Science.gov

Sample records for monsoon multidisciplinary analysis

  1. Overview of the Dust and Biomass-burning Experiment and African Monsoon Multidisciplinary Analysis Special Observing Period-0

    NASA Astrophysics Data System (ADS)

    Haywood, J. M.; Pelon, J.; Formenti, P.; Bharmal, N.; Brooks, M.; Capes, G.; Chazette, P.; Chou, C.; Christopher, S.; Coe, H.; Cuesta, J.; Derimian, Y.; Desboeufs, K.; Greed, G.; Harrison, M.; Heese, B.; Highwood, E. J.; Johnson, B.; Mallet, M.; Marticorena, B.; Marsham, J.; Milton, S.; Myhre, G.; Osborne, S. R.; Parker, D. J.; Rajot, J.-L.; Schulz, M.; Slingo, A.; Tanré, D.; Tulet, P.

    2008-12-01

    The African Monsoon Multidisciplinary Analysis (AMMA) is a major international campaign investigating far-reaching aspects of the African monsoon, climate and the hydrological cycle. A special observing period was established for the dry season (SOP0) with a focus on aerosol and radiation measurements. SOP0 took place during January and February 2006 and involved several ground-based measurement sites across west Africa. These were augmented by aircraft measurements made by the Facility for Airborne Atmospheric Measurements (FAAM) aircraft during the Dust and Biomass-burning Experiment (DABEX), measurements from an ultralight aircraft, and dedicated modeling efforts. We provide an overview of these measurement and modeling studies together with an analysis of the meteorological conditions that determined the aerosol transport and link the results together to provide a balanced synthesis. The biomass burning aerosol was significantly more absorbing than that measured in other areas and, unlike industrial areas, the ratio of excess carbon monoxide to organic carbon was invariant, which may be owing to interaction between the organic carbon and mineral dust aerosol. The mineral dust aerosol in situ filter measurements close to Niamey reveals very little absorption, while other measurements and remote sensing inversions suggest significantly more absorption. The influence of both mineral dust and biomass burning aerosol on the radiation budget is significant throughout the period, implying that meteorological models should include their radiative effects for accurate weather forecasts and climate simulations. Generally, the operational meteorological models that simulate the production and transport of mineral dust show skill at lead times of 5 days or more. Climate models that need to accurately simulate the vertical profiles of both anthropogenic and natural aerosols to accurately represent the direct and indirect effects of aerosols appear to do a reasonable job

  2. African Monsoon Multidisciplinary Analysis (AMMA) : The Special Observing Period of 2006

    NASA Astrophysics Data System (ADS)

    Polcher, J.; Cairo, F.; Fierli, F.; Höller, H.; Law, K.; Mari, C.; Reeves, C.; Schlager, H.

    2006-12-01

    The AMMA project aims at enhancing our understanding of the West African monsoon and its underlying physical, chemical and biological processes. This enhanced knowledge of the processes involved in the establishment and variability of the monsoon will be used to improve our capacity to predict it and evaluate the impacts on land-productivity, management of water resources and public health. The objective is to provide societies in Africa with improved tools to manage their dependence on environmental conditions. In the framework of AMMA a dense observational network has been established both as routine and campaign- based facilities. The aim is to provide a complete picture of the physical, chemical and biological processes over the ocean, the continent and in the atmosphere. The base network has been established over the last few year and covers surface states and surface flux monitoring in a number catchments over the climatic gradient of the region. The upper-air sounding network was upgraded and enhanced to improve the data available for operational weather forecasting. During 2006 AMMA supported a large field campaign to cover the dry season (SOP0), the monsoon onset (SOP1) and the wet season (SOP2). The enhancement to the observing system in 2006 included balloon borne instruments, a lightning network over northern Benin, 3 research vessels and 5 research aircraft stationed in the Niamey and Ouagadougou. Most of SOP2 observations were dedicated to the intense mesoscale convective systems which are generated in the region and travel to the West. Their impact on the circulation in the troposphere and lower stratosphere, the water cycle in the region and the transport of trace gases and aerosols have been observed at different stages of the life cycle of these systems. This talk will provide a overview of the AMMA project and the observations carried out in 2006, focusing on the most relevant events.

  3. Multidisciplinary System Reliability Analysis

    NASA Technical Reports Server (NTRS)

    Mahadevan, Sankaran; Han, Song; Chamis, Christos C. (Technical Monitor)

    2001-01-01

    The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code, developed under the leadership of NASA Glenn Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multidisciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.

  4. GRC RBCC Concept Multidisciplinary Analysis

    NASA Technical Reports Server (NTRS)

    Suresh, Ambady

    2001-01-01

    This report outlines the GRC RBCC Concept for Multidisciplinary Analysis. The multidisciplinary coupling procedure is presented, along with technique validations and axisymmetric multidisciplinary inlet and structural results. The NPSS (Numerical Propulsion System Simulation) test bed developments and code parallelization are also presented. These include milestones and accomplishments, a discussion of running R4 fan application on the PII cluster as compared to other platforms, and the National Combustor Code speedup.

  5. Observational Analysis of Two Contrasting Monsoon Years

    NASA Astrophysics Data System (ADS)

    Karri, S.; Ahmad, R.; Sujata, P.; Jose, S.; Sreenivas, G.; Maurya, D. K.

    2014-11-01

    The Indian summer monsoon rainfall contributes about 75 % of the total annual rainfall and exhibits considerable interannual variations. The agricultural economy of the country depends mainly on the monsoon rainfall. The long-range forecast of the monsoon rainfall is, therefore of significant importance in agricultural planning and other economic activities of the country. There are various parameters which influence the amount of rainfall received during the monsoon. Some of the important parameters considered by the Indian Meteorological Department (IMD) for the study of monsoon are Outgoing Longwave Radiation (OLR), moisture content of the atmosphere, zonal wind speed, low level vorticity, pressure gradient etc. Compared to the Long Period Average (LPA) value of rain fall, the country as a whole received higher amount of rainfall in June, 2013 (34 % more than LPA). The same month showed considerable decrease next year as the amount of rainfall received was around 43 % less compared to LPA. This drastic difference of monsoon prompted to study the behaviour of some of the monsoon relevant parameters. In this study we have considered five atmospheric parameters as the indicators of monsoon behaviour namely vertical relative humidity, OLR, aerosol optical depth (AOD), wind at 850 hPa and mean sea level pressure (MSLP). In the initial analysis of weekly OLR difference for year 2013 and 2014 shows positive values in the month of May over north-western parts of India (region of heat low). This should result in a weaker monsoon in 2014. This is substantiated by the rainfall data received for various stations over India. Inference made based on the analysis of RH profiles coupled with AOD values is in agreement with the rainfall over the corresponding stations.

  6. NPSS Multidisciplinary Integration and Analysis

    NASA Technical Reports Server (NTRS)

    Hall, Edward J.; Rasche, Joseph; Simons, Todd A.; Hoyniak, Daniel

    2006-01-01

    The objective of this task was to enhance the capability of the Numerical Propulsion System Simulation (NPSS) by expanding its reach into the high-fidelity multidisciplinary analysis area. This task investigated numerical techniques to convert between cold static to hot running geometry of compressor blades. Numerical calculations of blade deformations were iteratively done with high fidelity flow simulations together with high fidelity structural analysis of the compressor blade. The flow simulations were performed with the Advanced Ducted Propfan Analysis (ADPAC) code, while structural analyses were performed with the ANSYS code. High fidelity analyses were used to evaluate the effects on performance of: variations in tip clearance, uncertainty in manufacturing tolerance, variable inlet guide vane scheduling, and the effects of rotational speed on the hot running geometry of the compressor blades.

  7. Attributes of mesoscale convective systems at the land-ocean transition in Senegal during NASA African Monsoon Multidisciplinary Analyses 2006

    NASA Astrophysics Data System (ADS)

    Delonge, Marcia S.; Fuentes, Jose D.; Chan, Stephen; Kucera, Paul A.; Joseph, Everette; Gaye, Amadou T.; Daouda, Badiane

    2010-05-01

    In this study we investigate the development of a mesoscale convective system (MCS) as it moved from West Africa to the Atlantic Ocean on 31 August 2006. We document surface and atmospheric conditions preceding and following the MCS, particularly near the coast. These analyses are used to evaluate how thermodynamic and microphysical gradients influence storms as they move from continental to maritime environments. To achieve these goals, we employ observations from NASA African Monsoon Multidisciplinary Analyses (NAMMA) from the NASA S band polarimetric Doppler radar, a meteorological flux tower, upper-air soundings, and rain gauges. We show that the MCS maintained a convective leading edge and trailing stratiform region as it propagated from land to ocean. The initial strength and organization of the MCS were associated with favorable antecedent conditions in the continental lower atmosphere, including high specific humidity (18 g kg-1), temperatures (300 K), and wind shear. While transitioning, the convective and stratiform regions became weaker and disorganized. Such storm changes were linked to less favorable thermodynamic, dynamic, and microphysical conditions over ocean. To address whether storms in different life-cycle phases exhibited similar features, a composite analysis of major NAMMA events was performed. This analysis revealed an even stronger shift to lower reflectivity values over ocean. These findings support the hypothesis that favorable thermodynamic conditions over the coast are a prerequisite to ensuring that MCSs do not dissipate at the continental-maritime transition, particularly due to strong gradients that can weaken West African storms moving from land to ocean.

  8. Multidisciplinary Design and Analysis for Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Cummings, Russell M.; Freeman, H. JoAnne

    1999-01-01

    Multidisciplinary design and analysis (MDA) has become the normal mode of operation within most aerospace companies, but the impact of these changes have largely not been reflected at many universities. On an effort to determine if the emergence of multidisciplinary design concepts should influence engineering curricula, NASA has asked several universities (Virginia Tech, Georgia Tech, Clemson, BYU, and Cal Poly) to investigate the practicality of introducing MDA concepts within their undergraduate curricula. A multidisciplinary team of faculty, students, and industry partners evaluated the aeronautical engineering curriculum at Cal Poly. A variety of ways were found to introduce MDA themes into the curriculum without adding courses or units to the existing program. Both analytic and educational tools for multidisciplinary design of aircraft have been developed and implemented.

  9. Initial Multidisciplinary Design and Analysis Framework

    NASA Technical Reports Server (NTRS)

    Ozoroski, L. P.; Geiselhart, K. A.; Padula, S. L.; Li, W.; Olson, E. D.; Campbell, R. L.; Shields, E. W.; Berton, J. J.; Gray, J. S.; Jones, S. M.; Naiman, C. G.; Seidel, J. A.; Moore, K. T.; Naylor, B. A.; Townsend, S.

    2010-01-01

    Within the Supersonics (SUP) Project of the Fundamental Aeronautics Program (FAP), an initial multidisciplinary design & analysis framework has been developed. A set of low- and intermediate-fidelity discipline design and analysis codes were integrated within a multidisciplinary design and analysis framework and demonstrated on two challenging test cases. The first test case demonstrates an initial capability to design for low boom and performance. The second test case demonstrates rapid assessment of a well-characterized design. The current system has been shown to greatly increase the design and analysis speed and capability, and many future areas for development were identified. This work has established a state-of-the-art capability for immediate use by supersonic concept designers and systems analysts at NASA, while also providing a strong base to build upon for future releases as more multifidelity capabilities are developed and integrated.

  10. Convergence Estimates for Multidisciplinary Analysis and Optimization

    NASA Technical Reports Server (NTRS)

    Arian, Eyal

    1997-01-01

    A quantitative analysis of coupling between systems of equations is introduced. This analysis is then applied to problems in multidisciplinary analysis, sensitivity, and optimization. For the sensitivity and optimization problems both multidisciplinary and single discipline feasibility schemes are considered. In all these cases a "convergence factor" is estimated in terms of the Jacobians and Hessians of the system, thus it can also be approximated by existing disciplinary analysis and optimization codes. The convergence factor is identified with the measure for the "coupling" between the disciplines in the system. Applications to algorithm development are discussed. Demonstration of the convergence estimates and numerical results are given for a system composed of two non-linear algebraic equations, and for a system composed of two PDEs modeling aeroelasticity.

  11. Integrated multidisciplinary analysis tool IMAT users' guide

    NASA Technical Reports Server (NTRS)

    Meissner, Frances T. (Editor)

    1988-01-01

    The Integrated Multidisciplinary Analysis Tool (IMAT) is a computer software system developed at Langley Research Center. IMAT provides researchers and analysts with an efficient capability to analyze satellite controls systems influenced by structural dynamics. Using a menu-driven executive system, IMAT leads the user through the program options. IMAT links a relational database manager to commercial and in-house structural and controls analysis codes. This paper describes the IMAT software system and how to use it.

  12. Multi-Disciplinary Analysis and Optimization Frameworks

    NASA Technical Reports Server (NTRS)

    Naiman, Cynthia Gutierrez

    2009-01-01

    Since July 2008, the Multidisciplinary Analysis & Optimization Working Group (MDAO WG) of the Systems Analysis Design & Optimization (SAD&O) discipline in the Fundamental Aeronautics Program s Subsonic Fixed Wing (SFW) project completed one major milestone, Define Architecture & Interfaces for Next Generation Open Source MDAO Framework Milestone (9/30/08), and is completing the Generation 1 Framework validation milestone, which is due December 2008. Included in the presentation are: details of progress on developing the Open MDAO framework, modeling and testing the Generation 1 Framework, progress toward establishing partnerships with external parties, and discussion of additional potential collaborations

  13. Integrated multidisciplinary analysis of segmented reflector telescopes

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.; Needels, Laura

    1992-01-01

    The present multidisciplinary telescope-analysis approach, which encompasses thermal, structural, control and optical considerations, is illustrated for the case of an IR telescope in LEO; attention is given to end-to-end evaluations of the effects of mechanical disturbances and thermal gradients in measures of optical performance. Both geometric ray-tracing and surface-to-surface diffraction approximations are used in the telescope's optical model. Also noted is the role played by NASA-JPL's Integrated Modeling of Advanced Optical Systems computation tool, in view of numerical samples.

  14. Panel Discussion on Multi-Disciplinary Analysis

    NASA Technical Reports Server (NTRS)

    Garcia, Robert

    2002-01-01

    The Marshall Space Flight Center (MSFC) is hosting the Thermal and Fluids Analysis Workshop (TFAWS) during the week of September 10, 2001. Included in this year's TFAWS is a panel session on Multidisciplinary Analysis techniques. The intent is to provide an opportunity for the users to gain information as to what product may be best suited for their applications environment and to provide feedback to you, the developers, on future desired developments. Potential users of multidisciplinary analysis (MDA) techniques are often overwhelmed by the number of choices available to them via commercial products and by the pace of new developments in this area. The purpose of this panel session is to provide a forum wherein MDA tools available and under development can be discussed, compared, and contrasted. The intent of this panel is to provide the end-user with the information necessary to make educated decisions on how to proceed with selecting their MDA tool. It is anticipated that the discussions this year will focus on MDA techniques that couple discipline codes or algorithms (as opposed to monolithic, unified MDA approaches). The MDA developers will be asked to prepare a product overview presentation addressing specific questions provided by the panel organizers. The purpose of these questions will be to establish the method employed by the particular MDA technique for communication between the discipline codes, to establish the similarities and differences amongst the various approaches, and to establish the range of experience and applications for each particular MDA approach.

  15. NASA Multidisciplinary Design and Analysis Fellowship Program

    NASA Technical Reports Server (NTRS)

    Schrage, D. P.; Craig, J. I.; Mavris, D. N.; Hale, M. A.; DeLaurentis, D.

    1999-01-01

    This report summarizes the results of a multi-year training grant for the development and implementation of a Multidisciplinary Design and Analysis (MDA) Fellowship Program at Georgia Tech. The Program funded the creation of graduate MS and PhD degree programs in aerospace systems design, analysis and integration. It also provided prestigious Fellowships with associated Industry Internships for outstanding engineering students. The graduate program has become the foundation for a vigorous and productive research effort and has produced: 20 MS degrees, 7 Ph.D. degrees, and has contributed to 9 ongoing Ph.D. students. The results of the research are documented in 32 publications (23 of which are included on a companion CDROM) and 4 annual student design reports (included on a companion CDROM). The legacy of this critical funding is the Center for Aerospace Systems Analysis at Georgia Tech which is continuing the graduate program, the research, and the industry internships established by this grant.

  16. NASA Multidisciplinary Design and Analysis Fellowship Program

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This report is a Year 1 interim report of the progress on the NASA multidisciplinary Design and Analysis Fellowship Program covering the period, January 1, 1995 through September 30, 1995. It summarizes progress in establishing the MDA Fellowship Program at Georgia Tech during the initial year. Progress in the advertisement of the program, recruiting results for the 1995-96 academic year, placement of the Fellows in industry during Summer 1995, program development at the M.S. and Ph.D. levels, and collaboration and dissemination of results are summarized in this report. Further details of the first year's progress will be included in the report from the Year 1 Workshop to be held at NASA Langley on December 7-8, 1995.

  17. Multi-Disciplinary System Reliability Analysis

    NASA Technical Reports Server (NTRS)

    Mahadevan, Sankaran; Han, Song

    1997-01-01

    The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code developed under the leadership of NASA Lewis Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multi-disciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.

  18. Application of multidisciplinary analysis to gene expression.

    SciTech Connect

    Wang, Xuefel; Kang, Huining; Fields, Chris; Cowie, Jim R.; Davidson, George S.; Haaland, David Michael; Sibirtsev, Valeriy; Mosquera-Caro, Monica P.; Xu, Yuexian; Martin, Shawn Bryan; Helman, Paul; Andries, Erik; Ar, Kerem; Potter, Jeffrey; Willman, Cheryl L.; Murphy, Maurice H.

    2004-01-01

    Molecular analysis of cancer, at the genomic level, could lead to individualized patient diagnostics and treatments. The developments to follow will signal a significant paradigm shift in the clinical management of human cancer. Despite our initial hopes, however, it seems that simple analysis of microarray data cannot elucidate clinically significant gene functions and mechanisms. Extracting biological information from microarray data requires a complicated path involving multidisciplinary teams of biomedical researchers, computer scientists, mathematicians, statisticians, and computational linguists. The integration of the diverse outputs of each team is the limiting factor in the progress to discover candidate genes and pathways associated with the molecular biology of cancer. Specifically, one must deal with sets of significant genes identified by each method and extract whatever useful information may be found by comparing these different gene lists. Here we present our experience with such comparisons, and share methods developed in the analysis of an infant leukemia cohort studied on Affymetrix HG-U95A arrays. In particular, spatial gene clustering, hyper-dimensional projections, and computational linguistics were used to compare different gene lists. In spatial gene clustering, different gene lists are grouped together and visualized on a three-dimensional expression map, where genes with similar expressions are co-located. In another approach, projections from gene expression space onto a sphere clarify how groups of genes can jointly have more predictive power than groups of individually selected genes. Finally, online literature is automatically rearranged to present information about genes common to multiple groups, or to contrast the differences between the lists. The combination of these methods has improved our understanding of infant leukemia. While the complicated reality of the biology dashed our initial, optimistic hopes for simple answers from

  19. Global sensitivity analysis of the Indian monsoon during the Pleistocene

    NASA Astrophysics Data System (ADS)

    Araya-Melo, P. A.; Crucifix, M.; Bounceur, N.

    2015-01-01

    The sensitivity of the Indian monsoon to the full spectrum of climatic conditions experienced during the Pleistocene is estimated using the climate model HadCM3. The methodology follows a global sensitivity analysis based on the emulator approach of Oakley and O'Hagan (2004) implemented following a three-step strategy: (1) development of an experiment plan, designed to efficiently sample a five-dimensional input space spanning Pleistocene astronomical configurations (three parameters), CO2 concentration and a Northern Hemisphere glaciation index; (2) development, calibration and validation of an emulator of HadCM3 in order to estimate the response of the Indian monsoon over the full input space spanned by the experiment design; and (3) estimation and interpreting of sensitivity diagnostics, including sensitivity measures, in order to synthesise the relative importance of input factors on monsoon dynamics, estimate the phase of the monsoon intensity response with respect to that of insolation, and detect potential non-linear phenomena. By focusing on surface temperature, precipitation, mixed-layer depth and sea-surface temperature over the monsoon region during the summer season (June-July-August-September), we show that precession controls the response of four variables: continental temperature in phase with June to July insolation, high glaciation favouring a late-phase response, sea-surface temperature in phase with May insolation, continental precipitation in phase with July insolation, and mixed-layer depth in antiphase with the latter. CO2 variations control temperature variance with an amplitude similar to that of precession. The effect of glaciation is dominated by the albedo forcing, and its effect on precipitation competes with that of precession. Obliquity is a secondary effect, negligible on most variables except sea-surface temperature. It is also shown that orography forcing reduces the glacial cooling, and even has a positive effect on precipitation

  20. Efficient Multidisciplinary Analysis Procedure Using Multi-Level Parallelization Approach

    NASA Technical Reports Server (NTRS)

    Byun, Chansup; Hatay, Ferhat; Farhangnia, Mehrdad; Guruswamy, Guru; VanDalsem, William R. (Technical Monitor)

    1997-01-01

    Multidisciplinary applications are suitable for parallel computing environment by adopting the domain decomposition method. Immediately, a multidisciplinary application can be parallelized by solving each discipline separately. In order to perform coupled multidisciplinary analysis, coupling of each discipline can be accomplished by exchanging boundary data at the interfaces. This is regarded as discipline-level parallelization. Next level could be a "coarse-grain" parallelization of each discipline, which mainly depends on the physical geometry and nature of each discipline. For example, it is almost impossible for structured-grid based computational fluid dynamics codes to do flow analysis of an aircraft by using a single grid because of the complexity of its configuration. Thus, multi-block grid is commonly used to describe the details of complex geometry. Similarly, in structural analysis, the structure is frequently subdivided into substructures. Thus, the computation of each subdomain can be easily parallelized since each subdomain is solved separately independent of other domains. The parallelization is accomplished by solving each subdomain separately on a separate processor and exchanging the boundary conditions at domain interfaces periodically. However, the physical decomposition of the domain introduces explicit boundary conditions at the domain interfaces. This is not desirable for critical areas such as those containing shock waves or flow separations. Thus, a "fine-grain" parallelization is introduced to overcome this problem. The "fine-grain" parallelization is one that solves exactly the same system of equations of a subdomain by using more than one processors without introducing any explicit boundary conditions. An efficient multidisciplinary analysis procedure can be accomplished by successfully combining the above multi-level parallelism. A multidisciplinary analysis code, ENSAERO developed at NASA Ames Research Center is used in this study to

  1. Multidisciplinary Analysis and Optimization Generation 1 and Next Steps

    NASA Technical Reports Server (NTRS)

    Naiman, Cynthia Gutierrez

    2008-01-01

    The Multidisciplinary Analysis & Optimization Working Group (MDAO WG) of the Systems Analysis Design & Optimization (SAD&O) discipline in the Fundamental Aeronautics Program s Subsonic Fixed Wing (SFW) project completed three major milestones during Fiscal Year (FY)08: "Requirements Definition" Milestone (1/31/08); "GEN 1 Integrated Multi-disciplinary Toolset" (Annual Performance Goal) (6/30/08); and "Define Architecture & Interfaces for Next Generation Open Source MDAO Framework" Milestone (9/30/08). Details of all three milestones are explained including documentation available, potential partner collaborations, and next steps in FY09.

  2. Multidisciplinary analysis and synthesis - Needs and opportunities. [for aerospace design

    NASA Technical Reports Server (NTRS)

    Tolson, R. H.; Sobieszczanski-Sobieski, J.

    1985-01-01

    A comprehensive evaluation is conducted of structural analysis and synthesis opportunities which emerge through a multidisciplinary design program approach that simultaneously and interactively encompasses, in its determination of a given aircraft design, aerodynamics, structure, structural dynamics, materials, controls, and propulsion. In this way, it becomes possible to rapidly exploit technological advances in order to yield synergistic effects among configurational subsystems. The aircraft type presently considered as recipients of this treatment are commercial transports, high performance military aircraft, rotorcraft, and large space antennas, giving attention to common features among the multidisciplinary design tasks represented.

  3. Geometric requirements for multidisciplinary analysis of aerospace-vehicle design

    NASA Technical Reports Server (NTRS)

    Smith, Robert E.; Kerr, Patirca A.

    1992-01-01

    The geometric requirements for creating surfaces and grids for multidisciplinary analysis and optimization of aerospace-vehicle designs are described. Geometric surface representations are outlined and compared. Directions for future designs are proposed. High-speed civil transport aircraft configurations are targeted to demonstrate the processes.

  4. The West African monsoon: Contribution of the AMMA multidisciplinary programme to the study of a regional climate system.

    NASA Astrophysics Data System (ADS)

    Lebel, T.; Janicot, S.; Redelsperger, J. L.; Parker, D. J.; Thorncroft, C. D.

    2015-12-01

    The AMMA international project aims at improving our knowledge and understanding of the West African monsoon and its variability with an emphasis on daily-to-interannual timescales. AMMA is motivated by an interest in fundamental scientific issues and by the societal need for improved prediction of the WAM and its impacts on water resources, health and food security for West African nations. The West African monsoon (WAM) has a distinctive annual cycle in rainfall that remains a challenge to understand and predict. The location of peak rainfall, which resides in the Northern Hemisphere throughout the year, moves from the ocean to the land in boreal spring. Around the end of June there is a rapid shift in the location of peak rainfall between the coast and around 10°N where it remains until about the end of August. In September the peak rainfall returns equatorward at a relatively steady pace and is located over the ocean again by November. The fact that the peak rainfall migrates irregularly compared to the peak solar heating is due to the interactions that occur between the land, the atmosphere and the ocean. To gain a better understanding of this complex climate system, a large international research programme was launched in 2002, the biggest of its kind into environment and climate ever attempted in Africa. AMMA has involved a comprehensive field experiment bringing together ocean, land and atmospheric measurements, on timescales ranging from hourly and daily variability up to the changes in seasonal activity over a number of years. This presentation will focus on the description of the field programme and its accomplishments, and address some key questions that have been recently identified to form the core of AMMA-Phase 2.

  5. The West African monsoon: Contribution of the AMMA multidisciplinary programme to the study of a regional climate system.

    NASA Astrophysics Data System (ADS)

    Lebel, T.; Janicot, S.; Redelsperger, J. L.; Parker, D. J.; Thorncroft, C. D.

    2014-12-01

    The AMMA international project aims at improving our knowledge and understanding of the West African monsoon and its variability with an emphasis on daily-to-interannual timescales. AMMA is motivated by an interest in fundamental scientific issues and by the societal need for improved prediction of the WAM and its impacts on water resources, health and food security for West African nations. The West African monsoon (WAM) has a distinctive annual cycle in rainfall that remains a challenge to understand and predict. The location of peak rainfall, which resides in the Northern Hemisphere throughout the year, moves from the ocean to the land in boreal spring. Around the end of June there is a rapid shift in the location of peak rainfall between the coast and around 10°N where it remains until about the end of August. In September the peak rainfall returns equatorward at a relatively steady pace and is located over the ocean again by November. The fact that the peak rainfall migrates irregularly compared to the peak solar heating is due to the interactions that occur between the land, the atmosphere and the ocean. To gain a better understanding of this complex climate system, a large international research programme was launched in 2002, the biggest of its kind into environment and climate ever attempted in Africa. AMMA has involved a comprehensive field experiment bringing together ocean, land and atmospheric measurements, on timescales ranging from hourly and daily variability up to the changes in seasonal activity over a number of years. This presentation will focus on the description of the field programme and its accomplishments, and address some key questions that have been recently identified to form the core of AMMA-Phase 2.

  6. Regional analysis of convective systems during the West African monsoon

    NASA Astrophysics Data System (ADS)

    Guy, Bradley Nicholas

    The West African monsoon (WAM) occurs during the boreal summer and is responsible for a majority of precipitation in the northern portion of West Africa. A distinct shift of precipitation, often driven by large propagating mesoscale convective systems, is indicated from satellite observations. Excepting the coarser satellite observations, sparse data across the continent has prevented understanding of mesoscale variability of these important systems. The interaction between synoptic and mesoscale features appears to be an important part of the WAM system. Without an understanding of the mesoscale properties of precipitating systems, improved understanding of the feedback mechanism between spatial scales cannot be attained. Convective and microphysical characteristics of West African convective systems are explored using various observational data sets. Focus is directed toward meso -alpha and -beta scale convective systems to improve our understanding of characteristics at this spatial scale and contextualize their interaction with the larger-scale. Ground-based radar observations at three distinct geographical locations in West Africa along a common latitudinal band (Niamey, Niger [continental], Kawsara, Senegal [coastal], and Praia, Republic of Cape Verde [maritime]) are analyzed to determine convective system characteristics in each domain during a 29 day period in 2006. Ancillary datasets provided by the African Monsoon Multidisciplinary Analyses (AMMA) and NASA-AMMA (NAMMA) field campaigns are also used to place the radar observations in context. Results show that the total precipitation is dominated by propagating mesoscale convective systems. Convective characteristics vary according to environmental properties, such as vertical shear, CAPE, and the degree of synoptic forcing. Data are bifurcated based on the presence or absence of African easterly waves. In general, African easterly waves appear to enhance mesoscale convective system strength

  7. Analysis of Vegetation Index Variations and the Asian Monsoon Climate

    NASA Technical Reports Server (NTRS)

    Shen, Sunhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2012-01-01

    Vegetation growth depends on local climate. Significant anthropogenic land cover and land use change activities over Asia have changed vegetation distribution as well. On the other hand, vegetation is one of the important land surface variables that influence the Asian Monsoon variability through controlling atmospheric energy and water vapor conditions. In this presentation, the mean and variations of vegetation index of last decade at regional scale resolution (5km and higher) from MODIS have been analyzed. Results indicate that the vegetation index has been reduced significantly during last decade over fast urbanization areas in east China, such as Yangtze River Delta, where local surface temperatures were increased significantly in term of urban heat Island. The relationship between vegetation Index and climate (surface temperature, precipitation) over a grassland in northern Asia and over a woody savannas in southeast Asia are studied. In supporting Monsoon Asian Integrated Regional Study (MAIRS) program, the data in this study have been integrated into Giovanni, the online visualization and analysis system at NASA GES DISC. Most images in this presentation are generated from Giovanni system.

  8. [Causes of problems in multidisciplinary bitemark analysis].

    PubMed

    Przystańska, Agnieszka; Lorkiewicz-Muszyńska, Dorota; Glapiński, Mariusz; Swiderski, Paweł; Łabecka, Marzena; Zaba, Czesław

    2013-01-01

    Since a successful bitemark analysis depends on many factors, it is important that the phases preceding the analysis be carried out as thoroughly as possible. Interpretive errors in the analysis arise primarily from the complex nature of bitemarks, but also as a result of faulty research methodology, false assumptions or technical errors made during the identification and documentation process. The key role is played by qualifications, knowledge and experience of experts involved in the investigations. In case bitemarks are detected, it is recommended to seek consultations by forensic odontologists or members of an interdisciplinary team experienced in bitemark analysis. The thus obtained information allows for gathering evidence guaranteeing a reliable expert opinion. PMID:24672898

  9. Recent Advances in Multidisciplinary Analysis and Optimization, part 3

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M. (Editor)

    1989-01-01

    This three-part document contains a collection of technical papers presented at the Second NASA/Air Force Symposium on Recent Advances in Multidisciplinary Analysis and Optimization, held September 28-30, 1988 in Hampton, Virginia. The topics covered include: aircraft design, aeroelastic tailoring, control of aeroelastic structures, dynamics and control of flexible structures, structural design, design of large engineering systems, application of artificial intelligence, shape optimization, software development and implementation, and sensitivity analysis.

  10. Recent Advances in Multidisciplinary Analysis and Optimization, part 2

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M. (Editor)

    1989-01-01

    This three-part document contains a collection of technical papers presented at the Second NASA/Air Force Symposium on Recent Advances in Multidisciplinary Analysis and Optimization, held September 28-30, 1988 in Hampton, Virginia. The topics covered include: helicopter design, aeroelastic tailoring, control of aeroelastic structures, dynamics and control of flexible structures, structural design, design of large engineering systems, application of artificial intelligence, shape optimization, software development and implementation, and sensitivity analysis.

  11. Recent Advances in Multidisciplinary Analysis and Optimization, part 1

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M. (Editor)

    1989-01-01

    This three-part document contains a collection of technical papers presented at the Second NASA/Air Force Symposium on Recent Advances in Multidisciplinary Analysis and Optimization, held September 28-30, 1988 in Hampton, Virginia. The topics covered include: helicopter design, aeroelastic tailoring, control of aeroelastic structures, dynamics and control of flexible structures, structural design, design of large engineering systems, application of artificial intelligence, shape optimization, software development and implementation, and sensitivity analysis.

  12. Asian summer monsoon rainfall predictability: a predictable mode analysis

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Lee, June-Yi; Xiang, Baoqiang

    2015-01-01

    To what extent the Asian summer monsoon (ASM) rainfall is predictable has been an important but long-standing issue in climate science. Here we introduce a predictable mode analysis (PMA) method to estimate predictability of the ASM rainfall. The PMA is an integral approach combining empirical analysis, physical interpretation and retrospective prediction. The empirical analysis detects most important modes of variability; the interpretation establishes the physical basis of prediction of the modes; and the retrospective predictions with dynamical models and physics-based empirical (P-E) model are used to identify the "predictable" modes. Potential predictability can then be estimated by the fractional variance accounted for by the "predictable" modes. For the ASM rainfall during June-July-August, we identify four major modes of variability in the domain (20°S-40°N, 40°E-160°E) during 1979-2010: (1) El Niño-La Nina developing mode in central Pacific, (2) Indo-western Pacific monsoon-ocean coupled mode sustained by a positive thermodynamic feedback with the aid of background mean circulation, (3) Indian Ocean dipole mode, and (4) a warming trend mode. We show that these modes can be predicted reasonably well by a set of P-E prediction models as well as coupled models' multi-model ensemble. The P-E and dynamical models have comparable skills and complementary strengths in predicting ASM rainfall. Thus, the four modes may be regarded as "predictable" modes, and about half of the ASM rainfall variability may be predictable. This work not only provides a useful approach for assessing seasonal predictability but also provides P-E prediction tools and a spatial-pattern-bias correction method to improve dynamical predictions. The proposed PMA method can be applied to a broad range of climate predictability and prediction problems.

  13. Recent Experiences in Multidisciplinary Analysis and Optimization, part 2

    NASA Technical Reports Server (NTRS)

    Sobieski, J. (Compiler)

    1984-01-01

    The papers presented at the NASA Symposium on Recent Experiences in Multidisciplinary Analysis and Optimization held at NASA Langley Research Center, Hampton, Virginia, April 24 to 26, 1984 are given. The purposes of the symposium were to exchange information about the status of the application of optimization and the associated analyses in industry or research laboratories to real life problems and to examine the directions of future developments.

  14. NASA Aeronautics Multidisciplinary Analysis and Design Fellowship Program

    NASA Technical Reports Server (NTRS)

    Grossman, B.; Guerdal, Z.; Haftka, R. T.; Kapania, R. K.; Mason, W. H.; Mook, D. T.

    1998-01-01

    For a number of years, Virginia Tech had been on the forefront of research in the area of multidisciplinary analysis and design. In June of 1994, faculty members from aerospace and ocean engineering, engineering science and mechanics, mechanical engineering, industrial engineering, mathematics and computer sciences, at Virginia Tech joined together to form the Multidisciplinary Analysis and Design (MAD) Center for Advanced Vehicles. The center was established with the single goal: to perform research that is relevant to the needs of the US industry and to foster collaboration between the university, government and industry. In October of 1994, the center was chosen by NASA headquarters as one of the five university centers to establish a fellowship program to develop a graduate program in multidisciplinary analysis and design. The fellowship program provides full stipend and tuition support for seven U. S. students per year during their graduate studies. To advise us regarding the problems faced by the industry, an industrial advisory board has been formed consisting of representatives from industry as well as government laboratories. The function of the advisory board is to channel information from its member companies to faculty members concerning problems that need research attention in the general area of multidisciplinary design optimization (MDO). The faculty and their graduate students make proposals to the board on how to address these problems. At the annual board meeting in Blacksburg, the board discusses the proposals and suggests which students get funded under the NASA fellowship program. All students participating in the program are required to spend 3-6 months in industry working on their research projects. We are completing the third year of the fellowship program and have had three advisory board meetings in Blacksburg.

  15. Multidisciplinary analysis of actively controlled large flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Cooper, Paul A.; Young, John W.; Sutter, Thomas R.

    1986-01-01

    The control of Flexible Structures (COFS) program has supported the development of an analysis capability at the Langley Research Center called the Integrated Multidisciplinary Analysis Tool (IMAT) which provides an efficient data storage and transfer capability among commercial computer codes to aid in the dynamic analysis of actively controlled structures. IMAT is a system of computer programs which transfers Computer-Aided-Design (CAD) configurations, structural finite element models, material property and stress information, structural and rigid-body dynamic model information, and linear system matrices for control law formulation among various commercial applications programs through a common database. Although general in its formulation, IMAT was developed specifically to aid in the evaluation of the structures. A description of the IMAT system and results of an application of the system are given.

  16. A Multidisciplinary Approach to Mixer-Ejector Analysis and Design

    NASA Technical Reports Server (NTRS)

    Hendricks, Eric, S.; Seidel, Jonathan, A.

    2012-01-01

    The design of an engine for a civil supersonic aircraft presents a difficult multidisciplinary problem to propulsion system engineers. There are numerous competing requirements for the engine, such as to be efficient during cruise while yet quiet enough at takeoff to meet airport noise regulations. The use of mixer-ejector nozzles presents one possible solution to this challenge. However, designing a mixer-ejector which will successfully address both of these concerns is a difficult proposition. Presented in this paper is an integrated multidisciplinary approach to the analysis and design of these systems. A process that uses several low-fidelity tools to evaluate both the performance and acoustics of mixer-ejectors nozzles is described. This process is further expanded to include system-level modeling of engines and aircraft to determine the effects on mission performance and noise near airports. The overall process is developed in the OpenMDAO framework currently being developed by NASA. From the developed process, sample results are given for a notional mixer-ejector design, thereby demonstrating the capabilities of the method.

  17. PAYCOS: A new multidisciplinary analysis program for hypersonic vehicle design

    NASA Technical Reports Server (NTRS)

    Stubbe, J. R.

    1990-01-01

    The Payload Conceptual Sizing Code (PAYCOS), a new multidisciplinary computer program for use in the conceptual development phase of hypersonic lifting vehicles (HV's), is described. The program allows engineers to rapidly determine the feasibility of an HV concept and then improve upon the concept by means of optimization theory. The code contains analysis modules for aerodynamics, thermodynamics, mass properties, flight stability, controls, loads, structures, and packaging. Motivation for the code lies with the increased complexity of HV's over their body-of-revolution ballistic predecessors. With these new shapes, the need to rapidly screen out poor concepts and actively develop new and better concepts is an even more crucial part of the early design process. Preliminary results are given which demonstrate the optimization capabilities of the code.

