Science.gov

Sample records for morphology enhances escape

  1. Wind enhanced planetary escape: Collisional modifications

    NASA Technical Reports Server (NTRS)

    Curtis, S. A.; Hartle, R. E.

    1976-01-01

    The problem of thermal escape is considered in which both the effects of thermospheric winds at the exobase and collisions below the exobase are included in a Monte Carlo calculation. The collisions are included by means of a collisional relaxation layer of a background gas which models the transition region between the exosphere and the thermosphere. The wind effects are considered in the limiting cases of vertical and horizontal flows. Two species are considered: terrestrial hydrogen and terrestrial helium. In the cases of terrestrial hydrogen the escape fluxes were found to be strongly filtered or throttled by collisions at high exospheric temperatures. The model is applied to molecular hydrogen diffusing through a methane relaxation layer under conditions possible on Titan. The results are similar to the case of terrestrial hydrogen with wind enhanced escape being strongly suppressed by collisions. It is concluded that wind enhanced escape is not an important process on Titan.

  2. Wind and Rotation Enhanced Escape From the Early Terrestrial Atmospheres

    NASA Astrophysics Data System (ADS)

    Hartle, R. E.

    2001-05-01

    The earliest atmospheres of the terrestrial planets are thought to have been hotter, have stronger winds and rotate faster than atmospheres of today. Since these primitive atmospheres were weakly bound, they evolved rapidly because atmospheric escape was very strong, often referred to as "blowoff." Such escape has been treated as hydrodynamic, transonic flow, similar to solar wind flow dynamics. However, in many cases the outward flow is hydrodynamic at low altitudes only to become collisionless at higher altitudes, well before sonic speeds are ever attained. Recent models dealing with such transition from fluid to kinetic flow have applied the Jeans escape flux at the exobase. This approach has lead to escape rates that are too low due to the fact that thermospheric winds and planetary rotation increase escape fluxes considerably over the corresponding Jeans fluxes (1). In particular, for a given density and temperature at the exobase, the escape flux increases as the wind speed and/or the rotation rate increase. Also, for a given wind speed and rotation rate, the escape flux enhancement over the Jeans flux increases as the mass of an escaping constituent increases, an important factor in isotope fractionation, especially the enrichment of deuterium on Mars. Accounting for a range of possible temperatures, thermospheric wind speeds and planetary rotation rates in the primitive atmospheres of the terrestrial planets, estimates are made of light constituent escape flux increases over the corresponding Jeans fluxes. (1) Hartle, R. E. and H. G. Mayr, J. Geophys. Res., 81, 1207, 1976.

  3. Wind and Rotation Enhanced Escape from the Early Terrestrial Atmospheres

    NASA Technical Reports Server (NTRS)

    Hartle, Richard E.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The earliest atmospheres of the terrestrial planets are thought to have been hotter, have stronger winds and rotate faster than atmospheres of today. Since these primitive atmospheres were weakly bound, they evolved rapidly because atmospheric escape was very strong, often referred to as "blowoff." Such escape has been treated as hydrodynamic, transonic flow; similar to solar wind flow dynamics. However, in many cases, although the outward flow is hydrodynamic at low altitudes, it becomes collisionless at higher altitudes, before sonic speeds are ever attained. Recent models dealing with the transition from fluid to kinetic flow have applied the Jeans escape flux at the exobase. This approach leads to escape rates that are too low, because thermospheric winds and planetary rotation are known to increase the escape flux above the corresponding Jeans flux. In particular, for a given density and temperature at the exobase, the escape flux increases as the wind speed and/or the rotation rate increase. Also, for a given wind speed and rotation rate, the escape flux enhancement over the Jeans flux increases as the mass of an escaping constituent increases, an important factor in isotope fractionation, especially the enrichment of deuterium on Mars. Accounting for a range of possible temperatures, thermospheric wind speeds and planetary rotation rates in the primitive atmospheres of the terrestrial planets, estimates are made of light constituent escape flux increases over the corresponding Jeans fluxes.

  4. Enhancing endosomal escape for nanoparticle mediated siRNA delivery

    NASA Astrophysics Data System (ADS)

    Ma, Da

    2014-05-01

    Gene therapy with siRNA is a promising biotechnology to treat cancer and other diseases. To realize siRNA-based gene therapy, a safe and efficient delivery method is essential. Nanoparticle mediated siRNA delivery is of great importance to overcome biological barriers for systemic delivery in vivo. Based on recent discoveries, endosomal escape is a critical biological barrier to be overcome for siRNA delivery. This feature article focuses on endosomal escape strategies used for nanoparticle mediated siRNA delivery, including cationic polymers, pH sensitive polymers, calcium phosphate, and cell penetrating peptides. Work has been done to develop different endosomal escape strategies based on nanoparticle types, administration routes, and target organ/cell types. Also, enhancement of endosomal escape has been considered along with other aspects of siRNA delivery to ensure target specific accumulation, high cell uptake, and low toxicity. By enhancing endosomal escape and overcoming other biological barriers, great progress has been achieved in nanoparticle mediated siRNA delivery.

  5. Enhancing Endosomal Escape for Intracellular Delivery of Macromolecular Biologic Therapeutics.

    PubMed

    Lönn, Peter; Kacsinta, Apollo D; Cui, Xian-Shu; Hamil, Alexander S; Kaulich, Manuel; Gogoi, Khirud; Dowdy, Steven F

    2016-01-01

    Bioactive macromolecular peptides and oligonucleotides have significant therapeutic potential. However, due to their size, they have no ability to enter the cytoplasm of cells. Peptide/Protein transduction domains (PTDs), also called cell-penetrating peptides (CPPs), can promote uptake of macromolecules via endocytosis. However, overcoming the rate-limiting step of endosomal escape into the cytoplasm remains a major challenge. Hydrophobic amino acid R groups are known to play a vital role in viral escape from endosomes. Here we utilize a real-time, quantitative live cell split-GFP fluorescence complementation phenotypic assay to systematically analyze and optimize a series of synthetic endosomal escape domains (EEDs). By conjugating EEDs to a TAT-PTD/CPP spilt-GFP peptide complementation assay, we were able to quantitatively measure endosomal escape into the cytoplasm of live cells via restoration of GFP fluorescence by intracellular molecular complementation. We found that EEDs containing two aromatic indole rings or one indole ring and two aromatic phenyl groups at a fixed distance of six polyethylene glycol (PEG) units from the TAT-PTD-cargo significantly enhanced cytoplasmic delivery in the absence of cytotoxicity. EEDs address the critical rate-limiting step of endosomal escape in delivery of macromolecular biologic peptide, protein and siRNA therapeutics into cells. PMID:27604151

  6. Enhancing Endosomal Escape for Intracellular Delivery of Macromolecular Biologic Therapeutics

    PubMed Central

    Lönn, Peter; Kacsinta, Apollo D.; Cui, Xian-Shu; Hamil, Alexander S.; Kaulich, Manuel; Gogoi, Khirud; Dowdy, Steven F.

    2016-01-01

    Bioactive macromolecular peptides and oligonucleotides have significant therapeutic potential. However, due to their size, they have no ability to enter the cytoplasm of cells. Peptide/Protein transduction domains (PTDs), also called cell-penetrating peptides (CPPs), can promote uptake of macromolecules via endocytosis. However, overcoming the rate-limiting step of endosomal escape into the cytoplasm remains a major challenge. Hydrophobic amino acid R groups are known to play a vital role in viral escape from endosomes. Here we utilize a real-time, quantitative live cell split-GFP fluorescence complementation phenotypic assay to systematically analyze and optimize a series of synthetic endosomal escape domains (EEDs). By conjugating EEDs to a TAT-PTD/CPP spilt-GFP peptide complementation assay, we were able to quantitatively measure endosomal escape into the cytoplasm of live cells via restoration of GFP fluorescence by intracellular molecular complementation. We found that EEDs containing two aromatic indole rings or one indole ring and two aromatic phenyl groups at a fixed distance of six polyethylene glycol (PEG) units from the TAT-PTD-cargo significantly enhanced cytoplasmic delivery in the absence of cytotoxicity. EEDs address the critical rate-limiting step of endosomal escape in delivery of macromolecular biologic peptide, protein and siRNA therapeutics into cells. PMID:27604151

  7. Modelling rip current flow and bather escape strategies across a transverse bar and rip channel morphology

    NASA Astrophysics Data System (ADS)

    McCarroll, R. Jak; Castelle, Bruno; Brander, Robert W.; Scott, Timothy

    2015-10-01

    . Critically, no strategy succeeded in all scenarios at all locations across the surfzone, and small changes to input conditions (water level, start time and location, swim direction) had major impacts on outcomes. Future modelling efforts should examine additional surf zone rip current morphologies and wave-tide inputs, with a goal of determining generalised rip escape principles that may be communicated to the general public.

  8. Wind Enhanced Escape, Ion Pickup and the Evolution of Water on Mars

    NASA Technical Reports Server (NTRS)

    Hartle, Richard

    1999-01-01

    Preferential loss of hydrogen over deuterium from Mars has produced a deuterium rich atmosphere possessing a D/B ratio 5.2 times that of terrestrial water. Rayleigh fractionation is applied, constrained by the deuterium enrichment factor, to determine the magnitudes of ancient and present water reservoirs on the planet. The dominant lose mechanisms of R and D from the current atmosphere are thought to be thermal escape and solar wind ion pickup of the neutral and ion forms of theme constituents, respectively. During an earlier martian epoch, only thermal escape was significant because Mars had a terrestrial sized magnetosphere that protected the atmosphere from solar wind scavenging processes. The magnitudes of present and ancient water reservoirs are estimated when thermal escape is considered alone and subsequently when the effects of ion pickup are added. The escape fluxes of R and D are significantly increased above the respective Jeans fluxes when the effects of thermospheric winds and planetary rotation are accounted for at the exobase. Such wind enhanced escape also increases as the mass of an escaping constituent increases; thus, the increase in the escape flux of D is greater than that of H. When the fractionation process is also constrained by the D/H ratio observed in hydrous minerals of SNC meteorites, an ancient crustal reservoir of Martian water in derived, tens of meters in global-equivalent depth, considerably exceeding that obtained with no winds. The reservoir becomes even larger when ion pickup processes are added.

  9. Nonlinear enhancement of the fractal structure in the escape dynamics of Bose-Einstein condensates

    SciTech Connect

    Mitchell, Kevin A.; Ilan, Boaz

    2009-10-15

    We consider the escape dynamics of an ensemble of Bose-Einstein-condensed atoms from an optical-dipole trap consisting of two overlapping Gaussian wells. Earlier theoretical studies (based on a model of quantum evolution using ensembles of classical trajectories) predicted that self-similar fractal features could be visible in this system by measuring the escaping flux as a function of time for varying initial conditions. Here, direct numerical quantum simulations show the clear influence of quantum interference on the escape data. Fractal features are still evident in the data, albeit with interference fringes superposed. Furthermore, the nonlinear influence of atom-atom interactions is also considered, in the context of the (2+1)-dimensional Gross-Pitaevskii equation. Of particular note is that an attractive nonlinear interaction enhances the resolution of fractal structures in the escape data. Thus, the interplay between nonlinear focusing and dispersion results in dynamics that resolve the underlying classical fractal more faithfully than the noninteracting quantum (or classical) dynamics.

  10. Global analysis of fungal morphology exposes mechanisms of host cell escape

    PubMed Central

    O’Meara, Teresa R.; Veri, Amanda O.; Ketela, Troy; Jiang, Bo; Roemer, Terry; Cowen, Leah E.

    2015-01-01

    Developmental transitions between single-cell yeast and multicellular filaments underpin virulence of diverse fungal pathogens. For the leading human fungal pathogen Candida albicans, filamentation is thought to be required for immune cell escape via induction of an inflammatory programmed cell death. Here we perform a genome-scale analysis of C. albicans morphogenesis and identify 102 negative morphogenetic regulators and 872 positive regulators, highlighting key roles for ergosterol biosynthesis and N-linked glycosylation. We demonstrate that C. albicans filamentation is not required for escape from host immune cells; instead, macrophage pyroptosis is driven by fungal cell-wall remodelling and exposure of glycosylated proteins in response to the macrophage phagosome. The capacity of killed, previously phagocytized cells to drive macrophage lysis is also observed with the distantly related fungal pathogen Cryptococcus neoformans. This study provides a global view of morphogenetic circuitry governing a key virulence trait, and illuminates a new mechanism by which fungi trigger host cell death. PMID:25824284

  11. Augmenting the Efficacy of Immunotoxins and Other Targeted Protein Toxins by Endosomal Escape Enhancers

    PubMed Central

    Fuchs, Hendrik; Weng, Alexander; Gilabert-Oriol, Roger

    2016-01-01

    The toxic moiety of almost all protein-based targeted toxins must enter the cytosol of the target cell to mediate its fatal effect. Although more than 500 targeted toxins have been investigated in the past decades, no antibody-targeted protein toxin has been approved for tumor therapeutic applications by the authorities to date. Missing efficacy can be attributed in many cases to insufficient endosomal escape and therefore subsequent lysosomal degradation of the endocytosed toxins. To overcome this drawback, many strategies have been described to weaken the membrane integrity of endosomes. This comprises the use of lysosomotropic amines, carboxylic ionophores, calcium channel antagonists, various cell-penetrating peptides of viral, bacterial, plant, animal, human and synthetic origin, other organic molecules and light-induced techniques. Although the efficacy of the targeted toxins was typically augmented in cell culture hundred or thousand fold, in exceptional cases more than million fold, the combination of several substances harbors new problems including additional side effects, loss of target specificity, difficulties to determine the therapeutic window and cell type-dependent variations. This review critically scrutinizes the chances and challenges of endosomal escape enhancers and their potential role in future developments. PMID:27376327

  12. Augmenting the Efficacy of Immunotoxins and Other Targeted Protein Toxins by Endosomal Escape Enhancers.

    PubMed

    Fuchs, Hendrik; Weng, Alexander; Gilabert-Oriol, Roger

    2016-01-01

    The toxic moiety of almost all protein-based targeted toxins must enter the cytosol of the target cell to mediate its fatal effect. Although more than 500 targeted toxins have been investigated in the past decades, no antibody-targeted protein toxin has been approved for tumor therapeutic applications by the authorities to date. Missing efficacy can be attributed in many cases to insufficient endosomal escape and therefore subsequent lysosomal degradation of the endocytosed toxins. To overcome this drawback, many strategies have been described to weaken the membrane integrity of endosomes. This comprises the use of lysosomotropic amines, carboxylic ionophores, calcium channel antagonists, various cell-penetrating peptides of viral, bacterial, plant, animal, human and synthetic origin, other organic molecules and light-induced techniques. Although the efficacy of the targeted toxins was typically augmented in cell culture hundred or thousand fold, in exceptional cases more than million fold, the combination of several substances harbors new problems including additional side effects, loss of target specificity, difficulties to determine the therapeutic window and cell type-dependent variations. This review critically scrutinizes the chances and challenges of endosomal escape enhancers and their potential role in future developments. PMID:27376327

  13. TAP-independent self-peptides enhance T cell recognition of immune-escaped tumors

    PubMed Central

    Doorduijn, Elien M.; Sluijter, Marjolein; Querido, Bianca J.; Oliveira, Cláudia C.; Achour, Adnane; Ossendorp, Ferry; van der Burg, Sjoerd H.; van Hall, Thorbald

    2016-01-01

    Tumor cells frequently escape from CD8+ T cell recognition by abrogating MHC-I antigen presentation. Deficiency in processing components, like the transporter associated with antigen processing (TAP), results in strongly decreased surface display of peptide/MHC-I complexes. We previously identified a class of hidden self-antigens known as T cell epitopes associated with impaired peptide processing (TEIPP), which emerge on tumor cells with such processing defects. In the present study, we analyzed thymus selection and peripheral behavior of T cells with specificity for the prototypic TEIPP antigen, the “self” TRH4 peptide/Db complex. TEIPP T cells were efficiently selected in the thymus, egressed with a naive phenotype, and could be exploited for immunotherapy against immune-escaped, TAP-deficient tumor cells expressing low levels of MHC-I (MHC-Ilo). In contrast, overt thymus deletion and functionally impaired TEIPP T cells were observed in mice deficient for TAP1 due to TEIPP antigen presentation on all body cells in these mice. Our results strongly support the concept that TEIPPs derive from ubiquitous, nonmutated self-antigens and constitute a class of immunogenic neoantigens that are unmasked during tumor immune evasion. These data suggest that TEIPP-specific CD8+ T cells are promising candidates in the treatment of tumors that have escaped from conventional immunotherapies. PMID:26784543

  14. Intra-specific variation in wing morphology and its impact on take-off performance in blue tits (Cyanistes caeruleus) during escape flights

    PubMed Central

    McFarlane, Laura; Altringham, John D.; Askew, Graham N.

    2016-01-01

    ABSTRACT Diurnal and seasonal increases in body mass and seasonal reductions in wing area may compromise a bird's ability to escape, as less of the power available from the flight muscles can be used to accelerate and elevate the animal's centre of mass. Here, we investigated the effects of intra-specific variation in wing morphology on escape take-off performance in blue tits (Cyanistes caeruleus). Flights were recorded using synchronised high-speed video cameras and take-off performance was quantified as the sum of the rates of change of the kinetic and potential energies of the centre of mass. Individuals with a lower wing loading, WL (WL=body weight/wing area) had higher escape take-off performance, consistent with the increase in lift production expected from relatively larger wings. Unexpectedly, it was found that the total power available from the flight muscles (estimated using an aerodynamic analysis) was inversely related to WL. This could simply be because birds with a higher WL have relatively smaller flight muscles. Alternatively or additionally, variation in the aerodynamic load on the wing resulting from differences in wing morphology will affect the mechanical performance of the flight muscles via effects on the muscle's length trajectory. Consistent with this hypothesis is the observation that wing beat frequency and relative downstroke duration increase with decreasing WL; both are factors that are expected to increase muscle power output. Understanding how wing morphology influences take-off performance gives insight into the potential risks associated with feather loss and seasonal and diurnal fluctuations in body mass. PMID:26994175

  15. Intra-specific variation in wing morphology and its impact on take-off performance in blue tits (Cyanistes caeruleus) during escape flights.

    PubMed

    McFarlane, Laura; Altringham, John D; Askew, Graham N

    2016-05-01

    Diurnal and seasonal increases in body mass and seasonal reductions in wing area may compromise a bird's ability to escape, as less of the power available from the flight muscles can be used to accelerate and elevate the animal's centre of mass. Here, we investigated the effects of intra-specific variation in wing morphology on escape take-off performance in blue tits (Cyanistes caeruleus). Flights were recorded using synchronised high-speed video cameras and take-off performance was quantified as the sum of the rates of change of the kinetic and potential energies of the centre of mass. Individuals with a lower wing loading, WL (WL=body weight/wing area) had higher escape take-off performance, consistent with the increase in lift production expected from relatively larger wings. Unexpectedly, it was found that the total power available from the flight muscles (estimated using an aerodynamic analysis) was inversely related to WL. This could simply be because birds with a higher WL have relatively smaller flight muscles. Alternatively or additionally, variation in the aerodynamic load on the wing resulting from differences in wing morphology will affect the mechanical performance of the flight muscles via effects on the muscle's length trajectory. Consistent with this hypothesis is the observation that wing beat frequency and relative downstroke duration increase with decreasing WL; both are factors that are expected to increase muscle power output. Understanding how wing morphology influences take-off performance gives insight into the potential risks associated with feather loss and seasonal and diurnal fluctuations in body mass. PMID:26994175

  16. New ESCAP-type resist with enhanced etch resistance and its application to future DRAM and logic devices

    NASA Astrophysics Data System (ADS)

    Conley, Will; Brunsvold, William R.; Buehrer, Fred; DellaGuardia, Ronald; Dobuzinsky, David; Farrell, Timothy R.; Ho, Hok; Katnani, Ahmad D.; Keller, Robin; Marsh, James T.; Muller, Paul; Nunes, Ronald; Ng, Hung Y.; Oberschmidt, James M.; Pike, Michael; Ryan, Deborah; Cotler-Wagner, Tina; Schulz, Ron; Ito, Hiroshi; Hofer, Donald C.; Breyta, Gregory; Fenzel-Alexander, Debra; Wallraff, Gregory M.; Opitz, Juliann; Thackeray, James W.; Barclay, George G.; Cameron, James F.; Lindsay, Tracy K.; Cronin, Michael F.; Moynihan, Matthew L.; Nour, Sassan; Georger, Jacque H., Jr.; Mori, Mike; Hagerty, Peter; Sinta, Roger F.; Zydowsky, Thomas M.

    1997-07-01

    This new photoresist system extends the capability of the ESCAP platform previously discussed. (1) This resist material features a modified ESCAP type 4-hydroxystyrene-t-butyl acrylate polymer system which is capable of annealing due to the increased stability of the t-butyl ester blocking group. The resist based on this polymer system exhibits excellent delay stability and enhanced etch resistance versus previous DUV resists, APEX and UV2HS. Improved stabilization of chemically amplified photoresist images can be achieved through reduction of film volume by film densification. When the host polymer provides good thermal stability the soft bake conditions can be above or near the Tg (glass transition) temperature of the polymer. The concept of annealing (film densification) can significantly improve the environmental stability of the photoresist system. Improvements in the photoacid generator, processing conditions and overall formulation coupled with high NA (numerical aperture) exposure systems, affords linear lithography down to 0.15 micrometer for isolated lines with excellent post exposure delay stability. In this paper, we discuss the UV4 and UV5 photoresist systems based on the ESCAP materials platform. The resist based on this polymer system exhibits excellent delay stability and enhanced etch resistance versus APEX-E and UV2HS. Due to lower acrylate content, the Rmax for this system can be tuned for feature-type optimization. We demonstrate sub-0.25 micrometer process window for isolated lines using these resists on a conventional exposure tool with chrome on glass masks. We also discuss current use for various device levels including gate structures for advanced microprocessor designs. Additional data will be provided on advanced DRAM applications for 0.25 micrometer and sub-0.25 micrometer programs.

  17. Swimming away or clamming up: the use of phasic and tonic adductor muscles during escape responses varies with shell morphology in scallops.

    PubMed

    Tremblay, Isabelle; Guderley, Helga E; Himmelman, John H

    2012-12-01

    The simple locomotor system of scallops facilitates the study of muscle use during locomotion. We compared five species of scallops with different shell morphologies to see whether shell morphology and muscle use change in parallel or whether muscle use can compensate for morphological constraints. Force recordings during escape responses revealed that the use of tonic and phasic contractions varied markedly among species. The active species, Amusium balloti, Placopecten magellanicus and Pecten fumatus, made more phasic contractions than the more sedentary species, Mimachlamys asperrima and Crassadoma gigantea. Tonic contractions varied considerably among these species, with the two more sedentary species often starting their response to the predator with a tonic contraction and the more active species using shorter tonic contractions between series of phasic contractions. Placopecten magellanicus made extensive use of short tonic contractions. Pecten fumatus mounted an intense series of phasic contractions at the start of its response, perhaps to overcome the constraints of its unfavourable shell morphology. Valve closure by the more sedentary species suggests that their shell morphology protects them against predation, whereas swimming by the more active species relies upon intense phasic contractions together with favourable shell characteristics. PMID:22972884

  18. mPGES-1 deletion impairs aldosterone escape and enhances sodium appetite

    PubMed Central

    Jia, Zhanjun; Aoyagi, Toshinori; Kohan, Donald E.

    2010-01-01

    Aldosterone (Aldo) is a major sodium-retaining hormone that reduces renal sodium excretion and also stimulates sodium appetite. In the face of excess Aldo, the sodium-retaining action of this steroid is overridden by an adaptive regulatory mechanism, a phenomenon termed Aldo escape. The underlying mechanism of this phenomenon is not well defined but appeared to involve a number of natriuretic factors such prostaglandins (PGs). Here, we investigated the role of microsomal prostaglandin E synthase-1 (mPGES-1) in the response to excess Aldo. A 14-day Aldo infusion at 0.35 mg·kg−1·day−1 via an osmotic minipump in conjunction with normal salt intake did not produce obvious disturbances in fluid metabolism in WT mice as suggested by normal sodium and water balance, plasma sodium concentration, hematocrit, and body weight, despite the evidence of a transient sodium accumulation on days 1 or 2. In a sharp contrast, the 14-day Aldo treatment in mPGES-1 knockoute (KO) mice led to increased sodium and water balance, persistent reduction of hematocrit, hypernatremia, and body weight gain, all evidence of fluid retention. The escaped wild-type (WT) mice displayed a remarkable increase in urinary PGE2 excretion in parallel with coinduction of mPGES-1 in the proximal tubules, accompanied by a remarkable, widespread downregulation of renal sodium and water transporters. The increase in urinary PGE2 excretion together with the downregulation of renal sodium and water transporters were all significantly blocked in the KO mice. Interestingly, compared with WT controls, the KO mice exhibited consistent increases in sodium and water intake during Aldo infusion. Together, these results suggest an important role of mPGES-1 in antagonizing the sodium-retaining action of Aldo at the levels of both the central nervous system and the kidney. PMID:20335314

  19. Multiscale Micro-Nano Nested Structures: Engineered Surface Morphology for Efficient Light Escaping in Organic Light-Emitting Diodes.

    PubMed

    Zhou, Lei; Dong, Xiaoxuan; Zhou, Yun; Su, Wenming; Chen, Xiaolian; Zhu, Yufu; Shen, Su

    2015-12-01

    Various micro-to-nanometer scale structures are extremely attractive for light escaping in organic light-emitting diodes. To develop and optimize such structures, an innovative approach was demonstrated for the first time to fabricate multiscale micro-nano nested structures by photolithography with a well-designed mask pattern followed by a controllable thermal reflow process. The experimental and theoretical characterizations verify that these unique nested structures hold the capability of light concentration, noticeable low haze, and efficient antireflection. As a proof-of-concept, the incorporation of this pattern onto the glass substrate efficiently facilitates light escaping from the device, resulting in current efficiency 1.60 times and external quantum efficiency 1.63 times that of a control flat device, respectively. Moreover, compared to a hexagonally arranged microlens array and quasi-random biomimetic moth eye nanostructures, the nested structures proposed here can magically tune the spatial emission profile to comply with the Lambertian radiation pattern. Hence, this novel structure is expected to be of great potential in related ubiquitous optoelectronic applications and provide scientific inspiration to other novel multiscale micro-nanostructure research. PMID:26575428

  20. Morphological operators for enhanced polarimetric image target detection

    NASA Astrophysics Data System (ADS)

    Romano, João. M.; Rosario, Dalton S.

    2015-09-01

    We introduce an algorithm based on morphological filters with the Stokes parameters that augments the daytime and nighttime detection of weak-signal manmade objects immersed in a predominant natural background scene. The approach features a tailored sequence of signal-enhancing filters, consisting of core morphological operators (dilation, erosion) and higher level morphological operations (e.g., spatial gradient, opening, closing) to achieve a desired overarching goal. Using representative data from the SPICE database, the results show that the approach was able to automatically and persistently detect with a high confidence level the presence of three mobile military howitzer surrogates (targets) in natural clutter.

  1. Polyamidoamine (PAMAM) dendrimers modified with short oligopeptides for early endosomal escape and enhanced gene delivery.

    PubMed

    Thuy, Le Thi; Mallick, Sudipta; Choi, Joon Sig

    2015-08-15

    Recently, non-viral vectors have become a popular research topic in the field of gene therapy. In this study, we conjugated short oligopeptides to polyamidoamine-generation 4 (PAMAM G4) to achieve higher transfection efficiency. Previous reports have shown that the PAMAM G4-histidine (H)-arginine (R) dendrimer enhances gene delivery by improving cell penetration and internalization mechanisms. Therefore, we synthesized PAMAM G4-H phenylalanine (F) R, PAMAM G4-FHR and PAMAM G4-FR derivatives to determine the best gene carrier with the lowest toxicity. Physicochemical studies were performed to determine mean diameters and surface charge of PAMAM derivatives/pDNA polyplexes. DNA condensation was confirmed using a gel retardation assay. Cytotoxicity and transfection efficiency were analyzed using human cervical carcinoma (HeLa) and human liver carcinoma (HepG2) cells. Similar levels of transfection were achieved in both cell lines by using gold standard transfection reagent PEI 25 kD. Therefore, our results show that these carriers are promising and may help achieve higher transfection with negligible cytotoxicity. PMID:26187169

  2. Light-activated endosomal escape using upconversion nanoparticles for enhanced delivery of drugs

    NASA Astrophysics Data System (ADS)

    Gnanasammandhan, Muthu Kumara; Bansal, Akshaya; Zhang, Yong

    2013-02-01

    Nanoparticle-based delivery of drugs has gained a lot of prominence recently but the main problem hampering efficient delivery of payload is the clearing or degradation of nanoparticles by endosomes. Various strategies have been used to overcome this issue and one such effective solution is Photochemical Internalization (PCI). This technique involves the activation of certain photosensitizing compounds by light, which accumulate specifically in the membranes of endocytic vesicles. The activated photosensitizers induce the formation of reactive oxygen species which in turn induces localized disruption of endosomal membranes. But the drawback of this technique is that it needs blue light for activation and hence confined to be used only in in-vitro systems due to the poor tissue penetration of blue light. Here, we report the use of Upconversion nanoparticles (UCNs) as a transducer for activation of the photosensitizer, TPPS 2a. NIR light has good tissue penetrating ability and thus enables PCI in greater depths. Highly monodisperse, uniformly-sized, sub-100 nm, biocompatible upconversion nanoparticles were synthesized with a mesoporous silica coating. These UCNs activated TPPS 2a efficiently in solution and in cells. Paclitaxel, an anti-cancer drug was used as a model drug and was loaded into the mesoporous silica coating. B16F0 cells transfected with drug-loaded UCNs and irradiated with NIR showed significantly higher nanoparticle uptake and in turn higher cell death caused by the delivered drug. This technique can be used to enhance the delivery of any therapeutic molecule and thus increase the therapeutic efficiency considerably.

  3. Paclitaxel-Loaded Mixed Micelles Enhance Ovarian Cancer Therapy through Extracellular pH-Triggered PEG Detachment and Endosomal Escape.

    PubMed

    Zhao, Haijun; Li, Qian; Hong, Zehui

    2016-07-01

    Although PEGylation allows a drug delivery vehicle to have prolonged blood circulation time, it faces the problem of reduced cellular uptake. Removal of the polyethylene glycol (PEG)-shell at the appropriate time through tumor-microenvironment triggers could be a feasible solution to this problem. Here, paclitaxel (PTX)-loaded mixed micelles (PTX-mM) self-assembled from stearate-modified hyaluronic acid (SHA), mPEG-b-poly(β-amino ester) (mPEG-b-PAE), and ethylene acetyl-b-poly(β-amino ester) (EA-b-PAE) were developed. In the preparation of PTX-mM, SHA micelles were coated with EA-b-PAE followed by coloading of PTX and mPEG-b-PAE. PTX-mM were capable of extracellular pH-triggered PEG-detachment and poly(β-amino ester) (PAE)-mediated endosomal escape. When the pH was changed from pH 7.4 to pH 6.8, the particle size of PTX-mM significantly decreased from 97.5 ± 4.4 to 71.5 ± 2.3 nm. It also resulted in rapid and complete release of mPEG-b-PAE from PTX-mM as monitored using quartz crystal microbalance (QCM) technology. PTX-mM capable of PEG detachment provided significant enhancement of PTX accumulation in SKOV-3 cells compared to PEG nondetachable PTX-mM. Interestingly, intracellular transport studies using confocal laser scanning microscopy (CLSM) showed that EA-b-PAE could promote the escape of micelles from endolysosomes. The half-maximal inhibitory concentration (IC50) of PTX-mM against SKOV-3 cells was 5.7 μg/mL, and PTX-mM containing 20 μg/mL of PTX induced apoptosis in 53.0% of the cell population. PTX-mM exhibited a highly prolonged elimination half-life (t1/2, 2.83 ± 0.37 h) and improved area under the curve (AUC, 7724.82 ± 1190.75 ng/mL/h) than the PTX-loaded SHA micelles (PTX-M). Furthermore, PTX-mM showed the highest tumor inhibition rate (64.9%) and the longest survival time (53 days) against the SKOV-3 ovarian cancer xenograft models among all formulations. Taken together, the results suggested that PTX-mM have potential as an efficient

  4. Enhancement of textural differences based on morphological component analysis.

    PubMed

    Chi, Jianning; Eramian, Mark

    2015-09-01

    This paper proposes a new texture enhancement method which uses an image decomposition that allows different visual characteristics of textures to be represented by separate components in contrast with previous methods which either enhance texture indirectly or represent all texture information using a single image component. Our method is intended to be used as a preprocessing step prior to the use of texture-based image segmentation algorithms. Our method uses a modification of morphological component analysis (MCA) which allows texture to be separated into multiple morphological components each representing a different visual characteristic of texture. We select four such texture characteristics and propose new dictionaries to extract these components using MCA. We then propose procedures for modifying each texture component and recombining them to produce a texture-enhanced image. We applied our method as a preprocessing step prior to a number of texture-based segmentation methods and compared the accuracy of the results, finding that our method produced results superior to comparator methods for all segmentation algorithms tested. We also demonstrate by example the main mechanism by which our method produces superior results, namely that it causes the clusters of local texture features of each distinct image texture to mutually diverge within the multidimensional feature space to a vastly superior degree versus the comparator enhancement methods. PMID:25935032

  5. Biocompatible mannosylated endosomal-escape nanoparticles enhance selective delivery of short nucleotide sequences to tumor associated macrophages

    NASA Astrophysics Data System (ADS)

    Ortega, Ryan A.; Barham, Whitney J.; Kumar, Bharat; Tikhomirov, Oleg; McFadden, Ian D.; Yull, Fiona E.; Giorgio, Todd D.

    2014-12-01

    Tumor associated macrophages (TAMs) can modify the tumor microenvironment to create a pro-tumor niche. Manipulation of the TAM phenotype is a novel, potential therapeutic approach to engage anti-cancer immunity. siRNA is a molecular tool for knockdown of specific mRNAs that is tunable in both strength and duration. The use of siRNA to reprogram TAMs to adopt an immunogenic, anti-tumor phenotype is an attractive alternative to ablation of this cell population. One current difficulty with this approach is that TAMs are difficult to specifically target and transfect. We report here successful utilization of novel mannosylated polymer nanoparticles (MnNP) that are capable of escaping the endosomal compartment to deliver siRNA to TAMs in vitro and in vivo. Transfection with MnNP-siRNA complexes did not significantly decrease TAM cell membrane integrity in culture, nor did it create adverse kidney or liver function in mice, even at repeated doses of 5 mg kg-1. Furthermore, MnNP effectively delivers labeled nucleotides to TAMs in mice with primary mammary tumors. We also confirmed TAM targeting in the solid tumors disseminated throughout the peritoneum of ovarian tumor bearing mice following injection of fluorescently labeled MnNP-nucleotide complexes into the peritoneum. Finally, we show enhanced uptake of MnNP in lung metastasis associated macrophages compared to untargeted particles when using an intubation delivery method. In summary, we have shown that MnNP specifically and effectively deliver siRNA to TAMs in vivo.

  6. Image enhancement and segmentation using weighted morphological connected slope filters

    NASA Astrophysics Data System (ADS)

    Mendiola-Santibañez, Jorge D.; Terol-Villalobos, Iván R.

    2013-04-01

    The morphological connected slope filters (MCSFs) are studied as gray level transformations, and two contributions are made on these operators with the purpose of modifying the gradient criterion performance. The proposals consist of: (a) the introduction of three weighting functions and (b) the application of a displacement parameter. The displacement parameter will permit the image segmentation in a certain intensity interval and the contrast improvement at the same time. This characteristic is an important difference among the MCSFs introduced previously, together with the other transformations defined in the current literature utilized uniquely to enhance contrast. Also, an application example of the weighted morphological slope filters is provided. In such an example, white matter is separated from brain magnetic resonance images T1.

  7. Morphologies, classification and genesis of pockmarks, mud volcanoes and associated fluid escape features in the northern Zhongjiannan Basin, South China Sea

    NASA Astrophysics Data System (ADS)

    Chen, Jiangxin; Song, Haibin; Guan, Yongxian; Yang, Shengxiong; Pinheiro, Luis M.; Bai, Yang; Liu, Boran; Geng, Minghui

    2015-12-01

    Based on new high-resolution multi-beam bathymetry and multichannel seismic reflection data, two new groups of numerous pockmarks and mud volcanoes were discovered in the northern Zhongjiannan Basin at water depths between 600 and 1400 m. Individual pockmarks are circular, elliptical, crescent-shaped or elongated, with diameters ranging from several hundreds to thousands of meters and tens or hundreds of meters in depth, and they often form groups or strings. Crescent pockmarks, approximately 500-1500 m wide in cross-section and 50-150 m deep, occur widely in the southern study area, both as individual features and in groups or curvilinear chains, and they are more widespread and unique in this area than anywhere else in the world. Conical mud volcanoes, mostly with kilometer-wide diameters and ca. 100 m high, mainly develop in the northern study area as individual features or in groups. Seismic data show that the observed pockmarks are associated with different kinds of fluid escape structures and conduits, such as gas chimneys, diapirs, zones of acoustic blanking, acoustic turbidity and enhanced reflections, inclined faults, small fractures and polygonal faults. The mapped mud volcanoes appear to be fed from deep diapirs along two main conduit types: the conventional conduits with downward tapering cones and another other conduit type with a narrow conduit in the lower half and emanative leakage passages in the upper half. Various types of pockmarks are found and a comprehensive pockmark classification scheme is proposed, according to: (a) their shape in plan view, which includes circular, elliptical, crescent, comet-shape, elongated and irregular; (b) their magnitude, which includes small, normal, giant and mega-pockmarks; and (c) their composite pattern, which includes composite pockmarks, pockmark strings and pockmark groups. For the genesis of the crescent pockmark (strings), a 5-stage speculative formation model is proposed, implying possible controlling

  8. Morphology optimization for enhanced performance in organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Wodo, Olga; Zola, Jaroslaw; Ganapathysubramanian, Baskar

    2015-03-01

    Organic solar cells have the potential for widespread usage due to their low cost-per-watt and mechanical flexibility. Their wide spread use, however, is bottlenecked primarily by their low solar efficiencies. Experimental evidence suggests that a key property determining the solar efficiency of such devices is the final morphological distribution of the electron-donor and electron-acceptor constituents. By carefully designing the morphology of the device, one could potentially significantly enhance their performance. This is an area of intense experimental effort that is mostly trial-and-error based, and serves as a fertile area for introducing mechanics and computational thinking. In this work, we use optimization techniques coupled with computational modeling to identify the optimal structures for high efficiency solar cells. In particular, we use adaptive population-based incremental learning method linked to graph-based surrogate model to evaluate properties for given structure. We study several different criterions and find optimal structure that that improve the performance of currently hypothesized optimal structures by 29%.

  9. Wind-Induced Atmospheric Escape: Titan

    NASA Technical Reports Server (NTRS)

    Hartle, Richard; Johnson, Robert; Sittler, Edward, Jr.; Sarantos, Menelaos; Simpson, David

    2012-01-01

    Rapid thermospheric flows can significantly enhance the estimates of the atmospheric loss rate and the structure of the atmospheric corona of a planetary body. In particular, rapid horizontal flow at the exobase can increase the corresponding constituent escape rate. Here we show that such corrections, for both thermal and non-thermal escape, cannot be ignored when calculating the escape of methane from Titan, for which drastically different rates have been proposed. Such enhancements are also relevant to Pluto and exoplanets.

  10. Advanced Crew Escape Suit.

    PubMed

    1995-09-01

    Design of the S1032 Launch Entry Suit (LES) began following the Challenger loss and NASA's decision to incorporate a Shuttle crew escape system. The LES (see Figure 1) has successfully supported Shuttle missions since NASA's Return to Flight with STS-26 in September 1988. In 1990, engineers began developing the S1035 Advanced Crew Escape Suit (ACES) to serve as a replacement for the LES. The ACES was designed to be a simplified, lightweight, low-bulk pressure suit which aided self donning/doffing, provided improved comfort, and enhanced overall performance to reduce crew member stress and fatigue. Favorable crew member evaluations of a prototype led to full-scale development and qualification of the S1035 ACES between 1990 and 1992. Production of the S1035 ACES began in February 1993, with the first unit delivered to NASA in May 1994. The S1035 ACES first flew aboard STS-68 in August 1994 and will become the primary crew escape suit when the S1032 LES ends its service life in late 1995. The primary goal of the S1035 development program was to provide improved performance over that of the S1032 to minimize the stress and fatigue typically experienced by crew members. To achieve this, five fundamental design objectives were established, resulting in various material/configuration changes. PMID:11540717

  11. Plasmonic nanobubble-enhanced endosomal escape processes for selective and guided intracellular delivery of chemotherapy to drug-resistant cancer cells

    PubMed Central

    Lukianova-Hleb, Ekaterina Y.; Belyanin, Andrey; Kashinath, Shruti; Wu, Xiangwei; Lapotko, Dmitri O.

    2012-01-01

    Cancer chemotherapies suffer from multi drug resistance, high non-specific toxicity and heterogeneity of tumors. We report a method of plasmonic nanobubble-enhanced endosomal escape (PNBEE) for the selective, fast and guided intracellular delivery of drugs through a self-assembly by cancer cells of separately targeted gold nanoparticles and encapsulated drug (Doxil). The co-localized with Doxil plasmonic nanobubbles optically generated in cancer cells released the drug into the cytoplasm thus increasing the therapeutic efficacy against these drug-resistant cells by 31-fold, reducing drug dose by 20-fold, the treatment time by 3-fold and the non-specific toxicity by 10-fold compared to standard treatment. Thus the PNBEE mechanism provided selective, safe and efficient intracellular drug delivery in heterogeneous environment opening new opportunities for drug therapies. PMID:22137124

  12. Balancing Cationic and Hydrophobic Content of PEGylated siRNA Polyplexes Enhances Endosome Escape, Stability, Blood Circulation Time, and Bioactivity In Vivo

    PubMed Central

    Hanna, Ann; Shannon, Joshua M.; Gupta, Mukesh K.; Duvall, Craig L.

    2013-01-01

    A family of pH-responsive diblock polymers composed of poly[(ethylene glycol)–b-[(2-(dimethylamino)ethyl methacrylate)-co-(butyl methacrylate)] PEG-(DMAEMA-co-BMA) was reversible addition fragmentation chain transfer (RAFT) synthesized with 0-75 mole% BMA in the second polymer block. The relative mole% of DMAEMA and BMA was varied in order to identify a polymer that can be used to formulate PEGylated, siRNA-loaded polyplex nanoparticles (NPs) with an optimized balance of cationic and hydrophobic content in the NP core based on siRNA packaging, cytocompatibility, blood circulation half-life, endosomal escape, and in vivo bioactivity. The polymer with 50:50 mole% of DMAEMA:BMA (polymer “50B”) in the RAFT-polymerized block efficiently condensed siRNA into 100-nm NPs that displayed pH-dependent membrane disruptive behavior finely tuned for endosomal escape. In vitro delivery of siRNA with polymer 50B produced up to 94% protein-level knockdown of the model gene luciferase. The PEG corona of the NPs blocked nonspecific interactions with constituents of human whole blood, and the relative hydrophobicity of polymer 50B increased NP stability in the presence of human serum or the polyanion heparin. When injected intravenously, 50B NPs enhanced blood circulation half-life 3-fold relative to more standard PEG-DMAEMA (0B) NPs (p<0.05), due to improved stability and a reduced rate of renal clearance. The 50B NPs enhanced siRNA biodistribution to the liver and other organs and significantly increased gene silencing in the liver, kidneys, and spleen relative to the benchmark polymer 0B (p<0.05). These collective findings validate the functional significance of tuning the balance of cationic and hydrophobic content of polyplex NPs utilized for systemic siRNA delivery in vivo. PMID:24041122

  13. Photodynamic Therapy-mediated Cancer Vaccination Enhances Stem-like Phenotype and Immune Escape, Which Can Be Blocked by Thrombospondin-1 Signaling through CD47 Receptor Protein*

    PubMed Central

    Zheng, Yuanhong; Zou, Fangyuan; Wang, Jingjing; Yin, Guifang; Le, Vanminh; Fei, Zhewei; Liu, Jianwen

    2015-01-01

    Like most of the strategies for cancer immunotherapy, photodynamic therapy-mediated vaccination has shown poor clinical outcomes in application. The aim of this study is to offer a glimpse at the mechanisms that are responsible for the failure based on cancer immuno-editing theory and to search for a positive solution. In this study we found that tumor cells were able to adapt themselves to the immune pressure exerted by vaccination. The survived tumor cells exhibited enhanced tumorigenic and stem-like phenotypes as well as undermined immunogenicity. Viewed as a whole, immune-selected tumor cells showed more malignant characteristics and the ability of immune escape, which might contribute to the eventual relapse. Thrombospondin-1 signaling via CD47 helped prevent tumor cells from becoming stem-like and rendered them vulnerable to immune attack. These findings prove that the TSP-1/CD47/SIRP-α signal axis is important to the evolution of tumor cells in the microenvironment of immunotherapy and identify thrombospondin-1 as a key signal with therapeutic benefits in overcoming long term relapse, providing new evidence for the clinical promise of cancer vaccination. PMID:25697354

  14. Morphological selection and the evaluation of potential tradeoffs between escape from predators and the climbing of waterfalls in the Hawaiian stream goby Sicyopterus stimpsoni.

    PubMed

    Blob, Richard W; Kawano, Sandy M; Moody, Kristine N; Bridges, William C; Maie, Takashi; Ptacek, Margaret B; Julius, Matthew L; Schoenfuss, Heiko L

    2010-12-01

    Environmental pressures may vary over the geographic range of a species, exposing subpopulations to divergent functional demands. How does exposure to competing demands shape the morphology of species and influence the divergence of populations? We explored these questions by performing selection experiments on juveniles of the Hawaiian goby Sicyopterus stimpsoni, an amphidromous fish that exhibits morphological differences across portions of its geographic range where different environmental pressures predominate. Juvenile S. stimpsoni face two primary and potentially opposing selective pressures on body shape as they return from the ocean to freshwater streams on islands: (1) avoiding predators in the lower reaches of a stream; and (2) climbing waterfalls to reach the habitats occupied by adults. These pressures differ in importance across the Hawaiian Islands. On the youngest island, Hawai'i, waterfalls are close to shore, thereby minimizing exposure to predators and placing a premium on climbing performance. In contrast, on the oldest major island, Kaua'i, waterfalls have eroded further inland, lengthening the exposure of juveniles to predators before migrating juveniles begin climbing. Both juvenile and adult fish show differences in body shape between these islands that would be predicted to improve evasion of predators by fish from Kaua'i (e.g., taller bodies that improve thrust) and climbing performance for fish from Hawai'i (e.g., narrower bodies that reduce drag), matching the prevailing environmental demand on each island. To evaluate how competing selection pressures and functional tradeoffs contribute to the divergence in body shape observed in S. stimpsoni, we compared selection imposed on juvenile body shape by (1) predation by the native fish Eleotris sandwicensis versus (2) climbing an artificial waterfall (∼100 body lengths). Some variables showed opposing patterns of selection that matched predictions: for example, survivors of predation had

  15. Feature and Contrast Enhancement of Mammographic Image Based on Multiscale Analysis and Morphology

    PubMed Central

    Wu, Shibin; Xie, Yaoqin

    2013-01-01

    A new algorithm for feature and contrast enhancement of mammographic images is proposed in this paper. The approach bases on multiscale transform and mathematical morphology. First of all, the Laplacian Gaussian pyramid operator is applied to transform the mammography into different scale subband images. In addition, the detail or high frequency subimages are equalized by contrast limited adaptive histogram equalization (CLAHE) and low-pass subimages are processed by mathematical morphology. Finally, the enhanced image of feature and contrast is reconstructed from the Laplacian Gaussian pyramid coefficients modified at one or more levels by contrast limited adaptive histogram equalization and mathematical morphology, respectively. The enhanced image is processed by global nonlinear operator. The experimental results show that the presented algorithm is effective for feature and contrast enhancement of mammogram. The performance evaluation of the proposed algorithm is measured by contrast evaluation criterion for image, signal-noise-ratio (SNR), and contrast improvement index (CII). PMID:24416072

  16. The great escape

    PubMed Central

    Sin, Ho-Su; Namekawa, Satoshi H

    2013-01-01

    Epigenetic mechanisms precisely regulate sex chromosome inactivation as well as genes that escape the silencing process. In male germ cells, DNA damage response factor RNF8 establishes active epigenetic modifications on the silent sex chromosomes during meiosis, and activates escape genes during a state of sex chromosome-wide silencing in postmeiotic spermatids. During the course of evolution, the gene content of escape genes in postmeiotic spermatids recently diverged on the sex chromosomes. This evolutionary feature mirrors the epigenetic processes of sex chromosomes in germ cells. In this article, we describe how epigenetic processes have helped to shape the evolution of sex chromosome-linked genes. Furthermore, we compare features of escape genes on sex chromosomes in male germ cells to escape genes located on the single X chromosome silenced during X-inactivation in females, clarifying the distinct evolutionary implications between male and female escape genes. PMID:23880818

  17. Crew Escape Certification Test

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This video tape shows the Shuttle hatch jettison test at Rockwell facilities. The video also shows a Shuttle escape pole deployment test from a NASA aircraft, and an emergency egress test performed by a volunteer Navy parachutist using the pole and a parachute escape system.

  18. Dust escape from Io

    NASA Astrophysics Data System (ADS)

    Flandes, Alberto

    2004-08-01

    The Dust ballerina skirt is a set of well defined streams composed of nanometric sized dust particles that escape from the Jovian system and may be accelerated up to >=200 km/s. The source of this dust is Jupiter's moon Io, the most volcanically active body in the Solar system. The escape of dust grains from Jupiter requires first the escape of these grains from Io. This work is basically devoted to explain this escape given that the driving of dust particles to great heights and later injection into the ionosphere of Io may give the particles an equilibrium potential that allow the magnetic field to accelerate them away from Io. The grain sizes obtained through this study match very well to the values required for the particles to escape from the Jovian system.

  19. Multi-functional bio-synthetic hybrid nanostructures for enhanced cellular uptake, endosomal escape and targeted delivery toward diagnostics and therapeutics

    NASA Astrophysics Data System (ADS)

    Shrestha, Ritu

    -assembly of the nanoparticles enhanced cellular uptake and knockdown of nucleolin (a shuttling protein overexpressed at the sites of angiogenesis) and thus inhibiting tumor cell growth. Furthermore, these polymer precursors of the cSCKs were modified with partial to full incorporation of histamines to facilitate their endosomal escape for efficient delivery into the cytosol. The cSCKs were further templated onto high aspect ratio anionic cylinders to form hierarchically-assembled nanostructures that bring together individual components with unique functions, such as one carrying a therapeutic payload and the other with sites for radiolabeling. These higher order nanoobjects enhance circulation in vivo, have capabilities to package nucleic acids electrostatically and contain sites for radiolabeling, providing an overall advantage over the individual components, which could each facilitate only one or the other of the combined functions. Hierarchically-assembled nanostructures were investigated for their cellular uptake, transfection behavior and radiolabeling efficiency, as the next generation of theranostic agents.

  20. THERMALLY DRIVEN ATMOSPHERIC ESCAPE

    SciTech Connect

    Johnson, Robert E.

    2010-06-20

    Accurately determining the escape rate from a planet's atmosphere is critical for determining its evolution. A large amount of Cassini data is now available for Titan's upper atmosphere and a wealth of data is expected within the next decade on escape from Pluto, Mars, and extra-solar planets. Escape can be driven by upward thermal conduction of energy deposited well below the exobase, as well as by nonthermal processes produced by energy deposited in the exobase region. Recent applications of a model for escape driven by upward thermal conduction, called the slow hydrodynamic escape model, have resulted in surprisingly large loss rates for the atmosphere of Titan, Saturn's largest moon. Based on a molecular kinetic simulation of the exobase region, these rates appear to be orders of magnitude too large. Therefore, the slow hydrodynamic model is evaluated here. It is shown that such a model cannot give a reliable description of the atmospheric temperature profile unless it is coupled to a molecular kinetic description of the exobase region. Therefore, the present escape rates for Titan and Pluto must be re-evaluated using the atmospheric model described here.

  1. Effects of tidally enhanced stellar wind on the horizontal branch morphology of globular clusters

    NASA Astrophysics Data System (ADS)

    Lei, Z.-X.; Chen, X.-F.; Zhang, F.-H.; Han, Z.

    2013-01-01

    Context. Metallicity is the first parameter to influence the horizontal branch (HB) morphology of globular clusters (GCs). It has been found, however, that some other parameters may also play an important role in affecting the morphology. While the nature of these important parameters remains unclear, they are believed to be likely correlated with wind mass-loss of red giants, since this mass loss determines their subsequent locations on the HB. Unfortunately, the mass loss during the red giant stages of the stellar evolution is poorly understood at present. Aims: The stellar winds of red giants may be tidally enhanced by companion stars if they are in binary systems. We investigate the evolutionary consequences of red giants in binaries by including tidally enhanced stellar winds, and examine the effects on the HB morphology of GCs. Methods: We used Eggleton's stellar evolution code to study the binary evolution. The tidally enhanced stellar-wind model of Tout & Eggleton is incorporated into this code, where the tidal enhancement parameter, Bw, has various values (e.g., 10 000 and 500) to examine the dependency of the final results on this parameter. A Monte Carlo simulation was performed to generate a group of binary systems. The position of each primary star on the HB in the Hertzsprung-Russell diagram in this sample is obtained through interpolations among the constructed HB evolutionary tracks. Finally, a synthetic HB in the color-magnitude diagram is obtained by transforming the effective temperature and luminosity of each primary star on the HB into B - V colors and absolute magnitude. Results: We find that red, blue, and extreme horizontal branch stars are all produced under the effects of tidally enhanced stellar wind without any additional assumptions on the mass-loss dispersion. Furthermore, the horizontal branch morphology is found to be insensitive to the tidal enhancement parameter, Bw. We compare our theoretical results with the observed horizontal

  2. An escape from crowding.

    PubMed

    Freeman, Jeremy; Pelli, Denis G

    2007-01-01

    Crowding occurs when nearby flankers jumble the appearance of a target object, making it hard to identify. Crowding is feature integration over an inappropriately large region. What determines the size of that region? According to bottom-up proposals, the size is that of an anatomically determined isolation field. According to top-down proposals, the size is that of the spotlight of attention. Intriligator and Cavanagh (2001) proposed the latter, but we show that their conclusion rests on an implausible assumption. Here we investigate the role of attention in crowding using the change blindness paradigm. We measure capacity for widely and narrowly spaced letters during a change detection task, both with and without an interstimulus cue. We find that standard crowding manipulations-reducing spacing and adding flankers-severely impair uncued change detection but have no effect on cued change detection. Because crowded letters look less familiar, we must use longer internal descriptions (less compact representations) to remember them. Thus, fewer fit into working memory. The memory limit does not apply to the cued condition because the observer need remember only the cued letter. Cued performance escapes the effects of crowding, as predicted by a top-down account. However, our most parsimonious account of the results is bottom-up: Cued change detection is so easy that the observer can tolerate feature degradation and letter distortion, making the observer immune to crowding. The change detection task enhances the classic partial report paradigm by making the test easier (same/different instead of identifying one of many possible targets), which increases its sensitivity, so it can reveal degraded memory traces. PMID:18217837

  3. Escape behaviors in insects.

    PubMed

    Card, Gwyneth M

    2012-04-01

    Escape behaviors are, by necessity, fast and robust, making them excellent systems with which to study the neural basis of behavior. This is especially true in insects, which have comparatively tractable nervous systems and members who are amenable to manipulation with genetic tools. Recent technical developments in high-speed video reveal that, despite their short duration, insect escape behaviors are more complex than previously appreciated. For example, before initiating an escape jump, a fly performs sophisticated posture and stimulus-dependent preparatory leg movements that enable it to jump away from a looming threat. This newfound flexibility raises the question of how the nervous system generates a behavior that is both rapid and flexible. Recordings from the cricket nervous system suggest that synchrony between the activity of specific interneuron pairs may provide a rapid cue for the cricket to detect the direction of an approaching predator and thus which direction it should run. Technical advances make possible wireless recording from neurons while locusts escape from a looming threat, enabling, for the first time, a direct correlation between the activity of multiple neurons and the time-course of an insect escape behavior. PMID:22226514

  4. Enhanced wettability performance of ultrathin ZnO nanotubes by coupling morphology and size effects

    NASA Astrophysics Data System (ADS)

    Yang, Peihua; Wang, Kun; Liang, Zhiwen; Mai, Wenjie; Wang, Cheng-Xin; Xie, Weiguang; Liu, Pengyi; Zhang, Long; Cai, Xiang; Tan, Shaozao; Song, Jinhui

    2012-08-01

    In this work, we report on the detailed characterization and mechanism analysis of the improved wettability performance of a new type of ZnO nanostructure, the ultrathin ZnO nanotube, whose growth is induced by screw-dislocation. The newly discovered enhanced wettability properties are suggested to be caused by coupling the morphology and size effects of the nanostructured surface. These ultrathin nanotubes with low density and small dimension form a wet-hair-like hierarchical morphology, which shows a further improved superhydrophobic property with an 8.6 +/- 1.6° larger contact angle than that of ZnO nanorods due to the morphology effect. In addition, owing to the large surface to volume ratio and increased effective UV-irradiated area of the ultrathin tubular structure, the ZnO nanotubes exhibit ~5 times faster superhydrophobicity to superhydrophilicity conversion speed than nanorods under 254 nm UV illumination. Furthermore, UV light with a wavelength of 254 nm exhibits ~40 times faster wettability conversion speed for nanotubes than that of 365 nm, which is suggested to be a result of the band gap shift at the nanoscale. The combined advantages of enhanced superhydrophobicity, improved sensitivity, and faster conversion speed by coupling morphology and size effects of these ZnO nanotubes should give them broad applications in self-cleaning surfaces and wettability switches.

  5. Pure Nanoscale Morphology Effect Enhancing the Energy Storage Characteristics of Processable Hierarchical Polypyrrole.

    PubMed

    Wannapob, Rodtichoti; Vagin, Mikhail Yu; Jeerapan, Itthipon; Mak, Wing Cheung

    2015-11-01

    We report a new synthesis approach for the precise control of wall morphologies of colloidal polypyrrole microparticles (PPyMPs) based on a time-dependent template-assisted polymerization technique. The resulting PPyMPs are water processable, allowing the simple and direct fabrication of multilevel hierarchical PPyMPs films for energy storage via a self-assembly process, whereas convention methods creating hierarchical conducting films based on electrochemical polymerization are complicated and tedious. This approach allows the rational design and fabrication of PPyMPs with well-defined size and tunable wall morphology, while the chemical composition, zeta potential, and microdiameter of the PPyMPs are well characterized. By precisely controlling the wall morphology of the PPyMPs, we observed a pure nanoscale morphological effect of the materials on the energy storage performance. We demonstrated by controlling purely the wall morphology of PPyMPs to around 100 nm (i.e., thin-walled PPyMPs) that the thin-walled PPyMPs exhibit typical supercapacitor characteristics with a significant enhancement of charge storage performance of up to 290% compared to that of thick-walled PPyMPs confirmed by cyclic voltametry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. We envision that the present design concept could be extended to different conducting polymers as well as other functional organic and inorganic dopants, which provides an innovative model for future study and understanding of the complex physicochemical phenomena of energy-related materials. PMID:26467112

  6. Escape and rescue model

    NASA Astrophysics Data System (ADS)

    Alvord, D.; Nelson, H. E.

    The Escape and Rescue model is a discrete-event simulation program written in Simscript. It was developed to simulate the emergency movement involved in escape and/or rescue of people from a Board and Care Home housing a group of persons with varying degrees of physical or mental disabilities along with a small live-in staff. It may, however, be used in a much more general setting. It can reasonably handle a building with up to 100 residents and 100 rooms.

  7. Submarine tower escape decompression sickness risk estimation.

    PubMed

    Loveman, G A M; Seddon, E M; Thacker, J C; Stansfield, M R; Jurd, K M

    2014-01-01

    Actions to enhance survival in a distressed submarine (DISSUB) scenario may be guided in part by knowledge of the likely risk of decompression sickness (DCS) should the crew attempt tower escape. A mathematical model for DCS risk estimation has been calibrated against DCS outcome data from 3,738 exposures of either men or goats to raised pressure. Body mass was used to scale DCS risk. The calibration data included more than 1,000 actual or simulated submarine escape exposures and no exposures with substantial staged decompression. Cases of pulmonary barotrauma were removed from the calibration data. The calibrated model was used to estimate the likelihood of DCS occurrence following submarine escape from the United Kingdom Royal Navy tower escape system. Where internal DISSUB pressure remains at - 0.1 MPa, escape from DISSUB depths < 200 meters is estimated to have DCS risk < 6%. Saturation at raised DISSUB pressure markedly increases risk, with > 60% DCS risk predicted for a 200-meter escape from saturation at 0.21 MPa. Using the calibrated model to predict DCS for direct ascent from saturation gives similar risk estimates to other published models. PMID:25109085

  8. ChAcNLS, a Novel Modification to Antibody-Conjugates Permitting Target Cell-Specific Endosomal Escape, Localization to the Nucleus, and Enhanced Total Intracellular Accumulation.

    PubMed

    Beaudoin, Simon; Rondeau, Andreanne; Martel, Olivier; Bonin, Marc-Andre; van Lier, Johan E; Leyton, Jeffrey V

    2016-06-01

    The design of antibody-conjugates (ACs) for delivering molecules for targeted applications in humans has sufficiently progressed to demonstrate clinical efficacy in certain malignancies and reduced systemic toxicity that occurs with standard nontargeted therapies. One area that can advance clinical success for ACs will be to increase their intracellular accumulation. However, entrapment and degradation in the endosomal-lysosomal pathway, on which ACs are reliant for the depositing of their molecular payload inside target cells, leads to reduced intracellular accumulation. Innovative approaches that can manipulate this pathway may provide a strategy for increasing accumulation. We hypothesized that escape from entrapment inside the endosomal-lysosomal pathway and redirected trafficking to the nucleus could be an effective approach to increase intracellular AC accumulation in target cells. Cholic acid (ChAc) was coupled to the peptide CGYGPKKKRKVGG containing the nuclear localization sequence (NLS) from SV-40 large T-antigen, which is termed ChAcNLS. ChAcNLS was conjugated to the mAb 7G3 (7G3-ChAcNLS), which has nanomolar affinity for the cell-surface leukemic antigen interleukin-3 receptor-α (IL-3Rα). Our aim was to determine whether 7G3-ChAcNLS increased intracellular accumulation while retaining nanomolar affinity and IL-3Rα-positive cell selectivity. Competition ELISA and cell treatment assays were performed. Cell fractionation, confocal microscopy, flow cytometry, and Western blot techniques were used to determine the level of antibody accumulation inside cells and in corresponding nuclei. In addition, the radioisotope copper-64 ((64)Cu) was also utilized as a surrogate molecular cargo to evaluate nuclear and intracellular accumulation by radioactivity counting. 7G3-ChAcNLS effectively escaped endosome entrapment and degradation resulting in a unique intracellular distribution pattern. mAb modification with ChAcNLS maintained 7G3 nM affinity and produced high

  9. Multi-scale Morphological Image Enhancement of Chest Radiographs by a Hybrid Scheme.

    PubMed

    Alavijeh, Fatemeh Shahsavari; Mahdavi-Nasab, Homayoun

    2015-01-01

    Chest radiography is a common diagnostic imaging test, which contains an enormous amount of information about a patient. However, its interpretation is highly challenging. The accuracy of the diagnostic process is greatly influenced by image processing algorithms; hence enhancement of the images is indispensable in order to improve visibility of the details. This paper aims at improving radiograph parameters such as contrast, sharpness, noise level, and brightness to enhance chest radiographs, making use of a triangulation method. Here, contrast limited adaptive histogram equalization technique and noise suppression are simultaneously performed in wavelet domain in a new scheme, followed by morphological top-hat and bottom-hat filtering. A unique implementation of morphological filters allows for adjustment of the image brightness and significant enhancement of the contrast. The proposed method is tested on chest radiographs from Japanese Society of Radiological Technology database. The results are compared with conventional enhancement techniques such as histogram equalization, contrast limited adaptive histogram equalization, Retinex, and some recently proposed methods to show its strengths. The experimental results reveal that the proposed method can remarkably improve the image contrast while keeping the sensitive chest tissue information so that radiologists might have a more precise interpretation. PMID:25709942

  10. Multi-scale Morphological Image Enhancement of Chest Radiographs by a Hybrid Scheme

    PubMed Central

    Alavijeh, Fatemeh Shahsavari; Mahdavi-Nasab, Homayoun

    2015-01-01

    Chest radiography is a common diagnostic imaging test, which contains an enormous amount of information about a patient. However, its interpretation is highly challenging. The accuracy of the diagnostic process is greatly influenced by image processing algorithms; hence enhancement of the images is indispensable in order to improve visibility of the details. This paper aims at improving radiograph parameters such as contrast, sharpness, noise level, and brightness to enhance chest radiographs, making use of a triangulation method. Here, contrast limited adaptive histogram equalization technique and noise suppression are simultaneously performed in wavelet domain in a new scheme, followed by morphological top-hat and bottom-hat filtering. A unique implementation of morphological filters allows for adjustment of the image brightness and significant enhancement of the contrast. The proposed method is tested on chest radiographs from Japanese Society of Radiological Technology database. The results are compared with conventional enhancement techniques such as histogram equalization, contrast limited adaptive histogram equalization, Retinex, and some recently proposed methods to show its strengths. The experimental results reveal that the proposed method can remarkably improve the image contrast while keeping the sensitive chest tissue information so that radiologists might have a more precise interpretation. PMID:25709942

  11. Trade-offs between performance and variability in the escape responses of bluegill sunfish (Lepomis macrochirus)

    PubMed Central

    Hitchcock, Amanda C.; Chen, Tiffany; Connolly, Erin; Darakananda, Karin; Jeong, Janet; Quist, Arbor; Robbins, Allison; Ellerby, David J.

