Science.gov

Sample records for monsoon multidisciplinary analysis

  1. Overview of the Dust and Biomass-burning Experiment and African Monsoon Multidisciplinary Analysis Special Observing Period-0

    NASA Astrophysics Data System (ADS)

    Haywood, J. M.; Pelon, J.; Formenti, P.; Bharmal, N.; Brooks, M.; Capes, G.; Chazette, P.; Chou, C.; Christopher, S.; Coe, H.; Cuesta, J.; Derimian, Y.; Desboeufs, K.; Greed, G.; Harrison, M.; Heese, B.; Highwood, E. J.; Johnson, B.; Mallet, M.; Marticorena, B.; Marsham, J.; Milton, S.; Myhre, G.; Osborne, S. R.; Parker, D. J.; Rajot, J.-L.; Schulz, M.; Slingo, A.; Tanré, D.; Tulet, P.

    2008-12-01

    The African Monsoon Multidisciplinary Analysis (AMMA) is a major international campaign investigating far-reaching aspects of the African monsoon, climate and the hydrological cycle. A special observing period was established for the dry season (SOP0) with a focus on aerosol and radiation measurements. SOP0 took place during January and February 2006 and involved several ground-based measurement sites across west Africa. These were augmented by aircraft measurements made by the Facility for Airborne Atmospheric Measurements (FAAM) aircraft during the Dust and Biomass-burning Experiment (DABEX), measurements from an ultralight aircraft, and dedicated modeling efforts. We provide an overview of these measurement and modeling studies together with an analysis of the meteorological conditions that determined the aerosol transport and link the results together to provide a balanced synthesis. The biomass burning aerosol was significantly more absorbing than that measured in other areas and, unlike industrial areas, the ratio of excess carbon monoxide to organic carbon was invariant, which may be owing to interaction between the organic carbon and mineral dust aerosol. The mineral dust aerosol in situ filter measurements close to Niamey reveals very little absorption, while other measurements and remote sensing inversions suggest significantly more absorption. The influence of both mineral dust and biomass burning aerosol on the radiation budget is significant throughout the period, implying that meteorological models should include their radiative effects for accurate weather forecasts and climate simulations. Generally, the operational meteorological models that simulate the production and transport of mineral dust show skill at lead times of 5 days or more. Climate models that need to accurately simulate the vertical profiles of both anthropogenic and natural aerosols to accurately represent the direct and indirect effects of aerosols appear to do a reasonable job

  2. African Monsoon Multidisciplinary Analysis (AMMA) : The Special Observing Period of 2006

    NASA Astrophysics Data System (ADS)

    Polcher, J.; Cairo, F.; Fierli, F.; Höller, H.; Law, K.; Mari, C.; Reeves, C.; Schlager, H.

    2006-12-01

    The AMMA project aims at enhancing our understanding of the West African monsoon and its underlying physical, chemical and biological processes. This enhanced knowledge of the processes involved in the establishment and variability of the monsoon will be used to improve our capacity to predict it and evaluate the impacts on land-productivity, management of water resources and public health. The objective is to provide societies in Africa with improved tools to manage their dependence on environmental conditions. In the framework of AMMA a dense observational network has been established both as routine and campaign- based facilities. The aim is to provide a complete picture of the physical, chemical and biological processes over the ocean, the continent and in the atmosphere. The base network has been established over the last few year and covers surface states and surface flux monitoring in a number catchments over the climatic gradient of the region. The upper-air sounding network was upgraded and enhanced to improve the data available for operational weather forecasting. During 2006 AMMA supported a large field campaign to cover the dry season (SOP0), the monsoon onset (SOP1) and the wet season (SOP2). The enhancement to the observing system in 2006 included balloon borne instruments, a lightning network over northern Benin, 3 research vessels and 5 research aircraft stationed in the Niamey and Ouagadougou. Most of SOP2 observations were dedicated to the intense mesoscale convective systems which are generated in the region and travel to the West. Their impact on the circulation in the troposphere and lower stratosphere, the water cycle in the region and the transport of trace gases and aerosols have been observed at different stages of the life cycle of these systems. This talk will provide a overview of the AMMA project and the observations carried out in 2006, focusing on the most relevant events.

  3. Multidisciplinary System Reliability Analysis

    NASA Technical Reports Server (NTRS)

    Mahadevan, Sankaran; Han, Song; Chamis, Christos C. (Technical Monitor)

    2001-01-01

    The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code, developed under the leadership of NASA Glenn Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multidisciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.

  4. GRC RBCC Concept Multidisciplinary Analysis

    NASA Technical Reports Server (NTRS)

    Suresh, Ambady

    2001-01-01

    This report outlines the GRC RBCC Concept for Multidisciplinary Analysis. The multidisciplinary coupling procedure is presented, along with technique validations and axisymmetric multidisciplinary inlet and structural results. The NPSS (Numerical Propulsion System Simulation) test bed developments and code parallelization are also presented. These include milestones and accomplishments, a discussion of running R4 fan application on the PII cluster as compared to other platforms, and the National Combustor Code speedup.

  5. Observational Analysis of Two Contrasting Monsoon Years

    NASA Astrophysics Data System (ADS)

    Karri, S.; Ahmad, R.; Sujata, P.; Jose, S.; Sreenivas, G.; Maurya, D. K.

    2014-11-01

    The Indian summer monsoon rainfall contributes about 75 % of the total annual rainfall and exhibits considerable interannual variations. The agricultural economy of the country depends mainly on the monsoon rainfall. The long-range forecast of the monsoon rainfall is, therefore of significant importance in agricultural planning and other economic activities of the country. There are various parameters which influence the amount of rainfall received during the monsoon. Some of the important parameters considered by the Indian Meteorological Department (IMD) for the study of monsoon are Outgoing Longwave Radiation (OLR), moisture content of the atmosphere, zonal wind speed, low level vorticity, pressure gradient etc. Compared to the Long Period Average (LPA) value of rain fall, the country as a whole received higher amount of rainfall in June, 2013 (34 % more than LPA). The same month showed considerable decrease next year as the amount of rainfall received was around 43 % less compared to LPA. This drastic difference of monsoon prompted to study the behaviour of some of the monsoon relevant parameters. In this study we have considered five atmospheric parameters as the indicators of monsoon behaviour namely vertical relative humidity, OLR, aerosol optical depth (AOD), wind at 850 hPa and mean sea level pressure (MSLP). In the initial analysis of weekly OLR difference for year 2013 and 2014 shows positive values in the month of May over north-western parts of India (region of heat low). This should result in a weaker monsoon in 2014. This is substantiated by the rainfall data received for various stations over India. Inference made based on the analysis of RH profiles coupled with AOD values is in agreement with the rainfall over the corresponding stations.

  6. NPSS Multidisciplinary Integration and Analysis

    NASA Technical Reports Server (NTRS)

    Hall, Edward J.; Rasche, Joseph; Simons, Todd A.; Hoyniak, Daniel

    2006-01-01

    The objective of this task was to enhance the capability of the Numerical Propulsion System Simulation (NPSS) by expanding its reach into the high-fidelity multidisciplinary analysis area. This task investigated numerical techniques to convert between cold static to hot running geometry of compressor blades. Numerical calculations of blade deformations were iteratively done with high fidelity flow simulations together with high fidelity structural analysis of the compressor blade. The flow simulations were performed with the Advanced Ducted Propfan Analysis (ADPAC) code, while structural analyses were performed with the ANSYS code. High fidelity analyses were used to evaluate the effects on performance of: variations in tip clearance, uncertainty in manufacturing tolerance, variable inlet guide vane scheduling, and the effects of rotational speed on the hot running geometry of the compressor blades.

  7. Attributes of mesoscale convective systems at the land-ocean transition in Senegal during NASA African Monsoon Multidisciplinary Analyses 2006

    NASA Astrophysics Data System (ADS)

    Delonge, Marcia S.; Fuentes, Jose D.; Chan, Stephen; Kucera, Paul A.; Joseph, Everette; Gaye, Amadou T.; Daouda, Badiane

    2010-05-01

    In this study we investigate the development of a mesoscale convective system (MCS) as it moved from West Africa to the Atlantic Ocean on 31 August 2006. We document surface and atmospheric conditions preceding and following the MCS, particularly near the coast. These analyses are used to evaluate how thermodynamic and microphysical gradients influence storms as they move from continental to maritime environments. To achieve these goals, we employ observations from NASA African Monsoon Multidisciplinary Analyses (NAMMA) from the NASA S band polarimetric Doppler radar, a meteorological flux tower, upper-air soundings, and rain gauges. We show that the MCS maintained a convective leading edge and trailing stratiform region as it propagated from land to ocean. The initial strength and organization of the MCS were associated with favorable antecedent conditions in the continental lower atmosphere, including high specific humidity (18 g kg-1), temperatures (300 K), and wind shear. While transitioning, the convective and stratiform regions became weaker and disorganized. Such storm changes were linked to less favorable thermodynamic, dynamic, and microphysical conditions over ocean. To address whether storms in different life-cycle phases exhibited similar features, a composite analysis of major NAMMA events was performed. This analysis revealed an even stronger shift to lower reflectivity values over ocean. These findings support the hypothesis that favorable thermodynamic conditions over the coast are a prerequisite to ensuring that MCSs do not dissipate at the continental-maritime transition, particularly due to strong gradients that can weaken West African storms moving from land to ocean.

  8. Multidisciplinary Design and Analysis for Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Cummings, Russell M.; Freeman, H. JoAnne

    1999-01-01

    Multidisciplinary design and analysis (MDA) has become the normal mode of operation within most aerospace companies, but the impact of these changes have largely not been reflected at many universities. On an effort to determine if the emergence of multidisciplinary design concepts should influence engineering curricula, NASA has asked several universities (Virginia Tech, Georgia Tech, Clemson, BYU, and Cal Poly) to investigate the practicality of introducing MDA concepts within their undergraduate curricula. A multidisciplinary team of faculty, students, and industry partners evaluated the aeronautical engineering curriculum at Cal Poly. A variety of ways were found to introduce MDA themes into the curriculum without adding courses or units to the existing program. Both analytic and educational tools for multidisciplinary design of aircraft have been developed and implemented.

  9. Initial Multidisciplinary Design and Analysis Framework

    NASA Technical Reports Server (NTRS)

    Ozoroski, L. P.; Geiselhart, K. A.; Padula, S. L.; Li, W.; Olson, E. D.; Campbell, R. L.; Shields, E. W.; Berton, J. J.; Gray, J. S.; Jones, S. M.; Naiman, C. G.; Seidel, J. A.; Moore, K. T.; Naylor, B. A.; Townsend, S.

    2010-01-01

    Within the Supersonics (SUP) Project of the Fundamental Aeronautics Program (FAP), an initial multidisciplinary design & analysis framework has been developed. A set of low- and intermediate-fidelity discipline design and analysis codes were integrated within a multidisciplinary design and analysis framework and demonstrated on two challenging test cases. The first test case demonstrates an initial capability to design for low boom and performance. The second test case demonstrates rapid assessment of a well-characterized design. The current system has been shown to greatly increase the design and analysis speed and capability, and many future areas for development were identified. This work has established a state-of-the-art capability for immediate use by supersonic concept designers and systems analysts at NASA, while also providing a strong base to build upon for future releases as more multifidelity capabilities are developed and integrated.

  10. Convergence Estimates for Multidisciplinary Analysis and Optimization

    NASA Technical Reports Server (NTRS)

    Arian, Eyal

    1997-01-01

    A quantitative analysis of coupling between systems of equations is introduced. This analysis is then applied to problems in multidisciplinary analysis, sensitivity, and optimization. For the sensitivity and optimization problems both multidisciplinary and single discipline feasibility schemes are considered. In all these cases a "convergence factor" is estimated in terms of the Jacobians and Hessians of the system, thus it can also be approximated by existing disciplinary analysis and optimization codes. The convergence factor is identified with the measure for the "coupling" between the disciplines in the system. Applications to algorithm development are discussed. Demonstration of the convergence estimates and numerical results are given for a system composed of two non-linear algebraic equations, and for a system composed of two PDEs modeling aeroelasticity.

  11. Integrated multidisciplinary analysis tool IMAT users' guide

    NASA Technical Reports Server (NTRS)

    Meissner, Frances T. (Editor)

    1988-01-01

    The Integrated Multidisciplinary Analysis Tool (IMAT) is a computer software system developed at Langley Research Center. IMAT provides researchers and analysts with an efficient capability to analyze satellite controls systems influenced by structural dynamics. Using a menu-driven executive system, IMAT leads the user through the program options. IMAT links a relational database manager to commercial and in-house structural and controls analysis codes. This paper describes the IMAT software system and how to use it.

  12. Multi-Disciplinary Analysis and Optimization Frameworks

    NASA Technical Reports Server (NTRS)

    Naiman, Cynthia Gutierrez

    2009-01-01

    Since July 2008, the Multidisciplinary Analysis & Optimization Working Group (MDAO WG) of the Systems Analysis Design & Optimization (SAD&O) discipline in the Fundamental Aeronautics Program s Subsonic Fixed Wing (SFW) project completed one major milestone, Define Architecture & Interfaces for Next Generation Open Source MDAO Framework Milestone (9/30/08), and is completing the Generation 1 Framework validation milestone, which is due December 2008. Included in the presentation are: details of progress on developing the Open MDAO framework, modeling and testing the Generation 1 Framework, progress toward establishing partnerships with external parties, and discussion of additional potential collaborations

  13. Integrated multidisciplinary analysis of segmented reflector telescopes

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.; Needels, Laura

    1992-01-01

    The present multidisciplinary telescope-analysis approach, which encompasses thermal, structural, control and optical considerations, is illustrated for the case of an IR telescope in LEO; attention is given to end-to-end evaluations of the effects of mechanical disturbances and thermal gradients in measures of optical performance. Both geometric ray-tracing and surface-to-surface diffraction approximations are used in the telescope's optical model. Also noted is the role played by NASA-JPL's Integrated Modeling of Advanced Optical Systems computation tool, in view of numerical samples.

  14. Panel Discussion on Multi-Disciplinary Analysis

    NASA Technical Reports Server (NTRS)

    Garcia, Robert

    2002-01-01

    The Marshall Space Flight Center (MSFC) is hosting the Thermal and Fluids Analysis Workshop (TFAWS) during the week of September 10, 2001. Included in this year's TFAWS is a panel session on Multidisciplinary Analysis techniques. The intent is to provide an opportunity for the users to gain information as to what product may be best suited for their applications environment and to provide feedback to you, the developers, on future desired developments. Potential users of multidisciplinary analysis (MDA) techniques are often overwhelmed by the number of choices available to them via commercial products and by the pace of new developments in this area. The purpose of this panel session is to provide a forum wherein MDA tools available and under development can be discussed, compared, and contrasted. The intent of this panel is to provide the end-user with the information necessary to make educated decisions on how to proceed with selecting their MDA tool. It is anticipated that the discussions this year will focus on MDA techniques that couple discipline codes or algorithms (as opposed to monolithic, unified MDA approaches). The MDA developers will be asked to prepare a product overview presentation addressing specific questions provided by the panel organizers. The purpose of these questions will be to establish the method employed by the particular MDA technique for communication between the discipline codes, to establish the similarities and differences amongst the various approaches, and to establish the range of experience and applications for each particular MDA approach.

  15. NASA Multidisciplinary Design and Analysis Fellowship Program

    NASA Technical Reports Server (NTRS)

    Schrage, D. P.; Craig, J. I.; Mavris, D. N.; Hale, M. A.; DeLaurentis, D.

    1999-01-01

    This report summarizes the results of a multi-year training grant for the development and implementation of a Multidisciplinary Design and Analysis (MDA) Fellowship Program at Georgia Tech. The Program funded the creation of graduate MS and PhD degree programs in aerospace systems design, analysis and integration. It also provided prestigious Fellowships with associated Industry Internships for outstanding engineering students. The graduate program has become the foundation for a vigorous and productive research effort and has produced: 20 MS degrees, 7 Ph.D. degrees, and has contributed to 9 ongoing Ph.D. students. The results of the research are documented in 32 publications (23 of which are included on a companion CDROM) and 4 annual student design reports (included on a companion CDROM). The legacy of this critical funding is the Center for Aerospace Systems Analysis at Georgia Tech which is continuing the graduate program, the research, and the industry internships established by this grant.

  16. NASA Multidisciplinary Design and Analysis Fellowship Program

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This report is a Year 1 interim report of the progress on the NASA multidisciplinary Design and Analysis Fellowship Program covering the period, January 1, 1995 through September 30, 1995. It summarizes progress in establishing the MDA Fellowship Program at Georgia Tech during the initial year. Progress in the advertisement of the program, recruiting results for the 1995-96 academic year, placement of the Fellows in industry during Summer 1995, program development at the M.S. and Ph.D. levels, and collaboration and dissemination of results are summarized in this report. Further details of the first year's progress will be included in the report from the Year 1 Workshop to be held at NASA Langley on December 7-8, 1995.

  17. Multi-Disciplinary System Reliability Analysis

    NASA Technical Reports Server (NTRS)

    Mahadevan, Sankaran; Han, Song

    1997-01-01

    The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code developed under the leadership of NASA Lewis Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multi-disciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.

  18. Application of multidisciplinary analysis to gene expression.

    SciTech Connect

    Wang, Xuefel; Kang, Huining; Fields, Chris; Cowie, Jim R.; Davidson, George S.; Haaland, David Michael; Sibirtsev, Valeriy; Mosquera-Caro, Monica P.; Xu, Yuexian; Martin, Shawn Bryan; Helman, Paul; Andries, Erik; Ar, Kerem; Potter, Jeffrey; Willman, Cheryl L.; Murphy, Maurice H.

    2004-01-01

    Molecular analysis of cancer, at the genomic level, could lead to individualized patient diagnostics and treatments. The developments to follow will signal a significant paradigm shift in the clinical management of human cancer. Despite our initial hopes, however, it seems that simple analysis of microarray data cannot elucidate clinically significant gene functions and mechanisms. Extracting biological information from microarray data requires a complicated path involving multidisciplinary teams of biomedical researchers, computer scientists, mathematicians, statisticians, and computational linguists. The integration of the diverse outputs of each team is the limiting factor in the progress to discover candidate genes and pathways associated with the molecular biology of cancer. Specifically, one must deal with sets of significant genes identified by each method and extract whatever useful information may be found by comparing these different gene lists. Here we present our experience with such comparisons, and share methods developed in the analysis of an infant leukemia cohort studied on Affymetrix HG-U95A arrays. In particular, spatial gene clustering, hyper-dimensional projections, and computational linguistics were used to compare different gene lists. In spatial gene clustering, different gene lists are grouped together and visualized on a three-dimensional expression map, where genes with similar expressions are co-located. In another approach, projections from gene expression space onto a sphere clarify how groups of genes can jointly have more predictive power than groups of individually selected genes. Finally, online literature is automatically rearranged to present information about genes common to multiple groups, or to contrast the differences between the lists. The combination of these methods has improved our understanding of infant leukemia. While the complicated reality of the biology dashed our initial, optimistic hopes for simple answers from

  19. Global sensitivity analysis of the Indian monsoon during the Pleistocene

    NASA Astrophysics Data System (ADS)

    Araya-Melo, P. A.; Crucifix, M.; Bounceur, N.

    2015-01-01

    The sensitivity of the Indian monsoon to the full spectrum of climatic conditions experienced during the Pleistocene is estimated using the climate model HadCM3. The methodology follows a global sensitivity analysis based on the emulator approach of Oakley and O'Hagan (2004) implemented following a three-step strategy: (1) development of an experiment plan, designed to efficiently sample a five-dimensional input space spanning Pleistocene astronomical configurations (three parameters), CO2 concentration and a Northern Hemisphere glaciation index; (2) development, calibration and validation of an emulator of HadCM3 in order to estimate the response of the Indian monsoon over the full input space spanned by the experiment design; and (3) estimation and interpreting of sensitivity diagnostics, including sensitivity measures, in order to synthesise the relative importance of input factors on monsoon dynamics, estimate the phase of the monsoon intensity response with respect to that of insolation, and detect potential non-linear phenomena. By focusing on surface temperature, precipitation, mixed-layer depth and sea-surface temperature over the monsoon region during the summer season (June-July-August-September), we show that precession controls the response of four variables: continental temperature in phase with June to July insolation, high glaciation favouring a late-phase response, sea-surface temperature in phase with May insolation, continental precipitation in phase with July insolation, and mixed-layer depth in antiphase with the latter. CO2 variations control temperature variance with an amplitude similar to that of precession. The effect of glaciation is dominated by the albedo forcing, and its effect on precipitation competes with that of precession. Obliquity is a secondary effect, negligible on most variables except sea-surface temperature. It is also shown that orography forcing reduces the glacial cooling, and even has a positive effect on precipitation

  20. Efficient Multidisciplinary Analysis Procedure Using Multi-Level Parallelization Approach

    NASA Technical Reports Server (NTRS)

    Byun, Chansup; Hatay, Ferhat; Farhangnia, Mehrdad; Guruswamy, Guru; VanDalsem, William R. (Technical Monitor)

    1997-01-01

    Multidisciplinary applications are suitable for parallel computing environment by adopting the domain decomposition method. Immediately, a multidisciplinary application can be parallelized by solving each discipline separately. In order to perform coupled multidisciplinary analysis, coupling of each discipline can be accomplished by exchanging boundary data at the interfaces. This is regarded as discipline-level parallelization. Next level could be a "coarse-grain" parallelization of each discipline, which mainly depends on the physical geometry and nature of each discipline. For example, it is almost impossible for structured-grid based computational fluid dynamics codes to do flow analysis of an aircraft by using a single grid because of the complexity of its configuration. Thus, multi-block grid is commonly used to describe the details of complex geometry. Similarly, in structural analysis, the structure is frequently subdivided into substructures. Thus, the computation of each subdomain can be easily parallelized since each subdomain is solved separately independent of other domains. The parallelization is accomplished by solving each subdomain separately on a separate processor and exchanging the boundary conditions at domain interfaces periodically. However, the physical decomposition of the domain introduces explicit boundary conditions at the domain interfaces. This is not desirable for critical areas such as those containing shock waves or flow separations. Thus, a "fine-grain" parallelization is introduced to overcome this problem. The "fine-grain" parallelization is one that solves exactly the same system of equations of a subdomain by using more than one processors without introducing any explicit boundary conditions. An efficient multidisciplinary analysis procedure can be accomplished by successfully combining the above multi-level parallelism. A multidisciplinary analysis code, ENSAERO developed at NASA Ames Research Center is used in this study to

  1. Multidisciplinary Analysis and Optimization Generation 1 and Next Steps

    NASA Technical Reports Server (NTRS)

    Naiman, Cynthia Gutierrez

    2008-01-01

    The Multidisciplinary Analysis & Optimization Working Group (MDAO WG) of the Systems Analysis Design & Optimization (SAD&O) discipline in the Fundamental Aeronautics Program s Subsonic Fixed Wing (SFW) project completed three major milestones during Fiscal Year (FY)08: "Requirements Definition" Milestone (1/31/08); "GEN 1 Integrated Multi-disciplinary Toolset" (Annual Performance Goal) (6/30/08); and "Define Architecture & Interfaces for Next Generation Open Source MDAO Framework" Milestone (9/30/08). Details of all three milestones are explained including documentation available, potential partner collaborations, and next steps in FY09.

  2. Multidisciplinary analysis and synthesis - Needs and opportunities. [for aerospace design

    NASA Technical Reports Server (NTRS)

    Tolson, R. H.; Sobieszczanski-Sobieski, J.

    1985-01-01

    A comprehensive evaluation is conducted of structural analysis and synthesis opportunities which emerge through a multidisciplinary design program approach that simultaneously and interactively encompasses, in its determination of a given aircraft design, aerodynamics, structure, structural dynamics, materials, controls, and propulsion. In this way, it becomes possible to rapidly exploit technological advances in order to yield synergistic effects among configurational subsystems. The aircraft type presently considered as recipients of this treatment are commercial transports, high performance military aircraft, rotorcraft, and large space antennas, giving attention to common features among the multidisciplinary design tasks represented.

  3. Geometric requirements for multidisciplinary analysis of aerospace-vehicle design

    NASA Technical Reports Server (NTRS)

    Smith, Robert E.; Kerr, Patirca A.

    1992-01-01

    The geometric requirements for creating surfaces and grids for multidisciplinary analysis and optimization of aerospace-vehicle designs are described. Geometric surface representations are outlined and compared. Directions for future designs are proposed. High-speed civil transport aircraft configurations are targeted to demonstrate the processes.

  4. The West African monsoon: Contribution of the AMMA multidisciplinary programme to the study of a regional climate system.

    NASA Astrophysics Data System (ADS)

    Lebel, T.; Janicot, S.; Redelsperger, J. L.; Parker, D. J.; Thorncroft, C. D.

    2015-12-01

    The AMMA international project aims at improving our knowledge and understanding of the West African monsoon and its variability with an emphasis on daily-to-interannual timescales. AMMA is motivated by an interest in fundamental scientific issues and by the societal need for improved prediction of the WAM and its impacts on water resources, health and food security for West African nations. The West African monsoon (WAM) has a distinctive annual cycle in rainfall that remains a challenge to understand and predict. The location of peak rainfall, which resides in the Northern Hemisphere throughout the year, moves from the ocean to the land in boreal spring. Around the end of June there is a rapid shift in the location of peak rainfall between the coast and around 10°N where it remains until about the end of August. In September the peak rainfall returns equatorward at a relatively steady pace and is located over the ocean again by November. The fact that the peak rainfall migrates irregularly compared to the peak solar heating is due to the interactions that occur between the land, the atmosphere and the ocean. To gain a better understanding of this complex climate system, a large international research programme was launched in 2002, the biggest of its kind into environment and climate ever attempted in Africa. AMMA has involved a comprehensive field experiment bringing together ocean, land and atmospheric measurements, on timescales ranging from hourly and daily variability up to the changes in seasonal activity over a number of years. This presentation will focus on the description of the field programme and its accomplishments, and address some key questions that have been recently identified to form the core of AMMA-Phase 2.

  5. The West African monsoon: Contribution of the AMMA multidisciplinary programme to the study of a regional climate system.

    NASA Astrophysics Data System (ADS)

    Lebel, T.; Janicot, S.; Redelsperger, J. L.; Parker, D. J.; Thorncroft, C. D.

    2014-12-01

    The AMMA international project aims at improving our knowledge and understanding of the West African monsoon and its variability with an emphasis on daily-to-interannual timescales. AMMA is motivated by an interest in fundamental scientific issues and by the societal need for improved prediction of the WAM and its impacts on water resources, health and food security for West African nations. The West African monsoon (WAM) has a distinctive annual cycle in rainfall that remains a challenge to understand and predict. The location of peak rainfall, which resides in the Northern Hemisphere throughout the year, moves from the ocean to the land in boreal spring. Around the end of June there is a rapid shift in the location of peak rainfall between the coast and around 10°N where it remains until about the end of August. In September the peak rainfall returns equatorward at a relatively steady pace and is located over the ocean again by November. The fact that the peak rainfall migrates irregularly compared to the peak solar heating is due to the interactions that occur between the land, the atmosphere and the ocean. To gain a better understanding of this complex climate system, a large international research programme was launched in 2002, the biggest of its kind into environment and climate ever attempted in Africa. AMMA has involved a comprehensive field experiment bringing together ocean, land and atmospheric measurements, on timescales ranging from hourly and daily variability up to the changes in seasonal activity over a number of years. This presentation will focus on the description of the field programme and its accomplishments, and address some key questions that have been recently identified to form the core of AMMA-Phase 2.

  6. Regional analysis of convective systems during the West African monsoon

    NASA Astrophysics Data System (ADS)

    Guy, Bradley Nicholas

    The West African monsoon (WAM) occurs during the boreal summer and is responsible for a majority of precipitation in the northern portion of West Africa. A distinct shift of precipitation, often driven by large propagating mesoscale convective systems, is indicated from satellite observations. Excepting the coarser satellite observations, sparse data across the continent has prevented understanding of mesoscale variability of these important systems. The interaction between synoptic and mesoscale features appears to be an important part of the WAM system. Without an understanding of the mesoscale properties of precipitating systems, improved understanding of the feedback mechanism between spatial scales cannot be attained. Convective and microphysical characteristics of West African convective systems are explored using various observational data sets. Focus is directed toward meso -alpha and -beta scale convective systems to improve our understanding of characteristics at this spatial scale and contextualize their interaction with the larger-scale. Ground-based radar observations at three distinct geographical locations in West Africa along a common latitudinal band (Niamey, Niger [continental], Kawsara, Senegal [coastal], and Praia, Republic of Cape Verde [maritime]) are analyzed to determine convective system characteristics in each domain during a 29 day period in 2006. Ancillary datasets provided by the African Monsoon Multidisciplinary Analyses (AMMA) and NASA-AMMA (NAMMA) field campaigns are also used to place the radar observations in context. Results show that the total precipitation is dominated by propagating mesoscale convective systems. Convective characteristics vary according to environmental properties, such as vertical shear, CAPE, and the degree of synoptic forcing. Data are bifurcated based on the presence or absence of African easterly waves. In general, African easterly waves appear to enhance mesoscale convective system strength

  7. Analysis of Vegetation Index Variations and the Asian Monsoon Climate

    NASA Technical Reports Server (NTRS)

    Shen, Sunhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2012-01-01

    Vegetation growth depends on local climate. Significant anthropogenic land cover and land use change activities over Asia have changed vegetation distribution as well. On the other hand, vegetation is one of the important land surface variables that influence the Asian Monsoon variability through controlling atmospheric energy and water vapor conditions. In this presentation, the mean and variations of vegetation index of last decade at regional scale resolution (5km and higher) from MODIS have been analyzed. Results indicate that the vegetation index has been reduced significantly during last decade over fast urbanization areas in east China, such as Yangtze River Delta, where local surface temperatures were increased significantly in term of urban heat Island. The relationship between vegetation Index and climate (surface temperature, precipitation) over a grassland in northern Asia and over a woody savannas in southeast Asia are studied. In supporting Monsoon Asian Integrated Regional Study (MAIRS) program, the data in this study have been integrated into Giovanni, the online visualization and analysis system at NASA GES DISC. Most images in this presentation are generated from Giovanni system.

  8. [Causes of problems in multidisciplinary bitemark analysis].

    PubMed

    Przystańska, Agnieszka; Lorkiewicz-Muszyńska, Dorota; Glapiński, Mariusz; Swiderski, Paweł; Łabecka, Marzena; Zaba, Czesław

    2013-01-01

    Since a successful bitemark analysis depends on many factors, it is important that the phases preceding the analysis be carried out as thoroughly as possible. Interpretive errors in the analysis arise primarily from the complex nature of bitemarks, but also as a result of faulty research methodology, false assumptions or technical errors made during the identification and documentation process. The key role is played by qualifications, knowledge and experience of experts involved in the investigations. In case bitemarks are detected, it is recommended to seek consultations by forensic odontologists or members of an interdisciplinary team experienced in bitemark analysis. The thus obtained information allows for gathering evidence guaranteeing a reliable expert opinion. PMID:24672898

  9. Recent Advances in Multidisciplinary Analysis and Optimization, part 3

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M. (Editor)

    1989-01-01

    This three-part document contains a collection of technical papers presented at the Second NASA/Air Force Symposium on Recent Advances in Multidisciplinary Analysis and Optimization, held September 28-30, 1988 in Hampton, Virginia. The topics covered include: aircraft design, aeroelastic tailoring, control of aeroelastic structures, dynamics and control of flexible structures, structural design, design of large engineering systems, application of artificial intelligence, shape optimization, software development and implementation, and sensitivity analysis.

  10. Recent Advances in Multidisciplinary Analysis and Optimization, part 1

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M. (Editor)

    1989-01-01

    This three-part document contains a collection of technical papers presented at the Second NASA/Air Force Symposium on Recent Advances in Multidisciplinary Analysis and Optimization, held September 28-30, 1988 in Hampton, Virginia. The topics covered include: helicopter design, aeroelastic tailoring, control of aeroelastic structures, dynamics and control of flexible structures, structural design, design of large engineering systems, application of artificial intelligence, shape optimization, software development and implementation, and sensitivity analysis.

  11. Recent Advances in Multidisciplinary Analysis and Optimization, part 2

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M. (Editor)

    1989-01-01

    This three-part document contains a collection of technical papers presented at the Second NASA/Air Force Symposium on Recent Advances in Multidisciplinary Analysis and Optimization, held September 28-30, 1988 in Hampton, Virginia. The topics covered include: helicopter design, aeroelastic tailoring, control of aeroelastic structures, dynamics and control of flexible structures, structural design, design of large engineering systems, application of artificial intelligence, shape optimization, software development and implementation, and sensitivity analysis.

  12. Asian summer monsoon rainfall predictability: a predictable mode analysis

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Lee, June-Yi; Xiang, Baoqiang

    2015-01-01

    To what extent the Asian summer monsoon (ASM) rainfall is predictable has been an important but long-standing issue in climate science. Here we introduce a predictable mode analysis (PMA) method to estimate predictability of the ASM rainfall. The PMA is an integral approach combining empirical analysis, physical interpretation and retrospective prediction. The empirical analysis detects most important modes of variability; the interpretation establishes the physical basis of prediction of the modes; and the retrospective predictions with dynamical models and physics-based empirical (P-E) model are used to identify the "predictable" modes. Potential predictability can then be estimated by the fractional variance accounted for by the "predictable" modes. For the ASM rainfall during June-July-August, we identify four major modes of variability in the domain (20°S-40°N, 40°E-160°E) during 1979-2010: (1) El Niño-La Nina developing mode in central Pacific, (2) Indo-western Pacific monsoon-ocean coupled mode sustained by a positive thermodynamic feedback with the aid of background mean circulation, (3) Indian Ocean dipole mode, and (4) a warming trend mode. We show that these modes can be predicted reasonably well by a set of P-E prediction models as well as coupled models' multi-model ensemble. The P-E and dynamical models have comparable skills and complementary strengths in predicting ASM rainfall. Thus, the four modes may be regarded as "predictable" modes, and about half of the ASM rainfall variability may be predictable. This work not only provides a useful approach for assessing seasonal predictability but also provides P-E prediction tools and a spatial-pattern-bias correction method to improve dynamical predictions. The proposed PMA method can be applied to a broad range of climate predictability and prediction problems.

  13. Recent Experiences in Multidisciplinary Analysis and Optimization, part 2

    NASA Technical Reports Server (NTRS)

    Sobieski, J. (Compiler)

    1984-01-01

    The papers presented at the NASA Symposium on Recent Experiences in Multidisciplinary Analysis and Optimization held at NASA Langley Research Center, Hampton, Virginia, April 24 to 26, 1984 are given. The purposes of the symposium were to exchange information about the status of the application of optimization and the associated analyses in industry or research laboratories to real life problems and to examine the directions of future developments.

  14. NASA Aeronautics Multidisciplinary Analysis and Design Fellowship Program

    NASA Technical Reports Server (NTRS)

    Grossman, B.; Guerdal, Z.; Haftka, R. T.; Kapania, R. K.; Mason, W. H.; Mook, D. T.

    1998-01-01

    For a number of years, Virginia Tech had been on the forefront of research in the area of multidisciplinary analysis and design. In June of 1994, faculty members from aerospace and ocean engineering, engineering science and mechanics, mechanical engineering, industrial engineering, mathematics and computer sciences, at Virginia Tech joined together to form the Multidisciplinary Analysis and Design (MAD) Center for Advanced Vehicles. The center was established with the single goal: to perform research that is relevant to the needs of the US industry and to foster collaboration between the university, government and industry. In October of 1994, the center was chosen by NASA headquarters as one of the five university centers to establish a fellowship program to develop a graduate program in multidisciplinary analysis and design. The fellowship program provides full stipend and tuition support for seven U. S. students per year during their graduate studies. To advise us regarding the problems faced by the industry, an industrial advisory board has been formed consisting of representatives from industry as well as government laboratories. The function of the advisory board is to channel information from its member companies to faculty members concerning problems that need research attention in the general area of multidisciplinary design optimization (MDO). The faculty and their graduate students make proposals to the board on how to address these problems. At the annual board meeting in Blacksburg, the board discusses the proposals and suggests which students get funded under the NASA fellowship program. All students participating in the program are required to spend 3-6 months in industry working on their research projects. We are completing the third year of the fellowship program and have had three advisory board meetings in Blacksburg.

  15. Multidisciplinary analysis of actively controlled large flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Cooper, Paul A.; Young, John W.; Sutter, Thomas R.

    1986-01-01

    The control of Flexible Structures (COFS) program has supported the development of an analysis capability at the Langley Research Center called the Integrated Multidisciplinary Analysis Tool (IMAT) which provides an efficient data storage and transfer capability among commercial computer codes to aid in the dynamic analysis of actively controlled structures. IMAT is a system of computer programs which transfers Computer-Aided-Design (CAD) configurations, structural finite element models, material property and stress information, structural and rigid-body dynamic model information, and linear system matrices for control law formulation among various commercial applications programs through a common database. Although general in its formulation, IMAT was developed specifically to aid in the evaluation of the structures. A description of the IMAT system and results of an application of the system are given.

  16. A Multidisciplinary Approach to Mixer-Ejector Analysis and Design

    NASA Technical Reports Server (NTRS)

    Hendricks, Eric, S.; Seidel, Jonathan, A.

    2012-01-01

    The design of an engine for a civil supersonic aircraft presents a difficult multidisciplinary problem to propulsion system engineers. There are numerous competing requirements for the engine, such as to be efficient during cruise while yet quiet enough at takeoff to meet airport noise regulations. The use of mixer-ejector nozzles presents one possible solution to this challenge. However, designing a mixer-ejector which will successfully address both of these concerns is a difficult proposition. Presented in this paper is an integrated multidisciplinary approach to the analysis and design of these systems. A process that uses several low-fidelity tools to evaluate both the performance and acoustics of mixer-ejectors nozzles is described. This process is further expanded to include system-level modeling of engines and aircraft to determine the effects on mission performance and noise near airports. The overall process is developed in the OpenMDAO framework currently being developed by NASA. From the developed process, sample results are given for a notional mixer-ejector design, thereby demonstrating the capabilities of the method.

  17. Recent Experiences in Multidisciplinary Analysis and Optimization, part 1

    NASA Technical Reports Server (NTRS)

    Sobieski, J. (Compiler)

    1984-01-01

    Papers presented at the NASA Symposium on Recent Experiences in Multidisciplinary Analysis and Optimization held at NASA Langley Research Center, Hampton, Virginia April 24 to 26, 1984 are given. The purposes of the symposium were to exchange information about the status of the application of optimization and associated analyses in industry or research laboratories to real life problems and to examine the directions of future developments. Information exchange has encompassed the following: (1) examples of successful applications; (2) attempt and failure examples; (3) identification of potential applications and benefits; (4) synergistic effects of optimized interaction and trade-offs occurring among two or more engineering disciplines and/or subsystems in a system; and (5) traditional organization of a design process as a vehicle for or an impediment to the progress in the design methodology.

  18. PAYCOS: A new multidisciplinary analysis program for hypersonic vehicle design

    NASA Technical Reports Server (NTRS)

    Stubbe, J. R.

    1990-01-01

    The Payload Conceptual Sizing Code (PAYCOS), a new multidisciplinary computer program for use in the conceptual development phase of hypersonic lifting vehicles (HV's), is described. The program allows engineers to rapidly determine the feasibility of an HV concept and then improve upon the concept by means of optimization theory. The code contains analysis modules for aerodynamics, thermodynamics, mass properties, flight stability, controls, loads, structures, and packaging. Motivation for the code lies with the increased complexity of HV's over their body-of-revolution ballistic predecessors. With these new shapes, the need to rapidly screen out poor concepts and actively develop new and better concepts is an even more crucial part of the early design process. Preliminary results are given which demonstrate the optimization capabilities of the code.

  19. The Role of Multiphysics Simulation in Multidisciplinary Analysis

    NASA Technical Reports Server (NTRS)

    Rifai, Steven M.; Ferencz, Robert M.; Wang, Wen-Ping; Spyropoulos, Evangelos T.; Lawrence, Charles; Melis, Matthew E.

    1998-01-01

    This article describes the applications of the Spectrum(Tm) Solver in Multidisciplinary Analysis (MDA). Spectrum, a multiphysics simulation software based on the finite element method, addresses compressible and incompressible fluid flow, structural, and thermal modeling as well as the interaction between these disciplines. Multiphysics simulation is based on a single computational framework for the modeling of multiple interacting physical phenomena. Interaction constraints are enforced in a fully-coupled manner using the augmented-Lagrangian method. Within the multiphysics framework, the finite element treatment of fluids is based on Galerkin-Least-Squares (GLS) method with discontinuity capturing operators. The arbitrary-Lagrangian-Eulerian method is utilized to account for deformable fluid domains. The finite element treatment of solids and structures is based on the Hu-Washizu variational principle. The multiphysics architecture lends itself naturally to high-performance parallel computing. Aeroelastic, propulsion, thermal management and manufacturing applications are presented.

  20. The Third Air Force/NASA Symposium on Recent Advances in Multidisciplinary Analysis and Optimization

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The third Air Force/NASA Symposium on Recent Advances in Multidisciplinary Analysis and Optimization was held on 24-26 Sept. 1990. Sessions were on the following topics: dynamics and controls; multilevel optimization; sensitivity analysis; aerodynamic design software systems; optimization theory; analysis and design; shape optimization; vehicle components; structural optimization; aeroelasticity; artificial intelligence; multidisciplinary optimization; and composites.

  1. NASA Aeronautics Multidisciplinary Analysis and Design Fellowship Program

    NASA Technical Reports Server (NTRS)

    Grossman, B.; Gurdal, Z.; Kapania, R. K.; Mason, W. H.; Schetz, J. A.

    1999-01-01

    This program began as a grant from NASA Headquarters, NGT-10025, which was in effect from 10/l/93 until 10/31/96. The remaining funding for this effort was transferred from NASA Headquarters to NASA Langley and a new grant NGT-1-52155 was issued covering the period II/l/96 to 5/15/99. This report serves as the final report of NGT-1-52155. For a number of years, Virginia Tech had been on the forefront of research in the area of multidisciplinary analysis and design. In June of 1994, faculty members from aerospace and ocean engineering, engineering science and mechanics, mechanical engineering, industrial engineering, mathematics and computer sciences, at Virginia Tech joined together to form the Multidisciplinary Analysis and Design (MAD) Center for Advanced Vehicles. The center was established with the single goal: to perform research that is relevant to the needs of the US industry and to foster collaboration between the university, government and industry. In October of 1994, the center was chosen by NASA headquarters as one of the five university centers to establish a fellowship program to develop a graduate program in multidisciplinary analysis and design. The fellowship program provides full stipend and tuition support for seven U. S. students per year during their graduate studies. The grant is currently being administered by the NMO Branch of NASA Langley. To advise us regarding the problems faced by the industry, an industrial advisory board has been formed consisting of representatives from industry as well as government laboratories. The present membership includes major aerospace companies: Aurora Flight Sciences, Boeing: Philadelphia, Boeing: Long Beach, Boeing: Seattle, Boeing: St. Louis, Cessna, Ford, General Electric, Hughes, Lockheed-Martin: Palo Alto, Northrop-Grumman, Sikorsky, smaller, aerospace software companies: Aerosoft, Phoenix Integration and Proteus Engineering, along with representatives from government agencies, including: NASA Ames

  2. Multidisciplinary Expert-aided Analysis and Design (MEAD)

    NASA Technical Reports Server (NTRS)

    Hummel, Thomas C.; Taylor, James

    1989-01-01

    The MEAD Computer Program (MCP) is being developed under the Multidisciplinary Expert-Aided Analysis and Design (MEAD) Project as a CAD environment in which integrated flight, propulsion, and structural control systems can be designed and analyzed. The MCP has several embedded computer-aided control engineering (CACE) packages, a user interface (UI), a supervisor, a data-base manager (DBM), and an expert system (ES). The supervisor monitors and coordinates the operation of the CACE packages, the DBM; the ES, and the UI. The DBM tracks the control design process. Models created or installed by the MCP are tracked by date and version, and results are associated with the specific model version with which they were generated. The ES is used to relieve the control engineer from tedious and cumbersome tasks in the iterative design process. The UI provides the capability for a novice as well as an expert to utilize the MCP easily and effectively. The MCP version 2(MCP-2.0) is fully developed for flight control system design and analysis. Propulsion system modeling, analysis, and simulation is also supported; the same is true for structural models represented in state-space form. The ultimate goal is to cover the integration of flight, propulsion, and structural control engineering, including all discipline-specific functionality and interfaces. The current MCP-2.0 components and functionality are discussed.

  3. Indian Monsoon: complex network analysis, spatial patterns and the prospects for prediction

    NASA Astrophysics Data System (ADS)

    Stolbova, Veronika; Bookhagen, Bodo; Marwan, Norbert; Kurths, Juergen

    2014-05-01

    The Indian Summer Monsoon (ISM) is a global climate phenomenon that affects half of the world's population. The prediction of the Indian Summer Monsoon rainfall and its extremes remains an important concern. In our study we aim to determine spatial distribution of patterns of extreme rainfall and their synchronization, because the understanding of the structure of the spatial heterogeneity of extreme rainfall is crucial for Indian agriculture and economy. We use complex networks to identify dominant spatial patterns that govern the organization of extreme rainfall during the ISM season. We construct networks of extreme rainfall events during the ISM, the pre-monsoon, and the post-monsoon period from satellite-derived (TRMM, Tropical Rainfall Measurement Mission, product 3B42 V7) and rain-gauge interpolated (APHRODITE) datasets. The structure of the networks is determined by the level of synchronization of extreme rainfall events between different grid cells throughout the Indian subcontinent. Through the analysis of various complex-network metrics, we describe typical repetitive patterns that can be used as indicators of the ISM variability: North Pakistan (NP), Western Ghats (WG), Eastern Ghats (EG), and Tibetan Plateau (TP). These patterns appear during the pre-monsoon season, evolve during the ISM season, and disappear during the post-monsoon season. We compare obtained results with wind fields, temperature, and pressure networks in this region derived from re-analysis data provided by the National Center for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR). The areas of Eastern Ghats, Western Ghats, and Tibetan Plateau were previously known as areas that influence the ISM dynamics. These patterns occur because of the intricate topography of this region. The Western Ghats pattern, specifically, the Kerala region, is commonly used by climatologists for the prediction of the onset of the ISM (Pai and Nair, 2009). However, North

  4. Empirical Orthogonal Function (EOF) analysis of monsoon rainfall and satellite-observed outgoing long-wave radiation for Indian monsoon: a comparative study

    NASA Astrophysics Data System (ADS)

    Singh, C. V.

    The present study involves the use of Empirical Orthogonal Function (EOF) analysis/Principal Component Analysis (PCA) to compare the dominant rainfall patterns from normal rainfall records over India, coupled with the major modes of the Outgoing Long-wave Radiation (OLR) data for the period (1979-1988) during the monsoon period (June-September). To understand the intraseasonal and interannual variability of the monsoon rainfall, daily and seasonal anomalies have been obtained by using the (EOF) analysis. Importantly, pattern characteristics of seasonal monsoon rainfall covering 68 stations in India are highlighted. The purpose is to ascertain the nature of rainfall distribution over the Indian continent. Based on this, the percentage of variance for both the rainfall and OLR data is examined. OLR has a higher spatial coherence than rainfall. The first principal component of rainfall data shows high positive values, which are concentrated over northeast as well as southeast, whereas for the OLR, the area of large positive values is concentrated over northwest and lower value over south India apart from the Indian ocean. The first five principal components explain 92.20% of the total variance for the rainfall and 99.50% of the total variance for the outgoing long-wave radiation. The relationship between monsoon rainfall and Southern Oscillations has also been examined and for the Southern Oscillations, it is 0.69 for the monsoon season. The El-Niño events mostly occurred during Southern Oscillations, i.e. Walker circulation. It has been found that the average number of low pressure system/low pressure system days play an important role during active (flood) or inactive (drought) monsoon year, but low pressure system days play more important role in comparison to low pressure systems and their ratio are (16:51) and (13:25) respectively. Significantly, the analysis identifies the spatial and temporal pattern characteristics of possible physical significance.

  5. NCC: A Multidisciplinary Design/Analysis Tool for Combustion Systems

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey; Quealy, Angela

    1999-01-01

    A multi-disciplinary design/analysis tool for combustion systems is critical for optimizing the low-emission, high-performance combustor design process. Based on discussions between NASA Lewis Research Center and the jet engine companies, an industry-government team was formed in early 1995 to develop the National Combustion Code (NCC), which is an integrated system of computer codes for the design and analysis of combustion systems. NCC has advanced features that address the need to meet designer's requirements such as "assured accuracy", "fast turnaround", and "acceptable cost". The NCC development team is comprised of Allison Engine Company (Allison), CFD Research Corporation (CFDRC), GE Aircraft Engines (GEAE), NASA Lewis Research Center (LeRC), and Pratt & Whitney (P&W). This development team operates under the guidance of the NCC steering committee. The "unstructured mesh" capability and "parallel computing" are fundamental features of NCC from its inception. The NCC system is composed of a set of "elements" which includes grid generator, main flow solver, turbulence module, turbulence and chemistry interaction module, chemistry module, spray module, radiation heat transfer module, data visualization module, and a post-processor for evaluating engine performance parameters. Each element may have contributions from several team members. Such a multi-source multi-element system needs to be integrated in a way that facilitates inter-module data communication, flexibility in module selection, and ease of integration.

  6. Entropy analysis of stable isotopes in precipitation: tracing the monsoon systems in China

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Chen, Jiansheng; Li, Ling

    2016-08-01

    Due to the complexity of monsoon systems and random behaviors of isotope tracers, conventional methods are not adequate for uncovering detailed information about monsoon activities from typically limited precipitation isotope data. We developed a new approach based on the entropy theory to analyze such data with a focus on the monsoon systems in China, dealing with the complexity of these systems and data deficiency. Using precipitation isotope data from 42 selected stations in and around China within the GNIP network, we computed entropies associated with D and 18O. These entropies were found to relate linearly to each other with a proportionality factor close to unity. The spatial variations of the D and 18O entropy in the study area revealed the origins, extents and pathways of the Chinese monsoon systems, as well as their interactions. While further investigation is needed at a greater (global) scale, this study has demonstrated how the entropy theory enables an in-depth analysis of precipitation isotope data to trace the pathway and determine the range of a monsoon system.

  7. Entropy analysis of stable isotopes in precipitation: tracing the monsoon systems in China.

    PubMed

    Wang, Tao; Chen, Jiansheng; Li, Ling

    2016-01-01

    Due to the complexity of monsoon systems and random behaviors of isotope tracers, conventional methods are not adequate for uncovering detailed information about monsoon activities from typically limited precipitation isotope data. We developed a new approach based on the entropy theory to analyze such data with a focus on the monsoon systems in China, dealing with the complexity of these systems and data deficiency. Using precipitation isotope data from 42 selected stations in and around China within the GNIP network, we computed entropies associated with D and (18)O. These entropies were found to relate linearly to each other with a proportionality factor close to unity. The spatial variations of the D and (18)O entropy in the study area revealed the origins, extents and pathways of the Chinese monsoon systems, as well as their interactions. While further investigation is needed at a greater (global) scale, this study has demonstrated how the entropy theory enables an in-depth analysis of precipitation isotope data to trace the pathway and determine the range of a monsoon system. PMID:27507656

  8. Entropy analysis of stable isotopes in precipitation: tracing the monsoon systems in China

    PubMed Central

    Wang, Tao; Chen, Jiansheng; Li, Ling

    2016-01-01

    Due to the complexity of monsoon systems and random behaviors of isotope tracers, conventional methods are not adequate for uncovering detailed information about monsoon activities from typically limited precipitation isotope data. We developed a new approach based on the entropy theory to analyze such data with a focus on the monsoon systems in China, dealing with the complexity of these systems and data deficiency. Using precipitation isotope data from 42 selected stations in and around China within the GNIP network, we computed entropies associated with D and 18O. These entropies were found to relate linearly to each other with a proportionality factor close to unity. The spatial variations of the D and 18O entropy in the study area revealed the origins, extents and pathways of the Chinese monsoon systems, as well as their interactions. While further investigation is needed at a greater (global) scale, this study has demonstrated how the entropy theory enables an in-depth analysis of precipitation isotope data to trace the pathway and determine the range of a monsoon system. PMID:27507656

  9. Framework for Multidisciplinary Analysis, Design, and Optimization with High-Fidelity Analysis Tools

    NASA Technical Reports Server (NTRS)

    Orr, Stanley A.; Narducci, Robert P.

    2009-01-01

    A plan is presented for the development of a high fidelity multidisciplinary optimization process for rotorcraft. The plan formulates individual disciplinary design problems, identifies practical high-fidelity tools and processes that can be incorporated in an automated optimization environment, and establishes statements of the multidisciplinary design problem including objectives, constraints, design variables, and cross-disciplinary dependencies. Five key disciplinary areas are selected in the development plan. These are rotor aerodynamics, rotor structures and dynamics, fuselage aerodynamics, fuselage structures, and propulsion / drive system. Flying qualities and noise are included as ancillary areas. Consistency across engineering disciplines is maintained with a central geometry engine that supports all multidisciplinary analysis. The multidisciplinary optimization process targets the preliminary design cycle where gross elements of the helicopter have been defined. These might include number of rotors and rotor configuration (tandem, coaxial, etc.). It is at this stage that sufficient configuration information is defined to perform high-fidelity analysis. At the same time there is enough design freedom to influence a design. The rotorcraft multidisciplinary optimization tool is built and substantiated throughout its development cycle in a staged approach by incorporating disciplines sequentially.

  10. Multidisciplinary Design, Analysis, and Optimization Tool Development Using a Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Li, Wesley

    2009-01-01

    Multidisciplinary design, analysis, and optimization using a genetic algorithm is being developed at the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) to automate analysis and design process by leveraging existing tools to enable true multidisciplinary optimization in the preliminary design stage of subsonic, transonic, supersonic, and hypersonic aircraft. This is a promising technology, but faces many challenges in large-scale, real-world application. This report describes current approaches, recent results, and challenges for multidisciplinary design, analysis, and optimization as demonstrated by experience with the Ikhana fire pod design.!

  11. Predictability of the Indian Summer Monsoon onset through an analysis of variations in surface air temperature and relative humidity during the pre-monsoon season

    NASA Astrophysics Data System (ADS)

    Stolbova, V.; Surovyatkina, E.; Bookhagen, B.; Kurths, J.

    2014-12-01

    The prediction of the Indian Summer monsoon (ISM) onset is one of the vital questions for the Indian subcontinent, as well as for areas directly or indirectly affected by the ISM. In previous studies, the areas used for ISM-onset prediction were often too large (or too small), or did not include all necessary information for the ISM-onset forecasting. Here, we present recent findings that suggest that a climate network approach may help to provide better definitions for areas used for ISM-onset prediction and an overall better ISM-onset prediction. Our analysis focuses on the following domains: North West Pakistan (NP) and the Eastern Ghats (EG) as they have been identified to include important pre-monsoon information for predicting ISM onset dates. Specifically, we focus on the analysis of surface air temperature and relative humidity in both areas that allows us to derive temporal trends and to estimate the ISM onset. We propose an approach, which allows to determine ISM onset in advance in 67% of all considered years. Our proposed approach is less effective during the anomalous years, which are associated with weak/strong monsoons, e.g. El-Nino, La-Nina or positive Indian Ocean Dipole events. ISM onset is predicted for 23 out of 27 normal monsoon years (85%) during the past 6 decades. In addition, we show that time series analysis in both areas during the pre-monsoon period reveals indicators whether the forthcoming ISM will be normal or weaker/stronger.

  12. Landslide risk analysis: a multi-disciplinary methodological approach

    NASA Astrophysics Data System (ADS)

    Sterlacchini, S.; Frigerio, S.; Giacomelli, P.; Brambilla, M.

    2007-11-01

    This study describes an analysis carried out within the European community project "ALARM" (Assessment of Landslide Risk and Mitigation in Mountain Areas, 2004) on landslide risk assessment in the municipality of Corvara in Badia, Italy. This mountainous area, located in the central Dolomites (Italian Alps), poses a significant landslide hazard to several man-made and natural objects. Three parameters for determining risk were analysed as an aid to preparedness and mitigation planning: event occurrence probability, elements at risk, and the vulnerability of these elements. Initially, a landslide hazard scenario was defined; this step was followed by the identification of the potential vulnerable elements, by the estimation of the expected physical effects, due to the occurrence of a damaging phenomenon, and by the analysis of social and economic features of the area. Finally, a potential risk scenario was defined, where the relationships between the event, its physical effects, and its economic consequences were investigated. People and public administrators with training and experience in local landsliding and slope processes were involved in each step of the analysis. A "cause-effect" correlation was applied, derived from the "dose-response" equation initially used in the biological sciences and then adapted by economists for the assessment of environmental risks. The relationship was analysed from a physical point of view and the cause (the natural event) was correlated to the physical effects, i.e. the aesthetic, functional, and structural damage. An economic evaluation of direct and indirect damage was carried out considering the assets in the affected area (i.e., tourist flows, goods, transport and the effect on other social and economic activities). This study shows the importance of indirect damage, which is as significant as direct damage. The total amount of direct damage was estimated in 8 913 000 €; on the contrary, indirect damage ranged considerably

  13. Temporal analysis of rainfall (1871-2012) and drought characteristics over a tropical monsoon-dominated State (Kerala) of India

    NASA Astrophysics Data System (ADS)

    Thomas, Jobin; Prasannakumar, V.

    2016-03-01

    The climate of Kerala is controlled by the monsoon, and the analysis of rainfall and drought scenario, for a period of 141 years (1871-72 to 2011-12), reveals a decreasing trend in southwest monsoon, and increasing trends for post-monsoon-, winter- and pre-monsoon-rainfall. The inconsistent periodicity (2-8 years) of annual- and seasonal-rainfall agrees with the periodicity of El-Nino Southern Oscillation (ENSO). The annual rainfall shows an irregular distribution, and is concentrated roughly in half of the year, which is due to the monsoon-driven climatic seasonality. The rainfall concentration at annual-, southwest monsoon-, and winter-scales exhibits significant decreasing trends, implying decline in the degree of irregularity in annual- and seasonal-rainfall. Temporal distribution as well as severity of the drought events have been analyzed using various drought indicators. The drought pattern is not only related to the rainfall trends, but also to the rainfall concentration (or monthly rainfall heterogeneity). The decreasing rainfall during southwest monsoon contributes to short-term meteorological droughts, which have serious implications on the agricultural sector and water resources of Kerala, while the increasing rainfall during other seasons helps to reduce the drought severity.

  14. Multidisciplinary High-Fidelity Analysis and Optimization of Aerospace Vehicles. Part 2; Preliminary Results

    NASA Technical Reports Server (NTRS)

    Walsh, J. L.; Weston, R. P.; Samareh, J. A.; Mason, B. H.; Green, L. L.; Biedron, R. T.

    2000-01-01

    An objective of the High Performance Computing and Communication Program at the NASA Langley Research Center is to demonstrate multidisciplinary shape and sizing optimization of a complete aerospace vehicle configuration by using high-fidelity finite-element structural analysis and computational fluid dynamics aerodynamic analysis in a distributed, heterogeneous computing environment that includes high performance parallel computing. A software system has been designed and implemented to integrate a set of existing discipline analysis codes, some of them computationally intensive, into a distributed computational environment for the design of a high-speed civil transport configuration. The paper describes both the preliminary results from implementing and validating the multidisciplinary analysis and the results from an aerodynamic optimization. The discipline codes are integrated by using the Java programming language and a Common Object Request Broker Architecture compliant software product. A companion paper describes the formulation of the multidisciplinary analysis and optimization system.

  15. Multi-Satellite Synergy for Aerosol Analysis in the Asian Monsoon Region

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Petrenko, Maksym

    2012-01-01

    Atmospheric aerosols represent one of the greatest uncertainties in environmental and climate research, particularly in tropical monsoon regions such as the Southeast Asian regions, where significant contributions from a variety of aerosol sources and types is complicated by unstable atmospheric dynamics. Although aerosols are now routinely retrieved from multiple satellite Sensors, in trying to answer important science questions about aerosol distribution, properties, and impacts, researchers often rely on retrievals from only one or two sensors, thereby running the risk of incurring biases due to sensor/algorithm peculiarities. We are conducting detailed studies of aerosol retrieval uncertainties from various satellite sensors (including Terra-/ Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, SeaWiFS, and Calipso-CALIOP), based on the collocation of these data products over AERONET and other important ground stations, within the online Multi-sensor Aerosol Products Sampling System (MAPSS) framework that was developed recently. Such analyses are aimed at developing a synthesis of results that can be utilized in building reliable unified aerosol information and climate data records from multiple satellite measurements. In this presentation, we will show preliminary results of. an integrated comparative uncertainly analysis of aerosol products from multiple satellite sensors, particularly focused on the Asian Monsoon region, along with some comparisons from the African Monsoon region.

  16. Application of advanced multidisciplinary analysis and optimization methods to vehicle design synthesis

    NASA Technical Reports Server (NTRS)

    Consoli, Robert David; Sobieszczanski-Sobieski, Jaroslaw

    1990-01-01

    Advanced multidisciplinary analysis and optimization methods, namely system sensitivity analysis and non-hierarchical system decomposition, are applied to reduce the cost and improve the visibility of an automated vehicle design synthesis process. This process is inherently complex due to the large number of functional disciplines and associated interdisciplinary couplings. Recent developments in system sensitivity analysis as applied to complex non-hierarchic multidisciplinary design optimization problems enable the decomposition of these complex interactions into sub-processes that can be evaluated in parallel. The application of these techniques results in significant cost, accuracy, and visibility benefits for the entire design synthesis process.

  17. Multidisciplinary Design, Analysis, and Optimization Tool Development using a Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Li, Wesley

    2008-01-01

    Multidisciplinary design, analysis, and optimization using a genetic algorithm is being developed at the National Aeronautics and Space A dministration Dryden Flight Research Center to automate analysis and design process by leveraging existing tools such as NASTRAN, ZAERO a nd CFD codes to enable true multidisciplinary optimization in the pr eliminary design stage of subsonic, transonic, supersonic, and hypers onic aircraft. This is a promising technology, but faces many challe nges in large-scale, real-world application. This paper describes cur rent approaches, recent results, and challenges for MDAO as demonstr ated by our experience with the Ikhana fire pod design.

  18. Development of Response Surface Models for Rapid Analysis and Multidisciplinary Optimization of Launch Vehicle Design Concepts

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1999-01-01

    Multidisciplinary design optimization (MDO) is an important step in the design and evaluation of launch vehicles, since it has a significant impact on performance and lifecycle cost. The objective in MDO is to search the design space to determine the values of design parameters that optimize the performance characteristics subject to system constraints. Vehicle Analysis Branch (VAB) at NASA Langley Research Center has computerized analysis tools in many of the disciplines required for the design and analysis of launch vehicles. Vehicle performance characteristics can be determined by the use of these computerized analysis tools. The next step is to optimize the system performance characteristics subject to multidisciplinary constraints. However, most of the complex sizing and performance evaluation codes used for launch vehicle design are stand-alone tools, operated by disciplinary experts. They are, in general, difficult to integrate and use directly for MDO.

  19. An iterative multidisciplinary analysis for rotor blade shape determination

    NASA Technical Reports Server (NTRS)

    Mahajan, Aparajit J.; Stefko, George L.

    1993-01-01

    A CFD solver called ADPAC-APES is coupled with a NASTRAN structural analysis and a MARC thermal/heat transfer analysis to determine rotor blade shape. Nonlinear blade displacements due to centrifugal loads, aerodynamic pressures, and nonuniform temperature distribution are determined simultaneously. The effect of blade displacements on aerodynamic pressures and temperatures is then analyzed. These calculations are iterated till a steady state is reached across all the disciplines. This iterative procedure is applied to a ducted fan rotor blade and the manufactured shape is determined from a given operating shape. Effect of a part-span shroud on blade deflections is also analyzed.

  20. Analysis of remote measurements of tropospheric carbon monoxide concentrations made during the 1979 Summer Monsoon Experiment (MONEX)

    NASA Technical Reports Server (NTRS)

    Doherty, G. M.; Newell, R. E.; Reichle, H. G., Jr.

    1986-01-01

    Mixing ratios of tropospheric CO as measured by an aircraft-mounted radiometer over Saudi Arabia, the Arabian Sea, and northern India during May and June 1979 are reported. During early May, exceptionally high CO levels were detected over Saudi Arabia, and strong horizontal gradients in CO mixing ratios were seen to develop over a period of several days. Over the Arabian Sea, mixing ratios of the order of 150 parts per billion by volume were observed before the monsoon onset, and a pronounced decrease in CO was detected toward the equator. Subsequent measurements after the monsoon had become established revealed a consistent decrease in CO mixing ratio across this region. Analysis of aircraft dropsonde data and constant pressure daily streamline charts lend strong support to the hypothesis that this reduction is associated with the influx of CO-poor Southern Hemisphere air in the monsoon southwesterlies.

  1. Methodology for analysis and simulation of large multidisciplinary problems

    NASA Technical Reports Server (NTRS)

    Russell, William C.; Ikeda, Paul J.; Vos, Robert G.

    1989-01-01

    The Integrated Structural Modeling (ISM) program is being developed for the Air Force Weapons Laboratory and will be available for Air Force work. Its goal is to provide a design, analysis, and simulation tool intended primarily for directed energy weapons (DEW), kinetic energy weapons (KEW), and surveillance applications. The code is designed to run on DEC (VMS and UNIX), IRIS, Alliant, and Cray hosts. Several technical disciplines are included in ISM, namely structures, controls, optics, thermal, and dynamics. Four topics from the broad ISM goal are discussed. The first is project configuration management and includes two major areas: the software and database arrangement and the system model control. The second is interdisciplinary data transfer and refers to exchange of data between various disciplines such as structures and thermal. Third is a discussion of the integration of component models into one system model, i.e., multiple discipline model synthesis. Last is a presentation of work on a distributed processing computing environment.

  2. NASA Subsonic Rotary Wing Project-Multidisciplinary Analysis and Technology Development: Overview

    NASA Technical Reports Server (NTRS)

    Yamauchi, Gloria K.

    2009-01-01

    This slide presentation reviews the objectives of the Multidisciplinary Analysis and Technology Development (MDATD) in the Subsonic Rotary Wing project. The objectives are to integrate technologies and analyses to enable advanced rotorcraft and provide a roadmap to guide Level 1 and 2 research. The MDATD objectives will be met by conducting assessments of advanced technology benefits, developing new or enhanced design tools, and integrating Level 2 discipline technologies to develop and enable system-level analyses and demonstrations.

  3. Spectral analysis of wind and temperature components during lightning in pre-monsoon season over Ranchi

    NASA Astrophysics Data System (ADS)

    Dwivedi, Arun K.; Chandra, Sagarika; Kumar, Manoj; Kumar, Sanjay; Kumar, N. V. P. Kiran

    2015-02-01

    In this paper, the variations in the surface layer flux parameters as well as spectral parameters in the Atmospheric Surface Layer (ASL) during lightning period have been analysed. This analysis has been done in the pre-monsoon season over Ranchi region, which is a lightning prone zone in India. During this stochastic event not only the behaviour of surface layer parameters has been observed, but other derived parameters like Monin-Obukhov stability parameter ( z/L), Turbulent Kinetic Energy, Momentum Flux and Sensible Heat Flux have also been considered. For the first time, spectral characteristics of wind and temperature component have been analysed and a comparison has been made between lightning and clear day for both the components. A distinct spectral characteristic of wind and temperature components is noticed during the lightning period. The outcome of the results will have important implications in future studies on ASL during lightning in India.

  4. Online Time Series Analysis of Land Products over Asia Monsoon Region via Giovanni

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2011-01-01

    Time series analysis is critical to the study of land cover/land use changes and climate. Time series studies at local-to-regional scales require higher spatial resolution, such as 1km or less, data. MODIS land products of 250m to 1km resolution enable such studies. However, such MODIS land data files are distributed in 10ox10o tiles, due to large data volumes. Conducting a time series study requires downloading all tiles that include the study area for the time period of interest, and mosaicking the tiles spatially. This can be an extremely time-consuming process. In support of the Monsoon Asia Integrated Regional Study (MAIRS) program, NASA GES DISC (Goddard Earth Sciences Data and Information Services Center) has processed MODIS land products at 1 km resolution over the Asia monsoon region (0o-60oN, 60o-150oE) with a common data structure and format. The processed data have been integrated into the Giovanni system (Goddard Interactive Online Visualization ANd aNalysis Infrastructure) that enables users to explore, analyze, and download data over an area and time period of interest easily. Currently, the following regional MODIS land products are available in Giovanni: 8-day 1km land surface temperature and active fire, monthly 1km vegetation index, and yearly 0.05o, 500m land cover types. More data will be added in the near future. By combining atmospheric and oceanic data products in the Giovanni system, it is possible to do further analyses of environmental and climate changes associated with the land, ocean, and atmosphere. This presentation demonstrates exploring land products in the Giovanni system with sample case scenarios.

  5. Monsoon driven changes in phytoplankton populations in the eastern Arabian Sea as revealed by microscopy and HPLC pigment analysis

    NASA Astrophysics Data System (ADS)

    Parab, Sushma G.; Prabhu Matondkar, S. G.; Gomes, H. do R.; Goes, J. I.

    2006-12-01

    Like the rest of the Arabian Sea, the west coast of India is subject to semi-annual wind reversals associated with the monsoon cycle that result in two periods of elevated phytoplankton productivity, one during the northeast (NE) monsoon (November-February) and the other during the southwest (SW) monsoon (June-September). Although the seasonality of phytoplankton biomass in these coastal waters is well known, the abundance and composition of phytoplankton populations associated with this distinct and predictable seasonal cycle is poorly known. Here we present for the first time, the results of a study on the community structure of phytoplankton for this region, derived from HPLC pigment analysis and microscopic cell counts. Our sampling strategy allowed for large spatial and temporal coverage over regions representative of the coastal and offshore waters, and over seasons that included the NE and the SW monsoon. Monthly observations at a fixed coastal station in particular, allowed us to follow changes in phytoplankton community structure associated with the development of anoxia. Together these measurements helped establish a pattern of seasonal change of three major groups of phytoplankton: diatoms, dinoflagellates and cyanobacteria that appeared to be tightly coupled with hydrographic and chemical changes associated with the monsoonal cycle. During the SW monsoon when nitrate concentrations were high, diatoms were dominant but prymnesiophytes were present as well. By October, as nitrate fell to below detection levels and anoxic conditions began to develop on the shelf below the shallow pycnocline, both diatom and prymensiophytes declined sharply giving way to dinoflagellates. In the well oxygenated surface waters, where both nitrate and ammonium were below detection limits, pico-cyanobacterial populations became dominant. During the NE monsoon, a mixed diatom-dinoflagellate population was quickly replaced by blooms of Trichodesmium erythraeum and Noctiluca

  6. Multidisciplinary Tool for Systems Analysis of Planetary Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2011-01-01

    Systems analysis of a planetary entry (SAPE), descent, and landing (EDL) is a multidisciplinary activity in nature. SAPE improves the performance of the systems analysis team by automating and streamlining the process, and this improvement can reduce the errors that stem from manual data transfer among discipline experts. SAPE is a multidisciplinary tool for systems analysis of planetary EDL for Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Titan. It performs EDL systems analysis for any planet, operates cross-platform (i.e., Windows, Mac, and Linux operating systems), uses existing software components and open-source software to avoid software licensing issues, performs low-fidelity systems analysis in one hour on a computer that is comparable to an average laptop, and keeps discipline experts in the analysis loop. SAPE uses Python, a platform-independent, open-source language, for integration and for the user interface. Development has relied heavily on the object-oriented programming capabilities that are available in Python. Modules are provided to interface with commercial and government off-the-shelf software components (e.g., thermal protection systems and finite-element analysis). SAPE currently includes the following analysis modules: geometry, trajectory, aerodynamics, aerothermal, thermal protection system, and interface for structural sizing.

  7. Static, Dynamic and Semantic Dimensions: Towards a Multidisciplinary Approach of Social Networks Analysis

    NASA Astrophysics Data System (ADS)

    Thovex, Christophe; Trichet, Francky

    The objective of our work is to extend static and dynamic models of Social Networks Analysis (SNA), by taking conceptual aspects of enterprises and institutions social graph into account. The originality of our multidisciplinary work is to introduce abstract notions of electro-physic to define new measures in SNA, for new decision-making functions dedicated to Human Resource Management (HRM). This paper introduces a multidimensional system and new measures: (1) a tension measure for social network analysis, (2) an electrodynamic, predictive and semantic system for recommendations on social graphs evolutions and (3) a reactance measure used to evaluate the individual stress at work of the members of a social network.

  8. IMAT (Integrated Multidisciplinary Analysis Tool) user's guide for the VAX/VMS computer

    NASA Technical Reports Server (NTRS)

    Meissner, Frances T. (Editor)

    1988-01-01

    The Integrated Multidisciplinary Analysis Tool (IMAT) is a computer software system for the VAX/VMS computer developed at the Langley Research Center. IMAT provides researchers and analysts with an efficient capability to analyze satellite control systems influenced by structural dynamics. Using a menu-driven executive system, IMAT leads the user through the program options. IMAT links a relational database manager to commercial and in-house structural and controls analysis codes. This paper describes the IMAT software system and how to use it.

