip A.; Fazi, Filippo M.; Seo, Jeongil
2016-05-01
One approach to the reproduction of a sound field is to ensure the reproduction of the acoustic pressure on the surface bounding the volume within which reproduction is sought. However, this approach suffers from technical limitations when the loudspeakers used for the reproduction of the surface acoustic pressures are unevenly spaced. It is shown in this paper that sound field reproduction with a spatially non-uniform loudspeaker arrangement can be considerably improved by changing the physical quantity to be controlled on the bounding surface from pressure to particle velocity. One of the main advantages of the velocity control method is the simplicity with which the inverse problem can be regularized, irrespective of the direction of arrival of the sound to be reproduced. In addition, the velocity controlled sound field shows better reproduction of the time averaged intensity flow in the reproduction region which in turn appears to be closely linked with better human perception of sound localization. Furthermore, the proposed method results in smoother "panning functions" that describe the variation of the source outputs as a function of the angle of incidence of the sound to be reproduced. The performance of the velocity matching method has been evaluated by comparison to the conventional pressure matching method and through simulations with several non-uniform loudspeaker layouts. The simulated results were also verified with experiments and subjective tests.
Spatially variant red blood cell crenation in alternating current non-uniform fieldsa
An, Ran; Wipf, David O.; Minerick, Adrienne R.
2014-01-01
Alternating-current (AC) electrokinetics involve the movement and behaviors of particles or cells. Many applications, including dielectrophoretic manipulations, are dependent upon charge interactions between the cell or particle and the surrounding medium. Medium concentrations are traditionally treated as spatially uniform in both theoretical models and experiments. Human red blood cells (RBCs) are observed to crenate, or shrink due to changing osmotic pressure, over 10 min experiments in non-uniform AC electric fields. Cell crenation magnitude is examined as functions of frequency from 250 kHz to 1 MHz and potential from 10 Vpp to 17.5 Vpp over a 100 μm perpendicular electrode gap. Experimental results show higher peak to peak potential and lower frequency lead to greater cell volume crenation up to a maximum volume loss of 20%. A series of experiments are conducted to elucidate the physical mechanisms behind the red blood cell crenation. Non-uniform and uniform electrode systems as well as high and low ion concentration experiments are compared and illustrate that AC electroporation, system temperature, rapid temperature changes, medium pH, electrode reactions, and convection do not account for the crenation behaviors observed. AC electroosmotic was found to be negligible at these conditions and AC electrothermal fluid flows were found to reduce RBC crenation behaviors. These cell deformations were attributed to medium hypertonicity induced by ion concentration gradients in the spatially nonuniform AC electric fields. PMID:24753734
Water-in-oil emulsification in a non-uniform alternating electric field
NASA Astrophysics Data System (ADS)
Choi, Suhwan; Saveliev, Alexei
2015-11-01
The emulsification of a water microdroplet placed in castor oil was performed using a non-uniform alternating electric field formed in the pin-to-plate geometry. A non-uniform electric field of ~40 kV/mm alternating with a frequency of 6.7 kHz was generated near the pin electrode. The applied frequency exceeded charge relaxation frequency of castor oil (0.3 Hz) and was below charge relaxation frequency of deionized water (7.8 kHz) used in the experiments. The emulsification process was captured with a CCD camera. The emulsification process started with entrainment of the water droplet in the high electric filed region near the pin electrode under the dielectrophoretic force. Upon touching the pin, the microdroplet was disintegrated in numerous channels and secondary droplets. The process continued by entrainment of secondary droplets and continuous size reduction. Three droplet breakup mechanisms were identified: drop elongation and capillary breakup, ac electrospraying of individual droplets, chain and bridge formation and decay. The quasi-steady narrow size distribution of emulsified water droplets with diameters close to 1 μm was formed after a few minutes. The generated emulsion was confined near the needle electrode due to the dielectrophoretic force. The emulsion had a well-defined boundary with a shape resembling a pendant drop suspended on the pin electrode.
Shen, Rui; Suuberg, Eric M.
2014-01-01
The transport of volatile organic vapors from subsurface to building involves complex processes. Since the release of the draft subsurface vapor intrusion guidance by the U.S. EPA in 2002, great progress has been made in understanding these processes in various field and modeling studies. In these studies, the importance of analyzing and predicting the subslab volatile organic vapor concentration was noted. To quantitatively predict subslab vapor concentration is, however, complicated, especially for sites located over non-uniform vapor sources. This manuscript provides a method to estimate the vapor concentration beneath the subslab using a closed-form analytical solution that can approximate full three-dimensional modeling results, but does not require the use of advanced numerical simulation. This method allows prediction of the subslab vapor concentration profile beneath the slab for various source configurations, given inputs of building slab dimension and source depth. The interaction of the influences of non-uniform source and the slab capping effect on the subslab vapor concentration is addressed. PMID:24639604
A method for real time detecting of non-uniform magnetic field
NASA Astrophysics Data System (ADS)
Marusenkov, Andriy
2015-04-01
The principle of measuring magnetic signatures for observing diverse objects is widely used in Near Surface work (unexploded ordnance (UXO); engineering & environmental; archaeology) and security and vehicle detection systems as well. As a rule, the magnitude of the signals to be measured is much lower than that of the quasi-uniform Earth magnetic field. Usually magnetometers for these purposes contain two or more spatially separated sensors to estimate the full tensor gradient of the magnetic field or, more frequently, only partial gradient components. The both types (scalar and vector) of magnetic sensors could be used. The identity of the scale factors and proper alignment of the sensitivity axes of the vector sensors are very important for deep suppression of the ambient field and detection of weak target signals. As a rule, the periodical calibration procedure is used to keep matching sensors' parameters as close as possible. In the present report we propose the technique for detection magnetic anomalies, which is almost insensitive to imperfect matching of the sensors. This method based on the idea that the difference signals between two sensors are considerably different when the instrument is rotated or moved in uniform and non-uniform fields. Due to the misfit of calibration parameters the difference signal observed at the rotation in the uniform field is similar to the total signal - the sum of the signals of both sensors. Zero change of the difference and total signals is expected, if the instrument moves in the uniform field along a straight line. In contrast, the same move in the non-uniform field produces some response of each of the sensors. In case one measures dB/dx and moves along x direction, the sensors signals is shifted in time with the lag proportional to the distance between sensors and the speed of move. It means that the difference signal looks like derivative of the total signal at move in the non-uniform field. So, using quite simple
Online blind calibration of non-uniform photodetectors: application to endomicroscopy.
Savoire, Nicolas; André, Barbara; Vercauteren, Tom
2012-01-01
We present an original method for the online blind calibration of non-uniform photodetectors. The disparity of the detectors may arise from both irregular spatial arrangement and distinct slowly time-varying photometric transfer functions. As natural images are mostly continuous, the signal collected by neighboring detectors is strongly correlated over time. The core idea of our method is to translate the calibration problem into relative pairwise calibrations between neighboring detectors followed by the regularized inversion of a system akin to gradient-based surface recovery. From our blind calibration procedure, we design an online blind calibration pipeline compatible with clinical practice. Online blind calibration is proved to be statistically better than standard offline calibration for reconstructing endomicroscopy sequences. PMID:23286185
Characterizing Non-Uniformity of Performance of Thin-Film Solar Cells
NASA Technical Reports Server (NTRS)
Clark, Eric B. (Technical Monitor); Lush, Gregory B.
2003-01-01
Thin-film Solar Cells are being actively studied for terrestrial and space applications because of their potential to provide low-cost, lightweight, and flexible electric power system. Currently, thin-film solar cell performance is limited partially by the nonuniformity of performance that they typically exhibit. This nonuniformity of performance necessitates more detailed characterization techniques than the well-known macroscopic measurements such as current-voltage and efficiency. This project seeks to explore methods of characterization that take into account the spatial nonuniformity of thin-film solar cells. In this presentation we show results of electroluminescence images, short-circuit maps, and Kelvin Probe maps. All these mapping characterization and analysis tools show that the non-uniformities can correlated with device performance and efficiency.
NASA Astrophysics Data System (ADS)
McCanney, J. M.
2009-05-01
Most earth weather and ionosphere-space environment coupling studies separate the problems into distinct groups. Heliosphere to solar wind - solar storm activity to ionospheric coupling - thermosphere and mid- altitude to the ionosphere and electrical effects such as elves and sprites and thunderstorms in another group - additionally mid and high latitude weather systems are many times separated also. The theoretical work here shows that not only are these areas coupled and related, but it also shows that without the constant electrical and resulting magnetic driving forces from space environments, earth would have little if no weather variability at all below the ionosphere. With only solar light energy as input, earth (and the other planets) would have little weather at all. The realization that extensive electrical activates occur in and above the troposphere, extending to the ionosphere and ultimately coupling to the magnetosphere have raised the theoretical and experimental questions regarding the sources of EMF which create the observed effects. The current work has identified 17 Local Electrical Batteries (LEBs), which provide the electrical EMF that can be linked to the observed effects the jet streams and lower atmospheric weather phenomenon. The path of the sources of EMF can be followed from the passing solar wind through "tunnels" that end in electrical currents that pass into the atmosphere via the ionosphere to storm cloud systems in the lower atmosphere. However the source of energy comes from localized plasma discharging of a non-uniform plasma environment that powers the electrical systems of the entire solar system. These are ultimately the sources of electrical energy that power the severe lower atmospheric storm systems such as westerly moving hurricanes at low latitudes and associated tornadoes. The connection is made theoretically with the solar wind that drives the 17 identified LEBs. The ultimate source of driving energy is the result of an
Retrospective non-uniform illumination correction techniques in images of tuberculosis.
Priya, Ebenezer; Srinivasan, Subramanian; Ramakrishnan, Swaminathan
2014-10-01
Image pre-processing is highly significant in automated analysis of microscopy images. In this work, non-uniform illumination correction has been attempted using the surface fitting method (SFM), multiple regression method (MRM), and bidirectional empirical mode decomposition (BEMD) in digital microscopy images of tuberculosis (TB). The sputum smear positive and negative images recorded under a standard image acquisition protocol were subjected to illumination correction techniques and evaluated by error and statistical measures. Results show that SFM performs more efficiently than MRM or BEMD. The SFM produced sharp images of TB bacilli with better contrast. To further validate the results, multifractal analysis was performed that showed distinct variation before and after implementation of illumination correction by SFM. Results demonstrate that after illumination correction, there is a 26% increase in the number of bacilli, which aids in classification of the TB images into positive and negative, as TB positivity depends on the count of bacilli. PMID:25115957
Faes, Luca; Nollo, Giandomenico; Porta, Alberto
2012-03-01
The complexity of the short-term cardiovascular control prompts for the introduction of multivariate (MV) nonlinear time series analysis methods to assess directional interactions reflecting the underlying regulatory mechanisms. This study introduces a new approach for the detection of nonlinear Granger causality in MV time series, based on embedding the series by a sequential, non-uniform procedure, and on estimating the information flow from one series to another by means of the corrected conditional entropy. The approach is validated on short realizations of linear stochastic and nonlinear deterministic processes, and then evaluated on heart period, systolic arterial pressure and respiration variability series measured from healthy humans in the resting supine position and in the upright position after head-up tilt. PMID:21419400
Motion of non-uniform double current-vortex sheets in magnetohydrodynamic flows
NASA Astrophysics Data System (ADS)
Matsuoka, Chihiro
2016-03-01
A nonlinear motion of vortex sheets with a non-uniform current is investigated using the vortex blob method. The fluid interface forms a double layered current-vortex sheet due to the boundary condition possessing the induction equation. We can prove that the current only flows on the interface and that does not appear in the bulk when we apply the initial magnetic field to be parallel to the interface. We show that the current induced on a vortex sheet leads to a strong amplification of the magnetic field, taking the motion of vortex sheets in magnetohydrodynamic Richtmyer-Meshkov instability as an example. When the initial Lorentz force term is large, an oscillation due to the Alfvén wave appears and the nonlinear growth is suppressed.
Probing Invisible, Excited Protein States by Non-Uniformly Sampled Pseudo-4D CEST Spectroscopy.
Long, Dong; Delaglio, Frank; Sekhar, Ashok; Kay, Lewis E
2015-09-01
Chemical exchange saturation transfer (CEST) NMR spectroscopy is a powerful tool for studies of slow timescale protein dynamics. Typical experiments are based on recording a large number of 2D data sets and quantifying peak intensities in each of the resulting planes. A weakness of the method is that peaks must be resolved in 2D spectra, limiting applications to relatively small proteins. Resolution is significantly improved in 3D spectra but recording uniformly sampled data is time-prohibitive. Here we describe non-uniformly sampled HNCO-based pseudo-4D CEST that provides excellent resolution in reasonable measurement times. Data analysis is done through fitting in the time domain, without the need of reconstructing the frequency dimensions, exploiting previously measured accurate peak positions in reference spectra. The methodology is demonstrated on several protein systems, including a nascent form of superoxide dismutase that is implicated in neurodegenerative disease. PMID:26178142
A new alternating bi-diagonal compact scheme for non-uniform grids
NASA Astrophysics Data System (ADS)
Sengupta, Tapan K.; Sengupta, Aditi
2016-04-01
A new compact scheme has been developed for any non-uniform grid. The compact scheme has been developed for spatial discretization and is analyzed here in conjunction with four-stage, fourth order Runge-Kutta (RK4) scheme for time integration while solving the one-dimensional convection equation. The space-time discretization combination is calibrated by subjecting the system to global spectral analysis (GSA) which was developed by the authors' group. Here, the compact scheme has been obtained by using a combination of two bi-diagonal schemes. The novel aspect of this scheme is its application in the physical plane directly without the necessity of mapping or transformations. Some typical cases for problems in acoustics, as well as fluid mechanics, have been studied here and potential use in large eddy simulations (LES) has been demonstrated by solving Navier-Stokes equation for lid driven cavity.
Off-axis magneto-donor impurity in a non-uniform height quantum ribbon
NASA Astrophysics Data System (ADS)
Suaza, Y. A.; Fulla, M. R.; Posada-Rudas, J. G.; Marín, J. H.
2015-11-01
Single electron and off-axis neutral donor in non-uniform height quantum ribbon under threading external magnetic field is analyzed. The quantum ribbon height dependence with polar angle is modeled trough the two-parametric function. One of these parameters define the number of protuberances and the other one allows us to exert control on the structural deformation depth. By considering quantum ribbons with very small height-to-base aspect ratio, it was possible to obtain the energy structure through the adiabatic procedure. The corresponding angular dependent Schrödinger equation can be solved in the framework of the exact diagonalization method. The results of calculation show that the Aharanov-Bohm oscillation patterns are very sensitive against changes of the quantum ribbon structural parameters.
Particle fracture simulation in non-uniform microstructures of metal-matrix composites
Ghosh, S.; Moorthy, S.
1998-01-23
This paper deals with the evolution of damage in microstructures of reinforced ductile-matrix composites, by particle cracking and splitting. A small deformation Voronoi Cell finite element model is developed, in which each element may consist of a matrix phase, an inclusion phase and a crack phase. Brittle inclusions may be of arbitrary shapes and sizes, and may be dispersed non-uniformly in the matrix. Damage initiation of inclusions is assumed to follow a maximum principal stress theory. Complete particle cracking or splitting is assumed at the onset of damage. The model is validated by a few comparison studies. Various geometric patterns are studied to test the effectiveness of the model, as well as to understand the effect of morphology on damage evolution. Actual microstructures from optical micrographs of Al-Si-Mg composite systems are analyzed and compared with experimentally observed results. Quantitative characterization and statistical analysis is conducted to correlate morphological parameters with mechanical response.
Synchronization in a non-uniform network of excitatory spiking neurons
NASA Astrophysics Data System (ADS)
Echeveste, Rodrigo; Gros, Claudius
Spontaneous synchronization of pulse coupled elements is ubiquitous in nature and seems to be of vital importance for life. Networks of pacemaker cells in the heart, extended populations of southeast asian fireflies, and neuronal oscillations in cortical networks, are examples of this. In the present work, a rich repertoire of dynamical states with different degrees of synchronization are found in a network of excitatory-only spiking neurons connected in a non-uniform fashion. In particular, uncorrelated and partially correlated states are found without the need for inhibitory neurons or external currents. The phase transitions between these states, as well the robustness, stability, and response of the network to external stimulus are studied.