    2015-01-01

    Successful predator evasion is essential to the fitness of many animals. Variation in escape behaviour may be adaptive as it reduces predictability, enhancing escape success. High escape velocities and accelerations also increase escape success, but biomechanical factors likely constrain the behavioural range over which performance can be maximized. There may therefore be a trade-off between variation and performance during escape responses. We have used bluegill sunfish (Lepomis macrochirus) escape responses to examine this potential trade-off, determining the full repertoire of escape behaviour for individual bluegill sunfish and linking this to performance as indicated by escape velocity and acceleration. Fish escapes involve an initial C-bend of the body axis, followed by variable steering movements. These generate thrust and establish the escape direction. Directional changes during the initial C-bend were less variable than the final escape angle, and the most frequent directions were associated with high escape velocity. Significant inter-individual differences in escape angles magnified the overall variation, maintaining unpredictability from a predator perspective. Steering in the latter stages of the escape to establish the final escape trajectory also affected performance, with turns away from the stimulus associated with reduced velocity. This suggests that modulation of escape behaviour by steering may also have an associated performance cost. This has important implications for understanding the scope and control of intra- and inter-individual variation in escape behaviour and the associated costs and benefits. PMID:25910940

  12. Trade-offs between performance and variability in the escape responses of bluegill sunfish (Lepomis macrochirus).

    PubMed

    Hitchcock, Amanda C; Chen, Tiffany; Connolly, Erin; Darakananda, Karin; Jeong, Janet; Quist, Arbor; Robbins, Allison; Ellerby, David J

    2015-01-01

    Successful predator evasion is essential to the fitness of many animals. Variation in escape behaviour may be adaptive as it reduces predictability, enhancing escape success. High escape velocities and accelerations also increase escape success, but biomechanical factors likely constrain the behavioural range over which performance can be maximized. There may therefore be a trade-off between variation and performance during escape responses. We have used bluegill sunfish (Lepomis macrochirus) escape responses to examine this potential trade-off, determining the full repertoire of escape behaviour for individual bluegill sunfish and linking this to performance as indicated by escape velocity and acceleration. Fish escapes involve an initial C-bend of the body axis, followed by variable steering movements. These generate thrust and establish the escape direction. Directional changes during the initial C-bend were less variable than the final escape angle, and the most frequent directions were associated with high escape velocity. Significant inter-individual differences in escape angles magnified the overall variation, maintaining unpredictability from a predator perspective. Steering in the latter stages of the escape to establish the final escape trajectory also affected performance, with turns away from the stimulus associated with reduced velocity. This suggests that modulation of escape behaviour by steering may also have an associated performance cost. This has important implications for understanding the scope and control of intra- and inter-individual variation in escape behaviour and the associated costs and benefits. PMID:25910940

  13. Enhanced copper adsorption and morphological alterations of cells of copper-stressed Mucor rouxii

    SciTech Connect

    Gardea-Torresdey, J.L.; Cano-Aguilera, I.; Webb, R.; Gutierrez-Corona, F.

    1997-03-01

    Fungi are ubiquitous and can become dominant in metal-polluted habitats. Some fungal strains are tolerant to metal toxicity. The presence of a high copper concentration in the culture medium induced morphological changes in the copper-tolerant strain of Mucor rouxii. Copper binding by strains of M. rouxii cultured at a trace copper concentration was less effective than those cultured at a high copper concentration. These experiments were performed at an optimum time of 30 min and a pH of 5 for Cu{sup 2+} binding. The results suggest that a passive metal-binding mechanism makes the majority of total copper binding. These preliminary findings suggest that the presence of high levels of copper in the culture medium allow the development of chemical functional groups on the fungal surface, which led to an enhanced copper-binding ability and induced important morphological changes in M. rouxii.

  14. Gas image enhancement based on adaptive time-domain filtering and morphology

    NASA Astrophysics Data System (ADS)

    Zhang, Changxing; Wang, Lingxue; Li, Jiakun; Long, Yunting; Zhang, Bei

    2011-05-01

    The fingerprint region of most gases is within 3 to 14μm. A mid-wave or long-wave infrared thermal imager is therefore commonly applied in gas detection. With further influence of low gas concentration and heterogeneity of infrared focal plane arrays, the image has numerous drawbacks. These include loud noise, weak gas signal, gridding, and dead points, all of which are particularly evident in sequential images. In order to solve these problems, we take into account the characteristics of the leaking gas image and propose an enhancement method based on adaptive time-domain filtering with morphology. The adaptive time-domain filtering which operates on time sequence images is a hybrid method combining the recursive filtering and mean filtering. It segments gas and background according to a selected threshold; removes speckle noise according to the median; and removes background domain using weighted difference image. The morphology method can not only dilate the gas region along the direction of gas diffusion to greatly enhance the visibility of the leakage area, but also effectively remove the noise, and smooth the contour. Finally, the false color is added to the gas domain. Results show that the gas infrared region is effectively enhanced.

  15. Spacecraft Escape Capsule

    NASA Technical Reports Server (NTRS)

    Robertson, Edward A.; Charles, Dingell W.; Bufkin, Ann L.; Rodriggs, Liana M.; Peterson, Wayne; Cuthbert, Peter; Lee, David E.; Westhelle, Carlos

    2006-01-01

    A report discusses the Gumdrop capsule a conceptual spacecraft that would enable the crew to escape safely in the event of a major equipment failure at any time from launch through atmospheric re-entry. The scaleable Gumdrop capsule would comprise a command module (CM), a service module (SM), and a crew escape system (CES). The CM would contain a pressurized crew environment that would include avionic, life-support, thermal control, propulsive attitude control, and recovery systems. The SM would provide the primary propulsion and would also supply electrical power, life-support resources, and active thermal control to the CM. The CES would include a solid rocket motor, embedded within the SM, for pushing the CM away from the SM in the event of a critical thermal-protection-system failure or loss of control. The CM and SM would normally remain integrated with each other from launch through recovery, but could be separated using the CES, if necessary, to enable the safe recovery of the crew in the CM. The crew escape motor could be used, alternatively, as a redundant means of de-orbit propulsion for the CM in the event of a major system failure in the SM.

  16. Linckosides enhance proliferation and induce morphological changes in human olfactory ensheathing cells.

    PubMed

    Tello Velasquez, Johana; Yao, Rebecca-Qing; Lim, Filip; Han, Chunguang; Ojika, Makoto; Ekberg, Jenny A K; Quinn, Ronald J; John, James A St

    2016-09-01

    Linckosides are members of the steroid glycoside family isolated from the starfish Linckia laevigata. These natural compounds have notable neuritogenic activity and synergistic effects on NGF-induced neuronal differentiation of PC12 cells. Neurogenic factors or molecules that are able to mimic their activities are known to be involved in the survival, proliferation and migration of neurons and glial cells; however how glial cells respond to specific neurogenic molecules such as linckosides has not been investigated. This study aimed to examine the effect of three different linckosides (linckoside A, B and granulatoside A) on the morphological properties, proliferation and migration of human olfactory ensheathing cells (hOECs). The proliferation rate after all the treatments was higher than control as detected by MTS assay. Additionally, hOECs displayed dramatic morphological changes characterized by a higher number of processes after linckoside treatment. Interestingly changes in microtubule organization and expression levels of some early neuronal markers (GAP43 and βIII-tubulin) were also observed. An increase in the phosphorylation of ERK 1/2 after addition of the compounds suggests that this pathway may be involved in the linckoside-mediated effects particularly those related to morphological changes. These results are the first description of the stimulating effects of linckosides on hOECs and raise the potential for this natural compound or its derivatives to be used to regulate and enhance the therapeutic properties of OECs, particularly for cell transplantation therapies. PMID:27343824

  17. [A novel hyperspectra absorption enhancing method based on morphological top-hat transformation].

    PubMed

    Li, Hui; Lin, Qi-zhong; Wang, Qin-jun; Liu, Qing-jie; Chen, Yu

    2010-09-01

    Hyperspectral characteristics analysis of ground features is the basis for applications of high-resolution imaging technology to ground target identification and ground features classification. Based on morphological multi-scale Top-Hat transformation, a novel spectral absorption enhancing algorithms was put forward, which enhanced spectral absorption features while maintaining shape features of the absorption peak bands. Eleven reflectance spectra of different mineral groups were chosen from the mineral spectral library of the United States Geological Survey (USGS), and we used a K-means clustering analysis on both the absorption-enhanced spectra and the original reflectance spectra. Results showed that, firstly, clustering groups of the absorption-enhanced spectra (AES) had better similarity within the same clustering group, and greater difference between different groups, furthermore, they were more consistent with the geological background of these minerals compared with clustering result of the original spectra (OS). Secondly, while all the original spectra were re-sampled to their ASTER spectra and the AES clustering result was displayed in the form of ASTER spectra of the minerals, we could easily describe both the representative spectral feature of each clustering group, and the typical spectral differences between every two groups. These fully demonstrate that the absorption-enhanced spectra have enhanced absorption features of the mineral spectra, and improved the separability of hyper-spectra. Accordingly, feature analysis based on absorption enhanced spectra can be used as reference for information extracting based on multi-spectral remote sensing image data, and it is a very useful method of hyperspectral analysis. PMID:21105412

  18. Infrared image enhancement based on the edge detection and mathematical morphology

    NASA Astrophysics Data System (ADS)

    Zhang, Linlin; Zhao, Yuejin; Dong, Liquan; Liu, Xiaohua; Yu, Xiaomei; Hui, Mei; Chu, Xuhong; Gong, Cheng

    2010-11-01

    The development of the un-cooled infrared imaging technology from military necessity. At present, It is widely applied in industrial, medicine, scientific and technological research and so on. The infrared radiation temperature distribution of the measured object's surface can be observed visually. The collection of infrared images from our laboratory has following characteristics: Strong spatial correlation, Low contrast , Poor visual effect; Without color or shadows because of gray image , and has low resolution; Low definition compare to the visible light image; Many kinds of noise are brought by the random disturbances of the external environment. Digital image processing are widely applied in many areas, it can now be studied up close and in detail in many research field. It has become one kind of important means of the human visual continuation. Traditional methods for image enhancement cannot capture the geometric information of images and tend to amplify noise. In order to remove noise and improve visual effect. Meanwhile, To overcome the above enhancement issues. The mathematical model of FPA unit was constructed based on matrix transformation theory. According to characteristics of FPA, Image enhancement algorithm which combined with mathematical morphology and edge detection are established. First of all, Image profile is obtained by using the edge detection combine with mathematical morphological operators. And then, through filling the template profile by original image to get the ideal background image, The image noise can be removed on the base of the above method. The experiments show that utilizing the proposed algorithm can enhance image detail and the signal to noise ratio.

  19. Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility

    PubMed Central

    2011-01-01

    Background In recent years, biorefining of lignocellulosic biomass to produce multi-products such as ethanol and other biomaterials has become a dynamic research area. Pretreatment technologies that fractionate sugarcane bagasse are essential for the successful use of this feedstock in ethanol production. In this paper, we investigate modifications in the morphology and chemical composition of sugarcane bagasse submitted to a two-step treatment, using diluted acid followed by a delignification process with increasing sodium hydroxide concentrations. Detailed chemical and morphological characterization of the samples after each pretreatment condition, studied by high performance liquid chromatography, solid-state nuclear magnetic resonance, diffuse reflectance Fourier transformed infrared spectroscopy and scanning electron microscopy, is reported, together with sample crystallinity and enzymatic digestibility. Results Chemical composition analysis performed on samples obtained after different pretreatment conditions showed that up to 96% and 85% of hemicellulose and lignin fractions, respectively, were removed by this two-step method when sodium hydroxide concentrations of 1% (m/v) or higher were used. The efficient lignin removal resulted in an enhanced hydrolysis yield reaching values around 100%. Considering the cellulose loss due to the pretreatment (maximum of 30%, depending on the process), the total cellulose conversion increases significantly from 22.0% (value for the untreated bagasse) to 72.4%. The delignification process, with consequent increase in the cellulose to lignin ratio, is also clearly observed by nuclear magnetic resonance and diffuse reflectance Fourier transformed infrared spectroscopy experiments. We also demonstrated that the morphological changes contributing to this remarkable improvement occur as a consequence of lignin removal from the sample. Bagasse unstructuring is favored by the loss of cohesion between neighboring cell walls, as

  20. Adaptive bill morphology for enhanced tool manipulation in New Caledonian crows

    PubMed Central

    Matsui, Hiroshi; Hunt, Gavin R.; Oberhofer, Katja; Ogihara, Naomichi; McGowan, Kevin J.; Mithraratne, Kumar; Yamasaki, Takeshi; Gray, Russell D.; Izawa, Ei-Ichi

    2016-01-01

    Early increased sophistication of human tools is thought to be underpinned by adaptive morphology for efficient tool manipulation. Such adaptive specialisation is unknown in nonhuman primates but may have evolved in the New Caledonian crow, which has sophisticated tool manufacture. The straightness of its bill, for example, may be adaptive for enhanced visually-directed use of tools. Here, we examine in detail the shape and internal structure of the New Caledonian crow’s bill using Principal Components Analysis and Computed Tomography within a comparative framework. We found that the bill has a combination of interrelated shape and structural features unique within Corvus, and possibly birds generally. The upper mandible is relatively deep and short with a straight cutting edge, and the lower mandible is strengthened and upturned. These novel combined attributes would be functional for (i) counteracting the unique loading patterns acting on the bill when manipulating tools, (ii) a strong precision grip to hold tools securely, and (iii) enhanced visually-guided tool use. Our findings indicate that the New Caledonian crow’s innovative bill has been adapted for tool manipulation to at least some degree. Early increased sophistication of tools may require the co-evolution of morphology that provides improved manipulatory skills. PMID:26955788

  1. Modulating the Morphology of Gold Graphitic Nanocapsules for Plasmon Resonance-Enhanced Multimodal Imaging.

    PubMed

    Lai, Xiao-Fang; Zou, Yu-Xiu; Wang, Shan-Shan; Zheng, Meng-Jie; Hu, Xiao-Xiao; Liang, Hao; Xu, Yi-Ting; Wang, Xue-Wei; Ding, Ding; Chen, Long; Chen, Zhuo; Tan, Weihong

    2016-05-17

    With their unique optical properties and distinct Raman signatures, graphitic nanomaterials can serve as substrates for surface-enhanced Raman spectroscopy (SERS) or provide signal amplification for bioanalysis and detection. However, a relatively weak Raman signal has limited further biomedical applications. This has been addressed by encapsulating gold nanorods (AuNRs) in a thin graphitic shell to form gold graphitic nanocapsules. This step improves plasmon resonance, which enhances Raman intensity, and has the potential for integrating two-photon luminescence (TPL) imaging capability. However, changing the morphology of gold graphitic nanocapsules such that high quality and stability are achieved remains a challenge. To address this task, we herein report a confinement chemical vapor deposition (CVD) method to prepare the construction of AuNR-encapsulated graphitic nanocapsules with these properties. Specifically, through morphological modulation, we (1) achieved higher plasmon resonance with near-IR incident light, thus achieving greater Raman intensity, and (2) successfully integrated two-photon luminescence dual-modal (Raman/TPL) bioimaging capabilities. Cancer-cell-specific aptamers were further modified on the AuNR@G graphitic surface through simple, but strong, π-π interactions to achieve imaging selectivity through differential cancer cell recognition. PMID:27089383

  2. Adaptive bill morphology for enhanced tool manipulation in New Caledonian crows.

    PubMed

    Matsui, Hiroshi; Hunt, Gavin R; Oberhofer, Katja; Ogihara, Naomichi; McGowan, Kevin J; Mithraratne, Kumar; Yamasaki, Takeshi; Gray, Russell D; Izawa, Ei-Ichi

    2016-01-01

    Early increased sophistication of human tools is thought to be underpinned by adaptive morphology for efficient tool manipulation. Such adaptive specialisation is unknown in nonhuman primates but may have evolved in the New Caledonian crow, which has sophisticated tool manufacture. The straightness of its bill, for example, may be adaptive for enhanced visually-directed use of tools. Here, we examine in detail the shape and internal structure of the New Caledonian crow's bill using Principal Components Analysis and Computed Tomography within a comparative framework. We found that the bill has a combination of interrelated shape and structural features unique within Corvus, and possibly birds generally. The upper mandible is relatively deep and short with a straight cutting edge, and the lower mandible is strengthened and upturned. These novel combined attributes would be functional for (i) counteracting the unique loading patterns acting on the bill when manipulating tools, (ii) a strong precision grip to hold tools securely, and (iii) enhanced visually-guided tool use. Our findings indicate that the New Caledonian crow's innovative bill has been adapted for tool manipulation to at least some degree. Early increased sophistication of tools may require the co-evolution of morphology that provides improved manipulatory skills. PMID:26955788

  3. -based catalysts with engineered morphologies for soot oxidation to enhance soot-catalyst contact

    NASA Astrophysics Data System (ADS)

    Miceli, Paolo; Bensaid, Samir; Russo, Nunzio; Fino, Debora

    2014-05-01

    As morphology plays a relevant role in solid/solid catalysis, where the number of contact points is a critical feature in this kind of reaction, three different ceria morphologies have been investigated in this work as soot oxidation catalysts: ceria nanofibers, which can become organized as a catalytic network inside diesel particulate filter channels and thus trap soot particles at several contact points but have a very low specific surface area (4 m2/g); solution combustion synthesis ceria, which has an uncontrolled morphology but a specific surface area of 31 m2/g; and three-dimensional self-assembled (SA) ceria stars, which have both high specific surface area (105 m2/g) and a high availability of contact points. A high microporous volume of 0.03 cm3/g and a finer crystallite size compared to the other morphologies suggested that self-assembled stars could improve their redox cycling capability and their soot oxidation properties. In this comparison, self-assembled stars have shown the best tendency towards soot oxidation, and the temperature of non-catalytic soot oxidation has dropped from 614°C to 403°C in tight and to 552°C in loose contact conditions, respectively. As far as the loose contact results are concerned, this condition being the most realistic and hence the most significant, self-assembled stars have exhibited the lowest T 10% onset temperature of this trio (even after ageing), thus proving their higher intrinsic activity. Furthermore, the three-dimensional shape of self-assembled stars may involve more of the soot cake layer than the solution combustion synthesis or nanofibers of ceria and thus enhance the total number of contact points. The results obtained through this work have encouraged our efforts to understand soot oxidation and to transpose these results to real diesel particulate filters.

  4. Morphology modification of gold nanoparticles from nanoshell to C-shape: Improved surface enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Xing, Ting-Yang; Zhu, Jian; Li, Jian-Jun; Zhao, Jun-Wu

    2016-06-01

    Morphology modification of nanostructures is of great interest, because it can be used to fabricate nanostructures which are hard to be done using other methods. Different from traditional lithographic technique which is slow and expensive, morphology modification is easy, cheap, and reproducible. In this paper, modification of the optical and morphological properties of a hollow gold nanoshell (HGNS) is achieved by using H2O2 as an oxidizer. The reshaping of these nanostructures has been demonstrated as a consequence of an oxidation process in which HGNSs are dissolved by H2O2 under the acidic conditions provided by HCl. We investigate the oxidation process by a transmission electron microscope and propose a reshaping model involving four different shapes (HGNS, HGNS with hole, gold nanoring, and C-shaped gold nanoparticle) which are corresponding to the oxidation products of HGNSs at different pH values. Besides, the surface enhanced Raman scattering (SERS) activity of each oxidation product has been evaluated by using rhodamine 6G as the Raman active probe. It has been observed that the C-shaped gold nanoparticles which are corresponding to the oxidation products at the minimum pH value have the highest SERS activity and this result can also be interpreted by discrete-dipole approximation simulations. We demonstrate that the morphology modification of HGNSs becomes possible in a controlled manner using wet chemistry and can be used in preparation of gold nanoparticles such as HGNS with hole, gold nanoring, and C-shaped gold nanoparticle with large SERS activity. These nanostructures must have potential use in many plasmonic areas, including sensing, catalysis, and biomedicine.

  5. MEMO: Mars Escape and Magnetic Orbiter

    NASA Astrophysics Data System (ADS)

    Chassefiere, E.; Langlais, B.; Leblanc, F.; Sotin, C.; Barabash, S.; Dehant, V.; Dougherty, M.; Lammer, H.; Mandea, M.; Vennerstrom, S.

    There are several reasons to believe that Mars could have become an Earth like planet rather than the present dry and cold planet. In particular, many elements suggest the presence of liquid water at the Martian surface during a relatively short period at an early stage of its history. Since liquid water may have been the birthplace for life on Earth, the fate of Martian water is one of the major key and yet unanswered question to be solved. Mars Escape and Magnetic Orbiter (MEMO) is a low periapsis orbiter of Mars devoted to the measurement of present escape and the characterization of the fossil magnetic field of Mars. The use of a low periapsis altitude orbit (120-150 km) is required to detect and quantify all populations of atoms and molecules involved in escape. It is also required to measure the magnetic field of Mars with an unprecedented spatial resolution that would allow getting a more precise timing of the dynamo and its disappearance. Achieving a full characterization of atmospheric escape, and extrapolating it back to the past requires: (i) to measure escape fluxes of neutral and ion species, and characterize the dynamics and chemistry of the regions of the atmosphere where escape occurs (thermosphere, ionosphere, exosphere), as well as their responses to solar activity, and (ii) to characterize the lateral variations of the magnetic field of lithospheric origin, and by extension, the timing of the Martian dynamo. Of particular interest is the extinction of the dynamo that is thought to have enhanced the atmospheric escape processes still operating today. The proposed low-periapsis orbiter will consist of the following elements: • An "Escape Package" to characterize by both in-situ and remote measurements the thermosphere, ionosphere, exosphere and solar wind interaction regions (from one hundred to several thousand km), including thermal, suprathermal 1 and energetic particles. • A "Magnetic Field Package", to characterize the magnetization of the

  6. Orbiter escape pole

    NASA Technical Reports Server (NTRS)

    Goodrich, Winston D. (Inventor); Wesselski, Clarence J. (Inventor); Pelischek, Timothy E. (Inventor); Becker, Bruce H. (Inventor); Kahn, Jon B. (Inventor); Grimaldi, Margaret E. (Inventor); McManamen, John P. (Inventor); Castro, Edgar O. (Inventor)

    1989-01-01

    A Shuttle type of aircraft (10) with an escape hatch (12) has an arcuately shaped pole housing (16) attachable to an interior wall and ceiling with its open end adjacent to the escape hatch. The pole housing 16 contains a telescopically arranged and arcuately shaped primary pole member (22) and extension pole member (23) which are guided by roller assemblies (30,35). The extension pole member (23) is slidable and extendable relative to the primary pole member (22). For actuation, a spring actuated system includes a spring (52) in the pole housing. A locking member (90) engages both pole members (22,23) through notch portions (85,86) in the pole members. The locking member selectively releases the extension pole member (23) and the primary pole member (22). An internal one-way clutch or anti-return mechanism prevents retraction of the extension pole member from an extended position. Shock absorbers (54)(150,152) are for absoring the energy of the springs. A manual backup deployment system is provided which includes a canted ring (104) biased by a spring member (108). A lever member (100) with a slot and pin connection (102) permits the mechanical manipulation of the canted ring to move the primary pole member. The ring (104) also prevents retraction of the main pole. The crew escape mechanism includes a magazine (60) and a number of lanyards (62), each lanyard being mounted by a roller loop (68) over the primary pole member (22). The strap on the roller loop has stitching for controlled release, a protection sheath (74) to prevent tangling and a hook member (69) for attachment to a crew harness.

  7. Hydrogen Escape from early Earth and Mars

    NASA Astrophysics Data System (ADS)

    Zugger, M. E.; Ramirez, R. M.; Kasting, J. F.

    2012-12-01

    A controversy regarding hydrodynamic escape rates arose when Tian et al. (2005) published transonic escape rates for an atmosphere composed of pure H2. Tian et al. concluded that the hydrogen escape rate from early Earth would have been a factor of 20 or more slower than the diffusion limit, even if the solar EUV (extreme ultraviolet) flux was enhanced by a factor of 5 relative to today. This conclusion was challenged by Catling (2006), who pointed out that solar EUV fluxes could have been much higher than this so that plenty of energy should have been available to power escape. This controversy has remained unresolved to date. Hydrogen escape from early Mars is also of interest. As discussed in this session in a complementary paper by Ramirez et al., collision-induced absorption by molecular hydrogen could have helped to warm early Mars, perhaps explaining the formation of valleys and valley networks. Ramirez et al. have shown that a mixture of 90% CO2 and 10% H2 is capable raising early Mars' surface temperature above the freezing point of water, for surface pressures exceeding ~3 bar. However, we need to understand whether H2 mixing ratios of 10% are physically plausible. The H2 partial pressure in Mars' early atmosphere would have been determined by the balance between volcanic outgassing and escape to space. The 10% mixing ratio is high compared to the value of ~10-3 typically assumed for early Earth. But Mars' early atmosphere may have been more reduced than Earth's (Wadwha, 2001); if the hydrogen escape rate on Mars was also slower than on Earth, then additional increases in atmospheric hydrogen concentration are possible. To answer these questions about the early atmospheres of Earth and Mars, we have modified an existing model of hydrodynamic escape, developed by F. Tian, J. Kasting, and others, to converge for atmospheres with a wide range of hydrogen mixing ratios. The model finds subsonic solutions to the hydrodynamic equations; these can be shown to

  8. Controlling filamentous fungi morphology with microparticles to enhanced β-mannanase production.

    PubMed

    Yatmaz, Ercan; Karahalil, Ercan; Germec, Mustafa; Ilgin, Merve; Turhan, İrfan

    2016-09-01

    β-mannanase was produced mainly by Aspergillus species and can degrade the β-1,4-mannose linkages of galactomannans. This study was undertaken to enhance mannanase production using talcum and aluminum oxide as the microparticles, which control cell morphology of recombinant Aspergillus sojae in glucose and carob extract medium. Both microparticles improved fungal growth in glucose and carob pod extract medium. Aluminum oxide (1 g/L) was the best agent for glucose medium which resulted in 514.0 U/ml. However, the highest mannanase activity was found as 568.7 U/ml with 5 g/L of talcum in carob extract medium. Increase in microparticle concentration resulted in decreasing the pellet size diameter. Furthermore, more than 10 g/L of talcum addition changed the filamentous fungi growth type from pellet to pellet/mycelium mixture. Results showed that right type and concentration of microparticle in fermentation media improved the mannanase activity and production rate by controlling the growth morphology. PMID:27129457

  9. Martian Atmospheric and Ionospheric plasma Escape

    NASA Astrophysics Data System (ADS)

    Lundin, Rickard

    2016-04-01

    Solar forcing is responsible for the heating, ionization, photochemistry, and erosion processes in the upper atmosphere throughout the lifetime of the terrestrial planets. Of the four terrestrial planets, the Earth is the only one with a fully developed biosphere, while our kin Venus and Mars have evolved into arid inhabitable planets. As for Mars, there are ample evidences for an early Noachian, water rich period on Mars. The question is, what made Mars evolve so differently compared to the Earth? Various hydrosphere and atmospheric evolution scenarios for Mars have been forwarded based on surface morphology, chemical composition, simulations, semi-empiric (in-situ data) models, and the long-term evolution of the Sun. Progress has been made, but the case is still open regarding the changes that led to the present arid surface and tenuous atmosphere at Mars. This presentation addresses the long-term variability of the Sun, the solar forcing impact on the Martian atmosphere, and its interaction with the space environment - an electromagnetic wave and particle interaction with the upper atmosphere that has implications for its photochemistry, composition, and energization that governs thermal and non-thermal escape. Non-thermal escape implies an electromagnetic upward energization of planetary ions and molecules to velocities above escape velocity, a process governed by a combination of solar EUV radiation (ionization), and energy and momentum transfer by the solar wind. The ion escape issue dates back to the early Soviet and US-missions to Mars, but the first more accurate estimates of escape rates came with the Phobos-2 mission in 1989. Better-quality ion composition measurement results of atmospheric/ionospheric ion escape from Mars, obtained from ESA Mars Express (MEX) instruments, have improved our understanding of the ion escape mechanism. With the NASA MAVEN spacecraft orbiting Mars since Sept. 2014, dual in-situ measurement with plasma instruments are now

  10. Reconstructing the Alcatraz escape

    NASA Astrophysics Data System (ADS)

    Baart, F.; Hoes, O.; Hut, R.; Donchyts, G.; van Leeuwen, E.

    2014-12-01

    In the night of June 12, 1962 three inmates used a raft made of raincoatsto escaped the ultimate maximum security prison island Alcatraz in SanFrancisco, United States. History is unclear about what happened tothe escapees. At what time did they step into the water, did theysurvive, if so, where did they reach land? The fate of the escapees has been the subject of much debate: did theymake landfall on Angel Island, or did the current sweep them out ofthe bay and into the cold pacific ocean? In this presentation, we try to shed light on this historic case using avisualization of a high-resolution hydrodynamic simulation of the San Francisco Bay, combined with historical tidal records. By reconstructing the hydrodynamic conditions and using a particle based simulation of the escapees we show possible scenarios. The interactive model is visualized using both a 3D photorealistic and web based visualization. The "Escape from Alcatraz" scenario demonstrates the capabilities of the 3Di platform. This platform is normally used for overland flooding (1D/2D). The model engine uses a quad tree structure, resulting in an order of magnitude speedup. The subgrid approach takes detailed bathymetry information into account. The inter-model variability is tested by comparing the results with the DFlow Flexible Mesh (DFlowFM) San Francisco Bay model. Interactivity is implemented by converting the models from static programs to interactive libraries, adhering to the Basic ModelInterface (BMI). Interactive models are more suitable for answeringexploratory research questions such as this reconstruction effort. Although these hydrodynamic simulations only provide circumstantialevidence for solving the mystery of what happened during the foggy darknight of June 12, 1962, it can be used as a guidance and provides aninteresting testcase to apply interactive modelling.

  11. Evaluating some computer enhancement algorithms that improve the visibility of cometary morphology

    NASA Technical Reports Server (NTRS)

    Larson, S. M.; Slaughter, C. D.

    1991-01-01

    The observed morphology of cometary comae is determined by ejection circumstances and the interaction of the ejected material with the local environment. Anisotropic emission can provide useful information on such things as orientation of the nucleus, location of active areas on the nucleus, and the formation of ion structure near the nucleus. However, discrete coma features are usually diffuse, of low amplitude, and superimposed on a steep intensity gradient radial to the nucleus. To improve the visibility of these features, a variety of digital enhancement algorithms were employed with varying degrees of success. They usually produce some degree of spatial filtering, and are chosen to optimize visibility of certain detail. Since information in the image is altered, it is important to understand the effects of parameter selection and processing artifacts can have on subsequent interpretation. Using the criteria that the ideal algorithm must enhance low contrast features while not introducing misleading artifacts (or features that cannot be seen in the stretched, unprocessed image), the suitability of various algorithms that aid cometary studies were assessed. The strong and weak points of each are identified in the context of maintaining positional integrity of features at the expense of photometric information.

  12. Alirocumab inhibits atherosclerosis, improves the plaque morphology, and enhances the effects of a statin[S

    PubMed Central

    Kühnast, Susan; van der Hoorn, José W. A.; Pieterman, Elsbet J.; van den Hoek, Anita M.; Sasiela, William J.; Gusarova, Viktoria; Peyman, Anusch; Schäfer, Hans-Ludwig; Schwahn, Uwe; Jukema, J. Wouter; Princen, Hans M. G.

    2014-01-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition is a potential novel strategy for treatment of CVD. Alirocumab is a fully human PCSK9 monoclonal antibody in phase 3 clinical development. We evaluated the antiatherogenic potential of alirocumab in APOE*3Leiden.CETP mice. Mice received a Western-type diet and were treated with alirocumab (3 or 10 mg/kg, weekly subcutaneous dosing) alone and in combination with atorvastatin (3.6 mg/kg/d) for 18 weeks. Alirocumab alone dose-dependently decreased total cholesterol (−37%; −46%, P < 0.001) and TGs (−36%; −39%, P < 0.001) and further decreased cholesterol in combination with atorvastatin (−48%; −58%, P < 0.001). Alirocumab increased hepatic LDL receptor protein levels but did not affect hepatic cholesterol and TG content. Fecal output of bile acids and neutral sterols was not changed. Alirocumab dose-dependently decreased atherosclerotic lesion size (−71%; −88%, P < 0.001) and severity and enhanced these effects when added to atorvastatin (−89%; −98%, P < 0.001). Alirocumab reduced monocyte recruitment and improved the lesion composition by increasing the smooth muscle cell and collagen content and decreasing the macrophage and necrotic core content. Alirocumab dose-dependently decreases plasma lipids and, as a result, atherosclerosis development, and it enhances the beneficial effects of atorvastatin in APOE*3Leiden.CETP mice. In addition, alirocumab improves plaque morphology. PMID:25139399

  13. Oxygen escape from the Earth during geomagnetic reversals: Implications to mass extinction

    NASA Astrophysics Data System (ADS)

    Wei, Yong; Pu, Zuyin; Zong, Qiugang; Wan, Weixing; Ren, Zhipeng; Fraenz, Markus; Dubinin, Eduard; Tian, Feng; Shi, Quanqi; Fu, Suiyan; Hong, Minghua

    2014-05-01

    The evolution of life is affected by variations of atmospheric oxygen level and geomagnetic field intensity. Oxygen can escape into interplanetary space as ions after gaining momentum from solar wind, but Earth's strong dipole field reduces the momentum transfer efficiency and the ion outflow rate, except for the time of geomagnetic polarity reversals when the field is significantly weakened in strength and becomes Mars-like in morphology. The newest databases available for the Phanerozoic era illustrate that the reversal rate increased and the atmospheric oxygen level decreased when the marine diversity showed a gradual pattern of mass extinctions lasting millions of years. We propose that accumulated oxygen escape during an interval of increased reversal rate could have led to the catastrophic drop of oxygen level, which is known to be a cause of mass extinction. We simulated the oxygen ion escape rate for the Triassic-Jurassic event, using a modified Martian ion escape model with an input of quiet solar wind inferred from Sun-like stars. The results show that geomagnetic reversal could enhance the oxygen escape rate by 3-4 orders only if the magnetic field was extremely weak, even without consideration of space weather effects. This suggests that our hypothesis could be a possible explanation of a correlation between geomagnetic reversals and mass extinction. Therefore, if this causal relation indeed exists, it should be a "many-to-one" scenario rather the previously considered "one-to-one", and planetary magnetic field should be much more important than previously thought for planetary habitability.

  14. Tidally Enhanced Stellar Wind in Binaries as a Second Parameter for the Horizontal Branch Morphology of Globular Clusters

    NASA Astrophysics Data System (ADS)

    Han, Z.; Lei, Z.

    2014-04-01

    Metallicity is the first parameter to influence the horizontal branch morphology of globular clusters. It has been found, however, that some other parameters may also play an important role in affecting the morphology. While the nature of these other important parameters remains unclear, they are believed to be correlated with the mass loss during the red giant stages, from which the horizontal branch stars have descended. Unfortunately, the mass loss during the red giant stages of stellar evolution are poorly understood at present. In this talk, we investigate the physical consequences of tidally-enhanced stellar winds during the evolution of binary stars on enhancing the mass loss of red giant primaries, with accompanying effects for the horizontal branch morphology of globular clusters. In a binary system, the stellar wind of the red giant primary star may be largely enhanced by its companion star. Different separation of the binary system, however, will lead to a different mass loss rate of the primary star. We found that red, blue, and extreme horizontal branch stars are all produced under the effects of tidally-enhanced stellar wind without any additional assumptions on the mass loss dispersion. Furthermore, the horizontal branch morphology is found to be insensitive to the tidal enhancement parameter, B.

  15. From Morphology to Interfaces to Tandem Geometries: Enhancing the Performance of Perovskite/Polymer Solar Cells

    NASA Astrophysics Data System (ADS)

    Russell, Thomas

    We have taken a new approach to develop mesoporous lead iodide scaffolds, using the nucleation and growth of lead iodide crystallites in a wet film. A simple time-dependent growth control enabled the manipulation of the mesoporous lead iodide layer quality in a continuous manner. The morphology of lead iodide is shown to influence the subsequent crystallization of methyamoniumleadiodide film by using angle-dependent grazing incidence x-ray scattering. The morphology of lead iodide film can be fine-tuned, and thus the methyamoniumleadiodide film quality can be effectively controlled, leading to an optimization of the perovskite active layer. Using this strategy, perovskite solar cells with inverted PHJ structure showed a PCE of 15.7 per cent with little hysteresis. Interface engineering is critical for achieving efficient solar cells, yet a comprehensive understanding of the interface between metal electrode and electron transport layer (ETL) is lacking. A significant power conversion efficiency (PCE) improvement of fullerene/perovskite planar heterojunction solar cells was achieved by inserting a fulleropyrrolidine interlayer between the silver electrode and electron transport layer. The interlayer was found to enhance recombination resistance, increases electron extraction rate and prolongs free carrier lifetime. We also uncovered a facile solution-based fabrication of high performance tandem perovskite/polymer solar cells where the front sub-cell consists of perovskite and the back sub-cell is a polymer-based layer. A record maximum PCE of 15.96 per cent was achieved, demonstrating the synergy between the perovskite and semiconducting polymers. This design balances the absorption of the perovskite and the polymer, eliminates the adverse impact of thermal annealing during perovskite fabrication, and affords devices with no hysteresis. This work was performed in collaboration with Y. Liu, Z. Page, D. Venkataraman and T. Emrick (UMASS), F. Liu (LBNL) and Q. Hu and R

  16. THERMALLY DRIVEN ATMOSPHERIC ESCAPE: TRANSITION FROM HYDRODYNAMIC TO JEANS ESCAPE

    SciTech Connect

    Volkov, Alexey N.; Johnson, Robert E.; Tucker, Orenthal J.; Erwin, Justin T.

    2011-03-10

    Thermally driven escape from planetary atmospheres changes in nature from an organized outflow (hydrodynamic escape) to escape on a molecule-by-molecule basis (Jeans escape) with increasing Jeans parameter, {lambda}, the ratio of the gravitational to thermal energy of the atmospheric molecules. This change is described here for the first time using the direct simulation Monte Carlo method. When heating is predominantly below the lower boundary of the simulation region, R{sub 0}, and well below the exobase of a single-component atmosphere, the nature of the escape process changes over a surprisingly narrow range of Jeans parameters, {lambda}{sub 0}, evaluated at R{sub 0}. For an atomic gas, the transition occurs over {lambda}{sub 0} {approx} 2-3, where the lower bound, {lambda}{sub 0} {approx} 2.1, corresponds to the upper limit for isentropic, supersonic outflow. For {lambda}{sub 0} > 3 escape occurs on a molecule-by-molecule basis and we show that, contrary to earlier suggestions, for {lambda}{sub 0} > {approx}6 the escape rate does not deviate significantly from the familiar Jeans rate. In a gas composed of diatomic molecules, the transition shifts to {lambda}{sub 0} {approx} 2.4-3.6 and at {lambda}{sub 0} > {approx}4 the escape rate increases a few tens of percent over that for the monatomic gas. Scaling by the Jeans parameter and the Knudsen number, these results can be applied to thermally induced escape of the major species from solar and extrasolar planets.

  17. Escape from Vela X

    SciTech Connect

    Hinton, J.; Funk, S.; Parsons, R.D.; Ohm, S.; /Leicester U. /Leeds U.

    2012-02-15

    While the Vela pulsar and its associated nebula are often considered as the archetype of a system powered by a {approx} 10{sup 4} year old isolated neutron star, many features of the spectral energy distribution of this pulsar wind nebula are both puzzling and unusual. Here we develop a model that for the first time relates the main structures in the system, the extended radio nebula (ERN) and the X-ray cocoon through continuous injection of particles with a fixed spectral shape. We argue that diffusive escape of particles from the ERN can explain the steep Fermi-LAT spectrum. In this scenario Vela X should produce a distinct feature in the locally-measured cosmic ray electron spectrum at very high energies. This prediction can be tested in the future using the Cherenkov Telescope Array (CTA). If particles are indeed released early in the evolution of PWNe and can avoid severe adiabatic losses, PWN provide a natural explanation for the rising positron fraction in the local CR spectrum.

  18. Suicide as Escape from Self.

    ERIC Educational Resources Information Center

    Baumeister, Roy F.

    1990-01-01

    Suicide is analyzed as a motivation to escape from adversive self-awareness. The causal chain is traced from initial failures that are attributed internally because of a cognitively deconstructed state. (SLD)

  19. Enhancement of morphological plasticity in hippocampal neurons by a physically modified saline via phosphatidylinositol-3 kinase.

    PubMed

    Roy, Avik; Modi, Khushbu K; Khasnavis, Saurabh; Ghosh, Supurna; Watson, Richard; Pahan, Kalipada

    2014-01-01

    Increase of the density of dendritic spines and enhancement of synaptic transmission through ionotropic glutamate receptors are important events, leading to synaptic plasticity and eventually hippocampus-dependent spatial learning and memory formation. Here we have undertaken an innovative approach to upregulate hippocampal plasticity. RNS60 is a 0.9% saline solution containing charge-stabilized nanobubbles that are generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. RNS60, but not NS (normal saline), PNS60 (saline containing a comparable level of oxygen without the TCP modification), or RNS10.3 (TCP-modified normal saline without excess oxygen), stimulated morphological plasticity and synaptic transmission via NMDA- and AMPA-sensitive calcium influx in cultured mouse hippocampal neurons. Using mRNA-based targeted gene array, real-time PCR, immunoblot, and immunofluorescence analyses, we further demonstrate that RNS60 stimulated the expression of many plasticity-associated genes in cultured hippocampal neurons. Activation of type IA, but not type IB, phosphatidylinositol-3 (PI-3) kinase by RNS60 together with abrogation of RNS60-mediated upregulation of plasticity-related proteins (NR2A and GluR1) and increase in spine density, neuronal size, and calcium influx by LY294002, a specific inhibitor of PI-3 kinase, suggest that RNS60 upregulates hippocampal plasticity via activation of PI-3 kinase. Finally, in the 5XFAD transgenic model of Alzheimer's disease (AD), RNS60 treatment upregulated expression of plasticity-related proteins PSD95 and NR2A and increased AMPA- and NMDA-dependent hippocampal calcium influx. These results describe a novel property of RNS60 in stimulating hippocampal plasticity, which may help AD and other dementias. PMID:25007337

  20. Enhancement of Morphological Plasticity in Hippocampal Neurons by a Physically Modified Saline via Phosphatidylinositol-3 Kinase

    PubMed Central

    Roy, Avik; Modi, Khushbu K.; Khasnavis, Saurabh; Ghosh, Supurna; Watson, Richard; Pahan, Kalipada

    2014-01-01

    Increase of the density of dendritic spines and enhancement of synaptic transmission through ionotropic glutamate receptors are important events, leading to synaptic plasticity and eventually hippocampus-dependent spatial learning and memory formation. Here we have undertaken an innovative approach to upregulate hippocampal plasticity. RNS60 is a 0.9% saline solution containing charge-stabilized nanobubbles that are generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. RNS60, but not NS (normal saline), PNS60 (saline containing a comparable level of oxygen without the TCP modification), or RNS10.3 (TCP-modified normal saline without excess oxygen), stimulated morphological plasticity and synaptic transmission via NMDA- and AMPA-sensitive calcium influx in cultured mouse hippocampal neurons. Using mRNA-based targeted gene array, real-time PCR, immunoblot, and immunofluorescence analyses, we further demonstrate that RNS60 stimulated the expression of many plasticity-associated genes in cultured hippocampal neurons. Activation of type IA, but not type IB, phosphatidylinositol-3 (PI-3) kinase by RNS60 together with abrogation of RNS60-mediated upregulation of plasticity-related proteins (NR2A and GluR1) and increase in spine density, neuronal size, and calcium influx by LY294002, a specific inhibitor of PI-3 kinase, suggest that RNS60 upregulates hippocampal plasticity via activation of PI-3 kinase. Finally, in the 5XFAD transgenic model of Alzheimer’s disease (AD), RNS60 treatment upregulated expression of plasticity-related proteins PSD95 and NR2A and increased AMPA- and NMDA-dependent hippocampal calcium influx. These results describe a novel property of RNS60 in stimulating hippocampal plasticity, which may help AD and other dementias. PMID:25007337

  1. Nano-morphology induced additional surface plasmon resonance enhancement of SERS sensitivity in Ag/GaN nanowall network

    NASA Astrophysics Data System (ADS)

    Sharvani, S.; Upadhayaya, Kishor; Kumari, Gayatri; Narayana, Chandrabhas; Shivaprasad, S. M.

    2015-11-01

    The GaN nanowall network, formed by opening the screw dislocations by kinetically controlled MBE growth, possesses a large surface and high conductivity. Sharp apexed nanowalls show higher surface electron concentration in the band-tail states, in comparison to blunt apexed nanowalls. Uncapped silver nanoparticles are vapor deposited on the blunt and sharp GaN nanowall networks to study the morphological dependence of band-edge plasmon-coupling. Surface enhanced Raman spectroscopy studies performed with a rhodamine 6G analyte on these two configurations clearly show that the sharp nanowall morphology with smaller Ag nanoparticles shows higher enhancement of the Raman signal. A very large enhancement factor of 2.8 × 107 and a very low limit of detection of 10-10 M is observed, which is attributed to the surface plasmon resonance owing to the high surface electron concentration on the GaN nanowall in addition to that of the Ag nanoparticles. The significantly higher sensitivity with same-sized Ag nanoparticles confirms the unconventional role of morphology-dependent surface charge carrier concentration of GaN nanowalls in the enhancement of Raman signals.

  2. Nano-morphology induced additional surface plasmon resonance enhancement of SERS sensitivity in Ag/GaN nanowall network.

    PubMed

    Sharvani, S; Upadhayaya, Kishor; Kumari, Gayatri; Narayana, Chandrabhas; Shivaprasad, S M

    2015-11-20

    The GaN nanowall network, formed by opening the screw dislocations by kinetically controlled MBE growth, possesses a large surface and high conductivity. Sharp apexed nanowalls show higher surface electron concentration in the band-tail states, in comparison to blunt apexed nanowalls. Uncapped silver nanoparticles are vapor deposited on the blunt and sharp GaN nanowall networks to study the morphological dependence of band-edge plasmon-coupling. Surface enhanced Raman spectroscopy studies performed with a rhodamine 6G analyte on these two configurations clearly show that the sharp nanowall morphology with smaller Ag nanoparticles shows higher enhancement of the Raman signal. A very large enhancement factor of 2.8 × 10(7) and a very low limit of detection of 10(-10) M is observed, which is attributed to the surface plasmon resonance owing to the high surface electron concentration on the GaN nanowall in addition to that of the Ag nanoparticles. The significantly higher sensitivity with same-sized Ag nanoparticles confirms the unconventional role of morphology-dependent surface charge carrier concentration of GaN nanowalls in the enhancement of Raman signals. PMID:26502004

  3. Endosomal escape: a bottleneck in intracellular delivery.

    PubMed

    Shete, Harshad K; Prabhu, Rashmi H; Patravale, Vandana B

    2014-01-01

    With advances in therapeutic science, apart from drugs, newer bioactive moieties like oligonucleotides, proteins, peptides, enzymes and antibodies are constantly being introduced for the betterment of therapeutic efficacy. These moieties have intracellular components of the cells like cytoplasm and nucleus as one of their pharmacological sites for exhibiting therapeutic activity. Despite their promising efficacy, their intracellular bioavailability has been critically hampered leading to failure in the treatment of numerous diseases and disorders. The endosomal uptake pathway is known to be a rate-limiting barrier for such systems. Bioactive molecules get trapped in the endosomal vesicles and degraded in the lysosomal compartment, necessitating the need for effective strategies that facilitate the endosomal escape and enhance the cytosolic bioavailability of bioactives. Microbes like viruses and bacteria have developed their innate mechanistic tactics to translocate their genome and toxins by efficiently penetrating the host cell membrane. Understanding this mechanism and exploring it further for intracellular delivery has opened new avenues to surmount the endosomal barrier. These strategies include membrane fusion, pore formation and proton sponge effects. On the other hand, progress in designing a novel smart polymeric carrier system that triggers endosomal escape by undergoing modulations in the intracellular milieu has further led to an improvement in intracellular delivery. These comprise pH, enzyme and temperature-induced modulators, synthetic cationic lipids and photo-induced physical disruption. Each of the aforementioned strategies has its own unique mechanism to escape the endosome. This review recapitulates the numerous strategies designed to surmount the bottleneck of endosomal escape and thereby achieve successful intracellular uptake of bioactives. PMID:24730275

  4. Enhancing evaluation of post-storm morphologic response using aerial orthoimagery from Hurricane Sandy

    USGS Publications Warehouse

    Smith, Jacquelyn Rose; Long, Joseph W.; Stockdon, Hilary F.; Birchler, Justin J.

    2015-01-01

    Improved identification of morphological responses to storms is necessary for developing and maintaining predictive models of coastal change. Morphological responses to Hurricane Sandy were measured using lidar and orthophotos taken before and after the storm. Changes to dune features measured from lidar were compared to the occurrence of overwash deposits measured using orthophotos. Thresholds on morphologic change (e.g. overwash volume and dune height change) were defined to optimize agreement between the classification of lidar and orthophoto-derived dune erosion and overwash. A linear regression showed that overwash volume can be calculated from orthophoto-derived overwash extent.

  5. Enhanced performance and functionality of titanium dioxide papermaking pigments with controlled morphology and surface coating

    NASA Astrophysics Data System (ADS)

    Nelson, Kimberly L.

    Novel, tailored titanium dioxide pigments with controllable nanoscale morphological features were shown to significantly enhance the optical and strength properties of paper. The opacifying power of synthesized polycrystalline TiO2 particles in a cellulose matrix was found experimentally to be superior to that of a commercial rutile pigment, depending on the crystal structure of the synthesized particles. High aspect ratio polycrystalline rutile pigments composed of a linear linkage of several individual rutile crystals gave 6% more opacity than the commercial rutile pigment. Theoretical light scattering calculations using the T-Matrix Method showed the light scattering efficiency of linearly arranged polycrystalline rutile particles to depend on number and size of crystals composing the particle and confirmed the higher efficiency of the synthesized polycrystalline rutile pigments over commercial rutile. The opacifying power of hollow polycrystalline rutile particles was found experimentally to be superior to that of a commercial rutile pigment in a highly pressed bleached fiber matrix, depending on cavity size, while the opacifying power of silica-rutile titania core-shell particles was found comparable to commercial rutile at constant titania loading. The light scattering efficiency of titania core-shell particles was also shown to be dependant on the light scattering efficiency of the core material. The overall particle shape and aspect ratio of titania core-shell and hollow nanoparticles were shown to be tunable by choosing an appropriate template and coating thickness in layer-by-layer or sol-gel templating synthesis. Inorganic-cellulose core-shell and hollow cellulose nanoparticles were prepared by self-encapsulation with regenerated cellulose via precipitation of cellulose in a polyacrylic acid hydrogel layer surrounding inorganic particle templates in 4-Methylmorpholine N-oxide (NMMO) monohydrate solution. This discrete encapsulation of inorganic pigments

  6. Plasma Escape from Unmagnetized Bodies

    NASA Technical Reports Server (NTRS)

    Hartle, R. E.; Grebowsky, J. M.; Intriligator, D. S.

    1998-01-01

    A considerable fraction of atmospheric loss at Venus and Titan is in the form of plasma escape. This is due in part to the fact that the ionospheres of these unmagnetized bodies interact directly with the high speed plasmas flowing around them. The similarities of the interactions help reinforce interpretations of measurements made at each body, especially when instruments and measurement sites differ. For example, it is well established through this method that ions born in the exospheres above the ionopauses are picked up and carried away by the solar wind at Venus and the rotating plasma in Saturn's magnetosphere. On the other hand, it is more difficult to relate the observations associated with escape of cooler ionospheric plasma down the ionotails of each body. A clear example of ionospheric plasma escaping Titan was observed as it flowed down its ionotail (1). Measurements at Venus have not as yet clearly distinguished between ionospheric and pickup ion escape in the ionotail; however, cold ions detected in the distant wake at 1 AU by the CELIAS/CTOF instrument on SOHO have been interpreted as ionospheric in origin (2). An algorithm to determine ionospheric flow from Pioneer Venus aeronomical measurements is used to show that escape of cold ionospheric plasma is likely to occur. These results along with plasma flow measurements made in the ionotail of Venus are combined and compared to the corresponding flow at Titan.

  7. Viral escape from antisense RNA.

    PubMed

    Bull, J J; Jacobson, A; Badgett, M R; Molineux, I J

    1998-05-01

    RNA coliphage SP was propagated for several generations on a host expressing an inhibitory antisense RNA complementary to bases 31-270 of the positive-stranded genome. Phages evolved that escaped inhibition. Typically, these escape mutants contained 3-4 base substitutions, but different sequences were observed among different isolates. The mutations were located within three different types of structural features within the predicted secondary structure of SP genomic RNA: (i) hairpin loops; (ii) hairpin stems; and (iii) the 5' region of the phage genome complementary to the antisense molecule. Computer modelling of the mutant genomic RNAs showed that all of the substitutions within hairpin stems improved the Watson-Crick pairing of the stem. No major structural rearrangements were predicted for any of the mutant genomes, and most substitutions in coding regions did not alter the amino acid sequence. Although the evolved phage populations were polymorphic for substitutions, many substitutions appeared independently in two selected lines. The creation of a new, perfect, antisense RNA against an escape mutant resulted in the inhibition of that mutant but not of other escape mutants nor of the ancestral, unevolved phage. Thus, at least in this system, a population of viruses that evolved to escape from a single antisense RNA would require a cocktail of several antisense RNAs for inhibition. PMID:9643550

  8. Collective Predation and Escape Strategies

    NASA Astrophysics Data System (ADS)

    Angelani, Luca

    2012-09-01

    The phenomenon of collective predation is analyzed by using a simple individual-based model reproducing spatial animal movements. Two groups of self-propelled organisms are simulated by using Vicseklike models including steric intragroup repulsion. Chase and escape are described by intergroups interactions, attraction (for predators) or repulsion (for preys) from nearest particles of the opposite group. The quantitative analysis of some relevant quantities (total catch time, lifetime distribution, predation rate) allows us to characterize many aspects of the predation phenomenon and gives insights into the study of efficient escape strategies. The reported findings could be of relevance for many basic and applied disciplines, from statistical physics, to ecology, and robotics.

  9. Automated Escape Guidance Algorithms for An Escape Vehicle

    NASA Technical Reports Server (NTRS)

    Flanary, Ronald; Hammen, David; Ito, Daigoro; Rabalais, Bruce; Rishikof, Brian; Siebold, Karl

    2002-01-01

    An escape vehicle was designed to provide an emergency evacuation for crew members living on a space station. For maximum escape capability, the escape vehicle needs to have the ability to safely evacuate a station in a contingency scenario such as an uncontrolled (e.g., tumbling) station. This emergency escape sequence will typically be divided into three events: The fust separation event (SEP1), the navigation reconstruction event, and the second separation event (SEP2). SEP1 is responsible for taking the spacecraft from its docking port to a distance greater than the maximum radius of the rotating station. The navigation reconstruction event takes place prior to the SEP2 event and establishes the orbital state to within the tolerance limits necessary for SEP2. The SEP2 event calculates and performs an avoidance burn to prevent station recontact during the next several orbits. This paper presents the tools and results for the whole separation sequence with an emphasis on the two separation events. The fust challenge includes collision avoidance during the escape sequence while the station is in an uncontrolled rotational state, with rotation rates of up to 2 degrees per second. The task of avoiding a collision may require the use of the Vehicle's de-orbit propulsion system for maximum thrust and minimum dwell time within the vicinity of the station vicinity. The thrust of the propulsion system is in a single direction, and can be controlled only by the attitude of the spacecraft. Escape algorithms based on a look-up table or analytical guidance can be implemented since the rotation rate and the angular momentum vector can be sensed onboard and a-priori knowledge of the position and relative orientation are available. In addition, crew intervention has been provided for in the event of unforeseen obstacles in the escape path. The purpose of the SEP2 burn is to avoid re-contact with the station over an extended period of time. Performing this maneuver properly

  10. Surfactant-free Synthesis of CuO with Controllable Morphologies and Enhanced Photocatalytic Property

    NASA Astrophysics Data System (ADS)

    Wang, Xing; Yang, Jiao; Shi, Liuxue; Gao, Meizhen

    2016-03-01

    A green synthesis for nanoleave, nanosheet, spindle-like, rugby-like, dandelion-like and flower-like CuO nanostructures (from 2D to 3D) is successfully achieved through simply hydrothermal synthetic method without the assistance of surfactant. The morphology of CuO nanostructures can be easily tailored by adjusting the amount of ammonia and the source of copper. By designing a time varying experiment, it is verified that the flower- and dandelion-like CuO structures are synthesized by the self-assembly and Ostwald ripening mechanism. Structural and morphological evolutions are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-visible diffuse reflectance spectra. Additionally, the CuO nanostructures with different morphologies could serve as a potential photocatalyst on the photodecomposition of rhodamine B (RhB) aqueous solutions in the presence of H2O2 under visible light irradiation.

  11. Surfactant-free Synthesis of CuO with Controllable Morphologies and Enhanced Photocatalytic Property.

    PubMed

    Wang, Xing; Yang, Jiao; Shi, Liuxue; Gao, Meizhen

    2016-12-01

    A green synthesis for nanoleave, nanosheet, spindle-like, rugby-like, dandelion-like and flower-like CuO nanostructures (from 2D to 3D) is successfully achieved through simply hydrothermal synthetic method without the assistance of surfactant. The morphology of CuO nanostructures can be easily tailored by adjusting the amount of ammonia and the source of copper. By designing a time varying experiment, it is verified that the flower- and dandelion-like CuO structures are synthesized by the self-assembly and Ostwald ripening mechanism. Structural and morphological evolutions are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-visible diffuse reflectance spectra. Additionally, the CuO nanostructures with different morphologies could serve as a potential photocatalyst on the photodecomposition of rhodamine B (RhB) aqueous solutions in the presence of H2O2 under visible light irradiation. PMID:26935305

  12. Silver nanocrystals of various morphologies deposited on silicon wafer and their applications in ultrasensitive surface-enhanced Raman scattering

    SciTech Connect

    Chen, Limiao Jing, Qifeng; Chen, Jun; Wang, Bodong; Huang, Jianhan; Liu, Younian

    2013-11-15

    Silver nanostructures with dendritic, flower-like and irregular morphologies were controllably deposited on a silicon substrate in an aqueous hydrogen fluoride solution at room temperature. The morphology of the Ag nanostructures changed from dendritic to urchin-like, flowerlike and pinecone-like with increasing the concentration of polyvinyl pyrrolidone (MW = 55,000) from 2 to 10 mM. The Ag nanostructures were characterized by transmission electron microscopy, high-resolution transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray, and X-ray diffraction. Through a series of time-dependent morphological evolution studies, the growth processes of Ag nanostructures have been systematically investigated and the corresponding growth mechanisms have been discussed. In addition, the morphology-dependent surface-enhanced Raman scattering of as-synthesized Ag nanostructures were investigated. The results indicated that flower-like Ag nanostructure had the highest activity than the other Ag nanostructures for Rhodamine 6G probe molecules. Highlights: • A simple method was developed to prepare dendritic and flower-like Ag nanostructures. • The flower-like Ag nanoparticles exhibit highest SERS activity. • The SERS substrate based on flower-like Ag particles can be used to detect melamine.

  13. Pioneer Venus Orbiter (PVO) Ionosphere Evidence for Atmospheric Escape

    NASA Astrophysics Data System (ADS)

    Grebowsky, J. M.; Hoegy, W. R.

    2009-12-01

    An early estimate of escape of H2O from Venus [McElroy et al., 1982] using observed hot oxygen densities inferred by Nagy et al. [1981] from PVO OUVS 1304 Å dayglow and using ionization rates from photoionization and electron impact. This resulted in an estimated oxygen ionization rate planet-wide above the plasmapause of 3x1025 atoms/s. Based on the energetic O+ being swept up and removed by solar wind, McElroy et al. [1982] gave an estimate of a loss rate for O of 6x106 atoms/cm2/s. Using a different method of estimating escape based data in the ionotail of Venus, Brace et al. [1987] estimated a total planetary O+ escape rate of 5x1025 ions/s. Their estimate was based on PVO measurements of superthermal O+ (energy range 9-16 eV) in the tail ray plasma between 2000 and 3000 km. Their estimated global mean flux was 107 atoms/cm2/s. The two escape rates are remarkably close considering all the errors involved in such estimates of escape. A study of escape by Luhmann et al. [2008] using VEX observations at low solar activity finds modest escape rates, prompting the authors to reconsider the evidence from both PVO and VEX of the possibility of enhanced escape during extreme interplanetary conditions. We reexamine the variation of escape under different solar wind conditions using ion densities and plasma content in the dayside and nightside of Venus using PVO ionosphere density during times of high solar activity. Citations: Brace, L.H., W. T. Kasprzak, H.A. Taylor, R. F. Theis, C. T. Russess, A. Barnes, J. D. Mihalov, and D. M. Hunten, "The Ionotail of Venus: Its Configuration and Evidence for Ion Escape", J. Geophys. Res. 92, 15-26, 1987. Luhmann, J.G., A. Fedorov, S. Barabash, E. Carlsson, Y. Futaana, T.L. Zhang, C.T. Russell, J.G. Lyon, S.A. Ledvina, and D.A. Brain, “Venus Express observations of atmospheric oxygen escape during the passage of several coronal mass ejections”, J. Geophys. Res., 113, 2008. McElroy, M. B., M. J. Prather, J. M. Rodiquez, " Loss

  14. 42 CFR 84.51 - Entry and escape, or escape only; classification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... during entry into a hazardous atmosphere, and for escape from a hazardous atmosphere; or (b) Escape only. Respirators designed and approved for use only during escape from a hazardous atmosphere....

  15. 42 CFR 84.51 - Entry and escape, or escape only; classification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... during entry into a hazardous atmosphere, and for escape from a hazardous atmosphere; or (b) Escape only. Respirators designed and approved for use only during escape from a hazardous atmosphere....

  16. 42 CFR 84.51 - Entry and escape, or escape only; classification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... during entry into a hazardous atmosphere, and for escape from a hazardous atmosphere; or (b) Escape only. Respirators designed and approved for use only during escape from a hazardous atmosphere....

  17. 42 CFR 84.51 - Entry and escape, or escape only; classification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... during entry into a hazardous atmosphere, and for escape from a hazardous atmosphere; or (b) Escape only. Respirators designed and approved for use only during escape from a hazardous atmosphere....

  18. 42 CFR 84.51 - Entry and escape, or escape only; classification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... during entry into a hazardous atmosphere, and for escape from a hazardous atmosphere; or (b) Escape only. Respirators designed and approved for use only during escape from a hazardous atmosphere....

  19. Enhancing L2 Students' Listening Transcription Ability through a Focus on Morphological Awareness

    ERIC Educational Resources Information Center

    Karimi, Mohammad Nabi

    2013-01-01

    Morphological awareness (MA), defined as the ability to understand the morphemic structure of the words, has been reported to affect various aspects of second language performance including reading comprehension ability, spelling performance, etc. But the concept has been far less treated with reference to l2 listening. Against this background,…

  20. Lise Meitner's escape from Germany

    NASA Astrophysics Data System (ADS)

    Sime, Ruth Lewin

    1990-03-01

    Lise Meitner (1878-1968) achieved prominence as a nuclear physicist in Germany; although of Jewish origin, her Austrian citizenship exempted her from Nazi racial laws until the annexation of Austria in 1938 precipitated her dismissal. Forbidden to emigrate, she narrowly escaped to the Netherlands with the help of concerned friends in the international physics community.