  9. The concept of global monsoon applied to the last glacial maximum: A multi-model analysis

    NASA Astrophysics Data System (ADS)

    Jiang, Dabang; Tian, Zhiping; Lang, Xianmei; Kageyama, Masa; Ramstein, Gilles

    2015-10-01

    The last glacial maximum (LGM, ca. 21,000 years ago) has been extensively investigated for better understanding of past glacial climates. Global-scale monsoon changes, however, have not yet been determined. In this study, we examine global monsoon area (GMA) and precipitation (GMP) as well as GMP intensity (GMPI) at the LGM using the experiments of 17 climate models chosen from the Paleoclimate Modelling Intercomparison Project (PMIP) according to their ability to reproduce the present global monsoon climate. Compared to the reference period (referring to the present day, ca. 1985, for three atmospheric plus two atm-slab ocean models and the pre-industrial period, ca. 1750, for 12 fully coupled atmosphere-ocean or atmosphere-ocean-vegetation models), the LGM monsoon area increased over land and decreased over the oceans. The boreal land monsoon areas generally shifted southward, while the northern boundary of land monsoon areas retreated southward over southern Africa and South America. Both the LGM GMP and GMPI decreased in most of the models. The GMP decrease mainly resulted from the reduced monsoon precipitation over the oceans, while the GMPI decrease was derived from the weakened intensity of monsoon precipitation over land and the boreal ocean. Quantitatively, the LGM GMP deficit was due to, first, the GMA reduction and, second, the GMPI weakening. In response to the LGM large ice sheets and lower greenhouse gas concentrations in the atmosphere, the global surface and tropospheric temperatures cooled, the boreal summer meridional temperature gradient increased, and the summer land-sea thermal contrast at 40°S - 70°N decreased. These are the underlying dynamic mechanisms for the LGM monsoon changes. Qualitatively, simulations agree with reconstructions in all land monsoon areas except in the western part of northern Australia where disagreements occur and in South America and the southern part of southern Africa where there is uncertainty in reconstructions

  10. A Multidisciplinary Tool for Systems Analysis of Planetary Entry, Descent, and Landing (SAPE)

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2009-01-01

    SAPE is a Python-based multidisciplinary analysis tool for systems analysis of planetary entry, descent, and landing (EDL) for Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Titan. The purpose of SAPE is to provide a variable-fidelity capability for conceptual and preliminary analysis within the same framework. SAPE includes the following analysis modules: geometry, trajectory, aerodynamics, aerothermal, thermal protection system, and structural sizing. SAPE uses the Python language-a platform-independent open-source software for integration and for the user interface. The development has relied heavily on the object-oriented programming capabilities that are available in Python. Modules are provided to interface with commercial and government off-the-shelf software components (e.g., thermal protection systems and finite-element analysis). SAPE runs on Microsoft Windows and Apple Mac OS X and has been partially tested on Linux.

  11. Multidisciplinary High-Fidelity Analysis and Optimization of Aerospace Vehicles. Part 1; Formulation

    NASA Technical Reports Server (NTRS)

    Walsh, J. L.; Townsend, J. C.; Salas, A. O.; Samareh, J. A.; Mukhopadhyay, V.; Barthelemy, J.-F.

    2000-01-01

    An objective of the High Performance Computing and Communication Program at the NASA Langley Research Center is to demonstrate multidisciplinary shape and sizing optimization of a complete aerospace vehicle configuration by using high-fidelity, finite element structural analysis and computational fluid dynamics aerodynamic analysis in a distributed, heterogeneous computing environment that includes high performance parallel computing. A software system has been designed and implemented to integrate a set of existing discipline analysis codes, some of them computationally intensive, into a distributed computational environment for the design of a highspeed civil transport configuration. The paper describes the engineering aspects of formulating the optimization by integrating these analysis codes and associated interface codes into the system. The discipline codes are integrated by using the Java programming language and a Common Object Request Broker Architecture (CORBA) compliant software product. A companion paper presents currently available results.

  12. The Component Packaging Problem: A Vehicle for the Development of Multidisciplinary Design and Analysis Methodologies

    NASA Technical Reports Server (NTRS)

    Fadel, Georges; Bridgewood, Michael; Figliola, Richard; Greenstein, Joel; Kostreva, Michael; Nowaczyk, Ronald; Stevenson, Steve

    1999-01-01

    This report summarizes academic research which has resulted in an increased appreciation for multidisciplinary efforts among our students, colleagues and administrators. It has also generated a number of research ideas that emerged from the interaction between disciplines. Overall, 17 undergraduate students and 16 graduate students benefited directly from the NASA grant: an additional 11 graduate students were impacted and participated without financial support from NASA. The work resulted in 16 theses (with 7 to be completed in the near future), 67 papers or reports mostly published in 8 journals and/or presented at various conferences (a total of 83 papers, presentations and reports published based on NASA inspired or supported work). In addition, the faculty and students presented related work at many meetings, and continuing work has been proposed to NSF, the Army, Industry and other state and federal institutions to continue efforts in the direction of multidisciplinary and recently multi-objective design and analysis. The specific problem addressed is component packing which was solved as a multi-objective problem using iterative genetic algorithms and decomposition. Further testing and refinement of the methodology developed is presently under investigation. Teaming issues research and classes resulted in the publication of a web site, (http://design.eng.clemson.edu/psych4991) which provides pointers and techniques to interested parties. Specific advantages of using iterative genetic algorithms, hurdles faced and resolved, and institutional difficulties associated with multi-discipline teaming are described in some detail.

  13. Drought analysis according to shifting of climate zones to arid climate zone over Asia monsoon region

    NASA Astrophysics Data System (ADS)

    Son, Kyung-Hwan; Bae, Deg-Hyo

    2015-10-01

    When a humid region is affected by arid climate, significant changes in drought characteristics occur due to imbalance of water budget. In this study, change in drought characteristics according to shift of different climates i.e. tropical, warm temperate, cold and polar to Arid Climate (SAC) was analyzed over the Asia monsoon region. Climate zones and the SAC regions were identified by applying the Köppen climate classification on hydro-meteorological data for the period of 1963-2006. The analysis of hydro-meteorological parameters revealed that the annual precipitation and runoff in the SAC regions appeared to decrease about 12.1% and 27.3%, respectively, while annual average temperature increased about 0.5 °C. Standardized runoff index (SRI) was calculated using model-driven runoff data. The trend and change point analyses of SRI were performed to evaluate the changes in drought characteristics (frequency, duration, severity) before and after shifting of the different climates to arid climate. The results revealed strong decreasing trend of SRI and hence intensified drought conditions for the SAC regions. A change point year of drought occurred about 3-5 years earlier than the shifting time of the SAC region. Frequency and duration of droughts in the SAC regions were observed to increase about 9.2 and 1.5 months, respectively, and drought severity index intensified to about -0.15. It can be concluded that analysis of shifting to arid climate zones should be considered together with changes in drought characteristics, because the drought characteristics and changing arid climate zones are closely related to each other.

  14. Structural Model Tuning Capability in an Object-Oriented Multidisciplinary Design, Analysis, and Optimization Tool

    NASA Technical Reports Server (NTRS)

    Lung, Shun-fat; Pak, Chan-gi

    2008-01-01

    Updating the finite element model using measured data is a challenging problem in the area of structural dynamics. The model updating process requires not only satisfactory correlations between analytical and experimental results, but also the retention of dynamic properties of structures. Accurate rigid body dynamics are important for flight control system design and aeroelastic trim analysis. Minimizing the difference between analytical and experimental results is a type of optimization problem. In this research, a multidisciplinary design, analysis, and optimization [MDAO] tool is introduced to optimize the objective function and constraints such that the mass properties, the natural frequencies, and the mode shapes are matched to the target data as well as the mass matrix being orthogonalized.

  15. Structural Model Tuning Capability in an Object-Oriented Multidisciplinary Design, Analysis, and Optimization Tool

    NASA Technical Reports Server (NTRS)

    Lung, Shun-fat; Pak, Chan-gi

    2008-01-01

    Updating the finite element model using measured data is a challenging problem in the area of structural dynamics. The model updating process requires not only satisfactory correlations between analytical and experimental results, but also the retention of dynamic properties of structures. Accurate rigid body dynamics are important for flight control system design and aeroelastic trim analysis. Minimizing the difference between analytical and experimental results is a type of optimization problem. In this research, a multidisciplinary design, analysis, and optimization (MDAO) tool is introduced to optimize the objective function and constraints such that the mass properties, the natural frequencies, and the mode shapes are matched to the target data as well as the mass matrix being orthogonalized.

  16. OpenMDAO: Framework for Flexible Multidisciplinary Design, Analysis and Optimization Methods

    NASA Technical Reports Server (NTRS)

    Heath, Christopher M.; Gray, Justin S.

    2012-01-01

    The OpenMDAO project is underway at NASA to develop a framework which simplifies the implementation of state-of-the-art tools and methods for multidisciplinary design, analysis and optimization. Foremost, OpenMDAO has been designed to handle variable problem formulations, encourage reconfigurability, and promote model reuse. This work demonstrates the concept of iteration hierarchies in OpenMDAO to achieve a flexible environment for supporting advanced optimization methods which include adaptive sampling and surrogate modeling techniques. In this effort, two efficient global optimization methods were applied to solve a constrained, single-objective and constrained, multiobjective version of a joint aircraft/engine sizing problem. The aircraft model, NASA's nextgeneration advanced single-aisle civil transport, is being studied as part of the Subsonic Fixed Wing project to help meet simultaneous program goals for reduced fuel burn, emissions, and noise. This analysis serves as a realistic test problem to demonstrate the flexibility and reconfigurability offered by OpenMDAO.

  17. Analysis of the seasonal ozone budget and the impact of the summer monsoon on the northeastern Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhu, Bin; Hou, Xuewei; Kang, Hanqing

    2016-02-01

    Seasonal variations in ozone (O3) and the impact of the East Asian summer monsoon at Mount Waliguan (WLG) in the northeastern Qinghai-Tibetan Plateau (TP) and in the surrounding regions were analyzed for 1997-2007 using a global chemical transport model coupled with O3 tagging simulations. The model-simulated O3 and its precursors agreed well with observed values. An O3 budget analysis combined with O3 tagging results implied that photochemistry over the TP and long-range transport of O3 from East Asia, Europe, and Africa were responsible for the surface O3 summer maximum at WLG. In June, the contribution of O3 from the TP was 11.8 ppbv, and the total contribution of O3 transport from eastern China, Japan, Korean Peninsula, Europe, and Africa was 22.7 ppbv. At 400 mb, the O3 exports from the stratosphere, Europe, Africa, and the Americas seemed to be the main sources of O3 at WLG. The contributions to surface O3 from deep convection process and lightning-induced photochemistry at WLG were both low in summer and are unlikely to be the key processes or contributors for the O3 peak. At several mountain sites in southeast East Asia, the increasing summer monsoon index was related to a decreasing trend for O3 from spring onward at Mount Tai and Mount Huang. At Mount Hua and WLG, regional O3 accumulated over the monsoon's northernmost marginal zone under the influence of the East Asian summer monsoon and TP thermal circulation; this is most likely a key reason for the O3 summer maxima.

  18. Tracking millennial-scale climate change by analysis of the modern summer precipitation in the marginal regions of the Asian monsoon

    NASA Astrophysics Data System (ADS)

    Li, Yu; Wang, Nai'ang; Chen, Hongbao; Li, Zhuolun; Zhou, Xuehua; Zhang, Chengqi

    2012-09-01

    The Asian summer monsoon and the westerly winds interact in the mid-latitude regions of East Asia, so that climate change there is influenced by the combined effect of the two climate systems. The Holocene millennial-scale Asian summer monsoon change shows the out-of-phase relationship with the moisture evolution in arid Central Asia. Although much research has been devoted to the long-term climate change, little work has been done on the mechanism. Summer precipitation, in the marginal regions of the Asian monsoon, is strongly affected by the monsoon and the westerly winds. The purpose of this paper is to examine the mechanism of the millennial-scale out-of-phase relationship by modern summer precipitation analysis in the northwest margin of the Asian monsoon (95-110°E, 35-45°N). First, the method of Empirical Orthogonal Function (EOF) analysis was carried out to the 1960-2008 summer rainfall data from 64 stations in that region; then the water vapor transportation and geopotential height field data were studied, in order to explain and understand the factors that influence the summer precipitation; lastly, the East Asian Summer Monsoon Index (EASMI), South Asian Summer Monsoon Index (SASMI), Summer Westerly Winds Index (SWI) were compared with the EOF time series. The results indicate the complicated interannual-scale interaction between the Asian summer monsoon and the westerly winds, which can result in the modern out-of-phase relationship in the study area. This study demonstrates that the interaction between the two climate systems can be considered as a factor for the millennial-scale out-of-phase relationship.

  19. Using the framework method for the analysis of qualitative data in multi-disciplinary health research

    PubMed Central

    2013-01-01

    Background The Framework Method is becoming an increasingly popular approach to the management and analysis of qualitative data in health research. However, there is confusion about its potential application and limitations. Discussion The article discusses when it is appropriate to adopt the Framework Method and explains the procedure for using it in multi-disciplinary health research teams, or those that involve clinicians, patients and lay people. The stages of the method are illustrated using examples from a published study. Summary Used effectively, with the leadership of an experienced qualitative researcher, the Framework Method is a systematic and flexible approach to analysing qualitative data and is appropriate for use in research teams even where not all members have previous experience of conducting qualitative research. PMID:24047204

  20. Multidisciplinary capability for analysis of the dynamics and control of flexible space structures

    NASA Technical Reports Server (NTRS)

    Cooper, P. A.; Lake, M. S.; Young, J. W.; Sutter, T. R.

    1986-01-01

    The paper describes a computerized data distribution capability, IMAT, in place at the NASA Langley Research Center for the multidisciplinary analysis of the dynamics and control of large flexible space structures. The paper includes results obtained in using IMAT to investigate the influence of the structural response of the space station framework on the control of a 300kw class, solar-dynamic-powered, dual-keel space station during an orbital reboost maneuver. The method of control, using an unfiltered proportional-plus-differential control law, led to a stable control system even with local flexible response measured at the control sensor location included as a part of the control error signal. The flexible response at the outboard solar dynamic system sun-line axis was close to the maximum rotation allowed for efficient operation; thus, active local control of each solar dynamic system may be necessary to limit sun-line axis rotations effectively during a reboost maneuver.

  1. Development of Response Surface Models for Rapid Analysis & Multidisciplinary Optimization of Launch Vehicle Design Concepts

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1999-01-01

    Multdisciplinary design optimization (MDO) is an important step in the design and evaluation of launch vehicles, since it has a significant impact on performance and lifecycle cost. The objective in MDO is to search the design space to determine the values of design parameters that optimize the performance characteristics subject to system constraints. Vehicle Analysis Branch (VAB) at NASA Langley Research Center has computerized analysis tools in many of the disciplines required for the design and analysis of launch vehicles. Vehicle performance characteristics can be determined by the use of these computerized analysis tools. The next step is to optimize the system performance characteristics subject to multidisciplinary constraints. However, most of the complex sizing and performance evaluation codes used for launch vehicle design are stand-alone tools, operated by disciplinary experts. They are, in general, difficult to integrate and use directly for MDO. An alternative has been to utilize response surface methodology (RSM) to obtain polynomial models that approximate the functional relationships between performance characteristics and design variables. These approximation models, called response surface models, are then used to integrate the disciplines using mathematical programming methods for efficient system level design analysis, MDO and fast sensitivity simulations. A second-order response surface model of the form given has been commonly used in RSM since in many cases it can provide an adequate approximation especially if the region of interest is sufficiently limited.

  2. Detailed Analysis of Indian Summer Monsoon Rainfall Processes with Modern/High-Quality Satellite Observations

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Kuo, Kwo-Sen; Mehta, Amita V.; Yang, Song

    2007-01-01

    We examine, in detail, Indian Summer Monsoon rainfall processes using modernhigh quality satellite precipitation measurements. The focus here is on measurements derived from three NASA cloud and precipitation satellite missionslinstruments (TRMM/PR&TMI, AQUNAMSRE, and CLOUDSATICPR), and a fourth TRMM Project-generated multi-satellite precipitation measurement dataset (viz., TRMM standard algorithm 3b42) -- all from a period beginning in 1998 up to the present. It is emphasized that the 3b42 algorithm blends passive microwave (PMW) radiometer-based precipitation estimates from LEO satellites with infi-ared (IR) precipitation estimates from a world network of CEO satellites (representing -15% of the complete space-time coverage) All of these observations are first cross-calibrated to precipitation estimates taken from standard TRMM combined PR-TMI algorithm 2b31, and second adjusted at the large scale based on monthly-averaged rain-gage measurements. The blended approach takes advantage of direct estimates of precipitation from the PMW radiometerequipped LEO satellites -- but which suffer fi-om sampling limitations -- in combination with less accurate IR estimates from the optical-infrared imaging cameras on GEO satellites -- but which provide continuous diurnal sampling. The advantages of the current technologies are evident in the continuity and coverage properties inherent to the resultant precipitation datasets that have been an outgrowth of these stable measuring and retrieval technologies. There is a wealth of information contained in the current satellite measurements of precipitation regarding the salient precipitation properties of the Indian Summer Monsoon. Using different datasets obtained from the measuring systems noted above, we have analyzed the observations cast in the form of: (1) spatially distributed means and variances over the hierarchy of relevant time scales (hourly I diurnally, daily, monthly, seasonally I intra-seasonally, and inter

  3. Object-Oriented Multi-Disciplinary Design, Analysis, and Optimization Tool

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi

    2011-01-01

    An Object-Oriented Optimization (O3) tool was developed that leverages existing tools and practices, and allows the easy integration and adoption of new state-of-the-art software. At the heart of the O3 tool is the Central Executive Module (CEM), which can integrate disparate software packages in a cross platform network environment so as to quickly perform optimization and design tasks in a cohesive, streamlined manner. This object-oriented framework can integrate the analysis codes for multiple disciplines instead of relying on one code to perform the analysis for all disciplines. The CEM was written in FORTRAN and the script commands for each performance index were submitted through the use of the FORTRAN Call System command. In this CEM, the user chooses an optimization methodology, defines objective and constraint functions from performance indices, and provides starting and side constraints for continuous as well as discrete design variables. The structural analysis modules such as computations of the structural weight, stress, deflection, buckling, and flutter and divergence speeds have been developed and incorporated into the O3 tool to build an object-oriented Multidisciplinary Design, Analysis, and Optimization (MDAO) tool.

  4. STARS: An Integrated, Multidisciplinary, Finite-Element, Structural, Fluids, Aeroelastic, and Aeroservoelastic Analysis Computer Program

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.

    1997-01-01

    A multidisciplinary, finite element-based, highly graphics-oriented, linear and nonlinear analysis capability that includes such disciplines as structures, heat transfer, linear aerodynamics, computational fluid dynamics, and controls engineering has been achieved by integrating several new modules in the original STARS (STructural Analysis RoutineS) computer program. Each individual analysis module is general-purpose in nature and is effectively integrated to yield aeroelastic and aeroservoelastic solutions of complex engineering problems. Examples of advanced NASA Dryden Flight Research Center projects analyzed by the code in recent years include the X-29A, F-18 High Alpha Research Vehicle/Thrust Vectoring Control System, B-52/Pegasus Generic Hypersonics, National AeroSpace Plane (NASP), SR-71/Hypersonic Launch Vehicle, and High Speed Civil Transport (HSCT) projects. Extensive graphics capabilities exist for convenient model development and postprocessing of analysis results. The program is written in modular form in standard FORTRAN language to run on a variety of computers, such as the IBM RISC/6000, SGI, DEC, Cray, and personal computer; associated graphics codes use OpenGL and IBM/graPHIGS language for color depiction. This program is available from COSMIC, the NASA agency for distribution of computer programs.

  5. Past break-monsoon conditions detectable by high resolution intra-annual δ18O analysis of teak rings

    NASA Astrophysics Data System (ADS)

    Managave, S. R.; Sheshshayee, M. S.; Borgaonkar, H. P.; Ramesh, R.

    2010-03-01

    Intra-annual variations in the cellulose oxygen isotopic composition (δ18O) of several annual growth rings of three teak (Tectona grandis L.F.) trees from central India show a clear seasonal cycle with higher values in the early and late growing seasons and lower values in the middle. This cycle is useful to identify growth occurring during different phases of the growing season. Relative humidity (RH) appears to control the intra-annual δ18O variations rather than rainfall, and therefore past break-monsoon conditions associated with lower RH, could be detected by high resolution sub-sampling of annual rings for δ18O analysis.

  6. Computer-automated multi-disciplinary analysis and design optimization of internally cooled turbine blades

    NASA Astrophysics Data System (ADS)

    Martin, Thomas Joseph

    This dissertation presents the theoretical methodology, organizational strategy, conceptual demonstration and validation of a fully automated computer program for the multi-disciplinary analysis, inverse design and optimization of convectively cooled axial gas turbine blades and vanes. Parametric computer models of the three-dimensional cooled turbine blades and vanes were developed, including the automatic generation of discretized computational grids. Several new analysis programs were written and incorporated with existing computational tools to provide computer models of the engine cycle, aero-thermodynamics, heat conduction and thermofluid physics of the internally cooled turbine blades and vanes. A generalized information transfer protocol was developed to provide the automatic mapping of geometric and boundary condition data between the parametric design tool and the numerical analysis programs. A constrained hybrid optimization algorithm controlled the overall operation of the system and guided the multi-disciplinary internal turbine cooling design process towards the objectives and constraints of engine cycle performance, aerodynamic efficiency, cooling effectiveness and turbine blade and vane durability. Several boundary element computer programs were written to solve the steady-state non-linear heat conduction equation inside the internally cooled and thermal barrier-coated turbine blades and vanes. The boundary element method (BEM) did not require grid generation inside the internally cooled turbine blades and vanes, so the parametric model was very robust. Implicit differentiations of the BEM thermal and thereto-elastic analyses were done to compute design sensitivity derivatives faster and more accurately than via explicit finite differencing. A factor of three savings of computer processing time was realized for two-dimensional thermal optimization problems, and a factor of twenty was obtained for three-dimensional thermal optimization problems

  7. Multidisciplinary Care.

    PubMed

    Daly, Megan E; Riess, Jonathan W

    2016-01-01

    Optimal multidisciplinary care of the lung cancer patient at all stages should encompass integration of the key relevant medical specialties, including not only medical, surgical, and radiation oncology, but also pulmonology, interventional and diagnostic radiology, pathology, palliative care, and supportive services such as physical therapy, case management, smoking cessation, and nutrition. Multidisciplinary management starts at staging and tissue diagnosis with pathologic and molecular phenotyping, extends through selection of a treatment modality or modalities, management of treatment and cancer-related symptoms, and to survivorship and end-of-life care. Well-integrated multidisciplinary care may reduce treatment delays, improve cancer-specific outcomes, and enhance quality of life. We address key topics and areas of ongoing investigation in multidisciplinary decision making at each stage of the lung cancer treatment course for early-stage, locally advanced, and metastatic lung cancer patients. PMID:27535399

  8. Getting a Cohesive Answer from a Common Start: Scalable Multidisciplinary Analysis through Transformation of a Systems Model

    NASA Technical Reports Server (NTRS)

    Cole, Bjorn; Chung, Seung

    2012-01-01

    One of the challenges of systems engineering is in working multidisciplinary problems in a cohesive manner. When planning analysis of these problems, system engineers must trade between time and cost for analysis quality and quantity. The quality often correlates with greater run time in multidisciplinary models and the quantity is associated with the number of alternatives that can be analyzed. The trade-off is due to the resource intensive process of creating a cohesive multidisciplinary systems model and analysis. Furthermore, reuse or extension of the models used in one stage of a product life cycle for another is a major challenge. Recent developments have enabled a much less resource-intensive and more rigorous approach than hand-written translation scripts between multi-disciplinary models and their analyses. The key is to work from a core systems model defined in a MOF-based language such as SysML and in leveraging the emerging tool ecosystem, such as Query/View/Transformation (QVT), from the OMG community. SysML was designed to model multidisciplinary systems. The QVT standard was designed to transform SysML models into other models, including those leveraged by engineering analyses. The Europa Habitability Mission (EHM) team has begun to exploit these capabilities. In one case, a Matlab/Simulink model is generated on the fly from a system description for power analysis written in SysML. In a more general case, symbolic analysis (supported by Wolfram Mathematica) is coordinated by data objects transformed from the systems model, enabling extremely flexible and powerful design exploration and analytical investigations of expected system performance.

  9. The Indian Summer Monsoon onset revisited: new approach based on the analysis of historical wind observations

    NASA Astrophysics Data System (ADS)

    Ordoñez, Paulina; Gallego, David; Ribera, Pedro; Peña-Ortiz, Cristina; Garcia-Herrera, Ricardo; Vega, Inmaculada; Gómez, Francisco de Paula

    2016-04-01

    The Indian Summer Monsoon onset is one of the meteorological events most anticipated in the world. Due to its relevance for the population, the India Meteorological Department has dated the onset over the southern tip of the Indian Peninsula (Kerala) since 1901. The traditional method to date the onset was based in the judgment of skilled meteorologist and because of this, the method was considered subjective and not adequate for the study of long-term changes in the onset. A new method for determining the monsoon onset based solely on objective criteria has been in use since 2006. Unfortunately, the new method relies -among other variables- on OLR measurements. This requirement impedes the construction of an objective onset series before the satellite era. An alternative approach to establish the onset by objective methods is the use of the wind field. During the last decade, some works have demonstrated that the changes in the wind direction in some areas of the Indian Ocean can be used to determine the monsoon onset rather precisely. However, this method requires precise wind observations over a large oceanic area which has limited the periods covered for such kind of indices to those of the reanalysis products. In this work we present a new approach to track the Indian monsoon onset based solely on historical wind direction measurements taken onboard ships. Our new series provides an objective record of the onset since the last decade of the 19th century and perhaps more importantly, it can incorporate any new historical wind record not yet known in order to extend the series length. The new series captures quite precisely the rapid precipitation increase associated to the monsoon onset, correlates well with previous approaches and it is robust against anomalous (bogus) onsets. Although no significant trends in the onset date were detected, a tendency to later than average onsets during the 1900-1925 and 1970-1990 periods and earlier than average onsets between

  10. Analysis of a Monsoon Flood Event Effect on Surface and Groundwater Interactions in a Regional Semiarid Watershed

    NASA Astrophysics Data System (ADS)

    Bowman, R. S.; Vivoni, E. R.; Wyckoff, R.; Jakubowski, R.; Richards, K.

    2004-12-01

    Although sporadic and infrequent, flooding events in ephemeral watersheds are a critical component to the water, sediment and biogeochemical cycles in arid and semiarid regions. In the Southwestern United States, intense thunderstorms during the summer monsoon season interact with landscapes characterized by topographic complexity and soils of low infiltration capacity to produce large magnitude floods and flash floods. In this study, we examine the hydrometeorological conditions and hydrologic response of an extreme monsoon flood event in the Río Puerco watershed of north-central New Mexico and its downstream effects in the Río Grande, a major continental-scale river basin. The summer storm in early September 4-11, 2003 generated flash flooding in headwater basins and river flooding extending through the semiarid basin and downstream into the Río Grande for several tens of kilometers. We characterize the hydrometeorological conditions prior to the flood event using precipitation estimates from rain gauge records, NEXRAD radar data, and synoptic weather conditions over the 18,000 km2 Río Puerco basin. Then, we present the spatial and temporal variability in hydrologic response based on a set of nested stream gauges in river channels and irrigation canals as well as a network of instrumented well transects installed along the Río Grande alluvial aquifer. Our analysis illustrates the propagation, dampening, and attenuation of a large monsoonal storm through a semiarid ephemeral tributary into a regional river system from both a surface and groundwater hydrology perspective, including the water exchanges observed between the two systems. By estimating the frequency of the rainfall and flood event in the system relative to the historical record and known shifts in climate regime, we discuss the importance of extreme flood events in semiarid tributary systems and their downstream effects in the surface and groundwater interactions of regional river basins.

  11. Getting a Cohesive Answer from a Common Start: Scalable Multidisciplinary Analysis through Transformation of a System Model

    NASA Technical Reports Server (NTRS)

    Cole, Bjorn; Chung, Seung H.

    2012-01-01

    One of the challenges of systems engineering is in working multidisciplinary problems in a cohesive manner. When planning analysis of these problems, system engineers must tradeoff time and cost for analysis quality and quantity. The quality is associated with the fidelity of the multidisciplinary models and the quantity is associated with the design space that can be analyzed. The tradeoff is due to the resource intensive process of creating a cohesive multidisciplinary system model and analysis. Furthermore, reuse or extension of the models used in one stage of a product life cycle for another is a major challenge. Recent developments have enabled a much less resource-intensive and more rigorous approach than handwritten translation scripts or codes of multidisciplinary models and their analyses. The key is to work from a core system model defined in a MOF-based language such as SysML and in leveraging the emerging tool ecosystem, such as Query-View- Transform (QVT), from the OMG community. SysML was designed to model multidisciplinary systems and analyses. The QVT standard was designed to transform SysML models. The Europa Hability Mission (EHM) team has begun to exploit these capabilities. In one case, a Matlab/Simulink model is generated on the fly from a system description for power analysis written in SysML. In a more general case, a symbolic mathematical framework (supported by Wolfram Mathematica) is coordinated by data objects transformed from the system model, enabling extremely flexible and powerful tradespace exploration and analytical investigations of expected system performance.

  12. A Systematic Approach for Quantitative Analysis of Multidisciplinary Design Optimization Framework

    NASA Astrophysics Data System (ADS)

    Kim, Sangho; Park, Jungkeun; Lee, Jeong-Oog; Lee, Jae-Woo

    An efficient Multidisciplinary Design and Optimization (MDO) framework for an aerospace engineering system should use and integrate distributed resources such as various analysis codes, optimization codes, Computer Aided Design (CAD) tools, Data Base Management Systems (DBMS), etc. in a heterogeneous environment, and need to provide user-friendly graphical user interfaces. In this paper, we propose a systematic approach for determining a reference MDO framework and for evaluating MDO frameworks. The proposed approach incorporates two well-known methods, Analytic Hierarchy Process (AHP) and Quality Function Deployment (QFD), in order to provide a quantitative analysis of the qualitative criteria of MDO frameworks. Identification and hierarchy of the framework requirements and the corresponding solutions for the reference MDO frameworks, the general one and the aircraft oriented one were carefully investigated. The reference frameworks were also quantitatively identified using AHP and QFD. An assessment of three in-house frameworks was then performed. The results produced clear and useful guidelines for improvement of the in-house MDO frameworks and showed the feasibility of the proposed approach for evaluating an MDO framework without a human interference.

  13. Multidisciplinary Modeling Software for Analysis, Design, and Optimization of HRRLS Vehicles

    NASA Technical Reports Server (NTRS)

    Spradley, Lawrence W.; Lohner, Rainald; Hunt, James L.

    2011-01-01

    The concept for Highly Reliable Reusable Launch Systems (HRRLS) under the NASA Hypersonics project is a two-stage-to-orbit, horizontal-take-off / horizontal-landing, (HTHL) architecture with an air-breathing first stage. The first stage vehicle is a slender body with an air-breathing propulsion system that is highly integrated with the airframe. The light weight slender body will deflect significantly during flight. This global deflection affects the flow over the vehicle and into the engine and thus the loads and moments on the vehicle. High-fidelity multi-disciplinary analyses that accounts for these fluid-structures-thermal interactions are required to accurately predict the vehicle loads and resultant response. These predictions of vehicle response to multi physics loads, calculated with fluid-structural-thermal interaction, are required in order to optimize the vehicle design over its full operating range. This contract with ResearchSouth addresses one of the primary objectives of the Vehicle Technology Integration (VTI) discipline: the development of high-fidelity multi-disciplinary analysis and optimization methods and tools for HRRLS vehicles. The primary goal of this effort is the development of an integrated software system that can be used for full-vehicle optimization. This goal was accomplished by: 1) integrating the master code, FEMAP, into the multidiscipline software network to direct the coupling to assure accurate fluid-structure-thermal interaction solutions; 2) loosely-coupling the Euler flow solver FEFLO to the available and proven aeroelasticity and large deformation (FEAP) code; 3) providing a coupled Euler-boundary layer capability for rapid viscous flow simulation; 4) developing and implementing improved Euler/RANS algorithms into the FEFLO CFD code to provide accurate shock capturing, skin friction, and heat-transfer predictions for HRRLS vehicles in hypersonic flow, 5) performing a Reynolds-averaged Navier-Stokes computation on an HRRLS

  14. Observation of cloud sytems during the African monsoon with METEOSAT

    NASA Astrophysics Data System (ADS)

    Sèze, G.; Szantai, A.; Desalmand, F.

    2003-04-01

    In the frame of the AMMA (African Monsoon Multidisciplinary Analyses) project and the related field experiments planned for 2005, satellite data are of prime importance to provide a good description of cloud systems. The simultaneous observations of low clouds associated with the monsoon flow and of cloud sytems associated with deep convection could bring useful information on the relation between these two processes. Using geostationnary satellite data, we have developed an approach allowing to classify clouds in cloud types, to study their evolution and their displacement. It is applied to METEOSAT-7 data during the JET2000 experiment ; it combines the cloud classification obtained from the LMD Dynamic Cluster Method developed by Sèze and Desbois (Sèze and Desbois, 1987; Sèze and Pawlowska, 2001), with the LMD cloud tracking method (Desalmand et al., 1999; Szantai et al., 2002). An analysis of the low cloud cover in the monsoon flow during the 10 day period of the experiment, is presented and the advantage of this combined study (cloud classification plus cloud tracking) is demonstrated. The improvements that the higher image frequency provided by the MSG (METEOSAT Second Generation) satellite will bring are illustrated with results obtained with the same kind of processing on METEOSAT-6 Rapid Scan data available over West Africa on 28 July 1999.

  15. A Multidisciplinary Performance Analysis of a Lifting-Body Single-Stage-to-Orbit Vehicle

    NASA Technical Reports Server (NTRS)

    Tartabini, Paul V.; Lepsch, Roger A.; Korte, J. J.; Wurster, Kathryn E.

    2000-01-01

    Lockheed Martin Skunk Works (LMSW) is currently developing a single-stage-to-orbit reusable launch vehicle called VentureStar(TM) A team at NASA Langley Research Center participated with LMSW in the screening and evaluation of a number of early VentureStar(TM) configurations. The performance analyses that supported these initial studies were conducted to assess the effect of a lifting body shape, linear aerospike engine and metallic thermal protection system (TPS) on the weight and performance of the vehicle. These performance studies were performed in a multidisciplinary fashion that indirectly linked the trajectory optimization with weight estimation and aerothermal analysis tools. This approach was necessary to develop optimized ascent and entry trajectories that met all vehicle design constraints. Significant improvements in ascent performance were achieved when the vehicle flew a lifting trajectory and varied the engine mixture ratio during flight. Also, a considerable reduction in empty weight was possible by adjusting the total oxidizer-to-fuel and liftoff thrust-to-weight ratios. However, the optimal ascent flight profile had to be altered to ensure that the vehicle could be trimmed in pitch using only the flow diverting capability of the aerospike engine. Likewise, the optimal entry trajectory had to be tailored to meet TPS heating rate and transition constraints while satisfying a crossrange requirement.

  16. Development of Multi-Disciplinary Finite Element Method Analysis Courses at California State University, Los Angeles

    NASA Technical Reports Server (NTRS)

    McKinney, John; Wu, Chivey

    1998-01-01

    The NASA Dryden Flight Research Center (DFRC) Partnership Awards Grant to California State University, Los Angeles (CSULA) has two primary goals that help to achieve NASA objectives. The overall objectives of the NASA Partnership Awards are to create opportunities for joint University NASA/Government sponsored research and related activities. One of the goals of the grant is to have university faculty researchers participate and contribute to the development of NASA technology that supports NASA goals for research and development (R&D) in Aeronautics and Astronautics. The other goal is technology transfer in the other direction, where NASA developed technology is made available to the general public and more specifically, targeted to industries that can profit from utilization of government developed technology. This years NASA Dryden Partnership Awards grant to CSULA entitled, "Computer Simulation of Multi-Disciplinary Engineering Systems", has two major tasks that satisfy overall NASA objectives. The first task conducts basic and applied research that contributes to technology development at the Dryden Flight Research Center. The second part of the grant provides for dissemination of NASA developed technology, by using the teaching environment created in the CSULA classroom. The second task and how this is accomplished is the topic of this paper. The NASA STARS (Structural Analysis Routines) computer simulation program is used at the Dryden center to support flight testing of high-performance experimental aircraft and to conduct research and development of new and advanced Aerospace technology.

  17. Multidisciplinary framework for human reliability analysis with an application to errors of commission and dependencies

    SciTech Connect

    Barriere, M.T.; Luckas, W.J.; Wreathall, J.; Cooper, S.E.; Bley, D.C.; Ramey-Smith, A.

    1995-08-01

    Since the early 1970s, human reliability analysis (HRA) has been considered to be an integral part of probabilistic risk assessments (PRAs). Nuclear power plant (NPP) events, from Three Mile Island through the mid-1980s, showed the importance of human performance to NPP risk. Recent events demonstrate that human performance continues to be a dominant source of risk. In light of these observations, the current limitations of existing HRA approaches become apparent when the role of humans is examined explicitly in the context of real NPP events. The development of new or improved HRA methodologies to more realistically represent human performance is recognized by the Nuclear Regulatory Commission (NRC) as a necessary means to increase the utility of PRAS. To accomplish this objective, an Improved HRA Project, sponsored by the NRC`s Office of Nuclear Regulatory Research (RES), was initiated in late February, 1992, at Brookhaven National Laboratory (BNL) to develop an improved method for HRA that more realistically assesses the human contribution to plant risk and can be fully integrated with PRA. This report describes the research efforts including the development of a multidisciplinary HRA framework, the characterization and representation of errors of commission, and an approach for addressing human dependencies. The implications of the research and necessary requirements for further development also are discussed.

  18. Monsoon research

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    Forecasting monsoons is one of four research areas proposed as part of an expanded program of collaborative projects by U.S. and Indian scientists and engineers, according to George A. Keyworth, II, science advisor to President Reagan and director of the Office of Science and Technology Policy (OSTP). The other proposed research areas are health, agriculture and biomass production, and decentralized electrical power sources.During the next 6 months, scientists will ‘scope out research projects’ and detail specific research activities, according to Roger Doyon, head of the Africa and Asia section of the National Science Foundation's (NSF) Directorate for Scientific, Technological, and International Affairs. Most of the actual research will begin with the advent of fiscal 1984.

  19. Engineering Overview of a Multidisciplinary HSCT Design Framework Using Medium-Fidelity Analysis Codes

    NASA Technical Reports Server (NTRS)

    Weston, R. P.; Green, L. L.; Salas, A. O.; Samareh, J. A.; Townsend, J. C.; Walsh, J. L.

    1999-01-01

    An objective of the HPCC Program at NASA Langley has been to promote the use of advanced computing techniques to more rapidly solve the problem of multidisciplinary optimization of a supersonic transport configuration. As a result, a software system has been designed and is being implemented to integrate a set of existing discipline analysis codes, some of them CPU-intensive, into a distributed computational framework for the design of a High Speed Civil Transport (HSCT) configuration. The proposed paper will describe the engineering aspects of integrating these analysis codes and additional interface codes into an automated design system. The objective of the design problem is to optimize the aircraft weight for given mission conditions, range, and payload requirements, subject to aerodynamic, structural, and performance constraints. The design variables include both thicknesses of structural elements and geometric parameters that define the external aircraft shape. An optimization model has been adopted that uses the multidisciplinary analysis results and the derivatives of the solution with respect to the design variables to formulate a linearized model that provides input to the CONMIN optimization code, which outputs new values for the design variables. The analysis process begins by deriving the updated geometries and grids from the baseline geometries and grids using the new values for the design variables. This free-form deformation approach provides internal FEM (finite element method) grids that are consistent with aerodynamic surface grids. The next step involves using the derived FEM and section properties in a weights process to calculate detailed weights and the center of gravity location for specified flight conditions. The weights process computes the as-built weight, weight distribution, and weight sensitivities for given aircraft configurations at various mass cases. Currently, two mass cases are considered: cruise and gross take-off weight (GTOW

  20. Efficient Multidisciplinary Analysis Approach for Conceptual Design of Aircraft with Large Shape Change

    NASA Technical Reports Server (NTRS)

    Chwalowski, Pawel; Samareh, Jamshid A.; Horta, Lucas G.; Piatak, David J.; McGowan, Anna-Maria R.

    2009-01-01

    The conceptual and preliminary design processes for aircraft with large shape changes are generally difficult and time-consuming, and the processes are often customized for a specific shape change concept to streamline the vehicle design effort. Accordingly, several existing reports show excellent results of assessing a particular shape change concept or perturbations of a concept. The goal of the current effort was to develop a multidisciplinary analysis tool and process that would enable an aircraft designer to assess several very different morphing concepts early in the design phase and yet obtain second-order performance results so that design decisions can be made with better confidence. The approach uses an efficient parametric model formulation that allows automatic model generation for systems undergoing radical shape changes as a function of aerodynamic parameters, geometry parameters, and shape change parameters. In contrast to other more self-contained approaches, the approach utilizes off-the-shelf analysis modules to reduce development time and to make it accessible to many users. Because the analysis is loosely coupled, discipline modules like a multibody code can be easily swapped for other modules with similar capabilities. One of the advantages of this loosely coupled system is the ability to use the medium- to high-fidelity tools early in the design stages when the information can significantly influence and improve overall vehicle design. Data transfer among the analysis modules are based on an accurate and automated general purpose data transfer tool. In general, setup time for the integrated system presented in this paper is 2-4 days for simple shape change concepts and 1-2 weeks for more mechanically complicated concepts. Some of the key elements briefly described in the paper include parametric model development, aerodynamic database generation, multibody analysis, and the required software modules as well as examples for a telescoping wing

  1. Phenology Analysis of Forest Vegetation to Environmental Variables during - and Post-Monsoon Seasons in Western Himalayan Region of India

    NASA Astrophysics Data System (ADS)

    Khare, S.; Latifi, H.; Ghosh, K.

    2016-06-01

    To assess the phenological changes in Moist Deciduous Forest (MDF) of western Himalayan region of India, we carried out NDVI time series analysis from 2013 to 2015 using Landsat 8 OLI data. We used the vegetation index differencing method to calculate the change in NDVI (NDVIchange) during pre and post monsoon seasons and these changes were used to assess the phenological behaviour of MDF by taking the effect of a set of environmental variables into account. To understand the effect of environmental variables on change in phenology, we designed a linear regression analysis with sample-based NDVIchange values as the response variable and elevation aspect, and Land Surface Temperature (LST) as explanatory variables. The Landsat-8 derived phenology transition stages were validated by calculating the phenology variation from Nov 2008 to April 2009 using Landsat-7 which has the same spatial resolution as Landsat-8. The Landsat-7 derived NDVI trajectories were plotted in accordance with MODIS derived phenology stages (from Nov 2008 to April 2009) of MDF. Results indicate that the Landsat -8 derived NDVI trajectories describing the phenology variation of MDF during spring, monsoon autumn and winter seasons agreed closely with Landsat-7 and MODIS derived phenology transition from Nov 2008 to April 2009. Furthermore, statistical analysis showed statistically significant correlations (p < 0.05) amongst the environmental variables and the NDVIchange between full greenness and maximum frequency stage of Onset of Greenness (OG) activity.. The major change in NDVI was observed in medium (600 to 650 m) and maximum (650 to 750 m) elevation areas. The change in LST showed also to be highly influential. The results of this study can be used for large scale monitoring of difficult-to-reach mountainous forests, with additional implications in biodiversity assessment. By means of a sufficient amount of available cloud-free imagery, detailed phenological trends across mountainous

  2. Recent experience with multidisciplinary analysis and optimization in advanced aircraft design

    NASA Technical Reports Server (NTRS)

    Dollyhigh, Samuel M.; Sobieszczanski-Sobieski, Jaroslaw

    1990-01-01

    narrowed as more sophisticated methods are developed in the specialist's area of expertise. The results have been a decrease in the awareness of the impact of his decisions on other disciplines. This paper will outline the progress and problems encountered in the analysis, design, optimization sensitivity analysis, mathematical modeling, and configurations control and the means by which they are being solved. The breadth versus depth dilemma in analysis and design and the means for coping with that dilemma will be discussed. Finally, the all-important human aspects and the need for a new 'culture ' for doing business in an integrated, multidisciplinary design environment are discussed.

  3. The City: A Multidisciplinary Unit Exercising the Higher Level Thinking Skills of Analysis, Synthesis, and Evaluation.

    ERIC Educational Resources Information Center

    Burger, Celia R.

    Designed for use with sixth grade students, this multidisciplinary unit combines independent study of urban areas with activities to develop students' higher level thinking skills. Following suggestions to teachers on strategies for introducing the unit, four options for independent study are described. The first is a study of a topic related to…

  4. Integrated multidisciplinary design optimization using discrete sensitivity analysis for geometrically complex aeroelastic configurations

    NASA Astrophysics Data System (ADS)

    Newman, James Charles, III

    1997-10-01

    The first two steps in the development of an integrated multidisciplinary design optimization procedure capable of analyzing the nonlinear fluid flow about geometrically complex aeroelastic configurations have been accomplished in the present work. For the first step, a three-dimensional unstructured grid approach to aerodynamic shape sensitivity analysis and design optimization has been developed. The advantage of unstructured grids, when compared with a structured-grid approach, is their inherent ability to discretize irregularly shaped domains with greater efficiency and less effort. Hence, this approach is ideally suited for geometrically complex configurations of practical interest. In this work the time-dependent, nonlinear Euler equations are solved using an upwind, cell-centered, finite-volume scheme. The discrete, linearized systems which result from this scheme are solved iteratively by a preconditioned conjugate-gradient-like algorithm known as GMRES for the two-dimensional cases and a Gauss-Seidel algorithm for the three-dimensional; at steady-state, similar procedures are used to solve the accompanying linear aerodynamic sensitivity equations in incremental iterative form. As shown, this particular form of the sensitivity equation makes large-scale gradient-based aerodynamic optimization possible by taking advantage of memory efficient methods to construct exact Jacobian matrix-vector products. Various surface parameterization techniques have been employed in the current study to control the shape of the design surface. Once this surface has been deformed, the interior volume of the unstructured grid is adapted by considering the mesh as a system of interconnected tension springs. Grid sensitivities are obtained by differentiating the surface parameterization and the grid adaptation algorithms with ADIFOR, an advanced automatic-differentiation software tool. To demonstrate the ability of this procedure to analyze and design complex configurations of

  5. The monsoon experiment MONEX

    NASA Technical Reports Server (NTRS)

    Das, P. K.

    1979-01-01

    The effects of monsoons in different parts of the world on the Earth's atmosphere were studied by MONEX, India's Monsoon Experiment program. Data were gathered from meteorological satellites, sounding rockets, aircraft, land and shipborne stations.

  6. Feedback of observed interannual vegetation change: a regional climate model analysis for the West African monsoon

    NASA Astrophysics Data System (ADS)

    Klein, Cornelia; Bliefernicht, Jan; Heinzeller, Dominikus; Gessner, Ursula; Klein, Igor; Kunstmann, Harald

    2016-06-01

    West Africa is a hot spot region for land-atmosphere coupling where atmospheric conditions and convective rainfall can strongly depend on surface characteristics. To investigate the effect of natural interannual vegetation changes on the West African monsoon precipitation, we implement satellite-derived dynamical datasets for vegetation fraction (VF), albedo and leaf area index into the Weather Research and Forecasting model. Two sets of 4-member ensembles with dynamic and static land surface description are used to extract vegetation-related changes in the interannual difference between August-September 2009 and 2010. The observed vegetation patterns retain a significant long-term memory of preceding rainfall patterns of at least 2 months. The interannual vegetation changes exhibit the strongest effect on latent heat fluxes and associated surface temperatures. We find a decrease (increase) of rainy hours over regions with higher (lower) VF during the day and the opposite during the night. The probability that maximum precipitation is shifted to nighttime (daytime) over higher (lower) VF is 12 % higher than by chance. We attribute this behaviour to horizontal circulations driven by differential heating. Over more vegetated regions, the divergence of moist air together with lower sensible heat fluxes hinders the initiation of deep convection during the day. During the night, mature convective systems cause an increase in the number of rainy hours over these regions. We identify this feedback in both water- and energy-limited regions of West Africa. The inclusion of observed dynamical surface information improved the spatial distribution of modelled rainfall in the Sahel with respect to observations, illustrating the potential of satellite data as a boundary constraint for atmospheric models.

  7. The importance of a multidisciplinary approach for solid earth geophysics in Seafloor Observatories data analysis

    NASA Astrophysics Data System (ADS)

    Embriaco, Davide; De Caro, Mariagrazia; De Santis, Angelo; Etiope, Giuseppe; Frugoni, Francesco; Giovanetti, Gabriele; Lo Bue, Nadia; Marinaro, Giuditta; Monna, Stephen; Montuori, Caterina; Sgroi, Tiziana; Beranzoli, Laura; Favali, Paolo

    2016-04-01

    Continuous time-series in deep ocean waters are the basis for an original approach in ocean exploration. The observation of phenomena variability over time is key to understanding many Earth processes, among which: hydrothermal systems, active tectonics, and ecosystem life cycles. Geo-hazards at sea have often been studied with a single-parameter approach on a short time-scale, but it is now becoming clear that to understand these phenomena and, specifically, to identify precursors to very energetic events, such as mega-earthquakes, tsunamis and volcanic eruptions, continuous long-term multiparameter monitoring is strongly needed. In fact, given a signal of interest, by using several sensors recording simultaneously it is possible to identify the contribution of different sources to this signal, and to be less prone to false associations. In Europe, large cabled systems with marine sensors are being developed for near real-time and real-time long-term monitoring of ocean processes within the EMSO (European Multidisciplinary Seafloor and water column Observatory www.emso-eu.org) Research Infrastructure. Obtaining good quality long-term multiparameter data from sensors on-board seafloor observatories, which are the base of a multidisciplinary approach, is a challenging task. We describe the main steps we have taken to retrieve good quality multiparametric data acquired by GEOSTAR class seafloor observatories, both standalone and cabled, deployed at various sites offshore European coast during the last decade. Starting from this data we show the application of a multidisciplinary approach with some examples coming from experiments in EMSO sites.

  8. Methodology for Sensitivity Analysis, Approximate Analysis, and Design Optimization in CFD for Multidisciplinary Applications

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III; Hou, Gene W.

    1996-01-01

    An incremental iterative formulation together with the well-known spatially split approximate-factorization algorithm, is presented for solving the large, sparse systems of linear equations that are associated with aerodynamic sensitivity analysis. This formulation is also known as the 'delta' or 'correction' form. For the smaller two dimensional problems, a direct method can be applied to solve these linear equations in either the standard or the incremental form, in which case the two are equivalent. However, iterative methods are needed for larger two-dimensional and three dimensional applications because direct methods require more computer memory than is currently available. Iterative methods for solving these equations in the standard form are generally unsatisfactory due to an ill-conditioned coefficient matrix; this problem is overcome when these equations are cast in the incremental form. The methodology is successfully implemented and tested using an upwind cell-centered finite-volume formulation applied in two dimensions to the thin-layer Navier-Stokes equations for external flow over an airfoil. In three dimensions this methodology is demonstrated with a marching-solution algorithm for the Euler equations to calculate supersonic flow over the High-Speed Civil Transport configuration (HSCT 24E). The sensitivity derivatives obtained with the incremental iterative method from a marching Euler code are used in a design-improvement study of the HSCT configuration that involves thickness. camber, and planform design variables.

  9. Methodology for sensitivity analysis, approximate analysis, and design optimization in CFD for multidisciplinary applications

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III; Hou, Gene W.

    1993-01-01

    In this study involving advanced fluid flow codes, an incremental iterative formulation (also known as the delta or correction form) together with the well-known spatially-split approximate factorization algorithm, is presented for solving the very large sparse systems of linear equations which are associated with aerodynamic sensitivity analysis. For smaller 2D problems, a direct method can be applied to solve these linear equations in either the standard or the incremental form, in which case the two are equivalent. Iterative methods are needed for larger 2D and future 3D applications, however, because direct methods require much more computer memory than is currently available. Iterative methods for solving these equations in the standard form are generally unsatisfactory due to an ill-conditioning of the coefficient matrix; this problem can be overcome when these equations are cast in the incremental form. These and other benefits are discussed. The methodology is successfully implemented and tested in 2D using an upwind, cell-centered, finite volume formulation applied to the thin-layer Navier-Stokes equations. Results are presented for two sample airfoil problems: (1) subsonic low Reynolds number laminar flow; and (2) transonic high Reynolds number turbulent flow.

  10. Spatial and Temporal Analysis of Hydrometeorological Conditions in the Valles Caldera, New Mexico during the North American Monsoon

    NASA Astrophysics Data System (ADS)

    Mendez-Barroso, L. A.; Rinehart, A. J.; Aragon, C. A.; Bisht, G.; Cardenas, M. B.; Engle, E.; Forman, B.; Frisbee, M.; Gutierrez-Jurado, H. A.; Hong, S.; Tai, K.; Wyckoff, R. L.; Vivoni, E. R.

    2005-12-01

    The hydrometeorological conditions of mountain environments in semiarid regions are poorly understood, particularly during the North American Monsoon. Although it is well known that the climate and hydrology of mountain ranges are dynamically distinct of surrounding lowlands, little quantitative observational data has been collected to assess the spatial and temporal variations in hydrometeorological conditions in these settings. Factors such as topographic position, vegetation type and soil properties have a strong influence on the hydrological response to atmospheric conditions. Similarly, landscape features such as relief and aspect can play a major role on the local meteorological conditions in mountainous environments. In order to better understand the relation between mountain hydrometeorology and topographic and ecological factors, a spatially extensive field campaign was carried out in the Valles Caldera National Preserve in the Jemez Mountains of northern New Mexico, USA. This region forms a portion of the headwaters of the Rio Grande and displays distinct hydrologic responses during the summer and winter seasons. A twelve day sampling period during the summer monsoon season (July to August 2005) was selected to observe the land-atmosphere interactions resulting from convective storms in the region. The hydrometeorological field campaign included seventy-one sampling sites where daily rainfall, meteorological variables (e.g. air temperature, relative humidity, wind speed and barometric pressure), volumetric soil moisture, and soil temperature were measured. Each site consisted of a one square meter plot that was characterized in term of terrain position, vegetation and surface properties. Likewise, daily gravimetric soil samples were taken in order to compare with the volumetric measurements inferred using an impedance probe. In this study, we present a preliminary analysis of the spatial and temporal distribution of soil and atmospheric variables during

  11. A Simple Tool for the Design and Analysis of Multiple-Reflector Antennas in a Multi-Disciplinary Environment

    NASA Technical Reports Server (NTRS)

    Katz, Daniel S.; Cwik, Tom; Fu, Chuigang; Imbriale, William A.; Jamnejad, Vahraz; Springer, Paul L.; Borgioli, Andrea

    2000-01-01

    The process of designing and analyzing a multiple-reflector system has traditionally been time-intensive, requiring large amounts of both computational and human time. At many frequencies, a discrete approximation of the radiation integral may be used to model the system. The code which implements this physical optics (PO) algorithm was developed at the Jet Propulsion Laboratory. It analyzes systems of antennas in pairs, and for each pair, the analysis can be computationally time-consuming. Additionally, the antennas must be described using a local coordinate system for each antenna, which makes it difficult to integrate the design into a multi-disciplinary framework in which there is traditionally one global coordinate system, even before considering deforming the antenna as prescribed by external structural and/or thermal factors. Finally, setting up the code to correctly analyze all the antenna pairs in the system can take a fair amount of time, and introduces possible human error. The use of parallel computing to reduce the computational time required for the analysis of a given pair of antennas has been previously discussed. This paper focuses on the other problems mentioned above. It will present a methodology and examples of use of an automated tool that performs the analysis of a complete multiple-reflector system in an integrated multi-disciplinary environment (including CAD modeling, and structural and thermal analysis) at the click of a button. This tool, named MOD Tool (Millimeter-wave Optics Design Tool), has been designed and implemented as a distributed tool, with a client that runs almost identically on Unix, Mac, and Windows platforms, and a server that runs primarily on a Unix workstation and can interact with parallel supercomputers with simple instruction from the user interacting with the client.

  12. A multi-disciplinary plan for easier access, management, and analysis of science data

    NASA Astrophysics Data System (ADS)

    Hornstein, Rhoda Shaller; Miller, Raymond E.; Hei, Donald J.; Kaufmann, David E.; LoPinto, Frank J.; Todd, Jacqueline E.

    NASA's COST LESS Team is pursuing strategies to reduce the cost and complexity of planning and executing space missions. The team's technical goal is to reverse the trend of constructing unique solutions for similar problems. To this end, the team is exploring ways to represent mission functionality in terms of building blocks and is discovering approaches that could accommodate the same building blocks for seemingly disparate activities, such as organizing processed telemetry data, controlling onboard experiments, searching science archives, reducing and presenting information to science users, and supporting educational outreach. Reusable object technology (UOT), a research undertaking by the authors, is showing promise in recognizing similarities in functions which were previously viewed as unique because they appeared in different programs or mission phases. Since UOT is aimed at being implementation independent (i.e. the function performed could be accomplished manually, by an automated process, by a specialized instrument, etc.), no premature judgment for automation or autonomy need be made. In this paper, the authors attempt to strike a balance between theory and reality as they describe UOT, including its beginnings, its underpinning, its utility, and its potential for achieving substantive reductions in cost and complexity for the Agency's space programs. The authors discuss their collaboration with the Center for EUV Astrophysics, University of California, Berkeley to reduce the cost and complexity of science investigations. Their multi-disciplinary plan incorporates both UOT and a complementary technology introduced in this paper, called interactive archives.

  13. Risk-based analysis and decision making in multi-disciplinary environments

    NASA Technical Reports Server (NTRS)

    Feather, Martin S.; Cornford, Steven L.; Moran, Kelly

    2003-01-01

    A risk-based decision-making process conceived of and developed at JPL and NASA, has been used to help plan and guide novel technology applications for use on spacecraft. These applications exemplify key challenges inherent in multi-disciplinary design of novel technologies deployed in mission-critical settings. 1) Cross-disciplinary concerns are numerous (e.g., spacecraft involve navigation, propulsion, telecommunications). These concems are cross-coupled and interact in multiple ways (e.g., electromagnetic interference, heat transfer). 2) Time and budget pressures constrain development, operational resources constrain the resulting system (e.g., mass, volume, power). 3) Spacecraft are critical systems that must operate correctly the first time in only partially understood environments, with no chance for repair. 4) Past experience provides only a partial guide: New mission concepts are enhanced and enabled by new technologies, for which past experience is lacking. The decision-making process rests on quantitative assessments of the relationships between three classes of information - objectives (the things the system is to accomplish and constraints on its operation and development), risks (whose occurrence detracts from objectives), and mitigations (options for reducing the likelihood and or severity of risks). The process successfully guides experts to pool their knowledge, using custom-built software to support information gathering and decision-making.

  14. Absolute barotropic instability and monsoon depressions

    NASA Technical Reports Server (NTRS)

    Lindzen, R. S.; Farrell, B.; Rosenthal, A. J.

    1983-01-01

    Monsoon depressions over the Bay of Bengal develop almost entirely in July and August. After studies conducted by Lindzen et al. (1980) and Stevens and Lindzen (1978), only barotropic instability remains as a mechanism for the development of the wave disturbances associated with monsoon depressions. The present investigation has the objective to show that barotropic instability is able to explain the wave aspects of monsoon depressions, but that normal mode analysis is inadequate. It is found that the local barotropically unstable response to regional perturbations in the Bay of Bengal during July and August will be dominated by the lower troposphere. The analysis clearly identifies the features of the mean flow which lead to monsoon depressions in July. The features include the development of an easterly jet as opposed to semijet structure in the mean flow, and the development of a modest easterly flow at the jet center as opposed to westerly flow.

  15. Unstructured Finite Volume Computational Thermo-Fluid Dynamic Method for Multi-Disciplinary Analysis and Design Optimization

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; Schallhorn, Paul

    1998-01-01

    This paper describes a finite volume computational thermo-fluid dynamics method to solve for Navier-Stokes equations in conjunction with energy equation and thermodynamic equation of state in an unstructured coordinate system. The system of equations have been solved by a simultaneous Newton-Raphson method and compared with several benchmark solutions. Excellent agreements have been obtained in each case and the method has been found to be significantly faster than conventional Computational Fluid Dynamic(CFD) methods and therefore has the potential for implementation in Multi-Disciplinary analysis and design optimization in fluid and thermal systems. The paper also describes an algorithm of design optimization based on Newton-Raphson method which has been recently tested in a turbomachinery application.

  16. Complex network analysis of high rainfall events during the northeast monsoon over south peninsular India and Sri Lanka

    NASA Astrophysics Data System (ADS)

    Martin, P.; Malik, N.; Marwan, N.; Kurths, J.

    2012-04-01

    The Indian Summer monsoon (ISM) accounts for a large part of the annual rainfall budget across most of the Indian peninsula; however, the coastal regions along the southeast Indian peninsula, as well as Sri Lanka, receive 50% or more of their annual rainfall budget during the northeast monsoon (NEM), or winter monsoon, during the months from October through December. In this study, we investigate the behavior of the NEM over the last 60 years using complex network theory. The network is constructed according to a method previously developed for the ISM, using event synchronization of extreme rainfall events as a correlation measure to create directed and undirected links between geographical locations, which represent potential pathways of moisture transport. Network measures, such as degree centrality and closeness centrality, are then used to illuminate the dynamics of the NEM rainfall over the relevant regions, and to examine the spatial distribution and temporal evolution of the rainfall. Understanding the circulation of the monsoon cycle as a whole, i.e. the NEM together with the ISM, is vital for the agricultural industry and thus the population of the affected areas.

  17. Isentropic analysis of the Indian Summer Monsoon circulation and its implications for the active and break periods

    NASA Astrophysics Data System (ADS)

    Pauluis, O. M.; Sandeep, S.; Ravindran, A. M.

    2014-12-01

    The atmospheric flow during the Indian Summer Monsoon here is analyzed in isentropic coordinates in two different ways. First, the lateral mass transport fo air is separated in terms of both the potential temperature and equivalent potential temperature. This approach, originally developed to analyze the global meridional circulation, makes it possible to identify the thermodynamic properties of the inflow and outflow. It is shown here how the properties of various air masses, such as the inflow of warm moist air in the boundary layer, upper tropospheric outflow, and midlatitudes dry air intrusion, can be systematically identified. Second, we analyze the vertical overturning in terms of terms of the equivalent potential temperature of the ascending and subsiding air parcels over the indian subcontinent, which allows us to further infer the thermodynamic transformation occurring during the monsoon. This technique is first used to look at the evolution of the flow through the seasonal cycle. We then further analyze the circulation patterns associated with monsoon breaks and active periods. In doing so, we identify midtropospheric in usions of dry air from the midlatitudes as a key precursor of monsoon breaks. The meteorological conditions associated for such intrusion to reach the subcontinent are then discussed.

  18. Effectiveness of multidisciplinary team case management: difference-in-differences analysis

    PubMed Central

    Kristensen, Søren Rud; Checkland, Kath; Bower, Peter

    2016-01-01

    Objectives To evaluate a multidisciplinary team (MDT) case management intervention, at the individual (direct effects of intervention) and practice levels (potential spillover effects). Design Difference-in-differences design with multiple intervention start dates, analysing hospital admissions data. In secondary analyses, we stratified individual-level results by risk score. Setting Single clinical commissioning group (CCG) in the UK's National Health Service (NHS). Participants At the individual level, we matched 2049 intervention patients using propensity scoring one-to-one with control patients. At the practice level, 30 practices were compared using a natural experiment through staged implementation. Intervention Practice Integrated Care Teams (PICTs), using MDT case management of high-risk patients together with a summary record of care versus usual care. Direct and indirect outcome measures Primary measures of intervention effects were accident and emergency (A&E) visits; inpatient non-elective stays, 30-day re-admissions; inpatient elective stays; outpatient visits; and admissions for ambulatory care sensitive conditions. Secondary measures included inpatient length of stay; total cost of secondary care services; and patient satisfaction (at the practice level only). Results At the individual level, we found slight, clinically trivial increases in inpatient non-elective admissions (+0.01 admissions per patient per month; 95% CI 0.00 to 0.01. Effect size (ES): 0.02) and 30-day re-admissions (+0.00; 0.00 to 0.01. ES: 0.03). We found no indication that highest risk patients benefitted more from the intervention. At the practice level, we found a small decrease in inpatient non-elective admissions (−0.63 admissions per 1000 patients per month; −1.17 to −0.09. ES: −0.24). However, this result did not withstand a robustness check; the estimate may have absorbed some differences in underlying practice trends. Conclusions The intervention does not meet its

  19. A program to form a multidisciplinary data base and analysis for dynamic systems

    NASA Technical Reports Server (NTRS)

    Taylor, L. W.; Suit, W. T.; Mayo, M. H.

    1984-01-01

    Diverse sets of experimental data and analysis programs have been assembled for the purpose of facilitating research in systems identification, parameter estimation and state estimation techniques. The data base analysis programs are organized to make it easy to compare alternative approaches. Additional data and alternative forms of analysis will be included as they become available.

  20. Trends in global monsoon area and precipitation over the past 30 years

    NASA Astrophysics Data System (ADS)

    Hsu, Pang-chi; Li, Tim; Wang, Bin

    2011-04-01

    The analysis of the GPCP and CMAP datasets during the past 30 years (1979-2008) indicates that there are consistent increasing trends in both the global monsoon area (GMA) and the global monsoon total precipitation (GMP). This positive monsoon rainfall trend differs from previous studies that assumed a fixed global monsoon domain. Due to the increasing trends in both the GMA and GMP, a global monsoon intensity (GMI) index, which measures the global monsoon precipitation amount per unit area, is introduced. The GMI measures the strength of the global monsoon. Our calculations with both the GPCP and CMAP datasets show a consistent downward trend in the GMI over the past 30 years. This decreasing trend is primarily attributed to a greater percentage increase in the GMA than in the GMP. A further diagnosis reveals that the decrease of the GMI is primarily attributed to the land monsoon in the GPCP, but to the oceanic monsoon in the CMAP.

  1. Sensitivity analysis and multidisciplinary optimization for aircraft design - Recent advances and results

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw

    1988-01-01

    Optimization by decomposition, complex system sensitivity analysis, and a rapid growth of disciplinary sensitivity analysis are some of the recent developments that hold promise of a quantum jump in the support engineers receive from computers in the quantitative aspects of design. Review of the salient points of these techniques is given and illustrated by examples from aircraft design as a process that combines the best of human intellect and computer power to manipulate data.

  2. Sensitivity analysis and multidisciplinary optimization for aircraft design: Recent advances and results

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw

    1988-01-01

    Optimization by decomposition, complex system sensitivity analysis, and a rapid growth of disciplinary sensitivity analysis are some of the recent developments that hold promise of a quantum jump in the support engineers receive from computers in the quantitative aspects of design. Review of the salient points of these techniques is given and illustrated by examples from aircraft design as a process that combines the best of human intellect and computer power to manipulate data.

  3. Pre-monsoon rain and its relationship with monsoon onset over the Indochina Peninsula

    NASA Astrophysics Data System (ADS)

    Kiguchi, Masashi; Matsumoto, Jun; kanae, Shinjiro; Oki, Taikan

    2016-05-01

    We analyzed rainfall during the pre-monsoon season from 1979 to 2002 over the Indochina Peninsula. Our multi-year analysis confirmed that the passage of the upper trough and moisture convergence in the lower troposphere produce intermittent rainfall events during the pre-monsoon season. From this result, three questions are raised. First, what are the characteristics of the upper trough? Second, what is the cause of the significant amount of moisture during the pre-monsoon season over inland Indochina? Third, what is the relationship between the intermittent pre-monsoon rainfall and monsoon onset? Our study suggests the following answers to these questions: 1) The upper trough is associated with the cyclone over the Yangtze River basin. This cyclone is baroclinic, so the upper trough over the study area is produced by the mid-latitude regime. 2) A significant amount of moisture over the Indochina Peninsula is produced by both intermittent rainfall associated with the passage of the upper trough and continuous rainfall occurred over a wide region associated with the equatorial southwesterly. 3) We found no clear relationship between rainfall amount during the pre-monsoon period and timing of monsoon onset over the Indochina Peninsula.

  4. A solar variability driven monsoon see-saw: switching relationships of the Holocene East Asian-Australian summer monsoons

    NASA Astrophysics Data System (ADS)

    Eroglu, Deniz; Ozken, Ibrahim; McRobie, Fiona; Stemler, Thomas; Marwan, Norbert; Wyrwoll, Karl-Heinz; Kurths, Juergen

    2016-04-01

    The East Asian-Indonesian-Australian monsoon is the predominant low latitude monsoon system, providing a major global scale heat source. Here we apply newly developed non-linear time series techniques on speleothem climate proxies, from eastern China and northwestern Australia and establish relationships between the two summer monsoon regimes over the last ˜9000 years. We identify significant variations in monsoonal activity, both dry and wet phases, at millennial to multi-centennial time scales and demonstrate for the first time the existence of a see-saw antiphase relationship between the two regional monsoon systems. Our analysis attributes this inter-hemispheric linkage to the solar variability that is effecting both monsoon systems.

  5. Integration of Multifidelity Multidisciplinary Computer Codes for Design and Analysis of Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Geiselhart, Karl A.; Ozoroski, Lori P.; Fenbert, James W.; Shields, Elwood W.; Li, Wu

    2011-01-01

    This paper documents the development of a conceptual level integrated process for design and analysis of efficient and environmentally acceptable supersonic aircraft. To overcome the technical challenges to achieve this goal, a conceptual design capability which provides users with the ability to examine the integrated solution between all disciplines and facilitates the application of multidiscipline design, analysis, and optimization on a scale greater than previously achieved, is needed. The described capability is both an interactive design environment as well as a high powered optimization system with a unique blend of low, mixed and high-fidelity engineering tools combined together in the software integration framework, ModelCenter. The various modules are described and capabilities of the system are demonstrated. The current limitations and proposed future enhancements are also discussed.

  6. Understanding Dry Bias in the Simulations of Indian Monsoon by CFSv2 Through Analysis of Moisture Transport

    NASA Astrophysics Data System (ADS)

    Saheer, Sahana; Pathak, Amey; Mathew, Roxy; Ghosh, Subimal

    2016-04-01

    Simulations of Indian Summer Monsoon (ISM) with its seasonal and subseasonal characteristics is highly crucial for predictions/ projections towards sustainable agricultural planning and water resources management. The Climate forecast system version 2 (CFSv2), the state of the art coupled climate model developed by National Center for Environmental Prediction (NCEP), is evaluated here for the simulations of ISM. Even though CFSv2 is a fully coupled ocean-atmosphere-land model with advanced physics, increased resolution and refined initialization, its ISM simulations/ predictions/ projections, in terms of seasonal mean and variability are not satisfactory. Numerous works have been done for verifying the CFSv2 forecasts in terms of the seasonal mean, its mean and variability, active and break spells, and El Nino Southern Oscillation (ENSO)-monsoon interactions. Underestimation of JJAS precipitation over the Indian land mass is one of the major drawbacks of CFSv2. ISM gets the moisture required to maintain the precipitation from different oceanic and land sources. In this work, we find the fraction of moisture supplied by different sources in the CFSv2 simulations and the findings are compared with observed fractions. We also investigate the possible variations in the moisture contributions from these different sources. We suspect that the deviation in the relative moisture contribution from different sources to various sinks over the monsoon region has resulted in the observed dry bias. We also find that over the Arabian Sea region, which is the key moisture source of ISM, there is a premature built up of specific humidity during the month of May and a decline during the later months of JJAS. This is also one of the reasons for the underestimation of JJAS mean precipitation.

  7. Energetics and monsoon bifurcations

    NASA Astrophysics Data System (ADS)

    Seshadri, Ashwin K.

    2016-04-01

    Monsoons involve increases in dry static energy (DSE), with primary contributions from increased shortwave radiation and condensation of water vapor, compensated by DSE export via horizontal fluxes in monsoonal circulations. We introduce a simple box-model characterizing evolution of the DSE budget to study nonlinear dynamics of steady-state monsoons. Horizontal fluxes of DSE are stabilizing during monsoons, exporting DSE and hence weakening the monsoonal circulation. By contrast latent heat addition (LHA) due to condensation of water vapor destabilizes, by increasing the DSE budget. These two factors, horizontal DSE fluxes and LHA, are most strongly dependent on the contrast in tropospheric mean temperature between land and ocean. For the steady-state DSE in the box-model to be stable, the DSE flux should depend more strongly on the temperature contrast than LHA; stronger circulation then reduces DSE and thereby restores equilibrium. We present conditions for this to occur. The main focus of the paper is describing conditions for bifurcation behavior of simple models. Previous authors presented a minimal model of abrupt monsoon transitions and argued that such behavior can be related to a positive feedback called the `moisture advection feedback'. However, by accounting for the effect of vertical lapse rate of temperature on the DSE flux, we show that bifurcations are not a generic property of such models despite these fluxes being nonlinear in the temperature contrast. We explain the origin of this behavior and describe conditions for a bifurcation to occur. This is illustrated for the case of the July-mean monsoon over India. The default model with mean parameter estimates does not contain a bifurcation, but the model admits bifurcation as parameters are varied.

  8. Program design by a multidisciplinary team. [for structural finite element analysis on STAR-100 computer

    NASA Technical Reports Server (NTRS)

    Voigt, S.

    1975-01-01

    The use of software engineering aids in the design of a structural finite-element analysis computer program for the STAR-100 computer is described. Nested functional diagrams to aid in communication among design team members were used, and a standardized specification format to describe modules designed by various members was adopted. This is a report of current work in which use of the functional diagrams provided continuity and helped resolve some of the problems arising in this long-running part-time project.

  9. Multi-Disciplinary Analysis for Future Launch Systems Using NASA's Advanced Engineering Environment (AEE)

    NASA Technical Reports Server (NTRS)

    Monell, Donald; Mathias, Donovan; Reuther, James; Garn, Michelle

    2003-01-01

    A new engineering environment constructed for the purposes of analyzing and designing Reusable Launch Vehicles (RLVs) is presented. The new environment has been developed to allow NASA to perform independent analysis and design of emerging RLV architectures and technologies. The new Advanced Engineering Environment (AEE) is both collaborative and distributed. It facilitates integration of the analyses by both vehicle performance disciplines and life-cycle disciplines. Current performance disciplines supported include: weights and sizing, aerodynamics, trajectories, propulsion, structural loads, and CAD-based geometries. Current life-cycle disciplines supported include: DDT&E cost, production costs, operations costs, flight rates, safety and reliability, and system economics. Involving six NASA centers (ARC, LaRC, MSFC, KSC, GRC and JSC), AEE has been tailored to serve as a web-accessed agency-wide source for all of NASA's future launch vehicle systems engineering functions. Thus, it is configured to facilitate (a) data management, (b) automated tool/process integration and execution, and (c) data visualization and presentation. The core components of the integrated framework are a customized PTC Windchill product data management server, a set of RLV analysis and design tools integrated using Phoenix Integration's Model Center, and an XML-based data capture and transfer protocol. The AEE system has seen production use during the Initial Architecture and Technology Review for the NASA 2nd Generation RLV program, and it continues to undergo development and enhancements in support of its current main customer, the NASA Next Generation Launch Technology (NGLT) program.

  10. Toward multidisciplinary use of LANDSAT: Interfacing computerized LANDSAT analysis systems with geographic information systems

    NASA Technical Reports Server (NTRS)

    Myers, W. L.