Sampling-interval-dependent stability for linear sampled-data systems with non-uniform sampling
NASA Astrophysics Data System (ADS)
Shao, Hanyong; Lam, James; Feng, Zhiguang
2016-09-01
This paper is concerned with the sampling-interval-dependent stability of linear sampled-data systems with non-uniform sampling. A new Lyapunov-like functional is constructed to derive sampling-interval-dependent stability results. The Lyapunov-like functional has three features. First, it depends on time explicitly. Second, it may be discontinuous at the sampling instants. Third, it is not required to be positive definite between sampling instants. Moreover, the new Lyapunov-like functional can make use of the information fully of the sampled-data system, including that of both ends of the sampling interval. By making a new proposition for the Lyapunov-like functional, a sampling-interval-dependent stability criterion with reduced conservatism is derived. The new sampling-interval-dependent stability criterion is further extended to linear sampled-data systems with polytopic uncertainties. Finally, examples are given to illustrate the reduced conservatism of the stability criteria.
Improved photo response non-uniformity (PRNU) based source camera identification.
Cooper, Alan J
2013-03-10
The concept of using Photo Response Non-Uniformity (PRNU) as a reliable forensic tool to match an image to a source camera is now well established. Traditionally, the PRNU estimation methodologies have centred on a wavelet based de-noising approach. Resultant filtering artefacts in combination with image and JPEG contamination act to reduce the quality of PRNU estimation. In this paper, it is argued that the application calls for a simplified filtering strategy which at its base level may be realised using a combination of adaptive and median filtering applied in the spatial domain. The proposed filtering method is interlinked with a further two stage enhancement strategy where only pixels in the image having high probabilities of significant PRNU bias are retained. This methodology significantly improves the discrimination between matching and non-matching image data sets over that of the common wavelet filtering approach. PMID:23312587
Non-uniform spatial response of the LCoS spatial light modulator
NASA Astrophysics Data System (ADS)
Lopez, Víctor; González-Vega, Arturo; Aguilar, Alberto; Landgrave, J. E. A.; García-Márquez, Jorge
2016-05-01
Liquid crystal on silicon (LCoS) spatial light modulators have been considered for a wide variety of scientific applications, due to their phase modulation capability and high spatial resolution. Nevertheless, their intrinsic characteristics, like the extensively studied depolarization and phase shift fluctuations, can make their behavior significantly distant from the ideal and somewhat unpredictable. Here, we present the characterization of a different source of uncertainty: the non-uniform spatial response of the LCoS, which is fundamentally different to the static aberrations of the panel. We measured local deviations of ±22% from the expected phase shift, resulting in non-negligible effects for phase modulation measurements, phase shifting interferometry, wavefront correction, and speckle interferometry.
Non-Uniform Sampling and J-UNIO Automation for Efficient Protein NMR Structure Determination.
Didenko, Tatiana; Proudfoot, Andrew; Dutta, Samit Kumar; Serrano, Pedro; Wüthrich, Kurt
2015-08-24
High-resolution structure determination of small proteins in solution is one of the big assets of NMR spectroscopy in structural biology. Improvements in the efficiency of NMR structure determination by advances in NMR experiments and automation of data handling therefore attracts continued interest. Here, non-uniform sampling (NUS) of 3D heteronuclear-resolved [(1)H,(1)H]-NOESY data yielded two- to three-fold savings of instrument time for structure determinations of soluble proteins. With the 152-residue protein NP_372339.1 from Staphylococcus aureus and the 71-residue protein NP_346341.1 from Streptococcus pneumonia we show that high-quality structures can be obtained with NUS NMR data, which are equally well amenable to robust automated analysis as the corresponding uniformly sampled data. PMID:26227870
Discharge Characteristics of SF6 in a Non-Uniform Electric Field Under Repetitive Nanosecond Pulses
NASA Astrophysics Data System (ADS)
Ran, Huijuan; Wang, Lei; Wang, Jue; Wang, Tao; Yan, Ping
2014-05-01
The characteristics of high pressure sulphur hexafluoride (SF6) discharges in a highly non-uniform electric field under repetitive nanosecond pulses are investigated in this paper. The influencing factors on discharge process, such as gas pressure, pulse repetition frequency (PRF), and number of applied pulses, are analyzed. Experimental results show that the corona intensity weakens with the increase of gas pressure and strengthens with the increase of PRF or number of applied pulses. Spark discharge images suggest that a shorter and thicker discharge plasma channel will lead to a larger discharge current. The number of applied pulses to breakdown descends with the increase of PRF and ascends with the rise of gas pressure. The reduced electric field (E/p) decreases with the increase of PRF in all circumstances. The experimental results provide significant supplements to the dielectric characteristics of strongly electronegative gases under repetitive nanosecond pulses.
The algorithm analysis on non-uniformity correction based on LMS adaptive filtering
NASA Astrophysics Data System (ADS)
Zhan, Dongjun; Wang, Qun; Wang, Chensheng; Chen, Huawang
2010-11-01
The traditional least mean square (LMS) algorithm has the performance of good adaptivity to noise, but there are several disadvantages in the traditional LMS algorithm, such as the defect in desired value of pending pixels, undetermined original coefficients, which result in slow convergence speed and long convergence period. Method to solve the desired value of pending pixel has improved based on these problems, also, the correction gain and offset coefficients worked out by the method of two-point temperature non-uniformity correction (NUC) as the original coefficients, which has improved the convergence speed. The simulation with real infrared images has proved that the new LMS algorithm has the advantages of better correction effect. Finally, the algorithm is implemented on the hardware structure of FPGA+DSP.
NASA Astrophysics Data System (ADS)
Jalili, Mahdi
2013-03-01
In this paper, we investigated phase synchronization in delayed dynamical networks. Non-identical spiking Hindmarsh-Rose neurons were considered as individual dynamical systems and coupled through a number of network structures such as scale-free, Erdős-Rényi, and modular. The individual neurons were coupled through excitatory chemical synapses with uniform or distributed time delays. The profile of spike phase synchrony was different when the delay was uniform across the edges as compared to the case when it was distributed, i.e., different delays for the edges. When an identical transmission delay was considered, a quasi-periodic pattern was observed in the spike phase synchrony. There were specific values of delay where the phase synchronization reached to its peaks. The behavior of the phase synchronization in the networks with non-uniform delays was different with the former case, where the phase synchrony decreased as distributed delays introduced to the networks.
The effects of non-uniform loss on time reversal mirrors
NASA Astrophysics Data System (ADS)
Taddese, Biniyam Tesfaye; Antonsen, Thomas M.; Ott, Edward; Anlage, Steven M.
2014-08-01
Time reversal mirrors work perfectly only for lossless wave propagation; dissipation destroys time-reversal invariance and limits the performance of time-reversal mirrors. Here, a new measure of time-reversal mirror performance is introduced and the adverse effect of dissipation on this performance measure is investigated. The technique of exponential amplification is employed to partially overcome the effect of non-uniform loss distributions, and its success is tested quantitatively using the new performance measure. A numerical model of a star graph is employed to test the applicability of this technique on realizations with various random spatial distributions of loss. A subset of the numerical results are also verified by experimental results from an electromagnetic time-reversal mirror. The exponential amplification technique is a simple way to improve the performance of emerging technologies based on time-reversed wave propagation such as directed communication and wireless power transfer.
THE NON-UNIFORM, DYNAMIC ATMOSPHERE OF BETELGEUSE OBSERVED AT MID-INFRARED WAVELENGTHS
Ravi, V.; Wishnow, E. H.; Townes, C. H.; Lockwood, S.; Mistry, H.; Tatebe, K.
2011-10-10
We present an interferometric study of the continuum surface of the red supergiant star Betelgeuse at 11.15 {mu}m wavelength, using data obtained with the Berkeley Infrared Spatial Interferometer each year between 2006 and 2010. These data allow an investigation of an optically thick layer within 1.4 stellar radii of the photosphere. The layer has an optical depth of {approx}1 at 11.15 {mu}m, and varies in temperature between 1900 K and 2800 K and in outer radius between 1.16 and 1.36 stellar radii. Electron-hydrogen-atom collisions contribute significantly to the opacity of the layer. The layer has a non-uniform intensity distribution that changes between observing epochs. These results indicate that large-scale surface convective activity strongly influences the dynamics of the inner atmosphere of Betelgeuse and mass-loss processes.
Non-uniform black strings and the critical dimension in the 1/D expansion
NASA Astrophysics Data System (ADS)
Suzuki, Ryotaku; Tanabe, Kentaro
2015-10-01
Non-uniform black strings (NUBS) are studied by the large D effective theory approach. By solving the near-horizon geometry in the 1 /D expansion, we obtain the effective equation for the deformed horizon up to the next-to-next-to-leading order (NNLO) in 1 /D. We also solve the far-zone geometry by the Newtonian approximation. Matching the near and far zones, the thermodynamic variables are computed in the 1 /D expansion. As the result, the large D analysis gives a critical dimension D * ≃ 13 .5 at which the translation-symmetry-breaking phase transition changes between first and second order. This value of D * agrees perfectly, within the precision of the 1 /D expansion, with the result previously obtained by E. Sorkin through the numerical resolution. We also compare our NNLO results for the thermodynamics of NUBS to earlier numerical calculations, and find good agreement within the expected precision.
Exact actuator disk solutions for non-uniform heavy loading and slipstream contraction
NASA Astrophysics Data System (ADS)
Conway, John T.
1998-06-01
A semi-analytical method has been developed to solve for the inviscid incompressible flow induced by a heavily loaded actuator disk with non-uniform loading. The solution takes the contraction of the slipstream fully into account. The method is an extension of the analytical theory of Conway (1995) for the linearized actuator disk and is exact for an incompressible perfect fluid. The solutions for the velocities and stream function are given as one-dimensional integrals of expressions containing complete elliptic integrals. Any load distribution with bounded radial gradient can be treated. Results are presented here for both contra-rotating and normal propellers. For the special case of a contra-rotating propeller with a parabolic velocity profile in the ultimate wake, the vorticity in the slipstream is shown to be the same as in the analytically tractable spherical vortex of Hill (1894) and the related family of steady vortices explored by Fraenkel (1970, 1972) and Norbury (1973).
Implementation of non-uniform FFT based Ewald summation in dissipative particle dynamics method
NASA Astrophysics Data System (ADS)
Wang, Yong-Lei; Laaksonen, Aatto; Lu, Zhong-Yuan
2013-02-01
The ENUF method, i.e., Ewald summation based on the non-uniform FFT technique (NFFT), is implemented in dissipative particle dynamics (DPD) simulation scheme to fast and accurately calculate the electrostatic interactions at mesoscopic level. In a simple model electrolyte system, the suitable ENUF-DPD parameters, including the convergence parameter α, the NFFT approximation parameter p, and the cut-offs for real and reciprocal space contributions, are carefully determined. With these optimized parameters, the ENUF-DPD method shows excellent efficiency and scales as O(NlogN). The ENUF-DPD method is further validated by investigating the effects of charge fraction of polyelectrolyte, ionic strength and counterion valency of added salts on polyelectrolyte conformations. The simulations in this paper, together with a separately published work of dendrimer-membrane complexes, show that the ENUF-DPD method is very robust and can be used to study charged complex systems at mesoscopic level.
Novel cone lasing emission in a non-uniform one-dimensional photonic crystal
NASA Astrophysics Data System (ADS)
Li, Yi; Zhou, Wen-Yuan; Ying, Cui-Feng; Yang, Na; Chen, Shao-Jie; Ye, Qing; Tian, Jian-Guo
2015-06-01
Novel cone lasing emission is observed from a photonic crystal (PC) with graded layers, which is fabricated by two-beam holographic interference in dichromated gelatin. The cone lasing is composed of one lasing spot and one concentric lasing ring. The good agreement between the experimental results and a numerical simulation performed using the transfer matrix method demonstrates that this lasing ring is induced by the coupling between the band edge and minigap, which is represented as some oscillations near the band edge in the passband of the reflection spectrum. The cone lasing may be useful for multi-wavelength fluorescence detection since the dual-colour directional enhanced fluorescence can be achieved without the mutual interference of lasing modes. Moreover, this readily observable cone lasing provides a direct visualization of the dispersion relation of non-uniform PCs.
Numerical Study of Wave Propagation in a Non-Uniform Flow
NASA Technical Reports Server (NTRS)
Povitsky, Alex; Bushnell, Dennis M. (Technical Monitor)
2000-01-01
The propagation of acoustic waves originating from cylindrical and spherical pulses, in a non-uniform mean flow, and in the presence of a reflecting wall is investigated by Hardin and Pope approach using compact approximation of spatial derivatives. The 2-D and 3-D stagnation flows and a flow around a cylinder are taken as prototypes of real world flows with strong gradients of mean pressure and velocity. The intensity and directivity of acoustic wave patterns appear to be quite different from the benchmark solutions obtained in a static environment for the same geometry. The physical reasons for amplification and weakening of sound are discussed in terms of dynamics of wave profile and redistribution of acoustic energy and its potential and kinetic components. For an acoustic wave in the flow around a cylinder, the observed mean acoustic pressure is approximately doubled (upstream pulse position) and halved (downstream pulse position) in comparison with the sound propagation in static ambient conditions.
Effect of Non-Uniform Inlet Temperature on Flow Stagnation in a Pumped Fluid Tube Radiator
NASA Astrophysics Data System (ADS)
Reavis, Gretchen
2008-01-01
The effect of a non-uniform inlet temperature on the panel fluid tube flow stagnation point is examined using a spacecraft radiator panel model with 20 fluid tubes constructed in Thermal Desktop®. Fluid temperature variations due to panel edge effect and localized hot and cold spots in the flow path were simulated by varying the fluid inlet temperature on one or more tubes. Results show that a large fluid inlet temperature difference between tubes can decrease the fluid system stability and increase the possibility of fluid stagnation with the coldest fluid tube initiating stagnation. Conversely, a small fluid inlet temperature difference between tubes can, in some cases, increase the fluid system stability and decrease the possibility of fluid stagnation. A uniform fluid inlet temperature provides for a near optimization of the stagnation point as compared to fluid temperature gradients across the panel.
Detecting Non-Uniform Clusters in Large-Scale Interaction Graphs
Levtov, Nissan; Amberkar, Sandeep; Kaderali, Lars; Volkovich, Zeev
2014-01-01
Abstract Graph clustering becomes difficult as the graph size and complexity increase. In particular, in interaction graphs, the clusters are small and the data on the underlying interaction are not only complex, but also noisy due to the lack of information and experimental errors. The graphs representing such data consist of (possibly overlapping) clusters of non-uniform size with some false positive and false negative links. In this article, we propose a new approach, assuming that clusters in the graphs of protein–protein interaction (PPI) networks resemble corrupted cliques. Therefore, the problem can be reduced to looking for clusters only among nodes of approximately similar degrees. This idea was implemented using a soft version of the Farthest-Point-First (FPF) clustering algorithm with the Jaccard distance function modified to perform on slightly overlapping clusters. The StripClust program developed by us was tested on a synthetic network and on the yeast PPI network. PMID:24050498
Chronic intracortical microelectrode arrays induce non-uniform, depth-related tissue responses
NASA Astrophysics Data System (ADS)
Woolley, Andrew J.; Desai, Himanshi A.; Otto, Kevin J.
2013-04-01
Objective. Brain-implanted microelectrode arrays show promise as future clinical devices. However, biological responses to various designs, compositions and locations of these implants have not been fully characterized, and may impact the long-term functionality of these devices. In order to improve our understanding of the tissue conditions at the interface of chronic brain-implanted microdevices, we proposed utilizing advanced histology and microscopy techniques to image implanted devices and surrounding tissue intact within brain slices. We then proposed utilizing these methods to examine whether depth within the cerebral cortex affected tissue conditions around implants. Approach. Histological data was collected from rodent brain slices containing intact, intracortical microdevices four weeks after implantation surgery. Thick tissue sections containing the chronic implants were processed with fluorescent antibody labels, and imaged in an optical clearing solution using laser confocal microscopy. Main Results. Tissue surrounding microdevices exhibited two major depth-related phenomena: a non-uniform microglial coating along the device length and a dense mass of cells surrounding the implant in cerebral cortical layers I and II. Detailed views of the monocyte-derived immune cells improve our understanding of the close and complex association that immune cells have with chronic brain implants, and illuminated a possible relationship between cortical depth and the intensity of a chronic monocyte response around penetrating microdevices. The dense mass of cells contained vimentin, a protein not typically expressed highly in CNS cells, evidence that non-CNS cells likely descended down the face of the penetrating devices from the pial surface. Significance. Image data of highly non-uniform and depth-dependent biological responses along a device provides novel insight into the complexity of the tissue response to penetrating brain-implanted microdevices. The presented
Eye safety analysis for non-uniform retinal scanning laser trajectories
NASA Astrophysics Data System (ADS)
Schelinski, Uwe; Dallmann, Hans-Georg; Grüger, Heinrich; Knobbe, Jens; Pügner, Tino; Reinig, Peter; Woittennek, Franziska
2016-03-01
Scanning the retinae of the human eyes with a laser beam is an approved diagnosis method in ophthalmology; moreover the retinal blood vessels form a biometric modality for identifying persons. Medical applied Scanning Laser Ophthalmoscopes (SLOs) usually contain galvanometric mirror systems to move the laser spot with a defined speed across the retina. Hence, the load of laser radiation is uniformly distributed and eye safety requirements can be easily complied. Micro machined mirrors also known as Micro Electro Mechanical Systems (MEMS) are interesting alternatives for designing retina scanning systems. In particular double-resonant MEMS are well suited for mass fabrication at low cost. However, their Lissajous-shaped scanning figure requires a particular analysis and specific measures to meet the requirements for a Class 1 laser device, i.e. eye-safe operation. The scanning laser spot causes a non-uniform pulsing radiation load hitting the retinal elements within the field of view (FoV). The relevant laser safety standards define a smallest considerable element for eye-related impacts to be a point source that is visible with an angle of maximum 1.5 mrad. For non-uniform pulsing expositions onto retinal elements the standard requires to consider all particular impacts, i.e. single pulses, pulse sequences in certain time intervals and cumulated laser radiation loads. As it may be expected, a Lissajous scanning figure causes the most critical radiation loads at its edges and borders. Depending on the applied power the laser has to be switched off here to avoid any retinal injury.
