Sample records for mordenite

  1. Steric effects in nitrogen adsorption by mordenite

    SciTech Connect

    Hayhurst, D.T.; Sefcik, M.D.


    Zeolites are well known for their ability to adsorb a large variety of gases, including even highly volatile nonpolar permanent gases. Nitrogen is among the most strongly adsorbed non-polar gas; in fact, among some of the earliest observations on adsorptive separation of gaseous mixtures was the selectivity shown by several zeolites for nitrogen from air. Early work of Barrer, McKee and Domine and Hay showed that calcium A, calcium X, mordenite and several types of natural zeolites can be used to enrich air by a selective adsorption of nitrogen. Several pressure-swing-adsorption processes utilizing zeolite adsorbents have been developed which yield a product containing up to 95% oxygen at rates of up to 20 tons per day. The selective adsorption of nitrogen over oxygen is not a true molecular sieving effect since nitrogen (3.64A) is larger than oxygen (3.46A). Thus, the increased affinity of many zeolites for nitrogen can be ascribed to a greater heat of adsorption for nitrogen than for oxygen. The initial heat of adsorption in zeolites adsorbents can be partitioned into contributions from repulsive and dispersive forces, polarization energy and electrostatic interactions arising from dipole and electric quadrupole moment interactions with electric fields in the zeolite. At higher concentrations of adsorbates, interactions between adsorbates must also be considered. If, due to geometrical constraints in the zeolite, nitrogen is adsorbed into sites which reduce or eliminate its rotational freedom and, if the nitrogen quadrupole is aligned with the cation field gradient than a significant increase in the value of 0 /SUB f-q/ may be expected.

  2. Iodine Loading of NO Aged Silver Exchanged Mordenite

    SciTech Connect

    Patton, K. K. [ORNL; Bruffey, S. H. [ORNL; Jubin, J. T. [ORNL; Walker, Jr., J. F. [ORNL


    In an off-gas treatment system for used nuclear fuel processing, a solid sorbent will typically be exposed to a gas stream for months at a time. This gas stream may be at elevated temperature and could contain water vapor, gaseous nitrogen oxides (NO{sub x}), nitric acid vapors, and a variety of other constituents. For this reason, it is important to evaluate the effects of long-term exposure, or aging, on proposed sorbents. Silver exchanged mordenite (AgZ) is being studied at Oak Ridge National Laboratory (ORNL) to determine its iodine sorption capacity after long term exposure to increasingly more complex chemical environments. Studies previously conducted at ORNL investigated the effects of aging reduced silver exchanged mordenite (Ag{sup 0}Z) in dry air, moist air, and NO2. This study investigated the effects of extended exposure to nitric oxide (NO) gas on the iodine capture performance of Ag{sup 0}Z. A deep bed of Ag{sup 0}Z was aged in a 1% nitric oxide (NO) air stream, and portions of the bed were removed at pre-determined intervals. After being removed from the NO stream, each sample was loaded with iodine in a thin bed configuration. These samples were analyzed by neutron activation analysis (NAA) to quantify the iodine content in the sample. Samples were removed at one week and one month. A 78% decrease in sample capacity was seen after one week of exposure, with no further decrease observed after 1 month of aging. The observed loss in capacity is larger in magnitude than previous studies exposing Ag{sup 0}Z to dry air, moist air, or NO2 gas. The aging study was terminated after one month and repeated; this successfully demonstrated the reproducibility of the results.

  3. Insight into the Effect of Dealumination on Mordenite Using Experimentally Validated Simulations

    E-print Network

    Muzzio, Fernando J.

    process on the structural properties of mordenite. Using kinetic Monte Carlo simulations, dealumination as the method of choice for zeolite modification to arrive at mesoporosity.4 Steaming and/or acid leaching

  4. Adsorption of hexane isomers on ion-exchanged mordenite

    SciTech Connect

    Huddersman, K. [DeMonfort Univ., Leicester (United Kingdom)] [DeMonfort Univ., Leicester (United Kingdom)


    To remove lead from petrol and thereby promote a cleaner environment, other means must be found to keep the octane number or anti-knock qualities of the petrol high. It is found that this can be accomplished by increasing the proportion of highly branched chain hydrocarbon isomers in the fuel. This in turn promotes processes for the separation of the hydrocarbon isomers and in the case of hexane, it is an easy matter to separate out n-hexane from the more substituted isomers but it is difficult to separate out the mono- from the di-branched isomers. This work addresses itself to such challenging separations using modified zeolites as the separating agent, and by studying the heats of sorption of these isomers on zeolites using gas chromatographic techniques to find a trend in the potential abilities of these modified zeolites to effect a good separation. In this work mordenite zeolite was modified by a range of double cation exchanges and the resulting modified zeolites were investigated for their ability to sorb the hexane isomers 3-methylpentane and 2,3-dimethylbutane. These two isomers are closely related in size as they both have the same kinetic diameter of 0.56 nm. In this work only heats of sorption have been investigated and measurement of the diffusion coefficients, which also affect the ability of the modified zeolites to act as good separating agents, is currently under investigation.

  5. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol

    PubMed Central

    Grundner, Sebastian; Markovits, Monica A.C.; Li, Guanna; Tromp, Moniek; Pidko, Evgeny A.; Hensen, Emiel J.M.; Jentys, Andreas; Sanchez-Sanchez, Maricruz; Lercher, Johannes A.


    Copper-exchanged zeolites with mordenite structure mimic the nuclearity and reactivity of active sites in particulate methane monooxygenase, which are enzymes able to selectively oxidize methane to methanol. Here we show that the mordenite micropores provide a perfect confined environment for the highly selective stabilization of trinuclear copper-oxo clusters that exhibit a high reactivity towards activation of carbon–hydrogen bonds in methane and its subsequent transformation to methanol. The similarity with the enzymatic systems is also implied from the similarity of the reversible rearrangements of the trinuclear clusters occurring during the selective transformations of methane along the reaction path towards methanol, in both the enzyme system and copper-exchanged mordenite. PMID:26109507

  6. Photophysical properties of pyrene in zeolites: Adsorption and distribution of pyrene molecules on the surfaces of zeolite L and mordenite

    SciTech Connect

    Liu, Xinsheng; Thomas, J.K. [Univ. of Notre Dame, IN (United States)


    Adsorption of pyrene on the surfaces of zeolites L and mordenite is investigated using photophysical techniques. Although the internal surfaces of both zeolites are polar, their external surfaces may not be the same. A difference is observed for mordenite. No pyrene excimers can be produced in mordenite, while excimers are readily formed in zeolite L. Due to structural constraints, 30-35% of pyrene adsorbed in mordenite cannot be quenched by O{sub 2}. Rotational movement of pyrene molecules in mordenite is also restricted by the zeolite structure. Laser photolysis produces pyrene cation and anion radicals, the former having a larger yield than the latter in both zeolites. 31 refs., 5 figs., 2 tabs.

  7. Coke deposition and shape-selectivity in the alkylation of biphenyl and naphthalene over H-mordenite: Effect of dealumination

    SciTech Connect

    Sugi, Y.; Tu, X.; Kim, J.H. [National Institute of Materials and Chemical Research, Tsukuba, Ibaraki (Japan)] [and others


    Shape-selective alkylation of polynuclear aromatics is the promising way to introduce functional groups for synthesis of advanced materials. We have found H-mordenite is highly potential catalyst for the shape-selective alkylation of biphenyl and naphthalene. The reaction inside pores gives the slimmest isomers such as 4,4`-diisopropylbiphenyl (4,4`-DIBP) for biphenyl and 2,6-diisopropyl-naphthalene (2,6-DIPN) for naphthalene because of their minimum steric requirement at the transition state. However, coke deposition did occur at acid sites to deactivate the catalysis of H-mordenites with low SiO{sub 2}/Al{sub 2}O{sub 3} ratio. The dealumination of H-mordenite can modify acidic properties to decrease the formation of coke deposits and coke. In this paper, we will report the effect of dealumination of H-mordenite on coke deposition and shape-selectivity in the isopropylation of biphenyl and naphthalene.

  8. Crystallization and morphology of mordenite zeolite influenced by various parameters in organic-free synthesis

    SciTech Connect

    Zhang, Ling; Graduate University of Chinese Academy of Sciences, Beijing 100049 ; Xie, Sujuan; Xin, Wenjie; Li, Xiujie; Liu, Shenglin; Xu, Longya


    Research highlights: {yields} Seed, gel composition and silicon source affect the crystallization process of MOR. {yields} Seed, gel composition and silicon source influence the morphology of MOR. {yields} Low silica concentration results in MOR with high c/b aspect ratio. {yields} Novel nano fiber-like MOR with c/b aspect ratio of 89 was organic-free synthesized. {yields} The morphology of MOR influences its mesopore property and thermal stability. -- Abstract: A series of mordenite zeolites with different morphologies were synthesized via a facile organic-free hydrothermal route, and characterized by X-ray diffraction, scanning electron microscopy, X-ray fluorescence spectrometer and N{sub 2} adsorption-desorption techniques. Influences of synthetic parameters, including seed crystal, silicon precursor, SiO{sub 2}/Al{sub 2}O{sub 3}, Na{sub 2}O/SiO{sub 2} and H{sub 2}O/SiO{sub 2}, on mordenite crystallization were investigated systematically. It was found that mordenite zeolites with various morphologies, such as fiber-like, rod-like, prism-like and needle-like ones could be synthesized in control. Especially, novel nano fiber-like MOR crystals with high c/b aspect ratio were prepared from low silica concentration system, which was manipulated by using small initial SiO{sub 2}/Al{sub 2}O{sub 3} ratio, large H{sub 2}O/SiO{sub 2} and silicon source with slow dissolution rate. Moreover, mordenite samples with various morphologies exhibited different mesopore property and thermal stability.

  9. Honeycomb reactor washcoated with mordenite type zeolite catalysts for the reduction of NOâ by NHâ

    Microsoft Academic Search

    Hoon Choi; Sung-Won Ham; In-Sik Nam; Young Gul Kim


    A low pressure drop reactor was prepared by washcoating Cu ion-exchange mordenite on a honeycomb. The reactor configuration including reaction conditions was experimentally optimized both for low-pressure drop and for high catalytic activity of the honeycomb reactor. Over 90% of NO conversion was achieved by both Cu ion-exchanged synthetic zeolite (CuHM) and natural zeolite (CuNZA). The pressure drops due to

  10. Determination of Ni(II) uptake mechanisms on mordenite surfaces: A combined macroscopic and microscopic approach

    NASA Astrophysics Data System (ADS)

    Yang, Shitong; Sheng, Guodong; Tan, Xiaoli; Hu, Jun; Du, Jinzhou; Montavon, Gilles; Wang, Xiangke


    The uptake mechanisms of Ni(II) on mordenite were investigated by macroscopic experiments and extended X-ray absorption fine structure (EXAFS) spectroscopy. The results demonstrated that Ni(II) could be retained via different mechanisms, depending on pH, ionic strength, temperature, etc. At low pH, the uptake of Ni(II) is primarily dominated by cation exchange and/or outer-sphere surface complexation. The interatomic distances of Ni-O (˜2.05 Å) and the coordination number (˜6.0) are similar to those of Ni(II)(aq) reference sample, suggesting that Ni(II) is present in an [Ni(H 2O) 6] 2+ octahedral environment at low pH. With increasing pH, the uptake of Ni(II) on mordenite tends to form inner-sphere surface complexes and precipitation/co-precipitation at high pH. The uptake of Ni(II) on mordenite becomes more favorable with increasing temperature, and the EXAFS spectra analysis show a trend from outer-sphere surface complexation at low temperature to inner-sphere surface complexation at high temperature. The addition of HA/FA increases Ni(II) uptake at low pH and decreases Ni(II) uptake at high pH. Enhanced Ni(II) uptake is attributed to the formation of "ligand-bridging" ternary surface complexes that are adsorbed on mordenite surface, while reduction is attributed to the formation of soluble Ni(II)-HA/FA complexes in solution that compete with uptake processes. The findings presented in this study are important toward a molecular-level description of Ni(II) uptake processes at the water-mineral interface.

  11. Optimization of sintered AgI-Mordenite composites for {sup 129}I storage

    SciTech Connect

    Garino, T.J.; Nenoff, T.M.; Rodriguez, M.A.; Mowry, C.D.; Rademacher, D.X. [Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-1411 (United States)


    The thermal processing of a proposed durable waste form for {sup 129}I was investigated. The waste form is a composite with a matrix of low-temperature sintering glass that encapsulates particles of AgI-mordenite. Ag-mordenite, an ion-exchanged zeolite, is being considered as a capture medium for gaseous {sup 129}I{sub 2} as part of a spent nuclear fuel reprocessing scheme under development by the US Department of Energy/Nuclear Energy (NE). The thermal processing of the waste form is necessary to increase the density of the glass matrix by viscous sintering so that the final waste form does not have any open porosity. Other processes that can also occur during the thermal treatment include desorption of chemisorbed I{sub 2}, volatilization of AgI and crystallization of the glass matrix. We have optimized the thermal processing to achieve the desired high density with higher AgI-mordenite loading levels and with minimal loss of iodine. Using these conditions, 625 C. degrees for 20 minutes, the matrix crystallizes to form a eulytite phase. Results of durability tests indicate that the matrix crystallization does not significantly decrease the durability in aqueous environments. (authors)

  12. Solubility and stability of zeolites in aqueous solution: 2. Calcic clinoptilolite and mordenite

    SciTech Connect

    Benning, L.G.; Wilkin, R.T.; Barnes, H.L.


    The solubilities of Ca-exchanged clinoptilolite (Cpt-Ca) and Ca-exchanged mordenite (Mor-Ca) have been measured in aqueous solutions between 25 and 275 C and at saturated water vapor pressures. Natural zeolites were cation exchanged to close to Ca end-member composition (90% for Cpt-Ca, and 98% for Mor-Ca). The controlling dissolution reactions are reversible as shown by equilibrium constants calculated for approach from under- and supersaturation. The log K{sub sp} for Cpt-Ca increases from {minus}26.9 at 25 C to a maximum of {minus}16.9 at 275 C, whereas for Mor-Ca the equilibrium constant varies from {minus}25.3 at 25 C to {minus}17.7 at 265 C. The solubilities for both zeolites increase with increasing temperature showing a positive enthalpy for the dissolution reaction. At lower temperatures Cpt-Ca is slightly more soluble than Mor-Ca, which agrees with natural observations where mordenite and clinoptilolite commonly occur together spatially but mordenite is in general the higher-temperature phase. A comparison with other exchanged clinoptilolites indicates that Cpt-Ca is more stable than the Na, K, and Mg varieties. The results demonstrate that the exchanged cation has a large effect on the solubility behavior, and that divalently exchanged varieties are less soluble than monovalent varieties. From the solubility constants, the standard Gibbs free energies of formation for hydrous Cpt-Ca and Mor-Ca at 25 C and 1 bar were determined to be {minus}6,387 {+-} 5 kJ/mol and {minus}6,275 {+-} 7 kJ/mol, respectively. However, compared to the hydration states and the aluminosilicate structure, the effect of the cation on the Gibbs free energies of formation is small.

  13. Facilely synthesized H-mordenite nanosheet assembly for carbonylation of dimethyl ether.


    Liu, Yahua; Zhao, Na; Xian, Hui; Cheng, Qingpeng; Tan, Yisheng; Tsubaki, Noritatsu; Li, Xingang


    Hard coke blockage of micropores of acidic zeolites generally causes serious catalytic deactivation for many chemical processes. Herein, we report a facile method to synthesize H-mordenite nanosheet assemblies without using any template agent. The assemblies exhibit the high catalytic activity for carbonylation of dimethyl ether because of their large quantity of framework Brønsted acids. The specific morphology of the nanosheet unites improves mass diffusion for both reactants and products. Consequently, the coke precursor species can readily migrate from the micropores to the external surface of the assemblies, inducing the improved catalytic stability through inhibiting hard coke formation in frameworks. PMID:25879136

  14. Kinetic and equilibrium studies of the removal of ammonium ions from aqueous solution by rice husk ash-synthesized zeolite Y and powdered and granulated forms of mordenite.


    Yusof, Alias Mohd; Keat, Lee Kian; Ibrahim, Zaharah; Majid, Zaiton Abdul; Nizam, Nik Ahmad


    The removal of ammonium from aqueous solutions using zeolite NaY prepared from a local agricultural waste, rice husk ash waste was investigated and a naturally occurring zeolite mordenite in powdered and granulated forms was used as comparison. Zeolite NaY and mordenite were well characterized by powder X-ray diffraction (XRD), energy dispersive X-ray (EDX) analysis and the total cation exchange capacity (CEC). CEC of the zeolites were measured as 3.15, 1.46 and 1.34 meq g(-1) for zeolite Y, powdered mordenite and granular mordenite, respectively. Adsorption kinetics and equilibrium data for the removal of NH(4)(+) ions were examined by fitting the experimental data to various models. Kinetic studies showed that the adsorption followed a pseudo-second-order reaction. The equilibrium pattern fits well with the Langmuir isotherm compared to the other isotherms. The monolayer adsorption capacity for zeolite Y (42.37 mg/g) was found to be higher than that powdered mordenite (15.13 mg/g) and granular mordenite (14.56 mg/g). Thus, it can be concluded that the low cost and economical rice husk ash-synthesized zeolite NaY could be a better sorbent for ammonium removal due to its rapid adsorption rate and higher adsorption capacity compared to natural mordenite. PMID:19879040

  15. A study involving mordenite, titanate nanotubes, perfluoroalkoxy polymers, and ammonia borane

    NASA Astrophysics Data System (ADS)

    Nosheen, Shaneela

    Zeolites and molecular sieves are finding applications in many areas of catalysis due to appreciable acid activity, shape selectivity, and ion-exchange capacity, as they possess an unbalanced framework charge. For catalytic applications, zeolites become more valuable as the ratio of SiO2/Al2O 3 increases. Acid resistance and thermal stability of zeolite are both improved with increasing SiO2/Al2O3. This part of the thesis deals with the control of morphology focused on decreasing the crystal diameter of mordenite zeolite and to increase the SiO2/Al 2O3 ratio by changing synthesis conditions. A high SiO 2/Al2O3 ratio (SAR15) of mordenite was prepared in a very short reaction time. We studied the role of hydroxide in the crystallization of the mordenite as a structure director, nucleation time modifier, and crystallite aggregate enhancer. The formation of nano-aggregates of mordenites was greatly enhanced using a combination of alcohol additives and conventional heating. Mordenite nucleation was also increased without using alcohols when microwave heating was employed, but the alcohols further accelerated the nucleation process. The different heating techniques affected the morphology; microwave heating produced crystallites of ˜40 nm, while the conventional hydrothermal method formed larger size crystallites of ˜88 nm. We controlled the size and shape of the mordenite crystals because they have important implications in hydrocarbon conversion and separation processes. Mordenite synthesized showed jellyfish, acicular, flower, and wheat grain like structures. In the second part of this thesis, a phase transition was successfully achieved from TiO2 particles to titanate nanotubes by the breakage of Ti-O bonds and the creation of oxygen vacancies without using expensive precursors, high temperatures, high chemical concentrations of alkaline solutions, and long synthesis times. A combination of anatase nano-particles/titanate nano-tubes was synthesized using TiO2 (anatase) and a temperature of only 100°C. When TiO2 (P-25) was used with the same concentration of alkaline solution (1 molar NaOH), the same processing time of 12 hours, and a higher temperature at 110°C, only titanate nano-tubes were observed. The linkages of 'Ti-O' play a very important role in the structural features of different phases. Two crystalline phases (tetragonal and monoclinic) were synthesized as products in the case of TiO 2 (anatase) and one crystalline phase (monoclinic) for products of TiO 2 (P-25). The third part of the thesis concerns surface modification of hydrophobic fluoropolymers that have low surface energies and are very difficult to metallize. Surface modification was done to enhance surface roughness and hence to boost surface energy for metallization processes. We used low impact, environmentally friendly non-thermal plasmas at atmospheric pressure to strip off F - ions and replace them with reactive unsaturated hydrocarbon functionalities such as CH=CH2 on the surface of a polymer. As these hydrocarbon functionalities are reactive with metals, they form composites that have good adhesion between layers of polymer. Due to surface modification, polymeric chains were broken by the loss of fluorine atoms (F/C = 0.33) and the gain of oxygen atoms (O/C = 0.17) using methane/argon plasmas. Methane/hydrogen/argon plasmas on the other hand produced extensive loss of fluorine atoms (F/C = 0.07-0.33) and gain of oxygen atoms (O/C = 0.08-0.16) that was far better than pristine PFA. The surface of PFA was modified by defluorination and oxidation. Further enhancement of COF and COO groups revealed that the surface was modified to a hydrophilic membrane that can further be easily hydrolyzed to COOH in the presence of atmospheric humidity. The last part of the thesis deals with ammonia borane which was studied as a potential source of hydrogen for fuel cells. We analyzed the viability of ammonia borane as a hydrogen carrier compound for fuel cell applications using a thermolysis method. Ammonia borane is an attractive source for hydrogen productio

  16. Pressure-induced penetration of guest molecules in high-silica zeolites: the case of mordenite.


    Arletti, R; Leardini, L; Vezzalini, G; Quartieri, S; Gigli, L; Santoro, M; Haines, J; Rouquette, J; Konczewicz, L


    A synthetic high-silica mordenite (HS-MOR) has been compressed in both non-penetrating (silicone oil, s.o.) and penetrating [methanol?:?ethanol?:?water (16?:?3?:?1) (m.e.w.), water?:?ethanol (3?:?1) (w.e.), and ethylene glycol (] pressure transmitting media (PTM). In situ high-pressure (HP) synchrotron X-ray powder diffraction (XRPD) experiments allowed the unit cell parameters to be followed up to 1.6, 1.8, 8.4, and 6.7 GPa in s.o., w.e., m.e.w., and, respectively. Moreover, was also used as a PTM in in situ HP Raman and ex situ IR experiments. The structural refinement of HS-MOR compressed in at 0.1 GPa - the lowest investigated pressure - revealed the presence of 3.5 ethylene glycol molecules per unit cell. The infrared spectrum of the recovered sample, after compression to 1 GPa, is consistent with the insertion of ethylene glycol molecules in the pores. XRPD and Raman spectroscopy experiments performed under pressure indicated the insertion of a small number of guest molecules. Ethylene glycol is partially retained inside mordenite upon pressure release. A symmetry lowering was observed in s.o. above 0.8 GPa, while above 1.6 GPa the patterns indicated a rapid loss of long range order. From ambient pressure (Pamb) to 1.6 GPa, a high cell volume contraction (?V = -9.5%) was determined. The patterns collected with penetrating PTM suggested the penetration of guest molecules into the porous host matrix, starting from a very low P regime. The entrapment of PTM molecules inside micropores contributes to the stiffening of the structure and, as a consequence, to the decrease of the compressibility with respect to that measured in s.o. From the structural point of view, HS-MOR reacts to compression and to the penetration of different guest species with appropriate framework deformations. Interestingly, ethylene glycol is partially retained inside mordenite upon pressure release, which is of importance for potential application of this composite material. PMID:26325490

  17. Radioactive iodine capture in silver-containing mordenites through nanoscale silver iodide formation.

    SciTech Connect

    Chapman, K. W.; Chupas, P. J.; Nenoff, T. M.; X-Ray Science Division; SNL


    The effective capture and storage of radiological iodine ({sup 129}I) remains a strong concern for safe nuclear waste storage and safe nuclear energy. Silver-containing mordenite (MOR) is a longstanding benchmark for iodine capture; however, the molecular level understanding of this process needed to develop more effective iodine getters has remained elusive. Here we probe the structure and distribution of iodine sorbed by silver-containing MOR using differential pair distribution function analysis. While iodine is distributed between {gamma}-AgI nanoparticles on the zeolite surface and subnanometer {alpha}-AgI clusters within the pores for reduced silver MOR, in the case of unreduced silver-exchanged MOR, iodine is exclusively confined to the pores as subnanometer {alpha}-AgI. Consequently, unreduced silver-containing zeolites may offer a more secure route for radioactive iodine capture, with the potential to more effectively trap the iodine for long-term storage.


    SciTech Connect

    Mitchell Greenhalgh; Troy G. Garn; Jack D. Law


    A novel new sorbent for the separation of krypton from off-gas streams resulting from the reprocessing of used nuclear fuel has been developed and evaluated. A hydrogen mordenite powder was successfully incorporated into a macroporous polymer binder and formed into spherical beads. The engineered form sorbent retained the characteristic surface area and microporosity indicative of mordenite powder. The sorbent was evaluated for krypton adsorption capacities utilizing thermal swing operations achieving capacities of 100 mmol of krypton per kilogram of sorbent at a temperature of 191 K. A krypton adsorption isotherm was also obtained at 191 K with varying krypton feed gas concentrations. Adsorption/desorption cycling effects were also evaluated with results indicating that the sorbent experienced no decrease in krypton capacity throughout testing.

  19. ZSM-5, Y, and Mordenite Zeolites as Sensing Materials for Ethanol Vapor

    NASA Astrophysics Data System (ADS)

    Sirivat, Anuvat; Yimlamai, Intira


    The effects of the framework type, the charge balancing cation type, and the Si/Al ratio of ZSM-5, Y, and Mordenite zeolites on the electrical conductivity responses towards ethanol vapor have been investigated. All zeolites were characterized using XRD, FT-IR, SEM, TGA, BET, and NH3 -TPD techniques. For the effect of the framework type, H+ Y has a higher electrical conductivity sensitivity value than that of H+ MOR because of a greater pore volume and available surface area. For the effect of the charge balancing cation, all NH4 + ZSM-5 zeolites (Si/Al = 23, 50, 80, 280) show negative responses, whereas the H+ Y zeolites (Si/Al = 30, 60, 80) and the H+ MOR zeolites (Si/Al = 30, 200) show positive responses. These differing behaviors can be traced to the interactions between ethanol molecules and the reactive sites of the zeolites. For the effect of Si/Al ratio, the electrical conductivity sensitivity towards the ethanol decreases with increasing Si/Al ratio or decreasing Al content, and there is a lesser degree of interaction between ethanol molecules and the active sites of the zeolites. The interactions between the ethanol molecules and the zeolites were investigated through infrared spectroscopy.

  20. Isomerization of C{sub 8} aromatics over a Pt/mordenite catalyst: A statistical model

    SciTech Connect

    Gonzalex, H.; Rodriguez, A.; Cedeno, L.; Ramirez, J. [UNAM, Mexico City (Mexico). Dept. de Ingenieria Quimica; Aracil, J. [Univ. Complutense, Madrid (Spain). Dept. de Ingenieria Quimica


    A statistical approach was used to analyze the behavior of the isomerization of the C{sub 8} aromatics fraction on a commercial Pt/mordenite catalyst. In particular, the effects that the operating variables, temperature, pressure, space velocity, and hydrogen to hydrocarbon ratio had on the yield of p-xylene and loss of xylenes were studied. To this end, a sequential experimental design with a linear model in the first stage and a quadratic model in the second stage was used. The results of the linear model indicated that the temperature, pressure, and space velocity were the most influential factors for the yield of p-xylene, while for the loss of xylenes, pressure and space velocity were 2 times more important than temperature. The results from the quadratic model indicate the existence of an important curvature effect, especially with respect to the space velocity, and therefore the linear model by itself cannot describe adequately the behavior of the reaction system in the whole range of operating conditions.

  1. Coordination and reactivity of Cu/sup 2 +/ Cations in mordenite and ZSM-5

    SciTech Connect

    Kucherov, A.V.; Bondarenko, T.N.; Kondrat'ev, D.A.; Slinkin, A.A.


    An ESR study has been made of the localization of Cu/sup 2 +/ cations introduced by exchange into the Na and H forms of mordenite and ZSM-5. It has been shown that in the HM with low degrees of exchange, the Cu/sup 2 +/ cations are localized in isolation, having the coordination of a square pyramid, stable when treated in CO at 400/sup 0/. With increasing exchange in the HM, interacting Cu/sup 2 +/ cations appear; these are reduced in CO at 300-400/sup 0/. In ZSM-5, the fraction of interacting Cu/sup 2 +/ ions is insignificant; and for the isolated Cu/sup 2 +/ cations, two types of coordination are characteristic: square pyramid and plane square. Localization in a plane square is also characteristic for part of the isolated Cu/sup 2 +/ cations in CuNaM. The coordination unsaturation of the isolated Cu/sup 2 +/ cations in these zeolites is confirmed by the strong influence of CO and O/sub 2/ on the hfs of the ESR spectra of the Cu/sup 2 +/ ions. Calcination of the CuM and Cu-ZSM-5 specimens in air at 800/sup 0/ does not lead to aggregation of the isolated Cu/sup 2 +/ ions. Vacuum-baking at 450/sup 0/ does not bring about reduction of Cu/sup 2 +/ cations in any of the specimens that were investigated.

  2. Hydrothermal convection and mordenite precipitation in the cooling Bishop Tuff, California, USA

    NASA Astrophysics Data System (ADS)

    Randolph-Flagg, N. G.; Breen, S. J.; Hernandez, A.; Self, S.; Manga, M.