  18. Recent Experiences in Multidisciplinary Analysis and Optimization, part 1

    NASA Technical Reports Server (NTRS)

    Sobieski, J. (Compiler)

    1984-01-01

    Papers presented at the NASA Symposium on Recent Experiences in Multidisciplinary Analysis and Optimization held at NASA Langley Research Center, Hampton, Virginia April 24 to 26, 1984 are given. The purposes of the symposium were to exchange information about the status of the application of optimization and associated analyses in industry or research laboratories to real life problems and to examine the directions of future developments. Information exchange has encompassed the following: (1) examples of successful applications; (2) attempt and failure examples; (3) identification of potential applications and benefits; (4) synergistic effects of optimized interaction and trade-offs occurring among two or more engineering disciplines and/or subsystems in a system; and (5) traditional organization of a design process as a vehicle for or an impediment to the progress in the design methodology.

  19. The Role of Multiphysics Simulation in Multidisciplinary Analysis

    NASA Technical Reports Server (NTRS)

    Rifai, Steven M.; Ferencz, Robert M.; Wang, Wen-Ping; Spyropoulos, Evangelos T.; Lawrence, Charles; Melis, Matthew E.

    1998-01-01

    This article describes the applications of the Spectrum(Tm) Solver in Multidisciplinary Analysis (MDA). Spectrum, a multiphysics simulation software based on the finite element method, addresses compressible and incompressible fluid flow, structural, and thermal modeling as well as the interaction between these disciplines. Multiphysics simulation is based on a single computational framework for the modeling of multiple interacting physical phenomena. Interaction constraints are enforced in a fully-coupled manner using the augmented-Lagrangian method. Within the multiphysics framework, the finite element treatment of fluids is based on Galerkin-Least-Squares (GLS) method with discontinuity capturing operators. The arbitrary-Lagrangian-Eulerian method is utilized to account for deformable fluid domains. The finite element treatment of solids and structures is based on the Hu-Washizu variational principle. The multiphysics architecture lends itself naturally to high-performance parallel computing. Aeroelastic, propulsion, thermal management and manufacturing applications are presented.

  20. The Third Air Force/NASA Symposium on Recent Advances in Multidisciplinary Analysis and Optimization

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The third Air Force/NASA Symposium on Recent Advances in Multidisciplinary Analysis and Optimization was held on 24-26 Sept. 1990. Sessions were on the following topics: dynamics and controls; multilevel optimization; sensitivity analysis; aerodynamic design software systems; optimization theory; analysis and design; shape optimization; vehicle components; structural optimization; aeroelasticity; artificial intelligence; multidisciplinary optimization; and composites.

  1. NASA Aeronautics Multidisciplinary Analysis and Design Fellowship Program

    NASA Technical Reports Server (NTRS)

    Grossman, B.; Gurdal, Z.; Kapania, R. K.; Mason, W. H.; Schetz, J. A.

    1999-01-01

    This program began as a grant from NASA Headquarters, NGT-10025, which was in effect from 10/l/93 until 10/31/96. The remaining funding for this effort was transferred from NASA Headquarters to NASA Langley and a new grant NGT-1-52155 was issued covering the period II/l/96 to 5/15/99. This report serves as the final report of NGT-1-52155. For a number of years, Virginia Tech had been on the forefront of research in the area of multidisciplinary analysis and design. In June of 1994, faculty members from aerospace and ocean engineering, engineering science and mechanics, mechanical engineering, industrial engineering, mathematics and computer sciences, at Virginia Tech joined together to form the Multidisciplinary Analysis and Design (MAD) Center for Advanced Vehicles. The center was established with the single goal: to perform research that is relevant to the needs of the US industry and to foster collaboration between the university, government and industry. In October of 1994, the center was chosen by NASA headquarters as one of the five university centers to establish a fellowship program to develop a graduate program in multidisciplinary analysis and design. The fellowship program provides full stipend and tuition support for seven U. S. students per year during their graduate studies. The grant is currently being administered by the NMO Branch of NASA Langley. To advise us regarding the problems faced by the industry, an industrial advisory board has been formed consisting of representatives from industry as well as government laboratories. The present membership includes major aerospace companies: Aurora Flight Sciences, Boeing: Philadelphia, Boeing: Long Beach, Boeing: Seattle, Boeing: St. Louis, Cessna, Ford, General Electric, Hughes, Lockheed-Martin: Palo Alto, Northrop-Grumman, Sikorsky, smaller, aerospace software companies: Aerosoft, Phoenix Integration and Proteus Engineering, along with representatives from government agencies, including: NASA Ames

  2. Multidisciplinary Expert-aided Analysis and Design (MEAD)

    NASA Technical Reports Server (NTRS)

    Hummel, Thomas C.; Taylor, James

    1989-01-01

    The MEAD Computer Program (MCP) is being developed under the Multidisciplinary Expert-Aided Analysis and Design (MEAD) Project as a CAD environment in which integrated flight, propulsion, and structural control systems can be designed and analyzed. The MCP has several embedded computer-aided control engineering (CACE) packages, a user interface (UI), a supervisor, a data-base manager (DBM), and an expert system (ES). The supervisor monitors and coordinates the operation of the CACE packages, the DBM; the ES, and the UI. The DBM tracks the control design process. Models created or installed by the MCP are tracked by date and version, and results are associated with the specific model version with which they were generated. The ES is used to relieve the control engineer from tedious and cumbersome tasks in the iterative design process. The UI provides the capability for a novice as well as an expert to utilize the MCP easily and effectively. The MCP version 2(MCP-2.0) is fully developed for flight control system design and analysis. Propulsion system modeling, analysis, and simulation is also supported; the same is true for structural models represented in state-space form. The ultimate goal is to cover the integration of flight, propulsion, and structural control engineering, including all discipline-specific functionality and interfaces. The current MCP-2.0 components and functionality are discussed.

  3. Indian Monsoon: complex network analysis, spatial patterns and the prospects for prediction

    NASA Astrophysics Data System (ADS)

    Stolbova, Veronika; Bookhagen, Bodo; Marwan, Norbert; Kurths, Juergen

    2014-05-01

    The Indian Summer Monsoon (ISM) is a global climate phenomenon that affects half of the world's population. The prediction of the Indian Summer Monsoon rainfall and its extremes remains an important concern. In our study we aim to determine spatial distribution of patterns of extreme rainfall and their synchronization, because the understanding of the structure of the spatial heterogeneity of extreme rainfall is crucial for Indian agriculture and economy. We use complex networks to identify dominant spatial patterns that govern the organization of extreme rainfall during the ISM season. We construct networks of extreme rainfall events during the ISM, the pre-monsoon, and the post-monsoon period from satellite-derived (TRMM, Tropical Rainfall Measurement Mission, product 3B42 V7) and rain-gauge interpolated (APHRODITE) datasets. The structure of the networks is determined by the level of synchronization of extreme rainfall events between different grid cells throughout the Indian subcontinent. Through the analysis of various complex-network metrics, we describe typical repetitive patterns that can be used as indicators of the ISM variability: North Pakistan (NP), Western Ghats (WG), Eastern Ghats (EG), and Tibetan Plateau (TP). These patterns appear during the pre-monsoon season, evolve during the ISM season, and disappear during the post-monsoon season. We compare obtained results with wind fields, temperature, and pressure networks in this region derived from re-analysis data provided by the National Center for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR). The areas of Eastern Ghats, Western Ghats, and Tibetan Plateau were previously known as areas that influence the ISM dynamics. These patterns occur because of the intricate topography of this region. The Western Ghats pattern, specifically, the Kerala region, is commonly used by climatologists for the prediction of the onset of the ISM (Pai and Nair, 2009). However, North

  4. Empirical Orthogonal Function (EOF) analysis of monsoon rainfall and satellite-observed outgoing long-wave radiation for Indian monsoon: a comparative study

    NASA Astrophysics Data System (ADS)

    Singh, C. V.

    The present study involves the use of Empirical Orthogonal Function (EOF) analysis/Principal Component Analysis (PCA) to compare the dominant rainfall patterns from normal rainfall records over India, coupled with the major modes of the Outgoing Long-wave Radiation (OLR) data for the period (1979-1988) during the monsoon period (June-September). To understand the intraseasonal and interannual variability of the monsoon rainfall, daily and seasonal anomalies have been obtained by using the (EOF) analysis. Importantly, pattern characteristics of seasonal monsoon rainfall covering 68 stations in India are highlighted. The purpose is to ascertain the nature of rainfall distribution over the Indian continent. Based on this, the percentage of variance for both the rainfall and OLR data is examined. OLR has a higher spatial coherence than rainfall. The first principal component of rainfall data shows high positive values, which are concentrated over northeast as well as southeast, whereas for the OLR, the area of large positive values is concentrated over northwest and lower value over south India apart from the Indian ocean. The first five principal components explain 92.20% of the total variance for the rainfall and 99.50% of the total variance for the outgoing long-wave radiation. The relationship between monsoon rainfall and Southern Oscillations has also been examined and for the Southern Oscillations, it is 0.69 for the monsoon season. The El-Niño events mostly occurred during Southern Oscillations, i.e. Walker circulation. It has been found that the average number of low pressure system/low pressure system days play an important role during active (flood) or inactive (drought) monsoon year, but low pressure system days play more important role in comparison to low pressure systems and their ratio are (16:51) and (13:25) respectively. Significantly, the analysis identifies the spatial and temporal pattern characteristics of possible physical significance.

  5. NCC: A Multidisciplinary Design/Analysis Tool for Combustion Systems

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey; Quealy, Angela

    1999-01-01

    A multi-disciplinary design/analysis tool for combustion systems is critical for optimizing the low-emission, high-performance combustor design process. Based on discussions between NASA Lewis Research Center and the jet engine companies, an industry-government team was formed in early 1995 to develop the National Combustion Code (NCC), which is an integrated system of computer codes for the design and analysis of combustion systems. NCC has advanced features that address the need to meet designer's requirements such as "assured accuracy", "fast turnaround", and "acceptable cost". The NCC development team is comprised of Allison Engine Company (Allison), CFD Research Corporation (CFDRC), GE Aircraft Engines (GEAE), NASA Lewis Research Center (LeRC), and Pratt & Whitney (P&W). This development team operates under the guidance of the NCC steering committee. The "unstructured mesh" capability and "parallel computing" are fundamental features of NCC from its inception. The NCC system is composed of a set of "elements" which includes grid generator, main flow solver, turbulence module, turbulence and chemistry interaction module, chemistry module, spray module, radiation heat transfer module, data visualization module, and a post-processor for evaluating engine performance parameters. Each element may have contributions from several team members. Such a multi-source multi-element system needs to be integrated in a way that facilitates inter-module data communication, flexibility in module selection, and ease of integration.

  6. Entropy analysis of stable isotopes in precipitation: tracing the monsoon systems in China.

    PubMed

    Wang, Tao; Chen, Jiansheng; Li, Ling

    2016-01-01

    Due to the complexity of monsoon systems and random behaviors of isotope tracers, conventional methods are not adequate for uncovering detailed information about monsoon activities from typically limited precipitation isotope data. We developed a new approach based on the entropy theory to analyze such data with a focus on the monsoon systems in China, dealing with the complexity of these systems and data deficiency. Using precipitation isotope data from 42 selected stations in and around China within the GNIP network, we computed entropies associated with D and (18)O. These entropies were found to relate linearly to each other with a proportionality factor close to unity. The spatial variations of the D and (18)O entropy in the study area revealed the origins, extents and pathways of the Chinese monsoon systems, as well as their interactions. While further investigation is needed at a greater (global) scale, this study has demonstrated how the entropy theory enables an in-depth analysis of precipitation isotope data to trace the pathway and determine the range of a monsoon system. PMID:27507656

  7. Entropy analysis of stable isotopes in precipitation: tracing the monsoon systems in China

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Chen, Jiansheng; Li, Ling

    2016-08-01

    Due to the complexity of monsoon systems and random behaviors of isotope tracers, conventional methods are not adequate for uncovering detailed information about monsoon activities from typically limited precipitation isotope data. We developed a new approach based on the entropy theory to analyze such data with a focus on the monsoon systems in China, dealing with the complexity of these systems and data deficiency. Using precipitation isotope data from 42 selected stations in and around China within the GNIP network, we computed entropies associated with D and 18O. These entropies were found to relate linearly to each other with a proportionality factor close to unity. The spatial variations of the D and 18O entropy in the study area revealed the origins, extents and pathways of the Chinese monsoon systems, as well as their interactions. While further investigation is needed at a greater (global) scale, this study has demonstrated how the entropy theory enables an in-depth analysis of precipitation isotope data to trace the pathway and determine the range of a monsoon system.

  8. Entropy analysis of stable isotopes in precipitation: tracing the monsoon systems in China

    PubMed Central

    Wang, Tao; Chen, Jiansheng; Li, Ling

    2016-01-01

    Due to the complexity of monsoon systems and random behaviors of isotope tracers, conventional methods are not adequate for uncovering detailed information about monsoon activities from typically limited precipitation isotope data. We developed a new approach based on the entropy theory to analyze such data with a focus on the monsoon systems in China, dealing with the complexity of these systems and data deficiency. Using precipitation isotope data from 42 selected stations in and around China within the GNIP network, we computed entropies associated with D and 18O. These entropies were found to relate linearly to each other with a proportionality factor close to unity. The spatial variations of the D and 18O entropy in the study area revealed the origins, extents and pathways of the Chinese monsoon systems, as well as their interactions. While further investigation is needed at a greater (global) scale, this study has demonstrated how the entropy theory enables an in-depth analysis of precipitation isotope data to trace the pathway and determine the range of a monsoon system. PMID:27507656

  9. Framework for Multidisciplinary Analysis, Design, and Optimization with High-Fidelity Analysis Tools

    NASA Technical Reports Server (NTRS)

    Orr, Stanley A.; Narducci, Robert P.

    2009-01-01

    A plan is presented for the development of a high fidelity multidisciplinary optimization process for rotorcraft. The plan formulates individual disciplinary design problems, identifies practical high-fidelity tools and processes that can be incorporated in an automated optimization environment, and establishes statements of the multidisciplinary design problem including objectives, constraints, design variables, and cross-disciplinary dependencies. Five key disciplinary areas are selected in the development plan. These are rotor aerodynamics, rotor structures and dynamics, fuselage aerodynamics, fuselage structures, and propulsion / drive system. Flying qualities and noise are included as ancillary areas. Consistency across engineering disciplines is maintained with a central geometry engine that supports all multidisciplinary analysis. The multidisciplinary optimization process targets the preliminary design cycle where gross elements of the helicopter have been defined. These might include number of rotors and rotor configuration (tandem, coaxial, etc.). It is at this stage that sufficient configuration information is defined to perform high-fidelity analysis. At the same time there is enough design freedom to influence a design. The rotorcraft multidisciplinary optimization tool is built and substantiated throughout its development cycle in a staged approach by incorporating disciplines sequentially.

  10. Multidisciplinary Design, Analysis, and Optimization Tool Development Using a Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Li, Wesley

    2009-01-01

    Multidisciplinary design, analysis, and optimization using a genetic algorithm is being developed at the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) to automate analysis and design process by leveraging existing tools to enable true multidisciplinary optimization in the preliminary design stage of subsonic, transonic, supersonic, and hypersonic aircraft. This is a promising technology, but faces many challenges in large-scale, real-world application. This report describes current approaches, recent results, and challenges for multidisciplinary design, analysis, and optimization as demonstrated by experience with the Ikhana fire pod design.!

  11. Predictability of the Indian Summer Monsoon onset through an analysis of variations in surface air temperature and relative humidity during the pre-monsoon season

    NASA Astrophysics Data System (ADS)

    Stolbova, V.; Surovyatkina, E.; Bookhagen, B.; Kurths, J.

    2014-12-01

    The prediction of the Indian Summer monsoon (ISM) onset is one of the vital questions for the Indian subcontinent, as well as for areas directly or indirectly affected by the ISM. In previous studies, the areas used for ISM-onset prediction were often too large (or too small), or did not include all necessary information for the ISM-onset forecasting. Here, we present recent findings that suggest that a climate network approach may help to provide better definitions for areas used for ISM-onset prediction and an overall better ISM-onset prediction. Our analysis focuses on the following domains: North West Pakistan (NP) and the Eastern Ghats (EG) as they have been identified to include important pre-monsoon information for predicting ISM onset dates. Specifically, we focus on the analysis of surface air temperature and relative humidity in both areas that allows us to derive temporal trends and to estimate the ISM onset. We propose an approach, which allows to determine ISM onset in advance in 67% of all considered years. Our proposed approach is less effective during the anomalous years, which are associated with weak/strong monsoons, e.g. El-Nino, La-Nina or positive Indian Ocean Dipole events. ISM onset is predicted for 23 out of 27 normal monsoon years (85%) during the past 6 decades. In addition, we show that time series analysis in both areas during the pre-monsoon period reveals indicators whether the forthcoming ISM will be normal or weaker/stronger.

  12. Landslide risk analysis: a multi-disciplinary methodological approach

    NASA Astrophysics Data System (ADS)

    Sterlacchini, S.; Frigerio, S.; Giacomelli, P.; Brambilla, M.

    2007-11-01

    This study describes an analysis carried out within the European community project "ALARM" (Assessment of Landslide Risk and Mitigation in Mountain Areas, 2004) on landslide risk assessment in the municipality of Corvara in Badia, Italy. This mountainous area, located in the central Dolomites (Italian Alps), poses a significant landslide hazard to several man-made and natural objects. Three parameters for determining risk were analysed as an aid to preparedness and mitigation planning: event occurrence probability, elements at risk, and the vulnerability of these elements. Initially, a landslide hazard scenario was defined; this step was followed by the identification of the potential vulnerable elements, by the estimation of the expected physical effects, due to the occurrence of a damaging phenomenon, and by the analysis of social and economic features of the area. Finally, a potential risk scenario was defined, where the relationships between the event, its physical effects, and its economic consequences were investigated. People and public administrators with training and experience in local landsliding and slope processes were involved in each step of the analysis. A "cause-effect" correlation was applied, derived from the "dose-response" equation initially used in the biological sciences and then adapted by economists for the assessment of environmental risks. The relationship was analysed from a physical point of view and the cause (the natural event) was correlated to the physical effects, i.e. the aesthetic, functional, and structural damage. An economic evaluation of direct and indirect damage was carried out considering the assets in the affected area (i.e., tourist flows, goods, transport and the effect on other social and economic activities). This study shows the importance of indirect damage, which is as significant as direct damage. The total amount of direct damage was estimated in 8 913 000 €; on the contrary, indirect damage ranged considerably

  13. Temporal analysis of rainfall (1871-2012) and drought characteristics over a tropical monsoon-dominated State (Kerala) of India

    NASA Astrophysics Data System (ADS)

    Thomas, Jobin; Prasannakumar, V.

    2016-03-01

    The climate of Kerala is controlled by the monsoon, and the analysis of rainfall and drought scenario, for a period of 141 years (1871-72 to 2011-12), reveals a decreasing trend in southwest monsoon, and increasing trends for post-monsoon-, winter- and pre-monsoon-rainfall. The inconsistent periodicity (2-8 years) of annual- and seasonal-rainfall agrees with the periodicity of El-Nino Southern Oscillation (ENSO). The annual rainfall shows an irregular distribution, and is concentrated roughly in half of the year, which is due to the monsoon-driven climatic seasonality. The rainfall concentration at annual-, southwest monsoon-, and winter-scales exhibits significant decreasing trends, implying decline in the degree of irregularity in annual- and seasonal-rainfall. Temporal distribution as well as severity of the drought events have been analyzed using various drought indicators. The drought pattern is not only related to the rainfall trends, but also to the rainfall concentration (or monthly rainfall heterogeneity). The decreasing rainfall during southwest monsoon contributes to short-term meteorological droughts, which have serious implications on the agricultural sector and water resources of Kerala, while the increasing rainfall during other seasons helps to reduce the drought severity.

  14. Multidisciplinary High-Fidelity Analysis and Optimization of Aerospace Vehicles. Part 2; Preliminary Results

    NASA Technical Reports Server (NTRS)

    Walsh, J. L.; Weston, R. P.; Samareh, J. A.; Mason, B. H.; Green, L. L.; Biedron, R. T.

    2000-01-01

    An objective of the High Performance Computing and Communication Program at the NASA Langley Research Center is to demonstrate multidisciplinary shape and sizing optimization of a complete aerospace vehicle configuration by using high-fidelity finite-element structural analysis and computational fluid dynamics aerodynamic analysis in a distributed, heterogeneous computing environment that includes high performance parallel computing. A software system has been designed and implemented to integrate a set of existing discipline analysis codes, some of them computationally intensive, into a distributed computational environment for the design of a high-speed civil transport configuration. The paper describes both the preliminary results from implementing and validating the multidisciplinary analysis and the results from an aerodynamic optimization. The discipline codes are integrated by using the Java programming language and a Common Object Request Broker Architecture compliant software product. A companion paper describes the formulation of the multidisciplinary analysis and optimization system.

  15. Multi-Satellite Synergy for Aerosol Analysis in the Asian Monsoon Region

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Petrenko, Maksym

    2012-01-01

    Atmospheric aerosols represent one of the greatest uncertainties in environmental and climate research, particularly in tropical monsoon regions such as the Southeast Asian regions, where significant contributions from a variety of aerosol sources and types is complicated by unstable atmospheric dynamics. Although aerosols are now routinely retrieved from multiple satellite Sensors, in trying to answer important science questions about aerosol distribution, properties, and impacts, researchers often rely on retrievals from only one or two sensors, thereby running the risk of incurring biases due to sensor/algorithm peculiarities. We are conducting detailed studies of aerosol retrieval uncertainties from various satellite sensors (including Terra-/ Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, SeaWiFS, and Calipso-CALIOP), based on the collocation of these data products over AERONET and other important ground stations, within the online Multi-sensor Aerosol Products Sampling System (MAPSS) framework that was developed recently. Such analyses are aimed at developing a synthesis of results that can be utilized in building reliable unified aerosol information and climate data records from multiple satellite measurements. In this presentation, we will show preliminary results of. an integrated comparative uncertainly analysis of aerosol products from multiple satellite sensors, particularly focused on the Asian Monsoon region, along with some comparisons from the African Monsoon region.

  16. Application of advanced multidisciplinary analysis and optimization methods to vehicle design synthesis

    NASA Technical Reports Server (NTRS)

    Consoli, Robert David; Sobieszczanski-Sobieski, Jaroslaw

    1990-01-01

    Advanced multidisciplinary analysis and optimization methods, namely system sensitivity analysis and non-hierarchical system decomposition, are applied to reduce the cost and improve the visibility of an automated vehicle design synthesis process. This process is inherently complex due to the large number of functional disciplines and associated interdisciplinary couplings. Recent developments in system sensitivity analysis as applied to complex non-hierarchic multidisciplinary design optimization problems enable the decomposition of these complex interactions into sub-processes that can be evaluated in parallel. The application of these techniques results in significant cost, accuracy, and visibility benefits for the entire design synthesis process.

  17. Multidisciplinary Design, Analysis, and Optimization Tool Development using a Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Li, Wesley

    2008-01-01

    Multidisciplinary design, analysis, and optimization using a genetic algorithm is being developed at the National Aeronautics and Space A dministration Dryden Flight Research Center to automate analysis and design process by leveraging existing tools such as NASTRAN, ZAERO a nd CFD codes to enable true multidisciplinary optimization in the pr eliminary design stage of subsonic, transonic, supersonic, and hypers onic aircraft. This is a promising technology, but faces many challe nges in large-scale, real-world application. This paper describes cur rent approaches, recent results, and challenges for MDAO as demonstr ated by our experience with the Ikhana fire pod design.

  18. Development of Response Surface Models for Rapid Analysis and Multidisciplinary Optimization of Launch Vehicle Design Concepts

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1999-01-01

    Multidisciplinary design optimization (MDO) is an important step in the design and evaluation of launch vehicles, since it has a significant impact on performance and lifecycle cost. The objective in MDO is to search the design space to determine the values of design parameters that optimize the performance characteristics subject to system constraints. Vehicle Analysis Branch (VAB) at NASA Langley Research Center has computerized analysis tools in many of the disciplines required for the design and analysis of launch vehicles. Vehicle performance characteristics can be determined by the use of these computerized analysis tools. The next step is to optimize the system performance characteristics subject to multidisciplinary constraints. However, most of the complex sizing and performance evaluation codes used for launch vehicle design are stand-alone tools, operated by disciplinary experts. They are, in general, difficult to integrate and use directly for MDO.

  19. An iterative multidisciplinary analysis for rotor blade shape determination

    NASA Technical Reports Server (NTRS)

    Mahajan, Aparajit J.; Stefko, George L.

    1993-01-01

    A CFD solver called ADPAC-APES is coupled with a NASTRAN structural analysis and a MARC thermal/heat transfer analysis to determine rotor blade shape. Nonlinear blade displacements due to centrifugal loads, aerodynamic pressures, and nonuniform temperature distribution are determined simultaneously. The effect of blade displacements on aerodynamic pressures and temperatures is then analyzed. These calculations are iterated till a steady state is reached across all the disciplines. This iterative procedure is applied to a ducted fan rotor blade and the manufactured shape is determined from a given operating shape. Effect of a part-span shroud on blade deflections is also analyzed.

  20. Analysis of remote measurements of tropospheric carbon monoxide concentrations made during the 1979 Summer Monsoon Experiment (MONEX)

    NASA Technical Reports Server (NTRS)

    Doherty, G. M.; Newell, R. E.; Reichle, H. G., Jr.

    1986-01-01

    Mixing ratios of tropospheric CO as measured by an aircraft-mounted radiometer over Saudi Arabia, the Arabian Sea, and northern India during May and June 1979 are reported. During early May, exceptionally high CO levels were detected over Saudi Arabia, and strong horizontal gradients in CO mixing ratios were seen to develop over a period of several days. Over the Arabian Sea, mixing ratios of the order of 150 parts per billion by volume were observed before the monsoon onset, and a pronounced decrease in CO was detected toward the equator. Subsequent measurements after the monsoon had become established revealed a consistent decrease in CO mixing ratio across this region. Analysis of aircraft dropsonde data and constant pressure daily streamline charts lend strong support to the hypothesis that this reduction is associated with the influx of CO-poor Southern Hemisphere air in the monsoon southwesterlies.

  1. Methodology for analysis and simulation of large multidisciplinary problems

    NASA Technical Reports Server (NTRS)

    Russell, William C.; Ikeda, Paul J.; Vos, Robert G.

    1989-01-01

    The Integrated Structural Modeling (ISM) program is being developed for the Air Force Weapons Laboratory and will be available for Air Force work. Its goal is to provide a design, analysis, and simulation tool intended primarily for directed energy weapons (DEW), kinetic energy weapons (KEW), and surveillance applications. The code is designed to run on DEC (VMS and UNIX), IRIS, Alliant, and Cray hosts. Several technical disciplines are included in ISM, namely structures, controls, optics, thermal, and dynamics. Four topics from the broad ISM goal are discussed. The first is project configuration management and includes two major areas: the software and database arrangement and the system model control. The second is interdisciplinary data transfer and refers to exchange of data between various disciplines such as structures and thermal. Third is a discussion of the integration of component models into one system model, i.e., multiple discipline model synthesis. Last is a presentation of work on a distributed processing computing environment.

  2. NASA Subsonic Rotary Wing Project-Multidisciplinary Analysis and Technology Development: Overview

    NASA Technical Reports Server (NTRS)

    Yamauchi, Gloria K.

    2009-01-01

    This slide presentation reviews the objectives of the Multidisciplinary Analysis and Technology Development (MDATD) in the Subsonic Rotary Wing project. The objectives are to integrate technologies and analyses to enable advanced rotorcraft and provide a roadmap to guide Level 1 and 2 research. The MDATD objectives will be met by conducting assessments of advanced technology benefits, developing new or enhanced design tools, and integrating Level 2 discipline technologies to develop and enable system-level analyses and demonstrations.

  3. Spectral analysis of wind and temperature components during lightning in pre-monsoon season over Ranchi

    NASA Astrophysics Data System (ADS)

    Dwivedi, Arun K.; Chandra, Sagarika; Kumar, Manoj; Kumar, Sanjay; Kumar, N. V. P. Kiran

    2015-02-01

    In this paper, the variations in the surface layer flux parameters as well as spectral parameters in the Atmospheric Surface Layer (ASL) during lightning period have been analysed. This analysis has been done in the pre-monsoon season over Ranchi region, which is a lightning prone zone in India. During this stochastic event not only the behaviour of surface layer parameters has been observed, but other derived parameters like Monin-Obukhov stability parameter ( z/L), Turbulent Kinetic Energy, Momentum Flux and Sensible Heat Flux have also been considered. For the first time, spectral characteristics of wind and temperature component have been analysed and a comparison has been made between lightning and clear day for both the components. A distinct spectral characteristic of wind and temperature components is noticed during the lightning period. The outcome of the results will have important implications in future studies on ASL during lightning in India.

  4. Online Time Series Analysis of Land Products over Asia Monsoon Region via Giovanni

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2011-01-01

    Time series analysis is critical to the study of land cover/land use changes and climate. Time series studies at local-to-regional scales require higher spatial resolution, such as 1km or less, data. MODIS land products of 250m to 1km resolution enable such studies. However, such MODIS land data files are distributed in 10ox10o tiles, due to large data volumes. Conducting a time series study requires downloading all tiles that include the study area for the time period of interest, and mosaicking the tiles spatially. This can be an extremely time-consuming process. In support of the Monsoon Asia Integrated Regional Study (MAIRS) program, NASA GES DISC (Goddard Earth Sciences Data and Information Services Center) has processed MODIS land products at 1 km resolution over the Asia monsoon region (0o-60oN, 60o-150oE) with a common data structure and format. The processed data have been integrated into the Giovanni system (Goddard Interactive Online Visualization ANd aNalysis Infrastructure) that enables users to explore, analyze, and download data over an area and time period of interest easily. Currently, the following regional MODIS land products are available in Giovanni: 8-day 1km land surface temperature and active fire, monthly 1km vegetation index, and yearly 0.05o, 500m land cover types. More data will be added in the near future. By combining atmospheric and oceanic data products in the Giovanni system, it is possible to do further analyses of environmental and climate changes associated with the land, ocean, and atmosphere. This presentation demonstrates exploring land products in the Giovanni system with sample case scenarios.

  5. Monsoon driven changes in phytoplankton populations in the eastern Arabian Sea as revealed by microscopy and HPLC pigment analysis

    NASA Astrophysics Data System (ADS)

    Parab, Sushma G.; Prabhu Matondkar, S. G.; Gomes, H. do R.; Goes, J. I.

    2006-12-01

    Like the rest of the Arabian Sea, the west coast of India is subject to semi-annual wind reversals associated with the monsoon cycle that result in two periods of elevated phytoplankton productivity, one during the northeast (NE) monsoon (November-February) and the other during the southwest (SW) monsoon (June-September). Although the seasonality of phytoplankton biomass in these coastal waters is well known, the abundance and composition of phytoplankton populations associated with this distinct and predictable seasonal cycle is poorly known. Here we present for the first time, the results of a study on the community structure of phytoplankton for this region, derived from HPLC pigment analysis and microscopic cell counts. Our sampling strategy allowed for large spatial and temporal coverage over regions representative of the coastal and offshore waters, and over seasons that included the NE and the SW monsoon. Monthly observations at a fixed coastal station in particular, allowed us to follow changes in phytoplankton community structure associated with the development of anoxia. Together these measurements helped establish a pattern of seasonal change of three major groups of phytoplankton: diatoms, dinoflagellates and cyanobacteria that appeared to be tightly coupled with hydrographic and chemical changes associated with the monsoonal cycle. During the SW monsoon when nitrate concentrations were high, diatoms were dominant but prymnesiophytes were present as well. By October, as nitrate fell to below detection levels and anoxic conditions began to develop on the shelf below the shallow pycnocline, both diatom and prymensiophytes declined sharply giving way to dinoflagellates. In the well oxygenated surface waters, where both nitrate and ammonium were below detection limits, pico-cyanobacterial populations became dominant. During the NE monsoon, a mixed diatom-dinoflagellate population was quickly replaced by blooms of Trichodesmium erythraeum and Noctiluca

  6. Multidisciplinary Tool for Systems Analysis of Planetary Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2011-01-01

    Systems analysis of a planetary entry (SAPE), descent, and landing (EDL) is a multidisciplinary activity in nature. SAPE improves the performance of the systems analysis team by automating and streamlining the process, and this improvement can reduce the errors that stem from manual data transfer among discipline experts. SAPE is a multidisciplinary tool for systems analysis of planetary EDL for Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Titan. It performs EDL systems analysis for any planet, operates cross-platform (i.e., Windows, Mac, and Linux operating systems), uses existing software components and open-source software to avoid software licensing issues, performs low-fidelity systems analysis in one hour on a computer that is comparable to an average laptop, and keeps discipline experts in the analysis loop. SAPE uses Python, a platform-independent, open-source language, for integration and for the user interface. Development has relied heavily on the object-oriented programming capabilities that are available in Python. Modules are provided to interface with commercial and government off-the-shelf software components (e.g., thermal protection systems and finite-element analysis). SAPE currently includes the following analysis modules: geometry, trajectory, aerodynamics, aerothermal, thermal protection system, and interface for structural sizing.

  7. IMAT (Integrated Multidisciplinary Analysis Tool) user's guide for the VAX/VMS computer

    NASA Technical Reports Server (NTRS)

    Meissner, Frances T. (Editor)

    1988-01-01

    The Integrated Multidisciplinary Analysis Tool (IMAT) is a computer software system for the VAX/VMS computer developed at the Langley Research Center. IMAT provides researchers and analysts with an efficient capability to analyze satellite control systems influenced by structural dynamics. Using a menu-driven executive system, IMAT leads the user through the program options. IMAT links a relational database manager to commercial and in-house structural and controls analysis codes. This paper describes the IMAT software system and how to use it.

  8. Static, Dynamic and Semantic Dimensions: Towards a Multidisciplinary Approach of Social Networks Analysis

    NASA Astrophysics Data System (ADS)

    Thovex, Christophe; Trichet, Francky

    The objective of our work is to extend static and dynamic models of Social Networks Analysis (SNA), by taking conceptual aspects of enterprises and institutions social graph into account. The originality of our multidisciplinary work is to introduce abstract notions of electro-physic to define new measures in SNA, for new decision-making functions dedicated to Human Resource Management (HRM). This paper introduces a multidimensional system and new measures: (1) a tension measure for social network analysis, (2) an electrodynamic, predictive and semantic system for recommendations on social graphs evolutions and (3) a reactance measure used to evaluate the individual stress at work of the members of a social network.

  9. The concept of global monsoon applied to the last glacial maximum: A multi-model analysis

    NASA Astrophysics Data System (ADS)

    Jiang, Dabang; Tian, Zhiping; Lang, Xianmei; Kageyama, Masa; Ramstein, Gilles

    2015-10-01

    The last glacial maximum (LGM, ca. 21,000 years ago) has been extensively investigated for better understanding of past glacial climates. Global-scale monsoon changes, however, have not yet been determined. In this study, we examine global monsoon area (GMA) and precipitation (GMP) as well as GMP intensity (GMPI) at the LGM using the experiments of 17 climate models chosen from the Paleoclimate Modelling Intercomparison Project (PMIP) according to their ability to reproduce the present global monsoon climate. Compared to the reference period (referring to the present day, ca. 1985, for three atmospheric plus two atm-slab ocean models and the pre-industrial period, ca. 1750, for 12 fully coupled atmosphere-ocean or atmosphere-ocean-vegetation models), the LGM monsoon area increased over land and decreased over the oceans. The boreal land monsoon areas generally shifted southward, while the northern boundary of land monsoon areas retreated southward over southern Africa and South America. Both the LGM GMP and GMPI decreased in most of the models. The GMP decrease mainly resulted from the reduced monsoon precipitation over the oceans, while the GMPI decrease was derived from the weakened intensity of monsoon precipitation over land and the boreal ocean. Quantitatively, the LGM GMP deficit was due to, first, the GMA reduction and, second, the GMPI weakening. In response to the LGM large ice sheets and lower greenhouse gas concentrations in the atmosphere, the global surface and tropospheric temperatures cooled, the boreal summer meridional temperature gradient increased, and the summer land-sea thermal contrast at 40°S - 70°N decreased. These are the underlying dynamic mechanisms for the LGM monsoon changes. Qualitatively, simulations agree with reconstructions in all land monsoon areas except in the western part of northern Australia where disagreements occur and in South America and the southern part of southern Africa where there is uncertainty in reconstructions

  10. A Multidisciplinary Tool for Systems Analysis of Planetary Entry, Descent, and Landing (SAPE)

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2009-01-01

    SAPE is a Python-based multidisciplinary analysis tool for systems analysis of planetary entry, descent, and landing (EDL) for Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Titan. The purpose of SAPE is to provide a variable-fidelity capability for conceptual and preliminary analysis within the same framework. SAPE includes the following analysis modules: geometry, trajectory, aerodynamics, aerothermal, thermal protection system, and structural sizing. SAPE uses the Python language-a platform-independent open-source software for integration and for the user interface. The development has relied heavily on the object-oriented programming capabilities that are available in Python. Modules are provided to interface with commercial and government off-the-shelf software components (e.g., thermal protection systems and finite-element analysis). SAPE runs on Microsoft Windows and Apple Mac OS X and has been partially tested on Linux.

  11. Multidisciplinary High-Fidelity Analysis and Optimization of Aerospace Vehicles. Part 1; Formulation

    NASA Technical Reports Server (NTRS)

    Walsh, J. L.; Townsend, J. C.; Salas, A. O.; Samareh, J. A.; Mukhopadhyay, V.; Barthelemy, J.-F.

    2000-01-01

    An objective of the High Performance Computing and Communication Program at the NASA Langley Research Center is to demonstrate multidisciplinary shape and sizing optimization of a complete aerospace vehicle configuration by using high-fidelity, finite element structural analysis and computational fluid dynamics aerodynamic analysis in a distributed, heterogeneous computing environment that includes high performance parallel computing. A software system has been designed and implemented to integrate a set of existing discipline analysis codes, some of them computationally intensive, into a distributed computational environment for the design of a highspeed civil transport configuration. The paper describes the engineering aspects of formulating the optimization by integrating these analysis codes and associated interface codes into the system. The discipline codes are integrated by using the Java programming language and a Common Object Request Broker Architecture (CORBA) compliant software product. A companion paper presents currently available results.

