Science.gov

Sample records for monte carlo finite

  1. Systematic study of finite-size effects in quantum Monte Carlo calculations of real metallic systems

    SciTech Connect

    Azadi, Sam Foulkes, W. M. C.

    2015-09-14

    We present a systematic and comprehensive study of finite-size effects in diffusion quantum Monte Carlo calculations of metals. Several previously introduced schemes for correcting finite-size errors are compared for accuracy and efficiency, and practical improvements are introduced. In particular, we test a simple but efficient method of finite-size correction based on an accurate combination of twist averaging and density functional theory. Our diffusion quantum Monte Carlo results for lithium and aluminum, as examples of metallic systems, demonstrate excellent agreement between all of the approaches considered.

  2. Theory of finite size effects for electronic quantum Monte Carlo calculations of liquids and solids

    NASA Astrophysics Data System (ADS)

    Holzmann, Markus; Clay, Raymond C.; Morales, Miguel A.; Tubman, Norm M.; Ceperley, David M.; Pierleoni, Carlo

    2016-07-01

    Concentrating on zero temperature quantum Monte Carlo calculations of electronic systems, we give a general description of the theory of finite size extrapolations of energies to the thermodynamic limit based on one- and two-body correlation functions. We introduce effective procedures, such as using the potential and wave function split up into long and short range functions to simplify the method, and we discuss how to treat backflow wave functions. Then we explicitly test the accuracy of our method to correct finite size errors on example hydrogen and helium many-body systems and show that the finite size bias can be drastically reduced for even small systems.

  3. Coupled finite element-Monte Carlo simulation of microstructure and texture evolution during thermomechanical processing

    SciTech Connect

    Radhakrishnan, B.; Sarma, G.; Zacharia, T.

    1998-11-01

    A novel simulation technique for predicting the microstructure and texture evolution during thermomechanical processing is presented. The technique involves coupling a finite element microstructural deformation model based on crystal plasticity with a Monte Carlo simulation of recovery and recrystallization. The finite element model captures the stored energy and the crystallographic orientation distributions in the deformed microstructure. The Monte Carlo simulation captures the microstructural evolution associated with recovery and recrystallization. A unique feature of the Monte Carlo simulation is that it treats recrystallization as a heterogeneous subgrain growth process, thus providing the natural link between nucleation and growth phenomena, and quantifying the role of recovery in these phenomena. Different nucleation mechanisms based on heterogeneous subgrain growth as well as strain induced boundary migration are automatically included in the recrystallization simulation. The simulations are shown to account for the extent of prior deformation on the microstructure and kinetics of recrystallization during subsequent annealing. The simulations also capture the influence of the presence of cube orientations in the initial microstructure, and the operation of non-octahedral slip during deformation of fcc polycrystals, on the recrystallization texture.

  4. Permutation blocking path integral Monte Carlo approach to the uniform electron gas at finite temperature.

    PubMed

    Dornheim, Tobias; Schoof, Tim; Groth, Simon; Filinov, Alexey; Bonitz, Michael

    2015-11-28

    The uniform electron gas (UEG) at finite temperature is of high current interest due to its key relevance for many applications including dense plasmas and laser excited solids. In particular, density functional theory heavily relies on accurate thermodynamic data for the UEG. Until recently, the only existing first-principle results had been obtained for N = 33 electrons with restricted path integral Monte Carlo (RPIMC), for low to moderate density, rs=r¯/aB≳1. These data have been complemented by configuration path integral Monte Carlo (CPIMC) simulations for rs ≤ 1 that substantially deviate from RPIMC towards smaller rs and low temperature. In this work, we present results from an independent third method-the recently developed permutation blocking path integral Monte Carlo (PB-PIMC) approach [T. Dornheim et al., New J. Phys. 17, 073017 (2015)] which we extend to the UEG. Interestingly, PB-PIMC allows us to perform simulations over the entire density range down to half the Fermi temperature (θ = kBT/EF = 0.5) and, therefore, to compare our results to both aforementioned methods. While we find excellent agreement with CPIMC, where results are available, we observe deviations from RPIMC that are beyond the statistical errors and increase with density. PMID:26627944

  5. Monte Carlo studies of supersymmetric matrix quantum mechanics with sixteen supercharges at finite temperature.

    PubMed

    Anagnostopoulos, Konstantinos N; Hanada, Masanori; Nishimura, Jun; Takeuchi, Shingo

    2008-01-18

    We present the first Monte Carlo results for supersymmetric matrix quantum mechanics with 16 supercharges at finite temperature. The recently proposed nonlattice simulation enables us to include the effects of fermionic matrices in a transparent and reliable manner. The internal energy nicely interpolates the weak coupling behavior obtained by the high temperature expansion, and the strong coupling behavior predicted from the dual black-hole geometry. The Polyakov line asymptotes at low temperature to a characteristic behavior for a deconfined theory, suggesting the absence of a phase transition. These results provide highly nontrivial evidence for the gauge-gravity duality. PMID:18232852

  6. Quantum dynamics at finite temperature: Time-dependent quantum Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Christov, Ivan P.

    2016-08-01

    In this work we investigate the ground state and the dissipative quantum dynamics of interacting charged particles in an external potential at finite temperature. The recently devised time-dependent quantum Monte Carlo (TDQMC) method allows a self-consistent treatment of the system of particles together with bath oscillators first for imaginary-time propagation of Schrödinger type of equations where both the system and the bath converge to their finite temperature ground state, and next for real time calculation where the dissipative dynamics is demonstrated. In that context the application of TDQMC appears as promising alternative to the path-integral related techniques where the real time propagation can be a challenge.

  7. Monte Carlo Benchmark

    Energy Science and Technology Software Center (ESTSC)

    2010-10-20

    The "Monte Carlo Benchmark" (MCB) is intended to model the computatiional performance of Monte Carlo algorithms on parallel architectures. It models the solution of a simple heuristic transport equation using a Monte Carlo technique. The MCB employs typical features of Monte Carlo algorithms such as particle creation, particle tracking, tallying particle information, and particle destruction. Particles are also traded among processors using MPI calls.

  8. Fermionic path-integral Monte Carlo results for the uniform electron gas at finite temperature

    NASA Astrophysics Data System (ADS)

    Filinov, V. S.; Fortov, V. E.; Bonitz, M.; Moldabekov, Zh.

    2015-03-01

    The uniform electron gas (UEG) at finite temperature has recently attracted substantial interest due to the experimental progress in the field of warm dense matter. To explain the experimental data, accurate theoretical models for high-density plasmas are needed that depend crucially on the quality of the thermodynamic properties of the quantum degenerate nonideal electrons and of the treatment of their interaction with the positive background. Recent fixed-node path-integral Monte Carlo (RPIMC) data are believed to be the most accurate for the UEG at finite temperature, but they become questionable at high degeneracy when the Brueckner parameter rs=a /aB —the ratio of the mean interparticle distance to the Bohr radius—approaches 1. The validity range of these simulations and their predictive capabilities for the UEG are presently unknown. This is due to the unknown quality of the used fixed nodes and of the finite-size scaling from N =33 simulated particles (per spin projection) to the macroscopic limit. To analyze these questions, we present alternative direct fermionic path integral Monte Carlo (DPIMC) simulations that are independent from RPIMC. Our simulations take into account quantum effects not only in the electron system but also in their interaction with the uniform positive background. Also, we use substantially larger particle numbers (up to three times more) and perform an extrapolation to the macroscopic limit. We observe very good agreement with RPIMC, for the polarized electron gas, up to moderate densities around rs=4 , and larger deviations for the unpolarized case, for low temperatures. For higher densities (high electron degeneracy), rs≲1.5 , both RPIMC and DPIMC are problematic due to the increased fermion sign problem.

  9. Fermionic path-integral Monte Carlo results for the uniform electron gas at finite temperature.

    PubMed

    Filinov, V S; Fortov, V E; Bonitz, M; Moldabekov, Zh

    2015-03-01

    The uniform electron gas (UEG) at finite temperature has recently attracted substantial interest due to the experimental progress in the field of warm dense matter. To explain the experimental data, accurate theoretical models for high-density plasmas are needed that depend crucially on the quality of the thermodynamic properties of the quantum degenerate nonideal electrons and of the treatment of their interaction with the positive background. Recent fixed-node path-integral Monte Carlo (RPIMC) data are believed to be the most accurate for the UEG at finite temperature, but they become questionable at high degeneracy when the Brueckner parameter rs=a/aB--the ratio of the mean interparticle distance to the Bohr radius--approaches 1. The validity range of these simulations and their predictive capabilities for the UEG are presently unknown. This is due to the unknown quality of the used fixed nodes and of the finite-size scaling from N=33 simulated particles (per spin projection) to the macroscopic limit. To analyze these questions, we present alternative direct fermionic path integral Monte Carlo (DPIMC) simulations that are independent from RPIMC. Our simulations take into account quantum effects not only in the electron system but also in their interaction with the uniform positive background. Also, we use substantially larger particle numbers (up to three times more) and perform an extrapolation to the macroscopic limit. We observe very good agreement with RPIMC, for the polarized electron gas, up to moderate densities around rs=4, and larger deviations for the unpolarized case, for low temperatures. For higher densities (high electron degeneracy), rs≲1.5, both RPIMC and DPIMC are problematic due to the increased fermion sign problem. PMID:25871225

  10. MCFET - A MICROSTRUCTURAL LATTICE MODEL FOR STRAIN ORIENTED PROBLEMS: A COMBINED MONTE CARLO FINITE ELEMENT TECHNIQUE

    NASA Technical Reports Server (NTRS)

    Gayda, J.

    1994-01-01

    A specialized, microstructural lattice model, termed MCFET for combined Monte Carlo Finite Element Technique, has been developed to simulate microstructural evolution in material systems where modulated phases occur and the directionality of the modulation is influenced by internal and external stresses. Since many of the physical properties of materials are determined by microstructure, it is important to be able to predict and control microstructural development. MCFET uses a microstructural lattice model that can incorporate all relevant driving forces and kinetic considerations. Unlike molecular dynamics, this approach was developed specifically to predict macroscopic behavior, not atomistic behavior. In this approach, the microstructure is discretized into a fine lattice. Each element in the lattice is labeled in accordance with its microstructural identity. Diffusion of material at elevated temperatures is simulated by allowing exchanges of neighboring elements if the exchange lowers the total energy of the system. A Monte Carlo approach is used to select the exchange site while the change in energy associated with stress fields is computed using a finite element technique. The MCFET analysis has been validated by comparing this approach with a closed-form, analytical method for stress-assisted, shape changes of a single particle in an infinite matrix. Sample MCFET analyses for multiparticle problems have also been run and, in general, the resulting microstructural changes associated with the application of an external stress are similar to that observed in Ni-Al-Cr alloys at elevated temperatures. This program is written in FORTRAN for use on a 370 series IBM mainframe. It has been implemented on an IBM 370 running VM/SP and an IBM 3084 running MVS. It requires the IMSL math library and 220K of RAM for execution. The standard distribution medium for this program is a 9-track 1600 BPI magnetic tape in EBCDIC format.

  11. Liquid crystal free energy relaxation by a theoretically informed Monte Carlo method using a finite element quadrature approach.

    PubMed

    Armas-Pérez, Julio C; Hernández-Ortiz, Juan P; de Pablo, Juan J

    2015-12-28

    A theoretically informed Monte Carlo method is proposed for Monte Carlo simulation of liquid crystals on the basis of theoretical representations in terms of coarse-grained free energy functionals. The free energy functional is described in the framework of the Landau-de Gennes formalism. A piecewise finite element discretization is used to approximate the alignment field, thereby providing an excellent geometrical representation of curved interfaces and accurate integration of the free energy. The method is suitable for situations where the free energy functional includes highly non-linear terms, including chirality or high-order deformation modes. The validity of the method is established by comparing the results of Monte Carlo simulations to traditional Ginzburg-Landau minimizations of the free energy using a finite difference scheme, and its usefulness is demonstrated in the context of simulations of chiral liquid crystal droplets with and without nanoparticle inclusions. PMID:26723642

  12. Liquid crystal free energy relaxation by a theoretically informed Monte Carlo method using a finite element quadrature approach

    NASA Astrophysics Data System (ADS)

    Armas-Pérez, Julio C.; Hernández-Ortiz, Juan P.; de Pablo, Juan J.

    2015-12-01

    A theoretically informed Monte Carlo method is proposed for Monte Carlo simulation of liquid crystals on the basis of theoretical representations in terms of coarse-grained free energy functionals. The free energy functional is described in the framework of the Landau-de Gennes formalism. A piecewise finite element discretization is used to approximate the alignment field, thereby providing an excellent geometrical representation of curved interfaces and accurate integration of the free energy. The method is suitable for situations where the free energy functional includes highly non-linear terms, including chirality or high-order deformation modes. The validity of the method is established by comparing the results of Monte Carlo simulations to traditional Ginzburg-Landau minimizations of the free energy using a finite difference scheme, and its usefulness is demonstrated in the context of simulations of chiral liquid crystal droplets with and without nanoparticle inclusions.

  13. Finite-Temperature Variational Monte Carlo Method for Strongly Correlated Electron Systems

    NASA Astrophysics Data System (ADS)

    Takai, Kensaku; Ido, Kota; Misawa, Takahiro; Yamaji, Youhei; Imada, Masatoshi

    2016-03-01

    A new computational method for finite-temperature properties of strongly correlated electrons is proposed by extending the variational Monte Carlo method originally developed for the ground state. The method is based on the path integral in the imaginary-time formulation, starting from the infinite-temperature state that is well approximated by a small number of certain random initial states. Lower temperatures are progressively reached by the imaginary-time evolution. The algorithm follows the framework of the quantum transfer matrix and finite-temperature Lanczos methods, but we extend them to treat much larger system sizes without the negative sign problem by optimizing the truncated Hilbert space on the basis of the time-dependent variational principle (TDVP). This optimization algorithm is equivalent to the stochastic reconfiguration (SR) method that has been frequently used for the ground state to optimally truncate the Hilbert space. The obtained finite-temperature states allow an interpretation based on the thermal pure quantum (TPQ) state instead of the conventional canonical-ensemble average. Our method is tested for the one- and two-dimensional Hubbard models and its accuracy and efficiency are demonstrated.

  14. Monte Carlo Example Programs

    Energy Science and Technology Software Center (ESTSC)

    2006-05-09

    The Monte Carlo example programs VARHATOM and DMCATOM are two small, simple FORTRAN programs that illustrate the use of the Monte Carlo Mathematical technique for calculating the ground state energy of the hydrogen atom.

  15. A Monte Carlo error analysis program for near-Mars, finite-burn, orbital transfer maneuvers

    NASA Technical Reports Server (NTRS)

    Green, R. N.; Hoffman, L. H.; Young, G. R.

    1972-01-01

    A computer program was developed which performs an error analysis of a minimum-fuel, finite-thrust, transfer maneuver between two Keplerian orbits in the vicinity of Mars. The method of analysis is the Monte Carlo approach where each off-nominal initial orbit is targeted to the desired final orbit. The errors in the initial orbit are described by two covariance matrices of state deviations and tracking errors. The function of the program is to relate these errors to the resulting errors in the final orbit. The equations of motion for the transfer trajectory are those of a spacecraft maneuvering with constant thrust and mass-flow rate in the neighborhood of a single body. The thrust vector is allowed to rotate in a plane with a constant pitch rate. The transfer trajectory is characterized by six control parameters and the final orbit is defined, or partially defined, by the desired target parameters. The program is applicable to the deboost maneuver (hyperbola to ellipse), orbital trim maneuver (ellipse to ellipse), fly-by maneuver (hyperbola to hyperbola), escape maneuvers (ellipse to hyperbola), and deorbit maneuver.

  16. Estimation of the physical properties of nanocomposites by finite-element discretization and Monte Carlo simulation.

    PubMed

    Spanos, P; Elsbernd, P; Ward, B; Koenck, T

    2013-06-28

    This paper reviews and enhances numerical models for determining thermal, elastic and electrical properties of carbon nanotube-reinforced polymer composites. For the determination of the effective stress-strain curve and thermal conductivity of the composite material, finite-element analysis (FEA), in conjunction with the embedded fibre method (EFM), is used. Variable nanotube geometry, alignment and waviness are taken into account. First, a random morphology of a user-defined volume fraction of nanotubes is generated, and their properties are incorporated into the polymer matrix using the EFM. Next, incremental and iterative FEA approaches are used for the determination of the nonlinear properties of the nanocomposite. For the determination of the electrical properties, a spanning network identification algorithm is used. First, a realistic nanotube morphology is generated from input parameters defined by the user. The spanning network algorithm then determines the connectivity between nanotubes in a representative volume element. Then, interconnected nanotube networks are converted to equivalent resistor circuits. Finally, Kirchhoff's current law is used in conjunction with FEA to solve for the voltages and currents in the system and thus calculate the effective electrical conductivity of the nanocomposite. The model accounts for electrical transport mechanisms such as electron hopping and simultaneously calculates percolation probability, identifies the backbone and determines the effective conductivity. Monte Carlo analysis of 500 random microstructures is performed to capture the stochastic nature of the fibre generation and to derive statistically reliable results. The models are validated by comparison with various experimental datasets reported in the recent literature. PMID:23690646

  17. Monte Carlo fundamentals

    SciTech Connect

    Brown, F.B.; Sutton, T.M.

    1996-02-01

    This report is composed of the lecture notes from the first half of a 32-hour graduate-level course on Monte Carlo methods offered at KAPL. These notes, prepared by two of the principle developers of KAPL`s RACER Monte Carlo code, cover the fundamental theory, concepts, and practices for Monte Carlo analysis. In particular, a thorough grounding in the basic fundamentals of Monte Carlo methods is presented, including random number generation, random sampling, the Monte Carlo approach to solving transport problems, computational geometry, collision physics, tallies, and eigenvalue calculations. Furthermore, modern computational algorithms for vector and parallel approaches to Monte Carlo calculations are covered in detail, including fundamental parallel and vector concepts, the event-based algorithm, master/slave schemes, parallel scaling laws, and portability issues.

  18. MORSE Monte Carlo code

    SciTech Connect

    Cramer, S.N.

    1984-01-01

    The MORSE code is a large general-use multigroup Monte Carlo code system. Although no claims can be made regarding its superiority in either theoretical details or Monte Carlo techniques, MORSE has been, since its inception at ORNL in the late 1960s, the most widely used Monte Carlo radiation transport code. The principal reason for this popularity is that MORSE is relatively easy to use, independent of any installation or distribution center, and it can be easily customized to fit almost any specific need. Features of the MORSE code are described.

  19. Monte Carlo variance reduction

    NASA Technical Reports Server (NTRS)

    Byrn, N. R.

    1980-01-01

    Computer program incorporates technique that reduces variance of forward Monte Carlo method for given amount of computer time in determining radiation environment in complex organic and inorganic systems exposed to significant amounts of radiation.

  20. Multi-level Monte Carlo finite volume methods for uncertainty quantification of acoustic wave propagation in random heterogeneous layered medium

    NASA Astrophysics Data System (ADS)

    Mishra, S.; Schwab, Ch.; Šukys, J.

    2016-05-01

    We consider the very challenging problem of efficient uncertainty quantification for acoustic wave propagation in a highly heterogeneous, possibly layered, random medium, characterized by possibly anisotropic, piecewise log-exponentially distributed Gaussian random fields. A multi-level Monte Carlo finite volume method is proposed, along with a novel, bias-free upscaling technique that allows to represent the input random fields, generated using spectral FFT methods, efficiently. Combined together with a recently developed dynamic load balancing algorithm that scales to massively parallel computing architectures, the proposed method is able to robustly compute uncertainty for highly realistic random subsurface formations that can contain a very high number (millions) of sources of uncertainty. Numerical experiments, in both two and three space dimensions, illustrating the efficiency of the method are presented.

  1. Multilevel sequential Monte Carlo samplers

    DOE PAGESBeta

    Beskos, Alexandros; Jasra, Ajay; Law, Kody; Tempone, Raul; Zhou, Yan

    2016-08-24

    Here, we study the approximation of expectations w.r.t. probability distributions associated to the solution of partial differential equations (PDEs); this scenario appears routinely in Bayesian inverse problems. In practice, one often has to solve the associated PDE numerically, using, for instance finite element methods and leading to a discretisation bias, with the step-size level hL. In addition, the expectation cannot be computed analytically and one often resorts to Monte Carlo methods. In the context of this problem, it is known that the introduction of the multilevel Monte Carlo (MLMC) method can reduce the amount of computational effort to estimate expectations, for a given level of error. This is achieved via a telescoping identity associated to a Monte Carlo approximation of a sequence of probability distributions with discretisation levelsmore » $${\\infty}$$ >h0>h1 ...>hL. In many practical problems of interest, one cannot achieve an i.i.d. sampling of the associated sequence of probability distributions. A sequential Monte Carlo (SMC) version of the MLMC method is introduced to deal with this problem. In conclusion, it is shown that under appropriate assumptions, the attractive property of a reduction of the amount of computational effort to estimate expectations, for a given level of error, can be maintained within the SMC context.« less

  2. Multi-Resolution Markov-Chain-Monte-Carlo Approach for System Identification with an Application to Finite-Element Models

    SciTech Connect

    Johannesson, G; Glaser, R E; Lee, C L; Nitao, J J; Hanley, W G

    2005-02-07

    Estimating unknown system configurations/parameters by combining system knowledge gained from a computer simulation model on one hand and from observed data on the other hand is challenging. An example of such inverse problem is detecting and localizing potential flaws or changes in a structure by using a finite-element model and measured vibration/displacement data. We propose a probabilistic approach based on Bayesian methodology. This approach does not only yield a single best-guess solution, but a posterior probability distribution over the parameter space. In addition, the Bayesian approach provides a natural framework to accommodate prior knowledge. A Markov chain Monte Carlo (MCMC) procedure is proposed to generate samples from the posterior distribution (an ensemble of likely system configurations given the data). The MCMC procedure proposed explores the parameter space at different resolutions (scales), resulting in a more robust and efficient procedure. The large-scale exploration steps are carried out using coarser-resolution finite-element models, yielding a considerable decrease in computational time, which can be a crucial for large finite-element models. An application is given using synthetic displacement data from a simple cantilever beam with MCMC exploration carried out at three different resolutions.

  3. Monte Carlo Event Generators

    NASA Astrophysics Data System (ADS)

    Dytman, Steven

    2011-10-01

    Every neutrino experiment requires a Monte Carlo event generator for various purposes. Historically, each series of experiments developed their own code which tuned to their needs. Modern experiments would benefit from a universal code (e.g. PYTHIA) which would allow more direct comparison between experiments. GENIE attempts to be that code. This paper compares most commonly used codes and provides some details of GENIE.

  4. Calculation of dose distribution in compressible breast tissues using finite element modeling, Monte Carlo simulation and thermoluminescence dosimeters.

    PubMed

    Mohammadyari, Parvin; Faghihi, Reza; Mosleh-Shirazi, Mohammad Amin; Lotfi, Mehrzad; Hematiyan, Mohammad Rahim; Koontz, Craig; Meigooni, Ali S

    2015-12-01

    Compression is a technique to immobilize the target or improve the dose distribution within the treatment volume during different irradiation techniques such as AccuBoost(®) brachytherapy. However, there is no systematic method for determination of dose distribution for uncompressed tissue after irradiation under compression. In this study, the mechanical behavior of breast tissue between compressed and uncompressed states was investigated. With that, a novel method was developed to determine the dose distribution in uncompressed tissue after irradiation of compressed breast tissue. Dosimetry was performed using two different methods, namely, Monte Carlo simulations using the MCNP5 code and measurements using thermoluminescent dosimeters (TLD). The displacement of the breast elements was simulated using a finite element model and calculated using ABAQUS software. From these results, the 3D dose distribution in uncompressed tissue was determined. The geometry of the model was constructed from magnetic resonance images of six different women volunteers. The mechanical properties were modeled by using the Mooney-Rivlin hyperelastic material model. Experimental dosimetry was performed by placing the TLD chips into the polyvinyl alcohol breast equivalent phantom. The results determined that the nodal displacements, due to the gravitational force and the 60 Newton compression forces (with 43% contraction in the loading direction and 37% expansion in the orthogonal direction) were determined. Finally, a comparison of the experimental data and the simulated data showed agreement within 11.5%  ±  5.9%. PMID:26572554

  5. Calculation of dose distribution in compressible breast tissues using finite element modeling, Monte Carlo simulation and thermoluminescence dosimeters

    NASA Astrophysics Data System (ADS)

    Mohammadyari, Parvin; Faghihi, Reza; Mosleh-Shirazi, Mohammad Amin; Lotfi, Mehrzad; Rahim Hematiyan, Mohammad; Koontz, Craig; Meigooni, Ali S.

    2015-12-01

    Compression is a technique to immobilize the target or improve the dose distribution within the treatment volume during different irradiation techniques such as AccuBoost® brachytherapy. However, there is no systematic method for determination of dose distribution for uncompressed tissue after irradiation under compression. In this study, the mechanical behavior of breast tissue between compressed and uncompressed states was investigated. With that, a novel method was developed to determine the dose distribution in uncompressed tissue after irradiation of compressed breast tissue. Dosimetry was performed using two different methods, namely, Monte Carlo simulations using the MCNP5 code and measurements using thermoluminescent dosimeters (TLD). The displacement of the breast elements was simulated using a finite element model and calculated using ABAQUS software. From these results, the 3D dose distribution in uncompressed tissue was determined. The geometry of the model was constructed from magnetic resonance images of six different women volunteers. The mechanical properties were modeled by using the Mooney-Rivlin hyperelastic material model. Experimental dosimetry was performed by placing the TLD chips into the polyvinyl alcohol breast equivalent phantom. The results determined that the nodal displacements, due to the gravitational force and the 60 Newton compression forces (with 43% contraction in the loading direction and 37% expansion in the orthogonal direction) were determined. Finally, a comparison of the experimental data and the simulated data showed agreement within 11.5%  ±  5.9%.

  6. Monte Carlo portal dosimetry

    SciTech Connect

    Chin, P.W. . E-mail: mary.chin@physics.org

    2005-10-15

    This project developed a solution for verifying external photon beam radiotherapy. The solution is based on a calibration chain for deriving portal dose maps from acquired portal images, and a calculation framework for predicting portal dose maps. Quantitative comparison between acquired and predicted portal dose maps accomplishes both geometric (patient positioning with respect to the beam) and dosimetric (two-dimensional fluence distribution of the beam) verifications. A disagreement would indicate that beam delivery had not been according to plan. The solution addresses the clinical need for verifying radiotherapy both pretreatment (without the patient in the beam) and on treatment (with the patient in the beam). Medical linear accelerators mounted with electronic portal imaging devices (EPIDs) were used to acquire portal images. Two types of EPIDs were investigated: the amorphous silicon (a-Si) and the scanning liquid ion chamber (SLIC). The EGSnrc family of Monte Carlo codes were used to predict portal dose maps by computer simulation of radiation transport in the beam-phantom-EPID configuration. Monte Carlo simulations have been implemented on several levels of high throughput computing (HTC), including the grid, to reduce computation time. The solution has been tested across the entire clinical range of gantry angle, beam size (5 cmx5 cm to 20 cmx20 cm), and beam-patient and patient-EPID separations (4 to 38 cm). In these tests of known beam-phantom-EPID configurations, agreement between acquired and predicted portal dose profiles was consistently within 2% of the central axis value. This Monte Carlo portal dosimetry solution therefore achieved combined versatility, accuracy, and speed not readily achievable by other techniques.

  7. Monte Carlo and quasi-Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Caflisch, Russel E.

    Monte Carlo is one of the most versatile and widely used numerical methods. Its convergence rate, O(N-1/2), is independent of dimension, which shows Monte Carlo to be very robust but also slow. This article presents an introduction to Monte Carlo methods for integration problems, including convergence theory, sampling methods and variance reduction techniques. Accelerated convergence for Monte Carlo quadrature is attained using quasi-random (also called low-discrepancy) sequences, which are a deterministic alternative to random or pseudo-random sequences. The points in a quasi-random sequence are correlated to provide greater uniformity. The resulting quadrature method, called quasi-Monte Carlo, has a convergence rate of approximately O((logN)kN-1). For quasi-Monte Carlo, both theoretical error estimates and practical limitations are presented. Although the emphasis in this article is on integration, Monte Carlo simulation of rarefied gas dynamics is also discussed. In the limit of small mean free path (that is, the fluid dynamic limit), Monte Carlo loses its effectiveness because the collisional distance is much less than the fluid dynamic length scale. Computational examples are presented throughout the text to illustrate the theory. A number of open problems are described.

  8. Sensitivity Analysis of the Sheet Metal Stamping Processes Based on Inverse Finite Element Modeling and Monte Carlo Simulation

    SciTech Connect

    Yu Maolin; Du, R.