  1. Mechanisms of Ionospheric Mass Escape

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Khazanov, G. V.

    2010-01-01

    The dependence of ionospheric O+ escape flux on electromagnetic energy flux and electron precipitation into the ionosphere is derived for a hypothetical ambipolar pick-up process, powered the relative motion of plasmas and neutral upper atmosphere, and by electron precipitation, at heights where the ions are magnetized but influenced by photo-ionization, collisions with gas atoms, ambipolar and centrifugal acceleration. Ion pick-up by the convection electric field produces "ring-beam" or toroidal velocity distributions, as inferred from direct plasma measurements, from observations of the associated waves, and from the spectra of incoherent radar echoes. Ring-beams are unstable to plasma wave growth, resulting in rapid relaxation via transverse velocity diffusion, into transversely accelerated ion populations. Ion escape is substantially facilitated by the ambipolar potential, but is only weakly affected by centrifugal acceleration. If, as cited simulations suggest, ion ring beams relax into non-thermal velocity distributions with characteristic speed equal to the local ion-neutral flow speed, a generalized "Jeans escape" calculation shows that the escape flux of ionospheric O+ increases with Poynting flux and with precipitating electron density in rough agreement with observations.

  2. Lunar escape systems feasibility study

    NASA Technical Reports Server (NTRS)

    Matzenauer, J. O.

    1976-01-01

    Results are presented for a study conducted to determine the feasibility of simple lunar escape system concepts, to develop a spectrum of operational data, and to identify techniques and configurations suitable for the emergency escape mission. The study demonstrated the feasibility of the lunar emergency escape-to-orbit system (LESS) designed to provide a means for the two-man crew of a lunar module (LM) or extended-stay LM (ELM) to escape from the lunar surface in the event that the LM/ELM ascent stage becomes unsafe or is otherwise unable to take off. The LESS is to carry the two astronauts to a safe lunar orbit, where the Apollo command and service modules (CSM) are to be used for rendezvous and rescue, all within the lifetime of the backpack life support system (about 4 hr). It is concluded that simple manual control modes are sufficient, that simple boost profiles are acceptable, and that one man can deploy and set up the LESS. Initial guidance data can be calculated for the LESS by Mission Control and transmitted via the LM/ELM uplink.

  3. Shear-induced enhancements of crystallization kinetics and morphological transformation for long chain branched polylactides with different branching degrees

    NASA Astrophysics Data System (ADS)

    Wang, Junyang; Bai, Jing; Zhang, Yaqiong; Fang, Huagao; Wang, Zhigang

    2016-06-01

    The effects of long chain branching (LCB) degree on the shear-induced isothermal crystallization kinetics of a series of LCB polylactides (LCB PLAs) have been investigated by using rotational rheometer, polarized optical microscopy (POM) and scanning electron microscopy (SEM). Dynamic viscoelastic properties obtained by small-amplitude oscillatory shear (SAOS) tests indicate that LCB PLAs show more broadened relaxation time spectra with increasing LCB degree. Upon a pre-shear at the shear rate of 1 s‑1 LCB PLAs show much faster crystallization kinetics than linear PLA and the crystallization kinetics is enhanced with increasing LCB degree. By modeling the system as a suspension the quantitative evaluation of nucleation density can be derived from rheological experiments. The nucleation density is greatly enhanced with increasing LCB degree and a saturation in shear time is observed. Crystalline morphologies for LCB PLAs observed by POM and SEM demonstrate the enhancement of nucleation density with increasing LCB degree and a transformation from spherulitic to orientated crystalline morphologies. The observation can be ascribed to longer relaxation time of the longest macromolecular chains and broadened, complex relaxation behaviors due to the introduction of LCB into PLA, which is essential in stabilizing the orientated crystal nuclei after pre-shear.

  4. Shear-induced enhancements of crystallization kinetics and morphological transformation for long chain branched polylactides with different branching degrees

    PubMed Central

    Wang, Junyang; Bai, Jing; Zhang, Yaqiong; Fang, Huagao; Wang, Zhigang

    2016-01-01

    The effects of long chain branching (LCB) degree on the shear-induced isothermal crystallization kinetics of a series of LCB polylactides (LCB PLAs) have been investigated by using rotational rheometer, polarized optical microscopy (POM) and scanning electron microscopy (SEM). Dynamic viscoelastic properties obtained by small-amplitude oscillatory shear (SAOS) tests indicate that LCB PLAs show more broadened relaxation time spectra with increasing LCB degree. Upon a pre-shear at the shear rate of 1 s−1 LCB PLAs show much faster crystallization kinetics than linear PLA and the crystallization kinetics is enhanced with increasing LCB degree. By modeling the system as a suspension the quantitative evaluation of nucleation density can be derived from rheological experiments. The nucleation density is greatly enhanced with increasing LCB degree and a saturation in shear time is observed. Crystalline morphologies for LCB PLAs observed by POM and SEM demonstrate the enhancement of nucleation density with increasing LCB degree and a transformation from spherulitic to orientated crystalline morphologies. The observation can be ascribed to longer relaxation time of the longest macromolecular chains and broadened, complex relaxation behaviors due to the introduction of LCB into PLA, which is essential in stabilizing the orientated crystal nuclei after pre-shear. PMID:27246803

  5. Influence of C{sub 60} morphology on high-order harmonic generation enhancement in fullerene-containing plasma

    SciTech Connect

    Ganeev, R. A.; Singhal, H.; Naik, P. A.; Chakera, J. A.; Srivastava, A. K.; Dhami, T. S.; Joshi, M. P.; Gupta, P. D.

    2009-11-15

    The morphologies of the fullerene targets and the ablated fullerenes to determine the optimal conditions of excitation of the C{sub 60}-containing targets have been analyzed. The optimization of fullerene-containing plasma conditions allowed the enhanced harmonic generation in these plasmas using laser radiation of different wavelengths, pulse durations, and phase modulation. A comparison between the harmonic generation in single-atom/ion-containing plasmas (using bulk carbon, silver, and indium targets) and fullerene-rich plasma plumes showed better conversion efficiency for the latter medium. The influence of phase modulation of the fundamental radiation in fullerene plasmas on the spectral properties of harmonics has been studied.

  6. Sharks modulate their escape behavior in response to predator size, speed and approach orientation.

    PubMed

    Seamone, Scott; Blaine, Tristan; Higham, Timothy E

    2014-12-01

    Escape responses are often critical for surviving predator-prey interactions. Nevertheless, little is known about how predator size, speed and approach orientation impact escape performance, especially in larger prey that are primarily viewed as predators. We used realistic shark models to examine how altering predatory behavior and morphology (size, speed and approach orientation) influences escape behavior and performance in Squalus acanthias, a shark that is preyed upon by apex marine predators. Predator models induced C-start escape responses, and increasing the size and speed of the models triggered a more intense response (increased escape turning rate and acceleration). In addition, increased predator size resulted in greater responsiveness from the sharks. Among the responses, predator approach orientation had the most significant impact on escapes, such that the head-on approach, as compared to the tail-on approach, induced greater reaction distances and increased escape turning rate, speed and acceleration. Thus, the anterior binocular vision in sharks renders them less effective at detecting predators approaching from behind. However, it appears that sharks compensate by performing high-intensity escapes, likely induced by the lateral line system, or by a sudden visual flash of the predator entering their field of view. Our study reveals key aspects of escape behavior in sharks, highlighting the modulation of performance in response to predator approach. PMID:25041843

  7. Blue Origin Conducts Pad Escape Test

    NASA Video Gallery

    Blue Origin conducted a successful pad escape test Oct. 19 at the company's West Texas launch site, firing its pusher escape motor and launching a full-scale suborbital crew capsule from a simulate...

  8. Competing Contingencies for Escape Behavior: Effects of Negative Reinforcement Magnitude and Quality

    ERIC Educational Resources Information Center

    Hammond, Jennifer L.

    2009-01-01

    Previous research has shown that problem behavior maintained by social-negative reinforcement can be treated without escape extinction by enhancing the quality of positive reinforcement for an appropriate alternative response such as compliance. By contrast, negative reinforcement (escape) for compliance generally has been ineffective in the…

  9. Fractionation of the Early Terrestrial Atmospheres: Dynamical Escape

    NASA Technical Reports Server (NTRS)

    Hartle, Richard E.

    2002-01-01

    Hydrodynamic escape may have played a significant role in the early fractionation of the atmospheres of the terrestrial planets. This possibility has been demonstrated in the last two decades by numerous models that show radial, transonic flow of hydrogen can occur in the presence of sufficient solar EUV Hydrodynamic escape may have played a significant role in the early fractionation of the atmospheres of the terrestrial planets. This possibility has been demonstrated in the last two decades by numerous models that show radial, transonic flow of hydrogen can occur in the presence of sufficient solar EUV flux, thought to exist in the first 500 My. The models show that the larger the solar flux the greater the mass of the fractionating species, which are accelerated to escape speeds by the hydrogen wind through drag processes. As the atmospheres evolve and the solar EUV flux wanes, the maximum mass of flowing gas constituents decreases until all gases become static. We show that fractionation can continue beyond this point when non-radial flow and dynamically enhanced Jeans escape are considered. For example, the early terrestrial atmospheres are thought to have had large hydrogen contents, resulting in exobase altitudes of a planetary radius or more. In this case, rotational speeds at the exobases of Earth and Mars would be large enough so that light constituents would "spin" off and fractionate, especially at equatorial latitudes. Also, in the presence of transonic flow of hydrogen only, non-radial expansion throws heavier gases to high altitudes in the exosphere, accompanied by strong bulk speeds at the exobase, which results in enhanced thermal escape fluxes and fractionation. flux, thought to exist in the first 500 My. The models show that the larger the solar flux the greater the mass of the fractionating species, which are accelerated to escape speeds by the hydrogen wind through drag processes. As the atmospheres evolve and the solar EUV flux wanes, the

  10. Orbital Effects on Mercury's Escaping Sodium Exosphere

    NASA Technical Reports Server (NTRS)

    Schmidt, Carl A.; Wilson, Jody K.; Baumgardner, Jeffrey; Mendillo, Michael

    2009-01-01

    We present results from coronagraphic imaging of Mercury's sodium tail over a 7 deg field of view. Several sets of observations made at the McDonald Observatory since May 2007 show a tail of neutral sodium atoms stretching more than 1000 Mercury radii (R(sub m)) in length, or a full degree of sky. However, no tail was observed extending beyond 120 R(sub m) during the January 2008 MESSENGER Fly-by period, or during a similar orbital phase of Mercury in July 2008. Large changes in Mercury's heliocentric radial velocity cause Doppler shifts about the Fraunhofer absorption features; the resultant change in solar flux and radiation pressure is the primary cause of the observed variation in tail brightness. Smaller fluctuations in brightness may exist due to changing source rates at the surface, but we have no explicit evidence for such changes in this data set. The effects of radiation pressure on Mercury's escaping atmosphere are investigated using seven observations spanning different orbital phases. Total escape rates of atmospheric sodium are estimated to be between 5 and 13 x 10(exp 23) atoms/s and show a correlation to radiation pressure. Candidate sources of Mercury's sodium exosphere include desorption by UV sunlight, thermal desorption, solar wind channeled along Mercury's magnetic field lines, and micro-meteor impacts. Wide-angle observations of the full extent of Mercury's sodium tail offer opportunities to enhance our understanding of the time histories of these source rates.

  11. Genetic Algorithms with Local Minimum Escaping Technique

    NASA Astrophysics Data System (ADS)

    Tamura, Hiroki; Sakata, Kenichiro; Tang, Zheng; Ishii, Masahiro

    In this paper, we propose a genetic algorithm(GA) with local minimum escaping technique. This proposed method uses the local minimum escaping techique. It can escape from the local minimum by correcting parameters when genetic algorithm falls into a local minimum. Simulations are performed to scheduling problem without buffer capacity using this proposed method, and its validity is shown.

  12. Air-stable solution-processed n-channel organic thin film transistors with polymer-enhanced morphology

    NASA Astrophysics Data System (ADS)

    He, Zhengran; Shaik, Shoieb; Bi, Sheng; Chen, Jihua; Li, Dawen

    2015-05-01

    N,N'-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDIF-CN2) is an n-type semiconductor exhibiting high electron mobility and excellent air stability. However, the reported electron mobility based on spin-coated PDIF-CN2 film is much lower than the value of PDIF-CN2 single crystals made from vapor phase deposition, indicating significant room for mobility enhancement. In this study, various insulating polymers, including poly(vinyl alcohol), poly(methyl methacrylate) (PMMA), and poly(alpha-methylstyrene) (PαMS), are pre-coated on silicon substrate aiming to enhance the morphology of the PDIF-CN2 thin film, thereby improving the charge transport and air stability. Atomic force microscopy images reveal that with the pre-deposition of PαMS or PMMA polymers, the morphology of the PDIF-CN2 polycrystalline films is optimized in semiconducting crystal connectivity, domain size, and surface roughness, which leads to significant improvement of organic thin-film transistor (OTFT) performance. Particularly, an electron mobility of up to 0.55 cm2/V s has been achieved from OTFTs based on the PDIF-CN2 film with the pre-deposition of PαMS polymer.

  13. Air-stable solution-processed n-channel organic thin film transistors with polymer-enhanced morphology

    SciTech Connect

    He, Zhengran; Shaik, Shoieb; Bi, Sheng; Li, Dawen; Chen, Jihua

    2015-05-04

    N,N′-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDIF-CN{sub 2}) is an n-type semiconductor exhibiting high electron mobility and excellent air stability. However, the reported electron mobility based on spin-coated PDIF-CN{sub 2} film is much lower than the value of PDIF-CN{sub 2} single crystals made from vapor phase deposition, indicating significant room for mobility enhancement. In this study, various insulating polymers, including poly(vinyl alcohol), poly(methyl methacrylate) (PMMA), and poly(alpha-methylstyrene) (PαMS), are pre-coated on silicon substrate aiming to enhance the morphology of the PDIF-CN{sub 2} thin film, thereby improving the charge transport and air stability. Atomic force microscopy images reveal that with the pre-deposition of PαMS or PMMA polymers, the morphology of the PDIF-CN{sub 2} polycrystalline films is optimized in semiconducting crystal connectivity, domain size, and surface roughness, which leads to significant improvement of organic thin-film transistor (OTFT) performance. Particularly, an electron mobility of up to 0.55 cm{sup 2}/V s has been achieved from OTFTs based on the PDIF-CN{sub 2} film with the pre-deposition of PαMS polymer.

  14. Controllable synthesis of ZnO nanograss with different morphologies and enhanced performance in dye-sensitized solar cells

    SciTech Connect

    Zhu Shibu; Chen Xiangnan; Zuo Feibiao; Jiang Man; Zhou Zuowan; Hui, David

    2013-01-15

    A series of ZnO nanograss films grown on fluorine-doped tin oxide coated glass substrates were synthesized via hydrothermal method by using polyethyleneimine (PEI) as adjusting agent. The films were characterized by field emission scanning electron microscope (FE-SEM) and X-ray diffraction (XRD). It was found that the PEI not only affected the aspect ratios of ZnO nanograss but also changed the geometrical shape of ZnO nanograss. A possible mechanism based on PEI adsorbed on the non-polar facets of ZnO that governed the growth rate of different directions were proposed to elucidate the effect of PEI on morphology of ZnO. The ZnO nanograss films were applied to dye-sensitized solar cells (DSSCs). The results showed that the photocurrent density significantly enhanced, and the power conversion efficiency increased by 55% based on ZnO nanograss synthesized in a growth solution containing 7 mmol/L PEI, resulting from the dye loading properties related to the different morphologies. - Graphical abstract: Effect of PEI on ZnO nanograss: controlling the aspect ratio and morphology of ZnO and enhancing their photovoltaic performance. Highlights: Black-Right-Pointing-Pointer ZnO nanograss with different aspect ratios were synthesized by adjusting PEI content. Black-Right-Pointing-Pointer PEI affects both on the aspect ratios and geometrical shapes of ZnO nanograss. Black-Right-Pointing-Pointer ZnO nanograss with high aspect ratio and needle-like tip was advantageous for improved photovoltaic conversion performance.

  15. CeO2-based catalysts with engineered morphologies for soot oxidation to enhance soot-catalyst contact

    PubMed Central

    2014-01-01

    As morphology plays a relevant role in solid/solid catalysis, where the number of contact points is a critical feature in this kind of reaction, three different ceria morphologies have been investigated in this work as soot oxidation catalysts: ceria nanofibers, which can become organized as a catalytic network inside diesel particulate filter channels and thus trap soot particles at several contact points but have a very low specific surface area (4 m2/g); solution combustion synthesis ceria, which has an uncontrolled morphology but a specific surface area of 31 m2/g; and three-dimensional self-assembled (SA) ceria stars, which have both high specific surface area (105 m2/g) and a high availability of contact points. A high microporous volume of 0.03 cm3/g and a finer crystallite size compared to the other morphologies suggested that self-assembled stars could improve their redox cycling capability and their soot oxidation properties. In this comparison, self-assembled stars have shown the best tendency towards soot oxidation, and the temperature of non-catalytic soot oxidation has dropped from 614°C to 403°C in tight and to 552°C in loose contact conditions, respectively. As far as the loose contact results are concerned, this condition being the most realistic and hence the most significant, self-assembled stars have exhibited the lowest T10% onset temperature of this trio (even after ageing), thus proving their higher intrinsic activity. Furthermore, the three-dimensional shape of self-assembled stars may involve more of the soot cake layer than the solution combustion synthesis or nanofibers of ceria and thus enhance the total number of contact points. The results obtained through this work have encouraged our efforts to understand soot oxidation and to transpose these results to real diesel particulate filters. PMID:24940178

  16. CeO2-based catalysts with engineered morphologies for soot oxidation to enhance soot-catalyst contact.

    PubMed

    Miceli, Paolo; Bensaid, Samir; Russo, Nunzio; Fino, Debora

    2014-01-01

    AS MORPHOLOGY PLAYS A RELEVANT ROLE IN SOLID/SOLID CATALYSIS, WHERE THE NUMBER OF CONTACT POINTS IS A CRITICAL FEATURE IN THIS KIND OF REACTION, THREE DIFFERENT CERIA MORPHOLOGIES HAVE BEEN INVESTIGATED IN THIS WORK AS SOOT OXIDATION CATALYSTS: ceria nanofibers, which can become organized as a catalytic network inside diesel particulate filter channels and thus trap soot particles at several contact points but have a very low specific surface area (4 m(2)/g); solution combustion synthesis ceria, which has an uncontrolled morphology but a specific surface area of 31 m(2)/g; and three-dimensional self-assembled (SA) ceria stars, which have both high specific surface area (105 m(2)/g) and a high availability of contact points. A high microporous volume of 0.03 cm(3)/g and a finer crystallite size compared to the other morphologies suggested that self-assembled stars could improve their redox cycling capability and their soot oxidation properties. In this comparison, self-assembled stars have shown the best tendency towards soot oxidation, and the temperature of non-catalytic soot oxidation has dropped from 614°C to 403°C in tight and to 552°C in loose contact conditions, respectively. As far as the loose contact results are concerned, this condition being the most realistic and hence the most significant, self-assembled stars have exhibited the lowest T 10% onset temperature of this trio (even after ageing), thus proving their higher intrinsic activity. Furthermore, the three-dimensional shape of self-assembled stars may involve more of the soot cake layer than the solution combustion synthesis or nanofibers of ceria and thus enhance the total number of contact points. The results obtained through this work have encouraged our efforts to understand soot oxidation and to transpose these results to real diesel particulate filters. PMID:24940178

  17. A transhumanist fault line around disability: morphological freedom and the obligation to enhance.

    PubMed

    Bradshaw, Heather G; ter Meulen, Ruud

    2010-12-01

    The transhumanist literature encompasses diverse non-novel positions on questions of disability and obligation reflecting long-running political philosophical debates on freedom and value choice, complicated by the difficulty of projecting values to enhanced beings. These older questions take on a more concrete form given transhumanist uses of biotechnologies. This paper will contrast the views of Hughes and Sandberg on the obligations persons with "disabilities" have to enhance and suggest a new model. The paper will finish by introducing a distinction between the responsibility society has in respect of the presence of impairments and the responsibility society has not to abandon disadvantaged members, concluding that questions of freedom and responsibility have renewed political importance in the context of enhancement technologies. PMID:21076073

  18. Folding and escape of nascent proteins at ribosomal exit tunnel

    NASA Astrophysics Data System (ADS)

    Bui, Phuong Thuy; Hoang, Trinh Xuan

    2016-03-01

    We investigate the interplay between post-translational folding and escape of two small single-domain proteins at the ribosomal exit tunnel by using Langevin dynamics with coarse-grained models. It is shown that at temperatures lower or near the temperature of the fastest folding, folding proceeds concomitantly with the escape process, resulting in vectorial folding and enhancement of foldability of nascent proteins. The concomitance between the two processes, however, deteriorates as temperature increases. Our folding simulations as well as free energy calculation by using umbrella sampling show that, at low temperatures, folding at the tunnel follows one or two specific pathways without kinetic traps. It is shown that the escape time can be mapped to a one-dimensional diffusion model with two different regimes for temperatures above and below the folding transition temperature. Attractive interactions between amino acids and attractive sites on the tunnel wall lead to a free energy barrier along the escape route of the protein. It is suggested that this barrier slows down the escape process and consequently promotes correct folding of the released nascent protein.

  19. Folding and escape of nascent proteins at ribosomal exit tunnel.

    PubMed

    Bui, Phuong Thuy; Hoang, Trinh Xuan

    2016-03-01

    We investigate the interplay between post-translational folding and escape of two small single-domain proteins at the ribosomal exit tunnel by using Langevin dynamics with coarse-grained models. It is shown that at temperatures lower or near the temperature of the fastest folding, folding proceeds concomitantly with the escape process, resulting in vectorial folding and enhancement of foldability of nascent proteins. The concomitance between the two processes, however, deteriorates as temperature increases. Our folding simulations as well as free energy calculation by using umbrella sampling show that, at low temperatures, folding at the tunnel follows one or two specific pathways without kinetic traps. It is shown that the escape time can be mapped to a one-dimensional diffusion model with two different regimes for temperatures above and below the folding transition temperature. Attractive interactions between amino acids and attractive sites on the tunnel wall lead to a free energy barrier along the escape route of the protein. It is suggested that this barrier slows down the escape process and consequently promotes correct folding of the released nascent protein. PMID:26957181

  20. Mechanical property enhancement in laminates through control of morphology and crystal orientation

    NASA Astrophysics Data System (ADS)

    Zeilinger, A.; Daniel, R.; Stefenelli, M.; Sartory, B.; Chitu, L.; Burghammer, M.; Schöberl, T.; Kolednik, O.; Keckes, J.; Mitterer, C.

    2015-07-01

    This article shows the successful implementation of biological design principles into synthetic laminate materials in order to enhance their mechanical properties. We demonstrate and provide a strategy for laminate thin films, which reveals that the control of local crystal anisotropy across laminates together with the optimized layered arrangement are essential for their mechanical behavior. By the example of a laminate consisting of brittle CrN and ductile Cr layers, enhanced material properties are achieved by taking advantage of the self assembly mechanisms of the heterogeneous material during film growth. The usage of local microstructure analysis by a synchrotron based technique as well as miniature mechanical tests allow to understand the relationship between the apparent local microstructure and the accompanied mechanical properties. A crystallographic orientation relationship between Cr and CrN is elucidated, which leads to decisive mechanical enhancement due to microstructural benefits in terms of texture. This results in enhanced strength and fracture toughness of the laminate compared to its single constituents. The systematic approach gives an insight into the complex coherences of laminate materials, where the used techniques and design principles are universally applicable.

  1. [Escape Behaviors and Its Underlying Neuronal Circuits].

    PubMed

    Oda, Yoichi

    2015-10-01

    Escape behaviors are crucial to survive predator encounters or aversive stimuli. The neural circuits mediating escape behaviors of different animal species have a common framework to trigger extremely fast and robust movement with minimum delay. Thus, the neuronal escape circuits possibly represent functional architectures that perform the most efficient sensory-motor processing in the brain. Here, I review the escape behaviors and underlying neuronal circuits of several invertebrates and fish by focusing on the Mauthner cells, a pair of giant reticulospinal neurons in the hindbrain, that trigger fast escape behavior in goldfish and zebrafish. PMID:26450070

  2. Enhanced Output Power of PZT Nanogenerator by Controlling Surface Morphology of Electrode.

    PubMed

    Jung, Woo-Suk; Lee, Won-Hee; Ju, Byeong-Kwon; Yoon, Seok-Jin; Kang, Chong-Yun

    2015-11-01

    Piezoelectric power generation using Pb(Zr,Ti)O3(PZT) nanowires grown on Nb-doped SrTiO3(nb:STO) substrate has been demonstrated. The epitaxial PZT nanowires prepared by a hydrothermal method, with a diameter and length of approximately 300 nm and 7 μm, respecively, were vertically aligned on the substrate. An embossed Au top electrode was applied to maximize the effective power generation area for non-uniform PZT nanowires. The PZT nanogenerator produced output power density of 0.56 μW/cm2 with a voltage of 0.9 V and current of 75 nA. This research suggests that the morphology control of top electrode can be useful to improve the efficiency of piezoelectric power generation. PMID:26726616

  3. Morphologically manipulated Ag/ZnO nanostructures as surface enhanced Raman scattering probes for explosives detection

    NASA Astrophysics Data System (ADS)

    Shaik, Ummar Pasha; Hamad, Syed; Ahamad Mohiddon, Md.; Soma, Venugopal Rao; Ghanashyam Krishna, M.

    2016-03-01

    The detection of secondary explosive molecules (e.g., ANTA, FOX-7, and CL-20) using Ag decorated ZnO nanostructures as surface enhanced Raman scattering (SERS) probes is demonstrated. ZnO nanostructures were grown on borosilicate glass substrates by rapid thermal oxidation of metallic Zn films at 500 °C. The oxide nanostructures, including nanosheets and nanowires, emerged over the surface of the Zn film leaving behind the metal residue. We demonstrate that SERS measurements with concentrations as low as 10 μM, of the three explosive molecules ANTA, FOX-7, and CL-20 over ZnO/Ag nanostructures, resulted in enhancement factors of ˜107, ˜107, and ˜104, respectively. These measurements validate the high sensitivity of detection of explosive molecules using Ag decorated ZnO nanostructures as SERS substrates. The Zn metal residue and conditions of annealing play an important role in determining the detection sensitivity.

  4. Wide housing space and chronic exercise enhance physical fitness and adipose tissue morphology in rats.

    PubMed

    Scariot, Pedro Paulo Menezes; de Barros Manchado-Gobatto, Fúlvia; Torsoni, Adriana Souza; Torsoni, Marcio Alberto; dos Reis, Ivan Gustavo Masselli; Beck, Wladimir Rafael; Gobatto, Claudio Alexandre

    2015-05-01

    The current cages commonly used in animal experiments can prevent rats from engaging in most forms of natural locomotion behaviors. These animals tend to exhibit sedentary habits. Here, we show that a combination of wide housing space and training exercise helps to reduce white adipose mass and to increase brown adipose mass. Thus, this combination is a useful strategy for truly enhancing the physical fitness of captive rats commonly used in exercise-related interventional studies and to maximize their welfare. PMID:25906078

  5. Brain size as a driver of avian escape strategy

    PubMed Central

    Samia, Diogo S. M.; Pape Møller, Anders; Blumstein, Daniel T.

    2015-01-01

    After detecting an approaching predator, animals make a decision when to flee. Prey will initiate flight soon after detecting a predator so as to minimize attentional costs related to on-going monitoring of the whereabouts of the predator. Such costs may compete with foraging and other maintenance activities and hence be larger than the costs of immediate flight. The drivers of interspecific variation in escape strategy are poorly known. Here we investigated the morphological, life history and natural history traits that correlate with variation in avian escape strategy across a sample of 96 species of birds. Brain mass, body size, habitat structure and group size were the main predictors of escape strategy. The direction of the effect of these traits was consistent with selection for a reduction of monitoring costs. Therefore, attentional costs depend on relative brain size, which determines the ability to monitor the whereabouts of potential predators and the difficulty of this task as reflected by habitat and social complexity. Thus brain size, and the cognitive functions associated with it, constitute a general framework for explaining the effects of body size, habitat structure and sociality identified as determinants of avian escape strategy. PMID:26139474

  6. On ion escape from Venus

    NASA Astrophysics Data System (ADS)

    Jarvinen, Riku

    2011-04-01

    This doctoral thesis is about the solar wind influence on the atmosphere of the planet Venus. A numerical plasma simulation model was developed for the interaction between Venus and the solar wind to study the erosion of charged particles from the Venus upper atmosphere. The developed model is a hybrid simulation where ions are treated as particles and electrons are modelled as a fluid. The simulation was used to study the solar wind induced ion escape from Venus as observed by the European Space Agency's Venus Express and NASA's Pioneer Venus Orbiter spacecraft. Especially, observations made by the ASPERA-4 particle instrument onboard Venus Express were studied. The thesis consists of an introductory part and four peer-reviewed articles published in scientific journals. In the introduction Venus is presented as one of the terrestrial planets in the Solar System and the main findings of the work are discussed within the wider context of planetary physics. Venus is the closest neighbouring planet to the Earth and the most earthlike planet in its size and mass orbiting the Sun. Whereas the atmosphere of the Earth consists mainly of nitrogen and oxygen, Venus has a hot carbon dioxide atmosphere, which is dominated by the greenhouse effect. Venus has all of its water in the atmosphere, which is only a fraction of the Earth's total water supply. Since planets developed presumably in similar conditions in the young Solar System, why Venus and Earth became so different in many respects? One important feature of Venus is that the planet does not have an intrinsic magnetic field. This makes it possible for the solar wind, a continuous stream of charged particles from the Sun, to flow close to Venus and to pick up ions from the planet's upper atmosphere. The strong intrinsic magnetic field of the Earth dominates the terrestrial magnetosphere and deflects the solar wind flow far away from the atmosphere. The region around Venus where the planet's atmosphere interacts with the

  7. On ion escape from Venus

    NASA Astrophysics Data System (ADS)

    Jarvinen, R.

    2011-04-01

    This doctoral thesis is about the solar wind influence on the atmosphere of the planet Venus. A numerical plasma simulation model was developed for the interaction between Venus and the solar wind to study the erosion of charged particles from the Venus upper atmosphere. The developed model is a hybrid simulation where ions are treated as particles and electrons are modelled as a fluid. The simulation was used to study the solar wind induced ion escape from Venus as observed by the European Space Agency's Venus Express and NASA's Pioneer Venus Orbiter spacecraft. Especially, observations made by the ASPERA-4 particle instrument onboard Venus Express were studied. The thesis consists of an introductory part and four peer-reviewed articles published in scientific journals. In the introduction Venus is presented as one of the terrestrial planets in the Solar System and the main findings of the work are discussed within the wider context of planetary physics.Venus is the closest neighbouring planet to the Earth and the most earthlike planet in its size and mass orbiting the Sun. Whereas the atmosphere of the Earth consists mainly of nitrogen and oxygen, Venus has a hot carbon dioxide atmosphere, which is dominated by the greenhouse effect. Venus has all of its water in the atmosphere, which is only a fraction of the Earth's total water supply. Since planets developed presumably in similar conditions in the young Solar System, why Venus and Earth became so different in many respects?One important feature of Venus is that the planet does not have an intrinsic magnetic field. This makes it possible for the solar wind, a continuous stream of charged particles from the Sun, to flow close to Venus and to pick up ions from the planet's upper atmosphere. The strong intrinsic magnetic field of the Earth dominates the terrestrial magnetosphere and deflects the solar wind flow far away from the atmosphere. The region around Venus where the planet's atmosphere interacts with the

  8. Escape Dynamics in Quasihomogeneous Fields

    NASA Astrophysics Data System (ADS)

    Mioc, Vasile; Stavinschi, Magda

    The escape in the two-body problem associated to a quasihomogeneous potential (a sum of homogeneous potentials) is being tackled. The basic equations of the problem are put in a form for which the infinity is a singularity, then they are regularized via McGehee-type transformations. The singularity is replaced by a manifold pasted on the phase space, and the flow on this manifold is described; it is identical with the analogous flows corresponding to already studied concrete astronomical and physical situations.

  9. Morphology-controlled In2O3 nanostructures enhance the performance of photoelectrochemical water oxidation.

    PubMed

    Chen, Changlong; Moir, Jonathon; Soheilnia, Navid; Mahler, Benoit; Hoch, Laura; Liao, Kristine; Hoepfner, Veronika; O'Brien, Paul; Qian, Chenxi; He, Le; Ozin, Geoffrey A

    2015-02-28

    Nanotower- and nanowall-like indium oxide structures were grown directly on fluorine-doped tin oxide (FTO)/In2O3 seeded substrates and pristine FTO substrates, respectively, by a straightforward solvothermal method. The tower-like nanostructures are proposed to form via a self-assembly process on the In2O3 seeds. The wall-like nanostructures are proposed to form via epitaxial growth from the exposed edges of SnO2 crystals of the FTO substrate. The nanotowers and nanowalls are composed of highly crystalline and ordered nanocrystals with preferred orientations in the [111] and [110] directions, respectively. The two structures display remarkably different activities when used as photoanodes in solar light-driven water splitting. X-ray photoelectron spectroscopy results suggest an increased density of hydroxyl groups in the nanowalls, which results in a decrease of the work function and a concomitant shift in the onset potential of the photocurrent in the linear sweep voltammograms, which is further confirmed by Mott-Schottky and flat-band potential measurements, indicating the importance of hydroxyl content in determining the photoelectrochemical properties of the films. Morphology-controlled, nanostructured transparent conducting oxide electrodes of the kind described in this paper are envisioned to provide valuable platforms for supporting catalysts and co-catalysts that are intentionally tailored for efficient light-assisted oxidation of water and reduction of carbon dioxide. PMID:25641562

  10. Control of cell morphology of probiotic Lactobacillus acidophilus for enhanced cell stability during industrial processing.

    PubMed

    Senz, Martin; van Lengerich, Bernhard; Bader, Johannes; Stahl, Ulf

    2015-01-01

    The viability of bacteria during industrial processing is an essential quality criterion for bacterial preparations, such as probiotics and starter cultures. Therefore, producing stable microbial cultures during proliferation is of great interest. A strong correlation between the culture medium and cellular morphology was observed for the lactic acid bacterium Lactobacillus acidophilus NCFM, which is commonly used in the dairy industry as a probiotic supplement and as a starter culture. The cell shapes ranged from single short rods to long filamentous rods. The culture medium composition could control this phenomenon of pleomorphism, especially the use of peptone in combination with an adequate heating of the medium during preparation. Furthermore, we observed a correlation between the cell size and stability of the microorganisms during industrial processing steps, such as freeze-drying, extrusion encapsulation and storage following dried preparations. The results revealed that short cells are more stable than long cells during each of the industrially relevant processing steps. As demonstrated for L. acidophilus NCFM, the adaptation of the medium composition and optimized medium preparation offer the possibility to increase the concentration of viable cells during up- and survival rate during down-stream processing. PMID:25305442

  11. Polyolefin Nanocomposites with Enhanced Photostability Weathering Effect on Morphology and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Panda, Bishnu P.; Mohanty, Smita; Nayak, Sanjay K.

    2014-09-01

    This research aims to study the effect of accelerated weathering conditions on the photodegradation characteristics for fibrillar silicate clay-filled Polypropylene (PP) nanocomposites in the presence of metallocene linear low density polyethylene (m-LLDPE). Silane-treated attapulgite (ATP) clay along with ethylene octene elastomer-grafted maleic anhydride (POE-g-MAH) was used to compatibilize both blend and nanocomposite system. The result showed that developed PP/m-LLDPE nanocomposites displayed good UV resistance with little change in retained stress-at-break and elongation-at-break values. Balanced loss of toughness values noted maintaining higher fracture toughness values for nanocomposites containing 5 phr ATP clay. Infrared analysis was used to detect progress of degradation followed by change in carbonyl index revealed predominated chain scission in late irradiation, while crosslinking was dominant for initial irradiation period. An increase in crystallinity during UV exposure (chemi-crystallization) was detected with exposure time for all compositions and virtually independent of initial structure of the polymer. The highest value of crystallization observed for PP and the lowest one for nanocomposites containing 5 phr of ATP clay revealed good oxidation stability. Surface morphology revealed induced degradation throughout cross-section of PP, while severity of the surface degradation was significantly reduced for developed nanocomposites.

  12. Specialized Postsynaptic Morphology Enhances Neurotransmitter Dilution and High-Frequency Signaling at an Auditory Synapse

    PubMed Central

    Graydon, Cole W.; Cho, Soyoun; Diamond, Jeffrey S.; Kachar, Bechara; von Gersdorff, Henrique

    2014-01-01

    Sensory processing in the auditory system requires that synapses, neurons, and circuits encode information with particularly high temporal and spectral precision. In the amphibian papillia, sound frequencies up to 1 kHz are encoded along a tonotopic array of hair cells and transmitted to afferent fibers via fast, repetitive synaptic transmission, thereby promoting phase locking between the presynaptic and postsynaptic cells. Here, we have combined serial section electron microscopy, paired electrophysiological recordings, and Monte Carlo diffusion simulations to examine novel mechanisms that facilitate fast synaptic transmission in the inner ear of frogs (Rana catesbeiana and Rana pipiens). Three-dimensional anatomical reconstructions reveal specialized spine-like contacts between individual afferent fibers and hair cells that are surrounded by large, open regions of extracellular space. Morphologically realistic diffusion simulations suggest that these local enlargements in extracellular space speed transmitter clearance and reduce spillover between neighboring synapses, thereby minimizing postsynaptic receptor desensitization and improving sensitivity during prolonged signal transmission. Additionally, evoked EPSCs in afferent fibers are unaffected by glutamate transporter blockade, suggesting that transmitter diffusion and dilution, and not uptake, play a primary role in speeding neurotransmission and ensuring fidelity at these synapses. PMID:24920639

  13. Contrast enhancement for satellite image segmentation with fuzzy cluster means using morphological filtering

    NASA Astrophysics Data System (ADS)

    Harsiti; Munandar, T. A.; Suhendar, A.; Abdullah, A. G.; Rohendi, D.

    2016-04-01

    Image segmentation is a stage in image processing, responsible for dividing an image into regions homogeneous, based on the similarity. Suppose the grey level of a pixel by pixel gray neighbors. The quality of image segmentation is generally influenced by the characteristics and the handling of images to be processed. This paper presents the results of satellite image segmentation using a fuzzy cluster region means (FCM). To improve the contrast of the image, conducted morphological filtering techniques. Satellite image analysis performed on five districts in the province of Banten Indonesia. Difference’s segmentation results evident when non-negative parameter value is converted to a 2 and 4. The higher the value of a non-negative parameter is given, then the details of the edges of objects clearer segmentation results. The combined use of a top-hat and boots-hat filtering on objects before satellite imagery analysed by FCM, indicating that it merges with the background object. Background object in the original image is the object of rice fields and is not part of observation in this study. It was identified to have the same gray level similarity with the object of building.

  14. Fractal morphology of black carbon aerosol enhances absorption in the thermal infrared wavelengths.

    PubMed

    Heinson, William R; Chakrabarty, Rajan K

    2016-02-15

    In this Letter, we numerically calculate the mass absorption cross sections (MACs) of black carbon fractal aggregates in the thermal infrared solar spectrum. Compared to equivalent-size spheres, the MAC values of aggregates show a percent enhancement of ≈150 and 400 at small and large length scales, respectively. The absorption properties of aggregates with size parameters >1 surprisingly continued to remain in the Rayleigh optics regime. We explain this phenomenon using the Maxwell-Garnett effective medium theory and the concept of phase shift parameter. PMID:26872194

  15. Action of cocaine and chronic sympathetic denervation on vagal escape

    PubMed Central

    Campos, H. A.; Urquilla, P. R.

    1969-01-01

    1. The effect of cocaine has been studied on vagal escape and on the tachycardia due to vagal stimulation in the atropinized dog. All the dogs were submitted to acute cervical section of the spinal cord and acute or chronic sympathetic denervation. 2. Cocaine, 5 mg/kg or 40 μg/kg/min, I.V., induces a significant enhancement of the ventricular escape. The effects of a continuous infusion of cocaine are more reproducible than those of a single injection of the drug. 3. Cocaine, 40 μg/kg/min, I.V., potentiates the tachycardia due to vagal stimulation in the atropinized dog. 4. Chronic thoracic sympathectomy markedly retards the recovery of the ventricular rate from the inhibitory action of the vagus. Under this condition, the infusion of cocaine does not significantly enhance the ventricular escape. 5. These findings suggest that an adrenergic mechanism located at the sympathetic nerves supplying the heart is substantially involved in the phenomenon of vagal escape. PMID:5249864

  16. Reproductive, morphological, and phytochemical responses of Arabidopsis thaliana ecotypes to enhanced UV-B radiation

    SciTech Connect

    Trumbull, V.L.; McCloud, E.S.; Paige, K.N. )

    1994-06-01

    Two ecotypes of Arabidopsis thaliana, collected from Libya and Norway, were grown in the greenhouse under. UV-B doses of 0 and 10.5 kJ m[sup [minus]2] UV-B[sub BE]. The high UV-B dose simulated midsummer ambient conditions over Libya and a 40% reduction in stratospheric ozone over Norway. The Libyan ectotype, which originated from latitudes where solar UV-B is high, showed no UV-B induced damage to plant growth. However the Norwegian ecotype, which originated from latitudes where solar UV-B is low, showed a significant reduction in plant height, inflorescence weight, and rosette weight in response to enhanced UV-B. Although fruit and seed number for both ecotypes were unaffected by enhanced UV-B radiation the germination success of the seeds harvested from the irradiated Norwegian plants were significantly reduced. The two ecotypes also differed with respect to their accumulation of kaempferol, a putative UV-B protective filter. The Libyan ecotype increased kaempferol concentration by 38% over the 0 kJ treatment whereas the Norwegian ecotype increased by only 15%. These data suggest that, for these ecotypes, variation in UV-B sensitivity may be explained by the differential induction of UV-absorbing leaf pigments.

  17. Citric Acid Induced Synthesis of a Series of Morphology-Controllable Ag Microspheres and Their Surface-Enhanced Raman Scattering

    NASA Astrophysics Data System (ADS)

    Hu, J.; Wang, F.; Li, Y.; Li, Q.

    2015-11-01

    A facile route has been used to synthesize a series of morphology-controllable 3D hierarchical Ag microspheres (AgMS) by using citric acid as a morphology directing-reagent. The AgMS are self-assembled by Ag nanosheets which can be controlled, including the thickness of the nanosheets and the distance between two nanosheets by varying the concentration of citric acid. The average thickness of the Ag nanosheets decreased from ~107 to ~22 nm with increasing citric acid concentration. The distance between two of Ag nanosheets is at a range of 15 to 35 nm. The SERS activity of the products has been investigated in detail by using rhodamine 6G (R6G). The results show that R6G can be detected in a concentration as low as 10-7 M. The appropriate interstitial sites of interlaced Ag nanosheets assembled on AgMS provide "hot spots" which result in a strong SERS response, and the electromagnetic enhancement may play the main role in SERS. The SERS activity of a sample has been studied by using melamine, and the limit of detection is found to be 0.6 ppm.

  18. Enhanced crystalline morphology of a ladder-type polymer bulk-heterojunction device by blade-coating.

    PubMed

    Kim, Jong H; Jung, Jae Woong; Williams, Spencer T; Liu, Feng; Russell, Thomas P; Jen, Alex K-Y

    2015-07-01

    A blade-coating process was employed to fabricate bulk-heterojunction (BHJ) polymer solar cells based on a ladder-type polymer (PIDT-PhanQ) with low crystallinity. Compared to the devices processed by a conventional spin-coating method, an intriguing morphology with enhanced phase-separation and increased crystallinity was achieved. As a result, power conversion efficiency up to 7.25% could be achieved from the blade-coated PIDT-PhanQ:PC71BM BHJ film, surpassing the original value obtained by spin-coating (6.29%). This improved photovoltaic performance is attributed to the improved charge carrier mobilities, which correlates well with the increased crystallinity and the organized network of the donor-acceptor phases that produce efficient charge-transporting pathways. PMID:26058494

  19. Impacts of enhanced central Pacific ENSO on wave climate and headland-bay beach morphology

    NASA Astrophysics Data System (ADS)

    Mortlock, Thomas R.; Goodwin, Ian D.

    2016-06-01

    Wave climate and Pacific basin coastal behaviour associated with El Niño Southern Oscillation (ENSO) is understood at a reconnaissance level, but the coastal response to different central Pacific (CP) versus eastern Pacific (EP) flavours of ENSO is unknown. We show that CP ENSO events produce different patterns of directional wave power to EP ENSO along the southeast Australian shelf and southwest Pacific region, because of significant variability in trade-wind wave generation. The modulation of the trade wind wave climate during CP ENSO has thus far been neglected in existing coastal process studies. We also show that coastal change between CP and EP ENSO cannot be inferred from shifts in the deepwater wave climate. This is because variability in trade wind wave generation is masked in deepwater by the persistence of high power extra-tropical waves that have reduced impact on nearshore processes due to high wave refraction. Morphodynamic modelling in a headland-bay beach indicates that CP ENSO leads to higher coastal erosion potential and slower post-storm recovery than EP ENSO during an El Niño/La Niña cycle. We show that the alongshore variability in beach morphological type can be used to model the static equilibrium planform response for each ENSO phase. Results indicate that shoreline response to ENSO in most headland-bay beach coasts is not as simple as the existing paradigm that (anti-) clockwise rotation occurs during El Niño (La Niña). Our methods provide a second-order approach to project coastal response and predict the discrete shoreline rotations for ENSO flavours.

  20. The density and thermal structure of Pluto's atmosphere and associated escape processes and rates

    NASA Astrophysics Data System (ADS)

    Zhu, Xun; Strobel, Darrell F.; Erwin, Justin T.

    2014-01-01

    The original Strobel et al. (Strobel, D.F., Zhu, X., Summers, M.E., Stevens, M.E. [1996]. Icarus 120, 266-289) model for Pluto's stratospheric density and thermal structure is augmented to include a radial momentum equation with radial velocity associated with atmospheric escape of N2 and in the energy equation to also include the solar far ultraviolet and extreme ultraviolet (FUV-EUV) heating in the upper atmosphere and adiabatic cooling due to hydrodynamic expansion. The inclusion of radial velocity introduces important negative feedback processes such as increased solar heating leading to enhanced escape rate and higher radial velocity with stronger adiabatic cooling in the upper atmosphere accompanied by reduced temperature. The coupled set of equations for mass, momentum, and energy are solved subject to two types of upper boundary conditions that represent two different descriptions of atmospheric escape: Jeans escape and hydrodynamic escape. For the former which is physically correct, an enhanced Jeans escape rate is prescribed at the exobase and parameterized according to the direct simulation Monte Carlo kinetic model results. For the latter, the atmosphere is assumed to remain a fluid to infinity with the escape rate determined by the temperature and density at the transonic point subject to vanishing temperature and pressure at infinity. For Pluto, the two escape descriptions approach the same limit when the exobase coincides with the transonic level and merge to a common escape rate ˜1028 N2 s-1 under elevated energy input. For Pluto's current atmosphere, the hydrodynamic approach underestimates the escape rate by about 13%. In all cases, the escape rate is limited by the solar FUV-EUV power input.

  1. Escape manoeuvres in the spiny dogfish (Squalus acanthias).

    PubMed

    Domenici, Paolo; Standen, Emily M; Levine, Robert P

    2004-06-01

    The locomotor performance of dogfish during escape responses was observed by means of high-speed video. Dogfish show C-type escape responses that are comparable with those shown previously in teleosts. Dogfish show high variability of turning rates of the anterior part of the body (head to centre of mass), i.e. with peak values from 434 to 1023 deg. s(-1). We suggest that this variability may be due to the presence of two types of escape manoeuvres, i.e. responses with high and low turning rates, as previously found in a teleost species. Fast responses (i.e. with high maximum turning rates, ranging between 766 and 1023 deg. s(-1)) showed significantly higher locomotor performance than slow responses (i.e. with low maximum turning rates, ranging between 434 and 593 deg. s(-1)) in terms of distance covered, speed and acceleration, although no differences were found in the turning radius of the centre of mass during the escape manoeuvres. The existence of two types of escape responses would have implications in terms of both neural control and muscular activation patterns. When compared with literature data for the locomotor performance of bony fishes, dogfish showed relatively low speed and acceleration, comparable turning rates and a turning radius that is in the low part of the range when compared with teleosts, indicating relatively high manoeuvrability. The locomotor performance observed in dogfish is consistent with their morphological characteristics: (1) low locomotor performance associated with low thrust developed by their relatively small posterior depth of section and (2) relatively high manoeuvrability associated with their high flexibility. PMID:15159438

  2. Removal of Micrometer Size Morphological Defects and Enhancement of Ultraviolet Emission by Thermal Treatment of Ga-Doped ZnO Nanostructures

    PubMed Central

    Manzoor, Umair; Kim, Do K.; Islam, Mohammad; Bhatti, Arshad S.

    2014-01-01

    Mixed morphologies of Ga-doped Zinc Oxide (ZnO) nanostructures are synthesized by vapor transport method. Systematic scanning electron microscope (SEM) studies of different morphologies, after periodic heat treatments, gives direct evidence of sublimation. SEM micrographs give direct evidence that morphological defects of nanostructures can be removed by annealing. Ultra Violet (UV) and visible emission depends strongly on the annealing temperatures and luminescent efficiency of UV emission is enhanced significantly with each subsequent heat treatment. X-Ray diffraction (XRD) results suggest that crystal quality improved by annealing and phase separation may occur at high temperatures. PMID:24489725

  3. Mars atmosphere evolution: Escape to space

    NASA Technical Reports Server (NTRS)

    Luhmann, J. G.

    1992-01-01

    The loss mechanisms and the rates of escape, to space, of Martian atmosphere constituents have changed throughout the history of the solar system. For the first billion years, Mars' atmosphere escape was probably dominated by impact erosion related to the presence of debris left over from the accretionary phase. This loss was further augmented by hydrodynamic outflows related to the presence of an early denser atmosphere and a sun that was brighter in the EUV wavelengths. Following this initial 'catastrophic' phase, during which a large fraction of the original atmosphere was lost but then replaced by volcanism and cometary impact, the 'modern' loss mechanisms which still operate today would have taken over. Those mechanisms that now contribute to escape to space consist of classical thermal or Jeans escape, nonthermal escape due to chemical reaction in the atmosphere, and solar wind-related losses. Both the loss mechanisms and the rates of escape are discussed.

  4. Microparticle-enhanced Aspergillus ficuum phytase production and evaluation of fungal morphology in submerged fermentation.

    PubMed

    Coban, Hasan B; Demirci, Ali; Turhan, Irfan

    2015-06-01

    Phytase can be used in animal's diets to increase the absorption of several divalent ions, amino acids and proteins and to decrease the excessive phosphorus release in manure to prevent negative effects on the environment. This study aimed to enhance the current submerged fungal phytase productions with a novel fermentation technique by evaluating the effect of the various microparticles on Aspergillus ficuum phytase production. It was observed that microparticles prevented bulk fungal pellet growth, decreased average fungal pellet size and significantly increased phytase activity in the submerged fermentation. Microbial structure imaging results showed that the average fungal pellet radius decreased from 800 to 500 and 200 µm by addition of 15 g/L aluminum oxide and talcum, respectively, in shake-flask fermentation. Also, addition of 15 g/L of talcum and aluminum oxide increased phytase activity to 2.01 and 2.93 U/ml, respectively, compared to control (1.02 U/ml) in shake-flask fermentation. Additionally, phytase activity reached 6.49 U/ml within 96 h of fermentation with the addition of 15 g/L of talcum, whereas the maximum phytase activity was only 3.45 U/ml at 120 h of fermentation for the control in the 1-L working volume bioreactors. In conclusion, microparticles significantly increased fungal phytase activity and production yield compared to control fermentation. PMID:25555703

  5. Mechanically-enhanced three-dimensional scaffold with anisotropic morphology for tendon regeneration.

    PubMed

    Wu, Yang; Wang, Zuyong; Fuh, Jerry Ying Hsi; Wong, Yoke San; Wang, Wilson; Thian, Eng San

    2016-07-01

    Tissue engineering has showed promising results in restoring diseased tendon tissue functions. Herein, a hybrid three-dimensional (3D) porous scaffold comprising an outer portion rolled from an electrohydrodynamic jet printed poly(ɛ-caprolactone) (PCL) fiber mesh, and an inner portion fabricated from uniaxial stretching of a heat-sealed PCL tube, was developed for tendon tissue engineering (TE) application. The outer portion included three layers of micrometer-scale fibrous bundles (fiber diameter: ~25 µm), with an interconnected spacing and geometric anisotropy along the scaffold length. The inner portion showed orientated micro-ridges/grooves in a parallel direction to that of the outer portion. Owning to the addition of the inner portion, the as-fabricated scaffold exhibited comparable mechanical properties to those of the human patellar tendon in terms of Young's modulus (~227 MPa) and ultimate tensile stress (~50 MPa). Compared to the rolled electrospun fibers, human tenocytes cultured in the tendon scaffolds showed increased cellular metabolism. Furthermore, the 3D tendon scaffold resulted in up-regulated cell alignment, cell elongation and formation of collagen type I. These results demonstrated the potential of mechanically-enhanced 3D fibrous scaffold for applications in tendon TE, with desired cell alignment and functional differentiation. PMID:27215211

  6. Escape nightmares and postescape stressful events.

    PubMed

    Cernovsky, Z Z

    1988-04-01

    Correlation matrix based on questionnaire item responses by 38 Czechoslovak refugees suggested that "escape nightmares" (recurrent nightmares about being back in the exhomeland, wanting to or trying to re-escape to the free world) are unrelated to postescape incidence of various stressful events (e.g., illness, job difficulties, financial problems). However, refugees who reported a greater number of the stressful events also reported a somewhat higher incidence of nightmares on themes other than escape from homeland (r = .34). PMID:3399334

  7. On the optical and morphological properties of microstructured Black Silicon obtained by cryogenic-enhanced plasma reactive ion etching

    NASA Astrophysics Data System (ADS)

    Nguyen, K. N.; Basset, P.; Marty, F.; Leprince-Wang, Y.; Bourouina, T.

    2013-05-01

    Motivated by the need for obtaining low reflectivity silicon surfaces, we report on (sub-) micro-texturing of silicon using a high throughput fabrication process involving SF6/O2 reactive ion etching at cryogenic temperatures, leading to Black Silicon (BS). The corresponding high aspect ratio conical spikes of the microstructured surface give rise to multiple reflections and hence, enhanced absorption under electromagnetic radiation. Aiming a better understanding of this mechanism, we performed a systematic study by varying several plasma process parameters: O2/SF6 gas flow rate ratio, silicon temperature, bias voltage, and etching time. We determined the process window which leads to BS formation and we studied the influence of the process parameters on the surface morphology of the obtained BS samples, through analysis of scanning electron microscopy images. The measured optical reflectance of BS is in the order of 1% in the visible and near infrared ranges (400-950 nm). We noticed that the lowest reflectance is obtained close to the threshold parameters of BS formation. Absorptance spectral response of BS is measured from 1.3 to 17 μm, and we observed a great enhancement of absorptance up to about 75% compared to flat silicon. We also obtained through these experiments, a clear evidence of a correlation between the excellent optical properties and the aspect ratio of the BS conical microstructures in the measured wavelength ranges.

  8. Morphology-dependent Electrochemical Enhancements of Porous Carbon as Sensitive Determination Platform for Ascorbic Acid, Dopamine and Uric Acid

    PubMed Central

    Cheng, Qin; Ji, Liudi; Wu, Kangbing; Zhang, Weikang

    2016-01-01

    Using starch as the carbon precursor and different-sized ZnO naoparticles as the hard template, a series of porous carbon materials for electrochemical sensing were prepared. Experiments of scanning electron microscopy, transmission electron microscopy and Nitrogen adsorption-desorption isotherms reveal that the particle size of ZnO has big impacts on the porous morphology and surface area of the resulting carbon materials. Through ultrasonic dispersion of porous carbon and subsequent solvent evaporation, different sensing interfaces were constructed on the surface of glassy carbon electrode (GCE). The electrochemical behaviors of ascorbic acid (AA), dopamine (DA) and uric acid (UA) were studied. On the surface of porous carbon materials, the accumulation efficiency and electron transfer ability of AA, DA and UA are improved, and consequently their oxidation signals enhance greatly. Moreover, the interface enhancement effects of porous carbon are also controlled by the particle size of hard template. The constructed porous carbon interface displays strong signal amplification ability and holds great promise in constructing a sensitive platform for the simultaneous determination of AA, DA and UA. PMID:26924080

  9. Lead-enhanced siderophore production and alteration in cell morphology in a Pb-resistant Pseudomonas aeruginosa strain 4EA.

    PubMed

    Naik, Milind Mohan; Dubey, Santosh Kumar

    2011-02-01

    A lead-resistant bacterial strain 4EA from soil contaminated with car battery waste from Goa, India was isolated and identified as Pseudomonas aeruginosa. This lead-resistant bacterial isolate interestingly revealed lead-enhanced siderophore (pyochelin and pyoverdine) production up to 0.5 mM lead nitrate whereas cells exhibit a significant decline in siderophore production above 0.5 mM lead nitrate. The bacterial cells also revealed significant alteration in cell morphology as size reduction when exposed to 0.8 mM lead nitrate. Enhanced production of siderophore was evidently detected by chrome azurol S agar diffusion (CASAD) assay as increase in diameter of orange halo, and reduction in bacterial size along with significant biosorption of lead was recorded by scanning electron microscopy coupled with energy dispersive X-ray spectrometry (SEM-EDX). Pseudomonas aeruginosa strain 4EA also exhibits cross tolerance to other toxic metals viz. cadmium, mercury, and zinc besides resistance to multiple antibiotics such as ampicillin, erythromycin, amikacin, cephalexin, co-trimoxazole, mecillinam, lincomycin, ciphaloridine, oleondamycin, and nalidixic acid. PMID:20661573

  10. Morphology-dependent Electrochemical Enhancements of Porous Carbon as Sensitive Determination Platform for Ascorbic Acid, Dopamine and Uric Acid.

    PubMed

    Cheng, Qin; Ji, Liudi; Wu, Kangbing; Zhang, Weikang

    2016-01-01

    Using starch as the carbon precursor and different-sized ZnO naoparticles as the hard template, a series of porous carbon materials for electrochemical sensing were prepared. Experiments of scanning electron microscopy, transmission electron microscopy and Nitrogen adsorption-desorption isotherms reveal that the particle size of ZnO has big impacts on the porous morphology and surface area of the resulting carbon materials. Through ultrasonic dispersion of porous carbon and subsequent solvent evaporation, different sensing interfaces were constructed on the surface of glassy carbon electrode (GCE). The electrochemical behaviors of ascorbic acid (AA), dopamine (DA) and uric acid (UA) were studied. On the surface of porous carbon materials, the accumulation efficiency and electron transfer ability of AA, DA and UA are improved, and consequently their oxidation signals enhance greatly. Moreover, the interface enhancement effects of porous carbon are also controlled by the particle size of hard template. The constructed porous carbon interface displays strong signal amplification ability and holds great promise in constructing a sensitive platform for the simultaneous determination of AA, DA and UA. PMID:26924080

  11. Morphology-dependent Electrochemical Enhancements of Porous Carbon as Sensitive Determination Platform for Ascorbic Acid, Dopamine and Uric Acid

    NASA Astrophysics Data System (ADS)

    Cheng, Qin; Ji, Liudi; Wu, Kangbing; Zhang, Weikang

    2016-02-01

    Using starch as the carbon precursor and different-sized ZnO naoparticles as the hard template, a series of porous carbon materials for electrochemical sensing were prepared. Experiments of scanning electron microscopy, transmission electron microscopy and Nitrogen adsorption-desorption isotherms reveal that the particle size of ZnO has big impacts on the porous morphology and surface area of the resulting carbon materials. Through ultrasonic dispersion of porous carbon and subsequent solvent evaporation, different sensing interfaces were constructed on the surface of glassy carbon electrode (GCE). The electrochemical behaviors of ascorbic acid (AA), dopamine (DA) and uric acid (UA) were studied. On the surface of porous carbon materials, the accumulation efficiency and electron transfer ability of AA, DA and UA are improved, and consequently their oxidation signals enhance greatly. Moreover, the interface enhancement effects of porous carbon are also controlled by the particle size of hard template. The constructed porous carbon interface displays strong signal amplification ability and holds great promise in constructing a sensitive platform for the simultaneous determination of AA, DA and UA.

  12. Conditional Immune Escape during Chronic Simian Immunodeficiency Virus Infection

    PubMed Central

    Gellerup, Dane D.; Balgeman, Alexis J.; Nelson, Chase W.; Ericsen, Adam J.; Scarlotta, Matthew; Hughes, Austin L.

    2015-01-01

    ABSTRACT Anti-HIV CD8 T cells included in therapeutic treatments will need to target epitopes that do not accumulate escape mutations. Identifying the epitopes that do not accumulate variants but retain immunogenicity depends on both host major histocompatibility complex (MHC) genetics and the likelihood for an epitope to tolerate variation. We previously found that immune escape during acute SIV infection is conditional; the accumulation of mutations in T cell epitopes is limited, and the rate of accumulation depends on the number of epitopes being targeted. We have now tested the hypothesis that conditional immune escape extends into chronic SIV infection and that epitopes with a preserved wild-type sequence have the potential to elicit epitope-specific CD8 T cells. We deep sequenced simian immunodeficiency virus (SIV) from Mauritian cynomolgus macaques (MCMs) that were homozygous and heterozygous for the M3 MHC haplotype and had been infected with SIV for about 1 year. When interrogating variation within individual epitopes restricted by M3 MHC alleles, we found three categories of epitopes, which we called categories A, B, and C. Category B epitopes readily accumulated variants in M3-homozygous MCMs, but this was less common in M3-heterozygous MCMs. We then determined that chronic CD8 T cells specific for these epitopes were more likely preserved in the M3-heterozygous MCMs than M3-homozygous MCMs. We provide evidence that epitopes known to escape from chronic CD8 T cell responses in animals that are homozygous for a set of MHC alleles are preserved and retain immunogenicity in a host that is heterozygous for the same MHC alleles. IMPORTANCE Anti-HIV CD8 T cells that are part of therapeutic treatments will need to target epitopes that do not accumulate escape mutations. Defining these epitope sequences is a necessary precursor to designing approaches that enhance the functionality of CD8 T cells with the potential to control virus replication during chronic

  13. Model of a mechanical clock escapement

    NASA Astrophysics Data System (ADS)

    Moline, David; Wagner, John; Volk, Eugene

    2012-07-01

    The mechanical tower clock originated in Europe during the 14th century to sound hourly bells and later display hands on a dial. An important innovation was the escapement mechanism, which converts stored energy into oscillatory motion for fixed time intervals through the pendulum swing. Previous work has modeled the escapement mechanism in terms of inelastic and elastic collisions. We derive and experimentally verify a theoretical model in terms of impulsive differential equations for the Graham escapement mechanism in a Seth Thomas tower clock. The model offers insight into the clock's mechanical behavior and the functionality of the deadbeat escapement mechanism.

  14. Deformation-driven fluid escape in the Levant Basin, offshore southern Israel

    NASA Astrophysics Data System (ADS)

    Eruteya, Ovie Emmanuel; Waldmann, Nicolas; Reshef, Moshe; Ben-Avraham, Zvi

    2016-04-01

    Submarine fluid emissions are global phenomena, which can be inferred from the presence of seafloor morphologies (e.g. pockmarks, mud volcanoes) occurring in various geological settings. However, despite the Levant Basin been a prolific hydrocarbon province, only a paucity of fluid escape morphologies have been identified on the present-day seafloor. In this study, we present a detailed analysis of a newly available high-resolution 3D seismic reflection dataset from offshore southern Israel. Evidences of subsurface fluid plumbing and escape are manifested here as present-day seafloor pockmarks, paleo-pockmarks, pipe structures and enhanced reflectivity patterns. Interestingly, these pockmarks are situated on and around bathymetric highs, which are ridges related to the Palmachim Disturbance. Our initial results show the fluid flow structures are spatially localized above a region of complex evaporites evacuation at depth, and likewise proximal to a shallower region characterized by high amplitude reflectors. The latter may be evidences for a shallow gas system. Our initial hypothesis proposes a dual shallow-source driven focused fluid flow system. Yet, we favour a deeper Messinian plumbing system driving fluid flow across the overburden in the study area. Corroborating this are fault systems characterized near the pipes feeding the seafloor pockmarks and paleo-pockmark, detaching in the upper Messinian evaporite. We further suggest that a combined supra-salt deformation system arising from the evacuation of the Messinian evaporites coupled with gravitational tectonics are in charge of modulating focused fluid flow. Under this scenario the emplaced mass transport complex acts as a transient reservoir for fluid flow, dewatering under deformation and channelling fluids towards the seafloor for expulsion. However, the contributions from microbially-generated methane in the shallow Quaternary overburden associated with the channel-levee complex cannot be neglected.