  12. The Component Packaging Problem: A Vehicle for the Development of Multidisciplinary Design and Analysis Methodologies

    NASA Technical Reports Server (NTRS)

    Fadel, Georges; Bridgewood, Michael; Figliola, Richard; Greenstein, Joel; Kostreva, Michael; Nowaczyk, Ronald; Stevenson, Steve

    1999-01-01

    This report summarizes academic research which has resulted in an increased appreciation for multidisciplinary efforts among our students, colleagues and administrators. It has also generated a number of research ideas that emerged from the interaction between disciplines. Overall, 17 undergraduate students and 16 graduate students benefited directly from the NASA grant: an additional 11 graduate students were impacted and participated without financial support from NASA. The work resulted in 16 theses (with 7 to be completed in the near future), 67 papers or reports mostly published in 8 journals and/or presented at various conferences (a total of 83 papers, presentations and reports published based on NASA inspired or supported work). In addition, the faculty and students presented related work at many meetings, and continuing work has been proposed to NSF, the Army, Industry and other state and federal institutions to continue efforts in the direction of multidisciplinary and recently multi-objective design and analysis. The specific problem addressed is component packing which was solved as a multi-objective problem using iterative genetic algorithms and decomposition. Further testing and refinement of the methodology developed is presently under investigation. Teaming issues research and classes resulted in the publication of a web site, (http://design.eng.clemson.edu/psych4991) which provides pointers and techniques to interested parties. Specific advantages of using iterative genetic algorithms, hurdles faced and resolved, and institutional difficulties associated with multi-discipline teaming are described in some detail.

  13. Drought analysis according to shifting of climate zones to arid climate zone over Asia monsoon region

    NASA Astrophysics Data System (ADS)

    Son, Kyung-Hwan; Bae, Deg-Hyo

    2015-10-01

    When a humid region is affected by arid climate, significant changes in drought characteristics occur due to imbalance of water budget. In this study, change in drought characteristics according to shift of different climates i.e. tropical, warm temperate, cold and polar to Arid Climate (SAC) was analyzed over the Asia monsoon region. Climate zones and the SAC regions were identified by applying the Köppen climate classification on hydro-meteorological data for the period of 1963-2006. The analysis of hydro-meteorological parameters revealed that the annual precipitation and runoff in the SAC regions appeared to decrease about 12.1% and 27.3%, respectively, while annual average temperature increased about 0.5 °C. Standardized runoff index (SRI) was calculated using model-driven runoff data. The trend and change point analyses of SRI were performed to evaluate the changes in drought characteristics (frequency, duration, severity) before and after shifting of the different climates to arid climate. The results revealed strong decreasing trend of SRI and hence intensified drought conditions for the SAC regions. A change point year of drought occurred about 3-5 years earlier than the shifting time of the SAC region. Frequency and duration of droughts in the SAC regions were observed to increase about 9.2 and 1.5 months, respectively, and drought severity index intensified to about -0.15. It can be concluded that analysis of shifting to arid climate zones should be considered together with changes in drought characteristics, because the drought characteristics and changing arid climate zones are closely related to each other.

  14. Structural Model Tuning Capability in an Object-Oriented Multidisciplinary Design, Analysis, and Optimization Tool

    NASA Technical Reports Server (NTRS)

    Lung, Shun-fat; Pak, Chan-gi

    2008-01-01

    Updating the finite element model using measured data is a challenging problem in the area of structural dynamics. The model updating process requires not only satisfactory correlations between analytical and experimental results, but also the retention of dynamic properties of structures. Accurate rigid body dynamics are important for flight control system design and aeroelastic trim analysis. Minimizing the difference between analytical and experimental results is a type of optimization problem. In this research, a multidisciplinary design, analysis, and optimization [MDAO] tool is introduced to optimize the objective function and constraints such that the mass properties, the natural frequencies, and the mode shapes are matched to the target data as well as the mass matrix being orthogonalized.

  15. Structural Model Tuning Capability in an Object-Oriented Multidisciplinary Design, Analysis, and Optimization Tool

    NASA Technical Reports Server (NTRS)

    Lung, Shun-fat; Pak, Chan-gi

    2008-01-01

    Updating the finite element model using measured data is a challenging problem in the area of structural dynamics. The model updating process requires not only satisfactory correlations between analytical and experimental results, but also the retention of dynamic properties of structures. Accurate rigid body dynamics are important for flight control system design and aeroelastic trim analysis. Minimizing the difference between analytical and experimental results is a type of optimization problem. In this research, a multidisciplinary design, analysis, and optimization (MDAO) tool is introduced to optimize the objective function and constraints such that the mass properties, the natural frequencies, and the mode shapes are matched to the target data as well as the mass matrix being orthogonalized.

  16. OpenMDAO: Framework for Flexible Multidisciplinary Design, Analysis and Optimization Methods

    NASA Technical Reports Server (NTRS)

    Heath, Christopher M.; Gray, Justin S.

    2012-01-01

    The OpenMDAO project is underway at NASA to develop a framework which simplifies the implementation of state-of-the-art tools and methods for multidisciplinary design, analysis and optimization. Foremost, OpenMDAO has been designed to handle variable problem formulations, encourage reconfigurability, and promote model reuse. This work demonstrates the concept of iteration hierarchies in OpenMDAO to achieve a flexible environment for supporting advanced optimization methods which include adaptive sampling and surrogate modeling techniques. In this effort, two efficient global optimization methods were applied to solve a constrained, single-objective and constrained, multiobjective version of a joint aircraft/engine sizing problem. The aircraft model, NASA's nextgeneration advanced single-aisle civil transport, is being studied as part of the Subsonic Fixed Wing project to help meet simultaneous program goals for reduced fuel burn, emissions, and noise. This analysis serves as a realistic test problem to demonstrate the flexibility and reconfigurability offered by OpenMDAO.

  17. Analysis of the seasonal ozone budget and the impact of the summer monsoon on the northeastern Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhu, Bin; Hou, Xuewei; Kang, Hanqing

    2016-02-01

    Seasonal variations in ozone (O3) and the impact of the East Asian summer monsoon at Mount Waliguan (WLG) in the northeastern Qinghai-Tibetan Plateau (TP) and in the surrounding regions were analyzed for 1997-2007 using a global chemical transport model coupled with O3 tagging simulations. The model-simulated O3 and its precursors agreed well with observed values. An O3 budget analysis combined with O3 tagging results implied that photochemistry over the TP and long-range transport of O3 from East Asia, Europe, and Africa were responsible for the surface O3 summer maximum at WLG. In June, the contribution of O3 from the TP was 11.8 ppbv, and the total contribution of O3 transport from eastern China, Japan, Korean Peninsula, Europe, and Africa was 22.7 ppbv. At 400 mb, the O3 exports from the stratosphere, Europe, Africa, and the Americas seemed to be the main sources of O3 at WLG. The contributions to surface O3 from deep convection process and lightning-induced photochemistry at WLG were both low in summer and are unlikely to be the key processes or contributors for the O3 peak. At several mountain sites in southeast East Asia, the increasing summer monsoon index was related to a decreasing trend for O3 from spring onward at Mount Tai and Mount Huang. At Mount Hua and WLG, regional O3 accumulated over the monsoon's northernmost marginal zone under the influence of the East Asian summer monsoon and TP thermal circulation; this is most likely a key reason for the O3 summer maxima.

  18. Tracking millennial-scale climate change by analysis of the modern summer precipitation in the marginal regions of the Asian monsoon

    NASA Astrophysics Data System (ADS)

    Li, Yu; Wang, Nai'ang; Chen, Hongbao; Li, Zhuolun; Zhou, Xuehua; Zhang, Chengqi

    2012-09-01

    The Asian summer monsoon and the westerly winds interact in the mid-latitude regions of East Asia, so that climate change there is influenced by the combined effect of the two climate systems. The Holocene millennial-scale Asian summer monsoon change shows the out-of-phase relationship with the moisture evolution in arid Central Asia. Although much research has been devoted to the long-term climate change, little work has been done on the mechanism. Summer precipitation, in the marginal regions of the Asian monsoon, is strongly affected by the monsoon and the westerly winds. The purpose of this paper is to examine the mechanism of the millennial-scale out-of-phase relationship by modern summer precipitation analysis in the northwest margin of the Asian monsoon (95-110°E, 35-45°N). First, the method of Empirical Orthogonal Function (EOF) analysis was carried out to the 1960-2008 summer rainfall data from 64 stations in that region; then the water vapor transportation and geopotential height field data were studied, in order to explain and understand the factors that influence the summer precipitation; lastly, the East Asian Summer Monsoon Index (EASMI), South Asian Summer Monsoon Index (SASMI), Summer Westerly Winds Index (SWI) were compared with the EOF time series. The results indicate the complicated interannual-scale interaction between the Asian summer monsoon and the westerly winds, which can result in the modern out-of-phase relationship in the study area. This study demonstrates that the interaction between the two climate systems can be considered as a factor for the millennial-scale out-of-phase relationship.

  19. Using the framework method for the analysis of qualitative data in multi-disciplinary health research

    PubMed Central

    2013-01-01

    Background The Framework Method is becoming an increasingly popular approach to the management and analysis of qualitative data in health research. However, there is confusion about its potential application and limitations. Discussion The article discusses when it is appropriate to adopt the Framework Method and explains the procedure for using it in multi-disciplinary health research teams, or those that involve clinicians, patients and lay people. The stages of the method are illustrated using examples from a published study. Summary Used effectively, with the leadership of an experienced qualitative researcher, the Framework Method is a systematic and flexible approach to analysing qualitative data and is appropriate for use in research teams even where not all members have previous experience of conducting qualitative research. PMID:24047204

  20. Multidisciplinary capability for analysis of the dynamics and control of flexible space structures

    NASA Technical Reports Server (NTRS)

    Cooper, P. A.; Lake, M. S.; Young, J. W.; Sutter, T. R.

    1986-01-01

    The paper describes a computerized data distribution capability, IMAT, in place at the NASA Langley Research Center for the multidisciplinary analysis of the dynamics and control of large flexible space structures. The paper includes results obtained in using IMAT to investigate the influence of the structural response of the space station framework on the control of a 300kw class, solar-dynamic-powered, dual-keel space station during an orbital reboost maneuver. The method of control, using an unfiltered proportional-plus-differential control law, led to a stable control system even with local flexible response measured at the control sensor location included as a part of the control error signal. The flexible response at the outboard solar dynamic system sun-line axis was close to the maximum rotation allowed for efficient operation; thus, active local control of each solar dynamic system may be necessary to limit sun-line axis rotations effectively during a reboost maneuver.

  1. Development of Response Surface Models for Rapid Analysis & Multidisciplinary Optimization of Launch Vehicle Design Concepts

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1999-01-01

    Multdisciplinary design optimization (MDO) is an important step in the design and evaluation of launch vehicles, since it has a significant impact on performance and lifecycle cost. The objective in MDO is to search the design space to determine the values of design parameters that optimize the performance characteristics subject to system constraints. Vehicle Analysis Branch (VAB) at NASA Langley Research Center has computerized analysis tools in many of the disciplines required for the design and analysis of launch vehicles. Vehicle performance characteristics can be determined by the use of these computerized analysis tools. The next step is to optimize the system performance characteristics subject to multidisciplinary constraints. However, most of the complex sizing and performance evaluation codes used for launch vehicle design are stand-alone tools, operated by disciplinary experts. They are, in general, difficult to integrate and use directly for MDO. An alternative has been to utilize response surface methodology (RSM) to obtain polynomial models that approximate the functional relationships between performance characteristics and design variables. These approximation models, called response surface models, are then used to integrate the disciplines using mathematical programming methods for efficient system level design analysis, MDO and fast sensitivity simulations. A second-order response surface model of the form given has been commonly used in RSM since in many cases it can provide an adequate approximation especially if the region of interest is sufficiently limited.

  2. Detailed Analysis of Indian Summer Monsoon Rainfall Processes with Modern/High-Quality Satellite Observations

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Kuo, Kwo-Sen; Mehta, Amita V.; Yang, Song

    2007-01-01

    We examine, in detail, Indian Summer Monsoon rainfall processes using modernhigh quality satellite precipitation measurements. The focus here is on measurements derived from three NASA cloud and precipitation satellite missionslinstruments (TRMM/PR&TMI, AQUNAMSRE, and CLOUDSATICPR), and a fourth TRMM Project-generated multi-satellite precipitation measurement dataset (viz., TRMM standard algorithm 3b42) -- all from a period beginning in 1998 up to the present. It is emphasized that the 3b42 algorithm blends passive microwave (PMW) radiometer-based precipitation estimates from LEO satellites with infi-ared (IR) precipitation estimates from a world network of CEO satellites (representing -15% of the complete space-time coverage) All of these observations are first cross-calibrated to precipitation estimates taken from standard TRMM combined PR-TMI algorithm 2b31, and second adjusted at the large scale based on monthly-averaged rain-gage measurements. The blended approach takes advantage of direct estimates of precipitation from the PMW radiometerequipped LEO satellites -- but which suffer fi-om sampling limitations -- in combination with less accurate IR estimates from the optical-infrared imaging cameras on GEO satellites -- but which provide continuous diurnal sampling. The advantages of the current technologies are evident in the continuity and coverage properties inherent to the resultant precipitation datasets that have been an outgrowth of these stable measuring and retrieval technologies. There is a wealth of information contained in the current satellite measurements of precipitation regarding the salient precipitation properties of the Indian Summer Monsoon. Using different datasets obtained from the measuring systems noted above, we have analyzed the observations cast in the form of: (1) spatially distributed means and variances over the hierarchy of relevant time scales (hourly I diurnally, daily, monthly, seasonally I intra-seasonally, and inter

  3. STARS: An Integrated, Multidisciplinary, Finite-Element, Structural, Fluids, Aeroelastic, and Aeroservoelastic Analysis Computer Program

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.

    1997-01-01

    A multidisciplinary, finite element-based, highly graphics-oriented, linear and nonlinear analysis capability that includes such disciplines as structures, heat transfer, linear aerodynamics, computational fluid dynamics, and controls engineering has been achieved by integrating several new modules in the original STARS (STructural Analysis RoutineS) computer program. Each individual analysis module is general-purpose in nature and is effectively integrated to yield aeroelastic and aeroservoelastic solutions of complex engineering problems. Examples of advanced NASA Dryden Flight Research Center projects analyzed by the code in recent years include the X-29A, F-18 High Alpha Research Vehicle/Thrust Vectoring Control System, B-52/Pegasus Generic Hypersonics, National AeroSpace Plane (NASP), SR-71/Hypersonic Launch Vehicle, and High Speed Civil Transport (HSCT) projects. Extensive graphics capabilities exist for convenient model development and postprocessing of analysis results. The program is written in modular form in standard FORTRAN language to run on a variety of computers, such as the IBM RISC/6000, SGI, DEC, Cray, and personal computer; associated graphics codes use OpenGL and IBM/graPHIGS language for color depiction. This program is available from COSMIC, the NASA agency for distribution of computer programs.

  4. Object-Oriented Multi-Disciplinary Design, Analysis, and Optimization Tool

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi

    2011-01-01

    An Object-Oriented Optimization (O3) tool was developed that leverages existing tools and practices, and allows the easy integration and adoption of new state-of-the-art software. At the heart of the O3 tool is the Central Executive Module (CEM), which can integrate disparate software packages in a cross platform network environment so as to quickly perform optimization and design tasks in a cohesive, streamlined manner. This object-oriented framework can integrate the analysis codes for multiple disciplines instead of relying on one code to perform the analysis for all disciplines. The CEM was written in FORTRAN and the script commands for each performance index were submitted through the use of the FORTRAN Call System command. In this CEM, the user chooses an optimization methodology, defines objective and constraint functions from performance indices, and provides starting and side constraints for continuous as well as discrete design variables. The structural analysis modules such as computations of the structural weight, stress, deflection, buckling, and flutter and divergence speeds have been developed and incorporated into the O3 tool to build an object-oriented Multidisciplinary Design, Analysis, and Optimization (MDAO) tool.

  5. Past break-monsoon conditions detectable by high resolution intra-annual δ18O analysis of teak rings

    NASA Astrophysics Data System (ADS)

    Managave, S. R.; Sheshshayee, M. S.; Borgaonkar, H. P.; Ramesh, R.

    2010-03-01

    Intra-annual variations in the cellulose oxygen isotopic composition (δ18O) of several annual growth rings of three teak (Tectona grandis L.F.) trees from central India show a clear seasonal cycle with higher values in the early and late growing seasons and lower values in the middle. This cycle is useful to identify growth occurring during different phases of the growing season. Relative humidity (RH) appears to control the intra-annual δ18O variations rather than rainfall, and therefore past break-monsoon conditions associated with lower RH, could be detected by high resolution sub-sampling of annual rings for δ18O analysis.

  6. Computer-automated multi-disciplinary analysis and design optimization of internally cooled turbine blades

    NASA Astrophysics Data System (ADS)

    Martin, Thomas Joseph

    This dissertation presents the theoretical methodology, organizational strategy, conceptual demonstration and validation of a fully automated computer program for the multi-disciplinary analysis, inverse design and optimization of convectively cooled axial gas turbine blades and vanes. Parametric computer models of the three-dimensional cooled turbine blades and vanes were developed, including the automatic generation of discretized computational grids. Several new analysis programs were written and incorporated with existing computational tools to provide computer models of the engine cycle, aero-thermodynamics, heat conduction and thermofluid physics of the internally cooled turbine blades and vanes. A generalized information transfer protocol was developed to provide the automatic mapping of geometric and boundary condition data between the parametric design tool and the numerical analysis programs. A constrained hybrid optimization algorithm controlled the overall operation of the system and guided the multi-disciplinary internal turbine cooling design process towards the objectives and constraints of engine cycle performance, aerodynamic efficiency, cooling effectiveness and turbine blade and vane durability. Several boundary element computer programs were written to solve the steady-state non-linear heat conduction equation inside the internally cooled and thermal barrier-coated turbine blades and vanes. The boundary element method (BEM) did not require grid generation inside the internally cooled turbine blades and vanes, so the parametric model was very robust. Implicit differentiations of the BEM thermal and thereto-elastic analyses were done to compute design sensitivity derivatives faster and more accurately than via explicit finite differencing. A factor of three savings of computer processing time was realized for two-dimensional thermal optimization problems, and a factor of twenty was obtained for three-dimensional thermal optimization problems

  7. Multidisciplinary Care.

    PubMed

    Daly, Megan E; Riess, Jonathan W

    2016-01-01

    Optimal multidisciplinary care of the lung cancer patient at all stages should encompass integration of the key relevant medical specialties, including not only medical, surgical, and radiation oncology, but also pulmonology, interventional and diagnostic radiology, pathology, palliative care, and supportive services such as physical therapy, case management, smoking cessation, and nutrition. Multidisciplinary management starts at staging and tissue diagnosis with pathologic and molecular phenotyping, extends through selection of a treatment modality or modalities, management of treatment and cancer-related symptoms, and to survivorship and end-of-life care. Well-integrated multidisciplinary care may reduce treatment delays, improve cancer-specific outcomes, and enhance quality of life. We address key topics and areas of ongoing investigation in multidisciplinary decision making at each stage of the lung cancer treatment course for early-stage, locally advanced, and metastatic lung cancer patients. PMID:27535399

  8. Getting a Cohesive Answer from a Common Start: Scalable Multidisciplinary Analysis through Transformation of a Systems Model

    NASA Technical Reports Server (NTRS)

    Cole, Bjorn; Chung, Seung

    2012-01-01

    One of the challenges of systems engineering is in working multidisciplinary problems in a cohesive manner. When planning analysis of these problems, system engineers must trade between time and cost for analysis quality and quantity. The quality often correlates with greater run time in multidisciplinary models and the quantity is associated with the number of alternatives that can be analyzed. The trade-off is due to the resource intensive process of creating a cohesive multidisciplinary systems model and analysis. Furthermore, reuse or extension of the models used in one stage of a product life cycle for another is a major challenge. Recent developments have enabled a much less resource-intensive and more rigorous approach than hand-written translation scripts between multi-disciplinary models and their analyses. The key is to work from a core systems model defined in a MOF-based language such as SysML and in leveraging the emerging tool ecosystem, such as Query/View/Transformation (QVT), from the OMG community. SysML was designed to model multidisciplinary systems. The QVT standard was designed to transform SysML models into other models, including those leveraged by engineering analyses. The Europa Habitability Mission (EHM) team has begun to exploit these capabilities. In one case, a Matlab/Simulink model is generated on the fly from a system description for power analysis written in SysML. In a more general case, symbolic analysis (supported by Wolfram Mathematica) is coordinated by data objects transformed from the systems model, enabling extremely flexible and powerful design exploration and analytical investigations of expected system performance.

  9. The Indian Summer Monsoon onset revisited: new approach based on the analysis of historical wind observations

    NASA Astrophysics Data System (ADS)

    Ordoñez, Paulina; Gallego, David; Ribera, Pedro; Peña-Ortiz, Cristina; Garcia-Herrera, Ricardo; Vega, Inmaculada; Gómez, Francisco de Paula

    2016-04-01

    The Indian Summer Monsoon onset is one of the meteorological events most anticipated in the world. Due to its relevance for the population, the India Meteorological Department has dated the onset over the southern tip of the Indian Peninsula (Kerala) since 1901. The traditional method to date the onset was based in the judgment of skilled meteorologist and because of this, the method was considered subjective and not adequate for the study of long-term changes in the onset. A new method for determining the monsoon onset based solely on objective criteria has been in use since 2006. Unfortunately, the new method relies -among other variables- on OLR measurements. This requirement impedes the construction of an objective onset series before the satellite era. An alternative approach to establish the onset by objective methods is the use of the wind field. During the last decade, some works have demonstrated that the changes in the wind direction in some areas of the Indian Ocean can be used to determine the monsoon onset rather precisely. However, this method requires precise wind observations over a large oceanic area which has limited the periods covered for such kind of indices to those of the reanalysis products. In this work we present a new approach to track the Indian monsoon onset based solely on historical wind direction measurements taken onboard ships. Our new series provides an objective record of the onset since the last decade of the 19th century and perhaps more importantly, it can incorporate any new historical wind record not yet known in order to extend the series length. The new series captures quite precisely the rapid precipitation increase associated to the monsoon onset, correlates well with previous approaches and it is robust against anomalous (bogus) onsets. Although no significant trends in the onset date were detected, a tendency to later than average onsets during the 1900-1925 and 1970-1990 periods and earlier than average onsets between

  10. Analysis of a Monsoon Flood Event Effect on Surface and Groundwater Interactions in a Regional Semiarid Watershed

    NASA Astrophysics Data System (ADS)

    Bowman, R. S.; Vivoni, E. R.; Wyckoff, R.; Jakubowski, R.; Richards, K.

    2004-12-01

    Although sporadic and infrequent, flooding events in ephemeral watersheds are a critical component to the water, sediment and biogeochemical cycles in arid and semiarid regions. In the Southwestern United States, intense thunderstorms during the summer monsoon season interact with landscapes characterized by topographic complexity and soils of low infiltration capacity to produce large magnitude floods and flash floods. In this study, we examine the hydrometeorological conditions and hydrologic response of an extreme monsoon flood event in the Río Puerco watershed of north-central New Mexico and its downstream effects in the Río Grande, a major continental-scale river basin. The summer storm in early September 4-11, 2003 generated flash flooding in headwater basins and river flooding extending through the semiarid basin and downstream into the Río Grande for several tens of kilometers. We characterize the hydrometeorological conditions prior to the flood event using precipitation estimates from rain gauge records, NEXRAD radar data, and synoptic weather conditions over the 18,000 km2 Río Puerco basin. Then, we present the spatial and temporal variability in hydrologic response based on a set of nested stream gauges in river channels and irrigation canals as well as a network of instrumented well transects installed along the Río Grande alluvial aquifer. Our analysis illustrates the propagation, dampening, and attenuation of a large monsoonal storm through a semiarid ephemeral tributary into a regional river system from both a surface and groundwater hydrology perspective, including the water exchanges observed between the two systems. By estimating the frequency of the rainfall and flood event in the system relative to the historical record and known shifts in climate regime, we discuss the importance of extreme flood events in semiarid tributary systems and their downstream effects in the surface and groundwater interactions of regional river basins.

  11. Getting a Cohesive Answer from a Common Start: Scalable Multidisciplinary Analysis through Transformation of a System Model

    NASA Technical Reports Server (NTRS)

    Cole, Bjorn; Chung, Seung H.

    2012-01-01

    One of the challenges of systems engineering is in working multidisciplinary problems in a cohesive manner. When planning analysis of these problems, system engineers must tradeoff time and cost for analysis quality and quantity. The quality is associated with the fidelity of the multidisciplinary models and the quantity is associated with the design space that can be analyzed. The tradeoff is due to the resource intensive process of creating a cohesive multidisciplinary system model and analysis. Furthermore, reuse or extension of the models used in one stage of a product life cycle for another is a major challenge. Recent developments have enabled a much less resource-intensive and more rigorous approach than handwritten translation scripts or codes of multidisciplinary models and their analyses. The key is to work from a core system model defined in a MOF-based language such as SysML and in leveraging the emerging tool ecosystem, such as Query-View- Transform (QVT), from the OMG community. SysML was designed to model multidisciplinary systems and analyses. The QVT standard was designed to transform SysML models. The Europa Hability Mission (EHM) team has begun to exploit these capabilities. In one case, a Matlab/Simulink model is generated on the fly from a system description for power analysis written in SysML. In a more general case, a symbolic mathematical framework (supported by Wolfram Mathematica) is coordinated by data objects transformed from the system model, enabling extremely flexible and powerful tradespace exploration and analytical investigations of expected system performance.

  12. A Systematic Approach for Quantitative Analysis of Multidisciplinary Design Optimization Framework

    NASA Astrophysics Data System (ADS)

    Kim, Sangho; Park, Jungkeun; Lee, Jeong-Oog; Lee, Jae-Woo

    An efficient Multidisciplinary Design and Optimization (MDO) framework for an aerospace engineering system should use and integrate distributed resources such as various analysis codes, optimization codes, Computer Aided Design (CAD) tools, Data Base Management Systems (DBMS), etc. in a heterogeneous environment, and need to provide user-friendly graphical user interfaces. In this paper, we propose a systematic approach for determining a reference MDO framework and for evaluating MDO frameworks. The proposed approach incorporates two well-known methods, Analytic Hierarchy Process (AHP) and Quality Function Deployment (QFD), in order to provide a quantitative analysis of the qualitative criteria of MDO frameworks. Identification and hierarchy of the framework requirements and the corresponding solutions for the reference MDO frameworks, the general one and the aircraft oriented one were carefully investigated. The reference frameworks were also quantitatively identified using AHP and QFD. An assessment of three in-house frameworks was then performed. The results produced clear and useful guidelines for improvement of the in-house MDO frameworks and showed the feasibility of the proposed approach for evaluating an MDO framework without a human interference.

  13. Multidisciplinary Modeling Software for Analysis, Design, and Optimization of HRRLS Vehicles

    NASA Technical Reports Server (NTRS)

    Spradley, Lawrence W.; Lohner, Rainald; Hunt, James L.

    2011-01-01

    The concept for Highly Reliable Reusable Launch Systems (HRRLS) under the NASA Hypersonics project is a two-stage-to-orbit, horizontal-take-off / horizontal-landing, (HTHL) architecture with an air-breathing first stage. The first stage vehicle is a slender body with an air-breathing propulsion system that is highly integrated with the airframe. The light weight slender body will deflect significantly during flight. This global deflection affects the flow over the vehicle and into the engine and thus the loads and moments on the vehicle. High-fidelity multi-disciplinary analyses that accounts for these fluid-structures-thermal interactions are required to accurately predict the vehicle loads and resultant response. These predictions of vehicle response to multi physics loads, calculated with fluid-structural-thermal interaction, are required in order to optimize the vehicle design over its full operating range. This contract with ResearchSouth addresses one of the primary objectives of the Vehicle Technology Integration (VTI) discipline: the development of high-fidelity multi-disciplinary analysis and optimization methods and tools for HRRLS vehicles. The primary goal of this effort is the development of an integrated software system that can be used for full-vehicle optimization. This goal was accomplished by: 1) integrating the master code, FEMAP, into the multidiscipline software network to direct the coupling to assure accurate fluid-structure-thermal interaction solutions; 2) loosely-coupling the Euler flow solver FEFLO to the available and proven aeroelasticity and large deformation (FEAP) code; 3) providing a coupled Euler-boundary layer capability for rapid viscous flow simulation; 4) developing and implementing improved Euler/RANS algorithms into the FEFLO CFD code to provide accurate shock capturing, skin friction, and heat-transfer predictions for HRRLS vehicles in hypersonic flow, 5) performing a Reynolds-averaged Navier-Stokes computation on an HRRLS

  14. Observation of cloud sytems during the African monsoon with METEOSAT

    NASA Astrophysics Data System (ADS)

    Sèze, G.; Szantai, A.; Desalmand, F.

    2003-04-01

    In the frame of the AMMA (African Monsoon Multidisciplinary Analyses) project and the related field experiments planned for 2005, satellite data are of prime importance to provide a good description of cloud systems. The simultaneous observations of low clouds associated with the monsoon flow and of cloud sytems associated with deep convection could bring useful information on the relation between these two processes. Using geostationnary satellite data, we have developed an approach allowing to classify clouds in cloud types, to study their evolution and their displacement. It is applied to METEOSAT-7 data during the JET2000 experiment ; it combines the cloud classification obtained from the LMD Dynamic Cluster Method developed by Sèze and Desbois (Sèze and Desbois, 1987; Sèze and Pawlowska, 2001), with the LMD cloud tracking method (Desalmand et al., 1999; Szantai et al., 2002). An analysis of the low cloud cover in the monsoon flow during the 10 day period of the experiment, is presented and the advantage of this combined study (cloud classification plus cloud tracking) is demonstrated. The improvements that the higher image frequency provided by the MSG (METEOSAT Second Generation) satellite will bring are illustrated with results obtained with the same kind of processing on METEOSAT-6 Rapid Scan data available over West Africa on 28 July 1999.

  15. A Multidisciplinary Performance Analysis of a Lifting-Body Single-Stage-to-Orbit Vehicle

    NASA Technical Reports Server (NTRS)

    Tartabini, Paul V.; Lepsch, Roger A.; Korte, J. J.; Wurster, Kathryn E.

    2000-01-01

    Lockheed Martin Skunk Works (LMSW) is currently developing a single-stage-to-orbit reusable launch vehicle called VentureStar(TM) A team at NASA Langley Research Center participated with LMSW in the screening and evaluation of a number of early VentureStar(TM) configurations. The performance analyses that supported these initial studies were conducted to assess the effect of a lifting body shape, linear aerospike engine and metallic thermal protection system (TPS) on the weight and performance of the vehicle. These performance studies were performed in a multidisciplinary fashion that indirectly linked the trajectory optimization with weight estimation and aerothermal analysis tools. This approach was necessary to develop optimized ascent and entry trajectories that met all vehicle design constraints. Significant improvements in ascent performance were achieved when the vehicle flew a lifting trajectory and varied the engine mixture ratio during flight. Also, a considerable reduction in empty weight was possible by adjusting the total oxidizer-to-fuel and liftoff thrust-to-weight ratios. However, the optimal ascent flight profile had to be altered to ensure that the vehicle could be trimmed in pitch using only the flow diverting capability of the aerospike engine. Likewise, the optimal entry trajectory had to be tailored to meet TPS heating rate and transition constraints while satisfying a crossrange requirement.

  16. Development of Multi-Disciplinary Finite Element Method Analysis Courses at California State University, Los Angeles

    NASA Technical Reports Server (NTRS)

    McKinney, John; Wu, Chivey

    1998-01-01

    The NASA Dryden Flight Research Center (DFRC) Partnership Awards Grant to California State University, Los Angeles (CSULA) has two primary goals that help to achieve NASA objectives. The overall objectives of the NASA Partnership Awards are to create opportunities for joint University NASA/Government sponsored research and related activities. One of the goals of the grant is to have university faculty researchers participate and contribute to the development of NASA technology that supports NASA goals for research and development (R&D) in Aeronautics and Astronautics. The other goal is technology transfer in the other direction, where NASA developed technology is made available to the general public and more specifically, targeted to industries that can profit from utilization of government developed technology. This years NASA Dryden Partnership Awards grant to CSULA entitled, "Computer Simulation of Multi-Disciplinary Engineering Systems", has two major tasks that satisfy overall NASA objectives. The first task conducts basic and applied research that contributes to technology development at the Dryden Flight Research Center. The second part of the grant provides for dissemination of NASA developed technology, by using the teaching environment created in the CSULA classroom. The second task and how this is accomplished is the topic of this paper. The NASA STARS (Structural Analysis Routines) computer simulation program is used at the Dryden center to support flight testing of high-performance experimental aircraft and to conduct research and development of new and advanced Aerospace technology.

  17. Multidisciplinary framework for human reliability analysis with an application to errors of commission and dependencies

    SciTech Connect

    Barriere, M.T.; Luckas, W.J.; Wreathall, J.; Cooper, S.E.; Bley, D.C.; Ramey-Smith, A.

    1995-08-01

    Since the early 1970s, human reliability analysis (HRA) has been considered to be an integral part of probabilistic risk assessments (PRAs). Nuclear power plant (NPP) events, from Three Mile Island through the mid-1980s, showed the importance of human performance to NPP risk. Recent events demonstrate that human performance continues to be a dominant source of risk. In light of these observations, the current limitations of existing HRA approaches become apparent when the role of humans is examined explicitly in the context of real NPP events. The development of new or improved HRA methodologies to more realistically represent human performance is recognized by the Nuclear Regulatory Commission (NRC) as a necessary means to increase the utility of PRAS. To accomplish this objective, an Improved HRA Project, sponsored by the NRC`s Office of Nuclear Regulatory Research (RES), was initiated in late February, 1992, at Brookhaven National Laboratory (BNL) to develop an improved method for HRA that more realistically assesses the human contribution to plant risk and can be fully integrated with PRA. This report describes the research efforts including the development of a multidisciplinary HRA framework, the characterization and representation of errors of commission, and an approach for addressing human dependencies. The implications of the research and necessary requirements for further development also are discussed.

  18. Monsoon research

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    Forecasting monsoons is one of four research areas proposed as part of an expanded program of collaborative projects by U.S. and Indian scientists and engineers, according to George A. Keyworth, II, science advisor to President Reagan and director of the Office of Science and Technology Policy (OSTP). The other proposed research areas are health, agriculture and biomass production, and decentralized electrical power sources.During the next 6 months, scientists will ‘scope out research projects’ and detail specific research activities, according to Roger Doyon, head of the Africa and Asia section of the National Science Foundation's (NSF) Directorate for Scientific, Technological, and International Affairs. Most of the actual research will begin with the advent of fiscal 1984.

  19. Engineering Overview of a Multidisciplinary HSCT Design Framework Using Medium-Fidelity Analysis Codes

    NASA Technical Reports Server (NTRS)

    Weston, R. P.; Green, L. L.; Salas, A. O.; Samareh, J. A.; Townsend, J. C.; Walsh, J. L.

    1999-01-01

    An objective of the HPCC Program at NASA Langley has been to promote the use of advanced computing techniques to more rapidly solve the problem of multidisciplinary optimization of a supersonic transport configuration. As a result, a software system has been designed and is being implemented to integrate a set of existing discipline analysis codes, some of them CPU-intensive, into a distributed computational framework for the design of a High Speed Civil Transport (HSCT) configuration. The proposed paper will describe the engineering aspects of integrating these analysis codes and additional interface codes into an automated design system. The objective of the design problem is to optimize the aircraft weight for given mission conditions, range, and payload requirements, subject to aerodynamic, structural, and performance constraints. The design variables include both thicknesses of structural elements and geometric parameters that define the external aircraft shape. An optimization model has been adopted that uses the multidisciplinary analysis results and the derivatives of the solution with respect to the design variables to formulate a linearized model that provides input to the CONMIN optimization code, which outputs new values for the design variables. The analysis process begins by deriving the updated geometries and grids from the baseline geometries and grids using the new values for the design variables. This free-form deformation approach provides internal FEM (finite element method) grids that are consistent with aerodynamic surface grids. The next step involves using the derived FEM and section properties in a weights process to calculate detailed weights and the center of gravity location for specified flight conditions. The weights process computes the as-built weight, weight distribution, and weight sensitivities for given aircraft configurations at various mass cases. Currently, two mass cases are considered: cruise and gross take-off weight (GTOW

  20. Efficient Multidisciplinary Analysis Approach for Conceptual Design of Aircraft with Large Shape Change

    NASA Technical Reports Server (NTRS)

    Chwalowski, Pawel; Samareh, Jamshid A.; Horta, Lucas G.; Piatak, David J.; McGowan, Anna-Maria R.

    2009-01-01

    The conceptual and preliminary design processes for aircraft with large shape changes are generally difficult and time-consuming, and the processes are often customized for a specific shape change concept to streamline the vehicle design effort. Accordingly, several existing reports show excellent results of assessing a particular shape change concept or perturbations of a concept. The goal of the current effort was to develop a multidisciplinary analysis tool and process that would enable an aircraft designer to assess several very different morphing concepts early in the design phase and yet obtain second-order performance results so that design decisions can be made with better confidence. The approach uses an efficient parametric model formulation that allows automatic model generation for systems undergoing radical shape changes as a function of aerodynamic parameters, geometry parameters, and shape change parameters. In contrast to other more self-contained approaches, the approach utilizes off-the-shelf analysis modules to reduce development time and to make it accessible to many users. Because the analysis is loosely coupled, discipline modules like a multibody code can be easily swapped for other modules with similar capabilities. One of the advantages of this loosely coupled system is the ability to use the medium- to high-fidelity tools early in the design stages when the information can significantly influence and improve overall vehicle design. Data transfer among the analysis modules are based on an accurate and automated general purpose data transfer tool. In general, setup time for the integrated system presented in this paper is 2-4 days for simple shape change concepts and 1-2 weeks for more mechanically complicated concepts. Some of the key elements briefly described in the paper include parametric model development, aerodynamic database generation, multibody analysis, and the required software modules as well as examples for a telescoping wing

  1. Phenology Analysis of Forest Vegetation to Environmental Variables during - and Post-Monsoon Seasons in Western Himalayan Region of India

    NASA Astrophysics Data System (ADS)

    Khare, S.; Latifi, H.; Ghosh, K.