    2005-08-05

    Sheet metal stamping is one of the most commonly used manufacturing processes, and hence, much research has been carried for economic gain. Searching through the literatures, however, it is found that there are still a lots of problems unsolved. For example, it is well known that for a same press, same workpiece material, and same set of die, the product quality may vary owing to a number of factors, such as the inhomogeneous of the workpice material, the loading error, the lubrication, and etc. Presently, few seem able to predict the quality variation, not to mention what contribute to the quality variation. As a result, trial-and-error is still needed in the shop floor, causing additional cost and time delay. This paper introduces a new approach to predict the product quality variation and identify the sensitive design / process parameters. The new approach is based on a combination of inverse Finite Element Modeling (FEM) and Monte Carlo Simulation (more specifically, the Latin Hypercube Sampling (LHS) approach). With an acceptable accuracy, the inverse FEM (also called one-step FEM) requires much less computation load than that of the usual incremental FEM and hence, can be used to predict the quality variations under various conditions. LHS is a statistical method, through which the sensitivity analysis can be carried out. The result of the sensitivity analysis has clear physical meaning and can be used to optimize the die design and / or the process design. Two simulation examples are presented including drawing a rectangular box and drawing a two-step rectangular box.

  9. MCMini: Monte Carlo on GPGPU

    SciTech Connect

    Marcus, Ryan C.

    2012-07-25

    MCMini is a proof of concept that demonstrates the possibility for Monte Carlo neutron transport using OpenCL with a focus on performance. This implementation, written in C, shows that tracing particles and calculating reactions on a 3D mesh can be done in a highly scalable fashion. These results demonstrate a potential path forward for MCNP or other Monte Carlo codes.

  10. Parallelizing Monte Carlo with PMC

    SciTech Connect

    Rathkopf, J.A.; Jones, T.R.; Nessett, D.M.; Stanberry, L.C.

    1994-11-01

    PMC (Parallel Monte Carlo) is a system of generic interface routines that allows easy porting of Monte Carlo packages of large-scale physics simulation codes to Massively Parallel Processor (MPP) computers. By loading various versions of PMC, simulation code developers can configure their codes to run in several modes: serial, Monte Carlo runs on the same processor as the rest of the code; parallel, Monte Carlo runs in parallel across many processors of the MPP with the rest of the code running on other MPP processor(s); distributed, Monte Carlo runs in parallel across many processors of the MPP with the rest of the code running on a different machine. This multi-mode approach allows maintenance of a single simulation code source regardless of the target machine. PMC handles passing of messages between nodes on the MPP, passing of messages between a different machine and the MPP, distributing work between nodes, and providing independent, reproducible sequences of random numbers. Several production codes have been parallelized under the PMC system. Excellent parallel efficiency in both the distributed and parallel modes results if sufficient workload is available per processor. Experiences with a Monte Carlo photonics demonstration code and a Monte Carlo neutronics package are described.

  11. A quasi-Monte Carlo Metropolis algorithm

    PubMed Central

    Owen, Art B.; Tribble, Seth D.

    2005-01-01

    This work presents a version of the Metropolis–Hastings algorithm using quasi-Monte Carlo inputs. We prove that the method yields consistent estimates in some problems with finite state spaces and completely uniformly distributed inputs. In some numerical examples, the proposed method is much more accurate than ordinary Metropolis–Hastings sampling. PMID:15956207

  12. Radiative transfer equation for predicting light propagation in biological media: comparison of a modified finite volume method, the Monte Carlo technique, and an exact analytical solution.

    PubMed

    Asllanaj, Fatmir; Contassot-Vivier, Sylvain; Liemert, André; Kienle, Alwin

    2014-01-01

    We examine the accuracy of a modified finite volume method compared to analytical and Monte Carlo solutions for solving the radiative transfer equation. The model is used for predicting light propagation within a two-dimensional absorbing and highly forward-scattering medium such as biological tissue subjected to a collimated light beam. Numerical simulations for the spatially resolved reflectance and transmittance are presented considering refractive index mismatch with Fresnel reflection at the interface, homogeneous and two-layered media. Time-dependent as well as steady-state cases are considered. In the steady state, it is found that the modified finite volume method is in good agreement with the other two methods. The relative differences between the solutions are found to decrease with spatial mesh refinement applied for the modified finite volume method obtaining <2.4%. In the time domain, the fourth-order Runge-Kutta method is used for the time semi-discretization of the radiative transfer equation. An agreement among the modified finite volume method, Runge-Kutta method, and Monte Carlo solutions are shown, but with relative differences higher than in the steady state. PMID:24390371

  13. Wormhole Hamiltonian Monte Carlo

    PubMed Central

    Lan, Shiwei; Streets, Jeffrey; Shahbaba, Babak

    2015-01-01

    In machine learning and statistics, probabilistic inference involving multimodal distributions is quite difficult. This is especially true in high dimensional problems, where most existing algorithms cannot easily move from one mode to another. To address this issue, we propose a novel Bayesian inference approach based on Markov Chain Monte Carlo. Our method can effectively sample from multimodal distributions, especially when the dimension is high and the modes are isolated. To this end, it exploits and modifies the Riemannian geometric properties of the target distribution to create wormholes connecting modes in order to facilitate moving between them. Further, our proposed method uses the regeneration technique in order to adapt the algorithm by identifying new modes and updating the network of wormholes without affecting the stationary distribution. To find new modes, as opposed to redis-covering those previously identified, we employ a novel mode searching algorithm that explores a residual energy function obtained by subtracting an approximate Gaussian mixture density (based on previously discovered modes) from the target density function. PMID:25861551

  14. Interaction picture density matrix quantum Monte Carlo

    SciTech Connect

    Malone, Fionn D. Lee, D. K. K.; Foulkes, W. M. C.; Blunt, N. S.; Shepherd, James J.; Spencer, J. S.

    2015-07-28

    The recently developed density matrix quantum Monte Carlo (DMQMC) algorithm stochastically samples the N-body thermal density matrix and hence provides access to exact properties of many-particle quantum systems at arbitrary temperatures. We demonstrate that moving to the interaction picture provides substantial benefits when applying DMQMC to interacting fermions. In this first study, we focus on a system of much recent interest: the uniform electron gas in the warm dense regime. The basis set incompleteness error at finite temperature is investigated and extrapolated via a simple Monte Carlo sampling procedure. Finally, we provide benchmark calculations for a four-electron system, comparing our results to previous work where possible.

  15. Monte Carlo dose computation for IMRT optimization*

    NASA Astrophysics Data System (ADS)

    Laub, W.; Alber, M.; Birkner, M.; Nüsslin, F.

    2000-07-01

    A method which combines the accuracy of Monte Carlo dose calculation with a finite size pencil-beam based intensity modulation optimization is presented. The pencil-beam algorithm is employed to compute the fluence element updates for a converging sequence of Monte Carlo dose distributions. The combination is shown to improve results over the pencil-beam based optimization in a lung tumour case and a head and neck case. Inhomogeneity effects like a broader penumbra and dose build-up regions can be compensated for by intensity modulation.

  16. Isotropic Monte Carlo Grain Growth

    Energy Science and Technology Software Center (ESTSC)

    2013-04-25

    IMCGG performs Monte Carlo simulations of normal grain growth in metals on a hexagonal grid in two dimensions with periodic boundary conditions. This may be performed with either an isotropic or a misorientation - and incliantion-dependent grain boundary energy.

  17. Generalizing the self-healing diffusion Monte Carlo approach to finite temperature: a path for the optimization of low-energy many-body basis expansions

    SciTech Connect

    Kim, Jeongnim; Reboredo, Fernando A

    2014-01-01

    The self-healing diffusion Monte Carlo method for complex functions [F. A. Reboredo J. Chem. Phys. {\\bf 136}, 204101 (2012)] and some ideas of the correlation function Monte Carlo approach [D. M. Ceperley and B. Bernu, J. Chem. Phys. {\\bf 89}, 6316 (1988)] are blended to obtain a method for the calculation of thermodynamic properties of many-body systems at low temperatures. In order to allow the evolution in imaginary time to describe the density matrix, we remove the fixed-node restriction using complex antisymmetric trial wave functions. A statistical method is derived for the calculation of finite temperature properties of many-body systems near the ground state. In the process we also obtain a parallel algorithm that optimizes the many-body basis of a small subspace of the many-body Hilbert space. This small subspace is optimized to have maximum overlap with the one expanded by the lower energy eigenstates of a many-body Hamiltonian. We show in a model system that the Helmholtz free energy is minimized within this subspace as the iteration number increases. We show that the subspace expanded by the small basis systematically converges towards the subspace expanded by the lowest energy eigenstates. Possible applications of this method to calculate the thermodynamic properties of many-body systems near the ground state are discussed. The resulting basis can be also used to accelerate the calculation of the ground or excited states with Quantum Monte Carlo.

  18. Comparison of a finite-element multigroup discrete-ordinates code with Monte Carlo for radiotherapy calculations

    NASA Astrophysics Data System (ADS)

    Gifford, Kent A.; Horton, John L., Jr.; Wareing, Todd A.; Failla, Gregory; Mourtada, Firas

    2006-05-01

    Radiotherapy calculations often involve complex geometries such as interfaces between materials of vastly differing atomic number, such as lung, bone and/or air interfaces. Monte Carlo methods have been used to calculate accurately the perturbation effects of the interfaces. However, these methods can be computationally expensive for routine clinical calculations. An alternative approach is to solve the Boltzmann equation deterministically. We present one such deterministic code, Attila™. Further, we computed a brachytherapy example and an external beam benchmark to compare the results with data previously calculated by MCNPX and EGS4. Our data suggest that the presented deterministic code is as accurate as EGS4 and MCNPX for the transport geometries examined in this study.

  19. Quasi-Monte Carlo integration

    SciTech Connect

    Morokoff, W.J.; Caflisch, R.E.

    1995-12-01

    The standard Monte Carlo approach to evaluating multidimensional integrals using (pseudo)-random integration nodes is frequently used when quadrature methods are too difficult or expensive to implement. As an alternative to the random methods, it has been suggested that lower error and improved convergence may be obtained by replacing the pseudo-random sequences with more uniformly distributed sequences known as quasi-random. In this paper quasi-random (Halton, Sobol`, and Faure) and pseudo-random sequences are compared in computational experiments designed to determine the effects on convergence of certain properties of the integrand, including variance, variation, smoothness, and dimension. The results show that variation, which plays an important role in the theoretical upper bound given by the Koksma-Hlawka inequality, does not affect convergence, while variance, the determining factor in random Monte Carlo, is shown to provide a rough upper bound, but does not accurately predict performance. In general, quasi-Monte Carlo methods are superior to random Monte Carlo, but the advantage may be slight, particularly in high dimensions or for integrands that are not smooth. For discontinuous integrands, we derive a bound which shows that the exponent for algebraic decay of the integration error from quasi-Monte Carlo is only slightly larger than {1/2} in high dimensions. 21 refs., 6 figs., 5 tabs.

  20. Quasi-Monte Carlo Integration

    NASA Astrophysics Data System (ADS)

    Morokoff, William J.; Caflisch, Russel E.

    1995-12-01

    The standard Monte Carlo approach to evaluating multidimensional integrals using (pseudo)-random integration nodes is frequently used when quadrature methods are too difficult or expensive to implement. As an alternative to the random methods, it has been suggested that lower error and improved convergence may be obtained by replacing the pseudo-random sequences with more uniformly distributed sequences known as quasi-random. In this paper quasi-random (Halton, Sobol', and Faure) and pseudo-random sequences are compared in computational experiments designed to determine the effects on convergence of certain properties of the integrand, including variance, variation, smoothness, and dimension. The results show that variation, which plays an important role in the theoretical upper bound given by the Koksma-Hlawka inequality, does not affect convergence, while variance, the determining factor in random Monte Carlo, is shown to provide a rough upper bound, but does not accurately predict performance. In general, quasi-Monte Carlo methods are superior to random Monte Carlo, but the advantage may be slight, particularly in high dimensions or for integrands that are not smooth. For discontinuous integrands, we derive a bound which shows that the exponent for algebraic decay of the integration error from quasi-Monte Carlo is only slightly larger than {1}/{2} in high dimensions.

  1. Proton Upset Monte Carlo Simulation

    NASA Technical Reports Server (NTRS)

    O'Neill, Patrick M.; Kouba, Coy K.; Foster, Charles C.

    2009-01-01

    The Proton Upset Monte Carlo Simulation (PROPSET) program calculates the frequency of on-orbit upsets in computer chips (for given orbits such as Low Earth Orbit, Lunar Orbit, and the like) from proton bombardment based on the results of heavy ion testing alone. The software simulates the bombardment of modern microelectronic components (computer chips) with high-energy (.200 MeV) protons. The nuclear interaction of the proton with the silicon of the chip is modeled and nuclear fragments from this interaction are tracked using Monte Carlo techniques to produce statistically accurate predictions.

  2. Monte Carlo modeling of toroidal ion distributions and ion temperatures at high altitudes equatorward of the cusp: Effect of finite gyroradius

    NASA Astrophysics Data System (ADS)

    Barghouthi, I. A.; Atout, M. A.

    2006-03-01

    We report that the effect of finite gyroradius is responsible for production of the H+ and O+ toroids at high altitudes equatorward of the cusp that are observed by TIDE and TIMAS ion instruments on board the polar spacecraft. The energization of charged particles, owing to interaction with electromagnetic turbulence, has an important influence on the plasma outflow in space. The effect of wave-particle interactions (WPI) on H+ and O+ outflow at high altitudes equatorward of the cusp was investigated by using Monte Carlo method. The Monte Carlo model includes the effect of WPI, gravity, polarization electrostatic field, and the divergence of the geomagnetic field within the simulation tube (1.2-10 Earth radii, RE). As the ions drift upward along the geomagnetic field lines, they interact with the electromagnetic turbulence and consequently get heated in the direction perpendicular to the geomagnetic field. The mirror force converts some of the gained ion energy in the perpendicular direction into parallel kinetic energy. These effects combine to form an ion-conic velocity distribution. However, as the ions are heated and move to higher altitudes, the ion gyroradius ρi may become comparable to the perpendicular wavelength of the electromagnetic turbulence λ⊥. As the ratio ρi/λ⊥ becomes >1, then the heating rate turns to be self-limited and the ion velocity distribution displays toroidal features. A comparison has been made between the Monte Carlo calculations obtained in this study and observations of H+ and O+ ion velocity distributions and temperatures. The comparison showed a remarkably close agreement in the corresponding results for the ion velocity distribution and its temperature. As a result of the comparison, we were able to predict the characteristic value of the perpendicular wavelength of the electromagnetic turbulence λ⊥ at high altitudes equatorward of the cusp. To our knowledge, this represents the first successful comparison of observed

  3. Synchronous Parallel Kinetic Monte Carlo

    SciTech Connect

    Mart?nez, E; Marian, J; Kalos, M H

    2006-12-14

    A novel parallel kinetic Monte Carlo (kMC) algorithm formulated on the basis of perfect time synchronicity is presented. The algorithm provides an exact generalization of any standard serial kMC model and is trivially implemented in parallel architectures. We demonstrate the mathematical validity and parallel performance of the method by solving several well-understood problems in diffusion.

  4. Monte Carlo calculations of nuclei

    SciTech Connect

    Pieper, S.C.

    1997-10-01

    Nuclear many-body calculations have the complication of strong spin- and isospin-dependent potentials. In these lectures the author discusses the variational and Green`s function Monte Carlo techniques that have been developed to address this complication, and presents a few results.

  5. CTRANS: A Monte Carlo program for radiative transfer in plane parallel atmospheres with imbedded finite clouds: Development, testing and user's guide

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The program called CTRANS is described which was designed to perform radiative transfer computations in an atmosphere with horizontal inhomogeneities (clouds). Since the atmosphere-ground system was to be richly detailed, the Monte Carlo method was employed. This means that results are obtained through direct modeling of the physical process of radiative transport. The effects of atmopheric or ground albedo pattern detail are essentially built up from their impact upon the transport of individual photons. The CTRANS program actually tracks the photons backwards through the atmosphere, initiating them at a receiver and following them backwards along their path to the Sun. The pattern of incident photons generated through backwards tracking automatically reflects the importance to the receiver of each region of the sky. Further, through backwards tracking, the impact of the finite field of view of the receiver and variations in its response over the field of view can be directly simulated.

  6. Monte Carlo Simulation for Perusal and Practice.

    ERIC Educational Resources Information Center

    Brooks, Gordon P.; Barcikowski, Robert S.; Robey, Randall R.

    The meaningful investigation of many problems in statistics can be solved through Monte Carlo methods. Monte Carlo studies can help solve problems that are mathematically intractable through the analysis of random samples from populations whose characteristics are known to the researcher. Using Monte Carlo simulation, the values of a statistic are…

  7. Implicit Monte Carlo with a linear discontinuous finite element material solution and piecewise non-constant opacity

    DOE PAGESBeta

    Wollaeger, Ryan T.; Wollaber, Allan B.; Urbatsch, Todd J.; Densmore, Jeffery D.

    2016-05-04

    Here, the non-linear thermal radiative-transfer equations can be solved in various ways. One popular way is the Fleck and Cummings Implicit Monte Carlo (IMC) method. The IMC method was originally formulated with piecewise-constant material properties. For domains with a coarse spatial grid and large temperature gradients, an error known as numerical teleportation may cause artificially non-causal energy propagation and consequently an inaccurate material temperature. Source tilting is a technique to reduce teleportation error by constructing sub-spatial-cell (or sub-cell) emission profiles from which IMC particles are sampled. Several source tilting schemes exist, but some allow teleportation error to persist. We examinemore » the effect of source tilting in problems with a temperature-dependent opacity. Within each cell, the opacity is evaluated continuously from a temperature profile implied by the source tilt. For IMC, this is a new approach to modeling the opacity. We find that applying both source tilting along with a source tilt-dependent opacity can introduce another dominant error that overly inhibits thermal wavefronts. We show that we can mitigate both teleportation and under-propagation errors if we discretize the temperature equation with a linear discontinuous (LD) trial space. Our method is for opacities ~ 1/T3, but we formulate and test a slight extension for opacities ~ 1/T3.5, where T is temperature. We find our method avoids errors that can be incurred by IMC with continuous source tilt constructions and piecewise-constant material temperature updates.« less

  8. Interaction picture density matrix quantum Monte Carlo.

    PubMed

    Malone, Fionn D; Blunt, N S; Shepherd, James J; Lee, D K K; Spencer, J S; Foulkes, W M C

    2015-07-28

    The recently developed density matrix quantum Monte Carlo (DMQMC) algorithm stochastically samples the N-body thermal density matrix and hence provides access to exact properties of many-particle quantum systems at arbitrary temperatures. We demonstrate that moving to the interaction picture provides substantial benefits when applying DMQMC to interacting fermions. In this first study, we focus on a system of much recent interest: the uniform electron gas in the warm dense regime. The basis set incompleteness error at finite temperature is investigated and extrapolated via a simple Monte Carlo sampling procedure. Finally, we provide benchmark calculations for a four-electron system, comparing our results to previous work where possible. PMID:26233116

  9. Monte Carlo methods in ICF

    SciTech Connect

    Zimmerman, G.B.

    1997-06-24

    Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ion and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burns nd burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials.

  10. Shell model Monte Carlo methods

    SciTech Connect

    Koonin, S.E.; Dean, D.J.

    1996-10-01

    We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, thermal behavior of {gamma}-soft nuclei, and calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. 87 refs.

  11. The D0 Monte Carlo

    SciTech Connect

    Womersley, J. . Dept. of Physics)

    1992-10-01

    The D0 detector at the Fermilab Tevatron began its first data taking run in May 1992. For analysis of the expected 25 pb[sup [minus]1] data sample, roughly half a million simulated events will be needed. The GEANT-based Monte Carlo program used to generate these events is described, together with comparisons to test beam data. Some novel techniques used to speed up execution and simplify geometrical input are described.

  12. Extending canonical Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Velazquez, L.; Curilef, S.

    2010-02-01

    In this paper, we discuss the implications of a recently obtained equilibrium fluctuation-dissipation relation for the extension of the available Monte Carlo methods on the basis of the consideration of the Gibbs canonical ensemble to account for the existence of an anomalous regime with negative heat capacities C < 0. The resulting framework appears to be a suitable generalization of the methodology associated with the so-called dynamical ensemble, which is applied to the extension of two well-known Monte Carlo methods: the Metropolis importance sampling and the Swendsen-Wang cluster algorithm. These Monte Carlo algorithms are employed to study the anomalous thermodynamic behavior of the Potts models with many spin states q defined on a d-dimensional hypercubic lattice with periodic boundary conditions, which successfully reduce the exponential divergence of the decorrelation time τ with increase of the system size N to a weak power-law divergence \\tau \\propto N^{\\alpha } with α≈0.2 for the particular case of the 2D ten-state Potts model.

  13. Compressible generalized hybrid Monte Carlo

    NASA Astrophysics Data System (ADS)

    Fang, Youhan; Sanz-Serna, J. M.; Skeel, Robert D.

    2014-05-01

    One of the most demanding calculations is to generate random samples from a specified probability distribution (usually with an unknown normalizing prefactor) in a high-dimensional configuration space. One often has to resort to using a Markov chain Monte Carlo method, which converges only in the limit to the prescribed distribution. Such methods typically inch through configuration space step by step, with acceptance of a step based on a Metropolis(-Hastings) criterion. An acceptance rate of 100% is possible in principle by embedding configuration space in a higher dimensional phase space and using ordinary differential equations. In practice, numerical integrators must be used, lowering the acceptance rate. This is the essence of hybrid Monte Carlo methods. Presented is a general framework for constructing such methods under relaxed conditions: the only geometric property needed is (weakened) reversibility; volume preservation is not needed. The possibilities are illustrated by deriving a couple of explicit hybrid Monte Carlo methods, one based on barrier-lowering variable-metric dynamics and another based on isokinetic dynamics.

  14. Path Integral Monte Carlo Methods for Fermions

    NASA Astrophysics Data System (ADS)

    Ethan, Ethan; Dubois, Jonathan; Ceperley, David

    2014-03-01

    In general, Quantum Monte Carlo methods suffer from a sign problem when simulating fermionic systems. This causes the efficiency of a simulation to decrease exponentially with the number of particles and inverse temperature. To circumvent this issue, a nodal constraint is often implemented, restricting the Monte Carlo procedure from sampling paths that cause the many-body density matrix to change sign. Unfortunately, this high-dimensional nodal surface is not a priori known unless the system is exactly solvable, resulting in uncontrolled errors. We will discuss two possible routes to extend the applicability of finite-temperatue path integral Monte Carlo. First we extend the regime where signful simulations are possible through a novel permutation sampling scheme. Afterwards, we discuss a method to variationally improve the nodal surface by minimizing a free energy during simulation. Applications of these methods will include both free and interacting electron gases, concluding with discussion concerning extension to inhomogeneous systems. Support from DOE DE-FG52-09NA29456, DE-AC52-07NA27344, LLNL LDRD 10- ERD-058, and the Lawrence Scholar program.

  15. Monte Carlo surface flux tallies

    SciTech Connect

    Favorite, Jeffrey A

    2010-11-19

    Particle fluxes on surfaces are difficult to calculate with Monte Carlo codes because the score requires a division by the surface-crossing angle cosine, and grazing angles lead to inaccuracies. We revisit the standard practice of dividing by half of a cosine 'cutoff' for particles whose surface-crossing cosines are below the cutoff. The theory behind this approximation is sound, but the application of the theory to all possible situations does not account for two implicit assumptions: (1) the grazing band must be symmetric about 0, and (2) a single linear expansion for the angular flux must be applied in the entire grazing band. These assumptions are violated in common circumstances; for example, for separate in-going and out-going flux tallies on internal surfaces, and for out-going flux tallies on external surfaces. In some situations, dividing by two-thirds of the cosine cutoff is more appropriate. If users were able to control both the cosine cutoff and the substitute value, they could use these parameters to make accurate surface flux tallies. The procedure is demonstrated in a test problem in which Monte Carlo surface fluxes in cosine bins are converted to angular fluxes and compared with the results of a discrete ordinates calculation.

  16. Multidimensional stochastic approximation Monte Carlo.

    PubMed

    Zablotskiy, Sergey V; Ivanov, Victor A; Paul, Wolfgang

    2016-06-01

    Stochastic Approximation Monte Carlo (SAMC) has been established as a mathematically founded powerful flat-histogram Monte Carlo method, used to determine the density of states, g(E), of a model system. We show here how it can be generalized for the determination of multidimensional probability distributions (or equivalently densities of states) of macroscopic or mesoscopic variables defined on the space of microstates of a statistical mechanical system. This establishes this method as a systematic way for coarse graining a model system, or, in other words, for performing a renormalization group step on a model. We discuss the formulation of the Kadanoff block spin transformation and the coarse-graining procedure for polymer models in this language. We also apply it to a standard case in the literature of two-dimensional densities of states, where two competing energetic effects are present g(E_{1},E_{2}). We show when and why care has to be exercised when obtaining the microcanonical density of states g(E_{1}+E_{2}) from g(E_{1},E_{2}). PMID:27415383

  17. Multidimensional stochastic approximation Monte Carlo

    NASA Astrophysics Data System (ADS)

    Zablotskiy, Sergey V.; Ivanov, Victor A.; Paul, Wolfgang

    2016-06-01

    Stochastic Approximation Monte Carlo (SAMC) has been established as a mathematically founded powerful flat-histogram Monte Carlo method, used to determine the density of states, g (E ) , of a model system. We show here how it can be generalized for the determination of multidimensional probability distributions (or equivalently densities of states) of macroscopic or mesoscopic variables defined on the space of microstates of a statistical mechanical system. This establishes this method as a systematic way for coarse graining a model system, or, in other words, for performing a renormalization group step on a model. We discuss the formulation of the Kadanoff block spin transformation and the coarse-graining procedure for polymer models in this language. We also apply it to a standard case in the literature of two-dimensional densities of states, where two competing energetic effects are present g (E1,E2) . We show when and why care has to be exercised when obtaining the microcanonical density of states g (E1+E2) from g (E1,E2) .

  18. 1-D EQUILIBRIUM DISCRETE DIFFUSION MONTE CARLO

    SciTech Connect

    T. EVANS; ET AL

    2000-08-01

    We present a new hybrid Monte Carlo method for 1-D equilibrium diffusion problems in which the radiation field coexists with matter in local thermodynamic equilibrium. This method, the Equilibrium Discrete Diffusion Monte Carlo (EqDDMC) method, combines Monte Carlo particles with spatially discrete diffusion solutions. We verify the EqDDMC method with computational results from three slab problems. The EqDDMC method represents an incremental step toward applying this hybrid methodology to non-equilibrium diffusion, where it could be simultaneously coupled to Monte Carlo transport.

  19. Multilevel Monte Carlo simulation of Coulomb collisions

    DOE PAGESBeta

    Rosin, M. S.; Ricketson, L. F.; Dimits, A. M.; Caflisch, R. E.; Cohen, B. I.

    2014-05-29

    We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the Landau–Fokker–Planck equation. It does so by combining multiple solutions to the underlying equations with varying numbers of timesteps. For a desired level of accuracy ε , the computational cost of the method is O(ε–2) or (ε–2(lnε)2), depending on the underlying discretization, Milstein or Euler–Maruyama respectively. This is to be contrasted with a cost of O(ε–3) for direct simulation Monte Carlo or binary collision methods.more » We successfully demonstrate the method with a classic beam diffusion test case in 2D, making use of the Lévy area approximation for the correlated Milstein cross terms, and generating a computational saving of a factor of 100 for ε=10–5. Lastly, we discuss the importance of the method for problems in which collisions constitute the computational rate limiting step, and its limitations.« less

  20. Multilevel Monte Carlo simulation of Coulomb collisions

    SciTech Connect

    Rosin, M. S.; Ricketson, L. F.; Dimits, A. M.; Caflisch, R. E.; Cohen, B. I.

    2014-05-29

    We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the Landau–Fokker–Planck equation. It does so by combining multiple solutions to the underlying equations with varying numbers of timesteps. For a desired level of accuracy ε , the computational cost of the method is O(ε–2) or (ε–2(lnε)2), depending on the underlying discretization, Milstein or Euler–Maruyama respectively. This is to be contrasted with a cost of O(ε–3) for direct simulation Monte Carlo or binary collision methods. We successfully demonstrate the method with a classic beam diffusion test case in 2D, making use of the Lévy area approximation for the correlated Milstein cross terms, and generating a computational saving of a factor of 100 for ε=10–5. Lastly, we discuss the importance of the method for problems in which collisions constitute the computational rate limiting step, and its limitations.

  1. Inflection points of microcanonical entropy: Monte Carlo simulation of q state Potts model on a finite square lattice

    SciTech Connect

    Praveen, E. Satyanarayana, S. V. M.

    2014-04-24

    Traditional definition of phase transition involves an infinitely large system in thermodynamic limit. Finite systems such as biological proteins exhibit cooperative behavior similar to phase transitions. We employ recently discovered analysis of inflection points of microcanonical entropy to estimate the transition temperature of the phase transition in q state Potts model on a finite two dimensional square lattice for q=3 (second order) and q=8 (first order). The difference of energy density of states (DOS) Δ ln g(E) = ln g(E+ ΔE) −ln g(E) exhibits a point of inflexion at a value corresponding to inverse transition temperature. This feature is common to systems exhibiting both first as well as second order transitions. While the difference of DOS registers a monotonic variation around the point of inflexion for systems exhibiting second order transition, it has an S-shape with a minimum and maximum around the point of inflexion for the case of first order transition.

  2. SciDAC Center for Simulation of Wave-Plasma Interactions - Iterated Finite-Orbit Monte Carlo Simulations with Full-Wave Fields for Modeling Tokamak ICRF Wave Heating Experiments - Final Report

    SciTech Connect

    Choi, Myunghee; Chan, Vincent S.