  15. Electronic Escape Trails for Firefighters

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles; Schipper, John; Betts, Bradley

    2008-01-01

    A proposed wireless-communication and data-processing system would exploit recent advances in radio-frequency identification devices (RFIDs) and software to establish information lifelines between firefighters in a burning building and a fire chief at a control station near but outside the building. The system would enable identification of trails that firefighters and others could follow to escape from the building, including identification of new trails should previously established trails become blocked. The system would include a transceiver unit and a computer at the control station, portable transceiver units carried by the firefighters in the building, and RFID tags that the firefighters would place at multiple locations as they move into and through the building (see figure). Each RFID tag, having a size of the order of a few centimeters, would include at least standard RFID circuitry and possibly sensors for measuring such other relevant environmental parameters as temperature, levels of light and sound, concentration of oxygen, concentrations of hazardous chemicals in smoke, and/or levels of nuclear radiation. The RFID tags would be activated and interrogated by the firefighters and control-station transceivers. Preferably, RFID tags would be configured to communicate with each other and with the firefighters units and the control station in an ordered sequence, with built-in redundancy. In a typical scenario, as firefighters moved through a building, they would scatter many RFID tags into smoke-obscured areas by use of a compressed-air gun. Alternatively or in addition, they would mark escape trails by dropping RFID tags at such points of interest as mantraps, hot spots, and trail waypoints. The RFID tags could be of different types, operating at different frequencies to identify their functions, and possibly responding by emitting audible beeps when activated by signals transmitted by transceiver units carried by nearby firefighters.

  16. Enhanced the photocatalytic activity of Ni-doped ZnO thin films: Morphological, optical and XPS analysis

    NASA Astrophysics Data System (ADS)

    Abdel-wahab, M. Sh.; Jilani, Asim; Yahia, I. S.; Al-Ghamdi, Attieh A.

    2016-06-01

    Pure and Ni-doped ZnO thin films with different concentration of Ni (3.5 wt%, 5 wt%, 7 wt%) were prepared by DC/RF magnetron sputtering technique. The X-rays diffraction pattern showed the polycrystalline nature of pure and Ni-doped ZnO thin films. The surface morphology of pure and Ni doped ZnO thin films were investigated through atomic force microscope, which indicated the increase in the grain dimension and surface roughness with increasing the Ni doping. The UV-Visible transmission spectra showed the decrease in the transmittance of doped ZnO thin films with the incorporation of Ni dopants. The surface and chemical state analysis of pure and Ni doped ZnO thin films were investigated by X-rays photoelectron spectroscopy (XPS). The photocatalytic activities were evaluated by an aqueous solution of methyl green dye. The tungsten lamp of 500 W was used as a source of visible light for photocatalytic study. The degradation results showed that the Ni-doped ZnO thin films exhibit highly enhanced photocatalytic activity as compared to the pure ZnO thin films. The enhanced photocatalytic activities of Ni-doped ZnO thin films were attributed to the enhanced surface area (surface defects), surface roughness and decreasing the band gap of Ni-doped ZnO thin films. Our work supports the applications of thin film metal oxides in waste water treatment.

  17. X-Ray Morphology,Kinematics and Geometry of the Eridanus Soft X-Ray Enhancement

    NASA Astrophysics Data System (ADS)

    Guo, Zhiyu; Burrows, David N.; Sanders, Wilton T.; Snowden, Steve L.; Penprase, Bryan E.

    1994-12-01

    We present mosaics of X-ray intensity maps and spectral fit results for selected regions of the Eridanus soft X-ray Enhancement (EXE), as well as kinematics of the X-ray absorbing clouds in the EXE region and geometrical properties of this X-ray emitting bubble. The work is based on pointed observations with the ROSAT Position Sensitive Proportional Counter, 21 cm observations with the NRAO 140 foot telescope at Green Bank and interstellar Na D line observations with the NOAO Coude Feed telescope at Kitt Peak. The ROSAT pointed observations examine two regions of the EXE. The first is an X-ray absorption lane produced by an IR filament which is located at galactic coordinates of about (199(deg) , -45(deg) ). The second is in the vicinity of the northern (galactic) boundary of the 1/4 keV EXE, at galactic coordinates of about (200(deg) , -25(deg) ). Both our spatial and spectral analysis suggest that variations in emission measure and NH are primarily reponsible for the observed variations of the X-ray intensity. Using 100mu intensities obtained from IRAS maps and NH column densities obtained from our X-ray spectral fits, we find 100 microns/NH ratios across the IR filament that are compatible with typical high latitude values. Maps of the X-ray absorbing clouds in the EXE region at 21 cm reveal that these clouds may belong to two different expanding systems, with one possibly associated with our Local Bubble and the other with the boundary of the EXE. Combination of 21 cm data with interstellar Na D line observations toward stars in the directions of some of the X-ray absorbing clouds along (l,b) ~ (200(deg) ,-40(deg) ) indicate that the near side of the EXE is farther than 151 pc and the distance to the center of the EXE at this latitude is about 226 pc. The density and the thermal pressure found for this X-ray emitting superbubble are 0.015 cm(-3) and 4.9 times 10(4) cm(-3) K.

  18. Escape of H and D from Mars' Atmosphere and the Evolution of its Crustal Water Reservoirs

    NASA Technical Reports Server (NTRS)

    Hartle, Richard E.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The evolution of water on Mars involves preferential escape of hydrogen over deuterium, producing its deuterium rich atmosphere with a D/H ratio 5.2 times that of terrestrial water. In the past decade, several estimates have been made of the magnitudes of current and ancient crustal water reservoirs on Mars that freely exchange with its atmosphere. Some of the differences in the magnitudes of the reservoirs are influenced by differences in the following basic parameters: composition of H, D, H2 and HD at the exobase; thermal history of the atmosphere; escape mechanisms; and the D/H ratio of earlier epochs as inferred from meteorites. The dominant escape mechanism used in the estimates is Jeans escape. However, the Jeans escape flux is enhanced considerably when atmospheric winds and rotation are applied at the exobase . This constraint is of particular importance because the enhancement of the D escape flux can be an order of magnitude greater than the enhancement of the H escape flux. This preferential enhancement of the D escape flux over that of H means that a great deal more H must escape (than in the case without winds and rotation) to attain the same D/H ratio in the today's atmosphere. Another new constraint on reservoir magnitudes comes from the recent interpretation of Martian meteorite data, which suggests that the D/H ratio was 2 times that of terrestrial water at the end of the heavy bombardment period (1). These two constraints together lead to larger current and ancient crustal water reservoirs. Applying Rayleigh fractionation, new estimates of the sizes of the water reservoirs are made using the above constraints along with plausible values for hydrogen and deuterium densities, temperatures, wind speeds and rotation rates at the exobase.

  19. Escape of H and D From Mars' Atmosphere and the Evolution of its Crustal Water Reservoirs

    NASA Astrophysics Data System (ADS)

    Hartle, R. E.

    2001-12-01

    The evolution of water on Mars involves preferential escape of hydrogen over deuterium, producing its deuterium rich atmosphere with a D/H ratio 5.2 times that of terrestrial water. In the past decade, several estimates have been made of the magnitudes of current and ancient crustal water reservoirs on Mars that freely exchange with its atmosphere. Some of the differences in the magnitudes of the reservoirs are influenced by differences in the following basic parameters: composition of H, D, H2 and HD at the exobase; thermal history of the atmosphere; escape mechanisms; and the D/H ratio of earlier epochs as inferred from meteorites. The dominant escape mechanism used in the estimates is Jeans escape. However, the Jeans escape flux is enhanced considerably when atmospheric winds and rotation are applied at the exobase . This constraint is of particular importance because the enhancement of the D escape flux can be an order of magnitude greater than the enhancement of the H escape flux. This preferential enhancement of the D escape flux over that of H means that a great deal more H must escape (than in the case without winds and rotation) to attain the same D/H ratio in the today's atmosphere. Another new constraint on reservoir magnitudes comes from the recent interpretation of Martian meteorite data, which suggests that the D/H ratio was 2 times that of terrestrial water at the end of the heavy bombardment period (1). These two constraints together lead to larger current and ancient crustal water reservoirs. Applying Rayleigh fractionation, new estimates of the sizes of the water reservoirs are made using the above constraints along with plausible values for hydrogen and deuterium densities, temperatures, wind speeds and rotation rates at the exobase. (1) Leshin, L. A., 27, 2017-2020, 2000.

  20. Escape as Reinforcement and Escape Extinction in the Treatment of Feeding Problems

    ERIC Educational Resources Information Center

    LaRue, Robert H.; Stewart, Victoria; Piazza, Cathleen C.; Volkert, Valerie M.; Patel, Meeta R.; Zeleny, Jason

    2011-01-01

    Given the effectiveness of putative escape extinction as treatment for feeding problems, it is surprising that little is known about the effects of escape as reinforcement for appropriate eating during treatment. In the current investigation, we examined the effectiveness of escape as reinforcement for mouth clean (a product measure of…

  1. MEMO: Mars Escape and Magnetic Orbiter

    NASA Astrophysics Data System (ADS)

    Leblanc, F.; Langlais, B.; Chassefiere, E.; Sotin, C.; Barabash, S.; Dehant, V.; Dougherty, M.; Lammer, H.; Mandea, M.; Vennerstrom, S.

    2007-03-01

    MEMO is a new orbiter devoted to the characterization of present atmospheric escape and of the fossile magnetic field. The low periapsis (~130 km) is required to detect and quantify atoms and molecules involved in the escape, and to measure the magnetic f

  2. Escaping Homelessness: Anticipated and Perceived Facilitators

    ERIC Educational Resources Information Center

    Patterson, Allisha; Tweed, Roger

    2009-01-01

    One study with two distinct sections was conducted to identify factors facilitating escape from homelessness. In Section 1, 58 homeless individuals rated possible facilitators of escape (factors they believed would help them become more independent and self-sufficient). In Section 2, 80 participants who had already exited homelessness rated the…

  3. Submarine 'safe to escape' studies in man.

    PubMed

    Jurd, K M; Seddon, F M; Thacker, J C; Blogg, S L; Stansfield, M R D; White, M G; Loveman, G A M

    2014-01-01

    The Royal Navy requires reliable advice on the safe limits of escape from a distressed submarine (DISSUB). Flooding in a DISSUB may cause a rise in ambient pressure, increasing the risk of decompression sickness (DCS) and decreasing the maximum depth from which it is safe to escape. The aim of this study was to investigate the pressure/depth limits to escape following saturation at raised ambient pressure. Exposure to saturation pressures up to 1.6 bar (a) (160 kPa) (n = 38); escapes from depths down to 120 meters of sea water (msw) (n = 254) and a combination of saturation followed by escape (n = 90) was carried out in the QinetiQ Submarine Escape Simulator, Alverstoke, United Kingdom. Doppler ultrasound monitoring was used to judge the severity of decompression stress. The trials confirmed the previously untested advice, in the Guardbook, that if a DISSUB was lying at a depth of 90 msw, then it was safe to escape when the pressure in the DISSUB was 1.5 bar (a), but also indicated that this advice may be overly conservative. This study demonstrated that the upper DISSUB saturation pressure limit to safe escape from 90 msw was 1.6 bar (a), resulting in two cases of DCS. PMID:25109084

  4. Atmospheric escape, redox evolution, and planetary habitability

    NASA Astrophysics Data System (ADS)

    Catling, D. C.; Zahnle, K. J.

    2011-12-01

    Through the greenhouse effect, the presence and composition of an atmosphere is critical for defining a (conventional) circumstellar habitable zone in terms of planetary surface temperatures suitable for liquid water. Lack of knowledge of planetary atmospheres is likely to frustrate attempts to say with any certainty whether detected terrestrial-sized exoplanets may or may not be habitable. Perhaps an underappreciated role in such considerations is the evolutionary effect of atmospheric escape for determining atmospheric composition or whether an atmosphere exists in the first place. Whether atmospheres exist at all on planets is demonstrably connected to the effect of integrated atmospheric escape. When we observe our own Solar System and transiting exoplanets, the existence of an atmosphere is clearly delineated by a relative vulnerability to thermal escape and impact erosion. The prevalence of thermal escape as a key evolutionary determinant for the presence of planetary atmosphere is shown by a relationship between the relative solar (or stellar) heating and the escape velocity. Those bodies with too much stellar heating and too smaller escape velocity end up devoid of atmospheres. Impact erosion is evident in the relationship between impact velocity and escape velocity. Escape due to impacts is particularly important for understanding the large differences in the atmospheres of giant planet moons, such as Ganymede versus Titan. It is also significant for Mars-sized planets. The oxidation state of atmospheres is important for some theories of the origin of life (where an early reducing atmosphere is helpful for organic synthesis) and the evolution of advanced life (where free molecular oxygen is the best source of high energy metabolism). Surfaces on some relatively small planets and moons are observed to have evolved to an oxidized state, which theory and observation can explain through atmospheric escape. There are several examples in the Solar System where a

  5. Performance Enhancement of Dye-Sensitized Solar Cells Based on TiO₂ Thick Mesoporous Photoanodes by Morphological Manipulation.

    PubMed

    Keshavarzi, Reza; Mirkhani, Valiollah; Moghadam, Majid; Tangestaninejad, Shahram; Mohammadpoor-Baltork, Iraj

    2015-10-27

    This study is an attempt to give an account of the preparation of mesoporous TiO2 thick templated films of nonsimilar pore architecture and their use in dye-sensitized solar cells (DSSCs). Highly crystallized mesoporous titania thick templated films with four different morphologies including hexagonal, wormlike, cubic, and gridlike mesostructure, have been successfully synthesized through an evaporation-induced self-assembly (EISA) route followed by layer-by-layer deposition. Stabilization, followed by each coating, and calcinations, carried out after every five layers, were used to produce crack-free thick films. These mesoporous templated titanium dioxide samples were characterized by TEM, XRD, SEM, BET, and UV-vis measurements and used as a photoelectrode material in DSSCs. The mesostructured films with a thickness of about 7 μm demonstrated better performance in comparison to nanocrystalline TiO2 films (NC-TiO2) at a film thickness of 13 μm as the most typical films utilized in DSSCs. The findings reveal that a surfactant/Ti ratio change undergone for developing cubic mesostructures can enhance the crystallinity and roughness factor and therefore increase the energy conversion efficiency of DSSC. The cell performances derived from these mesofilms were enhanced compared to the efficiencies reported thus far. The best photovoltaic performance of 8.73% came from DSSC using the cubic mesoporous TiO2 photoelectrode with the following properties: open circuit voltage of 743 mV, short circuit photocurrent density of 16.35 mA/cm(2), and fill factor of 0.72. PMID:26421504

  6. Phonological and orthographic cues enhance the processing of inflectional morphology. ERP evidence from L1 and L2 French

    PubMed Central

    Carrasco-Ortiz, Haydee; Frenck-Mestre, Cheryl

    2014-01-01

    We report the results of two event-related potential (ERP) experiments in which Spanish learners of French and native French controls show graded sensitivity to verbal inflectional errors as a function of the presence of orthographic and/or phonological cues when reading silently in French. In both experiments, verbal agreement was manipulated in sentential context such that subject verb agreement was either correct, ill-formed and orally realized, involving both orthographic and phonological cues, or ill-formed and silent which involved only orthographic cues. The results of both experiments revealed more robust ERP responses to orally realized than to silent inflectional errors. This was true for L2 learners as well as native controls, although the effect in the learner group was reduced in comparison to the native group. In addition, the combined influence of phonological and orthographic cues led to the largest differences between syntactic/phonological conditions. Overall, the results suggest that the presence of phonological cues may enhance L2 readers’ sensitivity to morphology but that such may appear in L2 processing only when sufficient proficiency is attained. Moreover, both orthographic and phonological cues are used when available. PMID:25165460

  7. Micellar Effects on Photoinduced Electron Transfer in Aqueous Solutions Revisited: Dramatic Enhancement of Cage Escape Yields in Surfactant Ru(II) Diimine Complex/[Ru(NH3)6](2+) Systems.

    PubMed

    Adams, Rebecca E; Schmehl, Russell H

    2016-08-30

    The effect of cationic micelle incorporation on light induced electron transfer, charge separation and back electron transfer between an aqueous electron donor, [Ru(NH3)6](2+), and a series of Ru(II) diimine complex chromophores/acceptors, is presented. The chromophores have the general formula [(bpy)2Ru(LL)](2+) (LL = bpy; 4-R-4'-methyl-2,2'-bpy, R = pentyl (MC5), terdecyl (MC13), heptadecyl (MC17); 4,4'-di(heptadecyl)-2,2'-bpy (DC17)). Of the five chromophores, the MC13, MC17, and DC17 complexes associate with the added micelle forming surfactant, cetyltrimethylammonium bromide (CTAB). Quenching of the luminescence of the bpy and MC5 complexes by [Ru(NH3)6](2+) is unaffected by addition of surfactant, while rate constants for quenching of the MC13 and MC17 complexes are decreased. Cage escape yields following photoinduced electron transfer to generate [(bpy)2Ru(LL)](+) and [Ru(NH3)6](3+) are approximately 0.1 for all the water-soluble chromophores (excluding DC17) in the absence of added CTAB. In the presence of surfactant, the cage escape yields dramatically increase for the MC13 (0.4) and MC17 (0.6) complexes, while remaining unchanged for [Ru(bpy)3](2+) and the MC5 complex. Back electron transfer of the solvent separated ions is also strongly influenced by the presence of surfactant. For the MC13 and MC17 complexes, back electron transfer rate constants decrease by factors of 270 and 190, respectively. The MC5 complex exhibits two component back electron transfer, with the fast component having a rate constant close to that in the absence of surfactant and a slow component nearly 200 times smaller. Results are interpreted in terms of the partitioning of the 2+ and 1+ forms of the chromophores between aqueous and micellar phases. The extended lifetimes of the radical ions may prove useful in coupling the strong reductants formed to kinetically facile catalysts for reduction of water to hydrogen. PMID:27486891

  8. Light weight escape capsule for fighter aircraft

    NASA Technical Reports Server (NTRS)

    Robert, James A.

    1988-01-01

    Emergency crew escape capabilities have been less than adequate for fighter aircraft since before WW II. From the over-the-side bailout of those days through the current ejection seat with a rocket catapult, escaping from a disabled aircraft has been risky at best. Current efforts are underway toward developing a high-tech, smart ejection seat that will give fighter pilots more room to live in the sky, but an escape capsule is needed to meet current and future fighter envelopes. Escape capsules have a bad reputation due to past examples of high weight, poor performance and great complexity. However, the advantages available demand that a capsule be developed. This capsule concept will minimize the inherent disavantages and incorporate the benefits while integrating all aspects of crew station design. The resulting design is appropriate for a crew station of the year 2010 and includes improved combat acceleration protection, chemical or biological combat capability, improved aircraft to escape system interaction, and the highest level of escape performance achievable. The capsule is compact, which can allow a reduced aircraft size and weighs only 1200 lb. The escape system weight penalty is only 120 lb higher than that for the next ejection seat and the capsule has a corresponding increase in performance.

  9. Plasma-induced Escape and Alterations of Planetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Johnson, R. E.; Tucker, O. J.; Ewrin, J.; Cassidy, T. A.; Leblanc, F.

    2009-12-01

    The atmospheres of planets and planetary satellites are typically imbedded in space plasmas. Depending on the interaction with the induced or intrinsic fields energetic ions can have access to the thermosphere and the corona affecting their composition and thermal structure and causing loss to space. These processes are often lumped together as ‘atmospheric sputtering’ (Johnson 1994). In this talk I will review the results of simulations of the plasma bombardment at a number of solar system bodies and use those data to describe the effect on the upper atmosphere and on escape. Of considerable recent interest is the modeling of escape from Titan. Prior to Cassini’s tour of the Saturnian system, plasma-induced escape was suggested to be the dominant loss process, but recent models of enhanced thermal escape, often referred to as ‘slow hydrodynamic’ escape, have been suggested to lead to much larger Titan atmospheric loss rates (Strobel 2008; Cui et al. 2008). Such a process has been suggested to be active at some point in time on a number of solar system bodies. I will present hybrid fluid/ kinetic models of the upper atmosphere of certain bodies in order to test both the plasma-induced and thermal escape processes. Preliminary results suggest that the loss rates estimated using the ‘slow hydrodynamic’ escape process can be orders of magnitude too large. The implications for Mars, Titan and Pluto will be discussed. Background for this talk is contained in the following papers (Johnson 2004; 2009; Chaufray et al. 2007; Johnson et al. 2008; 2009; Tucker and Johnson 2009). References: Chaufray, J.Y., R. Modolo, F. Leblanc, G. Chanteur, R.E. Johnson, and J.G. Luhmann, Mars Solar Wind interaction: formation of the Martian corona and atmosphric loss to space, JGR 112, E09009, doi:10.1029/2007JE002915 (2007) Cui, J., Yelle, R. V., Volk, K. Distribution and escape of molecular hydrogen in Titan's thermosphere and exosphere. J. Geophys. Res. 113, doi:10

  10. Simultaneous morphology manipulation and upconversion luminescence enhancement of β-NaYF4:Yb3+/Er3+ microcrystals by simply tuning the KF dosage

    PubMed Central

    Ding, Mingye; Chen, Daqin; Yin, Shilong; Ji, Zhenguo; Zhong, Jiasong; Ni, Yaru; Lu, Chunhua; Xu, Zhongzi

    2015-01-01

    A strategy has been adopted for simultaneous morphology manipulation and upconversion luminescence enhancement of β-NaYF4:Yb3+/Er3+ microcrystals by simply tuning the KF dosage. X-ray power diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and photoluminescence spectra (PL) were used to characterize the samples. The influence of molar ratio of KF to Y3+ on the crystal phase and morphology has been systematically investigated and discussed. It is found that the molar ratio of KF to Y3+ can strongly control the morphology of the as-synthesized β-NaYF4 samples because of the different capping effect of F− ions on the different crystal faces. The possible formation mechanism has been proposed on the basis of a series of time-dependent experiments. More importantly, the upconversion luminescence of β-NaYF4:Yb3+/Er3+ was greatly enhanced by increasing the molar ratio of KF to RE3+ (RE = Y, Yb, Er), which is attributed to the distortion of local crystal field symmetry around lanthanide ions through K+ ions doping. This synthetic methodology is expected to provide a new strategy for simultaneous morphology control and remarkable upconversion luminescence enhancement of yttrium fluorides, which may be applicable for other rare earth fluorides. PMID:26235808

  11. Apollo experience report: Launch escape propulsion subsystem

    NASA Technical Reports Server (NTRS)

    Townsend, N. A.

    1973-01-01

    The Apollo launch escape propulsion subsystem contained three solid rocket motors. The general design, development, and qualification of the solid-propellant pitch-control, tower-jettison, and launch-escape motors of the Apollo launch escape propulsion subsystem were completed during years 1961 to 1966. The launch escape system components are described in general terms, and the sequence of events through the ground-based test programs and flight-test programs is discussed. The initial ground rules established for this system were that it should use existing technology and designs as much as possible. The practicality of this decision is proved by the minimum number of problems that were encountered during the development and qualification program.

  12. Biogeochemistry: Nocturnal escape route for marsh gas

    NASA Astrophysics Data System (ADS)

    Anthony, Katey Walter; MacIntyre, Sally

    2016-07-01

    A field study of methane emissions from wetlands reveals that more of the gas escapes through diffusive processes than was thought, mostly at night. Because methane is a greenhouse gas, the findings have implications for global warming.

  13. Do malaria parasites manipulate the escape behaviour of their avian hosts? An experimental study.

    PubMed

    Garcia-Longoria, Luz; Møller, Anders P; Balbontín, Javier; de Lope, Florentino; Marzal, Alfonso

    2015-12-01

    Escape behaviour is the behaviour that birds and other animals display when already caught by a predator. An individual exhibiting higher intensity of such anti-predator behaviour could have greater probabilities of escape from predators. Parasites are known to affect different aspects of host behaviour to increase their own fitness. Vector-transmitted parasites such as malaria parasites should gain by manipulating their hosts to enhance the probability of transmission. Several studies have shown that malaria parasites can manipulate their vectors leading to increased transmission success. However, little is known about whether malaria parasites can manipulate escape behaviour of their avian hosts thereby increasing the spread of the parasite. Here we used an experimental approach to explore if Plasmodium relictum can manipulate the escape behaviour of one of its most common avian hosts, the house sparrow Passer domesticus. We experimentally tested whether malaria parasites manipulate the escape behaviour of their avian host. We showed a decrease in the intensity of biting and tonic immobility after removal of infection with anti-malaria medication compared to pre-experimental behaviour. These outcomes suggest that infected sparrows performed more intense escape behaviour, which would increase the likelihood of individuals escaping from predators, but also benefit the parasite by increasing its transmission opportunities. PMID:26337268

  14. Polymer escape from a confining potential

    SciTech Connect

    Mökkönen, Harri; Ikonen, Timo; Jónsson, Hannes; Ala-Nissila, Tapio

    2014-02-07

    The rate of escape of polymers from a two-dimensionally confining potential well has been evaluated using self-avoiding as well as ideal chain representations of varying length, up to 80 beads. Long timescale Langevin trajectories were calculated using the path integral hyperdynamics method to evaluate the escape rate. A minimum is found in the rate for self-avoiding polymers of intermediate length while the escape rate decreases monotonically with polymer length for ideal polymers. The increase in the rate for long, self-avoiding polymers is ascribed to crowding in the potential well which reduces the free energy escape barrier. An effective potential curve obtained using the centroid as an independent variable was evaluated by thermodynamic averaging and Kramers rate theory then applied to estimate the escape rate. While the qualitative features are well reproduced by this approach, it significantly overestimates the rate, especially for the longer polymers. The reason for this is illustrated by constructing a two-dimensional effective energy surface using the radius of gyration as well as the centroid as controlled variables. This shows that the description of a transition state dividing surface using only the centroid fails to confine the system to the region corresponding to the free energy barrier and this problem becomes more pronounced the longer the polymer is. A proper definition of a transition state for polymer escape needs to take into account the shape as well as the location of the polymer.

  15. Polymer escape from a confining potential

    NASA Astrophysics Data System (ADS)

    Mökkönen, Harri; Ikonen, Timo; Jónsson, Hannes; Ala-Nissila, Tapio

    2014-02-01

    The rate of escape of polymers from a two-dimensionally confining potential well has been evaluated using self-avoiding as well as ideal chain representations of varying length, up to 80 beads. Long timescale Langevin trajectories were calculated using the path integral hyperdynamics method to evaluate the escape rate. A minimum is found in the rate for self-avoiding polymers of intermediate length while the escape rate decreases monotonically with polymer length for ideal polymers. The increase in the rate for long, self-avoiding polymers is ascribed to crowding in the potential well which reduces the free energy escape barrier. An effective potential curve obtained using the centroid as an independent variable was evaluated by thermodynamic averaging and Kramers rate theory then applied to estimate the escape rate. While the qualitative features are well reproduced by this approach, it significantly overestimates the rate, especially for the longer polymers. The reason for this is illustrated by constructing a two-dimensional effective energy surface using the radius of gyration as well as the centroid as controlled variables. This shows that the description of a transition state dividing surface using only the centroid fails to confine the system to the region corresponding to the free energy barrier and this problem becomes more pronounced the longer the polymer is. A proper definition of a transition state for polymer escape needs to take into account the shape as well as the location of the polymer.

  16. 46 CFR 28.390 - Means of escape.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Means of escape. 28.390 Section 28.390 Shipping COAST... Operate With More Than 16 Individuals on Board § 28.390 Means of escape. (a) Each space which is used by... two widely separated means of escape. At least one of the means of escape must be independent...

  17. 46 CFR 28.390 - Means of escape.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Means of escape. 28.390 Section 28.390 Shipping COAST... Operate With More Than 16 Individuals on Board § 28.390 Means of escape. (a) Each space which is used by... two widely separated means of escape. At least one of the means of escape must be independent...

  18. 46 CFR 177.500 - Means of escape.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Means of escape. 177.500 Section 177.500 Shipping COAST...) CONSTRUCTION AND ARRANGEMENT Escape Requirements § 177.500 Means of escape. (a) Except as otherwise provided in... least two means of escape, one of which must not be a watertight door. (b) The two required means...

  19. 46 CFR 177.500 - Means of escape.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Means of escape. 177.500 Section 177.500 Shipping COAST...) CONSTRUCTION AND ARRANGEMENT Escape Requirements § 177.500 Means of escape. (a) Except as otherwise provided in... least two means of escape, one of which must not be a watertight door. (b) The two required means...

  20. 46 CFR 177.500 - Means of escape.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Means of escape. 177.500 Section 177.500 Shipping COAST...) CONSTRUCTION AND ARRANGEMENT Escape Requirements § 177.500 Means of escape. (a) Except as otherwise provided in... least two means of escape, one of which must not be a watertight door. (b) The two required means...

  1. 46 CFR 177.500 - Means of escape.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Means of escape. 177.500 Section 177.500 Shipping COAST...) CONSTRUCTION AND ARRANGEMENT Escape Requirements § 177.500 Means of escape. (a) Except as otherwise provided in... least two means of escape, one of which must not be a watertight door. (b) The two required means...

  2. 46 CFR 177.500 - Means of escape.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Means of escape. 177.500 Section 177.500 Shipping COAST...) CONSTRUCTION AND ARRANGEMENT Escape Requirements § 177.500 Means of escape. (a) Except as otherwise provided in... least two means of escape, one of which must not be a watertight door. (b) The two required means...

  3. 46 CFR 28.390 - Means of escape.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Means of escape. 28.390 Section 28.390 Shipping COAST... Operate With More Than 16 Individuals on Board § 28.390 Means of escape. (a) Each space which is used by... two widely separated means of escape. At least one of the means of escape must be independent...

  4. Compensatory escape mechanism at low Reynolds number

    PubMed Central

    Gemmell, Brad J.; Sheng, Jian; Buskey, Edward J.

    2013-01-01

    Despite high predation pressure, planktonic copepods remain one of the most abundant groups on the planet. Their escape response provides one of most effective mechanisms to maximize evolutionary fitness. Owing to their small size (100 µm) compared with their predators (>1 mm), increasing viscosity is believed to have detrimental effects on copepods’ fitness at lower temperature. Using high-speed digital holography we acquire 3D kinematics of the nauplius escape including both location and detailed appendage motion. By independently varying temperature and viscosity we demonstrate that at natural thermal extremes, contrary to conventional views, nauplii achieve equivalent escape distance while maintaining optimal velocity. Using experimental results and kinematic simulations from a resistive force theory propulsion model, we demonstrate that a shift in appendage timing creates an increase in power stroke duration relative to recovery stroke duration. This change allows the nauplius to limit losses in velocity and maintain distance during escapes at the lower bound of its natural thermal range. The shift in power stroke duration relative to recovery stroke duration is found to be regulated by the temperature dependence of swimming appendage muscle groups, not a dynamic response to viscosity change. These results show that copepod nauplii have natural adaptive mechanisms to compensate for viscosity variations with temperature but not in situations in which viscosity varies independent of temperature, such as in some phytoplankton blooms. Understanding the robustness of escapes in the wake of environmental changes such as temperature and viscosity has implications in assessing the future health of performance compensation. PMID:23487740

  5. Cerebrospinal Fluid HIV Escape from Antiretroviral Therapy.

    PubMed

    Ferretti, Francesca; Gisslen, Magnus; Cinque, Paola; Price, Richard W

    2015-06-01

    CNS infection is a nearly constant facet of systemic CNS infection and is generally well controlled by suppressive systemic antiretroviral therapy (ART). However, there are instances when HIV can be detected in the cerebrospinal fluid (CSF) despite suppression of plasma viruses below the clinical limits of measurement. We review three types of CSF viral escape: asymptomatic, neuro-symptomatic, and secondary. The first, asymptomatic CSF escape, is seemingly benign and characterized by lack of discernable neurological deterioration or subsequent CNS disease progression. Neuro-symptomatic CSF escape is an uncommon, but important, entity characterized by new or progressive CNS disease that is critical to recognize clinically because of its management implications. Finally, secondary CSF escape, which may be even more uncommon, is defined by an increase of CSF HIV replication in association with a concomitant non-HIV infection, as a consequence of the local inflammatory response. Understanding these CSF escape settings not only is important for clinical diagnosis and management but also may provide insight into the CNS HIV reservoir. PMID:25860317

  6. Changing the habitat: the evolution of intercorrelated traits to escape from predators.

    PubMed

    Mikolajewski, D J; Scharnweber, K; Jiang, B; Leicht, S; Mauersberger, R; Johansson, F

    2016-07-01

    Burst escape speed is an effective and widely used behaviour for evading predators, with burst escape speed relying on several different morphological features. However, we know little about how behavioural and underlying morphological attributes change in concert as a response to changes in selective predation regime. We studied intercorrelated trait differentiation of body shape and burst-swim-mediating morphology in response to a habitat shift-related reduction in burst escape speed using larvae of the dragonfly genus Leucorrhinia. Species in this genus underwent a well-known habitat shift from predatory fish lakes (fish lakes) to predatory fish-free lakes dominated by large predatory dragonflies (dragonfly lakes) accompanied by relaxed selection on escape burst speed. Results revealed that species from fish lakes that possess faster burst speed have evolved a suite of functionally intercorrelated traits, expressing a wider abdomen, a higher abdominal muscles mass and a larger branchial chamber compared with species from dragonfly lakes. In contrast, populations within species did not show significant differences in muscle mass and branchial chamber size between lake types in three of the species. High multicollinearity among variables suggests that traits have evolved in concert rather than independently when Leucorrhinia shifted from fish lakes to dragonfly lakes. Thus, relaxed selection on burst escape speed in dragonfly-lake species resulted in a correlated reduction of abdominal muscles and a smaller branchial chamber, likely to save production and/or maintenance costs. Our results highlight the importance of studying integrated behavioural and morphological traits to fully understand the evolution of complex phenotypes. PMID:27062155

  7. Automated analysis of non-mass-enhancing lesions in breast MRI based on morphological, kinetic, and spatio-temporal moments and joint segmentation-motion compensation technique

    NASA Astrophysics Data System (ADS)

    Hoffmann, Sebastian; Shutler, Jamie D.; Lobbes, Marc; Burgeth, Bernhard; Meyer-Bäse, Anke

    2013-12-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) represents an established method for the detection and diagnosis of breast lesions. While mass-like enhancing lesions can be easily categorized according to the Breast Imaging Reporting and Data System (BI-RADS) MRI lexicon, a majority of diagnostically challenging lesions, the so called non-mass-like enhancing lesions, remain both qualitatively as well as quantitatively difficult to analyze. Thus, the evaluation of kinetic and/or morphological characteristics of non-masses represents a challenging task for an automated analysis and is of crucial importance for advancing current computer-aided diagnosis (CAD) systems. Compared to the well-characterized mass-enhancing lesions, non-masses have no well-defined and blurred tumor borders and a kinetic behavior that is not easily generalizable and thus discriminative for malignant and benign non-masses. To overcome these difficulties and pave the way for novel CAD systems for non-masses, we will evaluate several kinetic and morphological descriptors separately and a novel technique, the Zernike velocity moments, to capture the joint spatio-temporal behavior of these lesions, and additionally consider the impact of non-rigid motion compensation on a correct diagnosis.

  8. Radiative equilibrium and escape of Pluto's atmosphere

    NASA Astrophysics Data System (ADS)

    Erwin, Justin; Koskinen, Tommi T.; Yelle, Roger V.

    2015-11-01

    Observations of Pluto’s extend atmosphere by the New Horizons spacecraft motivate an update to our modeling effort on Pluto’s atmosphere. New Horizons observations have already improved our constraints on planet radius and surface pressure, which are key to modeling the atmospheric structure. We model the radiative conductive equilibrium in the lower atmosphere combined with the UV driven escape model of the upper atmosphere. The non-LTE radiative transfer model in the lower atmosphere include heating and cooling by CH4, CO, and HCN. The escape model of the upper atmosphere is updated to include diffusion and escape of each molecular component. These results will be used to aid in the analysis and better understanding of the full atmospheric structure.

  9. Thermal escape from extrasolar giant planets.

    PubMed

    Koskinen, Tommi T; Lavvas, Panayotis; Harris, Matthew J; Yelle, Roger V

    2014-04-28

    The detection of hot atomic hydrogen and heavy atoms and ions at high altitudes around close-in extrasolar giant planets (EGPs) such as HD209458b implies that these planets have hot and rapidly escaping atmospheres that extend to several planetary radii. These characteristics, however, cannot be generalized to all close-in EGPs. The thermal escape mechanism and mass loss rate from EGPs depend on a complex interplay between photochemistry and radiative transfer driven by the stellar UV radiation. In this study, we explore how these processes change under different levels of irradiation on giant planets with different characteristics. We confirm that there are two distinct regimes of thermal escape from EGPs, and that the transition between these regimes is relatively sharp. Our results have implications for thermal mass loss rates from different EGPs that we discuss in the context of currently known planets and the detectability of their upper atmospheres. PMID:24664923

  10. Thermal escape from extrasolar giant planets

    PubMed Central

    Koskinen, Tommi T.; Lavvas, Panayotis; Harris, Matthew J.; Yelle, Roger V.

    2014-01-01

    The detection of hot atomic hydrogen and heavy atoms and ions at high altitudes around close-in extrasolar giant planets (EGPs) such as HD209458b implies that these planets have hot and rapidly escaping atmospheres that extend to several planetary radii. These characteristics, however, cannot be generalized to all close-in EGPs. The thermal escape mechanism and mass loss rate from EGPs depend on a complex interplay between photochemistry and radiative transfer driven by the stellar UV radiation. In this study, we explore how these processes change under different levels of irradiation on giant planets with different characteristics. We confirm that there are two distinct regimes of thermal escape from EGPs, and that the transition between these regimes is relatively sharp. Our results have implications for thermal mass loss rates from different EGPs that we discuss in the context of currently known planets and the detectability of their upper atmospheres. PMID:24664923

  11. Enhanced performance in hole transport material free perovskite solar cells via morphology control of PbI2 film by solvent treatment

    NASA Astrophysics Data System (ADS)

    Cheng, Nian; Liu, Pei; Bai, Sihang; Yu, Zhenhua; Liu, Wei; Guo, Shi-Shang; Zhao, Xing-Zhong

    2016-07-01

    The morphology of PbI2 film plays a critical role in determining the quality of the resultant CH3NH3PbI3 film and power conversion efficiency of CH3NH3PbI3 perovskite solar cell. Here, we propose a solvent treatment method in the two-step sequential deposition process to control the morphology of PbI2 film, which leads to enhanced power conversion efficiency. Hole transport material free perovskite solar cell is chosen as a paradigm to demonstrate this idea. Solvent (isopropanol, chlorobenzene, or ethanol) treated PbI2 films exhibit dendrite-like or flake-like morphologies, which facilitate more complete conversion of PbI2 to CH3NH3PbI3 perovskite in ambient atmosphere with a relative high humidity. Therefore, enhanced performance is obtained with the solvent treated PbI2 films. Average power conversion efficiency has been improved from 9.42% in the traditional two-step sequential deposition to 11.22% in solar cells derived from ethanol treated PbI2 films.

  12. Novel WO3/Sb2S3 Heterojunction Photocatalyst Based on WO3 of Different Morphologies for Enhanced Efficiency in Photoelectrochemical Water Splitting.

    PubMed

    Zhang, Jing; Liu, Zhihua; Liu, Zhifeng

    2016-04-20

    We report the fabrication of tungsten trioxide (WO3) with different morphologies applied in photoelectrochemical (PEC) water splitting. The antimony sulfide (Sb2S3) was incorporated onto WO3 for the first time with the aim of improving its photoelectrocatalytic activity under visible-light illumination. In the present work, WO3 of different morphologies were fabricated on FTO glass via adjusting the pH value via a facile hydrothermal method and the morphological effect on the photoelectrocatalytic activity of the obtained samples has been discussed. WO3/Sb2S3 heterojunction photoelectrocatalysts were subsequently synthesized successfully to further improve the photoelectrocatalytic activity. Among them, WO3/Sb2S3 heterojunction photoelectrocatalyst based on WO3 micro crystals achieved an enhanced photocurrent of 1.79 mA/cm(2) at 0.8 V versus RHE under simulated sunlight, compared to 0.45 mA/cm(2) of pristine WO3 micro crystals. This excellent PEC performance benefits from the enhanced light absorbance, construction of suitable energy band gap, the improved photogenerated electron-hole pairs separation and transfer efficiency, which potentially provides new insights into PEC water splitting systems. PMID:27032422

  13. Enhanced photocatalytic performance of morphologically tuned Bi2S3 NPs in the degradation of organic pollutants under visible light irradiation.

    PubMed

    Sarkar, Arpita; Ghosh, Abhisek Brata; Saha, Namrata; Srivastava, Divesh N; Paul, Parimal; Adhikary, Bibhutosh

    2016-12-01

    Here in, morphologically tuned Bi2S3 NPs were successfully synthesized from a single-source precursor complex [Bi(ACDA)3] [HACDA=2-aminocyclopentene-1-dithiocarboxylic acid] by decomposing in various solvents using a simple solvothermal method. The as-obtained products were characterized by XRD, TEM, UV-vis spectroscopy and BET surface area measurements. Structural analyses revealed that the as-prepared Bi2S3 NPs can be tuned to different morphologies by varying various solvents and surfactants. The interplay of factors that influenced the size and morphology of the nanomaterials has been studied. Moreover, mastery over the morphology of nanoparticles enables control of their properties and enhancement of their usefulness for a given application. These materials emerged as a highly active visible light-driven photocatalyst towards degradation of methylene blue dye and the efficiencies are dependent on size and surface area of the NPs. In addition, photocatalytic degradation of highly toxic dichlorodiphenyltrichloroethane was studied using synthesized Bi2S3 NPs as catalyst and the rate of degradation has been found to be much better compared to that exhibited by commercial WO3. We believe that this new synthesis approach can be extended to the synthesis of other metal sulfide nanostructures and open new opportunities for device applications. PMID:27552413

  14. A seed-mediated approach to the morphology-controlled synthesis of bimetallic copper-platinum alloy nanoparticles with enhanced electrocatalytic performance for the methanol oxidation reaction

    NASA Astrophysics Data System (ADS)

    Han, Lin; Cui, Penglei; He, Hongyan; Liu, Hui; Peng, Zhijian; Yang, Jun

    2015-07-01

    Mastery over the morphology of nanomaterials usually enables control of their properties and enhancement of their usefulness for a given application. Herein, we report a seed-mediated approach for the fabrication of bimetallic copper-platinum (CuPt) alloy nanoparticles with different morphologies. This strategy involves the first synthesis of Cu seed particles with multiple twins, and subsequent nucleation and growth of Pt metal. Then upon the Cu/Pt molar ratios in the synthesis, the rapid interdiffusion of Cu and Pt atoms results in the formation of bimetallic CuPt alloy nanoparticles with polyhedral, stellated, or dendritic morphologies. It has been found that both the morphology and electronic coupling effect between Cu and Pt components have significant effect on the electrochemical property of the alloy particles. In particular, the dendritic CuPt alloy nanoparticles display the highest specific activity for methanol oxidation reaction (MOR) due to their abundant atomic steps, edges, and corner atoms in the dendritic structure, while the polyhedral CuPt alloy particles show best carbon monoxide (CO) tolerant behavior due to the strong electronic donation effect from Cu to Pt atoms.

  15. Statistical theory of asteroid escape rates.

    PubMed

    Jaffé, Charles; Ross, Shane D; Lo, Martin W; Marsden, Jerrold; Farrelly, David; Uzer, T

    2002-07-01

    Transition states in phase space are identified and shown to regulate the rate of escape of asteroids temporarily captured in circumplanetary orbits. The transition states, similar to those occurring in chemical reaction dynamics, are then used to develop a statistical semianalytical theory for the rate of escape of asteroids temporarily captured by Mars. Theory and numerical simulations are found to agree to better than 1%. These calculations suggest that further development of transition state theory in celestial mechanics, as an alternative to large-scale numerical simulations, will be a fruitful approach to mass transport calculations. PMID:12097024

  16. Enhanced permittivity and energy density in neat poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) terpolymer films through control of morphology.

    PubMed

    Smith, O'Neil L; Kim, Yunsang; Kathaperumal, Mohanalingam; Gadinski, Matthew R; Pan, Ming-Jen; Wang, Qing; Perry, Joseph W

    2014-06-25

    Polymer materials with large dielectric constants are desirable for the development of high energy density capacitors. We show that the dielectric properties of poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) [P(VDF-TrFE-CTFE)] can be improved by the use of processing conditions that favor formation of a highly crystalline morphology of the nonpolar α-phase. Through the use of spin coating, thermal treatment above the melting temperature, and quenching, we were able to attain a highly crystalline, α-phase rich morphology that has a quite large dielectric constant of 77 ± 10 at 1 kHz. The final morphology and phase composition of the terpolymer films depend strongly on the postprocessing thermal treatment and the quality of the solvent. Evaluation of the polarization behavior of the terpolymer films as a function of electric field reveal that the polymer exhibits a relaxor-ferroelectric behavior and has a substantial energy density of 9.7 J/cm(3) at fields of up to approximately 470 V/μm. Under millisecond pulsed charge-discharge measurements a 3-fold increase in energy density (27 J/cm(3)) is obtained at high fields (∼600 V/μm). Our study demonstrates that the processing conditions and morphology of fluorinated terpolymer films are controlling factors for achievement of high dielectric permittivity and energy density that are critical for high performance capacitors. PMID:24873348

  17. Dynamical Effects on the Escape of H and D: Martian Water Reservoirs

    NASA Technical Reports Server (NTRS)

    Hartle, Richard E.; Einaudi, Franco (Technical Monitor)

    2002-01-01

    The evolution of water on Mars is dependent on the loss rates of H and D from its atmosphere, where the dominant loss mechanism for these constituents is Jeans escape. Throughout time, preferential escape of H over D has produced a deuterium rich atmosphere with a D/H ratio 5.2 times that of terrestrial water. Motion in the atmosphere of Mars is shown to change the Jeans escape rates of H and D in two important ways: (1) Atmospheric wind and rotation at the exobase increase the escape fluxes of H and D above the corresponding Jeans fluxes. (2) The percentage increase in escape flux due to motion is greatest for D. Recently, several models have been used to estimate the magnitudes of current and ancient crustal water reservoirs on Mars that freely exchange with its atmosphere. Differences in the reservoir sizes are influenced by differences in the composition at the exobase, thermal history of the atmosphere and the D/H ratio of earlier epochs as inferred from meteorites. When motion enhanced Jeans escape is applied to each of these models, it is shown in every case that factors (1) and (2) above lead to current and ancient crustal water reservoirs that are larger than those obtained without motion.

  18. ENHANCED NITROGEN IN MORPHOLOGICALLY DISTURBED BLUE COMPACT GALAXIES AT 0.20 < z < 0.35: PROBING GALAXY MERGING FEATURES

    SciTech Connect

    Chung, Jiwon; Rey, Soo-Chang; Yeom, Bum-Suk; Yi, Wonhyeong; Sung, Eon-Chang; Kyeong, Jaemann; Humphrey, Andrew E-mail: screy@cnu.ac.kr

    2013-04-10

    We present a study of correlations between the elemental abundances and galaxy morphologies of 91 blue compact galaxies (BCGs) at z = 0.20-0.35 with Sloan Digital Sky Survey (SDSS) DR7 data. We classify the morphologies of the galaxies as either ''disturbed'' or ''undisturbed'' by visual inspection of the SDSS images, and using the Gini coefficient and M{sub 20}. We derive oxygen and nitrogen abundances using the T{sub e} method. We find that a substantial fraction of BCGs with disturbed morphologies, indicative of merger remnants, show relatively high N/O and low O/H abundance ratios. The majority of the disturbed BCGs exhibit higher N/O values at a given O/H value compared to the morphologically undisturbed galaxies, implying more efficient nitrogen enrichment in disturbed BCGs. We detect Wolf-Rayet (WR) features in only a handful of the disturbed BCGs, which appears to contradict the idea that WR stars are responsible for high nitrogen abundance. Combining these results with Galaxy Evolution Explorer GR6 ultraviolet (UV) data, we find that the majority of the disturbed BCGs show systematically lower values of the H{alpha} to near-UV star formation rate ratio. The equivalent width of the H{beta} emission line is also systematically lower in the disturbed BCGs. Based on these results, we infer that disturbed BCGs have undergone star formation over relatively longer timescales, resulting in a more continuous enrichment of nitrogen. We suggest that this correlation between morphology and chemical abundances in BCGs is due to a difference in their recent star formation histories.

  19. Sex differences in lizard escape decisions vary with latitude, but not sexual dimorphism.

    PubMed

    Samia, Diogo S M; Møller, Anders Pape; Blumstein, Daniel T; Stankowich, Theodore; Cooper, William E

    2015-04-22

    Sexual selection is a powerful evolutionary mechanism that has shaped the physiology, behaviour and morphology of the sexes to the extent that it can reduce viability while promoting traits that enhance reproductive success. Predation is one of the underlying mechanisms accounting for viability costs of sexual displays. Therefore, we should expect that individuals of the two sexes adjust their anti-predator behaviour in response to changes in predation risk. We conducted a meta-analysis of 28 studies (42 species) of sex differences in risk-taking behaviour in lizards and tested whether these differences could be explained by sexual dichromatism, by sexual size dimorphism or by latitude. Latitude was the best predictor of the interspecific heterogeneity in sex-specific behaviour. Males did not change their escape behaviour with latitude, whereas females had increasingly reduced wariness at higher latitudes. We hypothesize that this sex difference in risk-taking behaviour is linked to sex-specific environmental constraints that more strongly affect the reproductive effort of females than males. This novel latitudinal effect on sex-specific anti-predator behaviour has important implications for responses to climate change and for the relative roles of natural and sexual selection in different species. PMID:25788595

  20. Sex differences in lizard escape decisions vary with latitude, but not sexual dimorphism

    PubMed Central

    Samia, Diogo S. M.; Møller, Anders Pape; Blumstein, Daniel T.; Stankowich, Theodore; Cooper, William E.

    2015-01-01

    Sexual selection is a powerful evolutionary mechanism that has shaped the physiology, behaviour and morphology of the sexes to the extent that it can reduce viability while promoting traits that enhance reproductive success. Predation is one of the underlying mechanisms accounting for viability costs of sexual displays. Therefore, we should expect that individuals of the two sexes adjust their anti-predator behaviour in response to changes in predation risk. We conducted a meta-analysis of 28 studies (42 species) of sex differences in risk-taking behaviour in lizards and tested whether these differences could be explained by sexual dichromatism, by sexual size dimorphism or by latitude. Latitude was the best predictor of the interspecific heterogeneity in sex-specific behaviour. Males did not change their escape behaviour with latitude, whereas females had increasingly reduced wariness at higher latitudes. We hypothesize that this sex difference in risk-taking behaviour is linked to sex-specific environmental constraints that more strongly affect the reproductive effort of females than males. This novel latitudinal effect on sex-specific anti-predator behaviour has important implications for responses to climate change and for the relative roles of natural and sexual selection in different species. PMID:25788595

  1. Listeria species escape from the phagosomes of interleukin-4-deactivated human macrophages independent of listeriolysin.

    PubMed

    Neumann, Katja; Eppler, Elisabeth; Filgueira, Luis; Groscurth, Peter; Gasal, Eduard; Schaffner, Andreas; Schoedon, Gabriele; Schneemann, Markus

    2003-12-01

    Listeria monocytogenes is the causative agent of infections like sepsis and meningitis, especially in immunocompromised hosts. Human macrophages are able to phagocytose and digest L. monocytogenes but IL-4 prevents human macrophages from killing the bacteria, the mechanisms of which are unknown. In the present study, we examined various listeria species and strains including wild-type and deletion mutants in human macrophages pretreated with IL-4. To analyse the IL-4-mediated deactivation process, we combined quantitative infection assays with various morphologic methods. IL-4 facilitates survival and escape of the pathogenic L. monocytogenes wild-type strain 10403S from the macrophage phagosomes. In untreated macrophages, the isogenic listeriolysin deletion mutant strain DP-L2161 was killed and did not escape from the phagolysosomes. However, after macrophage deactivation with IL-4 DP-L2161 survived and escaped from the phagosomes. This was also the case, but to a lesser extent, even for the naturally avirulent L. innocua. As detected by confocal laser-scanning fluorescence microscopy and electron microscopy, IL-4 permitted the escape of all listeria species tested, including DP-L2161 and L. innocua from the phagosomal compartment of the macrophages. We conclude that escape from the phagosome and survival of the listeria species tested in IL-4-deactivated human macrophages is independent of the virulence factor listeriolysin. PMID:14636240

  2. Centrifugally Stimulated Exospheric Ion Escape at Mercury

    NASA Technical Reports Server (NTRS)

    Delcourt, Dominique; Seki, K.; Terada, N.; Moore, Thomas E.

    2012-01-01

    We investigate the transport of ions in the low-altitude magnetosphere magnetosphere of Mercury. We show that, because of small spatial scales, the centrifugal effect due to curvature of the E B drift paths can lead to significant particle energization in the parallel direction. We demonstrate that because of this effect, ions with initial speed smaller than the escape speed such as those produced via thermal desorption can overcome gravity and escape into the magnetosphere. The escape route of this low-energy exosphere originating material is largely controlled by the magnetospheric convection rate. This escape route spreads over a narrower range of altitudes when the convection rate increases. Bulk transport of low-energy planetary material thus occurs within a limited region of space once moderate magnetospheric convection is established. These results suggest that, via release of material otherwise gravitationally trapped, the E B related centrifugal acceleration is an important mechanism for the net supply of plasma to the magnetosphere of Mercury.

  3. Developing the E-Scape Software System

    ERIC Educational Resources Information Center

    Derrick, Karim

    2012-01-01

    Most innovations have contextual pre-cursors that prompt new ways of thinking and in their turn help to give form to the new reality. This was the case with the e-scape software development process. The origins of the system existed in software components and ideas that we had developed through previous projects, but the ultimate direction we took…

  4. Nociception and escape behavior in planarians

    NASA Astrophysics Data System (ADS)

    Schoetz Collins, Eva-Maria

    2015-03-01

    Planarians are famous and widely studied for their regenerative capabilities. When a moving planarian is cut through the middle, the resulting head and tail pieces instantaneously retract and exhibit a characteristic escape response that differs from normal locomotion. In asexual animals, a similar reaction is observed when the planarian undergoes fission, suggesting that reproduction through self-tearing is a rather traumatic event for the animal. Using a multiscale approach, we unravel the dynamics, mechanics, and functional aspects of the planarian escape response. This musculature-driven gait was found to be a dominating response that supersedes the urge to feed or reproduce and quantitatively differs from other modes of planarian locomotion (gliding, peristalsis). We show that this escape gait constitutes the animal's pain response mediated by TRP like receptors and the neurotransmitter histamine, and that it can be induced through adverse thermal, mechanical, electrical or chemical stimuli. Ultimately, we will examine the neuronal subpopulations involved in mediating escape reflexes in planarians and how they are functionally restored during regeneration, thereby gaining mechanistic insight into the neuronal circuits required for specific behaviors. Supported by BWF CASI and Sloan Foundation.

  5. Animal escapology II: escape trajectory case studies

    PubMed Central

    Domenici, Paolo; Blagburn, Jonathan M.; Bacon, Jonathan P.

    2011-01-01

    Summary Escape trajectories (ETs; measured as the angle relative to the direction of the threat) have been studied in many taxa using a variety of methodologies and definitions. Here, we provide a review of methodological issues followed by a survey of ET studies across animal taxa, including insects, crustaceans, molluscs, lizards, fish, amphibians, birds and mammals. Variability in ETs is examined in terms of ecological significance and morpho-physiological constraints. The survey shows that certain escape strategies (single ETs and highly variable ETs within a limited angular sector) are found in most taxa reviewed here, suggesting that at least some of these ET distributions are the result of convergent evolution. High variability in ETs is found to be associated with multiple preferred trajectories in species from all taxa, and is suggested to provide unpredictability in the escape response. Random ETs are relatively rare and may be related to constraints in the manoeuvrability of the prey. Similarly, reports of the effect of refuges in the immediate environment are relatively uncommon, and mainly confined to lizards and mammals. This may be related to the fact that work on ETs carried out in laboratory settings has rarely provided shelters. Although there are a relatively large number of examples in the literature that suggest trends in the distribution of ETs, our understanding of animal escape strategies would benefit from a standardization of the analytical approach in the study of ETs, using circular statistics and related tests, in addition to the generation of large data sets. PMID:21753040

  6. Evolution: Escaping the Inevitability of Ageing.

    PubMed

    Archer, C Ruth; Hosken, David J

    2016-03-01

    William Hamilton argued that even species inhabiting the farthest flung corners of the universe should age. However, a recent study shows that to find a species that escapes ageing, you only need to look as far as your local pond. PMID:26954440

  7. Innovative Bayesian and Parsimony Phylogeny of Dung Beetles (Coleoptera, Scarabaeidae, Scarabaeinae) Enhanced by Ontology-Based Partitioning of Morphological Characters

    PubMed Central

    Tarasov, Sergei; Génier, François

    2015-01-01

    Scarabaeine dung beetles are the dominant dung feeding group of insects and are widely used as model organisms in conservation, ecology and developmental biology. Due to the conflicts among 13 recently published phylogenies dealing with the higher-level relationships of dung beetles, the phylogeny of this lineage remains largely unresolved. In this study, we conduct rigorous phylogenetic analyses of dung beetles, based on an unprecedented taxon sample (110 taxa) and detailed investigation of morphology (205 characters). We provide the description of morphology and thoroughly illustrate the used characters. Along with parsimony, traditionally used in the analysis of morphological data, we also apply the Bayesian method with a novel approach that uses anatomy ontology for matrix partitioning. This approach allows for heterogeneity in evolutionary rates among characters from different anatomical regions. Anatomy ontology generates a number of parameter-partition schemes which we compare using Bayes factor. We also test the effect of inclusion of autapomorphies in the morphological analysis, which hitherto has not been examined. Generally, schemes with more parameters were favored in the Bayesian comparison suggesting that characters located on different body regions evolve at different rates and that partitioning of the data matrix using anatomy ontology is reasonable; however, trees from the parsimony and all the Bayesian analyses were quite consistent. The hypothesized phylogeny reveals many novel clades and provides additional support for some clades recovered in previous analyses. Our results provide a solid basis for a new classification of dung beetles, in which the taxonomic limits of the tribes Dichotomiini, Deltochilini and Coprini are restricted and many new tribes must be described. Based on the consistency of the phylogeny with biogeography, we speculate that dung beetles may have originated in the Mesozoic contrary to the traditional view pointing to a

  8. Morphological tuned preparation of zinc oxide: reduced graphene oxide composites for non-enzymatic fluorescence glucose sensing and enhanced photocatalysis

    NASA Astrophysics Data System (ADS)

    Sivalingam, Muthu Mariappan; Balasubramanian, Karthikeyan

    2016-07-01

    Zinc oxide: reduced graphene oxide (ZnO:rgo) composites with varying ZnO morphologies have been synthesized towards the application of non-enzymatic fluorescence (FL) glucose sensor and photocatalysis for methylene blue (MB) degradation. The phase structure of ZnO has confirmed by X-ray diffraction studies, and the band gap calculations were done by UV absorption spectra. Scanning electron microscope and Raman spectra revealed the morphological change and the vibrational studies of the prepared samples, respectively. The quenching of the FL emission band of ZnO:rgo composite sample confirmed the transfer of electrons from ZnO to rgo which inhibit the exciton recombination process. The non-enzymatic FL glucose sensing was carried out by the addition of dextrose glucose ( d-glucose) into the ZnO:rgo composite solution, which shows strong relationship between glucose concentration and the FL intensity. The photocatalytic studies showed that composite with high surface to volume ratio exhibits a maximum degradation of MB over 93 %. Our combined results ensured that the ZnO:rgo composites with varying morphologies could be an effective system for applications such as FL-based glucose sensing and photocatalytic degradation.

  9. The production and escape of nitrogen atoms on Mars

    NASA Technical Reports Server (NTRS)

    Fox, J. L.

    1992-01-01

    The lack of agreement between our previously computed values and those measured by Viking of the N-15:N-14 isotope enhancement ratio has led us to reevaluate our model of the Martian ionosphere. In previous models, we were unable to reproduce the ion profiles measured by the RPA on Viking using electron temperatures that were higher that the ion temperatures. When we increased the electron temperatures to 2500-3000 K and with a zero flux upper boundary condition, the ion densities at high altitudes exceeded the measured values by a large factor. We found that we can better fit the observed profiles if we impose a loss process at the upper boundary of our model. If the horizontal fluxes of ions do not constitute a net loss of ions, then the escape of N due to dissociative recombination is also inhibited and better agreement with the measured isotope ratio is found. The production of escaping nitrogen atoms is closely related to the production of thermospheric odd nitrogen; therefore, the densities of NO measured by Viking provide a convenient check on our nitrogen escape model. Our standard model NO densities are less that the measured values by a factor of 2-3, as are those of previous models. We find that reasonable agreement can be obtained by assuming that the rate coefficient for loss of odd nitrogen in the reaction of N with NO is smaller at temperatures that prevail in the lower Martian thermosphere than the standard value, which applies to temperatures of 200-400 K. Other aspects of this investigation are presented.

  10. Effects of FGF-2 on human adipose tissue derived adult stem cells morphology and chondrogenesis enhancement in Transwell culture

    SciTech Connect

    Kabiri, Azadeh; Esfandiari, Ebrahim; Hashemibeni, Batool; Kazemi, Mohammad; Mardani, Mohammad; Esmaeili, Abolghasem

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer We investigated effects of FGF-2 on hADSCs. Black-Right-Pointing-Pointer We examine changes in the level of gene expressions of SOX-9, aggrecan and collagen type II and type X. Black-Right-Pointing-Pointer FGF-2 induces chondrogenesis in hADSCs, which Bullet Increasing information will decrease quality if hospital costs are very different. Black-Right-Pointing-Pointer The result of this study may be beneficial in cartilage tissue engineering. -- Abstract: Injured cartilage is difficult to repair due to its poor vascularisation. Cell based therapies may serve as tools to more effectively regenerate defective cartilage. Both adult mesenchymal stem cells (MSCs) and human adipose derived stem cells (hADSCs) are regarded as potential stem cell sources able to generate functional cartilage for cell transplantation. Growth factors, in particular the TGF-b superfamily, influence many processes during cartilage formation, including cell proliferation, extracellular matrix synthesis, maintenance of the differentiated phenotype, and induction of MSCs towards chondrogenesis. In the current study, we investigated the effects of FGF-2 on hADSC morphology and chondrogenesis in Transwell culture. hADSCs were obtained from patients undergoing elective surgery, and then cultured in expansion medium alone or in the presence of FGF-2 (10 ng/ml). mRNA expression levels of SOX-9, aggrecan and collagen type II and type X were quantified by real-time polymerase chain reaction. The morphology, doubling time, trypsinization time and chondrogenesis of hADSCs were also studied. Expression levels of SOX-9, collagen type II, and aggrecan were all significantly increased in hADSCs expanded in presence of FGF-2. Furthermore FGF-2 induced a slender morphology, whereas doubling time and trypsinization time decreased. Our results suggest that FGF-2 induces hADSCs chondrogenesis in Transwell culture, which may be beneficial in cartilage tissue engineering.

  11. Measuring the morphology and density of internally mixed black carbon with SP2 and VTDMA: new insight into the absorption enhancement of black carbon in the atmosphere

    NASA Astrophysics Data System (ADS)

    Zhang, Yuxuan; Zhang, Qiang; Cheng, Yafang; Su, Hang; Kecorius, Simonas; Wang, Zhibin; Wu, Zhijun; Hu, Min; Zhu, Tong; Wiedensohler, Alfred; He, Kebin

    2016-04-01

    The morphology and density of black carbon (BC) cores in internally mixed BC (In-BC) particles affect their mixing state and absorption enhancement. In this work, we developed a new method to measure the morphology and effective density of the BC cores of ambient In-BC particles using a single-particle soot photometer (SP2) and a volatility tandem differential mobility analyzer (VTDMA) during the CAREBeijing-2013 campaign from 8 to 27 July 2013 at Xianghe Observatory. This new measurement system can select size-resolved ambient In-BC particles and measure the mobility diameter and mass of the In-BC cores. The morphology and effective density of the ambient In-BC cores are then calculated. For the In-BC cores in the atmosphere, changes in their dynamic shape factor (χ) and effective density (ρeff) can be characterized as a function of the aging process (Dp/Dc) measured by SP2 and VTDMA. During an intensive field study, the ambient In-BC cores had an average shape factor χ of ˜ 1.2 and an average density of ˜ 1.2 g cm-3, indicating that ambient In-BC cores have a near-spherical shape with an internal void of ˜ 30 %. From the measured morphology and density, the average shell / core ratio and absorption enhancement (Eab) of ambient BC were estimated to be 2.1-2.7 and 1.6-1.9, respectively, for In-BC particles with sizes of 200-350 nm. When the In-BC cores were assumed to have a void-free BC sphere with a density of 1.8 g cm-3, the shell / core ratio and Eab were overestimated by ˜ 13 and ˜ 17 %, respectively. The new approach developed in this work improves the calculations of the mixing state and optical properties of ambient In-BC particles by quantifying the changes in the morphology and density of ambient In-BC cores during aging.