    2016-06-01

    To assess the phenological changes in Moist Deciduous Forest (MDF) of western Himalayan region of India, we carried out NDVI time series analysis from 2013 to 2015 using Landsat 8 OLI data. We used the vegetation index differencing method to calculate the change in NDVI (NDVIchange) during pre and post monsoon seasons and these changes were used to assess the phenological behaviour of MDF by taking the effect of a set of environmental variables into account. To understand the effect of environmental variables on change in phenology, we designed a linear regression analysis with sample-based NDVIchange values as the response variable and elevation aspect, and Land Surface Temperature (LST) as explanatory variables. The Landsat-8 derived phenology transition stages were validated by calculating the phenology variation from Nov 2008 to April 2009 using Landsat-7 which has the same spatial resolution as Landsat-8. The Landsat-7 derived NDVI trajectories were plotted in accordance with MODIS derived phenology stages (from Nov 2008 to April 2009) of MDF. Results indicate that the Landsat -8 derived NDVI trajectories describing the phenology variation of MDF during spring, monsoon autumn and winter seasons agreed closely with Landsat-7 and MODIS derived phenology transition from Nov 2008 to April 2009. Furthermore, statistical analysis showed statistically significant correlations (p < 0.05) amongst the environmental variables and the NDVIchange between full greenness and maximum frequency stage of Onset of Greenness (OG) activity.. The major change in NDVI was observed in medium (600 to 650 m) and maximum (650 to 750 m) elevation areas. The change in LST showed also to be highly influential. The results of this study can be used for large scale monitoring of difficult-to-reach mountainous forests, with additional implications in biodiversity assessment. By means of a sufficient amount of available cloud-free imagery, detailed phenological trends across mountainous

  2. Recent experience with multidisciplinary analysis and optimization in advanced aircraft design

    NASA Technical Reports Server (NTRS)

    Dollyhigh, Samuel M.; Sobieszczanski-Sobieski, Jaroslaw

    1990-01-01

    narrowed as more sophisticated methods are developed in the specialist's area of expertise. The results have been a decrease in the awareness of the impact of his decisions on other disciplines. This paper will outline the progress and problems encountered in the analysis, design, optimization sensitivity analysis, mathematical modeling, and configurations control and the means by which they are being solved. The breadth versus depth dilemma in analysis and design and the means for coping with that dilemma will be discussed. Finally, the all-important human aspects and the need for a new 'culture ' for doing business in an integrated, multidisciplinary design environment are discussed.

  3. The City: A Multidisciplinary Unit Exercising the Higher Level Thinking Skills of Analysis, Synthesis, and Evaluation.

    ERIC Educational Resources Information Center

    Burger, Celia R.

    Designed for use with sixth grade students, this multidisciplinary unit combines independent study of urban areas with activities to develop students' higher level thinking skills. Following suggestions to teachers on strategies for introducing the unit, four options for independent study are described. The first is a study of a topic related to…

  4. Integrated multidisciplinary design optimization using discrete sensitivity analysis for geometrically complex aeroelastic configurations

    NASA Astrophysics Data System (ADS)

    Newman, James Charles, III

    1997-10-01

    The first two steps in the development of an integrated multidisciplinary design optimization procedure capable of analyzing the nonlinear fluid flow about geometrically complex aeroelastic configurations have been accomplished in the present work. For the first step, a three-dimensional unstructured grid approach to aerodynamic shape sensitivity analysis and design optimization has been developed. The advantage of unstructured grids, when compared with a structured-grid approach, is their inherent ability to discretize irregularly shaped domains with greater efficiency and less effort. Hence, this approach is ideally suited for geometrically complex configurations of practical interest. In this work the time-dependent, nonlinear Euler equations are solved using an upwind, cell-centered, finite-volume scheme. The discrete, linearized systems which result from this scheme are solved iteratively by a preconditioned conjugate-gradient-like algorithm known as GMRES for the two-dimensional cases and a Gauss-Seidel algorithm for the three-dimensional; at steady-state, similar procedures are used to solve the accompanying linear aerodynamic sensitivity equations in incremental iterative form. As shown, this particular form of the sensitivity equation makes large-scale gradient-based aerodynamic optimization possible by taking advantage of memory efficient methods to construct exact Jacobian matrix-vector products. Various surface parameterization techniques have been employed in the current study to control the shape of the design surface. Once this surface has been deformed, the interior volume of the unstructured grid is adapted by considering the mesh as a system of interconnected tension springs. Grid sensitivities are obtained by differentiating the surface parameterization and the grid adaptation algorithms with ADIFOR, an advanced automatic-differentiation software tool. To demonstrate the ability of this procedure to analyze and design complex configurations of

  5. The monsoon experiment MONEX

    NASA Technical Reports Server (NTRS)

    Das, P. K.

    1979-01-01

    The effects of monsoons in different parts of the world on the Earth's atmosphere were studied by MONEX, India's Monsoon Experiment program. Data were gathered from meteorological satellites, sounding rockets, aircraft, land and shipborne stations.

  6. Feedback of observed interannual vegetation change: a regional climate model analysis for the West African monsoon

    NASA Astrophysics Data System (ADS)

    Klein, Cornelia; Bliefernicht, Jan; Heinzeller, Dominikus; Gessner, Ursula; Klein, Igor; Kunstmann, Harald

    2016-06-01

    West Africa is a hot spot region for land-atmosphere coupling where atmospheric conditions and convective rainfall can strongly depend on surface characteristics. To investigate the effect of natural interannual vegetation changes on the West African monsoon precipitation, we implement satellite-derived dynamical datasets for vegetation fraction (VF), albedo and leaf area index into the Weather Research and Forecasting model. Two sets of 4-member ensembles with dynamic and static land surface description are used to extract vegetation-related changes in the interannual difference between August-September 2009 and 2010. The observed vegetation patterns retain a significant long-term memory of preceding rainfall patterns of at least 2 months. The interannual vegetation changes exhibit the strongest effect on latent heat fluxes and associated surface temperatures. We find a decrease (increase) of rainy hours over regions with higher (lower) VF during the day and the opposite during the night. The probability that maximum precipitation is shifted to nighttime (daytime) over higher (lower) VF is 12 % higher than by chance. We attribute this behaviour to horizontal circulations driven by differential heating. Over more vegetated regions, the divergence of moist air together with lower sensible heat fluxes hinders the initiation of deep convection during the day. During the night, mature convective systems cause an increase in the number of rainy hours over these regions. We identify this feedback in both water- and energy-limited regions of West Africa. The inclusion of observed dynamical surface information improved the spatial distribution of modelled rainfall in the Sahel with respect to observations, illustrating the potential of satellite data as a boundary constraint for atmospheric models.

  7. The importance of a multidisciplinary approach for solid earth geophysics in Seafloor Observatories data analysis

    NASA Astrophysics Data System (ADS)

    Embriaco, Davide; De Caro, Mariagrazia; De Santis, Angelo; Etiope, Giuseppe; Frugoni, Francesco; Giovanetti, Gabriele; Lo Bue, Nadia; Marinaro, Giuditta; Monna, Stephen; Montuori, Caterina; Sgroi, Tiziana; Beranzoli, Laura; Favali, Paolo

    2016-04-01

    Continuous time-series in deep ocean waters are the basis for an original approach in ocean exploration. The observation of phenomena variability over time is key to understanding many Earth processes, among which: hydrothermal systems, active tectonics, and ecosystem life cycles. Geo-hazards at sea have often been studied with a single-parameter approach on a short time-scale, but it is now becoming clear that to understand these phenomena and, specifically, to identify precursors to very energetic events, such as mega-earthquakes, tsunamis and volcanic eruptions, continuous long-term multiparameter monitoring is strongly needed. In fact, given a signal of interest, by using several sensors recording simultaneously it is possible to identify the contribution of different sources to this signal, and to be less prone to false associations. In Europe, large cabled systems with marine sensors are being developed for near real-time and real-time long-term monitoring of ocean processes within the EMSO (European Multidisciplinary Seafloor and water column Observatory www.emso-eu.org) Research Infrastructure. Obtaining good quality long-term multiparameter data from sensors on-board seafloor observatories, which are the base of a multidisciplinary approach, is a challenging task. We describe the main steps we have taken to retrieve good quality multiparametric data acquired by GEOSTAR class seafloor observatories, both standalone and cabled, deployed at various sites offshore European coast during the last decade. Starting from this data we show the application of a multidisciplinary approach with some examples coming from experiments in EMSO sites.

  8. Methodology for Sensitivity Analysis, Approximate Analysis, and Design Optimization in CFD for Multidisciplinary Applications

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III; Hou, Gene W.

    1996-01-01

    An incremental iterative formulation together with the well-known spatially split approximate-factorization algorithm, is presented for solving the large, sparse systems of linear equations that are associated with aerodynamic sensitivity analysis. This formulation is also known as the 'delta' or 'correction' form. For the smaller two dimensional problems, a direct method can be applied to solve these linear equations in either the standard or the incremental form, in which case the two are equivalent. However, iterative methods are needed for larger two-dimensional and three dimensional applications because direct methods require more computer memory than is currently available. Iterative methods for solving these equations in the standard form are generally unsatisfactory due to an ill-conditioned coefficient matrix; this problem is overcome when these equations are cast in the incremental form. The methodology is successfully implemented and tested using an upwind cell-centered finite-volume formulation applied in two dimensions to the thin-layer Navier-Stokes equations for external flow over an airfoil. In three dimensions this methodology is demonstrated with a marching-solution algorithm for the Euler equations to calculate supersonic flow over the High-Speed Civil Transport configuration (HSCT 24E). The sensitivity derivatives obtained with the incremental iterative method from a marching Euler code are used in a design-improvement study of the HSCT configuration that involves thickness. camber, and planform design variables.

  9. Methodology for sensitivity analysis, approximate analysis, and design optimization in CFD for multidisciplinary applications

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III; Hou, Gene W.

    1993-01-01

    In this study involving advanced fluid flow codes, an incremental iterative formulation (also known as the delta or correction form) together with the well-known spatially-split approximate factorization algorithm, is presented for solving the very large sparse systems of linear equations which are associated with aerodynamic sensitivity analysis. For smaller 2D problems, a direct method can be applied to solve these linear equations in either the standard or the incremental form, in which case the two are equivalent. Iterative methods are needed for larger 2D and future 3D applications, however, because direct methods require much more computer memory than is currently available. Iterative methods for solving these equations in the standard form are generally unsatisfactory due to an ill-conditioning of the coefficient matrix; this problem can be overcome when these equations are cast in the incremental form. These and other benefits are discussed. The methodology is successfully implemented and tested in 2D using an upwind, cell-centered, finite volume formulation applied to the thin-layer Navier-Stokes equations. Results are presented for two sample airfoil problems: (1) subsonic low Reynolds number laminar flow; and (2) transonic high Reynolds number turbulent flow.

  10. Spatial and Temporal Analysis of Hydrometeorological Conditions in the Valles Caldera, New Mexico during the North American Monsoon

    NASA Astrophysics Data System (ADS)

    Mendez-Barroso, L. A.; Rinehart, A. J.; Aragon, C. A.; Bisht, G.; Cardenas, M. B.; Engle, E.; Forman, B.; Frisbee, M.; Gutierrez-Jurado, H. A.; Hong, S.; Tai, K.; Wyckoff, R. L.; Vivoni, E. R.

    2005-12-01

    The hydrometeorological conditions of mountain environments in semiarid regions are poorly understood, particularly during the North American Monsoon. Although it is well known that the climate and hydrology of mountain ranges are dynamically distinct of surrounding lowlands, little quantitative observational data has been collected to assess the spatial and temporal variations in hydrometeorological conditions in these settings. Factors such as topographic position, vegetation type and soil properties have a strong influence on the hydrological response to atmospheric conditions. Similarly, landscape features such as relief and aspect can play a major role on the local meteorological conditions in mountainous environments. In order to better understand the relation between mountain hydrometeorology and topographic and ecological factors, a spatially extensive field campaign was carried out in the Valles Caldera National Preserve in the Jemez Mountains of northern New Mexico, USA. This region forms a portion of the headwaters of the Rio Grande and displays distinct hydrologic responses during the summer and winter seasons. A twelve day sampling period during the summer monsoon season (July to August 2005) was selected to observe the land-atmosphere interactions resulting from convective storms in the region. The hydrometeorological field campaign included seventy-one sampling sites where daily rainfall, meteorological variables (e.g. air temperature, relative humidity, wind speed and barometric pressure), volumetric soil moisture, and soil temperature were measured. Each site consisted of a one square meter plot that was characterized in term of terrain position, vegetation and surface properties. Likewise, daily gravimetric soil samples were taken in order to compare with the volumetric measurements inferred using an impedance probe. In this study, we present a preliminary analysis of the spatial and temporal distribution of soil and atmospheric variables during

  11. A Simple Tool for the Design and Analysis of Multiple-Reflector Antennas in a Multi-Disciplinary Environment

    NASA Technical Reports Server (NTRS)

    Katz, Daniel S.; Cwik, Tom; Fu, Chuigang; Imbriale, William A.; Jamnejad, Vahraz; Springer, Paul L.; Borgioli, Andrea

    2000-01-01

    The process of designing and analyzing a multiple-reflector system has traditionally been time-intensive, requiring large amounts of both computational and human time. At many frequencies, a discrete approximation of the radiation integral may be used to model the system. The code which implements this physical optics (PO) algorithm was developed at the Jet Propulsion Laboratory. It analyzes systems of antennas in pairs, and for each pair, the analysis can be computationally time-consuming. Additionally, the antennas must be described using a local coordinate system for each antenna, which makes it difficult to integrate the design into a multi-disciplinary framework in which there is traditionally one global coordinate system, even before considering deforming the antenna as prescribed by external structural and/or thermal factors. Finally, setting up the code to correctly analyze all the antenna pairs in the system can take a fair amount of time, and introduces possible human error. The use of parallel computing to reduce the computational time required for the analysis of a given pair of antennas has been previously discussed. This paper focuses on the other problems mentioned above. It will present a methodology and examples of use of an automated tool that performs the analysis of a complete multiple-reflector system in an integrated multi-disciplinary environment (including CAD modeling, and structural and thermal analysis) at the click of a button. This tool, named MOD Tool (Millimeter-wave Optics Design Tool), has been designed and implemented as a distributed tool, with a client that runs almost identically on Unix, Mac, and Windows platforms, and a server that runs primarily on a Unix workstation and can interact with parallel supercomputers with simple instruction from the user interacting with the client.

  12. A multi-disciplinary plan for easier access, management, and analysis of science data

    NASA Astrophysics Data System (ADS)

    Hornstein, Rhoda Shaller; Miller, Raymond E.; Hei, Donald J.; Kaufmann, David E.; LoPinto, Frank J.; Todd, Jacqueline E.

    NASA's COST LESS Team is pursuing strategies to reduce the cost and complexity of planning and executing space missions. The team's technical goal is to reverse the trend of constructing unique solutions for similar problems. To this end, the team is exploring ways to represent mission functionality in terms of building blocks and is discovering approaches that could accommodate the same building blocks for seemingly disparate activities, such as organizing processed telemetry data, controlling onboard experiments, searching science archives, reducing and presenting information to science users, and supporting educational outreach. Reusable object technology (UOT), a research undertaking by the authors, is showing promise in recognizing similarities in functions which were previously viewed as unique because they appeared in different programs or mission phases. Since UOT is aimed at being implementation independent (i.e. the function performed could be accomplished manually, by an automated process, by a specialized instrument, etc.), no premature judgment for automation or autonomy need be made. In this paper, the authors attempt to strike a balance between theory and reality as they describe UOT, including its beginnings, its underpinning, its utility, and its potential for achieving substantive reductions in cost and complexity for the Agency's space programs. The authors discuss their collaboration with the Center for EUV Astrophysics, University of California, Berkeley to reduce the cost and complexity of science investigations. Their multi-disciplinary plan incorporates both UOT and a complementary technology introduced in this paper, called interactive archives.

  13. Risk-based analysis and decision making in multi-disciplinary environments

    NASA Technical Reports Server (NTRS)

    Feather, Martin S.; Cornford, Steven L.; Moran, Kelly

    2003-01-01

    A risk-based decision-making process conceived of and developed at JPL and NASA, has been used to help plan and guide novel technology applications for use on spacecraft. These applications exemplify key challenges inherent in multi-disciplinary design of novel technologies deployed in mission-critical settings. 1) Cross-disciplinary concerns are numerous (e.g., spacecraft involve navigation, propulsion, telecommunications). These concems are cross-coupled and interact in multiple ways (e.g., electromagnetic interference, heat transfer). 2) Time and budget pressures constrain development, operational resources constrain the resulting system (e.g., mass, volume, power). 3) Spacecraft are critical systems that must operate correctly the first time in only partially understood environments, with no chance for repair. 4) Past experience provides only a partial guide: New mission concepts are enhanced and enabled by new technologies, for which past experience is lacking. The decision-making process rests on quantitative assessments of the relationships between three classes of information - objectives (the things the system is to accomplish and constraints on its operation and development), risks (whose occurrence detracts from objectives), and mitigations (options for reducing the likelihood and or severity of risks). The process successfully guides experts to pool their knowledge, using custom-built software to support information gathering and decision-making.

  14. Absolute barotropic instability and monsoon depressions

    NASA Technical Reports Server (NTRS)

    Lindzen, R. S.; Farrell, B.; Rosenthal, A. J.

    1983-01-01

    Monsoon depressions over the Bay of Bengal develop almost entirely in July and August. After studies conducted by Lindzen et al. (1980) and Stevens and Lindzen (1978), only barotropic instability remains as a mechanism for the development of the wave disturbances associated with monsoon depressions. The present investigation has the objective to show that barotropic instability is able to explain the wave aspects of monsoon depressions, but that normal mode analysis is inadequate. It is found that the local barotropically unstable response to regional perturbations in the Bay of Bengal during July and August will be dominated by the lower troposphere. The analysis clearly identifies the features of the mean flow which lead to monsoon depressions in July. The features include the development of an easterly jet as opposed to semijet structure in the mean flow, and the development of a modest easterly flow at the jet center as opposed to westerly flow.

  15. Unstructured Finite Volume Computational Thermo-Fluid Dynamic Method for Multi-Disciplinary Analysis and Design Optimization

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; Schallhorn, Paul

    1998-01-01

    This paper describes a finite volume computational thermo-fluid dynamics method to solve for Navier-Stokes equations in conjunction with energy equation and thermodynamic equation of state in an unstructured coordinate system. The system of equations have been solved by a simultaneous Newton-Raphson method and compared with several benchmark solutions. Excellent agreements have been obtained in each case and the method has been found to be significantly faster than conventional Computational Fluid Dynamic(CFD) methods and therefore has the potential for implementation in Multi-Disciplinary analysis and design optimization in fluid and thermal systems. The paper also describes an algorithm of design optimization based on Newton-Raphson method which has been recently tested in a turbomachinery application.

  16. Complex network analysis of high rainfall events during the northeast monsoon over south peninsular India and Sri Lanka

    NASA Astrophysics Data System (ADS)

    Martin, P.; Malik, N.; Marwan, N.; Kurths, J.

    2012-04-01

    The Indian Summer monsoon (ISM) accounts for a large part of the annual rainfall budget across most of the Indian peninsula; however, the coastal regions along the southeast Indian peninsula, as well as Sri Lanka, receive 50% or more of their annual rainfall budget during the northeast monsoon (NEM), or winter monsoon, during the months from October through December. In this study, we investigate the behavior of the NEM over the last 60 years using complex network theory. The network is constructed according to a method previously developed for the ISM, using event synchronization of extreme rainfall events as a correlation measure to create directed and undirected links between geographical locations, which represent potential pathways of moisture transport. Network measures, such as degree centrality and closeness centrality, are then used to illuminate the dynamics of the NEM rainfall over the relevant regions, and to examine the spatial distribution and temporal evolution of the rainfall. Understanding the circulation of the monsoon cycle as a whole, i.e. the NEM together with the ISM, is vital for the agricultural industry and thus the population of the affected areas.

  17. Isentropic analysis of the Indian Summer Monsoon circulation and its implications for the active and break periods

    NASA Astrophysics Data System (ADS)

    Pauluis, O. M.; Sandeep, S.; Ravindran, A. M.

    2014-12-01

    The atmospheric flow during the Indian Summer Monsoon here is analyzed in isentropic coordinates in two different ways. First, the lateral mass transport fo air is separated in terms of both the potential temperature and equivalent potential temperature. This approach, originally developed to analyze the global meridional circulation, makes it possible to identify the thermodynamic properties of the inflow and outflow. It is shown here how the properties of various air masses, such as the inflow of warm moist air in the boundary layer, upper tropospheric outflow, and midlatitudes dry air intrusion, can be systematically identified. Second, we analyze the vertical overturning in terms of terms of the equivalent potential temperature of the ascending and subsiding air parcels over the indian subcontinent, which allows us to further infer the thermodynamic transformation occurring during the monsoon. This technique is first used to look at the evolution of the flow through the seasonal cycle. We then further analyze the circulation patterns associated with monsoon breaks and active periods. In doing so, we identify midtropospheric in usions of dry air from the midlatitudes as a key precursor of monsoon breaks. The meteorological conditions associated for such intrusion to reach the subcontinent are then discussed.

  18. Effectiveness of multidisciplinary team case management: difference-in-differences analysis

    PubMed Central

    Kristensen, Søren Rud; Checkland, Kath; Bower, Peter

    2016-01-01

    Objectives To evaluate a multidisciplinary team (MDT) case management intervention, at the individual (direct effects of intervention) and practice levels (potential spillover effects). Design Difference-in-differences design with multiple intervention start dates, analysing hospital admissions data. In secondary analyses, we stratified individual-level results by risk score. Setting Single clinical commissioning group (CCG) in the UK's National Health Service (NHS). Participants At the individual level, we matched 2049 intervention patients using propensity scoring one-to-one with control patients. At the practice level, 30 practices were compared using a natural experiment through staged implementation. Intervention Practice Integrated Care Teams (PICTs), using MDT case management of high-risk patients together with a summary record of care versus usual care. Direct and indirect outcome measures Primary measures of intervention effects were accident and emergency (A&E) visits; inpatient non-elective stays, 30-day re-admissions; inpatient elective stays; outpatient visits; and admissions for ambulatory care sensitive conditions. Secondary measures included inpatient length of stay; total cost of secondary care services; and patient satisfaction (at the practice level only). Results At the individual level, we found slight, clinically trivial increases in inpatient non-elective admissions (+0.01 admissions per patient per month; 95% CI 0.00 to 0.01. Effect size (ES): 0.02) and 30-day re-admissions (+0.00; 0.00 to 0.01. ES: 0.03). We found no indication that highest risk patients benefitted more from the intervention. At the practice level, we found a small decrease in inpatient non-elective admissions (−0.63 admissions per 1000 patients per month; −1.17 to −0.09. ES: −0.24). However, this result did not withstand a robustness check; the estimate may have absorbed some differences in underlying practice trends. Conclusions The intervention does not meet its

  19. A program to form a multidisciplinary data base and analysis for dynamic systems

    NASA Technical Reports Server (NTRS)

    Taylor, L. W.; Suit, W. T.; Mayo, M. H.

    1984-01-01

    Diverse sets of experimental data and analysis programs have been assembled for the purpose of facilitating research in systems identification, parameter estimation and state estimation techniques. The data base analysis programs are organized to make it easy to compare alternative approaches. Additional data and alternative forms of analysis will be included as they become available.

  20. Trends in global monsoon area and precipitation over the past 30 years

    NASA Astrophysics Data System (ADS)

    Hsu, Pang-chi; Li, Tim; Wang, Bin

    2011-04-01

    The analysis of the GPCP and CMAP datasets during the past 30 years (1979-2008) indicates that there are consistent increasing trends in both the global monsoon area (GMA) and the global monsoon total precipitation (GMP). This positive monsoon rainfall trend differs from previous studies that assumed a fixed global monsoon domain. Due to the increasing trends in both the GMA and GMP, a global monsoon intensity (GMI) index, which measures the global monsoon precipitation amount per unit area, is introduced. The GMI measures the strength of the global monsoon. Our calculations with both the GPCP and CMAP datasets show a consistent downward trend in the GMI over the past 30 years. This decreasing trend is primarily attributed to a greater percentage increase in the GMA than in the GMP. A further diagnosis reveals that the decrease of the GMI is primarily attributed to the land monsoon in the GPCP, but to the oceanic monsoon in the CMAP.

  1. Sensitivity analysis and multidisciplinary optimization for aircraft design - Recent advances and results

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw

    1988-01-01

    Optimization by decomposition, complex system sensitivity analysis, and a rapid growth of disciplinary sensitivity analysis are some of the recent developments that hold promise of a quantum jump in the support engineers receive from computers in the quantitative aspects of design. Review of the salient points of these techniques is given and illustrated by examples from aircraft design as a process that combines the best of human intellect and computer power to manipulate data.

  2. Sensitivity analysis and multidisciplinary optimization for aircraft design: Recent advances and results

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw

    1988-01-01

    Optimization by decomposition, complex system sensitivity analysis, and a rapid growth of disciplinary sensitivity analysis are some of the recent developments that hold promise of a quantum jump in the support engineers receive from computers in the quantitative aspects of design. Review of the salient points of these techniques is given and illustrated by examples from aircraft design as a process that combines the best of human intellect and computer power to manipulate data.

  3. Pre-monsoon rain and its relationship with monsoon onset over the Indochina Peninsula

    NASA Astrophysics Data System (ADS)

    Kiguchi, Masashi; Matsumoto, Jun; kanae, Shinjiro; Oki, Taikan

    2016-05-01

    We analyzed rainfall during the pre-monsoon season from 1979 to 2002 over the Indochina Peninsula. Our multi-year analysis confirmed that the passage of the upper trough and moisture convergence in the lower troposphere produce intermittent rainfall events during the pre-monsoon season. From this result, three questions are raised. First, what are the characteristics of the upper trough? Second, what is the cause of the significant amount of moisture during the pre-monsoon season over inland Indochina? Third, what is the relationship between the intermittent pre-monsoon rainfall and monsoon onset? Our study suggests the following answers to these questions: 1) The upper trough is associated with the cyclone over the Yangtze River basin. This cyclone is baroclinic, so the upper trough over the study area is produced by the mid-latitude regime. 2) A significant amount of moisture over the Indochina Peninsula is produced by both intermittent rainfall associated with the passage of the upper trough and continuous rainfall occurred over a wide region associated with the equatorial southwesterly. 3) We found no clear relationship between rainfall amount during the pre-monsoon period and timing of monsoon onset over the Indochina Peninsula.

  4. A solar variability driven monsoon see-saw: switching relationships of the Holocene East Asian-Australian summer monsoons

    NASA Astrophysics Data System (ADS)

    Eroglu, Deniz; Ozken, Ibrahim; McRobie, Fiona; Stemler, Thomas; Marwan, Norbert; Wyrwoll, Karl-Heinz; Kurths, Juergen

    2016-04-01

    The East Asian-Indonesian-Australian monsoon is the predominant low latitude monsoon system, providing a major global scale heat source. Here we apply newly developed non-linear time series techniques on speleothem climate proxies, from eastern China and northwestern Australia and establish relationships between the two summer monsoon regimes over the last ˜9000 years. We identify significant variations in monsoonal activity, both dry and wet phases, at millennial to multi-centennial time scales and demonstrate for the first time the existence of a see-saw antiphase relationship between the two regional monsoon systems. Our analysis attributes this inter-hemispheric linkage to the solar variability that is effecting both monsoon systems.

  5. Integration of Multifidelity Multidisciplinary Computer Codes for Design and Analysis of Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Geiselhart, Karl A.; Ozoroski, Lori P.; Fenbert, James W.; Shields, Elwood W.; Li, Wu

    2011-01-01

    This paper documents the development of a conceptual level integrated process for design and analysis of efficient and environmentally acceptable supersonic aircraft. To overcome the technical challenges to achieve this goal, a conceptual design capability which provides users with the ability to examine the integrated solution between all disciplines and facilitates the application of multidiscipline design, analysis, and optimization on a scale greater than previously achieved, is needed. The described capability is both an interactive design environment as well as a high powered optimization system with a unique blend of low, mixed and high-fidelity engineering tools combined together in the software integration framework, ModelCenter. The various modules are described and capabilities of the system are demonstrated. The current limitations and proposed future enhancements are also discussed.

  6. Understanding Dry Bias in the Simulations of Indian Monsoon by CFSv2 Through Analysis of Moisture Transport

    NASA Astrophysics Data System (ADS)

    Saheer, Sahana; Pathak, Amey; Mathew, Roxy; Ghosh, Subimal

    2016-04-01

    Simulations of Indian Summer Monsoon (ISM) with its seasonal and subseasonal characteristics is highly crucial for predictions/ projections towards sustainable agricultural planning and water resources management. The Climate forecast system version 2 (CFSv2), the state of the art coupled climate model developed by National Center for Environmental Prediction (NCEP), is evaluated here for the simulations of ISM. Even though CFSv2 is a fully coupled ocean-atmosphere-land model with advanced physics, increased resolution and refined initialization, its ISM simulations/ predictions/ projections, in terms of seasonal mean and variability are not satisfactory. Numerous works have been done for verifying the CFSv2 forecasts in terms of the seasonal mean, its mean and variability, active and break spells, and El Nino Southern Oscillation (ENSO)-monsoon interactions. Underestimation of JJAS precipitation over the Indian land mass is one of the major drawbacks of CFSv2. ISM gets the moisture required to maintain the precipitation from different oceanic and land sources. In this work, we find the fraction of moisture supplied by different sources in the CFSv2 simulations and the findings are compared with observed fractions. We also investigate the possible variations in the moisture contributions from these different sources. We suspect that the deviation in the relative moisture contribution from different sources to various sinks over the monsoon region has resulted in the observed dry bias. We also find that over the Arabian Sea region, which is the key moisture source of ISM, there is a premature built up of specific humidity during the month of May and a decline during the later months of JJAS. This is also one of the reasons for the underestimation of JJAS mean precipitation.

  7. Energetics and monsoon bifurcations

    NASA Astrophysics Data System (ADS)

    Seshadri, Ashwin K.

    2016-04-01

    Monsoons involve increases in dry static energy (DSE), with primary contributions from increased shortwave radiation and condensation of water vapor, compensated by DSE export via horizontal fluxes in monsoonal circulations. We introduce a simple box-model characterizing evolution of the DSE budget to study nonlinear dynamics of steady-state monsoons. Horizontal fluxes of DSE are stabilizing during monsoons, exporting DSE and hence weakening the monsoonal circulation. By contrast latent heat addition (LHA) due to condensation of water vapor destabilizes, by increasing the DSE budget. These two factors, horizontal DSE fluxes and LHA, are most strongly dependent on the contrast in tropospheric mean temperature between land and ocean. For the steady-state DSE in the box-model to be stable, the DSE flux should depend more strongly on the temperature contrast than LHA; stronger circulation then reduces DSE and thereby restores equilibrium. We present conditions for this to occur. The main focus of the paper is describing conditions for bifurcation behavior of simple models. Previous authors presented a minimal model of abrupt monsoon transitions and argued that such behavior can be related to a positive feedback called the `moisture advection feedback'. However, by accounting for the effect of vertical lapse rate of temperature on the DSE flux, we show that bifurcations are not a generic property of such models despite these fluxes being nonlinear in the temperature contrast. We explain the origin of this behavior and describe conditions for a bifurcation to occur. This is illustrated for the case of the July-mean monsoon over India. The default model with mean parameter estimates does not contain a bifurcation, but the model admits bifurcation as parameters are varied.

  8. Program design by a multidisciplinary team. [for structural finite element analysis on STAR-100 computer

    NASA Technical Reports Server (NTRS)

    Voigt, S.

    1975-01-01

    The use of software engineering aids in the design of a structural finite-element analysis computer program for the STAR-100 computer is described. Nested functional diagrams to aid in communication among design team members were used, and a standardized specification format to describe modules designed by various members was adopted. This is a report of current work in which use of the functional diagrams provided continuity and helped resolve some of the problems arising in this long-running part-time project.

  9. Multi-Disciplinary Analysis for Future Launch Systems Using NASA's Advanced Engineering Environment (AEE)

    NASA Technical Reports Server (NTRS)

    Monell, Donald; Mathias, Donovan; Reuther, James; Garn, Michelle

    2003-01-01

    A new engineering environment constructed for the purposes of analyzing and designing Reusable Launch Vehicles (RLVs) is presented. The new environment has been developed to allow NASA to perform independent analysis and design of emerging RLV architectures and technologies. The new Advanced Engineering Environment (AEE) is both collaborative and distributed. It facilitates integration of the analyses by both vehicle performance disciplines and life-cycle disciplines. Current performance disciplines supported include: weights and sizing, aerodynamics, trajectories, propulsion, structural loads, and CAD-based geometries. Current life-cycle disciplines supported include: DDT&E cost, production costs, operations costs, flight rates, safety and reliability, and system economics. Involving six NASA centers (ARC, LaRC, MSFC, KSC, GRC and JSC), AEE has been tailored to serve as a web-accessed agency-wide source for all of NASA's future launch vehicle systems engineering functions. Thus, it is configured to facilitate (a) data management, (b) automated tool/process integration and execution, and (c) data visualization and presentation. The core components of the integrated framework are a customized PTC Windchill product data management server, a set of RLV analysis and design tools integrated using Phoenix Integration's Model Center, and an XML-based data capture and transfer protocol. The AEE system has seen production use during the Initial Architecture and Technology Review for the NASA 2nd Generation RLV program, and it continues to undergo development and enhancements in support of its current main customer, the NASA Next Generation Launch Technology (NGLT) program.

  10. Toward multidisciplinary use of LANDSAT: Interfacing computerized LANDSAT analysis systems with geographic information systems

    NASA Technical Reports Server (NTRS)

    Myers, W. L.

    1981-01-01

    The LANDSAT-geographic information system (GIS) interface must summarize the results of the LANDSAT classification over the same cells that serve as geographic referencing units for the GIS, and output these summaries on a cell-by-cell basis in a form that is readable by the input routines of the GIS. The ZONAL interface for cell-oriented systems consists of two primary programs. The PIXCEL program scans the grid of cells and outputs a channel of pixels. Each pixel contains not the reflectance values but the identifier of the cell in which the center of the pixel is located. This file of pixelized cells along with the results of a pixel-by-pixel classification of the scene produced by the LANDSAT analysis system are input to the CELSUM program which then outputs a cell-by-cell summary formatted according to the requirements of the host GIS. Cross-correlation of the LANDSAT layer with the other layers in the data base is accomplished with the analysis and display facilities of the GIS.

  11. The global monsoon across timescales: coherent variability of regional monsoons

    NASA Astrophysics Data System (ADS)

    Wang, P. X.; Wang, B.; Cheng, H.; Fasullo, J.; Guo, Z. T.; Kiefer, T.; Liu, Z. Y.

    2014-11-01

    Monsoon has earned increasing attention from the climate community since the last century, yet only recently have regional monsoons been recognized as a global system. It remains a debated issue, however, as to what extent and at which timescales the global monsoon can be viewed as a major mode of climate variability. For this purpose, a PAGES (Past Global Changes) working group (WG) was set up to investigate the concept of the global monsoon and its future research directions. The WG's synthesis is presented here. On the basis of observation and proxy data, the WG found that the regional monsoons can vary coherently, although not perfectly, at various timescales, varying between interannual, interdecadal, centennial, millennial, orbital and tectonic timescales, conforming to the global monsoon concept across timescales. Within the global monsoon system, each subsystem has its own features, depending on its geographic and topographic conditions. Discrimination between global and regional components in the monsoon system is a key to revealing the driving factors in monsoon variations; hence, the global monsoon concept helps to enhance our understanding and to improve future projections of the regional monsoons. This paper starts with a historical review of the global monsoon concept in both modern and paleo-climatology, and an assessment of monsoon proxies used in regional and global scales. The main body of the paper is devoted to a summary of observation data at various timescales, providing evidence of the coherent global monsoon system. The paper concludes with a projection of future monsoon shifts in a warming world. The synthesis will be followed by a companion paper addressing driving mechanisms and outstanding issues in global monsoon studies.

  12. Hudson Canyon benthic habitats characterization and mapping by integrated analysis of multidisciplinary data

    NASA Astrophysics Data System (ADS)

    Pierdomenico, Martina; Guida, Vincent G.; Rona, Peter A.; Macelloni, Leonardo; Scranton, Mary I.; Asper, Vernon; Diercks, Arne

    2013-04-01

    Hudson Canyon, about 180 km SE of New York City, is the largest eastern U.S. submarine canyon and is under consideration for HAPC (Habitat Area of Particular Concern) status, representing a fisheries and biodiversity hot spot. Interest in the area, within the perspective of ecosystem based management, marine spatial planning, habitat and species conservation, led to a joint project between NOAA Northeast Fisheries, U.S. Geological Survey (USGS), Mississippi Mineral Research Institute (MMRI), National Institute for Undersea Science and Technology (NIUST), Stony Brook and Rutgers Universities for the study of benthic habitats, that includes the assembly of existing data with newly collected ones: acoustic mapping, visual ground-truthing, hydrographic, sedimentological, and trawl data collections. Acoustic mapping, performed using AUV-mounted multibeam sonar, provided ultra-high resolution bathymetric and backscatter imagery (3m and 1m respectively) at all water depths for identification of geomorphological features and for the characterization of surficial sediments along the two thirds of the shelf portion of the canyon. Identification of benthic and demersal communities was accomplished by visual ground thruthing with underwater vehicle video and still cameras, and from trawl catch data. A CTD-rosette sampler provided water column salinity-temperature profiles and water samples for dissolved methane analysis in the vicinity of suspected bottom sources. Analysis of data revealed a complex of topographic structures and hydrological patterns that provide a wide range of physical habitats in a relatively small area. A mosaic of sandy and muddy substrates, gravel beds, rock outcrops, and semilithified clay outcrops host rich and varied faunal assemblages, including deepwater corals and sponge communities. Pockmark fields, occurring below 300 m depth, suggest that methane-based chemosynthetic carbonate deposition contributes to creation of specific hard bottom habitats

  13. DataView: a computational visualisation system for multidisciplinary design and analysis

    NASA Astrophysics Data System (ADS)

    Wang, Chengen

    2016-01-01

    Rapidly processing raw data and effectively extracting underlining information from huge volumes of multivariate data become essential to all decision-making processes in sectors like finance, government, medical care, climate analysis, industries, science, etc. Remarkably, visualisation is recognised as a fundamental technology that props up human comprehension, cognition and utilisation of burgeoning amounts of heterogeneous data. This paper presents a computational visualisation system, named DataView, which has been developed for graphically displaying and capturing outcomes of multiphysics problem-solvers widely used in engineering fields. The DataView is functionally composed of techniques for table/diagram representation, and graphical illustration of scalar, vector and tensor fields. The field visualisation techniques are implemented on the basis of a range of linear and non-linear meshes, which flexibly adapts to disparate data representation schemas adopted by a variety of disciplinary problem-solvers. The visualisation system has been successfully applied to a number of engineering problems, of which some illustrations are presented to demonstrate effectiveness of the visualisation techniques.

  14. Non-stationary analysis of dry spells in monsoon season of Senegal River Basin using data from Regional Climate Models (RCMs)

    NASA Astrophysics Data System (ADS)

    Giraldo Osorio, J. D.; García Galiano, S. G.