An analytical approach to quantitative reconstruction of non-uniform attenuated brain SPECT.
Liang, Z; Ye, J; Harrington, D P
1994-11-01
An analytical approach to quantitative brain SPECT (single-photon-emission computed tomography) with non-uniform attenuation is developed. The approach formulates accurately the projection-transform equation as a summation of primary- and scatter-photon contributions. The scatter contribution can be estimated using the multiple-energy-window samples and removed from the primary-energy-window data by subtraction. The approach models the primary contribution as a convolution of the attenuated source and the detector-response kernel at a constant depth from the detector with the central-ray approximation. The attenuated Radon transform of the source can be efficiently deconvolved using the depth-frequency relation. The approach inverts exactly the attenuated Radon transform by Fourier transforms and series expansions. The performance of the analytical approach was studied for both uniform- and non-uniform-attenuation cases, and compared to the conventional FBP (filtered-backprojection) method by computer simulations. A patient brain X-ray image was acquired by a CT (computed-tomography) scanner and converted to the object-specific attenuation map for 140 keV energy. The mathematical Hoffman brain phantom was used to simulate the emission source and was resized such that it was completely surrounded by the skull of the CT attenuation map. The detector-response kernel was obtained from measurements of a point source at several depths in air from a parallel-hole collimator of a SPECT camera. The projection data were simulated from the object-specific attenuating source including the depth-dependent detector response. Quantitative improvement (>5%) in reconstructing the data was demonstrated with the nonuniform attenuation compensation, as compared to the uniform attenuation correction and the conventional FBP reconstruction. The commuting time was less than 5 min on an HP/730 desktop computer for an image array of 1282*32 from 128 projections of 128*32 size. PMID
Non-uniform dispersion of the source-sink relationship alters wavefront curvature.
Romero, Lucia; Trenor, Beatriz; Ferrero, Jose M; Starmer, C Frank
2013-01-01
The distribution of cellular source-sink relationships plays an important role in cardiac propagation. It can lead to conduction slowing and block as well as wave fractionation. It is of great interest to unravel the mechanisms underlying evolution in wavefront geometry. Our goal is to investigate the role of the source-sink relationship on wavefront geometry using computer simulations. We analyzed the role of variability in the microscopic source-sink relationship in driving changes in wavefront geometry. The electrophysiological activity of a homogeneous isotropic tissue was simulated using the ten Tusscher and Panfilov 2006 action potential model and the source-sink relationship was characterized using an improved version of the Romero et al. safety factor formulation (SFm2). Our simulations reveal that non-uniform dispersion of the cellular source-sink relationship (dispersion along the wavefront) leads to alterations in curvature. To better understand the role of the source-sink relationship in the process of wave formation, the electrophysiological activity at the initiation of excitation waves in a 1D strand was examined and the source-sink relationship was characterized using the two recently updated safety factor formulations: the SFm2 and the Boyle-Vigmond (SFVB) definitions. The electrophysiological activity at the initiation of excitation waves was intimately related to the SFm2 profiles, while the SFVB led to several counterintuitive observations. Importantly, with the SFm2 characterization, a critical source-sink relationship for initiation of excitation waves was identified, which was independent of the size of the electrode of excitation, membrane excitability, or tissue conductivity. In conclusion, our work suggests that non-uniform dispersion of the source-sink relationship alters wavefront curvature and a critical source-sink relationship profile separates wave expansion from collapse. Our study reinforces the idea that the safety factor
Improvement of brain segmentation accuracy by optimizing non-uniformity correction using N3.
Zheng, Weili; Chee, Michael W L; Zagorodnov, Vitali
2009-10-15
Smoothly varying and multiplicative intensity variations within MR images that are artifactual, can reduce the accuracy of automated brain segmentation. Fortunately, these can be corrected. Among existing correction approaches, the nonparametric non-uniformity intensity normalization method N3 (Sled, J.G., Zijdenbos, A.P., Evans, A.C., 1998. Nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imag. 17, 87-97.) is one of the most frequently used. However, at least one recent study (Boyes, R.G., Gunter, J.L., Frost, C., Janke, A.L., Yeatman, T., Hill, D.L.G., Bernstein, M.A., Thompson, P.M., Weiner, M.W., Schuff, N., Alexander, G.E., Killiany, R.J., DeCarli, C., Jack, C.R., Fox, N.C., 2008. Intensity non-uniformity correction using N3 on 3-T scanners with multichannel phased array coils. NeuroImage 39, 1752-1762.) suggests that its performance on 3 T scanners with multichannel phased-array receiver coils can be improved by optimizing a parameter that controls the smoothness of the estimated bias field. The present study not only confirms this finding, but additionally demonstrates the benefit of reducing the relevant parameter values to 30-50 mm (default value is 200 mm), on white matter surface estimation as well as the measurement of cortical and subcortical structures using FreeSurfer (Martinos Imaging Centre, Boston, MA). This finding can help enhance precision in studies where estimation of cerebral cortex thickness is critical for making inferences. PMID:19559796
Archer, A J; Evans, R
2013-01-01
The local molecular field theory (LMF) developed by Weeks and co-workers has proved successful for treating the structure and thermodynamics of a variety of non-uniform liquids. By reformulating LMF in terms of one-body direct correlation functions we recast the theory in the framework of classical density functional theory (DFT). We show that the general LMF equation for the effective reference potential φ(R)(r) follows directly from the standard mean-field DFT treatment of attractive interatomic forces. Using an accurate (fundamental measures) DFT for the non-uniform hard-sphere reference fluid we determine φ(R)(r) for a hard-core Yukawa liquid adsorbed at a planar hard wall. In the approach to bulk liquid-gas coexistence we find the effective potentials exhibit rich structure that can include damped oscillations at large distances from the wall as well as the repulsive hump near the wall required to generate the low density "gas" layer characteristic of complete drying. We argue that it would be difficult to obtain the same level of detail from other (non-DFT based) implementations of LMF. LMF emphasizes the importance of making an intelligent division of the interatomic pair potential of the full system into a reference part and a remainder that can be treated in mean-field approximation. We investigate different divisions for an exactly solvable one-dimensional model where the pair potential has a hard-core plus a linear attractive tail. Results for the structure factor and the equation of state of the uniform fluid show that including a significant portion of the attraction in the reference system can be much more accurate than treating the full attractive tail in mean-field approximation. We discuss further aspects of the relationship between LMF and DFT. PMID:23298050
Ambient noise tomography of a deep geothermal reservoir in non-uniform noise conditions
NASA Astrophysics Data System (ADS)
Lehujeur, Maximilien; Vergne, Jérôme; Schmittbuhl, Jean; Maggi, Alessia
2016-04-01
Passive imaging from the correlation of ambient seismic noise is of great interest for the exploration, the characterization and the monitoring of deep geothermal sites. It can probe the subsoil with no natural or induced seismic sources and at much lower costs than active methods. Here, we want to apply this method to the geothermal sites of Rittershoffen and Soultz-sous-forêts, Alsace, France. The data is provided by several seismological networks installed in the area over the last years and initially dedicated to the monitoring of the induced seismicity. The implementation of ambient noise tomography in such context have some specificities. We show that in this region, both the fundamental and the first overtone of the Rayleigh waves are present in the empirical Green functions and should be unambiguously identified. The period band is restricted to the range 1-7s due to the depth of the targeted structures (first 5 kilometers). This requires working with a noise dominated by the secondary micro-seismic peak whose spatial distribution is highly non-uniform in this region. Furthermore, the small aperture of the networks forces us to include station pairs whose distance is less than the 3 wavelengths rule, in order to maintain a proper lateral resolution of the tomographic images. The analysis of the noise correlation functions indicate that the non-uniform distribution of the noise sources and the short inter-station distances induce significant errors on the tomographic maps. To overcome this issue, we propose an inversion scheme based on the full correlation waveforms to estimate the group and phase speed dispersion maps together with the azimuthal distribution of the noise sources. The method is first applied to synthetic data showing that the procedure produces accurate velocity measurements. The method is then applied to real data to estimate the velocity structure around the two geothermal sites.
Control of Meridional Flow by a Non-Uniform Rotational Magnetic Field
NASA Technical Reports Server (NTRS)
Mazuruk, Konstantin; Ramachandran, Narayanan
1999-01-01
The diffusive mass transfer of species during crystal growth in vertical ampoules is significantly affected by fluid flow in the liquid mother phase (melt). For electrically conductive melts, an elegant way of remotely inducing and controlling this flow is by utilizing a uniform rotational magnetic field (RMF) in the transverse direction. It induces an azimuthal flow which tends to homogenize the thermal and solutal fields. The rotating field also reduces the diffusion boundary layer, stabilizes temperature fluctuations, and promotes better overall crystal growth. For moderate strengths of the applied magnetic field (2-20 m Tesla) with frequencies of up to 400 Hz, the induced secondary meridional flow becomes significant. It typically consists of one roll at the bottom of the liquid column and a second roll (vortex) at the top. The flow along the centerline (ampoule axis) is directed from the growing solid (interface) towards the liquid (melt). In case of convex interfaces (e.g. in floating zone crystal growth) such flow behavior is beneficial since it suppresses diffusion at the center. However, for concave interfaces (e.g. vertical Bridgman crystal growth) such a flow tends to exacerbate the situation in making the interface shape more concave. It would be beneficial to have some control of this meridional flow- for example, a single recirculating cell with controllable direction and flow magnitude will make this technique even more attractive for crystal growth. Such flow control is a possibility if a non-uniform PNE field is utilized for this purpose. Although this idea has been proposed earlier, it has not been conclusively demonstrated so far. In this work, we derive the governing equations for the fluid dynamics for such a system and obtain solutions for a few important cases. Results from parallel experimental measurements of fluid flow in a mercury column subjected to non-uniform RMF will also be presented.
On the non-uniform distribution of the angular elements of near-Earth objects
NASA Astrophysics Data System (ADS)
JeongAhn, Youngmin; Malhotra, Renu
2014-02-01
We examine the angular distributions of near-Earth objects (NEOs) which are often regarded as uniform. The apparent distribution of the longitude of ascending node, Ω, is strongly affected by well-known seasonal effects in the discovery rate of NEOs. The deviation from the expected π-periodicity in the apparent distribution of Ω indicates that its intrinsic distribution is slightly enhanced along a mean direction, Ω‾=111°; approximately 53% of NEOs have Ω values within ±90° of Ω‾. We also find that each subgroup of NEOs (Amors, Apollos and Atens) has different observational selection effects which cause different non-uniformities in the apparent distributions of their arguments of perihelion ω, and longitudes of perihelion ϖ. For their intrinsic distributions, our analysis reveals that the Apollo asteroids have non-uniform ω due to secular dynamics associated with inclination-eccentricity-ω coupling, and the Amors’ ϖ distribution is peaked towards the secularly forced eccentricity vector. The Apollos’ ω distribution is axial, favoring values near 0° and 180°; the two quadrants centered at 0° and 180° account for 55% of the Apollos’ ω values. The Amors’ ϖ distribution peaks near ϖ‾=4°; 61% of Amors have ϖ within ±90° of this peak. We show that these modest but statistically significant deviations from uniform random distributions of angular elements are owed to planetary perturbations, primarily Jupiter’s. It is remarkable that this strongly chaotic population of minor planets reveals the presence of Jupiter in its angular distributions.
NASA Astrophysics Data System (ADS)
Gutschwager, Berndt; Cárdenas-García, Daniel; Hollandt, Jörg
2015-11-01
This paper presents a method to accurately determine the responsivity non-uniformity of the pixels of an infrared camera. Mandatory for the use of infrared cameras for measurements of radiance temperatures with small uncertainties is the knowledge of this responsivity non-uniformity and the resulting ability to correct the responsivity non-uniformity of the measured image. Infrared cameras are optically and electronically more complex than radiation thermometers. For the calibration of infrared cameras a large-area source with a known radiance distribution is required. Practical implementations of such large-area sources are plate radiators, which generally have a non-homogeneous distribution of the radiance and of the radiance temperature over their surface. The determination of the non-uniformity of the radiance temperature of a plate radiator is mandatory for the accurate calibration of infrared cameras, i.e. for the determination and adequate consideration of the responsivity non-uniformity of all pixels of an infrared camera.
Models And Experiments Of Laminar Diffusion Flames In Non-Uniform Magnetic Fields
NASA Technical Reports Server (NTRS)
Baker, J.; Varagani, R.; Saito, K.
2003-01-01
Non-uniform magnetic fields affect laminar diffusion flames as a result of the paramagnetic and diamagnetic properties of the products and reactants. Paramagnetism is the weak attraction to a magnetic field a material exhibits as a result of permanent magnetic dipole moments in the atoms of the material. Diamagnetism is the weak repulsion to a magnetic field exhibited by a material due to the lack of permanent magnetic dipole moments in the atoms of a material. The forces associated with paramagnetic and diamagnetism are several orders of magnitude less than the forces associated with the more familiar ferromagnetism. A typical example of a paramagnetic gas is oxygen while hydrocarbon fuels and products of combustion are almost always diamagnetic. The fact that magnets can affect flame behavior has been recognized for more than one hundred years. Early speculation was that such behavior was due to the magnetic interaction with the ionized gases associated with a flame. Using a scaling analysis, it was later shown that for laminar diffusion flames the magnetic field/ionized gas interaction was insignificant to the paramagnetic and diamagnetic influences. In this effort, the focus has been on examining laminar diffusion slot flames in the presence of non-uniform upward decreasing magnetic fields produced using permanent magnets. The principal reason for choosing slot flames was mathematical models of such flames show an explicit dependence on gravitational body forces, in the buoyancy-controlled regime, and an applied magnetic field would also impose a body force. In addition, the behavior of such flames was more easily visualized while maintaining the symmetry of the two-dimensional problem whereas it would have been impossible to obtain a symmetric magnetic field around a circular flame and still visually record the flame height and shape along the burner axis. The motivation for choosing permanent magnets to produce the magnetic fields was the assumption that
Flow instabilities in non-uniformly heated helium jet arrays used for divertor PFCs
Youchison, Dennis L.
2015-07-30
In this study, due to a lack of prototypical experimental data, little is known about the off-normal behavior of recently proposed divertor jet cooling concepts. This article describes a computational fluid dynamics (CFD) study on two jet array designs to investigate their susceptibility to parallel flow instabilities induced by non-uniform heating and large increases in the helium outlet temperature. The study compared a single 25-jet helium-cooled modular divertor (HEMJ) thimble and a micro-jet array with 116 jets. Both have pure tungsten armor and a total mass flow rate of 10 g/s at a 600 °C inlet temperature. We investigated flow perturbations caused by a 30 MW/m^{2} off-normal heat flux applied over a 25 mm^{2} area in addition to the nominal 5 MW/m^{2} applied over a 75 mm^{2} portion of the face. The micro-jet array exhibited lower temperatures and a more uniform surface temperature distribution than the HEMJ thimble. We also investigated the response of a manifolded nine-finger HEMJ assembly using the nominal heat flux and a 274 mm^{2} heated area. For the 30 MW/m2 case, the micro-jet array absorbed 750 W in the helium with a maximum armor surface temperature of 1280 °C and a fluid/solid interface temperature of 801 °C. The HEMJ absorbed 750 W with a maximum armor surface temperature of 1411 °C and a fluid/solid interface temperature of 844 °C. For comparison, both the single HEMJ finger and the micro-jet array used 5-mm-thick tungsten armor. The ratio of maximum to average temperature and variations in the local heat transfer coefficient were lower for the micro-jet array compared to the HEMJ device. Although high heat flux testing is required to validate the results obtained in these simulations, the results provide important guidance in jet design and manifolding to increase heat removal while providing more even temperature distribution and minimizing non-uniformity in the gas flow and thermal stresses at the
Flow instabilities in non-uniformly heated helium jet arrays used for divertor PFCs
Youchison, Dennis L.