    2014-02-28

    This final report describes the work performed under U.S. Department of Energy Cooperative Agreement DE-FC02-08ER54954 for the period April 1, 2011 through March 31, 2013. The goal of this project was to perform iterated finite-orbit Monte Carlo simulations with full-wall fields for modeling tokamak ICRF wave heating experiments. In year 1, the finite-orbit Monte-Carlo code ORBIT-RF and its iteration algorithms with the full-wave code AORSA were improved to enable systematical study of the factors responsible for the discrepancy in the simulated and the measured fast-ion FIDA signals in the DIII-D and NSTX ICRF fast-wave (FW) experiments. In year 2, ORBIT-RF was coupled to the TORIC full-wave code for a comparative study of ORBIT-RF/TORIC and ORBIT-RF/AORSA results in FW experiments.

  3. TH-C-12A-08: New Compact 10 MV S-Band Linear Accelerator: 3D Finite-Element Design and Monte Carlo Dose Simulations

    SciTech Connect

    Baillie, D; St Aubin, J; Fallone, B; Steciw, S

    2014-06-15

    Purpose: To design a new compact S-band linac waveguide capable of producing a 10 MV x-ray beam, while maintaining the length (27.5 cm) of current 6 MV waveguides. This will allow higher x-ray energies to be used in our linac-MRI systems with the same footprint. Methods: Finite element software COMSOL Multiphysics was used to design an accelerator cavity matching one published in an experiment breakdown study, to ensure that our modeled cavities do not exceed the threshold electric fields published. This cavity was used as the basis for designing an accelerator waveguide, where each cavity of the full waveguide was tuned to resonate at 2.997 GHz by adjusting the cavity diameter. The RF field solution within the waveguide was calculated, and together with an electron-gun phase space generated using Opera3D/SCALA, were input into electron tracking software PARMELA to compute the electron phase space striking the x-ray target. This target phase space was then used in BEAM Monte Carlo simulations to generate percent depth doses curves for this new linac, which were then used to re-optimize the waveguide geometry. Results: The shunt impedance, Q-factor, and peak-to-mean electric field ratio were matched to those published for the breakdown study to within 0.1% error. After tuning the full waveguide, the peak surface fields are calculated to be 207 MV/m, 13% below the breakdown threshold, and a d-max depth of 2.42 cm, a D10/20 value of 1.59, compared to 2.45 cm and 1.59, respectively, for the simulated Varian 10 MV linac and brehmsstrahlung production efficiency 20% lower than a simulated Varian 10 MV linac. Conclusion: This work demonstrates the design of a functional 27.5 cm waveguide producing 10 MV photons with characteristics similar to a Varian 10 MV linac.

  4. Generalizing the self-healing diffusion Monte Carlo approach to finite temperature: A path for the optimization of low-energy many-body bases

    SciTech Connect

    Reboredo, Fernando A.; Kim, Jeongnim

    2014-02-21

    A statistical method is derived for the calculation of thermodynamic properties of many-body systems at low temperatures. This method is based on the self-healing diffusion Monte Carlo method for complex functions [F. A. Reboredo, J. Chem. Phys. 136, 204101 (2012)] and some ideas of the correlation function Monte Carlo approach [D. M. Ceperley and B. Bernu, J. Chem. Phys. 89, 6316 (1988)]. In order to allow the evolution in imaginary time to describe the density matrix, we remove the fixed-node restriction using complex antisymmetric guiding wave functions. In the process we obtain a parallel algorithm that optimizes a small subspace of the many-body Hilbert space to provide maximum overlap with the subspace spanned by the lowest-energy eigenstates of a many-body Hamiltonian. We show in a model system that the partition function is progressively maximized within this subspace. We show that the subspace spanned by the small basis systematically converges towards the subspace spanned by the lowest energy eigenstates. Possible applications of this method for calculating the thermodynamic properties of many-body systems near the ground state are discussed. The resulting basis can also be used to accelerate the calculation of the ground or excited states with quantum Monte Carlo.

  5. Monte Carlo Shower Counter Studies

    NASA Technical Reports Server (NTRS)

    Snyder, H. David

    1991-01-01

    Activities and accomplishments related to the Monte Carlo shower counter studies are summarized. A tape of the VMS version of the GEANT software was obtained and installed on the central computer at Gallaudet University. Due to difficulties encountered in updating this VMS version, a decision was made to switch to the UNIX version of the package. This version was installed and used to generate the set of data files currently accessed by various analysis programs. The GEANT software was used to write files of data for positron and proton showers. Showers were simulated for a detector consisting of 50 alternating layers of lead and scintillator. Each file consisted of 1000 events at each of the following energies: 0.1, 0.5, 2.0, 10, 44, and 200 GeV. Data analysis activities related to clustering, chi square, and likelihood analyses are summarized. Source code for the GEANT user subprograms and data analysis programs are provided along with example data plots.

  6. Bold Diagrammatic Monte Carlo for Fermionic and Fermionized Systems

    NASA Astrophysics Data System (ADS)

    Svistunov, Boris

    2013-03-01

    In three different fermionic cases--repulsive Hubbard model, resonant fermions, and fermionized spins-1/2 (on triangular lattice)--we observe the phenomenon of sign blessing: Feynman diagrammatic series features finite convergence radius despite factorial growth of the number of diagrams with diagram order. Bold diagrammatic Monte Carlo technique allows us to sample millions of skeleton Feynman diagrams. With the universal fermionization trick we can fermionize essentially any (bosonic, spin, mixed, etc.) lattice system. The combination of fermionization and Bold diagrammatic Monte Carlo yields a universal first-principle approach to strongly correlated lattice systems, provided the sign blessing is a generic fermionic phenomenon. Supported by NSF and DARPA

  7. Improved Monte Carlo Renormalization Group Method

    DOE R&D Accomplishments Database

    Gupta, R.; Wilson, K. G.; Umrigar, C.

    1985-01-01

    An extensive program to analyze critical systems using an Improved Monte Carlo Renormalization Group Method (IMCRG) being undertaken at LANL and Cornell is described. Here we first briefly review the method and then list some of the topics being investigated.

  8. Monte Carlo Ion Transport Analysis Code.

    Energy Science and Technology Software Center (ESTSC)

    2009-04-15

    Version: 00 TRIPOS is a versatile Monte Carlo ion transport analysis code. It has been applied to the treatment of both surface and bulk radiation effects. The media considered is composed of multilayer polyatomic materials.

  9. Monte Carlo Transport for Electron Thermal Transport

    NASA Astrophysics Data System (ADS)

    Chenhall, Jeffrey; Cao, Duc; Moses, Gregory

    2015-11-01

    The iSNB (implicit Schurtz Nicolai Busquet multigroup electron thermal transport method of Cao et al. is adapted into a Monte Carlo transport method in order to better model the effects of non-local behavior. The end goal is a hybrid transport-diffusion method that combines Monte Carlo Transport with a discrete diffusion Monte Carlo (DDMC). The hybrid method will combine the efficiency of a diffusion method in short mean free path regions with the accuracy of a transport method in long mean free path regions. The Monte Carlo nature of the approach allows the algorithm to be massively parallelized. Work to date on the method will be presented. This work was supported by Sandia National Laboratory - Albuquerque and the University of Rochester Laboratory for Laser Energetics.

  10. Extra Chance Generalized Hybrid Monte Carlo

    NASA Astrophysics Data System (ADS)

    Campos, Cédric M.; Sanz-Serna, J. M.

    2015-01-01

    We study a method, Extra Chance Generalized Hybrid Monte Carlo, to avoid rejections in the Hybrid Monte Carlo method and related algorithms. In the spirit of delayed rejection, whenever a rejection would occur, extra work is done to find a fresh proposal that, hopefully, may be accepted. We present experiments that clearly indicate that the additional work per sample carried out in the extra chance approach clearly pays in terms of the quality of the samples generated.

  11. Parallel domain decomposition methods in fluid models with Monte Carlo transport

    SciTech Connect

    Alme, H.J.; Rodrigues, G.H.; Zimmerman, G.B.

    1996-12-01

    To examine the domain decomposition code coupled Monte Carlo-finite element calculation, it is important to use a domain decomposition that is suitable for the individual models. We have developed a code that simulates a Monte Carlo calculation ( ) on a massively parallel processor. This code is used to examine the load balancing behavior of three domain decomposition ( ) for a Monte Carlo calculation. Results are presented.

  12. Kinetic Monte Carlo investigation of tetragonal strain on Onsager matrices

    NASA Astrophysics Data System (ADS)

    Li, Zebo; Trinkle, Dallas R.

    2016-05-01

    We use three different methods to compute the derivatives of Onsager matrices with respect to strain for vacancy-mediated multicomponent diffusion from kinetic Monte Carlo simulations. We consider a finite difference method, a correlated finite difference method to reduce the relative statistical errors, and a perturbation theory approach to compute the derivatives. We investigate the statistical error behavior of the three methods for uncorrelated single vacancy diffusion in fcc Ni and for correlated vacancy-mediated diffusion of Si in Ni. While perturbation theory performs best for uncorrelated systems, the correlated finite difference method performs best for the vacancy-mediated Si diffusion in Ni, where longer trajectories are required.

  13. Approaching chemical accuracy with quantum Monte Carlo.

    PubMed

    Petruzielo, F R; Toulouse, Julien; Umrigar, C J

    2012-03-28

    A quantum Monte Carlo study of the atomization energies for the G2 set of molecules is presented. Basis size dependence of diffusion Monte Carlo atomization energies is studied with a single determinant Slater-Jastrow trial wavefunction formed from Hartree-Fock orbitals. With the largest basis set, the mean absolute deviation from experimental atomization energies for the G2 set is 3.0 kcal/mol. Optimizing the orbitals within variational Monte Carlo improves the agreement between diffusion Monte Carlo and experiment, reducing the mean absolute deviation to 2.1 kcal/mol. Moving beyond a single determinant Slater-Jastrow trial wavefunction, diffusion Monte Carlo with a small complete active space Slater-Jastrow trial wavefunction results in near chemical accuracy. In this case, the mean absolute deviation from experimental atomization energies is 1.2 kcal/mol. It is shown from calculations on systems containing phosphorus that the accuracy can be further improved by employing a larger active space. PMID:22462844

  14. Quantum speedup of Monte Carlo methods

    PubMed Central

    Montanaro, Ashley

    2015-01-01

    Monte Carlo methods use random sampling to estimate numerical quantities which are hard to compute deterministically. One important example is the use in statistical physics of rapidly mixing Markov chains to approximately compute partition functions. In this work, we describe a quantum algorithm which can accelerate Monte Carlo methods in a very general setting. The algorithm estimates the expected output value of an arbitrary randomized or quantum subroutine with bounded variance, achieving a near-quadratic speedup over the best possible classical algorithm. Combining the algorithm with the use of quantum walks gives a quantum speedup of the fastest known classical algorithms with rigorous performance bounds for computing partition functions, which use multiple-stage Markov chain Monte Carlo techniques. The quantum algorithm can also be used to estimate the total variation distance between probability distributions efficiently. PMID:26528079

  15. Quantum Monte Carlo calculations of light nuclei

    SciTech Connect

    Pieper, S.C.

    1998-12-01

    Quantum Monte Carlo calculations using realistic two- and three-nucleon interactions are presented for nuclei with up to eight nucleons. We have computed the ground and a few excited states of all such nuclei with Greens function Monte Carlo (GFMC) and all of the experimentally known excited states using variational Monte Carlo (VMC). The GFMC calculations show that for a given Hamiltonian, the VMC calculations of excitation spectra are reliable, but the VMC ground-state energies are significantly above the exact values. We find that the Hamiltonian we are using (which was developed based on {sup 3}H,{sup 4}He, and nuclear matter calculations) underpredicts the binding energy of p-shell nuclei. However our results for excitation spectra are very good and one can see both shell-model and collective spectra resulting from fundamental many-nucleon calculations. Possible improvements in the three-nucleon potential are also be discussed. {copyright} {ital 1998 American Institute of Physics.}

  16. Quantum Monte Carlo calculations of light nuclei

    SciTech Connect

    Pieper, Steven C.

    1998-12-21

    Quantum Monte Carlo calculations using realistic two- and three-nucleon interactions are presented for nuclei with up to eight nucleons. We have computed the ground and a few excited states of all such nuclei with Greens function Monte Carlo (GFMC) and all of the experimentally known excited states using variational Monte Carlo (VMC). The GFMC calculations show that for a given Hamiltonian, the VMC calculations of excitation spectra are reliable, but the VMC ground-state energies are significantly above the exact values. We find that the Hamiltonian we are using (which was developed based on {sup 3}H,{sup 4}He, and nuclear matter calculations) underpredicts the binding energy of p-shell nuclei. However our results for excitation spectra are very good and one can see both shell-model and collective spectra resulting from fundamental many-nucleon calculations. Possible improvements in the three-nucleon potential are also be discussed.

  17. Quantum Monte Carlo calculations of light nuclei.

    SciTech Connect

    Pieper, S. C.

    1998-08-25

    Quantum Monte Carlo calculations using realistic two- and three-nucleon interactions are presented for nuclei with up to eight nucleons. We have computed the ground and a few excited states of all such nuclei with Greens function Monte Carlo (GFMC) and all of the experimentally known excited states using variational Monte Carlo (VMC). The GFMC calculations show that for a given Hamiltonian, the VMC calculations of excitation spectra are reliable, but the VMC ground-state energies are significantly above the exact values. We find that the Hamiltonian we are using (which was developed based on {sup 3}H, {sup 4}He, and nuclear matter calculations) underpredicts the binding energy of p-shell nuclei. However our results for excitation spectra are very good and one can see both shell-model and collective spectra resulting from fundamental many-nucleon calculations. Possible improvements in the three-nucleon potential are also be discussed.

  18. Spatial Correlations in Monte Carlo Criticality Simulations

    NASA Astrophysics Data System (ADS)

    Dumonteil, E.; Malvagi, F.; Zoia, A.; Mazzolo, A.; Artusio, D.; Dieudonné, C.; De Mulatier, C.

    2014-06-01

    Temporal correlations arising in Monte Carlo criticality codes have focused the attention of both developers and practitioners for a long time. Those correlations affects the evaluation of tallies of loosely coupled systems, where the system's typical size is very large compared to the diffusion/absorption length scale of the neutrons. These time correlations are closely related to spatial correlations, both variables being linked by the transport equation. Therefore this paper addresses the question of diagnosing spatial correlations in Monte Carlo criticality simulations. In that aim, we will propose a spatial correlation function well suited to Monte Carlo simulations, and show its use while simulating a fuel pin-cell. The results will be discussed, modeled and interpreted using the tools of branching processes of statistical mechanics. A mechanism called "neutron clustering", affecting simulations, will be discussed in this frame.

  19. Fast quantum Monte Carlo on a GPU

    NASA Astrophysics Data System (ADS)

    Lutsyshyn, Y.

    2015-02-01

    We present a scheme for the parallelization of quantum Monte Carlo method on graphical processing units, focusing on variational Monte Carlo simulation of bosonic systems. We use asynchronous execution schemes with shared memory persistence, and obtain an excellent utilization of the accelerator. The CUDA code is provided along with a package that simulates liquid helium-4. The program was benchmarked on several models of Nvidia GPU, including Fermi GTX560 and M2090, and the Kepler architecture K20 GPU. Special optimization was developed for the Kepler cards, including placement of data structures in the register space of the Kepler GPUs. Kepler-specific optimization is discussed.

  20. Monte Carlo simulation of neutron scattering instruments

    SciTech Connect

    Seeger, P.A.

    1995-12-31

    A library of Monte Carlo subroutines has been developed for the purpose of design of neutron scattering instruments. Using small-angle scattering as an example, the philosophy and structure of the library are described and the programs are used to compare instruments at continuous wave (CW) and long-pulse spallation source (LPSS) neutron facilities. The Monte Carlo results give a count-rate gain of a factor between 2 and 4 using time-of-flight analysis. This is comparable to scaling arguments based on the ratio of wavelength bandwidth to resolution width.

  1. Monte Carlo simulation of an expanding gas

    NASA Technical Reports Server (NTRS)

    Boyd, Iain D.

    1989-01-01

    By application of simple computer graphics techniques, the statistical performance of two Monte Carlo methods used in the simulation of rarefied gas flows are assessed. Specifically, two direct simulation Monte Carlo (DSMC) methods developed by Bird and Nanbu are considered. The graphics techniques are found to be of great benefit in the reduction and interpretation of the large volume of data generated, thus enabling important conclusions to be drawn about the simulation results. Hence, it is discovered that the method of Nanbu suffers from increased statistical fluctuations, thereby prohibiting its use in the solution of practical problems.

  2. Geodesic Monte Carlo on Embedded Manifolds.

    PubMed

    Byrne, Simon; Girolami, Mark

    2013-12-01

    Markov chain Monte Carlo methods explicitly defined on the manifold of probability distributions have recently been established. These methods are constructed from diffusions across the manifold and the solution of the equations describing geodesic flows in the Hamilton-Jacobi representation. This paper takes the differential geometric basis of Markov chain Monte Carlo further by considering methods to simulate from probability distributions that themselves are defined on a manifold, with common examples being classes of distributions describing directional statistics. Proposal mechanisms are developed based on the geodesic flows over the manifolds of support for the distributions, and illustrative examples are provided for the hypersphere and Stiefel manifold of orthonormal matrices. PMID:25309024

  3. Geodesic Monte Carlo on Embedded Manifolds

    PubMed Central

    Byrne, Simon; Girolami, Mark

    2013-01-01

    Markov chain Monte Carlo methods explicitly defined on the manifold of probability distributions have recently been established. These methods are constructed from diffusions across the manifold and the solution of the equations describing geodesic flows in the Hamilton–Jacobi representation. This paper takes the differential geometric basis of Markov chain Monte Carlo further by considering methods to simulate from probability distributions that themselves are defined on a manifold, with common examples being classes of distributions describing directional statistics. Proposal mechanisms are developed based on the geodesic flows over the manifolds of support for the distributions, and illustrative examples are provided for the hypersphere and Stiefel manifold of orthonormal matrices. PMID:25309024

  4. Extending canonical Monte Carlo methods: II

    NASA Astrophysics Data System (ADS)

    Velazquez, L.; Curilef, S.

    2010-04-01

    We have previously presented a methodology for extending canonical Monte Carlo methods inspired by a suitable extension of the canonical fluctuation relation C = β2langδE2rang compatible with negative heat capacities, C < 0. Now, we improve this methodology by including the finite size effects that reduce the precision of a direct determination of the microcanonical caloric curve β(E) = ∂S(E)/∂E, as well as by carrying out a better implementation of the MC schemes. We show that, despite the modifications considered, the extended canonical MC methods lead to an impressive overcoming of the so-called supercritical slowing down observed close to the region of the temperature driven first-order phase transition. In this case, the size dependence of the decorrelation time τ is reduced from an exponential growth to a weak power-law behavior, \\tau (N)\\propto N^{\\alpha } , as is shown in the particular case of the 2D seven-state Potts model where the exponent α = 0.14-0.18.

  5. Monte Carlo simulation framework for TMT

    NASA Astrophysics Data System (ADS)

    Vogiatzis, Konstantinos; Angeli, George Z.

    2008-07-01

    This presentation describes a strategy for assessing the performance of the Thirty Meter Telescope (TMT). A Monte Carlo Simulation Framework has been developed to combine optical modeling with Computational Fluid Dynamics simulations (CFD), Finite Element Analysis (FEA) and controls to model the overall performance of TMT. The framework consists of a two year record of observed environmental parameters such as atmospheric seeing, site wind speed and direction, ambient temperature and local sunset and sunrise times, along with telescope azimuth and elevation with a given sampling rate. The modeled optical, dynamic and thermal seeing aberrations are available in a matrix form for distinct values within the range of influencing parameters. These parameters are either part of the framework parameter set or can be derived from them at each time-step. As time advances, the aberrations are interpolated and combined based on the current value of their parameters. Different scenarios can be generated based on operating parameters such as venting strategy, optical calibration frequency and heat source control. Performance probability distributions are obtained and provide design guidance. The sensitivity of the system to design, operating and environmental parameters can be assessed in order to maximize the % of time the system meets the performance specifications.

  6. Representation and simulation for pyrochlore lattice via Monte Carlo technique

    NASA Astrophysics Data System (ADS)

    Passos, André Luis; de Albuquerque, Douglas F.; Filho, João Batista Santos

    2016-05-01

    This work presents a representation of the Kagome and pyrochlore lattices using Monte Carlo simulation as well as some results of the critical properties. These lattices are composed corner sharing triangles and tetrahedrons respectively. The simulation was performed employing the Cluster Wolf Algorithm for the spin updates through the standard ferromagnetic Ising Model. The determination of the critical temperature and exponents was based on the Histogram Technique and the Finite-Size Scaling Theory.

  7. Global Monte Carlo Simulation with High Order Polynomial Expansions

    SciTech Connect

    William R. Martin; James Paul Holloway; Kaushik Banerjee; Jesse Cheatham; Jeremy Conlin

    2007-12-13

    The functional expansion technique (FET) was recently developed for Monte Carlo simulation. The basic idea of the FET is to expand a Monte Carlo tally in terms of a high order expansion, the coefficients of which can be estimated via the usual random walk process in a conventional Monte Carlo code. If the expansion basis is chosen carefully, the lowest order coefficient is simply the conventional histogram tally, corresponding to a flat mode. This research project studied the applicability of using the FET to estimate the fission source, from which fission sites can be sampled for the next generation. The idea is that individual fission sites contribute to expansion modes that may span the geometry being considered, possibly increasing the communication across a loosely coupled system and thereby improving convergence over the conventional fission bank approach used in most production Monte Carlo codes. The project examined a number of basis functions, including global Legendre polynomials as well as “local” piecewise polynomials such as finite element hat functions and higher order versions. The global FET showed an improvement in convergence over the conventional fission bank approach. The local FET methods showed some advantages versus global polynomials in handling geometries with discontinuous material properties. The conventional finite element hat functions had the disadvantage that the expansion coefficients could not be estimated directly but had to be obtained by solving a linear system whose matrix elements were estimated. An alternative fission matrix-based response matrix algorithm was formulated. Studies were made of two alternative applications of the FET, one based on the kernel density estimator and one based on Arnoldi’s method of minimized iterations. Preliminary results for both methods indicate improvements in fission source convergence. These developments indicate that the FET has promise for speeding up Monte Carlo fission source

  8. Observations on variational and projector Monte Carlo methods

    SciTech Connect

    Umrigar, C. J.

    2015-10-28

    Variational Monte Carlo and various projector Monte Carlo (PMC) methods are presented in a unified manner. Similarities and differences between the methods and choices made in designing the methods are discussed. Both methods where the Monte Carlo walk is performed in a discrete space and methods where it is performed in a continuous space are considered. It is pointed out that the usual prescription for importance sampling may not be advantageous depending on the particular quantum Monte Carlo method used and the observables of interest, so alternate prescriptions are presented. The nature of the sign problem is discussed for various versions of PMC methods. A prescription for an exact PMC method in real space, i.e., a method that does not make a fixed-node or similar approximation and does not have a finite basis error, is presented. This method is likely to be practical for systems with a small number of electrons. Approximate PMC methods that are applicable to larger systems and go beyond the fixed-node approximation are also discussed.

  9. A comparison of Monte Carlo generators

    NASA Astrophysics Data System (ADS)

    Golan, Tomasz

    2015-05-01

    A comparison of GENIE, NEUT, NUANCE, and NuWro Monte Carlo neutrino event generators is presented using a set of four observables: protons multiplicity, total visible energy, most energetic proton momentum, and π+ two-dimensional energy vs cosine distribution.

  10. MCMAC: Monte Carlo Merger Analysis Code

    NASA Astrophysics Data System (ADS)

    Dawson, William A.

    2014-07-01

    Monte Carlo Merger Analysis Code (MCMAC) aids in the study of merging clusters. It takes observed priors on each subcluster's mass, radial velocity, and projected separation, draws randomly from those priors, and uses them in a analytic model to get posterior PDF's for merger dynamic properties of interest (e.g. collision velocity, time since collision).

  11. Monte Carlo methods in genetic analysis

    SciTech Connect

    Lin, Shili

    1996-12-31

    Many genetic analyses require computation of probabilities and likelihoods of pedigree data. With more and more genetic marker data deriving from new DNA technologies becoming available to researchers, exact computations are often formidable with standard statistical methods and computational algorithms. The desire to utilize as much available data as possible, coupled with complexities of realistic genetic models, push traditional approaches to their limits. These methods encounter severe methodological and computational challenges, even with the aid of advanced computing technology. Monte Carlo methods are therefore increasingly being explored as practical techniques for estimating these probabilities and likelihoods. This paper reviews the basic elements of the Markov chain Monte Carlo method and the method of sequential imputation, with an emphasis upon their applicability to genetic analysis. Three areas of applications are presented to demonstrate the versatility of Markov chain Monte Carlo for different types of genetic problems. A multilocus linkage analysis example is also presented to illustrate the sequential imputation method. Finally, important statistical issues of Markov chain Monte Carlo and sequential imputation, some of which are unique to genetic data, are discussed, and current solutions are outlined. 72 refs.

  12. Scalable Domain Decomposed Monte Carlo Particle Transport

    SciTech Connect

    O'Brien, Matthew Joseph

    2013-12-05

    In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation.

  13. A comparison of Monte Carlo generators

    SciTech Connect

    Golan, Tomasz

    2015-05-15

    A comparison of GENIE, NEUT, NUANCE, and NuWro Monte Carlo neutrino event generators is presented using a set of four observables: protons multiplicity, total visible energy, most energetic proton momentum, and π{sup +} two-dimensional energy vs cosine distribution.

  14. Monte Carlo simulations of lattice gauge theories

    SciTech Connect

    Rebbi, C

    1980-02-01

    Monte Carlo simulations done for four-dimensional lattice gauge systems are described, where the gauge group is one of the following: U(1); SU(2); Z/sub N/, i.e., the subgroup of U(1) consisting of the elements e 2..pi..in/N with integer n and N; the eight-element group of quaternions, Q; the 24- and 48-element subgroups of SU(2), denoted by T and O, which reduce to the rotation groups of the tetrahedron and the octahedron when their centers Z/sub 2/, are factored out. All of these groups can be considered subgroups of SU(2) and a common normalization was used for the action. The following types of Monte Carlo experiments are considered: simulations of a thermal cycle, where the temperature of the system is varied slightly every few Monte Carlo iterations and the internal energy is measured; mixed-phase runs, where several Monte Carlo iterations are done at a few temperatures near a phase transition starting with a lattice which is half ordered and half disordered; measurements of averages of Wilson factors for loops of different shape. 5 figures, 1 table. (RWR)

  15. Structural Reliability and Monte Carlo Simulation.

    ERIC Educational Resources Information Center

    Laumakis, P. J.; Harlow, G.

    2002-01-01

    Analyzes a simple boom structure and assesses its reliability using elementary engineering mechanics. Demonstrates the power and utility of Monte-Carlo simulation by showing that such a simulation can be implemented more readily with results that compare favorably to the theoretical calculations. (Author/MM)

  16. Path integral Monte Carlo and the electron gas

    NASA Astrophysics Data System (ADS)

    Brown, Ethan W.

    Path integral Monte Carlo is a proven method for accurately simulating quantum mechanical systems at finite-temperature. By stochastically sampling Feynman's path integral representation of the quantum many-body density matrix, path integral Monte Carlo includes non-perturbative effects like thermal fluctuations and particle correlations in a natural way. Over the past 30 years, path integral Monte Carlo has been successfully employed to study the low density electron gas, high-pressure hydrogen, and superfluid helium. For systems where the role of Fermi statistics is important, however, traditional path integral Monte Carlo simulations have an exponentially decreasing efficiency with decreased temperature and increased system size. In this thesis, we work towards improving this efficiency, both through approximate and exact methods, as specifically applied to the homogeneous electron gas. We begin with a brief overview of the current state of atomic simulations at finite-temperature before we delve into a pedagogical review of the path integral Monte Carlo method. We then spend some time discussing the one major issue preventing exact simulation of Fermi systems, the sign problem. Afterwards, we introduce a way to circumvent the sign problem in PIMC simulations through a fixed-node constraint. We then apply this method to the homogeneous electron gas at a large swatch of densities and temperatures in order to map out the warm-dense matter regime. The electron gas can be a representative model for a host of real systems, from simple medals to stellar interiors. However, its most common use is as input into density functional theory. To this end, we aim to build an accurate representation of the electron gas from the ground state to the classical limit and examine its use in finite-temperature density functional formulations. The latter half of this thesis focuses on possible routes beyond the fixed-node approximation. As a first step, we utilize the variational

  17. Novel Quantum Monte Carlo Approaches for Quantum Liquids

    NASA Astrophysics Data System (ADS)

    Rubenstein, Brenda M.

    the eventual hope is to apply this algorithm to the exploration of yet unidentified high-pressure, low-temperature phases of hydrogen, I employ this algorithm to determine whether or not quantum hard spheres can form a low-temperature bcc solid if exchange is not taken into account. In the final chapter of this thesis, I use Path Integral Monte Carlo once again to explore whether glassy para-hydrogen exhibits superfluidity. Physicists have long searched for ways to coax hydrogen into becoming a superfluid. I present evidence that, while glassy hydrogen does not crystallize at the temperatures at which hydrogen might become a superfluid, it nevertheless does not exhibit superfluidity. This is because the average binding energy per p-H2 molecule poses a severe barrier to exchange regardless of whether the system is crystalline. All in all, this work extends the reach of Quantum Monte Carlo methods to new systems and brings the power of existing methods to bear on new problems. Portions of this work have been published in Rubenstein, PRE (2010) and Rubenstein, PRA (2012) [167;169]. Other papers not discussed here published during my Ph.D. include Rubenstein, BPJ (2008) and Rubenstein, PRL (2012) [166;168]. The work in Chapters 6 and 7 is currently unpublished. [166] Brenda M. Rubenstein, Ivan Coluzza, and Mark A. Miller. Controlling the folding and substrate-binding of proteins using polymer brushes. Physical Review Letters, 108(20):208104, May 2012. [167] Brenda M. Rubenstein, J.E. Gubernatis, and J.D. Doll. Comparative monte carlo efficiency by monte carlo analysis. Physical Review E, 82(3):036701, September 2010. [168] Brenda M. Rubenstein and Laura J. Kaufman. The role of extracellular matrix in glioma invasion: A cellular potts model approach. Biophysical Journal, 95(12):5661-- 5680, December 2008. [169] Brenda M. Rubenstein, Shiwei Zhang, and David R. Reichman. Finite-temperature auxiliary-field quantum monte carlo for bose-fermi mixtures. Physical Review A, 86

  18. Monte Carlo Volcano Seismic Moment Tensors

    NASA Astrophysics Data System (ADS)

    Waite, G. P.; Brill, K. A.; Lanza, F.