    2012-07-01

    SummaryThe Senegal River Basin, located in West Africa, has been affected by several droughts since the end of the 1960s. In its valley, which is densely populated and highly vulnerable to climate variability and water availability, agricultural activities provide the livelihood for thousands of people. Increasing the knowledge about plausible trends of drought events will allow to improve the adaptation and mitigation measures in order to build "adaptive capacity" to climate change in West Africa. An innovative methodology for the non-stationary analysis of droughts events, which allows the prediction of regional trends associated to several return periods, is presented. The analyses were based on Regional Climate Models (RCMs) provided by the European ENSEMBLES project for West Africa, together with observed data. A non-stationary behaviour of the annual series of maximum length of dry spells (AMDSL) in the monsoon season is reflected in temporal changes in mean and variance. The non-stationary nature of hydrometeorological series, due to climate change and anthropogenic activities, is the main criticism to traditional frequency analysis. Therefore, in this paper, the modelling tool GAMLSS (Generalized Additive Models for Location, Scale and Shape), is applied to develop regional probability density functions (pdfs) fitted to AMDSL series for the monsoon season in the Senegal River Basin. The skills of RCMs in the representation of maximum length of dry spells observed for the period 1970-1990, are evaluated considering observed data. Based on the results obtained, a first selection of the RCMs with which to apply GAMLSS to the AMDSL series identified, for the time period 1970-2050, is made. The results of GAMLSS analysis exhibit divergent trends, with different value ranges for parameters of probability distributions being detected. Therefore, in the second stage of the paper, regional pdfs are constructed using bootstrapping distributions based on probabilistic

  15. A multidisciplinary geomatics approach to morphometric and morphotectonic analysis of the Cannobino Basin (Piemonte Region, NW-Italy).

    NASA Astrophysics Data System (ADS)

    Bacenetti, Marco; Ghiraldi, Luca; Giardino, Marco

    2014-05-01

    The paper presents an integrated multidisciplinary approach to the morphometric and morphotectonic characterization of the Cannobino Basin (Piemonte Region, NW-Italy). The basin is drained by the Cannobino river; in its first 8 km, it flows SE to NW along a wide valley characterized by glacial landforms; thereafter it suddenly turns South assuming a W to E direction, by flowing in a deeply entrenched valley to the intermontane basin of the Maggiore Lake. This area belongs to the Lepontine Alps, which from the geological point of view belong to the Southern Alps. His Hercynian basement is divided in two units: Ivrea-Verbano Zone (IVZ) and Serie dei Laghi (SDL). The IVZ outcrops in the northern sector of the basin, while the SDL outcrops in the southern and central sector. They separated by the Cossato-Mergozzo-Brissago (CMB) and Pogallo lines (PL). These major discontinuities and the neoctonic activity of their shear zones possibly control Quaternary evolution of the alpine relief. Detailed studies of the area are needed for understanding possible interactions of neotectonic activity, fluvial/glacial erosional/depositional processes and slope dynamics. Our focus is on drainage basin characteristics and its evolutionary stages in response to local and regional base level changes and to differential rock uplift. GIS methodologies combined with DEMs analyses are among the most common geomatics approaches to geomorphology. Based on this framework, an evaluation of the geomorphometric characteristic of the Cannobino Basin has been carried out by using an aerial LIDAR DEM (5x5 meters, Regione Piemonte, 2009). The workflow followed for calculating the geomorphic indexes can be summarized in different steps: i) drainage network extraction and hierarchization; ii) lineament features digitalization and interpretation; iii) azimuthal distribution of drainage pattern; iv) DEM analysis and evaluation of linear, areal indexes and SWAT profile. The multidisciplinary and innovative

  16. Parametric Sensitivity Analysis for the Asian Summer Monsoon Precipitation Simulation in the Beijing Climate Center AGCM Version 2.1

    SciTech Connect

    Yang, Ben; Zhang, Yaocun; Qian, Yun; Wu, Tongwen; Huang, Anning; Fang, Yongjie

    2015-07-15

    In this study, we apply an efficient sampling approach and conduct a large number of simulations to explore the sensitivity of the simulated Asian summer monsoon (ASM) precipitation, including the climatological state and interannual variability, to eight parameters related to the cloud and precipitation processes in the Beijing Climate Center AGCM version 2.1 (BCC_AGCM2.1). Our results show that BCC_AGCM2.1 has large biases in simulating the ASM precipitation. The precipitation efficiency and evaporation coefficient for deep convection are the most sensitive parameters in simulating the ASM precipitation. With optimal parameter values, the simulated precipitation climatology could be remarkably improved, e.g. increased precipitation over the equator Indian Ocean, suppressed precipitation over the Philippine Sea, and more realistic Meiyu distribution over Eastern China. The ASM precipitation interannual variability is further analyzed, with a focus on the ENSO impacts. It shows the simulations with better ASM precipitation climatology can also produce more realistic precipitation anomalies during El Niño decaying summer. In the low-skill experiments for precipitation climatology, the ENSO-induced precipitation anomalies are most significant over continents (vs. over ocean in observation) in the South Asian monsoon region. More realistic results are derived from the higher-skill experiments with stronger anomalies over the Indian Ocean and weaker anomalies over India and the western Pacific, favoring more evident easterly anomalies forced by the tropical Indian Ocean warming and stronger Indian Ocean-western Pacific tele-connection as observed. Our model results reveal a strong connection between the simulated ASM precipitation climatological state and interannual variability in BCC_AGCM2.1 when key parameters are perturbed.

  17. Past dynamics of the Australian monsoon: precession, phase and links to the global monsoon concept

    NASA Astrophysics Data System (ADS)

    Beaufort, L.; van der Kaars, S.; Bassinot, F. C.; Moron, V.

    2010-10-01

    Past variations in the dynamics of the Australian monsoon have been estimated from multi-proxy analysis of a core retrieved in the Eastern Banda Sea. Records of coccolith and pollen assemblages, spanning the last 150 000 years, allow reconstruction of past primary production in the Banda Sea, summer moisture availability, and the length of the dry season in northern Australia and southeastern Indonesia. The amount of moisture available during the summer monsoon follows typical glacial/interglacial dynamics with a broad asymmetrical 100-kyr cycle. Primary production and length of the dry season appear to be closely related, given that they follow the precessional cycle with the same phase. This indicates their independence from ice-volume variations. The present inter-annual variability of both parameters is related to El Niño Southern Oscillation (ENSO), which modulates the Australian Winter Monsoon (AWM). The precessional pattern observed in the past dynamics of the AWM is found in ENSO and monsoon records of other regions. A marked shift in the monsoon intensity occurring during the mid Holocene during a period of constant ice volume, suggests that low latitude climatic variation precedes increases in global ice volume. This precessional pattern suggests that a common forcing mechanism underlies low latitude climate dynamics, acting specifically and synchronously on the different monsoon systems.

  18. Past dynamics of the Australian monsoon: precession, phase and links to the global monsoon

    NASA Astrophysics Data System (ADS)

    Beaufort, L.; van der Kaars, S.; Bassinot, F. C.; Moron, V.

    2010-06-01

    Past variations in the dynamics of the Australian monsoon have been estimated from multi-proxy analysis of a core retrieved in the Eastern Banda Sea. Records of coccolith and pollen assemblages, spanning the last 150,000 years, allow reconstruction of past primary production in the Banda Sea, summer moisture availability, and the length of the dry season in Northern Australia and Southeastern Indonesia. The amount of moisture available during the summer monsoon follows typical glacial/interglacial dynamics with a broad asymmetrical 100-kyr cycle. Primary production and length of the dry season appear to be closely related, given that they follow the precessional cycle with the same phase (August insolation). This indicates their independence from ice-volume variations. The present inter-annual variability of both parameters is related to El Niño Southern Oscillation (ENSO), which modulates the Australian Winter Monsoon (AWM). The precessional pattern observed in the past dynamics of the AWM is found in ENSO and monsoon records of other regions. A marked shift in the monsoon intensity occurring during the mid Holocene during a period of constant ice volume, suggest that low latitude climatic variation precedes global ice volume. This precessional pattern suggests that a common forcing mechanism underlies low latitude climate dynamics, acting specifically and synchronically on the different monsoon systems.

  19. On the weakening relationship between the indian monsoon and ENSO

    PubMed

    Kumar; Rajagopalan; Cane

    1999-06-25

    Analysis of the 140-year historical record suggests that the inverse relationship between the El Nino-Southern Oscillation (ENSO) and the Indian summer monsoon (weak monsoon arising from warm ENSO event) has broken down in recent decades. Two possible reasons emerge from the analyses. A southeastward shift in the Walker circulation anomalies associated with ENSO events may lead to a reduced subsidence over the Indian region, thus favoring normal monsoon conditions. Additionally, increased surface temperatures over Eurasia in winter and spring, which are a part of the midlatitude continental warming trend, may favor the enhanced land-ocean thermal gradient conducive to a strong monsoon. These observations raise the possibility that the Eurasian warming in recent decades helps to sustain the monsoon rainfall at a normal level despite strong ENSO events. PMID:10381876

  20. Reconciling societal and scientific definitions for the monsoon

    NASA Astrophysics Data System (ADS)

    Reeve, Mathew; Stephenson, David

    2014-05-01

    Science defines the monsoon in numerous ways. We can apply these definitions to forecast data, reanalysis data, observations, GCMs and more. In a basic research setting, we hope that this work will advance science and our understanding of the monsoon system. In an applied research setting, we often hope that this work will benefit a specific stakeholder or community. We may want to inform a stakeholder when the monsoon starts, now and in the future. However, what happens if the stakeholders cannot relate to the information because their perceptions do not align with the monsoon definition we use in our analysis? We can resolve this either by teaching the stakeholders or learning from them about how they define the monsoon and when they perceive it to begin. In this work we reconcile different scientific monsoon definitions with the perceptions of agricultural communities in Bangladesh. We have developed a statistical technique that rates different scientific definitions against the people's perceptions of when the monsoon starts and ends. We construct a probability mass function (pmf) around each of the respondent's answers in a questionnaire survey. We can use this pmf to analyze the time series of monsoon onsets and withdrawals from the different scientific definitions. We can thereby quantitatively judge which definition may be most appropriate for a specific applied research setting.

  1. Monsoon precipitation in the AMIP runs

    NASA Astrophysics Data System (ADS)

    Gadgil, S.; Sajani, S.

    We present an analysis of the seasonal precipitation associated with the African, Indian and the Australian-Indonesian monsoon and the interannual variation of the Indian monsoon simulated by 30 atmospheric general circulation models undertaken as a special diagnostic subproject of the Atmospheric Model Intercomparison Project (AMIP). The seasonal migration of the major rainbelt observed over the African region, is reasonably well simulated by almost all the models. The Asia West Pacific region is more complex because of the presence of warm oceans equatorward of heated continents. Whereas some models simulate the observed seasonal migration of the primary rainbelt, in several others this rainbelt remains over the equatorial oceans in all seasons. Thus, the models fall into two distinct classes on the basis of the seasonal variation of the major rainbelt over the Asia West Pacific sector, the first (class I) are models with a realistic simulation of the seasonal migration and the major rainbelt over the continent in the boreal summer; and the second (class II) are models with a smaller amplitude of seasonal migration than observed. The mean rainfall pattern over the Indian region for July-August (the peak monsoon months) is even more complex because, in addition to the primary rainbelt over the Indian monsoon zone (the monsoon rainbelt) and the secondary one over the equatorial Indian ocean, another zone with significant rainfall occurs over the foothills of Himalayas just north of the monsoon zone. Eleven models simulate the monsoon rainbelt reasonably realistically. Of these, in the simulations of five belonging to class I, the monsoon rainbelt over India in the summer is a manifestation of the seasonal migration of the planetary scale system. However in those belonging to class II it is associated with a more localised system. In several models, the oceanic rainbelt dominates the continental one. On the whole, the skill in simulation of excess/deficit summer

  2. On the Origin of Monsoon

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.; Chen, Baode; Einaudi, Franco (Technical Monitor)

    2000-01-01

    It is a long-held fundamental belief that the basic cause of a monsoon is land-sea thermal contrast on the continental scale. Through general circulation model experiments we demonstrate that this belief should be changed. The Asian and Australian summer monsoon circulations are largely intact in an experiment in which Asia, maritime continent, and Australia are replaced by ocean. It is also shown that the change resulting from such replacement is in general due more to the removal of topography than to the removal of land-sea contrast. Therefore, land-sea contrast plays only a minor modifying role in Asian and Australian summer monsoons. This also happens to the Central American summer monsoon. However, the same thing cannot be said of the African and South American summer monsoons. In Asian and Australian winter monsoons land-sea contrast also plays only a minor role. Our interpretation for the origin of monsoon is that the summer monsoon is the result of ITCZ's (intertropical convergence zones) peak being substantially (more than 10 degrees) away from the equator. The origin of the ITCZ has been previously interpreted by Chao. The circulation around thus located ITCZ, previously interpreted by Chao and Chen through the modified Gill solution and briefly described in this paper, explains the monsoon circulation. The longitudinal location of the ITCZs is determined by the distribution of surface conditions. ITCZ's favor locations of higher SST as in western Pacific and Indian Ocean, or tropical landmass, due to land-sea contrast, as in tropical Africa and South America. Thus, the role of landmass in the origin of monsoon can be replaced by ocean of sufficiently high SST. Furthermore, the ITCZ circulation extends into the tropics in the other hemisphere to give rise to the winter monsoon circulation there. Also through the equivalence of land-sea contrast and higher SST, it is argued that the basic monsoon onset mechanism proposed by Chao is valid for all monsoons.

  3. Methodology for sensitivity analysis, approximate analysis, and design optimization in CFD for multidisciplinary applications. [computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III; Hou, Gene W.

    1992-01-01

    Fundamental equations of aerodynamic sensitivity analysis and approximate analysis for the two dimensional thin layer Navier-Stokes equations are reviewed, and special boundary condition considerations necessary to apply these equations to isolated lifting airfoils on 'C' and 'O' meshes are discussed in detail. An efficient strategy which is based on the finite element method and an elastic membrane representation of the computational domain is successfully tested, which circumvents the costly 'brute force' method of obtaining grid sensitivity derivatives, and is also useful in mesh regeneration. The issue of turbulence modeling is addressed in a preliminary study. Aerodynamic shape sensitivity derivatives are efficiently calculated, and their accuracy is validated on two viscous test problems, including: (1) internal flow through a double throat nozzle, and (2) external flow over a NACA 4-digit airfoil. An automated aerodynamic design optimization strategy is outlined which includes the use of a design optimization program, an aerodynamic flow analysis code, an aerodynamic sensitivity and approximate analysis code, and a mesh regeneration and grid sensitivity analysis code. Application of the optimization methodology to the two test problems in each case resulted in a new design having a significantly improved performance in the aerodynamic response of interest.

  4. Is precipitation a predictor of mortality in Bangladesh? A multi-stratified analysis in a South Asian monsoon climate.

    PubMed

    Burkart, Katrin; Kinney, Patrick

    2016-05-15

    While numerous studies have assessed the association between temperature and mortality in various locations, few have addressed the relationship between precipitation and mortality. Given the high amounts of rainfall in many tropical monsoon areas and the often seasonally pronounced differences, there might be a potentially strong impact on health outcomes and death. In this study, we investigated the association between precipitation and daily death counts in Bangladesh from 2003 to 2007 using regression models with a quasipoisson distribution adjusting for long-term time and seasonal trends, day of the month, age and perceived temperature. Effects were assessed for all ages, the elderly and by gender. During the dry season a sharp increase in death risk was found at very high precipitation amounts which are most likely to be cyclone-related. This cyclone effect was most pronounced for females at the immediate day with an increase of 18.7% (3.8-35.6%) in non-external cause mortality per mm precipitation above 5mm. At longer lags we found a negative association between precipitation and mortality indicating some kind of dry effect which was more pronounced for the elderly with a mortality increase of 4.4% (2.6-6.2%) per mm decrease in precipitation. During the rainy season, we observed a protective effect of rainfall which was strongest during periods of seasonally high equivalent temperatures with a decrease in mortality of 4.0% (2.3-5.6%) per mm increase in precipitation on the immediate day. The observed associations between precipitation and mortality differed by season, age and gender. Generally, a strong short-term increase in mortality was associated with cyclonic activity during the dry season, while ongoing low rainfall seemed to have an adverse impact at higher lags. During the rainy season, precipitation seemed to mitigate heat effects. PMID:26933968

  5. Monsoon '90 - Preliminary SAR results

    NASA Technical Reports Server (NTRS)

    Dubois, Pascale C.; Van Zyl, Jakob J.; Guerra, Abel G.

    1992-01-01

    Multifrequency polarimetric synthetic aperture radar (SAR) images of the Walnut Gulch watershed near Tombstone, Arizona were acquired on 28 Mar. 1990 and on 1 Aug. 1990. Trihedral corner reflectors were deployed prior to both overflights to allow calibration of the two SAR data sets. During both overflights, gravimetric soil moisture and dielectric constant measurements were made. Detailed vegetation height, density, and water content measurements were made as part of the Monsoon 1990 Experiment. Preliminary results based on analysis of the multitemporal polarimetric SAR data are presented. Only the C-band data (5.7-cm wavelength) radar images show significant difference between Mar. and Aug., with the strongest difference observed in the HV images. Based on the radar data analysis and the in situ measurements, we conclude that these differences are mainly due to changes in the vegetation and not due to the soil moisture changes.

  6. Monsoon 1990: Preliminary SAR results

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob J.; Dubois, Pascale; Guerra, Abel

    1991-01-01

    Multifrequency polarimetric synthetic aperture radar (SAR) images of the Walnut Gulch watershed near Tombstone, Arizona were acquired on 28 Mar. 1990 and on 1 Aug. 1990. Trihedral corner reflectors were deployed prior to both overflights to allow calibration of the two SAR data sets. During both overflights, gravimetric soil moisture and dielectric constant measurements were made. Detailed vegetation height, density, and water content measurements were made as part of the Monsoon 1990 Experiment. Preliminary results based on analysis of the multitemporal polarimetric SAR data are presented. Only the C-band data (5.7-cm wavelength) radar images show significant difference between Mar. and Aug., with the strongest difference observed in the HV images. Based on the radar data analysis and the in situ measurements, we conclude that these differences are mainly due to changes in the vegetation and not due to the soil moisture changes.

  7. Managing Complexity in Multidisciplinary Visualization

    NASA Technical Reports Server (NTRS)

    Miceli, Kristina D.; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    As high performance computing technology progresses, computational simulations are becoming more advanced in their capabilities. In the computational aerosciences domain, single discipline steady-state simulations computed on a single grid are far from the state-of-the-art. In their place are complex, time-dependent multidisciplinary simulations that attempt to model a given geometry more realistically. The product of these multidisciplinary simulations is a massive amount of data stored in different formats, grid topologies, units of measure, etc., as a result of the differences in the simulated physical domains. In addition to the challenges posed by setting up and performing the simulation, additional challenges exist in analyzing computational results. Visualization plays an important role in the advancement of multidisciplinary simulations. To date, visualization has been used to aid in the interpretation of large amounts of simulation data. Because the human visual system is effective in digesting a large amount of information presented graphically, visualization has helped simulation scientists to understand complex simulation results. As these simulations become even more complex, integrating several different physical domains, visualization will be critical to digest the massive amount of information. Another important role for visualization is to provide a common communication medium from which the domain scientists can use to develop, debug, and analyze their work. Multidisciplinary analyses are the next step in simulation technology, not only in computational aerosciences, but in many other areas such as global climate modeling. Visualization researchers must understand and work towards the challenges posed by multidisciplinary simulation scenarios. This paper addresses some of these challenges, describing technologies that must be investigated to create a useful visualization analysis tool for domain scientists.

  8. Atmospheric model intercomparison project: Monsoon simulations

    SciTech Connect

    Sperber, K.R.; Palmer, T.N.

    1994-06-01

    The simulation of monsoons, in particular the Indian summer monsoon, has proven to be a critical test of a general circulation model`s ability to simulate tropical climate and variability. The Monsoon Numerical Experimentation Group has begun to address questions regarding the predictability of monsoon extremes, in particular conditions associated with El Nino and La Nina conditions that tend to be associated with drought and flood conditions over the Indian subcontinent, through a series of seasonal integrations using analyzed initial conditions from successive days in 1987 and 1988. In this paper the authors present an analysis of simulations associated with the Atmospheric Model Intercomparison Project (AMIP), a coordinated effort to simulate the 1979--1988 decade using standardized boundary conditions with approximately 30 atmospheric general circulation models. The 13 models analyzed to date are listed. Using monthly mean data from these simulations they have calculated indices of precipitation and wind shear in an effort to access the performance of the models over the course of the AMIP decade.

  9. Association of the East Asian subtropical westerly jet with the Southwest Asian summer monsoon: A diagnostic analysis on heavy rain events in Yunnan province, China

    NASA Astrophysics Data System (ADS)

    Chen, Jie

    2016-04-01

    Yunnan province, China is a typical area that is influenced by Southwest Asian summer monsoon (SASM) during boreal summer. Although the interannual variation of summer precipitation in Yunnan Province is closely related to that of the SASM, the East Asian subtropical westerly jet (EASWJ) may have an important role in heavy rainfall events in Yunnan Province during boreal summer. By using daily observations and the NACAR/NCEP data during 1960-2011, a diagnostic analysis is performed to investigate the association of the EASWJ with the SASM on heavy rain events in Yunnan Province during boreal summer. The analysis shows an anomalous divergence circulation pattern at upper level (200 hPa) over Eurasian continent that corresponds well to the negative anomaly of EASWJ during heavy rain events in boreal summer in Yunnan Province. At the same time, a low-level jet stream with abundant water vapor originated from the Arabian Sea and Bengal gulf provides necessarily dynamic and water conditions for heavy rain mechanism. The study further shows that the weakening of the EASWJ during heavy rain events in Yunnan Province is associated with the decrease in the meridional temperature gradient in northern mid-latitude (30o-40o N).

  10. Leaf physiognomy and climate: Are monsoon systems different?

    NASA Astrophysics Data System (ADS)

    Jacques, Frédéric M. B.; Su, Tao; Spicer, Robert A.; Xing, Yaowu; Huang, Yongjiang; Wang, Weiming; Zhou, Zhekun

    2011-03-01

    Our understanding of past climatic changes depends on our ability to obtain reliable palaeoclimate reconstructions. Climate Leaf Analysis Multivariate Program (CLAMP) uses the physiognomy of woody dicot leaf assemblages to quantitatively reconstruct terrestrial palaeoclimates. However, the present calibrations do not always allow us to reconstruct correctly the climate of some regions due to differing palaeofloristic histories. Present calibrations are also inappropriate for regions experiencing strong monsoon regimes. To help solve this problem, we have established a new calibration that can accommodate monsoonal climates in Asia. Our new calibration is based on the Physg3brcAZ dataset with 45 new Chinese sites added. These Chinese sites are taken from humid to mesic vegetations across China, and all are influenced by monsoonal conditions to some extent. They plot in a distinct part of physiognomic space, whether they are analysed as passive or active samples. The standard deviations for the new monsoonal calibration (1.25 °C for MAT and 217.7 mm for GSP) are in the same range as those observed for previous calibrations. The new monsoonal calibration was tested using a cross validation procedure. The estimates derived from the new monsoonal calibration (PhysgAsia1) for the Chinese sites are more accurate than those obtained from the Physg3brcAZ calibration, especially for the moisture related parameters. The mean absolute error for GSP of the Chinese sites is 294.6 mm in the new monsoonal calibration, whereas it was 1609.6 mm in the Physg3brcAZ calibration. Results for the three wettest months and three driest months are also more accurate and precise, which allows us to study the seasonality of the precipitation, and hence the monsoon. The new monsoonal calibration also gives accurate results for enthalpy reconstruction. Enthalpy is a parameter that is used for palaeoaltimetry, the new calibration is therefore useful for studies of land surface height changes in

  11. Mechanism of spatio-temporal transition to monsoon and prospects for prediction

    NASA Astrophysics Data System (ADS)

    Stolbova, Veronika; Surovyatkina, Elena; Bookhagen, Bodo; Kurths, Juergen

    2016-04-01

    The variability of the Indian monsoon onset has an enormous effect on more than 1.7 billion people. Consequently, understanding the mechanisms of the transition to monsoon and its successful forecasting is not only a question of great interest, but also a significant scientific challenge. Here we address the problem of the spatial and temporal organization of the abrupt transition to the Indian monsoon. The analysis of observational data uncovers that there is a threshold behavior at the transition to monsoon over the central part of India. Based on these observations, we consider the transition to monsoon from a dynamic system perspective and propose a novel mechanism of a spatio-temporal transition to monsoon. Our approach has several advantages in comparison to existing explanations of the Indian Monsoon nature: it describes the abrupt transition to monsoon in a chosen region of the Indian subcontinent, the spatial propagation and variability of the Indian Monsoon onset along the axis of advance of monsoon, and allows to explain the "bogus" monsoon onsets. In addition, based on this approach we develop a novel prediction scheme for forecasting of monsoon timing. Unlike most predictability methods, our scheme does not rely on precipitation analysis, but on air temperature and relative humidity, which are well-represented both in models and observations. The proposed scheme predicts the onset and withdrawal dates more than two weeks and a month earlier than existing methods, respectively. In addition, the scheme allows the inclusion of the information about the El-Niño-Southern Oscillation in the forecasting of onset and withdrawal dates, thereby, significantly improving the prediction of monsoon timing during anomalous years associated with the El-Niño-Southern Oscillation. Finally, the proposed scheme can be directly implemented into the existing long-range forecasting system of the monsoon's timing.

  12. The evolution of sub-monsoon systems in the Afro-Asian monsoon region during the Holocene- comparison of different transient climate model simulations

    NASA Astrophysics Data System (ADS)

    Dallmeyer, A.; Claussen, M.; Fischer, N.; Haberkorn, K.; Wagner, S.; Pfeiffer, M.; Jin, L.; Khon, V.; Wang, Y.; Herzschuh, U.

    2015-02-01

    The recently proposed global monsoon hypothesis interprets monsoon systems as part of one global-scale atmospheric overturning circulation, implying a connection between the regional monsoon systems and an in-phase behaviour of all northern hemispheric monsoons on annual timescales (Trenberth et al., 2000). Whether this concept can be applied to past climates and variability on longer timescales is still under debate, because the monsoon systems exhibit different regional characteristics such as different seasonality (i.e. onset, peak and withdrawal). To investigate the interconnection of different monsoon systems during the pre-industrial Holocene, five transient global climate model simulations have been analysed with respect to the rainfall trend and variability in different sub-domains of the Afro-Asian monsoon region. Our analysis suggests that on millennial timescales with varying orbital forcing, the monsoons do not behave as a tightly connected global system. According to the models, the Indian and North African monsoons are coupled, showing similar rainfall trend and moderate correlation in centennial rainfall variability in all models. The East Asian monsoon changes independently during the Holocene. The dissimilarities in the seasonality of the monsoon sub-systems lead to a stronger response of the North African and Indian monsoon systems to the Holocene insolation forcing than of the East Asian monsoon and affect the seasonal distribution of Holocene rainfall variations. Within the Indian and North African monsoon domain, precipitation solely changes during the summer months, showing a decreasing Holocene precipitation trend. In the East Asian monsoon region, the precipitation signal is determined by an increasing precipitation trend during spring and a decreasing precipitation change during summer, partly balancing each other. A synthesis of reconstructions and the model results do not reveal an impact of the different seasonality on the timing of the

  13. The evolution of sub-monsoon systems in the Afro-Asian monsoon region during the Holocene - comparison of different transient climate model simulations

    NASA Astrophysics Data System (ADS)

    Dallmeyer, A.; Claussen, M.; Fischer, N.; Haberkorn, K.; Wagner, S.; Pfeiffer, M.; Jin, L.; Khon, V.; Wang, Y.; Herzschuh, U.

    2014-05-01

    The recently proposed global monsoon hypothesis interprets monsoon systems as part of one global-scale atmospheric overturning circulation, implying a connection between the regional monsoon systems and an in-phase behaviour of all northern hemispheric monsoons on annual timescales (Trenberth et al., 2000). Whether this concept can be applied to past climates and variability on longer timescales is still under debate, because the monsoon systems exhibit different regional characteristics such as different seasonality (i.e. onset, peak, and withdrawal). To investigate the interconnection of different monsoon systems during the pre-industrial Holocene, five transient global climate model simulations have been analysed with respect to the rainfall trend and variability in different sub-domains of the Afro-Asian monsoon region. Our analysis suggests that on millennial timescales with varying orbital forcing, the monsoons do not behave as a tightly connected global system. According to the models, the Indian and North African monsoons are coupled, showing similar rainfall trend and moderate correlation in rainfall variability in all models. The East Asian monsoon changes independently during the Holocene. The dissimilarities in the seasonality of the monsoon sub-systems lead to a stronger response of the North African and Indian monsoon systems to the Holocene insolation forcing than of the East Asian monsoon and affect the seasonal distribution of Holocene rainfall variations. Within the Indian and North African monsoon domain, precipitation solely changes during the summer months, showing a decreasing Holocene precipitation trend. In the East Asian monsoon region, the precipitation signal is determined by an increasing precipitation trend during spring and a decreasing precipitation change during summer, partly balancing each other. A synthesis of reconstructions and the model results do not reveal an impact of the different seasonality on the timing of the Holocene

  14. Desert Dust and Monsoon Rain

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, Kyu-Myong

    2014-01-01

    For centuries, inhabitants of the Indian subcontinent have know that heavy dust events brought on by strong winds occur frequently in the pre-monsoon season, before the onset of heavy rain. Yet scientists have never seriously considered the possibility that natural dust can affect monsoon rainfall. Up to now, most studies of the impacts of aerosols on Indian monsoon rainfall have focused on anthropogenic aerosols in the context of climate change. However, a few recent studies have show that aerosols from antropogenic and natural sources over the Indian subcontinent may affect the transition from break to active monsoon phases on short timescales of days to weeks. Writing in Nature Geoscience, Vinoj and colleagues describe how they have shown that desert dust aerosols over the Arabian Sea and West Asia can strenghten the summer monsoon over the Indial subcontinent in a matter of days.

  15. Observational and modeling studies of impacts of the South China Sea monsoon on the monsoon rainfall in the middle-lower reaches of the Yangtze River during summer

    NASA Astrophysics Data System (ADS)

    Jin, Lijun; Zhao, Ping

    2012-04-01

    Based on the ERA-40 and NCEP/NCAR reanalysis data, the NOAA Climate Prediction Center's merged analysis of precipitation (CMAP), and the fifth-generation PSU/NCAR Mesoscale Model version 3 (MM5v3), we defined a monsoon intensity index over the East Asian tropical region and analyzed the impacts of summer (June-July) South China Sea (SCS) monsoon anomaly on monsoon precipitation over the middle-lower reaches of the Yangtze River (MLRYR) using both observational data analysis and numerical simulation methods. The results from the data analysis show that the interannual variations of the tropical monsoon over the SCS are negatively correlated with the southwesterly winds and precipitation over the MLRYR during June-July. Corresponding to stronger (weaker) tropical monsoon and precipitation, the southwesterly winds are weaker (stronger) over the MLRYR, with less (more) local precipitation. The simulation results further exhibit that when changing the SCS monsoon intensity, there are significant variations of monsoon and precipitation over the MLRYR. The simulated anomalies generally consist with the observations, which verifies the impact of the tropical monsoon on the monsoon precipitation over the MLRYR. This impact might be supported by certain physical processes. Moreover, when the tropical summer monsoon is stronger, the tropical anomalous westerly winds and positive precipitation anomalies usually maintain in the tropics and do not move northward into the MLRYR, hence the transport of water vapor toward southern China is weakened and the southwest flow and precipitation over southern China are also attenuated. On the other hand, the strengthened tropical monsoon may result in the weakening and southward shift of the western Pacific subtropical high through self-adjustment of the atmospheric circulation, leading to the weakening of the monsoon flows and precipitation over the MLRYR.

  16. Influence of Decadal Variability of Global Oceans on South Asian Monsoon and ENSO-Monsoon Relation

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Lakshmi

    This study has investigated the influence of the decadal variability associated with global oceans on South Asian monsoon and El Nino-Southern Oscillation (ENSO)-monsoon relation. The results are based on observational analysis using long records of monsoon rainfall and circulation and coupled general circulation model experiments using the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM) version 4 model. The multi-channel singular spectrum analysis (MSSA) of the observed rainfall over India yields three decadal modes. The first mode (52 year period) is associated with the Atlantic Multidecadal Oscillation (AMO), the second one (21 year) with the Pacific Decadal Oscillation (PDO) and the third mode (13 year) with the Atlantic tripole. The existence of these decadal modes in the monsoon was also found in the control simulation of NCAR CCSM4. The regionally de-coupled model experiments performed to isolate the influence of North Pacific and North Atlantic also substantiate the above results. The relation between the decadal modes in the monsoon rainfall with the known decadal modes in global SST is examined. The PDO has significant negative correlation with the Indian Monsoon Rainfall (IMR). The mechanism for PDO-monsoon relation is hypothesized through the seasonal footprinting mechanism and further through Walker and Hadley circulations. The model results also confirm the negative correlation between PDO and IMR and the mechanism through which PDO influences monsoon. Both observational and model analysis show that droughts (floods) are more likely over India than floods (droughts) when ENSO and PDO are in their warm (cold) phase. This study emphasizes the importance of carefully distinguishing the different decadal modes in the SST in the North Atlantic Ocean as they have different impacts on the monsoon. The AMO exhibits significant positive correlation with the IMR while the Atlantic tripole has significant negative

  17. Indo-China Monsoon Indices

    NASA Astrophysics Data System (ADS)

    Tsai, Chinleong; Behera, Swadhin K.; Waseda, Takuji

    2015-01-01

    Myanmar and Thailand often experience severe droughts and floods that cause irreparable damage to the socio-economy condition of both countries. In this study, the Southeastern Asian Summer Monsoon variation is found to be the main element of interannual precipitation variation of the region, more than the El Niño/Southern Oscillation (ENSO). The ENSO influence is evident only during the boreal spring season. Although the monsoon is the major factor, the existing Indian Monsoon Index (IMI) and Western North Pacific Monsoon Index (WNPMI) do not correlate well with the precipitation variation in the study regions of Southern Myanmar and Thailand. Therefore, a new set of indices is developed based on the regional monsoon variations and presented here for the first time. Precipitation variations in Southern Myanmar and Thailand differ as well as the elements affecting the precipitation variations in different seasons. So, separate indices are proposed for each season for Southern Myanmar and Thailand. Four new monsoon indices based on wind anomalies are formulated and are named as the Indochina Monsoon Indices. These new indices correlate better with the precipitation variations of the study region as compared to the existing IMI and WNPMI.

  18. Eocene precipitation: a global monsoon?

    NASA Astrophysics Data System (ADS)

    Greenwood, D. R.; Huber, M.

    2011-12-01

    The Eocene was the warmest part of the Cenozoic, with warm climates extending across all continents including Antarctica, and extending into the Arctic. Substantive paleobotanical evidence (leaf floras and palynofloras) has demonstrated the existence of broadleaf and coniferous polar forests - a circumpolar rain forest - at both poles. North and South America, Australia, and China in the Eocene were well-forested and humid continents, in contrast to today where 2/3 of these continental areas are arid or semi-arid and lack forests. Each of these regions reflect past climate states - mesothermal moist climates with low thermal seasonality at high latitudes - that have no analog in the modern world. Recent modelling and paleontological proxy data, however, is revealing a high degree of seasonality to precipitation for these continental areas, indicating a monsoon-type precipitation regime may have characterized Eocene 'greenhouse climates'. Paleobotanical proxies offer 2 methods for estimated paleo-precipitation; leaf physiognomy (including both CLAMP and leaf area analysis), and quantitative analysis of nearest living relatives ('NLRs') of macrofloras. Presented here are 1) an updated leaf area analysis calibration with smaller errors of the estimate than previously provided, and 2) analyses of fossil floras from North America, Canada, the Arctic, and Australia. Analysis of the Canadian floras indicate moist climates (MAP >100cm/a) in the early and middle Eocene at middle and high paleolatitudes. Precipitation for western North America at mid-latitudes is also estimated as high, but a seasonally dry interior and south-east is indicated. For Australia, precipitation in the south-east is estimated >120 cm/a, but the macrofloras indicate a drier interior (MAP ~60 cm/a) and seasonal drought, contradicting estimates of ~120 cm/a based on NLR analysis of pollen floras. Recently published data show that north-eastern China in the Eocene had a monsoonal-type seasonality for

  19. A Review of the Multidisciplinary Diagnosis of Interstitial Lung Diseases: A Retrospective Analysis in a Single UK Specialist Centre

    PubMed Central

    Chaudhuri, Nazia; Spencer, Lisa; Greaves, Melanie; Bishop, Paul; Chaturvedi, Anshuman; Leonard, Colm

    2016-01-01

    The accurate diagnosis and management of individuals with interstitial lung diseases (ILDs) poses an interesting challenge in clinical practice. A multidisciplinary team (MDT) approach is considered the gold standard. This is a single-centre retrospective review spanning a five-year period. We assessed the accuracy of prior ILD diagnosis, the methodology used to establish a correct diagnosis and how an MDT approach affected subsequent management. Our data supports an MDT approach in an experienced specialist ILD centre. We have demonstrated that diagnosis is often changed after an MDT review and that this impacts the subsequent management. Our results demonstrate that an MDT approach to diagnosis can establish a diagnosis in the majority of cases when prior diagnosis is uncertain (76%). We also show that a prior diagnosis of idiopathic pulmonary fibrosis is deemed inaccurate in over 50% of cases after MDT discussion. We have shown that during diagnostic uncertainty the considered gold standard of proceeding to a lung biopsy is not always feasible due to disease severity and comorbidities. In these circumstances, an MDT approach to diagnosis of ILDs combines clinical data with serial lung function and disease behavior, with or without responses to previous treatment trials to establish an accurate expert diagnosis. PMID:27472372

  20. A Review of the Multidisciplinary Diagnosis of Interstitial Lung Diseases: A Retrospective Analysis in a Single UK Specialist Centre.

    PubMed

    Chaudhuri, Nazia; Spencer, Lisa; Greaves, Melanie; Bishop, Paul; Chaturvedi, Anshuman; Leonard, Colm

    2016-01-01

    The accurate diagnosis and management of individuals with interstitial lung diseases (ILDs) poses an interesting challenge in clinical practice. A multidisciplinary team (MDT) approach is considered the gold standard. This is a single-centre retrospective review spanning a five-year period. We assessed the accuracy of prior ILD diagnosis, the methodology used to establish a correct diagnosis and how an MDT approach affected subsequent management. Our data supports an MDT approach in an experienced specialist ILD centre. We have demonstrated that diagnosis is often changed after an MDT review and that this impacts the subsequent management. Our results demonstrate that an MDT approach to diagnosis can establish a diagnosis in the majority of cases when prior diagnosis is uncertain (76%). We also show that a prior diagnosis of idiopathic pulmonary fibrosis is deemed inaccurate in over 50% of cases after MDT discussion. We have shown that during diagnostic uncertainty the considered gold standard of proceeding to a lung biopsy is not always feasible due to disease severity and comorbidities. In these circumstances, an MDT approach to diagnosis of ILDs combines clinical data with serial lung function and disease behavior, with or without responses to previous treatment trials to establish an accurate expert diagnosis. PMID:27472372

  1. Integrating Multidisciplinary Engineering Knowledge

    ERIC Educational Resources Information Center

    Wolff, Karin; Luckett, Kathy

    2013-01-01

    In order to design two distinct engineering qualification levels for an existing University of Technology programme, empirical evidence based on the current diploma is necessary to illuminate the nature of and the relationship between the "contextual" and "conceptual" elements underpinning a multidisciplinary engineering…

  2. Multidisciplinary management: why me?

    PubMed

    Wetenkamp, Vicki

    2002-01-01

    Laboratory professionals are being asked more and more frequently to spread their wings and take on additional responsibilities in the form of multidisciplinary management. Multidisciplinary management can be described as the management of multiple departments with one or more being outside of the traditional laboratory department, such as respiratory care, pharmacy, radiology, or cardiodiagnostics. Reasons behind the trend in multidisciplinary management and why laboratory professionals often are asked to assume these roles will be explored. This column will cover how laboratory managers can prepare for the challenges of multidisciplinary management, what skills are necessary for these new roles, and how to prepare yourself to be the candidate of choice for these positions when they develop. Challenges often encountered will be discussed, including suggestions on how to turn potential difficulties into positive growth experiences. Hopefully, at the conclusion, you will be able to answer the question "Why me?"--either in the form of "Why have I been asked to take on this role?" or "Why might I want to pursue such a role with enthusiasm?" PMID:12046275

  3. Integrated chemical species analysis with source-receptor modeling results to characterize the effects of terrain and monsoon on ambient aerosols in a basin.