  12. Launch Pad Escape System Design (Human Spaceflight)

    NASA Technical Reports Server (NTRS)

    Maloney, Kelli

    2011-01-01

    A launch pad escape system for human spaceflight is one of those things that everyone hopes they will never need but is critical for every manned space program. Since men were first put into space in the early 1960s, the need for such an Emergency Escape System (EES) has become apparent. The National Aeronautics and Space Administration (NASA) has made use of various types of these EESs over the past 50 years. Early programs, like Mercury and Gemini, did not have an official launch pad escape system. Rather, they relied on a Launch Escape System (LES) of a separate solid rocket motor attached to the manned capsule that could pull the astronauts to safety in the event of an emergency. This could only occur after hatch closure at the launch pad or during the first stage of flight. A version of a LES, now called a Launch Abort System (LAS) is still used today for all manned capsule type launch vehicles. However, this system is very limited in that it can only be used after hatch closure and it is for flight crew only. In addition, the forces necessary for the LES/LAS to get the capsule away from a rocket during the first stage of flight are quite high and can cause injury to the crew. These shortcomings led to the development of a ground based EES for the flight crew and ground support personnel as well. This way, a much less dangerous mode of egress is available for any flight or ground personnel up to a few seconds before launch. The early EESs were fairly simple, gravity-powered systems to use when thing's go bad. And things can go bad very quickly and catastrophically when dealing with a flight vehicle fueled with millions of pounds of hazardous propellant. With this in mind, early EES designers saw such a passive/unpowered system as a must for last minute escapes. This and other design requirements had to be derived for an EES, and this section will take a look at the safety design requirements had to be derived for an EES, and this section will take a look at

  13. Effects of morphology, diameter and periodic distance of the Ag nanoparticle periodic arrays on the enhancement of the plasmonic field absorption in the CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Kohnehpoushi, Saman; Eskandari, Mehdi; Ahmadi, Vahid; Yousefirad, Mansooreh; Nabavi, Elham

    2016-09-01

    In this work, the numerical calculations of plasmonic field absorption of Ag nanoparticles (Ag NPs) periodic arrays in the CdSe quantum dot (QD) film are investigated by the three-dimensional finite difference time domain (FDTD). Diameter (D), periodic distance (P), and morphology effects of Ag NPs are investigated on the improvement of the plasmonic field absorption in CdSe QD film. Results show that plasmonic field absorption in CdSe QD film is enhanced with reduction of D of Ag NPs until 5 nm and reduces thereafter. It is observed that with raising D of Ag NPs, optimum plasmonic field absorption in CdSe QD film is shifted toward the higher P. Moreover, with varying morphology of Ag NPs from spherical to cylindrical, cubic, ringing and pyramid, the plasmonic field absorption is considerably enhanced in CdSe QD film and position of quadrupole plasmon mode (QPPM) is shifted toward further wavelength. For cylindrical Ag NPs, the QPPM intensity increased with raising height (H) until 15 nm and reduces thereafter.

  14. Syndecan-2 enhances E-cadherin shedding and fibroblast-like morphological changes by inducing MMP-7 expression in colon cancer cells.

    PubMed

    Jang, Bohee; Jung, Hyejung; Chung, Heesung; Moon, Byung-In; Oh, Eok-Soo

    2016-08-12

    E-cadherin plays a mechanical role in mediating cell-cell interactions and maintaining epithelial tissue integrity, and the loss of E-cadherin function has been implicated in cancer progression and metastasis. Syndecan-2, a cell-surface heparan sulfate proteoglycan, is upregulated during the development of colon cancer. Here, we assessed the functional relationship between E-cadherin and syndecan-2. We found that stable overexpression of syndecan-2 in a human colorectal adenocarcinoma cell line (HT29) enhanced the proteolytic shedding of E-cadherin to conditioned-media. Either knockdown of matrix metalloproteinase 7 (MMP-7) or inhibition of MMP-7 activity using GM6001 significantly reduced the extracellular shedding of E-cadherin, suggesting that syndecan-2 mediates E-cadherin shedding via MMP-7. Consistent with this notion, enhancement of MMP-7 expression by interleukin-1α treatment increased the shedding of E-cadherin. Conversely, the specific reduction of either syndecan-2 or MMP-7 reduced the shedding of E-cadherin. HT29 cells overexpressing syndecan-2 showed significantly lower cell-surface expression of E-cadherin, decreased cell-cell contact, a more fibroblastic cell morphology, and increased expression levels of ZEB-1. Taken together, these data suggest that syndecan-2 induces extracellular shedding of E-cadherin and supports the acquisition of a fibroblast-like morphology by regulating MMP-7 expression in a colon cancer cell line. PMID:27270030

  15. 33 CFR 143.101 - Means of escape.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Officer in Charge, Marine Inspection, one or more “secondary means of escape.” (d) Unmanned OCS facilities... board, unmanned facilities shall also be provided with one or more “secondary means of escape,” but...

  16. 33 CFR 143.101 - Means of escape.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Officer in Charge, Marine Inspection, one or more “secondary means of escape.” (d) Unmanned OCS facilities... board, unmanned facilities shall also be provided with one or more “secondary means of escape,” but...

  17. 33 CFR 143.101 - Means of escape.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Officer in Charge, Marine Inspection, one or more “secondary means of escape.” (d) Unmanned OCS facilities... board, unmanned facilities shall also be provided with one or more “secondary means of escape,” but...

  18. 17. VIEW OF ESCAPE TRAINING TANK, SHOWING ENCLOSED PASSAGEWAY FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. VIEW OF ESCAPE TRAINING TANK, SHOWING ENCLOSED PASSAGEWAY FROM ELEVATOR TO 18-FOOT LOCK, LOOKING EAST - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  19. 14. DETAIL VIEW OF ESCAPE TRAINING TANK, SHOWING HOLDDOWN RODS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. DETAIL VIEW OF ESCAPE TRAINING TANK, SHOWING HOLD-DOWN RODS, LOOKING SOUTH - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  20. 15. VIEW OF ESCAPE TRAINING TANK, LOOKING EAST ACROSS MEZZANINE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. VIEW OF ESCAPE TRAINING TANK, LOOKING EAST ACROSS MEZZANINE, SHOWING ENTRANCE TO SUBMARINE SECTION AT 110-FOOT LEVEL - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  1. 34. VIEW OF SUBMARINE ESCAPE TRAINING TANK PRIOR TO ADDITION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. VIEW OF SUBMARINE ESCAPE TRAINING TANK PRIOR TO ADDITION OF BLISTERS IN 1959, LOOKING SOUTHEAST - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  2. 21. VIEW OF ESCAPE TRAINING TANK, SHOWING INTERIOR OF CUPOLA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. VIEW OF ESCAPE TRAINING TANK, SHOWING INTERIOR OF CUPOLA AND TOP OF THE TANK, LOOKING NORTHEAST - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  3. 18. VIEW OF ESCAPE TRAINING TANK, SHOWING ENCLOSED PASSAGEWAY FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW OF ESCAPE TRAINING TANK, SHOWING ENCLOSED PASSAGEWAY FROM 50-FOOT LOCK TO ELEVATOR, LOOKING WEST - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  4. 23. VIEW OF ESCAPE TRAINING TANK, LOOKING NORTHWEST, SHOWING TWOLOCK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. VIEW OF ESCAPE TRAINING TANK, LOOKING NORTHWEST, SHOWING TWO-LOCK RECOMPRESSION CHAMBER IN PASSAGEWAY FROM ELEVATOR TO CUPOLA - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  5. Analysis of cartilage matrix fixed charge density and three-dimensional morphology via contrast-enhanced microcomputed tomography

    PubMed Central

    Palmer, Ashley W.; Guldberg, Robert E.; Levenston, Marc E.

    2006-01-01

    Small animal models of osteoarthritis are often used for evaluating the efficacy of pharmacologic treatments and cartilage repair strategies, but noninvasive techniques capable of monitoring matrix-level changes are limited by the joint size and the low radiopacity of soft tissues. Here we present a technique for the noninvasive imaging of cartilage at micrometer-level resolution based on detecting the equilibrium partitioning of an ionic contrast agent via microcomputed tomography. The approach exploits electrochemical interactions between the molecular charges present in the cartilage matrix and an ionic contrast agent, resulting in a nonuniform equilibrium partitioning of the ionic contrast agent reflecting the proteoglycan distribution. In an in vitro model of cartilage degeneration we observed changes in x-ray attenuation magnitude and distribution consistent with biochemical and histological analyses of sulfated glycosaminoglycans, and x-ray attenuation was found to be a strong predictor of sulfated glycosaminoglycan density. Equilibration with the contrast agent also permits direct in situ visualization and quantification of cartilage surface morphology. Equilibrium partitioning of an ionic contrast agent via microcomputed tomography thus provides a powerful approach to quantitatively assess 3D cartilage composition and morphology for studies of cartilage degradation and repair. PMID:17158799

  6. Enhanced morphological transformation of early passage Syrian hamster embryo cells cultured in medium with a reduced bicarbonate concentration and pH.

    PubMed

    LeBoeuf, R A; Kerchaert, G A

    1987-05-01

    Recent studies from our laboratory have demonstrated that clonal cell proliferation of early passage Syrian hamster embryo (SHE) cells is optimal at a bicarbonate concentration in the culture medium of 8.9 mM (pH 6.65-6.75) under the experimental conditions reported. The purpose of the studies reported here was to examine whether morphological transformation induced by benzo[a]pyrene (BP) was enhanced under optimal culture conditions for SHE cell proliferation. Culture media of pH 6.70, 7.11 and 7.34 under incubator conditions of 10% CO2 in air were obtained by the addition of 0.75 (8.9 mM), 2.25 (26.8 mM) and 3.75 g/l (44.6 mM) of NaHCO3 respectively to a modified formulation of Dulbecco's modified Eagles medium. The frequency of morphological transformation of SHE cells was increased at 8.9 mM bicarbonate (pH 6.70) relative to media containing 26.8 or 44.6 mM bicarbonate (pH 7.11 and 7.34 respectively). Additionally, the isolate of embryo cells and lot of fetal bovine serum used supported transformation induced by BP at 8.9 mM bicarbonate (pH 6.70), but did not with media of higher bicarbonate concentration and pH. The duration of cell culture and the no. of colonies per plate influenced the amount of increase of morphological transformation observed at 8.9 mM bicarbonate relative to media of higher bicarbonate concentration. Initial studies have shown that a fraction of morphologically transformed colonies generated at reduced bicarbonate concentration were tumorigenic in newborn hamsters. These results are discussed in terms of the potential utility of low bicarbonate concentration cultured SHE cells for transformation studies. PMID:3581427

  7. Effect of morphology of aluminium oxide nanoparticles on viscosity and interfacial tension (IFT) and the recovery efficiency in enhanced oil recovery (EOR)

    NASA Astrophysics Data System (ADS)

    Zaid, Hasnah Mohd; Radzi, Nur Shahbinar Ahmad; Latiff, Noor Rasyada Ahmad; Shafie, Afza

    2014-10-01

    Conventional enhanced oil recovery (EOR) methods failed to extract the remaining oil from unconventional, high salinity and high temperature high pressure (HTHP) oil reservoirs. In surfactant flooding method, surfactants are injected to reduce the interfacial tension between oil and water hence sufficiently displaces oil from the reservoir. In steam flooding, high temperature steam is injected into a reservoir to heat oil to make it less viscous, making it easier to move to the production wells. However these methods fail to failed to perform because injection agents start to change its properties under the extreme condition. Therefore, nanoparticles are introduced to mitigate these challenges because of its ability to change certain factor in certain condition. Previous studies had shown that increments in the oil recovery were observed when core-flooding experiments using Aluminum Oxide (Al2O3) nanofluid were conducted. In this research, the effect of morphology of Al2O3 nanoparticles on viscosity and interfacial tension (IFT) and the recovery efficiency in EOR was studied. Al2O3 nanoparticles were synthesized and the morphology was altered by hydrothermal treatment using different concentration of NaOH. After being treated, the morphology of Al2O3 changed from hexagonal to thin lath. The IFT between crude oil and the nanofluids of the treated Al2O3 showed lower values compared to the untreated ones. It was also observed from core-flooding experiment that the Al2O3 nanofluid which had undergone treatment with 10 M NaOH gave the highest recovery of 52.50% of residual oil in place (ROIP). The change in morphology could have resulted in better dispersion and thus lead to higher recovery.

  8. [Escape mutants of hepatitis B virus].

    PubMed

    Jaramillo, Carlos Mario; Navas, María-Cristina

    2015-04-01

    The hepatitis B virus (HBV) infection is a public health problem worldwide. Considering HBV morbidity and mortality and the economic consequences .of this infection, policies and strategies to control it have been implemented, especially in regions where HBV infection is endemic, with high rates of vertical and horizontal infection. One of these strategies is the development of the recombinant vaccine. A 92% of the countries in the world have implemented the vaccine with a global coverage of 69%. The escape variants of HBV correspond to isolates with mutations in the sequence coding for the "a" determinant; these mutations result in changes in the amino acid sequence of the surface antigen (HBsAg) that prevent neutralization of viral particles by antibodies generated in response to vaccination or infection. The escape variants can infect vaccinated individuals and have been identified in the population of countries with different epidemiological patterns. PMID:26065452

  9. Escape of atmospheres and loss of water

    NASA Technical Reports Server (NTRS)

    Hunten, D. M.; Donahue, T. M.; Walker, J. C. G.; Kasting, J. F.

    1989-01-01

    The properties and limitations of several loss processes for atmospheric gases are presented and discussed. They include thermal loss (Jeans and hydrodynamic); nonthermal loss (all processes involve charged particles); and impact erosion, including thermal escape from a molten body heated by rapid accretion. Hydrodynamic escape, or 'blowoff', is of particular interest because it offers the prospect of processing large quantities of gas and enriching the remainder in heavy elements and isotopes. In a second part, the water budgets and likely evolutionary histories of Venus, Earth and Mars are assessed. Although it is tempting to associate the great D/H enrichment on Venus with loss of a large initial endowment, a steady state with juvenile water (perhaps from comets) is equally probable.

  10. Morphology and Vocabulary Acquisition: Using Visual Cues from Word Parts to Enhance Recall and Decode Newly Encountered Words

    ERIC Educational Resources Information Center

    Bellomo, Tom

    2012-01-01

    An enhanced replication of an original quasi-experiment (Tom Bellomo, 2009b) was conducted to quantify the extent of long term retention of word parts and vocabulary. Such were introduced as part of a vocabulary acquisition strategy in a developmental reading course at one southeast four-year college. Aside from incorporating changes to the test…

  11. Cold ion escape from the Martian ionosphere

    NASA Astrophysics Data System (ADS)

    Fränz, M.; Dubinin, E.; Andrews, D.; Barabash, S.; Nilsson, H.; Fedorov, A.

    2015-12-01

    We here report on new measurements of the escape flux of oxygen ions from Mars by combining the observations of the ASPERA-3 and MARSIS experiments on board the European Mars Express spacecraft. We show that in previous estimates of the total heavy ion escape flow the contribution of the cold ionospheric outflow with energies below 10 eV has been underestimated. Both case studies and the derived flow pattern indicate that the cold plasma observed by MARSIS and the superthermal plasma observed by ASPERA-3 move with the same bulk speed in most regions of the Martian tail. We determine maps of the tailside heavy ion flux distribution derived from mean ion velocity distributions sampled over 7 years. If we assume that the superthermal bulk speed derived from these long time averages of the ion distribution function represent the total plasma bulk speed we derive the total tailside plasma flux. Assuming cylindrical symmetry we determine the mean total escape rate for the years 2007-2014 at 2.8 ± 0.4 ×1025 atoms / s which is in good agreement with model estimates. A possible mechanism to generate this flux can be the ionospheric pressure gradient between dayside and nightside.

  12. Cold Ion Escape from the Martian Ionosphere

    NASA Astrophysics Data System (ADS)

    Fränz, M.; Dubinin, E.; Andrews, D.; Nilsson, H.; Barabash, S.; Fedorov, A.

    2015-10-01

    We here report on new measurements of the escape flux of oxygen ions from Mars by combining the observations of the ASPERA-3 and MARSIS experiments on board the European Mars Express spacecraft. We show that in previous estimates of the total heavy ion escape flow the contribution of the coldionospheric outflow with energies below 10 eV has been underestimated. Both case studies and the derived flow pattern indicate that the cold plasma observed by MARSIS and the superthermal plasma observed by ASPERA-3 move with the same bulk speed in most regions of the Martian tail. We determine maps of the tailside heavy ion flux distribution derived from mean ion velocity distributions sampled over 7 years. If we assume that the superthermal bulk speed derived from these long time averages of the ion distribution function represent the total plasma bulk speed we derive the total tailside plasma flux. Assuming cylindrical symmetry we determine the mean total escape rate for the years 2007 to 2014 at 2.9±0.2×10 25 atoms/s which is in good agreement with model estimates. In this talk we will also try to compare these results with more recent observations by the MAVEN spacecraft. Possible mechanism to generate this flux can be the ionospheric pressure gradient between dayside and nightside or momentum transfer from the solar wind via the induced magnetic field since the flow velocity is in the Alfvénic regime.

  13. Scrunching: a novel escape gait in planarians

    NASA Astrophysics Data System (ADS)

    Cochet-Escartin, Olivier; Mickolajczyk, Keith J.; Collins, Eva-Maria S.

    2015-10-01

    The ability to escape a predator or other life-threatening situations is central to animal survival. Different species have evolved unique strategies under anatomical and environmental constraints. In this study, we describe a novel musculature-driven escape gait in planarians, ‘scrunching’, which is quantitatively different from other planarian gaits, such as gliding and peristalsis. We show that scrunching is a conserved gait among different flatworm species, underlying its importance as an escape mechanism. We further demonstrate that it can be induced by a variety of physical stimuli, including amputation, high temperature, electric shock and low pH. We discuss the functional basis for scrunching as the preferential gait when gliding is impaired due to a disruption of mucus production. Finally, we show that the key mechanical features of scrunching are adequately captured by a simple biomechanical model that is solely based on experimental data from traction force microscopy and tissue rheology without fit parameters. Together, our results form a complete description of this novel form of planarian locomotion. Because scrunching has distinct dynamics, this gait can serve as a robust behavioral readout for studies of motor neuron and muscular functions in planarians and in particular the restoration of these functions during regeneration.

  14. Scrunching: a novel escape gait in planarians.

    PubMed

    Cochet-Escartin, Olivier; Mickolajczyk, Keith J; Collins, Eva-Maria S

    2015-10-01

    The ability to escape a predator or other life-threatening situations is central to animal survival. Different species have evolved unique strategies under anatomical and environmental constraints. In this study, we describe a novel musculature-driven escape gait in planarians, 'scrunching', which is quantitatively different from other planarian gaits, such as gliding and peristalsis. We show that scrunching is a conserved gait among different flatworm species, underlying its importance as an escape mechanism. We further demonstrate that it can be induced by a variety of physical stimuli, including amputation, high temperature, electric shock and low pH. We discuss the functional basis for scrunching as the preferential gait when gliding is impaired due to a disruption of mucus production. Finally, we show that the key mechanical features of scrunching are adequately captured by a simple biomechanical model that is solely based on experimental data from traction force microscopy and tissue rheology without fit parameters. Together, our results form a complete description of this novel form of planarian locomotion. Because scrunching has distinct dynamics, this gait can serve as a robust behavioral readout for studies of motor neuron and muscular functions in planarians and in particular the restoration of these functions during regeneration. PMID:26356147

  15. Xenon Fractionation and Archean Hydrogen Escape

    NASA Technical Reports Server (NTRS)

    Zahnle, K. J.

    2015-01-01

    Xenon is the heaviest gas found in significant quantities in natural planetary atmospheres. It would seem the least likely to escape. Yet there is more evidence for xenon escape from Earth than for any element other than helium and perhaps neon. The most straightforward evidence is that most of the radiogenic Xe from the decay of (129)I (half-life 15.7 Myr) and (244)Pu (half-life 81 Myr) that is Earth's birthright is missing. The missing xenon is often attributed to the impact erosion of early atmospheres of Earth and its ancestors. It is obvious that if most of the radiogenic xenon were driven off by impacts, most of the rest of the atmophiles fared the same fate. The other line of evidence is in the nonradiogenic isotopes of xenon and its silent partner, krypton. Atmospheric xenon is strongly mass fractionated (at about 4% per amu) compared to any known solar system source (Figure 1). This is in stark contrast to krypton, which may not be fractionated at all: atmospheric Kr is slightly heavier than solar Kr (at about 0.5% per amu), but it is the same as in carbonaceous chondrites. Nonradiogenic xenon is also under abundant relative to krypton (the so-called "missing xenon" problem). Together these observations imply that xenon has been subject to fractionating escape and krypton not.

  16. CRV Escape Trajectories from the ISS

    NASA Technical Reports Server (NTRS)

    Foti, Tony M.

    1999-01-01

    The Crew Return Vehicle (CRV) slated for use on the International Space Station (ISS) provides a safe return for up to seven crew members under various emergency conditions. One of the most demanding situations for executing the escape involves separating from a tumbling ISS Current requirements specify a maximum Root Sum Square (RSS) tumble rate of 2 degrees/second, with the additional requirement for an expedited departure from any ISS attitude. The design of a trajectory that ensures no re-contact with the ISS poses many challenges on the Guidance, Navigation, and Control (GN&C) system of the vehicle. To ensure no re-contact the trajectory design employs a two burn sequence, with the first burn preventing near-term collision and the second burn preventing far-field re-contact This presentation describes the approach used to design and to evaluate trajectories for CRV departure from the baselined location on the ISS Node 3 starboard. This approach involved performing a parametric search of selected control variables vital in escaping the tumbling ISS The presentation provides a candidate targeting methodology for escape using minimal information from available navigation devices, and presents the quantitative results from the analysis.

  17. 30 CFR 77.1101 - Escape and evacuation; plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Fire Protection § 77.1101 Escape and evacuation; plan. (a) Before September 30, 1971, each operator of... event of a fire. (b) All employees shall be instructed on current escape and evacuation plans, fire alarm signals, and applicable procedures to be followed in case of fire. (c) Plans for escape...

  18. 30 CFR 77.1101 - Escape and evacuation; plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Fire Protection § 77.1101 Escape and evacuation; plan. (a) Before September 30, 1971, each operator of... event of a fire. (b) All employees shall be instructed on current escape and evacuation plans, fire alarm signals, and applicable procedures to be followed in case of fire. (c) Plans for escape...

  19. 30 CFR 75.382 - Mechanical escape facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... controls. (b) Every mechanical escape facility with a platform, cage, or other device shall be equipped with brakes that can stop the fully loaded platform, cage, or other device. (c) Mechanical escape... cages, platforms, or elevators. (e) Mechanical escape facilities shall have rated capacities...

  20. 30 CFR 75.382 - Mechanical escape facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... controls. (b) Every mechanical escape facility with a platform, cage, or other device shall be equipped with brakes that can stop the fully loaded platform, cage, or other device. (c) Mechanical escape... cages, platforms, or elevators. (e) Mechanical escape facilities shall have rated capacities...

  1. 30 CFR 75.382 - Mechanical escape facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... controls. (b) Every mechanical escape facility with a platform, cage, or other device shall be equipped with brakes that can stop the fully loaded platform, cage, or other device. (c) Mechanical escape... cages, platforms, or elevators. (e) Mechanical escape facilities shall have rated capacities...

  2. 30 CFR 75.382 - Mechanical escape facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... controls. (b) Every mechanical escape facility with a platform, cage, or other device shall be equipped with brakes that can stop the fully loaded platform, cage, or other device. (c) Mechanical escape... cages, platforms, or elevators. (e) Mechanical escape facilities shall have rated capacities...

  3. 30 CFR 75.382 - Mechanical escape facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... controls. (b) Every mechanical escape facility with a platform, cage, or other device shall be equipped with brakes that can stop the fully loaded platform, cage, or other device. (c) Mechanical escape... cages, platforms, or elevators. (e) Mechanical escape facilities shall have rated capacities...

  4. 46 CFR 169.313 - Means of escape.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Means of escape. 169.313 Section 169.313 Shipping COAST... and Arrangement Hull Structure § 169.313 Means of escape. (a) Except as provided by paragraph (f) of this section, there must be at least two means of escape from all areas generally accessible to...

  5. 46 CFR 127.240 - Means of escape.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Means of escape. 127.240 Section 127.240 Shipping COAST... Particular Construction and Arrangements § 127.240 Means of escape. (a) Except as provided by paragraphs (l) and (m) of this section, there must be at least two means of escape, exclusive of windows...

  6. 46 CFR 127.240 - Means of escape.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Means of escape. 127.240 Section 127.240 Shipping COAST... Particular Construction and Arrangements § 127.240 Means of escape. (a) Except as provided by paragraphs (l) and (m) of this section, there must be at least two means of escape, exclusive of windows...

  7. 46 CFR 127.240 - Means of escape.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Means of escape. 127.240 Section 127.240 Shipping COAST... Particular Construction and Arrangements § 127.240 Means of escape. (a) Except as provided by paragraphs (l) and (m) of this section, there must be at least two means of escape, exclusive of windows...

  8. 46 CFR 169.313 - Means of escape.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Means of escape. 169.313 Section 169.313 Shipping COAST... and Arrangement Hull Structure § 169.313 Means of escape. (a) Except as provided by paragraph (f) of this section, there must be at least two means of escape from all areas generally accessible to...

  9. 46 CFR 116.500 - Means of escape.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Means of escape. 116.500 Section 116.500 Shipping COAST... and Embarkation Station Requirements § 116.500 Means of escape. (a) Except as otherwise provided in... least two means of escape, one of which must not be a watertight door. (b) The two required means...

  10. 46 CFR 169.313 - Means of escape.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Means of escape. 169.313 Section 169.313 Shipping COAST... and Arrangement Hull Structure § 169.313 Means of escape. (a) Except as provided by paragraph (f) of this section, there must be at least two means of escape from all areas generally accessible to...

  11. 46 CFR 116.500 - Means of escape.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Means of escape. 116.500 Section 116.500 Shipping COAST... and Embarkation Station Requirements § 116.500 Means of escape. (a) Except as otherwise provided in... least two means of escape, one of which must not be a watertight door. (b) The two required means...

  12. 46 CFR 169.313 - Means of escape.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Means of escape. 169.313 Section 169.313 Shipping COAST... and Arrangement Hull Structure § 169.313 Means of escape. (a) Except as provided by paragraph (f) of this section, there must be at least two means of escape from all areas generally accessible to...

  13. 46 CFR 116.500 - Means of escape.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Means of escape. 116.500 Section 116.500 Shipping COAST... and Embarkation Station Requirements § 116.500 Means of escape. (a) Except as otherwise provided in... least two means of escape, one of which must not be a watertight door. (b) The two required means...

  14. 46 CFR 169.313 - Means of escape.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Means of escape. 169.313 Section 169.313 Shipping COAST... and Arrangement Hull Structure § 169.313 Means of escape. (a) Except as provided by paragraph (f) of this section, there must be at least two means of escape from all areas generally accessible to...

  15. Cold Ion Escape from the Martian Ionosphere

    NASA Astrophysics Data System (ADS)

    Fraenz, M.; Dubinin, E.; Wei, Y.; Woch, J. G.; Morgan, D. D.; Barabash, S. V.; Lundin, R. N.; Fedorov, A.

    2012-12-01

    It has always been challenging to observe the flux of ions with energies of less than 10eV escaping from the planetary ionospheres. We here report on new measurements of the ionospheric ion flows at Mars by the ASPERA-3 experiment on board Mars Express. We first use support from the MARSIS radar experiment for some orbits with fortunate observation geometry. Here we have observed a transterminator flow of O+ and O2+ ions with a super-sonic velocity of around 5km/s and fluxes of 0.8x10^9/cm^2s. If we assume a symmetric flux around the terminator this corresponds to an ion flow of 3.1x10^25/s half of which is expected to escape from Mars (Fraenz et al, 2010). This escape flux is significantly higher than previously observed on the tailside of Mars, we discuss possible reasons for the difference. Since 2008 the MARSIS radar does nightside local plasma density measurement which often coincide with ASPERA-3 measurements. In a new analysis of the combined nightside datasets (Fig. 1) we show that the main escape channel is along the shadow boundary on the tailside of Mars. At a distance of about 0.5 R_M the flux settles at a constant value (Fig. 2) which indicates that about half of the transterminator ionospheric flow escapes from the planet. Possible mechanism to generate this flux can be the ionospheric pressure gradient between dayside and nightside or momentum transfer from the solar wind via the induced magnetic field since the flow velocity is in the Alfvenic regime.; Median oxygen ion flux reconstructed by combining ion velocity observations of the Mars Express ASPERA-3 IMA sensor and local plasma density observations by the MARSIS radar. Each bin value is the median from observations on about 3000 orbits between May 2007 and July 2011. Horizontal axis is MSO X-axis (Sun towards the left), vertical axis is vertical distance from MSO X-axis. ; Ring median flux of cylindrical ring regions of all bins shown in previous figure. The different colors show median fluxes

  16. Dynamical Effects On The Escape of H and D: Martian Water Reservoirs

    NASA Astrophysics Data System (ADS)

    Hartle, R.

    The evolution of water on Mars is dependent on the loss rates of H and D from its atmosphere, where the dominant loss mechanism for these constituents is Jeans es- cape. Throughout time, preferential escape of H over D has produced a deuterium rich atmosphere with a D/H ratio 5.2 times that of terrestrial water. Motion in the atmo- sphere of Mars is shown to change the Jeans escape rates of H and D in two important ways: (1) Atmospheric wind and rotation at the exobase increase the escape fluxes of H and D above the corresponding Jeans fluxes. (2) The percentage increase in escape flux due to motion is greatest for D. Recently, several models have been used to esti- mate the magnitudes of current and ancient crustal water reservoirs on Mars that freely exchange with its atmosphere. Differences in the reservoir sizes are influenced by dif- ferences in the composition at the exobase, thermal history of the atmosphere and the D/H ratio of earlier epochs as inferred from meteorites. When motion enhanced Jeans escape is applied to each of these models, it is shown in every case that factors (1) and (2) above lead to current and ancient crustal water reservoirs that are larger than those obtained without motion.

  17. Hydrodynamical Modeling of Hydrogen Escape from Rocky Planets

    NASA Astrophysics Data System (ADS)

    Barringer, Daniel; Zugger, M.; Kasting, J.

    2013-01-01

    Hydrogen escape affects both the composition of primitive atmospheres of terrestrial planets and the planet’s state of oxidation. On Mars, hydrogen escape played a critical role in how long the planet remained in a warm wet state amenable to life. For both solar and extrasolar planets, hydrogen-rich atmospheres are better candidates for originating life by way of Miller-Urey-type prebiotic synthesis. However, calculating the rate of atmospheric hydrogen escape is difficult, for a number of reasons. First, the escape can be controlled either by diffusion through the homopause or by conditions in the upper atmosphere, whichever is slower. Second, both thermal and non-thermal escape mechanisms are typically important. Third, thermal escape itself can be subdivided into Jeans escape (thin upper atmosphere), and hydrodynamic escape, and hydrodynamic escape can be further subdivided into transonic escape and slower subsonic escape, depending on whether the exobase occurs above or below the sonic point. Additionally, the rate of escape for real terrestrial planet atmospheres, which are not 100% hydrogen, depends upon the concentration of infrared coolants, and upon heating and photochemistry driven largely by extreme ultraviolet (EUV) radiation. We have modified an existing 1-D model of hydrodynamic escape (F. Tian et al., JGR, 2008) to work in the high- hydrogen regime. Calculations are underway to determine hydrogen escape rates as a function of atmospheric H2 mixing ratio and the solar EUV flux. We will compare these rates with the estimated upper limit on the escape rate based on diffusion. Initial results for early Earth and Mars will later be extended to rocky exoplanets.

  18. Risks incurred by hydrogen escaping from containers and conduits

    SciTech Connect

    Swain, M.R.; Grilliot, E.S.; Swain, M.N.

    1998-08-01

    This paper is a discussion of a method for hydrogen leak classification. Leaks are classified as; gas escapes into enclosed spaces, gas escapes into partially enclosed spaces (vented), and gas escapes into unenclosed spaces. Each of the three enclosure classifications is further divided into two subclasses; total volume of hydrogen escaped and flow rate of escaping hydrogen. A method to aid in risk assessment determination in partially enclosed spaces is proposed and verified for several enclosure geometries. Examples are discussed for additional enclosure geometries.

  19. Green revolution trees: semidwarfism transgenes modify gibberellins, promote root growth, enhance morphological diversity, and reduce competitiveness in hybrid poplar.

    PubMed

    Elias, Ani A; Busov, Victor B; Kosola, Kevin R; Ma, Cathleen; Etherington, Elizabeth; Shevchenko, Olga; Gandhi, Harish; Pearce, David W; Rood, Stewart B; Strauss, Steven H

    2012-10-01

    Semidwarfism has been used extensively in row crops and horticulture to promote yield, reduce lodging, and improve harvest index, and it might have similar benefits for trees for short-rotation forestry or energy plantations, reclamation, phytoremediation, or other applications. We studied the effects of the dominant semidwarfism transgenes GA Insensitive (GAI) and Repressor of GAI-Like, which affect gibberellin (GA) action, and the GA catabolic gene, GA 2-oxidase, in nursery beds and in 2-year-old high-density stands of hybrid poplar (Populus tremula × Populus alba). Twenty-nine traits were analyzed, including measures of growth, morphology, and physiology. Endogenous GA levels were modified in most transgenic events; GA(20) and GA(8), in particular, had strong inverse associations with tree height. Nearly all measured traits varied significantly among genotypes, and several traits interacted with planting density, including aboveground biomass, root-shoot ratio, root fraction, branch angle, and crown depth. Semidwarfism promoted biomass allocation to roots over shoots and substantially increased rooting efficiency with most genes tested. The increased root proportion and increased leaf chlorophyll levels were associated with changes in leaf carbon isotope discrimination, indicating altered water use efficiency. Semidwarf trees had dramatically reduced growth when in direct competition with wild-type trees, supporting the hypothesis that semidwarfism genes could be effective tools to mitigate the spread of exotic, hybrid, and transgenic plants in wild and feral populations. PMID:22904164

  20. Plasma enhanced chemical vapour deposition of silica onto Ti: Analysis of surface chemistry, morphology and functional hydroxyl groups

    PubMed Central

    Szili, Endre J.; Kumar, Sunil; Smart, Roger St. C.; Lowe, Rachel; Saiz, Eduardo; Voelcker, Nicolas H.

    2009-01-01

    Previously, we have developed and characterised a procedure for the deposition of thin silica films by a plasma enhanced chemical vapour deposition (PECVD) procedure using tetraethoxysilane (TEOS) as the main precursor. We have used the silica coatings for improving the corrosion resistance of metals and for enhancing the bioactivity of biomedical metallic implants. Recently, we have been fine-tuning the PECVD method for producing high quality and reproducible PECVD-silica (PECVD-Si) coatings on metals, primarily for biomaterial applications. In order to understand the interaction of the PECVD-Si coatings with biological species (such as proteins and cells), it is important to first analyse the properties of the silica films deposited using the optimised parameters. Therefore, this current investigation was carried out to analyse the characteristic features of PECVD-Si deposited on Ti substrates (PECVD-Si-Ti). We determined that the PECVD-Si coatings on Ti were conformal to the substrate surface, strongly adhered to the underlying substrate and were resistant to delamination. The PECVD-Si surface was composed of stoichiometric SiO2, showed a low carbon content (below 10 at.%) and was very hydrophilic (contact angle <10°). Finally, we also showed that the PECVD-Si coatings contain functional hydroxyl groups. PMID:19809536

  1. Time-dependent aggregation-induced enhanced emission, absorption spectral broadening, and aggregation morphology of a novel perylene derivative with a large D-π-A structure.

    PubMed

    Yang, Long; Yu, Yuyan; Zhang, Jin; Ge, Feijie; Zhang, Jianling; Jiang, Long; Gao, Fang; Dan, Yi

    2015-05-01

    Strong aggregation-caused quenching of perylene diimides (PDI) is changed successfully by simple chemical modification with two quinoline moieties through C=C at the bay positions to obtain aggregation-induced enhanced emission (AIEE) of a perylene derivative (Cya-PDI) with a large π-conjugation system. Cya-PDI is weakly luminescent in the well-dispersed CH(3)CN or THF solutions and exhibits an evident time-dependent AIEE and absorption spectra broadening in the aggregated state. In addition, morphological inspection demonstrates that the morphology of the aggregated form of Cya-PDI molecules changed from plate-shaped to rod-like aggregates under the co-effects of time and water. An edge-to-face arrangement of aggregation was proposed and discussed. The fact that the Cya-PDI aggregates show a broad absorption covering the whole visible-light range and strong intermolecular interaction through π-π stacking in the solid state makes them promising materials for optoelectric applications. PMID:25643930

  2. Morphology evolution of single-crystalline hematite nanocrystals: magnetically recoverable nanocatalysts for enhanced facet-driven photoredox activity

    NASA Astrophysics Data System (ADS)

    Patra, Astam K.; Kundu, Sudipta K.; Bhaumik, Asim; Kim, Dukjoon

    2015-12-01

    We have developed a new green chemical approach for the shape-controlled synthesis of single-crystalline hematite nanocrystals in aqueous medium. FESEM, HRTEM and SAED techniques were used to determine the morphology and crystallographic orientations of each nanocrystal and its exposed facets. PXRD and HRTEM techniques revealed that the nanocrystals are single crystalline in nature; twins and stacking faults were not detected in these nanocrystals. The structural, vibrational, and electronic spectra of these nanocrystals were highly dependent on their shape. Different shaped hematite nanocrystals with distinct crystallographic planes have been synthesized under similar reaction conditions, which can be desired as a model for the purpose of properties comparison with the nanocrystals prepared under different reaction conditions. Here we investigated the photocatalytic performance of these different shaped-nanocrystals for methyl orange degradation in the presence of white light (λ > 420 nm). In this study, we found that the density of surface Fe3+ ions in particular facets was the key factor for the photocatalytic activity and was higher on the bitruncated-dodecahedron shape nanocrystals by coexposed {104}, {100} and {001} facets, attributing to higher catalytic activity. The catalytic activity of different exposed facet nanocrystals were as follows: {104} + {100} + {001} (bitruncated-dodecahedron) > {101} + {001} (bitruncated-octahedron) > {001} + {110} (nanorods) > {012} (nanocuboid) which provided the direct evidence of exposed facet-driven photocatalytic activity. The nanocrystals were easily recoverable using an external magnet and reused at least six times without significant loss of its catalytic activity.We have developed a new green chemical approach for the shape-controlled synthesis of single-crystalline hematite nanocrystals in aqueous medium. FESEM, HRTEM and SAED techniques were used to determine the morphology and crystallographic orientations of

  3. Control of crystallographic texture and surface morphology of Pt/Tio2 templates for enhanced PZT thin film texture.

    PubMed

    Fox, Austin J; Drawl, Bill; Fox, Glen R; Gibbons, Brady J; Trolier-McKinstry, Susan

    2015-01-01

    Optimized processing conditions for Pt/TiO2/SiO2/Si templating electrodes were investigated. These electrodes are used to obtain [111] textured thin film lead zirconate titanate (Pb[ZrxTi1-x ]O3 0 ≤ x ≤ 1) (PZT). Titanium deposited by dc magnetron sputtering yields [0001] texture on a thermally oxidized Si wafer. It was found that by optimizing deposition time, pressure, power, and the chamber pre-conditioning, the Ti texture could be maximized while maintaining low surface roughness. When oxidized, titanium yields [100]-oriented rutile. This seed layer has as low as a 4.6% lattice mismatch with [111] Pt; thus, it is possible to achieve strongly oriented [111] Pt. The quality of the orientation and surface roughness of the TiO2 and the Ti directly affect the achievable Pt texture and surface morphology. A transition between optimal crystallographic texture and the smoothest templating surface occurs at approximately 30 nm of original Ti thickness (45 nm TiO2). This corresponds to 0.5 nm (2 nm for TiO2) rms roughness as determined by atomic force microscopy and a full-width at half-maximum (FWHM) of the rocking curve 0002 (200) peak of 5.5/spl degrees/ (3.1/spl degrees/ for TiO2). A Pb[Zr0.52Ti 0.48]O3 layer was deposited and shown to template from the textured Pt electrode, with a maximum [111] Lotgering factor of 87% and a minimum 111 FWHM of 2.4/spl degrees/ at approximately 30 nm of original Ti. PMID:25585390

  4. Enhancement of NNM-induced carcinogenesis in the rat liver by phenobarbital: a combined morphological and enzyme histochemical approach.

    PubMed

    Moore, M A; Hacker, H J; Kunz, H W; Bannasch, P

    1983-01-01

    The influence of sodium phenobarbital (PB) treatment on the sequence of N-nitrosomorpholine (NNM) induced focal preneoplastic lesions in the rat liver was investigated using a combined morphological and enzyme histochemical approach. Quantitative assessment of the different types of foci of altered hepatocytes visible in H&E sections after carcinogen application, namely the clear and acidophilic cell glycogen storage foci and mixed cell foci comprising glycogen storing cells and also more basophilic hepatocytes showing reduction in glycogen reserves, revealed a shift towards mixed cell character and greater size in PB-treated livers in comparison to those receiving NNM alone. Within the three dose levels of PB investigated (0.75, 0.075 or 0.0075 g/l drinking water) a clear dose dependence in appearance of mixed cell foci was apparent. Assessment of alterations in the activities of marker enzymes observed within preneoplastic foci was carried out by comparison of PAS preparations with sections reacted for glucose-6-phosphate dehydrogenase (G6PDH), gamma-glutamyl transpeptidase, glucose-6-phosphatase and adenosine triphosphatase. G6PDH proved the most consistent enzyme marker for small glycogen storage foci whereas larger foci of that type and mixed cell foci were associated with change in activity of all enzymes studied. The results are discussed in relation to the sequence of events occurring during hepatocarcinogenesis and the influence of PB on altered cellular populations. The applicability of enzyme markers is further considered in view of the question of heterogeneity within populations of preneoplastic foci. PMID:6132686

  5. Cold Ion Escape from the Martian Ionosphere

    NASA Astrophysics Data System (ADS)

    Fränz, Markus; Dubinin, Eduard; Andrews, David; Nilsson, Hans; Fedorov, Andrei

    2014-05-01

    It has always been challenging to observe the flux of ions with energies of less than 10eV escaping from the planetary ionospheres. We here report on new measurements of the ionospheric ion flows at Mars by the ASPERA-3 experiment on board Mars Express. The ion sensor IMA of this experiment has in principle a low-energy cut-off at 10eV but in negative spacecraft charging cold ions are lifted into the range of measurement but the field of view is restricted to about 4x360 deg. In a recent paper Nilsson et al. (Earth Planets Space, 64, 135, 2012) tried to use the method of long-time averaged distribution functions to overcome these constraints. In this paper we first use the same method to show that we get results consistent with this when using ASPERA-3 observations only. But then we can show that these results are inconsistent with observations of the local plasma density by the MARSIS radar instrument on board Mars Express. We demonstrate that the method of averaged distribution function can deliver the mean flow speed of the plasma but the low-energy cut-off does usually not allow to reconstruct the density. We then combine measurements of the cold ion flow speed with the plasma density observations of MARSIS to derive the cold ion flux. In an analysis of the combined nightside datasets we show that the main escape channel is along the shadow boundary on the tailside of Mars. At a distance of about 0.5 Martian radii the flux settles at a constant value which indicates that about half of the transterminator ionospheric flow escapes from the planet. Possible mechanism to generate this flux can be the ionospheric pressure gradient between dayside and nightside or momentum transfer from the solar wind via the induced magnetic field since the flow velocity is in the Alfvénic regime.

  6. X-chromosome inactivation and escape

    PubMed Central

    DISTECHE, CHRISTINE M.; BERLETCH, JOEL B.

    2016-01-01

    X-chromosome inactivation, which was discovered by Mary Lyon in 1961 results in random silencing of one X chromosome in female mammals. This review is dedicated to Mary Lyon, who passed away last year. She predicted many of the features of X inactivation, for e.g., the existence of an X inactivation center, the role of L1 elements in spreading of silencing and the existence of genes that escape X inactivation. Starting from her published work here we summarize advances in the field. PMID:26690513

  7. Suicide as escape from psychotic panic.

    PubMed

    Goldblatt, Mark J; Ronningstam, Elsa; Schechter, Mark; Herbstman, Benjamin; Maltsberger, John T

    2016-01-01

    Suicides of patients in states of acute persecutory panic may be provoked by a subjective experience of helpless terror threatening imminent annihilation or dismemberment. These patients are literally scared to death and try to run away. They imagine suicide is survivable and desperately attempt to escape from imaginary enemies. These states of terror occur in a wide range of psychotic illnesses and are often associated with command hallucinations and delusions. In this article, the authors consider the subjective experience of persecutory panic and the suicide response as an attempt to flee from danger. PMID:27294586

  8. Serial Escape System For Aircraft Crews

    NASA Technical Reports Server (NTRS)

    Wood, Kenneth E.

    1990-01-01

    Emergency escape system for aircraft and aerospace vehicles ejects up to seven crewmembers, one by one, within 120 s. Intended for emergencies in which disabled craft still in stable flight at no more than 220 kn (113 m/s) equivalent airspeed and sinking no faster than 110 ft/s (33.5 m/s) at altitudes up to 50,000 ft (15.2 km). Ejection rockets load themselves from magazine after each crewmember ejected. Jumpmaster queues other crewmembers and helps them position themselves on egress ramp. Rockets pull crewmembers clear of aircraft structure. Provides orderly, controlled exit and avoids ditching at sea or landing in rough terrain.

  9. Escape Artists of the X Chromosome.

    PubMed

    Balaton, Bradley P; Brown, Carolyn J

    2016-06-01

    Inactivation of one X chromosome in mammalian females achieves dosage compensation between XX females and XY males; however, over 15% of human X-linked genes continue to be expressed from the inactive X chromosome. New genomic methodologies have improved our identification and characterization of these escape genes, revealing the importance of DNA sequence, chromatin structure, and chromosome ultrastructure in regulating expression from an otherwise inactive chromosome. Study of these exceptions to the rule of silencing highlights the interconnectedness of chromatin and chromosome structure in X-chromosome inactivation (XCI). Recent advances also demonstrate the importance of these genes in sexually dimorphic disease risk, particularly cancer. PMID:27103486

  10. MRP4 knockdown enhances migration, suppresses apoptosis, and produces aggregated morphology in human retinal vascular endothelial cells

    SciTech Connect

    Tagami, Mizuki; Kusuhara, Sentaro; Imai, Hisanori; Uemura, Akiyoshi; Honda, Shigeru; Tsukahara, Yasutomo; Negi, Akira

    2010-10-01

    Research highlights: {yields} Exogenous VEGF decreases MRP4 expression in a dose-dependent manner. {yields} MRP4 knockdown leads to enhanced cell migration. {yields} MRP4 knockdown suppresses caspase-3-mediated cell apoptosis. {yields} MRP4 knockdown produces cell assembly and cell aggregation. -- Abstract: The multidrug resistance protein (MRP) MRP4/ABCC4 is an ATP-binding cassette transporter that actively effluxes endogenous and xenobiotic substrates out of cells. In the rodent retina, Mrp4 mRNA and protein are exclusively expressed in vascular endothelial cells, but the angiogenic properties of Mrp4 are poorly understood so far. This study aims to explore the angiogenic properties of MRP4 in human retinal microvascular endothelial cells (HRECs) utilizing the RNA interference (RNAi) technique. MRP4 expression was decreased at the mRNA and protein levels after stimulation with exogenous vascular endothelial growth factor in a dose-dependent manner. RNAi-mediated MRP4 knockdown in HRECs do not affect cell proliferation but enhances cell migration. Moreover, cell apoptosis induced by serum starvation was less prominent in MRP4 siRNA-treated HRECs as compared to control siRNA-treated HRECs. In a Matrigel-based tube-formation assay, although MRP4 knockdown did not lead to a significant change in the total tube length, MRP4 siRNA-treated HRECs assembled and aggregated into a massive tube-like structure, which was not observed in control siRNA-treated HRECs. These results suggest that MRP4 is uniquely involved in retinal angiogenesis.

  11. Revealing nanoscale optical properties and morphology in perfluoropentacene films by confocal and tip-enhanced near-field optical microscopy and spectroscopy.

    PubMed

    Wang, Xiao; Broch, Katharina; Schreiber, Frank; Meixner, Alfred J; Zhang, Dai

    2016-06-21

    Combining high resolution optical microscopy and spectroscopy, we propose a novel, generally applicable and highly sensitive method for determining the local morphology in organic semiconductor thin films (e.g. perfluoropentacene (PFP)). An azimuthally or radially polarized doughnut mode (APDM or RPDM) laser beam is focused by a high numerical aperture parabolic-mirror to excite a diffraction limited volume of the PFP film with an electric field polarized either exclusively in-plane or dominantly out-of-plane (relative to the substrate). We find two distinct morphologies of thin PFP films: molecular aggregates and crystalline terraces. The well-defined dipole emission patterns observed from the molecular aggregates strongly suggest the presence of localized excitations. For both laser modes, we observe that for the PFP aggregates, the photoluminescence (PL) emission from the main electronic transition is blue-shifted by about 10 meV, as compared to that from the molecular terraces. For the C-C bending modes, the B3g at 1581 cm(-1) (ν1) and the Ag at 1316 cm(-1) (ν0), we observe a decrease of the intensity ratio (Iν1/Iν0) from 0.6 (terrace) to 0.15 (aggregate). Furthermore, the intensity ratios (IAPDM/IRPDM) of ν1 excited by different polarizations increase from 0.12 (terrace) to 0.73 (aggregate). These results indicate that the PFP molecules orient rather parallel to the substrate in the aggregates, whilst more upright in the terraces. Benefiting from the nanometer scale optical resolution offered by the tip-enhanced near-field optical method, we observe clear optical contrasts between the molecular aggregate and the terrace as well as individual layers within a terrace. Tip-enhanced optical spectra locally taken from the molecular terrace and the aggregate show similar blue-shift of the main PL peak and change in the Raman intensity with different polarizations as from the far-field assemble-measurements, which further confirms the different molecular

  12. The effects of steady swimming on fish escape performance.

    PubMed

    Anwar, Sanam B; Cathcart, Kelsey; Darakananda, Karin; Gaing, Ashley N; Shin, Seo Yim; Vronay, Xena; Wright, Dania N; Ellerby, David J

    2016-06-01

    Escape maneuvers are essential to the survival and fitness of many animals. Escapes are frequently initiated when an animal is already in motion. This may introduce constraints that alter the escape performance. In fish, escape maneuvers and steady, body caudal fin (BCF) swimming are driven by distinct patterns of curvature of the body axis. Pre-existing muscle activity may therefore delay or diminish a response. To quantify the performance consequences of escaping in flow, escape behavior was examined in bluegill sunfish (Lepomis macrochirus) in both still-water and during steady swimming. Escapes executed during swimming were kinematically less variable than those made in still-water. Swimming escapes also had increased response latencies and lower peak velocities and accelerations than those made in still-water. Performance was also lower for escapes made up rather than down-stream, and a preference for down-stream escapes may be associated with maximizing performance. The constraints imposed by pre-existing motion and flow, therefore, have the potential to shape predator-prey interactions under field conditions by shifting the optimal strategies for both predators and prey. PMID:27161016

  13. Escape from X Inactivation Varies in Mouse Tissues

    PubMed Central

    Yang, Fan; Shendure, Jay; Noble, William S.; Disteche, Christine M.; Deng, Xinxian

    2015-01-01

    X chromosome inactivation (XCI) silences most genes on one X chromosome in female mammals, but some genes escape XCI. To identify escape genes in vivo and to explore molecular mechanisms that regulate this process we analyzed the allele-specific expression and chromatin structure of X-linked genes in mouse tissues and cells with skewed XCI and distinguishable alleles based on single nucleotide polymorphisms. Using a binomial model to assess allelic expression, we demonstrate a continuum between complete silencing and expression from the inactive X (Xi). The validity of the RNA-seq approach was verified using RT-PCR with species-specific primers or Sanger sequencing. Both common escape genes and genes with significant differences in XCI status between tissues were identified. Such genes may be candidates for tissue-specific sex differences. Overall, few genes (3–7%) escape XCI in any of the mouse tissues examined, suggesting stringent silencing and escape controls. In contrast, an in vitro system represented by the embryonic-kidney-derived Patski cell line showed a higher density of escape genes (21%), representing both kidney-specific escape genes and cell-line specific escape genes. Allele-specific RNA polymerase II occupancy and DNase I hypersensitivity at the promoter of genes on the Xi correlated well with levels of escape, consistent with an open chromatin structure at escape genes. Allele-specific CTCF binding on the Xi clustered at escape genes and was denser in brain compared to the Patski cell line, possibly contributing to a more compartmentalized structure of the Xi and fewer escape genes in brain compared to the cell line where larger domains of escape were observed. PMID:25785854

  14. Structured Observations Reveal Slow HIV-1 CTL Escape

    PubMed Central

    Roberts, Hannah E.; Hurst, Jacob; Robinson, Nicola; Brown, Helen; Flanagan, Peter; Vass, Laura; Fidler, Sarah; Weber, Jonathan; Babiker, Abdel; Phillips, Rodney E.; McLean, Angela R.; Frater, John

    2015-01-01

    The existence of viral variants that escape from the selection pressures imposed by cytotoxic T-lymphocytes (CTLs) in HIV-1 infection is well documented, but it is unclear when they arise, with reported measures of the time to escape in individuals ranging from days to years. A study of participants enrolled in the SPARTAC (Short Pulse Anti-Retroviral Therapy at HIV Seroconversion) clinical trial allowed direct observation of the evolution of CTL escape variants in 125 adults with primary HIV-1 infection observed for up to three years. Patient HLA-type, longitudinal CD8+ T-cell responses measured by IFN-γ ELISpot and longitudinal HIV-1 gag, pol, and nef sequence data were used to study the timing and prevalence of CTL escape in the participants whilst untreated. Results showed that sequence variation within CTL epitopes at the first time point (within six months of the estimated date of seroconversion) was consistent with most mutations being transmitted in the infecting viral strain rather than with escape arising within the first few weeks of infection. Escape arose throughout the first three years of infection, but slowly and steadily. Approximately one third of patients did not drive any new escape in an HLA-restricted epitope in just under two years. Patients driving several escape mutations during these two years were rare and the median and modal numbers of new escape events in each patient were one and zero respectively. Survival analysis of time to escape found that possession of a protective HLA type significantly reduced time to first escape in a patient (p = 0.01), and epitopes escaped faster in the face of a measurable CD8+ ELISpot response (p = 0.001). However, even in an HLA matched host who mounted a measurable, specific, CD8+ response the average time before the targeted epitope evolved an escape mutation was longer than two years. PMID:25642847

  15. The escape model for Galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Giacinti, G.; Kachelrieß, M.; Semikoz, D. V.

    2015-08-01

    The escape model explains the cosmic ray (CR) knee by energy-dependent CR leakage from the Milky Way, with an excellent fit to all existing data. We test this model calculating the trajectories of individual CRs in the Galactic magnetic field. We find that the CR escape time τesc(E) exhibits a knee-like structure around E/Z = few × 1015 eV for small coherence lengths and strengths of the turbulent magnetic field. The resulting intensities for different groups of nuclei are consistent with the ones determined by KASCADE and KASCADE-Grande, using simple power-laws as injection spectra. The transition from Galactic to extragalactic CRs happens in this model at low energies and is terminated below ≈ 3 × 1018 eV. The intermediate energy region up to the ankle is populated by CRs accelerated in starburst galaxies. This model provides a good fit to ln(A) data, while the estimated CR dipole anisotropy is close to, or below, upper limits in the energy range 1017 - 1018 eV. The phase of the dipole is expected to change between 1 × 1017 and 3 × 1018 eV.

  16. A New Maneuver for Escape Trajectories

    NASA Technical Reports Server (NTRS)

    Adams, Robert B.

    2008-01-01

    This presentation put forth a new maneuver for escape trajectories and specifically sought to find an analytical approximation for medium thrust trajectories. In most low thrust derivations the idea is that escape velocity is best achieved by accelerating along the velocity vector. The reason for this is that change in specific orbital energy is a function of velocity and acceleration. However, Levin (1952) suggested that while this is a locally optimal solution it might not be a globally optimal one. Turning acceleration inward would drop periapse giving a higher velocity later in the trajectory. Acceleration at that point would be dotted against a higher magnitude V giving a greater rate of change of mechanical energy. The author then hypothesized that decelerating from the initial orbit and then accelerating at periapse would not lead to a gain in greater specific orbital energy--however, the hypothesis was incorrect. After considerable derivation it was determined that this new maneuver outperforms a direct burn when the overall DeltaV budget exceeds the initial orbital velocity (the author has termed this the Heinlein maneuver). The author provides a physical explanation for this maneuver and presents optimization analyses.

  17. Escape mechanisms of dust in Io

    NASA Astrophysics Data System (ADS)

    Flandes, A.

    The injection of material into the jovian magnetosphere through Io's volcanic activity makes possible the formation of structures such as the plasma torus and the dust ballerina skirt. Io's high temperature volcanism produces spectacular plumes, but even the tallest plumes, as those of Pelen Patera, will not produce enough energy to defeat the gravitational attraction of Io. The fact is that dust escapes from Io, which implies that a second mechanism is acting on the grains. Grains brought to the top of the highest plumes by the volcanic forces are still under Io's gravitational pull, but need only a minimum charge (~10-1 4 C) so that the Lorentz force due to the Jovian magnetic field equilibrates this attraction. In the volcanic vents, the escape velocity of the ejected material and its own density produces enough collisions to create charges. On top of the highest plumes (~500km) charged grains are exposed to the plasma torus that co-rotates rigidly with Jupiter and, due to the relative velocity among Io and the torus, the grains will be dragged away from Io. As it is well known, these dust grains will also be dragged away from Jupiter.

  18. Escape dynamics of many hard disks.

    PubMed

    Taniguchi, Tooru; Murata, Hiroki; Sawada, Shin-Ichi

    2014-11-01

    Many-particle effects in escapes of hard disks from a square box via a hole are discussed in a viewpoint of dynamical systems. Starting from N disks in the box at the initial time, we calculate the probability P_{n}(t) for at least n disks to remain inside the box at time t for n=1,2,...,N. At early times, the probabilities P_{n}(t),n=2,3,...,N-1, are described by superpositions of exponential decay functions. On the other hand, after a long time the probability P_{n}(t) shows a power-law decay ∼t^{-2n} for n≠1, in contrast to the fact that it decays with a different power law ∼t^{-n} for cases without any disk-disk collision. Chaotic or nonchaotic properties of the escape systems are discussed by the dynamics of a finite-time largest Lyapunov exponent, whose decay properties are related with those of the probability P_{n}(t). PMID:25493874

  19. How some T cells escape tolerance induction.

    PubMed

    Gammon, G; Sercarz, E

    1989-11-01

    A feature common to many animal models of autoimmune disease, for example, experimental allergic encephalomyelitis, experimental autoimmune myasthenia gravis and collagen-induced arthritis, is the presence of self-reactive T cells in healthy animals, which are activated to produce disease by immunization with exogenous antigen. It is unclear why these T cells are not deleted during ontogeny in the thymus and, having escaped tolerance induction, why they are not spontaneously activated by self-antigen. To investigate these questions, we have examined an experimental model in which mice are tolerant to an antigen despite the presence of antigen-reactive T cells. We find that the T cells that escape tolerance induction are specific for minor determinants on the antigen. We propose that these T cells evade tolerance induction because some minor determinants are only available in relatively low amounts after in vivo processing of the whole antigen. For the same reason, these T cells are not normally activated but can be stimulated under special circumstances to circumvent tolerance. PMID:2478888

  20. F111 Crew Escape Module pilot parachute

    SciTech Connect

    Tadios, E.L.

    1991-01-01

    A successfully deployment of a parachute system highly depends on the efficiency of the deployment device and/or method. There are several existing methods and devices that may be considered for a deployment system. For the F111 Crew Escape Module (CEM), the recovery parachute system deployment is initiated by the firing of a catapult that ejects the complete system from the CEM. At first motion of the pack, a drogue gun is fired, which deploys the pilot parachute system. The pilot parachute system then deploys the main parachute system, which consists of a cluster of three 49-ft diameter parachutes. The pilot parachute system which extracts the F111 Crew Escape Module recovery parachute system must provide reasonable bag strip velocities throughout the flight envelope (10 psf to 300 psf). The pilot parachute system must, therefore, have sufficient drag area at the lower dynamic pressures and a reduced drag area at the high end of the flight envelope. The final design that was developed was a dual parachute system which consists of a 5-ft diameter guide surface parachute tethered inside a 10-ft diameter flat circular parachute. The high drag area is sustained at the low dynamic pressures by keeping both parachutes intact. The drag area is reduced at the higher extreme by allowing the 10-ft parachute attachment to fail. The discussions to follow describe in detail how the system was developed. 4 refs., 10 figs., 2 tabs.

  1. MAVEN Observations of Escaping Planetary Ions from the Martian Atmosphere: Mass, Velocity, and Spatial Distributions

    NASA Astrophysics Data System (ADS)

    Dong, Yaxue; Fang, Xiaohua; Brain, D. A.; McFadden, James P.; Halekas, Jasper; Connerney, Jack

    2015-04-01

    The Mars-solar wind interaction accelerates and transports planetary ions away from the Martian atmosphere through a number of processes, including ‘pick-up’ by electromagnetic fields. The MAVEN spacecraft has made routine observations of escaping planetary ions since its arrival at Mars in September 2014. The SupraThermal And Thermal Ion Composition (STATIC) instrument measures the ion energy, mass, and angular spectra. It has detected energetic planetary ions during most of the spacecraft orbits, which are attributed to the pick-up process. We found significant variations in the escaping ion mass and velocity distributions from the STATIC data, which can be explained by factors such as varying solar wind conditions, contributions of particles from different source locations and different phases during the pick-up process. We also study the spatial distributions of different planetary ion species, which can provide insight into the physics of ion escaping process and enhance our understanding of atmospheric erosion by the solar wind. Our results will be further interpreted within the context of the upstream solar wind conditions measured by the MAVEN Solar Wind Ion Analyzer (SWIA) instrument and the magnetic field environment measured by the Magnetometer (MAG) instrument. Our study shows that the ion spatial distribution in the Mars-Sun-Electric-Field (MSE) coordinate system and the velocity space distribution with respect to the local magnetic field line can be used to distinguish the ions escaping through the polar plume and those through the tail region. The contribution of the polar plume ion escape to the total escape rate will also be discussed.

  2. Polymorphism within a Neuronal Activity-Dependent Enhancer of NgR1 Is Associated with Corpus Callosum Morphology in Humans

    PubMed Central

    Isobe, Masanori; Tanigaki, Kenji; Muraki, Kazue; Miyata, Jun; Takemura, Ariyoshi; Sugihara, Genichi; Takahashi, Hidehiko; Aso, Toshihiko; Fukuyama, Hidenao; Hazama, Masaaki; Murai, Toshiya

    2015-01-01

    The human Nogo-66 receptor 1 (NgR1) gene, also termed Nogo receptor 1 or reticulon 4 receptor (RTN4R) and located within 22q11.2, inhibits axonal growth and synaptic plasticity. Patients with the 22q11.2 deletion syndrome show multiple changes in brain morphology, with corpus callosum (CC) abnormalities being among the most prominent and frequently reported. Thus, we hypothesized that, in humans, NgR1 may be involved in CC formation. We focused on rs701428, a single nucleotide polymorphism of NgR1, which is associated with schizophrenia. We investigated the effects of the rs701428 genotype on CC structure in 50 healthy participants using magnetic resonance imaging. Polymorphism of rs701428 was associated with CC structural variation in healthy participants; specifically, minor A allele carriers had larger whole CC volumes and lower radial diffusivity in the central CC region compared with major G allele homozygous participants. Furthermore, we showed that the NgR1 3′ region, which contains rs701428, is a neuronal activity-dependent enhancer, and that the minor A allele of rs701428 is susceptible to regulation of enhancer activity by MYBL2. Our results suggest that NgR1 can influence the macro- and microstructure of the white matter of the human brain.