    We present field observations of erosional columns in the Bishop Tuff and then use laboratory results and numerical models to argue that these columns are evidence of relict convection in a cooling ignimbrite. Many square kilometers of the Bishop Tuff have evenly-spaced, vertical to semi-vertical erosional columns, a result of hydrothermal alteration. These altered regions are more competent than the surrounding tuff, are 0.1-0.7 m in diameter, are separated by ~ 1 m, and in some cases are more than 8 m in height. JE Bailey (U. of Hawaii, dissertation, 2005) suggested that similar columns in the Bandelier Tuff were formed when slumping allowed water to pool at the surface of the still-cooling ignimbrite. As water percolated downward it boiled generating evenly spaced convection cells similar to heat pipes. We quantify this conceptual model and apply it the Bishop Tuff to understand the physics within ignimbrite-borne hydrothermal systems. We use thin sections to measure changing porosity and use scanning electron microscope (SEM) and x-ray diffraction (XRD) analyses to show that pore spaces in the columns are cemented by the mineral mordenite, a low temperature zeolite that precipitates between 120-200 oC (Bish et al., 1982), also found in the Bandelier Tuff example. We then use scaling to show 1) that water percolating into the cooling Bishop Tuff would convect and 2) that the geometry and spacing of the columns is predicted by the ignimbrite temperature and permeability. We use the computer program HYDROTHERM (Hayba and Ingebritsen, 1994; Kipp et al., 2008) to model 2-phase convection in the Bishop Tuff. By systematically changing permeability, initial temperature, and topography we can identify the pattern of flows that develop when the ignimbrite is cooled by water from above. Hydrothermally altered columns in ignimbrite are the natural product of coupled heat, mass, and chemical transport and have similarities to other geothermal systems, economic ore deposits, and mid-ocean ridge hydrothermal systems. The columns allow direct observation to constrain complex models of multiphase convection, reactive transport, and permeability. Our results also have paleoclimate implications, implying a large and stable source of water in the SE/SSE Long Valley area immediately after the ~760,000 ka caldera-forming eruption.

  3. Methanol conversion on acidic ZSM-5, offretite, and mordenite zeolites: a comparative study of the formation and stability of coke deposits

    Microsoft Academic Search

    P. Dejaifve; A. Auroux; P. C. Gravelle; J. C. Vedrine; Z. Gabelica; E. G. Derouane


    The deposition of carbonaceous residues, leading to aging and modifications in the acidic properties of three zeolite samples differing by the size and shape of their interconnecting channel networks (ZSM-5, offretite, and mordenite), has been investigated during the conversion reaction of methanol to hydrocarbons. Catalytic tests, thermogravimetry, and microcalorimetry are used as complementary techniques. For zeolite ZSM-5, it is observed

  4. Impact of Pretreatment and Aging on the Iodine Capture Performance of Silver-Exchanged Mordenite - 12314

    SciTech Connect

    Jubin, R.T.; Ramey, D.W.; Spencer, B.B.; Anderson, K.K.; Robinson, S.M. [Oak Ridge National Laboratory (United States)


    Volatile gas emissions from a nuclear fuel recycle facility in the United States are governed by several key regulations, including 10 CFR 20, 40 CFR 61, and 40 CFR 190. Under 40 CFR 190, the total quantity of iodine that may be released to the environment from the entire fuel cycle is limited to 5 millicuries of I-129 per gigawatt-year of electrical energy produced by the fuel cycle. With a reasonable engineering margin, an iodine decontamination factor (DF) of approximately 1000 will be required for the complete fuel cycle. Off-gas treatment in a fuel reprocessing plant must address several gas streams containing iodine, among a number of volatile radionuclides. Past research and developmental activities identified silver-exchanged mordenite (AgZ) as a very promising sorbent based on its acid resistance, relatively high iodine and methyl iodide capacity, and high achievable DF. Recent studies at ORNL have focused on the impacts of long-term exposure to simulated off-gas streams (aging) and pretreatment on the iodine adsorption performance of hydrogen-reduced silver-exchanged mordenite (Ag{sup 0}Z). Experiments were conducted to determine the effects of long-term exposure to both dry and moist air on the iodine sorption capacity of Ag{sup 0}Z. The data indicates that aging reduces the capacity of Ag{sup 0}Z, which must be accounted for to prevent degradation of DF. Because of its high acid resistance, a AgZ sorbent has been selected specifically for application in treating off-gas streams containing iodine. While extensive tests have been conducted in the United States on a form of this sorbent, the specific material previously tested is no longer commercially available and similar materials are currently being evaluated. As part of this evaluation, tests were conducted to determine the iodine sorption properties of this replacement media and the effects of long-term (up to 6 months) exposure to simulated off-gas streams. The ultimate goal is to develop an understanding of the fundamental phenomena that controls aging for this material and other zeolites that could be considered for use in off-gas treatment in the future. The trends in the study results indicate that the amount of elemental silver observed by XRD increases from 0.3 wt% in vendor-supplied AgZ to approximately 5 wt% by reducing the material with hydrogen. The study also concluded that aging decreases the quantity of elemental silver in the material. After 2 months of aging, the Ag{sup 0} content of an experimental sample was reduced from 5 wt% to about 1.3 wt%. The form into which the elemental silver is converted during aging was not determined. Experimental tests have been initiated to study how aging of Ag{sup 0}Z impacts iodine loading on the zeolite. Loading tests with un-aged Ag{sup 0}Z resulted in an 81% silver utilization. The loading capacity of iodine on Ag{sup 0}Z was reduced with aging in dry air. Material aged for 6 months in dry air had a 40% reduction in iodine loading capacity. Under moist-air aging conditions, a significant decrease in the rate and total loading (?45% of theoretical) of iodine uptake can be observed beginning with the shortest aging period (i.e., after 1 month) when compared with the loading curve using Ag{sup 0}Z with no aging. Increasing exposure time to the humid air used to age the Ag{sup 0}Z beyond 1 month resulted in a slight additional reduction in capacity to about 35% of theoretical at 2 months. Virtually identical capacity was observed with 4 months of aging. Compared to the non-aged material, the 1 month dry-air aged Ag{sup 0}Z shows about a 35% reduction (approximate) in iodine loading capacity and the 6 month dry-air aged Ag{sup 0}Z shows about a 50% reduction. These studies generated several questions that will be addressed in future tests. They include the following: Is there indeed degradation over time (in storage) in the iodine adsorption performance of Ag{sup 0}Z? Once reduced, how should the Ag{sup 0}Z be stored- under a hydrogen atmosphere, an inert atmosphere, a desiccant, or some other method or c

  5. Silver-Mordenite for Radiologic Gas Capture from Complex Streams: Dual Catalytic CH3I Decomposition and I Confinement

    SciTech Connect

    Tina M. Nenoff; Mark Rodriguez; Nick Soelberg; Karena W. Chapman


    The effective capture and storage of radiological iodine (129I) remains a strong concern for safe nuclear waste storage and safe nuclear energy. Silver-containing mordenite (MOR) is a longstanding benchmark for iodine capture. In nuclear fuel reprocessing scenarios, complex gas streams will be present and the need for high selectivity of all iodine containing compounds is of the utmost importance for safety and the environment. In particular, a molecular level understanding of the sorption of organic iodine compounds is not well understood. Here we probe the structure and distribution of methyl iodide sorbed by silver-containing MOR using a combination of crystallographic and materials characterization techniques including: infrared spectroscopy, thermogravimetric analysis with mass spectrometry, Micro-X-ray Fluorescence, powder X-ray diffraction analysis, and pair distribution function analysis. The iodine is captured inside the MOR pore in the form of AgI nanoparticles, that is consistent with the pores sizes of the MOR, indicating that the molecule is both physically and chemically captured in the Ag-MOR. The organic component is surface catalyzed by the zeolite via the formation of Surface Methoxy Species (SMS) that result in downstream organics of dimethyl ether and methanol formation.

  6. Rationalizing Inter- and Intracrystal Heterogeneities in Dealuminated Acid Mordenite Zeolites by Stimulated Raman Scattering Microscopy Correlated with Super-resolution Fluorescence Microscopy

    PubMed Central


    Dealuminated zeolites are widely used acid catalysts in research and the chemical industry. Bulk-level studies have revealed that the improved catalytic performance results from an enhanced molecular transport as well as from changes in the active sites. However, fully exploiting this information in rational catalyst design still requires insight in the intricate interplay between both. Here we introduce fluorescence and stimulated Raman scattering microscopy to quantify subcrystal reactivity as well as acid site distribution and to probe site accessibility in the set of individual mordenite zeolites. Dealumination effectively introduces significant heterogeneities between different particles and even within individual crystals. Besides enabling direct rationalization of the nanoscale catalytic performance, these observations reveal valuable information on the industrial dealumination process itself. PMID:25402756

  7. Adsorption of H 2 O, NH 3 and C 6 H 6 on alkali metal cations in internal surface of mordenite and in external surface of smectite: a DFT study

    Microsoft Academic Search

    Lubomir Benco; Daniel Tunega


    Adsorption of H2O, NH3 and C6H6 on H- and alkali metal-exchanged structures of mordenite and on corresponding cations on the smectite layer is investigated\\u000a by ab initio density-functional calculations. Proton or an alkali metal cation compensates one Al\\/Si framework substitution\\u000a and resides in the extra-framework position of zeolite or above flat smectite layer close to the Al\\/Si substitution. Pronounced\\u000a similarities

  8. Adsorption of H2O, NH3 and C6H6 on alkali metal cations in internal surface of mordenite and in external surface of smectite: a DFT study

    NASA Astrophysics Data System (ADS)

    Benco, Lubomir; Tunega, Daniel


    Adsorption of H2O, NH3 and C6H6 on H- and alkali metal-exchanged structures of mordenite and on corresponding cations on the smectite layer is investigated by ab initio density-functional calculations. Proton or an alkali metal cation compensates one Al/Si framework substitution and resides in the extra-framework position of zeolite or above flat smectite layer close to the Al/Si substitution. Pronounced similarities between zeolite and smectite are observed in changes of the adsorption energies and location of the external cation with changing character of the external cation. Calculated adsorption energies exhibit the following trend: E(NH3) > E(H2O) > E(C6H6). Because of looser contact with the framework, zeolitic cations are stronger adsorption centers and calculated adsorption energies of zeolites are by ~20-30% larger than cations of smectites. The highest adsorption energy is calculated for H-exchanged structures and down the group of alkali metal cations a decrease of the adsorption energy is observed. Deviations from the smooth variation of the adsorption energy are caused by: (1) formation of strong hydrogen bonds in H-exchanged structures, (2) adsorption induced migration of the external Li+ cation, and (3) steric hindrances of the flat C6H6 molecule adsorbed on the cation in the cage of zeolite.

  9. The growth of zeolites A, X and mordenite in space

    NASA Technical Reports Server (NTRS)

    Sacco, Albert, Jr.; Bac, N.; Coker, E. N.; Dixon, A. G.; Warzywoda, J.; Thompson, R. W.


    Zeolites are a class of crystalline aluminosilicate materials that form the backbone of the chemical process industry worldwide. They are used primarily as adsorbents and catalysts and support to a significant extent the positive balance of trade realized by the chemical industry in the United States (around $19 billion in 1991). The magnitude of their efforts can be appreciated when one realizes that since their introduction as 'cracking catalysts' in the early 1960's, they have saved the equivalent of 60 percent of the total oil production from Alaska's North Slope. Thus the performance of zeolite catalysts can have a profound effect on the U.S. economy. It is estimated that a 1 percent increase in yield of the gasoline fraction per barrel of oil would represent a savings of 22 million barrels of crude oil per year, representing a reduction of $400 million in the United States' balance of payments. Thus any activity that results in improvement in zeolite catalyst performance is of significant scientific and industrial interest. In addition, due to their 'stability,' uniformity, and, within limits, their 'engineerable' structures, zeolites are being tested as potential adsorbents to purify gases and liquids at the parts-per-billion levels needed in today's electronic, biomedical, and biotechnology industries and for the environment. Other exotic applications, such as host materials for quantum-confined semiconductor atomic arrays, are also being investigated. Because of the importance of this class of material, extensive efforts have been made to characterize their structures and to understand their nucleation and growth mechanisms, so as to be able to custom-make zeolites for a desired application. To date, both the nucleation mechanics and chemistry (such as what are the 'key' nutrients) are, as yet, still unknown for many, if not all, systems. The problem is compounded because there is usually a 'gel' phase present that is assumed to control the degree of supersaturation, and this gel undergoes a continuous 'polymerization' type reaction during nucleation and growth. Generally, for structure characterization and diffusion studies, which are useful in evaluating zeolites for improving yield in petroleum refining as well as for many of the proposed new applications (e.g., catalytic membranes, molecular electronics, chemical sensors) large zeolites (greater than 100 to 1000 times normal size) with minimum lattice defects are desired. Presently, the lack of understanding of zeolite nucleation and growth precludes the custom design of zeolites for these or other uses. It was hypothesized that the microgravity levels achieved in an orbiting spacecraft could help to isolate the possible effects of natural convection (which affects defect formation) and minimize sedimentation, which occurs since zeolites are twice as dense as the solution from which they are formed. This was expected to promote larger crystals by allowing growing crystals a longer residence time in a high-concentration nutrient field. Thus it was hypothesized that the microgravity environment of Earth orbit would allow the growth of large, more defect-free zeolite crystals in high yield.

  10. Spectroscopic definition of the copper active sites in mordenite: selective methane oxidation.


    Vanelderen, Pieter; Snyder, Benjamin E R; Tsai, Ming-Li; Hadt, Ryan G; Vancauwenbergh, Julie; Coussens, Olivier; Schoonheydt, Robert A; Sels, Bert F; Solomon, Edward I


    Two distinct [Cu-O-Cu](2+) sites with methane monooxygenase activity are identified in the zeolite Cu-MOR, emphasizing that this Cu-O-Cu active site geometry, having a ?Cu-O-Cu ?140°, is particularly formed and stabilized in zeolite topologies. Whereas in ZSM-5 a similar [Cu-O-Cu](2+) active site is located in the intersection of the two 10 membered rings, Cu-MOR provides two distinct local structures, situated in the 8 membered ring windows of the side pockets. Despite their structural similarity, as ascertained by electronic absorption and resonance Raman spectroscopy, the two Cu-O-Cu active sites in Cu-MOR clearly show different kinetic behaviors in selective methane oxidation. This difference in reactivity is too large to be ascribed to subtle differences in the ground states of the Cu-O-Cu sites, indicating the zeolite lattice tunes their reactivity through second-sphere effects. The MOR lattice is therefore functionally analogous to the active site pocket of a metalloenzyme, demonstrating that both the active site and its framework environment contribute to and direct reactivity in transition metal ion-zeolites. PMID:25914019

  11. The preparation of transition metal-containing mordenite catalytic tubular composite membranes

    Microsoft Academic Search

    Adalgisa Tavolaro; Palmira Tavolaro


    Composite zeolite catalytic tubular membranes containing rhodium(0) and ruthenium(0) in and on alumina tubes were prepared using the hydrothermal synthesis method termed “multi in situ crystallization” (MISC). The membranes were tested in the partial oxidation of methane to investigate membrane activities. Transition metal-dispersed zeolitic catalytic tubular membranes exhibit a high catalytic surface area, large membrane surface area and high chemical

  12. The effect of iron on the biological activities of erionite and mordenite Estelle Facha

    E-print Network

    Dutta, Prabir K.

    exposure to mineral particulates may result in the development of pulmonary fibrosis, bronchogenic particulate, being relatively benign. We are using these natural zeolites as a model system to determine what exposure to mineral particulates may result in the development of pulmonary fibrosis, bronchogenic

  13. Zeolite shape selectivity in the uptake of uranium from solutions

    SciTech Connect

    Ingram, C.W.; Szostak, R.; Cleare, K.


    Various synthetic zeolites (KL, LZY, 13X, and mordenite), as well as a natural zeolite (clinoptilolite) were evaluated for the uptake of uranium from solution. Mordenite, LZY and KL were most effective for uranium uptake. The relative effectiveness of the zeolites was a function of their pore dimensions, chemical compositions and cation concentration. Mordenite showed superior performance to a clay-soil for uranium uptake. With time, initially sorbed uranium later re-dissolve from the clay, but remained anchored in the matrix of the zeolite. Mordenite therefore demonstrated potential for use as an in situ trap for preventing uranium migration in soils.

  14. American Mineralogist, Volume 85, pages 495508, 2000 0003-004X/00/0304495$05.00 495

    E-print Network

    Benning, Liane G.

    recognized as major compo- nents of the tuffs at the Nevada Test Site. Zeolites (clinoptilolite, mordenite; Pabalan 1994; Carey Solubility and stability of zeolites in aqueous solution: II. Calcic clinoptilolite-exchanged clinoptilolite (Cpt-Ca) and Ca-exchanged mordenite (Mor-Ca) have been measured in aqueous solutions between 25

  15. Quantitative Analysis of Water Confined in Ion-Exchanged Zeolites

    NASA Astrophysics Data System (ADS)

    Wang, J.; Neuhoff, P. S.


    Zeolites, which host large quantities of water, are among the most important rock-forming and environmental minerals in the surface and near-surface regions of the Earth. The physical properties and geochemical behavior of water confined in zeolites differs substantially from that of bulk liquid water, and the energectics of confined water exerts a profound influence on the stability and behavior of zeolites in natural and engineered systems. Because the cations and water molecules are both located in the zeolitic channels, changes in cation content can influence the amount and site occupancies of water molecules in zeolites. In order to find out the relationship between the behavior of confined water and cation composition in zeolites, thermogravimetric and calorimetric experiments were conducted on the mordenite (one of the most common zeolites) samples of mixing Na+ and K+. These mordenite solid solutions were generated by binary ion exchange between pure synthetic Na-mordenite (CBV 10A, obtained from Zeolyst International) and chloride solutions containing Na+ and K+ of different equivalent concentration ratios. The results from dehydration and hydration of the mordenite solid solutions show that when the mole fraction of K+ in mordenite increases, the maximum water content of mordenite decreases and the enthalpy of hydration becomes less exothermic. More importantly, both maximum water content and enthalpy of hydration of mordenite are demonstrated to change linearly with mole fraction of K+. Two energetically distinct sets of water molecules have been observed in mordenite: W1 (relatively less energetic) and W2 (relatively high energetic). Thermodynamic analysis on the hydration of W1 and W2 reveals that these two sets of water molecules behave differently when cation composition of mordenite changes. The water content of W2 is independent of cation composition, whereas W1 loses water with when mole fraction of K+ increases; the enthalpy of hydration of W1 appears to be constant, but that of W2 becomes less exothermic with increasing mole fraction of K+.

  16. Constructing a polyfunctional zeolite-encaged metal catalyst for the multistage oxidation of ethanol into ethyl acetate

    SciTech Connect

    Shakhtakhtinskii, T.N.; Aliev, A.M.; Kuliev, A.R.


    To construct an efficient polyfunctional catalyst for the given multistage reaction, the authors previously studied the catalysts HNaY, clinosorb, H-clinoptilolite, and H-mordenite in the reaction of esterification of ethanol with acetic acid; CuH-clinoptilolite, Cu-clinosorb, CuH-mordenite, and CuHNaY in the reaction of oxidative dehydration of ethanol; PdH-clinoptilolite, Pd-clinosorb, PdH-mordenite, and PdHNaY in the oxidation of ethanol; and CuPdH-clinoptilolite in the oxidative transformation of ethanol into ethyl acetate. The catalytic activity of these zeolites and other Pd- and Cu-containing zeolite catalysts, which the authors synthesized by the ion-exchange technique, was studied in a flow-circulating set-up.

  17. Ion exchange properties of Japanese natural zeolites in seawater.


    Wajima, Takaaki


    Ion exchange properties of five different Japanese natural zeolites in seawater were examined. Sodium ions could be reduced by all zeolites, although anions, Cl(-) and SO(4)(2-), in seawater showed barely changes. Natural zeolite desalination treatment mainly depends on the ion exchange between Na(+), K(+) and Mg(2+) in seawater and Ca(2+) in natural zeolite. This study found that mordenite is superior to clinoptilolite for use in Na(+) reduction. Mordenite with high cation exchange capacity containing Ca(2+) resulted in the highest Na(+) reduction from seawater. PMID:23303099

  18. Evaluation of test authorization #2-1102

    SciTech Connect

    Bridges, N. [Savannah River Site (SRS), Aiken, SC (United States)


    The original Test Authorization (TA) is evaluated. A new silver mordenite (Ag Z) cartridge design has been developed and presented to Separations personnel. The future direction for this TA, mutually agreed to by SRP and SRL personnel, is to; document current program status; continue the sampling program to refine the method and gather baseline DF data; finalize new cartridge design and obtain cost and timing estimates for its procurement; complete cost, benefit analysis for silver mordenite; conduct literature search on available technology to divert more iodine to the dissolver off-gas and thus to the iodine reactor.

  19. Conversion of methane to methanol on copper-containing small-pore zeolites and zeotypes.


    Wulfers, M J; Teketel, S; Ipek, B; Lobo, R F


    This communication reports the discovery of several small-pore Cu-zeolites and zeotypes that produce methanol from methane and water vapor, and produce more methanol per copper atom than Cu-ZSM-5 and Cu-mordenite. The new materials include Cu-SSZ-13, Cu-SSZ-16, Cu-SSZ-39, and Cu-SAPO-34. PMID:25679753

  20. Fenton Chemistry of FeIII Zeolitic Minerals Treated with

    E-print Network

    Dutta, Prabir K.

    Fenton Chemistry of FeIII -Exchanged Zeolitic Minerals Treated with Antioxidants T O N I A . R U D Fenton activity. Lung lining fluid contains antioxidants, such as glutathione (GSH) and ascorbic acid (AAIII- exchanged erionite and mordenite after treatment with antioxidants. The Fenton assay involved the reaction

  1. Milestone Report - M4FT-14OR0312022 - Co-absorption studies - Design system complete/test plan complete

    SciTech Connect

    Bruffey, Stephanie H.; Spencer, Barry B.; Jubin, Robert Thomas


    The objective of this test plan is to describe research that will determine the effectiveness of silver mordenite and molecular sieve beds to remove iodine and water (tritium) from off-gas streams arising from used nuclear fuel recycling processes, and to demonstrate that the iodine and water can be recovered separately from one another.

  2. United States Patent: 7309798 1 of 9 12/31/2007 8:42 AM

    E-print Network

    Iglesia, Enrique

    monoxide in the presence of a catalyst comprising mordenite and/or ferrierite, optionally including an additional framework metal such as gallium, boron and/or iron, under substantially anhydrous conditions. More. Inventors: Cheung; Patricia (Berkeley, CA), Iglesia; Enrique (Moraga, CA), Sunley; John Glenn (East


    Microsoft Academic Search

    Farid R. Zaggout; Ahmed R. Al Mughari; Arthor Garforth


    Plastic wastes, which cause a serious environmental problem in urban areas, can serve as sources of energy. Catalytic treatment of High Density Polyethylene (HDPE) has shown that the degradation of HDPE resulted in the production of a stream of gaseous hydrocarbons varied in the range C1-C8. The degradation was carried out using diluted forms of zeolites ZSM-5, USY and Mordenite

  4. DOI: 10.1002/cphc.201200900 Mechanism of Framework Oxygen Exchange in Fe-Zeolites

    E-print Network

    Sklenak, Stepan

    DOI: 10.1002/cphc.201200900 Mechanism of Framework Oxygen Exchange in Fe-Zeolites: A Combined DFT, and Stepan Sklenak*[a] 1. Introduction Silicon-rich zeolites (Si/Al> 8), such as ZSM-5 (MFI), mordenite (MOR), ferrierite (FER) and beta (*BEA) zeolites represent cata- lytic materials with wide industrial application

  5. Distribution and chemistry of fracture-lining zeolites at Yucca Mountain, Nevada

    SciTech Connect

    Carlos, B.; Chipera, S.; Bish, D.; Raymond, R.


    Yucca Mountain, a > 1.5-km thick sequence of tuffs and subordinate lavas in southwest Nevada, is being investigated as a potential high-level nuclear waste repository site. Fracture-lining minerals are possible sources of information on past transport within the tuffs, and they may act as natural barriers to radionuclide migration along the fractures. Cores from several drill holes were examined to determine the distribution and chemistry of zeolite minerals in fractures. Fracture-lining minerals in the Paintbrush Tuff are highly variable in distribution, both vertically and laterally across the mountain, with mordenite, heulandite, and stellerite widespread in fractures even though the tuff matrix is generally devitrified and not zeolitic. Where heulandite occurs as both tabular and prismatic crystals in the same fracture, the two morphologies have different compositions, suggesting multiple episodes of zeolite formation within the fractures. In contrast to the Paintbrush Tuff, fractures in the Calico Hills Formation and the Crater Flat Tuff generally contain abundant clinoptilolite and mordenite only where the matrix is zeolitic, although mordenite does occur as fracture linings in some devitrified intervals of the Crater Flat Tuff as well. The fracture-lining zeolites correlate with the degree of alteration of the zeolitic tuffs, with clinoptilolite plus mordenite in tuffs containing clinoptilolite, and analcime in fractures limited to tuff intervals containing analcime. These data suggest that fracture-lining zeolite formation may have been coincident with the original alteration of the tuffs.

  6. Removal of sulfamethoxazole sulfonamide antibiotic from water by high silica zeolites: a study of the involved host-guest interactions by a combined structural, spectroscopic, and computational approach.


    Blasioli, Sonia; Martucci, Annalisa; Paul, Geo; Gigli, Lara; Cossi, Maurizio; Johnston, Cliff T; Marchese, Leonardo; Braschi, Ilaria


    Sulfonamide antibiotics are persistent pollutants present in surface and subsurface waters in both agricultural and urban environments. Sulfonamides are of particular concern in the environment because they are known to induce high levels of bacterial resistance. Adsorption of sulfamethoxazole sulfonamide antibiotic into three high silica zeolites (Y, mordenite, and ZSM-5) with pore opening sizes comparable to sulfamethoxazole dimensions is reported. Sulfamethoxazole was almost completely removed from water by zeolite Y and MOR in a few minutes. Adsorption onto ZSM-5 showed an increased kinetics with increasing temperature. Antibiotic sorption was largely irreversible with little antibiotic desorbed. Sulfamethoxazole incorporation and localization into the pore of each zeolite system was defined along with medium-weak and cooperative host-guest interactions in which water molecules play a certain role only in zeolite Y and mordenite. PMID:24491342

  7. Composting domestic sewage sludge with natural zeolites in a rotary drum reactor.


    Villaseñor, J; Rodríguez, L; Fernández, F J


    This work aimed the influence of zeolites addition on a sludge-straw composting process using a pilot-scale rotary drum reactor. The type and concentration of three commercial natural zeolites were considered: a mordenite and two clinoptilolites (Klinolith and Zeocat). Mordenite caused the greatest carbon removal (58%), while the clinoptilolites halved losses of ammonium. All zeolites removed 100% of Ni, Cr, Pb, and significant amounts (more than 60%) of Cu, Zn and Hg. Zeocat displayed the greatest retention of ammonium and metals, and retention efficiencies increased as Zeocat concentration increased. The addition of 10% Zeocat produced compost compliant with Spanish regulations. Zeolites were separated from the final compost, and leaching studies suggested that zeolites leachates contained very low metals concentrations (<1 mg/kg). Thus, the final compost could be applied directly to soil, or metal-polluted zeolites could be separated from the compost prior to application. The different options have been discussed. PMID:20951578

  8. Infrared spectroscopy study of the sorption of selenium(IV) on natural zeolites

    NASA Astrophysics Data System (ADS)

    Zonkhoeva, E. L.; Sanzhanova, S. S.


    The sorption of selenium(IV) ions on single crystals of natural shabazite, analcime, mesolite, stilbite, and on clinoptilolite- and mordenite-containing tuffs in dependence on the concentration and pH of a solution of sodium selenite was studied by infrared spectroscopy. It was assumed that sorption on clinoptilolite and mordenite tuffs from a 0.1 M solution of sodium selenite with pH 9 occurs in the form of selenite and pyroselenite anions forming a hydrogen bond with the zeolite water molecules. It was established that water molecules in analcime, unlike stilbite, shabazite and mesolite, also form hydrogen bonds with the selenite ion in an alkaline medium. No hydrogen bonds are formed in diluted solutions or an acid medium. The partial desilylation and dealumination of zeolites in alkaline and acid media respectively, were observed.

  9. Removal of tar base from coal tar aromatics employing solid acid adsorbents

    Microsoft Academic Search

    Jeffrey Chi-Sheng Wu; Hsueh-Chang Sung; Yu-Fu Lin; Shi-Long Lin


    Aromatic compounds from coal tar generally contain a small amount of tar bases, such as quinoline and isoquinoline. These nitrogen-containing compounds can poison the acid-type catalysts and downgrade the aromatic products because of stinking odor. Four solid acid catalysts, silica-alumina, HY, NH4-mordenite, and ?-alumina are used to remove tar bases by adsorption. Wash oil (WO), refined naphthalene (RN), and an

  10. Characterization of acidic properties of microporous and mesoporous zeolite catalysts using TGA and DSC

    SciTech Connect

    Song, Chunshan; Lai, Wei-Chuan; Schmitz, A.D.


    Thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC) were applied for characterizing the acidic properties of microporous and mesoporous zeolite catalysts through temperature-programmed desorption (TPD) of n-butylamine (n-BA) as a base probe molecule. A flow system was designed with heating and evacuation capability for preparing the n-BA adsorbed sample. In the TGA, n-BA desorption at different temperatures represents the interaction with surface acidic sites of different strength. The acid sites corresponding to base desorption at 100-240{degrees}C, 240-340{degrees}C, and 340-500{degrees}C, were classified as weak, intermediate, and strong acid sites, respectively. DSC indicates the endothermic nature of the differential thermogravimetric peaks (observed from TGA) in the above temperature regimes, consuming the TPD data. The microporous zeolites examined include three proton-form mordenites, three proton-form and metal-ion exchanged Y-zeolites, and four noble metal catalysts supported on mordenite and Y-zeolite. Four mesoporous zeolites were synthesized and examined by the same TPD method. Both the total acidity (mmol/g) and acid strength distribution depend on the zeolite VAX, Si/Al ratio, and metal loading. Ni and La ion-exchange decreased the strong acid sites. Pt and Pd loading on an HY decreased the strong acid sites but their loading on an H-mordenite had little effect on its strong acid sites. Mesoporous zeolites showed lower acidity and lower fraction of strong acid sites compared to HY and H-mordenites. However, the acidity of mesoporous zeolites strongly depends on the aluminum source compounds used in the hydrothermal synthesis of the zeolites.

  11. Characterization of acidic properties of microporous and mesoporous zeolite catalysts using TGA and DSC

    SciTech Connect

    Song, Chunshan; Lai, Wei-Chuan; Schmitz, A.D.; Reddy, K.M.


    Thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC) were applied for characterizing the acidic properties of microporous and mesoporous zeolite catalysts through temperature-programmed desorption (TPD) of n-butylamine (n-BA). A flow system was designed with heating and evacuation capability for preparing the n-BA adsorbed sample. The sample was then transferred to TGA (or DSC) apparatus. n-BA desorption conducted on TGA at different temperatures represents the interaction with surface acidic sites of different strength. BAse desorption at 100-240{degrees}C, 240-340{degrees}C, and 340-500{degrees}C, was classified as weak, intramediate, and strong acid sites, respectively. DSC indicates the endothermic nature of the differential thermogravimetric peaks (observed from TGA) in the above temperature regimes, confirming the TPD data. The microporous zeolites examined include three proton-form mordenites, three proton-form and metal-ion exchanged Y-zeolites, and four noble metal catalysts supported on mordenite and Y-zeolite. Four mesoporous zeolites were synthesized and examined by the same TPD method. Both the total acidity (mmol/g) and acid strength distribution depend on the zeolite type. Si/Al ratio, and metal loading. Ni and La ion-exchange decreased the strong acid sites. Pt and Pd loading on an HY decreased the strong acid sites but their loading on an H-mordenite had little effect on its strong acid sites. Mesoporous zeolites showed lower acidity and lower fraction of strong acid sites compared to HY and H-mordenites. However, the acidity of mesoporous zeolites strongly depends on the aluminum source compounds used in the hydrothermal synthesis of the zeolites.

  12. Sonocatalysis and zeolites: An efficient route to prepare N-alkylimidazoles

    Microsoft Academic Search

    V. Calvino-Casilda; R. M. Martín-Aranda; A. J. López-Peinado; M. Bejblová; J. ?ejka


    The synthesis of N-substituted imidazoles via alkylation of imidazole with 1-bromobutane using sonochemical and thermal activations over zeolites (H-ZSM-5, Mordenite, H-Beta and H-Y) is reported. The effect of the acidity and channel size of zeolites on the activity and selectivity of imidazole alkylation was investigated in a liquid phase. The N-alkylimidazoles are important intermediates in the synthesis of pharmaceuticals with

  13. Oxygen and hydrogen isotope geochemistry of zeolites

    NASA Technical Reports Server (NTRS)

    Karlsson, Haraldur R.; Clayton, Robert N.


    Oxygen and hydrogen isotope ratios for natural samples of the zeolites analcime, chabazite, clinoptilolite, laumontite, mordenite, and natrolite have been obtained. The zeolite samples were classified into sedimentary, hydrothermal, and igneous groups. The ratios for each species of zeolite are reported. The results are used to discuss the origin of channel water, the role of zeolites in water-rock interaction, and the possibility that a calibrated zeolite could be used as a low-temperature geothermometer.

  14. Microwave effect on ion-exchange and structure of clinoptilolite

    Microsoft Academic Search

    Y. Akdeniz; S. Ülkü


    The effect of microwave irradiation on the ion exchange degree and structure of clinoptilolite mineral has been examined in\\u000a comparison with the conventional heat treatment in waterbath. Clinoptilolite-rich mineral from the Western Anatolia, Bigadi\\u000a region was used for the experimental study. The mineral was mainly clinoptilolite (80–85%) and additionally, quartz (5–10%),\\u000a and analcime + mordenite (< 5%) were found as co-existing minerals. The

  15. Thermal stability of zeolitic tuff from Yucca Mountain, Nevada

    SciTech Connect

    Bish, D.L.


    Thermal models of the proposed repository at Yucca Mountain, Nevada, suggest that rocks near the proposed host rock will experience elevated temperatures for at least 1000 yrs. In order to assess the effects of elevated temperatures on zeolites clinoptilolite and mordenite were investigated using a combination of high-temperature X-ray powder diffraction, thermogravimetric and differential scanning calorimetric analysis, and long-term heating experiments. 13 refs., 7 figs.

  16. Thermal stability of zeolitic tuff from Yucca Mountain, Nevada

    SciTech Connect

    Bish, D.L.


    This paper discusses thermal models of the potential repository at Yucca Mountain, Nevada, that suggest that rocks near the potential host rock will experience elevated temperatures for at least 1000 yr. The effects of elevated temperatures on zeolitic tuffs, the thermal stabilities of the zeolites clinoptilolite and mordenite, common in the rocks at Yucca Mountain have been investigated. Thermal behavior of both zeolites is presented.

  17. Dehydration of cyclohexanol as a test reaction for zeolite acidity

    SciTech Connect

    Karge, H.G.; Kosters, H.; Wada, Y.


    Dehydration of cyclohexanol was investigated using a fixed-bed continuous flow reactor with acidic mordenite-type, clinoptilolite-type, and faujasite-type (Y) zeolites as catalysts. The surface acidity of the catalysts employed was studied by IR using pyridine or 2,6-di-tert. butylpyridine as probe molecules. A correlation between the acidity and the rates of dehydration was clearly shown.

  18. An electron paramagnetic resonance spectroscopy investigation of the retention mechanisms of Mn and Cu in the nanopore channels of three zeolite minerals

    SciTech Connect

    Ferreira, Daniel R.; Schulthess, Cristian P.; Amonette, James E.; Walter, Eric D.


    The adsorption mechanisms of divalent cations in zeolite nanopore channels can vary as a function of their pore dimensions. The nanopore inner-sphere enhancement (NISE) theory predicts that ions may dehydrate inside small nanopore channels in order to adsorb more closely to the mineral surface if the nanopore channel is sufficiently small. The results of an electron paramagnetic resonance (EPR) spectroscopy study of Mn and Cu adsorption on the zeolite minerals zeolite Y (large nanopores), ZSM-5 (intermediate nanopores), and mordenite (small nanopores) are presented. The Cu and Mn cations both adsorbed via an outer-sphere mechanism on zeolite Y based on the similarity between the adsorbed spectra and the aqueous spectra. Conversely, Mn and Cu adsorbed via an inner-sphere mechanism on mordenite based on spectrum asymmetry and peak broadening of the adsorbed spectra. However, Mn adsorbed via an outer-sphere mechanism on ZSM-5, whereas Cu adsorbed on ZSM-5 shows a high degree of surface interaction that indicates that it is adsorbed closer to the mineral surface. Evidence of dehydration and immobility was more readily evident in the spectrum of mordenite than ZSM-5, indicating that Cu was not as close to the surface on ZSM-5 as it was when adsorbed on mordenite. Divalent Mn cations are strongly hydrated and are held strongly only in zeolites with small nanopore channels. Divalent Cu cations are also strongly hydrated, but can dehydrate more easily, presumably due to the Jahn-Teller effect, and are held strongly in zeolites with medium sized nanopore channels or smaller.

  19. Synthesis of MTBE in zeolite membrane reactors

    Microsoft Academic Search

    M. A Salomón; J Coronas; M Menéndez; J Santamar??a


    A zeolite membrane was employed to selectively remove water from the reaction atmosphere during the gas-phase synthesis of methyl-tert-butyl ether (MTBE) from tert-butanol and methanol. This reaction was carried out over a bed of Amberlyst™ 15 catalyst packed on the inside of a zeolite tubular membrane. The results obtained with different hydrophilic membranes (mordenite or NaA zeolite) are presented. Prior

  20. Synthesis of defect-free zeolite-alumina composite membranes by a vapor-phase transport method

    Microsoft Academic Search

    Norikazu Nishiyama; Korekazu Ueyama; Masahiko Matsukata


    The value of pH for gel preparation has a significant influence on the compactness of a dry gel. A compact gel was prepared at high pH of ca. 12. An amorphous dry gel on a porous alumina support was crystallized by a vapor-phase transport (VPT) method. Membranes of low silica zeolites, analcime (ANA) and mordenite (MOR), were formed because alumina

  1. Heterogeneous catalysts for the direct, Halide-free carbonylation of methanol

    SciTech Connect

    Ellis, B.; Smith, W.J. [BP Chemicals Laboratory, Middlesex (United Kingdom); Howard, M.J. [BP Chemicals Research and Technology Centre, Salt End (United Kingdom)] [and others


    Copper containing mordenite catalysts (Cu-MOR) have been shown to be active and selective for the carbonylation of methanol under moderate conditions in the vapour phase and in the absence of any halide promoter. This paper describes the preparation, performance and in particular the characterization of this class of catalyst, comparing its performance with H-mordenite, which is also shown to be active in the carbonylation reaction. Initially both Cu-MOR and H-MOR catalyst methanol to gasoline (MTG) chemistry, but after about 6 hours on stream under typical conditions, (T = 623 K, p = 10 bar, CO: methanol ratio ca 10:1) acetic acid becomes the main product over Cu-MOR. Selectivity to acetyls (acetic acid + methyl acetate) remains at > 70% for ca 12 hours but gradually declines, giving way to the formation of dimethyl ether. H-MOR shows similar trends, but the period when MTG chemistry is observed is longer and that where acetyls are formed is shorter. Initially Cu(II) ions are distributed throughout the mordenite pore structure, but by the time activity to acetyls is observed the pore structure has largely become blocked by polymethyl benzenes, and much of the copper has become aggregated into large metal particles (d > 120 {Angstrom}). However FTIR studies using carbon monoxide as a probe molecule show that some non-zerovalent copper ions are still accessible. Structure - function relationships for these interesting materials are discussed briefly.

  2. Distribution of potentially hazardous phases in the subsurface at Yucca Mountain, Nevada

    SciTech Connect

    Guthrie, G.D. Jr.; Bish, D.L.; Chipera, S.J.; Raymond, R. Jr.


    Drilling, trenching, excavation of the Exploratory Studies Facility, and other surface and underground-distributing activities have the potential to release minerals into the environment from tuffs at Yucca Mountain, Nevada. Some of these minerals may be potential respiratory health hazards. Therefore, an understanding of the distribution of the minerals that may potentially be liberated during site-characterization and operation of the potential repository is crucial to ensuring worker and public safety. Analysis of previously reported mineralogy of Yucca Mountain tuffs using data and criteria from the International Agency for Research on Cancer (IARC) suggests that the following minerals are of potential concern: quartz, cristobalite, tridymite, opal-CT, erionite, mordenite, and palygorskite. The authors have re-evaluated the three-dimensional mineral distribution at Yucca Mountain above the static water level both in bulk-rock samples and in fractures, using quantitative X-ray powder diffraction analysis. Erionite, mordenite, and palygorskite occur primarily in fractures; the crystalline-silica minerals, quartz, cristobalite, and tridymite are major bulk-rock phases. Erionite occurs in the altered zone just above the lower Topopah Spring Member vitrophyre, and an occurrence below the vitrophyre but above the Calico Hills has recently been identified. In this latter occurrence, erionite is present in the matrix at levels up to 35 wt%. Mordenite and palygorskite occur throughout the vadose zone nearly to the surface. Opal-CT is limited to zeolitic horizons.

  3. New catalysts for the indirect liquefaction of coal. Second annual technical report, August 1, 1981-July 31, 1982

    SciTech Connect

    Melson, G.A.


    Series of zeolite-supported iron-containing catalysts with weight percent iron (% Fe) varying from approx. 1 to approx. 17% Fe have been prepared from Fe/sub 3/(CO)/sub 12/ and the synthetic zeolites ZSM-5, mordenite and 13X by an extraction technique. The zeolites ZSM-5 and mordenite were used in the acid form, 13X in the sodium form. The catalysts were characterized by a variety of techniques including infrared spectroscopy, X-ray powder diffractometry, X-ray photoelectron spectroscopy, ion-scattering spectrometry and Mossbauer spectroscopy. All catalysts contain highly dispersed, small particle-sized ..gamma..-Fe/sub 2/O/sub 3/ with a small amount of the iron (0.6 to 1.5% Fe depending on the support) located in the pores of the support. Evaluation of the catalytic ability of some of these materials for synthesis gas conversion was conducted at 280/sup 0/C and 300/sup 0/C by using a fixed-bed continuous flow microreactor. All catalysts evaluated produce significant quantities of hydrocarbons. The distribution of hydrocarbons varies, depending upon the support used, for catalysts with similar weight percent iron. For the liquid hydrocarbons, Fe/ZSM-5 produces the highest percentage of aromatics, Fe/mordenite produces the highest percentage of olefins, and Fe/13X produces the highest percentage of saturates. The effect of support acidity and pore structure on hydrocarbon product distribution is discussed.

  4. Interactions of backfill materials with cesium in a bittern brine under repository conditions

    SciTech Connect

    Komarneni, S.; Roy, R.


    The following potential backfill materials have been studied: phillipsite, clinoptilolite, mordenite, montmorillonites, vermiculites, chlorite, kaolinite, labradorite, and shales. Each of these was hydrothermally reacted with Cs/sub 2/MoO/sub 4/, a possible cesium phase in spent fuel elements, in the presence of a bittern brine at 200/sup 0/C for two months under a confining pressure of 300 bars. Analyses of the product solutions indicated that montmorillonites, vermiculites, and zeolites fixed (as determined by resistance to K+ washing) the greatest fractions of the added cesium while other minerals, labradorite, and shales fixed only about 10% of the added cesium. For example, montmorillonite from Arizona and phillipsite from California fixed 47 and 50%, respectively, of the cesium added. X-ray diffraction analysis of the solid products revealed that cesium was fixed in the interlayers of montmorillonite as indicated by the collapse of the c-spacing from 15.5 to 12.1 A. Cesium interaction with clinoptilolite and mordenite zeolites did not result in their alteration or in any new cesium minerals as observed by x-ray diffraction. The cesium aluminosilicate mineral, pollucite, was detected only with phillipsite-cesium interactions in brine unlike in the hydrothermal interaction of these materials with Cs/sub 2/MoO/sub 4/ in deionized water where the presence of pollucite was found earlier to be pervasive. Powellite, CaMoO/sub 4/, was the only new phase found in all these interactions by x-ray diffraction which resulted from the combination of calcium from brine with molybdenum from Cs/sub 2/MoO/sub 4/. Montmorillonites among clay minerals and zeolites such as clinoptilolite and mordenite seem to be the best backfill materials in salt.

  5. Fluence rate of radon from soil: effect of sorption barriers, moisture content, and temperature.


    Goh, T B; Oscarson, D W; Cheslock, M; Shaykewich, C


    The effects of activated carbon (AC) and mordenite (termed additives here) on the fluence rate of Rn gas from soil over a range of moisture contents and temperatures were examined in an effort to develop mitigation strategies for Rn in indoor environments. It is possible that an additive--an effective sorbent for Rn--could be mixed with the layer of soil placed adjacent to the substructure of buildings during their construction. The following variables and levels within each variable were examined: additive--0, 25, and 50 wt% mixed with the top 20% of the soil in columns; degree of water saturation, S-5, 30, and 55%; and temperature--5, 13, and 21 degrees C. At any level, mordenite was not effective in decreasing the Rn fluence rate from soil. On the other hand, when AC was present at the 25% level (at S = 30% and temperature = 13 degrees C), the fluence rate was about 5 mBq m-2 s-1 compared to approximately 12 mBq m-2 s-1 for the soil with no additive or one containing mordenite. The fluence rate was even less for levels of AC greater than 25%. AC effectively reduced the Rn fluence rate over all moisture contents and temperatures that were examined. The fluence rate increased with increasing moisture content; this was likely due to an increase in the emanation coefficient for Rn with increasing moisture content. The fluence rate increased or decreased with increasing temperature depending on the amount of AC present in the soil. The results indicate the AC may be an effective additive to soil backfill materials to limit the migration of Rn from the soil into buildings. PMID:1880024

  6. Aluminum-phosphate binder formation in zeolites as probed with X-ray absorption microscopy.


    van der Bij, Hendrik E; Cicmil, Dimitrije; Wang, Jian; Meirer, Florian; de Groot, Frank M F; Weckhuysen, Bert M


    In this work, three industrially relevant zeolites with framework topologies of MOR, FAU and FER have been explored on their ability to form an AlPO4 phase by reaction of a phosphate precursor with expelled framework aluminum. A detailed study was performed on zeolite H-mordenite, using in situ STXM and soft X-ray absorption tomography, complemented with (27)Al and (31)P magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy, XRD, FT-IR spectroscopy, and N2 physisorption. Extraframework aluminum was extracted from steam-dealuminated H-mordenite and shown to dominantly consist of amorphous AlO(OH). It was found that phosphoric acid readily reacts with the AlO(OH) phase in dealuminated H-mordenite and forms an extraframework amorphous AlPO4 phase. It was found that while AlPO4 crystallizes outside of the zeolitic channel system forming AlPO4 islands, AlPO4 that remains inside tends to stay more amorphous. In the case of ultrastable zeolite Y the FAU framework collapsed during phosphatation, due to extraction of framework aluminum from the lattice. However, using milder phosphatation conditions an extraframework AlPO4 ?-cristobalite/tridymite phase could also be produced within the FAU framework. Finally, in steamed zeolite ferrierite with FER topology the extraframework aluminum species were trapped and therefore not accessible for phosphoric acid; hence, no AlPO4 phase could be formed within the structure. Therefore, the parameters to be taken into account in AlPO4 synthesis are the framework Si/Al ratio, stability of framework aluminum, pore dimensionality and accessibility of extraframework aluminum species. PMID:25415849

  7. Catalytic degradation of high density polyethylene using zeolites.


    Zaggout, F R; al Mughari, A R; Garforth, A


    Plastic wastes, which cause a serious environmental problem in urban areas, can serve as sources of energy. Catalytic treatment of High Density Polyethylene (HDPE) has shown that the degradation of HDPE resulted in the production of a stream of gaseous hydrocarbons varied in the range C1-C8. The degradation was carried out using diluted forms of zeolites ZSM-5, USY and Mordenite (MORD) using a fluidized bed reactor (FBR). Effect of coke formation on the activity of the catalysts was screened by thermogravimetric (TGA). ZSM-5 showed a significant resistance to deactivation because of the nature of its small pore size compared with USY and MORD. PMID:11382018

  8. Ammonia removal in coal gasification processes by adsorption on zeolites: Final report

    SciTech Connect

    Baker, E.G.; Roberts, G.L.; Mudge, L.K.


    The objective of this research project was to evaluate NH/sub 3/ removal from hot coal-derived gases by adsorption on zeolites. Zeolites, because of their properties as solid acids, can adsorb certain compounds by chemical bonding on the acids sites. Chemisorption is slower than physical adsorption but can take place at higher temperatures. Ammonia is one of the many compound known to chemisorb on zeolites. Studies were conducted in a 100-cc, fixed-bed, continuous-flow, catalytic reactor. A simulated coal gas containing 5000 ppM NH/sub 3/ (0.5 vol%) was used. A gas chromatograph equipped with a photoionization detector was used to analyze for NH/sub 3/ in the inlet and outlet gases. The study showed that NH/sub 3/ will adsorb on zeolites at high temperatures. Hydrogen mordenite was the most effective zeolite for adsorbing NH/sub 3/ at 550/degree/C and 10 atm. With a dry feed gas a H-mordenite zeolite removed over 95% of the NH/sub 3/ from the gas until the NH/sub 3/ loading on the zeolite reached about 1 wt% at breakthrough. 15 refs., 10 figs., 8 tabs.

  9. Paramagnetic complexes of 9,10-anthraquinone on zeolite surfaces and their thermal transformations

    NASA Astrophysics Data System (ADS)

    Fionov, A. V.; Nekhaev, A. I.; Shchapin, I. Yu.; Maksimov, A. L.; Lunin, V. V.


    The concentration of one-electron transfer sites on the surface of H-ZSM-5, H-Y, H-mordenite, and H-? zeolites was measured by EPR using 9,10-antrhraquinone as a probe. It has been found that the hyperfine structure from four protons typical for one-centered complexes of anthraquinone with one acidic site was observed in the EPR spectra after anthraquinone interaction with a zeolite surface in the temperature range of 373 to 423 K. It has been established that an elevated temperature of 473 K promoted the decomposition of the adsorbed anthraquinone and the disappearance of the hyperfine structure. It has been shown that the thermal instability of anthraquinone adsorbed on zeolites changed in the series H-? > H-Y > H-ZSM-5 ˜ H-mordenite; the coke-forming ability of zeolites with regard to n-decane at 443 K changed in a similar manner. It has been established that the presence of air promoted coke-forming processes upon interaction between n-decane and zeolites.

  10. The selective adsorption of tellurium in the aluminosilicate regions of AFI- and MOR-type microporous crystals.


    Kodaira, Tetsuya; Ikeda, Takuji


    Attempts have been made to load tellurium (Te) atoms into the one-dimensional nano-channels of microporous crystals of aluminophosphate AlPO4-5 and of aluminosilicate mordenites of the Na(+) form (Na-MOR) and the H(+)-form (H-MOR) at 673 K. The density of the atoms adsorbed was in the sequence 0 ? AlPO4-5 ? H-MOR < Na-MOR. AlPO4-5 provides a shallow potential of periodical charge fluctuation for Te atoms, from the alternate ordering of Al and P atoms through O atoms. Mordenite offers a sufficiently strong potential for Te adsorption, but the magnitude varies with the type of cation. Dipoles between framework AlO2(-) anion sites and their Na(+) counter-ions in Na-MOR provide a stronger potential than the Brønsted acid points in H-MOR. The adsorption of Te atoms in the silico-aluminophosphate SAPO-5 was between that of AlPO4-5 and H-MOR, leading us to suspect that Te atoms are selectively adsorbed in the aluminosilicate regions accompanying the Brønsted acid points distributed in the major aluminophosphate network. The aluminosilicate regions in SAPO-5 are below 500 nm in size and are distributed throughout a single crystal. PMID:25117797

  11. Diagenesis of basalts from the Pasco Basin, Washington. I. Distribution and composition of secondary mineral phases

    SciTech Connect

    Benson, L.V.; Teague, L.S.


    The principal components of secondary mineral assemblages found in Pasco Basin basalts are iron-rich smectite (nontronite), clinoptilolite, and silica. Silica occurs as quartz, cristobalite, tridymite, and opal-CT. Extractable iron within the nontronite suggests the presence of an iron-bearing oxyhydroxide phase intercalated with the nontronite. Other components present in minor or trace amounts are mordenite, celadonite, apatite, pyrite, phillipsite, gypsum, crionite, and chabazite. The generalized precipitation sequence with time and/or depth was found to be clay (usually nontronite) ..-->.. clinoptilolite ..-->.. silica and/or clay. Nontronite, the first phase to form, is present at nearly all sampled depths. Clinoptilolite is apparently restricted to depths below about 350 m. Quartz is ubiquitous whereas opal and cristobalite appear to be abundant only below 600 m. Mordenite occurs only at depths below about 900 m, which correlates roughly with the first occurrence of dissolution-etched clinoptilolite. These observations as well as comparisons with data on secondary minearl assemblages from other basaltic and felsic systems suggest that the geochemical evolution of Pasco Basin basalts probably occurred under conditions similar to those existing today.

  12. Multinuclear gallium-oxide cations in high-silica zeolites.


    Pidko, Evgeny A; van Santen, Rutger A; Hensen, Emiel J M


    Periodic DFT calculations of the stability of mononuclear and oligonuclear Ga-oxo cations in mordenite (MOR) have been carried out. Independent of the aluminium distribution in the zeolite framework the stability of cyclic Ga(2)O(2)(2+) ions is much higher than that of the isolated GaO(+) (gallyl) ions in a high-silica mordenite (Si/Al = 23) model. As to the location of such dimers, favorable tetrahedral coordination environment of Ga dominates over the necessity to compensate the positive extraframework charges directly with proximate negative framework charges. Charge alternation can occur in Ga(2)O(2)/MOR models in which positive charges of the cationic complex are separated from the framework anionic sites. Oligomerization of four isolated gallyl ions in a MOR model with Si/Al = 11 results in the formation of cubic Ga(4)O(4)(4+) ions. Also in this case direct interaction of the cluster is limited to two anionic sites, while two other framework [AlO(2)](-) units are significantly remote. Binuclear sites are argued to account for the enhanced activity of oxygenated gallium-exchanged high-silica zeolites in alkane dehydrogenation. These sites, however, tend to decompose via water desorption upon the catalytic reaction resulting in less reactive reduced Ga(+) ions. As per predictions from the quantum-chemical calculations, the experimental results show that the high alkane dehydrogenation activity can be maintained by in situ hydrolysis of the reduced extraframework Ga species. PMID:19421504

  13. Equilibrium modeling of the formation of zeolites in fractures at Yucca Mountain, Nevada

    SciTech Connect

    Chipera, S.J.; Bish, D.L.; Carlos, B.A.


    Yucca Mountain, in southern Nevada, is currently being investigated to determine its suitability to host the first US high-level nuclear waste repository. One of the reasons that Yucca Mountain was chosen for study is the presence of thick sequences of zeolite-rich horizons. In as much as fractures may serve as potential pathways for aqueous transport, the minerals that line fractures are of particular interest. Zeolites are common in fractures at Yucca Mountain and consist mainly of clinoptilolite/heulandite and mordenite although sporadic occurrences of chabazite, erionite, phillipsite, and stellrite have been identified using X-ray powder diffraction. To understand better the conditions under which the observed zeolite species were formed, thermodynamic data were estimated and calculations of log a((K{sup +}){sup 2}/Ca{sup ++}) versus log a((Na{sup +}){sup 2}/Ca{sup ++}) were conducted at various temperatures and silica activities. Using present-day Yucca Mountain water chemistries as a lower constraint on silica activity, clinoptilolite/heulandite and mordenite are still the zeolite species that would form under present conditions.

  14. Radioactive iodine separations and waste forms development.

    SciTech Connect

    Krumhansl, James Lee; Nenoff, Tina Maria; Garino, Terry J.; Rademacher, David


    Reprocessing nuclear fuel releases gaseous radio-iodine containing compounds which must be captured and stored for prolonged periods. Ag-loaded mordenites are the leading candidate for scavenging both organic and inorganic radioiodine containing compounds directly from reprocessing off gases. Alternately, the principal off-gas contaminant, I2, and I-containing acids HI, HIO3, etc. may be scavenged using caustic soda solutions, which are then treated with bismuth to put the iodine into an insoluble form. Our program is focused on using state-of-the-art materials science technologies to develop materials with high loadings of iodine, plus high long-term mechanical and thermal stability. In particular, we present results from research into two materials areas: (1) zeolite-based separations and glass encapsulation, and (2) in-situ precipitation of Bi-I-O waste forms. Ag-loaded mordenite is either commercially available or can be prepared via a simple Ag+ ion exchange process. Research using an Ag+-loaded Mordenite zeolite (MOR, LZM-5 supplied by UOP Corp.) has revealed that I2 is scavenged in one of three forms, as micron-sized AgI particles, as molecular (AgI)x clusters in the zeolite pores and as elemental I2 vapor. It was found that only a portion of the sorbed iodine is retained after heating at 95o C for three months. Furthermore, we show that even when the Ag-MOR is saturated with I2 vapor only roughly half of the silver reacted to form stable AgI compounds. However, the Iodine can be further retained if the AgI-MOR is then encapsulated into a low temperature glass binder. Follow-on studies are now focused on the sorption and waste form development of Iodine from more complex streams including organo-iodine compounds (CH3I). Bismuth-Iodate layered phases have been prepared from caustic waste stream simulant solutions. They serve as a low cost alternative to ceramics waste forms. Novel compounds have been synthesized and solubility studies have been completed using competing groundwater anions (HCO3-, Cl- and SO42-). Distinct variations in solubility were found that related to the structures of the materials.

  15. Experimental and simulated propene isotherms on porous solids

    NASA Astrophysics Data System (ADS)

    Navarro, M. V.; Puértolas, B.; García, T.; Murillo, R.; Mastral, A. M.; Varela-Gandía, F. J.; Lozano-Castelló, D.; Cazorla-Amorós, D.; Bueno-López, A.


    The lack of treatment capacity of hydrocarbons by three-way catalysts during the "cold start" period creates an important environmental problem. During this period, the temperature of the three-way catalyst is too low for effective operation and cannot convert the hydrocarbons in the exhaust. 50-80% of the total hydrocarbon emissions are produced in this phase that accomplishes the first 60-120 s of the engine operation. In this study, the technology chosen to treat these emissions is the use of HC-traps, and molecular simulations are tested as a tool to reproduce the experimental adsorption behaviour of porous solids. Therefore, experimental and simulated adsorption isotherms of propene (model hydrocarbon) have been obtained for four different crystalline materials with distinctive framework structures (3D and 1D) and a variety of Si/Al ratios and cations (three zeolites: ZSM-5, BETA and Mordenite; and a silicoaluminophosphate molecular sieve: SAPO-5).

  16. Base-modified zeolite-containing catalysts for the conversion of synthesis gas to alcohols

    SciTech Connect

    Bhattacharya, A.K.; Bolmer, M.S.; Prada-Silva, G.


    This patent describes a zeolite-containing heavy metal oxide catalyst for preparing lower aliphatic alcohols which comprises reacting carbon monoxide and hydrogen under carbon monoxide-hydrogenation conditions, the catalyst comprising: a zeolite support consisting of a member selected from the group consisting of Y zeolite, X zeolite, aluminophosphate, ZSM-5, ZSM-11, silicalite, zeolite A and mordenite; at least one heavy metal oxide selected from the group consisting of molybdenum oxide, tungsten oxide and rhenium oxide; optionally a heavy metal oxide from the group of elements consisting of cobalt oxide, iron oxide and nickel oxide; and a promoter comprising an alkali or alkaline earth element in free or combined form. The improvement consists of improving the selectivity to the alcohols by treating the zeolite support with a nitrogen-containing base selected from the group consisting of urea, dimetholurea, cyanuric acid, melamine, melan, melem and melon.

  17. A gas-sensing array produced from screen-printed, zeolite-modified chromium titanate

    NASA Astrophysics Data System (ADS)

    Pugh, David C.; Hailes, Stephen M. V.; Parkin, Ivan P.