2015-07-30
In this study, due to a lack of prototypical experimental data, little is known about the off-normal behavior of recently proposed divertor jet cooling concepts. This article describes a computational fluid dynamics (CFD) study on two jet array designs to investigate their susceptibility to parallel flow instabilities induced by non-uniform heating and large increases in the helium outlet temperature. The study compared a single 25-jet helium-cooled modular divertor (HEMJ) thimble and a micro-jet array with 116 jets. Both have pure tungsten armor and a total mass flow rate of 10 g/s at a 600 °C inlet temperature. We investigated flowmore » perturbations caused by a 30 MW/m2 off-normal heat flux applied over a 25 mm2 area in addition to the nominal 5 MW/m2 applied over a 75 mm2 portion of the face. The micro-jet array exhibited lower temperatures and a more uniform surface temperature distribution than the HEMJ thimble. We also investigated the response of a manifolded nine-finger HEMJ assembly using the nominal heat flux and a 274 mm2 heated area. For the 30 MW/m2 case, the micro-jet array absorbed 750 W in the helium with a maximum armor surface temperature of 1280 °C and a fluid/solid interface temperature of 801 °C. The HEMJ absorbed 750 W with a maximum armor surface temperature of 1411 °C and a fluid/solid interface temperature of 844 °C. For comparison, both the single HEMJ finger and the micro-jet array used 5-mm-thick tungsten armor. The ratio of maximum to average temperature and variations in the local heat transfer coefficient were lower for the micro-jet array compared to the HEMJ device. Although high heat flux testing is required to validate the results obtained in these simulations, the results provide important guidance in jet design and manifolding to increase heat removal while providing more even temperature distribution and minimizing non-uniformity in the gas flow and thermal stresses at the armor joint.« less
Compensation for z-directional non-uniformity of a monopole antenna at 7T MRI
NASA Astrophysics Data System (ADS)
Kim, Nambeom; Woo, Myung-Kyun; Kang, Chang-Ki
2016-06-01
The research was conducted to find ways to compensate for z-directional non-uniformity at a monopole antenna array (MA) coil by using a tilted optimized non-saturating excitation (TONE) pulse and to evaluate the feasibility of using the MA coil with the TONE pulse for anatomical and angiographic imaging. The sensitivity of a MA coil along the z-direction was measured by using an actual flip angle imaging pulse sequence with an oil phantom to evaluate the flip angle distributions of the MA coil for 7T magnetic resonance imaging (MRI). The effects on the z-directional uniformity were examined by using slow and fast TONE pulses, i.e., TONE SLOW and TONE FAST. T1- and T2* -weighted images of the human brain were also examined. The z-directional profiles of the TONE pulses were analyzed by using the average signal intensity throughout the brain. The effect of the TONE pulses on cerebral vessels was further examined by analyzing maximal intensity projections of T1-weighted images. With increasing the applied flip angles, the sensitivity slope slightly increased (0.044 per degree). For the MA coil, the TONE SLOWpulse yielded a compensated profile along the z-direction while the TONE HIGH pulse, which has a flat excitation profile along the z-direction, exhibited a tilted signal intensity toward the coil end, clearly indicating an intrinsic property of the MA coil. Similar to the phantom study, human brain images revealed z-directional symmetry around the peak value for the averaged signal intensity of the TONE SLOW pulse while the TONE HIGH pulse exhibited a tilted signal intensity toward the coil end. In vascular system imaging, the MA coil also clearly demonstrated a beneficial effect on the cerebral vessels, either with or without the TONE pulses. This study demonstrates that TONE pulses could compensate for the intrinsic z-directional non-uniformity of MA coils that exhibit strong uniformity in the x-y plane. Furthermore, tilted pulses, such as TONE pulses, were
NASA Astrophysics Data System (ADS)
Yang, Qiongfang; Wang, Yongsheng; Zhang, Zhihong
2013-03-01
Considering the lack of theoretical models and ingredients necessary to explain the scaling of the results of propeller cavitation inception and cavitating hydroacoustics from model tests to full scale currently, and the insufficient reflection of the nuclei effects on cavitation in the numerical methods, the cavitating hydrodynamics and cavitation low frequency noise spectrum of three geometrically similar 7-bladed highly skewed propellers with non-uniform inflow are addressed. In this process, a numerical bridge from the multiphase viscous simulation of propeller cavitation hydrodynamics to its hydro-acoustics is built, and the scale effects on performances and the applicability of exist scaling law are analyzed. The effects of non-condensable gas(NCG) on cavitation inception are involved explicitly in the improved Sauer's cavitation model, and the cavity volume acceleration related to its characteristic length is used to produce the noise spectrum. Results show that, with the same cavitation number, the cavity extension on propeller blades increases with diameter associated with an earlier shift of the beginning point of thrust decline induced by cavitation, while the three decline slopes of thrust breakdown curves are found to be nearly the same. The power of the scaling law based on local Reynolds number around 0.9 R section is determined as 0.11. As for the smallest propeller, the predominant tonal noise is located at blade passing frequency(BPF), whereas 2BPF for the middle and both 2BPF and 3BPF for the largest, which shows the cavitating line spectrum is fully related to the interaction between non-uniform inflow and fluctuated cavity volume. The predicted spectrum level exceedance from the middle to the large propeller is 6.65 dB at BPF and 5.94 dB at 2BPF. Since it just differs less than 2 dB to the increment obtained by empirical scaling law, it is inferred that the scale effects on them are acceptable with a sufficient model scale, and so do the
The ℓ-distribution method for modeling non-gray absorption in uniform and non-uniform gaseous media
NASA Astrophysics Data System (ADS)
André, Frédéric
2016-08-01
The ℓ-distribution modeling is proposed for radiative heat transfer in uniform and non-uniform non-gray gaseous media. The method is partly based on the application of results from the k-moment method. It combines this technique with several concepts from probability theory: the notion of rank transmutation maps allows extending the k-moment method to an infinite number of k-moments; copula models appear naturally to extend the method from uniform to non-uniform gas paths. The ℓ-distribution approach is shown to provide results: (1) more accurate - up to three orders of magnitude - than usual k-distribution approaches in uniform media, (2) as precise as correlated-k models in non-uniform situations. All these results are obtained at a computational cost lower than k-distribution models. Differences and similarities between k- and ℓ-distribution methods are discussed.
NASA Astrophysics Data System (ADS)
Temporal, Mauro; Canaud, Benoit; Garbett, Warren J.; Ramis, Rafael
2015-10-01
> An axially symmetric laser beam configuration irradiating a spherical capsule has been considered in the context of inertial confinement fusion (ICF). The laser beams are located at co-latitudes 49° and 131° and mimic the quad positions in the second cone of the Laser Mégajoule Facility. The capsule is directly irradiated by the laser beams whose energy deposition generates a nearly spherical shock wave. Two-dimensional hydrodynamic numerical simulations have been performed to analyse the non-uniformity of the shock wavefront launched inward throughout the target. Different laser intensity profiles, calculated by the illumination model, have been tested. The performance, in terms of shock non-uniformity, has been compared, and it is found that with an appropriate choice of the laser intensity profile it is possible to control the shock non-uniformity at early times.
NASA Astrophysics Data System (ADS)
Zhang, Guangle; Liu, Jianguo; Xu, Zhenyu; He, Yabai; Kan, Ruifeng
2016-01-01
A novel technique for characterizing temperature non-uniformity has been investigated based on measurements of line-of-sight tunable diode laser absorption spectroscopy. It utilized two fiber-coupled distributed feedback diode lasers at wavelengths around 1339 and 1392 nm as light sources to probe the field at multiple absorptions lines of water vapor and applied a temperature binning strategy combined with Gauss-Seidel iteration method to explore the temperature non-uniformity of the field in one dimension. The technique has been applied to a McKenna burner, which produced a flat premixed laminar CH4-air flame. The flame and its adjacent area formed an atmospheric field with significant non-uniformity of temperature and water vapor concentration. The effect of the number of temperature bins on column-density and temperature results has also been explored.
Hu, Zheng; Lin, Jun; Chen, Zhong-Sheng; Yang, Yong-Min; Li, Xue-Jun
2015-01-01
High-speed blades are often prone to fatigue due to severe blade vibrations. In particular, synchronous vibrations can cause irreversible damages to the blade. Blade tip-timing methods (BTT) have become a promising way to monitor blade vibrations. However, synchronous vibrations are unsuitably monitored by uniform BTT sampling. Therefore, non-equally mounted probes have been used, which will result in the non-uniformity of the sampling signal. Since under-sampling is an intrinsic drawback of BTT methods, how to analyze non-uniformly under-sampled BTT signals is a big challenge. In this paper, a novel reconstruction method for non-uniformly under-sampled BTT data is presented. The method is based on the periodically non-uniform sampling theorem. Firstly, a mathematical model of a non-uniform BTT sampling process is built. It can be treated as the sum of certain uniform sample streams. For each stream, an interpolating function is required to prevent aliasing in the reconstructed signal. Secondly, simultaneous equations of all interpolating functions in each sub-band are built and corresponding solutions are ultimately derived to remove unwanted replicas of the original signal caused by the sampling, which may overlay the original signal. In the end, numerical simulations and experiments are carried out to validate the feasibility of the proposed method. The results demonstrate the accuracy of the reconstructed signal depends on the sampling frequency, the blade vibration frequency, the blade vibration bandwidth, the probe static offset and the number of samples. In practice, both types of blade vibration signals can be particularly reconstructed by non-uniform BTT data acquired from only two probes. PMID:25621612
Intensity non-uniformity correction using N3 on 3-T scanners with multichannel phased array coils.
Boyes, Richard G; Gunter, Jeff L; Frost, Chris; Janke, Andrew L; Yeatman, Thomas; Hill, Derek L G; Bernstein, Matt A; Thompson, Paul M; Weiner, Michael W; Schuff, Norbert; Alexander, Gene E; Killiany, Ronald J; DeCarli, Charles; Jack, Clifford R; Fox, Nick C
2008-02-15
Measures of structural brain change based on longitudinal MR imaging are increasingly important but can be degraded by intensity non-uniformity. This non-uniformity can be more pronounced at higher field strengths, or when using multichannel receiver coils. We assessed the ability of the non-parametric non-uniform intensity normalization (N3) technique to correct non-uniformity in 72 volumetric brain MR scans from the preparatory phase of the Alzheimer's Disease Neuroimaging Initiative (ADNI). Normal elderly subjects (n=18) were scanned on different 3-T scanners with a multichannel phased array receiver coil at baseline, using magnetization prepared rapid gradient echo (MP-RAGE) and spoiled gradient echo (SPGR) pulse sequences, and again 2 weeks later. When applying N3, we used five brain masks of varying accuracy and four spline smoothing distances (d=50, 100, 150 and 200 mm) to ascertain which combination of parameters optimally reduces the non-uniformity. We used the normalized white matter intensity variance (standard deviation/mean) to ascertain quantitatively the correction for a single scan; we used the variance of the normalized difference image to assess quantitatively the consistency of the correction over time from registered scan pairs. Our results showed statistically significant (p<0.01) improvement in uniformity for individual scans and reduction in the normalized difference image variance when using masks that identified distinct brain tissue classes, and when using smaller spline smoothing distances (e.g., 50-100 mm) for both MP-RAGE and SPGR pulse sequences. These optimized settings may assist future large-scale studies where 3-T scanners and phased array receiver coils are used, such as ADNI, so that intensity non-uniformity does not influence the power of MR imaging to detect disease progression and the factors that influence it. PMID:18063391
Intensity non-uniformity correction using N3 on 3-T scanners with multichannel phased array coils
Boyes, Richard G.; Gunter, Jeff L.; Frost, Chris; Janke, Andrew L.; Yeatman, Thomas; Hill, Derek L.G.; Bernstein, Matt A.; Thompson, Paul M.; Weiner, Michael W.; Schuff, Norbert; Alexander, Gene E.; Killiany, Ronald J.; DeCarli, Charles; Jack, Clifford R.; Fox, Nick C.
2008-01-01
Measures of structural brain change based on longitudinal MR imaging are increasingly important but can be degraded by intensity non-uniformity. This non-uniformity can be more pronounced at higher field strengths, or when using multichannel receiver coils. We assessed the ability of the non-parametric non-uniform intensity normalization (N3) technique to correct non-uniformity in 72 volumetric brain MR scans from the preparatory phase of the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Normal elderly subjects (n = 18) were scanned on different 3-T scanners with a multichannel phased array receiver coil at baseline, using magnetization prepared rapid gradient echo (MP-RAGE) and spoiled gradient echo (SPGR) pulse sequences, and again 2 weeks later. When applying N3, we used five brain masks of varying accuracy and four spline smoothing distances (d = 50, 100, 150 and 200 mm) to ascertain which combination of parameters optimally reduces the non-uniformity. We used the normalized white matter intensity variance (standard deviation/mean) to ascertain quantitatively the correction for a single scan; we used the variance of the normalized difference image to assess quantitatively the consistency of the correction over time from registered scan pairs. Our results showed statistically significant (p < 0.01) improvement in uniformity for individual scans and reduction in the normalized difference image variance when using masks that identified distinct brain tissue classes, and when using smaller spline smoothing distances (e.g., 50-100 mm) for both MP-RAGE and SPGR pulse sequences. These optimized settings may assist future large-scale studies where 3-T scanners and phased array receiver coils are used, such as ADNI, so that intensity non-uniformity does not influence the power of MR imaging to detect disease progression and the factors that influence it. PMID:18063391
Nonlinear motion of non-uniform current-vortex sheets in MHD Richtmyer-Meshkov instability
NASA Astrophysics Data System (ADS)
Matsuoka, Chihiro; Nishihara, Katsunobu; Sano, Takayoshi
2013-10-01
When a supernova explosion occurs, materials that composed the star scatter in a high speed with a strong shock wave. These scattered materials, called ``supernova remnants'' (SNR), expand into the space and finally become a source in order to create new solar systems. It is known that SNR have a strong magnetic field compared to the surrounding interstellar medium; however, there exist few models to explain this extraordinary magnetic amplification mechanism in SNR. Here, we consider the Richtmyer-Meshkov instability in magnetohydrodynamic flows (MHD-RMI) and construct a model in order to describe the magnetic amplification in SNR. Due to the existence of the density jump, the tangential component of the magnetic field between the interface is different; therefore, the interface in MHD-RMI becomes a (non-uniform) current-vortex sheet. In this study, we investigate motion of this current-vortex sheet using the vortex blob method. We show that the current induced on a vortex sheet leads to a strong amplification of the magnetic field when the Lorenz force term is sufficiently small, and present various interfacial profiles depending on the magnitude of the Atwood number and Lorenz force. This work was supported by a Grant-in-Aid for Scientific Research (C) from the Japan Society for the Promotion of Science.
The Propagation of Nonlinear Pressure Waves Through Regions of Non-Uniform Temperature
NASA Astrophysics Data System (ADS)
Dizinno, Nicholas; Vradis, George; Otugen, Volkan
2006-11-01
A numerical study of wave propagation through gases with non-uniform temperature distributions will be presented. The aim of this study is to determine the impact of temperature gradients on high-intensity pressure waves of various initial wave forms. Emphasis is paid to wave reflection and transmission. Ultimately, the performance of thermal barriers in attenuating nonlinear waves is evaluated. The concept of using regions of hot gas inside an ambient environment has potential in aeroacoustic applications, such as jet screech mitigation. This analysis considers the one-dimensional compressible unsteady Euler's equations with an ideal gas state equation. The domain is composed of two regions with uniform and equal gas properties separated by a third region with higher gas temperature (lower density). Pressure is uniform throughout the domain. We introduce various high-intensity wave forms into this medium. Our investigation studies how the shape and extent of the thermal zone affect transmission and reflection of the wave. This is done for a range of wave and thermal field parameters. A Fourier analysis will study the frequency content of the incident, transmitted and reflected waves. These results will help determine the effectiveness of using thermal barriers for nonlinear wave attenuation.
Evaluation of rapid cell division in non-uniform cell cycles.