    PubMed

    Chen, Chi-Fan; Liang, Jeng-Jong

    2013-05-01

    This study integrated estimated oxidation ratio of sulfur (SOR) and oxidation ratio of nitrogen (NOR) with source-receptor modeling results to identify the effects of terrain and monsoons on ambient aerosols in an urban area (north basin) and a rural area (south basin) of the Taichung Basin. The estimated results indicate that the conversion of sulfur mainly occurs in fine particles (PM₂.₅), whereas the conversion of nitrogen occurs in approximately equal quantities of PM₂.₅ and coarse particles (PM₂.₅-₁₀). The results show a direct relationship for PM₂.₅ between the modeling results with SOR and NOR. The high PM₂.₅ SOR, NOR, and secondary aerosol values all occurred in the upwind area during both monsoons; this shows that the photochemical reaction and the terrain effect on the pollutant transmission were significant in the basin. Additionally, the urban heat island effect on the urban area and the valley effect on the rural area were significant. The results show that secondary aerosol in PM₂.₅-₁₀ contributed approximately 10 % during both monsoons, and the difference in the contribution from secondary aerosol between both areas was small. Vehicle exhaust emissions and wind-borne dust were two crucial PM2.5-10 contributors during both monsoons; their average contributions in both areas were higher than 34 and 32 %, respectively. PMID:22996820

  4. Pacific freshening drives Pliocene cooling and Asian monsoon intensification

    PubMed Central

    Nie, Junsheng; Stevens, Thomas; Song, Yougui; King, John W.; Zhang, Rui; Ji, Shunchuan; Gong, Lisha; Cares, Danielle

    2014-01-01

    The monsoon is a fundamental component of Earth's climate. The Pliocene warm period is characterized by long-term global cooling yet concurrent monsoon dynamics are poorly known. Here we present the first fully quantified and calibrated reconstructions of separate Pliocene air temperature and East Asian summer monsoon precipitation histories on the Chinese Loess Plateau through joint analysis of loess/red clay magnetic parameters with different sensitivities to air temperature and precipitation. East Asian summer monsoon precipitation shows an intensified trend, paradoxically at the same time that climate cooled. We propose a hitherto unrecognized feedback where persistently intensified East Asian summer monsoon during the late Pliocene, triggered by the gradual closure of the Panama Seaway, reinforced late Pliocene Pacific freshening, sea-ice development and ice volume increase, culminating in initiation of the extensive Northern Hemisphere glaciations of the Quaternary Ice Age. This feedback mechanism represents a fundamental reinterpretation of the origin of the Quaternary glaciations and the impact of the monsoon. PMID:24969361

  5. Tracking South Asian Monsoon in the 21st Century

    NASA Astrophysics Data System (ADS)

    Rastogi, D.; Mei, R.; Hodges, K. I.; Ashfaq, M.

    2013-05-01

    In this study, we analyze the simulations of the Global Climate Models that are part of the Coupled Model Intercomparison Project Phase 5 (CMIP5) over the South Asian summer monsoon region for the historic (1960-2005) and the 21st century projection (2006-2100) periods. We apply two evaluation matrices namely precipitation recycling ratio analysis and monsoon depressions tracking algorithm to investigate the accuracy of the simulated processes in the GCMs that control the observed spatial and temporal distribution of South Asian summer monsoon rainfall. We sub-select the GCMs for the future period evaluations based on their ability in the simulation of different moisture sources and the accuracy of the low pressure systems tracks that transport moisture over the South Asian land during summer monsoon season in the baseline period. Further, we use selected GCMs to understand the effect of increase in greenhouse forcing on the frequency and tracks of the low-pressure systems during summer monsoon season, and on the moisture sources. These analyses will improve our understanding of the ability of CMIP5 GCMs in the simulation of South Asian summer monsoon dynamics and provide important implications for the reliability of future climate projections over this region.

  6. Effect of dust on the iNdian summer monsoon

    NASA Astrophysics Data System (ADS)

    Maharana, Pyarimohan; Priyadarshan Dimri, Ashok

    2015-04-01

    The atmospheric dust plays a major role in deciding the radiation balance over the earth. The dust scatters the light, acts as cloud condensation nuclei, and hence helps in the formation of different types of clouds. This property of the dust has a long term effect on the Indian summer monsoon and its spatial distribution. India receives around 80% of its annual rainfall during summer monsoon and around 50% of the Indian population depends upon the monsoonal rain for the agricultural activities. The rain also has an important contribution to the industry, water resource management, ground water recharge, provide relief from the heat and also play a major role in deciding the socio-economic condition of a major part of the population. Two sets of simulations (control and dust chemistry simulation) are made to analyze the effect of dust on the Indian summer monsoon. Both the simulations nicely represent the spatial structure of different meteorological parameters. The magnitude of the pressure gradient, circulation and the precipitation is more during the JJAS for the dust chemistry simulation except for the temperature climatology. The analysis of the pre-monsoon and May temperature climatology reflects that the heating of the land mass is more in the dust chemistry simulation as compared to the control simulation, which is providing the strength to the monsoon flow during JJAS. The dust simulation shows that it increases the hydrological cycle over the Indian land mass.

  7. An index for the interface between the Indian summer monsoon and the East Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Cao, Jie; Hu, Jinming; Tao, Yun

    2012-09-01

    IIE, the interface between the Indian Summer Monsoon (ISM) and the East Asian Summer Monsoon (EASM), is defined using the equivalent potential temperature and summer long-term mean reanalysis data provided by NOAA/OAR/ESRL PSD. The June-July-August reanalysis data for the period 1951-2008 and empirical orthogonal function analysis are further applied to obtain the IIE index at the near-surface isobaric level. The index has a prominent interannual variation that is strongly correlated with the seesaw variation between the ISM and EASM. When a strong EASM and weak ISM occur, this interface index is higher than the normal, with the interface between the two summer monsoons shifting farther eastward than normal. When a weak EASM and strong ISM appear, the index is lower than normal, with the interface moving farther westward than normal. The western North Pacific subtropical high, a major factor in the EASM system, plays an important role in the year-to-year variation of the IIE. Compared with approaches taken in previous studies, this index objectively and quantitatively describes the IIE variation and better represents the two teleconnection patterns associated with the Asian summer monsoon, thus enhancing interpretations of the interaction between the ISM and EASM and its effects on regional droughts and floods in East Asia.

  8. Monsoon circulation and atmospheric ozone

    NASA Astrophysics Data System (ADS)

    Khrgian, A. Kh.; Nguyen, Van Thang

    1991-01-01

    The effect of the Indonesian-Australian winter monsoon, proceeding from the Asian continent to the south, on the atmospheric ozone is examined. It is shown that large-scale atmospheric circulation phenomena caused by monsoons in the tropical regions of Australia and in south-eastern Asia can cause significant falls in atmospheric ozone concentrations. The common occurrence of such phenomena might explain the higher-than-average incidence of skin cancer in Australia.

  9. Possible role of pre-monsoon sea surface warming in driving the summer monsoon onset over the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Li, Kuiping; Liu, Yanliang; Yang, Yang; Li, Zhi; Liu, Baochao; Xue, Liang; Yu, Weidong

    2015-10-01

    Sea surface temperature (SST) reaches its annual maximum just before the summer monsoon onset and collapses soon after in the central areas of the Bay of Bengal (BoB). Here, the impact of the peak in the pre-monsoon SST on triggering the earliest monsoon onset in the BoB is investigated, with a focus on the role they play in driving the first-branch northward-propagating intra-seasonal oscillations (FNISOs) over the equatorial Eastern Indian Ocean (EIO). During the calm pre-monsoon period, sea surface warming in the BoB could increase the surface equivalent potential temperature (θe) in several ways. Firstly, warming of the sea surface heats the surface air through sensible heating, which forces the air temperature to follow the SST. The elevated air surface temperature accounts for 30 % of the surface θe growth. Furthermore, the elevated air temperature raises the water vapor capacity of the surface air to accommodate more water vapor. Constrained by the observation that the surface relative humidity is maintained nearly constant during the monsoon transition period, the surface specific humidity exhibits a significant increase, according to the Clausius-Clapeyron relationship. Budget analysis indicates that the additional moisture is primarily obtained from sea surface evaporation, which also exhibits a weak increasing trend due to the sea surface warming. In this way, it contributes about 70 % to the surface θe growth. The rapid SST increase during the pre-monsoon period preconditions the summer monsoon onset over the BoB through its contributions to significantly increase the surface θe, which eventually establishes the meridional asymmetry of the atmospheric convective instability in the EIO. The pre-established greater convective instability leads to the FNISO convections, and the summer monsoon is triggered in the BoB region.

  10. Possible role of pre-monsoon sea surface warming in driving the summer monsoon onset over the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Li, Kuiping; Liu, Yanliang; Yang, Yang; Li, Zhi; Liu, Baochao; Xue, Liang; Yu, Weidong

    2016-08-01

    Sea surface temperature (SST) reaches its annual maximum just before the summer monsoon onset and collapses soon after in the central areas of the Bay of Bengal (BoB). Here, the impact of the peak in the pre-monsoon SST on triggering the earliest monsoon onset in the BoB is investigated, with a focus on the role they play in driving the first-branch northward-propagating intra-seasonal oscillations (FNISOs) over the equatorial Eastern Indian Ocean (EIO). During the calm pre-monsoon period, sea surface warming in the BoB could increase the surface equivalent potential temperature (θe) in several ways. Firstly, warming of the sea surface heats the surface air through sensible heating, which forces the air temperature to follow the SST. The elevated air surface temperature accounts for 30 % of the surface θe growth. Furthermore, the elevated air temperature raises the water vapor capacity of the surface air to accommodate more water vapor. Constrained by the observation that the surface relative humidity is maintained nearly constant during the monsoon transition period, the surface specific humidity exhibits a significant increase, according to the Clausius-Clapeyron relationship. Budget analysis indicates that the additional moisture is primarily obtained from sea surface evaporation, which also exhibits a weak increasing trend due to the sea surface warming. In this way, it contributes about 70 % to the surface θe growth. The rapid SST increase during the pre-monsoon period preconditions the summer monsoon onset over the BoB through its contributions to significantly increase the surface θe, which eventually establishes the meridional asymmetry of the atmospheric convective instability in the EIO. The pre-established greater convective instability leads to the FNISO convections, and the summer monsoon is triggered in the BoB region.

  11. Spatiotemporal variability of rainfall extremes in monsoonal climates - examples from the South American Monsoon and the Indian Monsoon Systems (Invited)

    NASA Astrophysics Data System (ADS)

    Bookhagen, B.; Boers, N.; Marwan, N.; Malik, N.; Kurths, J.

    2013-12-01

    Monsoonal rainfall is the crucial component for more than half of the world's population. Runoff associated with monsoon systems provide water resources for agriculture, hydropower, drinking-water generation, recreation, and social well-being and are thus a fundamental part of human society. However, monsoon systems are highly stochastic and show large variability on various timescales. Here, we use various rainfall datasets to characterize spatiotemporal rainfall patterns using traditional as well as new approaches emphasizing nonlinear spatial correlations from a complex networks perspective. Our analyses focus on the South American (SAMS) and Indian (ISM) Monsoon Systems on the basis of Tropical Rainfall Measurement Mission (TRMM) using precipitation radar and passive-microwave products with horizontal spatial resolutions of ~5x5 km^2 (products 2A25, 2B31) and 25x25 km^2 (3B42) and interpolated rainfall-gauge data for the ISM (APHRODITE, 25x25 km^2). The eastern slopes of the Andes of South America and the southern front of the Himalaya are characterized by significant orographic barriers that intersect with the moisture-bearing, monsoonal wind systems. We demonstrate that topography exerts a first-order control on peak rainfall amounts on annual timescales in both mountain belts. Flooding in the downstream regions is dominantly caused by heavy rainfall storms that propagate deep into the mountain range and reach regions that are arid and without vegetation cover promoting rapid runoff. These storms exert a significantly different spatial distribution than average-rainfall conditions and assessing their recurrence intervals and prediction is key in understanding flooding for these regions. An analysis of extreme-value distributions of our high-spatial resolution data reveal that semi-arid areas are characterized by low-frequency/high-magnitude events (i.e., are characterized by a ';heavy tail' distribution), whereas regions with high mean annual rainfall have a

  12. Stratospheric Water Vapor and the Asian Monsoon: An Adjoint Model Investigation

    NASA Technical Reports Server (NTRS)

    Olsen, Mark A.; Andrews, Arlyn E.

    2003-01-01

    A new adjoint model of the Goddard Parameterized Chemistry and Transport Model is used to investigate the role that the Asian monsoon plays in transporting water to the stratosphere. The adjoint model provides a unique perspective compared to non-diffusive and non-mixing Lagrangian trajectory analysis. The quantity of water vapor transported from the monsoon and the pathways into the stratosphere are examined. The emphasis is on the amount of water originating from the monsoon that contributes to the tropical tape recorder signal. The cross-tropopause flux of water from the monsoon to the midlatitude lower stratosphere will also be discussed.

  13. Tohono O'odham Monsoon Climatology

    NASA Astrophysics Data System (ADS)

    Ackerman, G.

    2006-12-01

    The North American monsoon is a summertime weather phenomenon that develops over the southwestern North America. For thousands of years the Tohono O'odham people of this area have depended on the associated rainy season (Jukiabig Masad) to grow traditional crops using runoff agriculture. Today, the high incidence of Type II diabetes among native people has prompted many to return to their traditional agricultural diets. Local monsoon onset dates and the North American Regional Reanalysis dataset were used to develop a 24-year Tohono O'odham Nation (TON) monsoon and pre-monsoon climatology that can be used as a tool for planning runoff agriculture. Using monsoon composite datasets, temporal and spatial correlations between antecedent period meteorological variables, monsoon onset dates and total monsoon precipitation were examined to identify variables that could be useful in predicting the onset and intensity of the monsoon. The results suggest additional research is needed to identify variables related to monsoon onset and intensity.

  14. Monsoon definition discrepancies in Bangladesh

    NASA Astrophysics Data System (ADS)

    Reeve, M. A.; Chu, P.-S.

    2012-04-01

    This study applies different definitions of what previous authors have called the monsoon over Bangladesh. The aim is to identify the definitions that most resemble the perceptions of the local rural communities and how they define the monsoon. Considering how the local communities define the monsoon is extremely important since these populations are most vulnerable to future changes in climate and more specifically monsoon rainfall. It has been pointed out previously that the monsoon research community had not reached a consensus on a unified definition of the monsoon rainy season. This problem seems to be profound in Bangladesh where results from the application of different definitions show very large discrepancies. Since these discrepancies exist, confusing terms such as monsoon, summer rainy season, and monsoon rainy season can have large implications for impact studies and interpretations of future climate projections. The results in this paper show that these terms need to be explicitly and carefully defined with regards to Bangladesh. Wind-, rain- and OLR-based definitions are applied to several different datasets to show how large these discrepancies can be over Bangladesh. Differences in onset dates are found to be around 8-9 pentads (40-45 days) in some regions of the country. The largest differences are seen in the north-east region, where rain-based definitions give much earlier onsets than wind- or OLR-based definitions. The results show that mesoscale phenomena could be influencing the climate in the north-east part of Bangladesh and causing much earlier summer rainfall. According to the results from a previous social study, the local communities in fact consider this early rainfall as the monsoon onset. By identifying the definition that best resembles the local community perceptions through out Bangladesh, then future information can be constructed, so that it is more easily understood by and applicable to the millions of people climate change will

  15. Summer monsoon onset-induced changes of autotrophic pico- and nanoplankton in the largest monsoonal estuary along the west coast of India.

    PubMed

    Mohan, Arya P; Jyothibabu, R; Jagadeesan, L; Lallu, K R; Karnan, C

    2016-02-01

    This study presents the response of autotrophic pico- and nanoplankton to southwest monsoon-associated hydrographical transformations in the Cochin backwaters (CBW), the largest monsoonal estuary along the west coast of India. By the onset of the southwest monsoon, the euhaline/mesohaline conditions in the downstream/upstream of CBW usually transform into oligohaline/limnohaline. The flow cytometer analysis revealed the dominance of picoeukaryotes > Synechococcus > nanoautotrophs, with Prochlorococcus either very low or entirely absent. Synechococcus abundance was high during the pre-southwest monsoon (10(6) L(-1)), which dwindled with heavy fresh water influx during the southwest monsoon (10(5) L(-1)). The drastic drop in salinity and faster flushing of the CBW during the southwest monsoon replaced the euhaline/mesohaline strain of Synechococcus with an oligohaline/limnohaline strain. Epifluorescence microscopy analyses showed that, among the two strains of Synechococcus, the phycoerythrin-rich (PE-rich) one was dominant in the mesohaline/euhaline conditions, whereas the phycocyanin-rich (PC-rich) strain dominated in oligohaline/limnohaline conditions. Although Synechococcus abundance diminished during the southwest monsoon, the total abundance of picoplankton community remained virtually unchanged in the upstream due to an increase in the abundance of picoeukaryotes. On the other hand, the autotrophic nanoplankton abundance increased from pre-monsoon levels of av. 3.8 × 10(6)-av. 9.5 × 10(6) L(-1) at the onset of the southwest monsoon. Utilizing suitable multivariate analyses, the study illustrated the differential response and niche preference of various smaller communities of autotrophs to the southwest monsoon-associated hydrographical ramifications in a large monsoonal estuary, which may be applicable to similar such estuaries situated along the Indian coastline. PMID:26780412

  16. The Origins of ITCZs, Monsoons, and Monsoon Onset

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.

    2009-01-01

    Intertropical convergence zones (ITCZs), monsoons and monsoon onset are among the most prominent of atmospheric phenomena. Understanding their origins is fundamental to a full understanding of the atmospheric general circulation and has challenged meteorologists for a very long time. There has been important progress in understanding these phenomena in recent years, and in this seminar, recent developments, to which the speaker has contributed, are reviewed. First, contrary to conventional belief, land-sea thermal contrast is not necessary for monsoons to form. Second, monsoon onset occurs when there is a sudden poleward jump of an ITCZ during its annual cycle of latitudinal movement. A monsoon, then, is an ITCZ after its poleward jump. Third, the SST latitudinal maximum is not the most significant, or even a necessary, factor in the formation of an ITCZ; there are other important, if not more important, factors. These factors are the interaction between convection and surface fluxes, the interaction between convection and radiation, and the earth's rotation. Finally, the recent understanding of how ITCZs form has led to a conceptual explanation for the origin of the double ITCZ bias in GCM simulations.

  17. Multidisciplinary computational aerosciences

    NASA Technical Reports Server (NTRS)

    Kutler, Paul

    1992-01-01

    As the challenges of single disciplinary computational physics are met, such as computational fluid dynamics, computational structural mechanics, computational propulsion, computational aeroacoustics, computational electromagnetics, etc., scientists have begun investigating the combination of these single disciplines into what is being called multidisciplinary computational aerosciences (MCAS). The combination of several disciplines not only offers simulation realism but also formidable computational challenges. The solution of such problems will require computers orders of magnitude larger than those currently available. Such computer power can only be supplied by massively parallel machines because of the current speed-of-light limitation of conventional serial systems. Even with such machines, MCAS problems will require hundreds of hours for their solution. To efficiently utilize such a machine, research is required in three areas that include parallel architectures, systems software, and applications software. The main emphasis of this paper is the applications software element. Examples that demonstrate application software for multidisciplinary problems currently being solved at NASA Ames Research Center are presented. Pacing items for MCAS are discussed such as solution methodology, physical modeling, computer power, and multidisciplinary validation experiments.

  18. Pleistocene Indian Monsoon Rainfall Variability

    NASA Astrophysics Data System (ADS)

    Yirgaw, D. G.; Hathorne, E. C.; Giosan, L.; Collett, T. S.; Sijingeo, A. V.; Nath, B. N.; Frank, M.

    2014-12-01

    The past variability of the Indian Monsoon is mostly known from records of wind strength over the Arabian Sea. Here we investigate proxies for fresh water input and runoff in a region of strong monsoon precipitation that is a major moisture source for the east Asian Monsoon. A sediment core obtained by the IODP vessel JOIDES Resolution and a gravity core from the Alcock Seamount complex in the Andaman Sea are used to examine the past monsoon variability on the Indian sub-continent and directly over the ocean. The current dataset covers the last glacial and deglacial but will eventually provide a Pleistocene record. We utilise the ecological habitats of G. sacculifer and N. dutertrei to investigate the freshwater-induced stratification with paired Mg/Ca and δ18O analyses to estimate seawater δ18O (δ18Osw). During the last 60 kyrs, Ba/Ca ratios and δ18Osw values generally agree well between the two cores and suggest the weakest surface runoff and monsoon during the LGM and strongest monsoon during the Holocene. The difference in δ18O between the species, interpreted as a proxy for upper ocean stratification, implies stratification developed around 37 ka and remained relatively constant during the LGM, deglacial and Holocene. To investigate monsoon variability for intervals in the past, single shell Mg/Ca and δ18O analyses have been conducted. Mg/Ca ratios from individual shells of N. dutertrei suggest relatively small changes in temperature. However, individual N. dutertrei δ18O differ greatly between the mid-Holocene and samples from the LGM and a nearby core top. The mid-Holocene individuals have a greater range and large skew towards negative values indicating greater fresh water influence.

  19. Investigation of summer monsoon rainfall variability in Pakistan

    NASA Astrophysics Data System (ADS)

    Hussain, Mian Sabir; Lee, Seungho

    2016-08-01

    This study analyzes the inter-annual and intra-seasonal rainfall variability in Pakistan using daily rainfall data during the summer monsoon season (June to September) recorded from 1980 to 2014. The variability in inter-annual monsoon rainfall ranges from 20 % in northeastern regions to 65 % in southwestern regions of Pakistan. The analysis reveals that the transition of the negative and positive anomalies was not uniform in the investigated dataset. In order to acquire broad observations of the intra-seasonal variability, an objective criterion, the pre-active period, active period and post-active periods of the summer monsoon rainfall have demarcated. The analysis also reveals that the rainfall in June has no significant contribution to the increase in intra-seasonal rainfall in Pakistan. The rainfall has, however, been enhanced in the summer monsoon in August. The rainfall of September demonstrates a sharp decrease, resulting in a high variability in the summer monsoon season. A detailed examination of the intra-seasonal rainfall also reveals frequent amplitude from late July to early August. The daily normal rainfall fluctuates significantly with its maximum in the Murree hills and its minimum in the northwestern Baluchistan.

  20. Investigation of summer monsoon rainfall variability in Pakistan

    NASA Astrophysics Data System (ADS)

    Hussain, Mian Sabir; Lee, Seungho

    2016-01-01

    This study analyzes the inter-annual and intra-seasonal rainfall variability in Pakistan using daily rainfall data during the summer monsoon season (June to September) recorded from 1980 to 2014. The variability in inter-annual monsoon rainfall ranges from 20 % in northeastern regions to 65 % in southwestern regions of Pakistan. The analysis reveals that the transition of the negative and positive anomalies was not uniform in the investigated dataset. In order to acquire broad observations of the intra-seasonal variability, an objective criterion, the pre-active period, active period and post-active periods of the summer monsoon rainfall have demarcated. The analysis also reveals that the rainfall in June has no significant contribution to the increase in intra-seasonal rainfall in Pakistan. The rainfall has, however, been enhanced in the summer monsoon in August. The rainfall of September demonstrates a sharp decrease, resulting in a high variability in the summer monsoon season. A detailed examination of the intra-seasonal rainfall also reveals frequent amplitude from late July to early August. The daily normal rainfall fluctuates significantly with its maximum in the Murree hills and its minimum in the northwestern Baluchistan.

  1. Multidisciplinary Concurrent Design Optimization via the Internet

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Kelkar, Atul G.; Koganti, Gopichand

    2001-01-01

    A methodology is presented which uses commercial design and analysis software and the Internet to perform concurrent multidisciplinary optimization. The methodology provides a means to develop multidisciplinary designs without requiring that all software be accessible from the same local network. The procedures are amenable to design and development teams whose members, expertise and respective software are not geographically located together. This methodology facilitates multidisciplinary teams working concurrently on a design problem of common interest. Partition of design software to different machines allows each constituent software to be used on the machine that provides the most economy and efficiency. The methodology is demonstrated on the concurrent design of a spacecraft structure and attitude control system. Results are compared to those derived from performing the design with an autonomous FORTRAN program.

  2. Delayed onset of the 2002 Indian monsoon

    NASA Astrophysics Data System (ADS)

    Flatau, M. K.; Flatau, P. J.; Schmidt, J.; Kiladis, G. N.

    2003-07-01

    We show that there is a set of dynamical predictors, which facilitate forecasting of a delayed monsoon onset. The main dynamical contributor is the early May propagation of the ``bogus onset Intraseasonal Oscillation'' which triggers a set of events precluding the climatological monsoon onset. We analyze in detail the 2002 monsoon onset and show that it followed a pattern described in our previous study. We notice that the 2003 monsoon onset followed very similar pattern and was delayed.

  3. From Systems Understanding to Personalized Medicine: Lessons and Recommendations Based on a Multidisciplinary and Translational Analysis of COPD.

    PubMed

    Roca, Josep; Cano, Isaac; Gomez-Cabrero, David; Tegnér, Jesper

    2016-01-01

    Systems medicine, using and adapting methods and approaches as developed within systems biology, promises to be essential in ongoing efforts of realizing and implementing personalized medicine in clinical practice and research. Here we review and critically assess these opportunities and challenges using our work on COPD as a case study. We find that there are significant unresolved biomedical challenges in how to unravel complex multifactorial components in disease initiation and progression producing different clinical phenotypes. Yet, while such a systems understanding of COPD is necessary, there are other auxiliary challenges that need to be addressed in concert with a systems analysis of COPD. These include information and communication technology (ICT)-related issues such as data harmonization, systematic handling of knowledge, computational modeling, and importantly their translation and support of clinical practice. For example, clinical decision-support systems need a seamless integration with new models and knowledge as systems analysis of COPD continues to develop. Our experience with clinical implementation of systems medicine targeting COPD highlights the need for a change of management including design of appropriate business models and adoption of ICT providing and supporting organizational interoperability among professional teams across healthcare tiers, working around the patient. In conclusion, in our hands the scope and efforts of systems medicine need to concurrently consider these aspects of clinical implementation, which inherently drives the selection of the most relevant and urgent issues and methods that need further development in a systems analysis of disease. PMID:26677188

  4. Halitosis: the multidisciplinary approach

    PubMed Central

    Bollen, Curd ML; Beikler, Thomas

    2012-01-01

    Halitosis, bad breath or oral malodour are all synonyms for the same pathology. Halitosis has a large social and economic impact. For the majority of patients suffering from bad breath, it causes embarrassment and affects their social communication and life. Moreover, halitosis can be indicative of underlying diseases. Only a limited number of scientific publications were presented in this field until 1995. Ever since, a large amount of research is published, often with lack of evidence. In general, intraoral conditions, like insufficient dental hygiene, periodontitis or tongue coating are considered to be the most important cause (85%) for halitosis. Therefore, dentists and periodontologists are the first-line professionals to be confronted with this problem. They should be well aware of the origin, the detection and especially of the treatment of this pathology. In addition, ear–nose–throat-associated (10%) or gastrointestinal/endocrinological (5%) disorders may contribute to the problem. In the case of halitophobia, psychiatrical or psychological problems may be present. Bad breath needs a multidisciplinary team approach: dentists, periodontologists, specialists in family medicine, ear–nose–throat surgeons, internal medicine and psychiatry need to be updated in this field, which still is surrounded by a large taboo. Multidisciplinary bad breath clinics offer the best environment to examine and treat this pathology that affects around 25% of the whole population. This article describes the origin, detection and treatment of halitosis, regarded from the different etiological origins. PMID:22722640

  5. Monsoon low-level jet over the gateway of Indian summer monsoon: a comparative study for two distinct monsoon years

    NASA Astrophysics Data System (ADS)

    Narayanan, Suresh; Kottayil, Ajil; Mohanakumar, K.

    2016-05-01

    High-resolution radiosonde measurements are used to study the characteristics and dynamics of monsoon low-level jet at the monsoon onset region of Cochin (10.04° N; 76.32° E) in India under two contrasting monsoon years, 2013 and 2015. The core speed and core height of the low-level jet is significantly higher during the strong monsoon year of 2013 than for the monsoon-deficient year of 2015. The average core heights for these years are seen to exist at 2.03 and 2.20 km, respectively. The low-level jet-modulated parameters such as moisture flux, momentum flux and kinetic energy flux show higher values during monsoon of 2013 as compared to 2015. Among the monsoon low-level jet parameters, the moisture flux has the strongest influence on the observed rainfall over Cochin. Also, an exponential function is seen to best explain the moisture flux-rainfall relationship. The weakening of monsoon during 2015 is attributed most likely to an eastward shift of the core convective activity from the Indian subcontinent as revealed from satellite observation of the upper tropospheric humidity. A close association is seen between the rainfall over Cochin and the convective activity over the Indian subcontinent. Observational studies such as this, which links monsoon rainfall, monsoon low-level jet parameters and convective activity, are expected to enhance the understanding of monsoon processes in general and subsequently improve the forecasting skill of models.

  6. The relationship between Arabian Sea upwelling and Indian Monsoon revisited

    NASA Astrophysics Data System (ADS)

    Yi, Xing; Zorita, Eduardo; Hünicke, Birgit

    2015-04-01

    Coastal upwelling is important to marine ecosystems and human activities. It transports nutrient-rich deep water mass that supports marine biological productivity. In this study, we aim to characterize the large-scale climate forcings that drive upwelling along the western Arabian Sea coast. Studies based on ocean sediments suggest that there is a link between this coastal upwelling system and the Indian summer monsoon. However, a more direct method is needed to examine the influence of various forcings on upwelling. For this purpose, we analyse a high-resolution (about 10 km) global ocean simulation (denoted STORM), which is based on the MPI-OM model developed by the Max-Planck-Institute for Meteorology in Hamburg driven by the global meteorological reanalysis NCEP over the period 1950-2010. This very high spatial resolution allows us to identify characteristics of the coastal upwelling system. We compare the simulated upwelling velocity of STORM with two traditional upwelling indices: along-shore wind speed and sea surface temperature. The analysis reveals good consistency between these variables, with high correlations between coastal upwelling and along-shore wind speed (r=0.85) as well as coastal sea surface temperature (r=-0.77). To study the impact of the monsoon on the upwelling we analyse both temporal and spatial co-variability between upwelling velocity and the Indian summer monsoon index. The spatial analysis shows that the impact of the monsoon on the upwelling is concentrated along the coast, as expected. However, somewhat unexpectedly, the temporal correlation between the coastal upwelling and the monsoon index is rather weak (r=0.26). Also, the spatial structure of upwelling in the Arabian Sea as revealed by a Principal Component Analysis is rather rich, indicating that factors other than the Monsoon are also important drivers of upwelling. In addition, no detectable trend in our coastal upwelling is found in the simulation that would match the

  7. Toward a More Holistic Understanding of Filicide: A Multidisciplinary Analysis of 32 Years of U.S. Arrest Data

    PubMed Central

    Mariano, Timothy Y.; Chan, Heng Choon (Oliver); Myers, Wade C.

    2014-01-01

    Filicide is the killing one or more children by a parent, stepparent, or other parental figure. This study presents the first comprehensive analysis of U.S. filicide, drawn from 94,146 filicide arrests tabulated over a 32-year period in the U.S. Federal Bureau of Investigation’s Supplementary Homicide Reports (SHR). Filicides comprised 15% of all murders during this period. Modal victim age was less than one year old. One-third of victims were under a year old; over two-thirds were age six or less. Fathers were as likely as mothers to kill infants. The mean age of offenders was 32 years with a mode of 22 years, and nearly three-quarters were age 18 to 45. Female offenders were notably younger than their male counterparts. Black (or African American) offenders were significantly overrepresented in filicide compared to Whites. Most common killing methods included using hands and feet, strangulation, beating, asphyxiation, drowning, and defenestration. Stepparents were not at higher risk of filicide than genetic parents, but were twice as likely to kill using firearms. Synthesizing these results with studies from other fields, we propose three transdisciplinary, empirically-informed filicide categories primarily defined by effects of (1) psychopathology associated with neurotransmitter disturbances, (2) gender and sex hormones, and (3) evolutionary motives. Approaching filicide using this proposed hypothetical framework for future research may help identify at-risk populations and improve prevention and treatment. PMID:24529774

  8. Toward a more holistic understanding of filicide: a multidisciplinary analysis of 32 years of U.S. arrest data.

    PubMed

    Mariano, Timothy Y; Chan, Heng Choon Oliver; Myers, Wade C

    2014-03-01

    Filicide is the killing of one or more children by a parent, stepparent, or other parental figure. This study presents the first comprehensive analysis of U.S. filicide, drawn from 94,146 filicide arrests tabulated over a 32-year period in the U.S. Federal Bureau of Investigation's Supplementary Homicide Reports (SHR). Filicides comprised 15% of all murders during this period. Modal victim age was less than one year old. One-third of the victims were under a year old; over two-thirds of the victims were age six or less. Fathers were as likely as mothers to kill infants. The mean age of offenders was 32 years with a mode of 22 years, and nearly three-quarters were aged 18-45. Female offenders were notably younger than their male counterparts. Black (or African American) offenders were significantly overrepresented in filicide compared to Whites. Most common killing methods included using hands and feet, strangulation, beating, asphyxiation, drowning, and defenestration. Stepparents were not at higher risk of filicide than genetic parents, but were twice as likely to kill using firearms. Synthesizing these results with studies from other fields, we propose three transdisciplinary, empirically informed filicide categories primarily defined by effects of (1) psychopathology associated with neurotransmitter disturbances, (2) gender and sex hormones, and (3) evolutionary motives. Approaching filicide using this proposed hypothetical framework for future research may help identify at-risk populations and improve prevention and treatment. PMID:24529774

  9. Multiscale Variability of the Monsoon Climate

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, V.

    2005-05-01

    The reliability of weather forecasts is limited to a few days and is mainly determined by the synoptic scale features of the atmosphere. The predictability of weather models depends on the error growth determined by nonlinear terms representing advection. Smaller scale features, such as convection, may also influence the predictability of the synoptic scale forecasts. While the prediction of instantaneous states of the system may be impossible on longer time scale, there is optimism for medium-range and long-range forecasts of time-averaged features of the climate system. Such optimism is based on the observation that slowly-varying boundary forces such as sea surface temperature, soil moisture and snow influence the variability of the atmosphere on a longer time scale, especially in the tropical region. This study discusses the variability of such a tropical climate system, the monsoon, and shows that its variability consists of a combination of large-scale persistent seasonal mean component and intraseasonal variability of different time scales. The spatial variability of these components is also found to consist of different scales. By performing multi-channel singular spectrum analysis of daily rainfall, low-pressure systems, outgoing long-wave radiation and winds, two oscillatory modes with periods of about 45 and 20 days have been identified and shown to correspond to the active and break phases of the monsoon. These two intraseasonal modes, however, do not contribute much to the seasonal mean rainfall. Three other components of the MSSA are identified as the contributors to the seasonal mean rainfall, possibly arising from the influence of slowly-varying boundary forces. The prospect for making accurate long-range forecasts of the monsoon depends on the relative magnitudes of the large-scale seasonally persistent component and the intraseasonal component and on climate model experiments to establish a relation between the two components.

  10. Multidisciplinary mental health teams.

    PubMed

    Slade, M; Rosen, A; Shankar, R

    1995-01-01

    This study surveyed current practice amongst 91 Indian and Australian staff working within multidisciplinary mental health teams, looking at leadership skills, conflict resolution and therapeutic abilities. Length of training was associated with management skills, though these skill were more developed by psychiatric nurses and occupational therapists working in community settings. Hospital settings involved less consensual decision-making than community teams. Psychiatric nurses spent most time in clinical work, and occupational therapists were rated as less skilled in the therapeutic activities assessed than any other profession. Psychiatrists and clinical psychologists undertook most research. The activities assessed in this study could be undertaken by a team comprising psychiatrists, psychiatric nurses and social workers, with clinical psychologists employed where possible, especially for research or service evaluation. PMID:8847199

  11. Multidisciplinary Optimization Methods for Aircraft Preliminary Design

    NASA Technical Reports Server (NTRS)

    Kroo, Ilan; Altus, Steve; Braun, Robert; Gage, Peter; Sobieski, Ian

    1994-01-01

    This paper describes a research program aimed at improved methods for multidisciplinary design and optimization of large-scale aeronautical systems. The research involves new approaches to system decomposition, interdisciplinary communication, and methods of exploiting coarse-grained parallelism for analysis and optimization. A new architecture, that involves a tight coupling between optimization and analysis, is intended to improve efficiency while simplifying the structure of multidisciplinary, computation-intensive design problems involving many analysis disciplines and perhaps hundreds of design variables. Work in two areas is described here: system decomposition using compatibility constraints to simplify the analysis structure and take advantage of coarse-grained parallelism; and collaborative optimization, a decomposition of the optimization process to permit parallel design and to simplify interdisciplinary communication requirements.

  12. Long-term prediction of the Indian monsoon onset and withdrawal

    NASA Astrophysics Data System (ADS)

    Stolbova, Veronika; Surovyatkina, Elena; Bookhagen, Bodo; Kurths, Juergen

    2016-04-01

    Forecasting the onset and withdrawal of the Indian summer monsoon is crucial for life and prosperity of more than one billion inhabitants of the Indian subcontinent. However, accurate prediction of monsoon timing remains a challenge, despite numerous efforts. Here, we present a method for prediction of monsoon timing based on a critical transition precursor. We identify geographic regions - tipping elements of the monsoon - and use them as observation locations for predicting onset and withdrawal dates. Unlike most predictability methods, our approach does not rely on precipitation analysis, but on air temperature and relative humidity, which are well represented both in models and observations. The proposed method allows to predict onset two weeks earlier and withdrawal dates 1.5 months earlier than existing methods. In addition, it enables to correctly forecast monsoon duration for some anomalous years, often associated with El-Niño-Southern Oscillation.