    2015-12-01

    Inverse modeling of volcano seismic sources can provide insight into the geometry and dynamics of volcanic conduits. But given the logistical challenges of working on an active volcano, seismic networks are typically deficient in spatial and temporal coverage; this potentially leads to large errors in source models. In addition, uncertainties in the centroid location and moment-tensor components, including volumetric components, are difficult to constrain from the linear inversion results, which leads to a poor understanding of the model space. In this study, we employ a nonlinear inversion using a Monte Carlo scheme with the objective of defining robustly resolved elements of model space. The model space is randomized by centroid location and moment tensor eigenvectors. Point sources densely sample the summit area and moment tensors are constrained to a randomly chosen geometry within the inversion; Green's functions for the random moment tensors are all calculated from modeled single forces, making the nonlinear inversion computationally reasonable. We apply this method to very-long-period (VLP) seismic events that accompany minor eruptions at Fuego volcano, Guatemala. The library of single force Green's functions is computed with a 3D finite-difference modeling algorithm through a homogeneous velocity-density model that includes topography, for a 3D grid of nodes, spaced 40 m apart, within the summit region. The homogenous velocity and density model is justified by long wavelength of VLP data. The nonlinear inversion reveals well resolved model features and informs the interpretation through a better understanding of the possible models. This approach can also be used to evaluate possible station geometries in order to optimize networks prior to deployment.

  19. Nuclear pairing within a configuration-space Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Lingle, Mark; Volya, Alexander

    2015-06-01

    Pairing correlations in nuclei play a decisive role in determining nuclear drip lines, binding energies, and many collective properties. In this work a new configuration-space Monte Carlo (CSMC) method for treating nuclear pairing correlations is developed, implemented, and demonstrated. In CSMC the Hamiltonian matrix is stochastically generated in Krylov subspace, resulting in the Monte Carlo version of Lanczos-like diagonalization. The advantages of this approach over other techniques are discussed; the absence of the fermionic sign problem, probabilistic interpretation of quantum-mechanical amplitudes, and ability to handle truly large-scale problems with defined precision and error control are noteworthy merits of CSMC. The features of our CSMC approach are shown using models and realistic examples. Special attention is given to difficult limits: situations with nonconstant pairing strengths, cases with nearly degenerate excited states, limits when pairing correlations in finite systems are weak, and problems when the relevant configuration space is large.

  20. A tetrahedron-based inhomogeneous Monte Carlo optical simulator

    PubMed Central

    Shen, H; Wang, G

    2010-01-01

    Optical imaging has been widely applied in preclinical and clinical applications. Fifteen years ago, an efficient Monte Carlo program ‘MCML’ was developed for use with multi-layered turbid media and has gained popularity in the field of biophotonics. Currently, there is an increasingly pressing need for simulating tools more powerful than MCML in order to study light propagation phenomena in complex inhomogeneous objects, such as the mouse. Here we report a tetrahedron-based inhomogeneous Monte Carlo optical simulator (TIM-OS) to address this issue. By modeling an object as a tetrahedron-based inhomogeneous finite-element mesh, TIM-OS can determine the photon– triangle interaction recursively and rapidly. In numerical simulation, we have demonstrated the correctness and efficiency of TIM-OS. PMID:20090182

  1. Quantum Monte Carlo calculations for carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Luu, Thomas; Lähde, Timo A.

    2016-04-01

    We show how lattice quantum Monte Carlo can be applied to the electronic properties of carbon nanotubes in the presence of strong electron-electron correlations. We employ the path-integral formalism and use methods developed within the lattice QCD community for our numerical work. Our lattice Hamiltonian is closely related to the hexagonal Hubbard model augmented by a long-range electron-electron interaction. We apply our method to the single-quasiparticle spectrum of the (3,3) armchair nanotube configuration, and consider the effects of strong electron-electron correlations. Our approach is equally applicable to other nanotubes, as well as to other carbon nanostructures. We benchmark our Monte Carlo calculations against the two- and four-site Hubbard models, where a direct numerical solution is feasible.

  2. Status of Monte Carlo at Los Alamos

    SciTech Connect

    Thompson, W.L.; Cashwell, E.D.; Godfrey, T.N.K.; Schrandt, R.G.; Deutsch, O.L.; Booth, T.E.

    1980-05-01

    Four papers were presented by Group X-6 on April 22, 1980, at the Oak Ridge Radiation Shielding Information Center (RSIC) Seminar-Workshop on Theory and Applications of Monte Carlo Methods. These papers are combined into one report for convenience and because they are related to each other. The first paper (by Thompson and Cashwell) is a general survey about X-6 and MCNP and is an introduction to the other three papers. It can also serve as a resume of X-6. The second paper (by Godfrey) explains some of the details of geometry specification in MCNP. The third paper (by Cashwell and Schrandt) illustrates calculating flux at a point with MCNP; in particular, the once-more-collided flux estimator is demonstrated. Finally, the fourth paper (by Thompson, Deutsch, and Booth) is a tutorial on some variance-reduction techniques. It should be required for a fledging Monte Carlo practitioner.

  3. Quantum Monte Carlo calculations of light nuclei.

    SciTech Connect

    Pieper, S. C.; Physics

    2008-01-01

    Variational Monte Carlo and Green's function Monte Carlo are powerful tools for cal- culations of properties of light nuclei using realistic two-nucleon (NN) and three-nucleon (NNN) potentials. Recently the GFMC method has been extended to multiple states with the same quantum numbers. The combination of the Argonne v18 two-nucleon and Illinois-2 three-nucleon potentials gives a good prediction of many energies of nuclei up to 12 C. A number of other recent results are presented: comparison of binding energies with those obtained by the no-core shell model; the incompatibility of modern nuclear Hamiltonians with a bound tetra-neutron; difficulties in computing RMS radii of very weakly bound nuclei, such as 6He; center-of-mass effects on spectroscopic factors; and the possible use of an artificial external well in calculations of neutron-rich isotopes.

  4. Status of Monte Carlo at Los Alamos

    SciTech Connect

    Thompson, W.L.; Cashwell, E.D.

    1980-01-01

    At Los Alamos the early work of Fermi, von Neumann, and Ulam has been developed and supplemented by many followers, notably Cashwell and Everett, and the main product today is the continuous-energy, general-purpose, generalized-geometry, time-dependent, coupled neutron-photon transport code called MCNP. The Los Alamos Monte Carlo research and development effort is concentrated in Group X-6. MCNP treats an arbitrary three-dimensional configuration of arbitrary materials in geometric cells bounded by first- and second-degree surfaces and some fourth-degree surfaces (elliptical tori). Monte Carlo has evolved into perhaps the main method for radiation transport calculations at Los Alamos. MCNP is used in every technical division at the Laboratory by over 130 users about 600 times a month accounting for nearly 200 hours of CDC-7600 time.

  5. An enhanced Monte Carlo outlier detection method.

    PubMed

    Zhang, Liangxiao; Li, Peiwu; Mao, Jin; Ma, Fei; Ding, Xiaoxia; Zhang, Qi

    2015-09-30

    Outlier detection is crucial in building a highly predictive model. In this study, we proposed an enhanced Monte Carlo outlier detection method by establishing cross-prediction models based on determinate normal samples and analyzing the distribution of prediction errors individually for dubious samples. One simulated and three real datasets were used to illustrate and validate the performance of our method, and the results indicated that this method outperformed Monte Carlo outlier detection in outlier diagnosis. After these outliers were removed, the value of validation by Kovats retention indices and the root mean square error of prediction decreased from 3.195 to 1.655, and the average cross-validation prediction error decreased from 2.0341 to 1.2780. This method helps establish a good model by eliminating outliers. © 2015 Wiley Periodicals, Inc. PMID:26226927

  6. Fast Lattice Monte Carlo Simulations of Polymers

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Zhang, Pengfei

    2014-03-01

    The recently proposed fast lattice Monte Carlo (FLMC) simulations (with multiple occupancy of lattice sites (MOLS) and Kronecker δ-function interactions) give much faster/better sampling of configuration space than both off-lattice molecular simulations (with pair-potential calculations) and conventional lattice Monte Carlo simulations (with self- and mutual-avoiding walk and nearest-neighbor interactions) of polymers.[1] Quantitative coarse-graining of polymeric systems can also be performed using lattice models with MOLS.[2] Here we use several model systems, including polymer melts, solutions, blends, as well as confined and/or grafted polymers, to demonstrate the great advantages of FLMC simulations in the study of equilibrium properties of polymers.

  7. Monte-Carlo Opening Books for Amazons

    NASA Astrophysics Data System (ADS)

    Kloetzer, Julien

    Automatically creating opening books is a natural step towards the building of strong game-playing programs, especially when there is little available knowledge about the game. However, while recent popular Monte-Carlo Tree-Search programs showed strong results for various games, we show here that programs based on such methods cannot efficiently use opening books created using algorithms based on minimax. To overcome this issue, we propose to use an MCTS-based technique, Meta-MCTS, to create such opening books. This method, while requiring some tuning to arrive at the best opening book possible, shows promising results to create an opening book for the game of the Amazons, even if this is at the cost of removing its Monte-Carlo part.

  8. Monte Carlo modeling of exospheric bodies - Mercury

    NASA Technical Reports Server (NTRS)

    Smith, G. R.; Broadfoot, A. L.; Wallace, L.; Shemansky, D. E.

    1978-01-01

    In order to study the interaction with the surface, a Monte Carlo program is developed to determine the distribution with altitude as well as the global distribution of density at the surface in a single operation. The analysis presented shows that the appropriate source distribution should be Maxwell-Boltzmann flux if the particles in the distribution are to be treated as components of flux. Monte Carlo calculations with a Maxwell-Boltzmann flux source are compared with Mariner 10 UV spectrometer data. Results indicate that the presently operating models are not capable of fitting the observed Mercury exosphere. It is suggested that an atmosphere calculated with a barometric source distribution is suitable for more realistic future exospheric models.

  9. Monte Carlo Methods in the Physical Sciences

    SciTech Connect

    Kalos, M H

    2007-06-06

    I will review the role that Monte Carlo methods play in the physical sciences. They are very widely used for a number of reasons: they permit the rapid and faithful transformation of a natural or model stochastic process into a computer code. They are powerful numerical methods for treating the many-dimensional problems that derive from important physical systems. Finally, many of the methods naturally permit the use of modern parallel computers in efficient ways. In the presentation, I will emphasize four aspects of the computations: whether or not the computation derives from a natural or model stochastic process; whether the system under study is highly idealized or realistic; whether the Monte Carlo methodology is straightforward or mathematically sophisticated; and finally, the scientific role of the computation.

  10. Inhomogeneous Monte Carlo simulations of dermoscopic spectroscopy

    NASA Astrophysics Data System (ADS)

    Gareau, Daniel S.; Li, Ting; Jacques, Steven; Krueger, James

    2012-03-01

    Clinical skin-lesion diagnosis uses dermoscopy: 10X epiluminescence microscopy. Skin appearance ranges from black to white with shades of blue, red, gray and orange. Color is an important diagnostic criteria for diseases including melanoma. Melanin and blood content and distribution impact the diffuse spectral remittance (300-1000nm). Skin layers: immersion medium, stratum corneum, spinous epidermis, basal epidermis and dermis as well as laterally asymmetric features (eg. melanocytic invasion) were modeled in an inhomogeneous Monte Carlo model.

  11. Monte Carlo simulation of Alaska wolf survival

    NASA Astrophysics Data System (ADS)

    Feingold, S. J.

    1996-02-01

    Alaskan wolves live in a harsh climate and are hunted intensively. Penna's biological aging code, using Monte Carlo methods, has been adapted to simulate wolf survival. It was run on the case in which hunting causes the disruption of wolves' social structure. Social disruption was shown to increase the number of deaths occurring at a given level of hunting. For high levels of social disruption, the population did not survive.

  12. Applications of Maxent to quantum Monte Carlo

    SciTech Connect

    Silver, R.N.; Sivia, D.S.; Gubernatis, J.E. ); Jarrell, M. . Dept. of Physics)

    1990-01-01

    We consider the application of maximum entropy methods to the analysis of data produced by computer simulations. The focus is the calculation of the dynamical properties of quantum many-body systems by Monte Carlo methods, which is termed the Analytical Continuation Problem.'' For the Anderson model of dilute magnetic impurities in metals, we obtain spectral functions and transport coefficients which obey Kondo Universality.'' 24 refs., 7 figs.

  13. Linear-scaling quantum Monte Carlo calculations.

    PubMed

    Williamson, A J; Hood, R Q; Grossman, J C

    2001-12-10

    A method is presented for using truncated, maximally localized Wannier functions to introduce sparsity into the Slater determinant part of the trial wave function in quantum Monte Carlo calculations. When combined with an efficient numerical evaluation of these localized orbitals, the dominant cost in the calculation, namely, the evaluation of the Slater determinant, scales linearly with system size. This technique is applied to accurate total energy calculation of hydrogenated silicon clusters and carbon fullerenes containing 20-1000 valence electrons. PMID:11736525

  14. jTracker and Monte Carlo Comparison

    NASA Astrophysics Data System (ADS)

    Selensky, Lauren; SeaQuest/E906 Collaboration

    2015-10-01

    SeaQuest is designed to observe the characteristics and behavior of `sea-quarks' in a proton by reconstructing them from the subatomic particles produced in a collision. The 120 GeV beam from the main injector collides with a fixed target and then passes through a series of detectors which records information about the particles produced in the collision. However, this data becomes meaningful only after it has been processed, stored, analyzed, and interpreted. Several programs are involved in this process. jTracker (sqerp) reads wire or hodoscope hits and reconstructs the tracks of potential dimuon pairs from a run, and Geant4 Monte Carlo simulates dimuon production and background noise from the beam. During track reconstruction, an event must meet the criteria set by the tracker to be considered a viable dimuon pair; this ensures that relevant data is retained. As a check, a comparison between a new version of jTracker and Monte Carlo was made in order to see how accurately jTracker could reconstruct the events created by Monte Carlo. In this presentation, the results of the inquest and their potential effects on the programming will be shown. This work is supported by U.S. DOE MENP Grant DE-FG02-03ER41243.

  15. Numerical reproducibility for implicit Monte Carlo simulations

    SciTech Connect

    Cleveland, M.; Brunner, T.; Gentile, N.

    2013-07-01

    We describe and compare different approaches for achieving numerical reproducibility in photon Monte Carlo simulations. Reproducibility is desirable for code verification, testing, and debugging. Parallelism creates a unique problem for achieving reproducibility in Monte Carlo simulations because it changes the order in which values are summed. This is a numerical problem because double precision arithmetic is not associative. In [1], a way of eliminating this roundoff error using integer tallies was described. This approach successfully achieves reproducibility at the cost of lost accuracy by rounding double precision numbers to fewer significant digits. This integer approach, and other extended reproducibility techniques, are described and compared in this work. Increased precision alone is not enough to ensure reproducibility of photon Monte Carlo simulations. A non-arbitrary precision approaches required a varying degree of rounding to achieve reproducibility. For the problems investigated in this work double precision global accuracy was achievable by using 100 bits of precision or greater on all unordered sums which where subsequently rounded to double precision at the end of every time-step. (authors)

  16. Monte Carlo dose mapping on deforming anatomy

    NASA Astrophysics Data System (ADS)

    Zhong, Hualiang; Siebers, Jeffrey V.

    2009-10-01

    This paper proposes a Monte Carlo-based energy and mass congruent mapping (EMCM) method to calculate the dose on deforming anatomy. Different from dose interpolation methods, EMCM separately maps each voxel's deposited energy and mass from a source image to a reference image with a displacement vector field (DVF) generated by deformable image registration (DIR). EMCM was compared with other dose mapping methods: energy-based dose interpolation (EBDI) and trilinear dose interpolation (TDI). These methods were implemented in EGSnrc/DOSXYZnrc, validated using a numerical deformable phantom and compared for clinical CT images. On the numerical phantom with an analytically invertible deformation map, EMCM mapped the dose exactly the same as its analytic solution, while EBDI and TDI had average dose errors of 2.5% and 6.0%. For a lung patient's IMRT treatment plan, EBDI and TDI differed from EMCM by 1.96% and 7.3% in the lung patient's entire dose region, respectively. As a 4D Monte Carlo dose calculation technique, EMCM is accurate and its speed is comparable to 3D Monte Carlo simulation. This method may serve as a valuable tool for accurate dose accumulation as well as for 4D dosimetry QA.

  17. Implicit Monte Carlo diffusion - an acceleration method for Monte Carlo time dependent radiative transfer simulations

    SciTech Connect

    Gentile, N A

    2000-10-01

    We present a method for accelerating time dependent Monte Carlo radiative transfer calculations by using a discretization of the diffusion equation to calculate probabilities that are used to advance particles in regions with small mean free path. The method is demonstrated on problems with on 1 and 2 dimensional orthogonal grids. It results in decreases in run time of more than an order of magnitude on these problems, while producing answers with accuracy comparable to pure IMC simulations. We call the method Implicit Monte Carlo Diffusion, which we abbreviate IMD.

  18. Element Agglomeration Algebraic Multilevel Monte-Carlo Library

    SciTech Connect

    2015-02-19

    ElagMC is a parallel C++ library for Multilevel Monte Carlo simulations with algebraically constructed coarse spaces. ElagMC enables Multilevel variance reduction techniques in the context of general unstructured meshes by using the specialized element-based agglomeration techniques implemented in ELAG (the Element-Agglomeration Algebraic Multigrid and Upscaling Library developed by U. Villa and P. Vassilevski and currently under review for public release). The ElabMC library can support different type of deterministic problems, including mixed finite element discretizations of subsurface flow problems.

  19. Element Agglomeration Algebraic Multilevel Monte-Carlo Library

    Energy Science and Technology Software Center (ESTSC)

    2015-02-19

    ElagMC is a parallel C++ library for Multilevel Monte Carlo simulations with algebraically constructed coarse spaces. ElagMC enables Multilevel variance reduction techniques in the context of general unstructured meshes by using the specialized element-based agglomeration techniques implemented in ELAG (the Element-Agglomeration Algebraic Multigrid and Upscaling Library developed by U. Villa and P. Vassilevski and currently under review for public release). The ElabMC library can support different type of deterministic problems, including mixed finite element discretizationsmore » of subsurface flow problems.« less

  20. Four decades of implicit Monte Carlo

    DOE PAGESBeta

    Wollaber, Allan B.

    2016-04-25

    In 1971, Fleck and Cummings derived a system of equations to enable robust Monte Carlo simulations of time-dependent, thermal radiative transfer problems. Denoted the “Implicit Monte Carlo” (IMC) equations, their solution remains the de facto standard of high-fidelity radiative transfer simulations. Over the course of 44 years, their numerical properties have become better understood, and accuracy enhancements, novel acceleration methods, and variance reduction techniques have been suggested. In this review, we rederive the IMC equations—explicitly highlighting assumptions as they are made—and outfit the equations with a Monte Carlo interpretation. We put the IMC equations in context with other approximate formsmore » of the radiative transfer equations and present a new demonstration of their equivalence to another well-used linearization solved with deterministic transport methods for frequency-independent problems. We discuss physical and numerical limitations of the IMC equations for asymptotically small time steps, stability characteristics and the potential of maximum principle violations for large time steps, and solution behaviors in an asymptotically thick diffusive limit. We provide a new stability analysis for opacities with general monomial dependence on temperature. Here, we consider spatial accuracy limitations of the IMC equations and discussion acceleration and variance reduction techniques.« less

  1. Fission Matrix Capability for MCNP Monte Carlo

    SciTech Connect

    Carney, Sean E.; Brown, Forrest B.; Kiedrowski, Brian C.; Martin, William R.

    2012-09-05

    In a Monte Carlo criticality calculation, before the tallying of quantities can begin, a converged fission source (the fundamental eigenvector of the fission kernel) is required. Tallies of interest may include powers, absorption rates, leakage rates, or the multiplication factor (the fundamental eigenvalue of the fission kernel, k{sub eff}). Just as in the power iteration method of linear algebra, if the dominance ratio (the ratio of the first and zeroth eigenvalues) is high, many iterations of neutron history simulations are required to isolate the fundamental mode of the problem. Optically large systems have large dominance ratios, and systems containing poor neutron communication between regions are also slow to converge. The fission matrix method, implemented into MCNP[1], addresses these problems. When Monte Carlo random walk from a source is executed, the fission kernel is stochastically applied to the source. Random numbers are used for: distances to collision, reaction types, scattering physics, fission reactions, etc. This method is used because the fission kernel is a complex, 7-dimensional operator that is not explicitly known. Deterministic methods use approximations/discretization in energy, space, and direction to the kernel. Consequently, they are faster. Monte Carlo directly simulates the physics, which necessitates the use of random sampling. Because of this statistical noise, common convergence acceleration methods used in deterministic methods do not work. In the fission matrix method, we are using the random walk information not only to build the next-iteration fission source, but also a spatially-averaged fission kernel. Just like in deterministic methods, this involves approximation and discretization. The approximation is the tallying of the spatially-discretized fission kernel with an incorrect fission source. We address this by making the spatial mesh fine enough that this error is negligible. As a consequence of discretization we get a

  2. A Monte Carlo approach to water management

    NASA Astrophysics Data System (ADS)

    Koutsoyiannis, D.

    2012-04-01

    Common methods for making optimal decisions in water management problems are insufficient. Linear programming methods are inappropriate because hydrosystems are nonlinear with respect to their dynamics, operation constraints and objectives. Dynamic programming methods are inappropriate because water management problems cannot be divided into sequential stages. Also, these deterministic methods cannot properly deal with the uncertainty of future conditions (inflows, demands, etc.). Even stochastic extensions of these methods (e.g. linear-quadratic-Gaussian control) necessitate such drastic oversimplifications of hydrosystems that may make the obtained results irrelevant to the real world problems. However, a Monte Carlo approach is feasible and can form a general methodology applicable to any type of hydrosystem. This methodology uses stochastic simulation to generate system inputs, either unconditional or conditioned on a prediction, if available, and represents the operation of the entire system through a simulation model as faithful as possible, without demanding a specific mathematical form that would imply oversimplifications. Such representation fully respects the physical constraints, while at the same time it evaluates the system operation constraints and objectives in probabilistic terms, and derives their distribution functions and statistics through Monte Carlo simulation. As the performance criteria of a hydrosystem operation will generally be highly nonlinear and highly nonconvex functions of the control variables, a second Monte Carlo procedure, implementing stochastic optimization, is necessary to optimize system performance and evaluate the control variables of the system. The latter is facilitated if the entire representation is parsimonious, i.e. if the number of control variables is kept at a minimum by involving a suitable system parameterization. The approach is illustrated through three examples for (a) a hypothetical system of two reservoirs

  3. Status of Monte-Carlo Event Generators

    SciTech Connect

    Hoeche, Stefan; /SLAC

    2011-08-11

    Recent progress on general-purpose Monte-Carlo event generators is reviewed with emphasis on the simulation of hard QCD processes and subsequent parton cascades. Describing full final states of high-energy particle collisions in contemporary experiments is an intricate task. Hundreds of particles are typically produced, and the reactions involve both large and small momentum transfer. The high-dimensional phase space makes an exact solution of the problem impossible. Instead, one typically resorts to regarding events as factorized into different steps, ordered descending in the mass scales or invariant momentum transfers which are involved. In this picture, a hard interaction, described through fixed-order perturbation theory, is followed by multiple Bremsstrahlung emissions off initial- and final-state and, finally, by the hadronization process, which binds QCD partons into color-neutral hadrons. Each of these steps can be treated independently, which is the basic concept inherent to general-purpose event generators. Their development is nowadays often focused on an improved description of radiative corrections to hard processes through perturbative QCD. In this context, the concept of jets is introduced, which allows to relate sprays of hadronic particles in detectors to the partons in perturbation theory. In this talk, we briefly review recent progress on perturbative QCD in event generation. The main focus lies on the general-purpose Monte-Carlo programs HERWIG, PYTHIA and SHERPA, which will be the workhorses for LHC phenomenology. A detailed description of the physics models included in these generators can be found in [8]. We also discuss matrix-element generators, which provide the parton-level input for general-purpose Monte Carlo.

  4. Monte Carlo simulation of intercalated carbon nanotubes.

    PubMed

    Mykhailenko, Oleksiy; Matsui, Denis; Prylutskyy, Yuriy; Le Normand, Francois; Eklund, Peter; Scharff, Peter

    2007-01-01

    Monte Carlo simulations of the single- and double-walled carbon nanotubes (CNT) intercalated with different metals have been carried out. The interrelation between the length of a CNT, the number and type of metal atoms has also been established. This research is aimed at studying intercalated systems based on CNTs and d-metals such as Fe and Co. Factors influencing the stability of these composites have been determined theoretically by the Monte Carlo method with the Tersoff potential. The modeling of CNTs intercalated with metals by the Monte Carlo method has proved that there is a correlation between the length of a CNT and the number of endo-atoms of specific type. Thus, in the case of a metallic CNT (9,0) with length 17 bands (3.60 nm), in contrast to Co atoms, Fe atoms are extruded out of the CNT if the number of atoms in the CNT is not less than eight. Thus, this paper shows that a CNT of a certain size can be intercalated with no more than eight Fe atoms. The systems investigated are stabilized by coordination of 3d-atoms close to the CNT wall with a radius-vector of (0.18-0.20) nm. Another characteristic feature is that, within the temperature range of (400-700) K, small systems exhibit ground-state stabilization which is not characteristic of the higher ones. The behavior of Fe and Co endo-atoms between the walls of a double-walled carbon nanotube (DW CNT) is explained by a dominating van der Waals interaction between the Co atoms themselves, which is not true for the Fe atoms. PMID:17033783

  5. Quantum Monte Carlo for vibrating molecules

    SciTech Connect

    Brown, W.R. |

    1996-08-01

    Quantum Monte Carlo (QMC) has successfully computed the total electronic energies of atoms and molecules. The main goal of this work is to use correlation function quantum Monte Carlo (CFQMC) to compute the vibrational state energies of molecules given a potential energy surface (PES). In CFQMC, an ensemble of random walkers simulate the diffusion and branching processes of the imaginary-time time dependent Schroedinger equation in order to evaluate the matrix elements. The program QMCVIB was written to perform multi-state VMC and CFQMC calculations and employed for several calculations of the H{sub 2}O and C{sub 3} vibrational states, using 7 PES`s, 3 trial wavefunction forms, two methods of non-linear basis function parameter optimization, and on both serial and parallel computers. In order to construct accurate trial wavefunctions different wavefunctions forms were required for H{sub 2}O and C{sub 3}. In order to construct accurate trial wavefunctions for C{sub 3}, the non-linear parameters were optimized with respect to the sum of the energies of several low-lying vibrational states. In order to stabilize the statistical error estimates for C{sub 3} the Monte Carlo data was collected into blocks. Accurate vibrational state energies were computed using both serial and parallel QMCVIB programs. Comparison of vibrational state energies computed from the three C{sub 3} PES`s suggested that a non-linear equilibrium geometry PES is the most accurate and that discrete potential representations may be used to conveniently determine vibrational state energies.

  6. Kinetic Monte Carlo simulations of proton conductivity

    NASA Astrophysics Data System (ADS)

    Masłowski, T.; Drzewiński, A.; Ulner, J.; Wojtkiewicz, J.; Zdanowska-Frączek, M.; Nordlund, K.; Kuronen, A.

    2014-07-01

    The kinetic Monte Carlo method is used to model the dynamic properties of proton diffusion in anhydrous proton conductors. The results have been discussed with reference to a two-step process called the Grotthuss mechanism. There is a widespread belief that this mechanism is responsible for fast proton mobility. We showed in detail that the relative frequency of reorientation and diffusion processes is crucial for the conductivity. Moreover, the current dependence on proton concentration has been analyzed. In order to test our microscopic model the proton transport in polymer electrolyte membranes based on benzimidazole C7H6N2 molecules is studied.