Lee, Juyun; Jeon, Wonju; Chang, Man; Han, Myung-Soo
2015-10-01
To better understand the mechanisms of development of harmful algal blooms (HABs), accurate estimates of species-specific in situ growth rates are needed. HABs are caused by rapid cell division by the causative microorganisms. To accurately estimate the in situ growth rates of harmful algae having non-uniform and/or irregular cell cycles, we modified a standard equation based on the cell cycle, and calculated the in situ growth rate to describe the process of bloom development in nature. Sampling of a developing bloom of Heterosigma akashiwo in Pohang Bay, Korea, was conducted every 3 h from 15:00 on August 2 to 07:00 on August 4, 2006. The amount of H. akashiwo DNA was measured using flow cytometry following tyramide signal amplification-fluorescence in situ hybridization. On August 2, the percentage of G1 phase cells decreased from 15:00 to 19:00 then increased until 22:00; it then decreased until 07:00 on August 3, followed by an increase to 10:00. This indicates the ability of the cells in nature to undergo more than one round of division per day. During the following night two rounds of division did not occur. The in situ growth rates estimated using the modified equation ranged from 0.31 to 0.53 d(-1) . We conclude that the use of this equation enables more accurate estimates of bloom formation by rapidly dividing cells. PMID:26175341
State Estimation for a Class of Non-Uniform Sampling Systems with Missing Measurements.
Lin, Honglei; Sun, Shuli
2016-01-01
This paper is concerned with the state estimation problem for a class of non-uniform sampling systems with missing measurements where the state is updated uniformly and the measurements are sampled randomly. A new state model is developed to depict the dynamics at the measurement sampling points within a state update period. A non-augmented state estimator dependent on the missing rate is presented by applying an innovation analysis approach. It can provide the state estimates at the state update points and at the measurement sampling points within a state update period. Compared with the augmented method, the proposed algorithm can reduce the computational burden with the increase of the number of measurement samples within a state update period. It can deal with the optimal estimation problem for single and multi-sensor systems in a unified way. To improve the reliability, a distributed suboptimal fusion estimator at the state update points is also given for multi-sensor systems by using the covariance intersection fusion algorithm. The simulation research verifies the effectiveness of the proposed algorithms. PMID:27455282
Chatter resistance of non-uniform turning bars with attached dynamic absorbers—Analytical approach
NASA Astrophysics Data System (ADS)
Saffury, J.; Altus, E.
2010-05-01
Forced harmonic vibration of a non-uniform elastic beam with attached dynamic vibration absorbers (DVA) is studied. Analytical approximation of the solution is obtained by the functional perturbation method (FPM). The problem has application to cutting tools operations where the resistance of the tool holder against regenerative chatter can be enhanced by optimizing the real part of the frequency response function (FRF). A test case of a beam with step-like heterogeneity and single DVA at the tip shows that the FPM solution is very accurate for up to ˜40 percent deviation in both stiffness and mass density. Using the analytical results and Sims approach, optimal DVA tuning is found for each set of beam heterogeneity parameters by solving a set of nonlinear algebraic equations numerically. It is found that the optimum can be further improved by searching for the best step location. The system optimization is then expanded to a general heterogeneous beam with a DVA at its tip. The mass and stiffness distribution is optimized by applying the Lagrange variation method on the FPM solution yielding Fredholm integral equations. The optimized morphology is found to be approximately linear and far from the "intuitive" step-like one (Rivin and Kang, 1992) and yields better chatter-resistance.
Advances in iterative non-uniformity correction techniques for infrared scene projection
NASA Astrophysics Data System (ADS)
Danielson, Tom; Franks, Greg; LaVeigne, Joe; Prewarski, Marcus; Nehring, Brian
2015-05-01
Santa Barbara Infrared (SBIR) is continually developing improved methods for non-uniformity correction (NUC) of its Infrared Scene Projectors (IRSPs) as part of its comprehensive efforts to achieve the best possible projector performance. The most recent step forward, Advanced Iterative NUC (AI-NUC), improves upon previous NUC approaches in several ways. The key to NUC performance is achieving the most accurate possible input drive-to-radiance output mapping for each emitter pixel. This requires many highly-accurate radiance measurements of emitter output, as well as sophisticated manipulation of the resulting data set. AI-NUC expands the available radiance data set to include all measurements made of emitter output at any point. In addition, it allows the user to efficiently manage that data for use in the construction of a new NUC table that is generated from an improved fit of the emitter response curve. Not only does this improve the overall NUC by offering more statistics for interpolation than previous approaches, it also simplifies the removal of erroneous data from the set so that it does not propagate into the correction tables. AI-NUC is implemented by SBIR's IRWindows4 automated test software as part its advanced turnkey IRSP product (the Calibration Radiometry System or CRS), which incorporates all necessary measurement, calibration and NUC table generation capabilities. By employing AI-NUC on the CRS, SBIR has demonstrated the best uniformity results on resistive emitter arrays to date.
Montalto, Alessandro; Stramaglia, Sebastiano; Faes, Luca; Tessitore, Giovanni; Prevete, Roberto; Marinazzo, Daniele
2015-11-01
A challenging problem when studying a dynamical system is to find the interdependencies among its individual components. Several algorithms have been proposed to detect directed dynamical influences between time series. Two of the most used approaches are a model-free one (transfer entropy) and a model-based one (Granger causality). Several pitfalls are related to the presence or absence of assumptions in modeling the relevant features of the data. We tried to overcome those pitfalls using a neural network approach in which a model is built without any a priori assumptions. In this sense this method can be seen as a bridge between model-free and model-based approaches. The experiments performed will show that the method presented in this work can detect the correct dynamical information flows occurring in a system of time series. Additionally we adopt a non-uniform embedding framework according to which only the past states that actually help the prediction are entered into the model, improving the prediction and avoiding the risk of overfitting. This method also leads to a further improvement with respect to traditional Granger causality approaches when redundant variables (i.e. variables sharing the same information about the future of the system) are involved. Neural networks are also able to recognize dynamics in data sets completely different from the ones used during the training phase. PMID:26356599
Effects of Non-Uniform Inlet Temperature Distribution on High-Pressure Turbine Blade Loading
NASA Astrophysics Data System (ADS)
Smith, Craig I.; Chang, Dongil; Tavoularis, Stavros
2012-09-01
The effects of a non-uniform inlet field on the performance of a commercial, transonic, single-stage, high-pressure, axial turbine with a curved inlet duct have been investigated numerically by solving the unsteady Reynolds-averaged Navier-Stokes equations with the shear stress transport (SST) turbulence model. By adjusting the alignment of the experimentally-based inlet temperature field with respect to the stator vanes, two clocking configurations were generated: a Vane-Impinging (VI) case, in which each hot streak impinged on a vane and a Mid-Pitch (MP) case, in which each hot streak passed between two vanes. An additional case with a purely radial (PR) variation of inlet temperature was also investigated. In the VI case, it was observed that, as the hot streaks impinged on the stator vanes, they spread spanwise due to the actions of the casing passage vortices and the radial pressure gradient; this resulted in a stream entering the rotor with relatively low temperature variations. In the MP case, the hot streaks were convected undisturbed past the relatively cool vane section. Relatively high time-averaged enthalpy values were found to occur on the pressure side of the blades in the MP configuration.
NASA Astrophysics Data System (ADS)
Urabe, Keiichiro; Ito, Yosuke; Choi, Joon-Young; Sakai, Osamu; Tachibana, Kunihide
2009-10-01
It is well known that stable and glow dielectric barrier discharge (DBD) at atmospheric pressure is observed using helium gas and AC high voltage of kHz-order frequency. We have investigated the discharge mechanisms of DBDs from a view point of the spatiotemporal distributions of excited species measured by laser spectroscopic methods. In this presentation, we will show convincing arguments about the discharge model of the DBD especially having the non-uniformity of gas composition. As a DBD plasma source for atmospheric pressure processes, we have investigated an atmospheric pressure plasma jet (APPJ) using helium gas flow in ambient air, and this plasma source can be regarded as the DBD near the boundary interface of helium gas and ambient air. In this APPJ, we observed spatiotemporal distributions of excited species density inside the helium gas channel, using laser absorption spectroscopy and laser induced fluorescence, to measure the densities of helium metastable atom (2^3S1 state) and nitrogen ion (X^2σg^+ state) respectively. To study the influence of nitrogen gas contamination on the discharge profile of DBD, we have also applied CO2-laser heterodyne interferometry to measure the special distribution of electron density in parallel-plate DBD.
Photoionization microscopy of Rydberg hydrogen atom in a non-uniform electrical field
NASA Astrophysics Data System (ADS)
Shao-Hao, Cheng; De-Hua, Wang; Zhao-Hang, Chen; Qiang, Chen
2016-06-01
In this paper, we investigate the photoionization microscopy of the Rydberg hydrogen atom in a gradient electric field for the first time. The observed oscillatory patterns in the photoionization microscopy are explained within the framework of the semiclassical theory, which can be considered as a manifestation of interference between various electron trajectories arriving at a given point on the detector plane. In contrast with the photoionization microscopy in the uniform electric field, the trajectories of the ionized electron in the gradient electric field will become chaotic. An infinite set of different electron trajectories can arrive at a given point on the detector plane, which makes the interference pattern of the electron probability density distribution extremely complicated. Our calculation results suggest that the oscillatory pattern in the electron probability density distribution depends sensitively on the electric field gradient, the scaled energy and the position of the detector plane. Through our research, we predict that the interference pattern in the electron probability density distribution can be observed in an actual photoionization microscopy experiment once the external electric field strength and the position of the electron detector plane are reasonable. This study provides some references for the future experimental research on the photoionization microscopy of the Rydberg atom in the non-uniform external fields. Project supported by the National Natural Science Foundation of China (Grant No. 11374133) and the Project of Shandong Provincial Higher Educational Science and Technology Program, China (Grant No. J13LJ04).
Armenta Salas, Michelle; Helms Tillery, Stephen I
2016-01-01
The neural mechanisms that take place during learning and adaptation can be directly probed with brain-machine interfaces (BMIs). We developed a BMI controlled paradigm that enabled us to enforce learning by introducing perturbations which changed the relationship between neural activity and the BMI's output. We introduced a uniform perturbation to the system, through a visuomotor rotation (VMR), and a non-uniform perturbation, through a decorrelation task. The controller in the VMR was essentially unchanged, but produced an output rotated at 30° from the neurally specified output. The controller in the decorrelation trials decoupled the activity of neurons that were highly correlated in the BMI task by selectively forcing the preferred directions of these cell pairs to be orthogonal. We report that movement errors were larger in the decorrelation task, and subjects needed more trials to restore performance back to baseline. During learning, we measured decreasing trends in preferred direction changes and cross-correlation coefficients regardless of task type. Conversely, final adaptations in neural tunings were dependent on the type controller used (VMR or decorrelation). These results hint to the similar process the neural population might engage while adapting to new tasks, and how, through a global process, the neural system can arrive to individual solutions. PMID:27601981
Vertical dynamic response of non-uniform motion of high-speed rails
NASA Astrophysics Data System (ADS)
Tran, Minh Thi; Ang, Kok Keng; Luong, Van Hai
2014-10-01
In this paper, a computational study using the moving element method (MEM) is carried out to investigate the dynamic response of a high-speed rail (HSR) traveling at non-uniform speeds. A new and exact formulation for calculating the generalized mass, damping and stiffness matrices of the moving element is proposed. Two wheel-rail contact models are examined. One is linear and the other nonlinear. A parametric study is carried out to understand the effects of various factors on the dynamic amplification factor (DAF) in contact force between the wheel and rail such as the amplitude of acceleration/deceleration of the train, the severity of railhead roughness and the wheel load. Resonance in the vibration response can possibly occur at various stages of the journey of the HSR when the speed of the train matches the resonance speed. As to be expected, the DAF in contact force peaks when resonance occurs. The effects of the severity of railhead roughness and the wheel load on the occurrence of the jumping wheel phenomenon, which occurs when there is a momentary loss of contact between the wheel and track, are investigated.
Size Distribution Imaging by Non-Uniform Oscillating-Gradient Spin Echo (NOGSE) MRI.
Shemesh, Noam; Álvarez, Gonzalo A; Frydman, Lucio
2015-01-01
Objects making up complex porous systems in Nature usually span a range of sizes. These size distributions play fundamental roles in defining the physicochemical, biophysical and physiological properties of a wide variety of systems - ranging from advanced catalytic materials to Central Nervous System diseases. Accurate and noninvasive measurements of size distributions in opaque, three-dimensional objects, have thus remained long-standing and important challenges. Herein we describe how a recently introduced diffusion-based magnetic resonance methodology, Non-Uniform-Oscillating-Gradient-Spin-Echo (NOGSE), can determine such distributions noninvasively. The method relies on its ability to probe confining lengths with a (length)6 parametric sensitivity, in a constant-time, constant-number-of-gradients fashion; combined, these attributes provide sufficient sensitivity for characterizing the underlying distributions in μm-scaled cellular systems. Theoretical derivations and simulations are presented to verify NOGSE's ability to faithfully reconstruct size distributions through suitable modeling of their distribution parameters. Experiments in yeast cell suspensions - where the ground truth can be determined from ancillary microscopy - corroborate these trends experimentally. Finally, by appending to the NOGSE protocol an imaging acquisition, novel MRI maps of cellular size distributions were collected from a mouse brain. The ensuing micro-architectural contrasts successfully delineated distinctive hallmark anatomical sub-structures, in both white matter and gray matter tissues, in a non-invasive manner. Such findings highlight NOGSE's potential for characterizing aberrations in cellular size distributions upon disease, or during normal processes such as development. PMID:26197220
The Effect of Non-Uniform Wetting Properties on Contact Line Dynamics
NASA Astrophysics Data System (ADS)
Grivel, Morgane; Jeon, David; Gharib, Morteza
2015-11-01
Surfaces with non-uniform wetting properties have been shown to modify contact line dynamics and induce passive displacements of shallow flows. These surfaces are patterned with alternating hydrophobic and hydrophilic stripes of a certain width, spacing and orientation. A thin rectangular wall jet impinges on the surfaces and Fourier Transform Profilometry is used to reconstruct the 3D profile of the low to medium Reynolds number flows. Our previous work reported the development of intriguing roller structures at the contact line near hydrophobic-hydrophilic interfaces and the effect of varying the stripes' dimensions and orientation on these flows. Our present work extends the study to the effects of flow rate and plate inclination angle (with respect to the horizontal). The current work also studies air entrainment by the roller structures of the modified contact line. We will also discuss potential uses of this technique for modifying contact line dynamics and bow waves near surface-piercing bodies. Work is funded by the Office of Naval Research (grant N00014-11-1-0031) and the National Science Foundation's GRFP.
The lateral line is necessary for blind cavefish rheotaxis in non-uniform flow.