    1981-01-01

    The LANDSAT-geographic information system (GIS) interface must summarize the results of the LANDSAT classification over the same cells that serve as geographic referencing units for the GIS, and output these summaries on a cell-by-cell basis in a form that is readable by the input routines of the GIS. The ZONAL interface for cell-oriented systems consists of two primary programs. The PIXCEL program scans the grid of cells and outputs a channel of pixels. Each pixel contains not the reflectance values but the identifier of the cell in which the center of the pixel is located. This file of pixelized cells along with the results of a pixel-by-pixel classification of the scene produced by the LANDSAT analysis system are input to the CELSUM program which then outputs a cell-by-cell summary formatted according to the requirements of the host GIS. Cross-correlation of the LANDSAT layer with the other layers in the data base is accomplished with the analysis and display facilities of the GIS.

  11. The global monsoon across timescales: coherent variability of regional monsoons

    NASA Astrophysics Data System (ADS)

    Wang, P. X.; Wang, B.; Cheng, H.; Fasullo, J.; Guo, Z. T.; Kiefer, T.; Liu, Z. Y.

    2014-11-01

    Monsoon has earned increasing attention from the climate community since the last century, yet only recently have regional monsoons been recognized as a global system. It remains a debated issue, however, as to what extent and at which timescales the global monsoon can be viewed as a major mode of climate variability. For this purpose, a PAGES (Past Global Changes) working group (WG) was set up to investigate the concept of the global monsoon and its future research directions. The WG's synthesis is presented here. On the basis of observation and proxy data, the WG found that the regional monsoons can vary coherently, although not perfectly, at various timescales, varying between interannual, interdecadal, centennial, millennial, orbital and tectonic timescales, conforming to the global monsoon concept across timescales. Within the global monsoon system, each subsystem has its own features, depending on its geographic and topographic conditions. Discrimination between global and regional components in the monsoon system is a key to revealing the driving factors in monsoon variations; hence, the global monsoon concept helps to enhance our understanding and to improve future projections of the regional monsoons. This paper starts with a historical review of the global monsoon concept in both modern and paleo-climatology, and an assessment of monsoon proxies used in regional and global scales. The main body of the paper is devoted to a summary of observation data at various timescales, providing evidence of the coherent global monsoon system. The paper concludes with a projection of future monsoon shifts in a warming world. The synthesis will be followed by a companion paper addressing driving mechanisms and outstanding issues in global monsoon studies.

  12. Hudson Canyon benthic habitats characterization and mapping by integrated analysis of multidisciplinary data

    NASA Astrophysics Data System (ADS)

    Pierdomenico, Martina; Guida, Vincent G.; Rona, Peter A.; Macelloni, Leonardo; Scranton, Mary I.; Asper, Vernon; Diercks, Arne

    2013-04-01

    Hudson Canyon, about 180 km SE of New York City, is the largest eastern U.S. submarine canyon and is under consideration for HAPC (Habitat Area of Particular Concern) status, representing a fisheries and biodiversity hot spot. Interest in the area, within the perspective of ecosystem based management, marine spatial planning, habitat and species conservation, led to a joint project between NOAA Northeast Fisheries, U.S. Geological Survey (USGS), Mississippi Mineral Research Institute (MMRI), National Institute for Undersea Science and Technology (NIUST), Stony Brook and Rutgers Universities for the study of benthic habitats, that includes the assembly of existing data with newly collected ones: acoustic mapping, visual ground-truthing, hydrographic, sedimentological, and trawl data collections. Acoustic mapping, performed using AUV-mounted multibeam sonar, provided ultra-high resolution bathymetric and backscatter imagery (3m and 1m respectively) at all water depths for identification of geomorphological features and for the characterization of surficial sediments along the two thirds of the shelf portion of the canyon. Identification of benthic and demersal communities was accomplished by visual ground thruthing with underwater vehicle video and still cameras, and from trawl catch data. A CTD-rosette sampler provided water column salinity-temperature profiles and water samples for dissolved methane analysis in the vicinity of suspected bottom sources. Analysis of data revealed a complex of topographic structures and hydrological patterns that provide a wide range of physical habitats in a relatively small area. A mosaic of sandy and muddy substrates, gravel beds, rock outcrops, and semilithified clay outcrops host rich and varied faunal assemblages, including deepwater corals and sponge communities. Pockmark fields, occurring below 300 m depth, suggest that methane-based chemosynthetic carbonate deposition contributes to creation of specific hard bottom habitats

  13. DataView: a computational visualisation system for multidisciplinary design and analysis

    NASA Astrophysics Data System (ADS)

    Wang, Chengen

    2016-01-01

    Rapidly processing raw data and effectively extracting underlining information from huge volumes of multivariate data become essential to all decision-making processes in sectors like finance, government, medical care, climate analysis, industries, science, etc. Remarkably, visualisation is recognised as a fundamental technology that props up human comprehension, cognition and utilisation of burgeoning amounts of heterogeneous data. This paper presents a computational visualisation system, named DataView, which has been developed for graphically displaying and capturing outcomes of multiphysics problem-solvers widely used in engineering fields. The DataView is functionally composed of techniques for table/diagram representation, and graphical illustration of scalar, vector and tensor fields. The field visualisation techniques are implemented on the basis of a range of linear and non-linear meshes, which flexibly adapts to disparate data representation schemas adopted by a variety of disciplinary problem-solvers. The visualisation system has been successfully applied to a number of engineering problems, of which some illustrations are presented to demonstrate effectiveness of the visualisation techniques.

  14. Non-stationary analysis of dry spells in monsoon season of Senegal River Basin using data from Regional Climate Models (RCMs)

    NASA Astrophysics Data System (ADS)

    Giraldo Osorio, J. D.; García Galiano, S. G.

    2012-07-01

    SummaryThe Senegal River Basin, located in West Africa, has been affected by several droughts since the end of the 1960s. In its valley, which is densely populated and highly vulnerable to climate variability and water availability, agricultural activities provide the livelihood for thousands of people. Increasing the knowledge about plausible trends of drought events will allow to improve the adaptation and mitigation measures in order to build "adaptive capacity" to climate change in West Africa. An innovative methodology for the non-stationary analysis of droughts events, which allows the prediction of regional trends associated to several return periods, is presented. The analyses were based on Regional Climate Models (RCMs) provided by the European ENSEMBLES project for West Africa, together with observed data. A non-stationary behaviour of the annual series of maximum length of dry spells (AMDSL) in the monsoon season is reflected in temporal changes in mean and variance. The non-stationary nature of hydrometeorological series, due to climate change and anthropogenic activities, is the main criticism to traditional frequency analysis. Therefore, in this paper, the modelling tool GAMLSS (Generalized Additive Models for Location, Scale and Shape), is applied to develop regional probability density functions (pdfs) fitted to AMDSL series for the monsoon season in the Senegal River Basin. The skills of RCMs in the representation of maximum length of dry spells observed for the period 1970-1990, are evaluated considering observed data. Based on the results obtained, a first selection of the RCMs with which to apply GAMLSS to the AMDSL series identified, for the time period 1970-2050, is made. The results of GAMLSS analysis exhibit divergent trends, with different value ranges for parameters of probability distributions being detected. Therefore, in the second stage of the paper, regional pdfs are constructed using bootstrapping distributions based on probabilistic

  15. A multidisciplinary geomatics approach to morphometric and morphotectonic analysis of the Cannobino Basin (Piemonte Region, NW-Italy).

    NASA Astrophysics Data System (ADS)

    Bacenetti, Marco; Ghiraldi, Luca; Giardino, Marco

    2014-05-01

    The paper presents an integrated multidisciplinary approach to the morphometric and morphotectonic characterization of the Cannobino Basin (Piemonte Region, NW-Italy). The basin is drained by the Cannobino river; in its first 8 km, it flows SE to NW along a wide valley characterized by glacial landforms; thereafter it suddenly turns South assuming a W to E direction, by flowing in a deeply entrenched valley to the intermontane basin of the Maggiore Lake. This area belongs to the Lepontine Alps, which from the geological point of view belong to the Southern Alps. His Hercynian basement is divided in two units: Ivrea-Verbano Zone (IVZ) and Serie dei Laghi (SDL). The IVZ outcrops in the northern sector of the basin, while the SDL outcrops in the southern and central sector. They separated by the Cossato-Mergozzo-Brissago (CMB) and Pogallo lines (PL). These major discontinuities and the neoctonic activity of their shear zones possibly control Quaternary evolution of the alpine relief. Detailed studies of the area are needed for understanding possible interactions of neotectonic activity, fluvial/glacial erosional/depositional processes and slope dynamics. Our focus is on drainage basin characteristics and its evolutionary stages in response to local and regional base level changes and to differential rock uplift. GIS methodologies combined with DEMs analyses are among the most common geomatics approaches to geomorphology. Based on this framework, an evaluation of the geomorphometric characteristic of the Cannobino Basin has been carried out by using an aerial LIDAR DEM (5x5 meters, Regione Piemonte, 2009). The workflow followed for calculating the geomorphic indexes can be summarized in different steps: i) drainage network extraction and hierarchization; ii) lineament features digitalization and interpretation; iii) azimuthal distribution of drainage pattern; iv) DEM analysis and evaluation of linear, areal indexes and SWAT profile. The multidisciplinary and innovative

  16. Parametric Sensitivity Analysis for the Asian Summer Monsoon Precipitation Simulation in the Beijing Climate Center AGCM Version 2.1

    SciTech Connect

    Yang, Ben; Zhang, Yaocun; Qian, Yun; Wu, Tongwen; Huang, Anning; Fang, Yongjie

    2015-07-15

    In this study, we apply an efficient sampling approach and conduct a large number of simulations to explore the sensitivity of the simulated Asian summer monsoon (ASM) precipitation, including the climatological state and interannual variability, to eight parameters related to the cloud and precipitation processes in the Beijing Climate Center AGCM version 2.1 (BCC_AGCM2.1). Our results show that BCC_AGCM2.1 has large biases in simulating the ASM precipitation. The precipitation efficiency and evaporation coefficient for deep convection are the most sensitive parameters in simulating the ASM precipitation. With optimal parameter values, the simulated precipitation climatology could be remarkably improved, e.g. increased precipitation over the equator Indian Ocean, suppressed precipitation over the Philippine Sea, and more realistic Meiyu distribution over Eastern China. The ASM precipitation interannual variability is further analyzed, with a focus on the ENSO impacts. It shows the simulations with better ASM precipitation climatology can also produce more realistic precipitation anomalies during El Niño decaying summer. In the low-skill experiments for precipitation climatology, the ENSO-induced precipitation anomalies are most significant over continents (vs. over ocean in observation) in the South Asian monsoon region. More realistic results are derived from the higher-skill experiments with stronger anomalies over the Indian Ocean and weaker anomalies over India and the western Pacific, favoring more evident easterly anomalies forced by the tropical Indian Ocean warming and stronger Indian Ocean-western Pacific tele-connection as observed. Our model results reveal a strong connection between the simulated ASM precipitation climatological state and interannual variability in BCC_AGCM2.1 when key parameters are perturbed.

  17. Past dynamics of the Australian monsoon: precession, phase and links to the global monsoon concept

    NASA Astrophysics Data System (ADS)

    Beaufort, L.; van der Kaars, S.; Bassinot, F. C.; Moron, V.

    2010-10-01

    Past variations in the dynamics of the Australian monsoon have been estimated from multi-proxy analysis of a core retrieved in the Eastern Banda Sea. Records of coccolith and pollen assemblages, spanning the last 150 000 years, allow reconstruction of past primary production in the Banda Sea, summer moisture availability, and the length of the dry season in northern Australia and southeastern Indonesia. The amount of moisture available during the summer monsoon follows typical glacial/interglacial dynamics with a broad asymmetrical 100-kyr cycle. Primary production and length of the dry season appear to be closely related, given that they follow the precessional cycle with the same phase. This indicates their independence from ice-volume variations. The present inter-annual variability of both parameters is related to El Niño Southern Oscillation (ENSO), which modulates the Australian Winter Monsoon (AWM). The precessional pattern observed in the past dynamics of the AWM is found in ENSO and monsoon records of other regions. A marked shift in the monsoon intensity occurring during the mid Holocene during a period of constant ice volume, suggests that low latitude climatic variation precedes increases in global ice volume. This precessional pattern suggests that a common forcing mechanism underlies low latitude climate dynamics, acting specifically and synchronously on the different monsoon systems.

  18. Past dynamics of the Australian monsoon: precession, phase and links to the global monsoon

    NASA Astrophysics Data System (ADS)

    Beaufort, L.; van der Kaars, S.; Bassinot, F. C.; Moron, V.

    2010-06-01

    Past variations in the dynamics of the Australian monsoon have been estimated from multi-proxy analysis of a core retrieved in the Eastern Banda Sea. Records of coccolith and pollen assemblages, spanning the last 150,000 years, allow reconstruction of past primary production in the Banda Sea, summer moisture availability, and the length of the dry season in Northern Australia and Southeastern Indonesia. The amount of moisture available during the summer monsoon follows typical glacial/interglacial dynamics with a broad asymmetrical 100-kyr cycle. Primary production and length of the dry season appear to be closely related, given that they follow the precessional cycle with the same phase (August insolation). This indicates their independence from ice-volume variations. The present inter-annual variability of both parameters is related to El Niño Southern Oscillation (ENSO), which modulates the Australian Winter Monsoon (AWM). The precessional pattern observed in the past dynamics of the AWM is found in ENSO and monsoon records of other regions. A marked shift in the monsoon intensity occurring during the mid Holocene during a period of constant ice volume, suggest that low latitude climatic variation precedes global ice volume. This precessional pattern suggests that a common forcing mechanism underlies low latitude climate dynamics, acting specifically and synchronically on the different monsoon systems.

  19. On the weakening relationship between the indian monsoon and ENSO

    PubMed

    Kumar; Rajagopalan; Cane

    1999-06-25

    Analysis of the 140-year historical record suggests that the inverse relationship between the El Nino-Southern Oscillation (ENSO) and the Indian summer monsoon (weak monsoon arising from warm ENSO event) has broken down in recent decades. Two possible reasons emerge from the analyses. A southeastward shift in the Walker circulation anomalies associated with ENSO events may lead to a reduced subsidence over the Indian region, thus favoring normal monsoon conditions. Additionally, increased surface temperatures over Eurasia in winter and spring, which are a part of the midlatitude continental warming trend, may favor the enhanced land-ocean thermal gradient conducive to a strong monsoon. These observations raise the possibility that the Eurasian warming in recent decades helps to sustain the monsoon rainfall at a normal level despite strong ENSO events. PMID:10381876

  20. Reconciling societal and scientific definitions for the monsoon

    NASA Astrophysics Data System (ADS)

    Reeve, Mathew; Stephenson, David

    2014-05-01

    Science defines the monsoon in numerous ways. We can apply these definitions to forecast data, reanalysis data, observations, GCMs and more. In a basic research setting, we hope that this work will advance science and our understanding of the monsoon system. In an applied research setting, we often hope that this work will benefit a specific stakeholder or community. We may want to inform a stakeholder when the monsoon starts, now and in the future. However, what happens if the stakeholders cannot relate to the information because their perceptions do not align with the monsoon definition we use in our analysis? We can resolve this either by teaching the stakeholders or learning from them about how they define the monsoon and when they perceive it to begin. In this work we reconcile different scientific monsoon definitions with the perceptions of agricultural communities in Bangladesh. We have developed a statistical technique that rates different scientific definitions against the people's perceptions of when the monsoon starts and ends. We construct a probability mass function (pmf) around each of the respondent's answers in a questionnaire survey. We can use this pmf to analyze the time series of monsoon onsets and withdrawals from the different scientific definitions. We can thereby quantitatively judge which definition may be most appropriate for a specific applied research setting.

  1. Monsoon precipitation in the AMIP runs

    NASA Astrophysics Data System (ADS)

    Gadgil, S.; Sajani, S.

    We present an analysis of the seasonal precipitation associated with the African, Indian and the Australian-Indonesian monsoon and the interannual variation of the Indian monsoon simulated by 30 atmospheric general circulation models undertaken as a special diagnostic subproject of the Atmospheric Model Intercomparison Project (AMIP). The seasonal migration of the major rainbelt observed over the African region, is reasonably well simulated by almost all the models. The Asia West Pacific region is more complex because of the presence of warm oceans equatorward of heated continents. Whereas some models simulate the observed seasonal migration of the primary rainbelt, in several others this rainbelt remains over the equatorial oceans in all seasons. Thus, the models fall into two distinct classes on the basis of the seasonal variation of the major rainbelt over the Asia West Pacific sector, the first (class I) are models with a realistic simulation of the seasonal migration and the major rainbelt over the continent in the boreal summer; and the second (class II) are models with a smaller amplitude of seasonal migration than observed. The mean rainfall pattern over the Indian region for July-August (the peak monsoon months) is even more complex because, in addition to the primary rainbelt over the Indian monsoon zone (the monsoon rainbelt) and the secondary one over the equatorial Indian ocean, another zone with significant rainfall occurs over the foothills of Himalayas just north of the monsoon zone. Eleven models simulate the monsoon rainbelt reasonably realistically. Of these, in the simulations of five belonging to class I, the monsoon rainbelt over India in the summer is a manifestation of the seasonal migration of the planetary scale system. However in those belonging to class II it is associated with a more localised system. In several models, the oceanic rainbelt dominates the continental one. On the whole, the skill in simulation of excess/deficit summer

  2. On the Origin of Monsoon

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.; Chen, Baode; Einaudi, Franco (Technical Monitor)

    2000-01-01

    It is a long-held fundamental belief that the basic cause of a monsoon is land-sea thermal contrast on the continental scale. Through general circulation model experiments we demonstrate that this belief should be changed. The Asian and Australian summer monsoon circulations are largely intact in an experiment in which Asia, maritime continent, and Australia are replaced by ocean. It is also shown that the change resulting from such replacement is in general due more to the removal of topography than to the removal of land-sea contrast. Therefore, land-sea contrast plays only a minor modifying role in Asian and Australian summer monsoons. This also happens to the Central American summer monsoon. However, the same thing cannot be said of the African and South American summer monsoons. In Asian and Australian winter monsoons land-sea contrast also plays only a minor role. Our interpretation for the origin of monsoon is that the summer monsoon is the result of ITCZ's (intertropical convergence zones) peak being substantially (more than 10 degrees) away from the equator. The origin of the ITCZ has been previously interpreted by Chao. The circulation around thus located ITCZ, previously interpreted by Chao and Chen through the modified Gill solution and briefly described in this paper, explains the monsoon circulation. The longitudinal location of the ITCZs is determined by the distribution of surface conditions. ITCZ's favor locations of higher SST as in western Pacific and Indian Ocean, or tropical landmass, due to land-sea contrast, as in tropical Africa and South America. Thus, the role of landmass in the origin of monsoon can be replaced by ocean of sufficiently high SST. Furthermore, the ITCZ circulation extends into the tropics in the other hemisphere to give rise to the winter monsoon circulation there. Also through the equivalence of land-sea contrast and higher SST, it is argued that the basic monsoon onset mechanism proposed by Chao is valid for all monsoons.

  3. Methodology for sensitivity analysis, approximate analysis, and design optimization in CFD for multidisciplinary applications. [computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III; Hou, Gene W.

    1992-01-01

    Fundamental equations of aerodynamic sensitivity analysis and approximate analysis for the two dimensional thin layer Navier-Stokes equations are reviewed, and special boundary condition considerations necessary to apply these equations to isolated lifting airfoils on 'C' and 'O' meshes are discussed in detail. An efficient strategy which is based on the finite element method and an elastic membrane representation of the computational domain is successfully tested, which circumvents the costly 'brute force' method of obtaining grid sensitivity derivatives, and is also useful in mesh regeneration. The issue of turbulence modeling is addressed in a preliminary study. Aerodynamic shape sensitivity derivatives are efficiently calculated, and their accuracy is validated on two viscous test problems, including: (1) internal flow through a double throat nozzle, and (2) external flow over a NACA 4-digit airfoil. An automated aerodynamic design optimization strategy is outlined which includes the use of a design optimization program, an aerodynamic flow analysis code, an aerodynamic sensitivity and approximate analysis code, and a mesh regeneration and grid sensitivity analysis code. Application of the optimization methodology to the two test problems in each case resulted in a new design having a significantly improved performance in the aerodynamic response of interest.

  4. Is precipitation a predictor of mortality in Bangladesh? A multi-stratified analysis in a South Asian monsoon climate.

    PubMed

    Burkart, Katrin; Kinney, Patrick

    2016-05-15

    While numerous studies have assessed the association between temperature and mortality in various locations, few have addressed the relationship between precipitation and mortality. Given the high amounts of rainfall in many tropical monsoon areas and the often seasonally pronounced differences, there might be a potentially strong impact on health outcomes and death. In this study, we investigated the association between precipitation and daily death counts in Bangladesh from 2003 to 2007 using regression models with a quasipoisson distribution adjusting for long-term time and seasonal trends, day of the month, age and perceived temperature. Effects were assessed for all ages, the elderly and by gender. During the dry season a sharp increase in death risk was found at very high precipitation amounts which are most likely to be cyclone-related. This cyclone effect was most pronounced for females at the immediate day with an increase of 18.7% (3.8-35.6%) in non-external cause mortality per mm precipitation above 5mm. At longer lags we found a negative association between precipitation and mortality indicating some kind of dry effect which was more pronounced for the elderly with a mortality increase of 4.4% (2.6-6.2%) per mm decrease in precipitation. During the rainy season, we observed a protective effect of rainfall which was strongest during periods of seasonally high equivalent temperatures with a decrease in mortality of 4.0% (2.3-5.6%) per mm increase in precipitation on the immediate day. The observed associations between precipitation and mortality differed by season, age and gender. Generally, a strong short-term increase in mortality was associated with cyclonic activity during the dry season, while ongoing low rainfall seemed to have an adverse impact at higher lags. During the rainy season, precipitation seemed to mitigate heat effects. PMID:26933968

  5. Monsoon '90 - Preliminary SAR results

    NASA Technical Reports Server (NTRS)

    Dubois, Pascale C.; Van Zyl, Jakob J.; Guerra, Abel G.

    1992-01-01

    Multifrequency polarimetric synthetic aperture radar (SAR) images of the Walnut Gulch watershed near Tombstone, Arizona were acquired on 28 Mar. 1990 and on 1 Aug. 1990. Trihedral corner reflectors were deployed prior to both overflights to allow calibration of the two SAR data sets. During both overflights, gravimetric soil moisture and dielectric constant measurements were made. Detailed vegetation height, density, and water content measurements were made as part of the Monsoon 1990 Experiment. Preliminary results based on analysis of the multitemporal polarimetric SAR data are presented. Only the C-band data (5.7-cm wavelength) radar images show significant difference between Mar. and Aug., with the strongest difference observed in the HV images. Based on the radar data analysis and the in situ measurements, we conclude that these differences are mainly due to changes in the vegetation and not due to the soil moisture changes.

  6. Monsoon 1990: Preliminary SAR results

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob J.; Dubois, Pascale; Guerra, Abel

    1991-01-01

    Multifrequency polarimetric synthetic aperture radar (SAR) images of the Walnut Gulch watershed near Tombstone, Arizona were acquired on 28 Mar. 1990 and on 1 Aug. 1990. Trihedral corner reflectors were deployed prior to both overflights to allow calibration of the two SAR data sets. During both overflights, gravimetric soil moisture and dielectric constant measurements were made. Detailed vegetation height, density, and water content measurements were made as part of the Monsoon 1990 Experiment. Preliminary results based on analysis of the multitemporal polarimetric SAR data are presented. Only the C-band data (5.7-cm wavelength) radar images show significant difference between Mar. and Aug., with the strongest difference observed in the HV images. Based on the radar data analysis and the in situ measurements, we conclude that these differences are mainly due to changes in the vegetation and not due to the soil moisture changes.

  7. Managing Complexity in Multidisciplinary Visualization

    NASA Technical Reports Server (NTRS)

    Miceli, Kristina D.; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    As high performance computing technology progresses, computational simulations are becoming more advanced in their capabilities. In the computational aerosciences domain, single discipline steady-state simulations computed on a single grid are far from the state-of-the-art. In their place are complex, time-dependent multidisciplinary simulations that attempt to model a given geometry more realistically. The product of these multidisciplinary simulations is a massive amount of data stored in different formats, grid topologies, units of measure, etc., as a result of the differences in the simulated physical domains. In addition to the challenges posed by setting up and performing the simulation, additional challenges exist in analyzing computational results. Visualization plays an important role in the advancement of multidisciplinary simulations. To date, visualization has been used to aid in the interpretation of large amounts of simulation data. Because the human visual system is effective in digesting a large amount of information presented graphically, visualization has helped simulation scientists to understand complex simulation results. As these simulations become even more complex, integrating several different physical domains, visualization will be critical to digest the massive amount of information. Another important role for visualization is to provide a common communication medium from which the domain scientists can use to develop, debug, and analyze their work. Multidisciplinary analyses are the next step in simulation technology, not only in computational aerosciences, but in many other areas such as global climate modeling. Visualization researchers must understand and work towards the challenges posed by multidisciplinary simulation scenarios. This paper addresses some of these challenges, describing technologies that must be investigated to create a useful visualization analysis tool for domain scientists.

  8. Atmospheric model intercomparison project: Monsoon simulations

    SciTech Connect

    Sperber, K.R.; Palmer, T.N.

    1994-06-01

    The simulation of monsoons, in particular the Indian summer monsoon, has proven to be a critical test of a general circulation model`s ability to simulate tropical climate and variability. The Monsoon Numerical Experimentation Group has begun to address questions regarding the predictability of monsoon extremes, in particular conditions associated with El Nino and La Nina conditions that tend to be associated with drought and flood conditions over the Indian subcontinent, through a series of seasonal integrations using analyzed initial conditions from successive days in 1987 and 1988. In this paper the authors present an analysis of simulations associated with the Atmospheric Model Intercomparison Project (AMIP), a coordinated effort to simulate the 1979--1988 decade using standardized boundary conditions with approximately 30 atmospheric general circulation models. The 13 models analyzed to date are listed. Using monthly mean data from these simulations they have calculated indices of precipitation and wind shear in an effort to access the performance of the models over the course of the AMIP decade.

  9. Association of the East Asian subtropical westerly jet with the Southwest Asian summer monsoon: A diagnostic analysis on heavy rain events in Yunnan province, China

    NASA Astrophysics Data System (ADS)

    Chen, Jie

    2016-04-01

    Yunnan province, China is a typical area that is influenced by Southwest Asian summer monsoon (SASM) during boreal summer. Although the interannual variation of summer precipitation in Yunnan Province is closely related to that of the SASM, the East Asian subtropical westerly jet (EASWJ) may have an important role in heavy rainfall events in Yunnan Province during boreal summer. By using daily observations and the NACAR/NCEP data during 1960-2011, a diagnostic analysis is performed to investigate the association of the EASWJ with the SASM on heavy rain events in Yunnan Province during boreal summer. The analysis shows an anomalous divergence circulation pattern at upper level (200 hPa) over Eurasian continent that corresponds well to the negative anomaly of EASWJ during heavy rain events in boreal summer in Yunnan Province. At the same time, a low-level jet stream with abundant water vapor originated from the Arabian Sea and Bengal gulf provides necessarily dynamic and water conditions for heavy rain mechanism. The study further shows that the weakening of the EASWJ during heavy rain events in Yunnan Province is associated with the decrease in the meridional temperature gradient in northern mid-latitude (30o-40o N).

  10. Leaf physiognomy and climate: Are monsoon systems different?

    NASA Astrophysics Data System (ADS)

    Jacques, Frédéric M. B.; Su, Tao; Spicer, Robert A.; Xing, Yaowu; Huang, Yongjiang; Wang, Weiming; Zhou, Zhekun

    2011-03-01

    Our understanding of past climatic changes depends on our ability to obtain reliable palaeoclimate reconstructions. Climate Leaf Analysis Multivariate Program (CLAMP) uses the physiognomy of woody dicot leaf assemblages to quantitatively reconstruct terrestrial palaeoclimates. However, the present calibrations do not always allow us to reconstruct correctly the climate of some regions due to differing palaeofloristic histories. Present calibrations are also inappropriate for regions experiencing strong monsoon regimes. To help solve this problem, we have established a new calibration that can accommodate monsoonal climates in Asia. Our new calibration is based on the Physg3brcAZ dataset with 45 new Chinese sites added. These Chinese sites are taken from humid to mesic vegetations across China, and all are influenced by monsoonal conditions to some extent. They plot in a distinct part of physiognomic space, whether they are analysed as passive or active samples. The standard deviations for the new monsoonal calibration (1.25 °C for MAT and 217.7 mm for GSP) are in the same range as those observed for previous calibrations. The new monsoonal calibration was tested using a cross validation procedure. The estimates derived from the new monsoonal calibration (PhysgAsia1) for the Chinese sites are more accurate than those obtained from the Physg3brcAZ calibration, especially for the moisture related parameters. The mean absolute error for GSP of the Chinese sites is 294.6 mm in the new monsoonal calibration, whereas it was 1609.6 mm in the Physg3brcAZ calibration. Results for the three wettest months and three driest months are also more accurate and precise, which allows us to study the seasonality of the precipitation, and hence the monsoon. The new monsoonal calibration also gives accurate results for enthalpy reconstruction. Enthalpy is a parameter that is used for palaeoaltimetry, the new calibration is therefore useful for studies of land surface height changes in

  11. Mechanism of spatio-temporal transition to monsoon and prospects for prediction

    NASA Astrophysics Data System (ADS)

    Stolbova, Veronika; Surovyatkina, Elena; Bookhagen, Bodo; Kurths, Juergen

    2016-04-01

    The variability of the Indian monsoon onset has an enormous effect on more than 1.7 billion people. Consequently, understanding the mechanisms of the transition to monsoon and its successful forecasting is not only a question of great interest, but also a significant scientific challenge. Here we address the problem of the spatial and temporal organization of the abrupt transition to the Indian monsoon. The analysis of observational data uncovers that there is a threshold behavior at the transition to monsoon over the central part of India. Based on these observations, we consider the transition to monsoon from a dynamic system perspective and propose a novel mechanism of a spatio-temporal transition to monsoon. Our approach has several advantages in comparison to existing explanations of the Indian Monsoon nature: it describes the abrupt transition to monsoon in a chosen region of the Indian subcontinent, the spatial propagation and variability of the Indian Monsoon onset along the axis of advance of monsoon, and allows to explain the "bogus" monsoon onsets. In addition, based on this approach we develop a novel prediction scheme for forecasting of monsoon timing. Unlike most predictability methods, our scheme does not rely on precipitation analysis, but on air temperature and relative humidity, which are well-represented both in models and observations. The proposed scheme predicts the onset and withdrawal dates more than two weeks and a month earlier than existing methods, respectively. In addition, the scheme allows the inclusion of the information about the El-Niño-Southern Oscillation in the forecasting of onset and withdrawal dates, thereby, significantly improving the prediction of monsoon timing during anomalous years associated with the El-Niño-Southern Oscillation. Finally, the proposed scheme can be directly implemented into the existing long-range forecasting system of the monsoon's timing.

  12. The evolution of sub-monsoon systems in the Afro-Asian monsoon region during the Holocene- comparison of different transient climate model simulations

    NASA Astrophysics Data System (ADS)

    Dallmeyer, A.; Claussen, M.; Fischer, N.; Haberkorn, K.; Wagner, S.; Pfeiffer, M.; Jin, L.; Khon, V.; Wang, Y.; Herzschuh, U.

    2015-02-01

    The recently proposed global monsoon hypothesis interprets monsoon systems as part of one global-scale atmospheric overturning circulation, implying a connection between the regional monsoon systems and an in-phase behaviour of all northern hemispheric monsoons on annual timescales (Trenberth et al., 2000). Whether this concept can be applied to past climates and variability on longer timescales is still under debate, because the monsoon systems exhibit different regional characteristics such as different seasonality (i.e. onset, peak and withdrawal). To investigate the interconnection of different monsoon systems during the pre-industrial Holocene, five transient global climate model simulations have been analysed with respect to the rainfall trend and variability in different sub-domains of the Afro-Asian monsoon region. Our analysis suggests that on millennial timescales with varying orbital forcing, the monsoons do not behave as a tightly connected global system. According to the models, the Indian and North African monsoons are coupled, showing similar rainfall trend and moderate correlation in centennial rainfall variability in all models. The East Asian monsoon changes independently during the Holocene. The dissimilarities in the seasonality of the monsoon sub-systems lead to a stronger response of the North African and Indian monsoon systems to the Holocene insolation forcing than of the East Asian monsoon and affect the seasonal distribution of Holocene rainfall variations. Within the Indian and North African monsoon domain, precipitation solely changes during the summer months, showing a decreasing Holocene precipitation trend. In the East Asian monsoon region, the precipitation signal is determined by an increasing precipitation trend during spring and a decreasing precipitation change during summer, partly balancing each other. A synthesis of reconstructions and the model results do not reveal an impact of the different seasonality on the timing of the

  13. The evolution of sub-monsoon systems in the Afro-Asian monsoon region during the Holocene - comparison of different transient climate model simulations

    NASA Astrophysics Data System (ADS)

    Dallmeyer, A.; Claussen, M.; Fischer, N.; Haberkorn, K.; Wagner, S.; Pfeiffer, M.; Jin, L.; Khon, V.; Wang, Y.; Herzschuh, U.

    2014-05-01

    The recently proposed global monsoon hypothesis interprets monsoon systems as part of one global-scale atmospheric overturning circulation, implying a connection between the regional monsoon systems and an in-phase behaviour of all northern hemispheric monsoons on annual timescales (Trenberth et al., 2000). Whether this concept can be applied to past climates and variability on longer timescales is still under debate, because the monsoon systems exhibit different regional characteristics such as different seasonality (i.e. onset, peak, and withdrawal). To investigate the interconnection of different monsoon systems during the pre-industrial Holocene, five transient global climate model simulations have been analysed with respect to the rainfall trend and variability in different sub-domains of the Afro-Asian monsoon region. Our analysis suggests that on millennial timescales with varying orbital forcing, the monsoons do not behave as a tightly connected global system. According to the models, the Indian and North African monsoons are coupled, showing similar rainfall trend and moderate correlation in rainfall variability in all models. The East Asian monsoon changes independently during the Holocene. The dissimilarities in the seasonality of the monsoon sub-systems lead to a stronger response of the North African and Indian monsoon systems to the Holocene insolation forcing than of the East Asian monsoon and affect the seasonal distribution of Holocene rainfall variations. Within the Indian and North African monsoon domain, precipitation solely changes during the summer months, showing a decreasing Holocene precipitation trend. In the East Asian monsoon region, the precipitation signal is determined by an increasing precipitation trend during spring and a decreasing precipitation change during summer, partly balancing each other. A synthesis of reconstructions and the model results do not reveal an impact of the different seasonality on the timing of the Holocene

  14. Desert Dust and Monsoon Rain

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, Kyu-Myong

    2014-01-01

    For centuries, inhabitants of the Indian subcontinent have know that heavy dust events brought on by strong winds occur frequently in the pre-monsoon season, before the onset of heavy rain. Yet scientists have never seriously considered the possibility that natural dust can affect monsoon rainfall. Up to now, most studies of the impacts of aerosols on Indian monsoon rainfall have focused on anthropogenic aerosols in the context of climate change. However, a few recent studies have show that aerosols from antropogenic and natural sources over the Indian subcontinent may affect the transition from break to active monsoon phases on short timescales of days to weeks. Writing in Nature Geoscience, Vinoj and colleagues describe how they have shown that desert dust aerosols over the Arabian Sea and West Asia can strenghten the summer monsoon over the Indial subcontinent in a matter of days.

  15. Observational and modeling studies of impacts of the South China Sea monsoon on the monsoon rainfall in the middle-lower reaches of the Yangtze River during summer

    NASA Astrophysics Data System (ADS)

    Jin, Lijun; Zhao, Ping

    2012-04-01

    Based on the ERA-40 and NCEP/NCAR reanalysis data, the NOAA Climate Prediction Center's merged analysis of precipitation (CMAP), and the fifth-generation PSU/NCAR Mesoscale Model version 3 (MM5v3), we defined a monsoon intensity index over the East Asian tropical region and analyzed the impacts of summer (June-July) South China Sea (SCS) monsoon anomaly on monsoon precipitation over the middle-lower reaches of the Yangtze River (MLRYR) using both observational data analysis and numerical simulation methods. The results from the data analysis show that the interannual variations of the tropical monsoon over the SCS are negatively correlated with the southwesterly winds and precipitation over the MLRYR during June-July. Corresponding to stronger (weaker) tropical monsoon and precipitation, the southwesterly winds are weaker (stronger) over the MLRYR, with less (more) local precipitation. The simulation results further exhibit that when changing the SCS monsoon intensity, there are significant variations of monsoon and precipitation over the MLRYR. The simulated anomalies generally consist with the observations, which verifies the impact of the tropical monsoon on the monsoon precipitation over the MLRYR. This impact might be supported by certain physical processes. Moreover, when the tropical summer monsoon is stronger, the tropical anomalous westerly winds and positive precipitation anomalies usually maintain in the tropics and do not move northward into the MLRYR, hence the transport of water vapor toward southern China is weakened and the southwest flow and precipitation over southern China are also attenuated. On the other hand, the strengthened tropical monsoon may result in the weakening and southward shift of the western Pacific subtropical high through self-adjustment of the atmospheric circulation, leading to the weakening of the monsoon flows and precipitation over the MLRYR.

  16. Influence of Decadal Variability of Global Oceans on South Asian Monsoon and ENSO-Monsoon Relation

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Lakshmi

    This study has investigated the influence of the decadal variability associated with global oceans on South Asian monsoon and El Nino-Southern Oscillation (ENSO)-monsoon relation. The results are based on observational analysis using long records of monsoon rainfall and circulation and coupled general circulation model experiments using the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM) version 4 model. The multi-channel singular spectrum analysis (MSSA) of the observed rainfall over India yields three decadal modes. The first mode (52 year period) is associated with the Atlantic Multidecadal Oscillation (AMO), the second one (21 year) with the Pacific Decadal Oscillation (PDO) and the third mode (13 year) with the Atlantic tripole. The existence of these decadal modes in the monsoon was also found in the control simulation of NCAR CCSM4. The regionally de-coupled model experiments performed to isolate the influence of North Pacific and North Atlantic also substantiate the above results. The relation between the decadal modes in the monsoon rainfall with the known decadal modes in global SST is examined. The PDO has significant negative correlation with the Indian Monsoon Rainfall (IMR). The mechanism for PDO-monsoon relation is hypothesized through the seasonal footprinting mechanism and further through Walker and Hadley circulations. The model results also confirm the negative correlation between PDO and IMR and the mechanism through which PDO influences monsoon. Both observational and model analysis show that droughts (floods) are more likely over India than floods (droughts) when ENSO and PDO are in their warm (cold) phase. This study emphasizes the importance of carefully distinguishing the different decadal modes in the SST in the North Atlantic Ocean as they have different impacts on the monsoon. The AMO exhibits significant positive correlation with the IMR while the Atlantic tripole has significant negative

  17. Indo-China Monsoon Indices

    NASA Astrophysics Data System (ADS)

    Tsai, Chinleong; Behera, Swadhin K.; Waseda, Takuji

    2015-01-01

    Myanmar and Thailand often experience severe droughts and floods that cause irreparable damage to the socio-economy condition of both countries. In this study, the Southeastern Asian Summer Monsoon variation is found to be the main element of interannual precipitation variation of the region, more than the El Niño/Southern Oscillation (ENSO). The ENSO influence is evident only during the boreal spring season. Although the monsoon is the major factor, the existing Indian Monsoon Index (IMI) and Western North Pacific Monsoon Index (WNPMI) do not correlate well with the precipitation variation in the study regions of Southern Myanmar and Thailand. Therefore, a new set of indices is developed based on the regional monsoon variations and presented here for the first time. Precipitation variations in Southern Myanmar and Thailand differ as well as the elements affecting the precipitation variations in different seasons. So, separate indices are proposed for each season for Southern Myanmar and Thailand. Four new monsoon indices based on wind anomalies are formulated and are named as the Indochina Monsoon Indices. These new indices correlate better with the precipitation variations of the study region as compared to the existing IMI and WNPMI.

  18. Eocene precipitation: a global monsoon?

    NASA Astrophysics Data System (ADS)

    Greenwood, D. R.; Huber, M.

    2011-12-01

    The Eocene was the warmest part of the Cenozoic, with warm climates extending across all continents including Antarctica, and extending into the Arctic. Substantive paleobotanical evidence (leaf floras and palynofloras) has demonstrated the existence of broadleaf and coniferous polar forests - a circumpolar rain forest - at both poles. North and South America, Australia, and China in the Eocene were well-forested and humid continents, in contrast to today where 2/3 of these continental areas are arid or semi-arid and lack forests. Each of these regions reflect past climate states - mesothermal moist climates with low thermal seasonality at high latitudes - that have no analog in the modern world. Recent modelling and paleontological proxy data, however, is revealing a high degree of seasonality to precipitation for these continental areas, indicating a monsoon-type precipitation regime may have characterized Eocene 'greenhouse climates'. Paleobotanical proxies offer 2 methods for estimated paleo-precipitation; leaf physiognomy (including both CLAMP and leaf area analysis), and quantitative analysis of nearest living relatives ('NLRs') of macrofloras. Presented here are 1) an updated leaf area analysis calibration with smaller errors of the estimate than previously provided, and 2) analyses of fossil floras from North America, Canada, the Arctic, and Australia. Analysis of the Canadian floras indicate moist climates (MAP >100cm/a) in the early and middle Eocene at middle and high paleolatitudes. Precipitation for western North America at mid-latitudes is also estimated as high, but a seasonally dry interior and south-east is indicated. For Australia, precipitation in the south-east is estimated >120 cm/a, but the macrofloras indicate a drier interior (MAP ~60 cm/a) and seasonal drought, contradicting estimates of ~120 cm/a based on NLR analysis of pollen floras. Recently published data show that north-eastern China in the Eocene had a monsoonal-type seasonality for

  19. A Review of the Multidisciplinary Diagnosis of Interstitial Lung Diseases: A Retrospective Analysis in a Single UK Specialist Centre

    PubMed Central

    Chaudhuri, Nazia; Spencer, Lisa; Greaves, Melanie; Bishop, Paul; Chaturvedi, Anshuman; Leonard, Colm

    2016-01-01

    The accurate diagnosis and management of individuals with interstitial lung diseases (ILDs) poses an interesting challenge in clinical practice. A multidisciplinary team (MDT) approach is considered the gold standard. This is a single-centre retrospective review spanning a five-year period. We assessed the accuracy of prior ILD diagnosis, the methodology used to establish a correct diagnosis and how an MDT approach affected subsequent management. Our data supports an MDT approach in an experienced specialist ILD centre. We have demonstrated that diagnosis is often changed after an MDT review and that this impacts the subsequent management. Our results demonstrate that an MDT approach to diagnosis can establish a diagnosis in the majority of cases when prior diagnosis is uncertain (76%). We also show that a prior diagnosis of idiopathic pulmonary fibrosis is deemed inaccurate in over 50% of cases after MDT discussion. We have shown that during diagnostic uncertainty the considered gold standard of proceeding to a lung biopsy is not always feasible due to disease severity and comorbidities. In these circumstances, an MDT approach to diagnosis of ILDs combines clinical data with serial lung function and disease behavior, with or without responses to previous treatment trials to establish an accurate expert diagnosis. PMID:27472372

  20. A Review of the Multidisciplinary Diagnosis of Interstitial Lung Diseases: A Retrospective Analysis in a Single UK Specialist Centre.

    PubMed

    Chaudhuri, Nazia; Spencer, Lisa; Greaves, Melanie; Bishop, Paul; Chaturvedi, Anshuman; Leonard, Colm

    2016-01-01

    The accurate diagnosis and management of individuals with interstitial lung diseases (ILDs) poses an interesting challenge in clinical practice. A multidisciplinary team (MDT) approach is considered the gold standard. This is a single-centre retrospective review spanning a five-year period. We assessed the accuracy of prior ILD diagnosis, the methodology used to establish a correct diagnosis and how an MDT approach affected subsequent management. Our data supports an MDT approach in an experienced specialist ILD centre. We have demonstrated that diagnosis is often changed after an MDT review and that this impacts the subsequent management. Our results demonstrate that an MDT approach to diagnosis can establish a diagnosis in the majority of cases when prior diagnosis is uncertain (76%). We also show that a prior diagnosis of idiopathic pulmonary fibrosis is deemed inaccurate in over 50% of cases after MDT discussion. We have shown that during diagnostic uncertainty the considered gold standard of proceeding to a lung biopsy is not always feasible due to disease severity and comorbidities. In these circumstances, an MDT approach to diagnosis of ILDs combines clinical data with serial lung function and disease behavior, with or without responses to previous treatment trials to establish an accurate expert diagnosis. PMID:27472372

  1. Multidisciplinary management: why me?

    PubMed

    Wetenkamp, Vicki

    2002-01-01

    Laboratory professionals are being asked more and more frequently to spread their wings and take on additional responsibilities in the form of multidisciplinary management. Multidisciplinary management can be described as the management of multiple departments with one or more being outside of the traditional laboratory department, such as respiratory care, pharmacy, radiology, or cardiodiagnostics. Reasons behind the trend in multidisciplinary management and why laboratory professionals often are asked to assume these roles will be explored. This column will cover how laboratory managers can prepare for the challenges of multidisciplinary management, what skills are necessary for these new roles, and how to prepare yourself to be the candidate of choice for these positions when they develop. Challenges often encountered will be discussed, including suggestions on how to turn potential difficulties into positive growth experiences. Hopefully, at the conclusion, you will be able to answer the question "Why me?"--either in the form of "Why have I been asked to take on this role?" or "Why might I want to pursue such a role with enthusiasm?" PMID:12046275

  2. Integrating Multidisciplinary Engineering Knowledge

    ERIC Educational Resources Information Center

    Wolff, Karin; Luckett, Kathy

    2013-01-01

    In order to design two distinct engineering qualification levels for an existing University of Technology programme, empirical evidence based on the current diploma is necessary to illuminate the nature of and the relationship between the "contextual" and "conceptual" elements underpinning a multidisciplinary engineering…

  3. Integrated chemical species analysis with source-receptor modeling results to characterize the effects of terrain and monsoon on ambient aerosols in a basin.

    PubMed

    Chen, Chi-Fan; Liang, Jeng-Jong

    2013-05-01

    This study integrated estimated oxidation ratio of sulfur (SOR) and oxidation ratio of nitrogen (NOR) with source-receptor modeling results to identify the effects of terrain and monsoons on ambient aerosols in an urban area (north basin) and a rural area (south basin) of the Taichung Basin. The estimated results indicate that the conversion of sulfur mainly occurs in fine particles (PM₂.₅), whereas the conversion of nitrogen occurs in approximately equal quantities of PM₂.₅ and coarse particles (PM₂.₅-₁₀). The results show a direct relationship for PM₂.₅ between the modeling results with SOR and NOR. The high PM₂.₅ SOR, NOR, and secondary aerosol values all occurred in the upwind area during both monsoons; this shows that the photochemical reaction and the terrain effect on the pollutant transmission were significant in the basin. Additionally, the urban heat island effect on the urban area and the valley effect on the rural area were significant. The results show that secondary aerosol in PM₂.₅-₁₀ contributed approximately 10 % during both monsoons, and the difference in the contribution from secondary aerosol between both areas was small. Vehicle exhaust emissions and wind-borne dust were two crucial PM2.5-10 contributors during both monsoons; their average contributions in both areas were higher than 34 and 32 %, respectively. PMID:22996820

  4. Tracking South Asian Monsoon in the 21st Century

    NASA Astrophysics Data System (ADS)

    Rastogi, D.; Mei, R.; Hodges, K. I.; Ashfaq, M.

    2013-05-01

    In this study, we analyze the simulations of the Global Climate Models that are part of the Coupled Model Intercomparison Project Phase 5 (CMIP5) over the South Asian summer monsoon region for the historic (1960-2005) and the 21st century projection (2006-2100) periods. We apply two evaluation matrices namely precipitation recycling ratio analysis and monsoon depressions tracking algorithm to investigate the accuracy of the simulated processes in the GCMs that control the observed spatial and temporal distribution of South Asian summer monsoon rainfall. We sub-select the GCMs for the future period evaluations based on their ability in the simulation of different moisture sources and the accuracy of the low pressure systems tracks that transport moisture over the South Asian land during summer monsoon season in the baseline period. Further, we use selected GCMs to understand the effect of increase in greenhouse forcing on the frequency and tracks of the low-pressure systems during summer monsoon season, and on the moisture sources. These analyses will improve our understanding of the ability of CMIP5 GCMs in the simulation of South Asian summer monsoon dynamics and provide important implications for the reliability of future climate projections over this region.

  5. Pacific freshening drives Pliocene cooling and Asian monsoon intensification

    PubMed Central

    Nie, Junsheng; Stevens, Thomas; Song, Yougui; King, John W.; Zhang, Rui; Ji, Shunchuan; Gong, Lisha; Cares, Danielle

    2014-01-01

    The monsoon is a fundamental component of Earth's climate. The Pliocene warm period is characterized by long-term global cooling yet concurrent monsoon dynamics are poorly known. Here we present the first fully quantified and calibrated reconstructions of separate Pliocene air temperature and East Asian summer monsoon precipitation histories on the Chinese Loess Plateau through joint analysis of loess/red clay magnetic parameters with different sensitivities to air temperature and precipitation. East Asian summer monsoon precipitation shows an intensified trend, paradoxically at the same time that climate cooled. We propose a hitherto unrecognized feedback where persistently intensified East Asian summer monsoon during the late Pliocene, triggered by the gradual closure of the Panama Seaway, reinforced late Pliocene Pacific freshening, sea-ice development and ice volume increase, culminating in initiation of the extensive Northern Hemisphere glaciations of the Quaternary Ice Age. This feedback mechanism represents a fundamental reinterpretation of the origin of the Quaternary glaciations and the impact of the monsoon. PMID:24969361

  6. Effect of dust on the iNdian summer monsoon

    NASA Astrophysics Data System (ADS)

    Maharana, Pyarimohan; Priyadarshan Dimri, Ashok

    2015-04-01

    The atmospheric dust plays a major role in deciding the radiation balance over the earth. The dust scatters the light, acts as cloud condensation nuclei, and hence helps in the formation of different types of clouds. This property of the dust has a long term effect on the Indian summer monsoon and its spatial distribution. India receives around 80% of its annual rainfall during summer monsoon and around 50% of the Indian population depends upon the monsoonal rain for the agricultural activities. The rain also has an important contribution to the industry, water resource management, ground water recharge, provide relief from the heat and also play a major role in deciding the socio-economic condition of a major part of the population. Two sets of simulations (control and dust chemistry simulation) are made to analyze the effect of dust on the Indian summer monsoon. Both the simulations nicely represent the spatial structure of different meteorological parameters. The magnitude of the pressure gradient, circulation and the precipitation is more during the JJAS for the dust chemistry simulation except for the temperature climatology. The analysis of the pre-monsoon and May temperature climatology reflects that the heating of the land mass is more in the dust chemistry simulation as compared to the control simulation, which is providing the strength to the monsoon flow during JJAS. The dust simulation shows that it increases the hydrological cycle over the Indian land mass.

  7. An index for the interface between the Indian summer monsoon and the East Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Cao, Jie; Hu, Jinming; Tao, Yun

    2012-09-01

    IIE, the interface between the Indian Summer Monsoon (ISM) and the East Asian Summer Monsoon (EASM), is defined using the equivalent potential temperature and summer long-term mean reanalysis data provided by NOAA/OAR/ESRL PSD. The June-July-August reanalysis data for the period 1951-2008 and empirical orthogonal function analysis are further applied to obtain the IIE index at the near-surface isobaric level. The index has a prominent interannual variation that is strongly correlated with the seesaw variation between the ISM and EASM. When a strong EASM and weak ISM occur, this interface index is higher than the normal, with the interface between the two summer monsoons shifting farther eastward than normal. When a weak EASM and strong ISM appear, the index is lower than normal, with the interface moving farther westward than normal. The western North Pacific subtropical high, a major factor in the EASM system, plays an important role in the year-to-year variation of the IIE. Compared with approaches taken in previous studies, this index objectively and quantitatively describes the IIE variation and better represents the two teleconnection patterns associated with the Asian summer monsoon, thus enhancing interpretations of the interaction between the ISM and EASM and its effects on regional droughts and floods in East Asia.

  8. Monsoon circulation and atmospheric ozone

    NASA Astrophysics Data System (ADS)

    Khrgian, A. Kh.; Nguyen, Van Thang

    1991-01-01

    The effect of the Indonesian-Australian winter monsoon, proceeding from the Asian continent to the south, on the atmospheric ozone is examined. It is shown that large-scale atmospheric circulation phenomena caused by monsoons in the tropical regions of Australia and in south-eastern Asia can cause significant falls in atmospheric ozone concentrations. The common occurrence of such phenomena might explain the higher-than-average incidence of skin cancer in Australia.

  9. Possible role of pre-monsoon sea surface warming in driving the summer monsoon onset over the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Li, Kuiping; Liu, Yanliang; Yang, Yang; Li, Zhi; Liu, Baochao; Xue, Liang; Yu, Weidong

    2015-10-01

    Sea surface temperature (SST) reaches its annual maximum just before the summer monsoon onset and collapses soon after in the central areas of the Bay of Bengal (BoB). Here, the impact of the peak in the pre-monsoon SST on triggering the earliest monsoon onset in the BoB is investigated, with a focus on the role they play in driving the first-branch northward-propagating intra-seasonal oscillations (FNISOs) over the equatorial Eastern Indian Ocean (EIO). During the calm pre-monsoon period, sea surface warming in the BoB could increase the surface equivalent potential temperature (θe) in several ways. Firstly, warming of the sea surface heats the surface air through sensible heating, which forces the air temperature to follow the SST. The elevated air surface temperature accounts for 30 % of the surface θe growth. Furthermore, the elevated air temperature raises the water vapor capacity of the surface air to accommodate more water vapor. Constrained by the observation that the surface relative humidity is maintained nearly constant during the monsoon transition period, the surface specific humidity exhibits a significant increase, according to the Clausius-Clapeyron relationship. Budget analysis indicates that the additional moisture is primarily obtained from sea surface evaporation, which also exhibits a weak increasing trend due to the sea surface warming. In this way, it contributes about 70 % to the surface θe growth. The rapid SST increase during the pre-monsoon period preconditions the summer monsoon onset over the BoB through its contributions to significantly increase the surface θe, which eventually establishes the meridional asymmetry of the atmospheric convective instability in the EIO. The pre-established greater convective instability leads to the FNISO convections, and the summer monsoon is triggered in the BoB region.

  10. Possible role of pre-monsoon sea surface warming in driving the summer monsoon onset over the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Li, Kuiping; Liu, Yanliang; Yang, Yang; Li, Zhi; Liu, Baochao; Xue, Liang; Yu, Weidong

    2016-08-01

    Sea surface temperature (SST) reaches its annual maximum just before the summer monsoon onset and collapses soon after in the central areas of the Bay of Bengal (BoB). Here, the impact of the peak in the pre-monsoon SST on triggering the earliest monsoon onset in the BoB is investigated, with a focus on the role they play in driving the first-branch northward-propagating intra-seasonal oscillations (FNISOs) over the equatorial Eastern Indian Ocean (EIO). During the calm pre-monsoon period, sea surface warming in the BoB could increase the surface equivalent potential temperature (θe) in several ways. Firstly, warming of the sea surface heats the surface air through sensible heating, which forces the air temperature to follow the SST. The elevated air surface temperature accounts for 30 % of the surface θe growth. Furthermore, the elevated air temperature raises the water vapor capacity of the surface air to accommodate more water vapor. Constrained by the observation that the surface relative humidity is maintained nearly constant during the monsoon transition period, the surface specific humidity exhibits a significant increase, according to the Clausius-Clapeyron relationship. Budget analysis indicates that the additional moisture is primarily obtained from sea surface evaporation, which also exhibits a weak increasing trend due to the sea surface warming. In this way, it contributes about 70 % to the surface θe growth. The rapid SST increase during the pre-monsoon period preconditions the summer monsoon onset over the BoB through its contributions to significantly increase the surface θe, which eventually establishes the meridional asymmetry of the atmospheric convective instability in the EIO. The pre-established greater convective instability leads to the FNISO convections, and the summer monsoon is triggered in the BoB region.

  11. Spatiotemporal variability of rainfall extremes in monsoonal climates - examples from the South American Monsoon and the Indian Monsoon Systems (Invited)

    NASA Astrophysics Data System (ADS)

    Bookhagen, B.; Boers, N.; Marwan, N.; Malik, N.; Kurths, J.

    2013-12-01

    Monsoonal rainfall is the crucial component for more than half of the world's population. Runoff associated with monsoon systems provide water resources for agriculture, hydropower, drinking-water generation, recreation, and social well-being and are thus a fundamental part of human society. However, monsoon systems are highly stochastic and show large variability on various timescales. Here, we use various rainfall datasets to characterize spatiotemporal rainfall patterns using traditional as well as new approaches emphasizing nonlinear spatial correlations from a complex networks perspective. Our analyses focus on the South American (SAMS) and Indian (ISM) Monsoon Systems on the basis of Tropical Rainfall Measurement Mission (TRMM) using precipitation radar and passive-microwave products with horizontal spatial resolutions of ~5x5 km^2 (products 2A25, 2B31) and 25x25 km^2 (3B42) and interpolated rainfall-gauge data for the ISM (APHRODITE, 25x25 km^2). The eastern slopes of the Andes of South America and the southern front of the Himalaya are characterized by significant orographic barriers that intersect with the moisture-bearing, monsoonal wind systems. We demonstrate that topography exerts a first-order control on peak rainfall amounts on annual timescales in both mountain belts. Flooding in the downstream regions is dominantly caused by heavy rainfall storms that propagate deep into the mountain range and reach regions that are arid and without vegetation cover promoting rapid runoff. These storms exert a significantly different spatial distribution than average-rainfall conditions and assessing their recurrence intervals and prediction is key in understanding flooding for these regions. An analysis of extreme-value distributions of our high-spatial resolution data reveal that semi-arid areas are characterized by low-frequency/high-magnitude events (i.e., are characterized by a ';heavy tail' distribution), whereas regions with high mean annual rainfall have a

  12. Stratospheric Water Vapor and the Asian Monsoon: An Adjoint Model Investigation

    NASA Technical Reports Server (NTRS)

    Olsen, Mark A.; Andrews, Arlyn E.

    2003-01-01

    A new adjoint model of the Goddard Parameterized Chemistry and Transport Model is used to investigate the role that the Asian monsoon plays in transporting water to the stratosphere. The adjoint model provides a unique perspective compared to non-diffusive and non-mixing Lagrangian trajectory analysis. The quantity of water vapor transported from the monsoon and the pathways into the stratosphere are examined. The emphasis is on the amount of water originating from the monsoon that contributes to the tropical tape recorder signal. The cross-tropopause flux of water from the monsoon to the midlatitude lower stratosphere will also be discussed.

  13. Tohono O'odham Monsoon Climatology

    NASA Astrophysics Data System (ADS)

    Ackerman, G.

    2006-12-01

    The North American monsoon is a summertime weather phenomenon that develops over the southwestern North America. For thousands of years the Tohono O'odham people of this area have depended on the associated rainy season (Jukiabig Masad) to grow traditional crops using runoff agriculture. Today, the high incidence of Type II diabetes among native people has prompted many to return to their traditional agricultural diets. Local monsoon onset dates and the North American Regional Reanalysis dataset were used to develop a 24-year Tohono O'odham Nation (TON) monsoon and pre-monsoon climatology that can be used as a tool for planning runoff agriculture. Using monsoon composite datasets, temporal and spatial correlations between antecedent period meteorological variables, monsoon onset dates and total monsoon precipitation were examined to identify variables that could be useful in predicting the onset and intensity of the monsoon. The results suggest additional research is needed to identify variables related to monsoon onset and intensity.

  14. Monsoon definition discrepancies in Bangladesh

    NASA Astrophysics Data System (ADS)

    Reeve, M. A.; Chu, P.-S.

    2012-04-01

    This study applies different definitions of what previous authors have called the monsoon over Bangladesh. The aim is to identify the definitions that most resemble the perceptions of the local rural communities and how they define the monsoon. Considering how the local communities define the monsoon is extremely important since these populations are most vulnerable to future changes in climate and more specifically monsoon rainfall. It has been pointed out previously that the monsoon research community had not reached a consensus on a unified definition of the monsoon rainy season. This problem seems to be profound in Bangladesh where results from the application of different definitions show very large discrepancies. Since these discrepancies exist, confusing terms such as monsoon, summer rainy season, and monsoon rainy season can have large implications for impact studies and interpretations of future climate projections. The results in this paper show that these terms need to be explicitly and carefully defined with regards to Bangladesh. Wind-, rain- and OLR-based definitions are applied to several different datasets to show how large these discrepancies can be over Bangladesh. Differences in onset dates are found to be around 8-9 pentads (40-45 days) in some regions of the country. The largest differences are seen in the north-east region, where rain-based definitions give much earlier onsets than wind- or OLR-based definitions. The results show that mesoscale phenomena could be influencing the climate in the north-east part of Bangladesh and causing much earlier summer rainfall. According to the results from a previous social study, the local communities in fact consider this early rainfall as the monsoon onset. By identifying the definition that best resembles the local community perceptions through out Bangladesh, then future information can be constructed, so that it is more easily understood by and applicable to the millions of people climate change will

  15. Summer monsoon onset-induced changes of autotrophic pico- and nanoplankton in the largest monsoonal estuary along the west coast of India.

    PubMed

    Mohan, Arya P; Jyothibabu, R; Jagadeesan, L; Lallu, K R; Karnan, C

    2016-02-01

    This study presents the response of autotrophic pico- and nanoplankton to southwest monsoon-associated hydrographical transformations in the Cochin backwaters (CBW), the largest monsoonal estuary along the west coast of India. By the onset of the southwest monsoon, the euhaline/mesohaline conditions in the downstream/upstream of CBW usually transform into oligohaline/limnohaline. The flow cytometer analysis revealed the dominance of picoeukaryotes > Synechococcus > nanoautotrophs, with Prochlorococcus either very low or entirely absent. Synechococcus abundance was high during the pre-southwest monsoon (10(6) L(-1)), which dwindled with heavy fresh water influx during the southwest monsoon (10(5) L(-1)). The drastic drop in salinity and faster flushing of the CBW during the southwest monsoon replaced the euhaline/mesohaline strain of Synechococcus with an oligohaline/limnohaline strain. Epifluorescence microscopy analyses showed that, among the two strains of Synechococcus, the phycoerythrin-rich (PE-rich) one was dominant in the mesohaline/euhaline conditions, whereas the phycocyanin-rich (PC-rich) strain dominated in oligohaline/limnohaline conditions. Although Synechococcus abundance diminished during the southwest monsoon, the total abundance of picoplankton community remained virtually unchanged in the upstream due to an increase in the abundance of picoeukaryotes. On the other hand, the autotrophic nanoplankton abundance increased from pre-monsoon levels of av. 3.8 × 10(6)-av. 9.5 × 10(6) L(-1) at the onset of the southwest monsoon. Utilizing suitable multivariate analyses, the study illustrated the differential response and niche preference of various smaller communities of autotrophs to the southwest monsoon-associated hydrographical ramifications in a large monsoonal estuary, which may be applicable to similar such estuaries situated along the Indian coastline. PMID:26780412

  16. The Origins of ITCZs, Monsoons, and Monsoon Onset

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.

    2009-01-01

    Intertropical convergence zones (ITCZs), monsoons and monsoon onset are among the most prominent of atmospheric phenomena. Understanding their origins is fundamental to a full understanding of the atmospheric general circulation and has challenged meteorologists for a very long time. There has been important progress in understanding these phenomena in recent years, and in this seminar, recent developments, to which the speaker has contributed, are reviewed. First, contrary to conventional belief, land-sea thermal contrast is not necessary for monsoons to form. Second, monsoon onset occurs when there is a sudden poleward jump of an ITCZ during its annual cycle of latitudinal movement. A monsoon, then, is an ITCZ after its poleward jump. Third, the SST latitudinal maximum is not the most significant, or even a necessary, factor in the formation of an ITCZ; there are other important, if not more important, factors. These factors are the interaction between convection and surface fluxes, the interaction between convection and radiation, and the earth's rotation. Finally, the recent understanding of how ITCZs form has led to a conceptual explanation for the origin of the double ITCZ bias in GCM simulations.

  17. Multidisciplinary computational aerosciences

    NASA Technical Reports Server (NTRS)

    Kutler, Paul

    1992-01-01

    As the challenges of single disciplinary computational physics are met, such as computational fluid dynamics, computational structural mechanics, computational propulsion, computational aeroacoustics, computational electromagnetics, etc., scientists have begun investigating the combination of these single disciplines into what is being called multidisciplinary computational aerosciences (MCAS). The combination of several disciplines not only offers simulation realism but also formidable computational challenges. The solution of such problems will require computers orders of magnitude larger than those currently available. Such computer power can only be supplied by massively parallel machines because of the current speed-of-light limitation of conventional serial systems. Even with such machines, MCAS problems will require hundreds of hours for their solution. To efficiently utilize such a machine, research is required in three areas that include parallel architectures, systems software, and applications software. The main emphasis of this paper is the applications software element. Examples that demonstrate application software for multidisciplinary problems currently being solved at NASA Ames Research Center are presented. Pacing items for MCAS are discussed such as solution methodology, physical modeling, computer power, and multidisciplinary validation experiments.

  18. Pleistocene Indian Monsoon Rainfall Variability

    NASA Astrophysics Data System (ADS)

    Yirgaw, D. G.; Hathorne, E. C.; Giosan, L.; Collett, T. S.; Sijingeo, A. V.; Nath, B. N.; Frank, M.

    2014-12-01

    The past variability of the Indian Monsoon is mostly known from records of wind strength over the Arabian Sea. Here we investigate proxies for fresh water input and runoff in a region of strong monsoon precipitation that is a major moisture source for the east Asian Monsoon. A sediment core obtained by the IODP vessel JOIDES Resolution and a gravity core from the Alcock Seamount complex in the Andaman Sea are used to examine the past monsoon variability on the Indian sub-continent and directly over the ocean. The current dataset covers the last glacial and deglacial but will eventually provide a Pleistocene record. We utilise the ecological habitats of G. sacculifer and N. dutertrei to investigate the freshwater-induced stratification with paired Mg/Ca and δ18O analyses to estimate seawater δ18O (δ18Osw). During the last 60 kyrs, Ba/Ca ratios and δ18Osw values generally agree well between the two cores and suggest the weakest surface runoff and monsoon during the LGM and strongest monsoon during the Holocene. The difference in δ18O between the species, interpreted as a proxy for upper ocean stratification, implies stratification developed around 37 ka and remained relatively constant during the LGM, deglacial and Holocene. To investigate monsoon variability for intervals in the past, single shell Mg/Ca and δ18O analyses have been conducted. Mg/Ca ratios from individual shells of N. dutertrei suggest relatively small changes in temperature. However, individual N. dutertrei δ18O differ greatly between the mid-Holocene and samples from the LGM and a nearby core top. The mid-Holocene individuals have a greater range and large skew towards negative values indicating greater fresh water influence.

  19. Investigation of summer monsoon rainfall variability in Pakistan

    NASA Astrophysics Data System (ADS)

    Hussain, Mian Sabir; Lee, Seungho

    2016-08-01

    This study analyzes the inter-annual and intra-seasonal rainfall variability in Pakistan using daily rainfall data during the summer monsoon season (June to September) recorded from 1980 to 2014. The variability in inter-annual monsoon rainfall ranges from 20 % in northeastern regions to 65 % in southwestern regions of Pakistan. The analysis reveals that the transition of the negative and positive anomalies was not uniform in the investigated dataset. In order to acquire broad observations of the intra-seasonal variability, an objective criterion, the pre-active period, active period and post-active periods of the summer monsoon rainfall have demarcated. The analysis also reveals that the rainfall in June has no significant contribution to the increase in intra-seasonal rainfall in Pakistan. The rainfall has, however, been enhanced in the summer monsoon in August. The rainfall of September demonstrates a sharp decrease, resulting in a high variability in the summer monsoon season. A detailed examination of the intra-seasonal rainfall also reveals frequent amplitude from late July to early August. The daily normal rainfall fluctuates significantly with its maximum in the Murree hills and its minimum in the northwestern Baluchistan.

  20. Investigation of summer monsoon rainfall variability in Pakistan

    NASA Astrophysics Data System (ADS)

    Hussain, Mian Sabir; Lee, Seungho

    2016-01-01

    This study analyzes the inter-annual and intra-seasonal rainfall variability in Pakistan using daily rainfall data during the summer monsoon season (June to September) recorded from 1980 to 2014. The variability in inter-annual monsoon rainfall ranges from 20 % in northeastern regions to 65 % in southwestern regions of Pakistan. The analysis reveals that the transition of the negative and positive anomalies was not uniform in the investigated dataset. In order to acquire broad observations of the intra-seasonal variability, an objective criterion, the pre-active period, active period and post-active periods of the summer monsoon rainfall have demarcated. The analysis also reveals that the rainfall in June has no significant contribution to the increase in intra-seasonal rainfall in Pakistan. The rainfall has, however, been enhanced in the summer monsoon in August. The rainfall of September demonstrates a sharp decrease, resulting in a high variability in the summer monsoon season. A detailed examination of the intra-seasonal rainfall also reveals frequent amplitude from late July to early August. The daily normal rainfall fluctuates significantly with its maximum in the Murree hills and its minimum in the northwestern Baluchistan.

  1. Multidisciplinary Concurrent Design Optimization via the Internet

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Kelkar, Atul G.; Koganti, Gopichand

    2001-01-01

    A methodology is presented which uses commercial design and analysis software and the Internet to perform concurrent multidisciplinary optimization. The methodology provides a means to develop multidisciplinary designs without requiring that all software be accessible from the same local network. The procedures are amenable to design and development teams whose members, expertise and respective software are not geographically located together. This methodology facilitates multidisciplinary teams working concurrently on a design problem of common interest. Partition of design software to different machines allows each constituent software to be used on the machine that provides the most economy and efficiency. The methodology is demonstrated on the concurrent design of a spacecraft structure and attitude control system. Results are compared to those derived from performing the design with an autonomous FORTRAN program.

  2. Delayed onset of the 2002 Indian monsoon

    NASA Astrophysics Data System (ADS)

    Flatau, M. K.; Flatau, P. J.; Schmidt, J.; Kiladis, G. N.

    2003-07-01

    We show that there is a set of dynamical predictors, which facilitate forecasting of a delayed monsoon onset. The main dynamical contributor is the early May propagation of the ``bogus onset Intraseasonal Oscillation'' which triggers a set of events precluding the climatological monsoon onset. We analyze in detail the 2002 monsoon onset and show that it followed a pattern described in our previous study. We notice that the 2003 monsoon onset followed very similar pattern and was delayed.

  3. From Systems Understanding to Personalized Medicine: Lessons and Recommendations Based on a Multidisciplinary and Translational Analysis of COPD.

    PubMed

    Roca, Josep; Cano, Isaac; Gomez-Cabrero, David; Tegnér, Jesper

    2016-01-01

    Systems medicine, using and adapting methods and approaches as developed within systems biology, promises to be essential in ongoing efforts of realizing and implementing personalized medicine in clinical practice and research. Here we review and critically assess these opportunities and challenges using our work on COPD as a case study. We find that there are significant unresolved biomedical challenges in how to unravel complex multifactorial components in disease initiation and progression producing different clinical phenotypes. Yet, while such a systems understanding of COPD is necessary, there are other auxiliary challenges that need to be addressed in concert with a systems analysis of COPD. These include information and communication technology (ICT)-related issues such as data harmonization, systematic handling of knowledge, computational modeling, and importantly their translation and support of clinical practice. For example, clinical decision-support systems need a seamless integration with new models and knowledge as systems analysis of COPD continues to develop. Our experience with clinical implementation of systems medicine targeting COPD highlights the need for a change of management including design of appropriate business models and adoption of ICT providing and supporting organizational interoperability among professional teams across healthcare tiers, working around the patient. In conclusion, in our hands the scope and efforts of systems medicine need to concurrently consider these aspects of clinical implementation, which inherently drives the selection of the most relevant and urgent issues and methods that need further development in a systems analysis of disease. PMID:26677188

  4. Halitosis: the multidisciplinary approach

    PubMed Central

    Bollen, Curd ML; Beikler, Thomas

    2012-01-01

    Halitosis, bad breath or oral malodour are all synonyms for the same pathology. Halitosis has a large social and economic impact. For the majority of patients suffering from bad breath, it causes embarrassment and affects their social communication and life. Moreover, halitosis can be indicative of underlying diseases. Only a limited number of scientific publications were presented in this field until 1995. Ever since, a large amount of research is published, often with lack of evidence. In general, intraoral conditions, like insufficient dental hygiene, periodontitis or tongue coating are considered to be the most important cause (85%) for halitosis. Therefore, dentists and periodontologists are the first-line professionals to be confronted with this problem. They should be well aware of the origin, the detection and especially of the treatment of this pathology. In addition, ear–nose–throat-associated (10%) or gastrointestinal/endocrinological (5%) disorders may contribute to the problem. In the case of halitophobia, psychiatrical or psychological problems may be present. Bad breath needs a multidisciplinary team approach: dentists, periodontologists, specialists in family medicine, ear–nose–throat surgeons, internal medicine and psychiatry need to be updated in this field, which still is surrounded by a large taboo. Multidisciplinary bad breath clinics offer the best environment to examine and treat this pathology that affects around 25% of the whole population. This article describes the origin, detection and treatment of halitosis, regarded from the different etiological origins. PMID:22722640

  5. Monsoon low-level jet over the gateway of Indian summer monsoon: a comparative study for two distinct monsoon years

    NASA Astrophysics Data System (ADS)

    Narayanan, Suresh; Kottayil, Ajil; Mohanakumar, K.