  3. New Analysis of Hydrogen and Deuterium Escape from Venus

    NASA Astrophysics Data System (ADS)

    Donahue, Thomas M.

    1999-10-01

    This paper is concerned with the time required for escape of hydrogen and deuterium to produce the present D/ H ratio in Venus water, the sizes of the original hydrogen reservoirs and their sensitivity to the magnitude of the present escape fluxes, the characteristics of exogenous and endogenous hydrogen sources, and the D/ H ratio for primordial Venus hydrogen. The procedure followed allowed the H escape flux to vary over a large range, the ratio of input to escape flux to vary from 0 to 1, and the fractionation factor, which expresses the relative efficiency of D and H escape, to vary between 0.02 and 0.5. It was found that, unless deuterium escape is very efficient, the present H escape flux (averaged over a solar cycle) cannot be larger than about 10 7 cm -2 s -1 if today's water is to be the remnant of water deposited eons ago. On the other hand if the escape flux is as large as large as 3×10 7 cm -2 s -1, today's water would be the remnant of water outgassed only about 500 million years ago. These conclusions are relatively insensitive to factors other than the magnitude of the escape flux. Since recent analysis of escape fluxes indicates that the H escape fluxes may be in the neighborhood of 3×10 7 cm -2 s -1 and the fractionation factor may be 0.14 or larger, the suggestion of Grinspoon (1993, Nature 363, 1702-1704) that the water now on Venus was created during a recent massive resurfacing event is credible. However, since it is still possible that the average escape flux is as small as 7×10 6 cm -2 s -1, the choice between 4 and 0.5 Gyr must await a resolution of this conflict by reanalysis of Pioneer Venus Lyman α data (Paxton, L., D. E. Anderson, and A. I. F. Stewart 1988, J. Geophys. Res. 93, 1766-1772).

  4. The atmospheric escape at Mars: complementing the scenario

    NASA Astrophysics Data System (ADS)

    Lilensten, Jean; Simon, Cyril; Barthélémy, Mathieu; Thissen, Roland; Ehrenreich, David; Gronoff, Guillaume; Witasse, Olivier

    2013-04-01

    In the recent years, the presence of dications in the atmospheres of Mars, Venus, Earth and Titan has been modeled and assessed. These studies also suggested that these ions could participate to the escape of the planetary atmospheres because a large fraction of them is unstable and highly ener- getic. When they dissociate, their internal energy is transformed into kinetic energy which may be larger than the escape energy. This study assesses the impact of the doubly-charged ions in the escape of CO2-dominated planetary atmospheres and to compare it to the escape of thermal photo-ions.We solve a Boltzmann transport equation at daytime taking into account the dissociative states of CO++ for a simplified single constituent atmosphere of a 2 case-study planet. We compute the escape of fast ions using a Beer-Lambert approach. We study three test-cases. On a Mars-analog planet in today's conditions, we retrieve the measured electron escape flux. When comparing the two mechanisms (i.e. excluding solar wind effects, sputtering ...), the escape due to the fast ions issuing from the dissociation of dications may account for up to 6% of the total and the escape of thermal ions for the remaining. We show that these two mechanisms cannot explain the escape of the atmosphere since the magnetic field vanished but complement the other processes and allow writing the scenario of the Mars escape. We show that the atmosphere of a Mars analog planet would empty in another giga years and a half. At Venus orbit, the contribution of the dications in the escape rate is negligible.When simulating the hot Jupiter HD209458b, the two processes cannot explain the measured escape flux of C+.

  5. The escape of Lyman photons from a young starburst: the case of Haro11†

    NASA Astrophysics Data System (ADS)

    Hayes, Matthew; Östlin, Göran; Atek, Hakim; Kunth, Daniel; Mas-Hesse, J. Miguel; Leitherer, Claus; Jiménez-Bailón, Elena; Adamo, Angela

    2007-12-01

    Lyman α (Lyα) is one of the dominant tools used to probe the star-forming galaxy population at high redshift (z). However, astrophysical interpretations of data drawn from Lyα alone hinge on the Lyα escape fraction which, due to the complex radiative transport, may vary greatly. Here, we map the Lyα emission from the local luminous blue compact galaxy Haro11, a known emitter of Lyα and the only known candidate for low-z Lyman continuum emission. To aid in the interpretation, we perform a detailed ultraviolet and optical multiwavelength analysis and model the stellar population, dust distribution, ionizing photon budget, and star-cluster population. We use archival X-ray observations to further constrain properties of the starburst and estimate the neutral hydrogen column density. The Lyα morphology is found to be largely symmetric around a single young star-forming knot and is strongly decoupled from other wavelengths. From general surface photometry, only very slight correlation is found between Lyα and Hα, E(B - V), and the age of the stellar population. Only around the central Lyα bright cluster do we find the Lyα/Hα ratio at values predicted by the recombination theory. The total Lyα escape fraction is found to be just 3 per cent. We compute that ~90 per cent of the Lyα photons that escape do so after undergoing multiple resonance scattering events, masking their point of origin. This leads to a largely symmetric distribution and, by increasing the distance that photons must travel to escape, decreases the escape probability significantly. While dust must ultimately be responsible for the destruction of Lyα, it plays a little role in governing the observed morphology, which is regulated more by interstellar medium kinematics and geometry. We find tentative evidence for local Lyα equivalent width in the immediate vicinity of star clusters being a function of cluster age, consistent with hydrodynamic studies. We estimate the intrinsic production

  6. Reviewing the morphology of the jaw-closing musculature in squirrels, rats, and guinea pigs with contrast-enhanced microCT.

    PubMed

    Cox, Philip G; Jeffery, Nathan

    2011-06-01

    Rodents are defined by their unique masticatory apparatus and are frequently separated into three nonmonophyletic groups--sciuromorphs, hystricomorphs, and myomorphs--based on the morphology of their masticatory muscles. Despite several comprehensive dissections in previous work, inconsistencies persist as to the exact morphology of the rodent jaw-closing musculature, particularly, the masseter. Here, we review the literature and document for the first time the muscle architecture noninvasively and in 3D by using iodine-enhanced microCT. Observations and measurements were recorded with reference to images of three individuals, each belonging to one of the three muscle morphotypes (squirrel, guinea pig, and rat). Results revealed an enlarged superficial masseter muscle in the guinea pig compared with the rat and squirrel, but a reduced deep masseter (possibly indicating reduced efficiency at the incisors). The deep masseter had expanded forward to take an origin on the rostrum and was also separated into anterior and posterior parts in the rat and squirrel. The zygomaticomandibularis muscle was split into anterior and posterior parts in all the three specimens by the masseteric nerve, and in the rat and guinea pig had an additional rostral expansion through the infraorbital foramen. The temporalis muscle was found to be considerably larger in the rat, and its separation into anterior and posterior parts was only evident in the rat and squirrel. The pterygoid muscles were broadly similar in all three specimens, although the internal pterygoid was somewhat enlarged in the guinea pig implying greater lateral movement of the mandible during chewing in this species. PMID:21538924

  7. Chaotic Scattering and Escape Times of Marginally Trapped Ultracold Neutrons

    PubMed Central

    Coakley, K. J.; Doyle, J. M.; Dzhosyuk, S. N.; Yang, L.; Huffman, P. R.

    2005-01-01

    We compute classical trajectories of Ultracold neutrons (UCNs) in a superconducting Ioffe-type magnetic trap using a symplectic integration method. We find that the computed escape time for a particular set of initial conditions (momentum and position) does not generally stabilize as the time step parameter is reduced unless the escape time is short (less than approximately 10 s). For energy intervals where more than half of the escape times computed for UCN realizations are numerically well determined, we predict the median escape time as a function of the midpoint of the interval. PMID:27308152

  8. The polarization of escaping terrestrial continuum radiation

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Calvert, W.; Huff, R. L.; Jones, D.; Sugiura, M.

    1988-01-01

    The polarization of an escaping terrestrial continuum radiation event that occurred on March 2, 1982, was determined using plasma wave measurements from the DE-1 spacecraft. The source of the radiation was determined to be located near the magnetic equator on the nightside of the earth at a radial distance of about 2.8-3.5 earth radii. Two meridional beams were detected, one directed north at an angle of about 20-30 deg with respect to the magnetic equator, and the other directed south at a comparable angle. Polarization measurements indicated that the radiation is right-hand polarized with respect to an outward directed E plane normal in the Northern Hemisphere and left-hand polarized in the Southern Hemisphere.

  9. Escape of Black Holes from the Brane

    SciTech Connect

    Flachi, Antonino; Tanaka, Takahiro

    2005-10-14

    TeV-scale gravity theories allow the possibility of producing small black holes at energies that soon will be explored at the CERN LHC or at the Auger observatory. One of the expected signatures is the detection of Hawking radiation that might eventually terminate if the black hole, once perturbed, leaves the brane. Here, we study how the 'black hole plus brane' system evolves once the black hole is given an initial velocity that mimics, for instance, the recoil due to the emission of a graviton. The results of our dynamical analysis show that the brane bends around the black hole, suggesting that the black hole eventually escapes into the extra dimensions once two portions of the brane come in contact and reconnect. This gives a dynamical mechanism for the creation of baby branes.

  10. Gated narrow escape time for molecular signaling.

    PubMed

    Reingruber, Jürgen; Holcman, David

    2009-10-01

    The mean time for a diffusing ligand to activate a target protein located on the surface of a microdomain can regulate cellular signaling. When the ligand switches between various states induced by chemical interactions or conformational changes, while target activation occurs in only one state, this activation time is affected. We investigate this dynamics using new equations for the sojourn times spent in each state. For two states, we obtain exact solutions in dimension one, and asymptotic ones confirmed by Brownian simulations in dimension 3. We find that the activation time is quite sensitive to changes of the switching rates, which can be used to modulate signaling. Interestingly, our analysis reveals that activation can be fast although the ligand spends most of the time "hidden" in the nonactivating state. Finally, we obtain a new formula for the narrow escape time in the presence of switching. PMID:19905605

  11. Energy Release, Acceleration, and Escape of Solar Energetic Ions

    NASA Astrophysics Data System (ADS)

    de Nolfo, G. A.; Ireland, J.; Ryan, J. M.; Young, C. A.

    2013-12-01

    Solar flares are prodigious producers of energetic particles, and thus a rich laboratory for studying particle acceleration. The acceleration occurs through the release of magnetic energy, a significant fraction of which can go into the acceleration of particles. Coronal mass ejections (CMEs) certainly produce shocks that both accelerate particles and provide a mechanism for escape into the interplanetary medium (IP). What is less well understood is whether accelerated particles produced from the flare reconnection process escape, and if so, how these same particles are related to solar energetic particles (SEPs) detected in-situ. Energetic electron SEPs have been shown to be correlated with Type III radio bursts, hard X-ray emission, and EUV jets, making a very strong case for the connection between acceleration at the flare and escape along open magnetic field lines. Because there has not been a clear signature of ion escape, as is the case with the Type III radio emission for electrons, sorting out the avenues of escape for accelerated flare ions and the possible origin of the impulsive SEPs continues to be a major challenge. The key to building a clear picture of particle escape relies on the ability to map signatures of escape such as EUV jets at the Sun and to follow the progression of these escape signatures as they evolve in time. Furthermore, nuclear γ-ray emissions provide critical context relating ion acceleration to that of escape. With the advent observations from Fermi as well as RHESSI and the Solar Dynamics Observatory (SDO), the challenge of ion escape from the Sun can now be addressed. We present a preliminary study of the relationship of EUV jets with nuclear γ-ray emission and Type III radio observations and discuss the implications for possible magnetic topologies that allow for ion escape from deep inside the corona to the interplanetary medium.

  12. Morphology-controlled synthesis of monodispersed graphitic carbon coated core/shell structured Ni/NiO nanoparticles with enhanced magnetoresistance.

    PubMed

    Patange, M; Biswas, S; Yadav, A K; Jha, S N; Bhattacharyya, D

    2015-12-28

    Graphitic carbon coated core/shell structured Ni/NiO nanoparticles were synthesized by a sol-gel type chemical precursor method and their structural, morphological and magnetic properties were evaluated. The synthesis method provides an improved and comparatively facile approach towards controlled growth of the composite structure of a metallic ferromagnetic (FM) core and an antiferromagnetic (AFM) metal oxide shell along with in situ growth of a supplementary surface functionalization layer of graphitic carbon. In addition, the process allows a precise control over the shape and size of this important class of core/shell type functional materials for a wide range of pertinent applications. The structural properties of the derived samples were studied with X-ray diffraction (XRD), X-ray absorption near edge structure (XANES), extended X-ray absorption fine structure (EXAFS), Raman spectroscopy, energy dispersive X-ray (EDX) analysis, and X-ray photoelectron spectroscopy (XPS). The microstructural features in the core/shell structured particles were evaluated using a scanning electron microscope (SEM) and a high resolution transmission electron microscope (HRTEM). Magnetic properties of the derived samples were studied using a vibrating sample magnetometer (VSM) in the 80-300 K temperature range. The surface functionalized Ni/NiO nanoparticles exhibit a distinctly enhanced magnetoresistance (MR), e.g., -10% at 290 K, than reported values in compacted Ni/NiO powders or composites. PMID:26585235

  13. Enhancement of activated sludge dewatering performance by combined composite enzymatic lysis and chemical re-flocculation with inorganic coagulants: Kinetics of enzymatic reaction and re-flocculation morphology.

    PubMed

    Chen, Zhan; Zhang, Weijun; Wang, Dongsheng; Ma, Teng; Bai, Runying

    2015-10-15

    The feasibility of combined process of composite enzymatic treatment and chemical flocculation with inorganic salt coagulants was investigated in this study. The evolution of extracellular polymeric substances (EPS) distribution, composition and morphological properties were analyzed to unravel the sludge conditioning mechanism. It was found that sludge filtration performance was deteriorated due to release of a large amount of biopolymers after enzymatic treatment. The change in EPS followed the pseudo-first-order kinetic equation well under enzymatic treatment. The feeding modes of enzymes had a significant influence on sludge lysis efficiency under compound enzymes treatment. Alpha amylase + protease was more effective in solubilization than other two addition modes (protease + α-amylase or simultaneous addition). The sludge floc re-formed and macromolecule biopolymers were effectively removed through coagulation process. At the same time, both of filtration rate and cake solid content of sludge treated with enzymes were improved with increasing dosage of coagulants, and ferric iron (FeCl3) had better performance in sludge dewaterability enhancement than polyaluminium chloride (PACl). In addition, sludge filtration property was slightly deteriorated, while the cake moisture reduction was favored at the optimal dosage of inorganic coagulants. PMID:26196306

  14. How to Escape a Home Fire (Take This Safety Quiz).

    ERIC Educational Resources Information Center

    PTA Today, 1994

    1994-01-01

    A checklist/safety quiz from the National Fire Protection Association examines individual knowledge of how to escape if a home fire breaks out. The organization recommends that every household develop a fire escape plan and practice it at least twice a year. (SM)

  15. 33 CFR 143.101 - Means of escape.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Means of escape. 143.101 Section 143.101 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES DESIGN AND EQUIPMENT OCS Facilities § 143.101 Means of escape. (a) “Primary...

  16. Green Pea Galaxies Reveal Secrets of Lyα Escape

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Malhotra, Sangeeta; Gronke, Max; Rhoads, James E.; Dijkstra, Mark; Jaskot, Anne; Zheng, Zhenya; Wang, Junxian

    2016-04-01

    We analyze archival Lyα spectra of 12 “Green Pea” galaxies observed with the Hubble Space Telescope, model their Lyα profiles with radiative transfer models, and explore the dependence of the Lyα escape fraction on various properties. Green Pea galaxies are nearby compact starburst galaxies with [O iii] λ5007 equivalent widths (EWs) of hundreds of Å. All 12 Green Pea galaxies in our sample show Lyα lines in emission, with an Lyα EW distribution similar to high-redshift Lyα emitters. Combining the optical and UV spectra of Green Pea galaxies, we estimate their Lyα escape fractions and find correlations between Lyα escape fraction and kinematic features of Lyα profiles. The escape fraction of Lyα in these galaxies ranges from 1.4% to 67%. We also find that the Lyα escape fraction depends strongly on metallicity and moderately on dust extinction. We compare their high-quality Lyα profiles with single H i shell radiative transfer models and find that the Lyα escape fraction anticorrelates with the derived H i column densities. Single-shell models fit most Lyα profiles well, but not the ones with the highest escape fractions of Lyα. Our results suggest that low H i column density and low metallicity are essential for Lyα escape and make a galaxy an Lyα emitter.

  17. [Examination of the escape phenomenon in disease modifying antirheumatic drugs].

    PubMed

    Kawasaki, Yoichi; Moriyama, Masahiro; Shibata, Kazuhiko; Gomita, Yutaka

    2005-03-01

    Although disease-modifying antirheumatic drugs (DMARDs) are used in the treatment of rheumatoid arthritis (RA), the selection of agents in the case of relapse (escape phenomenon) lacks clear-cut standards. Therefore we investigated the rate and conditions of escape as well as the agents used after escapes had occurred. Outpatients of the Matsubara Mayflower Hospital with a history of DMARD administration during the 4 years prior to May 2003 were studied. Those receiving salazosulfapyridine (SASP) had a high escape rate and those receiving methotrexate (MTX) and bucillamine (BC) had a low rate. The continuous duration of administration was long for MTX and BC, but short for sodium aurothiomalate (GST). BC and Actarit (AR) gradually elevated C-reactive protein (CRP) levels and the erythrocyte sedimentation rate (ESR). In patients receiving SASP and MTX, a high level of CRP and high ESR was seen 2 months prior to the occurrence of escape and remained unchanged after escape. With respect to the agents used after escape, SASP and BC were substituted with other DMARDs. A combination with other DMARDs was usually administered to patients who had been receiving MTX. Taken together, the present results clarified the characteristics of DMARD escape and will contribute to the appropriate pharmacotherapy for RA. PMID:15738628

  18. The Origins and Underpinning Principles of E-Scape

    ERIC Educational Resources Information Center

    Kimbell, Richard

    2012-01-01

    In this article I describe the context within which we developed project e-scape and the early work that laid the foundations of the project. E-scape (e-solutions for creative assessment in portfolio environments) is centred on two innovations. The first concerns a web-based approach to portfolio building; allowing learners to build their…

  19. Fire Won't Wait--Plan Your Escape!

    ERIC Educational Resources Information Center

    PTA Today, 1991

    1991-01-01

    Discusses the importance of home fire escape drills, detailing fire safety plans. Early detection and warning (smoke detectors) coupled with well-rehearsed escape plans help prevent serious injury. Children need to be taught about fire safety beginning at a very early age. (SM)

  20. 46 CFR 108.445 - Alarm and means of escape.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Alarm and means of escape. 108.445 Section 108.445 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.445 Alarm and means of escape. (a) Each CO2...

  1. 35. INTERIOR VIEW OF EQUIPMENT HOUSE, SUBMARINE ESCAPE TRAINING TANK, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. INTERIOR VIEW OF EQUIPMENT HOUSE, SUBMARINE ESCAPE TRAINING TANK, PRIOR TO ENLARGEMENT OF ROOM AND INSTALLATION OF TRIPLE-LOCK RECOMPRESSION CHAMBER IN 1957 - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  2. 29. VIEW OF SUBMARINE ESCAPE TRAINING TANK DURING CONSTRUCTION AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. VIEW OF SUBMARINE ESCAPE TRAINING TANK DURING CONSTRUCTION AT POINT JUST ABOVE THE SUBMARINE SECTION AT THE 110-FOOT LEVEL 1929-1930 - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  3. 36. VIEW OF CUPOLA, SUBMARINE ESCAPE TRAINING TANK, SHOWING ROVING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. VIEW OF CUPOLA, SUBMARINE ESCAPE TRAINING TANK, SHOWING ROVING RESCUE BELL SUSPENDED ABOVE TANK, WITH TWO-LOCK RECOMPRESSION CHAMBER AT REAR, LOOKING WEST. Photo taken after installation of recompression chamber in 1956. - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  4. 22. VIEW OF ESCAPE TRAINING TANK, LOOKING WEST FROM EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. VIEW OF ESCAPE TRAINING TANK, LOOKING WEST FROM EAST SIDE OF CUPOLA TOWARD ELEVATOR. TWO-LOCK RECOMPRESSION CHAMBER AT REAR - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  5. 31. VIEW OF SUBMARINE ESCAPE TRAINING TANK DURING CONSTRUCTION OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. VIEW OF SUBMARINE ESCAPE TRAINING TANK DURING CONSTRUCTION OF THE ELEVATOR AND PASSAGEWAYS TO THE 18- AND 50-FOOT LOCKS AND CUPOLA 1932 - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  6. 7. VIEW OF ESCAPE TRAINING TANK, LOOKING UP SOUTH SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF ESCAPE TRAINING TANK, LOOKING UP SOUTH SIDE FROM 50-FOOT PASSAGEWAY, SHOWING 25-FOOT BLISTER AT LEFT, 18-FOOT PASSAGEWAY AND PLATFORM AT RIGHT - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  7. Teachers Offering Healthy Escape Options for Teenagers in Pain

    ERIC Educational Resources Information Center

    Kaywell, Joan F.

    2005-01-01

    "[T]wenty-five percent of today's teenagers have inordinate emotional baggage beyond the normal angst of adolescence." This burden can lead to unhealthy escapes, including substance abuse, sexual activity, violence, eating disorders, and suicide. One healthy escape, however, lies in books, where students can read about teenagers living in painful…

  8. Escape fraction of ionizing photons during reionization: Effects due to supernova feedback and runaway ob stars

    SciTech Connect

    Kimm, Taysun; Cen, Renyue

    2014-06-20

    The fraction of hydrogen ionizing photons escaping from galaxies into the intergalactic medium is a critical ingredient in the theory of reionization. We use two zoomed-in, high-resolution (4 pc), cosmological radiation hydrodynamic simulations with adaptive mesh refinement to investigate the impact of two physical mechanisms (supernova, SN, feedback, and runaway OB stars) on the escape fraction (f {sub esc}) at the epoch of reionization (z ≥ 7). We implement a new, physically motivated SN feedback model that can approximate the Sedov solutions at all (from the free expansion to snowplow) stages. We find that there is a significant time delay of about ten million years between the peak of star formation and that of escape fraction, due to the time required for the build-up and subsequent destruction of the star-forming cloud by SN feedback. Consequently, the photon number-weighted mean escape fraction for dwarf galaxies in halos of mass 10{sup 8}-10{sup 10.5} M {sub ☉} is found to be 〈f{sub esc}〉∼11%, although instantaneous values of f {sub esc} > 20% are common when star formation is strongly modulated by the SN explosions. We find that the inclusion of runaway OB stars increases the mean escape fraction by 22% to 〈f{sub esc}〉∼14%. As SNe resulting from runaway OB stars tend to occur in less dense environments, the feedback effect is enhanced and star formation is further suppressed in halos with M{sub vir}≳10{sup 9} M{sub ⊙} in the simulation with runaway OB stars compared with the model without them. While both our models produce enough ionizing photons to maintain a fully ionized universe at z ≤ 7 as observed, a still higher amount of ionizing photons at z ≥ 9 appears necessary to accommodate the high observed electron optical depth inferred from cosmic microwave background observations.

  9. Escape Fraction of Ionizing Photons during Reionization: Effects due to Supernova Feedback and Runaway OB Stars

    NASA Astrophysics Data System (ADS)

    Kimm, Taysun; Cen, Renyue

    2014-06-01

    The fraction of hydrogen ionizing photons escaping from galaxies into the intergalactic medium is a critical ingredient in the theory of reionization. We use two zoomed-in, high-resolution (4 pc), cosmological radiation hydrodynamic simulations with adaptive mesh refinement to investigate the impact of two physical mechanisms (supernova, SN, feedback, and runaway OB stars) on the escape fraction (f esc) at the epoch of reionization (z >= 7). We implement a new, physically motivated SN feedback model that can approximate the Sedov solutions at all (from the free expansion to snowplow) stages. We find that there is a significant time delay of about ten million years between the peak of star formation and that of escape fraction, due to the time required for the build-up and subsequent destruction of the star-forming cloud by SN feedback. Consequently, the photon number-weighted mean escape fraction for dwarf galaxies in halos of mass 108-1010.5 M ⊙ is found to be \\langle{f_esc}\\rangle\\sim 11%, although instantaneous values of f esc > 20% are common when star formation is strongly modulated by the SN explosions. We find that the inclusion of runaway OB stars increases the mean escape fraction by 22% to \\langle{f_esc}\\rangle\\sim 14%. As SNe resulting from runaway OB stars tend to occur in less dense environments, the feedback effect is enhanced and star formation is further suppressed in halos with {{M}_vir}\\gtrsim 10^9\\,{{M}_\\odot } in the simulation with runaway OB stars compared with the model without them. While both our models produce enough ionizing photons to maintain a fully ionized universe at z <= 7 as observed, a still higher amount of ionizing photons at z >= 9 appears necessary to accommodate the high observed electron optical depth inferred from cosmic microwave background observations.

  10. The induction of transformed-like morphology and enhanced growth in Syrian hamster embryo cells grown at acidic pH.

    PubMed

    LeBoeuf, R A; Kerckaert, G A

    1986-09-01

    The effect of the pH, Na+ concentration and osmolality of the culture medium on early passage Syrian hamster embryo (SHE) clonal cell proliferation was examined. The pH of the medium was adjusted from 6.49 to 7.45 by addition of different amounts of NaHCO3 to the medium and incubating the cell cultures in a fixed atmosphere of 10% CO2/90% air. Our results indicate that clonal SHE cell proliferation is optimal at pH 6.65-6.80 while plating efficiency is independent of pH between 6.65 and 7.45. Adjustment of Na+ to that concentration in the medium (3450 p.p.m., 0.15 M) of the greatest NaHCO3 addition caused a moderate depression of cell proliferation over the entire pH series. Adjusting the osmolality of the culture medium to a constant value of 338 mOsm/kg did not alter the pH effect on cell proliferation. The pH of the medium also affected cellular and colony morphology. Below pH 6.90 there was an increase in the number of colonies which exhibited a transformed-like morphology ('altered' colonies). The 'altered' phenotype was characterized by a multilayered, criss-cross pattern of growth throughout the colony. This phenotype was stable upon sub-cloning into pH 6.65 medium but was reversible if sub-cloned into pH 7.36 medium. The induction of 'altered' colonies at low pH could be partially suppressed by Na+ or osmolality adjustment. These results are discussed in terms of optimizing growth conditions for SHE cells in order to enhance their usefulness for cell transformation studies. The induction of 'altered' colonies by low pH is also discussed relative to the involvement of pH regulation in tumor-promoter and growth-factor action on cells in culture. PMID:3742717

  11. Prediction of anti-angiogenesis escape.

    PubMed

    Mitamura, Takashi; Gourley, Charlie; Sood, Anil K

    2016-04-01

    Many clinical trials have demonstrated the benefit of anti-angiogenesis therapy in the treatment of gynecologic cancer. However, these benefits have often been in terms of progression-free rather than overall survival and in some cases, the magnitude of benefit demonstrated in the pivotal phase 3 trials has been disappointing when compared with the percentage of patients who responded in earlier phase 2 trials. Two potential explanations for this are the current inability to stratify patients according to chance of benefit and the development of resistance mechanisms within the tumor. In this article, we review the prediction of response and the proposed resistance and escape mechanisms involved in anti-angiogenesis therapy, including the up-regulation of alternative proangiogenic pathways, vascular co-option, and resistance to hypoxia. These insights may offer a personalized strategy for anti-angiogenesis therapy and help us to consider the best selection of other therapies that should be combined with anti-angiogenesis therapy to improve the outcome of patients with gynecologic cancer. PMID:26748214

  12. WANDERING STARS: AN ORIGIN OF ESCAPED POPULATIONS

    SciTech Connect

    Teyssier, Maureen; Johnston, Kathryn V.; Shara, Michael M.

    2009-12-10

    We demonstrate that stars beyond the virial radii of galaxies may be generated by the gravitational impulse received by a satellite as it passes through the pericenter of its orbit around its parent. These stars may become energetically unbound (escaped stars), or may travel to further than a few virial radii for longer than a few Gyr, but still remain energetically bound to the system (wandering stars). Larger satellites (10%-100% the mass of the parent), and satellites on more radial orbits are responsible for the majority of this ejected population. Wandering stars could be observable on Mpc scales via classical novae, and on 100 Mpc scales via Type Ia supernova. The existence of such stars would imply a corresponding population of barely bound, old, high-velocity stars orbiting the Milky Way, generated by the same physical mechanism during the Galaxy's formation epoch. Sizes and properties of these combined populations should place some constraints on the orbits and masses of the progenitor objects from which they came, providing insight into the merging histories of galaxies in general and the Milky Way in particular.

  13. Escaping the resource curse in China.

    PubMed

    Cao, Shixiong; Li, Shurong; Ma, Hua; Sun, Yutong

    2015-02-01

    Many societies face an income gap between rich regions with access to advanced technology and regions that are rich in natural resources but poorer in technology. This "resource curse" can lead to a Kuznets trap, in which economic inequalities between the rich and the poor increase during the process of socioeconomic development. This can also lead to depletion of natural resources, environmental degradation, social instability, and declining socioeconomic development. These problems will jeopardize China's achievements if the current path continues to be pursued without intervention by the government to solve the problems. To mitigate the socioeconomic development gap between western and eastern China, the government implemented its Western Development Program in 2000. However, recent data suggest that this program has instead worsened the resource curse. Because each region has its own unique strengths and weaknesses, China must escape the resource curse by accounting for this difference; in western China, this can be done by improving education, promoting high-tech industry, adjusting its economic strategy to balance regional development, and seeking more sustainable approaches to socioeconomic development. PMID:24973055

  14. Comparisons of Selected Atmospheric Escape Mechanisms on Venus, Mars and Titan

    NASA Technical Reports Server (NTRS)

    Hartle, R. E.; Sittler, E. C.

    2008-01-01

    The similarities and differences of the escape mechanisms for H+ and D+ from Venus, H+ and D+ from Mars, and heavier ions (approximately 17 and approximately 28 amu) from Titan are described. The dominant escape process for hydrogen and deuterium on Venus is thought to originate in the night side ionosphere, located in the night side H and D bulge region, where the polarization electric field is the dominant force accelerating ionospheric H+ and D+ upward into the induced magnetic tail of Titan. The resulting loss rates approximately 8.6 x 10(exp26)/s and approximately 3.2 x 10(exp 23)/s for H+ and D+, respectively, are consistent with the large observed D/H ratio - 160 times that of terrestrial water and an ancient ocean more than 10 m of liquid uniformly distributed on the surface. In contrast, Jeans escape is the dominant loss mechanism for H and D on Mars, which has a D/H ratio approximately 5.3 times that of terrestrial water. The resulting loss rates for H and D of approximately 3.7 x 10(exp 26/s and approximately 10(exp 22)/s, respectively, can be related to possible ancient water reservoirs below the surface. When horizontal atmospheric winds are taken into account, the Jeans escape rates for H and D are enhanced considerably, as are the corresponding water reservoirs. On Titan, 28 amu ions were observed to escape along its induced magnetic tail by the Voyager 1 Plasma Science Instrument (PLS). In analogy with Venus, the escaping ions were thought to originate in the ionosphere. The Cassini mission permits a test of this principle due to the numerous flybys of Titan through both the ionosphere and the tail. A polarization electric field is obtained in the ionosphere of the TA flyby, yielding an upward acceleration of 17 and 28 amu ionospheric ions that is consistent with the flux of heavy ionospheric ions observed escaping along the magnetic tail by the Cassini Ion Mass Spectrometer (CAPS) during the T9 flyby.

  15. Comparisons of selected atmospheric escape mechanisms on Venus, Mars and Titan

    NASA Astrophysics Data System (ADS)

    Hartle, R. E.; Sittler, E. C.

    2008-09-01

    The similarities and differences of the escape mechanisms for H+ and D+ from Venus, H and D from Mars, and heavier ions (~ 17 and ~ 28 amu) from Titan are described. The dominant escape process for hydrogen and deuterium on Venus is thought to originate in the night side ionosphere, located in the night side H and D bulge region, where the polarization electric field is the dominant force accelerating ionospheric H+ and D+ upward into the induced magnetic tail of Titan [1]. The resulting loss rates ~ 8.6x1026 s-1 and ~ 3.2x1023 s-1 for H+ and D+, respectively, are consistent with the large observed D/H ratio ~ 160 times that of terrestrial water and an ancient ocean more than 10 m of liquid uniformly distributed on the surface. In contrast, Jeans escape is the dominant loss mechanism for H and D on Mars [2], which has a D/H ratio ~ 5.3 times that of terrestrial water. The resulting loss rates for H and D of ~ 3.7x1026 s-1 and ~ 1022 s-1, respectively, can be related to possible ancient water reservoirs below the surface. When horizontal atmospheric winds are taken into account, the Jeans escape rates for H and D are enhanced considerably [3], as are the corresponding water reservoirs. On Titan, 28 amu ions were observed to escape along its induced magnetic tail by the Voyager 1 Plasma Science Instrument (PLS). In analogy with Venus, the escaping ions were thought to originate in the ionosphere [4]. The Cassini mission permits a test of this principal due to the numerous flybys of Titan through both the ionosphere and the tail. A polarization electric field is obtained in the ionosphere of the TA flyby, yielding an upward acceleration of 17 and 28 amu ionospheric ions that is consistent with the flux of heavy ionospheric ions observed escaping along the magnetic tail by the Cassini Ion Mass Spectrometer (CAPS) during the T9 flyby [5]. References [1] R. E. Hartle, T. M. Donahue, et al., J. Geophys. Res., 101,4525, 1996. [2] T. M. Donahue, Icarus, 167, 225, 2004. [3

  16. Dications and thermal ions in planetary atmospheric escape

    NASA Astrophysics Data System (ADS)

    Lilensten, J.; Simon Wedlund, C.; Barthélémy, M.; Thissen, R.; Ehrenreich, D.; Gronoff, G.; Witasse, O.

    2013-01-01

    In the recent years, the presence of dications in the atmospheres of Mars, Venus, Earth and Titan has been modeled and assessed. These studies also suggested that these ions could participate to the escape of the planetary atmospheres because a large fraction of them is unstable and highly energetic. When they dissociate, their internal energy is transformed into kinetic energy which may be larger than the escape energy. The goal of this study is to assess the impact of the doubly-charged ions in the escape of CO2-dominated planetary atmospheres and to compare it to the escape of thermal photo-ions. We solve a Boltzmann transport equation at daytime taking into account the dissociative states of CO2++ for a simplified single constituent atmosphere of a case-study planet. We compute the escape of fast ions using a Beer-Lambert approach. We study three test-cases. On a Mars-analog planet in today's conditions, we retrieve the measured electron escape flux. When comparing the two mechanisms (i.e. excluding solar wind effects, sputtering, etc.), the escape due to the fast ions issuing from the dissociation of dications may account for up to 6% of the total and the escape of thermal ions for the remaining. We show that these two mechanisms cannot explain the escape of the atmosphere since the magnetic field vanished and even contribute only marginally to this loss. We show that with these two mechanisms, the atmosphere of a Mars analog planet would empty in another giga years and a half. At Venus orbit, the contribution of the dications in the escape rate is negligible. When simulating the hot Jupiter HD 209458 b, the two processes cannot explain the measured escape flux of C+. This study shows that the dications may constitute a source of the escape of planetary atmospheres which had not been taken into account until now. This source, although marginal, is not negligible. The influence of the photoionization is of course large, but cannot explain alone the loss of Mars

  17. RUNAWAY STARS AND THE ESCAPE OF IONIZING RADIATION FROM HIGH-REDSHIFT GALAXIES

    SciTech Connect

    Conroy, Charlie; Kratter, Kaitlin M.

    2012-08-20

    Approximately 30% of all massive stars in the Galaxy are runaways with velocities exceeding 30 km s{sup -1}. Their high speeds allow them to travel {approx}0.1-1 kpc away from their birthplace before they explode at the end of their several Myr lifetimes. At high redshift, when galaxies were much smaller than in the local universe, runaways could venture far from the dense inner regions of their host galaxies. From these large radii, and therefore low column densities, much of their ionizing radiation is able to escape into the intergalactic medium. Runaways may therefore significantly enhance the overall escape fraction of ionizing radiation, f{sub esc}, from small galaxies at high redshift. We present simple models of the high-redshift runaway population and its impact on f{sub esc} as a function of halo mass, size, and redshift. We find that the inclusion of runaways enhances f{sub esc} by factors of Almost-Equal-To 1.1-8, depending on halo mass, galaxy geometry, and the mechanism of runaway production, implying that runaways may contribute 50%-90% of the total ionizing radiation escaping from high-redshift galaxies. Runaways may therefore play an important role in reionizing the universe.

  18. Nosema Tolerant Honeybees (Apis mellifera) Escape Parasitic Manipulation of Apoptosis

    PubMed Central

    Kurze, Christoph; Le Conte, Yves; Dussaubat, Claudia; Erler, Silvio; Kryger, Per; Lewkowski, Oleg; Müller, Thomas; Widder, Miriam; Moritz, Robin F. A.

    2015-01-01

    Apoptosis is not only pivotal for development, but also for pathogen defence in multicellular organisms. Although numerous intracellular pathogens are known to interfere with the host’s apoptotic machinery to overcome this defence, its importance for host-parasite coevolution has been neglected. We conducted three inoculation experiments to investigate in the apoptotic respond during infection with the intracellular gut pathogen Nosema ceranae, which is considered as potential global threat to the honeybee (Apis mellifera) and other bee pollinators, in sensitive and tolerant honeybees. To explore apoptotic processes in the gut epithelium, we visualised apoptotic cells using TUNEL assays and measured the relative expression levels of subset of candidate genes involved in the apoptotic machinery using qPCR. Our results suggest that N. ceranae reduces apoptosis in sensitive honeybees by enhancing inhibitor of apoptosis protein-(iap)-2 gene transcription. Interestingly, this seems not be the case in Nosema tolerant honeybees. We propose that these tolerant honeybees are able to escape the manipulation of apoptosis by N. ceranae, which may have evolved a mechanism to regulate an anti-apoptotic gene as key adaptation for improved host invasion. PMID:26445372

  19. Evolutionary escape on complex genotype-phenotype networks.

    PubMed

    Ibáñez-Marcelo, Esther; Alarcón, Tomás

    2016-04-01

    We study the problem of evolutionary escape that is the process whereby a population under sudden changes in the selective pressures acting upon it try to evade extinction by evolving from previously well-adapted phenotypes to those that are favoured by the new selective pressure. We perform a comparative analysis between results obtained by modelling genotype space as a regular hypercube (H-graphs), which is the scenario considered in previous work on the subject, to those corresponding to a complex genotype-phenotype network (B-graphs). In order to analyse the properties of the escape process on both these graphs, we apply a general theory based on multi-type branching processes to compute the evolutionary dynamics and probability of escape. We show that the distribution of distances between phenotypes in B-graphs exhibits a much larger degree of heterogeneity than in H-graphs. This property, one of the main structural differences between both types of graphs, causes heterogeneous behaviour in all results associated to the escape problem. We further show that, due to the heterogeneity characterising escape on B-graphs, escape probability can be underestimated by assuming a regular hypercube genotype network, even if we compare phenotypes at the same distance in H-graphs. Similarly, it appears that the complex structure of B-graphs slows down the rate of escape. PMID:26802479

  20. Efficiently estimating salmon escapement uncertainty using systematically sampled data

    USGS Publications Warehouse

    Reynolds, Joel H.; Woody, Carol Ann; Gove, Nancy E.; Fair, Lowell F.

    2007-01-01

    Fish escapement is generally monitored using nonreplicated systematic sampling designs (e.g., via visual counts from towers or hydroacoustic counts). These sampling designs support a variety of methods for estimating the variance of the total escapement. Unfortunately, all the methods give biased results, with the magnitude of the bias being determined by the underlying process patterns. Fish escapement commonly exhibits positive autocorrelation and nonlinear patterns, such as diurnal and seasonal patterns. For these patterns, poor choice of variance estimator can needlessly increase the uncertainty managers have to deal with in sustaining fish populations. We illustrate the effect of sampling design and variance estimator choice on variance estimates of total escapement for anadromous salmonids from systematic samples of fish passage. Using simulated tower counts of sockeye salmon Oncorhynchus nerka escapement on the Kvichak River, Alaska, five variance estimators for nonreplicated systematic samples were compared to determine the least biased. Using the least biased variance estimator, four confidence interval estimators were compared for expected coverage and mean interval width. Finally, five systematic sampling designs were compared to determine the design giving the smallest average variance estimate for total annual escapement. For nonreplicated systematic samples of fish escapement, all variance estimators were positively biased. Compared to the other estimators, the least biased estimator reduced bias by, on average, from 12% to 98%. All confidence intervals gave effectively identical results. Replicated systematic sampling designs consistently provided the smallest average estimated variance among those compared.

  1. Lyman-Werner UV escape fractions from primordial haloes

    NASA Astrophysics Data System (ADS)

    Schauer, Anna T. P.; Whalen, Daniel J.; Glover, Simon C. O.; Klessen, Ralf S.

    2015-12-01

    Population III (Pop III) stars can regulate star formation in the primordial Universe in several ways. They can ionize nearby haloes, and even if their ionizing photons are trapped by their own haloes, their Lyman-Werner (LW) photons can still escape and destroy H2 in other haloes, preventing them from cooling and forming stars. LW escape fractions are thus a key parameter in cosmological simulations of early reionization and star formation but have not yet been parametrized for realistic haloes by halo or stellar mass. To do so, we perform radiation hydrodynamical simulations of LW UV escape from 9-120 M⊙ Pop III stars in 105-107 M⊙ haloes with ZEUS-MP. We find that photons in the LW lines (i.e. those responsible for destroying H2 in nearby systems) have escape fractions ranging from 0 to 85 per cent. No LW photons escape the most massive halo in our sample, even from the most massive star. Escape fractions for photons elsewhere in the 11.18-13.6 eV energy range, which can be redshifted into the LW lines at cosmological distances, are generally much higher, being above 60 per cent for all but the least massive stars in the most massive haloes. We find that shielding of H2 by neutral hydrogen, which has been neglected in most studies to date, produces escape fractions that are up to a factor of 3 smaller than those predicted by H2 self-shielding alone.

  2. Morphological analysis of the early development of telencephalic and diencephalic gonadotropin-releasing hormone neuronal systems in enhanced green fluorescent protein-expressing transgenic medaka lines.

    PubMed

    Takahashi, Akiko; Islam, M Sadiqul; Abe, Hideki; Okubo, Kataaki; Akazome, Yasuhisa; Kaneko, Takeshi; Hioki, Hiroyuki; Oka, Yoshitaka

    2016-03-01

    Teleosts possess two or three paralogs of gonadotropin-releasing hormone (GnRH) genes: gnrh1, gnrh2, and gnrh3. Some species have lost the gnrh1 and/or gnrh3 genes, whereas gnrh2 has been completely conserved in the teleost species analyzed to date. In most teleosts that possess gnrh1, GnRH1 peptide is the authentic GnRH that stimulates gonadotropin release, whereas GnRH2 and GnRH3, if present, are neuromodulatory. Progenitors of GnRH1 and GnRH3 neurons originate from olfactory placodes and migrate to their destination during early development. However, because of the relatively low affinity/specificity of generally available antibodies that recognize GnRH1 or GnRH3, labeling of these neurons has only been possible using genetic manipulation. We used a model teleost, medaka, which possesses all three paralogous gnrh genes, to analyze development of forebrain GnRH neurons composed of GnRH1 and GnRH3 neurons. Here, we newly generated transgenic medaka lines that express enhanced green fluorescent protein under the control of promoters for gnrh1 or gnrh3, to detect GnRH neurons and facilitate immunohistochemical analysis of the neuronal morphology. We used a combination of immunohistochemistry and three-dimensional confocal microscopy image reconstructions to improve identification of neurites from GnRH1 or GnRH3 neuronal populations with greater precision. This led us to clearly identify the hypophysiotropic innervation of GnRH1 neurons residing in the ventral preoptic area (vPOA) from as early as 10 days post hatching. Furthermore, these analyses also revealed retinopetal projections of nonhypophysiotropic GnRH1 neurons in vPOA, prominent during early developmental stages, and multiple populations of GnRH3 neurons with different origins and migratory pathways. PMID:26287569

  3. Transducer-like enhancer of split 1 (TLE1) expression as a diagnostic immunohistochemical marker for synovial sarcoma and its association with morphological features.

    PubMed

    Bakrin, I H; Hussain, F A; Tuan Sharif, S E

    2016-08-01

    Synovial sarcoma (SS) is a malignant soft tissue tumour of uncertain histogenesis which is defined by the translocation t(X;18) that produces the fusion oncogenes SYT-SSX. The emergence of transducer-like enhancer of split 1 (TLE1) as a new immunohistochemical (IHC) marker for SS has offered an alternative to pathologists in differentiating SS from other histological mimics, especially in the setting of limited molecular facilities. We investigated the utility of IHC TLE1 expression against histomorphological features and other IHC markers in SS and non-SS tumours. Twenty-six cases of histologically diagnosed SS and 7 non-SS (for which SS was in the differential diagnosis) were subjected to TLE1 IHC staining, which was graded from 0 to 3+. Of the 26 SS cases, 12 each were biphasic and monophasic types and 2 were poorly-differentiated. TLE1 was expressed in 22/26 (84.6%) SS cases, of which 11/12 (91.7%) were biphasic, 10/12 (83.3%) monophasic and 1/2 (50%) poorly-differentiated tumours. Two of 7 (28.6%) non-SS cases were positive for TLE1. Immunopositivity of SS and non-SS cases for EMA were 20/26 (76.9%) and 2/7 (28.6%) respectively and for CK7 were 7/26 (26.9%) and 0/7 (0%) respectively. All cases were negative for CD34. Consistent histomorphological features for SS included mild nuclear pleomorphism, alternating tumour cellularity, fascicular growth pattern and thick ropy stromal collagen. In conclusion, TLE1 is not a stand-alone diagnostic IHC marker for SS. However, in the absence of molecular studies, it can contribute added diagnostic value in combination with morphological evaluation and other IHC markers such as EMA and CD34. PMID:27568668

  4. Improving the Endosomal Escape of Cell-Penetrating Peptides and Their Cargos: Strategies and Challenges

    PubMed Central

    Erazo-Oliveras, Alfredo; Muthukrishnan, Nandhini; Baker, Ryan; Wang, Ting-Yi; Pellois, Jean-Philippe

    2012-01-01

    Cell penetrating peptides (CPPs) can deliver cell-impermeable therapeutic cargos into cells. In particular, CPP-cargo conjugates tend to accumulate inside cells by endocytosis. However, they often remain trapped inside endocytic organelles and fail to reach the cytosolic space of cells efficiently. In this review, the evidence for CPP-mediated endosomal escape is discussed. In addition, several strategies that have been utilized to enhance the endosomal escape of CPP-cargos are described. The recent development of branched systems that display multiple copies of a CPP is presented. The use of viral or synthetic peptides that can disrupt the endosomal membrane upon activation by the low pH of endosomes is also discussed. Finally, we survey how CPPs labeled with chromophores can be used in combination with light to stimulate endosomal lysis. The mechanisms and challenges associated with these intracellular delivery methodologies are discussed. PMID:24223492

  5. Xenon Fractionation, Hydrogen Escape, and the Oxidation of the Earth

    NASA Astrophysics Data System (ADS)

    Zahnle, K. J.; Catling, D. C.

    2014-12-01

    Xenon in Earth's atmosphere is severely mass fractionated and depleted compared to any plausible solar system source material, yet Kr is unfractionated. These observations seem to imply that Xe has escaped from Earth. Vigorous hydrodynamic hydrogen escape can produce mass fractionation in heavy gases. The required hydrogen flux is very high but within the range permitted by solar EUV heating when Earth was 100 Myrs old or younger. However this model cannot explain why Xe escapes but Kr does not. Recently, what appears to be ancient atmospheric xenon has been recovered from several very ancient (3-3.5 Ga) terrestrial hydrothermal barites and cherts (Pujol 2011, 2013). What is eye-catching about this ancient Xe is that it is less fractionated that Xe in modern air. In other words, it appears that a process was active on Earth some 3 to 3.5 billion years ago that caused xenon to fractionate. By this time the Sun was no longer the EUV source that it used to be. If xenon was being fractionated by escape — currently the only viable hypothesis — it had to be in Earth's Archean atmosphere and under rather modest levels of EUV forcing. It should be possible for Xe, but not Kr, to escape from Earth as an ion. In a hydrodynamically escaping hydrogen wind the hydrogen is partially ionized. The key concepts are that ions are much more strongly coupled to the escaping flow than are neutrals (so that a relatively modest flow of H and H+ to space could carry Xe+ along with it, the flux can be small enough to be consistent with diffusion-limited flux), and that Xe alone among the noble gases is more easily ionized than hydrogen. This sort of escape is possible along the polar field lines, although a weak or absent magnetic field would likely work as well. The extended history of hydrogen escape implicit in Xe escape in the Archean is consistent with other suggestions that hydrogen escape in the Archean was considerable. Hydrogen escape plausibly played the key role in creating

  6. 16. INTERIOR VIEW OF SUBMARINE SECTION AT 110FOOT LEVEL, ESCAPE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. INTERIOR VIEW OF SUBMARINE SECTION AT 110-FOOT LEVEL, ESCAPE TRAINING TANK, SHOWING LADDER TO ESCAPE TANK, LOOKING SOUTH - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  7. Tandem CAR T cells targeting HER2 and IL13Rα2 mitigate tumor antigen escape.

    PubMed

    Hegde, Meenakshi; Mukherjee, Malini; Grada, Zakaria; Pignata, Antonella; Landi, Daniel; Navai, Shoba A; Wakefield, Amanda; Fousek, Kristen; Bielamowicz, Kevin; Chow, Kevin K H; Brawley, Vita S; Byrd, Tiara T; Krebs, Simone; Gottschalk, Stephen; Wels, Winfried S; Baker, Matthew L; Dotti, Gianpietro; Mamonkin, Maksim; Brenner, Malcolm K; Orange, Jordan S; Ahmed, Nabil

    2016-08-01

    In preclinical models of glioblastoma, antigen escape variants can lead to tumor recurrence after treatment with CAR T cells that are redirected to single tumor antigens. Given the heterogeneous expression of antigens on glioblastomas, we hypothesized that a bispecific CAR molecule would mitigate antigen escape and improve the antitumor activity of T cells. Here, we created a CAR that joins a HER2-binding scFv and an IL13Rα2-binding IL-13 mutein to make a tandem CAR exodomain (TanCAR) and a CD28.ζ endodomain. We determined that patient TanCAR T cells showed distinct binding to HER2 or IL13Rα2 and had the capability to lyse autologous glioblastoma. TanCAR T cells exhibited activation dynamics that were comparable to those of single CAR T cells upon encounter of HER2 or IL13Rα2. We observed that TanCARs engaged HER2 and IL13Rα2 simultaneously by inducing HER2-IL13Rα2 heterodimers, which promoted superadditive T cell activation when both antigens were encountered concurrently. TanCAR T cell activity was more sustained but not more exhaustible than that of T cells that coexpressed a HER2 CAR and an IL13Rα2 CAR, T cells with a unispecific CAR, or a pooled product. In a murine glioblastoma model, TanCAR T cells mitigated antigen escape, displayed enhanced antitumor efficacy, and improved animal survival. Thus, TanCAR T cells show therapeutic potential to improve glioblastoma control by coengaging HER2 and IL13Rα2 in an augmented, bivalent immune synapse that enhances T cell functionality and reduces antigen escape. PMID:27427982

  8. Prey escaping wolves, Canis lupus, despite close proximity

    USGS Publications Warehouse

    Nelson, M.E.; Mech, L.D.

    1993-01-01

    We describe attacks by wolf (Canis lupus) packs in Minnesota on a white-tailed deer (Odocoileus virginianus) and a moose (Alces alces) in which wolves were within contact distance of the prey but in which the prey escaped.

  9. 46 CFR 116.500 - Means of escape.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... wearing life jackets. There must be no protrusions in means of escape that could cause injury, ensnare clothing, or damage life jackets. (f) The minimum clear opening of a door or passageway used as a means...

  10. 46 CFR 116.500 - Means of escape.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... wearing life jackets. There must be no protrusions in means of escape that could cause injury, ensnare clothing, or damage life jackets. (f) The minimum clear opening of a door or passageway used as a means...

  11. 40. Launch Area, Underground Missile Storage Structure, detail of escape ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. Launch Area, Underground Missile Storage Structure, detail of escape hatch and decontamination shower VIEW WEST - NIKE Missile Battery PR-79, Launch Area, East Windsor Road south of State Route 101, Foster, Providence County, RI

  12. 10. VIEW OF SILO DOORS, AIR VENTS, AND ESCAPE HATCH, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW OF SILO DOORS, AIR VENTS, AND ESCAPE HATCH, LOOKING EAST. WHITE STRUCTURES BELONG TO CURRENT OCCUPANTS Everett Weinreb, photographer, April 1988 - Los Pinetos Nike Missile Site, Santa Clara Road, Los Angeles National Forest, Sylmar, Los Angeles County, CA

  13. 3. VIEW OF ESCAPE TUNNEL IN NORTH FACE OF LAUNCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF ESCAPE TUNNEL IN NORTH FACE OF LAUNCH OPERATIONS BUILDING. BUNKER PERISCOPE VISIBLE ABOVE RIGHT CORNER OF TUNNEL. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  14. 14. View inside Building 802, the "Escape Hatch" at the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. View inside Building 802, the "Escape Hatch" at the rear of the "Sleeping Quarters", facing south. - Naval Air Station Fallon, 100-man Fallout Shelter, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  15. 61. View of exhaust air vent (foreground), escape hatch, and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    61. View of exhaust air vent (foreground), escape hatch, and elevator doors at launch pad "A" with building 157, sentry control box on right, looking southwest - Nike Missile Battery MS-40, County Road No. 260, Farmington, Dakota County, MN

  16. Survey of space escape/rescue/survivability capabilities.

    NASA Technical Reports Server (NTRS)

    Fleisig, R.; Bolger, P. H.; Heath, G. W.

    1971-01-01

    Discussion of preventive or remedial systems to achieve safer space flight operations. Escape, rescue, and survival systems are defined by categories: on board, prepositioned aid, and earth-launched concepts. The survey considers separable escape or survival capsules; standby escape or rescue systems; and earth-launched manned and unmanned rescue systems. Reports covering such systems are listed, and the contents are classified as to scope of investigation, space mission, and design approach. Mission classes considered are earth orbit, lunar, and interplanetary. Results of the space escape, rescue, and survivability investigations are summarized in terms of system features and performance, including apparent voids or limitations in rescue capability. Recovery requirements and resources for space rescue are discussed.

  17. Photoelectron escape fluxes over the equatorial and midlatitude regions

    NASA Technical Reports Server (NTRS)

    Narasingarao, B. C.; Singh, R. N.; Maier, E. J.

    1972-01-01

    Satellite measurements of photoelectron escape flux around noontime made by Explorer 31 in 600-800 km altitude range are reported for the equatorial and midlatitude regions. The pitch angle distributions and the spectral distributions are derived from the data. Analyzed data show that the flux for equatorial regions is lower by a factor 2 to 3 in comparison to that of midlatitude regions. Theoretical calculations are also made to compare with observed escape fluxes.

  18. Initiation and spread of escape waves within animal groups

    PubMed Central

    Herbert-Read, James E.; Buhl, Jerome; Hu, Feng; Ward, Ashley J. W.; Sumpter, David J. T.

    2015-01-01

    The exceptional reactivity of animal collectives to predatory attacks is thought to be owing to rapid, but local, transfer of information between group members. These groups turn together in unison and produce escape waves. However, it is not clear how escape waves are created from local interactions, nor is it understood how these patterns are shaped by natural selection. By startling schools of fish with a simulated attack in an experimental arena, we demonstrate that changes in the direction and speed by a small percentage of individuals that detect the danger initiate an escape wave. This escape wave consists of a densely packed band of individuals that causes other school members to change direction. In the majority of cases, this wave passes through the entire group. We use a simulation model to demonstrate that this mechanism can, through local interactions alone, produce arbitrarily large escape waves. In the model, when we set the group density to that seen in real fish schools, we find that the risk to the members at the edge of the group is roughly equal to the risk of those within the group. Our experiments and modelling results provide a plausible explanation for how escape waves propagate in nature without centralized control. PMID:26064630

  19. Some Possible Cases of Escape Mimicry in Neotropical Butterflies.

    PubMed

    Pinheiro, C E G; Freitas, A V L

    2014-10-01

    The possibility that escape or evasive mimicry evolved in butterflies and other prey insects in a similar fashion to classical Batesian and Müllerian mimicry has long been advanced in the literature. However, there is a general disagreement among lepidopterists and evolutionary biologists on whether or not escape mimicry exists, as well as in which mimicry rings this form of mimicry has evolved. Here, we review some purported cases of escape mimicry in Neotropical butterflies and suggest new mimicry rings involving several species of Archaeoprepona, Prepona, and Doxocopa (the "bright blue bands" ring) and species of Colobura and Hypna (the "creamy bands" ring) where the palatability of butterflies, their ability to escape predator attacks, geographic distribution, relative abundance, and co-occurrence in the same habitats strongly suggest that escape mimicry is involved. In addition, we also indicate other butterfly taxa whose similarities of coloration patterns could be due to escape mimicry and would constitute important case studies for future investigation. PMID:27193948

  20. Foraging behavior delays mechanically-stimulated escape responses in fish.

    PubMed

    Bohórquez-Herrera, Jimena; Kawano, Sandy M; Domenici, Paolo

    2013-11-01

    Foraging and the evasion of predators are fundamental for the survival of organisms, but they impose contrasting demands that can influence performance in each behavior. Previous studies suggested that foraging organisms may experience decreased vigilance to attacks by predators; however, little is known about the effect of foraging on escape performance with respect to the kinematics and the timing of the response. This study tested the hypothesis that engaging in foraging activities affected escape performance by comparing fast-start escape responses of silver-spotted sculpins Blepsias cirrhosus under three conditions: (1) control (no foraging involved), (2) while targeting prey, and (3) immediately after capture of prey. Escape response variables (non-locomotor and locomotor) were analyzed from high-speed videos. Responsiveness was lower immediately after capturing a prey item compared with the other two treatments, and latency of performance was higher in the control treatment than in the other two. Locomotor variables such as maximum speed, maximum acceleration, and turning rates did not show statistical differences among the three groups. Our results demonstrate that foraging can negatively affect two fundamental components of the escape response: (1) responsiveness and (2) latency of escape, suggesting that engaging in foraging may decrease an individual's ability to successfully evade predators. PMID:23624863

  1. Optimal escapement in stage-structured fisheries with environmental stochasticity.

    PubMed

    Holden, Matthew H; Conrad, Jon M

    2015-11-01

    Stage-structured population models are commonly used to understand fish population dynamics and additionally for stock assessment. Unfortunately, there is little theory on the optimal harvest of stage-structured populations, especially in the presence of stochastic fluctuations. In this paper, we find closed form optimal equilibrium escapement policies for a three-dimensional, discrete-time, stage-structured population model with linear growth, post-harvest nonlinear recruitment, and stage-specific pricing and extend the analytic results to structured populations with environmental stochasticity. When only fishing reproductive adults, stochasticity does not affect optimal escapement policies. However, when harvesting immature fish, the addition of stochasticity can increase or decrease optimal escapement depending on the second and third derivative of the recruitment function. For logistic recruitment, stochasticity reduces optimal immature escapement by a multiplicative factor of one over one plus the variance of the environmental noise. Using hard clam, Mercenaria mercenaria, as an example and assuming Beverton-Holt recruitment, we show that optimal fishing of hard clam targets the immature stage class exclusively and that environmental stochasticity increases optimal escapement for low discount rates and decreases optimal escapement for high discount rates. PMID:26362229

  2. Enhancing the photovoltaic performance and stability of QDSSCs using surface reinforced Pt nanostructures with controllable morphology and superior electrocatalysis via cost-effective chemical bath deposition.