Kulpa, Matthew; Bak-Coleman, Joseph; Coombs, Sheryl
2015-05-15
When encountering a unidirectional flow, many fish exhibit an unconditioned orienting response known as rheotaxis. This multisensory behavior can reportedly involve visual, vestibular, tactile and lateral line cues. However, the precise circumstances under which different senses contribute are still unclear and there is considerable debate, in particular, about the contributions of the lateral line. In this study, we investigate the rheotactic behavior of blind cavefish under conditions of spatially non-uniform flow (a jet stream), which in theory, should promote reliance on lateral line cues. The behavior of individual lateral line enabled and disabled fish was videorecorded under IR light in a square arena that prevented streamwise biases and that contained a narrow jet stream in the center of the tank. Whereas the stream's peak velocity (8 cm s(-1)) declined very little in the streamwise direction, it declined steeply in the cross-stream direction (∼3-4.5 cm s(-1) cm(-1)). Lateral line enabled fish showed higher levels of orientation to the stream and its source (a 1-cm-wide nozzle) when in the central (jet stream) region of the tank compared with surrounding regions, whereas lateral line disabled fish showed random orientations in all regions of the tank. The results of this study indicate that the spatial characteristics of flow play a role in determining the sensory basis of rheotaxis. PMID:25827837
Iterative Image Reconstruction for PROPELLER-MRI using the NonUniform Fast Fourier Transform
Tamhane, Ashish A.; Anastasio, Mark A.; Gui, Minzhi; Arfanakis, Konstantinos
2013-01-01
Purpose To investigate an iterative image reconstruction algorithm using the non-uniform fast Fourier transform (NUFFT) for PROPELLER (Periodically Rotated Overlapping parallEL Lines with Enhanced Reconstruction) MRI. Materials and Methods Numerical simulations, as well as experiments on a phantom and a healthy human subject were used to evaluate the performance of the iterative image reconstruction algorithm for PROPELLER, and compare it to that of conventional gridding. The trade-off between spatial resolution, signal to noise ratio, and image artifacts, was investigated for different values of the regularization parameter. The performance of the iterative image reconstruction algorithm in the presence of motion was also evaluated. Results It was demonstrated that, for a certain range of values of the regularization parameter, iterative reconstruction produced images with significantly increased SNR, reduced artifacts, for similar spatial resolution, compared to gridding. Furthermore, the ability to reduce the effects of motion in PROPELLER-MRI was maintained when using the iterative reconstruction approach. Conclusion An iterative image reconstruction technique based on the NUFFT was investigated for PROPELLER MRI. For a certain range of values of the regularization parameter the new reconstruction technique may provide PROPELLER images with improved image quality compared to conventional gridding. PMID:20578028
Regional paleofire regimes affected by non-uniform climate, vegetation and human drivers
Blarquez, Olivier; Ali, Adam A.; Girardin, Martin P.; Grondin, Pierre; Fréchette, Bianca; Bergeron, Yves; Hély, Christelle
2015-01-01
Climate, vegetation and humans act on biomass burning at different spatial and temporal scales. In this study, we used a dense network of sedimentary charcoal records from eastern Canada to reconstruct regional biomass burning history over the last 7000 years at the scale of four potential vegetation types: open coniferous forest/tundra, boreal coniferous forest, boreal mixedwood forest and temperate forest. The biomass burning trajectories were compared with regional climate trends reconstructed from general circulation models, tree biomass reconstructed from pollen series, and human population densities. We found that non-uniform climate, vegetation and human drivers acted on regional biomass burning history. In the open coniferous forest/tundra and dense coniferous forest, the regional biomass burning was primarily shaped by gradual establishment of less climate-conducive burning conditions over 5000 years. In the mixed boreal forest an increasing relative proportion of flammable conifers in landscapes since 2000 BP contributed to maintaining biomass burning constant despite climatic conditions less favourable to fires. In the temperate forest, biomass burning was uncoupled with climatic conditions and the main driver was seemingly vegetation until European colonization, i.e. 300 BP. Tree biomass and thus fuel accumulation modulated fire activity, an indication that biomass burning is fuel-dependent and notably upon long-term co-dominance shifts between conifers and broadleaf trees. PMID:26330162
Regional paleofire regimes affected by non-uniform climate, vegetation and human drivers.
Blarquez, Olivier; Ali, Adam A; Girardin, Martin P; Grondin, Pierre; Fréchette, Bianca; Bergeron, Yves; Hély, Christelle
2015-01-01
Climate, vegetation and humans act on biomass burning at different spatial and temporal scales. In this study, we used a dense network of sedimentary charcoal records from eastern Canada to reconstruct regional biomass burning history over the last 7000 years at the scale of four potential vegetation types: open coniferous forest/tundra, boreal coniferous forest, boreal mixedwood forest and temperate forest. The biomass burning trajectories were compared with regional climate trends reconstructed from general circulation models, tree biomass reconstructed from pollen series, and human population densities. We found that non-uniform climate, vegetation and human drivers acted on regional biomass burning history. In the open coniferous forest/tundra and dense coniferous forest, the regional biomass burning was primarily shaped by gradual establishment of less climate-conducive burning conditions over 5000 years. In the mixed boreal forest an increasing relative proportion of flammable conifers in landscapes since 2000 BP contributed to maintaining biomass burning constant despite climatic conditions less favourable to fires. In the temperate forest, biomass burning was uncoupled with climatic conditions and the main driver was seemingly vegetation until European colonization, i.e. 300 BP. Tree biomass and thus fuel accumulation modulated fire activity, an indication that biomass burning is fuel-dependent and notably upon long-term co-dominance shifts between conifers and broadleaf trees. PMID:26330162
Mechanisms of gas breakdown in non-uniform electric field between flat electrodes
NASA Astrophysics Data System (ADS)
Lisovskiy, Valeriy; Osmayev, Ruslan; Yegorenkov, Vladimir
2015-09-01
This paper studies how the electric field non-uniformity and the electron diffusion escape affect the DC gas breakdown between flat electrodes. We registered the breakdown curves of the DC discharge between the electrodes having the radius of Re = 6 mm with the inter-electrode gap values L between 3 and 72 mm in the tubes of inner diameter values of 13 and 56 mm within the nitrogen pressure range p from 0.02 to 120 Torr. We found that the breakdown curves for the gap of 3 mm actually match in the total pressure range, the diffusion escape of electrons to the tube walls playing no role in the gas breakdown process. In a narrow tube the minimum breakdown voltage is constant in the range of L/Re <= 1 but with the subsequent gap growth it increases linearly in order to compensate for the diffusion loss to the tube walls. For the wide tubes of 56 mm in diameter and for the gap of 72 mm the breakdown curves possess more flat minima and they run in the range of lower breakdown voltage values than one for a narrow tube. The minimum breakdown voltage grows slowly only in the range of L/Re >2. and Scientific Center of Physical Technologies, Svobody Sq.6, Kharkov, 61022, Ukraine.
Non-uniform sampling: post-Fourier era of NMR data collection and processing.
Kazimierczuk, Krzysztof; Orekhov, Vladislav
2015-11-01
The invention of multidimensional techniques in the 1970s revolutionized NMR, making it the general tool of structural analysis of molecules and materials. In the most straightforward approach, the signal sampling in the indirect dimensions of a multidimensional experiment is performed in the same manner as in the direct dimension, i.e. with a grid of equally spaced points. This results in lengthy experiments with a resolution often far from optimum. To circumvent this problem, numerous sparse-sampling techniques have been developed in the last three decades, including two traditionally distinct approaches: the radial sampling and non-uniform sampling. This mini review discusses the sparse signal sampling and reconstruction techniques from the point of view of an underdetermined linear algebra problem that arises when a full, equally spaced set of sampled points is replaced with sparse sampling. Additional assumptions that are introduced to solve the problem, as well as the shape of the undersampled Fourier transform operator (visualized as so-called point spread function), are shown to be the main differences between various sparse-sampling methods. PMID:26290057
Adaptation of filtered back-projection to compton imaging with non-uniform azimuthal geometry
NASA Astrophysics Data System (ADS)
Lee, Hyounggun; Lee, Taewoong; Lee, Wonho
2016-05-01
For Compton image reconstruction, analytic reconstruction methods such as filtered backprojection have been used for real-time imaging. The conventional filtered back-projection method assumes a uniformly distributed azimuthal response in the detector system. In this study, we applied filtered back-projection to the experimental data from detector systems with limited azimuthal angle coverage ranges and estimated the limitations of the analytic reconstruction methods when applied to these systems. For the system with a uniform azimuthal response, the images reconstructed by using filtered back-projection showed better angular resolutions than the images obtained by using simple back-projection did. However, when filtered back-projection was applied to reconstruct Compton images based on measurements performed by using Compton cameras with limited response geometries, the reconstructed images exhibited artifacts caused by the geometrical limitations. Our proposed method employs the Compton camera's rotation to overcome the angular response limitations; when the rotation method was applied in this study, the artifacts in the reconstructed images caused by angular response limitations were minimized. With this method, filtered back-projection can be applied to reconstruct real-time Compton images even when the radiation measurements are performed by using Compton cameras with non-uniform azimuthal response geometries.
Temperature model for process impact non-uniformity in genipin recovery by high pressure processing.
Ramos-de-la-Peña, Ana Mayela; Montañez, Julio C; Reyes-Vega, María de la Luz; Contreras-Esquivel, Juan Carlos
2015-11-15
A model for the process impact temperature non-uniformity during high pressure processing (HPP) of genipap fruit purees was found during genipin recovery. Purees were subjected to HPP (130-530 MPa) under quasi-isobaric non-isothermal conditions (15 min; 0, 4.6 and 9.3mg pectinases/g fruit). Genipin and protein concentration was determined, and pH was measured. Polygalacturonase activity was quantified indirectly by protein content (mg/g fruit). First order kinetics described temperature changes (0-4 min). Polygalacturonase was activated at 130 MPa, inactivated reversibly at 330 MPa and activated again at 530 MPa. Enzyme reaction rate constant (k) was placed in the 0-4 min model and temperature from 2 to 15 min was described. Protein content and pH characterization in terms of decimal reduction time improved highly the 2-15 min model. Since temperature changes were modeled, more insight of its behavior in an HPP reactor was obtained, avoiding uniformity assumptions, making easier the industrial scale HPP implementation. PMID:25977049
Regional paleofire regimes affected by non-uniform climate, vegetation and human drivers
NASA Astrophysics Data System (ADS)
Blarquez, Olivier; Ali, Adam A.; Girardin, Martin P.; Grondin, Pierre; Fréchette, Bianca; Bergeron, Yves; Hély, Christelle
2015-09-01
Climate, vegetation and humans act on biomass burning at different spatial and temporal scales. In this study, we used a dense network of sedimentary charcoal records from eastern Canada to reconstruct regional biomass burning history over the last 7000 years at the scale of four potential vegetation types: open coniferous forest/tundra, boreal coniferous forest, boreal mixedwood forest and temperate forest. The biomass burning trajectories were compared with regional climate trends reconstructed from general circulation models, tree biomass reconstructed from pollen series, and human population densities. We found that non-uniform climate, vegetation and human drivers acted on regional biomass burning history. In the open coniferous forest/tundra and dense coniferous forest, the regional biomass burning was primarily shaped by gradual establishment of less climate-conducive burning conditions over 5000 years. In the mixed boreal forest an increasing relative proportion of flammable conifers in landscapes since 2000 BP contributed to maintaining biomass burning constant despite climatic conditions less favourable to fires. In the temperate forest, biomass burning was uncoupled with climatic conditions and the main driver was seemingly vegetation until European colonization, i.e. 300 BP. Tree biomass and thus fuel accumulation modulated fire activity, an indication that biomass burning is fuel-dependent and notably upon long-term co-dominance shifts between conifers and broadleaf trees.
Gramicidin Induce Local Non-Uniform Distribution of Lipids in Multi-Component Membrane Domains
NASA Astrophysics Data System (ADS)
Mao, Yu; Hussain, Fazle; Huang, Juyang
2015-03-01
In lipid membranes, gramicidin form trans-membrane channels that are specific for monovalent cations. We performed Molecular Dynamics simulations of gramicidin in coexisting liquid-ordered (Lo) and liquid disordered (Ld) domains using GROMACS. The lipid compositions of Lo and Ld domains are DOPC/DSPC/Cholesterol = 6.5/52.6/40.9 and 74.4/10.6/15, respectively. In the Ld domain, the membrane thickness matches the hydrophobic length of gramicidin quite well, and water molecules can diffuse through the gramicidin channels. However, in the Lo lipid domain, the bilayer thickness is far greater than the hydrophobic length of gramicidin and majority of gramicidin do not form conducting channel. The simulation result explained our experimental finding that gramicidin partition favorably into the Ld domains. The calculated radial distribution functions of lipids indicate that gramicidin recruit a layer of short DOPC surrounding each protein and keep cholesterol and taller DSPC away from the protein-bilayer interface. Our result indicates that membrane proteins are capable of inducing non-uniform distributions of lipids and creating a local bilayer environment, which favors protein function.
Zombie Vortex Instability: Effects of Non-uniform Stratification & Thermal Cooling
NASA Astrophysics Data System (ADS)
Barranco, Joseph; Pei, Suyang; Marcus, Phil; Jiang, Chung-Hsiang
2015-11-01
The Zombie Vortex Instability (ZVI) is a nonlinear instability in rotating, stratified, shear flows, such as in protoplanetary disks (PPD) of gas and dust orbiting new stars. The instability mechanism is the excitation of baroclinic critical layers, leading to vorticity amplification and nonlinear evolution into anticyclonic vortices and cyclonic sheets. ZVI is most robust when the Coriolis frequency, shear rate, and Brunt-Väisälä (BV) frequency are of the same order. Previously, we investigated ZVI with uniform stratification and without thermal cooling. Here, we explore the role of non-uniform stratification as would be found in PPDs in which the BV frequency is zero in the disk midplane, and increases away from the midplane. We find that ZVI is vigorous 1-3 pressure scale heights away from the midplane, but the non-isotropic turbulence generated by ZVI can penetrate into the midplane. We also explore the effect of thermal cooling and find that ZVI is still robust for cooling times as short as 5 orbital periods. ZVI may play important roles in transporting angular momentum in PPDs, and in trapping dust grains, which may trigger gravitational clumping into planetesimals.
Proposal for a Domain Wall Nano-Oscillator driven by Non-uniform Spin Currents
Sharma, Sanchar; Muralidharan, Bhaskaran; Tulapurkar, Ashwin
2015-01-01
We propose a new mechanism and a related device concept for a robust, magnetic field tunable radio-frequency (rf) oscillator using the self oscillation of a magnetic domain wall subject to a uniform static magnetic field and a spatially non-uniform vertical dc spin current. The self oscillation of the domain wall is created as it translates periodically between two unstable positions, one being in the region where both the dc spin current and the magnetic field are present, and the other, being where only the magnetic field is present. The vertical dc spin current pushes it away from one unstable position while the magnetic field pushes it away from the other. We show that such oscillations are stable under noise and can exhibit a quality factor of over 1000. A domain wall under dynamic translation, not only being a source for rich physics, is also a promising candidate for advancements in nanoelectronics with the actively researched racetrack memory architecture, digital and analog switching paradigms as candidate examples. Devising a stable rf oscillator using a domain wall is hence another step towards the realization of an all domain wall logic scheme. PMID:26420544
Non-uniform velocity profile mechanism for flame stabilization in a porous radiant burner
Catapan, R.C.; Costa, M.; Oliveira, A.A.M.
2011-01-15
Industrial processes where the heating of large surfaces is required lead to the possibility of using large surface porous radiant burners. This causes additional temperature uniformity problems, since it is increasingly difficult to evenly distribute the reactant mixture over a large burner surface while retaining its stability and keeping low pollutant emissions. In order to allow for larger surface area burners, a non-uniform velocity profile mechanism for flame stabilization in a porous radiant burner using a single large injection hole is proposed and analyzed for a double-layered burner operating in open and closed hot (laboratory-scale furnace, with temperature-controlled, isothermal walls) environments. In both environments, local mean temperatures within the porous medium have been measured. For lower reactant flow rate and ambient temperature the flame shape is conical and anchored at the rim of the injection hole. As the volumetric flow rate or furnace temperature is raised, the flame undergoes a transition to a plane flame stabilized near the external burner surface. However, the stability range envelope remains the same in both regimes. (author)
Non-uniform Solar Temperature Field on Large Aperture, Fully-Steerable Telescope Structure
NASA Astrophysics Data System (ADS)
Liu, Yan
2016-09-01
In this study, a 110-m fully steerable radio telescope was used as an analysis platform and the integral parametric finite element model of the antenna structure was built in the ANSYS thermal analysis module. The boundary conditions of periodic air temperature, solar radiation, long-wave radiation shadows of the surrounding environment, etc. were computed at 30 min intervals under a cloudless sky on a summer day, i.e., worstcase climate conditions. The transient structural temperatures were then analyzed under a period of several days of sunshine with a rational initial structural temperature distribution until the whole set of structural temperatures converged to the results obtained the day before. The non-uniform temperature field distribution of the entire structure and the main reflector surface RMS were acquired according to changes in pitch and azimuth angle over the observation period. Variations in the solar cooker effect over time and spatial distributions in the secondary reflector were observed to elucidate the mechanism of the effect. The results presented here not only provide valuable realtime data for the design, construction, sensor arrangement and thermal deformation control of actuators but also provide a troubleshooting reference for existing actuators.
Modeling and Compensating Temperature-Dependent Non-Uniformity Noise in IR Microbolometer Cameras.