    2016-05-01

    High-resolution radiosonde measurements are used to study the characteristics and dynamics of monsoon low-level jet at the monsoon onset region of Cochin (10.04° N; 76.32° E) in India under two contrasting monsoon years, 2013 and 2015. The core speed and core height of the low-level jet is significantly higher during the strong monsoon year of 2013 than for the monsoon-deficient year of 2015. The average core heights for these years are seen to exist at 2.03 and 2.20 km, respectively. The low-level jet-modulated parameters such as moisture flux, momentum flux and kinetic energy flux show higher values during monsoon of 2013 as compared to 2015. Among the monsoon low-level jet parameters, the moisture flux has the strongest influence on the observed rainfall over Cochin. Also, an exponential function is seen to best explain the moisture flux-rainfall relationship. The weakening of monsoon during 2015 is attributed most likely to an eastward shift of the core convective activity from the Indian subcontinent as revealed from satellite observation of the upper tropospheric humidity. A close association is seen between the rainfall over Cochin and the convective activity over the Indian subcontinent. Observational studies such as this, which links monsoon rainfall, monsoon low-level jet parameters and convective activity, are expected to enhance the understanding of monsoon processes in general and subsequently improve the forecasting skill of models.

  6. The relationship between Arabian Sea upwelling and Indian Monsoon revisited

    NASA Astrophysics Data System (ADS)

    Yi, Xing; Zorita, Eduardo; Hünicke, Birgit

    2015-04-01

    Coastal upwelling is important to marine ecosystems and human activities. It transports nutrient-rich deep water mass that supports marine biological productivity. In this study, we aim to characterize the large-scale climate forcings that drive upwelling along the western Arabian Sea coast. Studies based on ocean sediments suggest that there is a link between this coastal upwelling system and the Indian summer monsoon. However, a more direct method is needed to examine the influence of various forcings on upwelling. For this purpose, we analyse a high-resolution (about 10 km) global ocean simulation (denoted STORM), which is based on the MPI-OM model developed by the Max-Planck-Institute for Meteorology in Hamburg driven by the global meteorological reanalysis NCEP over the period 1950-2010. This very high spatial resolution allows us to identify characteristics of the coastal upwelling system. We compare the simulated upwelling velocity of STORM with two traditional upwelling indices: along-shore wind speed and sea surface temperature. The analysis reveals good consistency between these variables, with high correlations between coastal upwelling and along-shore wind speed (r=0.85) as well as coastal sea surface temperature (r=-0.77). To study the impact of the monsoon on the upwelling we analyse both temporal and spatial co-variability between upwelling velocity and the Indian summer monsoon index. The spatial analysis shows that the impact of the monsoon on the upwelling is concentrated along the coast, as expected. However, somewhat unexpectedly, the temporal correlation between the coastal upwelling and the monsoon index is rather weak (r=0.26). Also, the spatial structure of upwelling in the Arabian Sea as revealed by a Principal Component Analysis is rather rich, indicating that factors other than the Monsoon are also important drivers of upwelling. In addition, no detectable trend in our coastal upwelling is found in the simulation that would match the

  7. Toward a more holistic understanding of filicide: a multidisciplinary analysis of 32 years of U.S. arrest data.

    PubMed

    Mariano, Timothy Y; Chan, Heng Choon Oliver; Myers, Wade C

    2014-03-01

    Filicide is the killing of one or more children by a parent, stepparent, or other parental figure. This study presents the first comprehensive analysis of U.S. filicide, drawn from 94,146 filicide arrests tabulated over a 32-year period in the U.S. Federal Bureau of Investigation's Supplementary Homicide Reports (SHR). Filicides comprised 15% of all murders during this period. Modal victim age was less than one year old. One-third of the victims were under a year old; over two-thirds of the victims were age six or less. Fathers were as likely as mothers to kill infants. The mean age of offenders was 32 years with a mode of 22 years, and nearly three-quarters were aged 18-45. Female offenders were notably younger than their male counterparts. Black (or African American) offenders were significantly overrepresented in filicide compared to Whites. Most common killing methods included using hands and feet, strangulation, beating, asphyxiation, drowning, and defenestration. Stepparents were not at higher risk of filicide than genetic parents, but were twice as likely to kill using firearms. Synthesizing these results with studies from other fields, we propose three transdisciplinary, empirically informed filicide categories primarily defined by effects of (1) psychopathology associated with neurotransmitter disturbances, (2) gender and sex hormones, and (3) evolutionary motives. Approaching filicide using this proposed hypothetical framework for future research may help identify at-risk populations and improve prevention and treatment. PMID:24529774

  8. Toward a More Holistic Understanding of Filicide: A Multidisciplinary Analysis of 32 Years of U.S. Arrest Data

    PubMed Central

    Mariano, Timothy Y.; Chan, Heng Choon (Oliver); Myers, Wade C.

    2014-01-01

    Filicide is the killing one or more children by a parent, stepparent, or other parental figure. This study presents the first comprehensive analysis of U.S. filicide, drawn from 94,146 filicide arrests tabulated over a 32-year period in the U.S. Federal Bureau of Investigation’s Supplementary Homicide Reports (SHR). Filicides comprised 15% of all murders during this period. Modal victim age was less than one year old. One-third of victims were under a year old; over two-thirds were age six or less. Fathers were as likely as mothers to kill infants. The mean age of offenders was 32 years with a mode of 22 years, and nearly three-quarters were age 18 to 45. Female offenders were notably younger than their male counterparts. Black (or African American) offenders were significantly overrepresented in filicide compared to Whites. Most common killing methods included using hands and feet, strangulation, beating, asphyxiation, drowning, and defenestration. Stepparents were not at higher risk of filicide than genetic parents, but were twice as likely to kill using firearms. Synthesizing these results with studies from other fields, we propose three transdisciplinary, empirically-informed filicide categories primarily defined by effects of (1) psychopathology associated with neurotransmitter disturbances, (2) gender and sex hormones, and (3) evolutionary motives. Approaching filicide using this proposed hypothetical framework for future research may help identify at-risk populations and improve prevention and treatment. PMID:24529774

  9. Multiscale Variability of the Monsoon Climate

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, V.

    2005-05-01

    The reliability of weather forecasts is limited to a few days and is mainly determined by the synoptic scale features of the atmosphere. The predictability of weather models depends on the error growth determined by nonlinear terms representing advection. Smaller scale features, such as convection, may also influence the predictability of the synoptic scale forecasts. While the prediction of instantaneous states of the system may be impossible on longer time scale, there is optimism for medium-range and long-range forecasts of time-averaged features of the climate system. Such optimism is based on the observation that slowly-varying boundary forces such as sea surface temperature, soil moisture and snow influence the variability of the atmosphere on a longer time scale, especially in the tropical region. This study discusses the variability of such a tropical climate system, the monsoon, and shows that its variability consists of a combination of large-scale persistent seasonal mean component and intraseasonal variability of different time scales. The spatial variability of these components is also found to consist of different scales. By performing multi-channel singular spectrum analysis of daily rainfall, low-pressure systems, outgoing long-wave radiation and winds, two oscillatory modes with periods of about 45 and 20 days have been identified and shown to correspond to the active and break phases of the monsoon. These two intraseasonal modes, however, do not contribute much to the seasonal mean rainfall. Three other components of the MSSA are identified as the contributors to the seasonal mean rainfall, possibly arising from the influence of slowly-varying boundary forces. The prospect for making accurate long-range forecasts of the monsoon depends on the relative magnitudes of the large-scale seasonally persistent component and the intraseasonal component and on climate model experiments to establish a relation between the two components.

  10. Multidisciplinary mental health teams.

    PubMed

    Slade, M; Rosen, A; Shankar, R

    1995-01-01

    This study surveyed current practice amongst 91 Indian and Australian staff working within multidisciplinary mental health teams, looking at leadership skills, conflict resolution and therapeutic abilities. Length of training was associated with management skills, though these skill were more developed by psychiatric nurses and occupational therapists working in community settings. Hospital settings involved less consensual decision-making than community teams. Psychiatric nurses spent most time in clinical work, and occupational therapists were rated as less skilled in the therapeutic activities assessed than any other profession. Psychiatrists and clinical psychologists undertook most research. The activities assessed in this study could be undertaken by a team comprising psychiatrists, psychiatric nurses and social workers, with clinical psychologists employed where possible, especially for research or service evaluation. PMID:8847199

  11. Multidisciplinary Optimization Methods for Aircraft Preliminary Design

    NASA Technical Reports Server (NTRS)

    Kroo, Ilan; Altus, Steve; Braun, Robert; Gage, Peter; Sobieski, Ian

    1994-01-01

    This paper describes a research program aimed at improved methods for multidisciplinary design and optimization of large-scale aeronautical systems. The research involves new approaches to system decomposition, interdisciplinary communication, and methods of exploiting coarse-grained parallelism for analysis and optimization. A new architecture, that involves a tight coupling between optimization and analysis, is intended to improve efficiency while simplifying the structure of multidisciplinary, computation-intensive design problems involving many analysis disciplines and perhaps hundreds of design variables. Work in two areas is described here: system decomposition using compatibility constraints to simplify the analysis structure and take advantage of coarse-grained parallelism; and collaborative optimization, a decomposition of the optimization process to permit parallel design and to simplify interdisciplinary communication requirements.

  12. Long-term prediction of the Indian monsoon onset and withdrawal

    NASA Astrophysics Data System (ADS)

    Stolbova, Veronika; Surovyatkina, Elena; Bookhagen, Bodo; Kurths, Juergen

    2016-04-01

    Forecasting the onset and withdrawal of the Indian summer monsoon is crucial for life and prosperity of more than one billion inhabitants of the Indian subcontinent. However, accurate prediction of monsoon timing remains a challenge, despite numerous efforts. Here, we present a method for prediction of monsoon timing based on a critical transition precursor. We identify geographic regions - tipping elements of the monsoon - and use them as observation locations for predicting onset and withdrawal dates. Unlike most predictability methods, our approach does not rely on precipitation analysis, but on air temperature and relative humidity, which are well represented both in models and observations. The proposed method allows to predict onset two weeks earlier and withdrawal dates 1.5 months earlier than existing methods. In addition, it enables to correctly forecast monsoon duration for some anomalous years, often associated with El-Niño-Southern Oscillation.

  13. Lodestone Compass: Chinese or Olmec Primacy?: Multidisciplinary analysis of an Olmec hematite artifact from San Lorenzo, Veracruz, Mexico.

    PubMed

    Carlson, J B

    1975-09-01

    Considering the unique morphology (purposefully shaped polished bar with a groove) and composition (magnetic mineral with magnetic moment vector in the floating plane) of M-160, and acknowledging that the Olmec were a sophisticated people who possessed advanced knowledge and skill in working iron ore minerals, I would suggest for consideration that the Early Formative artifact M-160 was probably manufactured and used as what I have called a zeroth-order compass, if not a first-order compass. The data I have presented in this article support this hypothesis, although they are not sufficient to prove it. That M-160 could be used today as a geomagnetically directed pointer is undeniable. The original whole bar may indeed have pointed close to magnetic north-south. The groove functions well as a sighting mark, and the slight angle it makes with the axis of the bar appears to be the result of calibration rather than accident. A negative supporting argument is that M-160 looks utilitarian rather than decorative, and no function for the object other than that of a compass pointer has been suggested by anyone who has examined it critically. Whether such a pointer would have been used to point to something astronomical (zeroth-order compass) or to geomagnetic north-south (first-order compass) is entirely open to speculation. The observation of the family of Olmec site alignments 8 degrees west of north is a curiosity in its own right, and the possibility that these alignments have an astronomical or geomagnetic origin should be explored. I also believe that it is constructive to compare the first millennium Chinese, who used the lodestone compass for geomancy, with the Gulf Coast Olmec since both were agrarian-terrestrial societies. The Olmec's apparent concern with orientation and skillful use of magnetic minerals also stimulates one to draw cross-cultural parallels. The evidence and analysis offered in this article provide a basis for hypotheses of parallel cultural

  14. Recent and future changes in the Asian monsoon-ENSO relationship: Natural or forced?

    NASA Astrophysics Data System (ADS)

    Li, Xiaoqiong; Ting, Mingfang

    2015-05-01

    The Asian monsoon-ENSO (El Niño-Southern Oscillation) relationship in the 20th and 21st centuries is examined using observations and Coupled Model Intercomparison Project Phase 5 (CMIP5) model simulations. CMIP5 models can simulate the ENSO-monsoon spatial structure reasonably well when using the multimodel mean. Running correlations show prominent decadal variability of the ENSO-monsoon relationship in observations. The modeled ENSO-monsoon relation shows large intermodel spread, indicating large variations across the model ensemble. The anthropogenically forced component of ENSO-monsoon relationship is separated from the naturally varying component based on a signal-to-noise maximizing empirical orthogonal function analysis using global sea surface temperature (SST). Results show that natural variability plays a dominant role in the varied ENSO-monsoon relationship during the 20th century. In the 21st century, the forced component is dominated by enhanced monsoon rainfall associated with SST warming, which may contribute to a slightly weakened ENSO-monsoon relation in the future.

  15. Asynchronous evolution of the Indian and East Asian Summer Monsoon indicated by Holocene moisture patterns in monsoonal central Asia

    NASA Astrophysics Data System (ADS)

    Wang, Yongbo; Liu, Xingqi; Herzschuh, Ulrike

    2010-12-01

    The numerical meta-analysis of 92 proxy records (72 sites) of moisture and/or temperature change confirms earlier findings that the dominant trends of climatic evolution in monsoonal central Asia since the Last Glacial roughly parallel changes in Northern Hemisphere summer insolation, i.e. the period following the Last Glacial Maximum was characterized by dry and cold conditions until 15 cal. kyr BP, followed by a warm, wet period coincident with the Bølling/Allerød warm period and terminated by a cold, dry reversal during the Younger Dryas period. After an abrupt increase at the start of the Holocene, warm and wet conditions prevailed until ca. 4 cal. kyr BP when moisture levels and temperatures started to decrease. Ordination of moisture records reveals strong spatial heterogeneity in moisture evolution during the last 10 cal. kyr. The Indian Summer Monsoon (ISM) areas (northern India, Tibetan Plateau and southwest China) exhibit maximum wet conditions during the early Holocene, while many records from the area of the East Asian Summer Monsoon indicate relatively dry conditions, especially in north-central China where the maximum moisture levels occurred during the mid-Holocene. We assign such phenomena to strengthened Hadley Circulation centered over the Tibetan Plateau during the early Holocene which resulted in subsidence in the East Asian monsoonal regions leading to relatively dry conditions. Our observations of the asynchronous nature of the two Asian monsoon subsystems on millennial time scales have also been observed on annual time-scales as well as implied through the spatial analysis of vertical air motion patterns after strong ascending airflows over the Tibetan Plateau area that were calculated from NCEP/NCAR reanalysis data for the last 30 years. Analogous with the early Holocene, the enhancement of the ISM in a 'future warming world' will result in an increase in the asynchronous nature of the monsoon subsystems; this trend is already observed in

  16. Multi-Scale Predictions of the Asian Monsoons in the NCEP Climate Forecast System

    NASA Astrophysics Data System (ADS)

    Yang, S.

    2013-12-01

    A comprehensive analysis of the major features of the Asian monsoon system in the NCEP Climate Forecast System version 2 (CFSv2) and predictions of the monsoon by the model has been conducted. The intraseasonal-to-interannual variations of both summer monsoon and winter monsoon, as well as the annual cycles of monsoon climate, are focused. Features of regional monsoons including the monsoon phenomena over South Asia, East Asia, and Southeast Asia are discussed. The quasi-biweekly oscillation over tropical Asia and the Mei-yu climate over East Asia are also investigated. Several aspects of monsoon features including the relationships between monsoon and ENSO (including different types of ENSO: eastern Pacific warming and central Pacific warming), extratropical effects, dependence on time leads (initial conditions), regional monsoon features, and comparison between CFSv2 and CFS version 1 (CFSv1) are particularly emphasized. Large-scale characteristics of the Asian summer monsoon including several major dynamical monsoon indices and their associated precipitation patterns can be predicted several months in advance. The skill of predictions of the monsoon originates mostly from the impact of ENSO. It is found that large predictability errors occur in first three lead months and they only change slightly as lead time increases. The large errors in the first three lead months are associated with the large errors in surface thermal condition and atmospheric circulation in the central and eastern Pacific and the African continent. In addition, the response of the summer monsoon to ENSO becomes stronger with increase in lead time. The CFSv2 successfully simulates several major features of the East Asian winter monsoon and its relationships with the Arctic Oscillation, the East Asian subtropical jet, the East Asian trough, the Siberian high, and the lower-tropospheric winds. Surprisingly, the upper-tropospheric winds over the middle-high latitudes can be better simulated

  17. Asian summer monsoon onset barrier and its formation mechanism

    NASA Astrophysics Data System (ADS)

    Liu, Boqi; Liu, Yimin; Wu, Guoxiong; Yan, Jinghui; He, Jinhai; Ren, Suling

    2015-08-01

    The onset process of Asian summer monsoon (ASM) is investigated based on diagnostic analysis of observations of precipitation and synoptic circulation. Results show that after the ASM commences over the eastern Bay of Bengal (BOB) around early May, the onset can propagate eastwards towards the South China Sea and western Pacific but is blocked on its westward propagation along the eastern coast of India. This blocking, termed the "monsoon onset barrier (MOB)", presents a Gill-type circulation response to the latent heating released by BOB monsoon convection. This convective condensation heating generates summertime (wintertime) vertical easterly (westerly) shear to its east (west) and facilitates air ascent (descent). The convection then propagates eastward but gets trapped on its westward path. To the east of the central BOB, the surface air temperature (SAT) cools faster than the underlying sea surface temperature (SST) due to monsoon onset. Thus more sensible heat flux supports the onset convection to propagate eastward. To the west of the central BOB, however, the land surface sensible heating over the Indian Peninsula is strengthened by the enhanced anticyclone circulation and air descent induced by the BOB monsoon heating. The strengthened upstream warm horizontal advection then produces a warm SAT center over the MOB region, which together with the in situ cooled SST reduces the surface sensible heating and atmospheric available potential energy to prevent the occurrence of free convection. Therefore, it is the change in both large-scale circulation and air-sea interaction due to BOB summer monsoon onset that contributes to the MOB formation.

  18. Indian Monsoon Depression: Climatology and Variability

    SciTech Connect

    Yoon, Jin-Ho; Huang, Wan-Ru

    2012-03-09

    The monsoon climate is traditionally characterized by large seasonal rainfall and reversal of wind direction (e.g., Krishnamurti 1979). Most importantly this rainfall is the major source of fresh water to various human activities such as agriculture. The Indian subcontinent resides at the core of the Southeast Asian summer monsoon system, with the monsoon trough extended from northern India across Indochina to the Western Tropical Pacific (WTP). Large fraction of annual rainfall occurs during the summer monsoon season, i.e., June - August with two distinct maxima. One is located over the Bay of Bengal with rainfall extending northwestward into eastern and central India, and the other along the west coast of India where the lower level moist wind meets the Western Ghat Mountains (Saha and Bavardeckar 1976). The rest of the Indian subcontinent receives relatively less rainfall. Various weather systems such as tropical cyclones and weak disturbances contribute to monsoon rainfall (Ramage 1971). Among these systems, the most efficient rain-producing system is known as the Indian monsoon depression (hereafter MD). This MD is critical for monsoon rainfall because: (i) it occurs about six times during each summer monsoon season, (ii) it propagates deeply into the continent and produces large amounts of rainfall along its track, and (iii) about half of the monsoon rainfall is contributed to by the MDs (e.g., Krishnamurti 1979). Therefore, understanding various properties of the MD is a key towards comprehending the veracity of the Indian summer monsoon and especially its hydrological process.

  19. A Mesoscale Analysis of Column-Integrated Aerosol Properties in Northern India During the TIGERZ 2008 Pre-Monsoon Period and a Comparison to MODIS Retrievals

    NASA Technical Reports Server (NTRS)

    Giles, D. M.; Holben, B. N.; Tripathi, S. N.; Eck, T. F.; Newcomb, W. W.; Slutsker, I.; Dickerson, R. R.; Thompson, A. M.; Wang, S.-H.; Singh, R. P.; Sinyuk, A.

    2010-01-01

    opportunity to measure the spatial and temporal variations of aerosol loading in the IGP. The strong aerosol absorption derived from ground-based sun/sky radiometer measurements suggested the presence of a predominately black carbon and dust mixture during the pre-monsoon period. Consistent with the elevated heat-pump hypothesis, these absorbing aerosols found across Kanpur and the greater IGP region during the pre-monsoon period likely induced regional atmospheric warming, which lead to a more rapid advance of the southwest Asian monsoon and above normal precipitation over northern India in June 2008.

  20. Breakfast: a multidisciplinary approach

    PubMed Central

    2013-01-01

    Background The role of breakfast as an essential part of an healthy diet has been only recently promoted even if breakfast practices were known since the Middle Age. The growing scientific evidences on this topic are extremely sector-based nevertheless breakfast could be regarded from different point of views and from different expertises. This approach, that take into account history, sociology, anthropology, medicine, psychology and pedagogy, is useful to better understand the value of this meal in our culture. The aim of this paper was to analyse breakfast-related issues based on a multidisciplinary approach with input by specialists from different fields of learning. Discussion Breakfast is now recommended as part of a diet because it is associated with healthier macro- and micronutrient intakes, body mass index and lifestyle. Moreover recent studies showed that breakfast improves cognitive function, intuitive perception and academic performance. Research demonstrates the importance of providing breakfast not only to children but in adults and elderly too. Although the important role breakfast plays in maintaining the health, epidemiological data from industrialised countries reveal that many individuals either eat a nutritionally unhealthy breakfast or skip it completely. Summary The historical, bio-psychological and educational value of breakfast in our culture is extremely important and should be recognized and stressed by the scientific community. Efforts should be done to promote this practice for the individual health and well-being. PMID:23842429

  1. Eurasian snow cover and Indian monsoon : A new episode of a debated relationship

    NASA Astrophysics Data System (ADS)

    Peings, Y.; Douville, H.

    2009-04-01

    Since the pioneering works of Blanford at the end of the 19th century, suggesting that Indian monsoon rainfall could be sensitive to snow conditions over Himalaya, many studies have been devoted to a better understanding of the possible teleconnection between winter/spring Eurasian snow cover and the following Indian monsoon. This issue has been recently revisited at CNRM using a maximum covariance analysis. This statistical tool has been applied on both observations (summer precipitation over India on the one hand, satellite data of snow cover or in situ measurements of snow depth on the other hand) and a subset of global coupled ocean-atmosphere simulations from the CMIP3 database. In line with former studies, the observations suggest a link between an east-west snow dipole over Eurasia and the Indian summer monsoon precipitation. However, our results indicate that this relationship is neither statistically significant nor stationary over the last forty years. Moreover, the strongest signal appears over eastern Eurasia and is not consistent with the Blanford hypothesis whereby more snow should lead to a weaker monsoon. The 20th century CMIP3 simulations provide longer timeseries to look for robust snow-monsoon relationships. Some models do show an apparent influence of the Eurasian snow cover on the Indian summer monsoon precipitation, but the snow patterns are model-dependent and not the same as in the observations. Moreover, the apparent snow-monsoon relationship generally denotes a too strong ENSO (El Niño Southern Oscillation) influence on both winter snow cover and summer monsoon rainfall rather than a direct effect of the Eurasian snow cover on the Indian monsoon. New sensitivity studies with the ARPEGE-Climat model are needed to assess the potential impact of snow anomalies on the monsoon, using climatological sea surface temperature to get rid of the oceanic variability.

  2. Multidisciplinary care in pediatric oncology

    PubMed Central

    Cantrell, Mary Ann; Ruble, Kathy

    2011-01-01

    This paper describes the significant advances in the treatment of childhood cancer and supportive care that have occurred over the last several decades and details how these advances have led to improved survival and quality of life (QOL) for children with cancer through a multidisciplinary approach to care. Advances in the basic sciences, general medicine, cooperative research protocols, and policy guidelines have influenced and guided the multidisciplinary approach in pediatric oncology care across the spectrum from diagnosis through long-term survival. Two case studies are provided to highlight the nature and scope of multidisciplinary care in pediatric oncology care. PMID:21811384

  3. The Global Monsoon across Time Scales: is there coherent variability of regional monsoons?

    NASA Astrophysics Data System (ADS)

    Wang, P. X.; Wang, B.; Cheng, H.; Fasullo, J.; Guo, Z. T.; Kiefer, T.; Liu, Z. Y.

    2014-05-01

    Monsoon has earned increasing attention from the climate community since the last century, yet only recently regional monsoons have been recognized as a global system. It remains a debated issue, however, as to what extent and at which time scales the global monsoon can be viewed as a major mode of climate variability. For this purpose a PAGES Working Group (WG) was set up to investigate the concept of the global monsoon and its future research directions. The WG's synthesis is presented here. On the basis of observation and proxy data, the WG found that the regional monsoons can vary coherently, although not perfectly, at various time scales, ranging from interannual, interdecadal, centennial and millennial, up to orbital and tectonics time scales, conforming the global monsoon concept across time scales. Within the global monsoon system each subsystem has its own features depending on its geographic and topographic conditions. Discrimination of global and regional components in the monsoon system is a key to reveal the driving factors of monsoon variations, hence the global monsoon concept helps to enhance our understanding and to improve future projection of the regional monsoons. This paper starts with a historical review of the global monsoon concept in both modern and paleo-climatology, and an assessment of monsoon proxies used in regional and global scales. The main body of the paper is devoted to a summary of observation data at various time scales, providing evidence for the coherent global monsoon system. The paper concludes with a projection of future monsoon shifts into a warming world. The synthesis will be followed by a companying paper to discuss driving mechanisms and outstanding issues in the global monsoon studies.

  4. Monsoon-Enso Relationships: A New Paradigm

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    This article is partly a review and partly a new research paper on monsoon-ENSO relationship. The paper begins with a discussion of the basic relationship between the Indian monsoon and ENSO dating back to the work of Sir Gilbert Walker up to research results in more recent years. Various factors that may affect the monsoon-ENSO, relationship, including regional coupled ocean-atmosphere processes, Eurasian snow cover, land-atmosphere hydrologic feedback, intraseasonal oscillation, biennial variability and inter-decadal variations, are discussed. The extreme complex and highly nonlinear nature of the monsoon-ENSO relationship is stressed. We find that for regional impacts on the monsoon, El Nino and La Nina are far from simply mirror images of each other. These two polarities of ENSO can have strong or no impacts on monsoon anomalies depending on the strength of the intraseasonal oscillations and the phases of the inter-decadal variations. For the Asian-Australian monsoon (AAM) as a whole, the ENSO impact is effected through a east-west shift in the Walker Circulation. For rainfall anomalies over specific monsoon areas, regional processes play important roles in addition to the shift in the Walker Circulation. One of the key regional processes identified for the boreal summer monsoon is the anomalous West Pacific Anticyclone (WPA). This regional feature has similar signatures in interannual and intraseasonal time scales and appears to determine whether the monsoon-ENSO relationship is strong or weak in a given year. Another important regional feature includes a rainfall and SST dipole across the Indian Ocean, which may have strong impact on the austral summer monsoon. Results are shown indicating that monsoon surface wind forcings may induce a strong biennial signal in ENSO and that strong monsoon-ENSO coupling may translate into pronounced biennial variability in ENSO. Finally, a new paradigm is proposed for the study of monsoon variability. This paradigm provides

  5. Global Monsoon Rainfall - What the future holds?

    NASA Astrophysics Data System (ADS)

    Endo, H.; Kitoh, A.; Kumar, K.; Cavalcanti, I. F.; Goswami, P.; Zhou, T.

    2012-12-01

    We provide a latest view of global as well as regional monsoonal rainfall and their changes in the twenty-first century as projected by state-of-the-art climate models participated in the Coupled Model Intercomparison Project phase 5 (CMIP5). The global monsoon area (GMA) defined based on the annual range in precipitation will expand mainly over the central to eastern tropical Pacific, the southern Indian Ocean, and eastern Asia. The global monsoon intensity (GMI) and the global monsoon total precipitation (GMP) are likely to increase, implying that monsoon-related precipitation will remarkably increase in a warmer climate. Heavy precipitation indices are projected to increase much more than the mean precipitation, and their percentage changes depend more on the emission scenario compared to those for mean precipitation. Over the Asian monsoon domain, median increase rate for precipitation is larger than that over other monsoon domains, indicating that the sensitivity of Asian monsoon to global warming is stronger than that of other monsoons. For seasonal progress of monsoon rainfall, CMIP5 models project that the monsoon retreat dates will delay, while the onset dates will either advance or show no change, resulting in lengthening of the monsoon season. It is found that the increase of the global monsoon precipitation can be attributed to the increases of moisture convergence due to increased water vapor in the air column and surface evaporation, offset to a certain extent by the weakening of the monsoon circulation (Figure 1).Figure 1: Time series of anomalies during summer season (%; 20 years running mean) relative to the base period average (1986-2005) over the land global monsoon domain for (a) precipitation (mm day-1), (b) evaporation (mm day-1), (c) water vapor flux convergence in the lower (below 500hPa) troposphere (mm day-1), and (d) wind convergence in the lower troposphere (10-3 kg m-2 s-1), based on 23 CMIP5 model monthly outputs. Historical (grey

  6. Workshop on Monsoon Climate Systems: Toward Better Prediction of the Monsoon

    SciTech Connect

    Sperber, K R; Yasunari, T

    2005-12-20

    The Earth's monsoon systems are the life-blood of more than two-thirds of the world's population through the rainfall they provide to the mainly agrarian societies they influence. More than 60 experts gathered to assess the current understanding of monsoon variability and to highlight outstanding problems simulating the monsoon.

  7. Interannual variability of South American monsoon circulation

    NASA Astrophysics Data System (ADS)

    Alonso Gan, Manoel; Rafaele Araújo Lima, Jeane

    2016-04-01

    The South America Monsoon System (SAMS) is responsible for influencing the atmospheric circulation and precipitation over most of tropical South America (SA) during the summer season. Studies for aiming to understand the temporal variability of this system have great value to the scientific community, because the processes that control the monsoon climate are not totally clear. Thus, the main objective of this research is to investigate the possible large-scale climatic factors and the remote interaction mechanisms, which may be associated with summer season interannual variability focusing on identifying the main differences between dry and wet extremes rainy season in the South-eastern Amazon Basin (SAB), Central-West (WC) and Southeast (SE) of Brazil, which are areas influenced by the summer monsoon regime. For such analyzes, Pearson correlations, quantile method and composite analysis were used during the period from 1979 to 2014. The correlation between precipitation anomaly in SAB and the sea surface temperature anomaly (SSTA) and wind at 850hPa and 300hPa indicate El Niño-Southern Oscillation (ENSO) influence. Precipitation anomalies in WC did not show significant correlation with SSTA. However, a pattern similar to ENSO Modoki type was observed in the composite analysis. At 850 hPa, the presence of an anomalous cyclonic (anticyclonic) circulation was observed over the central region of SA during wet (dry) summers seasons. Over SE region of Brazil, a dipole SSTA pattern over the South Atlantic was identified, as well the presence of anomalous circulations with an equivalent barotropic structure over these SSTA areas. This pattern is more evident in case of dry summer on the SE. At 300 hPa, the wave train between 30°S-60°S was observed presenting a feature curvature from 120°W reaching SA, similar to the Pacific-South American pattern (PSA). Analysis of the summer interannual variability indicated the manifestation of wet summers more frequently than dry

  8. Multidisciplinary tailoring of hot composite structures

    NASA Technical Reports Server (NTRS)

    Singhal, Surendra N.; Chamis, Christos C.

    1993-01-01

    A computational simulation procedure is described for multidisciplinary analysis and tailoring of layered multi-material hot composite engine structural components subjected to simultaneous multiple discipline-specific thermal, structural, vibration, and acoustic loads. The effect of aggressive environments is also simulated. The simulation is based on a three-dimensional finite element analysis technique in conjunction with structural mechanics codes, thermal/acoustic analysis methods, and tailoring procedures. The integrated multidisciplinary simulation procedure is general-purpose including the coupled effects of nonlinearities in structure geometry, material, loading, and environmental complexities. The composite material behavior is assessed at all composite scales, i.e., laminate/ply/constituents (fiber/matrix), via a nonlinear material characterization hygro-thermo-mechanical model. Sample tailoring cases exhibiting nonlinear material/loading/environmental behavior of aircraft engine fan blades, are presented. The various multidisciplinary loads lead to different tailored designs, even those competing with each other, as in the case of minimum material cost versus minimum structure weight and in the case of minimum vibration frequency versus minimum acoustic noise.

  9. Multidisciplinary tailoring of hot composite structures

    NASA Technical Reports Server (NTRS)

    Singhal, Surendra N.; Chamis, Christos C.

    1992-01-01

    A computational simulation procedure is described for multidisciplinary analysis and tailoring of multilayered multimaterial hot composite engine structural components subjected to simultaneous multiple discipline-specific thermal, structural, vibration, and acoustic loadings including the effect of aggressive environments. The simulation is based on a 3D finite element analysis technique in conjunction with structural mechanics codes, thermal/acoustic analysis methods, and tailoring procedures. The integrated multidisciplinary simulation procedure is general-purpose including the coupled effects of nonlinearities in structure geometry, material, loading, and environmental complexities. The composite material behavior is assessed at all composite scales, i.e., the laminate/ply/constituents (fiber/matrix), via a nonlinear material characterization hygro-thermomechanical model. Sample tailoring cases exhibiting nonlinear material/loading/environmental behavior of aircraft engine fan blades, are presented. The various multidisciplinary loadings lead to different tailored designs, even those opposite of each other, as in the case of minimum material cost versus minimum structure weight and in the case of minimum vibration frequency versus minimum acoustic noise.

  10. Toward continuous quantification of lava extrusion rate: Results from the multidisciplinary analysis of the 2 January 2010 eruption of Piton de la Fournaise volcano, La Réunion.

    NASA Astrophysics Data System (ADS)

    Hibert, Clement; Mangeney, Anne; Polacci, Margherita; Di Muro, Andrea; Vergniolle, Sylvie; Ferrazzini, Valérie; Peltier, Aline; Taisne, Benoit; Burton, Mike; Dewez, Thomas; Grandjean, Gilles; Dupont, Aurélien; Staudacher, Thomas; Brenguier, Florent; Kowalski, Philippe; Boissier, Patrice; Catherine, Philippe; Lauret, Frédéric

    2016-04-01

    The dynamics of the 2-12 January 2010 effusive eruption at Piton de la Fournaise volcano were examined through seismic and infrasound records, time-lapse photography, SO2 flux measurements, deformation data, and direct observations. Digital elevation models were constructed for four periods of the eruption, thus providing an assessment of the temporal evolution of the morphology, the volume and the extrusion rate of the lava flow. These data were compared to the continuous recording of the seismic and infrasonic waves, and a linear relationship was found between the seismic energy of the tremor and the lava extrusion rate. This relationship is supported by data from three other summit eruptions of Piton de la Fournaise and gives total volume and average lava extrusion rate in good agreement with previous studies. We can therefore provide an estimate of the lava extrusion rate for the January 2010 eruption with a very high temporal resolution. We found an average lava extrusion rate of 2.4 m3.s‑1 with a peak of 106.6 m3.s‑1 during the initial lava fountaining phase. We use the inferred average lava extrusion rate during the lava fountaining phase (30.23 m3.s‑1) to estimate the value of the initial overpressure in the magma reservoir, which we found to range from 3.7×106 Pa to 5.9×106 Pa. Finally, based on the estimated initial overpressure, the volume of magma expelled during the lava fountaining phase and geodetic data, we inferred the volume of the magma reservoir using a simple Mogi model, between 0.25 km3 and 0.54 km3, which is in good agreement with previous studies. The multidisciplinary analysis presented in our study sheds light on crucial qualitative and quantitative relations between eruption dynamics, seismic and infrasonic signals, and especially on the direct link between the lava extrusion rate and the seismic energy of the volcanic tremor. If this relationship is confirmed for other eruptions, generalization of its use will lead to a better

  11. Spatiotemporal patterns and trends of Indian monsoonal rainfall extremes

    NASA Astrophysics Data System (ADS)

    Malik, Nishant; Bookhagen, Bodo; Mucha, Peter J.

    2016-02-01

    In this study, we provide a comprehensive analysis of trends in the extremes during the Indian summer monsoon (ISM) months (June to September) at different temporal and spatial scales. Our goal is to identify and quantify spatiotemporal patterns and trends that have emerged during the recent decades and may be associated with changing climatic conditions. Our analysis primarily relies on quantile regression that avoids making any subjective choices on spatial, temporal, or intensity pattern of extreme rainfall events. Our analysis divides the Indian monsoon region into climatic compartments that show different and partly opposing trends. These include strong trends toward intensified droughts in Northwest India, parts of Peninsular India, and Myanmar; in contrast, parts of Pakistan, Northwest Himalaya, and Central India show increased extreme daily rain intensity leading to higher flood vulnerability. Our analysis helps explain previously contradicting results of trends in average ISM rainfall.

  12. Monsoon-extratropical circulation interactions in Himalayan extreme rainfall

    NASA Astrophysics Data System (ADS)

    Vellore, Ramesh K.; Kaplan, Michael L.; Krishnan, R.; Lewis, John M.; Sabade, Sudhir; Deshpande, Nayana; Singh, Bhupendra B.; Madhura, R. K.; Rama Rao, M. V. S.

    2015-08-01

    Extreme precipitation and flood episodes in the Himalayas are oftentimes traced to synoptic situations involving connections between equatorward advancing upper level extratropical circulations and moisture-laden tropical monsoon circulation. While previous studies have documented precipitation characteristics in the Himalayan region during severe storm cases, a comprehensive understanding of circulation dynamics of extreme precipitation mechanisms is still warranted. In this study, a detailed analysis is performed using rainfall observations and reanalysis circulation products to understand the evolution of monsoon-extratropical circulation features and their interactions based on 34 extreme precipitation events which occurred in the Western Himalayas (WEH) during the period 1979-2013. Our results provide evidence for a common large-scale circulation pattern connecting the extratropics and the South Asian monsoon region, which is favorable for extreme precipitation occurrences in the WEH region. This background upper level large-scale circulation pattern consists of a deep southward penetrating midlatitude westerly trough, a blocking high over western Eurasia and an intensifying Tibetan anticyclone. It is further seen from our analysis that the key elements of monsoon-midlatitude interactions, responsible for extreme precipitation events over the WEH region, are: (1) midlatitude Rossby wave breaking, (2) west-northwest propagation of monsoon low-pressure system from the Bay of Bengal across the Indian subcontinent, (3) eddy shedding of the Tibetan anticyclone, (4) ageostrophic motions and transverse circulation across the Himalayas, and (5) strong moist convection over the Himalayan foothills. Furthermore, high-resolution numerical simulations indicate that diabatic heating and mesoscale ageostrophic effects can additionally amplify the convective motions and precipitation in the WEH region.

  13. Monsoon-extratropical circulation interactions in Himalayan extreme rainfall

    NASA Astrophysics Data System (ADS)

    Vellore, Ramesh K.; Kaplan, Michael L.; Krishnan, R.; Lewis, John M.; Sabade, Sudhir; Deshpande, Nayana; Singh, Bhupendra B.; Madhura, R. K.; Rama Rao, M. V. S.

    2016-06-01

    Extreme precipitation and flood episodes in the Himalayas are oftentimes traced to synoptic situations involving connections between equatorward advancing upper level extratropical circulations and moisture-laden tropical monsoon circulation. While previous studies have documented precipitation characteristics in the Himalayan region during severe storm cases, a comprehensive understanding of circulation dynamics of extreme precipitation mechanisms is still warranted. In this study, a detailed analysis is performed using rainfall observations and reanalysis circulation products to understand the evolution of monsoon-extratropical circulation features and their interactions based on 34 extreme precipitation events which occurred in the Western Himalayas (WEH) during the period 1979-2013. Our results provide evidence for a common large-scale circulation pattern connecting the extratropics and the South Asian monsoon region, which is favorable for extreme precipitation occurrences in the WEH region. This background upper level large-scale circulation pattern consists of a deep southward penetrating midlatitude westerly trough, a blocking high over western Eurasia and an intensifying Tibetan anticyclone. It is further seen from our analysis that the key elements of monsoon-midlatitude interactions, responsible for extreme precipitation events over the WEH region, are: (1) midlatitude Rossby wave breaking, (2) west-northwest propagation of monsoon low-pressure system from the Bay of Bengal across the Indian subcontinent, (3) eddy shedding of the Tibetan anticyclone, (4) ageostrophic motions and transverse circulation across the Himalayas, and (5) strong moist convection over the Himalayan foothills. Furthermore, high-resolution numerical simulations indicate that diabatic heating and mesoscale ageostrophic effects can additionally amplify the convective motions and precipitation in the WEH region.

  14. Non-local Impact of South and East Asian Aerosols on Monsoon Onset and Withdrawal

    NASA Astrophysics Data System (ADS)

    Bollasina, M. A.; Bartlett, R. E.; Booth, B.; Dunstone, N. J.; Marenco, F.

    2015-12-01

    The powerful Asian monsoon is of vital importance to the billions of people who are reliant on its rainfall, especially considering that society within its domain is largely agrarian. This monsoon system comprises smaller regional components, including the Indian monsoon and East Asian monsoon. These components are linked to one another through large scale circulation. The impacts of rapidly increasing anthropogenic aerosols over Asia on the monsoon have been widely studied. However, most studies consider only regional impacts, and not the subsequent effects on other geographical components of the system. We use observational and modelling methods to investigate the links between the regional components of the Asian monsoon and how they are affected by aerosols. Satellite observations of aerosol optical depth are used in conjunction with precipitation and atmospheric reanalysis data to investigate the problem at interannual timescales. Modelling experiments using HadGEM2-ES and GFDL CM3 are used to look at longer timescales and the potential influence of long term feedbacks. The HadGEM2 experiments use three time-evolving future anthropogenic aerosol emissions scenarios with the same time-evolving greenhouse gases. The GFDL CM3 experiments are forced by historical regional anthropogenic aerosol emissions. Using these methods, we look at the separate impact that South and East Asian aerosols have on monsoon onset and withdrawal. We focus on impacts in regions non-local to the aerosol source. We will also present proposed mechanisms for the apparent effects based on analysis of large scale circulation and atmospheric heating.

  15. Global monsoon: Dominant mode of annual variation in the tropics

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Ding, Qinghua

    2008-03-01

    This paper discusses the concept of global monsoon. We demonstrate that the primary climatological features of the tropical precipitation and low-level circulation can be represented by a three-parameter metrics: the annual mean and two major modes of annual variation, namely, a solstitial mode and an equinoctial asymmetric mode. Together, the two major modes of annual cycle account for 84% of the annual variance and they represent the global monsoon. The global monsoon precipitation domain can be delineated by a simple monsoon precipitation index (MPI), which is the local annual range of precipitation (MJJAS minus NDJFM in the Northern Hemisphere and NDJFM minus MJJAS in the Southern Hemisphere) normalized by the annual mean precipitation. The monsoon domain can be defined by annual range exceeding 300 mm and the MPI exceeding 50%. The three-parameter precipitation climatology metrics and global monsoon domain proposed in the present paper provides a valuable objective tool for gauging the climate models' performance on simulation and prediction of the mean climate and annual cycle. The metrics are used to evaluate the precipitation climatology in three global reanalysis products (ERA40, NCEP2, and JRA25) in terms of their pattern correlation coefficients and root mean square errors with reference to observations. The ensemble mean of the three analysis datasets is considerably superior to any of the individual reanalysis data in representing annual mean, annual cycle, and the global monsoon domain. A major common deficiency is found over the Southeast Asia-Philippine Sea and southeast North America-Caribbean Sea where the east-west land-ocean thermal contrast and meridional hemispheric thermal contrast coexist. It is speculated that the weakness is caused by models' unrealistic representation of Subtropical High and under-represented tropical storm activity, as well as by neglecting atmosphere-ocean interaction in the reanalysis. It is recommended that ensemble

  16. Monsoon rainfall interannual variability over China and its association with the Euasian circulation

    SciTech Connect

    Samel, A.N.; Wang, Wei-Chyung

    1997-11-01

    This study has two goals. The first is to determine annual observed initial and final dates of east Asian summer monsoon rainfall. To accomplish this, a semi-objective analysis is developed and applied to daily rainfall station data throughout China. The resulting values are used to calculate monsoon duration and total rainfall. The second goal is to identify relationships between these rainfall characteristics and circulation features in the Eurasian sea level pressure. The analysis of the duration of monsoon rainfall events produced results that are consistent with those found in previous studies. Total monsoon rainfall over south China, the Yangtze River valley, and north China was then correlated with the Eurasian sea level pressure and 500 millibar height fields. The results indicate that summer rainfall interannual variability over each region is governed by the interaction of several circulation features. These findings are also consistent with those of other studies. 18 refs., 5 figs.

  17. Volcanoes magnify Metro Manila's southwest monsoon rains and lethal floods

    NASA Astrophysics Data System (ADS)

    Lagmay, Alfredo Mahar; Bagtasa, Gerry; Crisologo, Irene; Racoma, Bernard Alan; David, Carlos Primo

    Many volcanoes worldwide are located near populated cities that experience monsoon seasons, characterised by shifting winds each year. Because of the severity of flood impact to large populations, it is worthy of investigation in the Philippines and elsewhere to better understand the phenomenon for possible hazard mitigating solutions, if any. During the monsoon season, the change in flow direction of winds brings moist warm air to cross the mountains and volcanoes in western Philippines and cause lift into the atmosphere, which normally leads to heavy rains and floods. Heavy southwest monsoon rains from 18-21 August 2013 flooded Metro Manila (population of 12 million) and its suburbs paralyzing the nation’s capital for an entire week. Called the 2013 Habagat event, it was a repeat of the 2012 Habagat or extreme southwest monsoon weather from 6-9 August, which delivered record rains in the mega city. In both the 2012 and 2013 Habagat events, cyclones, the usual suspects for the delivery of heavy rains, were passing northeast of the Philippine archipelago, respectively, and enhanced the southwest monsoon. Analysis of Doppler data, rainfall measurements, and Weather Research and Forecasting (WRF) model simulations show that two large stratovolcanoes, Natib and Mariveles, across from Manila Bay and approximately 70 km west of Metro Manila, played a substantial role in delivering extreme rains and consequent floods to Metro Manila. The study highlights how volcanoes, with their shape and height create an orographic effect and dispersive tail of rain clouds which constitutes a significant flood hazard to large communities like Metro Manila.

  18. An Overview of Three Approaches to Multidisciplinary Aeropropulsion Simulations

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles

    1997-01-01

    The broad scope of aeropropulsion multidisciplinary applications necessitates that a collection of approaches, with distinct capabilities, be developed. Three general approaches to multidisciplinary simulations have been identified. The three approaches; loosely coupled, coupled process, and multiphysics, provide a comprehensive collection of capabilities for multidisciplinary aeropropulsion analysis. At the data access level, or loosely coupled approach of coupling, existing disciplinary simulations are run, data is generated, and made available and used for subsequent analysis. The data must be in the correct format for implementation by the subsequent analysis but the subsequent code need not directly communicate with the previous code. At the process level, or coupled process approach of coupling, individual disciplinary codes are used, similarly to the loosely coupled approach, however, in the coupled process approach the disciplinary codes need to run concurrently with each other. The system of equation coupled approach, or multiphysics approach, addresses those applications whose characteristics require that the disciplines be coupled at the fundamental equation level to accurately, or more efficiently, capture the multidisciplinary physics of the problem. No one of these approaches, by itself, addresses all of the community needs in this area. However, collectively the three approaches encompass all of the multidisciplinary applications which have been identified thus far. Multiple approaches to multidisciplinary simulations will be needed as long as the applications and their requirements remain as diverse as they currently are today.

  19. Sea surface height anomaly and upper ocean temperature over the Indian Ocean during contrasting monsoons

    NASA Astrophysics Data System (ADS)

    Gera, Anitha; Mitra, A. K.; Mahapatra, D. K.; Momin, I. M.; Rajagopal, E. N.; Basu, Swati

    2016-09-01

    Recent research emphasizes the importance of the oceanic feedback to monsoon rainfall over the Asian landmass. In this study, we investigate the differences in the sea surface height anomaly (SSHA) and upper ocean temperature over the tropical Indian Ocean during multiple strong and weak monsoons. Analysis of satellite derived SSHA, sea surface temperature (SST) and ocean reanalysis data reveals that patterns of SSHA, SST, ocean temperature, upper ocean heat content (UOHC) and propagations of Kelvin and Rossby waves differ during strong and weak monsoon years. During strong monsoons positive SSH, SST and UOHC anomalies develop over large parts of north Indian Ocean whereas during weak monsoons much of the north Indian Ocean is covered with negative anomalies. These patterns can be used as a standard tool for evaluating the performance of coupled and ocean models in simulating & forecasting strong and weak monsoons. The rainfall over central India is found to be significantly correlated with SSHA over the regions (Arabian Sea and West central Indian Ocean and Bay of Bengal) where SSHA is positively large during strong monsoons. The SST-SSHA correlation is also very strong over the same area. The study reveals that much convection takes place over these regions during strong monsoons. In contrast during weak monsoons, convection takes place over eastern equatorial region. These changes in SST are largely influenced by oceanic Kelvin and Rossby waves. The Rossby waves initiated in spring at the eastern boundary propagate sub-surface heat content in the ocean influencing SST in summer. The SST anomalies modulate the Hadley circulation and the moisture transport thereby contributing to rainfall over central India. Therefore oceanic Kelvin and Rossby waves influence the rainfall over central India.

  20. Dominating Controls for Wetter South Asian Summer Monsoon in the Twenty-First Century

    DOE PAGESBeta

    Mei, Rui; Ashfaq, Moetasim; Rastogi, Deeksha; Leung, L. Ruby; Dominguez, Francina

    2015-04-07

    This study analyzes a suite of global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) archives to understand the mechanisms behind a net increase in the South Asian summer monsoon precipitation in response to enhanced radiative forcing during the twenty-first century. An increase in radiative forcing fuels an increase in the atmospheric moisture content through warmer temperatures, which overwhelms the weakening of monsoon circulation and results in an increase of moisture convergence and therefore summer monsoon precipitation over South Asia. Moisture source analysis suggests that both regional (local recycling, the Arabian Sea, the Bay of Bengal)more » and remote (including the south Indian Ocean) sources contribute to the moisture supply for precipitation over South Asia during the summer season that is facilitated by the monsoon dynamics. For regional moisture sources, the effect of excessive atmospheric moisture is offset by weaker monsoon circulation and uncertainty in the response of the evapotranspiration over land, so anomalies in their contribution to the total moisture supply are either mixed or muted. In contrast, weakening of the monsoon dynamics has less influence on the moisture supply from remote sources that not only is a dominant moisture contributor in the historical period but is also the net driver of the positive summer monsoon precipitation response in the twenty-first century. Finally, the results also indicate that historic measures of the monsoon dynamics may not be well suited to predict the nonstationary moisture-driven South Asian summer monsoon precipitation response in the twenty-first century.« less

  1. Dominating Controls for Wetter South Asian Summer Monsoon in the Twenty-First Century

    SciTech Connect

    Mei, Rui; Ashfaq, Moetasim; Rastogi, Deeksha; Leung, Lai-Yung R.; Dominguez, Francina

    2015-04-01

    We analyze a suite of Global Climate Models from the 5th Phase of Coupled Models Intercomparison Project (CMIP5) archives to understand the mechanisms behind a net increase in the South Asian summer monsoon precipitation in response to enhanced radiative forcing during the 21st century despite a robust weakening of dynamics governing the monsoon circulation. Combining the future changes in the contributions from various sources, which contribute to the moisture supply over South Asia, with those in monsoon dynamics and atmospheric moisture content, we establish a pathway of understanding that partly explains these counteracting responses to increase in radiative forcing. Our analysis suggests that both regional (local recycling, Arabian Sea, Bay of Bengal) and remote (mainly Indian Ocean) sources contribute to the moisture supply for precipitation over South Asia during the summer season that is facilitated by the monsoon dynamics. Increase in radiative forcing fuels an increase in the atmospheric moisture content through warmer temperatures. For regional moisture sources, the effect of excessive atmospheric moisture is offset by weaker monsoon circulation and uncertainty in the response of the evapotranspiration over land, so anomalies in their contribution to the total moisture supply are either mixed or muted. In contrast, weakening of the monsoon dynamics has less influence on the moisture supply from remote sources that not only is a dominant moisture contributor in the historical period, but is also the net driver of the positive summer monsoon precipitation response in the 21st century. Our results also indicate that historic measures of the monsoon dynamics may not be well suited to predict the non-stationary moisture driven South Asian summer monsoon precipitation response in the 21st century.

  2. Dominating Controls for Wetter South Asian Summer Monsoon in the Twenty-First Century

    SciTech Connect

    Mei, Rui; Ashfaq, Moetasim; Rastogi, Deeksha; Leung, L. Ruby; Dominguez, Francina

    2015-04-07

    This study analyzes a suite of global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) archives to understand the mechanisms behind a net increase in the South Asian summer monsoon precipitation in response to enhanced radiative forcing during the twenty-first century. An increase in radiative forcing fuels an increase in the atmospheric moisture content through warmer temperatures, which overwhelms the weakening of monsoon circulation and results in an increase of moisture convergence and therefore summer monsoon precipitation over South Asia. Moisture source analysis suggests that both regional (local recycling, the Arabian Sea, the Bay of Bengal) and remote (including the south Indian Ocean) sources contribute to the moisture supply for precipitation over South Asia during the summer season that is facilitated by the monsoon dynamics. For regional moisture sources, the effect of excessive atmospheric moisture is offset by weaker monsoon circulation and uncertainty in the response of the evapotranspiration over land, so anomalies in their contribution to the total moisture supply are either mixed or muted. In contrast, weakening of the monsoon dynamics has less influence on the moisture supply from remote sources that not only is a dominant moisture contributor in the historical period but is also the net driver of the positive summer monsoon precipitation response in the twenty-first century. Finally, the results also indicate that historic measures of the monsoon dynamics may not be well suited to predict the nonstationary moisture-driven South Asian summer monsoon precipitation response in the twenty-first century.

  3. Life prediction: A case for multidisciplinary research

    SciTech Connect

    Wei, R.P.

    1997-12-01

    Concerns with aging infrastructure worldwide and with the life-cycle costs and management of engineered systems have placed increased emphasis on the development of methods for life prediction. To be effective as true predictors of future performance (i.e., to provide accurate estimates beyond the range employed in the development of supporting data), such methods must be built upon mechanistic models that capture the functional dependence on all of the key external and internal variables. The development of these methods argues strongly for multidisciplinary research that integrates mechanistic understanding with probability analysis. In this paper, a mechanistically based probability approach to life prediction (versus the more traditional statistically based parametric approach) and the processes for model development are outlined to provide a framework for discussion. The use of a coordinated, multidisciplinary approach to develop mechanistic understanding and to model material response is illustrated through examples on crack growth in a high-strength steel. The need for multidisciplinary research that broadens the perspective from testing to testing and materials is discussed.

  4. Multidisciplinary teamwork in US primary health care.

    PubMed

    Solheim, Karen; McElmurry, Beverly J; Kim, Mi Ja

    2007-08-01

    Primary health care (PHC) is a systems perspective for examining the provision of essential health care for all. A multidisciplinary collaborative approach to health care delivery is associated with effective delivery and care providers' enrichment. Yet data regarding multidisciplinary practice within PHC are limited. The purpose of this exploratory qualitative descriptive study was to better understand team-based PHC practice in the US. Aims included (a) describing nursing faculty involvement in PHC, (b) analyzing ways that multidisciplinary work was enacted, and (c) recommending strategies for multidisciplinary PHC practice. After institutional review board (IRB) protocol approval, data collection occurred by: (a) surveying faculty/staff in a Midwestern nursing college (N=94) about their PHC practice, and (b) interviewing a purposive sample of nursing faculty/staff identified with PHC (n=10) and their health professional collaborators (n=10). Survey results (28% return rate) were summarized, interview notes were transcribed, and a systematic process of content analysis applied. Study findings show team practice is valued because health issues are complex, requiring different types of expertise; and because teams foster comprehensive care and improved resource use. Mission, membership attributes, and leadership influence teamwork. Though PHC is not a common term, nurses and their collaborators readily associated their practice with a PHC ethos. PHC practice requires understanding community complexity and engaging with community, family, and individual viewpoints. Though supports exist for PHC in the US, participants identified discord between their view of population needs and the health care system. The following interpretations arise from this study: PHC does not explicitly frame health care activity in the US, though some practitioners are committed to its ethics; and, teamwork within PHC is associated with better health care and rewarding professional

  5. Space-Time Structure of Monsoon Interannual Variability.

    NASA Astrophysics Data System (ADS)

    Terray, Pascal

    1995-11-01

    The analysis of corrected ship reports [sea level pressure (SLP), sea surface temperature (SST), air temperature (AT)] and corrected land data (SLP, AT, rainfall) in the Indian sector reveals the existence of two low-frequency modes of monsoon variability during the 1900-1970 period. A definite biennial (B) mode exists on the SLP fields. This B oscillation is unambiguously linked with a southwest-northeast SLP anomaly gradient. During the summer monsoon, the B SLP pattern can be interpreted as an expansion/contraction of the monsoon activity since this mode is strongly coupled with rainfall variations over peninsular India. A strong low-frequency (LF) mode with period spanning 4-6 years is also seen on SLP fields over the Indian Ocean and subcontinent. The variance associated with this band is typically more important than the one observed for the B mode, and its spatial mark is also strikingly different since it is linked with a global pattern of variation. This mode has also a strong influence on the Indian summer rainfall fluctuations, particularly on the Ghats and in the Indo-Gangetic plains.The amplitude of these oscillations varies widely during the 1900-1970 period. The LF mode is well defined during 1900-1923 and 1947-1970. There is a tendency for the energy associated with the B mode to decrease on the land while it increases over the Indian Ocean during the whole 1900-1970 interval.Although these two timescales exist also on SST fields, cross-spectral analysis shows that ocean-atmosphere interactions are much stronger at the B timescale. This result stresses the B nature of the monsoon system.The existence of these interannual signals in the Indian areas where the annual cycle is so strong raises difficult problems: How can climatic anomalies persist for several years in spite of strong seasonality? Or, still more intriguing, how can be explained the persistence of climatic anomalies during one year and the appearance of opposite sign climatic anomalies

  6. Multidisciplinary design optimization using multiobjective formulation techniques

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Pagaldipti, Narayanan S.

    1995-01-01

    This report addresses the development of a multidisciplinary optimization procedure using an efficient semi-analytical sensitivity analysis technique and multilevel decomposition for the design of aerospace vehicles. A semi-analytical sensitivity analysis procedure is developed for calculating computational grid sensitivities and aerodynamic design sensitivities. Accuracy and efficiency of the sensitivity analysis procedure is established through comparison of the results with those obtained using a finite difference technique. The developed sensitivity analysis technique are then used within a multidisciplinary optimization procedure for designing aerospace vehicles. The optimization problem, with the integration of aerodynamics and structures, is decomposed into two levels. Optimization is performed for improved aerodynamic performance at the first level and improved structural performance at the second level. Aerodynamic analysis is performed by solving the three-dimensional parabolized Navier Stokes equations. A nonlinear programming technique and an approximate analysis procedure are used for optimization. The proceduredeveloped is applied to design the wing of a high speed aircraft. Results obtained show significant improvements in the aircraft aerodynamic and structural performance when compared to a reference or baseline configuration. The use of the semi-analytical sensitivity technique provides significant computational savings.

  7. Tipping elements of the Indian monsoon: Prediction of onset and withdrawal

    NASA Astrophysics Data System (ADS)

    Stolbova, Veronika; Surovyatkina, Elena; Bookhagen, Bodo; Kurths, Jürgen

    2016-04-01

    Forecasting the onset and withdrawal of the Indian summer monsoon is crucial for the life and prosperity of more than one billion inhabitants of the Indian subcontinent. However, accurate prediction of monsoon timing remains a challenge, despite numerous efforts. Here we present a method for prediction of monsoon timing based on a critical transition precursor. We identify geographic regions—tipping elements of the monsoon—and use them as observation locations for predicting onset and withdrawal dates. Unlike most predictability methods, our approach does not rely on precipitation analysis but on air temperature and relative humidity, which are well represented both in models and observations. The proposed method allows to predict onset 2 weeks earlier and withdrawal dates 1.5 months earlier than existing methods. In addition, it enables to correctly forecast monsoon duration for some anomalous years, often associated with El Niño-Southern Oscillation.

  8. Formation and maintenance of nocturnal low-level stratus over the southern West African monsoon region during AMMA 2006

    NASA Astrophysics Data System (ADS)

    Schuster, Robert; Fink, Andreas; Knippertz, Peter

    2013-04-01

    The southern parts of West Africa, from the coast to about 9°N, are frequently covered by an extensive deck of shallow, low (200 - 400 m above ground) stratus or stratocumulus clouds during the summer monsoon season as shown by recent studies based on ground observations and new satellite products. These clouds usually form at night in association with a nocturnal low-level jet (NLLJ) and can persist into the early afternoon hours until they are dissipated or replaced by fair-weather cumuli. Recent work suggests that the stratus deck and its effect on the surface radiation balance are unsatisfactorily represented in standard satellite retrievals and simulations by state-of-the-art climate models. Here we use high-resolution regional simulations with the Weather Research and Forecast (WRF) model and observations from the African Monsoon Multidisciplinary Analysis (AMMA) 2006 campaign to investigate (a) the spatiotemporal distribution, (b) the influence on the radiation balance, and (c) the detailed formation and maintenance mechanisms of the stratiform clouds. The model configuration used for this study has been determined following an extensive sensitivity study. The main conclusions are: (a) At least some configurations of WRF satisfactorily reproduce the diurnal cycle of the low cloud evolution. (b) The simulated stratus deck forms after sunset along the coast, spreads inland in the course of the night, and dissipates in the early afternoon. (c) The average surface net radiation balance in stratus-dominated regions is 35 W m-2 lower than in those with less clouds. (d) The cloud formation is related to a subtle balance between "stratogenic" upward (downward) fluxes of latent (sensible) heat caused by shear-driven turbulence below the NLLJ, cold advection from the ocean, forced lifting at the windward side of orography, and radiative cooling on one hand, and "stratolytic" dry advection and latent heating on the other hand. Future work should focus on the influence

  9. TIGERZ I: Aerosols, Monsoon and Synergism

    NASA Astrophysics Data System (ADS)

    Holben, B. N.; Tripathi, S. N.; Schafer, J. S.; Giles, D. M.; Eck, T. F.; Sinyuk, A.; Smirnov, A.; Krishnmoorthy, K.; Sorokin, M. G.; Newcomb, W. W.; Tran, A. K.; Sikka, D. R.; Goloub, P.; O'Neill, N. T.; Abboud, I.; Randles, C.; Niranjan, K.; Dumka, U. C.; Tiwari, S.; Devara, P. C.; Kumar, S.; Remer, L. A.; Kleidman, R.; Martins, J. V.; Kahn, R.

    2008-12-01

    The Indo-Gangetic Plain of northern India encompasses a vast complex of urban and rural landscapes, cultures that serve as anthropogenic sources of fine mode aerosols mixed with coarse mode particles transported from SW Asia. The summer monsoon and fall Himalayan snowmelt provide the agricultural productivity to sustain an extremely high population density whose affluence is increasing. Variations in the annual monsoon precipitation of 10% define drought, normal and a wet season; the net effects on the ecosystems and quality of life can be dramatic. Clearly investigation of anthropogenic and natural aerosol impacts on the monsoon, either through the onset, monsoon breaks or end points are a great concern to understand and ultimately mitigate. Many national and international field campaigns are being planned and conducted to study various aspects of the Asian monsoon and some coordinated under the Asian Monsoon Years (AMY) umbrella. A small program called TIGERZ conducted during the pre-monsoon of 2008 in North Central India can serve as a model for contributing significant resources to existing field programs while meeting immediate project goals. This poster will discuss preliminary results of the TIGERZ effort including ground-based measurements of aerosol properties in the I-G from AERONET and synergism with various Indian programs, satellite observations and aerosol modeling efforts.

  10. An assessment of Indian monsoon seasonal forecasts and mechanisms underlying monsoon interannual variability in the Met Office GloSea5-GC2 system

    NASA Astrophysics Data System (ADS)

    Johnson, Stephanie J.; Turner, Andrew; Woolnough, Steven; Martin, Gill; MacLachlan, Craig

    2016-06-01

    We assess Indian summer monsoon seasonal forecasts in GloSea5-GC2, the Met Office fully coupled subseasonal to seasonal ensemble forecasting system. Using several metrics, GloSea5-GC2 shows similar skill to other state-of-the-art seasonal forecast systems. The prediction skill of the large-scale South Asian monsoon circulation is higher than that of Indian monsoon rainfall. Using multiple linear regression analysis we evaluate relationships between Indian monsoon rainfall and five possible drivers of monsoon interannual variability. Over the time period studied (1992-2011), the El Niño-Southern Oscillation (ENSO) and the Indian Ocean dipole (IOD) are the most important of these drivers in both observations and GloSea5-GC2. Our analysis indicates that ENSO and its teleconnection with Indian rainfall are well represented in GloSea5-GC2. However, the relationship between the IOD and Indian rainfall anomalies is too weak in GloSea5-GC2, which may be limiting the prediction skill of the local monsoon circulation and Indian rainfall. We show that this weak relationship likely results from a coupled mean state bias that limits the impact of anomalous wind forcing on SST variability, resulting in erroneous IOD SST anomalies. Known difficulties in representing convective precipitation over India may also play a role. Since Indian rainfall responds weakly to the IOD, it responds more consistently to ENSO than in observations. Our assessment identifies specific coupled biases that are likely limiting GloSea5-GC2 Indian summer monsoon seasonal prediction skill, providing targets for model improvement.

  11. Identification of reproduction-related genes and SSR-markers through expressed sequence tags analysis of a monsoon breeding carp rohu, Labeo rohita (Hamilton).

    PubMed

    Sahu, Dinesh K; Panda, Soumya P; Panda, Sujata; Das, Paramananda; Meher, Prem K; Hazra, Rupenangshu K; Peatman, Eric; Liu, Zhanjiang J; Eknath, Ambekar E; Nandi, Samiran

    2013-07-15

    Labeo rohita (Ham.) also called rohu is the most important freshwater aquaculture species on the Indian sub continent. Monsoon dependent breeding restricts its seed production beyond season indicating a strong genetic control about which very limited information is available. Additionally, few genomic resources are publicly available for this species. Here we sought to identify reproduction-relevant genes from normalized cDNA libraries of the brain-pituitary-gonad-liver (BPGL-axis) tissues of adult L. rohita collected during post preparatory phase. 6161 random clones sequenced (Sanger-based) from these libraries produced 4642 (75.34%) high-quality sequences. They were assembled into 3631 (78.22%) unique sequences composed of 709 contigs and 2922 singletons. A total of 182 unique sequences were found to be associated with reproduction-related genes, mainly under the GO term categories of reproduction, neuro-peptide hormone activity, hormone and receptor binding, receptor activity, signal transduction, embryonic development, cell-cell signaling, cell death and anti-apoptosis process. Several important reproduction-related genes reported here for the first time in L. rohita are zona pellucida sperm-binding protein 3, aquaporin-12, spermine oxidase, sperm associated antigen 7, testis expressed 261, progesterone receptor membrane component, Neuropeptide Y and Pro-opiomelanocortin. Quantitative RT-PCR-based analyses of 8 known and 8 unknown transcripts during preparatory and post-spawning phase showed increased expression level of most of the transcripts during preparatory phase (except Neuropeptide Y) in comparison to post-spawning phase indicating possible roles in initiation of gonad maturation. Expression of unknown transcripts was also found in prolific breeder common carp and tilapia, but levels of expression were much higher in seasonal breeder rohu. 3631 unique sequences contained 236 (6.49%) putative microsatellites with the AG (28.16%) repeat as the most

  12. Disturbances in the Arizona Monsoon

    NASA Technical Reports Server (NTRS)

    Gall, Robert; Herman, Benjamin; Reagan, John

    1989-01-01

    Numerical modeling simulations of tropical squall lines were begun to determine the role of large scale terrain features over Arizona and Mexico in their initiation and propagation. Installation was completed for a short-base, high resolution lightning location and detection network in and around Tucson. Data from a Doppler wind profiler is being analyzed to determine the role of large scale heating over the inter-mountain plateau region in governing local diurnal wind variations and possible relationships to the monsoon flow. The portable solar photometer for determining high temporal resolution values of the local precipitable water vapor was completed and calibrated. The assembly is nearly completed for a multi-channel microwave passive radiometer to determine local temperature and water vapor profiles.

  13. Giant Serpentine Aneurysms: Multidisciplinary Management

    PubMed Central

    Anshun, W.; Feng, L.; Daming, W.

    2000-01-01

    Summary Sixty-five cases of intracranial giant serpentine aneurysms (GSΛs), including 61 cases reported in the literature and four additional cases presented in this study were reviewed. The clinical presentation, possible causes, natural history, and especially management of GSAs are discussed with emphasis on the need for aggressive intervention and multidisciplinary management. PMID:20667180

  14. Fingerprinting the Impacts of Aerosols on Long-Term Trends of the Indian Summer Monsoon Regional Rainfall

    NASA Technical Reports Server (NTRS)

    Laul, K. M.; Kim, K. M.

    2010-01-01

    In this paper, we present corroborative observational evidences from satellites, in-situ observations, and re-analysis data showing possible impacts of absorbing aerosols (black carbon and dust) on subseasonal and regional summer monsoon rainfall over India. We find that increased absorbing aerosols in the Indo-Gangetic Plain in recent decades may have lead to long-term warming of the upper troposphere over northern India and the Tibetan Plateau, enhanced rainfall in northern India and the Himalayas foothill regions in the early part (may-June) of the monsoon season, followed by diminished rainfall over central and southern India in the latter part (July-August) of the monsoon season. These signals which are consistent with current theories of atmospheric heating and solar dimming by aerosol and induced cloudiness in modulating the Indian monsoon, would have been masked by conventional method of using al-India rainfall averaged over the entire monsoon season.

  15. A qualitative study on sea surface temperature over the tropical Indian Ocean and performance of Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Singh, Umesh Kumar; Singh, Gyan Prakash

    2012-08-01

    A careful analysis of the sea surface temperature (SST) over the tropical Indian Ocean using the available SST data sets (namely, Hadley Center Ice SST, tropical rainfall measuring mission microwave imager SST, and optimum interpolation SST) at different time scales has been presented in the present study. By simple visual inspection of the SST plots, it has been shown that the qualitative prediction of Indian summer monsoon condition (weak/normal) and northern limit of monsoon (NLM) can be possible a month in advance using SST. The present qualitative study may be useful for common man to know the behavior of summer monsoon well a month in advance. Therefore, the qualitative study may enable the common man to show the application of satellite data to bring out the information regarding the onset of summer monsoon and related performance of Indian summer monsoon well in advance.

  16. Numerical prediction of the monsoon depression of 5-7 July 1979. [Monsoon Experiment (MONEX)

    NASA Technical Reports Server (NTRS)

    Shukla, J.; Atlas, R.; Baker, W. E.

    1981-01-01

    A well defined monsoon depression was used for two assimilation and forecast experiments: (1) using conventional surface and upper air data, (2) using these data plus Monex data. The data sets were assimilated and used with a general circulation model to make numerical predictions. The model, the analysis and assimilation procedure, the differences in the analyses due to different data inputs, and the differences in the numerical predictions are described. The MONEX data have a positive impact, although the differences after 24 hr are not significant. The MONEX assimilation does not agree with manual analysis location of depression center. The 2.5 x 3 deg horizontal resolution of the prediction model is too coarse. The assimilation of geopotential height data derived from satellite soundings generated gravity waves with amplitudes similar to the meteorologically significant features investigated.

  17. Integrated Multidisciplinary Optimization Objects

    NASA Technical Reports Server (NTRS)

    Alston, Katherine

    2014-01-01

    OpenMDAO is an open-source MDAO framework. It is used to develop an integrated analysis and design environment for engineering challenges. This Phase II project integrated additional modules and design tools into OpenMDAO to perform discipline-specific analysis across multiple flight regimes at varying levels of fidelity. It also showcased a refined system architecture that allows the system to be less customized to a specific configuration (i.e., system and configuration separation). By delivering a capable and validated MDAO system along with a set of example applications to be used as a template for future users, this work greatly expands NASA's high-fidelity, physics-based MDAO capabilities and enables the design of revolutionary vehicles in a cost-effective manner. This proposed work complements M4 Engineering's expertise in developing modeling and simulation toolsets that solve relevant subsonic, supersonic, and hypersonic demonstration applications.

  18. On the paradigm of the Indian monsoon depression

    NASA Astrophysics Data System (ADS)

    Hunt, Kieran; Turner, Andrew; Inness, Pete; Parker, David; Levine, Richard

    2015-04-01

    Reanalysis data from the last 34 years and satellite-derived precipitation data from the last 14 have been used with a newly developed feature tracking algorithm to generate composite three-dimensional structures of monsoon depressions occurring within these respective periods; centralising and rotating each one such that the centre falls on the origin and the system travels towards the relative north. Overall, 104 depressions comprise the composite, considerably more than any previous detailed research on monsoon depressions and their structure. Maxima of many fields are found to exist southwest of the depression centre with respect to the direction of propagation, including rainfall, convergence, and vertical wind velocity. The importance of the Himalayas is also discussed, with evidence of anomalous anti-cyclonic vorticity production in the foothills, extending from the surface to the tropopause. Detailed analysis of the temperature fields indicate that most depressions are cold-core cyclones with a central anomaly of around -1.5K, but some have more disorganised, neutral cores and, rarely, tropical cyclone-like warm cores. Analysis is performed on El Niño-minus-La Niña and active-minus-normal composites, showing that La Niña depressions tend to be wetter and warmer. The temporal distribution of depressions and their durations are also considered, as well as the state of the monsoon trough region during these events.

  19. Multidisciplinary Techniques and Novel Aircraft Control Systems

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Rogers, James L.; Raney, David L.

    2000-01-01

    The Aircraft Morphing Program at NASA Langley Research Center explores opportunities to improve airframe designs with smart technologies. Two elements of this basic research program are multidisciplinary design optimization (MDO) and advanced flow control. This paper describes examples where MDO techniques such as sensitivity analysis, automatic differentiation, and genetic algorithms contribute to the design of novel control systems. In the test case, the design and use of distributed shapechange devices to provide low-rate maneuvering capability for a tailless aircraft is considered. The ability of MDO to add value to control system development is illustrated using results from several years of research funded by the Aircraft Morphing Program.

  20. Multidisciplinary Design Of Hot Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Singhal, Surendra N.

    1996-01-01

    Unified computer code developed to implement multidisciplinary approach to design and analysis of composite-material structures that must withstand high temperatures. Code modular: includes executive module communicating with and coordinating other modules performing calculations pertaining to traditionally separate disciplines like those of acoustics, structural vibrations, structural loads, and thermal effects. Essential feature, finite-element numerical simulation of relevant physical phenomena according to applicable disciplines. Same finite-element mesh used in thermal, vibrational, and structural analyses; minimizing data-preparation time and eliminating errors incurred in transforming temperatures from one finite-element mesh to another.