  7. Quantum Monte Carlo calculations for light nuclei.

    SciTech Connect

    Wiringa, R. B.

    1998-10-23

    Quantum Monte Carlo calculations of ground and low-lying excited states for nuclei with A {le} 8 are made using a realistic Hamiltonian that fits NN scattering data. Results for more than 40 different (J{pi}, T) states, plus isobaric analogs, are obtained and the known excitation spectra are reproduced reasonably well. Various density and momentum distributions and electromagnetic form factors and moments have also been computed. These are the first microscopic calculations that directly produce nuclear shell structure from realistic NN interactions.

  8. Exascale Monte Carlo R&D

    SciTech Connect

    Marcus, Ryan C.

    2012-07-24

    Overview of this presentation is (1) Exascale computing - different technologies, getting there; (2) high-performance proof-of-concept MCMini - features and results; and (3) OpenCL toolkit - Oatmeal (OpenCL Automatic Memory Allocation Library) - purpose and features. Despite driver issues, OpenCL seems like a good, hardware agnostic tool. MCMini demonstrates the possibility for GPGPU-based Monte Carlo methods - it shows great scaling for HPC application and algorithmic equivalence. Oatmeal provides a flexible framework to aid in the development of scientific OpenCL codes.

  9. Monte Carlo procedure for protein design

    NASA Astrophysics Data System (ADS)

    Irbäck, Anders; Peterson, Carsten; Potthast, Frank; Sandelin, Erik

    1998-11-01

    A method for sequence optimization in protein models is presented. The approach, which has inherited its basic philosophy from recent work by Deutsch and Kurosky [Phys. Rev. Lett. 76, 323 (1996)] by maximizing conditional probabilities rather than minimizing energy functions, is based upon a different and very efficient multisequence Monte Carlo scheme. By construction, the method ensures that the designed sequences represent good folders thermodynamically. A bootstrap procedure for the sequence space search is devised making very large chains feasible. The algorithm is successfully explored on the two-dimensional HP model [K. F. Lau and K. A. Dill, Macromolecules 32, 3986 (1989)] with chain lengths N=16, 18, and 32.

  10. Discovering correlated fermions using quantum Monte Carlo.

    PubMed

    Wagner, Lucas K; Ceperley, David M

    2016-09-01

    It has become increasingly feasible to use quantum Monte Carlo (QMC) methods to study correlated fermion systems for realistic Hamiltonians. We give a summary of these techniques targeted at researchers in the field of correlated electrons, focusing on the fundamentals, capabilities, and current status of this technique. The QMC methods often offer the highest accuracy solutions available for systems in the continuum, and, since they address the many-body problem directly, the simulations can be analyzed to obtain insight into the nature of correlated quantum behavior. PMID:27518859

  11. Monte Carlo methods to calculate impact probabilities

    NASA Astrophysics Data System (ADS)

    Rickman, H.; Wiśniowski, T.; Wajer, P.; Gabryszewski, R.; Valsecchi, G. B.

    2014-09-01

    Context. Unraveling the events that took place in the solar system during the period known as the late heavy bombardment requires the interpretation of the cratered surfaces of the Moon and terrestrial planets. This, in turn, requires good estimates of the statistical impact probabilities for different source populations of projectiles, a subject that has received relatively little attention, since the works of Öpik (1951, Proc. R. Irish Acad. Sect. A, 54, 165) and Wetherill (1967, J. Geophys. Res., 72, 2429). Aims: We aim to work around the limitations of the Öpik and Wetherill formulae, which are caused by singularities due to zero denominators under special circumstances. Using modern computers, it is possible to make good estimates of impact probabilities by means of Monte Carlo simulations, and in this work, we explore the available options. Methods: We describe three basic methods to derive the average impact probability for a projectile with a given semi-major axis, eccentricity, and inclination with respect to a target planet on an elliptic orbit. One is a numerical averaging of the Wetherill formula; the next is a Monte Carlo super-sizing method using the target's Hill sphere. The third uses extensive minimum orbit intersection distance (MOID) calculations for a Monte Carlo sampling of potentially impacting orbits, along with calculations of the relevant interval for the timing of the encounter allowing collision. Numerical experiments are carried out for an intercomparison of the methods and to scrutinize their behavior near the singularities (zero relative inclination and equal perihelion distances). Results: We find an excellent agreement between all methods in the general case, while there appear large differences in the immediate vicinity of the singularities. With respect to the MOID method, which is the only one that does not involve simplifying assumptions and approximations, the Wetherill averaging impact probability departs by diverging toward

  12. Monte Carlo radiation transport¶llelism

    SciTech Connect

    Cox, L. J.; Post, S. E.

    2002-01-01

    This talk summarizes the main aspects of the LANL ASCI Eolus project and its major unclassified code project, MCNP. The MCNP code provide a state-of-the-art Monte Carlo radiation transport to approximately 3000 users world-wide. Almost all hardware platforms are supported because we strictly adhere to the FORTRAN-90/95 standard. For parallel processing, MCNP uses a mixture of OpenMp combined with either MPI or PVM (shared and distributed memory). This talk summarizes our experiences on various platforms using MPI with and without OpenMP. These platforms include PC-Windows, Intel-LINUX, BlueMountain, Frost, ASCI-Q and others.

  13. Monte Carlo simulation for the transport beamline

    SciTech Connect

    Romano, F.; Cuttone, G.; Jia, S. B.; Varisano, A.; Attili, A.; Marchetto, F.; Russo, G.; Cirrone, G. A. P.; Schillaci, F.; Scuderi, V.; Carpinelli, M.

    2013-07-26

    In the framework of the ELIMED project, Monte Carlo (MC) simulations are widely used to study the physical transport of charged particles generated by laser-target interactions and to preliminarily evaluate fluence and dose distributions. An energy selection system and the experimental setup for the TARANIS laser facility in Belfast (UK) have been already simulated with the GEANT4 (GEometry ANd Tracking) MC toolkit. Preliminary results are reported here. Future developments are planned to implement a MC based 3D treatment planning in order to optimize shots number and dose delivery.

  14. Discovering correlated fermions using quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Wagner, Lucas K.; Ceperley, David M.

    2016-09-01

    It has become increasingly feasible to use quantum Monte Carlo (QMC) methods to study correlated fermion systems for realistic Hamiltonians. We give a summary of these techniques targeted at researchers in the field of correlated electrons, focusing on the fundamentals, capabilities, and current status of this technique. The QMC methods often offer the highest accuracy solutions available for systems in the continuum, and, since they address the many-body problem directly, the simulations can be analyzed to obtain insight into the nature of correlated quantum behavior.

  15. Monte Carlo analysis of magnetic aftereffect phenomena

    NASA Astrophysics Data System (ADS)

    Andrei, Petru; Stancu, Alexandru

    2006-04-01

    Magnetic aftereffect phenomena are analyzed by using the Monte Carlo technique. This technique has the advantage that it can be applied to any model of hysteresis. It is shown that a log t-type dependence of the magnetization can be qualitatively predicted even in the framework of hysteresis models with local history, such as the Jiles-Atherton model. These models are computationally much more efficient than the models with global history such as the Preisach model. Numerical results related to the decay of the magnetization as of function of time, as well as to the viscosity coefficient, are presented.

  16. Monte Carlo simulation of the enantioseparation process

    NASA Astrophysics Data System (ADS)

    Bustos, V. A.; Acosta, G.; Gomez, M. R.; Pereyra, V. D.

    2012-09-01

    By means of Monte Carlo simulation, a study of enantioseparation by capillary electrophoresis has been carried out. A simplified system consisting of two enantiomers S (R) and a selector chiral C, which reacts with the enantiomers to form complexes RC (SC), has been considered. The dependence of Δμ (enantioseparation) with the concentration of chiral selector and with temperature have been analyzed by simulation. The effect of the binding constant and the charge of the complexes are also analyzed. The results are qualitatively satisfactory, despite the simplicity of the model.

  17. A Monte Carlo algorithm for degenerate plasmas

    SciTech Connect

    Turrell, A.E. Sherlock, M.; Rose, S.J.

    2013-09-15

    A procedure for performing Monte Carlo calculations of plasmas with an arbitrary level of degeneracy is outlined. It has possible applications in inertial confinement fusion and astrophysics. Degenerate particles are initialised according to the Fermi–Dirac distribution function, and scattering is via a Pauli blocked binary collision approximation. The algorithm is tested against degenerate electron–ion equilibration, and the degenerate resistivity transport coefficient from unmagnetised first order transport theory. The code is applied to the cold fuel shell and alpha particle equilibration problem of inertial confinement fusion.

  18. Modulated pulse bathymetric lidar Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Luo, Tao; Wang, Yabo; Wang, Rong; Du, Peng; Min, Xia

    2015-10-01

    A typical modulated pulse bathymetric lidar system is investigated by simulation using a modulated pulse lidar simulation system. In the simulation, the return signal is generated by Monte Carlo method with modulated pulse propagation model and processed by mathematical tools like cross-correlation and digital filter. Computer simulation results incorporating the modulation detection scheme reveal a significant suppression of the water backscattering signal and corresponding target contrast enhancement. More simulation experiments are performed with various modulation and reception variables to investigate the effect of them on the bathymetric system performance.

  19. Quantum Monte Carlo : not just for energy levels.

    SciTech Connect

    Nollett, K. M.; Physics

    2007-01-01

    Quantum Monte Carlo and realistic interactions can provide well-motivated vertices and overlaps for DWBA analyses of reactions. Given an interaction in vaccum, there are several computational approaches to nuclear systems, as you have been hearing: No-core shell model with Lee-Suzuki or Bloch-Horowitz for Hamiltonian Coupled clusters with G-matrix interaction Density functional theory, granted an energy functional derived from the interaction Quantum Monte Carlo - Variational Monte Carlo Green's function Monte Carlo. The last two work directly with a bare interaction and bare operators and describe the wave function without expanding in basis functions, so they have rather different sets of advantages and disadvantages from the others. Variational Monte Carlo (VMC) is built on a sophisticated Ansatz for the wave function, built on shell model like structure modified by operator correlations. Green's function Monte Carlo (GFMC) uses an operator method to project the true ground state out of a reasonable guess wave function.

  20. Discrete diffusion Monte Carlo for frequency-dependent radiative transfer

    SciTech Connect

    Densmore, Jeffrey D; Kelly, Thompson G; Urbatish, Todd J

    2010-11-17

    Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations. In this paper, we develop an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency-integrated diffusion equation for frequencies below a specified threshold. Above this threshold we employ standard Monte Carlo. With a frequency-dependent test problem, we confirm the increased efficiency of our new DDMC technique.

  1. Quantum Monte Carlo methods for nuclear physics

    SciTech Connect

    Carlson, Joseph A.; Gandolfi, Stefano; Pederiva, Francesco; Pieper, Steven C.; Schiavilla, Rocco; Schmidt, K. E,; Wiringa, Robert B.

    2014-10-19

    Quantum Monte Carlo methods have proved very valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. We review the nuclear interactions and currents, and describe the continuum Quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-body interactions. We present a variety of results including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. We also describe low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars. A coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.

  2. Scalable Domain Decomposed Monte Carlo Particle Transport

    NASA Astrophysics Data System (ADS)

    O'Brien, Matthew Joseph

    In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation. The main algorithms we consider are: • Domain decomposition of constructive solid geometry: enables extremely large calculations in which the background geometry is too large to fit in the memory of a single computational node. • Load Balancing: keeps the workload per processor as even as possible so the calculation runs efficiently. • Global Particle Find: if particles are on the wrong processor, globally resolve their locations to the correct processor based on particle coordinate and background domain. • Visualizing constructive solid geometry, sourcing particles, deciding that particle streaming communication is completed and spatial redecomposition. These algorithms are some of the most important parallel algorithms required for domain decomposed Monte Carlo particle transport. We demonstrate that our previous algorithms were not scalable, prove that our new algorithms are scalable, and run some of the algorithms up to 2 million MPI processes on the Sequoia supercomputer.

  3. Chemical application of diffusion quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Reynolds, P. J.; Lester, W. A., Jr.

    1983-10-01

    The diffusion quantum Monte Carlo (QMC) method gives a stochastic solution to the Schroedinger equation. As an example the singlet-triplet splitting of the energy of the methylene molecule CH2 is given. The QMC algorithm was implemented on the CYBER 205, first as a direct transcription of the algorithm running on our VAX 11/780, and second by explicitly writing vector code for all loops longer than a crossover length C. The speed of the codes relative to one another as a function of C, and relative to the VAX is discussed. Since CH2 has only eight electrons, most of the loops in this application are fairly short. The longest inner loops run over the set of atomic basis functions. The CPU time dependence obtained versus the number of basis functions is discussed and compared with that obtained from traditional quantum chemistry codes and that obtained from traditional computer architectures. Finally, preliminary work on restructuring the algorithm to compute the separate Monte Carlo realizations in parallel is discussed.

  4. Discrete range clustering using Monte Carlo methods

    NASA Technical Reports Server (NTRS)

    Chatterji, G. B.; Sridhar, B.

    1993-01-01

    For automatic obstacle avoidance guidance during rotorcraft low altitude flight, a reliable model of the nearby environment is needed. Such a model may be constructed by applying surface fitting techniques to the dense range map obtained by active sensing using radars. However, for covertness, passive sensing techniques using electro-optic sensors are desirable. As opposed to the dense range map obtained via active sensing, passive sensing algorithms produce reliable range at sparse locations, and therefore, surface fitting techniques to fill the gaps in the range measurement are not directly applicable. Both for automatic guidance and as a display for aiding the pilot, these discrete ranges need to be grouped into sets which correspond to objects in the nearby environment. The focus of this paper is on using Monte Carlo methods for clustering range points into meaningful groups. One of the aims of the paper is to explore whether simulated annealing methods offer significant advantage over the basic Monte Carlo method for this class of problems. We compare three different approaches and present application results of these algorithms to a laboratory image sequence and a helicopter flight sequence.

  5. Composite biasing in Monte Carlo radiative transfer

    NASA Astrophysics Data System (ADS)

    Baes, Maarten; Gordon, Karl D.; Lunttila, Tuomas; Bianchi, Simone; Camps, Peter; Juvela, Mika; Kuiper, Rolf

    2016-05-01

    Biasing or importance sampling is a powerful technique in Monte Carlo radiative transfer, and can be applied in different forms to increase the accuracy and efficiency of simulations. One of the drawbacks of the use of biasing is the potential introduction of large weight factors. We discuss a general strategy, composite biasing, to suppress the appearance of large weight factors. We use this composite biasing approach for two different problems faced by current state-of-the-art Monte Carlo radiative transfer codes: the generation of photon packages from multiple components, and the penetration of radiation through high optical depth barriers. In both cases, the implementation of the relevant algorithms is trivial and does not interfere with any other optimisation techniques. Through simple test models, we demonstrate the general applicability, accuracy and efficiency of the composite biasing approach. In particular, for the penetration of high optical depths, the gain in efficiency is spectacular for the specific problems that we consider: in simulations with composite path length stretching, high accuracy results are obtained even for simulations with modest numbers of photon packages, while simulations without biasing cannot reach convergence, even with a huge number of photon packages.

  6. Calculating Pi Using the Monte Carlo Method

    NASA Astrophysics Data System (ADS)

    Williamson, Timothy

    2013-11-01

    During the summer of 2012, I had the opportunity to participate in a research experience for teachers at the center for sustainable energy at Notre Dame University (RET @ cSEND) working with Professor John LoSecco on the problem of using antineutrino detection to accurately determine the fuel makeup and operating power of nuclear reactors. During full power operation, a reactor may produce 1021 antineutrinos per second with approximately 100 per day being detected. While becoming familiar with the design and operation of the detectors, and how total antineutrino flux could be obtained from such a small sample, I read about a simulation program called Monte Carlo. Further investigation led me to the Monte Carlo method page of Wikipedia2 where I saw an example of approximating pi using this simulation. Other examples where this method was applied were typically done with computer simulations2 or purely mathematical.3 It is my belief that this method may be easily related to the students by performing the simple activity of sprinkling rice on an arc drawn in a square. The activity that follows was inspired by those simulations and was used by my AP Physics class last year with very good results.

  7. THE MCNPX MONTE CARLO RADIATION TRANSPORT CODE

    SciTech Connect

    WATERS, LAURIE S.; MCKINNEY, GREGG W.; DURKEE, JOE W.; FENSIN, MICHAEL L.; JAMES, MICHAEL R.; JOHNS, RUSSELL C.; PELOWITZ, DENISE B.

    2007-01-10

    MCNPX (Monte Carlo N-Particle eXtended) is a general-purpose Monte Carlo radiation transport code with three-dimensional geometry and continuous-energy transport of 34 particles and light ions. It contains flexible source and tally options, interactive graphics, and support for both sequential and multi-processing computer platforms. MCNPX is based on MCNP4B, and has been upgraded to most MCNP5 capabilities. MCNP is a highly stable code tracking neutrons, photons and electrons, and using evaluated nuclear data libraries for low-energy interaction probabilities. MCNPX has extended this base to a comprehensive set of particles and light ions, with heavy ion transport in development. Models have been included to calculate interaction probabilities when libraries are not available. Recent additions focus on the time evolution of residual nuclei decay, allowing calculation of transmutation and delayed particle emission. MCNPX is now a code of great dynamic range, and the excellent neutronics capabilities allow new opportunities to simulate devices of interest to experimental particle physics; particularly calorimetry. This paper describes the capabilities of the current MCNPX version 2.6.C, and also discusses ongoing code development.

  8. Quantum Monte Carlo methods for nuclear physics

    SciTech Connect

    Carlson, J.; Gandolfi, S.; Pederiva, F.; Pieper, Steven C.; Schiavilla, R.; Schmidt, K. E.; Wiringa, R. B.

    2015-09-01

    Quantum Monte Carlo methods have proved valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments, and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. The nuclear interactions and currents are reviewed along with a description of the continuum quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-body interactions. A variety of results are presented, including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. Low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars are also described. Furthermore, a coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.

  9. Quantum Monte Carlo methods for nuclear physics

    DOE PAGESBeta

    Carlson, J.; Gandolfi, S.; Pederiva, F.; Pieper, Steven C.; Schiavilla, R.; Schmidt, K. E.; Wiringa, R. B.

    2015-09-01

    Quantum Monte Carlo methods have proved valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments, and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. The nuclear interactions and currents are reviewed along with a description of the continuum quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit,more » and three-body interactions. A variety of results are presented, including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. Low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars are also described. Furthermore, a coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.« less

  10. Quantum Monte Carlo methods for nuclear physics

    DOE PAGESBeta

    Carlson, Joseph A.; Gandolfi, Stefano; Pederiva, Francesco; Pieper, Steven C.; Schiavilla, Rocco; Schmidt, K. E,; Wiringa, Robert B.

    2014-10-19

    Quantum Monte Carlo methods have proved very valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. We review the nuclear interactions and currents, and describe the continuum Quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-bodymore » interactions. We present a variety of results including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. We also describe low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars. A coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.« less

  11. Monte Carlo simulations within avalanche rescue

    NASA Astrophysics Data System (ADS)

    Reiweger, Ingrid; Genswein, Manuel; Schweizer, Jürg

    2016-04-01

    Refining concepts for avalanche rescue involves calculating suitable settings for rescue strategies such as an adequate probing depth for probe line searches or an optimal time for performing resuscitation for a recovered avalanche victim in case of additional burials. In the latter case, treatment decisions have to be made in the context of triage. However, given the low number of incidents it is rarely possible to derive quantitative criteria based on historical statistics in the context of evidence-based medicine. For these rare, but complex rescue scenarios, most of the associated concepts, theories, and processes involve a number of unknown "random" parameters which have to be estimated in order to calculate anything quantitatively. An obvious approach for incorporating a number of random variables and their distributions into a calculation is to perform a Monte Carlo (MC) simulation. We here present Monte Carlo simulations for calculating the most suitable probing depth for probe line searches depending on search area and an optimal resuscitation time in case of multiple avalanche burials. The MC approach reveals, e.g., new optimized values for the duration of resuscitation that differ from previous, mainly case-based assumptions.

  12. Quantum Monte Carlo methods for nuclear physics

    SciTech Connect

    Carlson, J.; Gandolfi, S.; Pederiva, F.; Pieper, Steven C.; Schiavilla, R.; Schmidt, K. E.; Wiringa, R. B.

    2015-09-09

    Quantum Monte Carlo methods have proved valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments, and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. The nuclear interactions and currents are reviewed along with a description of the continuum quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-body interactions. A variety of results are presented, including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. Low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars are also described. Furthermore, a coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.

  13. Monte Carlo methods in lattice gauge theories

    SciTech Connect

    Otto, S.W.

    1983-01-01

    The mass of the O/sup +/ glueball for SU(2) gauge theory in 4 dimensions is calculated. This computation was done on a prototype parallel processor and the implementation of gauge theories on this system is described in detail. Using an action of the purely Wilson form (tract of plaquette in the fundamental representation), results with high statistics are obtained. These results are not consistent with scaling according to the continuum renormalization group. Using actions containing higher representations of the group, a search is made for one which is closer to the continuum limit. The choice is based upon the phase structure of these extended theories and also upon the Migdal-Kadanoff approximation to the renormalizaiton group on the lattice. The mass of the O/sup +/ glueball for this improved action is obtained and the mass divided by the square root of the string tension is a constant as the lattice spacing is varied. The other topic studied is the inclusion of dynamical fermions into Monte Carlo calculations via the pseudo fermion technique. Monte Carlo results obtained with this method are compared with those from an exact algorithm based on Gauss-Seidel inversion. First applied were the methods to the Schwinger model and SU(3) theory.

  14. Quantum Monte Carlo for atoms and molecules

    SciTech Connect

    Barnett, R.N.

    1989-11-01

    The diffusion quantum Monte Carlo with fixed nodes (QMC) approach has been employed in studying energy-eigenstates for 1--4 electron systems. Previous work employing the diffusion QMC technique yielded energies of high quality for H{sub 2}, LiH, Li{sub 2}, and H{sub 2}O. Here, the range of calculations with this new approach has been extended to include additional first-row atoms and molecules. In addition, improvements in the previously computed fixed-node energies of LiH, Li{sub 2}, and H{sub 2}O have been obtained using more accurate trial functions. All computations were performed within, but are not limited to, the Born-Oppenheimer approximation. In our computations, the effects of variation of Monte Carlo parameters on the QMC solution of the Schroedinger equation were studied extensively. These parameters include the time step, renormalization time and nodal structure. These studies have been very useful in determining which choices of such parameters will yield accurate QMC energies most efficiently. Generally, very accurate energies (90--100% of the correlation energy is obtained) have been computed with single-determinant trail functions multiplied by simple correlation functions. Improvements in accuracy should be readily obtained using more complex trial functions.

  15. Metallic lithium by quantum Monte Carlo

    SciTech Connect

    Sugiyama, G.; Zerah, G.; Alder, B.J.

    1986-12-01

    Lithium was chosen as the simplest known metal for the first application of quantum Monte Carlo methods in order to evaluate the accuracy of conventional one-electron band theories. Lithium has been extensively studied using such techniques. Band theory calculations have certain limitations in general and specifically in their application to lithium. Results depend on such factors as charge shape approximations (muffin tins), pseudopotentials (a special problem for lithium where the lack of rho core states requires a strong pseudopotential), and the form and parameters chosen for the exchange potential. The calculations are all one-electron methods in which the correlation effects are included in an ad hoc manner. This approximation may be particularly poor in the high compression regime, where the core states become delocalized. Furthermore, band theory provides only self-consistent results rather than strict limits on the energies. The quantum Monte Carlo method is a totally different technique using a many-body rather than a mean field approach which yields an upper bound on the energies. 18 refs., 4 figs., 1 tab.

  16. Monte Carlo modeling of spatial coherence: free-space diffraction.

    PubMed

    Fischer, David G; Prahl, Scott A; Duncan, Donald D

    2008-10-01

    We present a Monte Carlo method for propagating partially coherent fields through complex deterministic optical systems. A Gaussian copula is used to synthesize a random source with an arbitrary spatial coherence function. Physical optics and Monte Carlo predictions of the first- and second-order statistics of the field are shown for coherent and partially coherent sources for free-space propagation, imaging using a binary Fresnel zone plate, and propagation through a limiting aperture. Excellent agreement between the physical optics and Monte Carlo predictions is demonstrated in all cases. Convergence criteria are presented for judging the quality of the Monte Carlo predictions. PMID:18830335

  17. Monte Carlo techniques for analyzing deep-penetration problems

    SciTech Connect

    Cramer, S.N.; Gonnord, J.; Hendricks, J.S.

    1986-02-01

    Current methods and difficulties in Monte Carlo deep-penetration calculations are reviewed, including statistical uncertainty and recent adjoint optimization of splitting, Russian roulette, and exponential transformation biasing. Other aspects of the random walk and estimation processes are covered, including the relatively new DXANG angular biasing technique. Specific items summarized are albedo scattering, Monte Carlo coupling techniques with discrete ordinates and other methods, adjoint solutions, and multigroup Monte Carlo. The topic of code-generated biasing parameters is presented, including the creation of adjoint importance functions from forward calculations. Finally, current and future work in the area of computer learning and artificial intelligence is discussed in connection with Monte Carlo applications.

  18. Quantum Monte Carlo Endstation for Petascale Computing

    SciTech Connect

    Lubos Mitas

    2011-01-26

    NCSU research group has been focused on accomplising the key goals of this initiative: establishing new generation of quantum Monte Carlo (QMC) computational tools as a part of Endstation petaflop initiative for use at the DOE ORNL computational facilities and for use by computational electronic structure community at large; carrying out high accuracy quantum Monte Carlo demonstration projects in application of these tools to the forefront electronic structure problems in molecular and solid systems; expanding the impact of QMC methods and approaches; explaining and enhancing the impact of these advanced computational approaches. In particular, we have developed quantum Monte Carlo code (QWalk, www.qwalk.org) which was significantly expanded and optimized using funds from this support and at present became an actively used tool in the petascale regime by ORNL researchers and beyond. These developments have been built upon efforts undertaken by the PI's group and collaborators over the period of the last decade. The code was optimized and tested extensively on a number of parallel architectures including petaflop ORNL Jaguar machine. We have developed and redesigned a number of code modules such as evaluation of wave functions and orbitals, calculations of pfaffians and introduction of backflow coordinates together with overall organization of the code and random walker distribution over multicore architectures. We have addressed several bottlenecks such as load balancing and verified efficiency and accuracy of the calculations with the other groups of the Endstation team. The QWalk package contains about 50,000 lines of high quality object-oriented C++ and includes also interfaces to data files from other conventional electronic structure codes such as Gamess, Gaussian, Crystal and others. This grant supported PI for one month during summers, a full-time postdoc and partially three graduate students over the period of the grant duration, it has resulted in 13

  19. Theory and Applications of Quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Deible, Michael John

    With the development of peta-scale computers and exa-scale only a few years away, the quantum Monte Carlo (QMC) method, with favorable scaling and inherent parrallelizability, is poised to increase its impact on the electronic structure community. The most widely used variation of QMC is the diffusion Monte Carlo (DMC) method. The accuracy of the DMC method is only limited by the trial wave function that it employs. The effect of the trial wave function is studied here by initially developing correlation-consistent Gaussian basis sets for use in DMC calculations. These basis sets give a low variance in variance Monte Carlo calculations and improved convergence in DMC. The orbital type used in the trial wave function is then investigated, and it is shown that Brueckner orbitals result in a DMC energy comparable to a DMC energy with orbitals from density functional theory and significantly lower than orbitals from Hartree-Fock theory. Three large weakly interacting systems are then studied; a water-16 isomer, a methane clathrate, and a carbon dioxide clathrate. The DMC method is seen to be in good agreement with MP2 calculations and provides reliable benchmarks. Several strongly correlated systems are then studied. An H4 model system that allows for a fine tuning of the multi-configurational character of the wave function shows when the accuracy of the DMC method with a single Slater-determinant trial function begins to deviate from multi-reference benchmarks. The weakly interacting face-to-face ethylene dimer is studied with and without a rotation around the pi bond, which is used to increase the multi-configurational nature of the wave function. This test shows that the effect of a multi-configurational wave function in weakly interacting systems causes DMC with a single Slater-determinant to be unable to achieve sub-chemical accuracy. The beryllium dimer is studied, and it is shown that a very large determinant expansion is required for DMC to predict a binding

  20. Monte Carlo simulations of medical imaging modalities

    SciTech Connect

    Estes, G.P.

    1998-09-01

    Because continuous-energy Monte Carlo radiation transport calculations can be nearly exact simulations of physical reality (within data limitations, geometric approximations, transport algorithms, etc.), it follows that one should be able to closely approximate the results of many experiments from first-principles computations. This line of reasoning has led to various MCNP studies that involve simulations of medical imaging modalities and other visualization methods such as radiography, Anger camera, computerized tomography (CT) scans, and SABRINA particle track visualization. It is the intent of this paper to summarize some of these imaging simulations in the hope of stimulating further work, especially as computer power increases. Improved interpretation and prediction of medical images should ultimately lead to enhanced medical treatments. It is also reasonable to assume that such computations could be used to design new or more effective imaging instruments.