    Metal oxide semiconducting (MOS) gas sensors represent a cheap, robust and sensitive technology for detecting volatile organic compounds. MOS sensors have consistently been shown to lack sensitivity to a broad range on analytes, leading to false positive errors. In this study an array of five chromium titanate (CTO) thick-film sensors were produced. These were modified by incorporating a range of zeolites, namely ?, Y, mordenite and ZSM5, into the bulk sensor material. Sensors were exposed to three common reducing gases, namely acetone, ethanol and toluene, and a machine learning technique was applied to differentiate between the different gases. All sensors produced strong resistive responses (increases in resistance) and a support vector machine (SVM) was able to classify the data to a high degree of selectivity.

  18. A Lewis acid site-activated reaction in zeolites: Thiophene acylation by butyryl chloride

    SciTech Connect

    Isaev, Yu.; Fripiat, J.J.


    The acylation of thiophene by butyryl chloride has been studied in the liquid phase in the presence of 12 catalysts: HZSM-5, H-mordenite, and HY (ultrastable Y) with various framework Si/Al ratios, various numbers of Broensted and Lewis sites, and various amounts of nonframework aluminum. The numbers of Broensted and Lewis acid sites were obtained by FT-IR using chemisorbed ammonia, as described elsewhere. There is a correlation between the initial rates of reaction and the number of Lewis acid sites, whereas there is no correlation between the initial rates and the number of Broensted sites. The correlation with the number of Lewis sites may be considered significant, since it expands on more than one order of magnitude. Poisoning of the catalyst probably results from the oligomerization on butyryl chloride. No carboxylic acid has been detected in the course of the reaction. No attempt has been made to determine the nature of the poisoning reaction.

  19. First-Principles Calculation Study of Mechanism of Cation Adsorption Selectivity of Zeolites: A Guideline for Effective Removal of Radioactive Cesium

    NASA Astrophysics Data System (ADS)

    Nakamura, Hiroki; Okumura, Masahiko; Machida, Masahiko


    Zeolites have attracted attention in the reprocessing of radioactive nuclear waste because of their high selective affinity for radioisotopes of Cs. Very recently, their useful properties have been widely utilized in decontamination after the accident at the Fukushima Daiichi Nuclear Power Plants. In this study, we study the high selectivity in the Cs adsorption of zeolites using first-principles calculations and clarify the mechanism of the cation selectivity of zeolites. We obtain energy surfaces on all capture locations for Cs/Na ions inside the micropores of a zeolite, ``mordenite'', and find three crucial conditions for the highly ion-selective exchange of Na for Cs: i) micropores with a radius of ˜3 Å, ii) a moderate Al/Si ratio, and iii) a uniform distribution of Al atoms around each micropore. These insights suggest a guideline for developing zeolites with high Cs selectivity and for enhancing the cation selectivity in more general situations.

  20. Adsorption properties of Cs{sup +} for composite adsorbents and their irradiation stabilities

    SciTech Connect

    Susa, Shunsuke; Mimura, Hitoshi; Ito, Yoshiyuki; Saito, Yasuo


    Novel composite adsorbents using impregnation-precipitation methods have been developed; these fine crystals are loaded in the macro-pores of porous silica gels and zeolites. The 2 following composite adsorbents: KCoFC-NM (NM: natural mordenite, 0.4-1.0 mm), KCoFC-SG (SG: porous silica gel, NH and Q-10)) were prepared by impregnation-precipitation methods. This article presents the results of tests about their characterization, their selective adsorption ability of Cs{sup 137} and their irradiation stability. It is shown that the KCoFC-SG and KCoFC-NM composites are thus efficient for the selective separation of Cs{sup 137} in low-level radioactive waste (LLW) containing highly concentrated sodium nitrate.

  1. Design and synthesis of metal sulfide catalysts supported on zeolite nanofiber bundles with unprecedented hydrodesulfurization activities.


    Tang, Tiandi; Zhang, Lei; Fu, Wenqian; Ma, Yuli; Xu, Jin; Jiang, Jun; Fang, Guoyong; Xiao, Feng-Shou


    Developing highly active hydrodesulfurization (HDS) catalysts is of great importance for producing ultraclean fuel. Herein we report on crystalline mordenite nanofibers (NB-MOR) with a bundle structure containing parallel mesopore channels. After the introduction of cobalt and molybdenum (CoMo) species into the mesopores and micropores of NB-MOR, the NB-MOR-supported CoMo catalyst (CoMo/NB-MOR) exhibited an unprecedented high activity (99.1%) as well as very good catalyst life in the HDS of 4,6-dimethyldibenzothiophene compared with a conventional ?-alumina-supported CoMo catalyst (61.5%). The spillover hydrogen formed in the micropores migrates onto nearby active CoMo sites in the mesopores, which could be responsible for the great enhancement of the HDS activity. PMID:23895581

  2. Upgrading of coal-derived liquids. 1. Catalytic activities of zeolite catalysts and commercial HDS catalysts

    SciTech Connect

    Yoshida, R.; Hara, S.; Yoshida, T.; Yokoyama, S.; Nakata, Y.; Goto, Y.; Maekawa, Y.


    The applicability of various zeolite catalysts and commercial hydrodesulfurization (HDS) catalysts to the secondary hydrotreatment of coal-derived liquids was examined in relation to the chemical structure of upgraded liquids. The catalytic activities of zeolite catalysts for HI conversion is lower than are the activities of Ni-Mo, Ni-Co-Mo, Co-Mo and Ni-W catalysts. However, as regards hydrogenation and the removal of nitrogen, zeolite catalysts such as natural clinoptilolite and mordenite have almost the same activity as do Co-Mo and Ni-W catalysts. As to the removal of oxygen, it was proved that zeolite catalysts had a functionality to remove oxygen as CO/sub x/ gas, and HDS catalysts had a high activity for hydrodeoxygenation. 10 references, 3 figures, 4 tables.

  3. Zeolite thermodynamics and kinetics. Final report for June 15, 1996 to June 15, 2000 to the U.S. Department of Energy, Geosciences Research Program, Office of Basic Energy Sciences on Grant No. DE-FG02-96ER14634

    SciTech Connect

    Barnes, H.L.; Wilkin, R.T.; Benning, L.G.


    This report summarizes results obtained on the thermodynamic and kinetic properties of zeolites. DOE funding supported the development of techniques of material preparation as well as experimental strategies and methods for measuring solubilities, hydration states, and rates of zeolite dissolution, precipitation, and nucleation. The hydrothermal experiments provided temperature-dependent solubility products, hydration states, and a set of standard free energies of formation for end-member Na-, K-, and Ca-clinoptilolite, mordenite, and analcime. Flow-through experimental methods were used to measure the rates of Na-clinoptilolite and analcime dissolution and precipitation as a function of reaction affinity to 250C. Finally, the experimental system was modified so that the clinoptilolite-to-analcime transformation was monitored, and its rates and mechanisms were evaluated.

  4. Fracture-lining minerals in the lower Topopah Spring Tuff at Yucca Mountain

    SciTech Connect

    Carlos, B.A.; Bish, D.L.; Chipera, S.J.


    Fracture-lining minerals in the lower Topopah Spring Member of the Paintbrush Tuff at Yucca Mountain, Nevada, are being examined to characterize potential flow paths within and away from the candidate repository horizon. Fracture coatings within this interval can be divided into five categories based on rock matrix and type of fracture. Fracture coatings in the densely welded tuff above the basal vitrophyre, near the candidate repository horizon, include (1) those related to lithophysal cavities; (2) mordenite and manganese oxides on nearly planar fractures; (3) later fracture coatings consisting of zeolites, smectite, and calcite. Fracture-coating minerals in the vitrophyre are fine-grained and consist of smectite and a variety of zeolites. The non- to partially-welded vitric and/or zeolitic stuff below the vitrophyre contains fractures mostly lined by cristobalite and clinoptilolite. 13 refs., 2 figs., 1 tab.

  5. Analysis of the biological and chemical reactivity of zeolite-based aluminosilicate fibers and particulates.

    PubMed Central

    Fach, Estelle; Waldman, W James; Williams, Marshall; Long, John; Meister, Richard K; Dutta, Prabir K


    Environmental and/or occupational exposure to minerals, metals, and fibers can cause lung diseases that may develop years after exposure to the agents. The presence of toxic fibers such as asbestos in the environment plus the continuing development of new mineral or vitreous fibers requires a better understanding of the specific physical and chemical features of fibers/particles responsible for bioactivity. Toward that goal, we have tested aluminosilicate zeolites to establish biological and chemical structure-function correlations. Zeolites have known crystal structure, are subject to experimental manipulation, and can be synthesized and controlled to produce particles of selected size and shape. Naturally occurring zeolites include forms whose biological activity is reported to range from highly pathogenic (erionite) to essentially benign (mordenite). Thus, we used naturally occurring erionite and mordenite as well as an extensively studied synthetic zeolite based on faujasite (zeolite Y). Bioactivity was evaluated using lung macrophages of rat origin (cell line NR8383). Our objective was to quantitatively determine the biological response upon interaction of the test particulates/fibers with lung macrophages and to evaluate the efficacy of surface iron on the zeolites to promote the Fenton reaction. The biological assessment included measurement of the reactive oxygen species by flow cytometry and chemiluminescence techniques upon phagocytosis of the minerals. The chemical assessment included measuring the hydroxyl radicals generated from hydrogen peroxide by iron bound to the zeolite particles and fibers (Fenton reaction). Chromatography as well as absorption spectroscopy were used to quantitate the hydroxyl radicals. We found that upon exposure to the same mass of a specific type of particulate, the oxidative burst increased with decreasing particle size, but remained relatively independent of zeolite composition. On the other hand, the Fenton reaction depended on the type of zeolite, suggesting that the surface structure of the zeolite plays an important role. PMID:12417479

  6. Summary of the mineralogy-petrology of tuffs of Yucca Mountain and the secondary-phase thermal stability in tuffs

    SciTech Connect

    Bish, D.L.; Vaniman, D.T.; Byers, F.M. Jr.; Broxton, D.E.


    Yucca Mountain is composed of a thick sequence of silicic tuffs that are quite variable in degree of welding, alteration, and zeolitization. Tuff units above the water table are commonly devitrified or still vitric, with the exception of the zeolitized Pah Canyon Member in USW-G2. The devitrified tuffs above the water table commonly contain alkali feldspar, quartz, tridymite, and cristobalite, with minor smectite. The vitric tuffs are partly to wholly altered to sodium-calcium-saturated smectite. Below the water table are generally densely welded nonzeolitized tuffs and less densely welded zeolite-containing tuffs. The specific mineral assemblage present in Yucca Mountain tuffs has important implications in choosing a repository. The secondary phases clinoptilolite, mordenite, and smectite are very important because of their large cation sorption capacities. However, whereas densely welded tuffs containing no zeolite or glass are resistant to heating and do not dehydrate significantly, zeolitized, vitric, and smectite-containing horizons are very sensitive to minor increases in temperature. Smectites are particularly sensitive to changes in water vapor pressure and temperature, and temperature increases can lead to water evolution and large volume reductions. Similarly, clinoptilolite and mordenite begin to dehydrate below 100{sup 0}C, resulting in volume decreases. The exact effect of temperature on vitric tuffs is unclear. Under hydrothermal conditions the smectites gradually transform to nonexpanding, low sorption capacity illites, and there is evidence that this reaction has occurred in the deeper portions of USW-G2. Clinoptilolite transforms under hydrothermal conditions to analcime plus quartz with a concomitant volume decrease and water evolution. Again, there is evidence of this reaction occurring in Yucca Mountain tuffs at 80 to 100{sup 0}C.

  7. Fracture-coating minerals in the Topopah Spring Member and upper tuff of Calico Hills from drill hole J-13

    SciTech Connect

    Carlos, B.


    Fracture-lining minerals from drill core in the Topopah Spring Member of the Paintbrush Tuff and the tuff of Calico Hills from water well J-13 were studied to identify the differences between these minerals and those seen in drill core USW G-4. In USW G-4 the static water level (SWL) occurs below the tuff of Calico Hills, but in J-13 the water table is fairly high in the Topopah Spring Member. There are some significant differences in fracture minerals between these two holes. In USW G-4 mordenite is a common fracture-lining mineral in the Topopah Spring Member, increasing in abundance with depth. Euhedral heulandite >0.1 mm in length occurs in fractures for about 20 m above the lower vitrophyre. In J-13, where the same stratigraphic intervals are below the water table, mordenite is uncommon and euhedral heulandite is not seen. The most abundant fracture coating in the Topopah Spring Member in J-13 is drusy quartz, which is totally absent in this interval in USW G-4. Though similar in appearance, the coatings in the vitrophyre have different mineralogy in the two holes. In USW G-4 the coatings are extremely fine grained heulandite and smectite. In J-13 the coatings are fine-grained heulandite, chabazite, and alkali feldspar. Chabazite has not been identified from any other hole in the Yucca Mountain area. Fractures in the tuff of Calico Hills have similar coatings in core from both holes. In J-13, as in USW G-4, the tuff matrix of the Topopah Spring Member is welded and devitrified and that of the tuff of Calico Hills is zeolitic. 11 refs., 10 figs., 5 tabs.

  8. Preparation for kinetic measurements on the silicates of the Yucca Mountain potential repository. [Final report], June 15, 1993--September 30, 1993

    SciTech Connect


    Part 1, ``The Preparation of Clinoptilolite, Mordenite and Analcime,`` summarized progress made during the contract period on preparing Na-end member clinoptilolite, mordenite, and analcime. The objective is to use the prepared zeolites to determine rates of dissolution and precipitation in laboratory flow-through systems in both this lab to 350 C and by the geochemists at Yale University to about 80 C. Because clinoptilolite represents the most complicated phase of these three zeolites and it is most abundant at Yucca Mountain, the authors have concentrated most of their efforts on its preparation. They have collected, high-concentration natural clinoptilolite samples. A hindered settling technique that takes advantage of the relatively low specific gravity of clinoptilolite coupled with ultrasonic cleaning in deionized water has been employed. This material is now a mixed Na-K zeolite which must then be converted to the pure Na-end member composition. In Part 2, ``Draft Manuscript on the Heterogeneous Kinetics of Cristobalite,`` experiments on the rates of reactions of dissolution and precipitation of cristobalite were carried at 150--300 C. Results show that cristobalite may precipitate from hydrothermal solution if the concentration of Si(OH){sub 4} exceeds that at quartz saturation and is less than that of amorphous silica saturation and if there are cristobalite nuclei present. Such nuclei may occur where there has been devitrification of volcanic glasses, for example. Cristobalite has refused to crystallize in the absence of such nuclei. Steady state concentrations were reached experimentally after starting at 150 {degree} with initially supersaturated solutions and at 200 C starting with either supersaturated or undersaturated solutions. From the steady state conditions, equilibrium constants can be derived.

  9. Changes in the Vibrational Spectra of Zeolites Due to Sorption of Heavy Metal Cations

    NASA Astrophysics Data System (ADS)

    Król, M.; Mozgawa, W.; Barczyk, K.; Bajda, T.; Kozanecki, M.


    This work presents the results of spectroscopic (MIR and Raman) studies of zeolite structures after immobilization of heavy metal cations from aqueous solutions. The sorption of Ag+, Cu2+, Cd2+, Pb2+, Zn2+, and Cr3+ ions has been conducted on zeolites belonging to different structural groups, i.e., sodium forms of natural chabazite, mordenite, ferrierite, and clinoptilolite, as well as on synthetic zeolite Y. Systematic changes in intensities and positions of the bands corresponding to the characteristic ring vibrations have been observed in the measured spectra. The most visible changes are observed in the FT-IR spectra of the samples in the range of 850-450 cm-1, and in the Raman spectra in the range of 600-250 cm-1. Depending on the zeolite structure, the bands, which can be regarded as a kind of indicator of ion exchange, were indentifi ed. For example, in the case of IR spectra, these bands are at 766, 703, 648, 578, and 506 cm-1 for zeolite Y, at 733 and 560 cm-1 for mordenite, at 675 cm-1 for clinoptilolite, etc. The degree of changes depends on both the type of cation and its concentration in the initial solution. This is connected with the way of binding of metal ions to the zeolite aluminosilicate framework, i.e., a proportion of the ion exchange and chemisorption in the process. Cations mainly undergoing ion exchange, such as Cd2+ or Pb2+, have the greatest impact on the character of the spectra. On the other hand, Cr3+ ions practically do not modify the spectra of zeolites. Results of IR and Raman spectroscopic studies have been compared with those obtained by atomic absorption spectroscopy (AAS), from which the proportion of ion exchange to chemisorption in the process and the effective cation exchange capacity of the individual samples have been estimated.

  10. Environmental effect and genetic influence: a regional cancer predisposition survey in the Zonguldak region of Northwest Turkey

    NASA Astrophysics Data System (ADS)

    Kadir, Selahattin; Önen-Hall, A. Piril; Aydin, S. Nihal; Yakicier, Cengiz; Akarsu, Nurten; Tuncer, Murat


    The Cretaceous-Eocene volcano-sedimentary units of the Zonguldak region of the western Black Sea consist of subalkaline andesite and tuff, and sandstone dominated by smectite, kaolinite, accessory chlorite, illite, mordenite, and analcime associated with feldspar, quartz, opal-CT, amphibole, and calcite. Kaolinization, chloritization, sericitization, albitization, Fe-Ti-oxidation, and the presence of zeolite, epidote, and illite in andesitic rocks and tuffaceous materials developed as a result of the degradation of a glass shards matrix, enclosed feldspar, and clinopyroxene-type phenocrysts, due to alteration processes. The association of feldspar and glass with smectite and kaolinite, and the suborientation of feldspar-edged, subparallel kaolinite plates to fracture axes may exhibit an authigenic smectite or kaolinite. Increased alteration degree upward in which Al, Fe, and Ti are gained, and Si, Na, K, and Ca are depleted, is due to the alteration following possible diagenesis and hydrothermal activities. Micromorphologically, fibrous mordenite in the altered units and the presence of needle-type chrysotile in the residential buildings in which cancer cases lived were detected. In addition, the segregation pattern of cancer susceptibility in the region strongly suggested an environmental effect and a genetic influence on the increased cancer incidence in the region. The most likely diagnosis was Li-Fraumeni syndrome, which is one of the hereditary cancer predisposition syndromes; however, no mutations were observed in the p53 gene, which is the major cause of Li-Fraumeni syndrome. The micromorphology observed in the altered units in which cancer cases were detected may have a role in the expression of an unidentified gene, but does not explain alone the occurrence of cancer as a primary cause in the region.

  11. Hydrothermal alteration in research drill hole Y-3, Lower Geyser Basin, Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Bargar, Keith E.; Beeson, Melvin H.


    Y-3, a U.S. Geological Survey research diamond-drill hole in Lower Geyser Basin, Yellowstone National Park, Wyoming, reached a depth of 156.7 m. The recovered drill core consists of 42.2 m of surficial (mostly glacial) sediments and two rhyolite flows (Nez Perce Creek flow and an older, unnamed rhyolite flow) of the Central Plateau Member of the Pleistocene Plateau Rhyolite. Hydrothermal alteration is fairly extensive in most of the drill core. The surficial deposits are largely cemented by silica and zeolite minerals; and the two rhyolite flows are, in part, bleached by thermal water that deposited numerous hydrothermal minerals in cavities and fractures. Hydrothermal minerals containing sodium as a dominant cation (analcime, clinoptilolite, mordenite, Na-smectite, and aegirine) are more abundant than calcium-bearing minerals (calcite, fluorite, Ca-smectite, and pectolite) in the sedimentary section of the drill core. In the volcanic section of drill core Y-3, calcium-rich minerals (dachiardite, laumontite, yugawaralite, calcite, fluorite, Ca-smectite, pectolite, and truscottite) are predominant over sodium-bearing minerals (aegirine, mordenite, and Na-smectite). Hydrothermal minerals that contain significant amounts of potassium (alunite and lepidolite in the sediments and illitesmectite in the rhyolite flows) are found in the two drill-core intervals. Drill core y:.3 also contains hydrothermal silica minerals (opal, [3-cristobalite, chalcedony, and quartz), other clay minerals (allophane, halloysite, kaolinite, and chlorite), gypsum, pyrite, and hematite. The dominance of calcium-bearing hydrothermal minerals in the lower rhyolitic section of the y:.3 drill core appears to be due to loss of calcium, along with potassium, during adiabatic cooling of an ascending boiling water.

  12. Studies on transition metals and alloy Fischer-Tropsch catalysts, their electronic and bulk properties. (I: Fe/MnO; II: Fe/TiO/sub 2/; III: Fe/Mord. ). Final report, July 1, 1982-September 30, 1983

    SciTech Connect

    Mulay, L.N.


    The objectives were: (1) to characterize samples D1, 10% FeO/90% MnO, and D2, 48% FeO/52% MnO, under varying conditions of reduction (at 250/sup 0/C or 350/sup 0/C in H/sub 2/) and of syngas reaction 1:1 of CO:H/sub 2/ at 290/sup 0/C) and in some cases use CO only for reduction and to identify species by Moessbauer Spectroscopy and Magnetization (sigma/sub s) measurement; (2) similarly, to see if there is any metal (oxide)/support (Mordenite) interaction by the same techniques. The characterization was carried out with above techniques and the kinetic results for syngas were obtained on the above systems mostly at PETC. During reduction of Fe-oxide/Mn-oxide an intermediate Mn-ferrite phase was detected. After reduction, species such as Fe/sup 0/+Fe/sup 3 +/+Fe/sup 2 +/ in varying total proportions (45% at 290/sup 0/C and Fe/sup 0/+Fe/sup 2 +/ 75% were found at 350/sup 0/C). Syngas conversion showed Fe-carbides (Fe/sub 2/C/sub 2/+Fe/sub 3/C) depending on the reaction conditions, and the composition of D/sub 1/ and D/sub 2/. With the fresh ..gamma..-Fe/sub 2/O/sub 3/ (identified by Moessbauer) on Mordenites with varying ratios of SiO/sub 2//Al/sub 2/O/sub 3/, a decrease in (sigma/sub s/) was found with lowering of the ratios from 60 to 17. At 17% ratio (sigma/sub s/) was smallest and the change in the isomer shift was maximum, which established an interaction with the Broensted cities. 24 figures.

  13. Revised mineralogic summary of Yucca Mountain, Nevada

    SciTech Connect

    Bish, D.L.; Chipera, S.J.


    We have evaluated three-dimensional mineral distribution at Yucca Mountain, Nevada, using quantitative x-ray powder diffraction analysis. All data were obtained on core cuttings, or sidewall samples obtained from drill holes at and around Yucca Mountain. Previously published data are included with corrections, together with new data for several drill holes. The new data presented in this report used the internal standard method of quantitative analysis, which yields results of high precision for the phases commonly found in Yucca Mountain tuffs including opal-CT and glass. Mineralogical trends with depth previously noted are clearly shown by these new data. Glass occurrence is restricted almost without exception to above the present-day static water level (SWL), although glass has been identified below the SWL in partially zeolitized tuffs. Silica phases undergo well-defined transitions with depth, with tridymite and cristobalite occurring only above the SWL, opal-CT occurring with clinoptilolite-mordenite tuffs, and quartz most abundant below the SWL. Smectite occurs in small amounts in most samples but is enriched in two distinct zones. These zones are at the top of the vitric nonwelded base of the Tiva Canyon Member and at the top of the basal vitrophyre of the Topopah Spring Member. Our data support the presence of several zones of mordenite and clinoptilolite-heulandite as shown previously. New data on several deep clinoptililite-heulandite samples coexisting with analcime show that they are heulandite. Phillipsite has not been found in any Yucca Mountain samples, but erionite and chabazite have been found once in fractures. 21 refs., 17 figs.

  14. Preliminary Results of Voloxidation Processing of Kilogram Quantities of Used Nuclear Fuel

    SciTech Connect

    Spencer, Barry B [ORNL] [ORNL; DelCul, Guillermo D [ORNL] [ORNL; Jubin, Robert Thomas [ORNL] [ORNL; Owens, R Steven [ORNL] [ORNL; Ramey, Dan W [ORNL] [ORNL; Collins, Emory D [ORNL] [ORNL


    Advanced nuclear fuel processing methodologies are being studied as part of the Advanced Fuel Cycle Initiative (AFCI) program at ORNL. To support this initiative, processes and equipment were deployed at ORNL to perform all steps in the recycle process on actual used nuclear fuels, ranging from used fuel receipt to production of products and waste forms at the kilogram-scale (with capacity to process 20 kg of used fuel per year in up to four campaigns). In the first campaign, approximately 4 kg of used fuel was processed. As previously reported, the head-end processing was completed using saw-segmented Dresden fuel in lab-scale equipment in multiple batches. The second processing campaign used a new single pin shear and a new bench-scale voloxidizer to perform the dry head-end treatment prior to fuel dissolution. Approximately ~5 kg of used fuel (heavy metal basis) was processed in the second campaign. Two different fuels were oxidized in three separate batches to provide a range of processing conditions. The material used for each batch and general processing conditions are summarized in Table 1. Progress of the oxidation reaction was monitored continuously by two primary measurements; the concentration of oxygen in the effluent stream which was depressed as the oxygen was consumed, and the concentration of krypton-85 in the effluent stream as measured by a gamma counter on the off-gas pipeline. Table 1. Voloxidation test conditions for second campaign. Batch Fuel Source Burnup (GWd/MT)Batch size (kg*)/(kg**)Segment Length (in) Oxidation GasOperation Temperature ( C) 1Surry-2361.223/1.7041.0Air500 2North Anna63 702.071/2.8850.88Air600 3North Anna63 702.012/2.8030.88Oxygen600 * Heavy metal basis. ** Total fuel (oxide + cladding) basis. Fission product gases evolved from the fuel during the oxidation process were trapped for subsequent chemical and radiochemical analysis. The series of traps included a bed of molecular sieves to recover tritium (as HTO), silver-substituted zeolite to capture iodine (e.g. as AgI), a caustic scrubber to collect carbon dioxide (including 14CO2), a hydrogen-substituted mordenite to capture krypton (e.g. 85Kr) by cryogenic temperature swing adsorption, and a silver-substituted mordenite to capture xenon by cryogenic temperature swing absorption. The quantities of these volatile gases collected were compared to ORIGEN calculations to estimate the effectiveness of the voloxidation process to separate the volatiles from the used fuel. This paper will describe the voloxidation system and present preliminary results from the second processing campaign.

  15. Radium-thorium disequilibrium and zeolite-water ion exchange in a Yellowstone hydrothermal environment

    SciTech Connect

    Sturchio, N.C.; Bohlke, J.K. ); Binz, C.M. )


    Whole rock samples of hydrothermally altered Biscuit Basin rhyolite from Yellowstone drill cores Y-7 and Y-8 were analyzed for {sup 226}Ra and {sup 230}Th to determine the extent of radioactive disequilibrium and its relation to the rates and mechanisms of element transport in the shallow portion of an active hydrothermal system. The ({sup 226}Ra/{sup 230}Th) activity ratios range from 0.73 to 1.46 and are generally correlated with Th-normalized Ba concentrations (Ba{sub N}). Compositions of clinoptilolite and mordenite in these samples are consistent with ion exchange equilibrium between zeolites and coexisting thermal waters. Average K{sup Ba}{sub d mineral-water} values are 1.0 {center dot} 10{sup 5} mL/g for clinoptilolite and 1.4 {center dot} 10{sup 4} mL/g for mordenite. Apparent diffusivities through matrix porosity estimated for R and Ba range from {approximately}10{sup {minus}12} to {approximately}10{sup {minus}10} cm{sup 2} s{sup {minus}1} in thoroughly zeolitic rhyolite; these rates of diffusion are too low to account for the observed distance scale of ({sup 226}Ra/{sup 230}Th) disequilibrium. The correlated values of ({sup 226}Ra/{sup 230}Th) disequilibrium and Ba{sub N} represent zeolite-water ion exchange equilibrium that is caused by porous flow of water through the rock matrix and by the relatively rapid diffusion of cations within the zeolite lattices. A water flux of at least {approximately}2.5 (cm{sup 3}{sub water}/cm{sup 3}{sub rock}) yr{sup {minus}1} is required to produce measurable ({sup 226}Ra/{sup 230}Th) disequilibrium, whereas at least {approximately}23 (cm{sup 3}{sub water}/cm{sup 3}{sub rock}) yr{sup {minus}1} is required for the sample exhibiting the most extreme ({sup 226}Ra/{sup 230}Th) disequilibrium; these fluxes are much higher than those that can be inferred from net mass transfers of stable species.

  16. Minerals in fractures of the unsaturated zone from drill core USW G-4, Yucca Mountain, Nye County, Nevada

    SciTech Connect

    Carlos, B.A.


    The mineralogy of fractures in drill core USW G-4, from a depth of nearly 800 ft to the static water level (SWL) at 1770 ft, was examined to determine the sequence of deposition and the identity of minerals that might be natural barriers to radionuclide migration from a nuclear waste repository. Mordenite was found to be present, though not abundant, at the top of the interval sampled (the top of the lower lithophysal zone of the Topopah Spring Member of the Paintbrush Tuff). Heulandite occurs from about 1245 to 1378 ft; below 1378 ft, clinoptilolite rather than heulandite occurs alone or with mordenite. Smectite in fractures is abundant only in the vitrophyre of the Topopah Spring Member of the Paintbrush Tuff and at the top of the Prow Pass member of the Crater Flat Tuff. The unsaturated zone below 800 ft can be divided into three rock types: devitrified, glassy, and zeolitized host rock. Fracture-lining zeolites for each of these three rock types differ in mineralogy and morphology. Similarities, between fracture mineralogy and host-rock alteration in the nonwelded zeolitic units of the Topopah Spring Member suggest that this zone was once below the water table. The difference between microcrystalline ({ge}.01 mm) fracture coatings in the vitric zone and the mostly cryptocrystalline (<<0.01 mm) fracture coatings in the zeolitic zone also suggests that the conditions under which these two types of linings formed were different. Nonwelded glass shards preserved in the host rock above the zeolite-mineral transition in the fractures indicate that the water table was never higher than the lithic-rich base of the Topopah Spring Member in the vicinity of USW G-4. Fracture linings in the zeolitic Topopah Spring Member are clinoptilolite, but the crystal size (0.01 to 0.02 mm) is closer to that of heulandite in fractures of the vitric zone above it than to clinoptilolite in the Tuff of Calico Hills below. 21 refs., 48 figs., 2 tabs.