Wolf, Alejandro; Pezoa, Jorge E; Figueroa, Miguel
2016-01-01
Images rendered by uncooled microbolometer-based infrared (IR) cameras are severely degraded by the spatial non-uniformity (NU) noise. The NU noise imposes a fixed-pattern over the true images, and the intensity of the pattern changes with time due to the temperature instability of such cameras. In this paper, we present a novel model and a compensation algorithm for the spatial NU noise and its temperature-dependent variations. The model separates the NU noise into two components: a constant term, which corresponds to a set of NU parameters determining the spatial structure of the noise, and a dynamic term, which scales linearly with the fluctuations of the temperature surrounding the array of microbolometers. We use a black-body radiator and samples of the temperature surrounding the IR array to offline characterize both the constant and the temperature-dependent NU noise parameters. Next, the temperature-dependent variations are estimated online using both a spatially uniform Hammerstein-Wiener estimator and a pixelwise least mean squares (LMS) estimator. We compensate for the NU noise in IR images from two long-wave IR cameras. Results show an excellent NU correction performance and a root mean square error of less than 0.25 ∘ C, when the array's temperature varies by approximately 15 ∘ C. PMID:27447637
Instability of Non-uniform Toroidal Magnetic Fields in Accretion Disks
NASA Astrophysics Data System (ADS)
Hirabayashi, Kota; Hoshino, Masahiro
2016-05-01
We present a new type of instability that is expected to drive magnetohydrodynamic (MHD) turbulence from a purely toroidal magnetic field in an accretion disk. It is already known that in a differentially rotating system, the uniform toroidal magnetic field is unstable due to magnetorotational instability (MRI) under a non-axisymmetric and vertical perturbation, while it is stable under a purely vertical perturbation. Contrary to the previous study, this paper proposes an unstable mode completely confined to the equatorial plane, driven by the expansive nature of the magnetic pressure gradient force under a non-uniform toroidal field. The basic nature of this growing eigenmode, which we name “magneto-gradient driven instability,” is studied using linear analysis, and the corresponding nonlinear evolution is then investigated using two-dimensional ideal MHD simulations. Although a single localized magnetic field channel alone cannot provide sufficient Maxwell stress to contribute significantly to the angular momentum transport, we find that the mode coupling between neighboring toroidal fields under multiple localized magnetic field channels drastically generates a highly turbulent state and leads to the enhanced transport of angular momentum, which is comparable to the efficiency seen in previous studies on MRIs. This horizontally confined mode may play an important role in the saturation of an MRI through complementray growth with the toroidal MRIs and coupling with magnetic reconnection.
Modeling and Compensating Temperature-Dependent Non-Uniformity Noise in IR Microbolometer Cameras
Wolf, Alejandro; Pezoa, Jorge E.; Figueroa, Miguel
2016-01-01
Images rendered by uncooled microbolometer-based infrared (IR) cameras are severely degraded by the spatial non-uniformity (NU) noise. The NU noise imposes a fixed-pattern over the true images, and the intensity of the pattern changes with time due to the temperature instability of such cameras. In this paper, we present a novel model and a compensation algorithm for the spatial NU noise and its temperature-dependent variations. The model separates the NU noise into two components: a constant term, which corresponds to a set of NU parameters determining the spatial structure of the noise, and a dynamic term, which scales linearly with the fluctuations of the temperature surrounding the array of microbolometers. We use a black-body radiator and samples of the temperature surrounding the IR array to offline characterize both the constant and the temperature-dependent NU noise parameters. Next, the temperature-dependent variations are estimated online using both a spatially uniform Hammerstein-Wiener estimator and a pixelwise least mean squares (LMS) estimator. We compensate for the NU noise in IR images from two long-wave IR cameras. Results show an excellent NU correction performance and a root mean square error of less than 0.25 ∘C, when the array’s temperature varies by approximately 15 ∘C. PMID:27447637
Armenta Salas, Michelle; Helms Tillery, Stephen I.
2016-01-01
The neural mechanisms that take place during learning and adaptation can be directly probed with brain-machine interfaces (BMIs). We developed a BMI controlled paradigm that enabled us to enforce learning by introducing perturbations which changed the relationship between neural activity and the BMI's output. We introduced a uniform perturbation to the system, through a visuomotor rotation (VMR), and a non-uniform perturbation, through a decorrelation task. The controller in the VMR was essentially unchanged, but produced an output rotated at 30° from the neurally specified output. The controller in the decorrelation trials decoupled the activity of neurons that were highly correlated in the BMI task by selectively forcing the preferred directions of these cell pairs to be orthogonal. We report that movement errors were larger in the decorrelation task, and subjects needed more trials to restore performance back to baseline. During learning, we measured decreasing trends in preferred direction changes and cross-correlation coefficients regardless of task type. Conversely, final adaptations in neural tunings were dependent on the type controller used (VMR or decorrelation). These results hint to the similar process the neural population might engage while adapting to new tasks, and how, through a global process, the neural system can arrive to individual solutions. PMID:27601981
Proposal for a Domain Wall Nano-Oscillator driven by Non-uniform Spin Currents
NASA Astrophysics Data System (ADS)
Sharma, Sanchar; Muralidharan, Bhaskaran; Tulapurkar, Ashwin
2015-09-01
We propose a new mechanism and a related device concept for a robust, magnetic field tunable radio-frequency (rf) oscillator using the self oscillation of a magnetic domain wall subject to a uniform static magnetic field and a spatially non-uniform vertical dc spin current. The self oscillation of the domain wall is created as it translates periodically between two unstable positions, one being in the region where both the dc spin current and the magnetic field are present, and the other, being where only the magnetic field is present. The vertical dc spin current pushes it away from one unstable position while the magnetic field pushes it away from the other. We show that such oscillations are stable under noise and can exhibit a quality factor of over 1000. A domain wall under dynamic translation, not only being a source for rich physics, is also a promising candidate for advancements in nanoelectronics with the actively researched racetrack memory architecture, digital and analog switching paradigms as candidate examples. Devising a stable rf oscillator using a domain wall is hence another step towards the realization of an all domain wall logic scheme.
Vibration and Noise Characteristics of Elliptical Gears due to Non-Uniform Rotation
NASA Astrophysics Data System (ADS)
Liu, Xing; Nagamura, Kazuteru; Ikejo, Kiyotaka
Elliptical gear is a typical non-circular gear, which transmits a variable-ratio rotation and power simultaneously. Due to the non-uniform rotation, the vibration and noise of elliptical gears demonstrate particular characteristics which should be paid attention to in practical application. In this paper, two elliptical gears, which are a single elliptical gear and a double elliptical gear, have been investigated to analyze the vibration and noise characteristics of elliptical gears. The corresponding circular gears for comparison are also investigated. General factors including the torque, the rotation speed, the gear vibration acceleration and the gear noise of the four test gears are measured by running test. The root mean square of the Circumferential Vibration Acceleration (CVA) and the sound pressure level of the noise of elliptical gears are obtained from the measured results and compared with those of circular gears to clarify the vibration and noise characteristics of elliptical gears. Furthermore, the frequency analysis of the CVA of elliptical gears is conducted by Fast Fourier Transform Algorithm (FFT) and compared with that of circular gears. The main vibration component of elliptical gear is uncovered according to the obtained frequency spectra. In addition, the Critical Rotation Speeds of Tooth Separation (CRSTS) of elliptical gear is obtained and its relation with load torque is unveiled.
N-dimensional non uniform rational B-splines for metamodeling
Turner, Cameron J; Crawford, Richard H
2008-01-01
Non Uniform Rational B-splines (NURBs) have unique properties that make them attractive for engineering metamodeling applications. NURBs are known to accurately model many different continuous curve and surface topologies in 1-and 2-variate spaces. However, engineering metamodels of the design space often require hypervariate representations of multidimensional outputs. In essence, design space metamodels are hyperdimensional constructs with a dimensionality determined by their input and output variables. To use NURBs as the basis for a metamodel in a hyperdimensional space, traditional geometric fitting techniques must be adapted to hypervariate and hyperdimensional spaces composed of both continuous and discontinuous variable types. In this paper, we describe the necessary adaptations for the development of a NURBs-based metamodel called a Hyperdimensional Performance Model or HyPerModel. HyPerModels are capable of accurately and reliably modeling nonlinear hyperdimensional objects defined by both continuous and discontinuous variables of a wide variety of topologies, such as those that define typical engineering design spaces. We demonstrate this ability by successfully generating accurate HyPerModels of 10 trial functions laying the foundation for future work with N-dimensional NURBs in design space applications.
n-dimensional non uniform rational b-splines for metamodeling
Turner, Cameron J; Crawford, Richard H
2008-01-01
Non Uniform Rational B-splines (NURBs) have unique properties that make them attractive for engineering metamodeling applications. NURBs are known to accurately model many different continuous curve and surface topologies in 1- and 2-variate spaces. However, engineering metamodels of the design space often require hypervariate representations of multidimensional outputs. In essence, design space metamodels are hyperdimensional constructs with a dimensionality determined by their input and output variables. To use NURBs as the basis for a metamodel in a hyperdimensional space, traditional geometric fitting techniques must be adapted to hypervariate and hyperdimensional spaces composed of both continuous and discontinuous variable types. In this paper, they describe the necessary adaptations for the development of a NURBs-based metamodel called a Hyperdimensional Performance Model or HyPerModel. HyPerModels are capable of accurately and reliably modeling nonlinear hyperdimensional objects defined by both continuous and discontinuous variables of a wide variety of topologies, such as those that define typical engineering design spaces. They demonstrate this ability by successfully generating accurate HyPerModels of 10 trial functions laying the foundation for future work with N-dimensional NURBs in design space applications.
Flux measurements in the near surface layer over a non-uniform crop surface in China
NASA Astrophysics Data System (ADS)
Gao, Z.; Bian, L.; Liu, S.
2005-06-01
Eddy covariance measurements were conducted on fluxes of moisture, heat and CO2 in a near-surface layer over a non-uniform crop surface in an agricultural ecosystem in the central plain of China from 10 June to 20 July 2002. During this period, the mean canopy height was about 0.50 m. The study site consisted of grass (10% of area), bean (15%), corn (15%) and rice (60%). Based on footprint analysis, we expected >90% of the measured flux (at a height of 4 m above ground surface) to occur within the nearest 600 m of upwind area. We examined interdiurnal variations in the components of the surface energy balance and in CO2 flux. Results show that the pattern of energy partition had no obvious variation during the season. Daytime absorption of CO2 flux by the crop canopy suddenly increased after thunderstorm events. We examined the energy budget closure and found it to be around 0.85. We compared energy partitioning for all rain-free days, and found energy imbalance was more significant for the 1~3 days after rainy events and energy components almost achieve balance for the other rain-free days. It indicated that the cold or warm rainwater infiltrating into soil made problems.
Railroad inspection based on ACFM employing a non-uniform B-spline approach
NASA Astrophysics Data System (ADS)
Chacón Muñoz, J. M.; García Márquez, F. P.; Papaelias, M.
2013-11-01
The stresses sustained by rails have increased in recent years due to the use of higher train speeds and heavier axle loads. For this reason surface and near-surface defects generate by Rolling Contact Fatigue (RCF) have become particularly significant as they can cause unexpected structural failure of the rail, resulting in severe derailments. The accident that took place in Hatfield, UK (2000), is an example of a derailment caused by the structural failure of a rail section due to RCF. Early detection of RCF rail defects is therefore of paramount importance to the rail industry. The performance of existing ultrasonic and magnetic flux leakage techniques in detecting rail surface-breaking defects, such as head checks and gauge corner cracking, is inadequate during high-speed inspection, while eddy current sensors suffer from lift-off effects. The results obtained through rail inspection experiments under simulated conditions using Alternating Current Field Measurement (ACFM) probes, suggest that this technique can be applied for the accurate and reliable detection of surface-breaking defects at high inspection speeds. This paper presents the B-Spline approach used for the accurate filtering the noise of the raw ACFM signal obtained during high speed tests to improve the reliability of the measurements. A non-uniform B-spline approximation is employed to calculate the exact positions and the dimensions of the defects. This method generates a smooth approximation similar to the ACFM dataset points related to the rail surface-breaking defect.
Identifying Microlenses In Large, Non-uniformly Sampled Surveys: The Case Of PTF
NASA Astrophysics Data System (ADS)
Price-Whelan, Adrian M.; Agúeros, M.; Fournier, A.; Ofek, E.; Street, R.
2012-05-01
Many current photometric, time-domain surveys are driven by specific goals, such as supernova searches, transiting exoplanet discoveries, or stellar variability studies, which set the cadence with which individual fields get re-imaged. In the case of the Palomar Transient Factory (PTF), several such sub-surveys are being conducted in parallel, leading to an extremely non-uniform sampling gradient over the survey footprint of nearly 20,000 deg^2: while the typical 7.26 deg^2 PTF field has been imaged 15 times, 1000 deg^2 of the survey has been observed more than 150 times. We use the existing PTF data to study the trade-off between a large survey footprint and irregular sampling when searching for microlensing events, and to examine the probability that such events can be recovered in these data. We conduct Monte Carlo simulations to evaluate our detection efficiency in a hypothetical survey field as a function of both the baseline and number of observations. We also apply variability statistics to systematically differentiate between periodic, transient, and flat light curves. Preliminary results suggest that both recovery and discovery of microlensing events are possible with a careful consideration of photometric systematics. This work can help inform predictions about the observability of microlensing signals in future wide-field time-domain surveys such as that of LSST.
Non-Uniform Displacements within the Achilles Tendon observed during Passive and Eccentric Loading
Slane, Laura Chernak; Thelen, Darryl G.
2014-01-01
The goal of this study was to investigate Achilles tendon tissue displacement patterns under passive and eccentric loading conditions. Nine healthy young adults were positioned prone on an examination table with their foot secured to a rotating footplate aligned with the ankle. Subjects cyclically rotated their ankle over a 25 deg range of motion at 0.5 Hz. An inertial load geared to the footplate induced eccentric plantarflexor contractions with dorsiflexion. Passive cyclic ankle motion was also performed over the same angular range of motion. An ultrasound transducer positioned over the distal Achilles tendon was used to collect radiofrequency (RF) images at 70 frames/sec. Two-dimensional ultrasound elastographic analysis of the RF data was used to track tendon tissue displacements throughout the cyclic motion. Non-uniform tissue displacement patterns were observed in all trials, with the deeper portions of the Achilles tendon consistently exhibiting larger displacements than the superficial tendon (average of 0.9–2.6 mm larger). Relative to the passive condition, eccentric loading consistently induced smaller tissue displacements in all tendon regions, except for the superficial tendon in a flexed knee posture. Significantly greater overall tissue displacement was observed in a more extended knee posture (30 deg) relative to a flexed knee posture (90 deg). These spatial- and posture-dependent displacement patterns suggest that the tendon undergoes nonuniform deformation under in vivo loading conditions. Such behavior could reflect relative sliding between the distinct tendon fascicles that arise from the gastrocnemius and soleus muscles. PMID:25150898
Savage, Mark Edward; Stoltzfus, Brian Scott
2005-06-01
Although there is much written in regards to voltage breakdown of polymeric insulators under AC and DC conditions, much less is written involving Rexolite{copyright}(1422), non-uniform field geometries, and impulse conditions. Yet, in order to design optimized pulsed power systems with some desired degree of reliability, understanding the behavior of this type of insulating system is needed. Specifically, Sandia National Laboratory's ZR project, which will use anode plugs in the vacuum stack (thus increasing the electrical stress in the Rexolite insulators), needs to be able to estimate the reliability of these vacuum stack insulators. In an effort to estimate the insulator's lifetime small scale testing is in progress. Nine samples have been tested so far and at least ten more will be tested. Results from the current testing suggest that the Rexolite 'ages' from pulse to pulse, that there is some volume dependence on breakdown strength, and that the electrode-vacuum-insulator interface has an affect on the insulator lifetime.
Effects of the non-uniform initial environment and the guide field on the plasmoid instability
Ni, Lei; Lin, Jun; Murphy, Nicholas A.
2013-06-15
Effects of non-uniform initial mass density and temperature on the plasmoid instability are studied via 2.5-dimensional resistive magnetohydrodynamic (MHD) simulations. Our results indicate that the development of the plasmoid instability is apparently prevented when the initial plasma density at the center of the current sheet is higher than that in the upstream region. As a result, the higher the plasma density at the center and the lower the plasma β in the upstream region, the higher the critical Lundquist number needed for triggering secondary instabilities. When β=0.2, the critical Lundquist number is higher than 10{sup 4}. For the same Lundquist number, the magnetic reconnection rate is lower for the lower plasma β case. Oppositely, when the initial mass density is uniform and the Lundquist number is low, the magnetic reconnection rate turns out to be higher for the lower plasma β case. For the high Lundquist number case (>10{sup 4}) with uniform initial mass density, the magnetic reconnection is not affected by the initial plasma β and the temperature distribution. Our results indicate that the guide field has a limited impact on the plasmoid instability in resistive MHD.
2D Flow patterning in Hele-Shaw configurations using Non-Uniform Electroosmotic Slip
NASA Astrophysics Data System (ADS)
Boyko, Evgeniy; Rubin, Shimon; Gat, Amir; Bercovici, Moran
2015-11-01
We present an analytical study, validated by numerical simulations, of electroosmotic flow in a Hele-Shaw configuration with non-uniform zeta potential distribution. Applying the lubrication approximation and assuming thin electric double layer, we derive a pair of uncoupled Poisson equations for the pressure and the stream function, and show that the inhomogeneous parts in these equations are governed by gradients in zeta potential parallel and perpendicular to the applied electric field, respectively. We obtain a solution for the case of a disk with uniform zeta potential and show that the flow field created is an exact dipole, even in the immediate vicinity of the disk. We then illustrate the ability to generate complex flow fields using superposition of such disks. Furthermore, we study the inverse problem in which we define the desired flow pattern and solve for the zeta potential distribution required in order to establish it. We demonstrate that such inverse problem solutions can be used to create directional flows confined within narrow regions, without physical walls. We show that these solutions can be assembled to create complex microfluidic networks, composed of intersecting channels and turns, which are basic building blocks in microfluidic devices.