  1. Coherent scatter imaging Monte Carlo simulation.

    PubMed

    Hassan, Laila; MacDonald, Carolyn A

    2016-07-01

    Conventional mammography can suffer from poor contrast between healthy and cancerous tissues due to the small difference in attenuation properties. Coherent scatter slot scan imaging is an imaging technique which provides additional information and is compatible with conventional mammography. A Monte Carlo simulation of coherent scatter slot scan imaging was performed to assess its performance and provide system optimization. Coherent scatter could be exploited using a system similar to conventional slot scan mammography system with antiscatter grids tilted at the characteristic angle of cancerous tissues. System optimization was performed across several parameters, including source voltage, tilt angle, grid distances, grid ratio, and shielding geometry. The simulated carcinomas were detectable for tumors as small as 5 mm in diameter, so coherent scatter analysis using a wide-slot setup could be promising as an enhancement for screening mammography. Employing coherent scatter information simultaneously with conventional mammography could yield a conventional high spatial resolution image with additional coherent scatter information. PMID:27610397

  2. Green's function Monte Carlo in nuclear physics

    SciTech Connect

    Carlson, J.

    1990-01-01

    We review the status of Green's Function Monte Carlo (GFMC) methods as applied to problems in nuclear physics. New methods have been developed to handle the spin and isospin degrees of freedom that are a vital part of any realistic nuclear physics problem, whether at the level of quarks or nucleons. We discuss these methods and then summarize results obtained recently for light nuclei, including ground state energies, three-body forces, charge form factors and the coulomb sum. As an illustration of the applicability of GFMC to quark models, we also consider the possible existence of bound exotic multi-quark states within the framework of flux-tube quark models. 44 refs., 8 figs., 1 tab.

  3. Accuracy control in Monte Carlo radiative calculations

    NASA Technical Reports Server (NTRS)

    Almazan, P. Planas

    1993-01-01

    The general accuracy law that rules the Monte Carlo, ray-tracing algorithms used commonly for the calculation of the radiative entities in the thermal analysis of spacecraft are presented. These entities involve transfer of radiative energy either from a single source to a target (e.g., the configuration factors). or from several sources to a target (e.g., the absorbed heat fluxes). In fact, the former is just a particular case of the latter. The accuracy model is later applied to the calculation of some specific radiative entities. Furthermore, some issues related to the implementation of such a model in a software tool are discussed. Although only the relative error is considered through the discussion, similar results can be derived for the absolute error.

  4. MORSE Monte Carlo radiation transport code system

    SciTech Connect

    Emmett, M.B.

    1983-02-01

    This report is an addendum to the MORSE report, ORNL-4972, originally published in 1975. This addendum contains descriptions of several modifications to the MORSE Monte Carlo Code, replacement pages containing corrections, Part II of the report which was previously unpublished, and a new Table of Contents. The modifications include a Klein Nishina estimator for gamma rays. Use of such an estimator required changing the cross section routines to process pair production and Compton scattering cross sections directly from ENDF tapes and writing a new version of subroutine RELCOL. Another modification is the use of free form input for the SAMBO analysis data. This required changing subroutines SCORIN and adding new subroutine RFRE. References are updated, and errors in the original report have been corrected. (WHK)

  5. Exploring theory space with Monte Carlo reweighting

    DOE PAGESBeta

    Gainer, James S.; Lykken, Joseph; Matchev, Konstantin T.; Mrenna, Stephen; Park, Myeonghun

    2014-10-13

    Theories of new physics often involve a large number of unknown parameters which need to be scanned. Additionally, a putative signal in a particular channel may be due to a variety of distinct models of new physics. This makes experimental attempts to constrain the parameter space of motivated new physics models with a high degree of generality quite challenging. We describe how the reweighting of events may allow this challenge to be met, as fully simulated Monte Carlo samples generated for arbitrary benchmark models can be effectively re-used. Specifically, we suggest procedures that allow more efficient collaboration between theorists andmore » experimentalists in exploring large theory parameter spaces in a rigorous way at the LHC.« less

  6. Monte Carlo modeling and meteor showers

    NASA Astrophysics Data System (ADS)

    Kulikova, N. V.

    1987-08-01

    Prediction of short lived increases in the cosmic dust influx, the concentration in lower thermosphere of atoms and ions of meteor origin and the determination of the frequency of micrometeor impacts on spacecraft are all of scientific and practical interest and all require adequate models of meteor showers at an early stage of their existence. A Monte Carlo model of meteor matter ejection from a parent body at any point of space was worked out by other researchers. This scheme is described. According to the scheme, the formation of ten well known meteor streams was simulated and the possibility of genetic affinity of each of them with the most probable parent comet was analyzed. Some of the results are presented.

  7. Quantum Monte Carlo simulations in novel geometries

    NASA Astrophysics Data System (ADS)

    Iglovikov, Vladimir

    Quantum Monte Carlo simulations are giving increasing insight into the physics of strongly interacting bosons, spins, and fermions. Initial work focused on the simplest geometries, like a 2D square lattice. Increasingly, modern research is turning to more rich structures such as honeycomb lattice of graphene, the Lieb lattice of the CuO2 planes of cuprate superconductors, the triangular lattice, and coupled layers. These new geometries possess unique features which affect the physics in profound ways, eg a vanishing density of states and relativistic dispersion ("Dirac point'') of a honeycomb lattice, frustration on a triangular lattice, and a flat bands on a Lieb lattice. This thesis concerns both exploring the performance of QMC algorithms on different geometries(primarily via the "sign problem'') and also applying those algorithms to several interesting open problems.

  8. Resist develop prediction by Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Sohn, Dong-Soo; Jeon, Kyoung-Ah; Sohn, Young-Soo; Oh, Hye-Keun

    2002-07-01

    Various resist develop models have been suggested to express the phenomena from the pioneering work of Dill's model in 1975 to the recent Shipley's enhanced notch model. The statistical Monte Carlo method can be applied to the process such as development and post exposure bake. The motions of developer during development process were traced by using this method. We have considered that the surface edge roughness of the resist depends on the weight percentage of protected and de-protected polymer in the resist. The results are well agreed with other papers. This study can be helpful for the developing of new photoresist and developer that can be used to pattern the device features smaller than 100 nm.

  9. Exploring theory space with Monte Carlo reweighting

    SciTech Connect

    Gainer, James S.; Lykken, Joseph; Matchev, Konstantin T.; Mrenna, Stephen; Park, Myeonghun

    2014-10-13

    Theories of new physics often involve a large number of unknown parameters which need to be scanned. Additionally, a putative signal in a particular channel may be due to a variety of distinct models of new physics. This makes experimental attempts to constrain the parameter space of motivated new physics models with a high degree of generality quite challenging. We describe how the reweighting of events may allow this challenge to be met, as fully simulated Monte Carlo samples generated for arbitrary benchmark models can be effectively re-used. Specifically, we suggest procedures that allow more efficient collaboration between theorists and experimentalists in exploring large theory parameter spaces in a rigorous way at the LHC.

  10. Monte Carlo modeling and meteor showers

    NASA Technical Reports Server (NTRS)

    Kulikova, N. V.

    1987-01-01

    Prediction of short lived increases in the cosmic dust influx, the concentration in lower thermosphere of atoms and ions of meteor origin and the determination of the frequency of micrometeor impacts on spacecraft are all of scientific and practical interest and all require adequate models of meteor showers at an early stage of their existence. A Monte Carlo model of meteor matter ejection from a parent body at any point of space was worked out by other researchers. This scheme is described. According to the scheme, the formation of ten well known meteor streams was simulated and the possibility of genetic affinity of each of them with the most probable parent comet was analyzed. Some of the results are presented.

  11. Noncovalent Interactions by Quantum Monte Carlo.

    PubMed

    Dubecký, Matúš; Mitas, Lubos; Jurečka, Petr

    2016-05-11

    Quantum Monte Carlo (QMC) is a family of stochastic methods for solving quantum many-body problems such as the stationary Schrödinger equation. The review introduces basic notions of electronic structure QMC based on random walks in real space as well as its advances and adaptations to systems with noncovalent interactions. Specific issues such as fixed-node error cancellation, construction of trial wave functions, and efficiency considerations that allow for benchmark quality QMC energy differences are described in detail. Comprehensive overview of articles covers QMC applications to systems with noncovalent interactions over the last three decades. The current status of QMC with regard to efficiency, applicability, and usability by nonexperts together with further considerations about QMC developments, limitations, and unsolved challenges are discussed as well. PMID:27081724

  12. Monte-Carlo Simulation Balancing in Practice

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Chieh; Coulom, Rémi; Lin, Shun-Shii

    Simulation balancing is a new technique to tune parameters of a playout policy for a Monte-Carlo game-playing program. So far, this algorithm had only been tested in a very artificial setting: it was limited to 5×5 and 6×6 Go, and required a stronger external program that served as a supervisor. In this paper, the effectiveness of simulation balancing is demonstrated in a more realistic setting. A state-of-the-art program, Erica, learned an improved playout policy on the 9×9 board, without requiring any external expert to provide position evaluations. The evaluations were collected by letting the program analyze positions by itself. The previous version of Erica learned pattern weights with the minorization-maximization algorithm. Thanks to simulation balancing, its playing strength was improved from a winning rate of 69% to 78% against Fuego 0.4.

  13. Angular biasing in implicit Monte-Carlo

    SciTech Connect

    Zimmerman, G.B.

    1994-10-20

    Calculations of indirect drive Inertial Confinement Fusion target experiments require an integrated approach in which laser irradiation and radiation transport in the hohlraum are solved simultaneously with the symmetry, implosion and burn of the fuel capsule. The Implicit Monte Carlo method has proved to be a valuable tool for the two dimensional radiation transport within the hohlraum, but the impact of statistical noise on the symmetric implosion of the small fuel capsule is difficult to overcome. We present an angular biasing technique in which an increased number of low weight photons are directed at the imploding capsule. For typical parameters this reduces the required computer time for an integrated calculation by a factor of 10. An additional factor of 5 can also be achieved by directing even smaller weight photons at the polar regions of the capsule where small mass zones are most sensitive to statistical noise.

  14. Chemical application of diffusion quantum Monte Carlo

    NASA Technical Reports Server (NTRS)

    Reynolds, P. J.; Lester, W. A., Jr.

    1984-01-01

    The diffusion quantum Monte Carlo (QMC) method gives a stochastic solution to the Schroedinger equation. This approach is receiving increasing attention in chemical applications as a result of its high accuracy. However, reducing statistical uncertainty remains a priority because chemical effects are often obtained as small differences of large numbers. As an example, the single-triplet splitting of the energy of the methylene molecule CH sub 2 is given. The QMC algorithm was implemented on the CYBER 205, first as a direct transcription of the algorithm running on the VAX 11/780, and second by explicitly writing vector code for all loops longer than a crossover length C. The speed of the codes relative to one another as a function of C, and relative to the VAX, are discussed. The computational time dependence obtained versus the number of basis functions is discussed and this is compared with that obtained from traditional quantum chemistry codes and that obtained from traditional computer architectures.

  15. Monte Carlo simulations in Nuclear Medicine

    SciTech Connect

    Loudos, George K.

    2007-11-26

    Molecular imaging technologies provide unique abilities to localise signs of disease before symptoms appear, assist in drug testing, optimize and personalize therapy, and assess the efficacy of treatment regimes for different types of cancer. Monte Carlo simulation packages are used as an important tool for the optimal design of detector systems. In addition they have demonstrated potential to improve image quality and acquisition protocols. Many general purpose (MCNP, Geant4, etc) or dedicated codes (SimSET etc) have been developed aiming to provide accurate and fast results. Special emphasis will be given to GATE toolkit. The GATE code currently under development by the OpenGATE collaboration is the most accurate and promising code for performing realistic simulations. The purpose of this article is to introduce the non expert reader to the current status of MC simulations in nuclear medicine and briefly provide examples of current simulated systems, and present future challenges that include simulation of clinical studies and dosimetry applications.

  16. Monte Carlo simulations in Nuclear Medicine

    NASA Astrophysics Data System (ADS)

    Loudos, George K.

    2007-11-01

    Molecular imaging technologies provide unique abilities to localise signs of disease before symptoms appear, assist in drug testing, optimize and personalize therapy, and assess the efficacy of treatment regimes for different types of cancer. Monte Carlo simulation packages are used as an important tool for the optimal design of detector systems. In addition they have demonstrated potential to improve image quality and acquisition protocols. Many general purpose (MCNP, Geant4, etc) or dedicated codes (SimSET etc) have been developed aiming to provide accurate and fast results. Special emphasis will be given to GATE toolkit. The GATE code currently under development by the OpenGATE collaboration is the most accurate and promising code for performing realistic simulations. The purpose of this article is to introduce the non expert reader to the current status of MC simulations in nuclear medicine and briefly provide examples of current simulated systems, and present future challenges that include simulation of clinical studies and dosimetry applications.

  17. Optimized trial functions for quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Huang, Sheng-Yu; Sun, Zhiwei; Lester, William A., Jr.

    1990-01-01

    An algorithm to optimize trial functions for fixed-node quantum Monte Carlo calculations has been developed based on variational random walks. The approach is applied to wave functions that are products of a simple Slater determinant and correlation factor explicitly dependent on interelectronic distance, and is found to provide improved ground-state total energies. A modification of the method for ground-states that makes use of a projection operator technique is shown to make possible the calculation of more accurate excited-state energies. In this optimization method the Young tableaux of the permutation group is used to facilitate the treatment of fermion properties and multiplets. Application to ground states of H2, Li2, H3, H+3, and to the first-excited singlets of H2, H3, and H4 are presented and discussed.

  18. Optimized trial functions for quantum Monte Carlo

    SciTech Connect

    Huang, S.; Sun, Z.; Lester, W.A. Jr. )

    1990-01-01

    An algorithm to optimize trial functions for fixed-node quantum Monte Carlo calculations has been developed based on variational random walks. The approach is applied to wave functions that are products of a simple Slater determinant and correlation factor explicitly dependent on interelectronic distance, and is found to provide improved ground-state total energies. A modification of the method for ground-states that makes use of a projection operator technique is shown to make possible the calculation of more accurate excited-state energies. In this optimization method the Young tableaux of the permutation group is used to facilitate the treatment of fermion properties and multiplets. Application to ground states of H{sub 2}, Li{sub 2}, H{sub 3}, H{sup +}{sub 3}, and to the first-excited singlets of H{sub 2}, H{sub 3}, and H{sub 4} are presented and discussed.

  19. abcpmc: Approximate Bayesian Computation for Population Monte-Carlo code

    NASA Astrophysics Data System (ADS)

    Akeret, Joel

    2015-04-01

    abcpmc is a Python Approximate Bayesian Computing (ABC) Population Monte Carlo (PMC) implementation based on Sequential Monte Carlo (SMC) with Particle Filtering techniques. It is extendable with k-nearest neighbour (KNN) or optimal local covariance matrix (OLCM) pertubation kernels and has built-in support for massively parallelized sampling on a cluster using MPI.

  20. A Primer in Monte Carlo Integration Using Mathcad

    ERIC Educational Resources Information Center

    Hoyer, Chad E.; Kegerreis, Jeb S.

    2013-01-01

    The essentials of Monte Carlo integration are presented for use in an upper-level physical chemistry setting. A Mathcad document that aids in the dissemination and utilization of this information is described and is available in the Supporting Information. A brief outline of Monte Carlo integration is given, along with ideas and pedagogy for…

  1. Monte Carlo Test Assembly for Item Pool Analysis and Extension

    ERIC Educational Resources Information Center

    Belov, Dmitry I.; Armstrong, Ronald D.

    2005-01-01

    A new test assembly algorithm based on a Monte Carlo random search is presented in this article. A major advantage of the Monte Carlo test assembly over other approaches (integer programming or enumerative heuristics) is that it performs a uniform sampling from the item pool, which provides every feasible item combination (test) with an equal…

  2. Economic Risk Analysis: Using Analytical and Monte Carlo Techniques.

    ERIC Educational Resources Information Center

    O'Donnell, Brendan R.; Hickner, Michael A.; Barna, Bruce A.

    2002-01-01

    Describes the development and instructional use of a Microsoft Excel spreadsheet template that facilitates analytical and Monte Carlo risk analysis of investment decisions. Discusses a variety of risk assessment methods followed by applications of the analytical and Monte Carlo methods. Uses a case study to illustrate use of the spreadsheet tool…

  3. The Monte Carlo Method. Popular Lectures in Mathematics.

    ERIC Educational Resources Information Center

    Sobol', I. M.

    The Monte Carlo Method is a method of approximately solving mathematical and physical problems by the simulation of random quantities. The principal goal of this booklet is to suggest to specialists in all areas that they will encounter problems which can be solved by the Monte Carlo Method. Part I of the booklet discusses the simulation of random…

  4. Accelerated GPU based SPECT Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris

    2016-06-01

    Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: 99m Tc, 111In and 131I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational efficiency

  5. Monte Carlo modelling of TRIGA research reactor

    NASA Astrophysics Data System (ADS)

    El Bakkari, B.; Nacir, B.; El Bardouni, T.; El Younoussi, C.; Merroun, O.; Htet, A.; Boulaich, Y.; Zoubair, M.; Boukhal, H.; Chakir, M.

    2010-10-01

    The Moroccan 2 MW TRIGA MARK II research reactor at Centre des Etudes Nucléaires de la Maâmora (CENM) achieved initial criticality on May 2, 2007. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes for their use in agriculture, industry, and medicine. This study deals with the neutronic analysis of the 2-MW TRIGA MARK II research reactor at CENM and validation of the results by comparisons with the experimental, operational, and available final safety analysis report (FSAR) values. The study was prepared in collaboration between the Laboratory of Radiation and Nuclear Systems (ERSN-LMR) from Faculty of Sciences of Tetuan (Morocco) and CENM. The 3-D continuous energy Monte Carlo code MCNP (version 5) was used to develop a versatile and accurate full model of the TRIGA core. The model represents in detailed all components of the core with literally no physical approximation. Continuous energy cross-section data from the more recent nuclear data evaluations (ENDF/B-VI.8, ENDF/B-VII.0, JEFF-3.1, and JENDL-3.3) as well as S( α, β) thermal neutron scattering functions distributed with the MCNP code were used. The cross-section libraries were generated by using the NJOY99 system updated to its more recent patch file "up259". The consistency and accuracy of both the Monte Carlo simulation and neutron transport physics were established by benchmarking the TRIGA experiments. Core excess reactivity, total and integral control rods worth as well as power peaking factors were used in the validation process. Results of calculations are analysed and discussed.

  6. Accelerated GPU based SPECT Monte Carlo simulations.

    PubMed

    Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris

    2016-06-01

    Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: (99m) Tc, (111)In and (131)I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational

  7. Monte Carlo scatter correction for SPECT

    NASA Astrophysics Data System (ADS)

    Liu, Zemei

    The goal of this dissertation is to present a quantitatively accurate and computationally fast scatter correction method that is robust and easily accessible for routine applications in SPECT imaging. A Monte Carlo based scatter estimation method is investigated and developed further. The Monte Carlo simulation program SIMIND (Simulating Medical Imaging Nuclear Detectors), was specifically developed to simulate clinical SPECT systems. The SIMIND scatter estimation (SSE) method was developed further using a multithreading technique to distribute the scatter estimation task across multiple threads running concurrently on multi-core CPU's to accelerate the scatter estimation process. An analytical collimator that ensures less noise was used during SSE. The research includes the addition to SIMIND of charge transport modeling in cadmium zinc telluride (CZT) detectors. Phenomena associated with radiation-induced charge transport including charge trapping, charge diffusion, charge sharing between neighboring detector pixels, as well as uncertainties in the detection process are addressed. Experimental measurements and simulation studies were designed for scintillation crystal based SPECT and CZT based SPECT systems to verify and evaluate the expanded SSE method. Jaszczak Deluxe and Anthropomorphic Torso Phantoms (Data Spectrum Corporation, Hillsborough, NC, USA) were used for experimental measurements and digital versions of the same phantoms employed during simulations to mimic experimental acquisitions. This study design enabled easy comparison of experimental and simulated data. The results have consistently shown that the SSE method performed similarly or better than the triple energy window (TEW) and effective scatter source estimation (ESSE) methods for experiments on all the clinical SPECT systems. The SSE method is proven to be a viable method for scatter estimation for routine clinical use.

  8. Quantum Monte Carlo studies on small molecules

    NASA Astrophysics Data System (ADS)

    Galek, Peter T. A.; Handy, Nicholas C.; Lester, William A., Jr.

    The Variational Monte Carlo (VMC) and Fixed-Node Diffusion Monte Carlo (FNDMC) methods have been examined, through studies on small molecules. New programs have been written which implement the (by now) standard algorithms for VMC and FNDMC. We have employed and investigated throughout our studies the accuracy of the common Slater-Jastrow trial wave function. Firstly, we have studied a range of sizes of the Jastrow correlation function of the Boys-Handy form, obtained using our optimization program with analytical derivatives of the central moments in the local energy. Secondly, we have studied the effects of Slater-type orbitals (STOs) that display the exact cusp behaviour at nuclei. The orbitals make up the all important trial determinant, which determines the fixed nodal surface. We report all-electron calculations for the ground state energies of Li2, Be2, H2O, NH3, CH4 and H2CO, in all cases but one with accuracy in excess of 95%. Finally, we report an investigation of the ground state energies, dissociation energies and ionization potentials of NH and NH+. Recent focus paid in the literature to these species allow for an extensive comparison with other ab initio methods. We obtain accurate properties for the species and reveal a favourable tendency for fixed-node and other systematic errors to cancel. As a result of our accurate predictions, we are able to obtain a value for the heat of formation of NH, which agrees to within less than 1 kcal mol-1 to other ab initio techniques and 0.2 kcal mol-1 of the experimental value.

  9. Vectorized Monte Carlo methods for reactor lattice analysis

    NASA Technical Reports Server (NTRS)

    Brown, F. B.

    1984-01-01

    Some of the new computational methods and equivalent mathematical representations of physics models used in the MCV code, a vectorized continuous-enery Monte Carlo code for use on the CYBER-205 computer are discussed. While the principal application of MCV is the neutronics analysis of repeating reactor lattices, the new methods used in MCV should be generally useful for vectorizing Monte Carlo for other applications. For background, a brief overview of the vector processing features of the CYBER-205 is included, followed by a discussion of the fundamentals of Monte Carlo vectorization. The physics models used in the MCV vectorized Monte Carlo code are then summarized. The new methods used in scattering analysis are presented along with details of several key, highly specialized computational routines. Finally, speedups relative to CDC-7600 scalar Monte Carlo are discussed.

  10. A pure-sampling quantum Monte Carlo algorithm

    SciTech Connect

    Ospadov, Egor; Rothstein, Stuart M.

    2015-01-14

    The objective of pure-sampling quantum Monte Carlo is to calculate physical properties that are independent of the importance sampling function being employed in the calculation, save for the mismatch of its nodal hypersurface with that of the exact wave function. To achieve this objective, we report a pure-sampling algorithm that combines features of forward walking methods of pure-sampling and reptation quantum Monte Carlo (RQMC). The new algorithm accurately samples properties from the mixed and pure distributions simultaneously in runs performed at a single set of time-steps, over which extrapolation to zero time-step is performed. In a detailed comparison, we found RQMC to be less efficient. It requires different sets of time-steps to accurately determine the energy and other properties, such as the dipole moment. We implement our algorithm by systematically increasing an algorithmic parameter until the properties converge to statistically equivalent values. As a proof in principle, we calculated the fixed-node energy, static α polarizability, and other one-electron expectation values for the ground-states of LiH and water molecules. These quantities are free from importance sampling bias, population control bias, time-step bias, extrapolation-model bias, and the finite-field approximation. We found excellent agreement with the accepted values for the energy and a variety of other properties for those systems.

  11. Monte Carlo simulation of classical spin models with chaotic billiards

    NASA Astrophysics Data System (ADS)

    Suzuki, Hideyuki

    2013-11-01

    It has recently been shown that the computing abilities of Boltzmann machines, or Ising spin-glass models, can be implemented by chaotic billiard dynamics without any use of random numbers. In this paper, we further numerically investigate the capabilities of the chaotic billiard dynamics as a deterministic alternative to random Monte Carlo methods by applying it to classical spin models in statistical physics. First, we verify that the billiard dynamics can yield samples that converge to the true distribution of the Ising model on a small lattice, and we show that it appears to have the same convergence rate as random Monte Carlo sampling. Second, we apply the billiard dynamics to finite-size scaling analysis of the critical behavior of the Ising model and show that the phase-transition point and the critical exponents are correctly obtained. Third, we extend the billiard dynamics to spins that take more than two states and show that it can be applied successfully to the Potts model. We also discuss the possibility of extensions to continuous-valued models such as the XY model.

  12. Infinite variance in fermion quantum Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Shi, Hao; Zhang, Shiwei

    2016-03-01

    For important classes of many-fermion problems, quantum Monte Carlo (QMC) methods allow exact calculations of ground-state and finite-temperature properties without the sign problem. The list spans condensed matter, nuclear physics, and high-energy physics, including the half-filled repulsive Hubbard model, the spin-balanced atomic Fermi gas, and lattice quantum chromodynamics calculations at zero density with Wilson Fermions, and is growing rapidly as a number of problems have been discovered recently to be free of the sign problem. In these situations, QMC calculations are relied on to provide definitive answers. Their results are instrumental to our ability to understand and compute properties in fundamental models important to multiple subareas in quantum physics. It is shown, however, that the most commonly employed algorithms in such situations have an infinite variance problem. A diverging variance causes the estimated Monte Carlo statistical error bar to be incorrect, which can render the results of the calculation unreliable or meaningless. We discuss how to identify the infinite variance problem. An approach is then proposed to solve the problem. The solution does not require major modifications to standard algorithms, adding a "bridge link" to the imaginary-time path integral. The general idea is applicable to a variety of situations where the infinite variance problem may be present. Illustrative results are presented for the ground state of the Hubbard model at half-filling.

  13. Monte Carlo field-theoretic simulations of a homopolymer blend

    NASA Astrophysics Data System (ADS)

    Spencer, Russell; Matsen, Mark

    Fluctuation corrections to the macrophase segregation transition (MST) in a symmetric homopolymer blend are examined using Monte Carlo field-theoretic simulations (MC-FTS). This technique involves treating interactions between unlike monomers using standard Monte-Carlo techniques, while enforcing incompressibility as is done in mean-field theory. When using MC-FTS, we need to account for a UV divergence. This is done by renormalizing the Flory-Huggins interaction parameter to incorporate the divergent part of the Hamiltonian. We compare different ways of calculating this effective interaction parameter. Near the MST, the length scale of compositional fluctuations becomes large, however, the high computational requirements of MC-FTS restrict us to small system sizes. We account for these finite size effects using the method of Binder cumulants, allowing us to locate the MST with high precision. We examine fluctuation corrections to the mean field MST, χN = 2 , as they vary with the invariant degree of polymerization, N =ρ2a6 N . These results are compared with particle-based simulations as well as analytical calculations using the renormalized one loop theory. This research was funded by the Center for Sustainable Polymers.

  14. Quantum Monte Carlo Simulations of Correlated-Electron Models

    NASA Astrophysics Data System (ADS)

    Zhang, Shiwei

    1996-05-01

    We briefly review quantum Monte Carlo simulation methods for strongly correlated fermion systems and the well-known ``sign'' problem that plagues these methods. We then discuss recent efforts to overcome the problem in the context of simulations of lattice models of electron correlations. In particular, we describe a new algorithm^1, called the constrained path Monte Carlo (CPMC), for studying ground-state (T=0K) properties. It has the form of a random walk in a space of mean-field solutions (Slater determinants); the exponential decay of ``sign'' or signal-to-noise ratio is eliminated by constraining the paths of the random walk according to a known trial wave function. Applications of this algorithm to the Hubbard model have enabled accurate and systematic studies of correlation functions, including s- and d-wave pairings, and hence the long-standing problem of the model's relevance to superconductivity. The method is directly applicable to a variety of other models important to understand high-Tc superconductors and heavy-fermion compounds. In addition, it is expected to be useful to simulations of nuclei, atoms, molecules, and solids. We also comment on possible extensions of the algorithm to finite-temperature calculations. Work supported in part by the Department of Energy's High Performance Computing and Communication Program at Los Alamos National Laboratory, and at OSU by DOE-Basic Energy Sciences, Division of Materials Sciences. ^1 Shiwei Zhang, J. Carlson, and J. E. Gubernatis, Phys. Rev. Lett. 74, 3652 (1995).

  15. Variational quantum Monte Carlo calculations for solid surfaces

    SciTech Connect

    Bahnsen, R.; Eckstein, H.; Schattke, W.; Fitzer, N.; Redmer, R.

    2001-06-15

    Quantum Monte Carlo methods have proven to predict atomic and bulk properties of light and nonlight elements with high accuracy. Here we report on variational quantum Monte Carlo (VMC) calculations for solid surfaces. Taking the boundary condition for the simulation from a finite-layer geometry, the Hamiltonian, including a nonlocal pseudopotential, is cast in a layer-resolved form and evaluated with a two-dimensional Ewald summation technique. The exact cancellation of all jellium contributions to the Hamiltonian is ensured. The many-body trial wave function consists of a Slater determinant with parametrized localized orbitals and a Jastrow factor with a common two-body term plus an additional confinement term representing further variational freedom to take into account the existence of the surface. We present results for the ideal (110) surface of gallium arsenide for different system sizes. With the optimized trial wave function, we determine some properties related to a solid surface to illustrate that VMC techniques provide reasonable results under full inclusion of many-body effects at solid surfaces.