  1. Multidisciplinary Techniques and Novel Aircraft Control Systems

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Rogers, James L.; Raney, David L.

    2000-01-01

    The Aircraft Morphing Program at NASA Langley Research Center explores opportunities to improve airframe designs with smart technologies. Two elements of this basic research program are multidisciplinary design optimization (MDO) and advanced flow control. This paper describes examples where MDO techniques such as sensitivity analysis, automatic differentiation, and genetic algorithms contribute to the design of novel control systems. In the test case, the design and use of distributed shape-change devices to provide low-rate maneuvering capability for a tailless aircraft is considered. The ability of MDO to add value to control system development is illustrated using results from several years of research funded by the Aircraft Morphing Program.

  2. Water vapor budget of the Indian monsoon depression

    NASA Astrophysics Data System (ADS)

    Yoon, Jin-Ho; Chen, Tsing-Chang

    2005-10-01

    Estimations by previous studies show that a minor amount of the Indian monsoon rainfall is contributed by Indian monsoon depressions (IMDs). In contrast, other studies found that approximately half of the summer monsoon rainfall in the northern Indian subcontinent is generated by IMDs. IMDs occur an average of six times during the summer season and provide a crucial water source to the agricultural activity over this region. The large disparity in the estimation of the IMD contribution to the Indian rainfall by previous studies requires a more accurate water vapor budget analysis of the IMD with quality data. For this reason, a composite analysis of the IMD is performed using the ERA-40 reanalysis and four precipitation data sets (the Global Precipitation Climatology Project, the Tropical Rainfall Measuring Mission, the GEOS precipitation index at the Goddard Space Flight Center and surface station observations) for the period of 1979 2002. Important findings of this study are: (i) about 45 55% of the total Indian rainfall is produced by the IMD; (ii) the rainfall maximum in the west south-west sector of IMDs is largely maintained by convergence of atmospheric water vapor flux. The convergence of water vapor flux is largely coupled with the lower-tropospheric divergent circulation. Thus, the IMD water vapor budget is modulated by the 30 60 and 10 20 d monsoon modes through changes of water vapor convergence/divergence. The magnitude of this modulation on the IMD water vapor budget is close to a quarter of the summer-mean water vapor budget over the Bay of Bengal and north-eastern India.

  3. The East Asian subtropical summer monsoon: Recent progress

    NASA Astrophysics Data System (ADS)

    He, Jinhai; Liu, Boqi

    2016-04-01

    The East Asian subtropical summer monsoon (EASSM) is one component of the East Asian summer monsoon system, and its evolution determines the weather and climate over East China. In the present paper, we firstly demonstrate the formation and advancement of the EASSM rainbelt and its associated circulation and precipitation patterns through reviewing recent studies and our own analysis based on JRA-55 (Japanese 55-yr Reanalysis) data and CMAP (CPC Merged Analysis of Precipitation), GPCP (Global Precipitation Climatology Project), and TRMM (Tropical Rainfall Measuring Mission) precipitation data. The results show that the rainy season of the EASSM starts over the region to the south of the Yangtze River in early April, with the establishment of strong southerly wind in situ. The EASSM rainfall, which is composed of dominant convective and minor stratiform precipitation, is always accompanied by a frontal system and separated from the tropical summer monsoon system. It moves northward following the onset of the South China Sea summer monsoon. Moreover, the role of the land-sea thermal contrast in the formation and maintenance of the EASSM is illustrated, including in particular the effect of the seasonal transition of the zonal land-sea thermal contrast and the influences from the Tibetan Plateau and midlatitudes. In addition, we reveal a possible reason for the subtropical climate difference between East Asia and East America. Finally, the multi-scale variability of the EASSM and its influential factors are summarized to uncover possible reasons for the intraseasonal, interannual, and interdecadal variability of the EASSM and their importance in climate prediction.

  4. Aspects of Transport of Convected Regional Pollution from the Asian Monsoon Anticyclone based on CARIBIC observations

    NASA Astrophysics Data System (ADS)

    Brenninkmeijer, C. A.; Rauthe-Schöch, A.; Baker, A. K.; Schuck, T. J.; Zahn, A.; Hermann, M.; Stratmann, G.; Ziereis, H.; van Velthoven, P.

    2013-12-01

    The South Asian summer monsoon is one of the most important features of the boreal summer atmosphere in the tropics, and is characterized by a persistent large-scale anticyclonic structure in the upper troposphere centered over the Indian subcontinent. Strong convection associated with the monsoon causes upper tropospheric mixing ratios to be strongly linked to surface emissions from this densely populated region, and these polluted air masses can become trapped and accumulate inside the anticyclone, where they can be chemically isolated for several days. Outflow occurs predominantly westward towards Northern Africa and the Middle East, where a summertime ozone (O3) maximum due to ozone formation in monsoon outflow has been reported, and to the Mediterranean. While most observations in the monsoon anticyclone are from satellites, the CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container) observatory probed the upper troposphere (9-13 km) in the South Asian monsoon region with in situ measurements between June and September 2008. Elevated levels of a range of atmospheric pollutants were measured within the monsoon anticyclone, among them CO, NOy, aerosols and several volatile organic compounds (VOCs), and trajectory calculations indicated that these air masses originated mainly from South Asia. These measurements yield a detailed description of the initial chemical composition of air in different parts of the monsoon anticyclone, particularly of ozone precursors. Using this information and the Lagrangian Particle Dispersion Model FLEXPART we investigate the characteristics of monsoon outflow and the chemical evolution of air masses during transport. Based on analysis of air mass forward trajectories several receptor regions were identified. In addition to the dominant transport to the West, we found evidence for transport to the Pacific and North America, particularly during June and September, and also of cross

  5. Hydrologic Processes Associated with the First Transition of the Asian Summer Monsoon: A TRMM Pilot Study

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    1998-01-01

    We present results of a pilot study of the evolution of large scale hydrologic processes associated with the first transition of the Asian summer monsoon in conjunction with the launching of the South China Sea Monsoon Experiment (SCSMEX) in May, 1998. Using a combination of satellite-estimated rainfall, moisture, surface wind and sea surface temperature, we present some interesting and hitherto unknown features in large scale atmospheric and oceanic hydrologic processes associated with the fluctuation of the SCS monsoon. Results show that, climatologically, the SCS monsoon occurs during mid-May when major convection zone shifts from the eastern Indian Ocean/southern Indochina to the SCS. Simultaneously with the SCS monsoon onset is the development of a moist tongue and frontal rainband emanating from northern SCS, across southern China and the East China Sea to southern Japan as well as the enhancement of equatorial convection in the western Pacific ITCZ. Analysis of the satellite-derived moisture and rainfall show that the onset of the SCS monsoon during 1997 was preceded by the development of eastward propagating supercloud clusters over the Indian Ocean. The satellite data also reveal a strong onset vortex over the SCS and large scale cooling and warming patterns over the Indian Ocean and western Pacific. These features signal a major shift of the large-scale hydrologic cycle in the ocean-atmosphere system, which underpins the SCS monsoon onset. The paper concludes with a brief discussion of the observational platform of SCSMEX and a call for the utility of satellite data, field observations and models for comprehensive studies of the Asian monsoon.

  6. On the decreasing trend of the number of monsoon depressions in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Vishnu, S.; Francis, P. A.; Shenoi, S. S. C.; Ramakrishna, S. S. V. S.

    2016-01-01

    This study unravels the physical link between the weakening of the monsoon circulation and the decreasing trend in the frequency of monsoon depressions over the Bay of Bengal. Based on the analysis of the terms of Genesis Potential Index, an empirical index to quantify the relative contribution of large scale environmental variables responsible for the modulation of storms, it is shown here that the reduction in the mid-tropospheric relative humidity is the most important reason for the decrease in the number of monsoon depressions. The net reduction of relative humidity over the Bay of Bengal is primarily due to the decrease in the moisture flux convergence, which is attributed to the weakening of the low level jet, a characteristic feature of monsoon circulation. Further, the anomalous moisture convergence over the western equatorial Indian Ocean associated with the rapid warming of the sea surface, reduces the moisture advection into the Bay of Bengal and hence adversely affect the genesis/intensification of monsoon depressions. Hence, the reduction in the number of monsoon depression over the Bay of Bengal could be one of the manifestations of the differential rates in the observed warming trend of the Indian Ocean basin.

  7. Mid-Holocene global monsoon area and precipitation from PMIP simulations

    NASA Astrophysics Data System (ADS)

    Jiang, Dabang; Tian, Zhiping; Lang, Xianmei

    2015-05-01

    Towards a better insight into orbital-scale changes in global monsoon, here we examine global monsoon area (GMA) and precipitation (GMP) as well as GMP intensity (GMPI) in the mid-Holocene, approximately 6,000 years ago, using all available numerical experiments from the Paleoclimate Modelling Intercomparison Project. Compared to the reference period, both the mid-Holocene GMA and GMP increased in the majority of the 35 models chosen for analysis according to their ability, averaging 5.5 and 4.2 %, respectively, which were mainly due to the increase in monsoon area and precipitation over the boreal land and austral ocean. The mid-Holocene GMPI decreased in most models and by an average of 1.2 %, mainly due to the decrease in monsoon precipitation intensity over the boreal ocean and austral land. The mid-Holocene GMA, GMP, and GMPI all showed opposite changes both between the land and ocean in the northern or southern hemisphere and between the boreal and austral land or ocean. Orbital-induced changes in large-scale meridional temperature gradient and land-sea thermal contrast are the underlying mechanisms, and the presence of an interactive ocean has an amplifying effect in the boreal land monsoon areas overall. Qualitatively, the model-data comparison indicates agreement in the boreal land monsoon areas and South America but disagreement in southern Africa and northern Australia.

  8. Deglacial Indian monsoon failure and North Atlantic stadials linked by Indian Ocean surface cooling

    NASA Astrophysics Data System (ADS)

    Tierney, Jessica E.; Pausata, Francesco S. R.; Demenocal, Peter

    2016-01-01

    The Indian monsoon, the largest monsoon system on Earth, responds to remote climatic forcings, including temperature changes in the North Atlantic. The monsoon was weak during two cool periods that punctuated the last deglaciation--Heinrich Stadial 1 and the Younger Dryas. It has been suggested that sea surface cooling in the Indian Ocean was the critical link between these North Atlantic stadials and monsoon failure; however, based on existing proxy records it is unclear whether surface temperatures in the Indian Ocean and Arabian Sea dropped during these intervals. Here we compile new and existing temperature proxy data from the Arabian Sea, and find that surface temperatures cooled whereas subsurface temperatures warmed during both Heinrich Stadial 1 and the Younger Dryas. Our analysis of model simulations shows that surface cooling weakens the monsoon winds and leads to destratification of the water column and substantial subsurface warming. We thus conclude that sea surface temperatures in the Indian Ocean are indeed the link between North Atlantic climate and the strength of the Indian monsoon.

  9. Recommending Research Profiles for Multidisciplinary Academic Collaboration

    ERIC Educational Resources Information Center

    Gunawardena, Sidath Deepal

    2013-01-01

    This research investigates how data on multidisciplinary collaborative experiences can be used to solve a novel problem: recommending research profiles of potential collaborators to academic researchers seeking to engage in multidisciplinary research collaboration. As the current domain theories of multidisciplinary collaboration are insufficient…

  10. The spectrum of Asian monsoon variability

    NASA Astrophysics Data System (ADS)

    Loope, G. R.; Overpeck, J. T.

    2014-12-01

    The Indian monsoon is the critical source of freshwater for over one billion people. Variability in monsoon precipitation occurs on all time scales and has severe consequences for the people who depend on monsoon rains. Extreme precipitation events have increased in the 20th century and are predicted to continue to become more frequent with anthropogenic global warming. The most recent models project that both monsoon precipitation and variability of precipitation will increase over the 21st century leading to increased flooding and possibly severe droughts. Although current models are able to capture the risk of relatively short droughts (1-5 years) reasonably well, they tend to underestimate the risk of longer, decadal- multidecadal droughts. I use observational records over the last 100 years in conjunction with cave, tree ring, and lake data from the NOAA paleoclimate database to reconstruct Holocene monsoon variability. I am able to show that the Asian monsoon has more low frequency variability than is projected by current climate models. The growing evidence for this discrepancy in hydroclimate variability between models and observational/paleoclimate records is of grave concern. If these models fail to capture the decadal-multidecadal droughts of the past it is likely they will underestimate the possibility of such droughts in the future.

  11. Potential Predictability of the Monsoon Subclimate Systems

    NASA Technical Reports Server (NTRS)

    Yang, Song; Lau, K.-M.; Chang, Y.; Schubert, S.

    1999-01-01

    While El Nino/Southern Oscillation (ENSO) phenomenon can be predicted with some success using coupled oceanic-atmospheric models, the skill of predicting the tropical monsoons is low regardless of the methods applied. The low skill of monsoon prediction may be either because the monsoons are not defined appropriately or because they are not influenced significantly by boundary forcing. The latter characterizes the importance of internal dynamics in monsoon variability and leads to many eminent chaotic features of the monsoons. In this study, we analyze results from nine AMIP-type ensemble experiments with the NASA/GEOS-2 general circulation model to assess the potential predictability of the tropical climate system. We will focus on the variability and predictability of tropical monsoon rainfall on seasonal-to-interannual time scales. It is known that the tropical climate is more predictable than its extratropical counterpart. However, predictability is different from one climate subsystem to another within the tropics. It is important to understand the differences among these subsystems in order to increase our skill of seasonal-to-interannual prediction. We assess potential predictability by comparing the magnitude of internal and forced variances as defined by Harzallah and Sadourny (1995). The internal variance measures the spread among the various ensemble members. The forced part of rainfall variance is determined by the magnitude of the ensemble mean rainfall anomaly and by the degree of consistency of the results from the various experiments.

  12. The East Asian summer monsoon: an overview

    NASA Astrophysics Data System (ADS)

    Yihui, Ding; Chan, Johnny C. L.

    2005-06-01

    The present paper provides an overview of major problems of the East Asian summer monsoon. The summer monsoon system over East Asia (including the South China Sea (SCS)) cannot be just thought of as the eastward and northward extension of the Indian monsoon. Numerous studies have well documented that the huge Asian summer monsoon system can be divided into two subsystems: the Indian and the East Asian monsoon system which are to a greater extent independent of each other and, at the same time, interact with each other. In this context, the major findings made in recent two decades are summarized below: (1) The earliest onset of the Asian summer monsoon occurs in most of cases in the central and southern Indochina Peninsula. The onset is preceded by development of a BOB (Bay of Bengal) cyclone, the rapid acceleration of low-level westerlies and significant increase of convective activity in both areal extent and intensity in the tropical East Indian Ocean and the Bay of Bengal. (2) The seasonal march of the East Asian summer monsoon displays a distinct stepwise northward and northeastward advance, with two abrupt northward jumps and three stationary periods. The monsoon rain commences over the region from the Indochina Peninsula-the SCS-Philippines during the period from early May to mid-May, then it extends abruptly to the Yangtze River Basin, and western and southern Japan, and the southwestern Philippine Sea in early to mid-June and finally penetrates to North China, Korea and part of Japan, and the topical western West Pacific. (3) After the onset of the Asian summer monsoon, the moisture transport coming from Indochina Peninsula and the South China Sea plays a crucial “switch” role in moisture supply for precipitation in East Asia, thus leading to a dramatic change in climate regime in East Asia and even more remote areas through teleconnection. (4) The East Asian summer monsoon and related seasonal rain belts assumes significant variability at

  13. Prediction of monthly rainfall on homogeneous monsoon regions of India based on large scale circulation patterns using Genetic Programming

    NASA Astrophysics Data System (ADS)

    Kashid, Satishkumar S.; Maity, Rajib

    2012-08-01

    SummaryPrediction of Indian Summer Monsoon Rainfall (ISMR) is of vital importance for Indian economy, and it has been remained a great challenge for hydro-meteorologists due to inherent complexities in the climatic systems. The Large-scale atmospheric circulation patterns from tropical Pacific Ocean (ENSO) and those from tropical Indian Ocean (EQUINOO) are established to influence the Indian Summer Monsoon Rainfall. The information of these two large scale atmospheric circulation patterns in terms of their indices is used to model the complex relationship between Indian Summer Monsoon Rainfall and the ENSO as well as EQUINOO indices. However, extracting the signal from such large-scale indices for modeling such complex systems is significantly difficult. Rainfall predictions have been done for 'All India' as one unit, as well as for five 'homogeneous monsoon regions of India', defined by Indian Institute of Tropical Meteorology. Recent 'Artificial Intelligence' tool 'Genetic Programming' (GP) has been employed for modeling such problem. The Genetic Programming approach is found to capture the complex relationship between the monthly Indian Summer Monsoon Rainfall and large scale atmospheric circulation pattern indices - ENSO and EQUINOO. Research findings of this study indicate that GP-derived monthly rainfall forecasting models, that use large-scale atmospheric circulation information are successful in prediction of All India Summer Monsoon Rainfall with correlation coefficient as good as 0.866, which may appears attractive for such a complex system. A separate analysis is carried out for All India Summer Monsoon rainfall for India as one unit, and five homogeneous monsoon regions, based on ENSO and EQUINOO indices of months of March, April and May only, performed at end of month of May. In this case, All India Summer Monsoon Rainfall could be predicted with 0.70 as correlation coefficient with somewhat lesser Correlation Coefficient (C.C.) values for different

  14. How to better link regional monsoon circulation to local hydroclimate for interpreting tree-ring chronologies in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Hernandez, M.; Ummenhofer, C.; Anchukaitis, K. J.

    2013-12-01

    The Asian summer monsoon, consisting of 3 major subsystems, is characterized by a distinct seasonal precipitation onset that affects the regions of India, the Indochina peninsula, and East Asia. Current monsoon indices for Southeast Asia and the Indian subcontinent capture the large-scale circulation patterns and, in turn, the hydro-climate of the specified area affected by the Asian Monsoon System. However, their skill in representing regional circulation features and links to the local hydro-climate are less understood. Here, we assessed the variability within the Dynamical Indian Monsoon Index, the East Asian Western North Pacific Index, and the South Asian Monsoon Index and their links to regional climate features over Southeast Asia, from inter-annual to decadal timescales, using various observations and reanalysis products at monthly resolution and an extended 1300-yr pre-industrial control run with the Community Earth System Model (CESM). The monsoon indices in the model compared well with those in the reanalysis, with similar statistical properties. Furthermore, composites of precipitation, sea surface temperatures (SST), wind fields and moisture advection during years with an extreme monsoon index (i.e. top and bottom 10%) were explored for the three monsoon indices in the reanalyses and model, respectively. Composites demonstrate large-scale changes in Indo-Pacific SST, circulation, and moisture advection across Southeast Asia, consistent with effects on seasonal precipitation within the region as well as distinct Indian Ocean Dipole (IOD) and El Nino-Southern Oscillation (ENSO) signals. Anomalies in the monsoon indices are also linked to drought occurrence across the region, using the Monsoon Asia Drought Atlas (MADA), a network of hydroclimatically sensitive tree-ring chronologies. Our analysis further investigates the paleo-climate of Southeast Asia through the CESM run to identify periods of anomalous Indo-Pacific SST and their effects on circulation

  15. Intraseasonal oscillations of the monsoon circulation over South Asia

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, V.; Achuthavarier, Deepthi

    2012-06-01

    The space-time structure of the three-dimensional circulation over the South Asian monsoon region has been studied using the ERA-40 reanalysis of the European Centre for Medium-Range Weather Forecasts. Applying multi-channel singular spectrum analysis on combined daily values of horizontal winds and pressure vertical velocity at ten vertical levels for the period 1958-2001, two leading intraseasonal nonlinear oscillations were extracted. The first oscillation has an average period of 50 days and propagates northeastward from the Indian Ocean to the Indian subcontinent. The second oscillation has a period of 30 days and propagates northwestward from the West Pacific to the Indian region. Both the oscillations exhibit the oscillatory and propagation features at all vertical levels from 1,000 to 100 hPa. The two oscillations correspond well with similar oscillations found in outgoing longwave radiation and precipitation in earlier studies. The wind oscillations also account for the active and break phases of the Indian monsoon. The vertical structures and propagation of specific humidity and temperature are found to be consistent with those of the winds in each oscillation. The structure and movement of regional Hadley and Walker circulations have also been described. The analyses provide further strong evidence for the existence of two distinct monsoon intraseasonal oscillations.

  16. A crisis in chronic pain care: an ethical analysis. Part three: Toward an integrative, multi-disciplinary pain medicine built around the needs of the patient.

    PubMed

    Giordano, James; Schatman, Michael E

    2008-01-01

    A number of variables have contributed to the current crisis in chronic pain care and are affected by, and affect, the philosophies and politics that influence the socio-economic climate of the American healthcare system. Thus, we posit that managing the crisis in chronic pain care in the United States is contingent upon the development of a multi-focal healthcare paradigm that more thoroughly enables and fortifies research, its translation (in education and practice), and the implementation of, and support for, both the curative and healing approaches in medicine in general, and pain care specifically. These steps necessitate re-examination, if not revision of the health care system and its economics. The ethical imperative to consider and prudently employ cutting-edge diagnostic and therapeutic technologies in pain medicine is obligatory. However, "supply side prudence" is of little value if "demand side accessibility" is lacking. Revisions to health insurance plans advocated by the in-coming administration seek to create uniformity in basic health care services based upon re-assessment of the clinical effectiveness (versus merely cost) of treatments, including those that are "high tech." These plans attempt to allow every patient a more complete ability to deliberatively work with physicians to access those services and resources that maximize health functioning and goals. But even given these revisions, authentic pain care must take into account the interactive contexts of the painient individual. The biopsychosocial model of chronic pain management may have significant practical and ethical worth in this regard. A system of pain treatment operating from a biopsychosocial perspective necessitates integrative multi-disciplinarity. We propose a tiered, multi-disciplinary paradigm based upon the differing needs of each specific patient. But establishing such a system does not guarantee access, and distribution of these services and resources requires economic

  17. Information Management for a Large Multidisciplinary Project

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Randall, Donald P.; Cronin, Catherine K.

    1992-01-01

    In 1989, NASA's Langley Research Center (LaRC) initiated the High-Speed Airframe Integration Research (HiSAIR) Program to develop and demonstrate an integrated environment for high-speed aircraft design using advanced multidisciplinary analysis and optimization procedures. The major goals of this program were to evolve the interactions among disciplines and promote sharing of information, to provide a timely exchange of information among aeronautical disciplines, and to increase the awareness of the effects each discipline has upon other disciplines. LaRC historically has emphasized the advancement of analysis techniques. HiSAIR was founded to synthesize these advanced methods into a multidisciplinary design process emphasizing information feedback among disciplines and optimization. Crucial to the development of such an environment are the definition of the required data exchanges and the methodology for both recording the information and providing the exchanges in a timely manner. These requirements demand extensive use of data management techniques, graphic visualization, and interactive computing. HiSAIR represents the first attempt at LaRC to promote interdisciplinary information exchange on a large scale using advanced data management methodologies combined with state-of-the-art, scientific visualization techniques on graphics workstations in a distributed computing environment. The subject of this paper is the development of the data management system for HiSAIR.

  18. Establishing a framework for building multidisciplinary programs

    PubMed Central

    Meguid, Cheryl; Ryan, Carrie E; Edil, Barish H; Schulick, Richard D; Gajdos, Csaba; Boniface, Megan; Schefter, Tracey E; Purcell, W Thomas; McCarter, Martin

    2015-01-01

    While most providers support the concept of a multidisciplinary approach to patient care, challenges exist to the implementation of successful multidisciplinary clinical programs. As patients become more knowledgeable about their disease through research on the Internet, they seek hospital programs that offer multidisciplinary care. At the University of Colorado Hospital, we utilize a formal multidisciplinary approach across a variety of clinical settings, which has been beneficial to patients, providers, and the hospital. We present a reproducible framework to be used as a guide to develop a successful multidisciplinary program. PMID:26664132

  19. The First Pan-WCRP Workshop on Monsoon Climate Systems: Toward Better Prediction of the Monsoons

    SciTech Connect

    Sperber, K R; Yasunari, T

    2005-07-27

    In 2004 the Joint Scientific Committee (JSC) that provides scientific guidance to the World Climate Research Programme (WCRP) requested an assessment of (1) WCRP monsoon related activities and (2) the range of available observations and analyses in monsoon regions. The purpose of the assessment was to (a) define the essential elements of a pan-WCRP monsoon modeling strategy, (b) identify the procedures for producing this strategy, and (c) promote improvements in monsoon observations and analyses with a view toward their adequacy, and addressing any undue redundancy or duplication. As such, the WCRP sponsored the ''1st Pan-WCRP Workshop on Monsoon Climate Systems: Toward Better Prediction of the Monsoons'' at the University of California, Irvine, CA, USA from 15-17 June 2005. Experts from the two WCRP programs directly relevant to monsoon studies, the Climate Variability and Predictability Programme (CLIVAR) and the Global Energy and Water Cycle Experiment (GEWEX), gathered to assess the current understanding of the fundamental physical processes governing monsoon variability and to highlight outstanding problems in simulating the monsoon that can be tackled through enhanced cooperation between CLIVAR and GEWEX. The agenda with links to the presentations can be found at: http://www.clivar.org/organization/aamon/WCRPmonsoonWS/agenda.htm. Scientific motivation for a joint CLIVAR-GEWEX approach to investigating monsoons includes the potential for improved medium-range to seasonal prediction through better simulation of intraseasonal (30-60 day) oscillations (ISO's). ISO's are important for the onset of monsoons, as well as the development of active and break periods of rainfall during the monsoon season. Foreknowledge of the active and break phases of the monsoon is important for crop selection, the determination of planting times and mitigation of potential flooding and short-term drought. With a few exceptions simulations of ISO are typically poor in all classes of

  20. Pleistocene Indian Monsoon rainfall variability dominated by obliquity

    NASA Astrophysics Data System (ADS)

    Gebregiorgis, D.; Hathorne, E. C.; Giosan, L.; Collett, T. S.; Nuernberg, D.; Frank, M.

    2015-12-01

    The past variability of the Indian Monsoon is mostly known from records of wind strength over the Arabian Sea while Quaternary proxy records of Indian monsoon precipitation are still lacking. Here we utilize scanning x-ray fluorescence (XRF) data from a sediment core obtained by the IODP vessel JOIDES Resolution in the Andaman Sea (Site 17) to investigate changes in sediment supply from the peak monsoon precipitation regions to the core site. We use Ti/Ca and K/Rb ratios to trace changes in terrigenous flux and weathering regime, respectively, while Zr/Rb ratios suggest grain size variations. The age model of Site 17 is based on correlation of benthic C. wuellerstorfi/C. mundulus δ18O data to the LR04 global benthic δ18O stack at a resolution of ~3 kyr (Lisiecki and Raymo, 2005) for the last 2 Myrs. In its youngest part the age model is supported by five 14C ages on planktic foraminifera and the youngest Toba ash layer (Ali et al., 2015) resulting in a nearly constant sedimentation rate of ~6.5 cm/kyr. Frequency analysis of the 4 mm resolution Ti/Ca, K/Rb, and Zr/Rb time series using the REDFIT program (Schulz and Mudelsee, 2002), reveals the three main Milankovitch orbital cycles above the 90% confidence level. Depth domain spectral analysis reveals the presence of significant cyclicity at wavelengths of 28.5 and 2.8 m corresponding to the ~400 kyr and ~41 kyr cycles, respectively, during the last 2 Myr. These records suggest that Indian monsoon variability has varied in the obliquity and eccentricity bands, the latter in particular after the mid Pleistocene transition (MPT), while strong precession forcing is lacking in this super-high resolution record. Northern summer insolation and Southern Hemisphere latent heat export are out of phase during precessional cycles, but in phase in the obliquity band, which indicates that Indian monsoon precipitation has likely been more sensitive to both NH pull and SH push mechanisms (Clemens and Prell, 2003). References Ali

  1. Reconstructing Monsoon Variations in India - Evidence from Speleothems

    NASA Astrophysics Data System (ADS)

    Breitenbach, S. F.; Lechleitner, F.; Plessen, B.; Marwan, N.; Cheng, H.; Adkins, J. F.; Haug, G. H.

    2012-12-01

    Indian summer monsoon (ISM) rainfall is of vital importance for ca. one fifth of the world's population, yet little is known about the factors governing its variability. Changing seasonality and/or rainfall intensity have profound impacts on the well-being of Asian agriculture-based societies. Most proxy-records from the Indian realm lack temporal resolution and age control sufficient to allow detailed analysis of high-frequency ISM rainfall variations. Low spatial coverage further restricts understanding spatial differences and the interactions between subsystems of the Asian summer monsoon, limiting understanding, not to mention reliable forecasting. Here, we summarize available information on rainfall changes over India, as reflected in speleothems. Suitable stalagmites offer highly precise chronologies and multi-proxy time series. Oxygen isotope and greyscale time series can track ISM intensity. Using published and new records from NE India, we present evidence for significant rainfall changes during the Holocene. Available proxy records show that while long-term ISM rainfall pattern changed in concert with supra-regional variations of the Asian summer monsoon, sub-decadal-scale ISM variations are influenced by local and regional influences. Complex network analysis of Indian and Chinese proxy data reveals that during the Medieval Warm Period ISM and East Asian summer monsoon (EASM) were more tightly linked, with a seemingly strong ISM influence on the EASM. During the cooler Little Ice Age however, the ISM and EASM connection weakened and local effects exerted influence on both sub-systems of the Asian monsoon. In order to allow detailed insights in spatio-temporal variations of the ISM and external teleconnections, precisely dated high-resolution time series must be obtained from various places in the Indian peninsula and beyond. Only a combination of high temporal and spatial coverage will allow assessments of the likelihood of drought recurrence in a given

  2. Observed Inter-decadal weakening of the Asian summer monsoon and different response of South and East Asian monsoons during a warming climate scenario

    NASA Astrophysics Data System (ADS)

    Ding, Y.

    2012-12-01

    Based on the observed analysis by using 123-yr observed data, we have shown the inter-decadal weakening of summer monsoon precipitation in East Asia and China, with two major features identified: (1)the rainfall pattern has undergone an obvious southward shift from North China to South China in the mid -and late 1970s. This shift of the precipitation pattern is in good coincidence with a significant abrupt climate change for other variables; and (2) occurrence of prolonged droughts in North China and , at the same time, marked flooding in the Yangtze River Valley and South China in the period from the end 1970s to the beginning of the 21st century. On the other hand , it has been found that after the end of the 1970s the Indian summer monsoon has also underwent a weakening processes which is in good agreement with that in East Asia. So, the Asian summer monsoon has holistically become weaker during past 30 years. One key issue is how long this unusual change in the Asian summer monsoon and associated precipitation patterns will continue to occur. By using outputs from climate models of IPCC AR4 we have projected the responses of the South Asian summer monsoon (SASM) and the East Asian summer monsoon (EASM) circulations and precipitation to different warming over land and ocean under a medium warming scenario, SRES A1B. Our results suggest that, at inter-decadal and longer time scales, the change in the SASM circulation is consistent with the change in the TP(Tibetan Plateau) -TIO (tropical Indian Ocean) upper-troposphere thermal contrast (i.e. meridional temperature gradient) that is believed to be the main driver for SASM. Conversely, the change in the EASM circulation is consistent with the change in the TP-TPO (tropical Pacific Ocean) lower-troposphere thermal contrast, which will be enhanced due to the decreasing winter snow over TP and SSTA over the tropical Pacific. Further analyses suggest that increases in moisture and change in cloud cover induced by

  3. Climatology and dynamics of nocturnal low-level stratus over the southern West African monsoon region

    NASA Astrophysics Data System (ADS)

    Fink, A. H.; Schuster, R.; Knippertz, P.; van der Linden, R.

    2013-12-01

    The southern parts of West Africa, from the coast to about 10°N, are frequently covered by an extensive deck of shallow, low (200 - 400 m above ground) stratus or stratocumulus clouds during the summer monsoon season. These clouds usually form at night in association with a nocturnal low-level jet (NLLJ) and can persist into the early afternoon hours until they are dissipated or replaced by fair-weather cumuli. Recent work suggests that the stratus deck and its effect on the surface radiation balance are unsatisfactorily represented in standard satellite retrievals and simulations by state-of-the-art climate models. We will present the first ever climatology of the diurnal cycle of the low cloud deck based on surface observations and satellite products. In addition, we use high-resolution regional simulations with the Weather Research and Forecast (WRF) model and observations from the African Monsoon Multidisciplinary Analysis (AMMA) 2006 campaign to investigate (a) the spatiotemporal distribution, (b) the influence on the radiation balance, and (c) the detailed formation and maintenance mechanisms of the stratiform clouds as simulated by the model. The model configuration used for this study has been determined following an extensive sensitivity study, which has shown that at least some configurations of WRF satisfactorily reproduce the diurnal cycle of the low cloud evolution. The main conclusions are: (a) The observed stratus deck forms after sunset along the coast, spreads inland in the course of the night, reaches maximum poleward extent at about 10°N around 09-10 local time and dissipates in the early afternoon. (b) The average surface net radiation balance in stratus-dominated regions is 35 W m-2 lower than in those with less clouds. (c) The cloud formation is related to a subtle balance between 'stratogenic' upward (downward) fluxes of latent (sensible) heat caused by shear-driven turbulence below the NLLJ, cold advection from the ocean, forced lifting at

  4. The Joint Aerosol-Monsoon Experiment: A New Challenge to Monsoon Climate Research

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2008-01-01

    Aerosol and monsoon related droughts and floods are two of the most serious environmental hazards confronting more than 60% of the population of the world living in the Asian monsoon countries. In recent years, thanks to improved satellite and in-situ observations, and better models, great strides have been made in aerosol, and monsoon research respectively. There is now a growing body of evidence suggesting that interaction of aerosol forcing with water cycle dynamics in monsoon regions may substantially alter the redistribution of energy at the earth surface and in the atmosphere, and therefore significantly impact monsoon rainfall variability and long term trends. In this talk, I will describe issues related to societal needs, scientific background, and challenges in studies of aerosol-water cycle interaction in Asian monsoon regions. As a first step towards addressing these issues, the authors call for an integrated observation and modeling research approach aimed at the interactions between aerosol chemistry and radiative effects and monsoon dynamics of the coupled ocean-atmosphere-land system. A Joint Aerosol-Monsoon Experiment (JAMEX) is proposed for 2007-2011, with an enhanced observation period during 2008-09, encompassing diverse arrays of observations from surface, aircraft, unmanned aerial vehicles, and satellites of physical and chemical properties of aerosols, long range aerosol transport as well as meteorological and oceanographic parameters in the Indo-Pacific Asian monsoon region. JAMEX will leverage on coordination among many ongoing and planned national programs on aerosols and monsoon research in China, India, Japan, Nepal, Italy, US, as well as international research programs of the World Climate Research Program (WCRP) and the World Meteorological Organization (WMO).

  5. Identification of tipping elements of the Indian Summer Monsoon using climate network approach

    NASA Astrophysics Data System (ADS)

    Stolbova, Veronika; Surovyatkina, Elena; Kurths, Jurgen

    2015-04-01

    Spatial and temporal variability of the rainfall is a vital question for more than one billion of people inhabiting the Indian subcontinent. Indian Summer Monsoon (ISM) rainfall is crucial for India's economy, social welfare, and environment and large efforts are being put into predicting the Indian Summer Monsoon. For predictability of the ISM, it is crucial to identify tipping elements - regions over the Indian subcontinent which play a key role in the spatial organization of the Indian monsoon system. Here, we use climate network approach for identification of such tipping elements of the ISM. First, we build climate networks of the extreme rainfall, surface air temperature and pressure over the Indian subcontinent for pre-monsoon, monsoon and post-monsoon seasons. We construct network of extreme rainfall event using observational satellite data from 1998 to 2012 from the Tropical Rainfall Measuring Mission (TRMM 3B42V7) and reanalysis gridded daily rainfall data for a time period of 57 years (1951-2007) (Asian Precipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources, APHRODITE). For the network of surface air temperature and pressure fields, we use re-analysis data provided by the National Center for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR). Second, we filter out data by coarse-graining the network through network measures, and identify tipping regions of the ISM. Finally, we compare obtained results of the network analysis with surface wind fields and show that occurrence of the tipping elements is mostly caused by monsoonal wind circulation, migration of the Intertropical Convergence Zone (ITCZ) and Westerlies. We conclude that climate network approach enables to select the most informative regions for the ISM, providing realistic description of the ISM dynamics with fewer data, and also help to identify tipping regions of the ISM. Obtained tipping elements deserve a

  6. Simulation of the Indian monsoon and its variability during the last millennium

    NASA Astrophysics Data System (ADS)

    Polanski, S.; Fallah, B.; Prasad, S.; Cubasch, U.

    2013-02-01

    The general circulation model ECHAM5 has been used to simulate the Indian monsoon and its variability during the Medieval Warm Period (MWP; 900-1100 AD), the Little Ice Age (LIA; 1515-1715 AD) and for recent climate (REC; 1800-2000 AD). The focus is on the analysis of external drivers and internal feedbacks leading to extreme rainfall events over India from interannual to multidecadal time scale. An evaluation of spatiotemporal monsoon patterns with present-day observation data is in agreement with other state-of-the-art monsoon modeling studies. The simulated monsoon intensity on multidecadal time scale is weakened (enhanced) in summer (winter) due to colder (warmer) SSTs in the Indian Ocean. Variations in solar insolation are the main drivers for these SST anomalies, verified by very strong temporal anticorrelations between Total Solar Irradiance and All-India-Monsoon-Rainfall in summer monsoon months. The external solar forcing is coupled and overlain by internal climate modes of the ocean (ENSO and IOD) with asynchronous intensities and lengths of periods. In addition, the model simulations have been compared with a relative moisture index derived from paleoclimatic reconstructions based on various proxies and archives in India. In this context, the Lonar record in Central India has been highlighted and evaluated the first time. The simulated relative annual rainfall anomalies in comparison to present-day climate are in agreement (disagreement) with the reconstructed moisture index for MWP (LIA) climate. In order to investigate the interannual monsoon variability with respect to monsoon failures, dry summer monsoon composites for 30-yr-long periods of MWP, LIA and REC have been further analysed. Within dry years of LIA, the summer rainfall over India and surrounding oceans is less than in MWP indicating stronger drying conditions due to a stronger summer solar insolation forcing coupled with variations in ENSO. To quantify the ECHAM5 simulated long-term drought

  7. [Analysis of the medical activity related to cancer in a network of multidisciplinary hospitals using claims databases, the reseau Concorde Oncology Network].

    PubMed

    Schott, Anne-Marie; Hajri, Touria; Gelas-Dore, Bénédicte; Couris, Chantal Marie; Couray-Targe, Sandrine; Trillet-Lenoir, Véronique; Dumeril, Bernard; Grandjean, Jean Paul; Lledo, Gérard; Poncet, Jean Luc; Colin, Cyrille; Cautela, Nicola; Gilly, François Noël

    2005-02-01

    Recently, to answer patients, caregivers and professionals needs, the "Plan Cancer" has been presented by the French Government. This plan is intended to improve quality of care in cancer patients and finally, patients' survival and quality of life. This planned strategy stresses the importance of organized interactions between hospitals and between the various health professionals. Measuring the number of patients with cancer and the activity related to cancer in large networks of multidisciplinary hospitals has became a real challenge in France for organizational, quality of care and economic reasons. Many University Hospitals in France have chosen to face this question by using the French DRG based information system called PMSI. It allows estimating the proportion of hospital stays concerned by cancers that are identified with algorithms based on ICD 10. However, French databases of hospital discharges do not allow patients identification. We collected data on hospital stays and patients in a subset of an organized network focused on cancer care and composed of 55 public or private hospitals in the Rhone-Alpes area. We used these data to estimate the number of patients who had been hospitalized within the network in 2000. Approximately 110,000 hospital stays were related with a diagnostic of cancer, corresponding to a number of patients within a range of 30345 to 35700. In absence of communicating files between hospitals, claims databases are an interesting source of information for cancer burden. The recent implementation of a procedure allowing the linkage of data concerning each patient should permit better estimates in the future. The main limitation will remain the possibility of a hospital to participate to more than one network. PMID:15749646

  8. A Multidisciplinary Approach to Improving SCIP Compliance.

    PubMed

    Huntington, Ciara R; Strayer, Melissa; Huynh, Toan; Green, John M

    2015-07-01

    The Surgical Care Improvement Project (SCIP) is a national program aimed at reducing perioperative complications and is a quality benchmark metric for Centers for Medicare and Medicaid Services. This study evaluates whether a multidisciplinary program improved an institution's compliance with SCIP measures. Analysis of the facility's performance data identified three key areas of SCIP noncompliance: 1) timely discontinuation of perioperative antibiotics and urinary catheters, 2) initiation of venous thromboembolism prophylaxis, and 3) perioperative beta blocker administration. Multidisciplinary teams collaborated with providers and department chairs in reviewing and enable SCIP compliance. Anesthesia staff managed preoperative antibiotics. SCIP-compliant order sets, venous thromboembolism pop-up alerts, and progress note templates were added to the electronic medical record. Standardized education was provided to explain SCIP requirements, review noncompliant cases, and update teams on SCIP performance. Data were captured from January 2009 to March 2014. Ten SCIP fallouts were reported for general surgery specialties in January 2013, when the SCIP compliance project launched. Specifically, colon-related surgery achieved 100 per cent compliance. Six months after implementation, overall SCIP compliance at our institution improved by 65 per cent (from 90.7-98.6% compliance). PMID:26140888

  9. Multidisciplinary approaches to the pressure ulcer problem.

    PubMed

    Bogie, Kath M; Ho, Chester H

    2007-10-01

    Multiple factors affect the specific condition and overall clinical profile of individuals at risk for chronic wounds. The complexity of the pressure ulcer problem lends itself to the application of the National Institute of Health Roadmap Initiative that encourages interdisciplinary research and new organizational models. An overview of research studies relevant to telemedicine and neuromuscular electrical stimulation in the care and prevention of pressure ulcers as well as preliminary results of an innovative multidisciplinary skin care team approach to the primary and tertiary prevention of pressure ulcers are encouraging. The team's pilot study results indicate that patients are satisfied with telehealth provision of care; however, literature and experience also suggest that discrepancies in the inter-rater assessment of wounds using digital photography remain, particularly with regard to wound dimension variables assessed (P<0.01). In another endeavor, the skin care team developed a Longitudinal Analysis with Self-Registration statistical algorithm to assess the effects of electrical stimulation; in a preliminary study, this tool documented improvement in gluteus maximus health and resultant ability to withstand pressure. As the number of groups pursuing multidisciplinary research and care increases, so, too, will the evidence base required to address these common, and complex, chronic wounds. PMID:17978412

  10. Characterization of southwest monsoon onset over Myanmar

    NASA Astrophysics Data System (ADS)

    Mie Sein, Z. M.; Islam, A. R. M. Towfiqul; Maw, K. W.; Moya, T. B.

    2015-10-01

    The aim of this paper was to characterize the southwest monsoon onset over Myanmar based on the model. The Regional Climate Model (RegCM3) was run for a period of 10 years (2000-2009) to simulate the meteorological fields which focused on April to July season. The model input data were obtained from the reanalyzed datasets of the National Center for Environmental Prediction (NCEP) and National Centre for Atmospheric Research (NCAR). Grell scheme with Arakawa closure for cumulus parameterization assumption was used for simulation with 45 km horizontal resolution. The results revealed that southwest monsoon onset was confirmed when the prevailing wind direction up to 600 hPa level had shifted from northeasterly to westerly or southwesterly. The southwest monsoon first arrived at southernmost Kawthoung station of Myanmar and progressed through the Deltaic and Central parts until it reached at northernmost Putao station. Over the simulation periods, the southwest monsoon onset progressed from the southernmost to northernmost parts of the country in 19 ± 10 days. The position of Intertropical Convergence Zone (ITCZ) appeared (23°N-28°N) over the Northern part of the country before the onset. Furthermore, 500 hPa ridge appeared consistently over the Deltaic area of Myanmar from 6 to 10 days before the monsoon onset. Its position is about 6° to the south of the ITCZ.

  11. Multi-disciplinary coupling for integrated design of propulsion systems

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Effective computational simulation procedures are described for modeling the inherent multi-disciplinary interactions for determining the true response of propulsion systems. Results are presented for propulsion system responses including multi-discipline coupling effects via (1) coupled multi-discipline tailoring, (2) an integrated system of multidisciplinary simulators, (3) coupled material-behavior/fabrication-process tailoring, (4) sensitivities using a probabilistic simulator, and (5) coupled materials/structures/fracture/probabilistic behavior simulator. The results show that the best designs can be determined if the analysis/tailoring methods account for the multi-disciplinary coupling effects. The coupling across disciplines can be used to develop an integrated interactive multi-discipline numerical propulsion system simulator.

  12. How Multidisciplinary Are the Multidisciplinary Journals Science and Nature?

    PubMed Central

    Solomon, Gregg E. A.; Carley, Stephen; Porter, Alan L.

    2016-01-01

    Interest in cross-disciplinary research knowledge interchange runs high. Review processes at funding agencies, such as the U.S. National Science Foundation, consider plans to disseminate research across disciplinary bounds. Publication in the leading multidisciplinary journals, Nature and Science, may signify the epitome of successful interdisciplinary integration of research knowledge and cross-disciplinary dissemination of findings. But how interdisciplinary are they? The journals are multidisciplinary, but do the individual articles themselves draw upon multiple fields of knowledge and does their influence span disciplines? This research compares articles in three fields (Cell Biology, Physical Chemistry, and Cognitive Science) published in a leading disciplinary journal in each field to those published in Nature and Science. We find comparable degrees of interdisciplinary integration and only modest differences in cross-disciplinary diffusion. That said, though the rate of out-of-field diffusion might be comparable, the sheer reach of Nature and Science, indicated by their potent Journal Impact Factors, means that the diffusion of knowledge therein can far exceed that of leading disciplinary journals in some fields (such as Physical Chemistry and Cognitive Science in our samples). PMID:27043924

  13. Astronomical and Hydrological Perspective of Mountain Impacts on the Asian Summer Monsoon

    PubMed Central

    He, Bian; Wu, Guoxiong; Liu, Yimin; Bao, Qing

    2015-01-01

    The Asian summer monsoon has great socioeconomic impacts. Understanding how the huge Tibetan and Iranian Plateaus affect the Asian summer monsoon is of great scientific value and has far-reaching significance for sustainable global development. One hypothesis considers the plateaus to be a shield for monsoon development in India by blocking cold-dry northerly intrusion into the tropics. Based on astronomical radiation analysis and numerical modeling, here we show that in winter the plateaus cannot block such a northerly intrusion; while in summer the daily solar radiation at the top of the atmosphere and at the surface, and the surface potential temperature to the north of the Tibetan Plateau, are higher than their counterparts to its south, and such plateau shielding is not needed. By virtue of hydrological analysis, we show that the high energy near the surface required for continental monsoon development is maintained mainly by high water vapor content. Results based on potential vorticity–potential temperature diagnosis further demonstrate that it is the pumping of water vapor from sea to land due to the thermal effects of the plateaus that breeds the Asian continental monsoon. PMID:26620727

  14. Astronomical and Hydrological Perspective of Mountain Impacts on the Asian Summer Monsoon.

    PubMed

    He, Bian; Wu, Guoxiong; Liu, Yimin; Bao, Qing

    2015-01-01

    The Asian summer monsoon has great socioeconomic impacts. Understanding how the huge Tibetan and Iranian Plateaus affect the Asian summer monsoon is of great scientific value and has far-reaching significance for sustainable global development. One hypothesis considers the plateaus to be a shield for monsoon development in India by blocking cold-dry northerly intrusion into the tropics. Based on astronomical radiation analysis and numerical modeling, here we show that in winter the plateaus cannot block such a northerly intrusion; while in summer the daily solar radiation at the top of the atmosphere and at the surface, and the surface potential temperature to the north of the Tibetan Plateau, are higher than their counterparts to its south, and such plateau shielding is not needed. By virtue of hydrological analysis, we show that the high energy near the surface required for continental monsoon development is maintained mainly by high water vapor content. Results based on potential vorticity-potential temperature diagnosis further demonstrate that it is the pumping of water vapor from sea to land due to the thermal effects of the plateaus that breeds the Asian continental monsoon. PMID:26620727

  15. Astronomical and Hydrological Perspective of Mountain Impacts on the Asian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    He, Bian; Wu, Guoxiong; Liu, Yimin; Bao, Qing

    2015-12-01

    The Asian summer monsoon has great socioeconomic impacts. Understanding how the huge Tibetan and Iranian Plateaus affect the Asian summer monsoon is of great scientific value and has far-reaching significance for sustainable global development. One hypothesis considers the plateaus to be a shield for monsoon development in India by blocking cold-dry northerly intrusion into the tropics. Based on astronomical radiation analysis and numerical modeling, here we show that in winter the plateaus cannot block such a northerly intrusion; while in summer the daily solar radiation at the top of the atmosphere and at the surface, and the surface potential temperature to the north of the Tibetan Plateau, are higher than their counterparts to its south, and such plateau shielding is not needed. By virtue of hydrological analysis, we show that the high energy near the surface required for continental monsoon development is maintained mainly by high water vapor content. Results based on potential vorticity-potential temperature diagnosis further demonstrate that it is the pumping of water vapor from sea to land due to the thermal effects of the plateaus that breeds the Asian continental monsoon.

  16. Multidisciplinary Care of Laryngeal Cancer.

    PubMed

    Salvador-Coloma, Carmen; Cohen, Ezra

    2016-08-01

    Treatment of larynx cancer has changed dramatically over the past several years. Novel modalities of treatment have been introduced as organ preservation has been developed. In addition, new targeted therapies have appeared, and improvements in radiotherapeutic and surgical techniques have been introduced. Thus, a large variety of treatment options is increasing local control rates and overall survival; however, selecting the most appropriate treatment remains a challenging decision. This article focuses on the multidisciplinary care of early-stage and locally advanced larynx cancer and attempts to sum up different approaches. Moreover, it reviews state-of-the-art treatment in larynx preservation, which has been consolidated in recent years. PMID:27511718

  17. [Multidisciplinary approach to postpartum depression].

    PubMed

    Arranz Lara, Lilia Cristina; Aguirre Rivera, Wilfrido; Ruiz Ornelas, Jaime; Gaviño Ambriz, Salvador; Cervantes Chávez, José Francisco; Carsi Bocanegra, Eduardo; Camacho Díaz, Margarita; Ochoa Madrigal, Martha Georgina

    2008-06-01

    Postpartum depression is a multifactorial condition suffered by 15% of women after delivery. We report a clinical case of a 32 years old female admitted at Postpartum depression clinic of gyneco-obstetric coordination at Centro Médico Nacional 20 de Noviembre, ISSTE, Mexico City. Patient was evaluated by psychiatric and psychological service personnel and diagnosed as with postpartum depression. She was admitted with her child during two weeks to be studied and treated. Several evaluation tests were applied and specific interventions by multidisciplinary team were designed. PMID:18800591

  18. Relationship between tropospheric temperature and Indian summer monsoon rainfall as simulated by RegCM3

    NASA Astrophysics Data System (ADS)

    Pattnayak, K. C.; Panda, S. K.; Saraswat, Vaishali; Dash, S. K.

    2016-05-01

    Relationship between rainfall and tropospheric temperature (TT) has been examined over the Indian subcontinent during four seasons of the year using Regional Climate Model Version 3.0 (RegCM3). The model has been integrated at 55 km horizontal resolution over India during the years 1980-2000 with prescribed lateral boundary forcing from the 40 years re-analysis (ERA40) of the European Centre for Medium-range Weather Forecasts. Results of this study show that RegCM3 in general is able to capture the spatial distributions of rainfall in all the seasons as compared to the corresponding IMD0.5 gridded rainfall. The model has simulated warmer TT over the Himalayan region in all the seasons as compared to ERA40. However, it is well captured over the peninsular India and the oceanic regions. In the model, larger warming by about 0.5 °C over the northwest and Central India in the summer monsoon months might have lead to lower surface pressure there. Also, the vertical extent of the monsoon trough is found to be up to 500 hPa in the model as compared to that in NCEP/NCAR reanalysis. As a consequence, the simulated monsoon circulation and rainfall are stronger than those observed. The two most important rainfall seasons, the summer monsoon and winter are reasonably well simulated with correlation coefficients (CC) of 0.60 and 0.59 respectively significant at 99 % confidence level with the corresponding observed values of IMD0.5. Further, Indian summer monsoon rainfall (ISMR) and TT during the contrasting monsoon years are also close to their respective observed values. Temporal CCs between the TT over Tibet, Pakistan and Central India during the summer monsoon season and gridded ISMR values reveals that the TT over Pakistan has been better correlated with the ISMR than those over Tibet and Central India. This relationship has been well supported by the model simulations.

  19. Multidisciplinary design optimization - An emerging new engineering discipline

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw

    1993-01-01

    A definition of the multidisciplinary design optimization (MDO) is introduced, and functionality and relationship of the MDO conceptual components are examined. The latter include design-oriented analysis, approximation concepts, mathematical system modeling, design space search, an optimization procedure, and a humane interface.

  20. Future projection of mean and variability of the Asian Summer Monsoon and Indian Ocean Climate systems

    SciTech Connect

    Annamalai, H

    2014-09-15

    The overall goal of this project is to assess the ability of the CMIP3/5 models to simulate the Indian-Ocean monsoon systems. The PI along with post-docs investigated research issues ranging from synoptic systems to long-term trends over the Asian monsoon region. The PI applied diagnostic tools such as moist static energy (MSE) to isolate: the moist and radiative processes responsible for extended monsoon breaks over South Asia, precursors in the ENSO-monsoon association, reasons for the drying tendency over South Asia and the possible effect on tropical Indian Ocean climate anomalies influencing certain aspects of ENSO characteristics. By diagnosing various observations and coupled model simulations, we developed working hypothesis and tested them by carrying out sensitivity experiments with both linear and nonlinear models. Possible physical and dynamical reasons for model sensitivities were deduced. On the teleconnection front, the ability of CMIP5 models in representing the monsoon-desert mechanism was examined recently. Further more, we have applied a suite of diagnostics and have performed an in depth analysis on CMIP5 integrations to isolate the possible reasons for the ENSO-monsoon linkage or lack thereof. The PI has collaborated with Dr. K.R. Sperber of PCMDI and other CLIVAR Asian-Australian monsoon panel members in understanding the ability of CMIP3/5 models in capturing monsoon and its spectrum of variability. The objective and process-based diagnostics aided in selecting models that best represent the present-day monsoon and its variability that are then employed for future projections. Two major highlights were an invitation to write a review on present understanding monsoons in a changing climate in Nature Climate Change, and identification of an east-west shift in observed monsoon rainfall (more rainfall over tropical western Pacific and drying tendency over South Asia) in the last six decades and attributing that shift to SST rise over the tropical

  1. Indian monsoon variations during three contrasting climatic periods: The Holocene, Heinrich Stadial 2 and the last interglacial-glacial transition

    NASA Astrophysics Data System (ADS)

    Zorzi, Coralie; Sanchez Goñi, Maria Fernanda; Anupama, Krishnamurthy; Prasad, Srinivasan; Hanquiez, Vincent; Johnson, Joel; Giosan, Liviu

    2015-10-01

    In contrast to the East Asian and African monsoons the Indian monsoon is still poorly documented throughout the last climatic cycle (last 135,000 years). Pollen analysis from two marine sediment cores (NGHP-01-16A and NGHP-01-19B) collected from the offshore Godavari and Mahanadi basins, both located in the Core Monsoon Zone (CMZ) reveals changes in Indian summer monsoon variability and intensity during three contrasting climatic periods: the Holocene, the Heinrich Stadial (HS) 2 and the Marine Isotopic Stage (MIS) 5/4 during the ice sheet growth transition. During the first part of the Holocene between 11,300 and 4200 cal years BP, characterized by high insolation (minimum precession, maximum obliquity), the maximum extension of the coastal forest and mangrove reflects high monsoon rainfall. This climatic regime contrasts with that of the second phase of the Holocene, from 4200 cal years BP to the present, marked by the development of drier vegetation in a context of low insolation (maximum precession, minimum obliquity). The historical period in India is characterized by an alternation of strong and weak monsoon centennial phases that may reflect the Medieval Climate Anomaly and the Little Ice Age, respectively. During the HS 2, a period of low insolation and extensive iceberg discharge in the North Atlantic Ocean, vegetation was dominated by grassland and dry flora indicating pronounced aridity as the result of a weak Indian summer monsoon. The MIS 5/4 glaciation, also associated with low insolation but moderate freshwater fluxes, was characterized by a weaker reduction of the Indian summer monsoon and a decrease of seasonal contrast as recorded by the expansion of dry vegetation and the development of Artemisia, respectively. Our results support model predictions suggesting that insolation changes control the long term trend of the Indian monsoon precipitation, but its millennial scale variability and intensity are instead modulated by atmospheric

  2. Non-linear regime shifts in Holocene Asian monsoon variability: potential impacts on cultural change and migratory patterns

    NASA Astrophysics Data System (ADS)

    Donges, J. F.; Donner, R. V.; Marwan, N.; Breitenbach, S. F. M.; Rehfeld, K.; Kurths, J.

    2015-05-01

    The Asian monsoon system is an important tipping element in Earth's climate with a large impact on human societies in the past and present. In light of the potentially severe impacts of present and future anthropogenic climate change on Asian hydrology, it is vital to understand the forcing mechanisms of past climatic regime shifts in the Asian monsoon domain. Here we use novel recurrence network analysis techniques for detecting episodes with pronounced non-linear changes in Holocene Asian monsoon dynamics recorded in speleothems from caves distributed throughout the major branches of the Asian monsoon system. A newly developed multi-proxy methodology explicitly considers dating uncertainties with the COPRA (COnstructing Proxy Records from Age models) approach and allows for detection of continental-scale regime shifts in the complexity of monsoon dynamics. Several epochs are characterised by non-linear regime shifts in Asian monsoon variability, including the periods around 8.5-7.9, 5.7-5.0, 4.1-3.7, and 3.0-2.4 ka BP. The timing of these regime shifts is consistent with known episodes of Holocene rapid climate change (RCC) and high-latitude Bond events. Additionally, we observe a previously rarely reported non-linear regime shift around 7.3 ka BP, a timing that matches the typical 1.0-1.5 ky return intervals of Bond events. A detailed review of previously suggested links between Holocene climatic changes in the Asian monsoon domain and the archaeological record indicates that, in addition to previously considered longer-term changes in mean monsoon intensity and other climatic parameters, regime shifts in monsoon complexity might have played an important role as drivers of migration, pronounced cultural changes, and the collapse of ancient human societies.

  3. Indian monsoon variations during three contrasting climatic periods: the Holocene, Heinrich Stadial 2 and the last interglacial-glacial transition

    NASA Astrophysics Data System (ADS)

    Zorzi, Coralie; Fernanda Sanchez Goñi, Maria; Anupama, Krishnamurthy; Prasad, Srinivasan; Hanquiez, Vincent; Johnson, Joel; Giosan, Liviu

    2016-04-01

    In contrast to the East Asian and African monsoons the Indian monsoon is still poorly documented throughout the last climatic cycle (last 135,000 years). Pollen analysis from two marine sediment cores (NGHP-01-16A and NGHP-01-19B) collected from the offshore Godavari and Mahanadi basins, both located in the Core Monsoon Zone (CMZ) reveals changes in Indian summer monsoon variability and intensity during three contrasting climatic periods: the Holocene, the Heinrich Stadial (HS) 2 and the Marine Isotopic Stage (MIS) 5/4 during the ice sheet growth transition. During the first part of the Holocene between 11,300 and 4,200 cal years BP, characterized by high insolation (minimum precession, maximum obliquity), the maximum extension of the coastal forest and mangrove reflects high monsoon rainfall. This climatic regime contrasts with that of the second phase of the Holocene, from 4,200 cal years BP to the present, marked by the development of drier vegetation in a context of low insolation (maximum precession, minimum obliquity). The historical period in India is characterized by an alternation of strong and weak monsoon centennial phases that may reflect the Medieval Climate Anomaly and the Little Ice Age, respectively. During the HS 2, a period of low insolation and extensive iceberg discharge in the North Atlantic Ocean, vegetation was dominated by grassland and dry flora indicating pronounced aridity as the result of a weak Indian summer monsoon. The MIS 5/4 glaciation, also associated with low insolation but moderate freshwater fluxes, was characterized by a weaker reduction of the Indian summer monsoon and a decrease of seasonal contrast as recorded by the expansion of dry vegetation and the development of Artemisia, respectively. Our results support model predictions suggesting that insolation changes control the long term trend of the Indian monsoon precipitation, but its millennial scale variability and intensity are instead modulated by atmospheric

  4. Simulation of the Indian and East-Asian summer monsoon in the ECMWF model: Sensitivity to horizontal resolution

    SciTech Connect

    Sperber, K.R.; Potter, G.L.; Boyle, J.S.; Hameed, S.

    1993-11-01

    The ability of the ECMWF model (Cycle 33) to simulate the Indian and East Asian summer monsoon is evaluated at four different horizontal resolutions: T21, T42, T63, and T106. Generally, with respect to the large scale features of the circulation, the largest differences among the simulations occur at T42 relative to T21. However, on regional scales, important differences among the high frequency temporal variabilitY serve as a further critical test of the model`s ability to simulate the monsoon. More generally, the results indicate the importance of evaluating high frequency time scales as a component of the climate system. T106 best captures both the spatial and temporal characteristics of the Indian and East Asian Monsoon, while T42 fails to correctly simulate the sequence and development of synoptic scale milestones that characterize the monsoon flow. In particular, T106 is superior at simulating the development and migration of the monsoon trough over the Bay of Bengal. In the T42 simulation, the development of the monsoon occurs one month earlier than typically observed. At this time the trough is incorrectly located adjacent to the east coast of India which results in an underestimate of precipitation over the Burma/Thailand region. This early establishment of the monsoon trough affects the evolution of the East-Asian monsoon and yields excessive preseason rainfall over the Mei-yu region. EOF analysis of precipitation over China indicates that T106 best simulates the Mei-yu mode of variability associated with an oscillation of the rainband that gives rise to periods of enhanced rainfall over the Yangize River Valley. The coarse resolution of T21 precludes simulation of the aforementioned regional scale monsoon flows.

  5. EMSO: European Multidisciplinary Seafloor Observatory

    NASA Astrophysics Data System (ADS)

    Favali, Paolo; Partnership, Emso

    2010-05-01

    EEMSO, an ESFRI Research Infrastructure, is the European-scale network of multidisciplinary seafloor observatories from the Arctic to the Black Sea with the scientific objective of long-term real-time monitoring of processes related to geosphere/biosphere/hydrosphere interactions. EMSO will enhance our understanding of processes through long time series appropriate to the scale of the phenomena, constituting the new frontier of studying Earth interior, deep-sea biology and chemistry and ocean processes. EMSO will reply also to the need expressed in the frame of GMES (Global Monitoring for Environment and Security) to develop a marine segment integrated in the in situ and satellite global monitoring system. The EMSO infrastructure will extend the coverage to the sea of the monitoring, integrating the land-based networks with multidisciplinary seafloor measurements. With this aim the two European research infrastructures EPOS (European Plate Observing System) and EMSO can operate in coordination in order to increase the mutual benefits. EMSO is presently at the stage of Preparatory Phase, funded in the EC FP7. The EMSO status, the perspectives and relations with other existing or incoming sensor networks and data infrastructures are outlined.

  6. Getting a grip on Indian Ocean monsoons

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    An improved understanding of the Indian Ocean monsoon season could help researchers to better forecast floods and the associated spread of cholera in low-lying Bangladesh.In a joint effort by the University of Colorado at Boulder, the Asian Disaster Preparedness Center, and the Bangladesh government, researchers are using a variety of monitoring and forecast modeling tools to better understand and characterize the monsoon season's active and calm periods. By studying Indian Ocean climatic conditions and probabilities that lead to regular flooding of the Bangladesh delta, researchers also can provide probabilities concerning outbreaks of cholera, an intestinal disease that infects large segments of that country's population.

  7. Interannual variability of the Indian monsoon and the Southern Oscillation

    SciTech Connect

    Wu, M.; Hastenrath, S.

    1986-01-01

    Years with abundant Southwest monsoon rainfall in India are characterized by anomalously low pressure over South Asia and the adjacent waters, enhanced cross-equatorial flow in the western, and increased cloudiness over the northern portion of the Indian Ocean, continuing from the pre-monsoon through the post-monsoon season; positive temperature anomalies over land and in the Arabian Sea in the pre-monsoon season, changing to negative departures after the monsoon onset. The following causality chain is suggested: the anomalously warm surfaces of south Asia and the adjacent ocean in the pre-monsoon season induce a thermal low, thus enhancing the northward directed pressure gradient, and favoring a vigorous cross-equatorial flow over the Indian Ocean. After the monsoon onset the land surfaces are cooled by evaporation, and the Arabian Sea surface waters by various wind stress effects. However, latent heat release over South Asia can now maintain the meridional topography gradients essential to the monsoon circulation. The positive phase of the Southern Oscillation (high pressure over the Eastern South Pacific) is associated with circulation departures in the Indian Ocean sector similar to those characteristic of years with abundant India monsoon rainfall. Abundant rainfall over India during the northern summer monsoon leads the positive mode of the southern Oscillation, and this in turn leads Java rainfall, whose peak is timed about half a year after that of India. A rising Southern Oscillation tendency presages abundant India Southwest Monsoon rainfall but a late monsoon onset. 46 references, 9 figures, 4 tables.

  8. Transport pathways of peroxyacetyl nitrate in the upper troposphere and lower stratosphere from different monsoon systems during the summer monsoon season

    NASA Astrophysics Data System (ADS)

    Fadnavis, S.; Semeniuk, K.; Schultz, M. G.; Kiefer, M.; Mahajan, A.; Pozzoli, L.; Sonbawane, S.

    2015-10-01

    The Asian summer monsoon involves complex transport patterns with large-scale redistribution of trace gases in the upper troposphere and lower stratosphere (UTLS). We employ the global chemistry-climate model ECHAM5-HAMMOZ in order to evaluate the transport pathways and the contributions of nitrogen oxide species peroxyacetyl nitrate (PAN), NOx and HNO3 from various monsoon regions, to the UTLS over southern Asia and vice versa. Simulated long-term seasonal mean mixing ratios are compared with trace gas retrievals from the Michelson Interferometer for Passive Atmospheric Sounding aboard ENVISAT(MIPAS-E) and aircraft campaigns during the monsoon season (June-September) in order to evaluate the model's ability to reproduce these transport patterns. The model simulations show that there are three regions which contribute substantial pollution to the South Asian UTLS: the Asian summer monsoon (ASM), the North American monsoon (NAM) and the West African monsoon (WAM). However, penetration due to ASM convection reaches deeper into the UTLS compared to NAM and WAM outflow. The circulation in all three monsoon regions distributes PAN into the tropical latitude belt in the upper troposphere (UT). Remote transport also occurs in the extratropical UT where westerly winds drive North American and European pollutants eastward where they can become part of the ASM convection and lifted into the lower stratosphere. In the lower stratosphere the injected pollutants are transported westward by easterly winds. Sensitivity experiments with ECHAM5-HAMMOZ for simultaneous NOx and non-methane volatile organic compounds (NMVOCs) emission change (-10 %) over ASM, NAM and WAM confirm similar transport. Our analysis shows that a 10 % change in Asian emissions transports ~ 5-30 ppt of PAN in the UTLS over Asia, ~ 1-10 ppt of PAN in the UTLS of northern subtropics and mid-latitudes, ~ 7-10 ppt of HNO3 and ~ 1-2 ppb of ozone in UT over Asia. Comparison of emission change over Asia, North

  9. Prediction of Indian Summer Monsoon Rainfall by Phase-Space Reconstruction Model

    NASA Astrophysics Data System (ADS)

    Sharma, A. S.; Krishnamurthy, V.

    2015-12-01

    The prediction of the Indian summer monsoon rainfall at intraseasonal time scale is investigated in this study. The summer monsoon exhibits intraseasonal oscillations (ISOs) with different periods. The leading ISO, with a period of 45 days, is presumably related to the Madden-Julian Oscillation. The ISOs have large-scale spatial structure and propagate northeastward and northwestward. A prediction model, based on some basic results of nonlinear dynamical systems theory, is constructed to predict the monsoon rainfall. An equivalent phase space of reduced dimension can be reconstructed from a long time-series of a single or a few variables of the dynamical system. In such a phase space, the trajectory of the dynamical system can be examined to search for nearest neighbors. An ensemble of such nearest neighbors and their subsequent evolution are used to construct the prediction model. In some respects, this method is similar to Lorenz's analog method. The reduced phase space is reconstructed by using a limited number of eigenmodes obtained from multi-channel singular spectrum analysis of the rainfall over the monsoon region. For this purpose, the daily gridded rainfall over India for the period 1901-2010 is used. These eigenmodes represent the ISOs and seasonally persistent modes. The prediction of the monsoon rainfall by this model is compared with the retrospective forecasts made by NCEP CFSv2 and other S2S models.

  10. Water vapor transport from the Indian monsoon region: the phenomenon of Atmospheric River

    NASA Astrophysics Data System (ADS)

    Raghav R., Sree; Mrudula, G.

    2016-05-01

    An Atmospheric/Tropospheric River (AR/TR) is a relatively narrow corridor of concentrated moisture where horizontal transport occurs in the lower atmosphere. They transport moisture from tropical regions towards the poles across the mid latitudes. Research of Atmospheric River over the Indian Monsoon region is not reported in literature. In this paper an attempt is made to examine the existence of AR in Indian Ocean and surrounding region. Meteorological parameters such as precipitable water, rainfall, air temperature and wind have been analyzed for the same. Analysis shows a clear evidence of the presence of Atmospheric River during the pre-monsoon and monsoon period. It is seen that there are variations in the origin, orientation, duration and also the formation of the river according to the vapor content in the Indian Ocean. During Elnino phase there is a pronounced transport of moisture through an Atmospheric River and also a high intensity transport occurs during monsoon period (JJA), even if moisture prevails over Indian monsoon region during other seasons also. Detailed results and extension to model forecasts will be presented in the paper.

  11. Monsoon-driven vertical fluxes of organic pollutants in the western Arabian Sea

    SciTech Connect

    Dachs, J.; Bayona, J.M.; Ittekkot, V.; Albaiges, J.

    1999-11-15

    A time series of sinking particles from the western Arabian Sea was analyzed for aliphatic and polycyclic aromatic hydrocarbons, polychlorinated biphenyls, 4,4{prime}-DDT and 4,4{prime}-DDE, to assess the role of monsoons on their vertical flux in the Indian Ocean. Concurrently, molecular markers such as sterols and linear and branched alkanes were analyzed enabling the characterization of the biogenic sources and biogeochemical processes occurring during the sampling period. Hierarchical cluster analysis (HCA) of the data set of concentrations and fluxes of these compounds confirmed a seasonal variability driven by the SW and NE monsoons. Moreover, the influence of different air masses is evidenced by the occurrence of higher concentrations of DDT, PCBs, and pyrolytic PAHs during the NE monsoon and of fossil hydrocarbons during the SW monsoon. Total annual fluxes to the deep Arabian Sea represent an important removal contribution of persistent organic pollutants, thus not being available for the global distillation process (volatilization and atmospheric transport from low or mid latitudes to cold areas). Therefore, monsoons may play a significant role on the global cycle of organic pollutants.

  12. Meridional Propagation of the MJO/ISO and Prediction of Off-equatorial Monsoon Variability

    NASA Technical Reports Server (NTRS)

    Wu, Man Li C.; Schubert, S.; Suarez, M.; Pegion, P.; Bacmeister, J.; Waliser, D.

    2004-01-01

    In this study we examine the links between tropical heating, the Madden Julian Oscillation (MJO)/Intraseasonal Oscillation (ISO), and the off-equatorial monsoon development. We examine both observations and idealized "MJO heating" experiments employing the NASA Seasonal-Interannual Prediction Project (NSIPP) atmospheric general circulation model (AGCM). In the simulations, the model is forced by climatological SST and an idealized eastward propagating heating profile that is meant to mimic the canonical heating associated with the MJO in the Indian Ocean and western Pacific. The observational analysis highlights the strong link between the Indian summer monsoon and the tropical ISO/MJO activity and heating. Here we focus on the potential for skillful predictions of the monsoon on subseasonal time scales associated with the meridional propagation of the ISOMJO. In particular, we show that the variability of the Indian summer monsoon lags behind the variability of tropical ISOMJO heating by about 15 days when the tropical heating is around 60E and 90E. This feature of the ISOMJO is reproduced in the AGCM experiments with the idealized eastward propagating MJO-like heating, suggesting that models with realistic ISOM0 variability should provide useful skill of monsoon breaks and surges on subseasonal time scales.

  13. Meridional Propagation of the MJO/ISO and Prediction of Off-equatorial Monsoon Variability

    NASA Technical Reports Server (NTRS)

    Wu, Man Li C.; Schubert, S.; Suarez, M.; Pegion, P.; Waliser, D.

    2003-01-01

    This study was examine the links between tropical heating, the Madden Julian Oscillation (MJO)/Intraseasonal Oscillation (ISO), and the off-equatorial monsoon development. We examine both observations and idealized "MJO heating" experiments employing the NASA Seasonal-Interannual Prediction Project (NSIPP) atmospheric general circulation model (AGCM). In the simulations, the model is forced by climatological SST and an idealized eastward propagating heating profile that is meant 'to mimic the canonical heating associated with the MJO in the Indian Ocean and western Pacific. The observational analysis highlights the strong link between the Indian summer monsoon and the tropical ISO/MJO activity and heating. Here we focus on the potential for skillful predictions of the monsoon on sub-seasonal time scales associated with the meridional propagation of the ISO/MJO. In particular, we show that the variability of the Indian summer monsoon lags behind the variability of tropical ISO/MJO heating by about 15 days when the tropical heating is around 60E and 90E. This feature of the ISO/MJO is reproduced in the AGCM experiments with the idealized eastward propagating MJO-like heating, suggesting that models with realistic ISO/MJO variability should provide useful skill of monsoon breaks and surges on sub-seasonal time scales.