Flow patterning in Hele-Shaw configurations using non-uniform electro-osmotic slip
NASA Astrophysics Data System (ADS)
Boyko, Evgeniy; Rubin, Shimon; Gat, Amir D.; Bercovici, Moran
2015-10-01
We present an analytical study of electro-osmotic flow in a Hele-Shaw configuration with non-uniform zeta potential distribution. Applying the lubrication approximation and assuming thin electric double layer, we obtain a pair of uncoupled Poisson equations for the pressure and depth-averaged stream function, and show that the inhomogeneous parts in these equations are governed by gradients in zeta potential parallel and perpendicular to the applied electric field, respectively. We obtain a solution for the case of a disk-shaped region with uniform zeta potential and show that the flow field created is an exact dipole, even in the immediate vicinity of the disk. In addition, we study the inverse problem where the desired flow field is known and solve for the zeta potential distribution required in order to establish it. Finally, we demonstrate that such inverse problem solutions can be used to create directional flows confined within narrow regions, without physical walls. Such solutions are equivalent to flow within channels and we show that these can be assembled to create complex microfluidic networks, composed of intersecting channels and turns, which are basic building blocks in microfluidic devices.
NASA Astrophysics Data System (ADS)
Dufour, Marc L.; Bisaillon, Charles-Etienne; Lamouche, Guy; Vergnole, Sebastien; Hewko, Mark; D'Amours, Frédéric; Padioleau, Christian; Sowa, Michael
2011-03-01
The Industrial Material Institute (IMI) together with the Institute for Biodiagnostic (IBD) has developed its own optical catheters for cardiovascular imaging applications. Those catheters have been used experimentally in the in vitro coronary artery model of the Langendorff beating heart and in a percutaneous coronary intervention procedure in a porcine model. For some catheter designs, non-uniform rotational distortion (NURD) can be observed as expected from past experience with intra-vascular ultrasound (IVUS) catheters. A two-dimensional (2D) coronary artery test bench that simulates the path into the coronary arteries has been developed. The presence or absence of NURD can be assessed with the test bench using a custom-built cardiovascular Optical Coherence Tomography (OCT) imaging system. A square geometry instead of the circular shape of an artery is used to simulate the coronary arteries. Thereby, it is easier to visualize NURD when it is present. The accumulated torsion induced by the friction on the catheter is measured along the artery path. NURD is induced by the varying friction force that is balanced by the accumulated torsion force. The pullback force is measured and correlated with NURD observed in the 2D test bench. Finally, a model is presented to help understanding the mechanical constraint that leads to the friction force variations.
NASA Astrophysics Data System (ADS)
Hohert, Geoffrey; Pahlevaninezhad, Hamid; Lee, Anthony; Lane, Pierre M.
2016-03-01
Endoscopic catheter-based imaging systems that employ a 2-dimensional rotary or 3-dimensional rotary-pullback scanning mechanism require constant angular velocity at the distal tip to ensure correct angular registration of the collected signal. Non-uniform rotational distortion (NURD) - often present due to a variety of mechanical issues - can result in inconsistent position and velocity profiles at the tip, limiting the accuracy of any measurements. Since artifacts like NURD are difficult to identify and characterize during tissue imaging, phantoms with well-defined patterns have been used to quantify position and/or velocity error. In this work we present a fast, versatile, and cost-effective method for making fused deposition modeling 3D printed phantoms for identifying and quantifying NURD errors along an arbitrary user-defined pullback path. Eight evenly-spaced features are present at the same orientation at all points on the path such that deviations from expected geometry can be quantified for the imaging catheter. The features are printed vertically and then folded together around the path to avoid issues with printer head resolution. This method can be adapted for probes of various diameters and for complex imaging paths with multiple bends. We demonstrate imaging using the 3D printed phantoms with a 1mm diameter rotary-pullback OCT catheter and system as a means of objectively evaluating the mechanical performance of similarly constructed probes.
Ice friction: Role of non-uniform frictional heating and ice premelting
NASA Astrophysics Data System (ADS)
Persson, B. N. J.
2015-12-01
The low friction of ice is usually attributed to the formation of a thin water film due to melting of ice by frictional heating. Melting of ice is a first order phase transition where physical quantities like mass density, the elastic modulus or the shear strength changes abruptly at the transition temperature. Thus, one may expect the friction coefficient to change abruptly at some characteristic sliding speed, when the melt water film is produced. We show that taking into account that, due to non-uniform frictional heating, melting does not occur simultaneously in all the ice contact regions, the transition is not abrupt but still more rapid (as a function of sliding speed) than observed experimentally. The slower than expected drop in the friction with increasing sliding speed may be a consequence of the following paradoxical phenomena: before the melt-water film is formed, the friction of ice is high and a large frictional heating occur which may result in the melting of the ice. If a thin (nanometer) water film would form, the friction becomes low which results in small frictional heating and the freezing of the water film. This suggests a region in sliding speed where a thin (nanometer) surface layer of the ice may be in a mixed state with small ice-like and water-like domains, which fluctuate rapidly in space and time. Alternatively, and more likely, heat-softening of the ice may occur resulting in a thin, statistically homogeneous (in the lateral direction) layer of disordered ice, with a shear strength which decreases continuously as the ice surface temperature approaches the bulk melting temperature. This layer could be related to surface premelting of ice. Using a phenomenological expression for the frictional shear stress, I show that the calculated ice friction is in good agreement with experimental observations.
Topographic viscous fingering: fluid-fluid displacement in a channel of non-uniform gap width.
Woods, Andrew W; Mingotti, Nicola
2016-10-13
We consider the displacement of one fluid by a second immiscible fluid through a long, thin permeable channel whose thickness and permeability decrease away from the axis of the channel. We build a model that illustrates how the shape of the fluid-fluid interface evolves in time. We find that if the injected fluid is of the same viscosity as the original fluid, then the cross-channel variations in permeability and thickness tend to focus the flow along the centre of the channel. If the viscosity of the injected fluid is smaller than the original fluid, then this flow focusing intensifies, leading to very poor sweep of the original fluid in the system, with the injected fluid bypassing much of the channel. We also show that if the viscosity ratio of the injected fluid to the original fluid is sufficiently large, then a blunt nose may develop at the leading edge of the injected fluid, whereas the remainder of the fluid-fluid interface becomes stretched out along the edges of the channel. This leads to a much more efficient sweep of the original fluid from the channel. We generalize the model to illustrate how buoyancy forces and capillary pressure affect the evolution of the system and compare our model predictions with some simple laboratory experiments. This partial stabilization of a fluid interface in a channel of non-uniform width represents a generalization of the classical Saffman-Taylor instability, and our nonlinear solutions for the evolution of the interface highlight the importance of cross-channel variations in permeability and thickness in modelling flow in channelled reservoirs.This article is part of the themed issue 'Energy and the subsurface'. PMID:27597790
Accurate determination of rates from non-uniformly sampled relaxation data.
Stetz, Matthew A; Wand, A Joshua
2016-08-01
The application of non-uniform sampling (NUS) to relaxation experiments traditionally used to characterize the fast internal motion of proteins is quantitatively examined. Experimentally acquired Poisson-gap sampled data reconstructed with iterative soft thresholding are compared to regular sequentially sampled (RSS) data. Using ubiquitin as a model system, it is shown that 25 % sampling is sufficient for the determination of quantitatively accurate relaxation rates. When the sampling density is fixed at 25 %, the accuracy of rates is shown to increase sharply with the total number of sampled points until eventually converging near the inherent reproducibility of the experiment. Perhaps contrary to some expectations, it is found that accurate peak height reconstruction is not required for the determination of accurate rates. Instead, inaccuracies in rates arise from inconsistencies in reconstruction across the relaxation series that primarily manifest as a non-linearity in the recovered peak height. This indicates that the performance of an NUS relaxation experiment cannot be predicted from comparison of peak heights using a single RSS reference spectrum. The generality of these findings was assessed using three alternative reconstruction algorithms, eight different relaxation measurements, and three additional proteins that exhibit varying degrees of spectral complexity. From these data, it is revealed that non-linearity in peak height reconstruction across the relaxation series is strongly correlated with errors in NUS-derived relaxation rates. Importantly, it is shown that this correlation can be exploited to reliably predict the performance of an NUS-relaxation experiment by using three or more RSS reference planes from the relaxation series. The RSS reference time points can also serve to provide estimates of the uncertainty of the sampled intensity, which for a typical relaxation times series incurs no penalty in total acquisition time. PMID:27393626
Size Distribution Imaging by Non-Uniform Oscillating-Gradient Spin Echo (NOGSE) MRI
Shemesh, Noam; Álvarez, Gonzalo A.; Frydman, Lucio
2015-01-01
Objects making up complex porous systems in Nature usually span a range of sizes. These size distributions play fundamental roles in defining the physicochemical, biophysical and physiological properties of a wide variety of systems – ranging from advanced catalytic materials to Central Nervous System diseases. Accurate and noninvasive measurements of size distributions in opaque, three-dimensional objects, have thus remained long-standing and important challenges. Herein we describe how a recently introduced diffusion-based magnetic resonance methodology, Non-Uniform-Oscillating-Gradient-Spin-Echo (NOGSE), can determine such distributions noninvasively. The method relies on its ability to probe confining lengths with a (length)6 parametric sensitivity, in a constant-time, constant-number-of-gradients fashion; combined, these attributes provide sufficient sensitivity for characterizing the underlying distributions in μm-scaled cellular systems. Theoretical derivations and simulations are presented to verify NOGSE’s ability to faithfully reconstruct size distributions through suitable modeling of their distribution parameters. Experiments in yeast cell suspensions – where the ground truth can be determined from ancillary microscopy – corroborate these trends experimentally. Finally, by appending to the NOGSE protocol an imaging acquisition, novel MRI maps of cellular size distributions were collected from a mouse brain. The ensuing micro-architectural contrasts successfully delineated distinctive hallmark anatomical sub-structures, in both white matter and gray matter tissues, in a non-invasive manner. Such findings highlight NOGSE’s potential for characterizing aberrations in cellular size distributions upon disease, or during normal processes such as development. PMID:26197220
Non-uniform changes in membrane receptors in the rat urinary bladder following outlet obstruction.
Zeng, Jianwen; Ekman, Mari; Jiang, Chonghe; Uvelius, Bengt; Swärd, Karl
2015-09-01
The aim of the present study was to investigate the expression and distribution of membrane receptors after bladder outlet obstruction (BOO). Partial bladder outlet obstruction (BOO) was induced in female rats and bladders were harvested after either 10 days or 6 weeks of BOO. The expression of different receptors was surveyed by microarrays and corroborated by immunohistochemistry and western blotting. A microarray experiment identified 10 membrane receptors that were differentially expressed compared to sham-operated rats including both upregulated and downregulated receptors. Four of these were selected for functional experiments on the basis of magnitude of change and relevance to bladder physiology. At 6 weeks of BOO, maximal contraction was reduced for neuromedin B and vasopressin (AVP), consistent with reductions of receptor mRNA levels. Glycine receptor-induced contraction on the other hand was increased and receptor mRNA expression was accordingly upregulated. Maximal relaxation by the β3-adrenergic receptor agonist CL316243 was reduced as was the receptor mRNA level. Immunohistochemistry supported reduced expression of neuromedin B receptors, V1a receptors and β3-adrenergic receptors, but glycine receptor expression appeared unchanged. Western blotting confirmed repression of V1a receptors and induction of glycine receptors in BOO. mRNA for vasopressin was detectable in the bladder, suggesting local AVP production. We conclude that changes in receptor expression following bladder outlet obstruction are non-uniform. Some receptors are upregulated, conferring increased responsiveness to agonist, whereas others are downregulated, leading to decreased agonist-induced responses. This study might help to select pharmacological agents that are effective in modulating lower urinary tract symptoms in BOO. PMID:26004535
Electron trapping non-uniformity in high-pressure-Bridgman-grown CdZnTe
Amman, Mark; Lee, Julie S.; Luke, Paul N.
2002-05-09
Gamma-ray spectroscopy is a valuable tool of science and technology. Many applications for this tool are in need of a detector technology capable of achieving excellent energy resolution and efficient detection while operating at room temperature. Detectors based on the material cadmium zinc telluride (CdZnTe) could potentially meet this need if certain material deficiencies are addressed. The coplanar-grid as well as other electron-only detection techniques are effective in overcoming some of the material problems of CdZnTe and, consequently, have led to efficient gamma-ray detectors with good energy resolution while operating at room temperature. At the present time, the performance of these detectors is mainly limited by the degree of uniformity in electron generation and transport. Despite recent progress in the growth of CdZnTe material, small variations in these properties remain a barrier to the widespread success of such detectors. Alpha-particle response characterization of Cd ZnTe crystals fabricated into simple planar detectors provides an effective tool to accurately study such variations. We have used a finely collimated alpha source to produce two-dimensional maps of detector response. For a number of crystals, a clear correlation has been observed between their alpha response maps and the distribution of tellurium inclusions inside the crystals. An analysis of the induced charge signals indicates that regions of enhanced electron trapping are associated with the inclusions, and that these regions extend beyond the physical size of the inclusions. Such regions introduce non-uniform electron trapping in the material that then degrades the spectroscopic performance of the material as a gamma-ray detector.
NASA Astrophysics Data System (ADS)
Wu, C.; de Jong, J. R.; Gratama van Andel, H. A.; van der Have, F.; Vastenhouw, B.; Laverman, P.; Boerman, O. C.; Dierckx, R. A. J. O.; Beekman, F. J.
2011-09-01
Attenuation of photon flux on trajectories between the source and pinhole apertures affects the quantitative accuracy of reconstructed single-photon emission computed tomography (SPECT) images. We propose a Chang-based non-uniform attenuation correction (NUA-CT) for small-animal SPECT/CT with focusing pinhole collimation, and compare the quantitative accuracy with uniform Chang correction based on (i) body outlines extracted from x-ray CT (UA-CT) and (ii) on hand drawn body contours on the images obtained with three integrated optical cameras (UA-BC). Measurements in phantoms and rats containing known activities of isotopes were conducted for evaluation. In 125I, 201Tl, 99mTc and 111In phantom experiments, average relative errors comparing to the gold standards measured in a dose calibrator were reduced to 5.5%, 6.8%, 4.9% and 2.8%, respectively, with NUA-CT. In animal studies, these errors were 2.1%, 3.3%, 2.0% and 2.0%, respectively. Differences in accuracy on average between results of NUA-CT, UA-CT and UA-BC were less than 2.3% in phantom studies and 3.1% in animal studies except for 125I (3.6% and 5.1%, respectively). All methods tested provide reasonable attenuation correction and result in high quantitative accuracy. NUA-CT shows superior accuracy except for 125I, where other factors may have more impact on the quantitative accuracy than the selected attenuation correction.
Computationally efficient real-time interpolation algorithm for non-uniform sampled biosignals
Eftekhar, Amir; Kindt, Wilko; Constandinou, Timothy G.
2016-01-01
This Letter presents a novel, computationally efficient interpolation method that has been optimised for use in electrocardiogram baseline drift removal. In the authors’ previous Letter three isoelectric baseline points per heartbeat are detected, and here utilised as interpolation points. As an extension from linear interpolation, their algorithm segments the interpolation interval and utilises different piecewise linear equations. Thus, the algorithm produces a linear curvature that is computationally efficient while interpolating non-uniform samples. The proposed algorithm is tested using sinusoids with different fundamental frequencies from 0.05 to 0.7 Hz and also validated with real baseline wander data acquired from the Massachusetts Institute of Technology University and Boston's Beth Israel Hospital (MIT-BIH) Noise Stress Database. The synthetic data results show an root mean square (RMS) error of 0.9 μV (mean), 0.63 μV (median) and 0.6 μV (standard deviation) per heartbeat on a 1 mVp–p 0.1 Hz sinusoid. On real data, they obtain an RMS error of 10.9 μV (mean), 8.5 μV (median) and 9.0 μV (standard deviation) per heartbeat. Cubic spline interpolation and linear interpolation on the other hand shows 10.7 μV, 11.6 μV (mean), 7.8 μV, 8.9 μV (median) and 9.8 μV, 9.3 μV (standard deviation) per heartbeat. PMID:27382478