  17. Petrology, sedimentology, and diagenesis of hemipelagic limestone and tuffaceous turbidities in the Aksitero Formation, central Luzon, Philippines

    USGS Publications Warehouse

    Garrison, Robert E.; Espiritu, E.; Horan, L.J.; Mack, L.E.


    The Aksitero Formation of central Luzon is an upper Eocene and lower Oligocene sequence of evenly bedded hemipelagic limestone with a few thin interlayers of tuffaceous turbidites. The limestone consists chiefly of planktonic foraminifers and calcareous nannofossils, with up to 30 percent of noncarbonate components, chiefly volcaniclastic debris. The tuff layers are graded beds. Composed mainly of glass shards, pumice fragments, crystals, and fine-grained volcanic rock fragments. Hydrocarbons migrated into the pores of the tuffaceous layers early during diagenesis but they were subsequently flushed out and only bitumen remains, chiefly as thin coatings on grains and wthin pumice vesicles. Later during diagenesis, zeolites (mordenite and c1inoptilolite) and secondary calcite preferentially replaced glass shards and pumice fragments. Deposition of the Aksitero Formation probably occurred at depths of at least 1,000 meters within a subsiding basin adjacent to an active island arc system. Submarine ash eruptions of silicic composition caused volcaniclastic turbidity currents that occasionally reached the basin floor. The more proximal facies of these volcaniclastic deposits may be prospective for hydrocarbons.

  18. Hydrothermal fabrication of ZSM-5 zeolites: biocompatibility, drug delivery property, and bactericidal property.


    Guo, Ya-Ping; Long, Teng; Song, Zhen-Fu; Zhu, Zhen-An


    The bone graft-associated infection is widely considered in orthopedic surgery, which may lead to implant failure, extensive bone debridement, and increased patient morbidity. In this study, we fabricated ZSM-5 zeolites for drug delivery systems by hydrothermal method. The structure, morphology, biocompatibility, drug delivery property, and bactericidal property of the ZSM-5 zeolites were investigated. The ZSM-5 zeolites have mordenite framework inverted-type structure and exhibit the disk-like shape with the diameter of ?350 nm and thickness of ?165 nm. The biocompatibility tests indicate that human bone marrow stromal cells spread out well on the surfaces of the ZSM-5 zeolites and proliferate significantly with increasing culture time. As compared with the conventional hydroxyapatite particles, the ZSM-5 zeolites possess greater drug loading efficiency and drug sustained release property because of the ordered micropores, large Brunauer-Emmett-Teller (BET) surface areas, and functional groups. For the gentamicin-loaded ZSM-5 zeolites, the sustained release of gentamicin minimizes significantly bacterial adhesion and prevents biofilm formation against Staphylococcus epidermidis. The excellent biocompatibility, drug delivery property, and bactericidal property of the ZSM-5 zeolites suggest that they have great application potentials for treating implant-associated infections. PMID:24123971

  19. Determination of Si/Al molar ratios in microporous zeolites using calibration-free laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Hor?á?ková, M.; Hor?á?ek, M.; Rakovský, J.; Hudec, P.; Veis, P.


    In this paper, the potential application of a calibration-free laser-induced breakdown spectroscopy (CF-LIBS) method for the determination of the silicon-to-aluminum molar ratio in microporous zeolites (with both intermediate and high silica contents) is discussed. Three different zeolite types, i.e., mordenite and zeolites type Y and ZSM-5, were analyzed in this study and were shown to have Si/Al molar ratios in the range between 2.3 and 51.8. Many ionic and neutral atomic spectral lines of silicon and aluminum were detected in the measured LIBS spectra in the spectral range 200-1000 nm, but not all of the observed spectral lines are convenient for a CF-LIBS analysis. To increase the accuracy of the results, only lines with no or low self-absorption probability were selected. A systematic method is proposed to select spectral lines based on three main parameters: the transition probability (Einstein coefficient), the lower level energy of the observed transition and the number density ratio between singly ionized and neutral species (as calculated for Si and Al for the measured electron density and electron temperature). The calculated Si/Al molar ratios were close to that determined by wet chemical analysis with an average relative standard deviation of approximately 5% (maximum less than 15%). Our results point to the possibility of using CF-LIBS for analysis of these types of materials and for determination of Si/Al molar ratios.

  20. Fixed-bed adsorption of toluene on high silica zeolites: experiments and mathematical modelling using LDF approximation and a multisite model.


    Brodu, Nicolas; Sochard, Sabine; Andriantsiferana, Caroline; Pic, Jean-Stéphane; Manero, Marie-Hélène


    The adsorption of toluene (TOL) as a target volatile organic compound has been studied experimentally and modelled on various hydrophobic zeolites: Faujasite (FAU), ZSM-5 (Z) and Mordenite (MOR). The influence of the nature of the compensating cation (H+ or Na+) has also been investigated for ZSM-5 zeolite, which is known to possess three kinds of adsorption sites (sinusoidal channels, straight channels and intersections). Type I isotherms observed on FAU, Na-Z and MOR fitted well with the Langmuir model. A deviation from a type I isotherm was observed for H-Z, because of the structure of this zeolite. The Successive Langmuir Model was more successful to fit the 'bump' of the experimental curve than the Double Langmuir. Classical shapes were found for MOR, FAU and Na-Z breakthrough curves that were fitted with good accuracy using the Linear Driving Force (LDF) approximation. In the case of H-Z, a change of profile was observed during the dynamic adsorption and the differences seen between the Na-Z and H-Z behaviours were explained by the strong interactions between Na+ and adsorbed TOL at the intersection sites. The Na+ cations prevented reorientation of TOL molecules at the intersection and thereby avoided the filling of the sinusoidal channel segments. Thus, a specific model was developed for fitting the breakthrough curve of H-Z. The model developed took into account these two types of adsorption sites with the overall uptake for each site being given by an LDF approximation. PMID:25624172

  1. Savannah River Laboratory monthly report

    SciTech Connect

    Not Available


    Brief summaries are given in the areas of defense waste and laboratory operations, nuclear reactors and scientific computation, and chemical processes and environmental technology. The performance of waste glass samples has been tested. A prototype Pu-238 waste incinerator is being tested. A monitor system is being developed to allow unattended computer system operation. A program to review and update the Reactor Technical Standards and Specifications is in progress. Analysis of a medium LOCA in a reactor D/sub 2/O coolant system is reported. Preliminary results are given for alternative degreasers. Modernization of a JOSHUA computer system is reported. The safety of a fuel tube fabrication building is discussed. The program to evaluate reactor materials is summarized. A design has been developed for a silver-mordenite packed bed reactor to remove radioactive iodine from uranium fuel dissolver off-gas. Automated online analyzers were developed. Ground-penetrating radar has been evaluated. The safety of two space probes powered by plutonium dioxide thermal generators was evaluated. (LEW)

  2. Biaxial Q-shearing of 27Al 3QMAS NMR spectra: insight into the structural disorder of framework aluminosilicates.


    Kobera, Libor; Brus, Jiri; Klein, Petr; Dedecek, Jiri; Urbanova, Martina


    In this contribution, we present the application potentiality of biaxial Q-shearing of (27)Al 3QMAS NMR spectra in the analysis of structural defects of aluminium units in aluminosilicates. This study demonstrates that the combination of various shearing transformations of the recorded (27)Al 3QMAS NMR spectra enables an understanding of the broadening processes of the correlation signals of disordered framework aluminosilicates, for which a wide distribution of (27)Al MAS NMR chemical shifts and quadrupolar parameters (i.e., second-order quadrupolar splitting and quadrupole-induced chemical shifts) can be expected. By combining the suitably selected shearing transformation procedures, the mechanisms of the formation of local defects in aluminosilicate frameworks, including Al/Si substitution effects in the next-nearest neighbouring T-sites, variations in bond angles, and/or variations in the physicochemical nature of charge-balancing counter-ions, can be identified. The proposed procedure has been extensively tested on a range of model aluminosilicate materials (kyanite, ?-alumina, metakaolin, analcime, chabazite, natrolite, phillipsite, mordenite, zeolite A, and zeolite Y). PMID:24333044

  3. Novel Sorbent Development and Evaluation for the Capture of Krypton and Xenon from Nuclear Fuel Reprocessing Off-Gas Streams

    SciTech Connect

    Troy G. Garn; Mitchell R. Greenhalgh; Jack D. Law


    The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbent development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, INL sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up.

  4. Novel Sorbent Development and Evaluation for the Capture of Krypton and Xenon from Nuclear Fuel Reprocessing Off-Gas Streams

    SciTech Connect

    Troy G. Garn; Mitchell R. Greenhalgh; Jack D. Law


    The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbent development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, INL sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up.

  5. AGATE as an indicator of impact structures: an example from Saaksjarvi, Finland

    NASA Astrophysics Data System (ADS)

    Kinnunen, Kari A.; Lindqvist, Kristian


    Mineralogical, petrographical and chemical determinations were made for 743 agate (banded variety of chalcedonic quartz) nodules (diameters from 5 mm to 5 cm) formed during post-impact, low-temperature hydrothermal activity as vesicle fillings in the melt rocks of the Saaksjarvi meteorite impact structure (diameter 5 km) in SW-Finland. Other hydrothermal vesicle fillings in the impact melt rocks include chlorite, mordenite, smectite and kaolinite. The agates were classified into two types, whose mineralogical properties and chemical compositions fall within the range of volcanic agates (basaltic and rhyolitic host rocks). The relatively high age (about 510 Ma) of the Saaksjarvi impact melt rocks, however, is reflected by the presence of recrystallization textures, which are rare in younger volcanic agates. The Saaksjarvi structure was initially located after following the fortuitous discovery of agate "path-finders" in the glacial overburden. It is recommended that wherever volcanic type agates are found as float in Precambrian shield areas devoid of younger volcanic rocks, the possible presence of impact (or volcanic) craters in the vicinity should be considered.

  6. The high temperature synthesis of CsAlSiO 4-ANA, a new polymorph in the system Cs 2O?Al 2O 3?SiO 2. I. The end member of ANA type of zeolite framework

    NASA Astrophysics Data System (ADS)

    Dimitrijevic, R.; Dondur, V.; Petranovic, N.


    High temperature phase transformations of Cs + exchanged zeolites were investigated. Above 1000°C, Cs?X, Cs?Y (FAU), and Cs, ZK-4 (LTA) frameworks recrystallized in a pollucite phase. A Cs + loaded mordenite recrystallized at 1300°C in the orthorhombic CsAlSi 5O 12 phase. A Cs + exchanged zeolite A at 960°C recrystallized in a mixture of two polymorphic CsAlSiO 4 phases having different (Al,Si)O 4 frameworks. The unstable orthorhombic CsAlSiO 4?ABW phase has a topotactic transition at 1150°C into an ordered low CsAlSiO 4-ANA framework. Further calcination produces, at 1200°C, transformation of the low CsAlSiO 4-ANA phase to the more stable high CsAlSiO 4-ANA polymorph having cubic ( a 0 = 13.6595 (5) Å) symmetry and an ordered Si?Al distribution. The crystal structure of high CsAlSiO 4?ANA, a new polymorph in the system Cs 2O?Al 2O 3?SiO 2, was determined using X-ray Rietveld analyses and 29Si MAS NMR spectroscopy.

  7. Simultaneous SO{sub 2}/NO{sub x} abatement using zeolite-supported copper. Progress report, April 1--June 30, 1995

    SciTech Connect

    Mitchell, M.B.; White, M.G.


    Several catalysts for NO decomposition have been reported in the literature to include the following: Cu/ZSM-5; Cu/Zeolite-Y; Cu/mordenite; Cu/{beta} zeolite; Cu/alumina; and Cu/silica which have been studied less than Cu/ZSM-5. The catalytic properties for NO conversion are found to be different on these samples with the ZSM-5 supported catalysts showing the highest activity in a dry environment free from sulfur oxides. One of the goals of this study is to have a better fundamental understanding on the different roles of Cu and the support in the catalytic reaction. The authors use stable, cationic metal complexes in non-aqueous solvents as sources of the Cu ions in producing model catalysts for which the fate of the source molecule is known and is controlled during the ion exchange/impregnation. Molecular models of these systems can be used to identify the possible configurations of the metal complexes within the zeolite support. The authors compare the performance of the model catalysts to one prepared by aqueous impregnation of ZSM-5 zeolite. The performance of the dinuclear metal complex on silica is compared to the same complex in ZSM-5 and Y-zeolites.

  8. Kinetics of silica-phase transitions

    SciTech Connect

    Duffy, C.J.


    In addition to the stable silica polymorph quartz, several metastable silica phases are present in Yucca Mountain. The conversion of these phases to quartz is accompanied by volume reduction and a decrease in the aqueous silica activity, which may destabilize clinoptilolite and mordenite. The primary reaction sequence for the silica phases is from opal or glass to disordered opal-CT, followed by ordering of the opal-CT and finally by the crystallization of quartz. The ordering of opal-CT takes place in the solid state, whereas the conversion of opal-CT takes place through dissolution-reprecipitation involving the aqueous phase. It is proposed that the rate of conversion of opal-CT to quartz is controlled by diffusion of defects out of a disordered surface layer formed on the crystallizing quartz. The reaction rates are observed to be dependent on temperature, pressure, degree of supersaturation, and pH. Rate equations selected from the literature appear to be consistent with observations at Yucca Mountain.

  9. Characterization of Binary Ag-Cu Ion Mixtures in Zeolites: Their Reduction Products and Stability to Air Oxidation

    SciTech Connect

    Fiddy, Steven; Petranovskii, Vitalii; Ogden, Steve; Iznaga, Inocente Rodriguez


    A series of Ag+-Cu2+ binary mixtures with different Ag/Cu ratios were supported on mordenite with different Si/Al ratios and were subsequently reduced under hydrogen in the temperature range 323K - 473K. Ag and Cu K-edge X-ray Absorption Spectroscopy (XAS) was conducted on these systems in-situ to monitor the reduction species formed and the kinetics of their reduction. In-situ XANES clearly demonstrates that the formation of silver particles is severely impeded by the addition of copper and that the copper is converted from Cu(II) to Cu(I) during reduction and completely reverts back to Cu(II) during cooling. There are no indications at any stage of the formation of bimetallic Ag-Cu clusters. Interestingly, the Ag/Cu ratio appears to have no influence of the reduction kinetics and reduction products formed with only the highest Si/Al ratio (MR = 128) investigated during this study having an influence on the reduction and stability to air oxidation.

  10. Reaction intermediates in acid catalysis by zeolites: prediction of the relative tendency to form alkoxides or carbocations as a function of hydrocarbon nature and active site structure.


    Boronat, M; Viruela, P M; Corma, A


    The mechanism of protonation of ethene, propene, and isobutylene adsorbed on seven different Brønsted acid sites of mordenite has been studied at the ONIOM (B3PW91/6-31G(d,p):MNDO) theoretical level to assess the influence of olefin size and local geometry of the active site on the species and energies involved. The activation energies for olefin protonation are determined by short- and medium-range electrostatic effects and reflect the order of stability of primary, secondary, and tertiary carbenium ions. On the other hand, the stability of covalent alkoxides depends linearly on the AlO(b)Si angle value in the complex, which in turn is determined by the corresponding value in the deprotonated zeolite. It is also shown that the mechanism of protonation of isobutylene is different from that of ethene and propene and involves a free tert-butyl carbenium ion as a true reaction intermediate. Whether this carbenium ion is converted into a covalent alkoxide depends on the T position on which the Al is located. All these findings allow us to predict, on the basis of the position and local geometry of the Brønsted acid site, whether the reaction intermediates of olefin protonation will be covalent alkoxides or free carbenium ions. PMID:15012161

  11. Ion exchange in a zeolite-molten chloride system

    SciTech Connect

    Woodman, R.H.; Pereira, C. [Argonne National Lab., IL (United States). Chemical Technology Div.


    Electrometallurgical treatment of spent nuclear fuel results in a secondary waste stream of radioactive fission products dissolved in chloride salt. Disposal plans include a waste form that can incorporate chloride forms featuring one or more zeolites consolidated with sintered glass. A candidate method for incorporating fission products in the zeolites is passing the contaminated salt over a zeolite column for ion exchange. To date, the molten chloride ion-exchange properties of four zeolites have been investigated for this process: zeolite A, IE95{reg_sign}, clinoptilolite, and mordenite. Of these, zeolite A has been the most promising. Treating zeolite 4A, the sodium form of zeolite A , with the solvent salt for the waste stream-lithium-potassium chloride of eutectic melting composition, is expected to provide a material with favorable ion-exchange properties for the treatment of the waste salt. The authors constructed a pilot-plant system for the ion-exchange column. Initial results indicate that there is a direct relationship between the two operating variable of interest, temperature, and initial sodium concentration. Also, the mass ratio has been about 3--5 to bring the sodium concentration of the effluent below 1 mol%.

  12. Comparison between leached metakaolin and leached diatomaceous earth as raw materials for the synthesis of ZSM-5.


    Aguilar-Mamani, Wilson; García, Gustavo; Hedlund, Jonas; Mouzon, Johanne


    Inexpensive raw materials have been used to prepare ZSM-5 zeolites with SiO2/Al2O3 molar ratios in the range 20 - 40. Kaolin or Bolivian diatomaceous earth was used as aluminosilicate raw materials and sodium hydroxide and n-butylamine were used as mineralizing agents and template. Dealumination of the raw materials by acid leaching made it possible to reach appropriate SiO2/Al2O3 ratios and to reduce the amount of iron and other impurities. After mixing the components and aging, hydrothermal treatment was carried out and the products were recovered The results clearly show for the first time that well-crystallized ZSM-5 can be directly prepared from leached metakaolin or leached diatomaceous earth using sodium hydroxide and n-butylamine as mineralizing agents and template under appropriate synthesis conditions. A longer induction time prior to crystallization was observed for reaction mixtures prepared from leached diatomaceous earth, probably due to slower digestion of the fossilized diatom skeletons as compared with that for microporous leached metakaolin. The use of leached diatomaceous earth allowed higher yield of ZSM-5 crystals within comparable synthesis times. However, low amounts of Mordenite formed, which was related to the high calcium content of diatomaceous earth. Another considerable advantage of diatomaceous earth over kaolin is that diatomaceous earth does not require heat treatment at high temperature for metakaolinization. PMID:25019042

  13. Gold nanoparticles as efficient antimicrobial agents for Escherichia coli and Salmonella typhi

    PubMed Central


    Background It is imperative to eliminate bacteria present in water in order to avoid problems in healthy. Escherichia coli and Salmonella typhi bacteria are two common pollutants and they are developing resistance to some of the most used bactericide. Therefore new biocide materials are being tested. Thus, gold nanoparticles are proposed to inhibit the growth of these two microorganisms. Results Gold nanoparticles were supported onto clinoptilolite, mordenite and faujasite zeolites. Content of gold in materials varied between 2.3 and 2.8 wt%. The size, dispersion and roughness of gold nanoparticles were highly dependent of the zeolite support. The faujasite support was the support where the 5 nm nanoparticles were highly dispersed. The efficiency of gold-zeolites as bactericides of Escherichia coli and Salmonella typhi was determined by the zeolite support. Conclusions Gold nanoparticles dispersed on zeolites eliminate Escherichia coli and Salmonella typhi at short times. The biocidal properties of gold nanoparticles are influenced by the type of support which, indeed, drives key parameters as the size and roughness of nanoparticles. The more actives materials were pointed out Au-faujasite. These materials contained particles sized 5 nm at surface and eliminate 90–95% of Escherichia coli and Salmonella typhi colonies. PMID:23331621


    SciTech Connect

    Andrew W. Wang


    Several classes of molecular sieves were investigated as methanol dehydration catalysts for the LPDME{trademark} (liquid-phase dimethyl ether) process. Molecular sieves offer a number of attractive features as potential catalysts for the conversion of methanol to DME. These include (1) a wide range of acid strengths, (2) diverse architectures and channel connectivities that provide latitude for steric control, (3) high active site density, (4) well-investigated syntheses and characterization, and (5) commercial availability in some cases. We directed our work in two areas: (1) a general exploration of the catalytic behavior of various classes of molecular sieves in the LPDME{trademark} system and (2) a focused effort to prepare and test zeolites with predominantly Lewis acidity. In our general exploration, we looked at such diverse materials as chabazites, mordenites, pentasils, SAPOs, and ALPOs. Our work with Lewis acidity sought to exploit the structural advantages of zeolites without the interfering effects of deleterious Broensted sites. We used zeolite Ultrastable Y (USY) as our base material because it possesses a high proportion of Lewis acid sites. This work was extended by modifying the USY through ion exchange to try to neutralize residual Broensted acidity.

  15. Coupling of alcohols to ethers: The dominance of the surface S{sub N}2 reaction pathway

    SciTech Connect

    Klier, K.; Feeley, O.C.; Johansson, M.; Herman, R.G. [Lehigh Univ., Bethlehem, PA (United States)


    Coupling of alcohols to ethers, important high value oxygenates, proceeds on acid catalysts via general pathways that uniquely control product composition, oxygen retention, chirality inversion, and kinetics. The dominant pathway is the S{sub N}2 reaction with competition of the alcohols for the surface acid sites. This is exemplified by formation of methyl(ethyl) isobutylether (M(E)IBE) from methanol(ethanol)/isobutanol mixtures, retention of oxygen ({sup 18}O) of the heavier alcohol, and optimum rate as a function of concentration of either reactant alcohol. The S{sub N}2 pathway in the confinement of zeolite pores exhibits additional features of a near-100% selectivity to dimethylether (DME) in H-mordenite and a near-100% selectivity to chiral inversion in 2-pentanol/ethanol coupling to 2-ethoxypentane in HZSM-5. A minor reaction pathway entails olefin or carbenium intermediates, as exemplified by the formation of methyl tertiarybutyl ether (MTBE) from methanol/isobutanol mixtures with oxygen retention of the lighter alcohol. Calculations of transition state and molecular modeling of the oxonium-involving pathways dramatically demonstrate how the reaction path selects the products.

  16. NO{sub x} control in lean-burn engine exhaust

    SciTech Connect

    Bykowski, B.B.; Heimrich, M.J. [Southwest Research Institute, San Antonio, TX (United States)


    Current catalytic approaches to control of NO{sub x} emissions from automotive engines require precious metal catalysts such as rhodium, and an exhaust composition near stoichiometric. Due to the non-selectivity of the reactions occurring in such a catalyst bed, this approach can not be used in a lean exhaust environment (i.e., in the presence of excess air). As part of the search for an effective lean-exhaust NO{sub x} catalyst, different types of zeolites have been ion exchanged with metals such as copper to study their selective reduction of NO{sub x} using exhaust hydrocarbons as a reactant. Laboratory ion exchange procedures and application of zeolites to supports are discussed. Experiments using core samples were performed to study the effect of supplementing exhaust hydrocarbons with ethylene, to understand the role of individual HC species. Preliminary results have shown NO{sub x} reduction up to 95 percent (albeit for a short time) using a Cu-mordenite catalyst. Cu-ZSM-5 exhibited a lower efficiency, but maintained activity longer.

  17. Mineral precipitation on modern siliciclastic tidal flats colonized by microbial mats

    NASA Astrophysics Data System (ADS)

    Cuadrado, Diana G.; Carmona, Noelia B.; Bournod, Constanza N.


    The preservation and cementation of sedimentary structures under the influence of microorganisms in siliciclastic environments have been poorly studied in contrast to carbonatic settings, where they have been extensively investigated. Whereas in carbonatic environments, microbial mat-induced precipitation of calcium carbonate results in a cementation process producing a quick lithification, in siliciclastic environments other minerals would act as cement. The focus of this paper is to document the presence of authigenic minerals within a biosedimentary fabrics and the possible link of these minerals with the extensive microbial mats that colonize the tidal flat of the temperate Bahía Blanca estuary. "Anoxic" minerals (e.g. pyrite) and authigenic zeolites such as analcime, clinoptilolite, mordenite, phillipsite and chabazite were recognized through SEM and EDX analyses. These minerals were most likely formed by alteration of volcanic ash, which is present in this tidal flat and also silica may result from dissolution of frustules of benthic diatoms. Minerals precipitated in this setting are significant as they would act as early cement in the eogenesis, enhancing the preservation of sedimentary and biogenic structures.

  18. Probing the structure of complex solids using a distributed computing approach-Applications in zeolite science

    SciTech Connect

    French, Samuel A.; Coates, Rosie; Lewis, Dewi W.; Catlow, C. Richard A.


    We demonstrate the viability of distributed computing techniques employing idle desktop computers in investigating complex structural problems in solids. Through the use of a combined Monte Carlo and energy minimisation method, we show how a large parameter space can be effectively scanned. By controlling the generation and running of different configurations through a database engine, we are able to not only analyse the data 'on the fly' but also direct the running of jobs and the algorithms for generating further structures. As an exemplar case, we probe the distribution of Al and extra-framework cations in the structure of the zeolite Mordenite. We compare our computed unit cells with experiment and find that whilst there is excellent correlation between computed and experimentally derived unit cell volumes, cation positioning and short-range Al ordering (i.e. near neighbour environment), there remains some discrepancy in the distribution of Al throughout the framework. We also show that stability-structure correlations only become apparent once a sufficiently large sample is used. - Graphical Abstract: Aluminium distributions in zeolites are determined using e-science methods. Highlights: > Use of e-science methods to search configurationally space. > Automated control of space searching. > Identify key structural features conveying stability. > Improved correlation of computed structures with experimental data.

  19. Kinetics of the adsorption of radionuclides on tuff from Yucca Mountain

    SciTech Connect

    Rundberg, R.S.


    The sorption of simple cations in tuff is dominated by adsorption on aluminosilicates that have charged surfaces, such as zeolites and clays. The most significant sorbing minerals present in Nevada tuff are clinoptilolite, heulandite, mordenite, and montmorillonite. The kinetics of sorption on tuffs containing the minerals clinoptilolite and montmorillonite has been determined by studying the uptake of strontium, cesium, and barium on thin tuff wafers. The rate constants for uptake of these elements on tuff are consistent with a model of sorption that is diffusion limited but where diffusion occurs in two stages. First the cations diffuse into the rock through the water-filled pore space. Next, the cations must diffuse into the much narrower channels within the aluminosilicate crystals. After they are within the zeolite framework or between the clay planes, the cations may rapidly sorb on the negatively charged surfaces. The actinide elements have a time constant for the apparent sorption that is inconsistent with this model and may have a radically different mechanism of removal from solution. 12 references, 4 tables.

  20. Zeolite stability constraints on radioactive waste isolation in zeolite-bearing volcanic rocks

    SciTech Connect

    Smyth, J.R.


    Silicic tuffs of the southern Great Basin and basalts of the Columbia River Plateau are under investigation as potential host rocks for high- and intermediate-level radioactive wastes. Non-welded and partially welded tuffs may contain major amounts (> 50%) of the zeolite minerals: clinoptilolite, mordenite, and analcime. Densely welded tuffs and some basalt flows may contain clinoptilolite as fracture filling which limits permeability of these rocks. The cation exchange properties of these zeolite minerals allow them to pose a natural barrier to the migration of cationic species of various radionuclides in aqueous solutions. However, these minerals are unstable at elevated temperatures and at low water vapor pressures, and they may break down either by reversible dehydration or by irreversible mineralogical reactions. All of the breakdown reactions occurring with increased temperature involve a net volume reduction and evolution of fluids. Thus, they may provide both a pathway (shrinkage fractures) and a driving force (fluid pressure) for release of radionuclides to the biosphere. These reactions may be avoided by keeping zeolite-bearing horizons saturated with water and below about 85{sup 0}C. This may restrict allowable gross thermal loadings in radioactive waste repositories in zeolite-bearing volcanic rocks. 3 figures.

  1. Lithology, mineralogy, and paleontology of Quaternary lake deposits in Long Valley Caldera, California

    USGS Publications Warehouse

    Fournier, R.B.