  14. Ecosystem Response to Monsoon Rainfall Variability in Southwestern North America

    NASA Astrophysics Data System (ADS)

    Forzieri, Giovanni; Feyen, Luc; Vivoni, Enrique

    2013-04-01

    Due to its marked plant phenology driven by precipitation, the North American Monsoon System (NAMS) can serve to reveal ecological responses to climate variability and change in water-controlled regions. This study attempts to elucidate the effects of monsoon rainfall variability on vegetation dynamics over the North American Monsoon Experiment (NAME) tier I domain (20°-35° N, 105°-115° W). To this end, we analyze long-term dynamics (1982-2004) in seasonal precipitation (Pr), net primary production (NPP) and rain-use efficiency (RUE) based on phenological and biophysical memory metrics from NOAA CPC daily 1° gridded precipitation data and satellite GIMMS semi-monthly NDVI images at 8-km resolution. We focus our analysis on six diverse ecosystems spanning from semi-arid and desert environments to tropical deciduous forests to investigate: 1) the spatially averaged NPP/RUE profiles along the regional Pr gradient, 2) the linkage between NPP and Pr inter-annual variations and 3) the long-term trends of Pr, NPP and RUE. All the biomes show an increase (decrease) in mean NPP (RUE) along the mean seasonal precipitation gradient ranging from 100 to 900 mm. Variations in NPP/RUE profiles differ strongly across ecosystems and show threshold behaviors likely resulting from different physiological responses to climate effects and landscape features. Statistical analysis suggests that the inter-annual variability in NPP is significantly related to the temporal variability in precipitation. In particular, we found that forest biomes are more sensitive to inter-annual variations in precipitation regimes. Semi-arid ecosystems appear to be more resilient, probably because they are more exposed to extreme conditions and consequently better adapted to greater inter and intra-annual climate variability. The long-term positive signal in RUE imposed on its inter-annual variability, which results from a constant NPP under negative long-term trends of Pr, indicates an improved

  15. Enhancement of inland penetration of monsoon depressions in the Bay of Bengal due to prestorm ground wetness

    NASA Astrophysics Data System (ADS)

    Kishtawal, C. M.; Niyogi, Dev; Rajagopalan, Balaji; Rajeevan, M.; Jaiswal, N.; Mohanty, U. C.

    2013-06-01

    Observations of 408 monsoon low-pressure systems (MLPSs) including 196 monsoon depressions (MDs) that formed in the Bay of Bengal during the 1951-2007 period, and the gridded analysis of daily rainfall fields for the same period, were used to identify the association of antecedent rainfall (1 week average rainfall prior to the genesis of MLPS) with the genesis of MLPS and length of inland penetration by MDs. Prestorm rainfall is treated as a surrogate to prestorm ground wetness conditions due to unavailability of historical soil-moisture data over the monsoon region. These observations were analyzed using self-organizing maps (SOMs) to group nine different prestorm monsoon rainfall patterns into different transition states like active, active-to-break, break-to-active, break, etc. The analysis indicates that MLPS are four times more likely to form on a day during active monsoon state compared to break state. Analysis of MLPSs linked to each monsoon state represented by SOM nodes shows that MDs with higher inland penetration were associated with higher antecedent rainfall. On the other hand, there was no significant difference in low-level atmospheric circulation for MDs with shortest and longest inland penetration.

  16. Boreal summer continental monsoon rainfall and hydroclimate anomalies associated with the Asian-Pacific Oscillation

    NASA Astrophysics Data System (ADS)

    Zhao, Ping; Wang, Bin; Zhou, Xiuji

    2012-09-01

    With the twentieth century analysis data (1901-2002) for atmospheric circulation, precipitation, Palmer drought severity index, and sea surface temperature (SST), we show that the Asian-Pacific Oscillation (APO) during boreal summer is a major mode of the earth climate variation linking to global atmospheric circulation and hydroclimate anomalies, especially the Northern Hemisphere (NH) summer land monsoon. Associated with a positive APO phase are the warm troposphere over the Eurasian land and the relatively cool troposphere over the North Pacific, the North Atlantic, and the Indian Ocean. Such an amplified land-ocean thermal contrast between the Eurasian land and its adjacent oceans signifies a stronger than normal NH summer monsoon, with the strengthened southerly or southwesterly monsoon prevailing over tropical Africa, South Asia, and East Asia. A positive APO implies an enhanced summer monsoon rainfall over all major NH land monsoon regions: West Africa, South Asia, East Asia, and Mexico. Thus, APO is a sensible measure of the NH land monsoon rainfall intensity. Meanwhile, reduced precipitation appears over the arid and semiarid regions of northern Africa, the Middle East, and West Asia, manifesting the monsoon-desert coupling. On the other hand, surrounded by the cool troposphere over the North Pacific and North Atlantic, the extratropical North America has weakened low-level continental low and upper-level ridge, hence a deficient summer rainfall. Corresponding to a high APO index, the African and South Asian monsoon regions are wet and cool, the East Asian monsoon region is wet and hot, and the extratropical North America is dry and hot. Wet and dry climates correspond to wet and dry soil conditions, respectively. The APO is also associated with significant variations of SST in the entire Pacific and the extratropical North Atlantic during boreal summer, which resembles the Interdecadal Pacific Oscillation in SST. Of note is that the Pacific SST anomalies

  17. Decadal Prediction and Stochastic Simulation of Hydroclimate Over Monsoonal Asia

    SciTech Connect

    Ghil, Michael; Robertson, Andrew W.; Cook, Edward R.; D’Arrigo, Rosanne; Lall, Upmanu; Smyth, Padhraic J.

    2015-01-18

    We developed further our advanced methods of time series analysis and empirical model reduction (EMR) and applied them to climatic time series relevant to hydroclimate over Monsoonal Asia. The EMR methodology was both generalized further and laid on a rigorous mathematical basis via multilayered stochastic models (MSMs). We identified easily testable conditions that imply the existence of a global random attractor for MSMs and allow for non-polynomial predictors. This existence, in turn, guarantees the numerical stability of the MSMs so obtained. We showed that, in the presence of low-frequency variability (LFV), EMR prediction can be improved further by including information from selected times in the system’s past. This prediction method, dubbed Past-Noise Forecasting (PNF), was successfully applied to the Madden-Julian Oscillation (MJO). Our time series analysis and forecasting methods, based on singular-spectrum analysis (SSA) and its enhancements, were applied to several multi-centennial proxy records provided by the Lamont team. These included the Palmer Drought Severity Index (PDSI) for 1300–2005 from the Monsoonal Asia Drought Atlas (MADA), and a 300-member ensemble of pseudo-reconstructions of Indus River discharge for 1702–2005. The latter was shown to exhibit a robust 27-yr low-frequency mode, which helped multi-decadal retroactive forecasts with no look-ahead over this 300-year interval.

  18. Palaeoclimatic insights into forcing and response of monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Mohtadi, Mahyar; Prange, Matthias; Steinke, Stephan

    2016-05-01

    Monsoons are the dominant seasonal mode of climate variability in the tropics and are critically important conveyors of atmospheric moisture and energy at a global scale. Predicting monsoons, which have profound impacts on regions that are collectively home to more than 70 per cent of Earth’s population, is a challenge that is difficult to overcome by relying on instrumental data from only the past few decades. Palaeoclimatic evidence of monsoon rainfall dynamics across different regions and timescales could help us to understand and predict the sensitivity and response of monsoons to various forcing mechanisms. This evidence suggests that monsoon systems exhibit substantial regional character.

  19. The distribution of deep convection over ocean and land during the Asian summer monsoon

    NASA Technical Reports Server (NTRS)

    Grossman, Robert L.; Garcia, Oswaldo

    1990-01-01

    The characteristics of the convection over the summer monsoon are investigated using the highly reflective cloud (HRC) data set (which is a subjective-analyzed daily index of organized deep convection, at one degree resolution, for years between 1971 and 1988 of the polar-orbiting satellite imagery). The results of the analysis are used to obtain the geographical distribution of HRCs for the climatological mean summer monsoon season and its four component months and to examine the intraseasonal variation of convection over selected areas. The model results of Webster and Chou (1980) are tested by comparing the relative frequency of occurrence of HRC for continental areas, coastal zones, and open ocean.

  20. [Anorexia nervosa: a multidisciplinary approach].

    PubMed

    Bastidas, A; Cantó, T; Font, E

    2000-06-01

    The childhood-adolescent psychiatrics field has, for various years, been confronted by a very significant increase in cases of nervous anorexia, a serious eating disorder characterized by a noticeable loss of weight. At the bottom of this situation lie complex biological, psychological and social-cultural problems, which demand an interdisciplinary approach to solve them. This article presents the predisposing factors, the initial factors, the factors which maintain this disorder...; what behaviors are considered to be normal; what the physical and psychological manifestations are; as well as what the medical evaluation carried out is ... to finalize with an explanation of the different functions to be performed by each member of a multidisciplinary team. PMID:10983149

  1. Bay of Bengal: coupling of pre-monsoon tropical cyclones with the monsoon onset in Myanmar

    NASA Astrophysics Data System (ADS)

    Fosu, Boniface O.; Wang, Shih-Yu Simon

    2015-08-01

    The pre-monsoon tropical cyclone (TC) activity and the monsoon evolution in the Bay of Bengal (BoB) are both influenced by the Madden-Julian Oscillation (MJO), but the two do not always occur in unison. This study examines the conditions that allow the MJO to modulate the monsoon onset in Myanmar and TC activity concurrently. Using the APHRODITE gridded precipitation and the ERA-Interim reanalysis datasets, composite evolutions of monsoon rainfall and TC genesis are constructed for the period of 1979-2010. It is found that the MJO exhibits a strong interannual variability in terms of phase and intensity, which in some years modulate the conditions for BoB TCs to shortly precede or form concurrently with the monsoon onset in Myanmar. Such a modulation is absent in years of weaker MJO events. Further understanding of the interannual variability of MJO activity could facilitate the prediction of the monsoon onset and TC formation in the BoB.

  2. Land-Climate Feedbacks in Indian Summer Monsoon Rainfall

    NASA Astrophysics Data System (ADS)

    Asharaf, Shakeel; Ahrens, Bodo

    2016-04-01

    In an attempt to identify how land surface states such as soil moisture influence the monsoonal precipitation climate over India, a series of numerical simulations including soil moisture sensitivity experiments was performed. The simulations were conducted with a nonhydrostatic regional climate model (RCM), the Consortium for Small-Scale Modeling (COSMO) in climate mode (CCLM) model, which was driven by the European Center for Medium-Range Weather Forecasts (ECMWF) Interim reanalysis (ERA-Interim) data. Results showed that pre-monsoonal soil moisture has a significant impact on monsoonal precipitation formation and large-scale atmospheric circulations. The analysis revealed that even a small change in the processes that influence precipitation via changes in local evapotranspiration was able to trigger significant variations in regional soil moisture-precipitation feedback. It was observed that these processes varied spatially from humid to arid regions in India, which further motivated an examination of soil-moisture memory variation over these regions and determination of the ISM seasonal forecasting potential. A quantitative analysis indicated that the simulated soil-moisture memory lengths increased with soil depth and were longer in the western region than those in the eastern region of India. Additionally, the subsequent precipitation variance explained by soil moisture increased from east to west. The ISM rainfall was further analyzed in two different greenhouse gas emission scenarios: the Special Report on Emissions Scenario (SRES: B1) and the new Representative Concentration Pathways (RCPs: RCP4.5). To that end, the CCLM and its driving global-coupled atmospheric-oceanic model (GCM), ECHAM/MPIOM were used in order to understand the driving processes of the projected inter-annual precipitation variability and associated trends. Results inferred that the projected rainfall changes were the result of two largely compensating processes: increase of remotely

  3. The role of antecedent soil moisture on variability of the North American Monsoon System

    NASA Astrophysics Data System (ADS)

    Zhu, C.; Qian, Y.; Leung, R.; Gochis, D.; Cavazos, T.; Lettenmaier, D. P.

    2007-05-01

    We evaluate the influence of soil moisture anomalies on the timing and strength of North American Monsoon system (NAMS) precipitation through analysis of retrospective data sets including off-line simulations with the Variable Infiltration Capacity (VIC) land surface model, and through coupled model simulations using the MM5 mesoscale climate model coupled with the VIC land surface scheme. The role of land surface conditions on variations in monsoon precipitation in the Arizona-New Mexico and northwestern Mexico subregions of the North American Monsoon region are evaluated. The retrospective data analysis shows that soil moisture memory can propagate winter precipitation anomalies, and hence land surface cooling, through the dry spring season and into early summer. The effect is greater in NW Mexico where the monsoon begins earlier than in the southwestern U.S. We further investigate this land surface feedback mechanism through a set of coupled model runs using MM5/VIC. These coupled runs are consistent with the previous off-line runs to the extent that the VIC land surface scheme is the basis for soil moisture prediction in both. MM5/VIC control runs together with a set of sensitivity experiments in which soil moisture is prescribed to field capacity, wilting point and VIC soil moisture climatology, respectively, during pre-monsoon seasons (April-June) are used to examine the influence of antecedent (above-normal, below-normal and normal) soil moisture on pre-monsoon (May and June) surface temperature. Surface temperature, and its contrast with sea surface temperature, is a key driver of the onset of the NAMS. These experiments are intended to better understand the role of land-atmosphere feedbacks on the NAMS by testing a range of land surface and climate conditions in the coupled modeling environment.

  4. The hydrological behaviour of a forested catchment during two contrasting summer monsoon seasons

    NASA Astrophysics Data System (ADS)

    Payeur-Poirier, Jean-Lionel; Hopp, Luisa; Peiffer, Stefan

    2015-04-01

    The climate of South Korea is strongly influenced by the East Asian summer monsoon. It is hypothesized that the high precipitation regime of the summer monsoon causes significant changes in the hydrological behaviour of forested catchments, namely in water quantity, quality and flow paths. We conducted high frequency hydrometric, isotopic, hydrochemical and meteorological measurements in a forested catchment before, during and after two contrasting summer monsoon seasons. The catchment is located within the Lake Soyang watershed, where recent trends of increasing eutrophication, sediment load and organic carbon load have been observed. We studied the temporal variability of catchment runoff in relation with the spatial and temporal variability of water flow paths. The 2013 and 2014 summer monsoon seasons were, respectively, the longest and shortest that occurred in this region since 1973 and accounted for 206% and 32% of the average precipitation for the summer monsoon since 1973. For the period from June through August, the precipitation of 2014 was the lowest on record since 1973. Catchment runoff for the summer monsoon totalled 559 mm and 12 mm for 2013 and 2014, respectively. The Q50 of the flow duration curve for 2014 was more than four times lower than that for 2013. A total of 18 storm events were monitored, ranging between 13 mm and 126 mm in precipitation. A principal component analysis (PCA) and an end-member mixing analysis (EMMA) were performed in order to quantify the contribution of different end-members to catchment runoff and highlight the differences between both years. The combination of the hydrometric, isotopic and hydrochemical approaches allowed us to test our hypothesis and to shed light on the hydrological behaviour of the catchment under contrasting environmental conditions. The findings of this study could be useful for the estimation of the water balance of the Lake Soyang watershed as well as for the management of Lake Soyang.

  5. North Atlantic, ITCZ, and Monsoonal Climate Links

    NASA Astrophysics Data System (ADS)

    Haug, G. H.; Deplazes, G.; Peterson, L. C.; Brauer, A.; Mingram, J.; Dulski, P.; Sigman, D. M.

    2008-12-01

    Major element chemistry and color data from sediment cores in the anoxic Cariaco Basin off Venezuela record with (sub)annual resolution large and abrupt shifts in the hydrologic cycle of the tropical Atlantic during the last 80 ka. These data suggest a direct connection between the position of the ITCZ over northern South America, the strength of trade winds, and the temperature gradient to the high northern latitudes, ENSO, and monsoonal climate in Asia. The mechanisms behind these decadal-scale ITCZ-monsoon swings can be further explored at major climate transitions such as the onset of Younger Dryas cooling at ~12.7 ka, one of the most abrupt climate changes observed in ice core, lake and marine records in the North Atlantic realm and much of the Northern Hemisphere. Annually laminated sediments from ideally record the dynamics of abrupt climate changes since seasonal deposition immediately responds to climate and varve counts accurately estimate the time of change. We compare sub-annual geochemical data from a lake in Western Germany, which provides one of the best-dated records currently available for this climate transition, with the new the Cariaco Basin record and a new and higher resolution record from Lake Huguang Maar in China, and the Greenland ice core record. The Lake Meerfelder Maar record indicates an abrupt increase in storminess, occurring from one year to the next at 12,678 ka BP, coincident with other observed climate changes in the region. We interpret this shift of the wintertime winds to signify an abrupt change in the North Atlantic westerlies to a stronger and more zonal jet. The observed wind shift provides the atmospheric mechanism for the strong temporal link between North Atlantic overturning and European climate during the last deglaciation, tightly coupled to ITCZ migrations observed in the Cariaco Basin sediments, and a stronger east Asian Monsoon winter monsoon as seen in lake Huguang Maar, when cave stalagmite oxygen isotope data

  6. Pediatric pain management: the multidisciplinary approach

    PubMed Central

    Odell, Shannon; Logan, Deirdre E

    2013-01-01

    Chronic pain in children and adolescents is a growing problem and one that is increasingly being addressed with multidisciplinary treatment teams. This review summarizes different multidisciplinary clinics, focusing specifically on intensive pediatric pain rehabilitation centers. This review offers a summary of the challenges faced by these programs and areas for future study. PMID:24250232

  7. Multi-Disciplinary Consumer Education Curriculum.

    ERIC Educational Resources Information Center

    Sie, Maureen A.; And Others

    Two activities are described in this report, both of which focus on the multi-disciplinary approach in the development of a consumer education curriculum for high school students. The first activity, which demonstrated the feasibility of a multi-disciplinary approach using local school personnel and resources and university faculty in curriculum…

  8. Future precipitation extremes during summer monsoon in southern Pakistan

    NASA Astrophysics Data System (ADS)

    Zahid, Maida; Lucarini, Valerio

    2016-04-01

    Extreme precipitation events are considered as a hydro-meteorological hazard resulting in colossal damage worldwide. In Pakistan, the extreme precipitation events have increased in the recent decades particularly in the southern part (Sindh province). This region did not receive substantial amount of precipitation earlier, but now experiencing urban flooding almost every year causing loss of life, property, crops and infrastructure. The region lacks the information regarding the recurrence of extreme precipitation events. Therefore, there is a strong need for a reliable information of extremes over the upcoming decades for better regional planning. Although statistical methods based on extreme value theory (EVT) are the most relevant ones to study the extremes, but they are never been applied in Pakistan. To address this shortcoming, we use the peak over threshold (POT) approach to compute the return levels (RLs) of precipitation extremes, and also identify the regions most prone to them. In this study, we analyzed the summer monsoon daily precipitation measured at nine weather stations of Pakistan Meteorological Department over the period 1980-2013. The summer monsoon (JJAS) is preferred for the analysis, because most of the extreme precipitation occurs during this period. We apply POT approach to model the daily precipitation above a selected threshold for each station. Then, we estimate return levels (RLs) of precipitation extremes during summer monsoon in southern Pakistan (Sindh) for the next 5, 25, 50 and 100-years. Lastly, we compare the 5-years with 100-years RLs to indicate the stations most vulnerable to precipitation extremes in future. This work is funded by the Climate KIC, European Institute of Innovation and Technology, Germany.

  9. A multidisciplinary conceptualization of conservation opportunity.

    PubMed

    Moon, Katie; Adams, Vanessa M; Januchowski-Hartley, Stephanie R; Polyakov, Maksym; Mills, Morena; Biggs, Duan; Knight, Andrew T; Game, Edward T; Raymond, Christopher M

    2014-12-01

    An opportunity represents an advantageous combination of circumstances that allows goals to be achieved. We reviewed the nature of opportunity and how it manifests in different subsystems (e.g., biophysical, social, political, economic) as conceptualized in other bodies of literature, including behavior, adoption, entrepreneur, public policy, and resilience literature. We then developed a multidisciplinary conceptualization of conservation opportunity. We identified 3 types of conservation opportunity: potential, actors remove barriers to problem solving by identifying the capabilities within the system that can be manipulated to create support for conservation action; traction, actors identify windows of opportunity that arise from exogenous shocks, events, or changes that remove barriers to solving problems; and existing, everything is in place for conservation action (i.e., no barriers exist) and an actor takes advantage of the existing circumstances to solve problems. Different leverage points characterize each type of opportunity. Thus, unique stages of opportunity identification or creation and exploitation exist: characterizing the system and defining problems; identifying potential solutions; assessing the feasibility of solutions; identifying or creating opportunities; and taking advantage of opportunities. These stages can be undertaken independently or as part of a situational analysis and typically comprise the first stage, but they can also be conducted iteratively throughout a conservation planning process. Four types of entrepreneur can be identified (business, policy, social, and conservation), each possessing attributes that enable them to identify or create opportunities and take advantage of them. We examined how different types of conservation opportunity manifest in a social-ecological system (the Great Barrier Reef) and how they can be taken advantage of. Our multidisciplinary conceptualization of conservation opportunity strengthens and

  10. Orbital control of the western North Pacific summer monsoon

    NASA Astrophysics Data System (ADS)

    Wu, Chi-Hua; Chiang, John C. H.; Hsu, Huang-Hsiung; Lee, Shih-Yu

    2016-02-01

    Orbital forcing exerts a strong influence on global monsoon systems, with higher summer insolation leading to stronger summer monsoons in the Northern Hemisphere. However, the associated regional and seasonal changes, particularly the interaction between regional monsoon systems, remain unclear. Simulations using the Community Earth System Model demonstrate that the western North Pacific (WNP) summer monsoon responds to orbital forcing opposite to that of other major Northern Hemisphere monsoon systems. Compared with its current climate state, the simulated WNP monsoon and associated lower-tropospheric trough is absent in the early Holocene when the precession-modulated Northern Hemisphere summer insolation is higher, whereas the summer monsoons in South and East Asia are stronger and shift farther northward. We attribute the weaker WNP monsoon to the stronger diabatic heating of the summer Asian monsoon—in particular over the southern Tibetan Plateau and Maritime Continent—that in turn strengthens the North Pacific subtropical high through atmospheric teleconnections. By contrast, the impact of the midlatitude circulation changes on the WNP monsoon is weaker when the solar insolation is higher. Prior to the present WNP monsoon onset, the upper-tropospheric East Asian jet stream weakens and shifts northward; the monsoon onset is highly affected by the jet-induced high potential vorticity intrusion. In the instance of the extreme perihelion-summer, the WNP monsoon is suppressed despite a stronger midlatitude precursor than present-day, and the midlatitude circulation response to the enhanced South Asian precipitation is considerable. These conditions indicate internal monsoon interactions of an orbital scale, implying a potential mechanistic control of the WNP monsoon.

  11. East Asian Monsoon Signals Reflected in Temperature and Precipitation Changes over the Past 300 Years in the Middle and Lower Reaches of the Yangtze River

    PubMed Central

    Hao, Zhixin; Sun, Di; Zheng, Jingyun

    2015-01-01

    Based on observational data and Asian monsoon intensity datasets from China, the relationships between the East Asian winter monsoon index and winter temperature, the East Asian summer monsoon index and Meiyu precipitation over the middle and lower reaches of the Yangtze River, were analyzed. We found that the monsoon signals were reflected in the temperature and Meiyu precipitation variations. Thus, we used the reconstructed Meiyu precipitation and winter temperature series for the past 300 years and detected the summer/winter monsoon intensity signals using multi-taper spectral estimation method and wavelet analysis. The main periodicities of Meiyu precipitation and winter temperature, such as interannual cycle with 2–7-year, interdecadal-centennial cycles with 30–40-year and 50–100-year, were found. The good relationships between the East Asian summer and winter monsoons suggested that they were in phase at 31-year cycle, while out of phase at 100-year cycle, but with 20-year phase difference. In addition, the winter monsoon intensity may be regulated by the North Atlantic Oscillation, the Arctic Oscillation and the Atlantic Multidecadal Oscillation, and the summer monsoon is closely related to the signal intensities of the Pacific Decadal Oscillation. PMID:26107375

  12. Design Environment for Multifidelity and Multidisciplinary Components

    NASA Technical Reports Server (NTRS)

    Platt, Michael

    2014-01-01

    One of the greatest challenges when developing propulsion systems is predicting the interacting effects between the fluid loads, thermal loads, and structural deflection. The interactions between technical disciplines often are not fully analyzed, and the analysis in one discipline often uses a simplified representation of other disciplines as an input or boundary condition. For example, the fluid forces in an engine generate static and dynamic rotor deflection, but the forces themselves are dependent on the rotor position and its orbit. It is important to consider the interaction between the physical phenomena where the outcome of each analysis is heavily dependent on the inputs (e.g., changes in flow due to deflection, changes in deflection due to fluid forces). A rigid design process also lacks the flexibility to employ multiple levels of fidelity in the analysis of each of the components. This project developed and validated an innovative design environment that has the flexibility to simultaneously analyze multiple disciplines and multiple components with multiple levels of model fidelity. Using NASA's open-source multidisciplinary design analysis and optimization (OpenMDAO) framework, this multifaceted system will provide substantially superior capabilities to current design tools.

  13. South Asian Summer Monsoon and Its Relationship with ENSO in the IPCC AR4 Simulations

    SciTech Connect

    Annamalai, H; Hamilton, K; Sperber, K R

    2005-09-07

    In this paper we use the extensive integrations produced for the IPCC Fourth Assessment Report (AR4) to examine the relationship between ENSO and the monsoon at interannual and decadal timescales. We begin with an analysis of the monsoon simulation in the 20th century integrations. Six of the 18 models were found to have a reasonably realistic representation of monsoon precipitation climatology. For each of these six models SST and anomalous precipitation evolution along the equatorial Pacific during El Nino events display considerable differences when compared to observations. Out of these six models only four (GFDL{_}CM{_}2.0, GFDL{_}CM{_}2.1, MRI, and MPI{_}ECHAM5) exhibit a robust ENSO-monsoon contemporaneous teleconnection, including the known inverse relationship between ENSO and rainfall variations over India. Lagged correlations between the all-India rainfall (AIR) index and Nino3.4 SST reveal that three models represent the timing of the teleconnection, including the spring predictability barrier which is manifested as the transition from positive to negative correlations prior to the monsoon onset. Furthermore, only one of these three models (GFDL{_}CM{_}2.1) captures the observed phase lag with the strongest anticorrelation of SST peaking 2-3 months after the summer monsoon, which is partially attributable to the intensity of simulated El Nino itself. We find that the models that best capture the ENSO-monsoon teleconnection are those that correctly simulate the timing and location of SST and diabatic heating anomalies in the equatorial Pacific, and the associated changes to the equatorial Walker Circulation during El Nino events. The strength of the AIR-Nino3.4 SST correlation in the model runs waxes and wanes to some degree on decadal timescales. The overall magnitude and timescale for this decadal modulation in most of the models is similar to that seen in observations. However, there is little consistency in the phase among the realizations

  14. AIAA/USAF/NASA/OAI Symposium on Multidisciplinary Analysis and Optimization, 4th, Cleveland, OH, Sept. 21-23, 1992, Technical Papers. Pts. 1 & 2

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The papers presented at the symposium cover aerodynamics, design applications, propulsion systems, high-speed flight, structures, controls, sensitivity analysis, optimization algorithms, and space structures applications. Other topics include helicopter rotor design, artificial intelligence/neural nets, and computational aspects of optimization. Papers are included on flutter calculations for a system with interacting nonlinearities, optimization in solid rocket booster application, improving the efficiency of aerodynamic shape optimization procedures, nonlinear control theory, and probabilistic structural analysis of space truss structures for nonuniform thermal environmental effects.

  15. On the Onset of the Planetary Scale Monsoon

    NASA Astrophysics Data System (ADS)

    Pasch, Richard Joseph

    A hypothesis, concerning the spatial scale of the onset of the Asian southwest monsoon of the Northern Hemispheric summer, is put forth. It is implied, from the large scale climatology of the tropospheric motion and temperature fields in May and June, that the monsoon onset is characterized by radical changes in the tropical circulations on a planetary scale. A suitable framework for the quantitative definition of this phenomenon, i.e., the atmospheric energetics in the zonal wavenumber domain, is reviewed. Global tropospheric wind and temperature data for periods surrounding the Indian monsoon onset cases of 1973, 1977 and 1979 are utilized. It is found that the kinetic and available potential energy of the sum of zonal wavenumbers 1, 2 and 3 (defined as the planetary scale waves) increase by about 30 to 50% on the time scale of about 1 week, corresponding to Indian (regional) onset. This increase characterizes the planetary scale onset. From the point of view of scale interactions, the observational calculations show that the planetary scale eddies, in general, supply available potential and kinetic energy to other (zonal mean and sub-planetary) scales during the onset although there are some interesting time variations. It is concluded that additional mechanisms must play the dominant roles in the planetary scale onset. To determine a more complete energetics for the onset using a dynamically more consistent set of atmospheric observations, an NWP experiment, for the 1979 onset case, is conducted. A global, multi-level, primitive equation spectral model containing a variety of physical effects parameterizations is described in detail. The results of a 96-hour prediction are compared to the observed circulation and rainfall patterns over the Indian Ocean region and the model is seen to reproduce the broad scale synoptic features of the onset fairly well. An analysis of the model diagnosed energetics (for the planetary scale waves) reveals that deep cumulus

  16. Dirtier Air from a Weaker Monsoon

    NASA Technical Reports Server (NTRS)

    Chin, Mian

    2012-01-01

    The level of air pollution in China has much increased in the past decades, causing serious health problems. Among the main pollutants are aerosols, also known as particulate matter: tiny, invisible particles that are suspended in the air. These particles contribute substantially to premature mortality associated with cardiopulmonary diseases and lung cancer1. The increase of the aerosol level in China has been commonly attributed to the fast rise in pollutant emissions from the rapid economic development in the region. However, writing in Geophysical Research Letters, Jianlei Zhu and colleagues2 tell a different side of the story: using a chemical transport model and observation data, they show that the decadal scale weakening of the East Asian summer monsoon has also contributed to the increase of aerosol concentrations in China. The life cycle of atmospheric aerosols starts with its emission or formation in the atmosphere. Some aerosol components such as dust, soot and sea salt are emitted directly as particles to the atmosphere, but others are formed there by way of photochemical reactions. For example, sulphate and nitrate aerosols are produced from their respective precursor gases, sulphur dioxide and nitrogen oxides. Aerosol particles can be transported away from their source locations by winds or vertical motion of the air. Eventually, they are removed from the atmosphere by means of dry deposition and wet scavenging by precipitation. Measurements generally show that aerosol concentrations over Asia are lowest during the summer monsoon season3, because intense rainfall efficiently removes them from the air. The East Asian summer monsoon extends over subtropics and mid-latitudes. Its rainfall tends to concentrate in rain belts that stretch out for many thousands of kilometres and affect China, Korea, Japan and the surrounding area. Observations suggest that the East Asian summer monsoon circulation and precipitation have been in decline since the 1970s4. In

  17. On breaks of the Indian monsoon

    NASA Astrophysics Data System (ADS)

    Gadgil, Sulochana; Joseph, P. V.

    2003-12-01

    For over a century, the term break has been used for spells in which the rainfall over the Indian monsoon zone is interrupted. The phenomenon of ’break monsoon’ is of great interest because long intense breaks are often associated with poor monsoon seasons. Such breaks have distinct circulation characteristics (heat trough type circulation) and have a large impact on rainfed agriculture. Although interruption of the monsoon rainfall is considered to be the most important feature of the break monsoon, traditionally breaks have been identified on the basis of the surface pressure and wind patterns over the Indian region. We have defined breaks (and active spells) on the basis of rainfall over the monsoon zone. The rainfall criteria are chosen so as to ensure a large overlap with the traditional breaks documented by Ramamurthy (1969) and De et al (1998). We have identified these rainbreaks for 1901-89. We have also identified active spells on the basis of rainfall over the Indian monsoon zone. We have shown that the all-India summer monsoon rainfall is significantly negatively correlated with the number of rainbreak days (correlation coefficient -0.56) and significantly positively correlated with the number of active days (correlation coefficient 0.47). Thus the interannual variation of the all-India summer monsoon rainfall is shown to be related to the number of days of rainbreaks and active spells identified here. There have been several studies of breaks (and also active spells in several cases) identified on the basis of different criteria over regions differing in spatial scales (e.g., Webster et al 1998; Krishnan et al it 2000; Goswami and Mohan 2000; and Annamalai and Slingo 2001). We find that there is considerable overlap between the rainbreaks we have identified and breaks based on the traditional definition. There is some overlap with the breaks identified by Krishnan et al (2000) but little overlap with breaks identified by Webster et al (1998

  18. Multidisciplinary research of geothermal modeling

    NASA Astrophysics Data System (ADS)

    -Ing. Ulvi Arslan, Univ., ., Dr. _., Prof.; Heiko Huber, Dipl.-Ing.

    2010-05-01

    KEYWORDS Geothermal sciences, geothermics, research, theory and application, numerical calculation, geothermal modeling, Technical University Darmstadt, Ministry of Economics and Technology (BMWi) INTRODUCTION In times of global warming renewable, green energies are getting more and more important. The development of application of geothermal energy as a part of renewable energies in Germany is a multidisciplinary process of fast growing research and improvements. Geothermal energy is the energy, which is stored below earth's surface. The word geothermal derives from the Greek words geo (earth) and thermos (heat), so geothermal is a synonym to earth heat. Geothermal energy is one of the auspicious renewable energies. In average the temperature increases 3°C every 100 m of depth, which is termed as geothermal gradient. Therefore 99 percent of our planet is hotter than 1.000°C, while 99 percent of that last percent is even hotter than 100°C. Already in a depth of about 1 kilometer temperatures of 35 - 40°C can be achieved. While other renewable energies arise less or more from the sun, geothermal energy sources its heat from the earth's interior, which is caused mostly by radioactive decay of persistent isotopes. This means a possibility of a base-loadable form of energy supply. Especially efficient is the use of deep geothermal energy of high-enthalpie reservoirs, which means a high energy potential in low depths. In Germany no high-enthalpie reservoirs are given. To use the given low-enthalpie potential and to generate geothermal power efficiently inventions and improvements need to be performed. An important part of geothermal progresses is performed by universities with multidisciplinary research of geothermal modeling. Especially in deep geothermal systems numerical calculations are essential for a correct dimensioning of the geothermal system. Therefore German universities and state aided organizations are developing numerical programs for a detailed use of

  19. Land surface and ocean effects on the variabilities of three Asian summer monsoons

    NASA Astrophysics Data System (ADS)

    Lee, Eungul

    The effects on the variabilities of three Asian summer monsoons of changes in recent land surface and ocean heat sources are examined using the results from several observational analyses and modeling simulations. We find that the East Asian summer monsoon (EASM) can be subdivided into a northern and a southern component with distinctly different driving mechanisms. The northern EASM (NEASM) is affected by heat sources in the tropical oceans related to El Nino events, while the southern EASM (SEASM) is affected by the subtropical oceans related to a North Pacific sea surface temperature (SST) dipole mode. A stronger NEASM is related to above-normal western North Pacific anticyclonic anomalies, while a stronger SEASM is related to below-normal western North Pacific anticyclonic anomalies. These anticyclonic anomalies are connected to SST anomalies in the tropical and subtropical Pacific during the pre-monsoon season (December˜May). We provide evidence that decreased July sensible heat flux in the Indian subcontinent (an expected result of increased soil moisture due to irrigation and increased vegetation) leads to a reduced land-sea thermal contrast, which is one of the driving factors for the monsoon, and therefore weakens the monsoon circulation. Thus, a weak early Indian summer monsoon appears to be at least partially a result of irrigation and the resultant increased vegetation activity during the preceding spring. EASM precipitation can be predicted from land and ocean factors during the pre-monsoon season using a linear regression model. Statistical forecast models of the EASM using land cover conditions in addition to ocean heat sources double and triple, respectively, the predictive skill of the NEASM and SEASM forecasting models relative to models using ocean factors alone. This work highlights the, as yet, undocumented importance of seasonal land cover in monsoon prediction and the role of the biosphere in the climate system as a whole. We also detail the

  20. Evolving the linkages between North American Monsoon Experiment research and services in the binational monsoon region

    NASA Astrophysics Data System (ADS)

    Ray, A. J.

    2007-05-01

    Multi-year drought, high interannual precipitation variability, and rapid population growth present major challenges to water resources and land managers in the U.S. Southwest and binational monsoon region. The NAME strategy to improve warm season precipitation forecasts is paying off in the understanding of the system and its potential predictability, illustrated by a special issue of the Journal of Climate with about 25 articles and numerous other published papers (e.g. Higgins and Gochis et al. 2006; Gutzler et al. 2004, Higgins et al. 2003). NOAA now has set a goal to NAME and other initiatives also have the potential to provide key insights, such as historic information regarding onset and overall strength of the monsoon as it affects stakeholder interests in flooding, soil moisture, vegetation health, and summer water demand. However, the usual avenues for scientific output, such as peer-reviewed publications and web sites designed for use by climate and weather experts, do not adequately support the flow of knowledge to operational decisionmakers. A recent workshop on Monsoon Region climate Applications in Guaymas, Sonora identified several areas in which monsoon science might contribute to reducing societal vulnerability, as well as some research findings that are suited to transition into model development and operations at service providers including NOAA and SMN. They recommended that products are needed that interpret climate forecasts for water resource management applications, and developing new regionally-tailored climate information products. This presentation will discuss how to enhance the flow of monsoon information and predictions to stakeholders by linking user-oriented perspectives with research results from NAME and other programs, including a new effort for a North American Monsoon Forecast Forum which plans to develop periodic consolidated North American Monsoon outlooks.

  1. Modern monsoon extent and moisture dynamics over eastern Asian: evidence from precipitation and water vapor isotopes

    NASA Astrophysics Data System (ADS)

    Liu, Zhongfang; Kei, Yoshimura; Bowen, Gabriel J.; Tian, Lide

    2013-04-01

    The climate of eastern Asia is dominated by the Asia monsoon (AM) system, which controls seasonal patterns of moisture sources and transport to the region. Measurements of water isotopes can provide insight into monsoon extent and moisture dynamics. Here we present an analysis of a spatially dense network of precipitation isotopes (d18O and dD) from a ground-based network and water vapor dD retrieved from satellite measurements. The results show that isotopic seasonality for both precipitation and water vapor exhibits two distinctly different, spatially coherent modes. Summer-season isotope ratios are relatively low to the south of ~35°N and high to the north, with the transition between these zones reflecting the approximate northward extent of Asia summer monsoon influence. In the southern monsoon domain, low isotope values with relatively low precipitation d-excess (9.4‰ in SE China) in summer appear not to reflect the amount effect, but rather the dominance of monsoon moisture with long-distance transport from the Indian and southern Pacific oceans and continental convective recycling (contribute to about 30-48% moisture in SE China). In contrast, other seasons are dominated by dry continental masses, characterized by high d-excess (12.7‰) and isotope values. In northern China, a region that is beyond extent of monsoon, the moisture is derived overwhelmingly from the dry continental air masses. Here, water isotope ratios exhibit stronger temperature dependence, with enriched values in summer and depleted values in other seasons. The relatively low precipitation d-excess (<8‰) in northern China and inverse spatial isotope patterns between precipitation and water vapor across China during the summer further suggest that re-evaporation of falling raindrops is a key driver of water isotope behavior in northern China.

  2. Atmospheric circulation processes contributing to a multidecadal variation in reconstructed and modeled Indian monsoon precipitation

    NASA Astrophysics Data System (ADS)

    Wu, Qianru; Hu, Qi

    2015-01-01

    analysis of the recently reconstructed gridded May-September total precipitation in the Indian monsoon region for the past half millennium discloses significant variations at multidecadal timescales. Meanwhile, paleo-climate modeling outputs from the National Center for Atmospheric Research Community Climate System Model 4.0 show similar multidecadal variations in the monsoon precipitation. One of those variations at the frequency of 40-50 years per cycle is examined in this study. Major results show that this variation is a product of the processes in that the meridional gradient of the atmospheric enthalpy is strengthened by radiation loss in the high-latitude and polar region. Driven by this gradient and associated baroclinicity in the atmosphere, more heat/energy is generated in the tropical and subtropical (monsoon) region and transported poleward. This transport relaxes the meridional enthalpy gradient and, subsequently, the need for heat production in the monsoon region. The multidecadal timescale of these processes results from atmospheric circulation-radiation interactions and the inefficiency in generation of kinetic energy from the potential energy in the atmosphere to drive the eddies that transport heat poleward. This inefficiency creates a time delay between the meridional gradient of the enthalpy and the poleward transport. The monsoon precipitation variation lags that in the meridional gradient of enthalpy but leads that of the poleward heat transport. This phase relationship, and underlining chasing process by the transport of heat to the need for it driven by the meridional enthalpy gradient, sustains this multidecadal variation. This mechanism suggests that atmospheric circulation processes can contribute to multidecadal timescale variations. Interactions of these processes with other forcing, such as sea surface temperature or solar irradiance anomalies, can result in resonant or suppressed variations in the Indian monsoon precipitation.

  3. Atmospheric circulation feedback on west Asian dust and Indian monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Kaskaoutis, Dimitris; Houssos, Elias; Gautam, Ritesh; Singh, Ramesh; Rashki, Alireza; Dumka, Umesh

    2016-04-01

    Classification of the atmospheric circulation patterns associated with high aerosol loading events over the Ganges valley, via the synergy of Factor and Cluster analysis techniques, has indicated six different synoptic weather patterns, two of which mostly occur during late pre-monsoon and monsoon seasons (May to September). The current study focuses on examining these two specific clusters that are associated with different mean sea level pressure (MSLP), geopotential height at 700 hPa (Z700) and wind fields that seem to affect the aerosol (mostly dust) emissions and precipitation distribution over the Indian sub-continent. Furthermore, the study reveals that enhanced aerosol presence over the Arabian Sea is positively associated with increased rainfall over the Indian landmass. The increased dust over the Arabian Sea and rainfall over India are associated with deepening of the northwestern Indian and Arabian lows that increase thermal convection and convergence of humid air masses into Indian landmass, resulting in larger monsoon precipitation. For this cluster, negative MSLP and Z700 anomalies are observed over the Arabian Peninsula that enhance the dust outflow from Arabia and, concurrently, the southwesterly air flow resulting in increase in monsoon precipitation over India. The daily precipitation over India is found to be positively correlated with the aerosol loading over the Arabian Sea for both weather clusters, thus verifying recent results from satellite observations and model simulations concerning the modulation of the Indian summer monsoon rainfall by the Arabian dust. The present work reveals that in addition to the radiative impacts of dust on modulating the monsoon rainfall, differing weather patterns favor changes in dust emissions, accumulation as well as rainfall distribution over south Asia.

  4. In-phase transition from the winter monsoon to the summer monsoon over East Asia: Role of the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Wu, Renguang

    2012-06-01

    Analysis of observations shows that the weak East Asian winter monsoon (EAWM) to weak East Asian summer monsoon (EASM) transitions mainly occur in El Niño decaying years whereas strong EAWM (denoting stronger northerly winds along East Asian coast) to strong EASM (denoting less precipitation along the Meiyu-Baiu rainband) transitions all occur in non-El Niño-Southern Oscillation (ENSO) years during the period 1979-2009. This new finding implies that ENSO is not indispensable to the in-phase EAWM to the EASM transitions. The present study reveals an important role of the Indian Ocean in the strong EAWM to strong EASM transitions and proposes a possible mechanism for these transitions. A strong EAWM induces more precipitation over the Maritime Continent, and the associated anomalous heating excites a Gill-Matsuno type pattern in the tropics. The resultant wind and cloud changes enhance latent heat flux and reduce downward shortwave radiation over the northwestern Indian Ocean in winter, which leads to SST cooling. The cold SST anomalies persist to summer and excite an anomalous cyclone over the subtropical western North Pacific, leading to a strong EASM. The above processes also operate in the weak EAWM to weak EASM transitions during which El Niño impacts dominate but with additional contributions from the EAWM. The results of observational analysis are confirmed by numerical experiments with a coupled model.

  5. Simulation of Monsoonal Characteristics of the East Asian Climate during the Mid-Cretaceous in a Coupled Climate Model

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Wang, C.; Yang, J.; Guo, Y.

    2014-12-01

    To increase understanding of the future changes of the East Asian monsoon (EAM) under the current global warming background, we turn to investigate the EAM during the mid-Cretaceous (~90Ma), which is one of the warmest greenhouse climate episodes of the Phanerozoic. Utilizing the Community Earth System Model (CESM) version 1.03 from the National Center for Atmospheric Research (NCAR), we simulate the global climate in the mid-Cretaceous, and some results can well match with some geological evidences. New indices of monsoon based on the seasonal/annual precipitation ratios are defined, and they can represent modern EAM well. Upon these indices, the simulation results demonstrate that the East Asia has been a typical monsoon region during the mid-Cretaceous, and then the mid-Cretaceous EAM were analyzed and compared with the modern EAM. According to the spatial pattern of the EAM index, the EAM region was divided into two subregions: East Asian low-latitude monsoon (EALM) and East Asian mid-latitude monsoon (EAMM). The mid-Cretaceous EALM was comparable to the modern one, as well as the summer and winter monsoon intensities. However, the monsoon index was reduced obviously in the mid-latitudes of East Asia, which indicates that the mid-Cretaceous EAMM was not as significant as modern. Thorough the analysis on the climatology in the EAMM region, the mid-Cretaceous summer/annual precipitation ratio was smaller than modern, while the winter/annual precipitation ratio was greater. This difference between the mid-Cretaceous and modern EAMM shows that the summer and winter monsoon intensities both weaken and that the uneven distribution of precipitation in different seasons is alleviated in the mid-Cretaceous world, therefore the mid-Cretaceous EAMM is a weaker system.

  6. Assessment of South Asian Summer Monsoon Simulation in CMIP5-Coupled Climate Models During the Historical Period (1850-2005)

    NASA Astrophysics Data System (ADS)

    Prasanna, Venkatraman

    2016-04-01

    This paper evaluates the performance of 29 state-of-art CMIP5-coupled atmosphere-ocean general circulation models (AOGCM) in their representation of regional characteristics of monsoon simulation over South Asia. The AOGCMs, despite their relatively coarse resolution, have shown some reasonable skill in simulating the mean monsoon and precipitation variability over the South Asian monsoon region. However, considerable biases do exist with reference to the observed precipitation and also inter-model differences. The monsoon rainfall and surface flux bias with respect to the observations from the historical run for the period nominally from 1850 to 2005 are discussed in detail. Our results show that the coupled model simulations over South Asia exhibit large uncertainties from one model to the other. The analysis clearly brings out the presence of large systematic biases in coupled simulation of boreal summer precipitation, evaporation, and sea surface temperature (SST) in the Indian Ocean, often exceeding 50 % of the climatological values. Many of the biases are common to many models. Overall, the coupled models need further improvement in realistically portraying boreal summer monsoon over the South Asian monsoon region.

  7. Status of NCEP CFS vis-a-vis IPCC AR4 models for the simulation of Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Pokhrel, Samir; Dhakate, Ashish; Chaudhari, Hemantkumar S.; Saha, Subodh K.

    2013-01-01

    National Centers for Environmental Prediction (NCEP) Coupled Forecast System (CFS) is selected to play a lead role for monsoon research (seasonal prediction, extended range prediction, climate prediction, etc.) in the ambitious Monsoon Mission project of Government of India. Thus, as a prerequisite, a detail analysis for the performance of NCEP CFS vis-a-vis IPCC AR4 models for the simulation of Indian summer monsoon (ISM) is attempted. It is found that the mean monsoon simulations by CFS in its long run are at par with the IPCC models. The spatial distribution of rainfall in the realm of Indian subcontinent augurs the better results for CFS as compared with the IPCC models. The major drawback of CFS is the bifurcation of rain types; it shows almost 80-90 % rain as convective, contrary to the observation where it is only 50-65 %; however, the same lacuna creeps in other models of IPCC as well. The only respite is that it realistically simulates the proper ratio of convective and stratiform rain over central and southern part of India. In case of local air-sea interaction, it outperforms other models. However, for monsoon teleconnections, it competes with the better models of the IPCC. This study gives us the confidence that CFS can be very well utilized for monsoon studies and can be safely used for the future development for reliable prediction system of ISM.

  8. The Diurnal Cycle of the Boundary Layer, Convection, Clouds, and Surface Radiation in a Coastal Monsoon Environment (Darwin Australia)

    SciTech Connect

    May, Peter T.; Long, Charles N.; Protat, Alain

    2012-08-01

    The diurnal variation of convection and associated cloud and radiative properties remains a significant issue in global NWP and climate models. This study analyzes observed diurnal variability of convection in a coastal monsoonal environment examining the interaction of convective rain clouds, their associated cloud properties, and the impact on the surface radiation and corresponding boundary layer structure during periods where convection is suppressed or active on the large scale. The analysis uses data from the Tropical Warm Pool International Cloud Experiment (TWP-ICE) as well as routine measurements from the Australian Bureau of Meteorology and the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program. Both active monsoonal and large-scale suppressed (buildup and break) conditions are examined and demonstrate that the diurnal variation of rainfall is much larger during the break periods and the spatial distribution of rainfall is very different between the monsoon and break regimes. During the active monsoon the total net radiative input to the surface is decreased by more than 3 times the amount than during the break regime - this total radiative cloud forcing is found to be dominated by the shortwave (SW) cloud effects because of the much larger optical thicknesses and persistence of long-lasting anvils and cirrus cloud decks associated with the monsoon regime. These differences in monsoon versus break surface radiative energy contribute to low-level air temperature differences in the boundary layer over the land surfaces.

  9. Regime shifts in Holocene Asian monsoon dynamics inferred from speleothems: Potential impacts on cultural change and migratory patterns

    NASA Astrophysics Data System (ADS)

    Donges, Jonathan F.; Donner, Reik V.; Marwan, Norbert; Breitenbach, Sebastian F. M.; Rehfeld, Kira; Kurths, Jürgen

    2014-05-01

    The Asian monsoon system has been recognized as an important potential tipping element in Earth's climate. A global warming-driven change in monsoonal circulation, potentially towards a drier and more irregular regime, would profoundly affect up to 60% of the global human population. Hence, to improve our understanding of this major climate system, it is mandatory to investigate evidence for nonlinear transitions in past monsoonal dynamics and the underlying mechanisms that are contained in the available palaeoclimatic record. For this purpose, speleothems are among the best available high-resolution archives of Asian palaeomonsoonal variability during the Holocene and well beyond. In this work, we apply recurrence networks, a recently developed technique for nonlinear time series analysis of palaeoclimate data (Donges et al., PNAS 108, 20422-20427, 2011), for detecting episodes with pronounced changes in Asian monsoon dynamics during the last 10 ka in oxygen isotope records from spatially distributed cave deposits covering the different branches of the Asian monsoon system. Our methodology includes multiple archives, explicit consideration of dating uncertainties with the COPRA approach and rigorous significance testing to ensure the robust detection of continental-scale changes in monsoonal dynamics. We identify several periods characterised by nonlinear changes in Asian monsoon dynamics (e.g., ~0.5, 2.2-2.8, 3.6-4.1, 5.4-5.7, and 8.0-8.5 ka before present [BP]), the timing of which suggests a connection to extra-tropical Bond events and rapid climate change (RCC) episodes during the Holocene. Interestingly, we furthermore detect an epoch of significantly increased regularity of monsoonal variations around 7.3 ka BP, a timing that is consistent with the typical 1.0-1.5 ka periodicity of Bond events but has been rarely reported in the literature so far. Furthermore, we find that the detected epochs of nonlinear regime shifts in Asian monsoon dynamics partly

  10. Coupled multi-disciplinary composites behavior simulation

    NASA Technical Reports Server (NTRS)

    Singhal, Surendra N.; Murthy, Pappu L. N.; Chamis, Christos C.

    1993-01-01

    The capabilities of the computer code CSTEM (Coupled Structural/Thermal/Electro-Magnetic Analysis) are discussed and demonstrated. CSTEM computationally simulates the coupled response of layered multi-material composite structures subjected to simultaneous thermal, structural, vibration, acoustic, and electromagnetic loads and includes the effect of aggressive environments. The composite material behavior and structural response is determined at its various inherent scales: constituents (fiber/matrix), ply, laminate, and structural component. The thermal and mechanical properties of the constituents are considered to be nonlinearly dependent on various parameters such as temperature and moisture. The acoustic and electromagnetic properties also include dependence on vibration and electromagnetic wave frequencies, respectively. The simulation is based on a three dimensional finite element analysis in conjunction with composite mechanics and with structural tailoring codes, and with acoustic and electromagnetic analysis methods. An aircraft engine composite fan blade is selected as a typical structural component to demonstrate the CSTEM capabilities. Results of various coupled multi-disciplinary heat transfer, structural, vibration, acoustic, and electromagnetic analyses for temperature distribution, stress and displacement response, deformed shape, vibration frequencies, mode shapes, acoustic noise, and electromagnetic reflection from the fan blade are discussed for their coupled effects in hot and humid environments. Collectively, these results demonstrate the effectiveness of the CSTEM code in capturing the coupled effects on the various responses of composite structures subjected to simultaneous multiple real-life loads.

  11. Effect of El-Nino on Southwest Monsoon 2015

    NASA Astrophysics Data System (ADS)

    K. U., Vidhulakshmi; Mrudula, G.

    2016-05-01

    Indian Summer Monsoon Rainfall (ISMR) of 2015 showed a deficit of 14% in the seasonal rainfall. Many researchers connected this deficit to the El-Nino which developed in late May. In this study an analysis of major ENSO events and its influence on ISMR during the period 1975 till present have been carried out. The behavior of ISMR during the previous El-Nino/La-Nina years has been compared with that of 2015. Preliminary analysis shows the effects of El-Nino on ISMR of 2015 started mainly from July. This is attributed to Madden Julian Oscillation (MJO) by many scientists. Analysis of spatial and temporal correlations of SST of various Nino regions with the ISMR and of MJO will also be presented in detail.

  12. Temporomandibular joint multidisciplinary team clinic.

    PubMed

    Ahmed, Nabeela; Poate, Tim; Nacher-Garcia, Cristina; Pugh, Nicola; Cowgill, Helen; Page, Lisa; Matthews, N Shaun

    2014-11-01

    Patients with dysfunction of the temporomandibular joint (TMJ) commonly present to oral and maxillofacial departments and are increasingly being managed by a subspecialist group of surgeons. We review the outcomes of patients attending a specialist TMJ multidisciplinary team (MDT) clinic. All patients are simultaneously reviewed by a consultant oral and maxillofacial surgeon, consultant in oral medicine, specialist physiotherapist, and maxillofacial prosthetist, and they can also see a consultant liaison psychiatrist. They are referred from primary, secondary, and tertiary care when medical and surgical treatment in the routine TMJ clinic has failed, and are triaged by the attending maxillofacial surgeon. On discharge they are returned to the care of the referring practitioner. We review the outcomes of patients attending this clinic over a 2-year period and show improvements in pain scores and maximal incisal opening, as well as quality of life outcome measures. All units in the UK with an interest in the management of diseases of the TMJ should consider establishing this type of clinic and should use available resources and expertise to maximise outcomes. PMID:25179688

  13. Pineal lesions: a multidisciplinary challenge.

    PubMed

    Westphal, Manfred; Emami, Pedram

    2015-01-01

    The pineal region is a complex anatomical compartment, harbouring the pineal gland surrounded by the quadrigeminal plate and the confluents of the internal cerebral veins to form the vein of Galen. The complexity of lesions in that region, however, goes far beyond the pineal parenchyma proper. Originating in the pineal gland, there are not only benign cysts but also numerous different tumour types. In addition, lesions such as tectal gliomas, tentorial meningiomas and choroid plexus papillomas arise from the surrounding structures, occupying that regions. Furthermore, the area has an affinity for metastatic lesions. Vascular lesions complete the spectrum mainly as small tectal arteriovenous malformations or cavernous haemangiomas.Taken together, there is a wide spectrum of lesions, many unique to that region, which call for a multidisciplinary approach. The limited access and anatomical complexity have generated a spectrum of anatomical approaches and raised the interest for neuroendoscopic approaches. Equally complex is the spectrum of treatment modalities such as microsurgery as the main option but stereotactic radiosurgery as an alternative or adjuvant to surgery for selected cases, radiation as for germinoma (see below) and or combinatorial chemotherapy, which may need to precede any other ablative technique as constituents.In this context, we review the current literature and our own series to obtain a snapshot sentiment of how to approach pineal lesions, how to interrelate alternative/competing concepts and review the recent technological advances. PMID:25411146

  14. Multidisciplinary approaches to solar hydrogen

    PubMed Central

    Bren, Kara L.

    2015-01-01

    This review summarizes three different approaches to engineering systems for the solar-driven evolution of hydrogen fuel from water: molecular, nanomaterials and biomolecular. Molecular systems have the advantage of being highly amenable to modification and detailed study and have provided great insight into photophysics, electron transfer and catalytic mechanism. However, they tend to display poor stability. Systems based on nanomaterials are more robust but also are more difficult to synthesize in a controlled manner and to modify and study in detail. Biomolecular systems share many properties with molecular systems and have the advantage of displaying inherently high efficiencies for light absorption, electron–hole separation and catalysis. However, biological systems must be engineered to couple modules that capture and convert solar photons to modules that produce hydrogen fuel. Furthermore, biological systems are prone to degradation when employed in vitro. Advances that use combinations of these three tactics also are described. Multidisciplinary approaches to this problem allow scientists to take advantage of the best features of biological, molecular and nanomaterials systems provided that the components can be coupled for efficient function. PMID:26052425

  15. EMSO: European multidisciplinary seafloor observatory

    NASA Astrophysics Data System (ADS)

    Favali, Paolo; Beranzoli, Laura

    2009-04-01

    EMSO has been identified by the ESFRI Report 2006 as one of the Research Infrastructures that European members and associated states are asked to develop in the next decades. It will be based on a European-scale network of multidisciplinary seafloor observatories from the Arctic to the Black Sea with the aim of long-term real-time monitoring of processes related to geosphere/biosphere/hydrosphere interactions. EMSO will enhance our understanding of processes, providing long time series data for the different phenomenon scales which constitute the new frontier for study of Earth interior, deep-sea biology and chemistry, and ocean processes. The development of an underwater network is based on past EU projects and is supported by several EU initiatives, such as the on-going ESONET-NoE, aimed at strengthening the ocean observatories' scientific and technological community. The EMSO development relies on the synergy between the scientific community and industry to improve European competitiveness with respect to countries such as USA, Canada and Japan. Within the FP7 Programme launched in 2006, a call for Preparatory Phase (PP) was issued in order to support the foundation of the legal and organisational entity in charge of building up and managing the infrastructure, and coordinating the financial effort among the countries. The EMSO-PP project, coordinated by the Italian INGV with participation by 11 institutions from as many European countries, started in April 2008 and will last four years.

  16. Multidisciplinary Management of Laryngeal Carcinoma

    SciTech Connect

    Mendenhall, William M. Mancuso, Anthony A.; Hinerman, Russell W.; Malyapa, Robert S.; Werning, John W.; Amdur, Robert J.; Villaret, Douglas B.

    2007-10-01

    The management of head and neck cancer has evolved into a multidisciplinary approach in which patients are evaluated before treatment and decisions depend on prospective multi-institutional trials, as well as retrospective outcome studies. The choice of one or more modalities to use in a given case varies with the tumor site and extent, as exemplified in the treatment of laryngeal squamous cell carcinomas. The goals of treatment include cure, laryngeal voice preservation, voice quality, optimal swallowing, and minimal xerostomia. Treatment options include transoral laser excision, radiotherapy (both definitive and postoperative), open partial laryngectomy, total laryngectomy, and neck dissection. The likelihood of local control and preservation of laryngeal function is related to tumor volume. Patients who have a relatively high risk of local recurrence undergo follow-up computed tomography scans every 3-4 months for the first 2 years after radiotherapy. Patients with suspicious findings on computed tomography might benefit from fluorodeoxyglucose positron emission tomography to differentiate post-radiotherapy changes from tumor.

  17. Teams: communication in multidisciplinary care.

    PubMed

    Penson, Richard T; Kyriakou, Helena; Zuckerman, Dan; Chabner, Bruce A; Lynch, Thomas J

    2006-05-01

    Shortly before his death in 1995, Kenneth B. Schwartz, a cancer patient at Massachusetts General Hospital (MGH), founded The Kenneth B. Schwartz Center at MGH. The Schwartz Center is a nonprofit organization dedicated to supporting and advancing compassionate health care delivery that provides hope to the patient and support to caregivers, and encourages the healing process. The Center sponsors the Schwartz Center Rounds, a monthly multidisciplinary forum where caregivers reflect on important psychosocial issues faced by patients, their families, and their caregivers, and gain insight and support from fellow staff members. The evolving field of oncology increasingly requires a team of medical specialists working in unison to deliver optimal medical care. While this coordination may maximize the technical synergy of care, it can challenge interprofessional and interdisciplinary connections. Poor and miscommunication and conflicts between staff and between the family and providers adversely affect patient care and quality of life. Furthermore, lack of communication leaves a vacuum that sucks in fear. A recent Newsweek article highlighted the challenges of practicing in the age of high-tech medicine. The author had to beg for a prognosis for her critically ill and dying husband, with unhelpful subspecialists failing to communicate the bigger picture. This article explores the tough issue of how teams handle uncertainty and bad news and how patients and families can be better supported in the multifaceted paradigm of modern care. PMID:16720852

  18. Multidisciplinary approaches to solar hydrogen.

    PubMed

    Bren, Kara L

    2015-06-01

    This review summarizes three different approaches to engineering systems for the solar-driven evolution of hydrogen fuel from water: molecular, nanomaterials and biomolecular. Molecular systems have the advantage of being highly amenable to modification and detailed study and have provided great insight into photophysics, electron transfer and catalytic mechanism. However, they tend to display poor stability. Systems based on nanomaterials are more robust but also are more difficult to synthesize in a controlled manner and to modify and study in detail. Biomolecular systems share many properties with molecular systems and have the advantage of displaying inherently high efficiencies for light absorption, electron-hole separation and catalysis. However, biological systems must be engineered to couple modules that capture and convert solar photons to modules that produce hydrogen fuel. Furthermore, biological systems are prone to degradation when employed in vitro. Advances that use combinations of these three tactics also are described. Multidisciplinary approaches to this problem allow scientists to take advantage of the best features of biological, molecular and nanomaterials systems provided that the components can be coupled for efficient function. PMID:26052425

  19. Assessing organisational readiness for change: use of diagnostic analysis prior to the implementation of a multidisciplinary assessment for acute stroke care

    PubMed Central

    Hamilton, Sharon; McLaren, Susan; Mulhall, Anne

    2007-01-01

    Background Achieving evidence-based practice in health care is integral to the drive for quality improvement in the National Health Service in the UK. Encapsulated within this policy agenda are challenges inherent in leading and managing organisational change. Not least of these is the need to change the behaviours of individuals and groups in order to embed new practices. Such changes are set within a context of organisational culture that can present a number of barriers and facilitators to change. Diagnostic analysis has been recommended as a precursor to the implementation of change to enable such barriers and facilitators to be identified and a targeted implementation strategy developed. Although diagnostic analysis is recommended, there is a paucity of advice on appropriate methods to use. This paper addresses the paucity and builds on previous work by recommending a mixed method approach to diagnostic analysis comprising both quantitative and qualitative data. Methods Twenty staff members with strategic accountability for stroke care were purposively sampled to take part in semi-structured interviews. Six recently discharged patients were also interviewed. Focus groups were conducted with one group of registered ward-based nurses (n = 5) and three specialist registrars (n = 3) purposively selected for their interest in stroke care. All professional staff on the study wards were sent the Team Climate Inventory questionnaire (n = 206). This elicited a response rate of 72% (n = 148). Results A number of facilitators for change were identified, including stakeholder support, organisational commitment to education, strong team climate in some teams, exemplars of past successful organisational change, and positive working environments. A number of barriers were also identified, including: unidisciplinary assessment/recording practices, varying in structure and evidence-base; weak team climate in some teams; negative exemplars of organisational change; and

  20. Earlier North American Monsoon Onset in a Warmer World?

    NASA Astrophysics Data System (ADS)

    Rauscher, S. A.; Seth, A.; Ringler, T.; Rojas, M.; Liebmann, B.

    2009-12-01

    Analysis of twenty-first century projections indicate substantial drying over the American Southwest and the potential for “Dust Bowl” conditions to be the norm by the middle of century. Closer examination of monthly precipitation data from the CMIP3 models indicates that the annual cycle is actually amplified over the North American Monsoon (NAMS) region, with drier conditions during the winter and an increase in monsoon rains during the later part of the rainy season. Importantly, the projected decrease in winter precipitation extends into the spring season, suggesting a delayed onset of the NAMS. Consistent thermodynamic changes, including a decrease in low-level relative humidity and an increase in the vertical gradient of moist static energy, accompany this spring precipitation decrease. Here we examine daily precipitation data from the CMIP3 archive to determine if this reduced spring precipitation represents a true delay in the NAMS onset. We further analyze the hydrological cycle over the NAMS region in several of the CMIP3 models, focusing on changes in net moisture divergence, surface evaporation, and soil moisture in order to fully understand how the hydrological cycle will change in the future based on the CMIP3 simulations, and how these changes may be translated into the timing and intensity of the NAMS. The combination of a delayed NAMS onset and earlier and reduced snowmelt runoff in the western US could substantially change the availability of water resources over the NAMS region.

  1. Interaction of Convective Organization and Monsoon Precipitation, Atmosphere, Surface and Sea (INCOMPASS)

    NASA Astrophysics Data System (ADS)

    Turner, Andrew; Bhat, Gs; Evans, Jonathan; Marsham, John; Martin, Gill; Parker, Douglas; Taylor, Chris; Bhattacharya, Bimal; Madan, Ranju; Mitra, Ashis; Mrudula, Gm; Muddu, Sekhar; Pattnaik, Sandeep; Rajagopal, En; Tripathi, Sachida

    2015-04-01

    The monsoon supplies the majority of water in South Asia, making understanding and predicting its rainfall vital for the growing population and economy. However, modelling and forecasting the monsoon from days to the season ahead is limited by large model errors that develop quickly, with significant inter-model differences pointing to errors in physical parametrizations such as convection, the boundary layer and land surface. These errors persist into climate projections and many of these errors persist even when increasing resolution. At the same time, a lack of detailed observations is preventing a more thorough understanding of monsoon circulation and its interaction with the land surface: a process governed by the boundary layer and convective cloud dynamics. The INCOMPASS project will support and develop modelling capability in Indo-UK monsoon research, including test development of a new Met Office Unified Model 100m-resolution domain over India. The first UK detachment of the FAAM research aircraft to India, in combination with an intensive ground-based observation campaign, will gather new observations of the surface, boundary layer structure and atmospheric profiles to go with detailed information on the timing of monsoon rainfall. Observations will be focused on transects in the northern plains of India (covering a range of surface types from irrigated to rain-fed agriculture, and wet to dry climatic zones) and across the Western Ghats and rain shadow in southern India (including transitions from land to ocean and across orography). A pilot observational campaign is planned for summer 2015, with the main field campaign to take place during spring/summer 2016. This project will advance our ability to forecast the monsoon, through a programme of measurements and modelling that aims to capture the key surface-atmosphere feedback processes in models. The observational analysis will allow a unique and unprecedented characterization of monsoon processes that

  2. Geochemical evidence of multistage retrogressive failure during the 160,000ka Icod landslide from turbidite facies analysis: multidisciplinary investigative approaches using destructive and non-destructive methodologies

    NASA Astrophysics Data System (ADS)

    Hunt, James; Wynn, Russell; Masson, Doug; Croudace, Ian

    2010-05-01

    The study of modern deep-sea systems through targeted piston coring has enabled detailed investigations into the process mechanics of turbidity currents. In complex systems such as the Moroccan Turbidite System the derivation of provenance is of vital importance, since flows from different sources in this system have been found to behave differently. Early provenance studies in the Madeira Abyssal Plain found that bulk sand-fraction geochemical analysis through ICP-AES could enable successful attribution of provenance to specific turbidites alongside electron microprobe analysis (de Lange, Jarvis & Kuijpers, 1987; Pearce & Jarvis, 1992). These sources including the Moroccan siliclastic shelf, Tenerife, Las Palma, El Hierro and Madeira. ICP-AES, MC-ICP-MS and XRF have been utilised here, however these present destructive methodologies, using 0.1-5g of material >63µm. Deep-sea piston cores are also expensive to collect, and often there is not enough material to remove for analysis without compromising the core. Furthermore, routine sampling, preparation and analysis using the destructive methods stated above are undertaken at considerable cost and analytical time. The successful use of non-destructive instruments to yield quantitative geochemical has become paramount at the NOC. This presentation serves to show the successful application of the TM-1000 tabletop SEM EDS analyser, ITRAX micro-XRF analyser and the GEOTEK XYZ logger, in coincidence with traditional destructive methods. These instruments can only supply semi-quantitative data, unless correct calibration can be achieved, and will be shown here. The 160,000ka Icod landslide from Tenerife generated a 150km3 debris avalanche with a runout of 105km and a >180km3 turbidity, which will form the case study for application of these instruments. The vertically stacked subunit facies of the Icod turbidite has been attributed to generation from a multistage retrogressive failure (Wynn & Masson, 2003). Here there

  3. Satellite Observations of Fires, Aerosols, and Precipitation and their Relationships in Monsoon Regions

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Teng, W.; Chiu, L.; Rui, H.

    2006-05-01

    Monsoon regions are home of more than 50% of the world's population, with an annual growth rate of 2-4 percent. Understanding of regional environment is important in improving people's lives and reducing poverty. However, there are a number of issues that researchers are facing. First, there are sparse environmental data in those regions consisting mostly of developing countries. The lack of financial support makes difficult to deploy and conduct ground-based observations. Secondly, monsoon regions consist of large numbers of remote and unpopulated areas (e.g., forests), making observations difficult and expensive. In recent years, with the launches of NASA satellites (e.g., TRMM, Terra, etc.), large volumes of environmental data (e.g., fires, aerosols, and precipitation) have been collected over monsoon and other regions for research and applications. At the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) Distributed Active Archive Center (DAAC), a number of tools have been developed to facilitate data access and research. Among them, the TRMM Online Visualization and Analysis System (TOVAS, URL: http://disc2.nascom.nasa.gov/Giovanni/tovas/) and MODIS Online Visualization and Analysis System (MOVAS, URL: http://g0dup05u.ecs.nasa.gov/Giovanni/) are two user-friendly online tools allowing users to explore satellite data in both spatial and temporal dimensions and investigate their relationships. In this presentation, we will present recent results, including spatial and temporal distributions of fires, aerosols and precipitation in monsoon regions and their relationships.

  4. Geomorphological survey and remote sensing analysis: a multidisciplinary approach to reconstruct triggering factors of a DSGSD in Maso Corto (South Tyrol, Italy)

    NASA Astrophysics Data System (ADS)

    Amato, Gabriele; Fubelli, Giandomenico; Piccin, Gianluca; Chinellato, Giulia; Iasio, Christian; Mosna, David; Morelli, Corrado

    2015-04-01

    In the Alpine regions, it is essential and urgent to define an improved and specific set of monitoring methods for the evolution of instability phenomena in order to avoid the closure of the installations because of the occurrence of natural calamities and to ensure the safety of citizens. In this context the SloMove Project aims at consolidate know-how of the ordinary monitoring applications of surface movements, evaluate their pros and cons and optimize the expected technical procedures of investigation. Within the SloMove project, an experimental composite monitoring has been carried out in the touristic site of Maso Corto (South Tyrol, Italy). Structural-Geomorphological Survey, GPS measurements and Time series analysis of SAR Interferometry data have been integrated. The purposes of this experiment are: 1) to reconstruct the geomorphological dynamics and their state of activity; 2) to provide considerations on the role of permafrost as an influential factor for landslide activity. Structural-Geomorphological survey highlighted control of structural asset of the outcropping lithologies on geomorphological markers, such as trenches, counterscarps, outcropping sliding surfaces. The area is characterized by metamorphic rocks, affected by foliation oriented between N350 and N30. Moreover, joints due to frost thaw activity are common in the shallow portions and the presence of two sets of tectonics fractures (N45, 45°-60° and N360, sub-vertical) has been recognized. In order to evaluate the state of permafrost, rock glaciers in the area have been investigated. SAR interferometry data have been processed by TRE® through the SqueeSAR™ analysis using Radarsat and Envisat images acquired during a period between 2003 and 2009. GPS surveys were carried out through the technique of Rapid-Static Relative Positioning during the summer months of 2012 and 2013. Data shows that an area of 2km2, north of Maso Corto, is affected by a Deep Seated Gravitational Slide

  5. An initiative in multidisciplinary optimization of rotorcraft

    NASA Technical Reports Server (NTRS)

    Adelman, Howard M.; Mantay, Wayne R.

    1988-01-01

    Described is a joint NASA/Army initiative at the Langley Research Center to develop optimization procedures aimed at improving the rotor blade design process by integrating appropriate disciplines and accounting for important interactions among the disciplines. The activity is being guided by a Steering Committee made up of key NASA and Army researchers and managers. The committee, which has been named IRASC (Integrated Rotorcraft Analysis Steering Committee), has defined two principal foci for the activity: a white paper which sets forth the goals and plans of the effort; and a rotor design project which will validate the basic constituents, as well as the overall design methodology for multidisciplinary optimization. The paper describes the optimization formulation in terms of the objective function, design variables, and constraints. Additionally, some of the analysis aspects are discussed and an initial attempt at defining the interdisciplinary couplings is summarized. At this writing, some significant progress has been made, principally in the areas of single discipline optimization. Results are given which represent accomplishments in rotor aerodynamic performance optimization for minimum hover horsepower, rotor dynamic optimization for vibration reduction, and rotor structural optimization for minimum weight.

  6. An initiative in multidisciplinary optimization of rotorcraft

    NASA Technical Reports Server (NTRS)

    Adelman, Howard M.; Mantay, Wayne R.

    1989-01-01

    Described is a joint NASA/Army initiative at the Langley Research Center to develop optimization procedures aimed at improving the rotor blade design process by integrating appropriate disciplines and accounting for important interactions among the disciplines. The activity is being guided by a Steering Committee made up of key NASA and Army researchers and managers. The committee, which has been named IRASC (Integrated Rotorcraft Analysis Steering Committee), has defined two principal foci for the activity: a white paper which sets forth the goals and plans of the effort; and a rotor design project which will validate the basic constituents, as well as the overall design methodology for multidisciplinary optimization. The optimization formulation is described in terms of the objective function, design variables, and constraints. Additionally, some of the analysis aspects are discussed and an initial attempt at defining the interdisciplinary couplings is summarized. At this writing, some significant progress has been made, principally in the areas of single discipline optimization. Results are given which represent accomplishments in rotor aerodynamic performance optimization for minimum hover horsepower, rotor dynamic optimization for vibration reduction, and rotor structural optimization for minimum weight.