    PubMed

    Rao, S Srinivasa; Durga, Ikkurthi Kanaka; Kang, Tae-Su; Kim, Soo-Kyoung; Punnoose, Dinah; Gopi, Chandu V V M; Eswar Reddy, Araveeti; Krishna, T N V; Kim, Hee-Je

    2016-02-28

    To make quantum-dot sensitized solar cells (QDSSCs) competitive, photovoltaic parameters such as the power conversion efficiency (PCE) and fill factor (FF) must become comparable to those of other emerging solar cell technologies. In the present study, a novel strategy has been successfully developed for a highly efficient surface-modified platinum (Pt) counter electrode (CE) with high catalytic activity and long-term stability in a polysulfide redox electrolyte. The reinforcement of the Pt surface was performed using a thin passivating layer of CuS, NiS, or CoS by simple chemical bath deposition techniques. This method was a more efficient method for reducing the electron recombination in QDSSCs. The optimized Pt/CuS CE shows a very low charge transfer resistance of 37.01 Ω, which is an order of magnitude lower than those of bare Pt (86.32 Ω), Pt/NiS (53.83 Ω), and Pt/CoS (73.51 Ω) CEs. Therefore, the Pt/CuS CEs show much greater catalytic activity in the polysulfide redox electrolyte than Pt, Pt/NiS and Pt/CoS CEs. As a result, under one-sun illumination (AM 1.5G, 100 mW cm(-2)), the Pt/CuS CE exhibits a PCE of 4.32%, which is higher than the values of 1.77%, 2.95%, and 3.25% obtained with bare Pt, Pt/CoS, and Pt/NiS CEs, respectively. The performance of the Pt/CuS CE was enhanced by the improved current density, Cu vacancies with increased S composition, and surface morphology, which enable rapid electron transport and lower the electron recombination rate for the polysulfide electrolyte redox couple. Electrochemical impedance spectroscopy and Tafel polarization revealed that the hybrid CEs reduce interfacial recombination and exhibit better electrochemical and photovoltaic performance compared with a bare Pt CE. The Pt/CuS CE also shows superior stability in the polysulfide electrolyte in a working state for over 10 h, resulting in a long-term electrode stability than Pt CE. PMID:26796086

  3. Musical morphology.

    PubMed

    Chakravarty, M Mallar; Vuust, Peter

    2009-07-01

    Morphologic measures have long been used to determine the patho-anatomical signature of different neurologic disorders. However, these measures can also be used to determine effects of specific learning tasks and quantifiable human abilities on cerebral structure. Musicians provide interesting opportunities for this type of analysis as their various skills, such as rhythmic ability and pitch and harmony discrimination (acquired through years of practicing and playing) can be quantified and compared using distinct morphologic analyses. Here, we review magnetic resonance imaging-based morphologic analyses in the music and neuroscience literature and provide some results from our own analysis of rhythmic ability in a cohort of musicians. PMID:19673757

  4. Divergent Adaptive Strategies by Two Co-occurring Epiphytic Orchids to Water Stress: Escape or Avoidance?

    PubMed

    Zhang, Wei; Hu, Hong; Zhang, Shi-Bao

    2016-01-01

    Due to the fluctuating water availability in the arboreal habitat, epiphytic plants are considered vulnerable to climate change and anthropogenic disturbances. Although co-occurring taxa have been observed divergent adaptive performances in response to drought, the underlying physiological and morphological mechanisms by which epiphyte species cope with water stress remain poorly understood. In the present study, two co-occurring epiphytic orchids with different phenologies were selected to investigate their drought-resistance performances. We compared their functional traits, and monitored their physiological performances in a 25-days of drought treatment. In contrast to the deciduous species Pleione albiflora, the evergreen species Coelogyne corymbosa had different root anatomical structures and higher values for saturated water content of pseudobulbs. Moreover, plants of C. corymbosa had thicker leaves and epidermis, denser veins and stomata, and higher values for leaf mass per unit area and the time required to dry saturated leaves to 70% relative water content. However, samples from that species had lower values for net photosynthetic rate (A n), stomatal length and chlorophyll content per unit dry mass. Nevertheless, due to greater capacity for water storage and conservation, C. corymbosa maintained higher A n, stomatal conductance (g s), and instantaneous water-use efficiency during severe drought period, and their values for leaf water potential were higher after the water stress treatment. By Day 10 after irrigation was restarted, only C. corymbosa plants recovered their values for A n and g s to levels close to those calculated prior to the imposition of water stress. Our results suggest that the different performance responding to drought and re-watering in two co-occurring epiphytic orchids is related to water-related traits and these two species have divergent adaptive mechanisms. Overall, C. corymbosa demonstrates drought avoidance by enhancing water

  5. Divergent Adaptive Strategies by Two Co-occurring Epiphytic Orchids to Water Stress: Escape or Avoidance?

    PubMed Central

    Zhang, Wei; Hu, Hong; Zhang, Shi-Bao

    2016-01-01

    Due to the fluctuating water availability in the arboreal habitat, epiphytic plants are considered vulnerable to climate change and anthropogenic disturbances. Although co-occurring taxa have been observed divergent adaptive performances in response to drought, the underlying physiological and morphological mechanisms by which epiphyte species cope with water stress remain poorly understood. In the present study, two co-occurring epiphytic orchids with different phenologies were selected to investigate their drought-resistance performances. We compared their functional traits, and monitored their physiological performances in a 25-days of drought treatment. In contrast to the deciduous species Pleione albiflora, the evergreen species Coelogyne corymbosa had different root anatomical structures and higher values for saturated water content of pseudobulbs. Moreover, plants of C. corymbosa had thicker leaves and epidermis, denser veins and stomata, and higher values for leaf mass per unit area and the time required to dry saturated leaves to 70% relative water content. However, samples from that species had lower values for net photosynthetic rate (An), stomatal length and chlorophyll content per unit dry mass. Nevertheless, due to greater capacity for water storage and conservation, C. corymbosa maintained higher An, stomatal conductance (gs), and instantaneous water-use efficiency during severe drought period, and their values for leaf water potential were higher after the water stress treatment. By Day 10 after irrigation was restarted, only C. corymbosa plants recovered their values for An and gs to levels close to those calculated prior to the imposition of water stress. Our results suggest that the different performance responding to drought and re-watering in two co-occurring epiphytic orchids is related to water-related traits and these two species have divergent adaptive mechanisms. Overall, C. corymbosa demonstrates drought avoidance by enhancing water

  6. Two Escape Mechanisms of Influenza A Virus to a Broadly Neutralizing Stalk-Binding Antibody

    PubMed Central

    Chai, Ning; Swem, Lee R.; Reichelt, Mike; Chen-Harris, Haiyin; Luis, Elizabeth; Park, Summer; Fouts, Ashley; Lupardus, Patrick; Wu, Thomas D.; Li, Olga; McBride, Jacqueline; Lawrence, Michael; Xu, Min; Tan, Man-Wah

    2016-01-01

    Broadly neutralizing antibodies targeting the stalk region of influenza A virus (IAV) hemagglutinin (HA) are effective in blocking virus infection both in vitro and in vivo. The highly conserved epitopes recognized by these antibodies are critical for the membrane fusion function of HA and therefore less likely to be permissive for virus mutational escape. Here we report three resistant viruses of the A/Perth/16/2009 strain that were selected in the presence of a broadly neutralizing stalk-binding antibody. The three resistant viruses harbor three different mutations in the HA stalk: (1) Gln387Lys; (2) Asp391Tyr; (3) Asp391Gly. The Gln387Lys mutation completely abolishes binding of the antibody to the HA stalk epitope. The other two mutations, Asp391Tyr and Asp391Gly, do not affect antibody binding at neutral pH and only slightly reduce binding at low pH. Interestingly, they enhance the fusion ability of the HA, representing a novel mechanism that allows productive membrane fusion even in the presence of antibody and hence virus escape from antibody neutralization. Therefore, these mutations illustrate two different resistance mechanisms used by IAV to escape broadly neutralizing stalk-binding antibodies. Compared to the wild type virus, the resistant viruses release fewer progeny viral particles during replication and are more sensitive to Tamiflu, suggesting reduced viral fitness. PMID:27351973

  7. Two Escape Mechanisms of Influenza A Virus to a Broadly Neutralizing Stalk-Binding Antibody.

    PubMed

    Chai, Ning; Swem, Lee R; Reichelt, Mike; Chen-Harris, Haiyin; Luis, Elizabeth; Park, Summer; Fouts, Ashley; Lupardus, Patrick; Wu, Thomas D; Li, Olga; McBride, Jacqueline; Lawrence, Michael; Xu, Min; Tan, Man-Wah

    2016-06-01

    Broadly neutralizing antibodies targeting the stalk region of influenza A virus (IAV) hemagglutinin (HA) are effective in blocking virus infection both in vitro and in vivo. The highly conserved epitopes recognized by these antibodies are critical for the membrane fusion function of HA and therefore less likely to be permissive for virus mutational escape. Here we report three resistant viruses of the A/Perth/16/2009 strain that were selected in the presence of a broadly neutralizing stalk-binding antibody. The three resistant viruses harbor three different mutations in the HA stalk: (1) Gln387Lys; (2) Asp391Tyr; (3) Asp391Gly. The Gln387Lys mutation completely abolishes binding of the antibody to the HA stalk epitope. The other two mutations, Asp391Tyr and Asp391Gly, do not affect antibody binding at neutral pH and only slightly reduce binding at low pH. Interestingly, they enhance the fusion ability of the HA, representing a novel mechanism that allows productive membrane fusion even in the presence of antibody and hence virus escape from antibody neutralization. Therefore, these mutations illustrate two different resistance mechanisms used by IAV to escape broadly neutralizing stalk-binding antibodies. Compared to the wild type virus, the resistant viruses release fewer progeny viral particles during replication and are more sensitive to Tamiflu, suggesting reduced viral fitness. PMID:27351973

  8. Energy-limited escape revised. The transition from strong planetary winds to stable thermospheres

    NASA Astrophysics Data System (ADS)

    Salz, M.; Schneider, P. C.; Czesla, S.; Schmitt, J. H. M. M.

    2016-01-01

    Gas planets in close proximity to their host stars experience photoevaporative mass loss. The energy-limited escape concept is generally used to derive estimates for the planetary mass-loss rates. Our photoionization hydrodynamics simulations of the thermospheres of hot gas planets show that the energy-limited escape concept is valid only for planets with a gravitational potential lower than log 10(-ΦG)< 13.11 erg g-1 because in these planets the radiative energy input is efficiently used to drive the planetary wind. Massive and compact planets with log 10(-ΦG) ≳ 13.6 erg g-1 exhibit more tightly bound atmospheres in which the complete radiative energy input is re-emitted through hydrogen Lyα and free-free emission. These planets therefore host hydrodynamically stable thermospheres. Between these two extremes the strength of the planetary winds rapidly declines as a result of a decreasing heating efficiency. Small planets undergo enhanced evaporation because they host expanded atmospheres that expose a larger surface to the stellar irradiation. We present scaling laws for the heating efficiency and the expansion radius that depend on the gravitational potential and irradiation level of the planet. The resulting revised energy-limited escape concept can be used to derive estimates for the mass-loss rates of super-Earth-sized planets as well as massive hot Jupiters with hydrogen-dominated atmospheres.

  9. Light Activated Escape Circuits: A Behavior and Neurophysiology Lab Module using Drosophila Optogenetics

    PubMed Central

    Titlow, Josh S.; Johnson, Bruce R.; Pulver, Stefan R.

    2015-01-01

    The neural networks that control escape from predators often show very clear relationships between defined sensory inputs and stereotyped motor outputs. This feature provides unique opportunities for researchers, but it also provides novel opportunities for neuroscience educators. Here we introduce new teaching modules using adult Drosophila that have been engineered to express csChrimson, a red-light sensitive channelrhodopsin, in specific sets of neurons and muscles mediating visually guided escape behaviors. This lab module consists of both behavior and electrophysiology experiments that explore the neural basis of flight escape. Three preparations are described that demonstrate photo-activation of the giant fiber circuit and how to quantify these behaviors. One of the preparations is then used to acquire intracellular electrophysiology recordings from different flight muscles. The diversity of action potential waveforms and firing frequencies observed in the flight muscles make this a rich preparation to study the ionic basic of cellular excitability. By activating different cells within the giant fiber pathway we also demonstrate principles of synaptic transmission and neural circuits. Beyond conveying core neurobiological concepts it is also expected that using these cutting edge techniques will enhance student motivation and attitudes towards biological research. Data collected from students and educators who have been involved in development of the module are presented to support this notion. PMID:26240526

  10. Escape from R-peptide deletion in a {gamma}-retrovirus

    SciTech Connect

    Schneider, Irene C.; Eckhardt, Manon; Brynza, Julia; Collins, Mary K.; Cichutek, Klaus; Buchholz, Christian J.

    2011-09-30

    The R peptide in the cytoplasmic tail (C-tail) of {gamma}-retroviral envelope proteins (Env) prevents membrane fusion before budding. To analyse its role in the formation of replication competent, infectious particles, we developed chimeric murine leukaemia viruses (MLV) with unmodified or R-peptide deleted Env proteins of the gibbon ape leukaemia virus (GaLV). While titres of these viruses were unaffected, R-peptide deficiency led to strongly impaired spreading. Most remarkably, we isolated an escape mutant which had restored an open reading frame for a C-terminal extension of the truncated C-tail. A reconstituted virus encoding this escape C-tail replicated in cell culture. In contrast to R-peptide deficient Env, particle incorporation of the escape Env was effective due to an enhanced protein expression and restored intracellular co-localisation with Gag proteins. Our data demonstrate that the R peptide not only regulates membrane fusion but also mediates efficient Env protein particle incorporation in {gamma}-retrovirus infected cells.

  11. Escape from gregarine parasites affects the competitive interactions of an invasive mosquito

    PubMed Central

    Aliabadi, Brianna W.; Juliano, Steven A.

    2009-01-01

    When a species is introduced into a new location, it may escape, at least temporarily, from its natural enemies. In field surveys, we found that when the exotic, invasive mosquito, Aedes albopictus, invades new sites, it initially experiences reduced infection by its gut parasite, Ascogregarina taiwanensis. To determine the effect of this escape from parasitism on the competitive ability of A. albopictus, we performed a laboratory competition experiment in which infected and uninfected A. albopictus larvae were reared in microcosms alone and in competition with larvae of the native mosquito, Ochlerotatus triseriatus. We analyzed the effect of parasitism by A. taiwanensis on A. albopictus performance when subjected to intra- and interspecific competition across a range of larval densities, as well as the effect of A. albopictus parasitism by A. taiwanensis on the competitive impact of A. albopictus on O. triseriatus. At a density of 30 O. triseriatus larvae, O. triseriatus survivorship was significantly reduced by the addition of 30 unifected A. albopictus, but not by addition of 30 infected A. albopictus, and not by addition of 15 A. albopictus whether infected or uninfected. Although estimated finite rate of population increase (λ’) showed similar trends, and was significantly affected by treatments, no pairwise differences in rate of increase were significant. Infection by A. taiwanensis also significantly prolonged A. albopictus female development time and reduced the intraspecific competitive effect of increased density of A. albopictus, but did not affect A. albopictus survivorship, mass, or estimated finite rate of population increase. Thus, when A. albopictus escapes from this parasite as it colonizes new sites, this escape may give it a small, but significant, added competitive advantage over O. triseriatus, which may facilitate range expansion of A. albopictus and enhance A. albopictus’s initial impact on resident species. PMID:19777120

  12. Serotonin transporter deficient mice are vulnerable to escape deficits following inescapable shocks

    PubMed Central

    Muller, Jeff M; Morelli, Emanuela; Ansorge, Mark; Gingrich, Jay A

    2014-01-01

    Modulation of serotonin transporter (5-HTT) function causes changes in affective behavior, both in humans and rodents. Stressful life events likewise affect emotional behavior. In humans, a low-expressing genetic 5-htt variant, the s allele of the 5-htt linked promoter region, has been associated with increased risk for depression only where there was a history of stressful life events. To investigate this gene by environment interaction in mice, we compared the effects of inescapable shocks on the behavior of wild-type (5-htt+/+), heterozygote (5-htt+/−), and serotonin transporter deficient (5-htt−/−) mice. Inescapable shocks induce behavioral changes including a shock escape deficit, in a subsequent test when escape is possible. Confirming a gene by environment interaction, we found that stress increases escape latencies in a gene-dose dependent manner (5-htt−/− > 5-htt+/− > 5-htt +/+), where as there were no differences among the genotypes in the unstressed condition. The vulnerability to increased escape latency could not be accounted for by enhanced fear learning, as 5-htt−/− mice did not show heightened fear conditioning. The interaction of 5-htt genotype and stress appeared to produce a selective behavioral vulnerability, because no interaction of 5-htt genotype and stress was observed in other measures of anxiety and depression-linked behavior, including the open field, novelty suppressed feeding, and forced swim tests. We replicated prior findings that the 5-htt−/− displays heightened anxiety and depression-like behavior at baseline (unstressed condition). In conclusion, our data offers the possibility for future investigation of the neural basis underlying 5-htt genotype by stress interaction demonstrated here. PMID:20955517

  13. Stars on the run: escaping from stellar clusters

    NASA Astrophysics Data System (ADS)

    Moyano Loyola, Guido R. I.; Hurley, Jarrod R.

    2013-09-01

    A significant proportion of Milky Way stars are born in stellar clusters, which dissolve over time so that the members become part of the disc and halo populations of the Galaxy. In this work, we will assume that these young stellar clusters live mainly within the disc of the Galaxy and that they can have primordial binary percentages ranging from 0 per cent to as high as 70 per cent. We have evolved models of such clusters to an age of 4 Gyr through N-body simulations, paying attention to the stars and binaries that escape in the process. We have quantified the contribution of these escaping stars to the Galaxy population by analysing their escape velocity and evolutionary stage at the moment of escape. In this way, we could analyse the mechanisms that produced these escapers, whether evaporation through weak two-body encounters, energetic close encounters or stellar evolution events, e.g. supernovae. In our models, we found that the percentage of primordial binaries in a star cluster does not produce significant variations in the velocities of the stars that escape in the velocity range of 0-20 km s-1. However, in the high-velocity 20-100 km s-1 range the number of escapers increased markedly as the primordial binary percentage increased. We could also infer that dissolving stellar clusters such as those that we have modelled can populate the Galactic halo with giant stars for which the progenitors were stars of up to 2.4 M⊙. Furthermore, choices made for the velocity kicks of remnants do influence the production of hyper-velocity stars - and to a lesser extent stars in the high-velocity range - but once again the difference for the 99 per cent of stars in the 0-20 km s-1 range is not significant.

  14. Green Pea Galaxies Reveal Secrets of Lyα Escape

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Malhotra, Sangeeta; Gronke, Max; Rhoads, James E.; Jaskot, Anne; Zheng, Zhenya; Dijkstra, Mark; Wang, JunXian

    2016-01-01

    In star-forming galaxies, a lot of Lyα photons were generated in HII regions surrounding massive stars. The escape of Lyα photons from galaxies is a key issue in studying high redshift galaxies and probing cosmic reionization with Lyα. To understand Lyα escape, it is valuable to study high quality Lyα profiles in Lyα emitters. However, such studies are rare due to the faintness of high-z Lyα emitters and the lack of local analogs with high Lyα equivalent width. Here we show that "Green Pea" galaxies are the best local analogs of high-z Lyα emitters and their high quality Lyα profiles demonstrate low HI column density is the key to Lyα escape. The Lyα escape fraction shows correlations with the ratio of Lyα blue peak velocity to Hα line width, the normalized flux density at valley of Lyα profile, and a few other features of Lyα profiles. We compared the Lyα profiles with outflowing HI shell radiative transfer model and found that the best-fit HI column density is anti-correlated with the Lyα escape fraction. We also found an anti-correlation between Lyα escape fraction and galactic metallicity. Our results support that LAEs with high Lyα escape fraction have low metallicity, low HI column density, and mild HI gas outflow.

  15. MAVEN Measurements of the Ion Escape Rate from Mars

    NASA Astrophysics Data System (ADS)

    Brain, Dave; Dong, Yaxue; Fortier, Kier; Fang, Xiaohua; McFadden, James; Halekas, Jasper; Connerney, Jack; Eparvier, Frank; Dong, Chuanfei; Bougher, Stephen; Ma, Yingjuan; Modolo, Ronan; Lillis, Rob; Luhmann, Janet; Curry, Shannon; Seki, Kanako; Jakosky, Bruce

    2015-04-01

    The loss of atmospheric particles (neutral atoms, neutral molecules, ions) to space is thought to have played a role in the evolution of Martian climate over the past ~4 billion years. Due to the lack of a global magnetic field on Mars, the solar wind has direct access to the upper layers of the Martian atmosphere, and can drive non-thermal escape of charged particles (ions) from the atmosphere. Two spacecraft (Phobos 2 and Mars Express) have previously measured escaping ions at Mars. The recently arrived MAVEN spacecraft is equipped with instruments to measure escaping ions with high time cadence and high energy and mass resolution, as well as instruments to provide contextual information about what controls the variation in escape rates. We report on the total escape rate of heavy planetary ions from the Martian atmosphere measured by MAVEN. Heavy ions are identified in data from the SupraThermal And Thermal Ion Composition (STATIC) instrument. Rudimentary estimates of ion escape rate are obtained by summing the measured ion fluxes over a surface downstream from Mars with respect to the solar wind flow. This estimate can then be refined to account for the limited field of view of the instrument (investigation of measured particle distributions) and the limited spatial coverage of the spacecraft orbit trajectory. Variability in measured escape rates can also be grouped according to upstream conditions and the orientation of Mars (and its crustal magnetic fields) with respect to the solar wind. Important upstream drivers include the solar Extreme Ultraviolet (EUV) flux, solar wind pressure, and the interplanetary magnetic field strength and direction. These drivers are measured directly by MAVEN's EUV, SWIA, and MAG instruments. We will provide an initial estimate of ion escape rates based on the first several months of MAVEN data. We will then report on progress to refine these estimates to correct for instrument field of view and spacecraft coverage effects, as

  16. Verge and Foliot Clock Escapement: A Simple Dynamical System

    NASA Astrophysics Data System (ADS)

    Denny, Mark

    2010-09-01

    The earliest mechanical clocks appeared in Europe in the 13th century. From about 1250 CE to 1670 CE, these simple clocks consisted of a weight suspended from a rope or chain that was wrapped around a horizontal axle. To tell time, the weight must fall with a slow uniform speed, but, under the action of gravity alone, such a suspended weight would accelerate. To prevent this acceleration, an escapement mechanism was required. The best such escapement mechanism was called the verge and foliot escapement, and it was so successful that it lasted until about 1800 CE. These simple weight-driven clocks with verge and foliot escapements were accurate enough to mark the hours but not minutes or seconds. From 1670, significant improvements were made (principally by introducing pendulums and the newly invented anchor escapement) that justified the introduction of hands to mark minutes, and then seconds. By the end of the era of mechanical clocks, in the first half of the 20th century, these much-studied and much-refined machines were accurate to a millisecond a day.

  17. THE ESCAPE FRACTION OF IONIZING RADIATION FROM GALAXIES

    SciTech Connect

    Benson, Andrew; Venkatesan, Aparna; Shull, J. Michael E-mail: avenkatesan@usfca.edu

    2013-06-10

    The escape of ionizing radiation from galaxies plays a critical role in the evolution of gas in galaxies, and the heating and ionization history of the intergalactic medium. We present semi-analytic calculations of the escape fraction of ionizing radiation for both hydrogen and helium from galaxies ranging from primordial systems to disk-type galaxies that are not heavily dust-obscured. We consider variations in the galaxy density profile, source type, location, and spectrum, and gas overdensity/distribution factors. For sufficiently hard first-light sources, the helium ionization fronts closely track or advance beyond that of hydrogen. Key new results in this work include calculations of the escape fractions for He I and He II ionizing radiation, and the impact of partial ionization from X-rays from early active galactic nuclei or stellar clusters on the escape fractions from galaxy halos. When factoring in frequency-dependent effects, we find that X-rays play an important role in boosting the escape fractions for both hydrogen and helium, but especially for He II. We briefly discuss the implications of these results for recent observations of the He II reionization epoch at low redshifts, as well as the UV data and emission-line signatures from early galaxies anticipated from future satellite missions.

  18. Single-File Escape of Colloidal Particles from Microfluidic Channels.

    PubMed

    Locatelli, Emanuele; Pierno, Matteo; Baldovin, Fulvio; Orlandini, Enzo; Tan, Yizhou; Pagliara, Stefano

    2016-07-15

    Single-file diffusion is a ubiquitous physical process exploited by living and synthetic systems to exchange molecules with their environment. It is paramount to quantify the escape time needed for single files of particles to exit from constraining synthetic channels and biological pores. This quantity depends on complex cooperative effects, whose predominance can only be established through a strict comparison between theory and experiments. By using colloidal particles, optical manipulation, microfluidics, digital microscopy, and theoretical analysis we uncover the self-similar character of the escape process and provide closed-formula evaluations of the escape time. We find that the escape time scales inversely with the diffusion coefficient of the last particle to leave the channel. Importantly, we find that at the investigated microscale, bias forces as tiny as 10^{-15}  N determine the magnitude of the escape time by drastically reducing interparticle collisions. Our findings provide crucial guidelines to optimize the design of micro- and nanodevices for a variety of applications including drug delivery, particle filtering, and transport in geometrical constrictions. PMID:27472142

  19. History of oxygen and carbon escape from the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Luhmann, J. G.; Zhang, M. H. G.; Johnson, R. E.; Bougher, S. W.; Nagy, A. F.

    1992-01-01

    A fraction of the oxygen in the Martian atmosphere continually escapes to space because dissociative recombination of the O2(+) ions in the ionosphere can impart sufficient energy to the product O atoms. In addition, ionization of the extended atomic oxygen corona resulting from the above process adds to escape since the solar wind can carry away O(+) ions born above a few hundred km altitude. A further by-product of this ion-pickup by the solar wind is an additional population of escaping oxygen atoms that are sputtered from the atmosphere near the exobase by pickup ions that are on reentry rather than escaping trajectories. This sputtering process can also remove carbon in the form of intact or dissociated CO2 since all atoms and molecules in the 'target' gas are subject to the collisional energy transfer that characterizes sputtering. We have estimated the present rates of escape of oxygen and carbon due to these mechanisms, as well as the rates at several epochs in the history of the solar system.

  20. Loss of water from Venus. I - Hydrodynamic escape of hydrogen

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.; Pollack, J. B.

    1983-01-01

    A one-dimensional photochemical-dynamic model is used to study hydrodynamic loss of hydrogen from a primitive, water-rich atmosphere on Venus. The escape flux is calculated as a function of the H2O mixing ratio at the atmospheric cold trap. The cold trap mixing ratio is then related in an approximate fashion to the H2O concentration in the lower atmosphere. Hydrodynamic escape should have been the dominant loss process for hydroogen when the H2O mass mixing ratio in the lower atmosphere exceeded approximately 0.1. The escape rate would have depended upon the magnitude of the solar ultraviolet flux and the atmospheric EUV heating efficiency and, to a lesser extent, on the O2 content of the atmosphere. The time required for Venus to have lost the bulk of a terrestrial ocean of water is on the order of a billion years. Deuterium would have been swept away along with hydrogen if the escape rate was high enough, but some D/H enrichment should have occurred as the escape rate slowed down.

  1. Escape Rates in a Stochastic Environment with Multiple Scales

    NASA Astrophysics Data System (ADS)

    Forgoston, Eric; Schwartz, Ira B.

    2009-01-01

    We consider a stochastic environment with two time scales and outline a general theory that compares two methods to reduce the dimension of the original system. The first method involves the computation of the underlying deterministic center manifold followed by a naive replacement of the stochastic term. The second method allows one to more accurately describe the stochastic effects and involves the derivation of a normal form coordinate transform that is used to find the stochastic center manifold. The results of both methods are used along with the path integral formalism of large fluctuation theory to predict the escape rate from one basin of attraction to another. The general theory is applied to the example of a surface flow described by a generic, singularly perturbed, damped, nonlinear oscillator with additive, Gaussian noise. We show how both nonlinear reduction methods compare in escape rate scaling. Additionally, the center manifolds are shown to predict high prehistory probability regions of escape. The theoretical results are confirmed using numerical computation of the mean escape time and escape prehistory, and we briefly discuss the extension of the theory to stochastic control.

  2. Mars atmospheric escape constrained using MAVEN IUVS coronal observations

    NASA Astrophysics Data System (ADS)

    Chaffin, Michael S.; Deighan, Justin; Chaufray, Jean-Yves; Jain, Sonal; Stewart, Ian; McClintock, Bill; Crismani, Matteo; Stiepen, Arnaud; Holsclaw, Greg; Clarke, John; Montmessin, Franck; Eparvier, Frank; Thiemann, Ed; Chamberlain, Phil; Schneider, Nick; Jakosky, Bruce

    2015-11-01

    Every planetary atmosphere is capped by a corona: an extended, extremely tenuous region where collisions are negligible and particles follow ballistic trajectories. At Mars, the corona is especially extended due to the low gravity of the planet, and a large number of coronal particles are on escaping trajectories. Such escape has played a critical role in the history of the Mars system, likely removing a substantial fraction of the water initially present on the planet, but the mechanism and magnitude of this escape remains poorly constrained. Currently in orbit at Mars, MAVEN's Imaging Ultraviolet Spectrograph (IUVS) is mapping the distribution of oxygen and hydrogen above 200 km at a high spatial and temporal cadence, revealing a dynamic corona in unprecedented detail. Results will be presented demonstrating that the H in the corona is not spherically symmetric in its distribution, and can potentially be used as a tracer of thermospheric general circulation; and that non-thermal "hot" O (in contrast with more spatially confined "cold" thermal O) is ionospherically sourced with a characteristic energy of 1.1 eV and responds to solar EUV forcing. These results will be interpreted in terms of their impact on our current understanding of how atmospheric escape operates today. We will also discuss how these processes may have acted in the past to deplete Mars' initial water inventory, potentially altering the redox balance of the planet and atmosphere through differential escape of H and O.

  3. Immunosuppressive cells in tumor immune escape and metastasis.

    PubMed

    Liu, Yang; Cao, Xuetao

    2016-05-01

    Tumor immune escape and the initiation of metastasis are critical steps in malignant progression of tumors and have been implicated in the failure of some clinical cancer immunotherapy. Tumors develop numerous strategies to escape immune surveillance or metastasize: Tumors not only modulate the recruitment and expansion of immunosuppressive cell populations to develop the tumor microenvironment or pre-metastatic niche but also switch the phenotype and function of normal immune cells from a potentially tumor-reactive state to a tumor-promoting state. Immunosuppressive cells facilitate tumor immune escape by inhibiting antitumor immune responses and furthermore promote tumor metastasis by inducing immunosuppression, promoting tumor cell invasion and intravasation, establishing a pre-metastatic niche, facilitating epithelial-mesenchymal transition, and inducing angiogenesis at primary tumor or metastatic sites. Numerous translational studies indicate that it is possible to inhibit tumor immune escape and prevent tumor metastasis by blocking immunosuppressive cells and eliminating immunosuppressive mechanisms that are induced by either immunosuppressive cells or tumor cells. Furthermore, many clinical trials targeting immunosuppressive cells have also achieved good outcome. In this review, we focus on the underlying mechanisms of immunosuppressive cells in promoting tumor immune escape and metastasis, discuss our current understanding of the interactions between immunosuppressive cells and tumor cells in the tumor microenvironment, and suggest future research directions as well as potential clinical strategies in cancer immunotherapy. PMID:26689709

  4. Single-File Escape of Colloidal Particles from Microfluidic Channels

    NASA Astrophysics Data System (ADS)

    Locatelli, Emanuele; Pierno, Matteo; Baldovin, Fulvio; Orlandini, Enzo; Tan, Yizhou; Pagliara, Stefano

    2016-07-01

    Single-file diffusion is a ubiquitous physical process exploited by living and synthetic systems to exchange molecules with their environment. It is paramount to quantify the escape time needed for single files of particles to exit from constraining synthetic channels and biological pores. This quantity depends on complex cooperative effects, whose predominance can only be established through a strict comparison between theory and experiments. By using colloidal particles, optical manipulation, microfluidics, digital microscopy, and theoretical analysis we uncover the self-similar character of the escape process and provide closed-formula evaluations of the escape time. We find that the escape time scales inversely with the diffusion coefficient of the last particle to leave the channel. Importantly, we find that at the investigated microscale, bias forces as tiny as 10-15 N determine the magnitude of the escape time by drastically reducing interparticle collisions. Our findings provide crucial guidelines to optimize the design of micro- and nanodevices for a variety of applications including drug delivery, particle filtering, and transport in geometrical constrictions.

  5. MAVEN measurements of photochemical escape of oxygen from the Martian atmosphere

    NASA Astrophysics Data System (ADS)

    Lillis, R. J.; Deighan, J.; Fox, J. L.; Bougher, S. W.; Cravens, T. E.; Lee, Y.; Mahaffy, P. R.; Benna, M.; Elrod, M. K.; Andersson, L.; McFadden, J.

    2015-10-01

    One of the primary goals of the Mars Atmosphere and Volatile Evolution Mission (MAVEN) mission is to characterize rates of atmospheric escape at the present epoch and relate those escape rates to solar drivers [1]. One of the major escape processes is known as photochemical escape, which is broadly defined as a process by which a) an exothermic reaction in the atmosphere/ionosphere results in an upward-traveling neutral particle whose velocity exceeds planetary escape velocity and b) the particle is not prevented from escaping through any subsequent collisions[2].At Mars, photochemical escape of oxygen is expected to be a significant channel for atmospheric escape, particularly in the early solar system when extreme ultraviolet (EUV) fluxes were much higher[3]. Thus characterizing this escape process is central to understanding the role escape to space has played in Mars' climate evolution.

  6. Accuracy of nonmolecular identification of growth-hormone- transgenic coho salmon after simulated escape.

    PubMed

    SundströM, L F; Lõhmus, M; Devlin, R H

    2015-09-01

    Concerns with transgenic animals include the potential ecological risks associated with release or escape to the natural environment, and a critical requirement for assessment of ecological effects is the ability to distinguish transgenic animals from wild type. Here, we explore geometric morphometrics (GeoM) and human expertise to distinguish growth-hormone-transgenic coho salmon (Oncorhynchus kisutch) specimens from wild type. First, we simulated an escape of 3-month-old hatchery-reared wild-type and transgenic fish to an artificial stream, and recaptured them at the time of seaward migration at an age of 13 months. Second, we reared fish in the stream from first-feeding fry until an age of 13 months, thereby simulating fish arising from a successful spawn in the wild of an escaped hatchery-reared transgenic fish. All fish were then assessed from 'photographs by visual identification (VID) by local staff and by GeoM based on 13 morphological landmarks. A leave-one-out discriminant analysis of GeoM data had on average 86% (72-100% for individual groups) accuracy in assigning the correct genotypes, whereas the human experts were correct, on average, in only 49% of cases (range of 18-100% for individual fish groups). However, serious errors (i.e., classifying transgenic specimens as wild type) occurred for 7% (GeoM) and 67% (VID) of transgenic fish, and all of these incorrect assignments arose with fish reared in the stream from the first-feeding stage. The results show that we presently lack the skills of visually distinguishing transgenic coho salmon from wild type with a high level of accuracy, but that further development-of GeoM methods could be useful in identifying second-generation,fish from nature as a nonmolecular approach. PMID:26552269

  7. Atmospheric escape and solar wind precipitation - a comparison between Mars and Venus

    NASA Astrophysics Data System (ADS)

    Stenberg, Gabriella; Nilsson, Hans; Barabash, Stas; Holmström, Mats; Futaana, Yoshifumi

    Mars and Venus both have atmospheres but both lack a substantial intrinsic magnetic field. Hence, their interaction with the solar wind is similar. Due to currents set up in the ionospheres the interplanetary magnetic field embedded in the solar wind drapes around the planets forming induced magnetospheres. The plasma instrument packages ASPERA-3 and ASPERA-4 on the two spacecraft Mars Express and Venus Express are very similar and invite to a comparison between the two plasma environments. In this study we used the Ion Mass Analyser (IMA) on both spacecraft to investigate both the atmospheric escape (outflow) from the two planets and the solar wind precipitation onto the upper atmospheres (inflow). We focus on the differences between the two planets. We look at the average morphology of the outflow and find that on Venus the heavy ion escape in more confined inside the induced magnetosphere boundary (IMB) compared to Mars. Comparing the temperatures of the escaping planetary ions and we note that the colder population we see on Mars is absent on Venus. We continue by investigating the average flow directions of heavy ions and protons and conclude that in the tail there is a clear difference. On Venus ions move towards the tail center while they flow more in the anti-sunward direction on Mars. For the protons the situation is the opposite: On Venus they move mainly anti-sunward and on Mars towards the tail center. Studying the inflow we conclude that on Mars we regularly observe precipitating solar wind ions (H (+) and He (2+) ) inside the IMB, while on Venus no precipitating alpha-particles have been detected and only a few cases of solar wind proton precipitation.

  8. Coexisting chaotic and periodic dynamics in clock escapements.

    PubMed

    Moon, Francis C; Stiefel, Preston D

    2006-09-15

    This paper addresses the nature of noise in machines. As a concrete example, we examine the dynamics of clock escapements from experimental, historical and analytical points of view. Experiments on two escapement mechanisms from the Reuleaux kinematic collection at Cornell University are used to illustrate chaotic-like noise in clocks. These vibrations coexist with the periodic dynamics of the balance wheel or pendulum. A mathematical model is presented that shows how self-generated chaos in clocks can break the dry friction in the gear train. This model is shown to exhibit a strange attractor in the structural vibration of the clock. The internal feedback between the oscillator and the escapement structure is similar to anti-control of chaos models. PMID:16893802

  9. Neural Circuits Underlying Visually Evoked Escapes in Larval Zebrafish.

    PubMed

    Dunn, Timothy W; Gebhardt, Christoph; Naumann, Eva A; Riegler, Clemens; Ahrens, Misha B; Engert, Florian; Del Bene, Filippo

    2016-02-01

    Escape behaviors deliver organisms away from imminent catastrophe. Here, we characterize behavioral responses of freely swimming larval zebrafish to looming visual stimuli simulating predators. We report that the visual system alone can recruit lateralized, rapid escape motor programs, similar to those elicited by mechanosensory modalities. Two-photon calcium imaging of retino-recipient midbrain regions isolated the optic tectum as an important center processing looming stimuli, with ensemble activity encoding the critical image size determining escape latency. Furthermore, we describe activity in retinal ganglion cell terminals and superficial inhibitory interneurons in the tectum during looming and propose a model for how temporal dynamics in tectal periventricular neurons might arise from computations between these two fundamental constituents. Finally, laser ablations of hindbrain circuitry confirmed that visual and mechanosensory modalities share the same premotor output network. We establish a circuit for the processing of aversive stimuli in the context of an innate visual behavior. PMID:26804997

  10. Fractal templates in the escape dynamics of trapped ultracold atoms

    SciTech Connect

    Mitchell, Kevin A.; Steck, Daniel A.

    2007-09-15

    We consider the dynamic escape of a small packet of ultracold atoms launched from within an optical dipole trap. Based on a theoretical analysis of the underlying nonlinear dynamics, we predict that fractal behavior can be seen in experimental escape data. These data can be collected by measuring the time-dependent escape rate for packets launched over a range of angles. This fractal pattern is particularly well resolved below the Bose-Einstein transition temperature - a direct result of the extreme phase-space localization of the condensate. We predict that several self-similar layers of this novel fractal should be measurable, and we explain how this fractal pattern can be predicted and analyzed with recently developed techniques in symbolic dynamics.

  11. Leaflet escape in a revised Edwards-Duromedics mitral prosthesis.

    PubMed

    Mert, Murat; Ozkara, Ahmet; Hatemi, AliCan

    2003-07-01

    The original Duromedics-Edwards bileaflet valve was withdrawn from the market in 1988 after 12 reports of leaflet escape. The leaflet was modified by the manufacturer, and the revised Edwards-Duromedics and Edwards TEKNA valves were introduced in 1990 and 1993, respectively. However, problems of leaflet escape have now been reported with the new models. A case is reported of sudden leaflet fracture of a revised Duromedics mitral valve 86 months after implantation; this was managed successfully by emergency replacement with a St. Jude Medical mechanical prosthesis. The fracture had occurred transversely, with the two fragments embolizing bilaterally to the right common iliac and left external iliac arteries. In the absence of an exact diagnosis, but with a high index of suspicion, the key to survival of patients with leaflet escape is immediate reoperation. PMID:12918855

  12. Group nightmares about escape from ex-homeland.

    PubMed

    Cernovsky, Z

    1990-09-01

    Escape nightmares (recurrent nightmares about re-escaping ex-homeland) were studied via a 79-item questionnaire administered to 83 Czechoslovak refugees who were living in Switzerland. The key features of the nightmare were not related significantly to the refugees' age, gender, occupation, or educational level. Further analyses dealt with mutual relationships of the various reported aspects of the escape nightmares. The reports of dreaming about arrival in the ex-homeland by a "mistake," such as boarding a wrong airplane (i.e., a Freudian parapraxis), were associated with higher levels of (subsequent) dream anxiety, with waking up due to mounting dream tension, and with the dreamer not knowing at first upon awakening whether he was now in the free world or elsewhere. PMID:2246363

  13. Behavior of Ants Escaping from a Single-Exit Room

    PubMed Central

    Wang, Shujie; Lv, Wei; Song, Weiguo

    2015-01-01

    To study the rules of ant behavior and group-formation phenomena, we examined the behaviors of Camponotus japonicus, a species of large ant, in a range of situations. For these experiments, ants were placed inside a rectangular chamber with a single exit that also contained a filter paper soaked in citronella oil, a powerful repellent. The ants formed several groups as they moved toward the exit to escape. We measured the time intervals between individual escapes in six versions of the experiment, each containing an exit of a different width, to quantify the movement of the groups. As the ants exited the chamber, the time intervals between individual escapes changed and the frequency distribution of the time intervals exhibited exponential decay. We also investigated the relationship between the number of ants in a group and the group flow rate. PMID:26125191

  14. Kramers escape of a self-propelled particle

    NASA Astrophysics Data System (ADS)

    Geiseler, Alexander; Hänggi, Peter; Schmid, Gerhard

    2016-08-01

    We investigate the escape rate of an overdamped, self-propelled spherical Brownian particle on a surface from a metastable potential well. Within a modeling in terms of a 1D constant speed of the particle's active dynamics we consider the associated rate using both numerical and analytical approaches. Regarding the properties of the stationary state in the potential well, two major timescales exist, each governing the translational and the rotational dynamics of the particle, respectively. The particle radius is identified to present the essential quantity in charge of regulating the ratio between those timescales. For very small and very large particle radii, approximate analytic expressions for the particle's escape rate can be derived, which, within their respective range of validity, compare favorably with the precise escape numerics of the underlying full two-dimensional Fokker-Planck description.

  15. Solution-processed flexible planar perovskite solar cells: A strategy to enhance efficiency by controlling the ZnO electron transfer layer, PbI2 phase, and CH3NH3PbI3 morphologies

    NASA Astrophysics Data System (ADS)

    Jung, Kyungeun; Lee, Jeongwon; Kim, Joosun; Chae, Weon-Sik; Lee, Man-Jong

    2016-08-01

    This paper reports a synergistic strategy to enhance the power conversion efficiency (PCE) of flexible planar perovskite solar cells (PSCs) by controlling the thickness of the ZnO electron transport layer (ETL), PbI2 phase, and size/morphology of the perovskite (MAPbI3) absorber layer. To optimize the size/morphology of MAPbI3 via a two-step spin coating process, various volumes of CH3NH3I precursor solutions with a constant concentration were continuously coated, which greatly affected the grain growth condition of the MAPbI3. In addition, the remnant PbI2 phase in the MAPbI3, which acted as a recombination barrier, was simultaneously controlled. This strategic method to synergistically combine the major factors affecting the final PCE resulted in the best efficiency of 12.3%, which is the highest efficiency among ZnO-ETL-based flexible planar PSCs to date.

  16. SOYUZ escape trajectory analysis from Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Heck, Michael L.

    1993-01-01

    It has been proposed to utilize the Russian built SOYUZ as an assured crew return vehicle (ACRV) for Space Station Freedom. Three departure directions (nadir, zenith, minus velocity) are evaluated to determine escape path clearances. In addition, the effects of the following parameters were also evaluated: delta-V magnitude, configuration dependent ballistic coefficients, atmospheric density, Freedom attitude control, and canted docking adaptors. The primary factor influencing the escape trajectory was station contingency attitude rate. The nadir and zenith departures were preferable to minus velocity. The impact of atmospheric density and relative ballistic coefficients was minimal.

  17. Exploring the Escape of Hydrogen Ionizing Photons from Local Galaxies

    NASA Astrophysics Data System (ADS)

    Davis, Jesse A.; Rosenberg, Jessica L.; Venkatesan, Aparna; Cannon, John M.; Salzer, John Joseph

    2016-01-01

    Low-mass galaxies dominate the universe by number and many of these systems have large star formation rates per unit mass. Measurements of the escape fraction of ionizing radiation from dwarf galaxies are an important input to cosmological simulations and theoretical studies but are largely unconstrained by observations. As a result, the role of low-mass galaxies in cosmological reionization and the ionization state of the intergalactic medium (IGM) at high and low redshifts remains poorly understood. Here we study a sample of 18 star-forming galaxies (12 from the Lyman-Alpha Reference Sample, Rivera-Thorsen et al. 2015; 6 from the KISS sample, Salzer et al. 2001), some of which are low-mass systems (10 with M_star < 5 x 10^9 M_sun). All of the sample galaxies were observed in the FUV with the HST/COS spectrograph and these measurements were used to derive limits on their escaping Lyman-alpha radiation (Rivera-Thorsen et al. 2015, Wofford et al. 2013). Using the numerical radiative transfer simulations of Yajima et al. 2014, we relate the escape of Lyman-alpha radiation to limits on the fraction of escaping H-ionizing radiation from these galaxies. This correlation is stronger for low-redshift galaxies (Yajima et al. 2014) and these galaxies are more accessible observationally for these studies. Although the Yajima et al. (2014) study focuses on high-mass galaxies, we derive tentative limits on the escape fraction for H-ionizing radiation for all of the galaxies in this sample. From our analysis, we find escape fractions of less than 5% in all but two extreme cases where the escape fractions are greater than 14%. Our sample averaged escape fraction is insufficient for what reionization requires, although our values are likely to be lower limits and the two outliers are two of the lowest mass systems from the LARS sample. We discuss future directions, including further modeling of the radiative transfer and the galaxy's physical conditions, to better understand the

  18. Rapid endosomal escape of prickly nanodiamonds: implications for gene delivery

    NASA Astrophysics Data System (ADS)

    Chu, Zhiqin; Miu, Kaikei; Lung, Pingsai; Zhang, Silu; Zhao, Saisai; Chang, Huan-Cheng; Lin, Ge; Li, Quan

    2015-06-01

    The prickly nanodiamonds easily entered cells via endocytosis followed by unique intracellular translocation characteristics—quick endosomal escape followed by stable residence in cytoplasm. Endosomal membrane rupturing is identified as the major route of nanodiamonds’ escaping the vesicle confinement and to the cytoplasm. Little cytotoxicity is observed to associate with the nanodiamonds’ cytosolic release. Such features enable its application for gene delivery, which requires both effective cellular uptake and cytosolic release of the gene. Taking green fluorescent protein gene as an example, we demonstrate the successful cytosolic delivery and expression of such a gene using the prickly nanodiamonds as carrier.

  19. Water-escape velocities in jumping blacktip sharks.

    PubMed

    Brunnschweiler, Juerg M

    2005-09-22

    This paper describes the first determination of water-escape velocities in free-ranging sharks. Two approximations are used to estimate the final swimming speed at the moment of penetrating the water surface. Blacktip sharks were videotaped from below the surface and parameters were estimated by analysing the sequences frame by frame. Water-escape velocities averaged 6.3 ms(-1). These velocities for blacktip sharks seem accurate and are similar to estimates obtained for other shark species of similar size. PMID:16849197

  20. Linking vertebral number to performance of aquatic escape responses in the axolotl (Ambystoma mexicanum).

    PubMed

    Ackerly, Kerri L; Ward, Andrea B

    2015-12-01

    Environmental conditions during early development in ectothermic vertebrates can lead to variation in vertebral number among individuals of the same species. It is often seen that individuals of a species raised at cooler temperatures have more vertebrae than individuals raised at warmer temperatures, although the functional consequences of this variation in vertebral number on swimming performance are relatively unclear. To investigate this relationship, we tested how vertebral number in axolotls (Ambystoma mexicanum) affected performance of aquatic escape responses (C-starts). Axolotls were reared at four temperatures (12-24°C) encompassing their natural thermal range and then transitioned to a mean temperature (18°C) three months before C-starts were recorded. Our results showed variation in vertebral number, but that variation was not significantly affected by developmental temperature. C-start performance among axolotls was significantly correlated with caudal vertebral number, and individuals with more caudal vertebrae were able to achieve greater curvature more quickly during their responses than individuals with fewer vertebrae. However, our results show that these individuals did not achieve greater displacements or velocities, and that developmental temperature did not have any effect on C-start performance. We highlight that the most important aspects of escape swim performance (i.e., how far individuals get from a threat and how quickly they move the most important parts of the body away from that threat) are consistent across individuals regardless of developmental temperature and morphological variation. PMID:26489369

  1. Intracellular Staphylococcus aureus Escapes the Endosome and Induces Apoptosis in Epithelial Cells

    PubMed Central

    Bayles, Kenneth W.; Wesson, Carla A.; Liou, Linda E.; Fox, Lawrence K.; Bohach, Gregory A.; Trumble, W. R.

    1998-01-01

    We examined the invasion of an established bovine mammary epithelial cell line (MAC-T) by a Staphylococcus aureus mastitis isolate to study the potential role of intracellular survival in the persistence of staphylococcal infections. S. aureus cells displayed dose-dependent invasion of MAC-T cells and intracellular survival. An electron microscopic examination of infected cells indicated that the bacteria induced internalization via a mechanism involving membrane pseudopod formation and then escaped into the cytoplasm following lysis of the endosomal membrane. Two hours after the internalization of S. aureus, MAC-T cells exhibited detachment from the matrix, rounding, a mottled cell membrane, and vacuolization of the cytoplasm, all of which are indicative of cells undergoing programmed cell death (apoptosis). By 18 h, the majority of the MAC-T cell population exhibited an apoptotic morphology. Other evidence for apoptosis was the generation of MAC-T cell DNA fragments differing in size by increments of approximately 180 bp and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling of the fragmented nuclear DNA of the infected host cells. These results demonstrate that after internalization S. aureus escapes the endosome and induces apoptosis in nonprofessional phagocytes. PMID:9423876

  2. QUANTITATIVE MORPHOLOGY

    EPA Science Inventory

    Abstract: In toxicology, the role of quantitative assessment of brain morphology can be understood in the context of two types of treatment-related alterations. One type of alteration is specifically associated with treatment and is not observed in control animals. Measurement ...

  3. Comparative Studies of the Density and Thermal Structure and Associated Escape Rates of Pluto and Triton's Atmospheres

    NASA Astrophysics Data System (ADS)

    Zhu, X.; Strobel, D. F.

    2015-12-01

    Both atmospheres of Pluto and Neptune's largest satellite Triton have cold surfaces with similar surface gravities and atmospheric surface pressures. We have updated the Zhu et al. Icarus 228, 301, 2014) model for Pluto's atmosphere by adopting Voigt line profiles in the radiation code with the latest spectral database and extended the model to Triton's atmosphere by including additional parameterized heating due to the magnetospheric electron energy deposition. Various numerical experiments have been conducted to investigate parameter sensitivities on the atmospheric escape rate for an icy planetary body similar to Pluto or Triton. It is found that the escape rate is sensitive to the planetary surface gravity due to a cumulative effect of the density variation with the altitude that significantly changes the atmospheric scale height at the exobase together with the exobase altitude. The atmospheric thermal structure near the exobase is sensitive to the atmospheric escape rate only when it is significantly greater than 1.0e26 molecules per second above which an enhanced escape rate induced by various diabatic energy sources leads to a stronger radial velocity that adiabatically cools the atmosphere to a lower temperature.

  4. Sesquinary catenae on the Martian satellite Phobos from reaccretion of escaping ejecta.

    PubMed

    Nayak, M; Asphaug, E

    2016-01-01

    The Martian satellite Phobos is criss-crossed by linear grooves and crater chains whose origin is unexplained. Anomalous grooves are relatively young, and crosscut tidally predicted stress fields as Phobos spirals towards Mars. Here we report strong correspondence between these anomalous features and reaccretion patterns of sesquinary ejecta from impacts on Phobos. Escaping ejecta persistently imprint Phobos with linear, low-velocity crater chains (catenae) that match the geometry and morphology of prominent features that do not fit the tidal model. We prove that these cannot be older than Phobos' current orbit inside Mars' Roche limit. Distinctive reimpact patterns allow sesquinary craters to be traced back to their source, for the first time across any planetary body, creating a novel way to probe planetary surface characteristics. For example, we show that catena-producing craters likely formed in the gravity regime, providing constraints on the ejecta velocity field and knowledge of source crater material properties. PMID:27575002

  5. Speed kills: ineffective avian escape responses to oncoming vehicles

    PubMed Central

    DeVault, Travis L.; Blackwell, Bradley F.; Seamans, Thomas W.; Lima, Steven L.; Fernández-Juricic, Esteban

    2015-01-01

    Animal–vehicle collisions cause high levels of vertebrate mortality worldwide, and what goes wrong when animals fail to escape and ultimately collide with vehicles is not well understood. We investigated alert and escape behaviours of captive brown-headed cowbirds (Molothrus ater) in response to virtual vehicle approaches of different sizes and at speeds ranging from 60 to 360 km h−1. Alert and flight initiation distances remained similar across vehicle speeds, and accordingly, alert and flight initiation times decreased at higher vehicle speeds. Thus, avoidance behaviours in cowbirds appeared to be based on distance rather than time available for escape, particularly at 60–150 km h−1; however, at higher speeds (more than or equal to 180 km h−1) no trend in response behaviour was discernible. As vehicle speed increased, cowbirds did not have enough time to assess the approaching vehicle, and cowbirds generally did not initiate flight with enough time to avoid collision when vehicle speed exceeded 120 km h−1. Although potentially effective for evading predators, the decision-making process used by cowbirds in our study appears maladaptive in the context of avoiding fast-moving vehicles. Our methodological approach and findings provide a framework to assess how novel management strategies could affect escape rules, and the sensory and cognitive abilities animals use to avoid vehicle collisions. PMID:25567648

  6. 6. UNDERGROUND FIRING CONTROL ROOM, INTERIOR. Looking southeast to escape ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. UNDERGROUND FIRING CONTROL ROOM, INTERIOR. Looking southeast to escape tunnel. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Firing Control Building, Test Area 1-100, northeast end of Test Area 1-100 Road, Boron, Kern County, CA

  7. 12. CLOSEUP VIEW FROM NORTHWEST, SHOWING DETAILS OF FIRE ESCAPE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. CLOSE-UP VIEW FROM NORTHWEST, SHOWING DETAILS OF FIRE ESCAPE NEAR CORNER OF MILLS HALL MAIN WING NORTH WALL, AND MILLS HALL NORTH WING WEST WALL. - Mills Hall, Mills College, 5000 MacArthur Boulevard, Oakland, Alameda County, CA

  8. Entrapment and Escape: Inventional Metaphors in Ronald Reagan's Economic Rhetoric.

    ERIC Educational Resources Information Center

    Aden, Roger C.

    1989-01-01

    Examines Ronald Reagan's use of inventional metaphors of entrapment and escape, language meshing with the American public's perception of the economy in the early 1980s. Notes that Reagan's reliance on inventional metaphors produced a rigidity in his approach to new situations, ultimately damaging his ability to lead the nation. (MM)

  9. Enuresis Control through Fading, Escape, and Avoidance Training.

    ERIC Educational Resources Information Center

    Hansen, Gordon D.

    1979-01-01

    A twin signal device that provides both escape and avoidance conditioning in enuresis control was documented with case studies of two enuretic children (eight and nine years old). In addition, a technique of fading as an adjunct to the process was utilized with one subject. (Author/SBH)

  10. Speed kills: ineffective avian escape responses to oncoming vehicles.

    PubMed

    DeVault, Travis L; Blackwell, Bradley F; Seamans, Thomas W; Lima, Steven L; Fernández-Juricic, Esteban

    2015-02-22

    Animal-vehicle collisions cause high levels of vertebrate mortality worldwide, and what goes wrong when animals fail to escape and ultimately collide with vehicles is not well understood. We investigated alert and escape behaviours of captive brown-headed cowbirds (Molothrus ater) in response to virtual vehicle approaches of different sizes and at speeds ranging from 60 to 360 km h(-1). Alert and flight initiation distances remained similar across vehicle speeds, and accordingly, alert and flight initiation times decreased at higher vehicle speeds. Thus, avoidance behaviours in cowbirds appeared to be based on distance rather than time available for escape, particularly at 60-150 km h(-1); however, at higher speeds (more than or equal to 180 km h(-1)) no trend in response behaviour was discernible. As vehicle speed increased, cowbirds did not have enough time to assess the approaching vehicle, and cowbirds generally did not initiate flight with enough time to avoid collision when vehicle speed exceeded 120 km h(-1). Although potentially effective for evading predators, the decision-making process used by cowbirds in our study appears maladaptive in the context of avoiding fast-moving vehicles. Our methodological approach and findings provide a framework to assess how novel management strategies could affect escape rules, and the sensory and cognitive abilities animals use to avoid vehicle collisions. PMID:25567648

  11. Hepatitis B escape mutants in Scottish blood donors.

    PubMed

    Larralde, Osmany; Dow, Brian; Jarvis, Lisa; Davidson, Fiona; Petrik, Juraj

    2013-06-01

    Hepatitis B virus (HBV) remains as the viral infection with the highest risk of transmission by transfusion. This risk is associated with window period donations, occult HBV infection (OBI) and the emergence of escape mutants, which render blood donations false negative for hepatitis B surface antigen (HBsAg) serological testing. A retrospective study was conducted to gain insights into the molecular epidemiology of HBV escape mutants in Scottish blood donors. The criterion for selection was HBV positivity either by serology or nucleic acid testing (NAT). HBsAg detection was compared across several commercial immunoassays. The full length S gene from plasma samples was PCR amplified, cloned and expressed in HepG2 cells. Eight samples showed HBsAg discordant results, while 5 OBI samples were found. Four escape mutants, containing missense mutations in the S gene, are described here. These mutations impaired HBsAg detection both from HBV infected plasma samples and from recombinant proteins derived from its infected donors. Phylogenetic analysis showed that most of the mutants were clustered in the genotype D and were closely related to strains from Asia and the Middle East. We report here a proline substitution, outside the major hydrophilic region, that impaired HBsAg detection in vivo and in vitro, warning about the risk for the emergence of vaccine escape mutants with mutations outside the major neutralisation site. PMID:23274404

  12. The magnetic anomalies significantrly reduce the Martian ionospheric escape rate

    NASA Astrophysics Data System (ADS)

    Fedorov, A.; Barabash, S.; Sauvaud, J.-A.

    2012-09-01

    Looking forward to the MAVEN mission, it seems very useful to return to Mars Express data to refresh an important problem of Martian atmosphere escape: what role the crustal magnetic field may play in this process? There are several publications on this topic with completely opposite conclusions. The last hybrid simulations show that the magnetic anomalies significantly reduce the ion loss rate during solar minimum. We are trying to use a new approach to Mars Express IMA data analysis to check how it is possible. On the base of a statistical study of the ion distributions in the Martian magnetotail we show that the characteristic accelerated ions are not associated with the magnetic anomalies but only with interplanetary magnetic field clock angle. Moreover the magnetic anomalies screen and deviate the escaping flow leading to reducing of the total loss rate. We have calculated a "quasiexperimental" escaping rate in an assumption of the total absence of the magnetic anomalies. We are comparing this value with a real measured escape rate.

  13. Overcoming Antigen Escape with CAR T-cell Therapy.

    PubMed

    Jackson, Hollie J; Brentjens, Renier J

    2015-12-01

    Sotillo and colleagues describe the molecular events associated with apparent loss of target antigen expression following CAR T-cell therapy. We propose that broader immune activation is required to prevent outgrowth of tumor antigen escape variants following targeted therapies. PMID:26637657

  14. Escaping Embarrassment: Face-Work in the Rap Cipher

    ERIC Educational Resources Information Center

    Lee, Jooyoung

    2009-01-01

    How do individuals escape embarrassing moments in interaction? Drawing from ethnographic fieldwork, in-depth interviews, and video recordings of weekly street corner ciphers (impromptu rap sessions), this paper expands Goffman's theory of defensive and protective face-work. The findings reveal formulaic and indirect dimensions of face-work. First,…

  15. Spatial and Nonspatial Escape Strategies in the Barnes Maze

    ERIC Educational Resources Information Center

    Harrison, Fiona E.; Reiserer, Randall S.; Tomarken, Andrew J.; McDonald, Michael P.

    2006-01-01

    The Barnes maze is a spatial memory task that requires subjects to learn the position of a hole that can be used to escape the brightly lit, open surface of the maze. Two experiments assessed the relative importance of spatial (extra-maze) versus proximal visible cues in solving the maze. In Experiment 1, four groups of mice were trained either…

  16. Magnetic buoyancy and the escape of magnetic fields from stars

    NASA Astrophysics Data System (ADS)

    Parker, E. N.

    1984-06-01

    Magnetic buoyancy causes the azimuthal magnetic fields of stars to rise rapidly to the surface, from where they are generally assumed to escape freely into space. However, a closer look at the problem reveals the simple fact that disengagement of the field from the gas, and escape into space, require a convoluted field configuration, producing neutral point reconnection of the flux in the tenuous gas above the surface of the star. Only that flux which reconnects can escape. Recent observations of the magnetic fields emerging through the surface of the Sun show that even at sunspot maximum the gaps in longitude between bipolar magnetic regions are so wide as to limit severely the reconnection between regions. We suggest from the observations that no more than perhaps 3% of the flux that is observed to emerge through the surface is able to reconnect and escape. Hence the surface of the Sun approximates to an impenetrable barrier rather than an open surface, with quantitative consequences for theoretical dynamo models. Recent observations of the retraction of bipolar fields at the end of their appearance at the surface suggest active dynamical control by the convection beneath the surface.

  17. 46 CFR 167.20-10 - Means of escape.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Means of escape. 167.20-10 Section 167.20-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Hull Requirements, Construction and Arrangement of Nautical School Ships § 167.20-10 Means of...

  18. 46 CFR 167.20-10 - Means of escape.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Means of escape. 167.20-10 Section 167.20-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Hull Requirements, Construction and Arrangement of Nautical School Ships § 167.20-10 Means of...

  19. 46 CFR 167.20-10 - Means of escape.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Means of escape. 167.20-10 Section 167.20-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Hull Requirements, Construction and Arrangement of Nautical School Ships § 167.20-10 Means of...

  20. 46 CFR 167.20-10 - Means of escape.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Means of escape. 167.20-10 Section 167.20-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Hull Requirements, Construction and Arrangement of Nautical School Ships § 167.20-10 Means of...

  1. 46 CFR 167.20-10 - Means of escape.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Means of escape. 167.20-10 Section 167.20-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Hull Requirements, Construction and Arrangement of Nautical School Ships § 167.20-10 Means of...

  2. 46 CFR 108.445 - Alarm and means of escape.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Alarm and means of escape. 108.445 Section 108.445 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems §...

  3. 30 CFR 57.11053 - Escape and evacuation plans.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Escape and evacuation plans. 57.11053 Section 57.11053 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Travelways and Escapeways Escapeways-Underground Only §...

  4. 2. WEST REAR, WITH PORTHOLE ESCAPE HATCH ABOVE ENTRY DOOR. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. WEST REAR, WITH PORTHOLE ESCAPE HATCH ABOVE ENTRY DOOR. - Edwards Air Force Base, South Base Sled Track, Firing & Control Blockhouse for 10,000-foot Track, South of Sled Track at midpoint of 20,000-foot track, Lancaster, Los Angeles County, CA

  5. [Effectiveness of methotrexate for the escape by salazosulfapyridine].

    PubMed

    Kawasaki, Yoichi; Moriyama, Masahiro; Shibata, Kazuhiko; Gomita, Yutaka

    2005-07-01

    Although disease modifying anti-rheumatic drugs (DMARDs) are used in the treatment of rheumatoid arthritis (RA), the selection of agents in the case of relapse (escape phenomenon) lacks clear-cut standards. We compared the effectiveness in a salazosulfapyridine and then methotrexate (SASP-->MTX) group with that in the mothotrexate (SASP+MTX) group after escape phenomenon expression in C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) data. Outpatients of the Matsubara Mayflower Hospital with a history of DMARD administration during the 4 years prior to May 2003 were studied. The CRP level in the SASP-->MTX group (n=8) after the escape phenomenon expression showed a decline after 3 months, but no decline was seen even after 3 months the two in the CRP level in the SASP+MTX group (n=10). However, the difference between groups was not significant. The fluctuation in ESR was similar to that in CRP. However, ESR was significantly lower in the SASP-->MTX group 20 weeks after escape phenomenon expression. In evaluating treatment effectiveness after escape phenomenon expression in each group, SASP-->MTX was effective in 10 and SASP+MTX in 7 patients. Side effects necessitated cessation of treatment in 1 patient in the SASP-->MTX group. Treatment continued in 4 patients in the SASP-->MTX group and 2 in the SASP+MTX group, even though side effects occurred. It should be borne in mind that combination therapy often has greater clinical benefit than single agent therapy but not always. PMID:15997214

  6. In situ and remote measurements of ions escaping from Venus

    NASA Astrophysics Data System (ADS)

    Kollmann, P.; Brandt, P. C.

    2013-12-01

    Venus is thought to lose a large fraction of its atmosphere in the form ions, mainly via pickup. The relative loss rate of the exosphere as neutrals or ions is not known, nor is the flux of escaping ions well constrained. Knowledge of these processes will shed light on the role an intrinsic magnetic field has in atmospheric erosion. We use the complementary in-situ plasma and energetic neutral atom (ENA) measurements from the Venus Express (VEx) spacecraft in order to constrain the ion escape. VEx completed about 2500 orbits to date and reached altitudes as low as 200km. The ASPERA/IMA instrument measured directional proton and oxygen ion spectra in the 10eV to 40keV range. We bin the data accumulated over the mission in space and bulk flow direction, yielding a direct measure of the local ion escape flux. While such in-situ measurements provide data without ambiguity, they are limited by the orbital coverage. This is why we include remote ENA measurements from the ASPERA/NPD (100eV to 10keV) instrument to our study. ENAs are created when escaping ions charge exchange with the high atmosphere atoms or molecules. We have done an exhaustive analysis of the data, excluding time periods of instrument contamination. Most ENA emission originates from low altitudes above Venus' limb. These measurements will be compared with the in-situ data, which allows constraining the atmospheric density at high altitudes. Interestingly, there are also ENA emissions from other directions, which were not sampled in-situ. This allows us to put a lower limit to the escape from these regions.

  7. Hydrodynamic Vs. Evaporative Escape: Exoplanets And The Ex-planet

    NASA Astrophysics Data System (ADS)

    Johnson, Robert E.; Volkov, A.; Erwin, J.; Tucker, O.

    2012-10-01

    In studies of exoplanets, early terrestrial atmospheres, and even Pluto’s atmosphere it has been convenient to use the equations of fluid dynamics, rather than a more detailed molecular kinetic model, to describe the loss of atmosphere over long time periods. However, the boundary conditions in the far field are always problematic. Therefore, it is assumed that the upward flow either goes through a sonic point or that the loss is Jeans-like at the exobase. The so-called energy limited loss rate, an approximation obtained from the fluid equations, is also often used. Therefore, in a series of molecular kinetic studies of Pluto’s atmosphere, we confirmed that the energy limited loss rate gives a reasonable estimate over a broad range of solar heating conditions, but the flow did not go sonic although the Jeans parameter was relatively small and the escape rates large (Tucker et al. 2012; Erwin et al. 2012). Because the nature of the flow, and not just escape rate, determines the structure of the upper atmosphere, and because the simulation results scale (Volkov et al. 2011), we developed a criterion for determining when the flow associated with atmospheric escape goes sonic or remains Jeans-like. This criterion is verified in a series of kinetic simulations performed using a range of heating rates. In this talk we will discuss the validity of the energy limited escape rate and the nature of the criterion with applications to escape from a variety of exoplanet atmospheres. Erwin, J. et al. Icarus submitted (2012); Tucker, O.J.et al. Icarus 217, 408 (2012); Volkov et al. ApJLetts 729,L24 (2012)

  8. Spatial and nonspatial escape strategies in the Barnes maze.

    PubMed

    Harrison, Fiona E; Reiserer, Randall S; Tomarken, Andrew J; McDonald, Michael P

    2006-01-01

    The Barnes maze is a spatial memory task that requires subjects to learn the position of a hole that can be used to escape the brightly lit, open surface of the maze. Two experiments assessed the relative importance of spatial (extra-maze) versus proximal visible cues in solving the maze. In Experiment 1, four groups of mice were trained either with or without a discrete visible cue marking the location of the escape hole, which was either in a fixed or variable location across trials. In Experiment 2, all mice were trained with the discrete visible cue marking the target hole location. Two groups were identical to the cued-target groups from Experiment 1, with either fixed or variable escape locations. For these mice, the discrete cue either was the sole predictor of the target location or was perfectly confounded with the spatial extra-maze cues. The third group also used a cued variable target, but a curtain was drawn around the maze to prevent the use of spatial cues to guide navigation. Probe trials with all escape holes blocked were conducted to dissociate the use of spatial and discrete proximal cues. We conclude that the Barnes maze can be solved efficiently using spatial, visual cue, or serial-search strategies. However, mice showed a strong preference for using the distal room cues, even when a discrete visible cue clearly marked the escape location. Importantly, these data show that the cued-target control version of the Barnes maze as typically conducted does not dissociate spatial from nonspatial abilities. PMID:17101874

  9. Erratum: The Escape of Ionizing Photons from the Galaxy

    NASA Astrophysics Data System (ADS)

    Bland-Hawthorn, J.; Maloney, P. R.