  16. Iterative acceleration methods for Monte Carlo and deterministic criticality calculations

    SciTech Connect

    Urbatsch, T.J.

    1995-11-01

    If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors.

  17. Recent advances and future prospects for Monte Carlo

    SciTech Connect

    Brown, Forrest B

    2010-01-01

    The history of Monte Carlo methods is closely linked to that of computers: The first known Monte Carlo program was written in 1947 for the ENIAC; a pre-release of the first Fortran compiler was used for Monte Carlo In 1957; Monte Carlo codes were adapted to vector computers in the 1980s, clusters and parallel computers in the 1990s, and teraflop systems in the 2000s. Recent advances include hierarchical parallelism, combining threaded calculations on multicore processors with message-passing among different nodes. With the advances In computmg, Monte Carlo codes have evolved with new capabilities and new ways of use. Production codes such as MCNP, MVP, MONK, TRIPOLI and SCALE are now 20-30 years old (or more) and are very rich in advanced featUres. The former 'method of last resort' has now become the first choice for many applications. Calculations are now routinely performed on office computers, not just on supercomputers. Current research and development efforts are investigating the use of Monte Carlo methods on FPGAs. GPUs, and many-core processors. Other far-reaching research is exploring ways to adapt Monte Carlo methods to future exaflop systems that may have 1M or more concurrent computational processes.

  18. Quantum Monte Carlo simulations with tensor-network states

    NASA Astrophysics Data System (ADS)

    Song, Jeong Pil; Clay, R. T.

    2011-03-01

    Matrix-product states, generated by the density-matrix renormalization group method, are among the most powerful methods for simulation of quasi-one dimensional quantum systems. Direct application of a matrix-product state representation fails for two dimensional systems, although a number of tensor-network states have been proposed to generalize the concept for two dimensions. We introduce a useful approximate method replacing a 4-index tensor by two matrices in order to contract tensors in two dimensions. We use this formalism as a basis for variational quantum Monte Carlo, optimizing the matrix elements stochastically. We present results on a two dimensional spinless fermion model including nearest- neighbor Coulomb interactions, and determine the critical Coulomb interaction for the charge density wave state by finite size scaling. This work was supported by the Department of Energy grant DE-FG02-06ER46315.

  19. Spinor path integral Quantum Monte Carlo for fermions

    NASA Astrophysics Data System (ADS)

    Shin, Daejin; Yousif, Hosam; Shumway, John

    2007-03-01

    We have developed a continuous-space path integral method for spin 1/2 fermions with fixed-phase approximation. The internal spin degrees of freedom of each particle is represented by four extra dimensions. This effectively maps each spinor onto two of the excited states of a four dimensional harmonic oscillator. The phases that appear in the problem can be treated within the fixed-phase approximation. This mapping preserves rotational invariance and allows us to treat spin interactions and fermionic exchange on equal footing, which may lead to new theoretical insights. The technique is illustrated for a few simple models, including a spin in a magnetic field and interacting electrons in a quantum dot in a magnetic field at finite temperature. We will discuss possible extensions of the method to molecules and solids using variational and diffusion Quantum Monte Carlo.

  20. Monte Carlo simulations of kagome lattices with magnetic dipolar interactions

    NASA Astrophysics Data System (ADS)

    Plumer, Martin; Holden, Mark; Way, Andrew; Saika-Voivod, Ivan; Southern, Byron

    Monte Carlo simulations of classical spins on the two-dimensional kagome lattice with only dipolar interactions are presented. In addition to revealing the sixfold-degenerate ground state, the nature of the finite-temperature phase transition to long-range magnetic order is discussed. Low-temperature states consisting of mixtures of degenerate ground-state configurations separated by domain walls can be explained as a result of competing exchange-like and shape-anisotropy-like terms in the dipolar coupling. Fluctuations between pairs of degenerate spin configurations are found to persist well into the ordered state as the temperature is lowered until locking in to a low-energy state. Results suggest that the system undergoes a continuous phase transition at T ~ 0 . 43 in agreement with previous MC simulations but the nature of the ordering process differs. Preliminary results which extend this analysis to the 3D fcc ABC-stacked kagome systems will be presented.

  1. Bold Diagrammatic Monte Carlo Method Applied to Fermionized Frustrated Spins

    NASA Astrophysics Data System (ADS)

    Kulagin, S. A.; Prokof'ev, N.; Starykh, O. A.; Svistunov, B.; Varney, C. N.

    2013-02-01

    We demonstrate, by considering the triangular lattice spin-1/2 Heisenberg model, that Monte Carlo sampling of skeleton Feynman diagrams within the fermionization framework offers a universal first-principles tool for strongly correlated lattice quantum systems. We observe the fermionic sign blessing—cancellation of higher order diagrams leading to a finite convergence radius of the series. We calculate the magnetic susceptibility of the triangular-lattice quantum antiferromagnet in the correlated paramagnet regime and reveal a surprisingly accurate microscopic correspondence with its classical counterpart at all accessible temperatures. The extrapolation of the observed relation to zero temperature suggests the absence of the magnetic order in the ground state. We critically examine the implications of this unusual scenario.

  2. Quantum Monte Carlo study of bilayer ionic Hubbard model

    NASA Astrophysics Data System (ADS)

    Jiang, Mi

    The interaction-driven insulator-to-metal transition has been reported in the ionic Hubbard model (IHM) for intermediate interaction U, which poses fundamental interest in the correlated electronic systems. Here we use determinant quantum Monte Carlo to study the interplay of interlayer hybridization V and two types of intralayer staggered potentials: one with the same (in-phase) and the other with a π-phase shift (anti-phase) potential in two layers termed as ``bilayer ionic Hubbard model''. We demonstrate that the interaction-driven Insulator-Metal transition extends to bilayer IHM with finite V for both types of staggered potentials. Besides, the system with in-phase potential is prone to metallic phase with turning on interlayer hybridization while that with anti-phase potential tends to insulators with stronger charge density order. The author thanks CSCS, Lugano, Switzerland for computing facilities.

  3. Quantum Monte Carlo Simulations of Adulteration Effect on Bond Alternating Spin=1/2 Chain

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Xu, Zhaoxin; Ying, Heping; Dai, Jianhui; Crompton, Peter

    The S=1/2 Heisenberg chain with bond alternation and randomness of antiferromagnetic (AFM) and ferromagnetic (FM) interactions is investigated by quantum Monte Carlo simulations of loop/cluster algorithm. Our results have shown interesting finite temperature magnetic properties of this model. The relevance of our study to former investigation results is discussed.

  4. The factorization method for Monte Carlo simulations of systems with a complex with

    NASA Astrophysics Data System (ADS)

    Ambjørn, J.; Anagnostopoulos, K. N.; Nishimura, J.; Verbaarschot, J. J. M.

    2004-03-01

    We propose a method for Monte Carlo simulations of systems with a complex action. The method has the advantages of being in principle applicable to any such system and provides a solution to the overlap problem. In some cases, like in the IKKT matrix model, a finite size scaling extrapolation can provide results for systems whose size would make it prohibitive to simulate directly.

  5. A radiating shock evaluated using Implicit Monte Carlo Diffusion

    SciTech Connect

    Cleveland, M.; Gentile, N.

    2013-07-01

    Implicit Monte Carlo [1] (IMC) has been shown to be very expensive when used to evaluate a radiation field in opaque media. Implicit Monte Carlo Diffusion (IMD) [2], which evaluates a spatial discretized diffusion equation using a Monte Carlo algorithm, can be used to reduce the cost of evaluating the radiation field in opaque media [2]. This work couples IMD to the hydrodynamics equations to evaluate opaque diffusive radiating shocks. The Lowrie semi-analytic diffusive radiating shock benchmark[a] is used to verify our implementation of the coupled system of equations. (authors)

  6. Variance reduction in Monte Carlo analysis of rarefied gas diffusion.

    NASA Technical Reports Server (NTRS)

    Perlmutter, M.

    1972-01-01

    The problem of rarefied diffusion between parallel walls is solved using the Monte Carlo method. The diffusing molecules are evaporated or emitted from one of the two parallel walls and diffuse through another molecular species. The Monte Carlo analysis treats the diffusing molecule as undergoing a Markov random walk, and the local macroscopic properties are found as the expected value of the random variable, the random walk payoff. By biasing the transition probabilities and changing the collision payoffs, the expected Markov walk payoff is retained but its variance is reduced so that the Monte Carlo result has a much smaller error.

  7. Linear Scaling Quantum Monte Carlo Calculations

    NASA Astrophysics Data System (ADS)

    Williamson, Andrew

    2002-03-01

    New developments to the quantum Monte Carlo approach are presented that improve the scaling of the time required to calculate the total energy of a configuration of electronic coordinates from N^3 to nearly linear[1]. The first factor of N is achieved by applying a unitary transform to the set of single particle orbitals used to construct the Slater determinant, creating a set of maximally localized Wannier orbitals. These localized functions are then truncated beyond a given cutoff radius to introduce sparsity into the Slater determinant. The second factor of N is achieved by evaluating the maximally localized Wannier orbitals on a cubic spline grid, which removes the size dependence of the basis set (e.g. plane waves, Gaussians) typically used to expand the orbitals. Application of this method to the calculation of the binding energy of carbon fullerenes and silicon nanostructures will be presented. An extension of the approach to deal with excited states of systems will also be presented in the context of the calculation of the excitonic gap of a variety of systems. This work was performed under the auspices of the U.S. Dept. of Energy at the University of California/LLNL under contract no. W-7405-Eng-48. [1] A.J. Williamson, R.Q. Hood and J.C. Grossman, Phys. Rev. Lett. 87 246406 (2001)

  8. Computing Entanglement Entropy in Quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Melko, Roger

    2012-02-01

    The scaling of entanglement entropy in quantum many-body wavefunctions is expected to be a fruitful resource for studying quantum phases and phase transitions in condensed matter. However, until the recent development of estimators for Renyi entropy in quantum Monte Carlo (QMC), we have been in the dark about the behaviour of entanglement in all but the simplest two-dimensional models. In this talk, I will outline the measurement techniques that allow access to the Renyi entropies in several different QMC methodologies. I will then discuss recent simulation results demonstrating the richness of entanglement scaling in 2D, including: the prevalence of the ``area law''; topological entanglement entropy in a gapped spin liquid; anomalous subleading logarithmic terms due to Goldstone modes; universal scaling at critical points; and examples of emergent conformal-like scaling in several gapless wavefunctions. Finally, I will explore the idea that ``long range entanglement'' may complement the notion of ``long range order'' for quantum phases and phase transitions which lack a conventional order parameter description.

  9. Error modes in implicit Monte Carlo

    SciTech Connect

    Martin, William Russell,; Brown, F. B.

    2001-01-01

    The Implicit Monte Carlo (IMC) method of Fleck and Cummings [1] has been used for years to analyze radiative transfer problems, such as those encountered in stellar atmospheres or inertial confinement fusion. Larsen and Mercier [2] have shown that the IMC method violates a maximum principle that is satisfied by the exact solution to the radiative transfer equation. Except for [2] and related papers regarding the maximum principle, there have been no other published results regarding the analysis of errors or convergence properties for the IMC method. This work presents an exact error analysis for the IMC method by using the analytical solutions for infinite medium geometry (0-D) to determine closed form expressions for the errors. The goal is to gain insight regarding the errors inherent in the IMC method by relating the exact 0-D errors to multi-dimensional geometry. Additional work (not described herein) has shown that adding a leakage term (i.e., a 'buckling' term) to the 0-D equations has relatively little effect on the IMC errors analyzed in this paper, so that the 0-D errors should provide useful guidance for the errors observed in multi-dimensional simulations.

  10. Improved method for implicit Monte Carlo

    SciTech Connect

    Brown, F. B.; Martin, W. R.

    2001-01-01

    The Implicit Monte Carlo (IMC) method has been used for over 30 years to analyze radiative transfer problems, such as those encountered in stellar atmospheres or inertial confinement fusion. Reference [2] provided an exact error analysis of IMC for 0-D problems and demonstrated that IMC can exhibit substantial errors when timesteps are large. These temporal errors are inherent in the method and are in addition to spatial discretization errors and approximations that address nonlinearities (due to variation of physical constants). In Reference [3], IMC and four other methods were analyzed in detail and compared on both theoretical grounds and the accuracy of numerical tests. As discussed in, two alternative schemes for solving the radiative transfer equations, the Carter-Forest (C-F) method and the Ahrens-Larsen (A-L) method, do not exhibit the errors found in IMC; for 0-D, both of these methods are exact for all time, while for 3-D, A-L is exact for all time and C-F is exact within a timestep. These methods can yield substantially superior results to IMC.

  11. Monte Carlo Production Management at CMS

    NASA Astrophysics Data System (ADS)

    Boudoul, G.; Franzoni, G.; Norkus, A.; Pol, A.; Srimanobhas, P.; Vlimant, J.-R.

    2015-12-01

    The analysis of the LHC data at the Compact Muon Solenoid (CMS) experiment requires the production of a large number of simulated events. During the RunI of LHC (20102012), CMS has produced over 12 Billion simulated events, organized in approximately sixty different campaigns each emulating specific detector conditions and LHC running conditions (pile up). In order to aggregate the information needed for the configuration and prioritization of the events production, assure the book-keeping of all the processing requests placed by the physics analysis groups, and to interface with the CMS production infrastructure, the web- based service Monte Carlo Management (McM) has been developed and put in production in 2013. McM is based on recent server infrastructure technology (CherryPy + AngularJS) and relies on a CouchDB database back-end. This contribution covers the one and half year of operational experience managing samples of simulated events for CMS, the evolution of its functionalities and the extension of its capability to monitor the status and advancement of the events production.

  12. Atomistic Monte Carlo Simulation of Lipid Membranes

    PubMed Central

    Wüstner, Daniel; Sklenar, Heinz

    2014-01-01

    Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction into the various move sets that are implemented in current MC methods for efficient conformational sampling of lipids and other molecules. In the second part, we demonstrate for a concrete example, how an atomistic local-move set can be implemented for MC simulations of phospholipid monomers and bilayer patches. We use our recently devised chain breakage/closure (CBC) local move set in the bond-/torsion angle space with the constant-bond-length approximation (CBLA) for the phospholipid dipalmitoylphosphatidylcholine (DPPC). We demonstrate rapid conformational equilibration for a single DPPC molecule, as assessed by calculation of molecular energies and entropies. We also show transition from a crystalline-like to a fluid DPPC bilayer by the CBC local-move MC method, as indicated by the electron density profile, head group orientation, area per lipid, and whole-lipid displacements. We discuss the potential of local-move MC methods in combination with molecular dynamics simulations, for example, for studying multi-component lipid membranes containing cholesterol. PMID:24469314

  13. Finding Planet Nine: a Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, C.; de la Fuente Marcos, R.

    2016-06-01

    Planet Nine is a hypothetical planet located well beyond Pluto that has been proposed in an attempt to explain the observed clustering in physical space of the perihelia of six extreme trans-Neptunian objects or ETNOs. The predicted approximate values of its orbital elements include a semimajor axis of 700 au, an eccentricity of 0.6, an inclination of 30°, and an argument of perihelion of 150°. Searching for this putative planet is already under way. Here, we use a Monte Carlo approach to create a synthetic population of Planet Nine orbits and study its visibility statistically in terms of various parameters and focusing on the aphelion configuration. Our analysis shows that, if Planet Nine exists and is at aphelion, it might be found projected against one out of the four specific areas in the sky. Each area is linked to a particular value of the longitude of the ascending node and two of them are compatible with an apsidal anti-alignment scenario. In addition and after studying the current statistics of ETNOs, a cautionary note on the robustness of the perihelia clustering is presented.

  14. Accelerated Monte Carlo Methods for Coulomb Collisions

    NASA Astrophysics Data System (ADS)

    Rosin, Mark; Ricketson, Lee; Dimits, Andris; Caflisch, Russel; Cohen, Bruce

    2014-03-01

    We present a new highly efficient multi-level Monte Carlo (MLMC) simulation algorithm for Coulomb collisions in a plasma. The scheme, initially developed and used successfully for applications in financial mathematics, is applied here to kinetic plasmas for the first time. The method is based on a Langevin treatment of the Landau-Fokker-Planck equation and has a rich history derived from the works of Einstein and Chandrasekhar. The MLMC scheme successfully reduces the computational cost of achieving an RMS error ɛ in the numerical solution to collisional plasma problems from (ɛ-3) - for the standard state-of-the-art Langevin and binary collision algorithms - to a theoretically optimal (ɛ-2) scaling, when used in conjunction with an underlying Milstein discretization to the Langevin equation. In the test case presented here, the method accelerates simulations by factors of up to 100. We summarize the scheme, present some tricks for improving its efficiency yet further, and discuss the method's range of applicability. Work performed for US DOE by LLNL under contract DE-AC52- 07NA27344 and by UCLA under grant DE-FG02-05ER25710.

  15. Monte Carlo Simulation of Critical Casimir Forces

    NASA Astrophysics Data System (ADS)

    Vasilyev, Oleg A.

    2015-03-01

    In the vicinity of the second order phase transition point long-range critical fluctuations of the order parameter appear. The second order phase transition in a critical binary mixture in the vicinity of the demixing point belongs to the universality class of the Ising model. The superfluid transition in liquid He belongs to the universality class of the XY model. The confinement of long-range fluctuations causes critical Casimir forces acting on confining surfaces or particles immersed in the critical substance. Last decade critical Casimir forces in binary mixtures and liquid helium were studied experimentally. The critical Casimir force in a film of a given thickness scales as a universal scaling function of the ratio of the film thickness to the bulk correlation length divided over the cube of the film thickness. Using Monte Carlo simulations we can compute critical Casimir forces and their scaling functions for lattice Ising and XY models which correspond to experimental results for the binary mixture and liquid helium, respectively. This chapter provides the description of numerical methods for computation of critical Casimir interactions for lattice models for plane-plane, plane-particle, and particle-particle geometries.

  16. Commensurabilities between ETNOs: a Monte Carlo survey

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, C.; de la Fuente Marcos, R.

    2016-04-01

    Many asteroids in the main and trans-Neptunian belts are trapped in mean motion resonances with Jupiter and Neptune, respectively. As a side effect, they experience accidental commensurabilities among themselves. These commensurabilities define characteristic patterns that can be used to trace the source of the observed resonant behaviour. Here, we explore systematically the existence of commensurabilities between the known ETNOs using their heliocentric and barycentric semimajor axes, their uncertainties, and Monte Carlo techniques. We find that the commensurability patterns present in the known ETNO population resemble those found in the main and trans-Neptunian belts. Although based on small number statistics, such patterns can only be properly explained if most, if not all, of the known ETNOs are subjected to the resonant gravitational perturbations of yet undetected trans-Plutonian planets. We show explicitly that some of the statistically significant commensurabilities are compatible with the Planet Nine hypothesis; in particular, a number of objects may be trapped in the 5:3 and 3:1 mean motion resonances with a putative Planet Nine with semimajor axis ˜700 au.

  17. Markov Chain Monte Carlo and Irreversibility

    NASA Astrophysics Data System (ADS)

    Ottobre, Michela

    2016-06-01

    Markov Chain Monte Carlo (MCMC) methods are statistical methods designed to sample from a given measure π by constructing a Markov chain that has π as invariant measure and that converges to π. Most MCMC algorithms make use of chains that satisfy the detailed balance condition with respect to π; such chains are therefore reversible. On the other hand, recent work [18, 21, 28, 29] has stressed several advantages of using irreversible processes for sampling. Roughly speaking, irreversible diffusions converge to equilibrium faster (and lead to smaller asymptotic variance as well). In this paper we discuss some of the recent progress in the study of nonreversible MCMC methods. In particular: i) we explain some of the difficulties that arise in the analysis of nonreversible processes and we discuss some analytical methods to approach the study of continuous-time irreversible diffusions; ii) most of the rigorous results on irreversible diffusions are available for continuous-time processes; however, for computational purposes one needs to discretize such dynamics. It is well known that the resulting discretized chain will not, in general, retain all the good properties of the process that it is obtained from. In particular, if we want to preserve the invariance of the target measure, the chain might no longer be reversible. Therefore iii) we conclude by presenting an MCMC algorithm, the SOL-HMC algorithm [23], which results from a nonreversible discretization of a nonreversible dynamics.

  18. Commensurabilities between ETNOs: a Monte Carlo survey

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, C.; de la Fuente Marcos, R.

    2016-07-01

    Many asteroids in the main and trans-Neptunian belts are trapped in mean motion resonances with Jupiter and Neptune, respectively. As a side effect, they experience accidental commensurabilities among themselves. These commensurabilities define characteristic patterns that can be used to trace the source of the observed resonant behaviour. Here, we explore systematically the existence of commensurabilities between the known ETNOs using their heliocentric and barycentric semimajor axes, their uncertainties, and Monte Carlo techniques. We find that the commensurability patterns present in the known ETNO population resemble those found in the main and trans-Neptunian belts. Although based on small number statistics, such patterns can only be properly explained if most, if not all, of the known ETNOs are subjected to the resonant gravitational perturbations of yet undetected trans-Plutonian planets. We show explicitly that some of the statistically significant commensurabilities are compatible with the Planet Nine hypothesis; in particular, a number of objects may be trapped in the 5:3 and 3:1 mean motion resonances with a putative Planet Nine with semimajor axis ˜700 au.

  19. Monte Carlo simulation of chromatin stretching.

    PubMed

    Aumann, Frank; Lankas, Filip; Caudron, Maïwen; Langowski, Jörg

    2006-04-01

    We present Monte Carlo (MC) simulations of the stretching of a single chromatin fiber. The model approximates the DNA by a flexible polymer chain with Debye-Hückel electrostatics and uses a two-angle zigzag model for the geometry of the linker DNA connecting the nucleosomes. The latter are represented by flat disks interacting via an attractive Gay-Berne potential. Our results show that the stiffness of the chromatin fiber strongly depends on the linker DNA length. Furthermore, changing the twisting angle between nucleosomes from 90 degrees to 130 degrees increases the stiffness significantly. An increase in the opening angle from 22 degrees to 34 degrees leads to softer fibers for small linker lengths. We observe that fibers containing a linker histone at each nucleosome are stiffer compared to those without the linker histone. The simulated persistence lengths and elastic moduli agree with experimental data. Finally, we show that the chromatin fiber does not behave as an isotropic elastic rod, but its rigidity depends on the direction of deformation: Chromatin is much more resistant to stretching than to bending. PMID:16711856

  20. Monte Carlo simulation of chromatin stretching

    NASA Astrophysics Data System (ADS)

    Aumann, Frank; Lankas, Filip; Caudron, Maïwen; Langowski, Jörg

    2006-04-01

    We present Monte Carlo (MC) simulations of the stretching of a single 30nm chromatin fiber. The model approximates the DNA by a flexible polymer chain with Debye-Hückel electrostatics and uses a two-angle zigzag model for the geometry of the linker DNA connecting the nucleosomes. The latter are represented by flat disks interacting via an attractive Gay-Berne potential. Our results show that the stiffness of the chromatin fiber strongly depends on the linker DNA length. Furthermore, changing the twisting angle between nucleosomes from 90° to 130° increases the stiffness significantly. An increase in the opening angle from 22° to 34° leads to softer fibers for small linker lengths. We observe that fibers containing a linker histone at each nucleosome are stiffer compared to those without the linker histone. The simulated persistence lengths and elastic moduli agree with experimental data. Finally, we show that the chromatin fiber does not behave as an isotropic elastic rod, but its rigidity depends on the direction of deformation: Chromatin is much more resistant to stretching than to bending.

  1. Monte Carlo simulation of peak-acceleration attenuation using a finite-fault uniform-patch model including isochrone and extremal characteristics

    USGS Publications Warehouse

    Rogers, A.M.; Perkins, D.M.

    1996-01-01

    A finite-fault statistical model of the earthquake source is used to confirm observed magnitude and distance saturation scaling in a large peak-acceleration data set. This model allows us to determine the form of peak-acceleration attenuation curves without a priori assumptions about their shape or scaling properties. The source is composed of patches having uniform size and statistical properties. The primary source parameters are the patch peak-acceleration distribution mean, the distribution standard deviation, the patch size, and patch-rupture duration. Although our model assumes no scaling of peak acceleration with magnitude at the patch, the peak-acceleration attenuation curves, nevertheless, strongly scale with magnitude (dap/dM) ??? 0, and the scaling is distance dependent (dap/dM) ??? f(r). The distance-dependent magnitude scaling arises from two principal sources in the model. For a propagating rupture, loci exist on the fault from which radiated energy arrives at a particular station at the same time. These loci are referred to as isochrones. As fault size increases, the length of the isochrones and, hence, the number of additive pulses increase. Thus, peak accelerations increase with magnitude. The second effect, which arises in a completely different manner, is due to extreme-value properties. That is, as the fault size increases, the number of patches on the fault and the number of peak values at the station increase. Because these attenuated pulses are produced by a statistical distribution at the patch, the largest value will depend on the total number of peak values available on the seismogram. We refer to this result as the extremal effect, because it is predicted by the theory of extreme values. Both the extremal and isochrone effects are moderated by attenuation and distance to the fault, leading to magnitude- and distance-dependent peak-acceleration scaling. Remarkably, the scaling produced by both effects is very similar, although the

  2. Monte Carlo variance reduction approaches for non-Boltzmann tallies

    SciTech Connect

    Booth, T.E.

    1992-12-01

    Quantities that depend on the collective effects of groups of particles cannot be obtained from the standard Boltzmann transport equation. Monte Carlo estimates of these quantities are called non-Boltzmann tallies and have become increasingly important recently. Standard Monte Carlo variance reduction techniques were designed for tallies based on individual particles rather than groups of particles. Experience with non-Boltzmann tallies and analog Monte Carlo has demonstrated the severe limitations of analog Monte Carlo for many non-Boltzmann tallies. In fact, many calculations absolutely require variance reduction methods to achieve practical computation times. Three different approaches to variance reduction for non-Boltzmann tallies are described and shown to be unbiased. The advantages and disadvantages of each of the approaches are discussed.

  3. COMPARISON OF MONTE CARLO METHODS FOR NONLINEAR RADIATION TRANSPORT

    SciTech Connect

    W. R. MARTIN; F. B. BROWN

    2001-03-01

    Five Monte Carlo methods for solving the nonlinear thermal radiation transport equations are compared. The methods include the well-known Implicit Monte Carlo method (IMC) developed by Fleck and Cummings, an alternative to IMC developed by Carter and Forest, an ''exact'' method recently developed by Ahrens and Larsen, and two methods recently proposed by Martin and Brown. The five Monte Carlo methods are developed and applied to the radiation transport equation in a medium assuming local thermodynamic equilibrium. Conservation of energy is derived and used to define appropriate material energy update equations for each of the methods. Details of the Monte Carlo implementation are presented, both for the random walk simulation and the material energy update. Simulation results for all five methods are obtained for two infinite medium test problems and a 1-D test problem, all of which have analytical solutions. Conclusions regarding the relative merits of the various schemes are presented.

  4. OBJECT KINETIC MONTE CARLO SIMULATIONS OF CASCADE ANNEALING IN TUNGSTEN

    SciTech Connect

    Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.; Roche, Kenneth J.; Kurtz, Richard J.; Wirth, Brian D.

    2014-03-31

    The objective of this work is to study the annealing of primary cascade damage created by primary knock-on atoms (PKAs) of various energies, at various temperatures in bulk tungsten using the object kinetic Monte Carlo (OKMC) method.

  5. Monte Carlo techniques for analyzing deep penetration problems

    SciTech Connect

    Cramer, S.N.; Gonnord, J.; Hendricks, J.S.

    1985-01-01

    A review of current methods and difficulties in Monte Carlo deep-penetration calculations is presented. Statistical uncertainty is discussed, and recent adjoint optimization of splitting, Russian roulette, and exponential transformation biasing is reviewed. Other aspects of the random walk and estimation processes are covered, including the relatively new DXANG angular biasing technique. Specific items summarized are albedo scattering, Monte Carlo coupling techniques with discrete ordinates and other methods, adjoint solutions, and multi-group Monte Carlo. The topic of code-generated biasing parameters is presented, including the creation of adjoint importance functions from forward calculations. Finally, current and future work in the area of computer learning and artificial intelligence is discussed in connection with Monte Carlo applications. 29 refs.

  6. Enhancements in Continuous-Energy Monte Carlo Capabilities in SCALE

    SciTech Connect

    Bekar, Kursat B; Celik, Cihangir; Wiarda, Dorothea; Peplow, Douglas E.; Rearden, Bradley T; Dunn, Michael E

    2013-01-01

    Monte Carlo tools in SCALE are commonly used in criticality safety calculations as well as sensitivity and uncertainty analysis, depletion, and criticality alarm system analyses. Recent improvements in the continuous-energy data generated by the AMPX code system and significant advancements in the continuous-energy treatment in the KENO Monte Carlo eigenvalue codes facilitate the use of SCALE Monte Carlo codes to model geometrically complex systems with enhanced solution fidelity. The addition of continuous-energy treatment to the SCALE Monaco code, which can be used with automatic variance reduction in the hybrid MAVRIC sequence, provides significant enhancements, especially for criticality alarm system modeling. This paper describes some of the advancements in continuous-energy Monte Carlo codes within the SCALE code system.