  7. Intraseasonal Variability of the Low-Level Jet Stream of the Asian Summer Monsoon.

    NASA Astrophysics Data System (ADS)

    Joseph, P. V.; Sijikumar, S.

    2004-04-01

    The strong cross-equatorial low level jet stream (LLJ) with its core around 850 hPa of the Asian summer monsoon (June September) is found to have large intraseasonal variability. During the monsoon onset over Kerala, India, and during break monsoon periods, when the convective heating of the atmosphere is over the low latitudes of the Indian Ocean, the axis of the LLJ is oriented southeastward over the eastern Arabian Sea and it flows east between Sri Lanka and the equator and there is no LLJ through peninsular India. This affects the transport of moisture produced over the Indian Ocean to peninsular India and the Bay of Bengal. In contrast, during active monsoon periods when there is an east west band of strong convective heating in the latitudes 10° 20°N from about longitude 70° to about 120°E, the LLJ axis passes from the central Arabian Sea eastward through peninsular India and it provides moisture for the increased convection in the Bay of Bengal and for the monsoon depressions forming there. The LLJ does not show splitting into two branches over the Arabian Sea. Splitting of the jet was first suggested by Findlater and has since found wide acceptance as seen from the literature. Findlater's findings were based on analysis of monthly mean winds. Such an analysis is likely to show the LLJ of active and break monsoons as occurring simultaneously, suggesting a split.Strengths of the convective heat source (OLR) over the Bay of Bengal and the strength of the LLJ (zonal component of wind) at 850 hPa over peninsular India and also the Bay of Bengal between latitudes 10° and 20°N have the highest linear correlation coefficient at a lag of 2 3 days, with OLR leading. The LLJ crossing the equator close to the coast of East Africa will pass through India only if there is active monsoon convection in the latitude belt 10° 20°N over south Asia. The position in latitude of the LLJ axis between longitudes 70° and 100°E is decided by the south north movement of the

  8. Localized Pancreatic Cancer: Multidisciplinary Management.

    PubMed

    Coveler, Andrew L; Herman, Joseph M; Simeone, Diane M; Chiorean, E Gabriela

    2016-01-01

    Pancreatic cancer is an aggressive cancer that continues to have single-digit 5-year mortality rates despite advancements in the field. Surgery remains the only curative treatment; however, most patients present with late-stage disease deemed unresectable, either due to extensive local vascular involvement or the presence of distant metastasis. Resection guidelines that include a borderline resectable group, as well as advancements in neoadjuvant chemotherapy and radiation that improve resectability of locally advanced disease, may improve outcomes for patients with more invasive disease. Multi-agent chemotherapy regimens fluorouracil, leucovorin, irinotecan, and oxaliplatin (FOLFIRINOX) and nab-paclitaxel with gemcitabine improved response rates and survival in metastatic pancreatic cancer and are now being used in earlier stages for patients with localized potentially resectable and unresectable disease, with goals of downstaging tumors to allow margin-negative resection and reducing systemic recurrence. Chemoradiotherapy, although still controversial for both resectable and unresectable pancreatic cancer, is being used in the context of contemporary chemotherapy backbone regimens, and novel radiation techniques such as stereotactic body frame radiation therapy (SBRT) are studied on the premise of maintaining or improving efficacy and reducing treatment duration. Patient selection for optimal treatment designation is currently provided by multidisciplinary tumor boards, but biomarker discovery, in blood, tumors, or through novel imaging, is an area of intense research. Results to date suggest that some patients with unresectable disease at the outset have survival rates as good as those with initially resectable disease if able to undergo surgical resection. Long-term follow-up and improved clinical trials options are needed to determine optimal treatment modalities for patients with localized pancreatic cancer. PMID:27249726

  9. Predicting Indian Summer Monsoon onset through variations of surface air temperature and relative humidity

    NASA Astrophysics Data System (ADS)

    Stolbova, Veronika; Surovyatkina, Elena; Kurths, Jurgen

    2015-04-01

    Indian Summer Monsoon (ISM) rainfall has an enormous effect on Indian agriculture, economy, and, as a consequence, life and prosperity of more than one billion people. Variability of the monsoonal rainfall and its onset have a huge influence on food production, agricultural planning and GDP of the country, which on 22% is determined by agriculture. Consequently, successful forecasting of the ISM onset is a big challenge and large efforts are being put into it. Here, we propose a novel approach for predictability of the ISM onset, based on critical transition theory. The ISM onset is defined as an abrupt transition from sporadious rainfall to spatially organized and temporally sustained rainfall. Taking this into account, we consider the ISM onset as is a critical transition from pre-monsoon to monsoon, which take place in time and also in space. It allows us to suggest that before the onset of ISM on the Indian subcontinent should be areas of critical behavior where indicators of the critical transitions can be detected through an analysis of observational data. First, we identify areas with such critical behavior. Second, we use detected areas as reference points for observation locations for the ISM onset prediction. Third, we derive a precursor for the ISM onset based on the analysis of surface air temperature and relative humidity variations in these reference points. Finally, we demonstrate the performance of this precursor on two observational data sets. The proposed approach allows to determine ISM onset in advance in 67% of all considered years. Our proposed approach is less effective during the anomalous years, which are associated with weak/strong monsoons, e.g. El-Nino, La-Nina or positive Indian Ocean Dipole events. The ISM onset is predicted for 23 out of 27 normal monsoon years (85%) during the past 6 decades. In the anomalous years, we show that time series analysis in both areas during the pre-monsoon period reveals indicators whether the

  10. Monsoon Rainfall and Landslides in Nepal

    NASA Astrophysics Data System (ADS)

    Dahal, R. K.; Hasegawa, S.; Bhandary, N. P.; Yatabe, R.

    2009-12-01

    A large number of human settlements on the Nepal Himalayas are situated either on old landslide mass or on landslide-prone areas. As a result, a great number of people are affected by large- and small-scale landslides all over the Himalayas especially during monsoon periods. In Nepal, only in the half monsoon period (June 10 to August 15), 70, 50 and 68 people were killed from landslides in 2007, 2008 and 2009, respectively. In this context, this paper highlights monsoon rainfall and their implications in the Nepal Himalaya. In Nepal, monsoon is major source of rainfall in summer and approximately 80% of the annual total rainfall occurs from June to September. The measured values of mean annual precipitation in Nepal range from a low of approximately 250 mm at area north of the Himalaya to many areas exceeding 6,000 mm. The mean annual rainfall varying between 1500 mm and 2500 mm predominate over most of the country. In Nepal, the daily distribution of precipitation during rainy season is also uneven. Sometime 10% of the total annual precipitation can occur in a single day. Similarly, 50% total annual rainfall also can occur within 10 days of monsoon. This type of uneven distribution plays an important role in triggering many landslides in Nepal. When spatial distribution of landslides was evaluated from record of more than 650 landslides, it is found that more landslides events were concentrated at central Nepal in the area of high mean annual rainfall. When monsoon rainfall and landslide relationship was taken into consideration, it was noticed that a considerable number of landslides were triggered in the Himalaya by continuous rainfall of 3 to 90 days. It has been noticed that continuous rainfall of few days (5 days or 7 days or 10 days) are usually responsible for landsliding in the Nepal Himalaya. Monsoon rains usually fall with interruptions of 2-3 days and are generally characterized by low intensity and long duration. Thus, there is a strong role of

  11. Tropospheric ozone variability during the monsoon season in Malaysia

    NASA Astrophysics Data System (ADS)

    Ahamad, Fatimah; Latif, Mohd Talib

    2013-11-01

    Vertical ozone (O3) profiles obtained from ozonesondes launched at Kuala Lumpur International Airport (KLIA), Malaysia were analyzed. Results of soundings between January to March 2011 and July to September 2011 are presented along with meteorological parameters (temperature and relative humidity (RH)). The overall O3 concentration range between the soundings made during the northeast monsoon (January - March) and the southwest monsoon (July - September) were not far from each other for altitudes below 8 km. However O3 variability is less pronounced between 2 km and 12 km during the southwest monsoon compared to the northeast monsoon season.

  12. Simulation of South-Asian Summer Monsoon in a GCM

    NASA Astrophysics Data System (ADS)

    Ajayamohan, R. S.

    2007-10-01

    Major characteristics of Indian summer monsoon climate are analyzed using simulations from the upgraded version of Florida State University Global Spectral Model (FSUGSM). The Indian monsoon has been studied in terms of mean precipitation and low-level and upper-level circulation patterns and compared with observations. In addition, the model's fidelity in simulating observed monsoon intraseasonal variability, interannual variability and teleconnection patterns is examined. The model is successful in simulating the major rainbelts over the Indian monsoon region. However, the model exhibits bias in simulating the precipitation bands over the South China Sea and the West Pacific region. Seasonal mean circulation patterns of low-level and upper-level winds are consistent with the model's precipitation pattern. Basic features like onset and peak phase of monsoon are realistically simulated. However, model simulation indicates an early withdrawal of monsoon. Northward propagation of rainbelts over the Indian continent is simulated fairly well, but the propagation is weak over the ocean. The model simulates the meridional dipole structure associated with the monsoon intraseasonal variability realistically. The model is unable to capture the observed interannual variability of monsoon and its teleconnection patterns. Estimate of potential predictability of the model reveals the dominating influence of internal variability over the Indian monsoon region.

  13. Chemical and aerosol characterisation of the troposphere over West Africa during the monsoon period as part of AMMA

    NASA Astrophysics Data System (ADS)

    Reeves, C. E.; Formenti, P.; Afif, C.; Ancellet, G.; Attie, J.-L.; Bechara, J.; Borbon, A.; Cairo, F.; Coe, H.; Crumeyrolle, S.; Fierli, F.; Flamant, C.; Gomes, L.; Hamburger, T.; Lambert, C.; Law, K. S.; Mari, C.; Matsuki, A.; Methven, J.; Mills, G. P.; Minikin, A.; Murphy, J. G.; Nielsen, J. K.; Oram, D. E.; Parker, D. J.; Richter, A.; Schlager, H.; Schwarzenboeck, A.; Thouret, V.

    2010-03-01

    During June, July and August 2006 five aircraft took part in a campaign over West Africa to observe the aerosol content and chemical composition of the troposphere and lower stratosphere as part of the African Monsoon Multidisciplinary Analysis (AMMA) project. These are the first such measurements in this region during the monsoon period. In addition to providing an overview of the tropospheric composition, this paper provides a description of the measurement strategy (flights performed, instrumental payloads, wing-tip to wing-tip comparisons) and points to some of the important findings discussed in more detailed in other papers in this special issue. The ozone data exhibits an "S" shaped vertical profile which appears to result from significant losses in the lower troposphere due to rapid deposition to forested areas and photochemical destruction in the moist monsoon air, and convective uplift of O3-poor air to the upper troposphere. This profile is disturbed, particularly in the south of the region, by the intrusions in the lower and middle troposphere of air from the Southern Hemisphere impacted by biomass burning. Comparisons with longer term data sets suggest the impact of these intrusions on West Africa in 2006 was greater than in other recent wet seasons. There is evidence for net photochemical production of ozone in these biomass burning plumes as well as in urban plumes, in particular that from Lagos, convective outflow in the upper troposphere and in boundary layer air affected by nitrogen oxide emissions from recently wetted soils. This latter effect, along with enhanced deposition to the forested areas, contributes to a latitudinal gradient of ozone in the lower troposphere. Biogenic volatile organic compounds are also important in defining the composition both for the boundary layer and upper tropospheric convective outflow. Mineral dust was found to be the most abundant and ubiquitous aerosol type in the atmosphere over Western Africa. Data collected

  14. Chemical and aerosol characterisation of the troposphere over West Africa during the monsoon period as part of AMMA

    NASA Astrophysics Data System (ADS)

    Reeves, C. E.; Formenti, P.; Afif, C.; Ancellet, G.; Attié, J.-L.; Bechara, J.; Borbon, A.; Cairo, F.; Coe, H.; Crumeyrolle, S.; Fierli, F.; Flamant, C.; Gomes, L.; Hamburger, T.; Jambert, C.; Law, K. S.; Mari, C.; Jones, R. L.; Matsuki, A.; Mead, M. I.; Methven, J.; Mills, G. P.; Minikin, A.; Murphy, J. G.; Nielsen, J. K.; Oram, D. E.; Parker, D. J.; Richter, A.; Schlager, H.; Schwarzenboeck, A.; Thouret, V.

    2010-08-01

    During June, July and August 2006 five aircraft took part in a campaign over West Africa to observe the aerosol content and chemical composition of the troposphere and lower stratosphere as part of the African Monsoon Multidisciplinary Analysis (AMMA) project. These are the first such measurements in this region during the monsoon period. In addition to providing an overview of the tropospheric composition, this paper provides a description of the measurement strategy (flights performed, instrumental payloads, wing-tip to wing-tip comparisons) and points to some of the important findings discussed in more detail in other papers in this special issue. The ozone data exhibits an "S" shaped vertical profile which appears to result from significant losses in the lower troposphere due to rapid deposition to forested areas and photochemical destruction in the moist monsoon air, and convective uplift of ozone-poor air to the upper troposphere. This profile is disturbed, particularly in the south of the region, by the intrusions in the lower and middle troposphere of air from the southern hemisphere impacted by biomass burning. Comparisons with longer term data sets suggest the impact of these intrusions on West Africa in 2006 was greater than in other recent wet seasons. There is evidence for net photochemical production of ozone in these biomass burning plumes as well as in urban plumes, in particular that from Lagos, convective outflow in the upper troposphere and in boundary layer air affected by nitrogen oxide emissions from recently wetted soils. This latter effect, along with enhanced deposition to the forested areas, contributes to a latitudinal gradient of ozone in the lower troposphere. Biogenic volatile organic compounds are also important in defining the composition both for the boundary layer and upper tropospheric convective outflow. Mineral dust was found to be the most abundant and ubiquitous aerosol type in the atmosphere over Western Africa. Data

  15. Weathering and monsoonal evolution in the Eastern Himalayas since 13 Ma from detrital geochemistry, Kameng River Section, Arunachal Pradesh

    NASA Astrophysics Data System (ADS)

    Vögeli, Natalie; Van der Beek, Peter; Najman, Yani; Huyghe, Pascale

    2015-04-01

    The link between tectonics, erosion and climate has become an important subject to ongoing research in the last years (Clift et al. (2008), amongst others). The young Himalayan orogeny is the perfect laboratory for its study. The Neogene sedimentary foreland basin of the Himalaya contains a record of tectonics and paleoclimate since Miocene times, within the so called Siwalik Group. Therefore several sedimentary sections within the Himalayan foreland basin along strike in the Himalayan range have been dated and studied regarding exhumation rates, provenance and paleoclimatology (e.g. Quade and Cerling, 1995; Ghosh et al., 2004; Sanyal et al., 2004; van der Beek et al., 2006). Lateral variations have been observed and changes in exhumation rate as well as climate change in the past especially the strengthening of the Asian summer monsoon is still debated. Several paleoclimatological studies in the western Himalaya were conducted (Quade and Cerling, 1995; Najman et al., 2003; Huyghe et al., 2005), but the eastern part of the mountain range remains poorly studied. The Himalaya has a major influence on global and regional climate. The major force driving the evolution of this mountain belt is the India-Asia convergence, nevertheless it has been suggested that the monsoonal climate plays a major role for the erosion and relief pattern (Bookhagen and Burbank, 2006; Clift et al., 2008; Iaffaldano et al., 2011). Exhumation rates in the central Himalayas are more or less constant over last 13 Ma in the order of 1.8 km/myr, whereas exhumation rates in the eastern syntaxis increased post 3 Ma (Chirouze et al., 2013) to reach up to 10km/myr in the recent past. In this study we use a multidisciplinary approach in order to better understand the interplay of monsoon and weathering regime during the Mid Miocene to Pleistocene in the Himalaya. Therefore a sedimentary section in the eastern Himalaya was sampled. Pairs of fine and coarse grained sediment samples were taken in the

  16. Multi-disciplinary optimization of aeroservoelastic systems

    NASA Technical Reports Server (NTRS)

    Karpel, Mardechay

    1992-01-01

    The purpose of the research project was to continue the development of new methods for efficient aeroservoelastic analysis and optimization. The main targets were as follows: to complete the development of analytical tools for the investigation of flutter with large stiffness changes; to continue the work on efficient continuous gust response and sensitivity derivatives; and to advance the techniques of calculating dynamic loads with control and unsteady aerodynamic effects. An efficient and highly accurate mathematical model for time-domain analysis of flutter during which large structural changes occur was developed in cooperation with Carol D. Wieseman of NASA LaRC. The model was based on the second-year work 'Modal Coordinates for Aeroelastic Analysis with Large Local Structural Variations'. The work on continuous gust response was completed. An abstract of the paper 'Continuous Gust Response and Sensitivity Derivatives Using State-Space Models' was submitted for presentation in the 33rd Israel Annual Conference on Aviation and Astronautics, Feb. 1993. The abstract is given in Appendix A. The work extends the optimization model to deal with continuous gust objectives in a way that facilitates their inclusion in the efficient multi-disciplinary optimization scheme. Currently under development is a work designed to extend the analysis and optimization capabilities to loads and stress considerations. The work is on aircraft dynamic loads in response to impulsive and non-impulsive excitation. The work extends the formulations of the mode-displacement and summation-of-forces methods to include modes with significant local distortions, and load modes. An abstract of the paper,'Structural Dynamic Loads in Response to Impulsive Excitation' is given in appendix B. Another work performed this year under the Grant was 'Size-Reduction Techniques for the Determination of Efficient Aeroservoelastic Models' given in Appendix C.

  17. Stable isotopes in monsoon precipitation and water vapour in Nagqu, Tibet, and their implications for monsoon moisture

    NASA Astrophysics Data System (ADS)

    He, Siyuan; Richards, Keith

    2016-09-01

    Understanding climate variations over the Qinghai-Tibetan plateau has become essential because the high plateau sustains various ecosystems and water sources, and impacts on the Asian monsoon system. This paper provides new information from isotopic signals in meteoric water and atmospheric water vapour on the Qinghai-Tibetan Plateau using high frequency observation data over a relatively short period. The aim is to explore temporal moisture changes and annual variations at the onset and during the summer monsoon season at a transitional site with respect to the monsoon influence. Data show that high frequency and short period observations can reveal typical moisture changes from the pre-monsoon to the monsoon seasons (2010), and the large variation in isotopic signals in different years with respect to active/inactive periods during a mature phase of the monsoon (2011), especially inferring from the temporal changes in the d-excess of precipitation and its relationship with δ18O values, when higher d-excess is found in the pre-monsoon precipitation. In this transition zone on a daily basis, δ18O values in precipitation are controlled mainly by the amount of rainfall during the monsoon season, while temperature seems more important before the onset of monsoon. Furthermore, the "amount effect" is significant for night-time rain events. From comparison of signals in both the precipitation and water vapour, an inconsistent relationship between d-excess values suggests various moisture fluxes are active in a short period. The temporal pattern of isotopic signal change from the onset of the monsoon to the mature monsoon phase provides information about the larger circulation dynamics of the Asian monsoon.

  18. Direct radiative effects of anthropogenic aerosols on Indian summer monsoon circulation

    NASA Astrophysics Data System (ADS)

    Das, Sushant; Dey, Sagnik; Dash, S. K.

    2016-05-01

    The direct radiative impacts of anthropogenic aerosols on the dynamics of Indian summer monsoon circulation are examined using the regional climate model version 4.1 (RegCM4.1). High anthropogenic aerosol optical depth (AAOD >0.1) and surface shortwave cooling (<-6 W m-2) are simulated over the Indo-Gangetic Basin (IGB), northeast India, east coast of India, and its outflow to the Bay of Bengal (BoB) during the monsoon season (June to September) in the period 2001 to 2010. The analysis reveals a decrease in near surface air temperature at 2 m over the IGB and east coast of India by >0.2 °C due to the dimming effect of anthropogenic aerosols. The aerosol-induced cooling leads to an increase in surface pressure over the local hotspots in the Indian landmass, which reduces the land-sea pressure contrast resulting in weakening of summer monsoon circulation. The simulated surface pressure anomaly also inhibits moisture transport from the BoB towards Indian landmass thereby enhancing precipitation over the BoB and parts of the east coast of India. The impacts are interpreted as conservative estimates because of the underestimation of AAOD by the model due to uncertainties in emission inventory and biases in simulated meteorology. Our results demonstrate the direct radiative impacts of anthropogenic aerosols on the Indian monsoon circulation and call for future studies combining the dynamical and microphysical impacts, which are not considered in this study.

  19. Prediction of dominant intraseasonal modes in the East Asian-western North Pacific summer monsoon

    NASA Astrophysics Data System (ADS)

    Oh, Hyoeun; Ha, Kyung-Ja

    2015-12-01

    Intraseasonal monsoon prediction is the most imperative task, but there remains an enduring challenge in climate science. The present study aims to provide a physical understanding of the sources for prediction of dominant intraseasonal modes in the East Asian-western North Pacific summer monsoon (EA-WNPSM): pre-Meiyu&Baiu, Changma&Meiyu, WNPSM, and monsoon gyre modes classified by the self-organizing map analysis. Here, we use stepwise regression to determine the predictors for the four modes in the EA-WNPSM. The selected predictors are based on the persistent and tendency signals of the sea surface temperature (SST)/2m air temperature and sea level pressure fields, which reflect the asymmetric response to the El Niño Southern Oscillation (ENSO) and the ocean and land surface anomalous conditions. For the pre-Meiyu&Baiu mode, the SST cooling tendency over the western North Pacific (WNP), which persists into summer, is the distinguishing contributor that results in strong baroclinic instability. A major precursor for the Changma&Meiyu mode is related to the WNP subtropical high, induced by the persistent SST difference between the Indian Ocean and the western Pacific. The WNPSM mode is mostly affected by the Pacific-Japan pattern, and monsoon gyre mode is primarily associated with a persistent SST cooling over the tropical Indian Ocean by the preceding ENSO signal. This study carries important implications for prediction by establishing valuable precursors of the four modes including nonlinear characteristics.

  20. Atmospheric polycyclic aromatic hydrocarbons (PAHs) of southern Taiwan in relation to monsoons.

    PubMed

    Cheng, Jing-O; Ko, Fung-Chi; Lee, Chon-Lin; Fang, Meng-Der

    2016-08-01

    The concentrations and gas-particle partitioning of atmospheric polycyclic aromatic hydrocarbons (PAHs) were intensively measured in the Hengchun Peninsula of southern Taiwan. The concentrations of total PAH (Σ38PAH), including gas and particle phases, ranged from 0.85 to 4.40 ng m(-3). No significant differences in the PAH levels and patterns were found between the samples taken at day and at night. The gas phase PAH concentrations were constant year-round, but the highest levels of particle-associated PAHs were found during the northeast monsoon season. Long-range transport and rainfall scavenging mechanisms contributed to the elevated levels in aerosols andΣ38PAH concentrations. Results from principal component analysis (PCA) indicated that the major sources of PAHs in this study were vehicular emissions. The back trajectories demonstrated that air mass movement driven by the monsoon system was the main influence on atmospheric PAH profiles and concentrations in the rural region of southern Taiwan. Gas-particle partition coefficients (K p ) of PAHs were well-correlated with sub-cooled liquid vapor pressures (P (o) L ) and demonstrated significant seasonal variation between the northeast (NE) and the southwest (SW) monsoon seasons. This study sheds light on the role of Asian monsoons regarding the atmospheric transport of PAHs. PMID:27137192

  1. Observed changes in extreme wet and dry spells during the South Asian summer monsoon season

    NASA Astrophysics Data System (ADS)

    Singh, Deepti; Tsiang, Michael; Rajaratnam, Bala; Diffenbaugh, Noah S.

    2014-06-01

    The South Asian summer monsoon directly affects the lives of more than 1/6th of the world's population. There is substantial variability within the monsoon season, including fluctuations between periods of heavy rainfall (wet spells) and low rainfall (dry spells). These fluctuations can cause extreme wet and dry regional conditions that adversely impact agricultural yields, water resources, infrastructure and human systems. Through a comprehensive statistical analysis of precipitation observations (1951-2011), we show that statistically significant decreases in peak-season precipitation over the core-monsoon region have co-occurred with statistically significant increases in daily-scale precipitation variability. Further, we find statistically significant increases in the frequency of dry spells and intensity of wet spells, and statistically significant decreases in the intensity of dry spells. These changes in extreme wet and dry spell characteristics are supported by increases in convective available potential energy and low-level moisture convergence, along with changes to the large-scale circulation aloft in the atmosphere. The observed changes in wet and dry extremes during the monsoon season are relevant for managing climate-related risks, with particular relevance for water resources, agriculture, disaster preparedness and infrastructure planning.

  2. Variability in AIRS CO2 during active and break phases of Indian summer monsoon.

    PubMed

    Revadekar, J V; Ravi Kumar, K; Tiwari, Yogesh K; Valsala, Vinu

    2016-01-15

    Due to human activities, the atmospheric concentration of Carbon Dioxide (CO2) has been rising extensively since the Industrial Revolution. Indian summer monsoon (ISM) has a dominant westerly component from ocean to land with a strong tendency to ascend and hence may have role in CO2 distribution in lower and middle troposphere over Indian sub-continent. A substantial component of ISM variability arises from the fluctuations on the intra-seasonal scale between active and break phases which correspond to strong and weak monsoon circulation. In view of the above, an attempt is made in this study to examine the AIRS/AQUA satellite retrieved CO2 distribution in response to atmospheric circulation with focus on active and break phase. Correlation analysis indicates the increase in AIRS CO2 linked with strong monsoon circulation. Study also reveals that anomalous circulation pattern during active and break phase show resemblance with high and low values of AIRS CO2. Homogeneous monsoon regions of India show substantial increase in CO2 levels during active phase. Hilly regions of India show strong contrast in CO2 and vertical velocity during active and break phases. PMID:26476061

  3. A correlated shortening of the North and South American monsoon seasons in the past few decades

    NASA Astrophysics Data System (ADS)

    Arias, Paola A.; Fu, Rong; Vera, Carolina; Rojas, Maisa

    2015-12-01

    Our observational analysis shows that the wet seasons of the American monsoon systems have shortened since 1978 due to correlated earlier retreats of the North American monsoon (NAM) and late onsets of the southern Amazon wet season, an important part of the South American monsoon (SAM). These changes are related to the combination of the global sea surface temperature (SST) warming mode, the El Niño-Southern Oscillation (ENSO), the Atlantic Multidecadal Oscillation (AMO), the westward shift of the North Atlantic subtropical high (NASH), and the enhancement of Pacific South American and Pacific North American wave train patterns, which induces variations of the regional circulation at interannual and decadal scales. The joint contributions from these forcing factors are associated with a stronger and more equatorward regional Hadley cell, which enhances convergence towards the equator, strengthening and possibly delaying the retreat of the tropical part of the NAM. This in turn accelerates the demise of the northern NAM and delays the reversal of the cross-equatorial flow over South America, reducing moisture transport to the SAM and delaying its onset. In addition, the thermodynamic response to warming appears to cause local drier land conditions over both regions, reinforcing the observed changes in these monsoons. Although previous studies have identified the isolated influence of the regional Hadley cell, ENSO, AMO, global SST warming, and NASH on the NAM, the correlated changes between NAM and SAM through variations of the cross-equatorial flow had not been established before.

  4. EMSO: European Multidisciplinary Seafloor Observatory

    NASA Astrophysics Data System (ADS)

    Favali, Paolo

    2010-05-01

    EMSO, a Research Infrastructure listed within ESFRI (European Strategy Forum on Research Infrastructures) Roadmap (Report 2006, http://cordis.europa.eu/esfri/roadmap.htm), is the European-scale network of multidisciplinary seafloor observatories from the Arctic to the Black Sea with the scientific objective of long-term real-time monitoring of processes related to geosphere/biosphere/hydrosphere interactions. EMSO will enhance our understanding of processes through long time series appropriate to the scale of the phenomena, constituting the new frontier of studying Earth interior, deep-sea biology and chemistry and ocean processes. The development of an underwater network is based on previous EU-funded projects since early '90 and is being supported by several EU initiatives, as the on-going ESONET-NoE, coordinated by IFREMER (2007-2011, http://www.esonet-emso.org/esonet-noe/), and aims at gathering together the Research Community of the Ocean Observatories. In 2006 the FP7 Capacities Programme launched a call for Preparatory Phase (PP) projects, that will provide the support to create the legal and organisational entities in charge of managing the infrastructures, and coordinating the financial effort among the countries. Under this call the EMSO-PP project was approved in 2007 with the coordination of INGV and the participation of other 11 Institutions of 11 countries. The project has started in April 2008 and will last 4 years. The EMSO is a key-infrastructure both for Ocean Sciences and for Solid Earth Sciences. In this respect it will enhance and complement profitably the capabilities of other European research infrastructures such as EPOS, ERICON-Aurora Borealis, and SIOS. The perspective of the synergy among EMSO and other ESFRI Research Infrastructures will be outlined. EMSO Partners: IFREMER-Institut Français de Recherche pour l'exploitation de la mer (France, ref. Roland Person); KDM-Konsortium Deutsche Meeresforschung e.V. (Germany, ref. Christoph

  5. EMSO: European Multidisciplinary Seafloor Observatory

    NASA Astrophysics Data System (ADS)

    Favali, P.; Partnership, Emso

    2009-04-01

    EMSO, a Research Infrastructure listed within ESFRI (European Strategy Forum on Research Infrastructures) Roadmap), is the European-scale network of multidisciplinary seafloor observatories from the Arctic to the Black Sea with the scientific objective of long-term real-time monitoring of processes related to geosphere/biosphere/hydrosphere interactions. EMSO will enhance our understanding of processes through long time series appropriate to the scale of the phenomena, constituting the new frontier of studying Earth interior, deep-sea biology and chemistry and ocean processes. EMSO will reply also to the need expressed in the frame of GMES (Global Monitoring for Environment and Security) to develop a marine segment integrated in the in situ and satellite global monitoring system. The EMSO development relays upon the synergy between the scientific community and the industry to improve the European competitiveness with respect to countries like USA/Canada, NEPTUNE, VENUS and MARS projects, Taiwan, MACHO project, and Japan, DONET project. In Europe the development of an underwater network is based on previous EU-funded projects since early '90, and presently supported by EU initiatives. The EMSO infrastructure will constitute the extension to the sea of the land-based networks. Examples of data recorded by seafloor observatories will be presented. EMSO is presently at the stage of Preparatory Phase (PP), funded in the EC FP7 Capacities Programme. The project has started in April 2008 and will last 4 years with the participation of 12 Institutions representing 12 countries. EMSO potential will be significantly increased also with the interaction with other Research Infrastructures addressed to Earth Science. 2. IFREMER-Institut Français de Recherche pour l'exploitation de la mer (France, ref. Roland Person); KDM-Konsortium Deutsche Meeresforschung e.V. (Germany, ref. Christoph Waldmann); IMI-Irish Marine Institute (Ireland, ref. Michael Gillooly); UTM-CSIC-Unidad de

  6. Supporting multidisciplinary science within NASA's discipline data systems

    NASA Technical Reports Server (NTRS)

    Preheim, Larry E.

    1993-01-01

    Many current and future NASA and non-NASA missions are focusing on multidisciplinary science. The current paradigm for data identification and effective use by the NASA science community is based on the CODMAC model proposed in 1986. As multidisciplinary investigations become more prevalent, many existing systems and the newly developing systems will have to augment the current data identification and access strategies and tools and form alliances with other data systems to provide the broad range of data required. This paper describes the current paradigm, surveys and characterizes, within that paradigm, efforts to develop new access methods and data analysis and visualization tools, identifies additional areas of research not adequately addressed and recommends a further plan of action.

  7. Multidisciplinary Environments: A History of Engineering Framework Development

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Gillian, Ronnie E.

    2006-01-01

    This paper traces the history of engineering frameworks and their use by Multidisciplinary Design Optimization (MDO) practitioners. The approach is to reference papers that have been presented at one of the ten previous Multidisciplinary Analysis and Optimization (MA&O) conferences. By limiting the search to MA&O papers, the authors can (1) identify the key ideas that led to general purpose MDO frameworks and (2) uncover roadblocks that delayed the development of these ideas. The authors make no attempt to assign credit for revolutionary ideas or to assign blame for missed opportunities. Rather, the goal is to trace the various threads of computer architecture and software framework research and to observe how these threads contributed to the commercial framework products available today.

  8. Combined influence of remote and local SST forcing on Indian Summer Monsoon Rainfall variability

    NASA Astrophysics Data System (ADS)

    Chakravorty, Soumi; Gnanaseelan, C.; Pillai, P. A.

    2016-02-01

    The combined influence of tropical Indian Ocean (TIO) and Pacific Ocean (TPO) sea surface temperature (SST) anomalies on Indian summer monsoon rainfall (ISMR) variability is studied in the context of mid-1970s regime shift. The rainfall pattern on the various stages of monsoon during the developing and decaying summer of El Niño is emphasized. Analysis reveals that ISMR anomalies during El Niño developing summer in epoch-1 (1950-1979) are mainly driven by El Niño forcing throughout the season, whereas TIO SST exhibits only a passive influence. On the other hand in epoch-2 (1980-2009) ISMR does not show any significant relation with Pacific during the onset phase of monsoon whereas withdrawal phase is strongly influenced by El Niño. Again the eastern Indian Ocean cooling and westward shift in northwest Pacific (NWP) cyclonic circulation during epoch-2 have strong positive influence on the rainfall over the central and eastern India during the matured phase of monsoon. ISMR in the El Niño decaying summer does not show any significant anomalies in epoch-1 as both Pacific and Indian Ocean warming dissipate by the summer. On the other hand in epoch-2 ISMR anomalies are significant and display strong variability throughout the season. In the onset phase of monsoon, central and east India experience strong negative precipitation anomalies due to westward extension of persistent NWP anticyclone (forced by persisting Indian Ocean warming). The persistent TIO warming induces positive precipitation anomalies in the withdrawal phase of monsoon by changing the atmospheric circulation and modulating the water vapour flux. Moisture budget analysis unravels the dominant processes responsible for the differences between the two epochs. The moisture convergence and moisture advection are very weak (strong) over Indian land mass during epoch-1 (epoch-2) in El Niño decaying summer. The changing moisture availability and convergence play important role in explaining the weakening

  9. Water flow paths in a forested catchment of the East Asian monsoon region

    NASA Astrophysics Data System (ADS)

    Payeur-Poirier, Jean-Lionel; Hopp, Luisa; Peiffer, Stefan

    2015-04-01

    The climate of South Korea is strongly influenced by the East Asian summer monsoon. It is hypothesized that the high precipitation regime of the summer monsoon causes significant changes in the hydrological behaviour of forested catchments, namely in water quantity, quality and flow paths. We conducted high frequency hydrometric, isotopic, hydrochemical and meteorological measurements in a forested catchment before, during and after the 2013 summer monsoon season. The catchment is located within the Lake Soyang watershed, where recent trends of increasing eutrophication, sediment load and organic carbon load have been observed. We studied the temporal variability of catchment runoff and the spatial and temporal variability of water flow paths in relation with the hydrological conditions of the hillslope, toeslope and riparian elements of the catchment. For the summer monsoon season, the runoff coefficient approximated 68%. During this period, for the 16 monitored individual storm events ranging between 13 mm and 126 mm in precipitation, the runoff coefficient greatly varied and a threshold relationship with soil moisture was observed. Analyses of hysteresis loops of catchment runoff also revealed threshold relationships with precipitation and soil moisture, as water flow paths were activated or not in different parts of the catchment. The variation of the electrical conductivity of catchment runoff through the summer monsoon also revealed the occurrence of threshold relationships. A principal component analysis (PCA) and an end-member mixing analysis (EMMA) were performed in order to quantify the contribution of the different landscape elements to catchment runoff. The combination of the hydrometric, isotopic and hydrochemical approaches allowed us to test our hypothesis and to shed light on the threshold relationships observed at the catchment. The findings of this study could be useful for the estimation of the water balance of the Lake Soyang watershed as well

  10. CMIP5 model-simulated onset, duration and intensity of the Asian summer monsoon in current and future climate

    NASA Astrophysics Data System (ADS)

    Dong, Guangtao; Zhang, H.; Moise, A.; Hanson, L.; Liang, P.; Ye, H.

    2016-01-01

    A number of significant weaknesses existed in our previous analysis of the changes in the Asian monsoon onset/retreat from coupled model intercomparison project phase 3 (CMIP3) models, including a lack of statistical significance tests, a small number of models analysed, and limited understanding of the causes of model uncertainties. Yet, the latest IPCC report acknowledges limited confidence for projected changes in monsoon onset/retreat. In this study we revisit the topic by expanding the analysis to a large number of CMIP5 models over much longer period and with more diagnoses. Daily 850 hPa wind, volumetric atmospheric precipitable water and rainfall data from 26 CMIP5 models over two sets of 50-year periods are used in this study. The overall model skill in reproducing the temporal and spatial patterns of the monsoon development is similar between CMIP3 and CMIP5 models. They are able to show distinct regional characteristics in the evolutions of Indian summer monsoon (ISM), East Asian summer monsoon (EASM) and West North Pacific summer monsoon (WNPSM). Nevertheless, the averaged onset dates vary significantly among the models. Large uncertainty exists in model-simulated changes in onset/retreat dates and the extent of uncertainty is comparable to that in CMIP3 models. Under global warming, a majority of the models tend to suggest delayed onset for the south Asian monsoon in the eastern part of tropical Indian Ocean and Indochina Peninsula and nearby region, primarily due to weakened tropical circulations and eastward shift of the Walker circulation. The earlier onset over the Arabian Sea and part of the Indian subcontinent in a number of the models are related to an enhanced southwesterly flow in the region. Weak changes in other domains are due to the offsetting results among the models, with some models showing earlier onsets but others showing delayed onsets. Different from the analysis of CMIP3 model results, this analysis highlights the importance of SST

  11. Indian summer monsoon precipitating clouds: role of microphysical process rates

    NASA Astrophysics Data System (ADS)

    Hazra, Anupam; Chaudhari, Hemantkumar S.; Pokhrel, Samir; Saha, Subodh K.

    2016-04-01

    The budget analysis of microphysical process rates based on Modern Era Retrospective-analysis for Research and Applications (MERRA) products are presented in the study. The relative importance of different microphysical process rates, which is crucial for GCMs, is investigated. The autoconversion and accretion processes are found to be vital for Indian Summer Monsoon (ISM). The map-to-map correlations are examined between observed precipitation and MERRA reanalysis. The pattern correlations connote the fidelity of the MERRA datasets used here. Results of other microphysical parameters (e.g. ice water content from CloudSat, high cloud fraction from CALIPSO and MODIS, latent heating from TRMM, cloud ice mixing ratio from MERRA) are presented in this study. The tropospheric temperature from reanalysis product of MERRA and NCEP are also analyzed. Furthermore, the linkages between cloud microphysics production rates and dynamics, which are important for North-South tropospheric temperature gradient for maintaining the ISM circulation, are also discussed. The study demonstrates the microphysical process rates, which are actually responsible for the cloud hydrometeors and precipitation formation on the monsoon intraseasonal oscillations timescale. Cloud to rain water auto-conversion and snow accretion rates are the dominant processes followed by the rain accretion. All these tendency terms replicates the similar spatial patterns as that of precipitation. The quantification of microphysical process rates and precipitation over different regions are shown here. The freezing rate is also imperative for the formation of cloud ice as revealed by the observation. Freezing rates at upper level and snow accretion at middle level may have effect on latent heating release. Further it can modulate the north-south temperature gradient which can influence the large-scale monsoon dynamics. The rain water evaporation is also considered as a key aspect for controlling the low level

  12. Multidisciplinary Optimization Branch Experience Using iSIGHT Software

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Korte, J. J.; Dunn, H. J.; Salas, A. O.

    1999-01-01

    The Multidisciplinary Optimization (MDO) Branch at NASA Langley Research Center is investigating frameworks for supporting multidisciplinary analysis and optimization research. An optimization framework call improve the design process while reducing time and costs. A framework provides software and system services to integrate computational tasks and allows the researcher to concentrate more on the application and less on the programming details. A framework also provides a common working environment and a full range of optimization tools, and so increases the productivity of multidisciplinary research teams. Finally, a framework enables staff members to develop applications for use by disciplinary experts in other organizations. Since the release of version 4.0, the MDO Branch has gained experience with the iSIGHT framework developed by Engineous Software, Inc. This paper describes experiences with four aerospace applications: (1) reusable launch vehicle sizing, (2) aerospike nozzle design, (3) low-noise rotorcraft trajectories, and (4) acoustic liner design. All applications have been successfully tested using the iSIGHT framework, except for the aerospike nozzle problem, which is in progress. Brief overviews of each problem are provided. The problem descriptions include the number and type of disciplinary codes, as well as all estimate of the multidisciplinary analysis execution time. In addition, the optimization methods, objective functions, design variables, and design constraints are described for each problem. Discussions on the experience gained and lessons learned are provided for each problem. These discussions include the advantages and disadvantages of using the iSIGHT framework for each case as well as the ease of use of various advanced features. Potential areas of improvement are identified.

  13. Numerical prediction of the monsoon depression of 5-7 July, 1979

    NASA Technical Reports Server (NTRS)

    Shukla, J.; Atlas, R.; Baker, W. E.

    1981-01-01

    The objective analysis and assimilation procedure with the FGGE/MONEX data are described. Numerical predictions with the GLAS general circulation model were made from the two initial conditions arrived at by assimilating the two different data sets. The model, the analysis and assimilation procedure, the differences in the analyses due to different data inputs, and the differences in the numerical prediction of monsoon depressions are outlined.

  14. Asian Eocene monsoons as revealed by leaf architectural signatures

    NASA Astrophysics Data System (ADS)

    Spicer, Robert A.; Yang, Jian; Herman, Alexei B.; Kodrul, Tatiana; Maslova, Natalia; Spicer, Teresa E. V.; Aleksandrova, Galina; Jin, Jianhua

    2016-09-01

    The onset and development of the Asian monsoon systems is a topic that has attracted considerable research effort but proxy data limitations, coupled with a diversity of definitions and metrics characterizing monsoon phenomena, have generated much debate. Failure of geological proxies to yield metrics capable of distinguishing between rainfall seasonality induced by migrations of the Inter-tropical Convergence Zone (ITCZ) from that attributable to topographically modified seasonal pressure reversals has frustrated attempts to understand mechanisms underpinning monsoon development and dynamics. Here we circumvent the use of such single climate parameter metrics in favor of detecting directly the distinctive attributes of different monsoon regimes encoded in leaf fossils. Leaf form adapts to the prevailing climate, particularly under the extreme seasonal stresses imposed by monsoons, so it is likely that fossil leaves carry a unique signature of past monsoon regimes. Leaf form trait spectra obtained from fossils from Eocene basins in southern China were compared with those seen in modern leaves growing under known climate regimes. The fossil leaf trait spectra, including those derived from previously published fossil floras from northwestern India, were most similar to those found in vegetation exposed to the modern Indonesia-Australia Monsoon (I-AM), which is largely a product of seasonal migrations of the ITCZ. The presence of this distinctive leaf physiognomic signature suggests that although a monsoon climate existed in Eocene time across southern Asia the characteristics of the modern topographically-enhanced South Asia Monsoon had yet to develop. By the Eocene leaves in South Asia had become well adapted to an I-AM type regime across many taxa and points to the existence of a pervasive monsoon climate prior to the Eocene. No fossil trait spectra typical of exposure to the modern East Asia monsoon were seen, suggesting the effects of this system in southern

  15. Effects of mountain uplift on global monsoon precipitation

    NASA Astrophysics Data System (ADS)

    Lee, June-Yi; Wang, Bin; Seo, Kyong-Hwan; Ha, Kyung-Ja; Kitoh, Akio; Liu, Jian

    2015-08-01

    This study explores the role of the global mountain uplift (MU), which occurred during the middle and late Cenozoic, in modulating global monsoon precipitation using the Meteorological Research Institute atmosphere-ocean coupled model experiments. First, the MU causes changes in the annual mean of major monsoon precipitation. Although the annual mean precipitation over the entire globe remains about the same from the no-mountain experiment (MU0) to the realistic MU (MU1), that over the Asian-Australian monsoon region and Americas increases by about 16% and 9%, respectively. Second, the MU plays an essential role in advancing seasonal march, and summer-monsoon onset, especially in the Northern Hemisphere, by shaping pre-monsoon circulation. The rainy seasons are lengthened as a result of the earlier onset of the summer monsoon since the monsoon retreat is not sensitive to the MU. The East Asian monsoon is a unique consequence of the MU, while other monsoons are attributed primarily to land-sea distribution. Third, the strength of the global monsoon is shown to be substantially affected by the MU. In particular, the second annual cycle (AC) mode of global precipitation (the spring-autumn asymmetry mode) is more sensitive to the progressive MU than the first mode of the AC (the solstice mode), suggesting that the MU may have a greater impact during transition seasons than solstice seasons. Finally, the MU strongly modulates interannual variation in global monsoon precipitation in relation to El Niño and Southern Oscillation (ENSO). The Progressive MU changes not only the spatial distribution but also the periodicity of the first and second AC mode of global precipitation on interannual timescale.

  16. Advances in Multi-disciplinary Interoperability

    NASA Astrophysics Data System (ADS)

    Pearlman, J.; Nativi, S.; Craglia, M.; Huerta, J.; Rubio-Iglesias, J. M.; Serrano, J. J.

    2012-04-01

    The challenge for addressing issues such as climate change, food security or ecosystem sustainability is that they require multi-disciplinary collaboration and the ability to integrate information across scientific domains. Multidisciplinary collaborations are difficult because each discipline has its own "language", protocols and formats for communicating within its community and handling data and information. EuroGEOSS demonstrates the added value to the scientific community and to society of making existing systems and applications interoperable and useful within the GEOSS and INSPIRE frameworks. In 2010, the project built an initial operating capacity of a multi-disciplinary Information System addressing three areas: drought, forestry and biodiversity. It is now furthering this development into an advanced operating capacity (http://www.eurogeoss.eu). The key to this capability is the creation of a broker that supports access to multiple resources through a common user interface and the automation of data search and access using state of the art information technology. EuroGEOSS hosted a conference on information systems and multi-disciplinary applications of science and technology. "EuroGEOSS: advancing the vision of GEOSS" provided a forum for developers, users and decision-makers working with advanced multi-disciplinary information systems to improve science and decisions for complex societal issues. In particular, the Conference addressed: Information systems for supporting multi-disciplinary research; Information systems and modeling for biodiversity, drought, forestry and related societal benefit areas; and Case studies of multi-disciplinary applications and outcomes. This paper will discuss the major finding of the conference and the directions for future development.

  17. Late Holocene climate reorganisation and the North American Monsoon

    NASA Astrophysics Data System (ADS)

    Jones, Matthew D.; Metcalfe, Sarah E.; Davies, Sarah J.; Noren, Anders

    2015-09-01

    The North American Monsoon (NAM) provides the majority of rainfall for central and northern Mexico as well as parts of the south west USA. The controls over the strength of the NAM in a given year are complex, and include both Pacific and Atlantic systems. We present here an annually resolved proxy reconstruction of NAM rainfall variability over the last ˜6 ka, from an inwash record from the Laguna de Juanacatlán, Mexico. This high resolution, exceptionally well dated record allows changes in the NAM through the latter half of the Holocene to be investigated in both time and space domains, improving our understanding of the controls on the system. Our analysis shows a shift in conditions between c. 4 and 3 ka BP, after which clear ENSO/PDO type forcing patterns are evident.

  18. Logit-normal mixed model for Indian monsoon precipitation

    NASA Astrophysics Data System (ADS)

    Dietz, L. R.; Chatterjee, S.

    2014-09-01

    Describing the nature and variability of Indian monsoon precipitation is a topic of much debate in the current literature. We suggest the use of a generalized linear mixed model (GLMM), specifically, the logit-normal mixed model, to describe the underlying structure of this complex climatic event. Four GLMM algorithms are described and simulations are performed to vet these algorithms before applying them to the Indian precipitation data. The logit-normal model was applied to light, moderate, and extreme rainfall. Findings indicated that physical constructs were preserved by the models, and random effects were significant in many cases. We also found GLMM estimation methods were sensitive to tuning parameters and assumptions and therefore, recommend use of multiple methods in applications. This work provides a novel use of GLMM and promotes its addition to the gamut of tools for analysis in studying climate phenomena.

  19. The role of East Asian monsoon system in shaping population divergence and dynamics of a constructive desert shrub Reaumuria soongarica

    PubMed Central

    Yin, Hengxia; Yan, Xia; Shi, Yong; Qian, Chaoju; Li, Zhonghu; Zhang, Wen; Wang, Lirong; Li, Yi; Li, Xiaoze; Chen, Guoxiong; Li, Xinrong; Nevo, Eviatar; Ma, Xiao-Fei

    2015-01-01

    Both of the uplift of Qinghai-Tibet Plateau (QTP) and the development of East Asian monsoon system (EAMS) could have comprehensively impacted the formation and evolution of Arid Central Asia (ACA). To understand how desert plants endemic to ACA responded to these two factors, we profiled the historical population dynamics and distribution range shift of a constructive desert shrub Reaumuria soongarica (Tamaricaceae) based on species wide investigation of sequence variation of chloroplast DNA and nuclear ribosomal ITS. Phylogenetic analysis uncovered a deep divergence occurring at ca. 2.96 Mya between the western and eastern lineages of R. soongarica, and ecological niche modeling analysis strongly supported that the monsoonal climate could have fragmented its habitats in both glacial and interglacial periods and impelled its intraspecific divergence. Additionally, the population from the east monsoonal zone expanded rapidly, suggesting that the local monsoonal climate significantly impacted its population dynamics. The isolation by distance tests supported strong maternal gene flow along the direction of the East Asian winter monsoon, whose intensification induced the genetic admixture along the latitudinal populations of R. soongarica. Our results presented a new case that the development of EAMS had prominently impacted the intraspecific divergence and population dynamics of this desert plant. PMID:26510579

  20. Diagnosis of the South American Monsoon Variability

    NASA Astrophysics Data System (ADS)

    Alonso Gan, Manoel; Aragão Ferreira, Solange

    2014-05-01

    In order to understand the space-time evolution of the dominant modes that constitute the South American Monsoon System (SAMS), cyclostationary EOF analysis was applied in the region between 20°N-60°S and 0°-90°E and for 29 summers (from 1978/79 to 2007/08) to the Xie-Arkin pentad precipitation data and other synoptic variables during the life cycle of the SAMS (September to March). This analysis shows detailed features of the first three dominant modes. The first mode of precipitation represents the seasonal cycle, the second mode explains the cold phase of El Niño-South Oscillation (ENSO) (La Niña) signal, and the third mode describes the transition phase of ENSO between La Niña and El Niño and possible interaction of the Madden Julian Oscillation (MJO). All three modes together explain about 26% of the total variance of the pentad precipitation data. The most pronounced feature of the seasonal cycle is strongly associated with the positive anomalies of surface temperature during the rainy season onset that develop over the tropical region of the continent. Associated with these temperature anomalies changes in the sea level pressure (SLP) field are observed. During the end of the dry season, the surface temperature over the SAMS core increases and consequently SLP decreases. This initiates an cyclonic circulation over central region of South America (SA), known as Chaco low. The increased upward motion induced by the surface warming together with the anomalous cyclonic circulation results in the increased of low-level moisture transport from Amazon region toward central region of SA by the low-level northwesterly flow. This situation increases the amount of precipitation in SAMS core and starts the rainy season in this region. During the termination stage, these conditions over SA are reversed. The ENSO mode reveals that the following factors affect the evolution of the SAMS system in La Niña years. (1) Negative 1000-hPa temperature anomalies over the

  1. Simulation of the East Asian Summer Monsoon during the Last Millennium with the MPI Earth System Model

    NASA Astrophysics Data System (ADS)

    Man, W.; Zhou, T.; Jungclaus, J. H.

    2012-12-01

    The decadal-centennial variations of East Asian summer monsoon (EASM) and the associated rainfall change during the past millennium are simulated using the Earth system model developed at Max Planck Institute for Meteorology. The model was driven by up-to-date reconstructions of external forcing including the recent low-amplitude estimates of solar variations. Analysis of the simulations indicates that the EASM is generally strong during the Medieval Warm Period (MWP, AD 1000-1100) and weak during the Little Ice Age (LIA, AD 1600-1700). The monsoon rain-band exhibits a meridional tri-polar pattern during both epochs. Excessive (deficient) precipitation is found over North China (35°-42°N, 100°-120°E) but deficient (excessive) precipitation is seen along the Yangtze River valley (27°-34°N, 100°-120°E) during the MWP (LIA). Both similarities and disparities of the rainfall pattern between our model results and the proxy data have been compared, reconstructions from Chinese historical documents and some geological evidence support our results. The changes of the EASM circulation including the subtropical westerly jet stream in the upper troposphere and the western Pacific subtropical High (WPSH) in the middle and lower troposphere are consistent with the meridional shift of monsoon rain-belt during both epochs. The meridional monsoon circulation changes are accompanied with anomalous southerly (northerly) winds between 20° and 50°N during the MWP (LIA). The land-sea thermal contrast change caused by the effective radiative forcing lead to the MWP and LIA monsoon changes. The "warmer-land-colder-ocean" anomaly pattern during the MWP favors a stronger monsoon, while the "colder-land-warmer-ocean" anomaly pattern during the LIA favors a weaker monsoon.

  2. Influences of ENSO on the vertical coupling of atmospheric circulation during the onset of South Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Liu, Boqi; Wu, Guoxiong; Ren, Roncai

    2015-10-01

    Based on multiple sources of atmospheric and oceanic data, this study performs a series of composite analysis of the South Asian summer monsoon (SASM) onset against ENSO events, and indicates that warm/cold ENSO events induce later/earlier onset of the SASM by modulating the vertical coupling of the upper- and lower-level circulation over the South Asia. Specifically, during the monsoon onset of Bay of Bengal (BOB), the ENSO-induced convection anomalies over the southern Philippines can modulate the position of South Asian high (SAH) in late April in the upper troposphere, which evolves to affect the monsoon onset convection by changing the upper divergence-pumping effect. In the lower troposphere, ENSO induces an anomalous zonal gradient of sea surface temperature (SST) over the Indian-western Pacific Ocean to alter the barotropic instability which further affects the formation of BOB monsoon onset convection. During the Indian summer monsoon onset, the anomalous convection over northeastern BOB and Indochina Peninsula in late May act to change the SAH position and its relevant upper divergence-pumping over the Arabian Sea (AS). Meanwhile, the Indian monsoon onset convection is also modulated by the ENSO-induced changes in intensity of the inertial instability and the forced convection over the AS, which are related to an ENSO-induced anomalous cross-equatorial SST gradient and zonally asymmetric meridional gradient of sea level pressure, and an anomalous westerly over the central AS in the lower troposphere. Results demonstrate that during the BOB and India monsoon onset, the influences of ENSO on the upper circulation are similar, but are distinctly different on the lower-level circulation.

  3. Examining Intraseasonal Variability in the West African Monsoon Using the Superparameterized Community Climate System Model

    NASA Astrophysics Data System (ADS)

    McCrary, Rachel; Randall, David; Stan, Cristiana

    2013-04-01

    In West Africa, the ability to predict intraseasonal variations in rainfall would have important social and economic impacts for local populations. In particular, such predictions might be useful for estimating the timing of the monsoon onset and break periods in monsoon rains. Current theory suggests that on 25-90 day timescales, the West African monsoon (WAM) is influenced by intraseasonal variations in the Indo-Pacific region, namely the Madden Julian Oscillation (MJO) and the Asian summer monsoon. Unfortunately, most general circulation models (GCMs) show weak skill in simulating the seasonal variations in the WAM as well as intraseasonal variability in the Indo-Pacific. These model limitations make it difficult to study the dynamical links in variability across the tropics. Unlike traditional GCMs, models that have implemented the superparameterization (where traditional convective parameterizations are replaced by embedding a two dimensional cloud resolving model in each grid box) have been shown to be able to represent the WAM, the MJO and the Asian Summer Monsoon with reasonable fidelity. These model advances may allow us to study the teleconnections between the Indo-Pacific and West Africa in more detail. This study examines the intraseasonal variability of the WAM in the Superparameterized Community Climate System model (SP-CCSM). Results from the SP-CCSM are consistent with observations where intraseasonal variability accounts for 15-20% of the total variability in rainfall over West Africa during the monsoon season. We also show that on 25-90 day timescales, increases in precipitation over West Africa correspond with a northward shift of the African easterly jet and an increase in African easterly wave activity. Lag-composite analysis indicates that intraseasonal variations in WAM precipitation correspond with the North-South propagation of the MJO during boreal summer as well as the active and breaking phases of the Asian summer monsoon. Preliminary

  4. Remote Sensing of Arizona Monsoons: Application of GOES Infrared Imagery

    NASA Astrophysics Data System (ADS)

    Carter, S.; Christensen, P. R.; Cerveny, R. S.

    2013-12-01

    Large, violent thunder and dust storms occur in the Phoenix area during monsoon season. Currently, the best ways to predict these dangerous and potentially damaging storms are not very accurate. The primary goal of this investigation is to attempt to develop a new technique to identify and predict these storms before they reach Phoenix. In order to address this question, two data sets (remote sensing satellite imagery and ground-based weather information) will be analyzed and compared against one another using time as a corresponding variable. The goal is to discern any correlations between data sets which be used as an indicator of imminent large monsoons. The moisture needed for the storms is carried to Arizona by events known as gulf surges (from the California Gulf); these will be the target of investigation. These chutes of moisture surge through Arizona, primarily up through Yuma in a northeasterly direction towards central/south central Arizona. The main goal is to identify if satellite imagery can be used as an accurate identifier of moisture movements preceding a storm in areas where ground measurements are not available. Presently, ground measurements of dew points are the primary technique by which these moisture surges are identified. However, while these measurements do have a fairly high temporal resolution (once an hour) they cover an awfully poor spacial range. Furthermore, it is suspected that because of interference to the instruments, the ground point data may not be as accurate as is preferred. On the other hand, satellite imagery such as GOES - the instrument used in this investigation - has both a remarkably high temporal resolution and spacial coverage. If a correlation can be demonstrated, then the high temporal resolution of the remote sensing data could be used as an identifier of oncoming monsoon storms. In order to proceed in this research, a software package known as Java Mission-planning and Analysis for Remote Sensing (JMARS) for

  5. Monsoon extremes and society over the past millennium on mainland Southeast Asia

    NASA Astrophysics Data System (ADS)

    Buckley, Brendan M.; Fletcher, Roland; Wang, Shi-Yu Simon; Zottoli, Brian; Pottier, Christophe

    2014-07-01

    The early 21st century has seen vigorous scientific interest in the Asian monsoon and significant development of paleo-proxies of monsoon strength. These include the Monsoon Asian Drought Atlas - a 700-year, gridded reconstruction of hydroclimate derived from 327 tree ring records - and several long speleothem records from China and India. Similar progress has been made on the study of monsoon climate dynamics through re-analysis data products and General Circulation Model diagnostics. The story has emerged of a variable monsoon over the latter Holocene, with extended droughts and anomalously wet episodes that occasionally and profoundly influenced the course of human history. We focus on Southeast Asia where an anomalous period of unstable climate coincided with the demise of the capital of the Khmer Empire at Angkor between the 14th and the 16th centuries, and we suggest that protracted periods of drought and deluge rain events, the latter of which damaged Angkor's extensive water management systems, may have been a significant factor in the subsequent transfer of the political capital away from Angkor. The late 16th and early 17th century experienced climate instability and the collapse of the Ming Dynasty in China under a period of drought, while Tonkin experienced floods and droughts throughout the 17th century. The 18th century was a period of great turmoil across Southeast Asia, when all of the region's polities saw great unrest and rapid realignment during one of the most extended periods of drought of the past millennium. New paleo-proxy records and the incorporation of historical documentation will improve future analyses of the interaction between climate extremes, social behavior and the collapse or disruption of regional societies, a subject of increasing concern given the uncertainties surrounding projections for future climate.

  6. The role of antecedent soil moisture on variability of the North American Monsoon System

    NASA Astrophysics Data System (ADS)

    Zhu, C.; Lettenmaier, D. P.; Qian, Y.; Leung, R.

    2006-12-01

    We evaluate the influence of soil moisture anomalies on the timing and strength of North American Monsoon system (NAMS) precipitation using the MM5 mesoscale climate model coupled with the Variable Infiltration Capacity (VIC) land surface model. Our experiments are motivated by results of previous data analysis that has evaluated the role of land surface conditions on variations in monsoon precipitation in the Arizona-New Mexico northwestern Mexico subregions of the NAMS region. These previous studies showed that soil moisture memory can propagate winter precipitation anomalies, and hence land surface cooling, through the dry spring season and into early summer. The effect is greater in NW Mexico where the monsoon begins earlier than in the southwestern U.S. We further investigate this land surface feedback mechanism through a set of coupled model runs using MM5/VIC. These coupled runs are consistent with the previous off-line runs to the extent that the VIC land surface scheme is the basis for soil moisture prediction in both. MM5/VIC control runs together with a set of sensitivity experiments in which soil moisture is prescribed to field capacity, wilting point and VIC soil moisture climatology, respectively, during pre-monsoon seasons (April-June) are used to examine the influence of antecedent (above-normal, below-normal and normal) soil moisture on pre-monsoon (May and June) surface temperature. Surface temperature, and its contrast with sea surface temperature, is a key driver of the onset of the NAMS. These experiments are intended to better understand the role of land- atmosphere feedbacks on the NAMS by testing a range of land surface and climate conditions in the coupled modeling environment.

  7. Interannual variability in phytoplankton blooms observed in the northwestern Arabian Sea during the southwest monsoon

    NASA Technical Reports Server (NTRS)

    Brock, John C.; Mcclain, Charles R.

    1992-01-01

    Interannual changes in the strength and seasonal evolution of the 1979 through 1982 surface-level southwest monsoon winds are related to variations in the summer phytoplankton bloom of the northwestern Arabian Sea by synthesis of satellite ocean-color remote sensing with analysis of in-situ hydrographic and meteorological data sets. The 1979-1981 southwest monsoon phytoplankton blooms in the northwest Arabian Sea peaked during August-September, extended from the Omani coast to about 6 E, and appeared to lag the development of open-sea upwelling by at least 1 month. In all 3 years the bloom was driven by spatially distinct upward nutrient fluxes to the euphotic zone forced by the physical processes of coastal upwelling and offshore Ekman pumping. Coastal upwelling was evident from May through September, yielded the most extreme concentrations of phytoplankton biomass, and along the Omani coast was limited in its impact on upper ocean biological variability to the continental shelf. Ekman pumping stimulated the development of a broad open-ocean component of the southwest monsoon phytoplankton bloom oceanward of the Omani shelf. Phytoplankton biomass on the Omani continental shelf was increased during both the early and late phases of the 1980 southwest monsoon due to stronger coastal upwelling under the most intense southwesterly winds of the four summers investigated. Diminished coastal upwelling during the early phase of the weak 1982 southwest monsoon resulted in a coastal bloom that reached a mean phytoplankton-pigment concentration that was 28 percent of that seen in 1980. The lack of a strong regional northwestern Arabian Sea bloom in late summer 1982 is attributed to the development of persistent, shallow temperature stratification that rendered Ekman pumping less effective in driving upward nutrient fluxes.

  8. New statistical models for long-range forecasting of southwest monsoon rainfall over India

    NASA Astrophysics Data System (ADS)

    Rajeevan, M.; Pai, D. S.; Anil Kumar, R.; Lal, B.

    2007-06-01

    The India Meteorological Department (IMD) has been issuing long-range forecasts (LRF) based on statistical methods for the southwest monsoon rainfall over India (ISMR) for more than 100 years. Many statistical and dynamical models including the operational models of IMD failed to predict the recent deficient monsoon years of 2002 and 2004. In this paper, we report the improved results of new experimental statistical models developed for LRF of southwest monsoon seasonal (June September) rainfall. These models were developed to facilitate the IMD’s present two-stage operational forecast strategy. Models based on the ensemble multiple linear regression (EMR) and projection pursuit regression (PPR) techniques were developed to forecast the ISMR. These models used new methods of predictor selection and model development. After carrying out a detailed analysis of various global climate data sets; two predictor sets, each consisting of six predictors were selected. Our model performance was evaluated for the period from 1981 to 2004 by sliding the model training period with a window length of 23 years. The new models showed better performance in their hindcast, compared to the model based on climatology. The Heidke scores for the three category forecasts during the verification period by the first stage models based on EMR and PPR methods were 0.5 and 0.44, respectively, and those of June models were 0.63 and 0.38, respectively. Root mean square error of these models during the verification period (1981 2004) varied between 4.56 and 6.75% from long period average (LPA) as against 10.0% from the LPA of the model based on climatology alone. These models were able to provide correct forecasts of the recent two deficient monsoon rainfall events (2002 and 2004). The experimental forecasts for the 2005 southwest monsoon season based on these models were also found to be accurate.

  9. Multidisciplinary Optimization Branch Experience Using iSIGHT Software

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Korte, J. J.; Dunn, H. J.; Salas, A. O.

    1999-01-01

    The Multidisciplinary Optimization (MDO) Branch at NASA Langley is investigating frameworks for supporting multidisciplinary analysis and optimization research. A framework provides software and system services to integrate computational tasks and allows the researcher to concentrate more on the application and less on the programming details. A framework also provides a common working environment and a full range of optimization tools, and so increases the productivity of multidisciplinary research teams. Finally, a framework enables staff members to develop applications for use by disciplinary experts in other organizations. This year, the MDO Branch has gained experience with the iSIGHT framework. This paper describes experiences with four aerospace applications, including: (1) reusable launch vehicle sizing, (2) aerospike nozzle design, (3) low-noise rotorcraft trajectories, and (4) acoustic liner design. Brief overviews of each problem are provided, including the number and type of disciplinary codes and computation time estimates. In addition, the optimization methods, objective functions, design variables, and constraints are described for each problem. For each case, discussions on the advantages and disadvantages of using the iSIGHT framework are provided as well as notes on the ease of use of various advanced features and suggestions for areas of improvement.

  10. Multi-disciplinary coupling effects for integrated design of propulsion systems

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Effective computational simulation procedures are described for modeling the inherent multi-disciplinary interactions which govern the accurate response of propulsion systems. Results are presented for propulsion system responses including multi-disciplinary coupling effects using coupled multi-discipline thermal, structural, and acoustic tailoring; an integrated system of multi-disciplinary simulators; coupled material behavior/fabrication process tailoring; sensitivities using a probabilistic simulator; and coupled materials, structures, fracture, and probabilistic behavior simulator. The results demonstrate that superior designs can be achieved if the analysis/tailoring methods account for the multi-disciplinary coupling effects. The coupling across disciplines can be used to develop an integrated coupled multi-discipline numerical propulsion system simulator.

  11. Autoencoder-based identification of predictors of Indian monsoon

    NASA Astrophysics Data System (ADS)

    Saha, Moumita; Mitra, Pabitra; Nanjundiah, Ravi S.

    2016-02-01

    Prediction of Indian summer monsoon uses a number of climatic variables that are historically known to provide a high skill. However, relationships between predictors and predictand could be complex and also change with time. The present work attempts to use a machine learning technique to identify new predictors for forecasting the Indian monsoon. A neural network-based non-linear dimensionality reduction technique, namely, the sparse autoencoder is used for this purpose. It extracts a number of new predictors that have prediction skills higher than the existing ones. Two non-linear ensemble prediction models of regression tree and bagged decision tree are designed with identified monsoon predictors and are shown to be superior in terms of prediction accuracy. Proposed model shows mean absolute error of 4.5 % in predicting the Indian summer monsoon rainfall. Lastly, geographical distribution of the new monsoon predictors and their characteristics are discussed.

  12. Did aboriginal vegetation burning impact on the Australian summer monsoon?

    NASA Astrophysics Data System (ADS)

    Notaro, Michael; Wyrwoll, Karl-Heinz; Chen, Guangshan

    2011-06-01

    Aboriginal vegetation burning practices and their role in the Australian environment remains a central theme of Australian environmental history. Previous studies have identified a decline in the Australian summer monsoon during the late Quaternary and attributed it to land surface-atmosphere feedbacks, related to Aboriginal burning practices. Here we undertake a comprehensive, ensemble model evaluation of the effects of a decrease in vegetation cover over the summer monsoon region of northern Australia. Our results show that the climate response, while relatively muted during the full monsoon, was significant for the pre-monsoon season (austral spring), with decreases in precipitation, higher surface and ground temperatures, and enhanced atmospheric stability. These early monsoon season changes can invoke far-reaching ecological impacts and set-up land surface-atmosphere feedbacks that further accentuate atmospheric stability.

  13. Multidisciplinary Approach to Linear Aerospike Nozzle Optimization

    NASA Technical Reports Server (NTRS)

    Korte, J. J.; Salas, A. O.; Dunn, H. J.; Alexandrov, N. M.; Follett, W. W.; Orient, G. E.; Hadid, A. H.

    1997-01-01

    A model of a linear aerospike rocket nozzle that consists of coupled aerodynamic and structural analyses has been developed. A nonlinear computational fluid dynamics code is used to calculate the aerodynamic thrust, and a three-dimensional fink-element model is used to determine the structural response and weight. The model will be used to demonstrate multidisciplinary design optimization (MDO) capabilities for relevant engine concepts, assess performance of various MDO approaches, and provide a guide for future application development. In this study, the MDO problem is formulated using the multidisciplinary feasible (MDF) strategy. The results for the MDF formulation are presented with comparisons against sequential aerodynamic and structural optimized designs. Significant improvements are demonstrated by using a multidisciplinary approach in comparison with the single- discipline design strategy.

  14. Multidisciplinary management for esophageal and gastric cancer

    PubMed Central

    Boniface, Megan M; Wani, Sachin B; Schefter, Tracey E; Koo, Phillip J; Meguid, Cheryl; Leong, Stephen; Kaplan, Jeffrey B; Wingrove, Lisa J; McCarter, Martin D

    2016-01-01

    The management of esophageal and gastric cancer is complex and involves multiple specialists in an effort to optimize patient outcomes. Utilizing a multidisciplinary team approach starting from the initial staging evaluation ensures that all members are in agreement with the plan of care. Treatment selection for esophageal and gastric cancer often involves a combination of chemotherapy, radiation, surgery, and palliative interventions (endoscopic and surgical), and direct communication between specialists in these fields is needed to ensure appropriate clinical decision making. At the University of Colorado, the Esophageal and Gastric Multidisciplinary Clinic was created to bring together all experts involved in treating these diseases at a weekly conference in order to provide patients with coordinated, individualized, and patient-centered care. This review details the essential elements and benefits of building a multidisciplinary program focused on treating esophageal and gastric cancer patients. PMID:27217796

  15. Multidisciplinary Approach to Aerospike Nozzle Design

    NASA Technical Reports Server (NTRS)

    Korte, J. J.; Salas, A. O.; Dunn, H. J.; Alexandrov, N. M.; Follett, W. W.; Orient, G. E.; Hadid, A. H.

    1997-01-01

    A model of a linear aerospike rocket nozzle that consists of coupled aerodynamic and structural analyses has been developed. A nonlinear computational fluid dynamics code is used to calculate the aerodynamic thrust, and a three-dimensional finite-element model is used to determine the structural response and weight. The model will be used to demonstrate multidisciplinary design optimization (MDO) capabilities for relevant engine concepts, assess performance of various MDO approaches, and provide a guide for future application development. In this study, the MDO problem is formulated using the multidisciplinary feasible (MDF) strategy. The results for the MDF formulation are presented with comparisons against separate aerodynamic and structural optimized designs. Significant improvements are demonstrated by using a multidisciplinary approach in comparison with the single-discipline design strategy.

  16. Annual monsoon rains recorded by Jurassic dunes.

    PubMed

    Loope, D B; Rowe, C M; Joeckel, R M

    2001-07-01

    Pangaea, the largest landmass in the Earth's history, was nearly bisected by the Equator during the late Palaeozoic and early Mesozoic eras. Modelling experiments and stratigraphic studies have suggested that the supercontinent generated a monsoonal atmospheric circulation that led to extreme seasonality, but direct evidence for annual rainfall periodicity has been lacking. In the Mesozoic era, about 190 million years ago, thick deposits of wind-blown sand accumulated in dunes of a vast, low-latitude desert at Pangaea's western margin. These deposits are now situated in the southwestern USA. Here we analyse slump masses in the annual depositional cycles within these deposits, which have been described for some outcrops of the Navajo Sandstone. Twenty-four slumps, which were generated by heavy rainfall, appear within one interval representing 36 years of dune migration. We interpret the positions of 20 of these masses to indicate slumping during summer monsoon rains, with the other four having been the result of winter storms. The slumped lee faces of these Jurassic dunes therefore represent a prehistoric record of yearly rain events. PMID:11452305

  17. Satellite observations of a monsoon depression

    NASA Technical Reports Server (NTRS)

    Warner, C.

    1984-01-01

    The exploration of a monsoon depression over Burma and the Bay of Bengal is discussed. Aircraft and satellite data were examined, with an emphasis on the Microwave Sounding Unit (MSU) aboard TIROS-N and the Scanning Multichannel Microwave Radiometer (SMMR) aboard Nimbus-7. The structure of the monsoon depression was found to be dominated by cumulus convection. The only systematic large scale behavior discerned was a propagation of the depression westward, and diurnal migration of contours of brightness temperature. These contours in the middle troposphere showed a gradient toward the north with the patterns migrating northward at night. From SMMR and dropwindsonde data, water vapor contents were found to be near 65 mm, increasing to more than 70 mm in the northeast Bay of Bengal. Cloud water contents reached about three mm. Rainfall rates exceeding 5.7 mm/h occurred over a small part of the storm area, while mean rainfall rates in areas of order 20,000 sq km reached approximately 0.5 mm/h. Measured MSU brightness temperatures were reconciled very well with dropwindsonde data and with airborne in situ observations of clouds (by photography) and hydrometeors (by radar). Diffuse scattering was determined to be important in computing brightness temperature.

  18. Does Aerosol Weaken or Strengthen the South Asian Monsoon?

    NASA Technical Reports Server (NTRS)

    Lau, William K.