    Drill cores and cuttings from two drill holes, about 3 km apart, in Long Valley caldera, Mono County, California, were studied using x-ray diffraction and optical methods. A thick sequence of tuffs and lake sediments was encountered in LVCH-1 (1,000 ft deep) and Republic well 66-29 (6,920 ft deep), drilled in the southeast part of the Long Valley caldera. Ostracods, diatoms, and isotopic data indicate that the sediments and tuffs were deposited in a shallow caldera lake which changed in salinity over time. Conditions ranged from very saline in the older lake to fresh in the youngest. The sequence of secondary minerals from top to bottom is: clinoptilolite, mordenite, analcime, K-feldspar (and albite). In some geothermal systems, this sequence of secondary minerals is a function of temperature; however, the paleontological and isotopic data indicate that the change in secondary minerals with increasing depth is due to the older strata being deposited in a more saline environment. No mineralogical evidence of hydrothermal alteration is present, although the high lithium content of some clays and feldspars and the isotopic composition of some sulfate (gypsum) seems to require a hydrothermal source. (Lantz-PTT)

  2. Aging and iodine loading of silver-functionalized aerogels

    SciTech Connect

    Bruffey, S.H.; Jubin, R.T.; Anderson, K.K.; Walker, J.F. [Oak Ridge National Laboratory, P.O. Box 2008, MS-6223, Oak Ridge, TN 37831 (United States)


    Engineered silver-functionalized silica aerogels are being investigated for their potential application in off-gas treatment at a used nuclear fuel reprocessing facility. Reprocessing will release several key volatile radionuclides, including iodine-129. To achieve regulatory compliance, iodine-129 must be removed from any off-gas stream prior to environmental discharge. Ag{sup 0}-functionalized aerogels have been demonstrated to have high iodine-capture capacity, high porosity, and potential for conversion into a waste form. Capture materials used in off-gas treatment may be exposed to a heated, high-humidity, acidic gas stream for months. Extended exposure to this stream could affect sorbent performance. It was the aim of this study to evaluate what impacts might be observed when Ag{sup 0}-functionalized aerogels prepared at Pacific Northwest National Laboratory were contacted with a dry air stream for up to 6 months and then used to adsorb iodine from a synthetic off-gas stream. Results demonstrate that there is some loss of iodine-capture capacity caused by aging, but that this loss is not as marked as for aging of more traditional iodine sorbents, such as silver-impregnated mordenite. Specifically, aging silver-functionalized aerogel under a dry air stream for up to 6 months can decrease its iodine capacity from 41 wt% to 32 wt%. (authors)


    SciTech Connect

    Bruffey, Stephanie H [ORNL; Jubin, Robert Thomas [ORNL; Anderson, Kaara K [ORNL; Walker Jr, Joseph Franklin [ORNL


    Engineered silver-functionalized silica aerogels are being investigated for their application in off-gas treatment at a used nuclear fuel reprocessing facility. Reprocessing will release several key volatile radionuclides, including iodine-129. To achieve regulatory compliance, iodine-129 must be removed from any off-gas stream prior to environmental discharge. Silver-functionalized aerogels have been demonstrated to have high iodine capture capacity, high porosity and potential for conversion into a waste form. Capture materials used in off-gas treatment may be exposed to a heated, high humidity, acidic gas stream for months. Extended exposure to this stream could affect sorbent performance. It was the aim of this study to evaluate what impacts might be observed when Ag0-functionalized aerogels prepared at Pacific Northwest National Laboratory were contacted with a dry air stream for up to 6 months and then used to adsorb iodine from a synthetic off-gas stream. Results demonstrate that there is some loss of iodine capture capacity caused by aging, but that this loss is not as marked as for aging of more traditional iodine sorbents, such as silver-impregnated mordenite. Specifically, aging silver-functionalized aerogel under a dry air stream for up to 6 months can decrease its iodine capacity from 41wt% to 32wt%.

  4. Removal of water and iodine by solid sorbents: adsorption isotherms and kinetics

    SciTech Connect

    Lin, R.; Tavlarides, L.L.


    Tritium and iodine-129 are two major radioactive elements that are present in off-gases from spent fuel reprocessing plants. Adsorption by solid sorbents is the state-of-the-art technique for removal of these species from off-gases. Modeling and simulating adsorption processes require accurate adsorption equilibrium and kinetic data to permit reasonable estimates of process parameters. We have developed a continuous flow single-pellet adsorption system to gather accurate adsorption equilibrium and kinetic data for adsorption of water by molecular sieve 3A and for adsorption of iodine by silver exchanged mordenite. In this paper, the design of the water and iodine adsorption experimental systems are briefly described and results of water adsorption experiments are presented and discussed. Water uptake curves are fitted with the linear-driving force (LDF) model and the shrinking-core model to determine kinetic parameters. It is shown that the kinetics of water adsorption on zeolite 3A under current experimental conditions is controlled by both the external film resistance and the macro-pore diffusion and can be predicted by both the LDF model and the shrinking-core model with the former one performing slightly better. Preliminary results from iodine adsorption experiments will be presented in the conference.

  5. Low sintering temperature glass waste forms for sequestering radioactive iodine


    Nenoff, Tina M.; Krumhansl, James L.; Garino, Terry J.; Ockwig, Nathan W.


    Materials and methods of making low-sintering-temperature glass waste forms that sequester radioactive iodine in a strong and durable structure. First, the iodine is captured by an adsorbant, which forms an iodine-loaded material, e.g., AgI, AgI-zeolite, AgI-mordenite, Ag-silica aerogel, ZnI.sub.2, CuI, or Bi.sub.5O.sub.7I. Next, particles of the iodine-loaded material are mixed with powdered frits of low-sintering-temperature glasses (comprising various oxides of Si, B, Bi, Pb, and Zn), and then sintered at a relatively low temperature, ranging from C. to C. The sintering converts the mixed powders into a solid block of a glassy waste form, having low iodine leaching rates. The vitrified glassy waste form can contain as much as 60 wt % AgI. A preferred glass, having a sintering temperature of C. (below the silver iodide sublimation temperature of C.) was identified that contains oxides of boron, bismuth, and zinc, while containing essentially no lead or silicon.

  6. Oxidative regeneration of toluene-saturated natural zeolite by gaseous ozone: the influence of zeolite chemical surface characteristics.


    Alejandro, Serguei; Valdés, Héctor; Manéro, Marie-Hélène; Zaror, Claudio A


    In this study, the effect of zeolite chemical surface characteristics on the oxidative regeneration of toluene saturated-zeolite samples is investigated. A Chilean natural zeolite (53% clinoptilolite, 40% mordenite and 7% quartz) was chemically modified by acid treatment with hydrochloric acid and by ion-exchange with ammonium sulphate. Thermal pre-treatments at 623 and 823K were applied and six zeolite samples with different chemical surface characteristics were generated. Chemical modification of natural zeolite followed by thermal out-gassing allows distinguishing the role of acidic surface sites on the regeneration of exhausted zeolites. An increase in Brønsted acid sites on zeolite surface is observed as a result of ammonium-exchange treatment followed by thermal treatment at 623K, thus increasing the adsorption capacity toward toluene. High ozone consumption could be associated to a high content of Lewis acid sites, since these could decompose ozone into atomic active oxygen species. Then, surface oxidation reactions could take part among adsorbed toluene at Brønsted acid sites and surface atomic oxygen species, reducing the amount of adsorbed toluene after the regenerative oxidation with ozone. Experimental results show that the presence of adsorbed oxidation by-products has a negative impact on the recovery of zeolite adsorption capacity. PMID:24794812

  7. Novel sorbent development and evaluation for the capture of krypton and xenon from nuclear fuel reprocessing off-gas stream

    SciTech Connect

    Garn, T.G.; Greenhalgh, M.R.; Law, J.D.


    The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbent development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, Idaho National Laboratory sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up. (authors)

  8. Growth of Megaspherulites In a Rhyolitic Vitrophyre

    NASA Technical Reports Server (NTRS)

    Smith, Robert K.; Tremallo, Robin L.; Lofgren, Gary E.


    Megaspherulites occur in the middle zone of a thick sequence of rhyolitic vitrophyre that occupies a small, late Eocene to early Oligocene volcanic-tectonic basin near Silver Cliff, Custer County, Colorado. Diameters of the megaspherulites range from 0.3 m to over 3.66 m, including a clay envelope. The megaspherulites are compound spherulites. consisting of an extremely large number (3.8 x 10(exp 9) to 9.9 x 10(exp 9)) of individual growth cones averaging 3 mm long by 1.25 mm wide at their termination. They are holocrystalline, very fine- to fine-grained, composed of disordered to ordered sanidine (orthoclase) and quartz, and surrounded by a thin K-feldspar, quartz rich rind, an inner clay layer with mordenite, and an outer clay layer composed wholly of 15 A montmorillonite. Whole rock analyses of the megaspherulites show a restricted composition from their core to their outer edge, with an average analyses of 76.3% SiO2, 0.34% CaO, 2.17% Na2O, 6.92% K2O, 0.83% H2O+ compared to the rhyolitic vitrophyre from which they crystallize with 71.07% SiO2, 0.57% CaO, 4.06% Na2O,4.l0% K2O, and 6.40% H2O+. The remaining oxides of Fe2O3 (total Fe), A12O3, MnO,MgO, TiO2, P2O5, Cr2O3, and trace elements show uniform distribution between the megaspherulites and the rhyolitic vitrophyre. Megaspherulite crystallization began soon after the rhyolitic lava ceased to flow as the result of sparse heterogeneous nucleation, under nonequilibrium conditions, due to a high degree of undercooling, delta T. The crystals grow with a fibrous habit which is favored by a large delta T ranging between 245 C and 295 C, despite lowered viscosity, and enhanced diffusion due to the high H2O content, ranging between 5% and 7%. Therefore, megaspherulite growth proceeded in a diffusion controlled manner, where the diffusion, rate lags behind the crystal growth rate at the crystal-liquid interface, restricting fibril lengths and diameters to the 10 micron to 15 micron and 3 micron and 8 micron ranges respectively. Once diffusion reestablishes itself at the crystallization front, a new nucleation event occurs at the terminated tips of the fibril cones and a new cone begins to develop with a similar orientation (small angle branching) to the earlier cones. During crystallization, these fibril cones impinge upon each other, resulting in fibril cone-free areas. These cone-free areas consist of coarser, fine-grained phases, dominated by quartz, which crystallized from the melt as it accumulated between the crystallizing K-feldspar fibrils of the cones. The anhydrous nature of the disordered to ordered sanidine (orthoclase) and quartz, suggests that water in the vitrophyre moved ahead of the crystallization front, resulting in a water rich fluid being enriched in Si, K, Na, Mg, Ca, Sr, Ba, and Y. The clay layers associated with the megaspherulites are therefore, the result of the deuteric alteration between the fractionated water and the vitrophyre, as indicated by the presence of the minerals mordenite and montmorillonite. This silica rich fluid also resulted in the total silicification of the megaspherulites within the upper 3 m of the vitrophyre.

  9. Methane to acetic acid over Cu-exchanged zeolites: mechanistic insights from a site-specific carbonylation reaction.


    Narsimhan, Karthik; Michaelis, Vladimir K; Mathies, Guinevere; Gunther, William R; Griffin, Robert G; Román-Leshkov, Yuriy


    The selective low temperature oxidation of methane is an attractive yet challenging pathway to convert abundant natural gas into value added chemicals. Copper-exchanged ZSM-5 and mordenite (MOR) zeolites have received attention due to their ability to oxidize methane into methanol using molecular oxygen. In this work, the conversion of methane into acetic acid is demonstrated using Cu-MOR by coupling oxidation with carbonylation reactions. The carbonylation reaction, known to occur predominantly in the 8-membered ring (8MR) pockets of MOR, is used as a site-specific probe to gain insight into important mechanistic differences existing between Cu-MOR and Cu-ZSM-5 during methane oxidation. For the tandem reaction sequence, Cu-MOR generated drastically higher amounts of acetic acid when compared to Cu-ZSM-5 (22 vs 4 ?mol/g). Preferential titration with sodium showed a direct correlation between the number of acid sites in the 8MR pockets in MOR and acetic acid yield, indicating that methoxy species present in the MOR side pockets undergo carbonylation. Coupled spectroscopic and reactivity measurements were used to identify the genesis of the oxidation sites and to validate the migration of methoxy species from the oxidation site to the carbonylation site. Our results indicate that the Cu(II)-O-Cu(II) sites previously associated with methane oxidation in both Cu-MOR and Cu-ZSM-5 are oxidation active but carbonylation inactive. In turn, combined UV-vis and EPR spectroscopic studies showed that a novel Cu(2+) site is formed at Cu/Al <0.2 in MOR. These sites oxidize methane and promote the migration of the product to a Brønsted acid site in the 8MR to undergo carbonylation. PMID:25562431

  10. Hydrothermal alteration in research drill hole Y-2, Lower Geyser Basin, Yellowstone National Park, Wyoming

    SciTech Connect

    Bargar, K.E.; Beeson, M.H.


    Y-2, a US Geological Survey research diamond-drill hole in Lower Geyser Basin, Yellowstone National Park, was drilled to a depth of 157.4 meters. The hole penetrated interbedded siliceous sinter and travertine to 10.2 m, glacial sediments of the Pinedale Glaciation interlayered with pumiceous tuff from 10.2 to 31.7 m, and rhyolitic lavas of the Elephant Back flow of the Central Plateau Member and the Mallard Lake Member of the Pleistocene Plateau Rhyolite from 31.7 to 157.4 m. Hydrothermal alteration is pervasive in most of the nearly continuous drill core. Rhyolitic glass has been extensively altered to clay and zeolite minerals (intermediate heulandite, clinoptilolite, mordenite, montmorillonite, mixed-layer illite-montmorillonite, and illite) in addition to quartz and adularia. Numerous veins, vugs, and fractures in the core contain these and other minerals: silica minerals (opal, ..beta..-cristobalite, ..cap alpha..-cristobalite, and chalcedony), zeolites (analcime, wairakite, dachiardite, laumontite, and yugawaralite), carbonates (calcite and siderite), clay (kaolinite and chlorite), oxides (hematite, goethite, manganite, cryptomelane, pyrolusite, and groutite), and sulfides (pyrhotite and pyrite) along with minor aegirine, fluorite, truscottite, and portlandite. Interbedded travertine and siliceous sinter in the upper part of the drill core indicate that two distinct types of thermal water are responsible for precipitation of the surficial deposits, and further that the water regime has alternated between the two thermal waters more than once since the end of the Pinedale Glaciation (approx. 10,000 years B.P.). Alternation of zones of calcium-rich and sodium- and potassium-rich hydrothermal minerals also suggests that the calcium-rich and sodium- and potassium-rich hydrothermal minerals also suggests that the water chemistry in this drill hole varies with depth.

  11. Adsorption Model for Off-Gas Separation

    SciTech Connect

    Veronica J. Rutledge


    The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior and feedback loops. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes will provide substantial cost savings and many technical benefits. The specific fuel cycle separation process discussed in this report is the off-gas treatment system. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed in gPROMS software. Inputs include gas stream constituents, sorbent, and column properties, equilibrium and kinetic data, and inlet conditions. It models dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions for a multiple component gas stream. The simulation outputs component concentrations along the column length as a function of time from which the breakthrough data is obtained. It also outputs temperature along the column length as a function of time and pressure drop along the column length. Experimental data will be input into the adsorption model to develop a model specific for iodine adsorption on silver mordenite as well as model(s) specific for krypton and xenon adsorption. The model will be validated with experimental breakthrough curves. Another future off-gas modeling goal is to develop a model for the unit operation absorption. The off-gas models will be made available via the server or web for evaluation by customers.

  12. Zeolitization of intracaldera sediments and rhyolitic rocks in the 1.25 Ma lake of Valles caldera, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Chipera, Steve J.; Goff, Fraser; Goff, Cathy J.; Fittipaldo, Melissa


    Quantitative X-ray diffraction analysis of about 80 rhyolite and associated lacustrine rocks has characterized previously unrecognized zeolitic alteration throughout the Valles caldera resurgent dome. The alteration assemblage consists primarily of smectite-clinoptilolite-mordenite-silica, which replaces groundmass and fills voids, especially in the tuffs and lacustrine rocks. Original rock textures are routinely preserved. Mineralization typically extends to depths of only a few tens of meters and resembles shallow "caldera-type zeolitization" as defined by Utada et al. [Utada, M., Shimizu, M., Ito, T., Inoue, A., 1999. Alteration of caldera-forming rocks related to the Sanzugawa volcanotectonic depression, northeast Honshu, Japan — with special reference to "caldera-type zeolitization." Resource Geol. Spec. Issue No. 20, 129-140]. Geology and 40Ar/ 39Ar dates limit the period of extensive zeolite growth to roughly the first 30 kyr after the current caldera formed (ca. 1.25 to 1.22 Ma). Zeolitic alteration was promoted by saturation of shallow rocks with alkaline lake water (a mixture of meteoric waters and degassed hydrothermal fluids) and by high thermal gradients caused by cooling of the underlying magma body and earliest post-caldera rhyolite eruptions. Zeolitic alteration of this type is not found in the later volcanic and lacustrine rocks of the caldera moat (? 0.8 Ma) suggesting that later lake waters were cooler and less alkaline. The shallow zeolitic alteration does not have characteristics resembling classic, alkaline lake zeolite deposits (no analcime, erionite, or chabazite) nor does it contain zeolites common in high-temperature hydrothermal systems (laumontite or wairakite). Although aerially extensive, the early zeolitic alteration does not form laterally continuous beds and are consequently, not of economic significance.

  13. Probing the relationship between silicalite-1 defects and polyol adsorption properties.


    Mallon, Elizabeth E; Jeon, Mi Young; Navarro, Marta; Bhan, Aditya; Tsapatsis, Michael


    The relationship between polyol adsorption affinity and silanol defect density was investigated through the development of vapor and aqueous adsorption isotherms on silicalite-1 materials which vary in structural and surface properties. Silicalite-1 crystals prepared through alkaline synthesis, alkaline synthesis with steaming post-treatment, and fluoride synthesis routes were confirmed as crystalline mordenite framework inverted (MFI) by SEM and XRD and were shown to contain ~8.5-0 silanol defects per unit cell by (29)Si MAS, (1)H MAS, and (1)H-(29)Si CPMAS NMR. A hysteresis in the Ar 87 K adsorption isotherm at 10(-3)P/P0 evolved with a decrease in silanol defects, and, through features in the XRD and (29)Si MAS NMR spectra, it is postulated that the hysteresis is the result of an orthorhombic-monoclinic symmetry shift with decreasing silanol defect density. Gravimetric and aqueous solution measurements reveal that propylene glycol adsorption at 333 K is promoted by silanol defects, with a maximum 20-fold increase observed for aqueous adsorption at ~10(-3) g/mL with an increase from ~0 to 8.5 silanols per unit cell. A comparison of vapor and aqueous propylene glycol adsorption isotherms on defect-free silicalite-1 at 333 K, both of which exhibit the Type-V character, indicates that water enhances adsorption by a factor of ~2 in the Henry's Law regime. Henry's constants for aqueous C2-C4 polyol adsorption (concentrations below 0.004 g/mL) at 298 K are shown to have a linear dependence on the silanol defect density, demonstrating that these molecules preferentially adsorb at silanol defects at dilute concentrations. This systematic study of polyol adsorption on silicalite-1 materials highlights the critical role of defects on adsorption of hydrophilic molecules and clearly details the effects of coadsorption of water, which can guide the selection of zeolites for separation of biomass-derived oxygenates. PMID:23635346

  14. Thorium removal by different adsorbents.


    Metaxas, Michail; Kasselouri-Rigopoulou, Vasilia; Galiatsatou, Polymnia; Konstantopoulou, Cathrine; Oikonomou, Dimitrios


    The removal of radiotoxic Th(4+) from aqueous solutions has been explored using two different groups of adsorptive materials (e.g. two activated carbons and four zeolites-two natural and two synthetic). The activated carbons were prepared from solvent extracted olive pulp (SEOP) and olive stone (OS) by a two-step physical activation method with steam. They were characterized by N(2) at 77K adsorption, Hg porosimetry and by determination of their iodine number. All carbons prepared are of the H-type (e.g. contain mainly basic surface oxides) confirmed by the results of the Boehm's method. The natural zeolites, clinoptilolite (NaCLI) and mordenite (NaMOR), were pretreated with Na(+) before the adsorption experiments, while the synthetic ones, NaX and NaA, were provided in their commercial sodium form. The natural zeolites, NaCLI and NaMOR, utilized 11.5 and 38.6% of the theoretical ion-exchange capacity, based on Al content, respectively, while NaX and NaA utilized 41.5 and 45.9%, respectively. The activated carbons showed better removal capability than NaCLI. NaMOR, showed comparable results to the carbon originated from OS, but lower removal capability than the carbon originated from SEOP. The synthetic zeolites showed the highest removal ability for thorium ions due to their increased ion-exchange capacity because of their cleaner and larger framework channels and their higher number of ion-exchange sites. The carbons adsorption capacity mainly depends on the content and nature of functional surface groups. The adsorption data were fitted to Langmuir and Freundlich models. The former achieved best fits and was further applied to obtain the respective Langmuir constant and maximum adsorption capacity for each system. PMID:12573830

  15. Sorption of cesium and strontium from concentrated brines by backfill barrier materials

    SciTech Connect

    Winslow, C D


    The sorption of radionuclides from potentially intruding groundwater at a nuclear waste repository is a major chemical function of backfill barriers. In this study, various materials (including clays, zeolites and an inorganic ion exchanger) were screened for the sorption of the fission products cesium and strontium in concentrated brines. Representative brines A and B for the Waste Isolation Pilot Plant (WIPP), a proposed radioactive waste repository and test facility in bedded salt were used. Sorption properties were quantified using empirical distribution coefficients, k/sub d/. Of the materials examined, sodium titanate had the highest k/sub d/ for the sorption of Sr(II) in both brine A (k/sub d/ = 125 ml/g) and brine B(k/sub d/ = 500 to 600 ml/g). A mordenite-type zeolite was the most effective getter for Cs(I) in brine A (k/sub d = 27 ml/g), while illite yielded the highest k/sub d/ for Cs(I) in brine B (k/sub d/ = 115 ml/g). The relative merit of these k/sub d/ values is evaluated in terms of calculated estimates of breakthrough times for a backfill barrier containing the getter. Results show that a backfill mixture containing these getters is potentially an effective barrier to the migration of Sr(II) and Cs(I), although further study (especially for the sorption of cesium from brine A) is recommended. Initial mechanistic studies revealed competing ion effects which would support an ion exchange mechanism. K/sub d/'s were constant over a Sr(II) concentration range of 10/sup -11/ to 10/sup -5/ M and a Cs(I) concentration range of 10/sup -8/ to 10/sup -5/ M, supporting the choice of a linear sorption isotherm as a model for the results. Constant batch composition was shown to be attained within one week.

  16. Preliminary stratigraphic and petrologic characterization of core samples from USW-G1, Yucca Mountain, Nevada

    SciTech Connect

    Waters, A.C.; Carroll, P.R.


    Tuffs of the Nevada Test Site are currently under investigation to determine their potential for long-term storage of radioactive waste. As part of this program, hole USW-G1 was drilled to a depth of 6000 ft below the surface, in the central part of the Yucca Mountain area, Nevada Test Site, Nevada. Petrographic study of the USW-G1 core is presented in this report and shows the tuffs (which generally were variably welded ash flows) are partly recrystallized to a variety of secondary minerals. The important alteration products are zeolites (heulandite, clinoptilolite, mordenite and analcime), smectite clays with minor interstratified illite, albite, micas, potassium feldspar, and various forms of silica. Iijima`s zeolite zones I through IV of burial metamorphism can be recognized in the core. Zeolites are first observed at about the 1300-ft depth, and the high-temperature boundary of zeolite stability in this core occurs at about 4350 ft. Analcime persists, either metastably or as a retrograde mineral, deeper in the core. The oxidation state of Fe-Ti oxide minerals, through most of the core, increases as the degree of welding decreases, but towards the bottom of the hole, reducing conditions generally prevail. Four stratigraphic units transected by the core may be potentially favorable sites for a waste repository. These four units, in order of increasing depth in the core, are (1) the lower cooling unit of the Topopah Spring Member, (2) cooling unit II of the Bullfrog Member, (3) the upper part of the Tram tuff, and (4) the Lithic-rich tuff.

  17. The heat capacity of hydrous cordierite above 295 K

    NASA Astrophysics Data System (ADS)

    Carey, J. William


    The heat capacity of synthetic hydrous cordierite (Mg2Al4Si5O18·nH2O) has been determined by differential scanning calorimetry (DSC) from 295 to 425 K as a function of H2O content. Six samples with H2O contents ranging from 0 to 0.82 per formula unit were examined. The partial molar heat capacity of H2O in cordierite over the measured temperature interval is independent of composition and temperature within experimental uncertainty and is equal to 43.3 ±0.8 J/mol/ K. This value exceeds the molar heat capacity of gaseous H2O by 9.7 J/mol/K, but is significantly smaller than the heat capacity of H2O in several zeolites and liquid H2O. A statistical-mechanical model of the heat capacity of adsorbed gas species (Barrer 1978) is used to extrapolate the heat capacity of hydrous cordierite to temperatures greater than 425 K. In this model, the heat capacity of hydrous cordierite (Crd·nH2O) is represented as follows: Cp(Crd · nH2O) = Cp(Crd)+ n{Cp(H2O, gas)+ R(gas constant)} (1) An examination of calorimetric data for hydrous beryl, analcime, mordenite, and clinoptilolite (Hemingway et al. 1986; Johnson et al. 1982, 1991, 1992) demonstrates the general applicability of the statistical-mechanical model for the extrapolation of heat capacity data of zeolitic minerals. The heat capacity data for cordierite are combined with the data of Carey and Navrotsky (1992) to obtain the molar enthalpy of formation and enthalpy of hydration of hydrous cordierite as a function of temperature.

  18. Physical and chemical properties of zeolite minerals occurring at the Yucca Mountain Site

    SciTech Connect

    Smyth, J.R.


    Silica tuffs at Yucca Mountain, Nevada, are under investigation as potential host rocks for isolation of high and intermediate level radioactive wastes from commercial nuclear power generation. Non- welded and partially welded tuffs at this site may contain major amounts (up to 90%) of the zeolite minerals clinoptilolite, mordenite, and analcime. Densely welded tuffs which form the proposed repository horizon and some of the minor basaltic dikes at the site contain clinoptilolite or heulandite as fracture filling which limits the permeability of these rocks. The cation exchange properties of these zeolites allow them to form a natural sorptive barrier to the migration of radionuclides that may move as soluble cationic species in ground water. However, these zeolites are unstable at elevated temperatures and may breakdown either by dehydration at low water-vapor pressures or by mineralogical reaction to more stable phases at higher water-vapor pressures and at relatively low temperatures (80--100{degree}C). All the breakdown reactions occurring with increasing temperature result in significant volume reductions and evolution of fluids. Thus they may provide a pathway (shrinkage fractures) and a driving force (fluid pressure) for release of radionuclides to the biosphere if heat-generating wastes are emplaced in zeolite-rich horizons. The breakdown reactions and the sorptive properties both vary strongly with zeolite crystal chemistry, and for any given structure, with the exchangeable cations present in that structure. Thus an improved knowledge of the crystal chemistry of these zeolites, particularly clinoptilolite which has not been thoroughly studied due to a scarcity of adequate crystals, will allow improved models of radionuclide migration and a better evaluation of any potential hazards posed by breakdown of these highly temperature-sensitive minerals at the Yucca Mountain site. 38 refs., 5 figs., 2 tabs.

  19. Sorption of cesium and strontium by zeolite single crystals

    SciTech Connect

    Burns, R.G.; Wood, V.M.; Morgenstein, M.E.


    The aspect ratios of crystals of platey clinoptilolite and fibrous mordenite observed in mineral assemblages coating fractures through tuffs at Yucca Mountain, Nevada, influence the sorption properties of these two zeolites. The crystallographic dependencies of cation exchange reactions have been demonstrated in clinoptilolite by reacting CsCl with oriented single crystals mounted on (100), (010), (001) and (101) faces. Competing cation exchange reactions involving Cs{sup +}, Sr{sup 2+} and Ba{sup 2+}, as well as Cs{sup +} in NaCl or NaHCO{sub 3} solutions, were performed on the oriented zeolite crystals. Reactions were carried out at 60{degrees}C for 1 to 8 weeks in a shaking water bath with dissolved metal chloride solutions ranging in concentrations from 1M to 10{sup {minus}4}M. Electron microprobe analyses were performed on the surfaces of the reacted zeolite crystals. In clinoptilolite, cation exchange is initially retarded on (010) faces which are nominal to the one direction (parallel to the b-axis) along which channels do not exist in the clinoptilolite structure. This orientation effect was particularly severe for Sr, concentrations of which on (010) faces remained 90% lower than values measured on other crystal faces even when reaction times exceeded 2 months. In competition with Sr and Ba, the uptake of Cs into clinoptilolite was lowered significantly (and vice versa for Ba and Sr), particularly in the presence of Ba. The addition of 1M NaCl did not significantly affect the relative concentrations of these competing cations in reacted zeolite crystals. In NaHCO{sub 3} solutions, however, the Cs uptake was lowered significantly. Although clinoptilolite has a very high selectivity for Cs{sup +} compared to other cations, competition with Sr{sup 2+} and Ba{sup 2+} reduces the concentration of Cs{sup +} exchanged into this zeolite. 31 refs., 11 figs.

  20. Petrology of samples from drill holes USW H-3, H-4, and H-5, Yucca Mountain, Nevada

    SciTech Connect

    Levy, S.S.


    Hydrology drill holes USW H-3, H-4, and H-5, on the crest and eastern flank of southern Yucca Mountain, Nevada, penetrated a sequence of altered Tertiary pyroclastic rocks consisting of the Paintbrush Tuff, tuff of Calico Hills, and Crater Flat Tuff, in order of increasing age and depth. Multiple episodes of zeolitization are tentatively recognized in the upper Crater Flat Tuff and overlying units from petrologic study of drill bit cuttings and sidewall samples and from studies of samples from other drill holes. The earliest recognized episode was shallow burial diagenesis of Crater Flat Tuff and possibly tuff of Calico Hills before emplacement of the overlying Paintbrush Tuff. Heulandite-clinoptilolite and opal are the main alteration products. A second episode involved crystallization of heulandite and smectite during late-stage devitrification of vitrophyre in the Topopah Spring Member of the Paintbrush Tuff. A third episode of zeolitization, perhaps in part contemporaneous with the second, occurred approximately while the Paintbrush Tuff and older units were being displaced by tilting. Alteration products from this episode of burial diagenesis are clinoptilolite and minor smectite. Mordenite is an additional alteration product in some intervals. A nonlithophysal interval in the lower Topopah Spring tuff is under consideration for placement of a high-level nuclear waste repository. Heulandite and smectite in the altered vitrophyre directly beneath this interval could be the first highly sorptive minerals encountered by contaminated fluid escaping from a repository. Therefore, sorptive properties and thermochemical stability of these specific minerals should be further investigated. 50 references, 16 figures, 1 table.

  1. Fracture coatings in Topopah Spring Tuff along drill hole wash

    SciTech Connect

    Carlos, B.A.; Chipera, S.J.; Bish, D.L.