  13. Lodestone Compass: Chinese or Olmec Primacy?: Multidisciplinary analysis of an Olmec hematite artifact from San Lorenzo, Veracruz, Mexico.

    PubMed

    Carlson, J B

    1975-09-01

    Considering the unique morphology (purposefully shaped polished bar with a groove) and composition (magnetic mineral with magnetic moment vector in the floating plane) of M-160, and acknowledging that the Olmec were a sophisticated people who possessed advanced knowledge and skill in working iron ore minerals, I would suggest for consideration that the Early Formative artifact M-160 was probably manufactured and used as what I have called a zeroth-order compass, if not a first-order compass. The data I have presented in this article support this hypothesis, although they are not sufficient to prove it. That M-160 could be used today as a geomagnetically directed pointer is undeniable. The original whole bar may indeed have pointed close to magnetic north-south. The groove functions well as a sighting mark, and the slight angle it makes with the axis of the bar appears to be the result of calibration rather than accident. A negative supporting argument is that M-160 looks utilitarian rather than decorative, and no function for the object other than that of a compass pointer has been suggested by anyone who has examined it critically. Whether such a pointer would have been used to point to something astronomical (zeroth-order compass) or to geomagnetic north-south (first-order compass) is entirely open to speculation. The observation of the family of Olmec site alignments 8 degrees west of north is a curiosity in its own right, and the possibility that these alignments have an astronomical or geomagnetic origin should be explored. I also believe that it is constructive to compare the first millennium Chinese, who used the lodestone compass for geomancy, with the Gulf Coast Olmec since both were agrarian-terrestrial societies. The Olmec's apparent concern with orientation and skillful use of magnetic minerals also stimulates one to draw cross-cultural parallels. The evidence and analysis offered in this article provide a basis for hypotheses of parallel cultural

  14. Recent and future changes in the Asian monsoon-ENSO relationship: Natural or forced?

    NASA Astrophysics Data System (ADS)

    Li, Xiaoqiong; Ting, Mingfang

    2015-05-01

    The Asian monsoon-ENSO (El Niño-Southern Oscillation) relationship in the 20th and 21st centuries is examined using observations and Coupled Model Intercomparison Project Phase 5 (CMIP5) model simulations. CMIP5 models can simulate the ENSO-monsoon spatial structure reasonably well when using the multimodel mean. Running correlations show prominent decadal variability of the ENSO-monsoon relationship in observations. The modeled ENSO-monsoon relation shows large intermodel spread, indicating large variations across the model ensemble. The anthropogenically forced component of ENSO-monsoon relationship is separated from the naturally varying component based on a signal-to-noise maximizing empirical orthogonal function analysis using global sea surface temperature (SST). Results show that natural variability plays a dominant role in the varied ENSO-monsoon relationship during the 20th century. In the 21st century, the forced component is dominated by enhanced monsoon rainfall associated with SST warming, which may contribute to a slightly weakened ENSO-monsoon relation in the future.

  15. Asynchronous evolution of the Indian and East Asian Summer Monsoon indicated by Holocene moisture patterns in monsoonal central Asia

    NASA Astrophysics Data System (ADS)

    Wang, Yongbo; Liu, Xingqi; Herzschuh, Ulrike

    2010-12-01

    The numerical meta-analysis of 92 proxy records (72 sites) of moisture and/or temperature change confirms earlier findings that the dominant trends of climatic evolution in monsoonal central Asia since the Last Glacial roughly parallel changes in Northern Hemisphere summer insolation, i.e. the period following the Last Glacial Maximum was characterized by dry and cold conditions until 15 cal. kyr BP, followed by a warm, wet period coincident with the Bølling/Allerød warm period and terminated by a cold, dry reversal during the Younger Dryas period. After an abrupt increase at the start of the Holocene, warm and wet conditions prevailed until ca. 4 cal. kyr BP when moisture levels and temperatures started to decrease. Ordination of moisture records reveals strong spatial heterogeneity in moisture evolution during the last 10 cal. kyr. The Indian Summer Monsoon (ISM) areas (northern India, Tibetan Plateau and southwest China) exhibit maximum wet conditions during the early Holocene, while many records from the area of the East Asian Summer Monsoon indicate relatively dry conditions, especially in north-central China where the maximum moisture levels occurred during the mid-Holocene. We assign such phenomena to strengthened Hadley Circulation centered over the Tibetan Plateau during the early Holocene which resulted in subsidence in the East Asian monsoonal regions leading to relatively dry conditions. Our observations of the asynchronous nature of the two Asian monsoon subsystems on millennial time scales have also been observed on annual time-scales as well as implied through the spatial analysis of vertical air motion patterns after strong ascending airflows over the Tibetan Plateau area that were calculated from NCEP/NCAR reanalysis data for the last 30 years. Analogous with the early Holocene, the enhancement of the ISM in a 'future warming world' will result in an increase in the asynchronous nature of the monsoon subsystems; this trend is already observed in

  16. Multi-Scale Predictions of the Asian Monsoons in the NCEP Climate Forecast System

    NASA Astrophysics Data System (ADS)

    Yang, S.

    2013-12-01

    A comprehensive analysis of the major features of the Asian monsoon system in the NCEP Climate Forecast System version 2 (CFSv2) and predictions of the monsoon by the model has been conducted. The intraseasonal-to-interannual variations of both summer monsoon and winter monsoon, as well as the annual cycles of monsoon climate, are focused. Features of regional monsoons including the monsoon phenomena over South Asia, East Asia, and Southeast Asia are discussed. The quasi-biweekly oscillation over tropical Asia and the Mei-yu climate over East Asia are also investigated. Several aspects of monsoon features including the relationships between monsoon and ENSO (including different types of ENSO: eastern Pacific warming and central Pacific warming), extratropical effects, dependence on time leads (initial conditions), regional monsoon features, and comparison between CFSv2 and CFS version 1 (CFSv1) are particularly emphasized. Large-scale characteristics of the Asian summer monsoon including several major dynamical monsoon indices and their associated precipitation patterns can be predicted several months in advance. The skill of predictions of the monsoon originates mostly from the impact of ENSO. It is found that large predictability errors occur in first three lead months and they only change slightly as lead time increases. The large errors in the first three lead months are associated with the large errors in surface thermal condition and atmospheric circulation in the central and eastern Pacific and the African continent. In addition, the response of the summer monsoon to ENSO becomes stronger with increase in lead time. The CFSv2 successfully simulates several major features of the East Asian winter monsoon and its relationships with the Arctic Oscillation, the East Asian subtropical jet, the East Asian trough, the Siberian high, and the lower-tropospheric winds. Surprisingly, the upper-tropospheric winds over the middle-high latitudes can be better simulated

  17. Asian summer monsoon onset barrier and its formation mechanism

    NASA Astrophysics Data System (ADS)

    Liu, Boqi; Liu, Yimin; Wu, Guoxiong; Yan, Jinghui; He, Jinhai; Ren, Suling

    2015-08-01

    The onset process of Asian summer monsoon (ASM) is investigated based on diagnostic analysis of observations of precipitation and synoptic circulation. Results show that after the ASM commences over the eastern Bay of Bengal (BOB) around early May, the onset can propagate eastwards towards the South China Sea and western Pacific but is blocked on its westward propagation along the eastern coast of India. This blocking, termed the "monsoon onset barrier (MOB)", presents a Gill-type circulation response to the latent heating released by BOB monsoon convection. This convective condensation heating generates summertime (wintertime) vertical easterly (westerly) shear to its east (west) and facilitates air ascent (descent). The convection then propagates eastward but gets trapped on its westward path. To the east of the central BOB, the surface air temperature (SAT) cools faster than the underlying sea surface temperature (SST) due to monsoon onset. Thus more sensible heat flux supports the onset convection to propagate eastward. To the west of the central BOB, however, the land surface sensible heating over the Indian Peninsula is strengthened by the enhanced anticyclone circulation and air descent induced by the BOB monsoon heating. The strengthened upstream warm horizontal advection then produces a warm SAT center over the MOB region, which together with the in situ cooled SST reduces the surface sensible heating and atmospheric available potential energy to prevent the occurrence of free convection. Therefore, it is the change in both large-scale circulation and air-sea interaction due to BOB summer monsoon onset that contributes to the MOB formation.

  18. Indian Monsoon Depression: Climatology and Variability

    SciTech Connect

    Yoon, Jin-Ho; Huang, Wan-Ru

    2012-03-09

    The monsoon climate is traditionally characterized by large seasonal rainfall and reversal of wind direction (e.g., Krishnamurti 1979). Most importantly this rainfall is the major source of fresh water to various human activities such as agriculture. The Indian subcontinent resides at the core of the Southeast Asian summer monsoon system, with the monsoon trough extended from northern India across Indochina to the Western Tropical Pacific (WTP). Large fraction of annual rainfall occurs during the summer monsoon season, i.e., June - August with two distinct maxima. One is located over the Bay of Bengal with rainfall extending northwestward into eastern and central India, and the other along the west coast of India where the lower level moist wind meets the Western Ghat Mountains (Saha and Bavardeckar 1976). The rest of the Indian subcontinent receives relatively less rainfall. Various weather systems such as tropical cyclones and weak disturbances contribute to monsoon rainfall (Ramage 1971). Among these systems, the most efficient rain-producing system is known as the Indian monsoon depression (hereafter MD). This MD is critical for monsoon rainfall because: (i) it occurs about six times during each summer monsoon season, (ii) it propagates deeply into the continent and produces large amounts of rainfall along its track, and (iii) about half of the monsoon rainfall is contributed to by the MDs (e.g., Krishnamurti 1979). Therefore, understanding various properties of the MD is a key towards comprehending the veracity of the Indian summer monsoon and especially its hydrological process.

  19. A Mesoscale Analysis of Column-Integrated Aerosol Properties in Northern India During the TIGERZ 2008 Pre-Monsoon Period and a Comparison to MODIS Retrievals

    NASA Technical Reports Server (NTRS)

    Giles, D. M.; Holben, B. N.; Tripathi, S. N.; Eck, T. F.; Newcomb, W. W.; Slutsker, I.; Dickerson, R. R.; Thompson, A. M.; Wang, S.-H.; Singh, R. P.; Sinyuk, A.

    2010-01-01

    opportunity to measure the spatial and temporal variations of aerosol loading in the IGP. The strong aerosol absorption derived from ground-based sun/sky radiometer measurements suggested the presence of a predominately black carbon and dust mixture during the pre-monsoon period. Consistent with the elevated heat-pump hypothesis, these absorbing aerosols found across Kanpur and the greater IGP region during the pre-monsoon period likely induced regional atmospheric warming, which lead to a more rapid advance of the southwest Asian monsoon and above normal precipitation over northern India in June 2008.

  20. Breakfast: a multidisciplinary approach

    PubMed Central

    2013-01-01

    Background The role of breakfast as an essential part of an healthy diet has been only recently promoted even if breakfast practices were known since the Middle Age. The growing scientific evidences on this topic are extremely sector-based nevertheless breakfast could be regarded from different point of views and from different expertises. This approach, that take into account history, sociology, anthropology, medicine, psychology and pedagogy, is useful to better understand the value of this meal in our culture. The aim of this paper was to analyse breakfast-related issues based on a multidisciplinary approach with input by specialists from different fields of learning. Discussion Breakfast is now recommended as part of a diet because it is associated with healthier macro- and micronutrient intakes, body mass index and lifestyle. Moreover recent studies showed that breakfast improves cognitive function, intuitive perception and academic performance. Research demonstrates the importance of providing breakfast not only to children but in adults and elderly too. Although the important role breakfast plays in maintaining the health, epidemiological data from industrialised countries reveal that many individuals either eat a nutritionally unhealthy breakfast or skip it completely. Summary The historical, bio-psychological and educational value of breakfast in our culture is extremely important and should be recognized and stressed by the scientific community. Efforts should be done to promote this practice for the individual health and well-being. PMID:23842429

  1. Eurasian snow cover and Indian monsoon : A new episode of a debated relationship

    NASA Astrophysics Data System (ADS)

    Peings, Y.; Douville, H.

    2009-04-01

    Since the pioneering works of Blanford at the end of the 19th century, suggesting that Indian monsoon rainfall could be sensitive to snow conditions over Himalaya, many studies have been devoted to a better understanding of the possible teleconnection between winter/spring Eurasian snow cover and the following Indian monsoon. This issue has been recently revisited at CNRM using a maximum covariance analysis. This statistical tool has been applied on both observations (summer precipitation over India on the one hand, satellite data of snow cover or in situ measurements of snow depth on the other hand) and a subset of global coupled ocean-atmosphere simulations from the CMIP3 database. In line with former studies, the observations suggest a link between an east-west snow dipole over Eurasia and the Indian summer monsoon precipitation. However, our results indicate that this relationship is neither statistically significant nor stationary over the last forty years. Moreover, the strongest signal appears over eastern Eurasia and is not consistent with the Blanford hypothesis whereby more snow should lead to a weaker monsoon. The 20th century CMIP3 simulations provide longer timeseries to look for robust snow-monsoon relationships. Some models do show an apparent influence of the Eurasian snow cover on the Indian summer monsoon precipitation, but the snow patterns are model-dependent and not the same as in the observations. Moreover, the apparent snow-monsoon relationship generally denotes a too strong ENSO (El Niño Southern Oscillation) influence on both winter snow cover and summer monsoon rainfall rather than a direct effect of the Eurasian snow cover on the Indian monsoon. New sensitivity studies with the ARPEGE-Climat model are needed to assess the potential impact of snow anomalies on the monsoon, using climatological sea surface temperature to get rid of the oceanic variability.

  2. Multidisciplinary care in pediatric oncology

    PubMed Central

    Cantrell, Mary Ann; Ruble, Kathy

    2011-01-01

    This paper describes the significant advances in the treatment of childhood cancer and supportive care that have occurred over the last several decades and details how these advances have led to improved survival and quality of life (QOL) for children with cancer through a multidisciplinary approach to care. Advances in the basic sciences, general medicine, cooperative research protocols, and policy guidelines have influenced and guided the multidisciplinary approach in pediatric oncology care across the spectrum from diagnosis through long-term survival. Two case studies are provided to highlight the nature and scope of multidisciplinary care in pediatric oncology care. PMID:21811384

  3. The Global Monsoon across Time Scales: is there coherent variability of regional monsoons?

    NASA Astrophysics Data System (ADS)

    Wang, P. X.; Wang, B.; Cheng, H.; Fasullo, J.; Guo, Z. T.; Kiefer, T.; Liu, Z. Y.

    2014-05-01

    Monsoon has earned increasing attention from the climate community since the last century, yet only recently regional monsoons have been recognized as a global system. It remains a debated issue, however, as to what extent and at which time scales the global monsoon can be viewed as a major mode of climate variability. For this purpose a PAGES Working Group (WG) was set up to investigate the concept of the global monsoon and its future research directions. The WG's synthesis is presented here. On the basis of observation and proxy data, the WG found that the regional monsoons can vary coherently, although not perfectly, at various time scales, ranging from interannual, interdecadal, centennial and millennial, up to orbital and tectonics time scales, conforming the global monsoon concept across time scales. Within the global monsoon system each subsystem has its own features depending on its geographic and topographic conditions. Discrimination of global and regional components in the monsoon system is a key to reveal the driving factors of monsoon variations, hence the global monsoon concept helps to enhance our understanding and to improve future projection of the regional monsoons. This paper starts with a historical review of the global monsoon concept in both modern and paleo-climatology, and an assessment of monsoon proxies used in regional and global scales. The main body of the paper is devoted to a summary of observation data at various time scales, providing evidence for the coherent global monsoon system. The paper concludes with a projection of future monsoon shifts into a warming world. The synthesis will be followed by a companying paper to discuss driving mechanisms and outstanding issues in the global monsoon studies.

  4. Global Monsoon Rainfall - What the future holds?

    NASA Astrophysics Data System (ADS)

    Endo, H.; Kitoh, A.; Kumar, K.; Cavalcanti, I. F.; Goswami, P.; Zhou, T.

    2012-12-01

    We provide a latest view of global as well as regional monsoonal rainfall and their changes in the twenty-first century as projected by state-of-the-art climate models participated in the Coupled Model Intercomparison Project phase 5 (CMIP5). The global monsoon area (GMA) defined based on the annual range in precipitation will expand mainly over the central to eastern tropical Pacific, the southern Indian Ocean, and eastern Asia. The global monsoon intensity (GMI) and the global monsoon total precipitation (GMP) are likely to increase, implying that monsoon-related precipitation will remarkably increase in a warmer climate. Heavy precipitation indices are projected to increase much more than the mean precipitation, and their percentage changes depend more on the emission scenario compared to those for mean precipitation. Over the Asian monsoon domain, median increase rate for precipitation is larger than that over other monsoon domains, indicating that the sensitivity of Asian monsoon to global warming is stronger than that of other monsoons. For seasonal progress of monsoon rainfall, CMIP5 models project that the monsoon retreat dates will delay, while the onset dates will either advance or show no change, resulting in lengthening of the monsoon season. It is found that the increase of the global monsoon precipitation can be attributed to the increases of moisture convergence due to increased water vapor in the air column and surface evaporation, offset to a certain extent by the weakening of the monsoon circulation (Figure 1).Figure 1: Time series of anomalies during summer season (%; 20 years running mean) relative to the base period average (1986-2005) over the land global monsoon domain for (a) precipitation (mm day-1), (b) evaporation (mm day-1), (c) water vapor flux convergence in the lower (below 500hPa) troposphere (mm day-1), and (d) wind convergence in the lower troposphere (10-3 kg m-2 s-1), based on 23 CMIP5 model monthly outputs. Historical (grey

  5. Monsoon-Enso Relationships: A New Paradigm

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    This article is partly a review and partly a new research paper on monsoon-ENSO relationship. The paper begins with a discussion of the basic relationship between the Indian monsoon and ENSO dating back to the work of Sir Gilbert Walker up to research results in more recent years. Various factors that may affect the monsoon-ENSO, relationship, including regional coupled ocean-atmosphere processes, Eurasian snow cover, land-atmosphere hydrologic feedback, intraseasonal oscillation, biennial variability and inter-decadal variations, are discussed. The extreme complex and highly nonlinear nature of the monsoon-ENSO relationship is stressed. We find that for regional impacts on the monsoon, El Nino and La Nina are far from simply mirror images of each other. These two polarities of ENSO can have strong or no impacts on monsoon anomalies depending on the strength of the intraseasonal oscillations and the phases of the inter-decadal variations. For the Asian-Australian monsoon (AAM) as a whole, the ENSO impact is effected through a east-west shift in the Walker Circulation. For rainfall anomalies over specific monsoon areas, regional processes play important roles in addition to the shift in the Walker Circulation. One of the key regional processes identified for the boreal summer monsoon is the anomalous West Pacific Anticyclone (WPA). This regional feature has similar signatures in interannual and intraseasonal time scales and appears to determine whether the monsoon-ENSO relationship is strong or weak in a given year. Another important regional feature includes a rainfall and SST dipole across the Indian Ocean, which may have strong impact on the austral summer monsoon. Results are shown indicating that monsoon surface wind forcings may induce a strong biennial signal in ENSO and that strong monsoon-ENSO coupling may translate into pronounced biennial variability in ENSO. Finally, a new paradigm is proposed for the study of monsoon variability. This paradigm provides

  6. Workshop on Monsoon Climate Systems: Toward Better Prediction of the Monsoon

    SciTech Connect

    Sperber, K R; Yasunari, T

    2005-12-20

    The Earth's monsoon systems are the life-blood of more than two-thirds of the world's population through the rainfall they provide to the mainly agrarian societies they influence. More than 60 experts gathered to assess the current understanding of monsoon variability and to highlight outstanding problems simulating the monsoon.

  7. Interannual variability of South American monsoon circulation

    NASA Astrophysics Data System (ADS)

    Alonso Gan, Manoel; Rafaele Araújo Lima, Jeane

    2016-04-01

    The South America Monsoon System (SAMS) is responsible for influencing the atmospheric circulation and precipitation over most of tropical South America (SA) during the summer season. Studies for aiming to understand the temporal variability of this system have great value to the scientific community, because the processes that control the monsoon climate are not totally clear. Thus, the main objective of this research is to investigate the possible large-scale climatic factors and the remote interaction mechanisms, which may be associated with summer season interannual variability focusing on identifying the main differences between dry and wet extremes rainy season in the South-eastern Amazon Basin (SAB), Central-West (WC) and Southeast (SE) of Brazil, which are areas influenced by the summer monsoon regime. For such analyzes, Pearson correlations, quantile method and composite analysis were used during the period from 1979 to 2014. The correlation between precipitation anomaly in SAB and the sea surface temperature anomaly (SSTA) and wind at 850hPa and 300hPa indicate El Niño-Southern Oscillation (ENSO) influence. Precipitation anomalies in WC did not show significant correlation with SSTA. However, a pattern similar to ENSO Modoki type was observed in the composite analysis. At 850 hPa, the presence of an anomalous cyclonic (anticyclonic) circulation was observed over the central region of SA during wet (dry) summers seasons. Over SE region of Brazil, a dipole SSTA pattern over the South Atlantic was identified, as well the presence of anomalous circulations with an equivalent barotropic structure over these SSTA areas. This pattern is more evident in case of dry summer on the SE. At 300 hPa, the wave train between 30°S-60°S was observed presenting a feature curvature from 120°W reaching SA, similar to the Pacific-South American pattern (PSA). Analysis of the summer interannual variability indicated the manifestation of wet summers more frequently than dry

  8. Multidisciplinary tailoring of hot composite structures

    NASA Technical Reports Server (NTRS)

    Singhal, Surendra N.; Chamis, Christos C.

    1993-01-01

    A computational simulation procedure is described for multidisciplinary analysis and tailoring of layered multi-material hot composite engine structural components subjected to simultaneous multiple discipline-specific thermal, structural, vibration, and acoustic loads. The effect of aggressive environments is also simulated. The simulation is based on a three-dimensional finite element analysis technique in conjunction with structural mechanics codes, thermal/acoustic analysis methods, and tailoring procedures. The integrated multidisciplinary simulation procedure is general-purpose including the coupled effects of nonlinearities in structure geometry, material, loading, and environmental complexities. The composite material behavior is assessed at all composite scales, i.e., laminate/ply/constituents (fiber/matrix), via a nonlinear material characterization hygro-thermo-mechanical model. Sample tailoring cases exhibiting nonlinear material/loading/environmental behavior of aircraft engine fan blades, are presented. The various multidisciplinary loads lead to different tailored designs, even those competing with each other, as in the case of minimum material cost versus minimum structure weight and in the case of minimum vibration frequency versus minimum acoustic noise.

  9. Multidisciplinary tailoring of hot composite structures

    NASA Technical Reports Server (NTRS)

    Singhal, Surendra N.; Chamis, Christos C.

    1992-01-01

    A computational simulation procedure is described for multidisciplinary analysis and tailoring of multilayered multimaterial hot composite engine structural components subjected to simultaneous multiple discipline-specific thermal, structural, vibration, and acoustic loadings including the effect of aggressive environments. The simulation is based on a 3D finite element analysis technique in conjunction with structural mechanics codes, thermal/acoustic analysis methods, and tailoring procedures. The integrated multidisciplinary simulation procedure is general-purpose including the coupled effects of nonlinearities in structure geometry, material, loading, and environmental complexities. The composite material behavior is assessed at all composite scales, i.e., the laminate/ply/constituents (fiber/matrix), via a nonlinear material characterization hygro-thermomechanical model. Sample tailoring cases exhibiting nonlinear material/loading/environmental behavior of aircraft engine fan blades, are presented. The various multidisciplinary loadings lead to different tailored designs, even those opposite of each other, as in the case of minimum material cost versus minimum structure weight and in the case of minimum vibration frequency versus minimum acoustic noise.

  10. Toward continuous quantification of lava extrusion rate: Results from the multidisciplinary analysis of the 2 January 2010 eruption of Piton de la Fournaise volcano, La Réunion.

    NASA Astrophysics Data System (ADS)

    Hibert, Clement; Mangeney, Anne; Polacci, Margherita; Di Muro, Andrea; Vergniolle, Sylvie; Ferrazzini, Valérie; Peltier, Aline; Taisne, Benoit; Burton, Mike; Dewez, Thomas; Grandjean, Gilles; Dupont, Aurélien; Staudacher, Thomas; Brenguier, Florent; Kowalski, Philippe; Boissier, Patrice; Catherine, Philippe; Lauret, Frédéric

    2016-04-01

    The dynamics of the 2-12 January 2010 effusive eruption at Piton de la Fournaise volcano were examined through seismic and infrasound records, time-lapse photography, SO2 flux measurements, deformation data, and direct observations. Digital elevation models were constructed for four periods of the eruption, thus providing an assessment of the temporal evolution of the morphology, the volume and the extrusion rate of the lava flow. These data were compared to the continuous recording of the seismic and infrasonic waves, and a linear relationship was found between the seismic energy of the tremor and the lava extrusion rate. This relationship is supported by data from three other summit eruptions of Piton de la Fournaise and gives total volume and average lava extrusion rate in good agreement with previous studies. We can therefore provide an estimate of the lava extrusion rate for the January 2010 eruption with a very high temporal resolution. We found an average lava extrusion rate of 2.4 m3.s‑1 with a peak of 106.6 m3.s‑1 during the initial lava fountaining phase. We use the inferred average lava extrusion rate during the lava fountaining phase (30.23 m3.s‑1) to estimate the value of the initial overpressure in the magma reservoir, which we found to range from 3.7×106 Pa to 5.9×106 Pa. Finally, based on the estimated initial overpressure, the volume of magma expelled during the lava fountaining phase and geodetic data, we inferred the volume of the magma reservoir using a simple Mogi model, between 0.25 km3 and 0.54 km3, which is in good agreement with previous studies. The multidisciplinary analysis presented in our study sheds light on crucial qualitative and quantitative relations between eruption dynamics, seismic and infrasonic signals, and especially on the direct link between the lava extrusion rate and the seismic energy of the volcanic tremor. If this relationship is confirmed for other eruptions, generalization of its use will lead to a better

  11. Spatiotemporal patterns and trends of Indian monsoonal rainfall extremes

    NASA Astrophysics Data System (ADS)

    Malik, Nishant; Bookhagen, Bodo; Mucha, Peter J.

    2016-02-01

    In this study, we provide a comprehensive analysis of trends in the extremes during the Indian summer monsoon (ISM) months (June to September) at different temporal and spatial scales. Our goal is to identify and quantify spatiotemporal patterns and trends that have emerged during the recent decades and may be associated with changing climatic conditions. Our analysis primarily relies on quantile regression that avoids making any subjective choices on spatial, temporal, or intensity pattern of extreme rainfall events. Our analysis divides the Indian monsoon region into climatic compartments that show different and partly opposing trends. These include strong trends toward intensified droughts in Northwest India, parts of Peninsular India, and Myanmar; in contrast, parts of Pakistan, Northwest Himalaya, and Central India show increased extreme daily rain intensity leading to higher flood vulnerability. Our analysis helps explain previously contradicting results of trends in average ISM rainfall.

  12. Monsoon-extratropical circulation interactions in Himalayan extreme rainfall

    NASA Astrophysics Data System (ADS)

    Vellore, Ramesh K.; Kaplan, Michael L.; Krishnan, R.; Lewis, John M.; Sabade, Sudhir; Deshpande, Nayana; Singh, Bhupendra B.; Madhura, R. K.; Rama Rao, M. V. S.

    2016-06-01

    Extreme precipitation and flood episodes in the Himalayas are oftentimes traced to synoptic situations involving connections between equatorward advancing upper level extratropical circulations and moisture-laden tropical monsoon circulation. While previous studies have documented precipitation characteristics in the Himalayan region during severe storm cases, a comprehensive understanding of circulation dynamics of extreme precipitation mechanisms is still warranted. In this study, a detailed analysis is performed using rainfall observations and reanalysis circulation products to understand the evolution of monsoon-extratropical circulation features and their interactions based on 34 extreme precipitation events which occurred in the Western Himalayas (WEH) during the period 1979-2013. Our results provide evidence for a common large-scale circulation pattern connecting the extratropics and the South Asian monsoon region, which is favorable for extreme precipitation occurrences in the WEH region. This background upper level large-scale circulation pattern consists of a deep southward penetrating midlatitude westerly trough, a blocking high over western Eurasia and an intensifying Tibetan anticyclone. It is further seen from our analysis that the key elements of monsoon-midlatitude interactions, responsible for extreme precipitation events over the WEH region, are: (1) midlatitude Rossby wave breaking, (2) west-northwest propagation of monsoon low-pressure system from the Bay of Bengal across the Indian subcontinent, (3) eddy shedding of the Tibetan anticyclone, (4) ageostrophic motions and transverse circulation across the Himalayas, and (5) strong moist convection over the Himalayan foothills. Furthermore, high-resolution numerical simulations indicate that diabatic heating and mesoscale ageostrophic effects can additionally amplify the convective motions and precipitation in the WEH region.

  13. Monsoon-extratropical circulation interactions in Himalayan extreme rainfall

    NASA Astrophysics Data System (ADS)

    Vellore, Ramesh K.; Kaplan, Michael L.; Krishnan, R.; Lewis, John M.; Sabade, Sudhir; Deshpande, Nayana; Singh, Bhupendra B.; Madhura, R. K.; Rama Rao, M. V. S.

    2015-08-01

    Extreme precipitation and flood episodes in the Himalayas are oftentimes traced to synoptic situations involving connections between equatorward advancing upper level extratropical circulations and moisture-laden tropical monsoon circulation. While previous studies have documented precipitation characteristics in the Himalayan region during severe storm cases, a comprehensive understanding of circulation dynamics of extreme precipitation mechanisms is still warranted. In this study, a detailed analysis is performed using rainfall observations and reanalysis circulation products to understand the evolution of monsoon-extratropical circulation features and their interactions based on 34 extreme precipitation events which occurred in the Western Himalayas (WEH) during the period 1979-2013. Our results provide evidence for a common large-scale circulation pattern connecting the extratropics and the South Asian monsoon region, which is favorable for extreme precipitation occurrences in the WEH region. This background upper level large-scale circulation pattern consists of a deep southward penetrating midlatitude westerly trough, a blocking high over western Eurasia and an intensifying Tibetan anticyclone. It is further seen from our analysis that the key elements of monsoon-midlatitude interactions, responsible for extreme precipitation events over the WEH region, are: (1) midlatitude Rossby wave breaking, (2) west-northwest propagation of monsoon low-pressure system from the Bay of Bengal across the Indian subcontinent, (3) eddy shedding of the Tibetan anticyclone, (4) ageostrophic motions and transverse circulation across the Himalayas, and (5) strong moist convection over the Himalayan foothills. Furthermore, high-resolution numerical simulations indicate that diabatic heating and mesoscale ageostrophic effects can additionally amplify the convective motions and precipitation in the WEH region.

  14. Non-local Impact of South and East Asian Aerosols on Monsoon Onset and Withdrawal

    NASA Astrophysics Data System (ADS)

    Bollasina, M. A.; Bartlett, R. E.; Booth, B.; Dunstone, N. J.; Marenco, F.

    2015-12-01

    The powerful Asian monsoon is of vital importance to the billions of people who are reliant on its rainfall, especially considering that society within its domain is largely agrarian. This monsoon system comprises smaller regional components, including the Indian monsoon and East Asian monsoon. These components are linked to one another through large scale circulation. The impacts of rapidly increasing anthropogenic aerosols over Asia on the monsoon have been widely studied. However, most studies consider only regional impacts, and not the subsequent effects on other geographical components of the system. We use observational and modelling methods to investigate the links between the regional components of the Asian monsoon and how they are affected by aerosols. Satellite observations of aerosol optical depth are used in conjunction with precipitation and atmospheric reanalysis data to investigate the problem at interannual timescales. Modelling experiments using HadGEM2-ES and GFDL CM3 are used to look at longer timescales and the potential influence of long term feedbacks. The HadGEM2 experiments use three time-evolving future anthropogenic aerosol emissions scenarios with the same time-evolving greenhouse gases. The GFDL CM3 experiments are forced by historical regional anthropogenic aerosol emissions. Using these methods, we look at the separate impact that South and East Asian aerosols have on monsoon onset and withdrawal. We focus on impacts in regions non-local to the aerosol source. We will also present proposed mechanisms for the apparent effects based on analysis of large scale circulation and atmospheric heating.

  15. Global monsoon: Dominant mode of annual variation in the tropics

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Ding, Qinghua

    2008-03-01

    This paper discusses the concept of global monsoon. We demonstrate that the primary climatological features of the tropical precipitation and low-level circulation can be represented by a three-parameter metrics: the annual mean and two major modes of annual variation, namely, a solstitial mode and an equinoctial asymmetric mode. Together, the two major modes of annual cycle account for 84% of the annual variance and they represent the global monsoon. The global monsoon precipitation domain can be delineated by a simple monsoon precipitation index (MPI), which is the local annual range of precipitation (MJJAS minus NDJFM in the Northern Hemisphere and NDJFM minus MJJAS in the Southern Hemisphere) normalized by the annual mean precipitation. The monsoon domain can be defined by annual range exceeding 300 mm and the MPI exceeding 50%. The three-parameter precipitation climatology metrics and global monsoon domain proposed in the present paper provides a valuable objective tool for gauging the climate models' performance on simulation and prediction of the mean climate and annual cycle. The metrics are used to evaluate the precipitation climatology in three global reanalysis products (ERA40, NCEP2, and JRA25) in terms of their pattern correlation coefficients and root mean square errors with reference to observations. The ensemble mean of the three analysis datasets is considerably superior to any of the individual reanalysis data in representing annual mean, annual cycle, and the global monsoon domain. A major common deficiency is found over the Southeast Asia-Philippine Sea and southeast North America-Caribbean Sea where the east-west land-ocean thermal contrast and meridional hemispheric thermal contrast coexist. It is speculated that the weakness is caused by models' unrealistic representation of Subtropical High and under-represented tropical storm activity, as well as by neglecting atmosphere-ocean interaction in the reanalysis. It is recommended that ensemble

  16. Monsoon rainfall interannual variability over China and its association with the Euasian circulation

    SciTech Connect

    Samel, A.N.; Wang, Wei-Chyung

    1997-11-01

    This study has two goals. The first is to determine annual observed initial and final dates of east Asian summer monsoon rainfall. To accomplish this, a semi-objective analysis is developed and applied to daily rainfall station data throughout China. The resulting values are used to calculate monsoon duration and total rainfall. The second goal is to identify relationships between these rainfall characteristics and circulation features in the Eurasian sea level pressure. The analysis of the duration of monsoon rainfall events produced results that are consistent with those found in previous studies. Total monsoon rainfall over south China, the Yangtze River valley, and north China was then correlated with the Eurasian sea level pressure and 500 millibar height fields. The results indicate that summer rainfall interannual variability over each region is governed by the interaction of several circulation features. These findings are also consistent with those of other studies. 18 refs., 5 figs.

  17. Volcanoes magnify Metro Manila's southwest monsoon rains and lethal floods

    NASA Astrophysics Data System (ADS)

    Lagmay, Alfredo Mahar; Bagtasa, Gerry; Crisologo, Irene; Racoma, Bernard Alan; David, Carlos Primo

    Many volcanoes worldwide are located near populated cities that experience monsoon seasons, characterised by shifting winds each year. Because of the severity of flood impact to large populations, it is worthy of investigation in the Philippines and elsewhere to better understand the phenomenon for possible hazard mitigating solutions, if any. During the monsoon season, the change in flow direction of winds brings moist warm air to cross the mountains and volcanoes in western Philippines and cause lift into the atmosphere, which normally leads to heavy rains and floods. Heavy southwest monsoon rains from 18-21 August 2013 flooded Metro Manila (population of 12 million) and its suburbs paralyzing the nation’s capital for an entire week. Called the 2013 Habagat event, it was a repeat of the 2012 Habagat or extreme southwest monsoon weather from 6-9 August, which delivered record rains in the mega city. In both the 2012 and 2013 Habagat events, cyclones, the usual suspects for the delivery of heavy rains, were passing northeast of the Philippine archipelago, respectively, and enhanced the southwest monsoon. Analysis of Doppler data, rainfall measurements, and Weather Research and Forecasting (WRF) model simulations show that two large stratovolcanoes, Natib and Mariveles, across from Manila Bay and approximately 70 km west of Metro Manila, played a substantial role in delivering extreme rains and consequent floods to Metro Manila. The study highlights how volcanoes, with their shape and height create an orographic effect and dispersive tail of rain clouds which constitutes a significant flood hazard to large communities like Metro Manila.

  18. An Overview of Three Approaches to Multidisciplinary Aeropropulsion Simulations

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles

    1997-01-01

    The broad scope of aeropropulsion multidisciplinary applications necessitates that a collection of approaches, with distinct capabilities, be developed. Three general approaches to multidisciplinary simulations have been identified. The three approaches; loosely coupled, coupled process, and multiphysics, provide a comprehensive collection of capabilities for multidisciplinary aeropropulsion analysis. At the data access level, or loosely coupled approach of coupling, existing disciplinary simulations are run, data is generated, and made available and used for subsequent analysis. The data must be in the correct format for implementation by the subsequent analysis but the subsequent code need not directly communicate with the previous code. At the process level, or coupled process approach of coupling, individual disciplinary codes are used, similarly to the loosely coupled approach, however, in the coupled process approach the disciplinary codes need to run concurrently with each other. The system of equation coupled approach, or multiphysics approach, addresses those applications whose characteristics require that the disciplines be coupled at the fundamental equation level to accurately, or more efficiently, capture the multidisciplinary physics of the problem. No one of these approaches, by itself, addresses all of the community needs in this area. However, collectively the three approaches encompass all of the multidisciplinary applications which have been identified thus far. Multiple approaches to multidisciplinary simulations will be needed as long as the applications and their requirements remain as diverse as they currently are today.

  19. Sea surface height anomaly and upper ocean temperature over the Indian Ocean during contrasting monsoons

    NASA Astrophysics Data System (ADS)

    Gera, Anitha; Mitra, A. K.; Mahapatra, D. K.; Momin, I. M.; Rajagopal, E. N.; Basu, Swati

    2016-09-01

    Recent research emphasizes the importance of the oceanic feedback to monsoon rainfall over the Asian landmass. In this study, we investigate the differences in the sea surface height anomaly (SSHA) and upper ocean temperature over the tropical Indian Ocean during multiple strong and weak monsoons. Analysis of satellite derived SSHA, sea surface temperature (SST) and ocean reanalysis data reveals that patterns of SSHA, SST, ocean temperature, upper ocean heat content (UOHC) and propagations of Kelvin and Rossby waves differ during strong and weak monsoon years. During strong monsoons positive SSH, SST and UOHC anomalies develop over large parts of north Indian Ocean whereas during weak monsoons much of the north Indian Ocean is covered with negative anomalies. These patterns can be used as a standard tool for evaluating the performance of coupled and ocean models in simulating & forecasting strong and weak monsoons. The rainfall over central India is found to be significantly correlated with SSHA over the regions (Arabian Sea and West central Indian Ocean and Bay of Bengal) where SSHA is positively large during strong monsoons. The SST-SSHA correlation is also very strong over the same area. The study reveals that much convection takes place over these regions during strong monsoons. In contrast during weak monsoons, convection takes place over eastern equatorial region. These changes in SST are largely influenced by oceanic Kelvin and Rossby waves. The Rossby waves initiated in spring at the eastern boundary propagate sub-surface heat content in the ocean influencing SST in summer. The SST anomalies modulate the Hadley circulation and the moisture transport thereby contributing to rainfall over central India. Therefore oceanic Kelvin and Rossby waves influence the rainfall over central India.