    2010-01-01

    Aerosols are known to have the ability to block off solar radiation reaching the earth surface, causing it to cool - the so-called solar dimming (SDM) effect. In the Asian monsoon region, the SDM effect by aerosol can produce differential cooling at the surface reducing the meridional thermal contrast between land and ocean, leading to a weakening of the monsoon. On the other hand, absorbing aerosols such as black carbon and dust, when forced up against the steep slopes of the southern Tibetan Plateau can produce upper tropospheric heating, and induce convection-dynamic feedback leading to an advance of the rainy season over northern India and an enhancement of the South Asian monsoon through the "Elevated Heat Pump" (EHP) effect. In this paper, we present modeling results showing that in a coupled ocean-atmosphere-land system in which concentrations of greenhouse gases are kept constant, the response of the South Asian monsoon to dust and black carbon forcing is the net result of the two opposing effects of SDM and EHP. For the South Asian monsoon, if the increasing upper tropospheric thermal contrast between the Tibetan Plateau and region to the south spurred by the EHP overwhelms the reduction in surface temperature contrast due to SDM, the monsoon strengthens. Otherwise, the monsoon weakens. Preliminary observations are consistent with the above findings. We find that the two effects are strongly scale dependent. On interannual and shorter time scales, the EHP effect appears to dominate in the early summer season (May-June). On decadal or longer time scales, the SDM dominates for the mature monsoon (July-August). Better understanding the physical mechanisms underlying the SDM and the EHP effects, the local emission and transport of aerosols from surrounding deserts and arid-regions, and their interaction with monsoon water cycle dynamics are important in providing better prediction and assessment of climate change impacts on precipitation of the Asian monsoon

  19. Does Aerosol Weaken or Strengthen the South Asian Monsoon?

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2007-01-01

    Aerosols are known to have the ability to block off solar radiation reaching the earth surface, causing it to cool - the so-called solar dimming (SDM) effect. In the Asian monsoon region, the SDM effect by aerosol can produce differential cooling at the surface reducing the meridional thermal contrast between land and ocean, leading to a weakening of the monsoon (Ramanathan et al. 2005). On the other hand, absorbing aerosols such as black carbon and dust, when forced up against the steep slopes of the southern Tibetan Plateau can produce upper tropospheric heating, and induce convection-dynamic feedback leading to an advance of the rainy season over northern India and an enhancement of the South Asian monsoon through the "Elevated Heat Pump" (EHP) effect (Lau et al. 2006). In this paper, we present modeling results showing that in a coupled ocean-atmosphere-land system in which concentrations of greenhouse gases are kept constant, the response of the South Asian monsoon to dust and black carbon forcing is the net result of the two opposing effects of SDM and EHP. For the South Asian monsoon, if the increasing upper tropospheric thermal contrast between the Tibetan Plateau and region to the south spurred by the EHP overwhelms the reduction in surface temperature contrast due to SDM, the monsoon strengthens. Otherwise, the monsoon weakens. Preliminary observations are consistent with the above findings. We find that the two effects are strongly scale dependent. On interannual and shorter time scales, the EHP effect appears to dominate in the early summer season (May-June). On decadal or longer time scales, the SDM dominates for the mature monsoon (July-August). Better understanding the physical mechanisms underlying the SDM and the EHP effects, the local emission and transport of aerosols from surrounding deserts and arid-regions, and their interaction with monsoon water cycle dynamics are important in providing better prediction and assessment of climate change

  20. The Role of African topography in the South Asian Monsoon

    NASA Astrophysics Data System (ADS)

    Wei, H. H.; Bordoni, S.

    2014-12-01

    The Somali cross-equatorial jet is estimated to contribute up to half of the mass flux crossing the equator during the Asian monsoon season. Previous studies have argued that the Somali jet is strengthened by the East African Highlands, which act as a wall and accelerate the flow (e.g., Krishnamurti et al. 1976, Sashegyi and Geisler 1987). Besides, observational studies have shown a positive correlation between the strength of the Somali jet and the South Asian Monsoon (SAM) precipitation (e.g., Findlater 1969, Halpern and Woiceshyn 2001). These imply that the existence of the topography would relate to a stronger SAM. However, in a more recent study, Chakraborty et al. (2002) found that if the African topography is removed in a comprehensive general circulation model (GCM), the SAM strengthens. In this study, we use the GFDL AM2.1 GCM to conduct experiments with and without topography in Africa, to further examine its influence on the cross-equatorial Somali jet and the SAM. We find that when the African topography is removed, the SAM precipitation increases, consistent with the results in Chakraborty et al. (2002). Interestingly, our results also show that the cross-equatorial Somali jet does weaken in the absence of the African topography, in agreement with previous studies. The moisture budget shows that the increase in precipitation in the no-African topography experiment is primarily due to stronger wind convergence. The dynamics of the cross-equatorial Somali jet is investigated within the framework of the Potential Vorticity (PV) budget, showing the contribution of the changes in friction and diabatic heating to the circulation as the topography is removed. A backward trajectory analysis is also conducted to further examine the influence of topography on both the material tendencies of the PV budget and trajectories of parcels reaching the Indian subcontinent.

  1. A Multidisciplinary Course in Bioengineering.

    ERIC Educational Resources Information Center

    Bienkowski, Paul R.; And Others

    1989-01-01

    Outlines a graduate course, "Microbial Systems Analysis," for students in chemical and environmental engineering or engineering mechanics, as well as microbiology, ecology and biotechnology. Describes the objectives, structure and laboratory experiments for the course. (YP)

  2. Possible shift in the ENSO-Indian monsoon rainfall relationship under future global warming.

    PubMed

    Azad, Sarita; Rajeevan, M

    2016-01-01

    EI Nino-Southern Oscillation (ENSO) and Indian monsoon rainfall are known to have an inverse relationship, which we have observed in the rainfall spectrum exhibiting a spectral dip in 3-5 y period band. It is well documented that El Nino events are known to be associated with deficit rainfall. Our analysis reveals that this spectral dip (3-5 y) is likely to shift to shorter periods (2.5-3 y) in future, suggesting a possible shift in the relationship between ENSO and monsoon rainfall. Spectral analysis of future climate projections by 20 Coupled Model Intercomparison project 5 (CMIP5) models are employed in order to corroborate our findings. Change in spectral dip speculates early occurrence of drought events in future due to multiple factors of global warming. PMID:26837459

  3. Possible shift in the ENSO-Indian monsoon rainfall relationship under future global warming

    PubMed Central

    Azad, Sarita; Rajeevan, M.

    2016-01-01

    EI Nino-Southern Oscillation (ENSO) and Indian monsoon rainfall are known to have an inverse relationship, which we have observed in the rainfall spectrum exhibiting a spectral dip in 3–5 y period band. It is well documented that El Nino events are known to be associated with deficit rainfall. Our analysis reveals that this spectral dip (3–5 y) is likely to shift to shorter periods (2.5–3 y) in future, suggesting a possible shift in the relationship between ENSO and monsoon rainfall. Spectral analysis of future climate projections by 20 Coupled Model Intercomparison project 5 (CMIP5) models are employed in order to corroborate our findings. Change in spectral dip speculates early occurrence of drought events in future due to multiple factors of global warming. PMID:26837459

  4. Prediction and monitoring of monsoon intraseasonal oscillations over Indian monsoon region in an ensemble prediction system using CFSv2

    NASA Astrophysics Data System (ADS)

    Abhilash, S.; Sahai, A. K.; Borah, N.; Chattopadhyay, R.; Joseph, S.; Sharmila, S.; De, S.; Goswami, B. N.; Kumar, Arun

    2014-05-01

    An ensemble prediction system (EPS) is devised for the extended range prediction (ERP) of monsoon intraseasonal oscillations (MISO) of Indian summer monsoon (ISM) using National Centers for Environmental Prediction Climate Forecast System model version 2 at T126 horizontal resolution. The EPS is formulated by generating 11 member ensembles through the perturbation of atmospheric initial conditions. The hindcast experiments were conducted at every 5-day interval for 45 days lead time starting from 16th May to 28th September during 2001-2012. The general simulation of ISM characteristics and the ERP skill of the proposed EPS at pentad mean scale are evaluated in the present study. Though the EPS underestimates both the mean and variability of ISM rainfall, it simulates the northward propagation of MISO reasonably well. It is found that the signal-to-noise ratio of the forecasted rainfall becomes unity by about 18 days. The potential predictability error of the forecasted rainfall saturates by about 25 days. Though useful deterministic forecasts could be generated up to 2nd pentad lead, significant correlations are found even up to 4th pentad lead. The skill in predicting large-scale MISO, which is assessed by comparing the predicted and observed MISO indices, is found to be ~17 days. It is noted that the prediction skill of actual rainfall is closely related to the prediction of large-scale MISO amplitude as well as the initial conditions related to the different phases of MISO. An analysis of categorical prediction skills reveals that break is more skillfully predicted, followed by active and then normal. The categorical probability skill scores suggest that useful probabilistic forecasts could be generated even up to 4th pentad lead.

  5. Development and Application of the Collaborative Optimization Architecture in a Multidisciplinary Design Environment

    NASA Technical Reports Server (NTRS)

    Braun, R. D.; Kroo, I. M.

    1995-01-01

    Collaborative optimization is a design architecture applicable in any multidisciplinary analysis environment but specifically intended for large-scale distributed analysis applications. In this approach, a complex problem is hierarchically de- composed along disciplinary boundaries into a number of subproblems which are brought into multidisciplinary agreement by a system-level coordination process. When applied to problems in a multidisciplinary design environment, this scheme has several advantages over traditional solution strategies. These advantageous features include reducing the amount of information transferred between disciplines, the removal of large iteration-loops, allowing the use of different subspace optimizers among the various analysis groups, an analysis framework which is easily parallelized and can operate on heterogenous equipment, and a structural framework that is well-suited for conventional disciplinary organizations. In this article, the collaborative architecture is developed and its mathematical foundation is presented. An example application is also presented which highlights the potential of this method for use in large-scale design applications.

  6. In Absentia: An Exploratory Study of How Patients Are Considered in Multidisciplinary Cancer Team Meetings

    PubMed Central

    Hahlweg, Pola; Hoffmann, Jana; Härter, Martin; Frosch, Dominick L; Elwyn, Glyn; Scholl, Isabelle

    2015-01-01

    Background Multidisciplinary team meetings and shared decision-making are potential means of delivering patient-centred care. Not much is known about how those two paradigms fit together in cancer care. This study aimed to investigate how decisions are made in multidisciplinary team meetings and whether patient perspectives are incorporated in these decisions. Materials and Methods A qualitative study was conducted using non-participant observation at multidisciplinary team meetings (also called tumor boards) at the University Cancer Center Hamburg-Eppendorf, Germany. Two researchers recorded structured field notes from a total of N = 15 multidisciplinary team meetings. Data were analyzed using content analysis and descriptive statistics. Results Physicians mainly exchanged medical information and based their decision-making on this information. Individual patient characteristics or their treatment preferences were rarely considered or discussed. In the few cases where patient preferences were raised as a topic, this information did not seem to be taken into account in decision-making processes about treatment recommendations. Conclusion The processes in multidisciplinary team meetings we observed did not exhibit shared decision-making. Patient perspectives were absent. If multidisciplinary team meetings wish to become more patient-centred they will have to modify their processes and find a way to include patient preferences into the decision-making process. PMID:26441328

  7. Influence of Aerosols on Monsoon Circulation and Hydroclimate

    NASA Technical Reports Server (NTRS)

    Lau, William K.M.

    2007-01-01

    Long recognized as a major environmental hazard, aerosol is now known to have strong impacts on both regional and global water cycles and climate change. In the Asian monsoon regions, the response of the regional water cycle and climate to aerosol forcing is very complex, not only because of presence of diverse mix of aerosol species with vastly different radiative properties, but also because the monsoon is strongly influenced by ocean and land surface processes, land use, land change, as well as regional and global greenhouse warming effects. Thus, sorting out the impacts of aerosol forcing, and interaction with the monsoon water cycle is a very challenging problem. Up to now, besides the general notion that aerosols may significantly impact monsoon through altering large scale radiative heating gradients, there has been very little information regarding the specific signatures, and mechanisms of aerosol-monsoon water cycle interaction. In this talk, based on preliminary results from observations and climate model experiments, I will offer some insights into how aerosols may impact the Asian monsoon water cycle, in particular the effects of absorbing aerosols (dust and black carbon), and the role of the Tibetan Plateau. The influence of aerosol forcing relative to those due to sea surface temperature and land surface processes, and impact on potential predictability of the monsoon climate system will also be discussed.

  8. Influence of Aerosols on Monsoon Circulation and Hydroclimate

    NASA Technical Reports Server (NTRS)

    Lau, William K.

    2006-01-01

    Long recognized as a major environmental hazard, aerosol is now known to have strong impacts on both regional and global water cycles and climate change. In the Asian monsoon regions, the response of the regional water cycle and climate to aerosol forcing is very complex, not only because of presence of diverse mix of aerosol species with vastly different radiative properties, but also because the monsoon is strongly influenced by ocean and land surface processes, land use, land change, as well as regional and global greenhouse warming effects. Thus, sorting out the impacts of aerosol forcing, and interaction with the monsoon water cycle is a very challenging problem. Up to now, besides the general notion that aerosols may significantly impact monsoon through altering large scale radiative heating gradients, there has been very little information regarding the specific signatures, and mechanisms of aerosol-monsoon water cycle interaction. In this talk, based on preliminary results from observations and climate model experiments, I will offer some insights into how aerosols may impact the Asian monsoon water cycle, in particular the effects of absorbing aerosols (dust and black carbon), and the role of the Tibetan Plateau. The influence of aerosol forcing relative to those due to sea surface temperature and land surface processes, and impact on potential predictability of the monsoon climate system will also be discussed.

  9. Impacts of East Asian aerosols on the Asian monsoon

    NASA Astrophysics Data System (ADS)

    Bartlett, Rachel; Bollasina, Massimo; Booth, Ben; Dunstone, Nick; Marenco, Franco

    2016-04-01

    Over recent decades, aerosol emissions from Asia have increased rapidly. Aerosols are able to alter radiative forcing and regional hydroclimate through direct and indirect effects. Large emissions within the geographical region of the Asian monsoon have been found to impact upon this vital system and have been linked to observed drying trends. The interconnected nature of smaller regional monsoon components (e.g. the Indian monsoon and East Asian monsoon) presents the possibility that aerosol sources could have far-reaching impacts. Future aerosol emissions are uncertain and may continue to dominate regional impacts on the Asian monsoon. Standard IPCC future emissions scenarios do not take a broad sample of possible aerosol pathways. We investigate the sensitivity of the Asian monsoon to East Asian aerosol emissions. Experiments carried out with HadGEM2-ES use three time-evolving future anthropogenic aerosol emissions scenarios with similar time-evolving greenhouse gases. We find a wetter summer over southern China and the Indochina Peninsula associated with increased sulfate aerosol over China. The southern-flood-northern-drought pattern seen in observations is reflected in these results. India is found to be drier in the summer overall, although wetter in June. These precipitation changes are linked to the increase in sulfate through the alteration of large scale dynamics. Sub-seasonal changes are also seen, with an earlier withdrawal of the monsoon over East Asia.

  10. The North American Monsoon Forecast Forum at CPC/NCEP

    NASA Astrophysics Data System (ADS)

    Schemm, J. E.; Higgins, W.; Long, L.; Shi, W.; Gochis, D. J.

    2009-12-01

    In 2008, CPC introduced a new operational product to provide users a forum to monitor the North American monsoon (NAM). The NAME Forecast Forum (NAME FF) was proposed and endorsed by the North American Monsoon Experiment (NAME) Project Science Working Group as a natural extension to the NAME modeling activities coordinated under the NAME Climate Process Team project. It provided an opportunity to consolidate and assess, in real-time, the skill of intra-seasonal and seasonal monsoon forecasts. The NAME FF has continued in 2009 and three modeling groups collaborate with CPC to provide model simulated seasonal precipitation forecasts in the monsoon region. The website includes spatial maps and accumulated precipitation area-averaged over eight sub-regions of the NAM domain and is updated daily to include the current observed precipitation. A weekly update of the current conditions of the NAM system has been added to CPC’s American Monsoons monitoring webpage at, http://www.cpc.ncep.noaa.gov/products/Global_Monsoons/American_Monsoons/NAME/index.shtml. A highlight for the 2009 season is the inclusion of the NCEP CFS forecasts in T382 horizontal resolution. These special high-resolution runs were made with initial conditions in mid-April to accommodate the CPC’s hurricane season outlook. Some results based on the T382 CFS runs also will be presented with emphasis on the prediction of precipitation and accompanying atmospheric circulation over the NAM region.

  11. Seasonal-Resolution δ18O in Speleothems by Ion Microprobe: Revealing Asian Monsoon Dynamics

    NASA Astrophysics Data System (ADS)

    Orland, I. J.; Edwards, R. L.; Cheng, H.; Kozdon, R.; Valley, J. W.

    2014-12-01

    Over the last decade, ion microprobe analysis of speleothems (cave carbonates) has increased the temporal resolution of their oxygen isotope (δ18O) paleoclimate proxy records. Recent improvements in methodology, standardization, and imaging at the WiscSIMS lab make it possible to examine sub-annual patterns of δ18O variability at 10-µm-scale, revealing new seasonal paleoenvironmental information. We applied this technique to an important suite of Chinese stalagmites with conventional drill-sampled δ18O records that reflect changes in Asian Monsoon dynamics across the last deglaciation. Seasonal-resolution δ18O analyses in the Chinese stalagmites reveal regular patterns of annual δ18O variability. Quantitative assessment of the patterns identifies two important components in the δ18O records. First, the source and rainout histories of water vapors that ultimately yield rainfall over China play a primary role in determining the δ18O value of speleothem calcite year-round. Second, intra-annual patterns of calcite δ18O variability indicate that the annual proportion of monsoon precipitation changes systematically during the last deglaciation; the annual proportion of monsoon rainfall is greater during the Holocene and Bølling-Allerød than during the Younger Dryas. This is the first time these components have been characterized in any speleothem δ18O record of monsoon dynamics because seasonal δ18O variability is lost by conventional drill-sampling. Ion microprobe analysis of speleothems can also produce year-by-year records of δ18O across abrupt climate change events. At the Younger Dryas-Holocene transition in a Kulishu Cave stalagmite, which spanned 16 years at 11.53 ky BP, there is a relatively smooth decrease in year-round δ18O(calcite). In contrast, the intra-annual δ18O patterns indicate that the increase in the annual proportion of monsoon rainfall across this transition is stochastic, implying that this record can distinguish the regional

  12. Simulation of Indian Monsoon Variability in the Medieval Warm Period using ECHAM5 General Circulation Model

    NASA Astrophysics Data System (ADS)

    Polanski, Stefan; Fallah, Bijan; Prasad, Sushma; Cubasch, Ulrich

    2013-04-01

    Within the framework of the DFG research group HIMPAC, the general circulation model ECHAM5 has been used to simulate the Indian monsoon and its variability during the Medieval Warm Period (MWP; 900-1100 AD) and for recent climate (REC; 1800-2000 AD). The focus is on the analysis of internal and external drivers leading to extreme rainfall events over India from interannual to multidecadal time scale. An evaluation of spatio-temporal monsoon patterns with present-day observation data is in agreement with other state-of-the-art monsoon modeling studies. The simulated monsoon intensity on multidecadal time scale is weakened (enhanced) in summer (winter) due to colder (warmer) SSTs in the Indian Ocean. Variations in solar insolation are the main drivers for these SST anomalies, verified by very high temporal correlations between Total Solar Irradiance and All-India-Monsoon-Rainfall in summer monsoon months (-0.95). The external solar forcing is coupled and overlain by internal climate modes of the Ocean (ENSO and IOD) with asynchronous intensities and lengths of periods. In addition, the model simulations have been compared with a relative moisture index derived from paleoclimatic reconstructions based on various proxies and archives in India (Anoop et al., 2012 (under revision); Bhattacharya et al., 2007; Chauhan et al., 2000; Denniston et al., 2000; Ely et al., 1999; Kar et al., 2002; Ponton et al., 2012; Prasad et al., 2012 (under revision)). In this context, the reconstructed climate of the well-dated Lonar record in Central India has been highlighted and evaluated the first time (Anoop et al., 2012 (under revision); Prasad et al., 2012 (under revision)). Particularly with regard to the long continuously chronology of the last 11000 years, the Lonar site gives a unique possibility for a comparison of long-term climate time series. The simulated relative annual rainfall anomalies ("MWP" minus "REC") are in agreement with the reconstructed moisture index. The dry

  13. Stronger Disciplinary Identities in Multidisciplinary Research Schools

    ERIC Educational Resources Information Center

    Geschwind, Lars; Melin, Göran

    2016-01-01

    In this study, two multidisciplinary Social Sciences and Humanities research schools in Sweden have been investigated regarding disciplinary identity-making. This study investigates the meetings between different disciplines around a common thematic area of study for Ph.D. students. The Ph.D. students navigate through a complex social and…

  14. 34 CFR 303.17 - Multidisciplinary.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false Multidisciplinary. 303.17 Section 303.17 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION EARLY INTERVENTION PROGRAM FOR INFANTS AND TODDLERS...

  15. International Multidisciplinary Artificial Gravity (IMAG) Project

    NASA Technical Reports Server (NTRS)

    Laurini, Kathy

    2007-01-01

    This viewgraph presentation reviews the efforts of the International Multidisciplinary Artificial Gravity Project. Specifically it reviews the NASA Exploration Planning Status, NASA Exploration Roadmap, Status of Planning for the Moon, Mars Planning, Reference health maintenance scenario, and The Human Research Program.

  16. Thoughts about multidisciplinary, interdisciplinary, and transdisciplinary research.

    PubMed

    Fawcett, Jacqueline

    2013-10-01

    This essay focuses on multidisciplinary, interdisciplinary, and transdisciplinary research. The definitions and objectives for these three types of multiple discipline research are given. Discussion centers on the gains and losses that may be experienced by individual nurses who engage in such research, as well as gains and losses for the discipline of nursing. PMID:24085679

  17. The Taliesin Project: Multidisciplinary Education and Multimedia.

    ERIC Educational Resources Information Center

    Smith, Eric E.; Westhoff, Guy M.

    1992-01-01

    Describes the Taliesin Project, a current curriculum materials research and development effort whose main goals are (1) the development of a computer-aided classroom instructional tool for grades six through eight based on hypermedia technology, and (2) the development of a multidisciplinary curriculum to help develop stronger interests in…

  18. Placenta accreta and anesthesia: A multidisciplinary approach

    PubMed Central

    Khokhar, RS; Baaj, J; Khan, MU; Dammas, FA; Rashid, N

    2016-01-01

    Placenta accreta (an abnormally adherent placenta) is one of the two leading causes of peripartum hemorrhage and the most common indication for peripartum hysterectomy. Placenta accreta may be associated with significant maternal hemorrhage at delivery owing to the incomplete placental separation. When placenta accreta is diagnosed before delivery, a multidisciplinary approach may improve patient outcome. PMID:27375391

  19. Evaluating Multidisciplinary Education in Health Care.

    ERIC Educational Resources Information Center

    Pirrie, Anne; Wilson, Valerie; Elsegood, John; Hall, John; Hamilton, Sheila; Harden, Ronald; Lee, Diana; Stead, Joan

    A 2-year study evaluated students' and course organizers' perceptions of the effectiveness of multidisciplinary education (ME) in health care and factors that facilitate or inhibit its development. The study had three phases: a survey of ME provision in the United Kingdom; 42 qualitative interviews and focus groups in 14 sites; and data feedback.…

  20. Multidisciplinary approaches to climate change questions

    USGS Publications Warehouse

    Middleton, Beth A.

    2011-01-01

    Multidisciplinary approaches are required to address the complex environmental problems of our time. Solutions to climate change problems are good examples of situations requiring complex syntheses of ideas from a vast set of disciplines including science, engineering, social science, and the humanities. Unfortunately, most ecologists have narrow training, and are not equipped to bring their environmental skills to the table with interdisciplinary teams to help solve multidisciplinary problems. To address this problem, new graduate training programs and workshops sponsored by various organizations are providing opportunities for scientists and others to learn to work together in multidisciplinary teams. Two examples of training in multidisciplinary thinking include those organized by the Santa Fe Institute and Dahlem Workshops. In addition, many interdisciplinary programs have had successes in providing insight into climate change problems including the International Panel on Climate Change, the Joint North American Carbon Program, the National Academy of Science Research Grand Challenges Initiatives, and the National Academy of Science. These programs and initiatives have had some notable success in outlining some of the problems and solutions to climate change. Scientists who can offer their specialized expertise to interdisciplinary teams will be more successful in helping to solve the complex problems related to climate change.

  1. Directions in Environmental Gerontology: A Multidisciplinary Field

    ERIC Educational Resources Information Center

    Kendig, Hal

    2003-01-01

    This article considers developments and directions for environmental gerontology drawing on the three papers in this Forum. The multidisciplinary field came of age during the 1960s with Powell Lawton's powerful environmental press paradigm and its applications to empirical research and building design. Recent theoretical developments in Europe and…

  2. Recent trends and tele-connections among South and East Asian summer monsoons in a warming environment

    NASA Astrophysics Data System (ADS)

    Preethi, B.; Mujumdar, M.; Kripalani, R. H.; Prabhu, Amita; Krishnan, R.

    2016-06-01

    Recent trends, variations and tele-connections between the two large regional sub-systems over the Asian domain, the South Asian and the East Asian monsoons are explored using data for the 1901-2014 period. Based on trend analysis a dipole-type configuration with north-drought and south-flood over South as well as East Asia is observed. Two regions over South Asia, one exhibiting a significant decreasing trend in summer monsoon rainfall over northeast India and the other significant increasing trend over the northern parts of the west coast of India are identified. Similarly two regions over East Asia, one over South Korea-southern parts of Japan and the other over South China are also identified both indicating a significant increasing trend in the summer monsoon rainfall. These trends are examined post 1970s. Possible factors associated with the recent trends are explored. Analysis of sea surface temperature (SST), mean sea level pressure and winds at lower troposphere indicates that the entire monsoon flow system appears to have shifted westwards, with the monsoon trough over South Asia indicating a westward shift by about 2-3° longitudes and the North Pacific Subtropical High over East Asia seems to have shifted by about 5-7° longitudes. These shifts are consistent with the recent rainfall trends. Furthermore, while the West Indian Ocean SSTs appear to be related with the summer monsoon rainfall over northern parts of India and over North China, the West Pacific SSTs appear to be related with the rainfall over southern parts of India and over South Korea- southern Japan sector.

  3. Land-surface processes and monsoon climate system

    NASA Astrophysics Data System (ADS)

    Xue, Y.

    2014-12-01

    Differential thermal heating of land and ocean and heat release into the atmosphere are important factors that determine the onset, strength, duration and spatial distribution of large-scale monsoons. A global and seasonal assessment of land surface process (LSP) effects on the monsoon system has been made based on general circulation models (GCM) coupled to different benchmark land models, which physically represent either comprehensive, or partial, or minimal LSP representations. Observed precipitation is applied as constrain and differences in simulation error are used to assess the effect of the LSP with different complexity. The AGCM results indicate that the land/atmosphere interaction has substantial impact on global water cycle, while the monsoon regions have had strongest impact at intraseasonal to decadal scales. Among monsoon regions, West Africa, South Asia, East Asia, and Amazon regions have largest impact while some monsoon regions have less impact due to strong air/sea interactions and narrow land mass. LSP reduces the annual precipitation error by 58% over global monsoon regions, about 35% observed precipitation. The partial LSP effect (excluding soil moisture and vegetation albedo) reduces annual precipitation error over monsoon region that equals to about 13% of observed precipitation. It has also been suggested that LSP contribute to the abrupt jump in latitude of the East Asian monsoon as well as general circulation turning in some monsoon regions in its early stages. The LSP effects have also been assessed in the land use land cover change experiment. Based on recently compiled global land-use data from 1948-2005, the GCM simulation results indicate the degradation in Mexico, West Africa, south and East Asia and South America produce substantial precipitation anomalies, some of which are consistent with observed regional precipitation anomalies. More comprehensive studies with multi-models are imperatively necessary.

  4. Dinoflagellates in a mesotrophic, tropical environment influenced by monsoon

    NASA Astrophysics Data System (ADS)

    D'Costa, Priya M.; Chandrashekar Anil, Arga; Patil, Jagadish S.; Hegde, Sahana; D'Silva, Maria Shamina; Chourasia, Molji

    2008-03-01

    The changes in dinoflagellate community structure in both - the water column and sediment in a mesotrophic, tropical port environment were investigated in this study. Since the South West Monsoon (SWM) is the main source of climatic variation, observations were made during two consecutive post-monsoon periods (2001 and 2002) and the intervening pre-monsoon period (2002). The pre-monsoon period supported a more diverse dinoflagellate community in the water column compared to both post-monsoon periods. Heterotrophic dinoflagellates were abundant in the water column as well as sediment. A seasonal cycling between vegetative and resting cysts of autotrophic and heterotrophic dinoflagellates governed by the environmental characteristics of the study area was observed. Temperature, salinity and suspended particulate matter were the main factors affecting dinoflagellate community structure in both the water column and sediment. The dominant dinoflagellates in the water column differed during both post-monsoon periods that followed two dissimilar monsoon events. Prorocentroids and gonyaulacoids dominated the water column subsequent to the 2001 SWM, whereas dinophysoids and unidentified tiny dinoflagellates dominated during the next post-monsoon period. The 2001 SWM started in May, peaked during June-July and reduced gradually to end in October. The 2002 SWM was erratic; it started late (in June) and ended earlier (in September). These observations highlight the potential of the SWM to influence the community structure of dinoflagellates in tropical waters and points to the importance of long-term studies to discern robust variations in dinoflagellate communities in response to fluctuating monsoon regimes.

  5. Development of a Multi-Disciplinary Computing Environment (MDICE)

    NASA Technical Reports Server (NTRS)

    Kingsley, Gerry; Siegel, John M., Jr.; Harrand, Vincent J.; Lawrence, Charles; Luker, Joel J.

    1999-01-01

    The growing need for and importance of multi-component and multi-disciplinary engineering analysis has been understood for many years. For many applications, loose (or semi-implicit) coupling is optimal, and allows the use of various legacy codes without requiring major modifications. For this purpose, CFDRC and NASA LeRC have developed a computational environment to enable coupling between various flow analysis codes at several levels of fidelity. This has been referred to as the Visual Computing Environment (VCE), and is being successfully applied to the analysis of several aircraft engine components. Recently, CFDRC and AFRL/VAAC (WL) have extended the framework and scope of VCE to enable complex multi-disciplinary simulations. The chosen initial focus is on aeroelastic aircraft applications. The developed software is referred to as MDICE-AE, an extensible system suitable for integration of several engineering analysis disciplines. This paper describes the methodology, basic architecture, chosen software technologies, salient library modules, and the current status of and plans for MDICE. A fluid-structure interaction application is described in a separate companion paper.

  6. The Aerosol-Monsoon Climate System of Asia

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kyu-Myong, Kim

    2012-01-01

    In Asian monsoon countries such as China and India, human health and safety problems caused by air-pollution are worsening due to the increased loading of atmospheric pollutants stemming from rising energy demand associated with the rapid pace of industrialization and modernization. Meanwhile, uneven distribution of monsoon rain associated with flash flood or prolonged drought, has caused major loss of human lives, and damages in crop and properties with devastating societal impacts on Asian countries. Historically, air-pollution and monsoon research are treated as separate problems. However a growing number of recent studies have suggested that the two problems may be intrinsically intertwined and need to be studied jointly. Because of complexity of the dynamics of the monsoon systems, aerosol impacts on monsoons and vice versa must be studied and understood in the context of aerosol forcing in relationship to changes in fundamental driving forces of the monsoon climate system (e.g. sea surface temperature, land-sea contrast etc.) on time scales from intraseasonal variability (weeks) to climate change ( multi-decades). Indeed, because of the large contributions of aerosols to the global and regional energy balance of the atmosphere and earth surface, and possible effects of the microphysics of clouds and precipitation, a better understanding of the response to climate change in Asian monsoon regions requires that aerosols be considered as an integral component of a fully coupled aerosol-monsoon system on all time scales. In this paper, using observations and results from climate modeling, we will discuss the coherent variability of the coupled aerosol-monsoon climate system in South Asia and East Asia, including aerosol distribution and types, with respect to rainfall, moisture, winds, land-sea thermal contrast, heat sources and sink distributions in the atmosphere in seasonal, interannual to climate change time scales. We will show examples of how elevated

  7. [Global brain metastases management strategy: a multidisciplinary-based approach].

    PubMed

    Métellus, P; Tallet, A; Dhermain, F; Reyns, N; Carpentier, A; Spano, J-P; Azria, D; Noël, G; Barlési, F; Taillibert, S; Le Rhun, É

    2015-02-01

    Brain metastases management has evolved over the last fifteen years and may use varying strategies, including more or less aggressive treatments, sometimes combined, leading to an improvement in patient's survival and quality of life. The therapeutic decision is subject to a multidisciplinary analysis, taking into account established prognostic factors including patient's general condition, extracerebral disease status and clinical and radiological presentation of lesions. In this article, we propose a management strategy based on the state of current knowledge and available therapeutic resources. PMID:25649388

  8. Linkages of remote sea surface temperatures and Atlantic tropical cyclone activity mediated by the African monsoon

    NASA Astrophysics Data System (ADS)

    Taraphdar, Sourav; Leung, L. Ruby; Hagos, Samson

    2015-01-01

    sea surface temperatures (SSTs) in North Atlantic and Mediterranean (NAMED) can influence tropical cyclone (TC) activity in the tropical East Atlantic by modulating summer convection over western Africa. Analysis of 30 years of observations demonstrates that warm NAMED SST is linked to a strengthening of the Saharan heat low and enhancement of moisture and moist static energy in the lower troposphere over West Africa, which favors a northward displacement of the monsoonal front. These processes also lead to a northward shift of the African easterly jet that introduces an anomalous positive vorticity from western Africa to the main development region (50°W-20°E; 10°N-20°N) of Atlantic TCs. By modulating multiple African monsoon processes, NAMED SST explains comparable and approximately one third of the interannual variability of Atlantic TC frequency as that explained by local wind shear and local SST, respectively, which are known key factors that influence Atlantic TC development.

  9. Linkages of Remote Sea Surface Temperatures and Atlantic Tropical Cyclone Activity Mediated by the African Monsoon

    SciTech Connect

    Taraphdar, Sourav; Leung, Lai-Yung R.; Hagos, Samson M.

    2015-01-28

    Warm sea surface temperatures (SSTs) in North Atlantic and Mediterranean (NAMED) can influence tropical cyclone (TC) activity in the tropical East Atlantic by modulating summer convection over western Africa. Analysis of 30 years of observations show that the NAMED SST is linked to a strengthening of the Saharan heat low and enhancement of moisture and moist static energy in the lower atmosphere over West Africa, which favors a northward displacement of the monsoonal front. These processes also lead to a northward shift of the African easterly jet that introduces an anomalous positive vorticity from western Africa to the main development region (50W–20E; 10N–20N) of Atlantic TC. By modulating multiple processes associated with the African monsoon, this study demonstrates that warm NAMED SST explains 8% of interannual variability of Atlantic TC frequency. Thus NAME SST may provide useful predictability for Atlantic TC activity on seasonal-to-interannual time scale.

  10. Monsoonal variations in atmospheric surfactants at different coastal areas of the Malaysian Peninsula.

    PubMed

    Jaafar, Shoffian Amin; Latif, Mohd Talib; Razak, Intan Suraya; Shaharudin, Muhammad Zulhilmi; Khan, Md Firoz; Wahid, Nurul Bahiyah Abd; Suratman, Suhaimi

    2016-08-15

    This study determined the effect of monsoonal changes on the composition of atmospheric surfactants in coastal areas. The composition of anions (SO4(2-), NO3(-), Cl(-), F(-)) and the major elements (Ca, K, Mg, Na) in aerosols were used to determine the possible sources of surfactants. Surfactant compositions were determined using a colorimetric method as methylene blue active substances (MBAS) and disulphine blue active substances (DBAS). The anion and major element compositions of the aerosol samples were determined by ion chromatography (IC) and inductively coupled plasma mass spectrometry (ICP-MS), respectively. The results indicated that the concentrations of surfactant in aerosols were dominated by MBAS (34-326pmolm(-3)). Monsoonal changes were found to significantly affect the concentration of surfactants. Using principal component analysis-multiple linear regressions (PCA-MLR), major possible sources for surfactants in the aerosols were motor vehicle emissions, secondary aerosol and the combustion of biomass along with marine aerosol. PMID:27230987

  11. A 16 ka lacustrine 18O record from High Himalaya reflecting the Indian Monsoon variability

    NASA Astrophysics Data System (ADS)

    Zech, M.; Tuthorn, M.; Zech, R.; Schlütz, F.; Zech, W.; Glaser, B.

    2012-04-01

    Establishing 18O records using organic matter of lake sediments is so far complicated due to analytical challenges. Based on the results obtained by a novel analytical method, the so-called compound-specific delta18O-analysis of hemicellulose monosaccharides (Zech, M. and Glaser, B., 2009. Rapid Communications in Mass Spectrometry 23, 3522-3532), we here present a first well-dated continuous late glacial lacustrine 18O record from High Himalayan lake sediments. Our 18O record, which reflects a coupled hydrological and thermal control, reveals the late glacial Indian Summer Monsoon variability depicting the Bölling/Alleröd and the Younger Dryas. Thus, it closely resembles the 18O records of South Asian speleothems and Greenland ice cores. We hence conclude that our novel 18O method enables regional paleoclimate reconstructions and that our 18O record highlights the previously suggested teleconnections between the Indian and the East Asian Monsoon and Greenland temperatures.

  12. A Multidisciplinary Approach to Sustainable Management of Watershed Resources

    EPA Science Inventory

    The lack of integration in the study and management of water resource problems suggests the need for a multidisciplinary approach. As practiced in the Shepherd Creek stormwater management study (Cincinnati OH), we envision a multidisciplinary approach involving economic incentive...

  13. Response of the Asian summer monsoon to changes in El Niño properties

    NASA Astrophysics Data System (ADS)

    Annamalai, H.; Liu, P.

    2005-04-01

    Diagnostics from observed precipitation and National Centers for Environmental Prediction-National Center for Atmospheric Research re-analysis products reveal that after the 1976-77 climate shift in the Pacific there was a dramatic change in the response of the Indian summer monsoon (ISM) to El Niño, particularly during the months of July and August. Based on 1950-75 (PRE76) and 1977-2001 (POST76) El Niño composites: the western North Pacific monsoon (WNPM) was stronger than normal in both periods; the ISM was weaker than normal during the entire monsoon season in PRE76, but in POST76 was weaker only during the onset and withdrawal phases. In terms of observed sea surface temperature (SST) during July-August, the major differences between the two periods are the presence of cold SST anomalies over the Indo-Pacific warm pool and the intensity of warm SST anomalies in the central Pacific in POST76. The effect of these differences on the ISM is investigated in a suite of experiments with an Atmospheric General Circulation Model (AGCM) that has a realistic monsoon precipitation climatology.Separate ten-member ensemble simulations with the AGCM were conducted for PRE76 and POST76 El Niño events with SST anomalies inserted as follows: (i) tropical Indo-Pacific (TIP), (ii) tropical Pacific only (TPO), and (iii) tropical Indian Ocean only (TIO). Qualitatively, TPO solutions reproduce the observed differences in the monsoon response in both periods. Specifically, during July-August of POST76 the cold SST anomalies in conjunction with remote subsidence suppress precipitation (3-5 mm day-1) over the maritime continent and equatorial central Indian Ocean. Inclusion of Indian Ocean SST anomalies in the TIP runs further suppresses precipitation over the entire equatorial Indian Ocean. The low-level anticyclonic circulation anomalies that develop as a Rossby-wave response to these convective anomalies increase the south-westerlies over the northern Indian Ocean, and favour a

  14. The Dominant Synoptic-Scale Modes of North American Monsoon Precipitation

    NASA Astrophysics Data System (ADS)

    Serra, Y. L.; Seastrand, S.; Castro, C. L.; Ritchie, E.

    2014-12-01

    In this study we explore the mechanisms of synoptic rainfall variability using observations from the Tropical Rainfall Measuring Mission satellite. While previously shown to have an important impact on North American monsoon rainfall, tropical cyclones are excluded from this analysis, in order to focus on more frequent synoptic disturbances within the region. A rotated empirical orthogonal function analysis of North American monsoon rainfall for June through September 2002-2009 suggests low-level tropical disturbances contribute to the leading two modes of precipitation variability within this region. The low-level disturbances result in gulf surges, or low-level surges of moisture up the Gulf of California, and provide a key low-level moisture source to facilitate development of organized convection. In the first mode the low-level trough brings precipitation to lower elevations along the western slopes of the Sierra Madre Occidental south of Hermosillo, Mexico and over the southern Baja Peninsula. In the second mode the low-level trough interacts with an upper-level inverted trough enhancing precipitation into the southwestern United States and northwest Mexico. In particular, the upper-level trough contributes to the easterly-northeasterly shear across the region, favoring mesoscale convective organization and enhanced deep convection over the Sierra Madre Occidental and higher elevations in southeast Arizona. The EOF methodology offers an objective approach for determining the dominant modes of precipitation for the monsoon region useful for identifying past and monitoring future low-frequency impacts on these modes.

  15. Investigating Effects of Monsoon Winds on Hydrodynamics in the South China Sea

    NASA Astrophysics Data System (ADS)

    Chua, V. P.

    2013-12-01

    The South China Sea is a large marginal sea surrounded by land masses and island chains, and characterized by complex bathymetry and irregular coastlines. The circulation in South China Sea is subjected to seasonal and inter-annual variations of tidal and meteorological conditions. The effects of monsoon winds on hydrodynamics is investigated by applying spectral and harmonic analysis on surface elevation and wind data at stations located in the South China Sea. The analysis indicates varying responses to the seasonal monsoon depending on the location of the station. At Kaohsiung (located in northern South China Sea off Taiwan coast), tides from the Pacific Ocean and the southwest monsoon winds are found to be dominant mechanisms. The Kota Kinabalu and Bintulu stations, located to the east of South China Sea off Borneo coast, are influenced by low energy complex winds, and the shallow bottom bathymetry at these locations leads to tidal energy damping compared to other stations. The tidal dynamics at Tioman, located in southern South China Sea off Malaysia coast, are most responsive to the effects of the northeast monsoon. The complexity of our problem together with the limited amount of available data in the region presents a challenging research topic. An unstructured-grid SUNTANS model is employed to perform three-dimensional simulations of the circulation in South China Sea. Skill assessment of the model is performed by comparing model predictions of the surface elevations and currents with observations. The results suggest that the quality of the model prediction is highly dependent on horizontal grid resolution and coastline accuracy. The model may be used in future applications to investigate seasonal and inter-annual variations in hydrodynamics.

  16. Asian Monsoon Changes and the Role of Aerosol and Greenhouse Gas Forcing

    NASA Astrophysics Data System (ADS)

    Ting, M.; Li, X.

    2015-12-01

    Changes in Asian summer (June to August) monsoon in response to aerosol and greenhouse gas forcing are examined using observations and the Coupled Model Intercomparison Project - Phase 5 (CMIP5) multi-model, multi-realization ensemble. Results show that during the historical period, CMIP5 models show a predominantly drying trend in Asian monsoon, while in the 21st Century under representative concentration pathway 8.5 (rcp8.5) scenario, monsoon rainfall enhances across the entire Asian domain. The thermodynamic and dynamic mechanisms causing the changes are evaluated using the moisture budget analysis. The drying trend in the CMIP5 historical simulations and the wetting trend in the rcp8.5 projections can be explained by the relative importance of dynamical and thermodynamical contributions to the total moisture convergence. While thermodynamic mechanism dominates in the future, the historical rainfall changes are dominated by the changes in circulation. The relative contributions of aerosols and greenhouse gases (GHGs) on the historical monsoon change are further examined using CMIP5 single-forcing simulations. Rainfall reduces under aerosol forcing and increases under greenhouse gas (GHG) forcing. Aerosol forcing dominates over the greenhouse effect during the historical period, leading to the general drying trend in the all-forcing simulations. While the thermodynamic change of mean moisture convergence in the all-forcing case is dominated by the GHG forcing, the dynamic change in mean moisture convergence in the all-forcing case is dominated by the aerosol forcing. Further analysis using atmospheric GCM with prescribed aerosol and GHG radiative forcing versus those with the prescribed sea surface temperature (SST) warming suggests that the weak circulation changes due to GHG forcing is a result of the cancellation between CO2 radiative forcing and the SST warming, while aerosol radiative effect tends to enhance the circulation response due to SST forcing.

  17. On the dynamical basis for the Asian summer monsoon rainfall-El Nino relationship

    SciTech Connect

    Nigam, S.

    1994-11-01

    The dynamical basis for the Asian summer monsoon rainfall-El Nino linkage is explored through diagnostic calculations with a linear steady-state multilayer primitive equation model. The contrasting monsoon circulation during recent El Nino (1987) and La Nina (1988) years is first simulated using orography and the residually diagnosed heating (from the thermodynamic equation and the uninitialized, but mass-balanced, ECMWF analysis) as forcings, and then analyzed to provide insight into the importance of various regional forcings, such as the El Nino-related heating anomalies over the tropical Indian and Pacific Oceans. The striking simulation of the June-August (1987-1988) near-surface and upper-air tropical circulation anomalies indicates that tropical anomaly dynamics during northern summer is essentially linear even at the 150-mb level. The vertical structure of the residually diagnosed heating anomaly that contributes to this striking simulation differs significantly from the specified canonical vertical structure (used in generating 3D heating from OLR/precipitation distributions) near the tropical tropopause. The dynamical diagnostic analysis of the anomalous circulation during 1987 and 1988 March-May and June-August periods shows the orographically forced circulation anomaly (due to changes in the zonally averaged basic-state flow) to be quite dominant in modulating the low-level moisture-flux convergence and hence monsoon rainfall over Indochina. The El Nino-related persistent (spring-to-summer) heating anomalies over the tropical Pacific and Indian Ocean basins, on the other hand, mostly regulate the low-level westerly monsoon flow intensity over equatorial Africa and the northern Indian Ocean and, thereby, the large-scale moisture flux into Sahel and Indochina. 38 refs., 12 figs.

  18. Mutual interaction between the West African Monsoon on the summer Mediterranean climate

    NASA Astrophysics Data System (ADS)

    Gaetani, M.; Baldi, M.; Dalu, G. A.

    2009-04-01

    Many studies have show that the West African Monsoon (WAM) is teleconnected with neighbouring regions, as the Mediterranean (Med) basin and the Tropical Atlantic, but also it is sensitive to the perturbations occurring even in remote regions, as the Indian sub-continent and the Tropical Pacific, these teleconnections being active on several time-scales, from intraseasonal to multidecadal. The WAM plays also an active role in the regional atmospheric circulation, inducing significant changes in rainfall, moisture, temperature, and wind distribution up to the North Africa. Within this framework, recent works were focused on the teleconnection between WAM and Med. WAM is strengthened by the north-easterly advection of moisture from the Med Sea, and, since the subsiding monsoonal air often invades the Med, there is a 2-way interaction between WAM and Med summer circulation. We study these interactions, applying SVD analysis to global NCEP Reanalysis and to rainfall data from CMAP, during the extended monsoonal season from May to October, on interannual and on intraseasonal time-scale. Dynamical features are explored using composite analysis, focusing on the role of this connection in the heat waves occurrence in the Med. We find that a strong WAM intensifies the Hadley meridional circulation, with a strengthening of the north Atlantic anticyclone and a weakening, even blocking, of the westerly flow in the Med. A deep inland penetration of WAM produces a northern shift of the Libyan anticyclone, with subsidence and high pressure affecting mainly the western Med. The positive feedback is due to the intensification of north-easterly flow from the eastern Med, which, reaching the Sahara desert, intensifies the intertropical front, favouring abundant monsoonal precipitation because of the added moist air.

  19. Multi-Scale Interactions Associated with the Monsoon Onset Over South China Sea and Adjacent Regions during SCSMEX-98

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Li, X.; Wu, H.-T.

    1999-01-01

    Using data collected during The South China Sea Monsoon Experiment (SCSMEX) (1998) as well as from the TRMM Microwave-Imager (TMI) and precipitation radar (PR), we have studied the multi-scale interactions (meso-synoptic-intraseasonal) associated with monsoon onset over South China Sea (SCS) and its subsequent evolution. Results show that the monsoon onset (defined by development of steady wind direction and heavy precipitation) over the northern SCS occurred around May 15 -17. Prevailing southerlies and southwesterlies developed over the central SCS after May 20. Shortly after, monsoon convection developed over the whole SCS region around May 23-27. The entire onset process appeared to be delayed by about a week to 10 days compared with climatology. During late spring of 1998, mid-latitude frontal systems were particularly active. These systems strongly impacted the northern SCS convection and may have been instrumental in triggering the onset of the SCS monsoon. The Tropical Oceans and Global Atmosphere (TOGA) and Bureau of Meteorology Research Centre (BMRC) radar showed a wide variety of convective systems over the Intensive Flux Array, from frontal bands to shear-banded structure, deep convection, pop-corn type shallow convection, slow moving "fine lines" to water spout. Analysis of SSM/I wind and moisture data suggested that the delayed convective activity over the SCS may be linked to the weakened northward propagation of monsoon rain band, hence contributing to a persistence of the rainband south of the Yangtze River and the disastrous flood that occurred over this region during mid to late June, 1998.

  20. The Role of Stratiform and Convective heating in modifying the northward phase propagation of Monsoon Intraseasonal Oscillation

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, R.; Goswami, B.; Sahai, A. K.

    2009-12-01

    In this study, contribution of stratiform and convective rain rate to total rain rate during different phases of the northward propagating boreal summer monsoon Intraseasonal Oscillation (ISO) is brought out using the TRMM data. Two new insights have emerged from this analysis as shown in Fig.1. It may be noted from Fig.1 that the convective component seems to grow and decay in situ during evolution of active/break phases, the northward propagation of the monsoon ISO is contributed by organized movement of the stratiform component. Further, the trade mark meridional dipole pattern of total rainfall between monsoon trough zone (MTZ) and equatorial Indian Ocean (EIO) also arises largely from contribution stratiform anomalies. The northward propagation of the monsoon intraseasonal oscillation is known to be due to the anomalous response of the atmosphere to heating in the presence of mean easterly vertical shear. Modification of vertical profile of heating due to contribution from stratiform rain could influence the northward propagation of monsoon ISO. We test this using a simple dynamical model known as PUMA (Portable Unified Model of Atmosphere) developed by University of Hamburg, Germany to study the response of the ‘convective’ and ‘stratiform’ heating profiles on the modification of the mean condition which facilitates the northward propagation. Such modification in the large scale response (e.g. vertical shear, barotropic vorticity) seen clearly to be related with the structure of the heating profile (convective or stratiform). The presence of stratiform heating favors the northward phase propagation of monsoon ISO. These results underline the importance simulating the partitioning of convective and stratiform rain by cumulous parameterization in climate models if they have to get the space-time structure of the summer ISOs correctly. Fig. 1 Figure showing the northward propagation of total (top), convective (middle) and stratiform (bottom) rainrate

  1. Anomalies of the Asian Monsoon Induced by Aerosol Forcings

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, M. K.

    2004-01-01

    Impacts of aerosols on the Asian summer monsoon are studied using the NASA finite volume General Circulation Model (fvGCM), with radiative forcing derived from three-dimensional distributions of five aerosol species i.e., black carbon, organic carbon, soil dust, and sea salt from the Goddard Chemistry Aerosol Radiation and Transport Model (GOCART). Results show that absorbing aerosols, i.e., black carbon and dust, induce large-scale upper-level heating anomaly over the Tibetan Plateau in April and May, ushering in & early onset of the Indian summer monsoon. Absorbing aerosols also I i enhance lower-level heating and anomalous ascent over northern India, intensifying the Indian monsoon. Overall, the aerosol-induced large-scale surface' temperature cooling leads to a reduction of monsoon rainfall over the East Asia continent, and adjacent oceanic regions.

  2. GPM Sees Slow Start of India's 2015 Monsoon Season

    NASA Video Gallery

    This animation shows the GPM core observatory total rainfall that fell from June 1 to 8. 2015 at the start of India's Monsoon Season as calculated by Integrated Multi-satellitE Retrievals for GPM (...

  3. Radiative energy budget estimates for the 1979 southwest summer monsoon

    NASA Technical Reports Server (NTRS)

    Ackerman, Steven A.; Cox, Stephen K.

    1987-01-01

    A major objective of the summer monsoon experiment (SMONEX) was the determination of the heat sources and sinks associated with the southwest summer monsoon. The radiative component is presented here. The vertically integrated tropospheric radiation energy budget is negative and varies significantly as a function of monsoon activity. The gradient in the latitudinal mean tropospheric cooling reverses between the winter periods and the late spring/early summer periods. The radiative component of the vertical profile of the diabatic heating is derived. These profiles are a strong function of the stage of the monsoon as well as the geographic region. In general, the surface experiences a net gain of radiative energy during the late spring and early summer periods. During the winter periods, areas northward of 25 N display net surface losses, while the remaining areas exhibit net gains.

  4. Impact of anthropogenic aerosols on Indian summer monsoon

    SciTech Connect

    Wang, Chien; Kim, Dongchul; Ekman, Annica; Barth, Mary; Rasch, Philip J.

    2009-11-05

    Using an interactive aerosol-climate model we find that absorbing anthropogenic aerosols, whether coexisting with scattering aerosols or not, can significantly affect the Indian summer monsoon system. We also show that the influence is reflected in a perturbation to the moist static energy in the sub-cloud layer, initiated as a heating by absorbing aerosols to the planetary boundary layer. The perturbation appears mostly over land, extending from just north of the Arabian Sea to northern India along the southern slope of the Tibetan Plateau. As a result, during the summer monsoon season, modeled convective precipitation experiences a clear northward shift, coincidently in agreement with observed monsoon precipitation changes in recent decades particularly during the onset season. We demonstrate that the sub-cloud layer moist static energy is a useful quantity for determining the impact of aerosols on the northward extent and to a certain degree the strength of monsoon convection.

  5. Did Aboriginal vegetation burning affect the Australian summer monsoon?

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2011-08-01

    For thousands of years, Aboriginal Australians burned forests, creating grasslands. Some studies have suggested that in addition to changing the landscape, these burning practices also affected the timing and intensity of the Australian summer monsoon. Different vegetation types can alter evaporation, roughness, and surface reflectivity, leading to changes in the weather and climate. On the basis of an ensemble of experiments with a global climate model, Notaro et al. conducted a comprehensive evaluation of the effects of decreased vegetation cover on the summer monsoon in northern Australia. They found that although decreased vegetation cover would have had only minor effects during the height of the monsoon season, during the premonsoon season, burning-induced vegetation loss would have caused significant decreases in precipitation and increases in temperature. Thus, by burning forests, Aboriginals altered the local climate, effectively extending the dry season and delaying the start of the monsoon season. (Geophysical Research Letters, doi:10.1029/2011GL047774, 2011)

  6. Precipitation over Monsoon Asia: a comparison of reanalyses and observations

    NASA Astrophysics Data System (ADS)

    Toreti, Andrea; Ceglar, Andrej; Balsamo, Gianpaolo; Kobayashi, Shinya

    2016-04-01

    Daily precipitation is essential in many impact modelling exercises and several global/regional products exist. Here, we focus on Monsoon Asia and we compare four different reanalyses with a rain-gauge gridded dataset and with a rain-gauge/satellite dataset. Differences in seasonality and distributional differences during the monsoon season are assessed by applying recently proposed approaches. Drought events during the monsoon season are compared as well. Results show remarkable differences in the seasonality of the two observational datasets as well as in the reanalyses. Distributional differences during the monsoon season are also significant almost over the whole region for all reanalyses. Finally, remarkable temporal non-stationarity characterises some of the analysed reanalyses.

  7. Variations in optical properties of aerosols on monsoon seasonal change and estimation of aerosol optical depth using ground-based meteorological and air quality data

    NASA Astrophysics Data System (ADS)

    Tan, F.; Lim, H. S.; Abdullah, K.; Yoon, T. L.; Holben, B.

    2014-07-01

    In this study, the optical properties of aerosols in Penang, Malaysia were analyzed for four monsoonal seasons (northeast monsoon, pre-monsoon, southwest monsoon, and post-monsoon) based on data from the AErosol RObotic NETwork (AERONET) from February 2012 to November 2013. The aerosol distribution patterns in Penang for each monsoonal period were quantitatively identified according to the scattering plots of the aerosol optical depth (AOD) against the Angstrom exponent. A modified algorithm based on the prototype model of Tan et al. (2014a) was proposed to predict the AOD data. Ground-based measurements (i.e., visibility and air pollutant index) were used in the model as predictor data to retrieve the missing AOD data from AERONET because of frequent cloud formation in the equatorial region. The model coefficients were determined through multiple regression analysis using selected data set from in situ data. The predicted AOD of the model was generated based on the coefficients and compared against the measured data through standard statistical tests. The predicted AOD in the proposed model yielded a coefficient of determination R2 of 0.68. The corresponding percent mean relative error was less than 0.33% compared with the real data. The results revealed that the proposed model efficiently predicted the AOD data. Validation tests were performed on the model against selected LIDAR data and yielded good correspondence. The predicted AOD can beneficially monitor short- and long-term AOD and provide supplementary information in atmospheric corrections.

  8. Land-surface processes and monsoon climate system

    NASA Astrophysics Data System (ADS)

    Xue, Yongkang; De Sales, Fernando; Lau, William; Boone, Arron; Mechoso, Carlos

    2015-04-01

    Yongkang Xue, F. De Sales, B. Lau, A. Boone, C. R. Mechoso Differential thermal heating of land and ocean and heat release into the atmosphere are important factors that determine the onset, strength, duration and spatial distribution of large-scale monsoons. A global and seasonal assessment of land surface process (LSP) effects on the monsoon system has been made based on general circulation models (GCM) coupled to different benchmark land models, which physically represent either comprehensive, or partial, or minimal LSP representations. Observed precipitation is applied as constrain and differences in simulation error are used to assess the effect of the LSP with different complexity. The AGCM results indicate that the land/atmosphere interaction has substantial impact on global water cycle, while the monsoon regions have had strongest impact at intraseasonal to decadal scales. Among monsoon regions, West Africa, South Asia, East Asia, and Amazon regions have largest impact while some monsoon regions have less impact due to strong air/sea interactions and narrow land mass there. LSP reduces the annual precipitation error by 58% over global monsoon regions, about 35% observed precipitation. The partial LSP effect (excluding soil moisture and vegetation albedo) reduces annual precipitation error over monsoon region that equals to about 13% of observed precipitation. The LSP affects the monsoon evolution through different mechanisms at different scales. It affects the surface energy balance and energy partitioning in latent and sensible heat, the atmospheric heating rate, and general circulation. The LSP effects have also been assessed in the land use land cover change experiment. Based on recently compiled global land-use data from 1948-2005, the GCM simulation results indicate the degradation in Mexico, West Africa, south and East Asia and South America produce substantial precipitation anomalies, some of which are consistent with observed regional precipitation

  9. Asian Summer Monsoon Intraseasonal Variability in General Circulation Models

    SciTech Connect

    Sperber, K R; Annamalai, H

    2004-02-24

    The goals of this report are: (1) Analyze boreal summer Asian monsoon intraseasonal variability general circulation models--How well do the models represent the eastward and northward propagating components of the convection and how well do the models represent the interactive control that the western tropical Pacific rainfall exerts on the rainfall over India and vice-versa? (2) Role of air-sea interactions--prescribed vs. interactive ocean; and (3) Mean monsoon vs. variability.

  10. Transient coupling relationships of the Holocene Australian monsoon

    NASA Astrophysics Data System (ADS)

    McRobie, F. H.; Stemler, T.; Wyrwoll, K.-H.

    2015-08-01

    The northwest Australian summer monsoon owes a notable degree of its interannual variability to interactions with other regional monsoon systems. Therefore, changes in the nature of these relationships may contribute to variability in monsoon strength over longer time scales. Previous attempts to evaluate how proxy records from the Indonesian-Australian monsoon region correspond to other records from the Indian and East Asian monsoon regions, as well as to El Niño-related proxy records, have been qualitative, relying on 'curve-fitting' methods. Here, we seek a quantitative approach for identifying coupling relationships between paleoclimate proxy records, employing statistical techniques to compute the interdependence of two paleoclimate time series. We verify the use of complex networks to identify coupling relationships between modern climate indices. This method is then extended to a set of paleoclimate proxy records from the Asian, Australasian and South American regions spanning the past 9000 years. The resulting networks demonstrate the existence of coupling relationships between regional monsoon systems on millennial time scales, but also highlight the transient nature of teleconnections during this period. In the context of the northwest Australian summer monsoon, we recognise a shift in coupling relationships from strong interhemispheric links with East Asian and ITCZ-related proxy records in the mid-Holocene to significantly weaker coupling in the later Holocene. Although the identified links cannot explain the underlying physical processes leading to coupling between regional monsoon systems, this method provides a step towards understanding the role that changes in teleconnections play in millennial-to orbital-scale climate variability.

  11. Recent change of the global monsoon precipitation (1979-2008)

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Liu, Jian; Kim, Hyung-Jin; Webster, Peter J.; Yim, So-Young

    2012-09-01

    The global monsoon (GM) is a defining feature of the annual variation of Earth's climate system. Quantifying and understanding the present-day monsoon precipitation change are crucial for prediction of its future and reflection of its past. Here we show that regional monsoons are coordinated not only by external solar forcing but also by internal feedback processes such as El Niño-Southern Oscillation (ENSO). From one monsoon year (May to the next April) to the next, most continental monsoon regions, separated by vast areas of arid trade winds and deserts, vary in a cohesive manner driven by ENSO. The ENSO has tighter regulation on the northern hemisphere summer monsoon (NHSM) than on the southern hemisphere summer monsoon (SHSM). More notably, the GM precipitation (GMP) has intensified over the past three decades mainly due to the significant upward trend in NHSM. The intensification of the GMP originates primarily from an enhanced east-west thermal contrast in the Pacific Ocean, which is coupled with a rising pressure in the subtropical eastern Pacific and decreasing pressure over the Indo-Pacific warm pool. While this mechanism tends to amplify both the NHSM and SHSM, the stronger (weaker) warming trend in the NH (SH) creates a hemispheric thermal contrast, which favors intensification of the NHSM but weakens the SHSM. The enhanced Pacific zonal thermal contrast is largely a result of natural variability, whilst the enhanced hemispherical thermal contrast is likely due to anthropogenic forcing. We found that the enhanced global summer monsoon not only amplifies the annual cycle of tropical climate but also promotes directly a "wet-gets-wetter" trend pattern and indirectly a "dry-gets-drier" trend pattern through coupling with deserts and trade winds. The mechanisms recognized in this study suggest a way forward for understanding past and future changes of the GM in terms of its driven mechanisms.

  12. Multidisciplinary design optimization using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Unal, Resit

    1994-12-01

    Multidisciplinary design optimization (MDO) is an important step in the conceptual design and evaluation of launch vehicles since it can have a significant impact on performance and life cycle cost. The objective is to search the system design space to determine values of design variables that optimize the performance characteristic subject to system constraints. Gradient-based optimization routines have been used extensively for aerospace design optimization. However, one limitation of gradient based optimizers is their need for gradient information. Therefore, design problems which include discrete variables can not be studied. Such problems are common in launch vehicle design. For example, the number of engines and material choices must be integer values or assume only a few discrete values. In this study, genetic algorithms are investigated as an approach to MDO problems involving discrete variables and discontinuous domains. Optimization by genetic algorithms (GA) uses a search procedure which is fundamentally different from those gradient based methods. Genetic algorithms seek to find good solutions in an efficient and timely manner rather than finding the best solution. GA are designed to mimic evolutionary selection. A population of candidate designs is evaluated at each iteration, and each individual's probability of reproduction (existence in the next generation) depends on its fitness value (related to the value of the objective function). Progress toward the optimum is achieved by the crossover and mutation operations. GA is attractive since it uses only objective function values in the search process, so gradient calculations are avoided. Hence, GA are able to deal with discrete variables. Studies report success in the use of GA for aircraft design optimization studies, trajectory analysis, space structure design and control systems design. In these studies reliable convergence was achieved, but the number of function evaluations was large compared

  13. Multi-Disciplinary Design Optimization Using WAVE

    NASA Technical Reports Server (NTRS)

    Irwin, Keith

    2000-01-01

    The current preliminary design tools lack the product performance, quality and cost prediction fidelity required to design Six Sigma products. They are also frequently incompatible with the tools used in detailed design, leading to a great deal of rework and lost or discarded data in the transition from preliminary to detailed design. Thus, enhanced preliminary design tools are needed in order to produce adequate financial returns to the business. To achieve this goal, GEAE has focused on building the preliminary design system around the same geometric 3D solid model that will be used in detailed design. With this approach, the preliminary designer will no longer convert a flowpath sketch into an engine cross section but rather, automatically create 3D solid geometry for structural integrity, life, weight, cost, complexity, producibility, and maintainability assessments. Likewise, both the preliminary design and the detailed design can benefit from the use of the same preliminary part sizing routines. The design analysis tools will also be integrated with the 3D solid model to eliminate manual transfer of data between programs. GEAE has aggressively pursued the computerized control of engineering knowledge for many years. Through its study and validation of 3D CAD programs and processes, GEAE concluded that total system control was not feasible at that time. Prior CAD tools focused exclusively on detail part geometry and Knowledge Based Engineering systems concentrated on rules input and data output. A system was needed to bridge the gap between the two to capture the total system. With the introduction of WAVE Engineering from UGS, the possibilities of an engineering system control device began to formulate. GEAE decided to investigate the new WAVE functionality to accomplish this task. NASA joined GEAE in funding this validation project through Task Order No. 1. With the validation project complete, the second phase under Task Order No. 2 was established to

  14. Multidisciplinary design optimization using genetic algorithms

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1994-01-01

    Multidisciplinary design optimization (MDO) is an important step in the conceptual design and evaluation of launch vehicles since it can have a significant impact on performance and life cycle cost. The objective is to search the system design space to determine values of design variables that optimize the performance characteristic subject to system constraints. Gradient-based optimization routines have been used extensively for aerospace design optimization. However, one limitation of gradient based optimizers is their need for gradient information. Therefore, design problems which include discrete variables can not be studied. Such problems are common in launch vehicle design. For example, the number of engines and material choices must be integer values or assume only a few discrete values. In this study, genetic algorithms are investigated as an approach to MDO problems involving discrete variables and discontinuous domains. Optimization by genetic algorithms (GA) uses a search procedure which is fundamentally different from those gradient based methods. Genetic algorithms seek to find good solutions in an efficient and timely manner rather than finding the best solution. GA are designed to mimic evolutionary selection. A population of candidate designs is evaluated at each iteration, and each individual's probability of reproduction (existence in the next generation) depends on its fitness value (related to the value of the objective function). Progress toward the optimum is achieved by the crossover and mutation operations. GA is attractive since it uses only objective function values in the search process, so gradient calculations are avoided. Hence, GA are able to deal with discrete variables. Studies report success in the use of GA for aircraft design optimization studies, trajectory analysis, space structure design and control systems design. In these studies reliable convergence was achieved, but the number of function evaluations was large compared

  15. [Integrated multidisciplinary treatment modalities for obesity].

    PubMed

    Yu, Jian-chun

    2010-02-01

    The rapid increase of obesity nationwide and worldwide has threatened human health and caused the increase of metabolic diseases and the changes of disease spectrum. Its co-morbidities, mortality, and relevant socio-economic issues have became global concerns. Integrated multidisciplinary treatment modalities have emerged in recent years. For severely obese patients body mass index (BMI>40 kg/m(2) or obese patients (BMI 35 - 40 kg/m(2)) with co-morbidities such as severe diabetes, obesity-associated cardiac lesions, severe sleep apnea, infertility, and osteoarthritis that affect the daily life, minimally invasive laparoscopic bariatric surgery (such as Lap Banding) can achieve satisfactory results by reducing body weight in long term, treating or preventing the co-morbidities, and ultimately decreasing mortality. Multidisciplinary treatment modalities for tumors, obesity, and other diseases have been widely adopted. This strategy may play increasingly important roles in improving the treatment effectiveness, upgrading healthcare services, and addressing interdisciplinary problems. PMID:20236577

  16. Causal evidence between monsoon and evolution of rhizomyine rodents

    PubMed Central

    López-Antoñanzas, Raquel; Knoll, Fabien; Wan, Shiming; Flynn, Lawrence J.

    2015-01-01

    The modern Asian monsoonal systems are currently believed to have originated around the end of the Oligocene following a crucial step of uplift of the Tibetan-Himalayan highlands. Although monsoon possibly drove the evolution of many mammal lineages during the Neogene, no evidence thereof has been provided so far. We examined the evolutionary history of a clade of rodents, the Rhizomyinae, in conjunction with our current knowledge of monsoon fluctuations over time. The macroevolutionary dynamics of rhizomyines were analyzed within a well-constrained phylogenetic framework coupled with biogeographic and evolutionary rate studies. The evolutionary novelties developed by these rodents were surveyed in parallel with the fluctuations of the Indian monsoon so as to evaluate synchroneity and postulate causal relationships. We showed the existence of three drops in biodiversity during the evolution of rhizomyines, all of which reflected elevated extinction rates. Our results demonstrated linkage of monsoon variations with the evolution and biogeography of rhizomyines. Paradoxically, the evolution of rhizomyines was accelerated during the phases of weakening of the monsoons, not of strengthening, most probably because at those intervals forest habitats declined, which triggered extinction and progressive specialization toward a burrowing existence. PMID:25759260

  17. The simulated Indian monsoon: A GCM sensitivity study

    NASA Technical Reports Server (NTRS)

    Fennessy, M. J.; Kinter, J. L., III; Kirtman, B.; Marx, L.; Nigam, S.; Schneider, E.; Shukla, J.; Straus, D.; Vernekar, A.; Xue, Y.

    1994-01-01

    A series of sensitivity experiments are conducted in an attempt to understand and correct deficiencies in the simulation of the seasonal mean Indian monsoon with a global atmospheric general circulation model. The seasonal mean precipitation is less than half that observed. This poor simulation in seasonal integrations is independent of the choice of initial conditions and global sea surface temperature data used. Experiments are performed to test the sensitivity of the Indian monsoon simulation to changes in orography, vegetation, soil, wetness, and cloudiness. The authors find that the deficiency of the model precipitation simulation may be attributed to the use of an enhanced orography in the integrations. Replacement of this orography with a mean orography results in a much more realistic simulation of Indian monsoon circulation and rainfall. Experiments with a linear primitive equation model on the sphere suggest that this striking improvement is due to modulations of the orographically forced waves in the lower troposphere. This improvement in the monsoon simulation is due to the kinematic and dynamical effects of changing the topography, rather than the thermal effects, which were minimal. The magnitude of the impact on the Indian monsoon of the other sensitivity experiments varied considerably, but was consistently less than the impact of using the mean orography. However, results from the soil moisture sensitivity experiments suggest a possibly important role for soil moisture in simulating tropical precipitation, including that associated with the Indian monsoon.

  18. What is the timing of orbital-scale monsoon changes?

    NASA Astrophysics Data System (ADS)

    Ruddiman, William F.

    2006-04-01

    A major (but little noted) divergence of opinion has developed among climate scientists over the orbital-scale periodicity and phasing of tropical monsoon variations. Kutzbach (1981. Monsoon climate of the early Holocene: climate experiment with Earth's orbital parameters for 9000 years ago. Science 214, 59-61) proposed that monsoons are driven by northern summer insolation at the precession period, but Clemens and Prell (1990. Late Pleistocene variability of Arabian Sea summer monsoon winds and continental aridity: eolian records from the lithogenic component of deep-sea sediments. Paleoceanography 5, 109-145; 2003. A 350,000-year summer-monsoon multi-proxy stack from the Owen Ridge, Northern Arabian Sea. Marine Geology 201, 35-51) inferred a more complicated response tied to latent heat transfer from the Southern Hemisphere. Because tropical monsoons affect climate over a vast area, resolving this divergence is an important task for the climate community. The purpose of this note is to highlight definitive evidence from high-resolution dating of speleothem calcite that provides unambiguous support for the Kutzbach hypothesis.

  19. Causal evidence between monsoon and evolution of rhizomyine rodents

    NASA Astrophysics Data System (ADS)

    López-Antoñanzas, Raquel; Knoll, Fabien; Wan, Shiming; Flynn, Lawrence J.

    2015-03-01

    The modern Asian monsoonal systems are currently believed to have originated around the end of the Oligocene following a crucial step of uplift of the Tibetan-Himalayan highlands. Although monsoon possibly drove the evolution of many mammal lineages during the Neogene, no evidence thereof has been provided so far. We examined the evolutionary history of a clade of rodents, the Rhizomyinae, in conjunction with our current knowledge of monsoon fluctuations over time. The macroevolutionary dynamics of rhizomyines were analyzed within a well-constrained phylogenetic framework coupled with biogeographic and evolutionary rate studies. The evolutionary novelties developed by these rodents were surveyed in parallel with the fluctuations of the Indian monsoon so as to evaluate synchroneity and postulate causal relationships. We showed the existence of three drops in biodiversity during the evolution of rhizomyines, all of which reflected elevated extinction rates. Our results demonstrated linkage of monsoon variations with the evolution and biogeography of rhizomyines. Paradoxically, the evolution of rhizomyines was accelerated during the phases of weakening of the monsoons, not of strengthening, most probably because at those intervals forest habitats declined, which triggered extinction and progressive specialization toward a burrowing existence.

  20. Indian Summer Monsoon Variability during the Last Millennium

    NASA Astrophysics Data System (ADS)

    Rooker, Mary; Sinha, Ashish

    2011-11-01

    The seasonal rainfall associated with the Indian summer monsoon during the instrumental period (˜last 150 years) is characterized by a biennial oscillation, such that monsoon precipitation varied between singularly strong and weak years but rarely deviated far from its mean state for consecutive years. This observation has led to a hypothesis that monsoon is a self-regulating system, regulated by the annual cycle of the heat balance in the Indian Ocean, mediated by the cross-equatorial ocean heat transport from the summer hemisphere through wind-driven Ekman transport. Consequently, the present day water resource infrastructure and the contingency planning in the region does not take into account the possibility of protracted failures of the monsoon or drastic shifts in its spatial patterns. Here we present new millennial-length speleothem-based reconstructions of Indian monsoon variability from a number of sites across India that challenges the underlying physics of the aforementioned hypothesis. Our proxy records of Indian monsoon provide clear evidence for type of low frequency and high amplitude variability in rainfall that have not been observed during the short instrumental period.