    Fracture-lining minerals are being studied as part of site characterization to determine the suitability of Yucca Mountain, Nevada as a potential high level nuclear waste repository. Fracture coatings in the Paintbrush Group provide information on potential flow paths above the water table both toward and away from the potential repository and provide information on the distribution of fracture-lining minerals needed to model thermal effects of waste emplacement. Fracture coatings within the predominantly non-zeolitic Paintbrush Group vary both with depth and laterally across Yucca Mountain, whereas fracture coatings in tuffs below the Paintbrush Group are related to the mineralogy of the tuffs and follow a consistent pattern of distribution with predominantly quartz, calcite, and manganese oxides in the devitrified intervals and mordenite and clinoptilolite in the zeolitic intervals. The zeolites stellerite and heulandite are more abundant in fractures in the Topopah Spring Tuff in drill holes USW G-1 and UE-25 a{number_sign}l, located along Drill Hole Wash (at the northern end of Yucca Mountain) than in core from other parts of Yucca Mountain. Buesch et al. (2) present evidence for a complex fault system along Drill Hole Wash. To investigate the possibility that the abundant fracture-lining zeolites in USW G-1 and UE-25 a{number_sign} 1 are related to the Drill Hole Wash fault, the Topopah Spring Tuff was examined in drill cores from USW UZ-14, USW G-1, USW NRG-7/7a, and UE-25 a{number_sign}l.

  2. Nevada Nuclear Waste Storage Investigation. Quarterly report, October 1-December 31, 1983

    SciTech Connect


    A one-dimensional model of flow through a representative column at Yucca Mountain is being used to gain familiarity with physical phenomena that ultimately must be modeled in two dimensions to effectively predict compliance with Environmental Protection Agency standards. Analytical tools that are available for analysis of engineered systems are being evaluated for development of methods to express permeability as a function of average fluid flux per crack and number of cracks per unit area. Characterization studies continued on samples of densely-welded devitrified Topopah Spring tuff collected from the proposed repository horizon. Waste-form testing included parametric testing of DHLW glass, permeability testing of tuff reaction vessels, and testing of prototype stainless steel reaction vessels. Spent-fuel cladding test studied release rates into solution of cesium, plutonium, and uranium through machined slits and laser hole defects. General corrosion rates are being determined for various stainless steels and a high-nickel alloy. Plain carbon steels and other ferrous alloys are being tested for use as borehole liners. Structural analyses of canisters indicate that the axial force necessary to exceed the yield strength of the canister wall is nine times the canister weight; this is considered a satisfactory safety margin for lifting and retrieval operations. The most significant sorbing minerals present in Yucca Mountain tuffs are clinoptilolite, heulandite, mordenite, and montmorillonite. High-temperature x-ray diffraction experiments were performed on samples of Yucca Mountain drill core in order to determine the response of cristobalite, clinoptilolite, and heulandite to the heated near-field environment.

  3. Zeolite-supported Metal Complexes of Rhodium and of Ruthenium: a General Synthesis Method Influenced by Molecular Sieving Effects

    SciTech Connect

    Ogino, I.; Chen, C; Gates , B


    A general method for synthesis of supported metal complexes having a high degree of uniformity is presented, whereby organometallic precursors incorporating acetylacetonate (C{sub 5}H{sub 7}O{sub 2}{sup -}, acac) ligands react with zeolites incorporating OHgroups near Al sites. The method is illustrated by the reactions of Rh(acac)(CO){sub 2} and of cis-Ru(acac){sub 2}({eta}{sup 2}-C{sub 2}H{sub 4}){sub 2} with zeolites slurried in n-pentane at room temperature. The zeolites were H-Beta, H-SSZ-42, H-Mordenite, and HZSM-5. Infrared (IR) and extended X-ray absorption fine structure spectra of the zeolites incorporating rhodium complexes indicate the formation of Rh(CO){sub 2}{sup +} bonded near Al sites; similar results have been reported for the formation of zeolite-supported Rh({eta}{sup 2}-C{sub 2}H{sub 4}){sup 2+} from Rh(acac)({eta}{sup 2}-C{sub 2}H{sub 4}){sub 2}. IR spectra of the supported rhodiumgem-dicarbonyls include sharp, well-resolved {nu}{sub CO} bands, demonstrating that the sites surrounding each metal complex are nearly equivalent. The frequencies of the {nu}{sub CO} bands show how the composition of the zeolite influences the bonding of the supported species, demonstrating subtle differences in the roles of the zeolite as ligands. When the zeolite has pore openings larger than the critical diameter of the precursor organometallic compound, the latter undergoes facile transport into the interior of the zeolite, so that a uniform distribution of the supported species results, but when the precursors barely fit through the zeolite apertures, the mass transport resistance is significant and the supported metal complexes are concentrated near the pore mouths.

  4. Further studies of effects of sodium aluminosilicate on egg shell quality.


    Roland, D A


    Five experiments were conducted using 36 dietary treatments to compare chloride salts and HCl as chemical sources of Cl for the adjustment of dietary Cl when using sodium aluminosilicate (SAS), to compare SAS to natural zeolites (clinoptilolite and mordenite), and to determine the appropriate level of dietary SAS for optimum egg specific gravity. The methods of Na and Cl correction used in the various treatments included altering the levels of NaCl, calcium chloride (CaCl2), potassium chloride (KCl), magnesium chloride (MgCl2), iron chloride (FeCl3), or hydrochloric acid (HCl). Experimental diets were fed for 6 to 8 wk. Results of all experiments (except Experiment 2) indicated that the addition of SAS to layer diets improved egg specific gravity and that correction for Na by removal of NaCl and the addition of HCl was not necessary for SAS to be effective. No beneficial effects of dietary SAS on egg specific gravity were observed when Na and Cl corrections were made using CaCl2, KCl, MgCl2, or FeCl3. The feeding of SAS has no influence on egg production in Experiments 1 and 3 but significantly improved egg production in Experiment 4, when it was added to diets containing 2.75% Ca. An adverse effect on production of feeding SAS was observed, especially at the higher levels of SAS in Experiments 2 and 5. In general, SAS tended to reduce feed consumption, with no effect on egg weight. It was concluded that .75% SAS will improve egg specific gravity approximately 1 to 3 units and that correction for Na was not necessary for SAS to be effective. PMID:2841658

  5. Metal immobilization in soils using synthetic zeolites.


    Oste, Leonard A; Lexmond, Theo M; Van Riemsdijk, Willem H


    In situ immobilization of heavy metals in contaminated soils is a technique to improve soil quality. Synthetic zeolites are potentially useful additives to bind heavy metals. This study selected the most effective zeolite in cadmium and zinc binding out of six synthetic zeolites (mordenite-type, faujasite-type, zeolite X, zeolite P, and two zeolites A) and one natural zeolite (clinoptilolite). Zeolite A appeared to have the highest binding capacity between pH 5 and 6.5 and was stable above pH 5.5. The second objective of this study was to investigate the effects of zeolite addition on the dissolved organic matter (DOM) concentration. Since zeolites increase soil pH and bind Ca, their application might lead to dispersion of organic matter. In a batch experiment, the DOM concentration increased by a factor of 5 when the pH increased from 6 to 8 as a result of zeolite A addition. A strong increase in DOM was also found in the leachate of soil columns, particularly in the beginning of the experiment. This resulted in higher metal leaching caused by metal-DOM complexes. In contrast, the free ionic concentration of Cd and Zn strongly decreased after the addition of zeolites, which might explain the reduction in metal uptake observed in plant growth experiments. Pretreatment of zeolites with acid (to prevent a pH increase) or Ca (to coagulate organic matter) suppressed the dispersion of organic matter, but also decreased the metal binding capacity of the zeolites due to competition of protons or Ca. PMID:12026084

  6. Distribution and chemistry of fracture-lining minerals at Yucca Mountain, Nevada

    SciTech Connect

    Carlos, B.A.; Chipera, S.J.; Bish, D.L.


    Yucca Mountain, a >1.5-km-thick sequence of tuffs and subordinate lavas in southwest Nevada, is being investigated as a potential high-level nuclear waste repository site. Fracture-lining minerals have been studied because they may provide information on past fluid transport and because they may act as natural barriers to radionuclide migration within the fractures. Cores from seven drill holes have been studied to determine the distribution and chemistry of minerals lining fractures at Yucca Mountain. Fracture-lining minerals in tuffs of the Paintbrush Group, which is above the static water level at Yucca Mountain, are highly variable in distribution, both vertically and laterally across the mountain, with the zeolites mordenite, heulandite, and stellerite widespread in fractures even though the tuff matrix is generally devitrified and nonzeolitic. Where heulandite occurs as both tabular and prismatic crystals in the same fracture, the two morphologies have different compositions, suggesting multiple episodes of zeolite formation within the fractures. Manganese-oxide minerals within the Paintbrush Group are rancieite and lithiophorite. The silica polymorphs (quartz, tridymite, and cristobalite) generally exist in fractures where they exist in the matrix, suggesting that they formed in the fractures at the same time they formed in the matrix. Fluorite, calcite, and opal occur over tridymite in some lithophysal cavities. Calcite also occurs over zeolites in fractures unrelated to lithophysal cavities and is often the youngest mineral in a given fracture. The clays smectite, palygorskite, and sepiolite are common in fractures in the Paintbrush Group in drill core USW GU-3; smectite is an abundant fracture-coating mineral in all drill cores at Yucca Mountain.

  7. Adsorption of Amino Acids (Ala, Cys, His, Met) on Zeolites: Fourier Transform Infrared and Raman Spectroscopy Investigations

    NASA Astrophysics Data System (ADS)

    Carneiro, Cristine E. A.; de Santana, Henrique; Casado, Clara; Coronas, Joaquin; Zaia, Dimas A. M.


    Minerals adsorb more amino acids with charged R-groups than amino acids with uncharged R-groups. Thus, the peptides that form from the condensation of amino acids on the surface of minerals should be composed of amino acid residues that are more charged than uncharged. However, most of the amino acids (74%) in today's proteins have an uncharged R-group. One mechanism with which to solve this paradox is the use of organophilic minerals such as zeolites. Over the range of pH (pH 2.66-4.50) used in these experiments, the R-group of histidine (His) is positively charged and neutral for alanine (Ala), cysteine (Cys), and methionine (Met). In acidic hydrothermal environments, the pH could be even lower than those used in this study. For the pH range studied, the zeolites were negatively charged, and the overall charge of all amino acids was positive. The conditions used here approximate those of prebiotic Earth. The most important finding of this work is that the relative concentrations of each amino acid (X=His, Met, Cys) to alanine (X/Ala) are close to 1.00. This is an important result with regard to prebiotic chemistry because it could be a solution for the paradox stated above. Pore size did not affect the adsorption of Cys and Met on zeolites, and the Si/Al ratio did not affect the adsorption of Cys, His, and Met. ZSM-5 could be used for the purification of Cys from other amino acids (Student-Newman-Keuls test, p<0.05), and mordenite could be used for separation of amino acids from each other (Student-Newman-Keuls test, p<0.05). As shown by Fourier transform infrared (FT-IR) spectra, Ala interacts with zeolites through the group, and methionine-zeolite interactions involve the COO, , and CH3 groups. FT-IR spectra show that the interaction between the zeolites and His is weak. Cys showed higher adsorption on all zeolites; however, the hydrophobic Van der Waals interaction between zeolites and Cys is too weak to produce any structural changes in the Cys groups (amine, carboxylic, sulfhydryl, etc.); thus, the FT-IR and Raman spectra are the same as those of solid Cys.

  8. A call to expand regulation to all carcinogenic fibrous minerals

    NASA Astrophysics Data System (ADS)

    Baumann, F.; Steele, I.; Ambrosi, J.; Carbone, M.


    The regulatory term "asbestos" groups only the six fibrous minerals that were commercially used among approximately 400. The carcinogenicity of these six regulated minerals has been largely demonstrated and is related to fiber structure, fiber length/diameter ratio, and bio-persistence. From a public perception, the generic term "asbestos" refers to the fibrous minerals that cause asbestosis, mesothelioma and other cancers. However, other non-regulated fibrous minerals are potentially as dangerous as the regulatory asbestos because they share similar physical and chemical properties, epidemiological studies have demonstrated their relationship with asbestos-related diseases, and both in vitro and in vivo experiments have established the toxicity of these minerals. For example, the non-regulated asbestiform winchite and richterite minerals that contaminated the vermiculite mined from Libby, Montana, (USA) were associated with mesothelioma, lung cancer and asbestosis observed among the area's residents and miners. Many other examples of non-regulated carcinogenic fibrous minerals include, but are not limited to, antigorite, arfvedsonite, balangeroite, carlosturanite, erionite, fluoro-edenite, hornblende, mordenite, palygorskite, and sepiolite. To propose a regulatory definition that would provide protection from all carcinogenic fibers, we have conducted an interdisciplinary literature review to compare the characteristics of "asbestos" and of non-regulated mineral fibers that relate to carcinogenicity. We specifically studied two non-regulated fibrous minerals that are associated with asbestos-related diseases: the serpentine antigorite and the zeolite erionite. Both examples underscore the problem of regulation based on commercial, rather than scientific principles: 1) the occurrence of fibrous antigorite in materials used to pave roads has been correlated with high mesothelioma rates in New Caledonia. Antigorite was also the cause of asbestosis in Poland, and in vitro and in vivo studies have shown its toxic and carcinogenic properties; 2) the carcinogenic properties of erionite have been demonstrated, and erionite has been associated with a mesothelioma epidemic in Anatolia, Turkey. Erionite is also widespread in areas of north central USA, where it is contained in gravel paving stone, and is cause for concern due to increased commercial traffic. Numerous studies have shown that non-regulated fibrous materials pose similar health hazards to regulated "asbestos". An increase in human activities in areas where these fibrous minerals are present, such as in surficial rock and soil, will result in the generation of airborne dust, exposing people to carcinogenic fibers. The current limited regulation leads people to believe that only the six mineral fibers referred to as "asbestos" are dangerous. We propose that fibrous minerals should be regulated as a single group, as they have similar deleterious effects on the human body. Regulations would be simplified and more effective if they embrace all carcinogenic fibrous minerals.

  9. Quantification of unsaturated-zone alteration and cation exchange in zeolitized tuffs at Yucca Mountain, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Vaniman, David T.; Chipera, Steve J.; Bish, David L.; Carey, J. William; Levy, Schön S.


    Zeolitized horizons in the unsaturated zone (UZ) at Yucca Mountain, Nevada, USA, are an important component in concepts for a high-level nuclear waste repository at this site. The use of combined quantitative X-ray diffraction and geochemical analysis allows measurement of the chemical changes that accompanied open-system zeolitization at Yucca Mountain. This approach also provides measures of the extent of chemical migration that has occurred in these horizons as a result of subsequent cation exchange. Mass-balance analysis of zeolitized horizons with extensive cation exchange (drill hole UZ-16) and with only minimal cation exchange (drill hole SD-9) shows that Al is essentially immobile. Although zeolitization occurred in an open system, the mass transfer of constituents other than water is relatively small in initial zeolitization, in contrast to the larger scales of cation exchange that can occur after zeolites have formed. Cation exchange in the clinoptilolite ± mordenite zeolitized horizons is seen in downward-diminishing concentration gradients of Ca, Mg, and Sr exchanged for Na and (to lesser extent) K. Comparison with data from drill hole SD-7, which has multiple zeolitized horizons above the water table, shows that the upper horizons accumulate Ca, Mg, and Sr to such an extent that transport of these elements to the deepest UZ zeolitized horizon can be blocked. Quantitative analysis of zeolite formation yields insight into processes that are implied from laboratory studies and modeling efforts but are otherwise unverified at the site. Such analysis also yields information not provided by or contradicted by some models of flow and transport. The results include the following: (1) evidence of effective downward flow through zeolitic horizons despite the low permeability of these horizons, (2) evidence that alkaline-earth elements accumulated by zeolites are mostly derived from eolian materials in surface soils, (3) validation of the very effective operation of unsaturated zeolitic horizons as cation-exchange barriers, (4) independent support of models that indicate average water infiltration rates of ˜5 mm/yr over the past 10 Ma, and (5) evidence that the presence or absence of cation-exchange profiles can be used to identify those portions of the site where transport through the UZ is concentrated. This last point is relevant to repository design because a knowledge of where transport takes place can be used to advantage in defining the boundaries of a repository such that high-flux portions of the site can be avoided.

  10. Structure-property relationship of metal-organic frameworks (MOFs) and physisorbed off-gas radionuclides.

    SciTech Connect

    Nenoff, Tina Maria; Chupas, Peter J. (Argonne National Laboratory); Garino, Terry J.; Rodriguez, Mark Andrew; Chapman, Karena W. (Argonne National Laboratory); Sava, Dorina Florentina


    We report on the host-guest interactions between metal-organic frameworks (MOFs) with various profiles and highly polarizable molecules (iodine), with emphasis on identifying preferential sorption sites in these systems. Radioactive iodine 129I, along with other volatile radionuclides (3H, 14C, Xe and Kr), represents a relevant component in the off-gas resulted during nuclear fuel reprocessing. Due to its very long half-life, 15.7 x 106 years, and potential health risks in humans, its efficient capture and long-term storage is of great importance. The leading iodine capture technology to date is based on trapping iodine in silver-exchanged mordenite. Our interests are directed towards improving existent capturing technologies, along with developing novel materials and alternative waste forms. Herein we report the first study that systematically monitors iodine loading onto MOFs, an emerging new class of porous solid-state materials. In this context, MOFs are of particular interest as: (i) they serve as ideal high capacity storage media, (ii) they hold potential for the selective adsorption from complex streams, due to their high versatility and tunability. This work highlights studies on both newly developed in our lab, and known highly porous MOFs that all possess distinct characteristics (specific surface area, pore volume, pore size, and dimension of the window access to the pore). The materials were loaded to saturation, where elemental iodine was introduced from solution, as well as from vapor phase. Uptakes in the range of {approx}125-150 wt% I2 sorbed were achieved, indicating that these materials outperform all other solid adsorbents to date in terms of overall capacity. Additionally, the loaded materials can be efficiently encapsulated in stable waste forms, including as low temperature sintering glasses. Ongoing studies are focused on gathering qualitative information with respect to localizing the physisorbed iodine molecules within the frameworks: X-ray single-crystal analyses, in conjunction with high pressure differential pair distribution function (d-PDF) studies aimed to identify preferential sites in the pores, and improve MOFs robustness. Furthermore, durability studies on the iodine loaded MOFs and subsequent waste forms include thermal analyses, SEM/EDS elemental mapping, and leach-durability testing. We anticipate for this in-depth analysis to further aid the design of advanced materials, capable to address major hallmarks: safe capture, stability and durability over extended timeframes.

  11. Neutron Scattering Studies of Fundamental Processes in Earth Materials, Final Report

    SciTech Connect

    McCall, K. R.


    The aim of this work was to use neutron scattering techniques to explore the dynamics and structure of water in rock samples. The dynamics of water in rock at low (residual) saturation are directly related to the transport properties of fluids within the host rock. The structure of water in rock may be related to the elastic behavior of the rock, which in many cases is nonlinear and hysteretic. Neutron scattering techniques allow us to study water in intact rock samples at both the molecular and microstructural scales. Our samples were Berea sandstone, Calico Hills and Prow Pass tuffs from Yucca Mountain, NV, and pure samples of the tuff constituents, specifically mordenite and clinoptilolite. We chose Berea sandstone because its macroscopic elastic behavior is known to be highly unusual, and the microscopic mechanisms producing this behavior are not understood. We chose Yucca Mountain tuff, because the fluid transport properties of the geologic structure at Yucca Mountain, Nevada could be relevant to the performance of a high level nuclear waste repository at that site. Neutron scattering methods have a number of properties that are extremely useful for the study of earth materials. In contrast to X-rays, neutrons have very low absorption cross-sections for most elements so that entire bulk samples of considerable size can be 'illuminated' by the neutron beam. Similarly, samples that are optically opaque can be readily investigated by inelastic neutron scattering techniques. Neutrons are equally sensitive to light atoms as to heavy atoms, and can, for example, readily distinguish between Al and Si, neighboring atoms in the periodic table that are difficult to tell apart by X-ray diffraction. Finally, neutrons are particularly sensitive to hydrogen and thus can be used to study the motions, both vibrational and diffusive, of H-containing molecules in rocks, most notably of course, water. Our studies were primarily studies of guest molecules (in our case, water) in a host material (rock). We used three neutron scattering techniques: quasielastic neutron scattering (QNS), inelastic neutron scattering (INS), and neutron powder diffraction (NPD). We used QNS to measure the translational and rotational diffusional motion of water in rock; INS vibrational spectra allowed us to determine the nature of residual water in a sample (disassociated, chemisorbed, or physisorbed); and NPD measurements may allow us to determine the locations of residual water molecules (and the associated dynamic disorder), and thereby understand the binding of water molecules in our samples.

  12. Spectroscopic study of the dehydration and/or dehydroxylation of phyllosilicate and zeolite minerals

    NASA Astrophysics Data System (ADS)

    Che, Congcong; Glotch, Timothy D.; Bish, David L.; Michalski, Joseph R.; Xu, Wenqian


    Phyllosilicates on Mars mapped by infrared spectroscopic techniques could have been affected by dehydration and/or dehydroxylation associated with chemical weathering in hyperarid conditions, volcanism or shock heating associated with meteor impact. The effects of heat-induced dehydration and/or dehydroxylation on the infrared spectra of 14 phyllosilicates from four structural groups (kaolinite, smectite, sepiolite-palygorskite, and chlorite) and two natural zeolites are reported here. Pressed powders of size-separated phyllosilicate and natural zeolite samples were heated incrementally from 100°C to 900°C, cooled to room temperature, and measured using multiple spectroscopic techniques: midinfrared (400-4000 cm-1) attenuated total reflectance, midinfrared reflectance (400-1400 cm-1), and far-infrared reflectance (50-600 cm-1) spectroscopies. Correlated thermogravimetric analysis and X-ray diffraction data were also acquired in order to clarify the thermal transformation of each sample. For phyllosilicate samples, the OH stretching (˜3600 cm-1), OH bending (˜590-950 cm-1), and/or H2O bending (˜1630 cm-1) bands all become very weak or completely disappear upon heating to temperatures > 500°C. The spectral changes associated with SiO4 vibrations (˜1000 cm-1 and ˜500 cm-1) show large variations depending on the compositions and structures of phyllosilicates. The thermal behavior of phyllosilicate IR spectra is also affected by the type of octahedral cations. For example, spectral features of Al3+-rich smectites are more stable than those of Fe3+-rich smectites. The high-temperature (>800°C) spectral changes of trioctahedral Mg2+-rich phyllosilicates such as hectorite, saponite, and sepiolite result primarily from crystallization of enstatite. Phyllosilicates with moderate Mg2+ concentration (e.g., palygorskite, clinochlore) and dioctahedral montmorillonites (e.g., SAz-1 and SCa-3) with partial Mg2+-for-Al3+ substitution all have new spectral feature developed at ˜900 cm-1 upon heating to 800°C. Compared with phyllosilicates, spectral features of two natural zeolites, clinoptilolite and mordenite, are less affected by thermal treatments. Even after heating to 900°C, the IR spectral features attributed to Si (Al)-O stretching and bending vibration modes do not show significant differences from those of unheated zeolites.

  13. Geological, mineralogical and geochemical characteristics of zeolite deposits associated with borates in the Bigadiç, Emet and Kirka Neogene lacustrine basins, western Turkey

    NASA Astrophysics Data System (ADS)

    Gündogdu, M. N.; Yalçin, H.; Temel, A.; Clauer, N.


    The Bigadiç, Emet and Kirka lacustrine basins of western Turkey may be considered as Tibet-type graben structures that were developed during the Miocene within the Izmir-Ankara suture zone complex. The volcanic-sedimentary successions of these basins are made up of mudstone, carbonate (limestone and dolomite) and detrital rocks, and also of crystal or vitric tuffs about 135 to 200 m thick. The Degirmenli (Bigadiç), Emirler (Bigadiç) Köpenez (Emet) and Karaören (Kirka) tuffs constituting the zeolite deposits are situated beneath four borate deposits (colemanite, ulexite, borax). The most abundant diagenetic silicate minerals are K- and Ca-clinoptilolites in the zeolite deposits, and Li-rich trioctahedral smectites (stevensite, saponite and hectorite) and K-feldspar in the borate deposits. In the Degirmenli, Emirler, Köpenez and Karaören deposits, the following diagenetic facies were developed from rhyolitic glasses rich in K and poor in Na: (glass+smectite), (K-clinoptilolite+opal-CT), (Ca-clinoptilolite+K-feldspar±analcime± quartz) and (K-feldspar+analcime+quartz). K-feldspar which is also rarely associated with phillipsite (Karaören) and heulandite (Degirmenli and Karaören), succeeds clinoptilolite and precedes analcime in these diagenetic facies where dioctahedral smectites, opal-CT and quartz are the latest minerals. No diagenetic transformations exist between clinoptilolite, K-feldspar and analcime that were formed directly from glass. The lateral facies distributions resulted from the differences in salinity and pH of pore water trapped during deposition of the tuffs, but vertical distributions in vitric tuffs seem to have been controlled by the glass/liquid ratio of the reacting system and the permeability or diffusion rate of alkali elements. The Bigadiç, Emet and Kirka zeolite deposits which were formed in saline basins rich in Ca and Mg ions, show similar chemical changes, i.e. loss of alkalis and gain in alkaline-earth elements that have taken place during the diagenetic transformation of rhyolitic glasses to dioctahedral smectites or clinoptilolite. The absence of sodic zeolites such as mordenite, erionite, chabazite and silica-rich phillipsite is mainly due to the very high K/Na ratio of the starting materials rather than initial alkaline conditions or high Na content in lake waters.

  14. Long-term product consistency test of simulated 90-19/Nd HLW glass

    NASA Astrophysics Data System (ADS)

    Gan, X. Y.; Zhang, Z. T.; Yuan, W. Y.; Wang, L.; Bai, Y.; Ma, H.


    Chemical durability of 90-19/Nd glass, a simulated high-level waste (HLW) glass in contact with the groundwater was investigated with a long-term product consistency test (PCT). Generally, it is difficult to observe the long term property of HLW glass due to the slow corrosion rate in a mild condition. In order to overcome this problem, increased contacting surface ( S/ V = 6000 m -1) and elevated temperature (150 °C) were employed to accelerate the glass corrosion evolution. The micro-morphological characteristics of the glass surface and the secondary minerals formed after the glass alteration were analyzed by SEM-EDS and XRD, and concentrations of elements in the leaching solution were determined by ICP-AES. In our experiments, two types of minerals, which have great impact on glass dissolution, were found to form on 90-19/Nd HLW glass surface when it was subjected to a long-term leaching in the groundwater. One is Mg-Fe-rich phyllosilicates with honeycomb structure; the other is aluminosilicates (zeolites). Mg and Fe in the leaching solution participated in the formation of phyllosilicates. The main components of phyllosilicates in alteration products of 90-19/Nd HLW glass are nontronite (Na 0.3Fe 2Si 4O 10(OH) 2·4H 2O) and montmorillonite (Ca 0.2(Al,Mg) 2Si 4O 10(OH) 2·4H 2O), and those of aluminosilicates are mordenite ((Na 2,K 2,Ca)Al 2Si 10O 24·7H 2O)) and clinoptilolite ((Na,K,Ca) 5Al 6Si 30O 72·18H 2O). Minerals like Ca(Mg)SO 4 and CaCO 3 with low solubility limits are prone to form precipitant on the glass surface. Appearance of the phyllosilicates and aluminosilicates result in the dissolution rate of 90-19/Nd HLW glass resumed, which is increased by several times over the stable rate. As further dissolution of the glass, both B and Na in the glass were found to leach out in borax form.

  15. Malignant mesothelioma induced by asbestos and zeolite in the mouse peritoneal cavity.


    Suzuki, Y; Kohyama, N


    The carcinogenicity of asbestos (amosite and chrysotile) and zeolite (fibrous erionite, mordenite, and synthetic zeolite 4A) were studied in the peritoneum of 586 BALB/C male mice after a single intraperitoneal or intraabdominal wall injection. As controls, 182 mice treated with and without saline solution were used. Both asbestos types and fibrous erionite frequently produced malignant peritoneal tumors after long latency; tumors developed in 93 of 394 animals (23.6%) treated with asbestos or fibrous erionite 7 months or more after administration. All of the induced peritoneal tumors were intimately associated with marked peritoneal fibrosis, in which asbestos or erionite fibers were regularly detected. Histopathologically, 83 (73 fibrous, 9 biphasic, and 1 epithelial) of 93 were consistent with malignant mesotheliomas. Other tumors consisted of 6 plasmacytomas, 1 histiocytoma, 1 liposarcoma, 1 osteosarcoma, and 1 adenocarcinoma of the pancreas. Two of the cases of mesotheliomas were associated with plasmacytoma. In many instances, the primary site of the mesotheliomas seemed to be multiple, the favorite sites being the omentum, mesentery, serosae of the gastrointestinal and genital organs, the diaphragm, the capsule of the liver and spleen, and the abdominal wall peritoneum. In these cases, asbestos or erionite-tissue burden followed by fibrosis was frequently observed. In addition to the 93 peritoneal tumors, 3 extraperitoneal tumors (1 fibrosarcoma and 2 rhabdomyosarcomas) were induced by amosite which was probably accidentally injected into the extraperitoneal connective tissue and the striated muscle tissue of the abdominal wall, respectively. These three tumors were also intimately associated with focal fibrosis in which amosite fibers were detected. Among the three different types of zeolite, only fibrous erionite showed striking carcinogenicity and marked fibrogenicity. The erionite-induced mesotheliomas were similar to those induced by asbestos in exhibiting long latency, in gross appearance, in histology, and in close association with fibrosis. Long-term persistence of asbestos or fibrous erionite around progenitor cells of the induced tumors and the consequent fibrosis seemed to be an important precondition of the malignant transformation of the progenitor cells. PMID:6092048

  16. Tephra Deposits in Lake Mead Miocene Sediments: Characteristics, Chronology, and Sources

    NASA Astrophysics Data System (ADS)

    Dunbar, N. W.; McIntosh, W. C.; Umhoefer, P. J.; Lamb, M. A.; Hickson, T.