  7. DETERMINING UNCERTAINTY IN PHYSICAL PARAMETER MEASUREMENTS BY MONTE CARLO SIMULATION

    EPA Science Inventory

    A statistical approach, often called Monte Carlo Simulation, has been used to examine propagation of error with measurement of several parameters important in predicting environmental transport of chemicals. These parameters are vapor pressure, water solubility, octanol-water par...

  8. Combinatorial geometry domain decomposition strategies for Monte Carlo simulations

    SciTech Connect

    Li, G.; Zhang, B.; Deng, L.; Mo, Z.; Liu, Z.; Shangguan, D.; Ma, Y.; Li, S.; Hu, Z.

    2013-07-01

    Analysis and modeling of nuclear reactors can lead to memory overload for a single core processor when it comes to refined modeling. A method to solve this problem is called 'domain decomposition'. In the current work, domain decomposition algorithms for a combinatorial geometry Monte Carlo transport code are developed on the JCOGIN (J Combinatorial Geometry Monte Carlo transport INfrastructure). Tree-based decomposition and asynchronous communication of particle information between domains are described in the paper. Combination of domain decomposition and domain replication (particle parallelism) is demonstrated and compared with that of MERCURY code. A full-core reactor model is simulated to verify the domain decomposition algorithms using the Monte Carlo particle transport code JMCT (J Monte Carlo Transport Code), which has being developed on the JCOGIN infrastructure. Besides, influences of the domain decomposition algorithms to tally variances are discussed. (authors)

  9. A Particle Population Control Method for Dynamic Monte Carlo

    NASA Astrophysics Data System (ADS)

    Sweezy, Jeremy; Nolen, Steve; Adams, Terry; Zukaitis, Anthony

    2014-06-01

    A general particle population control method has been derived from splitting and Russian Roulette for dynamic Monte Carlo particle transport. A well-known particle population control method, known as the particle population comb, has been shown to be a special case of this general method. This general method has been incorporated in Los Alamos National Laboratory's Monte Carlo Application Toolkit (MCATK) and examples of it's use are shown for both super-critical and sub-critical systems.

  10. Monte Carlo methods and applications in nuclear physics

    SciTech Connect

    Carlson, J.

    1990-01-01

    Monte Carlo methods for studying few- and many-body quantum systems are introduced, with special emphasis given to their applications in nuclear physics. Variational and Green's function Monte Carlo methods are presented in some detail. The status of calculations of light nuclei is reviewed, including discussions of the three-nucleon-interaction, charge and magnetic form factors, the coulomb sum rule, and studies of low-energy radiative transitions. 58 refs., 12 figs.

  11. Shift: A Massively Parallel Monte Carlo Radiation Transport Package

    SciTech Connect

    Pandya, Tara M; Johnson, Seth R; Davidson, Gregory G; Evans, Thomas M; Hamilton, Steven P

    2015-01-01

    This paper discusses the massively-parallel Monte Carlo radiation transport package, Shift, developed at Oak Ridge National Laboratory. It reviews the capabilities, implementation, and parallel performance of this code package. Scaling results demonstrate very good strong and weak scaling behavior of the implemented algorithms. Benchmark results from various reactor problems show that Shift results compare well to other contemporary Monte Carlo codes and experimental results.

  12. Study of the Transition Flow Regime using Monte Carlo Methods

    NASA Technical Reports Server (NTRS)

    Hassan, H. A.

    1999-01-01

    This NASA Cooperative Agreement presents a study of the Transition Flow Regime Using Monte Carlo Methods. The topics included in this final report are: 1) New Direct Simulation Monte Carlo (DSMC) procedures; 2) The DS3W and DS2A Programs; 3) Papers presented; 4) Miscellaneous Applications and Program Modifications; 5) Solution of Transitional Wake Flows at Mach 10; and 6) Turbulence Modeling of Shock-Dominated Fows with a k-Enstrophy Formulation.

  13. Development of Monte Carlo Capability for Orion Parachute Simulations

    NASA Technical Reports Server (NTRS)

    Moore, James W.

    2011-01-01

    Parachute test programs employ Monte Carlo simulation techniques to plan testing and make critical decisions related to parachute loads, rate-of-descent, or other parameters. This paper describes the development and use of a MATLAB-based Monte Carlo tool for three parachute drop test simulations currently used by NASA. The Decelerator System Simulation (DSS) is a legacy 6 Degree-of-Freedom (DOF) simulation used to predict parachute loads and descent trajectories. The Decelerator System Simulation Application (DSSA) is a 6-DOF simulation that is well suited for modeling aircraft extraction and descent of pallet-like test vehicles. The Drop Test Vehicle Simulation (DTVSim) is a 2-DOF trajectory simulation that is convenient for quick turn-around analysis tasks. These three tools have significantly different software architectures and do not share common input files or output data structures. Separate Monte Carlo tools were initially developed for each simulation. A recently-developed simulation output structure enables the use of the more sophisticated DSSA Monte Carlo tool with any of the core-simulations. The task of configuring the inputs for the nominal simulation is left to the existing tools. Once the nominal simulation is configured, the Monte Carlo tool perturbs the input set according to dispersion rules created by the analyst. These rules define the statistical distribution and parameters to be applied to each simulation input. Individual dispersed parameters are combined to create a dispersed set of simulation inputs. The Monte Carlo tool repeatedly executes the core-simulation with the dispersed inputs and stores the results for analysis. The analyst may define conditions on one or more output parameters at which to collect data slices. The tool provides a versatile interface for reviewing output of large Monte Carlo data sets while preserving the capability for detailed examination of individual dispersed trajectories. The Monte Carlo tool described in

  14. SCALE Monte Carlo Eigenvalue Methods and New Advancements

    SciTech Connect

    Goluoglu, Sedat; Leppanen, Jaakko; Petrie Jr, Lester M; Dunn, Michael E

    2010-01-01

    SCALE code system is developed and maintained by Oak Ridge National Laboratory to perform criticality safety, reactor analysis, radiation shielding, and spent fuel characterization for nuclear facilities and transportation/storage package designs. SCALE is a modular code system that includes several codes which use either Monte Carlo or discrete ordinates solution methodologies for solving relevant neutral particle transport equations. This paper describes some of the key capabilities of the Monte Carlo criticality safety codes within the SCALE code system.

  15. Monte Carlo Hybrid Applied to Binary Stochastic Mixtures

    Energy Science and Technology Software Center (ESTSC)

    2008-08-11

    The purpose of this set of codes isto use an inexpensive, approximate deterministic flux distribution to generate weight windows, wihich will then be used to bound particle weights for the Monte Carlo code run. The process is not automated; the user must run the deterministic code and use the output file as a command-line argument for the Monte Carlo code. Two sets of text input files are included as test problems/templates.

  16. DPEMC: A Monte Carlo for double diffraction

    NASA Astrophysics Data System (ADS)

    Boonekamp, M.; Kúcs, T.

    2005-05-01

    We extend the POMWIG Monte Carlo generator developed by B. Cox and J. Forshaw, to include new models of central production through inclusive and exclusive double Pomeron exchange in proton-proton collisions. Double photon exchange processes are described as well, both in proton-proton and heavy-ion collisions. In all contexts, various models have been implemented, allowing for comparisons and uncertainty evaluation and enabling detailed experimental simulations. Program summaryTitle of the program:DPEMC, version 2.4 Catalogue identifier: ADVF Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVF Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer: any computer with the FORTRAN 77 compiler under the UNIX or Linux operating systems Operating system: UNIX; Linux Programming language used: FORTRAN 77 High speed storage required:<25 MB No. of lines in distributed program, including test data, etc.: 71 399 No. of bytes in distributed program, including test data, etc.: 639 950 Distribution format: tar.gz Nature of the physical problem: Proton diffraction at hadron colliders can manifest itself in many forms, and a variety of models exist that attempt to describe it [A. Bialas, P.V. Landshoff, Phys. Lett. B 256 (1991) 540; A. Bialas, W. Szeremeta, Phys. Lett. B 296 (1992) 191; A. Bialas, R.A. Janik, Z. Phys. C 62 (1994) 487; M. Boonekamp, R. Peschanski, C. Royon, Phys. Rev. Lett. 87 (2001) 251806; Nucl. Phys. B 669 (2003) 277; R. Enberg, G. Ingelman, A. Kissavos, N. Timneanu, Phys. Rev. Lett. 89 (2002) 081801; R. Enberg, G. Ingelman, L. Motyka, Phys. Lett. B 524 (2002) 273; R. Enberg, G. Ingelman, N. Timneanu, Phys. Rev. D 67 (2003) 011301; B. Cox, J. Forshaw, Comput. Phys. Comm. 144 (2002) 104; B. Cox, J. Forshaw, B. Heinemann, Phys. Lett. B 540 (2002) 26; V. Khoze, A. Martin, M. Ryskin, Phys. Lett. B 401 (1997) 330; Eur. Phys. J. C 14 (2000) 525; Eur. Phys. J. C 19 (2001) 477; Erratum, Eur. Phys. J. C 20 (2001) 599; Eur

  17. Extending Diffusion Monte Carlo to Internal Coordinates

    NASA Astrophysics Data System (ADS)

    Petit, Andrew S.; McCoy, Anne B.

    2013-06-01

    Diffusion Monte Carlo (DMC) is a powerful technique for studying the properties of molecules and clusters that undergo large-amplitude, zero-point vibrational motions. However, the overall applicability of the method is limited by the need to work in Cartesian coordinates and therefore have available a full-dimensional potential energy surface (PES). As a result, the development of a reduced-dimensional DMC methodology has the potential to significantly extend the range of problems that DMC can address by allowing the calculations to be performed in the subset of coordinates that is physically relevant to the questions being asked, thereby eliminating the need for a full-dimensional PES. As a first step towards this goal, we describe here an internal coordinate extension of DMC that places no constraints on the choice of internal coordinates other than requiring them all to be independent. Using H_3^+ and its isotopologues as model systems, we demonstrate that the methodology is capable of successfully describing the ground state properties of highly fluxional molecules as well as, in conjunction with the fixed-node approximation, the ν=1 vibrationally excited states. The calculations of the fundamentals of H_3^+ and its isotopologues provided general insights into the properties of the nodal surfaces of vibrationally excited states. Specifically, we will demonstrate that analysis of ground state probability distributions can point to the set of coordinates that are less strongly coupled and therefore more suitable for use as nodal coordinates in the fixed-node approximation. In particular, we show that nodal surfaces defined in terms of the curvilinear normal mode coordinates are reasonable for the fundamentals of H_2D^+ and D_2H^+ despite both molecules being highly fluxional.

  18. Monte Carlo simulation of scenario probability distributions

    SciTech Connect

    Glaser, R.

    1996-10-23

    Suppose a scenario of interest can be represented as a series of events. A final result R may be viewed then as the intersection of three events, A, B, and C. The probability of the result P(R) in this case is the product P(R) = P(A) P(B {vert_bar} A) P(C {vert_bar} A {intersection} B). An expert may be reluctant to estimate P(R) as a whole yet agree to supply his notions of the component probabilities in the form of prior distributions. Each component prior distribution may be viewed as the stochastic characterization of the expert`s uncertainty regarding the true value of the component probability. Mathematically, the component probabilities are treated as independent random variables and P(R) as their product; the induced prior distribution for P(R) is determined which characterizes the expert`s uncertainty regarding P(R). It may be both convenient and adequate to approximate the desired distribution by Monte Carlo simulation. Software has been written for this task that allows a variety of component priors that experts with good engineering judgment might feel comfortable with. The priors are mostly based on so-called likelihood classes. The software permits an expert to choose for a given component event probability one of six types of prior distributions, and the expert specifies the parameter value(s) for that prior. Each prior is unimodal. The expert essentially decides where the mode is, how the probability is distributed in the vicinity of the mode, and how rapidly it attenuates away. Limiting and degenerate applications allow the expert to be vague or precise.

  19. Lattice Monte Carlo simulations of polymer melts

    NASA Astrophysics Data System (ADS)

    Hsu, Hsiao-Ping

    2014-12-01

    We use Monte Carlo simulations to study polymer melts consisting of fully flexible and moderately stiff chains in the bond fluctuation model at a volume fraction 0.5. In order to reduce the local density fluctuations, we test a pre-packing process for the preparation of the initial configurations of the polymer melts, before the excluded volume interaction is switched on completely. This process leads to a significantly faster decrease of the number of overlapping monomers on the lattice. This is useful for simulating very large systems, where the statistical properties of the model with a marginally incomplete elimination of excluded volume violations are the same as those of the model with strictly excluded volume. We find that the internal mean square end-to-end distance for moderately stiff chains in a melt can be very well described by a freely rotating chain model with a precise estimate of the bond-bond orientational correlation between two successive bond vectors in equilibrium. The plot of the probability distributions of the reduced end-to-end distance of chains of different stiffness also shows that the data collapse is excellent and described very well by the Gaussian distribution for ideal chains. However, while our results confirm the systematic deviations between Gaussian statistics for the chain structure factor Sc(q) [minimum in the Kratky-plot] found by Wittmer et al. [EPL 77, 56003 (2007)] for fully flexible chains in a melt, we show that for the available chain length these deviations are no longer visible, when the chain stiffness is included. The mean square bond length and the compressibility estimated from collective structure factors depend slightly on the stiffness of the chains.

  20. Monte-Carlo simulation of Callisto's exosphere

    NASA Astrophysics Data System (ADS)

    Vorburger, A.; Wurz, P.; Lammer, H.; Barabash, S.; Mousis, O.

    2015-12-01

    We model Callisto's exosphere based on its ice as well as non-ice surface via the use of a Monte-Carlo exosphere model. For the ice component we implement two putative compositions that have been computed from two possible extreme formation scenarios of the satellite. One composition represents the oxidizing state and is based on the assumption that the building blocks of Callisto were formed in the protosolar nebula and the other represents the reducing state of the gas, based on the assumption that the satellite accreted from solids condensed in the jovian sub-nebula. For the non-ice component we implemented the compositions of typical CI as well as L type chondrites. Both chondrite types have been suggested to represent Callisto's non-ice composition best. As release processes we consider surface sublimation, ion sputtering and photon-stimulated desorption. Particles are followed on their individual trajectories until they either escape Callisto's gravitational attraction, return to the surface, are ionized, or are fragmented. Our density profiles show that whereas the sublimated species dominate close to the surface on the sun-lit side, their density profiles (with the exception of H and H2) decrease much more rapidly than the sputtered particles. The Neutral gas and Ion Mass (NIM) spectrometer, which is part of the Particle Environment Package (PEP), will investigate Callisto's exosphere during the JUICE mission. Our simulations show that NIM will be able to detect sublimated and sputtered particles from both the ice and non-ice surface. NIM's measured chemical composition will allow us to distinguish between different formation scenarios.

  1. Quantum Monte Carlo calculations on positronium compounds

    NASA Astrophysics Data System (ADS)

    Jiang, Nan

    The stability of compounds containing one or more positrons in addition to electrons and nuclei has been the focus of extensive scientific investigations. Interest in these compounds stems from the important role they play in the process of positron annihilation, which has become a useful technique in material science studies. Knowledge of these compounds comes mostly from calculations which are presently less difficult than laboratory experiments. Owing to the small binding energies of these compounds, quantum chemistry methods beyond the molecular orbital approximation must be used. Among them, the quantum Monte Carlo (QMC) method is most appealing because it is easy to implement, gives exact results within the fixed nodes approximation, and makes good use of existing approximate wavefunctions. Applying QMC to small systems like PsH for binding energy calculation is straightforward. To apply it to systems with heavier atoms, to systems for which the center-of-mass motion needs to be separated, and to calculate annihilation rates, special techniques must be developed. In this project a detailed study and several advancements to the QMC method are carried out. Positronium compounds PsH, Ps2, PsO, and Ps2O are studied with algorithms we developed. Results for PsH and Ps2 agree with the best accepted to date. Results for PsO confirm the stability of this compound, and are in fair agreement with an earlier calculation. Results for Ps2O establish the stability of this compound and give an approximate annihilation rate for the first time. Discussions will include an introduction to QMC methods, an in-depth discussion on the QMC formalism, presentation of new algorithms developed in this study, and procedures and results of QMC calculations on the above mentioned positronium compounds.

  2. Monte carlo sampling of fission multiplicity.

    SciTech Connect

    Hendricks, J. S.

    2004-01-01

    Two new methods have been developed for fission multiplicity modeling in Monte Carlo calculations. The traditional method of sampling neutron multiplicity from fission is to sample the number of neutrons above or below the average. For example, if there are 2.7 neutrons per fission, three would be chosen 70% of the time and two would be chosen 30% of the time. For many applications, particularly {sup 3}He coincidence counting, a better estimate of the true number of neutrons per fission is required. Generally, this number is estimated by sampling a Gaussian distribution about the average. However, because the tail of the Gaussian distribution is negative and negative neutrons cannot be produced, a slight positive bias can be found in the average value. For criticality calculations, the result of rejecting the negative neutrons is an increase in k{sub eff} of 0.1% in some cases. For spontaneous fission, where the average number of neutrons emitted from fission is low, the error also can be unacceptably large. If the Gaussian width approaches the average number of fissions, 10% too many fission neutrons are produced by not treating the negative Gaussian tail adequately. The first method to treat the Gaussian tail is to determine a correction offset, which then is subtracted from all sampled values of the number of neutrons produced. This offset depends on the average value for any given fission at any energy and must be computed efficiently at each fission from the non-integrable error function. The second method is to determine a corrected zero point so that all neutrons sampled between zero and the corrected zero point are killed to compensate for the negative Gaussian tail bias. Again, the zero point must be computed efficiently at each fission. Both methods give excellent results with a negligible computing time penalty. It is now possible to include the full effects of fission multiplicity without the negative Gaussian tail bias.

  3. Monte Carlo study of microdosimetric diamond detectors

    NASA Astrophysics Data System (ADS)

    Solevi, Paola; Magrin, Giulio; Moro, Davide; Mayer, Ramona

    2015-09-01

    Ion-beam therapy provides a high dose conformity and increased radiobiological effectiveness with respect to conventional radiation-therapy. Strict constraints on the maximum uncertainty on the biological weighted dose and consequently on the biological weighting factor require the determination of the radiation quality, defined as the types and energy spectra of the radiation at a specific point. However the experimental determination of radiation quality, in particular for an internal target, is not simple and the features of ion interactions and treatment delivery require dedicated and optimized detectors. Recently chemical vapor deposition (CVD) diamond detectors have been suggested as ion-beam therapy microdosimeters. Diamond detectors can be manufactured with small cross sections and thin shapes, ideal to cope with the high fluence rate. However the sensitive volume of solid state detectors significantly deviates from conventional microdosimeters, with a diameter that can be up to 1000 times the height. This difference requires a redefinition of the concept of sensitive thickness and a deep study of the secondary to primary radiation, of the wall effects and of the impact of the orientation of the detector with respect to the radiation field. The present work intends to study through Monte Carlo simulations the impact of the detector geometry on the determination of radiation quality quantities, in particular on the relative contribution of primary and secondary radiation. The dependence of microdosimetric quantities such as the unrestricted linear energy L and the lineal energy y are investigated for different detector cross sections, by varying the particle type (carbon ions and protons) and its energy.

  4. Monte Carlo study of microdosimetric diamond detectors.

    PubMed

    Solevi, Paola; Magrin, Giulio; Moro, Davide; Mayer, Ramona

    2015-09-21

    Ion-beam therapy provides a high dose conformity and increased radiobiological effectiveness with respect to conventional radiation-therapy. Strict constraints on the maximum uncertainty on the biological weighted dose and consequently on the biological weighting factor require the determination of the radiation quality, defined as the types and energy spectra of the radiation at a specific point. However the experimental determination of radiation quality, in particular for an internal target, is not simple and the features of ion interactions and treatment delivery require dedicated and optimized detectors. Recently chemical vapor deposition (CVD) diamond detectors have been suggested as ion-beam therapy microdosimeters. Diamond detectors can be manufactured with small cross sections and thin shapes, ideal to cope with the high fluence rate. However the sensitive volume of solid state detectors significantly deviates from conventional microdosimeters, with a diameter that can be up to 1000 times the height. This difference requires a redefinition of the concept of sensitive thickness and a deep study of the secondary to primary radiation, of the wall effects and of the impact of the orientation of the detector with respect to the radiation field. The present work intends to study through Monte Carlo simulations the impact of the detector geometry on the determination of radiation quality quantities, in particular on the relative contribution of primary and secondary radiation. The dependence of microdosimetric quantities such as the unrestricted linear energy L and the lineal energy y are investigated for different detector cross sections, by varying the particle type (carbon ions and protons) and its energy. PMID:26309235

  5. Monte Carlo Simulations for Spinodal Decomposition

    NASA Astrophysics Data System (ADS)

    Sander, Evelyn; Wanner, Thomas

    1999-06-01

    This paper addresses the phenomenon of spinodal decomposition for the Cahn-Hilliard equation. Namely, we are interested in why most solutions to the Cahn-Hilliard equation which start near a homogeneous equilibrium u 0≡ μ in the spinodal interval exhibit phase separation with a characteristic wavelength when exiting a ball of radius R in a Hilbert space centered at u 0. There are two mathematical explanations for spinodal decomposition, due to Grant and to Maier-Paape and Wanner. In this paper, we numerically compare these two mathematical approaches. In fact, we are able to synthesize the understanding we gain from our numerics with the approach of Maier-Paape and Wanner, leading to a better understanding of the underlying mechanism for this behavior. With this new approach, we can explain spinodal decomposition for a longer time and larger radius than either of the previous two approaches. A rigorous mathematical explanation is contained in a separate paper. Our approach is to use Monte Carlo simulations to examine the dependence of R, the radius to which spinodal decomposition occurs, as a function of the parameter ɛ of the governing equation. We give a description of the dominating regions on the surface of the ball by estimating certain densities of the distributions of the exit points. We observe, and can show rigorously, that the behavior of most solutions originating near the equilibrium is determined completely by the linearization for an unexpectedly long time. We explain the mechanism for this unexpectedly linear behavior, and show that for some exceptional solutions this cannot be observed. We also describe the dynamics of these exceptional solutions.

  6. Monte Carlo simulations for spinodal decomposition

    SciTech Connect

    Sander, E.; Wanner, T.

    1999-06-01

    This paper addresses the phenomenon of spinodal decomposition for the Cahn-Hilliard equation. Namely, the authors are interested in why most solutions to the Cahn-Hilliard equation which start near a homogeneous equilibrium u{sub 0} {equivalent_to} {mu} in the spinodal interval exhibit phase separation with a characteristic wavelength when exiting a ball of radius R in a Hilbert space centered at u{sub 0}. There are two mathematical explanations for spinodal decomposition, due to Grant and to Maier-Paape and Wanner. In this paper, the authors numerically compare these two mathematical approaches. In fact, they are able to synthesize the understanding they gain from the numerics with the approach of Maier-Paape and Wanner, leading to a better understanding of the underlying mechanism for this behavior. With this new approach, they can explain spinodal decomposition for a longer time and larger radius than either of the previous two approaches. A rigorous mathematical explanation is contained in a separate paper. The approach is to use Monte Carlo simulations to examine the dependence of R, the radius to which spinodal decomposition occurs, as a function of the parameter {var_epsilon} of the governing equation. The authors give a description of the dominating regions on the surface of the ball by estimating certain densities of the distributions of the exit points. They observe, and can show rigorously, that the behavior of most solutions originating near the equilibrium is determined completely by the linearization for an unexpectedly long time. They explain the mechanism for this unexpectedly linear behavior, and show that for some exceptional solutions this cannot be observed. They also describe the dynamics of these exceptional solutions.

  7. Quantum Monte Carlo Endstation for Petascale Computing

    SciTech Connect

    David Ceperley

    2011-03-02

    CUDA GPU platform. We restructured the CPU algorithms to express additional parallelism, minimize GPU-CPU communication, and efficiently utilize the GPU memory hierarchy. Using mixed precision on GT200 GPUs and MPI for intercommunication and load balancing, we observe typical full-application speedups of approximately 10x to 15x relative to quad-core Xeon CPUs alone, while reproducing the double-precision CPU results within statistical error. We developed an all-electron quantum Monte Carlo (QMC) method for solids that does not rely on pseudopotentials, and used it to construct a primary ultra-high-pressure calibration based on the equation of state of cubic boron nitride. We computed the static contribution to the free energy with the QMC method and obtained the phonon contribution from density functional theory, yielding a high-accuracy calibration up to 900 GPa usable directly in experiment. We computed the anharmonic Raman frequency shift with QMC simulations as a function of pressure and temperature, allowing optical pressure calibration. In contrast to present experimental approaches, small systematic errors in the theoretical EOS do not increase with pressure, and no extrapolation is needed. This all-electron method is applicable to first-row solids, providing a new reference for ab initio calculations of solids and benchmarks for pseudopotential accuracy. We compared experimental and theoretical results on the momentum distribution and the quasiparticle renormalization factor in sodium. From an x-ray Compton-profile measurement of the valence-electron momentum density, we derived its discontinuity at the Fermi wavevector finding an accurate measure of the renormalization factor that we compared with quantum-Monte-Carlo and G0W0 calculations performed both on crystalline sodium and on the homogeneous electron gas. Our calculated results are in good agreement with the experiment. We have been studying the heat of formation for various Kubas complexes of molecular

  8. Implications of Monte Carlo Statistical Errors in Criticality Safety Assessments

    SciTech Connect

    Pevey, Ronald E.

    2005-09-15

    Most criticality safety calculations are performed using Monte Carlo techniques because of Monte Carlo's ability to handle complex three-dimensional geometries. For Monte Carlo calculations, the more histories sampled, the lower the standard deviation of the resulting estimates. The common intuition is, therefore, that the more histories, the better; as a result, analysts tend to run Monte Carlo analyses as long as possible (or at least to a minimum acceptable uncertainty). For Monte Carlo criticality safety analyses, however, the optimization situation is complicated by the fact that procedures usually require that an extra margin of safety be added because of the statistical uncertainty of the Monte Carlo calculations. This additional safety margin affects the impact of the choice of the calculational standard deviation, both on production and on safety. This paper shows that, under the assumptions of normally distributed benchmarking calculational errors and exact compliance with the upper subcritical limit (USL), the standard deviation that optimizes production is zero, but there is a non-zero value of the calculational standard deviation that minimizes the risk of inadvertently labeling a supercritical configuration as subcritical. Furthermore, this value is shown to be a simple function of the typical benchmarking step outcomes--the bias, the standard deviation of the bias, the upper subcritical limit, and the number of standard deviations added to calculated k-effectives before comparison to the USL.

  9. PRELIMINARY COUPLING OF THE MONTE CARLO CODE OPENMC AND THE MULTIPHYSICS OBJECT-ORIENTED SIMULATION ENVIRONMENT (MOOSE) FOR ANALYZING DOPPLER FEEDBACK IN MONTE CARLO SIMULATIONS

    SciTech Connect

    Matthew Ellis; Derek Gaston; Benoit Forget; Kord Smith

    2011-07-01

    In recent years the use of Monte Carlo methods for modeling reactors has become feasible due to the increasing availability of massively parallel computer systems. One of the primary challenges yet to be fully resolved, however, is the efficient and accurate inclusion of multiphysics feedback in Monte Carlo simulations. The research in this paper presents a preliminary coupling of the open source Monte Carlo code OpenMC with the open source Multiphysics Object-Oriented Simulation Environment (MOOSE). The coupling of OpenMC and MOOSE will be used to investigate efficient and accurate numerical methods needed to include multiphysics feedback in Monte Carlo codes. An investigation into the sensitivity of Doppler feedback to fuel temperature approximations using a two dimensional 17x17 PWR fuel assembly is presented in this paper. The results show a functioning multiphysics coupling between OpenMC and MOOSE. The coupling utilizes Functional Expansion Tallies to accurately and efficiently transfer pin power distributions tallied in OpenMC to unstructured finite element meshes used in MOOSE. The two dimensional PWR fuel assembly case also demonstrates that for a simplified model the pin-by-pin doppler feedback can be adequately replicated by scaling a representative pin based on pin relative powers.

  10. Range uncertainties in proton therapy and the role of Monte Carlo simulations

    PubMed Central

    Paganetti, Harald

    2012-01-01

    The main advantages of proton therapy are the reduced total energy deposited in the patient as compared to photon techniques and the finite range of the proton beam. The latter adds an additional degree of freedom to treatment planning. The range in tissue is associated with considerable uncertainties caused by imaging, patient setup, beam delivery and dose calculation. Reducing the uncertainties would allow a reduction of the treatment volume and thus allow a better utilization of the advantages of protons. This article summarizes the role of Monte Carlo simulations when aiming at a reduction of range uncertainties in proton therapy. Differences in dose calculation when comparing Monte Carlo with analytical algorithms are analyzed as well as range uncertainties due to material constants and CT conversion. Range uncertainties due to biological effects and the role of Monte Carlo for in vivo range verification are discussed. Furthermore, the current range uncertainty recipes used at several proton therapy facilities are revisited. We conclude that a significant impact of Monte Carlo dose calculation can be expected in complex geometries where local range uncertainties due to multiple Coulomb scattering will reduce the accuracy of analytical algorithms. In these cases Monte Carlo techniques might reduce the range uncertainty by several mm. PMID:22571913