  20. Dominating Controls for Wetter South Asian Summer Monsoon in the Twenty-First Century

    SciTech Connect

    Mei, Rui; Ashfaq, Moetasim; Rastogi, Deeksha; Leung, L. Ruby; Dominguez, Francina

    2015-04-07

    This study analyzes a suite of global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) archives to understand the mechanisms behind a net increase in the South Asian summer monsoon precipitation in response to enhanced radiative forcing during the twenty-first century. An increase in radiative forcing fuels an increase in the atmospheric moisture content through warmer temperatures, which overwhelms the weakening of monsoon circulation and results in an increase of moisture convergence and therefore summer monsoon precipitation over South Asia. Moisture source analysis suggests that both regional (local recycling, the Arabian Sea, the Bay of Bengal) and remote (including the south Indian Ocean) sources contribute to the moisture supply for precipitation over South Asia during the summer season that is facilitated by the monsoon dynamics. For regional moisture sources, the effect of excessive atmospheric moisture is offset by weaker monsoon circulation and uncertainty in the response of the evapotranspiration over land, so anomalies in their contribution to the total moisture supply are either mixed or muted. In contrast, weakening of the monsoon dynamics has less influence on the moisture supply from remote sources that not only is a dominant moisture contributor in the historical period but is also the net driver of the positive summer monsoon precipitation response in the twenty-first century. Finally, the results also indicate that historic measures of the monsoon dynamics may not be well suited to predict the nonstationary moisture-driven South Asian summer monsoon precipitation response in the twenty-first century.

  1. Dominating Controls for Wetter South Asian Summer Monsoon in the Twenty-First Century

    SciTech Connect

    Mei, Rui; Ashfaq, Moetasim; Rastogi, Deeksha; Leung, Lai-Yung R.; Dominguez, Francina

    2015-04-01

    We analyze a suite of Global Climate Models from the 5th Phase of Coupled Models Intercomparison Project (CMIP5) archives to understand the mechanisms behind a net increase in the South Asian summer monsoon precipitation in response to enhanced radiative forcing during the 21st century despite a robust weakening of dynamics governing the monsoon circulation. Combining the future changes in the contributions from various sources, which contribute to the moisture supply over South Asia, with those in monsoon dynamics and atmospheric moisture content, we establish a pathway of understanding that partly explains these counteracting responses to increase in radiative forcing. Our analysis suggests that both regional (local recycling, Arabian Sea, Bay of Bengal) and remote (mainly Indian Ocean) sources contribute to the moisture supply for precipitation over South Asia during the summer season that is facilitated by the monsoon dynamics. Increase in radiative forcing fuels an increase in the atmospheric moisture content through warmer temperatures. For regional moisture sources, the effect of excessive atmospheric moisture is offset by weaker monsoon circulation and uncertainty in the response of the evapotranspiration over land, so anomalies in their contribution to the total moisture supply are either mixed or muted. In contrast, weakening of the monsoon dynamics has less influence on the moisture supply from remote sources that not only is a dominant moisture contributor in the historical period, but is also the net driver of the positive summer monsoon precipitation response in the 21st century. Our results also indicate that historic measures of the monsoon dynamics may not be well suited to predict the non-stationary moisture driven South Asian summer monsoon precipitation response in the 21st century.

  2. Dominating Controls for Wetter South Asian Summer Monsoon in the Twenty-First Century

    DOE PAGESBeta

    Mei, Rui; Ashfaq, Moetasim; Rastogi, Deeksha; Leung, L. Ruby; Dominguez, Francina

    2015-04-07

    This study analyzes a suite of global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) archives to understand the mechanisms behind a net increase in the South Asian summer monsoon precipitation in response to enhanced radiative forcing during the twenty-first century. An increase in radiative forcing fuels an increase in the atmospheric moisture content through warmer temperatures, which overwhelms the weakening of monsoon circulation and results in an increase of moisture convergence and therefore summer monsoon precipitation over South Asia. Moisture source analysis suggests that both regional (local recycling, the Arabian Sea, the Bay of Bengal)more » and remote (including the south Indian Ocean) sources contribute to the moisture supply for precipitation over South Asia during the summer season that is facilitated by the monsoon dynamics. For regional moisture sources, the effect of excessive atmospheric moisture is offset by weaker monsoon circulation and uncertainty in the response of the evapotranspiration over land, so anomalies in their contribution to the total moisture supply are either mixed or muted. In contrast, weakening of the monsoon dynamics has less influence on the moisture supply from remote sources that not only is a dominant moisture contributor in the historical period but is also the net driver of the positive summer monsoon precipitation response in the twenty-first century. Finally, the results also indicate that historic measures of the monsoon dynamics may not be well suited to predict the nonstationary moisture-driven South Asian summer monsoon precipitation response in the twenty-first century.« less

  3. Life prediction: A case for multidisciplinary research

    SciTech Connect

    Wei, R.P.

    1997-12-01

    Concerns with aging infrastructure worldwide and with the life-cycle costs and management of engineered systems have placed increased emphasis on the development of methods for life prediction. To be effective as true predictors of future performance (i.e., to provide accurate estimates beyond the range employed in the development of supporting data), such methods must be built upon mechanistic models that capture the functional dependence on all of the key external and internal variables. The development of these methods argues strongly for multidisciplinary research that integrates mechanistic understanding with probability analysis. In this paper, a mechanistically based probability approach to life prediction (versus the more traditional statistically based parametric approach) and the processes for model development are outlined to provide a framework for discussion. The use of a coordinated, multidisciplinary approach to develop mechanistic understanding and to model material response is illustrated through examples on crack growth in a high-strength steel. The need for multidisciplinary research that broadens the perspective from testing to testing and materials is discussed.

  4. Multidisciplinary teamwork in US primary health care.

    PubMed

    Solheim, Karen; McElmurry, Beverly J; Kim, Mi Ja

    2007-08-01

    Primary health care (PHC) is a systems perspective for examining the provision of essential health care for all. A multidisciplinary collaborative approach to health care delivery is associated with effective delivery and care providers' enrichment. Yet data regarding multidisciplinary practice within PHC are limited. The purpose of this exploratory qualitative descriptive study was to better understand team-based PHC practice in the US. Aims included (a) describing nursing faculty involvement in PHC, (b) analyzing ways that multidisciplinary work was enacted, and (c) recommending strategies for multidisciplinary PHC practice. After institutional review board (IRB) protocol approval, data collection occurred by: (a) surveying faculty/staff in a Midwestern nursing college (N=94) about their PHC practice, and (b) interviewing a purposive sample of nursing faculty/staff identified with PHC (n=10) and their health professional collaborators (n=10). Survey results (28% return rate) were summarized, interview notes were transcribed, and a systematic process of content analysis applied. Study findings show team practice is valued because health issues are complex, requiring different types of expertise; and because teams foster comprehensive care and improved resource use. Mission, membership attributes, and leadership influence teamwork. Though PHC is not a common term, nurses and their collaborators readily associated their practice with a PHC ethos. PHC practice requires understanding community complexity and engaging with community, family, and individual viewpoints. Though supports exist for PHC in the US, participants identified discord between their view of population needs and the health care system. The following interpretations arise from this study: PHC does not explicitly frame health care activity in the US, though some practitioners are committed to its ethics; and, teamwork within PHC is associated with better health care and rewarding professional

  5. Space-Time Structure of Monsoon Interannual Variability.

    NASA Astrophysics Data System (ADS)

    Terray, Pascal

    1995-11-01

    The analysis of corrected ship reports [sea level pressure (SLP), sea surface temperature (SST), air temperature (AT)] and corrected land data (SLP, AT, rainfall) in the Indian sector reveals the existence of two low-frequency modes of monsoon variability during the 1900-1970 period. A definite biennial (B) mode exists on the SLP fields. This B oscillation is unambiguously linked with a southwest-northeast SLP anomaly gradient. During the summer monsoon, the B SLP pattern can be interpreted as an expansion/contraction of the monsoon activity since this mode is strongly coupled with rainfall variations over peninsular India. A strong low-frequency (LF) mode with period spanning 4-6 years is also seen on SLP fields over the Indian Ocean and subcontinent. The variance associated with this band is typically more important than the one observed for the B mode, and its spatial mark is also strikingly different since it is linked with a global pattern of variation. This mode has also a strong influence on the Indian summer rainfall fluctuations, particularly on the Ghats and in the Indo-Gangetic plains.The amplitude of these oscillations varies widely during the 1900-1970 period. The LF mode is well defined during 1900-1923 and 1947-1970. There is a tendency for the energy associated with the B mode to decrease on the land while it increases over the Indian Ocean during the whole 1900-1970 interval.Although these two timescales exist also on SST fields, cross-spectral analysis shows that ocean-atmosphere interactions are much stronger at the B timescale. This result stresses the B nature of the monsoon system.The existence of these interannual signals in the Indian areas where the annual cycle is so strong raises difficult problems: How can climatic anomalies persist for several years in spite of strong seasonality? Or, still more intriguing, how can be explained the persistence of climatic anomalies during one year and the appearance of opposite sign climatic anomalies

  6. Multidisciplinary design optimization using multiobjective formulation techniques

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Pagaldipti, Narayanan S.

    1995-01-01

    This report addresses the development of a multidisciplinary optimization procedure using an efficient semi-analytical sensitivity analysis technique and multilevel decomposition for the design of aerospace vehicles. A semi-analytical sensitivity analysis procedure is developed for calculating computational grid sensitivities and aerodynamic design sensitivities. Accuracy and efficiency of the sensitivity analysis procedure is established through comparison of the results with those obtained using a finite difference technique. The developed sensitivity analysis technique are then used within a multidisciplinary optimization procedure for designing aerospace vehicles. The optimization problem, with the integration of aerodynamics and structures, is decomposed into two levels. Optimization is performed for improved aerodynamic performance at the first level and improved structural performance at the second level. Aerodynamic analysis is performed by solving the three-dimensional parabolized Navier Stokes equations. A nonlinear programming technique and an approximate analysis procedure are used for optimization. The proceduredeveloped is applied to design the wing of a high speed aircraft. Results obtained show significant improvements in the aircraft aerodynamic and structural performance when compared to a reference or baseline configuration. The use of the semi-analytical sensitivity technique provides significant computational savings.

  7. Tipping elements of the Indian monsoon: Prediction of onset and withdrawal

    NASA Astrophysics Data System (ADS)

    Stolbova, Veronika; Surovyatkina, Elena; Bookhagen, Bodo; Kurths, Jürgen

    2016-04-01

    Forecasting the onset and withdrawal of the Indian summer monsoon is crucial for the life and prosperity of more than one billion inhabitants of the Indian subcontinent. However, accurate prediction of monsoon timing remains a challenge, despite numerous efforts. Here we present a method for prediction of monsoon timing based on a critical transition precursor. We identify geographic regions—tipping elements of the monsoon—and use them as observation locations for predicting onset and withdrawal dates. Unlike most predictability methods, our approach does not rely on precipitation analysis but on air temperature and relative humidity, which are well represented both in models and observations. The proposed method allows to predict onset 2 weeks earlier and withdrawal dates 1.5 months earlier than existing methods. In addition, it enables to correctly forecast monsoon duration for some anomalous years, often associated with El Niño-Southern Oscillation.

  8. Formation and maintenance of nocturnal low-level stratus over the southern West African monsoon region during AMMA 2006

    NASA Astrophysics Data System (ADS)

    Schuster, Robert; Fink, Andreas; Knippertz, Peter

    2013-04-01

    The southern parts of West Africa, from the coast to about 9°N, are frequently covered by an extensive deck of shallow, low (200 - 400 m above ground) stratus or stratocumulus clouds during the summer monsoon season as shown by recent studies based on ground observations and new satellite products. These clouds usually form at night in association with a nocturnal low-level jet (NLLJ) and can persist into the early afternoon hours until they are dissipated or replaced by fair-weather cumuli. Recent work suggests that the stratus deck and its effect on the surface radiation balance are unsatisfactorily represented in standard satellite retrievals and simulations by state-of-the-art climate models. Here we use high-resolution regional simulations with the Weather Research and Forecast (WRF) model and observations from the African Monsoon Multidisciplinary Analysis (AMMA) 2006 campaign to investigate (a) the spatiotemporal distribution, (b) the influence on the radiation balance, and (c) the detailed formation and maintenance mechanisms of the stratiform clouds. The model configuration used for this study has been determined following an extensive sensitivity study. The main conclusions are: (a) At least some configurations of WRF satisfactorily reproduce the diurnal cycle of the low cloud evolution. (b) The simulated stratus deck forms after sunset along the coast, spreads inland in the course of the night, and dissipates in the early afternoon. (c) The average surface net radiation balance in stratus-dominated regions is 35 W m-2 lower than in those with less clouds. (d) The cloud formation is related to a subtle balance between "stratogenic" upward (downward) fluxes of latent (sensible) heat caused by shear-driven turbulence below the NLLJ, cold advection from the ocean, forced lifting at the windward side of orography, and radiative cooling on one hand, and "stratolytic" dry advection and latent heating on the other hand. Future work should focus on the influence

  9. TIGERZ I: Aerosols, Monsoon and Synergism

    NASA Astrophysics Data System (ADS)

    Holben, B. N.; Tripathi, S. N.; Schafer, J. S.; Giles, D. M.; Eck, T. F.; Sinyuk, A.; Smirnov, A.; Krishnmoorthy, K.; Sorokin, M. G.; Newcomb, W. W.; Tran, A. K.; Sikka, D. R.; Goloub, P.; O'Neill, N. T.; Abboud, I.; Randles, C.; Niranjan, K.; Dumka, U. C.; Tiwari, S.; Devara, P. C.; Kumar, S.; Remer, L. A.; Kleidman, R.; Martins, J. V.; Kahn, R.

    2008-12-01

    The Indo-Gangetic Plain of northern India encompasses a vast complex of urban and rural landscapes, cultures that serve as anthropogenic sources of fine mode aerosols mixed with coarse mode particles transported from SW Asia. The summer monsoon and fall Himalayan snowmelt provide the agricultural productivity to sustain an extremely high population density whose affluence is increasing. Variations in the annual monsoon precipitation of 10% define drought, normal and a wet season; the net effects on the ecosystems and quality of life can be dramatic. Clearly investigation of anthropogenic and natural aerosol impacts on the monsoon, either through the onset, monsoon breaks or end points are a great concern to understand and ultimately mitigate. Many national and international field campaigns are being planned and conducted to study various aspects of the Asian monsoon and some coordinated under the Asian Monsoon Years (AMY) umbrella. A small program called TIGERZ conducted during the pre-monsoon of 2008 in North Central India can serve as a model for contributing significant resources to existing field programs while meeting immediate project goals. This poster will discuss preliminary results of the TIGERZ effort including ground-based measurements of aerosol properties in the I-G from AERONET and synergism with various Indian programs, satellite observations and aerosol modeling efforts.

  10. An assessment of Indian monsoon seasonal forecasts and mechanisms underlying monsoon interannual variability in the Met Office GloSea5-GC2 system

    NASA Astrophysics Data System (ADS)

    Johnson, Stephanie J.; Turner, Andrew; Woolnough, Steven; Martin, Gill; MacLachlan, Craig

    2016-06-01

    We assess Indian summer monsoon seasonal forecasts in GloSea5-GC2, the Met Office fully coupled subseasonal to seasonal ensemble forecasting system. Using several metrics, GloSea5-GC2 shows similar skill to other state-of-the-art seasonal forecast systems. The prediction skill of the large-scale South Asian monsoon circulation is higher than that of Indian monsoon rainfall. Using multiple linear regression analysis we evaluate relationships between Indian monsoon rainfall and five possible drivers of monsoon interannual variability. Over the time period studied (1992-2011), the El Niño-Southern Oscillation (ENSO) and the Indian Ocean dipole (IOD) are the most important of these drivers in both observations and GloSea5-GC2. Our analysis indicates that ENSO and its teleconnection with Indian rainfall are well represented in GloSea5-GC2. However, the relationship between the IOD and Indian rainfall anomalies is too weak in GloSea5-GC2, which may be limiting the prediction skill of the local monsoon circulation and Indian rainfall. We show that this weak relationship likely results from a coupled mean state bias that limits the impact of anomalous wind forcing on SST variability, resulting in erroneous IOD SST anomalies. Known difficulties in representing convective precipitation over India may also play a role. Since Indian rainfall responds weakly to the IOD, it responds more consistently to ENSO than in observations. Our assessment identifies specific coupled biases that are likely limiting GloSea5-GC2 Indian summer monsoon seasonal prediction skill, providing targets for model improvement.

  11. Identification of reproduction-related genes and SSR-markers through expressed sequence tags analysis of a monsoon breeding carp rohu, Labeo rohita (Hamilton).

    PubMed

    Sahu, Dinesh K; Panda, Soumya P; Panda, Sujata; Das, Paramananda; Meher, Prem K; Hazra, Rupenangshu K; Peatman, Eric; Liu, Zhanjiang J; Eknath, Ambekar E; Nandi, Samiran

    2013-07-15

    Labeo rohita (Ham.) also called rohu is the most important freshwater aquaculture species on the Indian sub continent. Monsoon dependent breeding restricts its seed production beyond season indicating a strong genetic control about which very limited information is available. Additionally, few genomic resources are publicly available for this species. Here we sought to identify reproduction-relevant genes from normalized cDNA libraries of the brain-pituitary-gonad-liver (BPGL-axis) tissues of adult L. rohita collected during post preparatory phase. 6161 random clones sequenced (Sanger-based) from these libraries produced 4642 (75.34%) high-quality sequences. They were assembled into 3631 (78.22%) unique sequences composed of 709 contigs and 2922 singletons. A total of 182 unique sequences were found to be associated with reproduction-related genes, mainly under the GO term categories of reproduction, neuro-peptide hormone activity, hormone and receptor binding, receptor activity, signal transduction, embryonic development, cell-cell signaling, cell death and anti-apoptosis process. Several important reproduction-related genes reported here for the first time in L. rohita are zona pellucida sperm-binding protein 3, aquaporin-12, spermine oxidase, sperm associated antigen 7, testis expressed 261, progesterone receptor membrane component, Neuropeptide Y and Pro-opiomelanocortin. Quantitative RT-PCR-based analyses of 8 known and 8 unknown transcripts during preparatory and post-spawning phase showed increased expression level of most of the transcripts during preparatory phase (except Neuropeptide Y) in comparison to post-spawning phase indicating possible roles in initiation of gonad maturation. Expression of unknown transcripts was also found in prolific breeder common carp and tilapia, but levels of expression were much higher in seasonal breeder rohu. 3631 unique sequences contained 236 (6.49%) putative microsatellites with the AG (28.16%) repeat as the most

  12. Disturbances in the Arizona Monsoon

    NASA Technical Reports Server (NTRS)

    Gall, Robert; Herman, Benjamin; Reagan, John

    1989-01-01

    Numerical modeling simulations of tropical squall lines were begun to determine the role of large scale terrain features over Arizona and Mexico in their initiation and propagation. Installation was completed for a short-base, high resolution lightning location and detection network in and around Tucson. Data from a Doppler wind profiler is being analyzed to determine the role of large scale heating over the inter-mountain plateau region in governing local diurnal wind variations and possible relationships to the monsoon flow. The portable solar photometer for determining high temporal resolution values of the local precipitable water vapor was completed and calibrated. The assembly is nearly completed for a multi-channel microwave passive radiometer to determine local temperature and water vapor profiles.

  13. Fingerprinting the Impacts of Aerosols on Long-Term Trends of the Indian Summer Monsoon Regional Rainfall

    NASA Technical Reports Server (NTRS)

    Laul, K. M.; Kim, K. M.

    2010-01-01

    In this paper, we present corroborative observational evidences from satellites, in-situ observations, and re-analysis data showing possible impacts of absorbing aerosols (black carbon and dust) on subseasonal and regional summer monsoon rainfall over India. We find that increased absorbing aerosols in the Indo-Gangetic Plain in recent decades may have lead to long-term warming of the upper troposphere over northern India and the Tibetan Plateau, enhanced rainfall in northern India and the Himalayas foothill regions in the early part (may-June) of the monsoon season, followed by diminished rainfall over central and southern India in the latter part (July-August) of the monsoon season. These signals which are consistent with current theories of atmospheric heating and solar dimming by aerosol and induced cloudiness in modulating the Indian monsoon, would have been masked by conventional method of using al-India rainfall averaged over the entire monsoon season.

  14. A qualitative study on sea surface temperature over the tropical Indian Ocean and performance of Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Singh, Umesh Kumar; Singh, Gyan Prakash

    2012-08-01

    A careful analysis of the sea surface temperature (SST) over the tropical Indian Ocean using the available SST data sets (namely, Hadley Center Ice SST, tropical rainfall measuring mission microwave imager SST, and optimum interpolation SST) at different time scales has been presented in the present study. By simple visual inspection of the SST plots, it has been shown that the qualitative prediction of Indian summer monsoon condition (weak/normal) and northern limit of monsoon (NLM) can be possible a month in advance using SST. The present qualitative study may be useful for common man to know the behavior of summer monsoon well a month in advance. Therefore, the qualitative study may enable the common man to show the application of satellite data to bring out the information regarding the onset of summer monsoon and related performance of Indian summer monsoon well in advance.

  15. Giant Serpentine Aneurysms: Multidisciplinary Management

    PubMed Central

    Anshun, W.; Feng, L.; Daming, W.

    2000-01-01

    Summary Sixty-five cases of intracranial giant serpentine aneurysms (GSΛs), including 61 cases reported in the literature and four additional cases presented in this study were reviewed. The clinical presentation, possible causes, natural history, and especially management of GSAs are discussed with emphasis on the need for aggressive intervention and multidisciplinary management. PMID:20667180

  16. Numerical prediction of the monsoon depression of 5-7 July 1979. [Monsoon Experiment (MONEX)

    NASA Technical Reports Server (NTRS)

    Shukla, J.; Atlas, R.; Baker, W. E.

    1981-01-01

    A well defined monsoon depression was used for two assimilation and forecast experiments: (1) using conventional surface and upper air data, (2) using these data plus Monex data. The data sets were assimilated and used with a general circulation model to make numerical predictions. The model, the analysis and assimilation procedure, the differences in the analyses due to different data inputs, and the differences in the numerical predictions are described. The MONEX data have a positive impact, although the differences after 24 hr are not significant. The MONEX assimilation does not agree with manual analysis location of depression center. The 2.5 x 3 deg horizontal resolution of the prediction model is too coarse. The assimilation of geopotential height data derived from satellite soundings generated gravity waves with amplitudes similar to the meteorologically significant features investigated.

  17. Integrated Multidisciplinary Optimization Objects

    NASA Technical Reports Server (NTRS)

    Alston, Katherine

    2014-01-01

    OpenMDAO is an open-source MDAO framework. It is used to develop an integrated analysis and design environment for engineering challenges. This Phase II project integrated additional modules and design tools into OpenMDAO to perform discipline-specific analysis across multiple flight regimes at varying levels of fidelity. It also showcased a refined system architecture that allows the system to be less customized to a specific configuration (i.e., system and configuration separation). By delivering a capable and validated MDAO system along with a set of example applications to be used as a template for future users, this work greatly expands NASA's high-fidelity, physics-based MDAO capabilities and enables the design of revolutionary vehicles in a cost-effective manner. This proposed work complements M4 Engineering's expertise in developing modeling and simulation toolsets that solve relevant subsonic, supersonic, and hypersonic demonstration applications.

  18. On the paradigm of the Indian monsoon depression

    NASA Astrophysics Data System (ADS)

    Hunt, Kieran; Turner, Andrew; Inness, Pete; Parker, David; Levine, Richard

    2015-04-01

    Reanalysis data from the last 34 years and satellite-derived precipitation data from the last 14 have been used with a newly developed feature tracking algorithm to generate composite three-dimensional structures of monsoon depressions occurring within these respective periods; centralising and rotating each one such that the centre falls on the origin and the system travels towards the relative north. Overall, 104 depressions comprise the composite, considerably more than any previous detailed research on monsoon depressions and their structure. Maxima of many fields are found to exist southwest of the depression centre with respect to the direction of propagation, including rainfall, convergence, and vertical wind velocity. The importance of the Himalayas is also discussed, with evidence of anomalous anti-cyclonic vorticity production in the foothills, extending from the surface to the tropopause. Detailed analysis of the temperature fields indicate that most depressions are cold-core cyclones with a central anomaly of around -1.5K, but some have more disorganised, neutral cores and, rarely, tropical cyclone-like warm cores. Analysis is performed on El Niño-minus-La Niña and active-minus-normal composites, showing that La Niña depressions tend to be wetter and warmer. The temporal distribution of depressions and their durations are also considered, as well as the state of the monsoon trough region during these events.

  19. Multidisciplinary Techniques and Novel Aircraft Control Systems

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Rogers, James L.; Raney, David L.

    2000-01-01

    The Aircraft Morphing Program at NASA Langley Research Center explores opportunities to improve airframe designs with smart technologies. Two elements of this basic research program are multidisciplinary design optimization (MDO) and advanced flow control. This paper describes examples where MDO techniques such as sensitivity analysis, automatic differentiation, and genetic algorithms contribute to the design of novel control systems. In the test case, the design and use of distributed shapechange devices to provide low-rate maneuvering capability for a tailless aircraft is considered. The ability of MDO to add value to control system development is illustrated using results from several years of research funded by the Aircraft Morphing Program.

  20. Multidisciplinary Design Of Hot Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Singhal, Surendra N.

    1996-01-01

    Unified computer code developed to implement multidisciplinary approach to design and analysis of composite-material structures that must withstand high temperatures. Code modular: includes executive module communicating with and coordinating other modules performing calculations pertaining to traditionally separate disciplines like those of acoustics, structural vibrations, structural loads, and thermal effects. Essential feature, finite-element numerical simulation of relevant physical phenomena according to applicable disciplines. Same finite-element mesh used in thermal, vibrational, and structural analyses; minimizing data-preparation time and eliminating errors incurred in transforming temperatures from one finite-element mesh to another.

  1. Multidisciplinary Techniques and Novel Aircraft Control Systems

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Rogers, James L.; Raney, David L.

    2000-01-01

    The Aircraft Morphing Program at NASA Langley Research Center explores opportunities to improve airframe designs with smart technologies. Two elements of this basic research program are multidisciplinary design optimization (MDO) and advanced flow control. This paper describes examples where MDO techniques such as sensitivity analysis, automatic differentiation, and genetic algorithms contribute to the design of novel control systems. In the test case, the design and use of distributed shape-change devices to provide low-rate maneuvering capability for a tailless aircraft is considered. The ability of MDO to add value to control system development is illustrated using results from several years of research funded by the Aircraft Morphing Program.

  2. The East Asian subtropical summer monsoon: Recent progress

    NASA Astrophysics Data System (ADS)

    He, Jinhai; Liu, Boqi

    2016-04-01

    The East Asian subtropical summer monsoon (EASSM) is one component of the East Asian summer monsoon system, and its evolution determines the weather and climate over East China. In the present paper, we firstly demonstrate the formation and advancement of the EASSM rainbelt and its associated circulation and precipitation patterns through reviewing recent studies and our own analysis based on JRA-55 (Japanese 55-yr Reanalysis) data and CMAP (CPC Merged Analysis of Precipitation), GPCP (Global Precipitation Climatology Project), and TRMM (Tropical Rainfall Measuring Mission) precipitation data. The results show that the rainy season of the EASSM starts over the region to the south of the Yangtze River in early April, with the establishment of strong southerly wind in situ. The EASSM rainfall, which is composed of dominant convective and minor stratiform precipitation, is always accompanied by a frontal system and separated from the tropical summer monsoon system. It moves northward following the onset of the South China Sea summer monsoon. Moreover, the role of the land-sea thermal contrast in the formation and maintenance of the EASSM is illustrated, including in particular the effect of the seasonal transition of the zonal land-sea thermal contrast and the influences from the Tibetan Plateau and midlatitudes. In addition, we reveal a possible reason for the subtropical climate difference between East Asia and East America. Finally, the multi-scale variability of the EASSM and its influential factors are summarized to uncover possible reasons for the intraseasonal, interannual, and interdecadal variability of the EASSM and their importance in climate prediction.

  3. Water vapor budget of the Indian monsoon depression

    NASA Astrophysics Data System (ADS)

    Yoon, Jin-Ho; Chen, Tsing-Chang

    2005-10-01

    Estimations by previous studies show that a minor amount of the Indian monsoon rainfall is contributed by Indian monsoon depressions (IMDs). In contrast, other studies found that approximately half of the summer monsoon rainfall in the northern Indian subcontinent is generated by IMDs. IMDs occur an average of six times during the summer season and provide a crucial water source to the agricultural activity over this region. The large disparity in the estimation of the IMD contribution to the Indian rainfall by previous studies requires a more accurate water vapor budget analysis of the IMD with quality data. For this reason, a composite analysis of the IMD is performed using the ERA-40 reanalysis and four precipitation data sets (the Global Precipitation Climatology Project, the Tropical Rainfall Measuring Mission, the GEOS precipitation index at the Goddard Space Flight Center and surface station observations) for the period of 1979 2002. Important findings of this study are: (i) about 45 55% of the total Indian rainfall is produced by the IMD; (ii) the rainfall maximum in the west south-west sector of IMDs is largely maintained by convergence of atmospheric water vapor flux. The convergence of water vapor flux is largely coupled with the lower-tropospheric divergent circulation. Thus, the IMD water vapor budget is modulated by the 30 60 and 10 20 d monsoon modes through changes of water vapor convergence/divergence. The magnitude of this modulation on the IMD water vapor budget is close to a quarter of the summer-mean water vapor budget over the Bay of Bengal and north-eastern India.

  4. Hydrologic Processes Associated with the First Transition of the Asian Summer Monsoon: A TRMM Pilot Study

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    1998-01-01

    We present results of a pilot study of the evolution of large scale hydrologic processes associated with the first transition of the Asian summer monsoon in conjunction with the launching of the South China Sea Monsoon Experiment (SCSMEX) in May, 1998. Using a combination of satellite-estimated rainfall, moisture, surface wind and sea surface temperature, we present some interesting and hitherto unknown features in large scale atmospheric and oceanic hydrologic processes associated with the fluctuation of the SCS monsoon. Results show that, climatologically, the SCS monsoon occurs during mid-May when major convection zone shifts from the eastern Indian Ocean/southern Indochina to the SCS. Simultaneously with the SCS monsoon onset is the development of a moist tongue and frontal rainband emanating from northern SCS, across southern China and the East China Sea to southern Japan as well as the enhancement of equatorial convection in the western Pacific ITCZ. Analysis of the satellite-derived moisture and rainfall show that the onset of the SCS monsoon during 1997 was preceded by the development of eastward propagating supercloud clusters over the Indian Ocean. The satellite data also reveal a strong onset vortex over the SCS and large scale cooling and warming patterns over the Indian Ocean and western Pacific. These features signal a major shift of the large-scale hydrologic cycle in the ocean-atmosphere system, which underpins the SCS monsoon onset. The paper concludes with a brief discussion of the observational platform of SCSMEX and a call for the utility of satellite data, field observations and models for comprehensive studies of the Asian monsoon.

  5. Aspects of Transport of Convected Regional Pollution from the Asian Monsoon Anticyclone based on CARIBIC observations

    NASA Astrophysics Data System (ADS)

    Brenninkmeijer, C. A.; Rauthe-Schöch, A.; Baker, A. K.; Schuck, T. J.; Zahn, A.; Hermann, M.; Stratmann, G.; Ziereis, H.; van Velthoven, P.

    2013-12-01

    The South Asian summer monsoon is one of the most important features of the boreal summer atmosphere in the tropics, and is characterized by a persistent large-scale anticyclonic structure in the upper troposphere centered over the Indian subcontinent. Strong convection associated with the monsoon causes upper tropospheric mixing ratios to be strongly linked to surface emissions from this densely populated region, and these polluted air masses can become trapped and accumulate inside the anticyclone, where they can be chemically isolated for several days. Outflow occurs predominantly westward towards Northern Africa and the Middle East, where a summertime ozone (O3) maximum due to ozone formation in monsoon outflow has been reported, and to the Mediterranean. While most observations in the monsoon anticyclone are from satellites, the CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container) observatory probed the upper troposphere (9-13 km) in the South Asian monsoon region with in situ measurements between June and September 2008. Elevated levels of a range of atmospheric pollutants were measured within the monsoon anticyclone, among them CO, NOy, aerosols and several volatile organic compounds (VOCs), and trajectory calculations indicated that these air masses originated mainly from South Asia. These measurements yield a detailed description of the initial chemical composition of air in different parts of the monsoon anticyclone, particularly of ozone precursors. Using this information and the Lagrangian Particle Dispersion Model FLEXPART we investigate the characteristics of monsoon outflow and the chemical evolution of air masses during transport. Based on analysis of air mass forward trajectories several receptor regions were identified. In addition to the dominant transport to the West, we found evidence for transport to the Pacific and North America, particularly during June and September, and also of cross

  6. Deglacial Indian monsoon failure and North Atlantic stadials linked by Indian Ocean surface cooling

    NASA Astrophysics Data System (ADS)

    Tierney, Jessica E.; Pausata, Francesco S. R.; Demenocal, Peter

    2016-01-01

    The Indian monsoon, the largest monsoon system on Earth, responds to remote climatic forcings, including temperature changes in the North Atlantic. The monsoon was weak during two cool periods that punctuated the last deglaciation--Heinrich Stadial 1 and the Younger Dryas. It has been suggested that sea surface cooling in the Indian Ocean was the critical link between these North Atlantic stadials and monsoon failure; however, based on existing proxy records it is unclear whether surface temperatures in the Indian Ocean and Arabian Sea dropped during these intervals. Here we compile new and existing temperature proxy data from the Arabian Sea, and find that surface temperatures cooled whereas subsurface temperatures warmed during both Heinrich Stadial 1 and the Younger Dryas. Our analysis of model simulations shows that surface cooling weakens the monsoon winds and leads to destratification of the water column and substantial subsurface warming. We thus conclude that sea surface temperatures in the Indian Ocean are indeed the link between North Atlantic climate and the strength of the Indian monsoon.

  7. On the decreasing trend of the number of monsoon depressions in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Vishnu, S.; Francis, P. A.; Shenoi, S. S. C.; Ramakrishna, S. S. V. S.

    2016-01-01

    This study unravels the physical link between the weakening of the monsoon circulation and the decreasing trend in the frequency of monsoon depressions over the Bay of Bengal. Based on the analysis of the terms of Genesis Potential Index, an empirical index to quantify the relative contribution of large scale environmental variables responsible for the modulation of storms, it is shown here that the reduction in the mid-tropospheric relative humidity is the most important reason for the decrease in the number of monsoon depressions. The net reduction of relative humidity over the Bay of Bengal is primarily due to the decrease in the moisture flux convergence, which is attributed to the weakening of the low level jet, a characteristic feature of monsoon circulation. Further, the anomalous moisture convergence over the western equatorial Indian Ocean associated with the rapid warming of the sea surface, reduces the moisture advection into the Bay of Bengal and hence adversely affect the genesis/intensification of monsoon depressions. Hence, the reduction in the number of monsoon depression over the Bay of Bengal could be one of the manifestations of the differential rates in the observed warming trend of the Indian Ocean basin.

  8. Mid-Holocene global monsoon area and precipitation from PMIP simulations

    NASA Astrophysics Data System (ADS)

    Jiang, Dabang; Tian, Zhiping; Lang, Xianmei

    2015-05-01

    Towards a better insight into orbital-scale changes in global monsoon, here we examine global monsoon area (GMA) and precipitation (GMP) as well as GMP intensity (GMPI) in the mid-Holocene, approximately 6,000 years ago, using all available numerical experiments from the Paleoclimate Modelling Intercomparison Project. Compared to the reference period, both the mid-Holocene GMA and GMP increased in the majority of the 35 models chosen for analysis according to their ability, averaging 5.5 and 4.2 %, respectively, which were mainly due to the increase in monsoon area and precipitation over the boreal land and austral ocean. The mid-Holocene GMPI decreased in most models and by an average of 1.2 %, mainly due to the decrease in monsoon precipitation intensity over the boreal ocean and austral land. The mid-Holocene GMA, GMP, and GMPI all showed opposite changes both between the land and ocean in the northern or southern hemisphere and between the boreal and austral land or ocean. Orbital-induced changes in large-scale meridional temperature gradient and land-sea thermal contrast are the underlying mechanisms, and the presence of an interactive ocean has an amplifying effect in the boreal land monsoon areas overall. Qualitatively, the model-data comparison indicates agreement in the boreal land monsoon areas and South America but disagreement in southern Africa and northern Australia.

  9. Recommending Research Profiles for Multidisciplinary Academic Collaboration

    ERIC Educational Resources Information Center

    Gunawardena, Sidath Deepal

    2013-01-01

    This research investigates how data on multidisciplinary collaborative experiences can be used to solve a novel problem: recommending research profiles of potential collaborators to academic researchers seeking to engage in multidisciplinary research collaboration. As the current domain theories of multidisciplinary collaboration are insufficient…

  10. The spectrum of Asian monsoon variability

    NASA Astrophysics Data System (ADS)

    Loope, G. R.; Overpeck, J. T.

    2014-12-01

    The Indian monsoon is the critical source of freshwater for over one billion people. Variability in monsoon precipitation occurs on all time scales and has severe consequences for the people who depend on monsoon rains. Extreme precipitation events have increased in the 20th century and are predicted to continue to become more frequent with anthropogenic global warming. The most recent models project that both monsoon precipitation and variability of precipitation will increase over the 21st century leading to increased flooding and possibly severe droughts. Although current models are able to capture the risk of relatively short droughts (1-5 years) reasonably well, they tend to underestimate the risk of longer, decadal- multidecadal droughts. I use observational records over the last 100 years in conjunction with cave, tree ring, and lake data from the NOAA paleoclimate database to reconstruct Holocene monsoon variability. I am able to show that the Asian monsoon has more low frequency variability than is projected by current climate models. The growing evidence for this discrepancy in hydroclimate variability between models and observational/paleoclimate records is of grave concern. If these models fail to capture the decadal-multidecadal droughts of the past it is likely they will underestimate the possibility of such droughts in the future.