    The Lake Mead extensional domain, in the east central Basin and Range Province, contains Miocene basin sediments that have undergone complex faulting and deformation. A rich tephra record in the basin sediments provides a chronological and correlation framework that can help understand the depositional and deformational processes during Miocene and post-Miocene time. The tephra layers, up to 10s of cm thick, range from white deposits containing glassy shards to bright green layers in which all original glass has been altered to the zeolite mordenite. The tephra layers range from aphyric to extremely crystal rich. Many appear to be primary ashfall deposits based on depositional geometry, uniform crystal size, and good preservation of glass or relict glass shard structures. However, some layers show evidence of reworking as evidenced by variable crystal size, and the presence of plutonic feldspar and rock fragments. Electron microprobe analyses of preserved glass reveal that compositions of almost all of the tephra layers are high silica rhyolite, typically with FeO and CaO contents of 1wt% or lower. Where present, the glass in the tephra layers is invariably hydrated, consistent with their age, but although the alkali concentrations in the glass are likely to have been modified by the hydration process, other elements, particularly Fe, Ca, Ti, and Cl appear to yield robust concentrations. The compositions of individual layers with respect to these elements are very homogeneous, based on analysis of 20-30 glass shards per sample, and can be used to correlate individual tephra layers between different parts of the sedimentary basin, although a number of layers have very similar compositions. Some higher Fe rhyolites/dacites (up to 4 wt.% FeO) are also observed. Crystal-bearing tephra layers contain some combination of quartz, one or two feldspars (typically a chemically uniform sanidine and a range of plagioclase compositions), biotite, amphibole, and magnetite. Variation is observed in the crystal size (close to 1 mm down to 10 um) and content (close to 50% to aphyric) of different tephra layers. For correlation of tephra layers with no glass, precisely measured K content of sanidine, along with the range of Ba concentration has proved to be most useful, although this criteria is more robust when suggesting non-correlations, because there appear to be instances where different eruptions have identical sanidine composition. 40Ar/39Ar age determinations on sanidine crystals reveal a large age range in tephra layers from the Lake Mead sedimentary basin, with the oldest tephra erupted at 22.88×0.02 Ma and the youngest at 12.93×0.02. Other tephra have ages of 13.20×0.04, 13.43×0.02, 14.20×0.05, 14.62×0.01, 15.09×0.02, 15.35×0.06, 15.67×0.07, 16.29×0.11, and 18.41×0.04. The chronology, geochemistry and coarse grain size of many of the tephra layers suggest derivation from either the Southwest Nevada Volcanic Field or the Caliente Caldera area. The tephra erupted at 12.93×0.02 is chronologically and geochemically similar to the very large Topopah Tuff eruption, and the 18.41×0.04 tephra may be related to the Caliente Caldera Hiko Canyon/Racer Canyon events. However, a set of finer grained, Fe-rich and/or anorthoclase-bearing tephra layers may have been erupted further afield, likely being related to Miocene Yellowstone plume track volcanism.

  17. Final report on the safety assessment of aluminum silicate, calcium silicate, magnesium aluminum silicate, magnesium silicate, magnesium trisilicate, sodium magnesium silicate, zirconium silicate, attapulgite, bentonite, Fuller's earth, hectorite, kaolin, lithium magnesium silicate, lithium magnesium sodium silicate, montmorillonite, pyrophyllite, and zeolite.


    Elmore, Amy R


    This report reviews the safety of Aluminum, Calcium, Lithium Magnesium, Lithium Magnesium Sodium, Magnesium Aluminum, Magnesium, Sodium Magnesium, and Zirconium Silicates, Magnesium Trisilicate, Attapulgite, Bentonite, Fuller's Earth, Hectorite, Kaolin, Montmorillonite, Pyrophyllite, and Zeolite as used in cosmetic formulations. The common aspect of all these claylike ingredients is that they contain silicon, oxygen, and one or more metals. Many silicates occur naturally and are mined; yet others are produced synthetically. Typical cosmetic uses of silicates include abrasive, opacifying agent, viscosity-increasing agent, anticaking agent, emulsion stabilizer, binder, and suspending agent. Clay silicates (silicates containing water in their structure) primarily function as adsorbents, opacifiers, and viscosity-increasing agents. Pyrophyllite is also used as a colorant. The International Agency for Research on Cancer has ruled Attapulgite fibers >5 microm as possibly carcinogenic to humans, but fibers <5 microm were not classified as to their carcinogenicity to humans. Likewise, Clinoptilolite, Phillipsite, Mordenite, Nonfibrous Japanese Zeolite, and synthetic Zeolites were not classified as to their carcinogenicity to humans. These ingredients are not significantly toxic in oral acute or short-term oral or parenteral toxicity studies in animals. Inhalation toxicity, however, is readily demonstrated in animals. Particle size, fibrogenicity, concentration, and mineral composition had the greatest effect on toxicity. Larger particle size and longer and wider fibers cause more adverse effects. Magnesium Aluminum Silicate was a weak primary skin irritant in rabbits and had no cumulative skin irritation in guinea pigs. No gross effects were reported in any of these studies. Sodium Magnesium Silicate had no primary skin irritation in rabbits and had no cumulative skin irritation in guinea pigs. Hectorite was nonirritating to the skin of rabbits in a Draize primary skin irritation study. Magnesium Aluminum Silicate and Sodium Magnesium Silicate caused minimal eye irritation in a Draize eye irritation test. Bentonite caused severe iritis after injection into the anterior chamber of the eyes of rabbits and when injected intralamellarly, widespread corneal infiltrates and retrocorneal membranes were recorded. In a primary eye irritation study in rabbits, Hectorite was moderately irritating without washing and practically nonirritating to the eye with a washout. Rats tolerated a single dose of Zeolite A without any adverse reaction in the eye. Calcium Silicate had no discernible effect on nidation or on maternal or fetal survival in rabbits. Magnesium Aluminum Silicate had neither a teratogenic nor adverse effects on the mouse fetus. Female rats receiving a 20% Kaolin diet exhibited maternal anemia but no significant reduction in birth weight of the pups was recorded. Type A Zeolite produced no adverse effects on the dam, embryo, or fetus in either rats or rabbits at any dose level. Clinoptilolite had no effect on female rat reproductive performance. These ingredients were not genotoxic in the Ames bacterial test system. In primary hepatocyte cultures, the addition of Attapulgite had no significant unscheduled DNA synthesis. Attapulgite did cause significant increases in unscheduled DNA synthesis in rat pleural mesothelial cells, but no significant increase in sister chromosome exchanges were seen. Zeolite particles (<10 microm) produced statistically significant increase in the percentage of aberrant metaphases in human peripheral blood lymphocytes and cells collected by peritoneal lavage from exposed mice. Topical application of Magnesium Aluminum Silicate to human skin daily for 1 week produced no adverse effects. Occupational exposure to mineral dusts has been studied extensively. Fibrosis and pneumoconiosis have been documented in workers involved in the mining and processing of Aluminum Silicate, Calcium Silicate, Zirconium Silicate, Fuller's Earth, Kaolin, Montmorillonite, Pyrophyllite, and Zeolite. The Cosmetic Ingre

  18. Geothermometry, geochronology, and mass transfer associated with hydrothermal alteration of a rhyolitic hyaloclastite from Ponza Island, Italy

    USGS Publications Warehouse

    Altaner, S.P.; Ylagan, R.F.; Savin, S.M.; Aronson, J.L.; Belkin, H.E.; Pozzuoli, A.


    A rhyolitic hyaloclastite from Ponza Island, Italy, was hydrothermally altered, producing four distinct alteration zones based on X-ray diffraction mineralogy and field textures: (1) nonpervasive argillic zone; (2) propylitic zone; (3) silicic zone; and (4) sericitic zone. The unaltered hyaloclastite is volcanic breccia with clasts of vesiculated obsidian in a matrix of predominantly pumice lapilli. Incomplete alteration of the hyaloclastite resulted in the nonpervasive argillic zone, characterized by smectite and disordered opal-CT. The other three zones exhibit more complete alteration of the hyaloclastite. The propylitic zone is characterized by mixed-layer illite-smectite (I-S) with 10 to 85% I, mordenite, opal-C, and authigenic K-feldspar (akspar). The silicic zone is characterized by I-S with ???90% I, pure illite, quartz, akspar, and occasional albite. The sericitic zone consists primarily of I-S with ???66% I, pure illite, quartz, and minor akspar and pyrite. K/Ar dates of I-S indicate hydrothermal alteration occurred at 3.38 ?? 0.08 Ma. Oxygen isotope compositions of I-S systematically decrease from zones 1 to 4. In the argillic zone, smectite has ??18 O values of 21.7 to 22.0??? and I-S from the propylitic, silicic, and sericitic zones ranges from 14.5 to 16.3???, 12.5 to 14.0???, and 8.6 to 11.9???, respectively. ??18 O values for quartz from the silicic and sericitic zones range from 12.6 to 15.9???. By use of isotope fractionation equations and data from authigenic quartz-hosted primary fluid inclusions, alteration temperatures ranged from 50 to 65 ??C for the argillic zone, 85 to 125 ??C for the propylitic zone, 110 to 210 ??C for the silicic zone, and 145 to 225 ??C for the sericitic zone. Fluid inclusion data and calculated ??18 O water values indicate that hydrothermal fluids were seawater dominated. Mass-transfer calculations indicate that hydrothermal alteration proceeded in a relatively open chemical system and alteration in the sericitic zone involved the most extensive loss of chemical species, especially Si. Systematic gains in Mg occur in all alteration zones as a result of I-S clay mineral formation, and systematic losses of Na, Ca, and K occur in most zones. With the exception of Ca, calculations of mass transfer associated with hydrothermal alteration on Ponza agree with chemical fluxes observed in laboratory experiments involving hydrothermal reactions of rhyolite and seawater. The anomalous Ca loss at Ponza may be due to hydrothermal formation of anhydrite and later low-temperature dissolution. On the basis of Mg enrichments derived from circulating seawater, we estimate the following minimum water/rock ratios: 9, 3, 6, and 9 for the argillic, propylitic, silicic, and sericitic zones, respectively. Hydrothermal fluid pH for the propylitic and silicic zones was neutral to slightly basic and relatively acidic for the sericitic zone as a result of condensation of carbonic and perhaps other acids. Copyright ?? 2003 Elsevier Science Ltd.

  19. Erionite and other fibrous zeolites in volcanic environments: the need for a risk assessment in Italy

    NASA Astrophysics Data System (ADS)

    Cavallo, A.; Rimoldi, B.


    In many European countries in the '90s there was a significant increase in mortality linked to mesothelioma, a cancer of the lung, involving pleural, pericardial and peritoneal mesothelial cells, which unfortunately has no cure at present. Though most of these cases have been attributed to t asbestos, in Italy at least 17% of cases of mesothelioma is still not fully explained. In the years between 1990 and 2000, it was discovered that the inhalation of erionite fibers (a zeolite group mineral, that can be found in altered volcanic rocks) was the cause of a regional epidemic of mesothelioma in some villages of Cappadocia (Turkey). Erionite, in fact, was recently included in Class 1 (highly carcinogenic) by the World Health Organization, up to 800 times more carcinogenic than asbestos; on the other hand, little is known about the toxicity of other fibrous zeolites, commonly intergrown with erionite, such as offretite and mordenite. Erionite was reported in different regions of Italy; nevertheless, a systematic mapping of its distribution, the quantification of its presence in rocks and data about airborne fibers are still missing. We carried out first preliminary sampling in Veneto, in Tertiary volcanic rocks, mainly hydrothermally altered basalts. The first mineralogical investigations by means of XRPD, SEM-EDS and OM confirmed the presence of small amounts of erionite and abundant fibrous offretite, in vugs of basaltic rocks. Intergrowths and overgrowths with other fibrous minerals are quite common, and the morphological-chemical similarities among these zeolites pose a special analytical problem, with the need of combining different techniques. Our first findings, combined with the fact that zeolites are important industrial minerals, emphasize the need of a risk assessment in Italy and Europe, because there are no systematic studies on the distribution of erionite or similar fibrous zeolites in the environment. The knowledge of the epidemiology of mesothelioma linked to erionite in Italy is extremely scarce: INAIL, through its database of occupational diseases, can provide essential information for epidemiological research. An effective risk assessment in Italy will require coordinated actions from government agencies, local health authorities, Universities and research centers, in order to record the actual presence of fibrous zeolites, recognizing mineral species and quantifying their abundance in rock deposits. The different geological conditions through time of volcanic deposits will be compared with an updated "database" on the physical-chemical-geological conditions of formation of zeolites. In sites where the presence of fibrous zeolites has been validated by laboratory tests, we will proceed with accurate field surveys and sampling campaigns, in order to determine detailed geological-stratigraphic and structural features, and resolving precisely the thickness, areal extent and volume of lithostratigraphic units containing these minerals. These data will be entered into a GIS to produce a result that can be used immediately and in the long-period by research institutes, local authorities and regional agencies for environmental protection. In sites where the presence of hazardous fibrous minerals has been validated, we will plan airborne fibers sampling campaigns, and we will assess the extent of airborne dispersion produced by natural agents and by man activity. In the case that these sites host active mining or quarrying activities, we will quantify the airborne fibers contamination at workplaces and propose measures for environmental risk mitigation.

  20. Development of Composite Adsorbents for LLW Treatment and Their Adsorption Properties for Cs and Sr - 13127

    SciTech Connect

    Susa, Shunsuke; Mimura, Hitoshi [Dept. of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Aramaki-Aza-Aoba 6-6-01-2, Sendai, 980-8579 (Japan)] [Dept. of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Aramaki-Aza-Aoba 6-6-01-2, Sendai, 980-8579 (Japan); Ito, Yoshiyuki; Saito, Yasuo [Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, 2-4 Shirakata Shirone, Naka-gun, Ibaraki, 319-1195 (Japan)] [Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, 2-4 Shirakata Shirone, Naka-gun, Ibaraki, 319-1195 (Japan)


    In this study, the composite adsorbents (KCoFC-NM (NM: natural mordenite), KCoFC-SG (SG: porous silica gel), AMP-SG and so on) were prepared by impregnation-precipitation methods. As for the distribution properties, the largest K{sub d,Cs} value of 3.8 x 10{sup 4} cm{sup 3}/g was obtained for KCoFC-SG (Davi.) composite. KCoFC-SG (NH, MB5D) and T-KCFC also had relatively large K{sub d,Cs} values above 1.0 x 10{sup 4} cm{sup 3}/g. The uptake rate of Cs{sup +} ions was examined by batch method. KCoFC-SG (NH, MB5D) and AMP-SG (Davi.) had relatively large uptake rate of Cs{sup +}, and the uptake attained equilibrium within 1 h. The maximum uptake capacity of Cs{sup +} ions was estimated to be above 0.5 mmol/g for KCoFC-NM and KCoFC-CP composites. KCoFC-X composite had a relatively large uptake capacity of Cs{sup +} ions (0.23 mmol/g > 0.17 mmol/g (T-KCFC)) and this composite also had a selectivity towards Sr{sup 2+} ions; KCoFC-X is effective adsorbent for both Cs{sup +} and Sr{sup 2+} ions. The largest value of K{sub d,Sr} was estimated to be 218 cm{sup 3}/g for titanic acid-PAN. Titanic acid-PAN had the largest uptake rate of Sr{sup 2+} ions, and the uptake attained equilibrium within 8 h. Adsorbability of other nuclides was further examined by batch method. All adsorbents had adsorbability for Rb{sup +} and RuNO{sup 3+} ions. KCoFC-SG (NH), KCoFC-CP and T-KCFC had higher selectivity towards Cs{sup +} than other adsorbents; these adsorbents had adsorbability to Cs{sup +} ions even in the presence of Ba{sup 2+}, Ca{sup 2+} and Mg{sup 2+} ions. The separation factor of K{sub d,Sr}/K{sub d,Ba} for titanic acid-PAN was about 1, indicating that the K{sub d,Sr} for titanic acid-PAN tends to decrease with Ba{sup 2+} concentration. As for the breakthrough properties, the largest 5 % breakpoint and 5 % breakthrough capacity of Cs{sup +} ions were estimated to be 47.1 cm{sup 3} and 0.07 mmol/g for the column of KCoFC-SG (NH), respectively. The order of 5 % breakthrough capacity of Cs{sup +} is as follows; KCoFC-SG (NH) > KCoFC-NM > KCoFC-SG (Q-10) > T-KCFC > KCoFC-X > KCoFC-CP. From the results of batch and column experiments, the composite adsorbent of KCoFC-SG (NH) was effective for the uptake of Cs{sup +} ions, and KCoFC-X composite was useful for the uptake of both Cs{sup +} and Sr{sup 2+} ions. The estimation of irradiation stability and the uptake properties using the actual wastes are further essential for the practical operation. (authors)

  1. Hanford Site Secondary Waste Roadmap

    SciTech Connect

    Westsik, Joseph H.


    Summary The U.S. Department of Energy (DOE) is making plans to dispose of 54 million gallons of radioactive tank wastes at the Hanford Site near Richland, Washington. The high-level wastes and low-activity wastes will be vitrified and placed in permanent disposal sites. Processing of the tank wastes will generate secondary wastes, including routine solid wastes and liquid process effluents, and these need to be processed and disposed of also. The Department of Energy Office of Waste Processing sponsored a meeting to develop a roadmap to outline the steps necessary to design the secondary waste forms. Representatives from DOE, the U.S. Environmental Protection Agency, the Washington State Department of Ecology, the Oregon Department of Energy, Nuclear Regulatory Commission, technical experts from the DOE national laboratories, academia, and private consultants convened in Richland, Washington, during the week of July 21-23, 2008, to participate in a workshop to identify the risks and uncertainties associated with the treatment and disposal of the secondary wastes and to develop a roadmap for addressing those risks and uncertainties. This report describes the results of the roadmap meeting in Richland. Processing of the tank wastes will generate secondary wastes, including routine solid wastes and liquid process effluents. The secondary waste roadmap workshop focused on the waste streams that contained the largest fractions of the 129I and 99Tc that the Integrated Disposal Facility risk assessment analyses were showing to have the largest contribution to the estimated IDF disposal impacts to groundwater. Thus, the roadmapping effort was to focus on the scrubber/off-gas treatment liquids with 99Tc to be sent to the Effluent Treatment Facility for treatment and solidification and the silver mordenite and carbon beds with the captured 129I to be packaged and sent to the IDF. At the highest level, the secondary waste roadmap includes elements addressing regulatory and performance requirements, waste composition, preliminary waste form screening, waste form development, process design and support, and validation. The regulatory and performance requirements activity will provide the secondary waste-form performance requirements. The waste-composition activity will provide workable ranges of secondary waste compositions and formulations for simulants and surrogates. Preliminary waste form screening will identify candidate waste forms for immobilizing the secondary wastes. The waste form development activity will mature the waste forms, leading to a selected waste form(s) with a defensible understanding of the long-term release rate and input into the critical decision process for a secondary waste treatment process/facility. The process and design support activity will provide a reliable process flowsheet and input to support a robust facility design. The validation effort will confirm that the selected waste form meets regulatory requirements. The final outcome of the implementation of the secondary waste roadmap is the compliant, effective, timely, and cost-effective disposal of the secondary wastes. The work necessary to address the programmatic, regulatory, and technical risks and uncertainties identified through the Secondary Waste Roadmap Workshop are assembled into several program needs elements. Programmatic/Regulatory needs include: • Select and deploy Hanford tank waste supplemental treatment technology • Provide treatment capability for secondary waste streams from tank waste treatment • Develop consensus on secondary waste form acceptance. Technology needs include: • Define secondary waste composition ranges and uncertainties • Identify and develop waste forms for secondary waste immobilization and disposal • Develop test methods to characterize secondary waste form performance. Details for each of these program elements are provided.

  2. Stratigraphy, structure, and some petrographic features of Tertiary volcanic rocks in the USW G-2 drill hole, Yucca Mountain, Nye County, Nevada

    USGS Publications Warehouse

    Maldonado, Florian; Koether, S.L.


    A continuously cored drill hole designated as USW G-2, located at Yucca Mountain in southwestern Nevada, penetrated 1830.6 m of Tertiary volcanic strata composed of abundant silicic ash-flow tuffs, minor lava and flow breccias, and subordinate volcaniclastic rocks. The volcanic strata penetrated are comprised of the following in descending order: Paintbrush Tuff (Tiva Canyon Member, Yucca Mountain Member, bedded tuff, Pah Canyon Member, and Topopah Spring Member), tuffaceous beds of Calico Hills, Crater Flat Tuff (Prow Pass Member, Bullfrog Member, and Tram unit), lava and flow breccia (rhyodacitic), tuff of Lithic Ridge, bedded and ash-flow tuff, lava and flow breccia (rhyolitic, quartz latitic, and dacitic), bedded tuff, conglomerate and ash-flow tuff, and older tuffs of USW G-2. Comparison of unit thicknesses at USW G-2 to unit thicknesses at previously drilled holes at Yucca Mountain indicate the following: (1) thickening of the Paintbrush Tuff members and tuffaceous beds of Calico Hills toward the northern part of Yucca Mountain; (2) thickening of the Prow Pass Member but thinning of the Bullfrog Member and Tram unit; (3) thinning of the tuff of Lithic Ridge; (4) presence of approximately 280 m of lava and flow breccia not previously penetrated by any drill hole; and (5) presence of an ash-flow tuff unit at the bottom of the drill hole not previously intersected, apparently the oldest unit penetrated at Yucca Mountain to date. Petrographic features of some of the units include: (1) decrease in quartz and K-feldspar and increases in biotite and plagioclase with depth in the tuffaceous beds of Calico Hills; (2) an increase in quartz phenocrysts from the top to the bottom members of the Crater Flat Tuff; (3) a low quartz content in the tuff of Lithic Ridge, suggesting tapping of the magma chamber at quartz-poor levels; (4) a change in zeolitic alteration from heulandite to clinoptilolite to mordenite with increasing depth; (5) lavas characterized by a rhyolitic top and dacitic base, suggesting reverse compositional zoning; and (6) presence of hydrothermal mineralization in the lavas that could be related to an intrusive under Yucca Mountain or to volcanism associated with the Timber Mountain-Claim Canyon caldera complex. A fracture analysis of the core resulted n tabulation of 7,848 fractures, predominately open and high angle. The fractures were filled or coated with material in various combinations and include the following in decreasing abundance: CaCo3, iron oxides and hydroxides, SiO2, manganese oxides and hydroxides, clays and zeolites. An increase in the intensity of fracturing can be correlated with the following: (1) densely welded zones, (2) lithophysal zones, (3) vitrophyre, (4) silicified zones, (5) fault zones, and (6) cooling joints. Numerous fault zones were penetrated by the drill hole, predominately in the lithophysal zone of the Topopah Spring Member and below the tuffaceous beds of Calico Hills. The faults are predominately high angle with both a vertical and lateral component. Three major faults were penetrated, two of which intersect the ground surface, with displacements of at least 20 m and possibly as much as 52 m. The faults and some fractures are probably related to the regional doming of the area associated with the volcanism-tectonism of the Timber Mountain-Claim Canyon caldera complex, and to Basin and Range tectonism.

  3. Colloid-Facilitated Transport of Low-Solubility Radionuclides: A Field, Experimental, and Modeling Investigation

    SciTech Connect

    Kersting, A B; Reimus, P W; Abdel-Fattah, A; Allen, P G; Anghel, I; Benedict, F C; Esser, B K; Lu, N; Kung, K S; Nelson, J; Neu, M P; Reilly, S D; Smith, D K; Sylwester, E R; Wang, L; Ware, S D; Warren, RG; Williams, R W; Zavarin, M; Zhao, P


    For the last several years, the Underground Test Area (UGTA) program has funded a series of studies carried out by scientists to investigate the role of colloids in facilitating the transport of low-solubility radionuclides in groundwater, specifically plutonium (Pu). Although the studies were carried out independently, the overarching goals of these studies has been to determine if colloids in groundwater at the NTS can and will transport low-solubility radionuclides such as Pu, define the geochemical mechanisms under which this may or may not occur, determine the hydrologic parameters that may or may not enhance transport through fractures and provide recommendations for incorporating this information into future modeling efforts. The initial motivation for this work came from the observation in 1997 and 1998 by scientists from Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL) that low levels of Pu originally from the Benham underground nuclear test were detected in groundwater from two different aquifers collected from wells 1.3 km downgradient (Kersting et al., 1999). Greater than 90% of the Pu and other radionuclides were associated with the naturally occurring colloidal fraction (< 1 micron particles) in the groundwater. The colloids consisted mainly of zeolite (mordenite, clinoptilolite/heulandite), clays (illite, smectite) and cristobalite (SiO{sub 2}). These minerals were also identified as alteration mineral components in the host rock aquifer, a rhyolitic tuff. The observation that Pu can and has migrated in the subsurface at the NTS has forced a rethinking of our basic assumptions regarding the mechanical and geochemical transport pathways of low-solubility radionuclides. If colloid-facilitated transport is the primary mechanism for transporting low-solubility radionuclides in the subsurface, then current transport models based solely on solubility arguments and retardation estimates may underestimate the flux and rate of Pu transport. Currently, the role of colloids in facilitating the transport of low-solubility radionuclides is not understood well enough to effectively model contaminant transport. A fundamental understanding of the role that colloids may or may not play in the transport of low-solubility radionuclides is needed in order to predict contaminant transport, design remediation strategies and provide risk assessments. Ryan and Elimelech (1996) have argued that in order to evaluate the potential for colloids to transport radionuclides, several criteria must be met: (1) colloids must exist and be stable, (2) radionuclides must have a high sorption affinity for the colloids, and (3) colloids must be transported. Only then can we understand the conditions where colloids can and will facilitate transport of radionuclides. In this report we compile the results from a series of field, laboratory and modeling studies funded by the UGTA program in order to evaluate the potential for colloids to transport low-solubility radionuclides at the NTS. The studies presented in this report fall under three general areas of investigation: Characterization of natural colloids in groundwater at NTS, Pu sorption/desorption experiments on colloid minerals identified in NTS groundwater, and Transport of Pu-doped colloids through fractured rock core. Chapter 1 is a background review of our current understanding of colloids and their role in facilitating contaminant transport. Chapters 2, and 3 are field studies that focused on characterizing natural colloids at different hydrologic environments at the NTS and address Ryan and Elimelech's (1996) first criteria regarding the existence and stability of colloids. Chapters 4, 5 and 6 are laboratory experimental studies that investigate the sorption/desorption behavior of Pu and other low-solubility radionuclides on colloid minerals observed in NTS groundwater. These studies evaluate Ryan and Elimelech's (1996) second criteria that the affinity of Pu for colloids must be high. Chapters 7, 8, 9, and 10 are laboratory studies that focus

  4. Megabreccias, Early Lakes, and Duration of Resurgence Recorded in Valles Caldera, New Mexico

    NASA Astrophysics Data System (ADS)

    Goff, F.; Goff, C. J.; Phillips, E. H.; Kyle, P. R.; McIntosh, W. C.; Chipera, S.; Gardner, J. N.


    New 1:24,000 scale geologic mapping combined with previous and ongoing geoscientific studies are revealing significant new findings on intracaldera stratigraphy and structure, initial development of intracaldera lakes, and the duration of resurgence within the ca. 1.25 Myr Valles caldera. The caldera is about 22 km in diameter and contains a resurgent dome that is a northeast-trending oval roughly11 x 9 km in dimension. Maximum resurgence (uplift) was more than 1000 m, during which the dome split into three principal segments herein named the Redondo Peak, Redondo Border, and Valle San Luis segments. These segments are separated from each other by long, narrow grabens herein called the Redondo Creek, Jaramillo Creek, and San Luis Creek grabens. Differential uplift accompanied by intense faulting has exposed large, rootless megabreccia (Mbx) blocks composed of precaldera rocks submerged in densely welded, intracaldera upper Bandelier Tuff. The largest Mbx blocks are roughly 0.2 to 2.0 km long and consist primarily of Abo Fm (Permian), Gallisteo Fm (?) (Eocene), Santa Fe Group (Miocene), Paliza Canyon Fm (late Miocene) and lower Bandelier Tuff (ca. 1.62 Ma). Deep geothermal wells drilled within the Redondo Creek graben from 1970 to 1983 penetrate as much as 2032 m of intracaldera Bandelier Tuff and post-Bandelier rocks before intersecting caldera floor rocks (average = 1646 m, n = 23 wells). Evidence that a lake developed within the caldera depression is preserved in finely laminated lacustrine beds and rhyolitic, hydromagmatic tuffs that overlie intracaldera Bandelier Tuff on the resurgent dome. The lacustrine rocks contain organic remains and the hydromagmatic tuffs contain accretionary lapilli. In some locations, lacustrine and hydromagmatic rocks are interbedded. Earliest post-caldera rhyolite lavas (Deer Canyon Member) display occasional pepperite and pillow textures. Many lavas contain significant amounts of fine, opalized flow breccia indicating interaction with water. Associated Deer Canyon tuffs are altered to variable mixtures of silica, smectite, clinoptilolite, mordenite and other phases. Slightly younger rhyolite lava flows (Redondo Creek Member) occasionally display upper flow surfaces in which cracks are filled with zeolitized mud. The combined geologic evidence indicates that the initial Valles lake was widespread and relatively shallow, containing waters with neutral to alkaline pH and relatively high K/Na ratios. 40Ar/39Ar dating of sanidine separates from Deer Canyon and Redondo Creek rhyolites yields ages that are statistically indistinguishable from the age of underlying upper Bandelier Tuff. These results indicate that the intracaldera lake developed immediately after the caldera formed and that the resurgent dome rose out of a lake. Most resurgence occurred after Redondo Creek rhyolite was erupted because the unit is intensely faulted and associated lacustrine beds are now as much as 500 m above the undeformed caldera moat. In contrast, rhyolite lavas of the first post-caldera moat complex, Cerro del Medio (about 1.22 Ma) show no apparent deformation or uplift due to resurgence. Within the errors of the various 40Ar/39Ar dates, the apparent duration of resurgence was no longer than about 50,000 years yielding a minimum resurgence rate of about 2 cm/y.