    2001-04-01

    In the Letter ``The Escape of Ionizing Photons from the Galaxy'' by J. Bland-Hawthorn & P. R. Maloney (ApJ, 510, L33 [1999]), there is an error in Figure 4 that bears on the derived escape fraction of ionizing photons from star-forming regions in the Galaxy's disk. For the quoted distance (55 kpc) of the Magellanic Stream, the predicted emission measures should be reduced by a factor of (20/55)2. Our derived value of fesc~6%, the escape fraction normal to the disk, must be raised by the inverse of this factor, which makes it unlikely that the Stream Hα arises from UV produced by the Galaxy's young stellar disk. This is exacerbated by new Hα observations that show that the Stream is even brighter than originally thought (Weiner, Vogel, & Williams 2001). Bland-Hawthorn & Putman (2001) discuss possible sources of ionization for the Magellanic Stream. We note with interest that high-velocity clouds have now been detected in Hα (e.g., Tufte, Reynolds, & Haffner 1998). Some of these have well-established distance bounds. Bland-Hawthorn & Putman (2001) and Weiner et al. (2001) find that the observed Hα is roughly consistent with fesc~5%, although the present uncertainties are about a factor of 2. It should be noted that fesc refers to the escape fraction normal to the disk. The escape fraction averaged over 4π sr, fesc, is about a factor of 3 smaller and depends on the details of the opacity model (Bland-Hawthorn 1998, Appendix 1). The present uncertainties on fesc for the Galaxy mean that we cannot determine whether star-forming regions dominate the extragalactic UV background (cf. Shull et al. 1999).

  10. Recording Field Potentials From Zebrafish Larvae During Escape Responses

    PubMed Central

    Monesson-Olson, Bryan D.; Troconis, Eileen L.; Trapani, Josef G.

    2014-01-01

    Among vertebrates, startle responses are a ubiquitous method for alerting, and avoiding or escaping from alarming or dangerous stimuli. In zebrafish larvae, fast escape behavior is easily evoked through either acoustic or tactile stimuli. For example, a light touch to the head will excite trigeminal neurons that in turn excite a large reticulospinal neuron in the hindbrain called the Mauthner cell (M-cell). The M-cell action potential then travels down the contralateral trunk of the larva exciting motoneurons, which subsequently excite the entire axial musculature, producing a large amplitude body bend away from the source of the stimulus. This body conformation is known as the “C-bend” due to the shape of the larva during the behavior. As a result of the semi-synchronized activation of the M-cell, the population of motor neurons, and the axial trunk muscles, a large field potential is generated and can be recorded from free-swimming or fixed-position larvae. Undergraduate laboratories that record field potentials during escape responses in larval zebrafish are relatively simple to setup and allow students to observe and study the escape reflex circuit. Furthermore, by testing hypotheses, analyzing data and writing journal-style laboratory reports, students have multiple opportunities to learn about many neuroscience topics including vertebrate reflexes; sensory transduction; synaptic-, neuro-, and muscle-physiology; the M-cell mediated escape response; and the zebrafish as a model organism. Here, we detail the equipment, software, and recording setup necessary to observe field potentials in an undergraduate teaching lab. Additionally, we discuss potential advanced laboratory exercises and pedagogical outcomes. Finally, we note possible low-cost alternatives for recording field potentials. PMID:25565920

  11. Enhanced Performance of Polyurethane Hybrid Membranes for CO2 Separation by Incorporating Graphene Oxide: The Relationship between Membrane Performance and Morphology of Graphene Oxide.

    PubMed

    Wang, Ting; Zhao, Li; Shen, Jiang-nan; Wu, Li-guang; Van der Bruggen, Bart

    2015-07-01

    Polyurethane hybrid membranes containing graphene oxide (GO) with different morphologies were prepared by in situ polymerization. The separation of CO2/N2 gas mixtures was studied using these novel membranes. The results from the morphology characterization of GO samples indicated that the oxidation process in the improved Hummers method introduced oxygenated functional groups into graphite, making graphite powder exfoliate into GO nanosheets. The surface defects on the GO sheets increased when oxidation increased due to the introduction of more oxygenated functional groups. Both the increase in oxygenated functional groups on the GO surface and the decrease in the number of GO layers leads to a better distribution of GO in the polymer matrix, increasing thermal stability and gas separation performance of membranes. The addition of excess oxidant destroyed the structure of GO sheets and forms structural defects, which depressed the separation performance of membranes. The hybrid membranes containing well-distributed GO showed higher permeability and permeability selectivity for the CO2. The formation of GO aggregates in the hybrid membranes depressed the membrane performance at a high content of GO. PMID:26024066

  12. Enhancement of adhesive strength of hydroxyapatite films on Ti-29Nb-13Ta-4.6Zr by surface morphology control.

    PubMed

    Hieda, Junko; Niinomi, Mitsuo; Nakai, Masaaki; Cho, Ken; Gozawa, Tatsuya; Katsui, Hirokazu; Tu, Rong; Goto, Takashi

    2013-02-01

    Hydroxyapatite (HAp) films were deposited on a β-type titanium alloy, Ti-29Nb-13Ta-4.6Zr (TNTZ), by metal organic chemical vapor deposition (MOCVD) in order to improve its hard-tissue compatibility. The surface morphologies of TNTZ substrates were changed by acid treatments and mechanical polishing prior to the HAp film deposition. The adhesive strength of the HAp films formed on TNTZ substrates treated with an HF solution increased to twice that of the HAp film deposited on a TNTZ substrate with a mirror-like finish. Complex microstructures with deeply etched grain boundaries, formed on the TNTZ substrates after immersion in the HF solution, were responsible for the increase in the adhesive strength of the HAp film caused by an interlocking effect. The HAp films on TNTZ substrates treated with a H(2)SO(4) solution exhibited lower adhesive strength than HAp films on TNTZ substrates treated with HF solution, regardless of the surface roughness of the substrates. Additionally, acid treatments using HNO(3) and H(2)O(2) solutions did not change the surface morphologies of the TNTZ substrates. The complex microstructures with deeply etched grain boundaries and nanosized asperities formed on the TNTZ substrates are important factors in the improvement of the adhesive strengths of HAp films deposited on TNTZ substrates. PMID:23274485

  13. Effect of different processes and Ti/Zn molar ratios on the structure, morphology, and enhanced photoelectrochemical and photocatalytic performance of Ti3+ self-doped titanium-zinc hybrid oxides

    NASA Astrophysics Data System (ADS)

    Fu, Rongrong; Wang, Qingyao; Gao, Shanmin; Wang, Zeyan; Huang, Baibiao; Dai, Ying; Lu, Jun

    2015-07-01

    Ti3+ self-doped titanium-zinc hybrid oxides with different phase compositions and morphologies were successfully synthesized using Zn powder as the reductant and Zn source by a chemical-reduction precipitation method with subsequent thermal treatment. The fabricated Ti3+ self-doped TiO2(A)/TiO2(R), TiO2(A)/TiO2(R)/ZnTiO3, and TiO2(A)/ZnO heterojunctions were characterized by X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflectance spectroscopy. The effects of various Ti/Zn molar ratios and preparation processes on the structural, morphological, optical, photocurrent and photocatalytic properties of the resultant samples were investigated systematically. Results reveal that Ti3+ self-doping enhances the photoabsorption capability of titanium-zinc hybrid oxides in the visible-light region. Moreover, different processes and Ti/Zn molar ratios play great influences on the structure, morphology, optical, photocurrent and photocatalytic properties of the final products. Ti3+ self-doped titanium-zinc hybrid oxides exhibit excellent photocurrent and photocatalytic activity than pure TiO2 and ZnTiO3 under visible-light irradiation (λ ≥ 400 nm). The most active Ti3+ self-doped titanium-zinc hybrid oxides photoanode presents significantly improved water splitting performance. The synergistic effect between the Ti3+ self-doped and heterojunctions is responsible for the enhanced performance of these materials.

  14. Effect of different processes and Ti/Zn molar ratios on the structure, morphology, and enhanced photoelectrochemical and photocatalytic performance of Ti3+ self-doped titanium–zinc hybrid oxides

    SciTech Connect

    Fu, Rongrong; Wang, Qingyao; Gao, shanmin; Wang, Zeyan; Huang, Baibiao; Dai, Ying; Lu, Jun

    2015-07-01

    Ti3+ self-doped titanium–zinc hybrid oxides with different phase compositions and morphologies were successfully synthesized using Zn powder as the reductant and Zn source by a chemical-reduction precipitation method with subsequent thermal treatment. The fabricated Ti3+ self-doped TiO2(A)/TiO2(R), TiO2(A)/TiO2(R)/ZnTiO3, and TiO2(A)/ZnO heterojunctions were characterized by X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and UV–Vis diffuse reflectance spectroscopy. The effects of various Ti/Zn molar ratios and preparation processes on the structural, morphological, optical, photocurrent and photocatalytic properties of the resultant samples were investigated systematically. Results reveal that Ti3+ self-doping enhances the photoabsorption capability of titanium–zinc hybrid oxides in the visible-light region. Moreover, different processes and Ti/Zn molar ratios play great influences on the structure, morphology, optical, photocurrent and photocatalytic properties of the final products. Ti3+ self-doped titanium–zinc hybrid oxides exhibit excellent photocurrent and photocatalytic activity than pure TiO2 and ZnTiO3 under visible-light irradiation (λ ≥ 400 nm). The most active Ti3+ self-doped titanium–zinc hybrid oxides photoanode presents significantly improved water splitting performance. The synergistic effect between the Ti3+ self-doped and heterojunctions is responsible for the enhanced performance of these materials.

  15. Martian oxygen escape rate as a function of upstream solar wind density: results from a hybrid model

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Dong; Holmstroem, Mats

    2015-04-01

    We investigate the dependence of oxygen escape rate at Mars on the proton density of the upstream solar wind using a parallel hybrid model. The model handles ions as particles and electrons as a massless, neutralizing fluid. The model currently contains three ion species: protons and alpha particles from the solar wind, and a heavy ion species from Martian ionosphere, which is atomic oxygen ion in this study. The interplanetary magnetic field is set to follow the typical Parker spiral at Mars with an intensity of 3 nT. The upstream solar wind velocity is 400 km/s, along the -x axis. We vary the upstream proton density from np =0.2 cm-3 to np =25 cm-3 while keeping all other parameters fixed. The oxygen escape rate Q shows a negative correlation with np within the range 0.5 < np < 3.5 cm-3. The ratio between the maximum and the minimum escape rates is ~3. Outside this density range the correlation is positive. This anticorrelation between Q and np within the most probable range of the upstream proton density, and the relative variation of Q are consistent with the latest experimental investigations on the same topic using the ion data from MEX/ASPERA-3 [Ramstad et al., 2014]. We also investigated cases under 500 km/s upstream velocity and CO2+ ions, the results are qualitatively consistent. The modeled magnetospheric morphology reveals two competing escape channels that depend differently on the upstream density. The channel including the pickup ions and the plasma sheet intensifies with increasing upstream density. The channel including the lobe region and the boundary layer intensifies with decreasing upstream density due to a more expanded induced magnetosphere. The latter dominates the ion escape when the density is lower than ~2.5 cm-3. We also investigate the momentum transfer from the shocked solar wind to the induced magnetosphere. References: R. Ramstad, S. Barabash, Y. Futaana, H. Nilsson, M. Holmstroem [2014]: The Martian escape rate as a function of

  16. Evidence for local regulatory control of escape from imprinted X chromosome inactivation.

    PubMed

    Mugford, Joshua W; Starmer, Joshua; Williams, Rex L; Calabrese, J Mauro; Mieczkowski, Piotr; Yee, Della; Magnuson, Terry

    2014-06-01

    X chromosome inactivation (XCI) is an epigenetic process that almost completely inactivates one of two X chromosomes in somatic cells of mammalian females. A few genes are known to escape XCI and the mechanism for this escape remains unclear. Here, using mouse trophoblast stem (TS) cells, we address whether particular chromosomal interactions facilitate escape from imprinted XCI. We demonstrate that promoters of genes escaping XCI do not congregate to any particular region of the genome in TS cells. Further, the escape status of a gene was uncorrelated with the types of genomic features and gene activity located in contacted regions. Our results suggest that genes escaping imprinted XCI do so by using the same regulatory sequences as their expressed alleles on the active X chromosome. We suggest a model where regulatory control of escape from imprinted XCI is mediated by genomic elements located in close linear proximity to escaping genes. PMID:24653000

  17. Evidence for Local Regulatory Control of Escape from Imprinted X Chromosome Inactivation

    PubMed Central

    Mugford, Joshua W.; Starmer, Joshua; Williams, Rex L.; Calabrese, J. Mauro; Mieczkowski, Piotr; Yee, Della; Magnuson, Terry

    2014-01-01

    X chromosome inactivation (XCI) is an epigenetic process that almost completely inactivates one of two X chromosomes in somatic cells of mammalian females. A few genes are known to escape XCI and the mechanism for this escape remains unclear. Here, using mouse trophoblast stem (TS) cells, we address whether particular chromosomal interactions facilitate escape from imprinted XCI. We demonstrate that promoters of genes escaping XCI do not congregate to any particular region of the genome in TS cells. Further, the escape status of a gene was uncorrelated with the types of genomic features and gene activity located in contacted regions. Our results suggest that genes escaping imprinted XCI do so by using the same regulatory sequences as their expressed alleles on the active X chromosome. We suggest a model where regulatory control of escape from imprinted XCI is mediated by genomic elements located in close linear proximity to escaping genes. PMID:24653000

  18. 20. DETAIL VIEW IN 18FOOT LOCK, ESCAPE TRAINING TANK, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. DETAIL VIEW IN 18-FOOT LOCK, ESCAPE TRAINING TANK, SHOWING DOOR INTO TANK AT RIGHT - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  19. Escape of heated ions upstream of quasi-parallel shocks

    NASA Technical Reports Server (NTRS)

    Edmiston, J. P.; Kennel, C. F.; Eichler, D.

    1982-01-01

    A simple theoretical criterion by which quasi-parallel and quasi-perpendicular collisionless shocks may be distinguished is proposed on the basis of an investigation of the free escape of ions from the post-shock plasma into the region upstream of a fast collisionless shock. It was determined that the accessibility of downstream ions to the upstream region depends on upstream magnetic field shock normal angle, in addition to the upstream plasma parameters, with post-shock ions escaping upstream for shock normal angles of less than 45 deg, in agreement with the observed transition between quasi-parallel and quasi-perpendicular shock structure. Upstream ion distribution functions resembling those of observed intermediate ions and beams are also calculated.

  20. Facilities and capabilities catalog for landing and escape systems

    NASA Technical Reports Server (NTRS)

    Meyerson, Robert E. (Editor)

    1992-01-01

    This catalog serves as a single source reference for designers of landing and escape systems for spacecraft, aircraft, weapons, and airdrop system. It includes those facilities which may be required by a system designer in planning a development test program for many applications. The primary objective of this catalog is to provide a means for identifying critical facilities with the U.S. which can be used for the development of landing and escape systems. A secondary objective is to provide a useful tool to the system designer for picking and choosing facilities and capabilities. The six chapters in this volume include wind tunnels, drop zones, test aircraft, fabrication facilities, design tools, and other miscellaneous facilities. A different data sheet format is used for each of the chapters which provides information on performance, location, special capabilities, and a local point of contact. All inputs were solicited from the individual facilities and have not been independently verified for accuracy.

  1. Self-organized escape of oscillator chains in nonlinear potentials.

    PubMed

    Hennig, D; Fugmann, S; Schimansky-Geier, L; Hänggi, P

    2007-10-01

    We present the noise-free escape of a chain of linearly interacting units from a metastable state over a cubic on-site potential barrier. The underlying dynamics is conservative and purely deterministic. The mutual interplay between nonlinearity and harmonic interactions causes an initially uniform lattice state to become unstable, leading to an energy redistribution with strong localization. As a result, a spontaneously emerging localized mode grows into a critical nucleus. By surpassing this transition state, the nonlinear chain manages a self-organized, deterministic barrier crossing. Most strikingly, these noise-free, collective nonlinear escape events proceed generally by far faster than transitions assisted by thermal noise when the ratio between the average energy supplied per unit in the chain and the potential barrier energy assumes small values. PMID:17994939

  2. The production and escape of nitrogen atoms on Mars

    NASA Astrophysics Data System (ADS)

    Fox, J. L.

    1993-02-01

    Updated rate coefficients and a revised ionosphere-thermosphere model are used to compute the production rates and densities of odd nitrogen species in the Martian atmosphere. Computed density profiles for N(4S), N(2D), N(2P), and NO are presented. The model NO densities are found to be about a factor of 2-3 less than those measured by the Viking 1 mass spectrometer. Revised values for the escape rates of N atoms from dissociative recombination and ionospheric reactions are also computed. Dissociative recombination is found to be comparable in importance to photodissociation at low solar activity, but it is still the most important escape mechanism for N-14 at high solar activity.

  3. Ionospheric Flow and Escape of Ions from Titan and Venus

    NASA Technical Reports Server (NTRS)

    Hartle, R. E.; Intriligator, D. S.; Grebowsky, Joseph M.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    Knowledge gained from measurements and models is used to study the high-speed plasmas interacting with the atmospheres and ionospheres of Titan and Venus. Considering the similarities of the interactions, comparative analysis is used to support the interpretations of observations made at each body. Ionospheric flow inferred to exist by analysis of measurements made from the Pioneer Venus Orbiter supports the interpretation of similar flow in the ionosphere of Titan. The concept that cold ions escape from the ionosphere of Venus is supported by the Voyager I observation that cold ions escape down the magnetic tail of Titan. Pickup O+ ion energy distributions observed at their source in the ionosheath of Venus are shown to be influenced by finite gyroradius effects. The signatures of such effects are expected to be retained as the ions move into the wakes of Titan and Venus.

  4. The production and escape of nitrogen atoms on Mars

    NASA Technical Reports Server (NTRS)

    Fox, J. L.

    1993-01-01

    Updated rate coefficients and a revised ionosphere-thermosphere model are used to compute the production rates and densities of odd nitrogen species in the Martian atmosphere. Computed density profiles for N(4S), N(2D), N(2P), and NO are presented. The model NO densities are found to be about a factor of 2-3 less than those measured by the Viking 1 mass spectrometer. Revised values for the escape rates of N atoms from dissociative recombination and ionospheric reactions are also computed. Dissociative recombination is found to be comparable in importance to photodissociation at low solar activity, but it is still the most important escape mechanism for N-14 at high solar activity.

  5. Behavioral analysis of the escape response in larval zebrafish

    NASA Astrophysics Data System (ADS)

    Feng, Ruopei; Girdhar, Kiran; Chemla, Yann; Gruebele, Martin

    The behavior of larval zebrafish is of great interest because the limited number of locomotor neurons in larval zebrafish couples with its rich repertoire of movements as a vertebrate animal. Current research uses a priori-selected parameters to describe their swimming behavior while our lab has built a parameter-free model based on singular value decomposition analysis to characterize it. Our previous work has analyzed the free swimming of larval zebrafish and presented a different picture from the current classification of larval zebrafish locomotion. Now we are extending this work to the studies of their escape response to acoustic stimulus. Analysis has shown intrinsic difference in the locomotion between escape response and free swimming.

  6. Camouflage and sabotage: tumor escape from the immune system.

    PubMed

    Poschke, Isabel; Mougiakakos, Dimitrios; Kiessling, Rolf

    2011-08-01

    The field of tumor immunology has made great progress in understanding tumor immune interactions. As a consequence a number of immuno-therapeutic approaches have been successfully introduced into the clinic and a large number of promising therapeutic strategies are investigated in ongoing clinical trials. Evaluation of anti-tumor immunity in such trials as well as in animal models has shown that tumor escape from immune recognition and tumor-mediated suppression of anti-tumor immunity can pose a significant obstacle to successful cancer therapy. Here, we review mechanisms of tumor immune escape and immune-subversion with a focus on the research interests in our laboratory: loss of MHC class I on tumor cells, increased oxidative stress, recruitment of myeloid-derived suppressor cells, and regulatory T cells. PMID:21626032

  7. Escape of Mars atmospheric carbon through time by photochemical means

    NASA Technical Reports Server (NTRS)

    Luhmann, J. G.; Kim, J.; Nagy, A. F.

    1993-01-01

    Luhmann et al. recently suggested that sputtering of the Martian atmosphere by re-entering O(+) pickup ions could have provided a significant route of escape for CO2 and its products throughout Mars' history. They estimated that the equivalent of C in an approximately 140-mbar CO2 atmosphere should have been lost this way if the Sun and solar wind evolved according to available models. Another source of escaping C (and O) that is potentially important is the dissociative recombination of ionospheric CO(+) near the exobase. We have evaluated the loss rates due to this process for 'ancient' solar EUV radiation fluxes of 1, 3, and 6 times the present flux in order to calculate the possible cumulative loss over the last 3.5 Gyr.

  8. Planetary loss from light ion escape on Venus

    NASA Technical Reports Server (NTRS)

    Hartle, R. E.; Grebowsky, J. M.

    1995-01-01

    Using Pioneer Venus data, hydrogen and deuterium ions are shown to escape from the hydrogen bulge region in the nightside ionosphere. The polarization electric field propels these light ions upward through the ionosphere and into the ion-exosphere, where H(+) and D(+) continue to be accelerated away from Venus and move into the ionotail and beyond. The vertical flow speeds of H(+) and D(+) are found to be about the same; therefore, selective escape between H(+) and D(+) is negligible for this mechanism. Present day planetary loss rates of about 8.6 x 10(exp 25)/s and 3.2 X 10(exp 23)/s were obtained for H(+) and D(+), respectively. Such rates, persisting over a few billion years, should have significantly affected the planetary water budget.

  9. Escape of Mars atmospheric carbon through time by photochemical means

    NASA Astrophysics Data System (ADS)

    Luhmann, J. G.; Kim, J.; Nagy, A. F.

    Luhmann et al. recently suggested that sputtering of the Martian atmosphere by re-entering O(+) pickup ions could have provided a significant route of escape for CO2 and its products throughout Mars' history. They estimated that the equivalent of C in an approximately 140-mbar CO2 atmosphere should have been lost this way if the Sun and solar wind evolved according to available models. Another source of escaping C (and O) that is potentially important is the dissociative recombination of ionospheric CO(+) near the exobase. We have evaluated the loss rates due to this process for 'ancient' solar EUV radiation fluxes of 1, 3, and 6 times the present flux in order to calculate the possible cumulative loss over the last 3.5 Gyr.

  10. BRAF inhibition generates a host/tumor niche that mediates therapeutic escape

    PubMed Central

    Fedorenko, Inna V.; Wargo, Jennifer A.; Flaherty, Keith T.; Messina, Jane L.; Smalley, Keiran S.M.

    2015-01-01

    The current study defines a fibroblast-derived niche that facilitates the therapeutic escape of melanoma cells from BRAF inhibition. Vemurafenib treatment led to the release of TGF-β from the melanoma cells that increased the differentiation state of the fibroblasts; an affect associated with fibronectin deposition, increase in α-smooth muscle actin (α–SMA) expression and the release of neuregulin (NRG). At the same time, vemurafenib directly activated the fibroblasts through paradoxical stimulation of the MAPK pathway, causing them to secrete hepatocyte growth factor (HGF). Treatment with the BRAF/MEK inhibitor combination reversed the release of HGF. Adhesion of melanoma cells to fibronectin was critical in amplifying the fibroblast-derived NRG and HGF-mediated PI3K/AKT survival signaling in the melanoma cells following BRAF inhibition. In co-culture studies, combination treatment with inhibitors of BRAF/MET/HER kinase was ineffective at reversing the fibroblast-mediated therapeutic escape from BRAF inhibition. Instead, it was noted that combined BRAF/PI3K inhibition overcame fibroblast-mediated drug resistance in vitro and was associated with enhanced anti-tumor effects in an in vivo xenograft model. Thus, we show melanoma cells and fibroblasts remodel their microenvironment in response to BRAF inhibition and that these adaptations allow tumor cells to evade therapy through increased PI3K/AKT survival signaling. PMID:26302068

  11. LOGIC-EMBEDDED VECTORS FOR INTRACELLULAR PARTITIONING, ENDOSOMAL ESCAPE, AND EXOCYTOSIS OF NANOPARTICLES

    PubMed Central

    Serda, Rita E.; Mack, Aaron; van de Ven, Anne; Ferrati, Silvia; Dunner, Kenneth; Godin, Biana; Chiappini, Ciro; Landry, Matthew; Brousseau, Lou; Liu, Xuewu; Bean, Andrew J.; Ferrari, Mauro

    2010-01-01

    A new generation of nanocarriers, logic-embedded vectors (LEVs), is endowed with the ability to localize components at multiple intracellular sites, creating an opportunity for synergistic control of redundant or dual-hit pathways. LEV encoding elements include size, shape, charge, and surface chemistry. In this study, LEVs consist of porous silicon nanocarriers, programmed for cellular uptake and trafficking along the endosomal pathway, and surface-tailored iron oxide nanoparticles, programmed for endosomal sorting and partitioning of particles into unique cellular locations. In the presence of persistent endosomal localization of silicon nanocarriers, amine-functionalized nanoparticles are sorted into multiple vesicular bodies that form novel membrane-bound compartments compatible with cellular secretion, while chitosan-coated nanoparticles escape from endosomes and enter the cytosol. Encapsulation within the porous silicon matrix protects these nanoparticle surface tailored-properties, enhancing endosomal escape of chitosan coated nanoparticles. Thus LEVs provide a mechanism for shielded transport of nanoparticles to the lesion, cellular manipulation at multiple levels, and a means for targeting both within and between cells. PMID:20957619

  12. BRAF Inhibition Generates a Host-Tumor Niche that Mediates Therapeutic Escape.

    PubMed

    Fedorenko, Inna V; Wargo, Jennifer A; Flaherty, Keith T; Messina, Jane L; Smalley, Keiran S M

    2015-12-01

    The current study defines a fibroblast-derived niche that facilitates the therapeutic escape of melanoma cells from BRAF inhibition. Vemurafenib treatment led to the release of transforming growth factor-β (TGF-β) from the melanoma cells that increased the differentiation state of the fibroblasts, an affect associated with fibronectin deposition, increase in α-smooth muscle actin expression, and the release of neuregulin (NRG). At the same time, vemurafenib directly activated the fibroblasts through paradoxical stimulation of the mitogen-activated protein kinase pathway, causing them to secrete hepatocyte growth factor (HGF). Treatment with the BRAF/MEK inhibitor combination reversed the release of HGF. Adhesion of melanoma cells to fibronectin was critical in amplifying the fibroblast-derived NRG- and HGF-mediated PI3K/AKT (phosphatidylinositol 3'-kinase/AKT) survival signaling in the melanoma cells following BRAF inhibition. In coculture studies, combination treatment with inhibitors of BRAF/MET/HER kinase was ineffective at reversing the fibroblast-mediated therapeutic escape from BRAF inhibition. Instead, it was noted that combined BRAF/PI3K inhibition overcame fibroblast-mediated drug resistance in vitro and was associated with enhanced antitumor effects in an in vivo xenograft model. Thus, we show that melanoma cells and fibroblasts remodel their microenvironment in response to BRAF inhibition and that these adaptations allow tumor cells to evade therapy through increased PI3K/AKT survival signaling. PMID:26302068

  13. Escaping radio emission from pulsars: Possible role of velocity shear

    SciTech Connect

    Mahajan, S.M. |; Machabeli, G.Z.; Rogava, A.D. |

    1997-01-01

    It is demonstrated that the velocity shear, intrinsic to the e{sup +}e{sup {minus}} plasma present in the pulsar magnetosphere, can efficiently convert the nonescaping longitudinal Langmuir waves (produced by some kind of a beam or stream instability) into propagating (escaping) electromagnetic waves. It is suggested that this shear induced transformation may be the basic mechanism needed for the eventual generation of the observed pulsar radio emission.

  14. Fleeing to refuge: Escape decisions in the race for life.

    PubMed

    Cooper, William E

    2016-10-01

    Economic escape theory that predicts that flight initiation distance (FID=predator-prey distance when a prey begins to flee from an approaching predator) increases as predation risk increases has been overwhelmingly supported. However, the vast majority of empirical tests have focused on effects of single predation risk factors. Even studies that have included multiple risk factors have not predicted how they jointly affect FID. I present a model that predicts joint effects of several predation risk factors that affect the outcome of a race between predator and prey to the prey's refuge. As a prey's distance to refuge and predator attack speed increase, and as the prey's location forces it to flee more toward a predator to reach refuge, FID increases. A published model proposed and experiment showed that FID is longer when prey flee directly toward than directly away from a predator to a refuge. We present a new geometric model that predicts FID for all angles between the prey's and predator's paths to refuge, distance of the prey from refuge when escape begins, predator and prey speeds, and a margin of safety allowing the prey to reach refuge before the predator. The model provides many new, testable predictions about relationships among its variables and FID. Most notably, it predicts that FID increases sigmoidally as the angle between predator and prey paths to refuge increases. Although the model is not economic (cost-benefit), we discuss its relationship to economic escape theory. PMID:27343624

  15. A Treatment Package without Escape Extinction to Address Food Selectivity.

    PubMed

    Weber, Jessica; Gutierrez, Anibal

    2015-01-01

    Feeding difficulties and feeding disorders are a commonly occurring problem for young children, particularly children with developmental delays including autism. Behavior analytic interventions for the treatment of feeding difficulties oftentimes include escape extinction as a primary component of treatment. The use of escape extinction, while effective, may be problematic as it is also associated with the emergence of challenging behavior (e.g., extinction burst). Such challenging behavior may be an acceptable side effect in treatment cases where feeding problems are severe and chronic (e.g., failure to thrive). However, in more acute cases (e.g., selective eating), the negative side effect may be unwarranted and undesired. More recent research on the behavioral treatment of food selectivity has begun to evaluate treatments for feeding difficulties that do not include escape extinction (e.g., demand fading, behavioral momentum), with some success. However, research to date reveals individual differences in responsiveness to such treatments and no clear preferable treatment has emerged. This manuscript describes a multi-component treatment package that includes shaping, sequential presentation and simultaneous presentation, for the treatment of food selectivity in four young children with developmental delays. This treatment package extends the literature on the behavioral treatment for food selectivity and offers a multi-component treatment protocol that may be clinically applicable across a range of treatment scenarios and settings. PMID:26325108

  16. Changes in escape fire occurrence rate under climate change

    NASA Astrophysics Data System (ADS)

    Wotton, B. M.; Gowman, L.

    2009-04-01

    There has been considerable study of the general impacts of climate change on the circumpolar boreal forest, and in particular on potential changes in the level of forest fire activity. Recent studies have shown that overall fire occurrence (from both human and lightning causes) is expected to increase across the boreal forest in Canada (and in many other regions of the world) under the changed fire weather expected to accompany climate change over the 21st Century. In terms of fire on a managed forest landscape, it is not so much the total number of fires occurring but that very small number of fires that escape initial attack that have the greatest impact in terms of area burned or loss of values. We developed models of the probability of fire occurrences escaping initial attack based on weather-based outputs of the Canadian FWI System and general fire cause type. Using these with outputs from recent GCM scenarios from the Hadley and Canadian Climate Centre we find an overall increase in expected fire escapes as well across the forested region of Canada. Increases in some areas can be higher that the increases expected in total number of fires. Assumptions going into this analysis are that fire management agency effort in terms of response time and suppression resource levels remains constant over time.

  17. Transitions between three swimming gaits in Paramecium escape.

    PubMed

    Hamel, Amandine; Fisch, Cathy; Combettes, Laurent; Dupuis-Williams, Pascale; Baroud, Charles N

    2011-05-01

    Paramecium and other protists are able to swim at velocities reaching several times their body size per second by beating their cilia in an organized fashion. The cilia beat in an asymmetric stroke, which breaks the time reversal symmetry of small scale flows. Here we show that Paramecium uses three different swimming gaits to escape from an aggression, applied in the form of a focused laser heating. For a weak aggression, normal swimming is sufficient and produces a steady swimming velocity. As the heating amplitude is increased, a higher acceleration and faster swimming are achieved through synchronized beating of the cilia, which begin by producing oscillating swimming velocities and later give way to the usual gait. Finally, escape from a life-threatening aggression is achieved by a "jumping" gait, which does not rely on the cilia but is achieved through the explosive release of a group of trichocysts in the direction of the hot spot. Measurements through high-speed video explain the role of trichocysts in defending against aggressions while showing unexpected transitions in the swimming of microorganisms. These measurements also demonstrate that Paramecium optimizes its escape pattern by taking advantage of its inertia. PMID:21464291

  18. Self-assembling dual component nanoparticles with endosomal escape capability.

    PubMed

    Wong, Adelene S M; Mann, Sarah K; Czuba, Ewa; Sahut, Audrey; Liu, Haiyin; Suekama, Tiffany C; Bickerton, Tayla; Johnston, Angus P R; Such, Georgina K

    2015-04-21

    This study reports a novel nanoparticle system with simple and modular one-step assembly, which can respond intelligently to biologically relevant variations in pH. Importantly, these particles also show the ability to induce escape from the endosomal/lysosomal compartments of the cell, which is integral to the design of efficient polymeric delivery systems. The nanoparticles were formed by the nanoprecipitation of pH-responsive poly(2-(diethylamino)ethyl methacrylate) (PDEAEMA) and poly(2-(diethylamino)ethyl methacrylate)-b-poly(ethylene glycol) (PDEAEMA-b-PEG). Rhodamine B octadecyl ester perchlorate was successfully encapsulated within the hydrophobic core of the nanoparticle upon nanoprecipitation into PBS at pH 8. These particles disassembled when the pH was reduced below 6.8 at 37 °C. Cellular experiments showed the successful uptake of the nanoparticles into the endosomal/lysosomal compartments of 3T3 fibroblast cells. The ability to induce escape from the endosomes was demonstrated by the use of calcein, a membrane-impermeable fluorophore. The modular nature of these particles combined with promising endosomal escape capabilities make these dual component PDEAEMA nanoparticles useful for drug and gene delivery applications. PMID:25731820

  19. 46 CFR 108.155 - Restrictions on means of escape utilized.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Restrictions on means of escape utilized. 108.155 Section 108.155 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE... means of escape utilized. A required means of escape may not be a vertical ladder or deck...

  20. Escape Performance Following Exposure to Inescapable Shock: Deficits in Motor Response Maintenance

    ERIC Educational Resources Information Center

    Anisman, Hymie; And Others

    1978-01-01

    A series of 13 experiments employing mice systematically investigated shock-elicited activity in a circular field and escape performance in a shuttle box following exposure to either escapable or inescapable shock. Results show that escape interference induced by inescapable shock may be comfortably interpreted in terms of a decreased tendency for…

  1. 78 FR 13811 - Safety Zone; Underwater Escape Event, Seaport, East River, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-01

    ... Federal Register on November 9, 2011 (76 FR 69614). ] Table 1 1. Merlini Underwater Escape Launch site... SECURITY Coast Guard 33 CFR Part 165 Safety Zone; Underwater Escape Event, Seaport, East River, NY AGENCY... escape artist event and associated pyrotechnics display. During the enforcement period, no person...

  2. Escape Geography--Developing Middle-School Students' Sense of Place.

    ERIC Educational Resources Information Center

    Allen, Rodney F.; Molina, Laurie E. S.

    1992-01-01

    Suggests a social studies unit on escaping geography. Examines escape from dangerous places including an airliner, hotel fire, or war zone or from a social situation such as a boring speech or party. Describes historic escapes such as the Underground Railroad and the Berlin Wall. Lists learning strategies such as awareness of space and cognitive…

  3. 78 FR 54585 - Safety Zone; Escape to Miami Triathlon, Biscayne Bay, Miami, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-05

    .... SUPPLEMENTARY INFORMATION: Table of Acronyms DHS Department of Homeland Security FR Federal Register NPRM Notice... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Escape to Miami Triathlon, Biscayne Bay... during the Publix Escape to Miami Triathlon. The Publix Escape to Miami Triathlon is scheduled to...

  4. Green Revolution Trees: Semidwarfism Transgenes Modify Gibberellins, Promote Root Growth, Enhance Morphological Diversity, and Reduce Competitiveness in Hybrid Poplar1[C][W][OA

    PubMed Central

    Elias, Ani A.; Busov, Victor B.; Kosola, Kevin R.; Ma, Cathleen; Etherington, Elizabeth; Shevchenko, Olga; Gandhi, Harish; Pearce, David W.; Rood, Stewart B.; Strauss, Steven H.

    2012-01-01

    Semidwarfism has been used extensively in row crops and horticulture to promote yield, reduce lodging, and improve harvest index, and it might have similar benefits for trees for short-rotation forestry or energy plantations, reclamation, phytoremediation, or other applications. We studied the effects of the dominant semidwarfism transgenes GA Insensitive (GAI) and Repressor of GAI-Like, which affect gibberellin (GA) action, and the GA catabolic gene, GA 2-oxidase, in nursery beds and in 2-year-old high-density stands of hybrid poplar (Populus tremula × Populus alba). Twenty-nine traits were analyzed, including measures of growth, morphology, and physiology. Endogenous GA levels were modified in most transgenic events; GA20 and GA8, in particular, had strong inverse associations with tree height. Nearly all measured traits varied significantly among genotypes, and several traits interacted with planting density, including aboveground biomass, root-shoot ratio, root fraction, branch angle, and crown depth. Semidwarfism promoted biomass allocation to roots over shoots and substantially increased rooting efficiency with most genes tested. The increased root proportion and increased leaf chlorophyll levels were associated with changes in leaf carbon isotope discrimination, indicating altered water use efficiency. Semidwarf trees had dramatically reduced growth when in direct competition with wild-type trees, supporting the hypothesis that semidwarfism genes could be effective tools to mitigate the spread of exotic, hybrid, and transgenic plants in wild and feral populations. PMID:22904164

  5. Facile synthesis of morphology-controlled Co3O4 nanostructures through solvothermal method with enhanced catalytic activity for H2O2 electroreduction

    NASA Astrophysics Data System (ADS)

    Cheng, Kui; Cao, Dianxue; Yang, Fan; Xu, Yang; Sun, Gaohui; Ye, Ke; Yin, Jinling; Wang, Guiling

    2014-05-01

    Hydrogen peroxide (H2O2) replaced oxygen (O2) as oxidant has been widely investigated due to its faster reduction kinetics, easier storage and handling than gaseous oxygen. The main challenge of using H2O2 as oxidant is the chemical decomposition. In this article, by using different C2H5OH/H2O volume ratio as the solvent, Co3O4 with different morphologies (nanosheet, nanowire, ultrafine nanowire net, nanobelts, and honeycomb-like) direct growth on Ni foam are synthesized via a simple solvothermal method for the first time. Results show that the introduction of ethanol could obviously improve the catalytic performance toward H2O2 electroreduction. The sample prepared in the solution with the C2H5OH/H2O volume ratio of 1:2 shows the best catalytic performance among the five samples and a current density of 0.214 A cm-2 is observed in 3.0 mol L-1 KOH + 0.5 mol L-1 H2O2 at -0.4 V (vs. Ag/AgCl KCl), which is much larger than that on the other metal oxides reported previously, almost comparable with the precious metals. This electrode of Co3O4 directly grown on Ni foam has superior mass transport property, which combining with its low-cost and facile preparation, make it a promising electrode for fuel cell using H2O2 as the oxidant.

  6. Hierarchical mesoporous In2O3 with enhanced CO sensing and photocatalytic performance: distinct morphologies of In(OH)3 via self assembly coupled in situ solid-solid transformation.

    PubMed

    Shanmugasundaram, Arunkumar; Basak, Pratyay; Manorama, Sunkara V; Krishna, Binoy; Sanyadanam, Srinath

    2015-04-15

    The present investigation details our interesting findings and insights into the evolution of exotic hierarchical superstructures of In(OH)3 under solvothermal conditions. Controlled variation of reaction parameters such as, reactant concentration, solvent system, crystal structure modifiers, water content along with temperature and time, yielded remarkable architectures. Diverse morphologies achieved for the first time includes (i) raspberry-like hollow spheres, (ii) nanosheet-assembled spheres, (iii) nanoparticle-assembled spheres, (iv) nanocube-assembled hollow spheres, (v) yolk-like spheres, (vi) solid spheres, (vii) nanosheets/flakes, and (viii) ultrafine nanosheets. A plausible mechanism is proposed based on the evidence gathered from a comprehensive analysis aided by electron microscopy and X-ray diffraction studies. Key stages of morphological evolution could be discerned and rationally correlated with nucleation, growth, oriented attachment, and Ostwald ripening mediated by dissolution-redeposition mechanism coupled with solid evacuation. Remarkably phase-pure bcc-In2O3 with retention of precursor morphology could be realized postcalcination at 400 °C, which underlines the advantage of this strategy. Two typical hierarchical structures (raspberry-like hollow spheres and nanoparticles assembled spheres) were investigated for their gas sensing and photocatalytic performances to highlight the advantages offered by nanostructuring. An impressive sensor response, Smax ≈ 7340 and 4055, respectively for the two structures along with appreciably fast response/recovery times over a wide concentration range and as low as 1 ppm exhibits the superior sensitivity toward carbon monoxide (CO). When compared to commercial In2O3, estimated rate constant indicates ∼3-4 times enhancement in photocatalytic activity of the substrates toward Rhodamine-B. PMID:25798883

  7. Controlling Solid-Gas Reactions at Nanoscale for Enhanced Thin Film Morphologies and Device Performances in Solution-Processed Cu2ZnSn(S,Se)4 Solar Cells.

    PubMed

    Jiang, Chengyang; Hsieh, Yao-Tsung; Zhao, Hongxiang; Zhou, Huanping; Yang, Yang

    2015-09-01

    Using Cu2ZnSn(S,Se)4 (CZTSSe) as a model system, we demonstrate the kinetic control of solid-gas reactions at nanoscale by manipulating the surface chemistry of both sol-gel nanoparticles (NPs) and colloidal nanocrystals (NCs). Specifically, we first identify that thiourea (commonly used as sulfur source in sol-gel processes for metal sulfides) can transform into melamine upon film formation, which serves as surface ligands for as-formed Cu2ZnSnS4 (CZTS) NPs. We further reveal that the presence of these surface ligands can significantly affect the outcome of the solid-gas reactions, which enables us to effectively control the selenization process during the fabrication of CZTSSe solar cells and achieve optimal film morphologies (continuous large grains) by fine-tuning the amount of surface ligands used. Such enhancement leads to better light absorption and allows us to achieve 6.5% efficiency from CZTSSe solar cells processed via a sol-gel process using nontoxic, low boiling point mixed solvents. We believe our discovery that the ligand of particulate precursors can significantly affect solid-gas reactions is universal to solid-state chemistry and will boost further research in both understanding the fundamentals of solid-state reactions at nanoscale and taking advantage of these reactions to fabricate crystalline thin film semiconductors with better morphologies and performances. PMID:26281006

  8. Enhanced upconversion of NaYF₄:Er³⁺/Yb³⁺ phosphors prepared via the rapid microwave-assisted hydrothermal route at low temperature: phase and morphology control.

    PubMed

    Som, Sudipta; Das, Subrata; Yang, Che-Yuan; Lu, Chung-Hsin

    2016-02-01

    Monophasic NaYF4:Er(3+)/Yb(3+) crystals were synthesized via the microwave-assisted hydrothermal route at 180°C. Microwave heating during the hydrothermal process substantially reduces the duration of reaction for the formation of cubic-NaYF4:Er(3+)/Yb(3+) nanocrystals from 6 h to 30 min. As the duration of the reaction increases, cubic-NaYF4:Er(3+)/Yb(3+) nanocrystals are transformed to uniform hexagonal-NaYF4:Er(3+)/Yb(3+) microprisms because of the enhanced reaction kinetics. Bright upconverted emission from the NaYF4:Er(3+)/Yb(3+) crystal, obtained by the efficient two-photon excitation, is related to crystal structure and morphology. The hexagonal microprisms exhibit better upconversion and are employed in security applications. PMID:26907398

  9. Lunar mission safety and rescue: Escape/rescue analysis and plan

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The results are presented of the technical analysis of escape/rescue/survival situations, crew survival techniques, alternate escape/rescue approaches and vehicles, and the advantages and disadvantages of each for advanced lunar exploration. Candidate escape/rescue guidelines are proposed and elements of a rescue plan developed. The areas of discussions include the following: lunar arrival/departure operations, lunar orbiter operations, lunar surface operations, lunar surface base escape/rescue analysis, lander tug location operations, portable airlock, emergency pressure suit, and the effects of no orbiting lunar station, no lunar surface base, and no foreign lunar orbit/surface operations on the escape/rescue plan.

  10. Enhancement of median nerve regeneration by mesenchymal stem cells engraftment in an absorbable conduit: improvement of peripheral nerve morphology with enlargement of somatosensory cortical representation

    PubMed Central

    Oliveira, Julia T.; Bittencourt-Navarrete, Ruben Ernesto; de Almeida, Fernanda M.; Tonda-Turo, Chiara; Martinez, Ana Maria B.; Franca, João G.

    2014-01-01

    We studied the morphology and the cortical representation of the median nerve (MN), 10 weeks after a transection immediately followed by treatment with tubulization using a polycaprolactone (PCL) conduit with or without bone marrow-derived mesenchymal stem cell (MSC) transplant. In order to characterize the cutaneous representation of MN inputs in primary somatosensory cortex (S1), electrophysiological cortical mapping of the somatosensory representation of the forepaw and adjacent body parts was performed after acute lesion of all brachial plexus nerves, except for the MN. This was performed in ten adult male Wistar rats randomly assigned in three groups: MN Intact (n = 4), PCL-Only (n = 3), and PCL+MSC (n = 3). Ten weeks before mapping procedures in animals from PCL-Only and PCL+MSC groups, animal were subjected to MN transection with removal of a 4-mm-long segment, immediately followed by suturing a PCL conduit to the nerve stumps with (PCL+MSC group) or without (PCL-Only group) injection of MSC into the conduit. After mapping the representation of the MN in S1, animals had a segment of the regenerated nerve processed for light and transmission electron microscopy. For histomorphometric analysis of the nerve segment, sample size was increased to five animals per experimental group. The PCL+MSC group presented a higher number of myelinated fibers and a larger cortical representation of MN inputs in S1 (3,383 ± 390 fibers; 2.3 mm2, respectively) than the PCL-Only group (2,226 ± 575 fibers; 1.6 mm2). In conclusion, MSC-based therapy associated with PCL conduits can improve MN regeneration. This treatment seems to rescue the nerve representation in S1, thus minimizing the stabilization of new representations of adjacent body parts in regions previously responsive to the MN. PMID:25360086

  11. Modified surface morphology of a novel Ti-24Nb-4Zr-7.9Sn titanium alloy via anodic oxidation for enhanced interfacial biocompatibility and osseointegration.

    PubMed

    Li, Xiang; Chen, Tao; Hu, Jing; Li, Shujun; Zou, Qin; Li, Yunfeng; Jiang, Nan; Li, Hui; Li, Jihua

    2016-08-01

    The Ti-24Nb-4Zr-7.9Sn titanium alloy (Ti2448) has shown potential for use in biomedical implants, because this alloy possesses several important mechanical properties, such as a high fracture strength, low elastic modulus, and good corrosion resistance. In this study, we aimed to produce a hierarchical nanostructure on the surface of Ti2448 to endow this alloy with favorable biological properties. The chemical composition of Ti2448 (64.0wt% Ti, 23.9wt% Nb, 3.9wt% Zr, and 8.1wt% Sn) gives this material electrochemical properties that lead to the generation of topographical features under standard anodic oxidation. We characterized the surface properties of pure Ti (Ti), nanotube-Ti (NT), Ti2448, and nanotube-Ti2448 (NTi2448) based on surface morphology (scanning electron microscopy and atomic force microscopy), chemical and phase compositions (X-ray diffraction and X-ray photoelectron spectroscopy), and wettability (water contact angle). We evaluated the biocompatibility and osteointegration of implant surfaces by observing the behavior of bone marrow stromal cells (BMSCs) cultured on the surfaces in vitro and conducting histological analysis after in vivo implantation of the modified materials. Our results showed that a hierarchical structure with a nanoscale bone-like layer was achieved along with nanotube formation on the Ti2448 surface. The surface characterization data suggested the superior biocompatibility of the NTi2448 surface in comparison with the Ti, NT, and Ti2448 surfaces. Moreover, the NTi2448 surface showed better biocompatibility for BMSCs in vitro and better osteointegration in vivo. Based on these results, we conclude that anodic oxidation facilitated the formation of a nanoscale bone-like structure and nanotubes on Ti2448. Unlike the modified titanium surfaces developed to date, the NTi2448 surface, which presents both mechanical compatibility and bioactivity, offers excellent biocompatibility and osteointegration, suggesting its potential for

  12. Channel Morphology and Bed Sediment Characteristics Before and After Habitat Enhancement Activities in the Uridil Property, Platte River, Nebraska, Water Years 2005-2008

    USGS Publications Warehouse

    Kinzel, Paul J.

    2009-01-01

    Fluvial geomorphic data were collected by the United States Geological Survey from July 2005 to June 2008 (a time period within water years 2005 to 2008) to monitor the effects of habitat enhancement activities conducted in the Platte River Whooping Crane Maintenance Trust's Uridil Property, located along the Platte River, Nebraska. The activities involved the removal of vegetation and sand from the tops of high permanent islands and the placement of the sand into the active river channel. This strategy was intended to enhance habitat for migratory water birds by lowering the elevations of the high islands, thereby eliminating a visual obstruction for roosting birds. It was also thought that the bare sand on the lowered island surfaces could serve as potential habitat for nesting water birds. Lastly, the project supplied a local source of sediment to the river to test the hypothesis that this material could contribute to the formation of lower sandbars and potential nesting sites downstream. Topographic surveys on the islands and along river transects were used to quantify the volume of removed sand and track the storage and movement of the introduced sand downstream. Sediment samples were also collected to map the spatial distribution of river bed sediment sizes before and after the management activities. While the project lowered the elevation of high islands, observations of the sand addition indicated the relatively fine-grained sand that was placed in the active river channel was rapidly transported by the flowing water. Topographic measurements made 3 months after the sand addition along transects in the area of sediment addition showed net aggradation over measurements made in 2005. In the year following the sand addition, 2007, elevated river flows from local rain events generally were accompanied by net degradation along transects within the area of sediment addition. In the spring of 2008, a large magnitude flow event of approximately 360 cubic meters per

  13. Mycobacterial escape from macrophage phagosomes to the cytoplasm represents an alternate adaptation mechanism

    PubMed Central

    Jamwal, Shilpa V.; Mehrotra, Parul; Singh, Archana; Siddiqui, Zaved; Basu, Atanu; Rao, Kanury V.S.

    2016-01-01

    Survival of Mycobacterium tuberculosis (Mtb) within the host macrophage is mediated through pathogen-dependent inhibition of phagosome-lysosome fusion, which enables bacteria to persist within the immature phagosomal compartment. By employing ultrastructural examination of different field isolates supported by biochemical analysis, we found that some of the Mtb strains were in fact poorly adapted for subsistence within endocytic vesicles of infected macrophages. Instead, through a mechanism involving activation of host cytosolic phospholipase A2, these bacteria rapidly escaped from phagosomes, and established residence in the cytoplasm of the host cell. Interestingly, by facilitating an enhanced suppression of host cellular autophagy, this translocation served as an alternate virulence acquisition mechanism. Thus, our studies reveal plasticity in the adaptation strategies employed by Mtb, for survival in the host macrophage. PMID:26980157

  14. Espisodic detachment of Martian crustal magnetic fields leading to bulk atmospheric plasma escape

    SciTech Connect

    Brain, D A; Baker, A H; Briggs, J; Eastwood, J P; Halekas, J S; Phan, T

    2009-06-02

    We present an analysis of magnetic field and suprathermal electron measurements from the Mars Global Surveyor (MGS) spacecraft that reveals isolated magnetic structures filled with Martian atmospheric plasma located downstream from strong crustal magnetic fields with respect to the flowing solar wind. The structures are characterized by magnetic field enhancements and rotations characteristic of magnetic flux ropes, and characteristic ionospheric electron energy distributions with angular distributions distinct from surrounding regions. These observations indicate that significant amounts of atmosphere are intermittently being carried away from Mars by a bulk removal process: the top portions of crustal field loops are stretched through interaction with the solar wind and detach via magnetic reconnection. This process occurs frequently and may account for as much as 10% of the total present-day ion escape from Mars.

  15. Escape erosion and relaxation of craters on Pluto

    NASA Astrophysics Data System (ADS)

    Porter, S.; Zangari, A.; Stern, A.

    2014-07-01

    Pluto and its major satellite Charon will be the most distant objects ever visited when NASA's New Horizons spacecraft flies past them in mid-2015. Both bodies should have suffered impacts from other transneptunian objects, though those impacts are of much lower velocity than typical on giant-planet satellites. New Horizons will image the illuminated hemispheres of Pluto and Charon seen at closest approach at better than 0.5 km/pix and 1.0 km/pix, respectively. We compare new different predictions of the impactor population on Pluto and Charon, including the effects of escape erosion from Pluto, and examine the crater size distributions those impactors would produce over the range observable to the imagers on New Horizons. The impact distribution models diverge the most for craters smaller than 10 km. We expect the crater size distribution on Charon to be determined by the impactor distribution and the rheology of the surface. Inverting the Charon size distribution seen by New Horizons will then constrain the overall size frequency distribution in the Kuiper belt, and the location of any break in that size frequency distribution. However, owing to escape erosion, craters on Pluto may be much more modified than on Charon. To constrain this modification, we present a range of possible Pluto crater distributions, as a function of impactor distribution, atmospheric escape rate, and surface ice viscosity. Pluto's atmosphere is primarily made of molecular nitrogen and is currently escaping at between 10^{27} and 10^{28} N_2/s according to model estimates. To sustain these escape rates for 3.5 billion years, a global layer of N_2 ice 0.3 to 3 km thick would need to have sublimated from the surface. We show that this gradual mass loss could have erased many of the smaller craters on Pluto, especially craters with diameters smaller than 10 km. This sublimation erosion process does not occur on Charon, which has a water ice surface and no observed atmosphere. We also show

  16. Near-infrared-light-based nano-platform boosts endosomal escape and controls gene knockdown in vivo.

    PubMed

    Jayakumar, Muthu Kumara Gnanasammandhan; Bansal, Akshaya; Huang, Kai; Yao, Risheng; Li, Bing Nan; Zhang, Yong

    2014-05-27

    Current nanoparticle-based gene delivery techniques face two major limitations, namely, endosomal degradation and poor cytosolic release of the nanoparticles and nonspecificity of treatment. These limitations can be overcome with certain light-based techniques, such as photochemical internalization to enable endosomal escape of the delivered nanoparticles and light-controlled gene expression to overcome the nonspecific effects. However, these techniques require UV/visible light, which is either phototoxic and/or has low tissue penetration capabilities, thus preventing their use in deep tissues in a clinical setting. In an effort to overcome these barriers, we have successfully demonstrated a light-based gene delivery system that significantly boosts cytosolic gene delivery, with precise control over gene expression and the potential for use in nonsuperficial tissues. Core-shell fluorescent upconversion nanoparticles excited by highly penetrating near-infrared radiation and emitting simultaneously in the ultraviolet and visible ranges were synthesized and used as remote nanotransducers to simultaneously activate endosomal escape and gene knockdown. Gene knockdown using photomorpholinos was enhanced as much as 30% in vitro compared to the control without endosomal escape facilitation. A similar trend was seen in vivo in a murine melanoma model, demonstrating the enormous clinical potential of this system. PMID:24730360

  17. A fusogenic peptide from a sea urchin fertilization protein promotes intracellular delivery of biomacromolecules by facilitating endosomal escape.

    PubMed

    Niikura, Keisuke; Horisawa, Kenichi; Doi, Nobuhide

    2015-08-28

    The low efficiency of endosomal escape has been considered a bottleneck for the cytosolic delivery of biomacromolecules such as proteins and DNA. Although fusogenic peptides (FPs) such as HA2 have been employed to improve the intracellular delivery of biomacromolecules, the FPs studied thus far are not adequately efficient in enabling endosomal escape; therefore, novel FPs with higher activity are required. In this context, we focused on FPs derived from a sea urchin fertilization protein, bindin, which is involved in gamete recognition (B18, residues 103-120 and B55, residues 83-137 of mature bindin). We show that enhanced green fluorescent protein (EGFP)-fused B55 peptide binds to plasma membranes more strongly than EGFP-B18 and promotes the intracellular delivery of dextrans, which were co-administered using the trans method in a pH-dependent manner without affecting cell viability and proliferation, whereas conventional EGFP-HA2 did not affect dextran internalization. Furthermore, EGFP-B55 promoted the intracellular delivery of biomacromolecules such as antibodies, ribonuclease and plasmidic DNA using the trans method. Because the promotion of intracellular delivery by EGFP-B55 was suppressed by endocytosis inhibitors, EGFP-B55 is considered to have facilitated the endosomal escape of co-administered cargos. These results suggested that an FP that promotes the intracellular delivery of a variety of biomacromolecules with no detectable cytotoxicity should be useful for the cytosolic delivery of membrane-impermeable molecules for biomedical and biotechnological applications. PMID:26091921

  18. Containing the accidental laboratory escape of potential pandemic influenza viruses

    PubMed Central

    2013-01-01

    Background The recent work on the modified H5N1 has stirred an intense debate on the risk associated with the accidental release from biosafety laboratory of potential pandemic pathogens. Here, we assess the risk that the accidental escape of a novel transmissible influenza strain would not be contained in the local community. Methods We develop here a detailed agent-based model that specifically considers laboratory workers and their contacts in microsimulations of the epidemic onset. We consider the following non-pharmaceutical interventions: isolation of the laboratory, laboratory workers’ household quarantine, contact tracing of cases and subsequent household quarantine of identified secondary cases, and school and workplace closure both preventive and reactive. Results Model simulations suggest that there is a non-negligible probability (5% to 15%), strongly dependent on reproduction number and probability of developing clinical symptoms, that the escape event is not detected at all. We find that the containment depends on the timely implementation of non-pharmaceutical interventions and contact tracing and it may be effective (>90% probability per event) only for pathogens with moderate transmissibility (reproductive number no larger than R0 = 1.5). Containment depends on population density and structure as well, with a probability of giving rise to a global event that is three to five times lower in rural areas. Conclusions Results suggest that controllability of escape events is not guaranteed and, given the rapid increase of biosafety laboratories worldwide, this poses a serious threat to human health. Our findings may be relevant to policy makers when designing adequate preparedness plans and may have important implications for determining the location of new biosafety laboratories worldwide. PMID:24283203

  19. Spatial memory training induces morphological changes detected by manganese-enhanced MRI in the hippocampal CA3 mossy fiber terminal zone.

    PubMed

    Zhang, Binbin; Chuang, Kai-Hsiang; Tjio, Ci'en; Chen, Way Cherng; Sheu, Fwu-Shan; Routtenberg, Aryeh

    2016-03-01

    Hippocampal mossy fibers (MFs) can show plasticity of their axon terminal arbor consequent to learning a spatial memory task. Such plasticity is seen as translaminar sprouting from the stratum lucidum (SL) of CA3 into the stratum pyramidale (SP) and the stratum oriens (SO). However, the functional role of this presynaptic remodeling is still obscure. In vivo imaging that allows longitudinal observation of such remodeling could provide a deeper understanding of this presynaptic growth phenomenon as it occurs over time. Here we used manganese-enhanced magnetic resonance imaging (MEMRI), which shows a high-contrast area that co-localizes with the MFs. This technique was applied in the detection of learning-induced MF plasticity in two strains of rats. Quantitative analysis of a series of sections in the rostral dorsal hippocampus showed increases in the CA3a' area in MEMRI of trained Wistar rats consistent with the increased SO+SP area seen in the Timm's staining. MF plasticity was not seen in the trained Lister-Hooded rats in either MEMRI or in Timm's staining. This indicates the potential of MEMRI for revealing neuro-architectures and plasticity of the hippocampal MF system in vivo in longitudinal studies. PMID:26254115

  20. SPARSE: Seed Point Auto-Generation for Random Walks Segmentation Enhancement in medical inhomogeneous targets delineation of morphological MR and CT images.

    PubMed

    Chen, Haibin; Zhen, Xin; Gu, Xuejun; Yan, Hao; Cervino, Laura; Xiao, Yang; Zhou, Linghong

    2015-01-01

    In medical image processing, robust segmentation of inhomogeneous targets is a challenging problem. Because of the complexity and diversity in medical images, the commonly used semiautomatic segmentation algorithms usually fail in the segmentation of inhomogeneous objects. In this study, we propose a novel algorithm imbedded with a seed point autogeneration for random walks segmentation enhancement, namely SPARSE, for better segmentation of inhomogeneous objects. With a few user-labeled points, SPARSE is able to generate extended seed points by estimating the probability of each voxel with respect to the labels. The random walks algorithm is then applied upon the extended seed points to achieve improved segmentation result. SPARSE is implemented under the compute unified device architecture (CUDA) programming environment on graphic processing unit (GPU) hardware platform. Quantitative evaluations are performed using clinical homogeneous and inhomogeneous cases. It is found that the SPARSE can greatly decrease the sensitiveness to initial seed points in terms of location and quantity, as well as the freedom of selecting parameters in edge weighting function. The evaluation results of SPARSE also demonstrate substantial improvements in accuracy and robustness to inhomogeneous target segmentation over the original random walks algorithm. PMID:26103201

  1. Cold Ion Escape from the Martian Ionosphere - 2005-2014

    NASA Astrophysics Data System (ADS)

    Fränz, Markus; Dubinin, Eduard; Andrews, David; Nilsson, Hans; Fedorov, Andrei

    2015-04-01

    It has always been challenging to observe the flux of ions with energies of less than 10eV escaping from the planetary ionospheres. We here report on new measurements of the ionospheric ion flows at Mars by the ASPERA-3 experiment on board Mars Express. The ion sensor IMA of this experiment has in principle a low-energy cut-off at 10eV but in negative spacecraft charging cold ions are lifted into the range of measurement but the field of view is restricted to about 4x360 deg. In a recent paper Nilsson et al. (Earth Planets Space, 64, 135, 2012) tried to use the method of long-time averaged distribution functions to overcome these constraints. In this paper we first use the same method to show that we get results consistent with this when using ASPERA-3 observations only. But then we can show that these results are inconsistent with observations of the local plasma density by the MARSIS radar instrument on board Mars Express. We demonstrate that the method of averaged distribution function can deliver the mean flow speed of the plasma but the low-energy cut-off does usually not allow to reconstruct the density. We then combine measurements of the cold ion flow speed with the plasma density observations of MARSIS to derive the cold ion flux. In an analysis of the combined nightside datasets we show that the main escape channel is along the shadow boundary on the tailside of Mars. At a distance of about 0.5 RM the flux settles at a constant value which indicates that about half of the transterminator ionospheric flow escapes from the planet. To derive the mean escape flux we include all combined observations of ASPERA-3 and MARSIS from 2005 to 2014. Possible mechanism to generate this flux can be the ionospheric pressure gradient between dayside and nightside or momentum transfer from the solar wind via the induced magnetic field since the flow velocity is in the Alfvénic regime.

  2. The Zonal Satellite Problem. I. Near-Escape Flow

    NASA Astrophysics Data System (ADS)

    Mioc, V.; Stavinschi, M.

    The study of the zonal satellite problem is continued by tackling the situation r-> infty. New equations of motion (for which the infinite distance is a singularity) and the corresponding first integrals of energy and angular momentum are set up. The infinity singularity is blown up via McGehee-type transformations, and the infinity manifold is pasted on the phase space. The fictitious flow on this manifold is described. Then, resorting to the rotational symmetry of the problem and to the angular momentum integral, the near-escape local flow is depicted. The corresponding phase curves are interpreted as physical motions.

  3. Service-Life Extension of Explosive Escape Devices

    NASA Technical Reports Server (NTRS)

    Bement, L. J.; Schimmel, M. L.

    1987-01-01

    Chemical and functional tests yield conservative service-life estimates. Approach to extension of service lives of explosive devices in aircraft escape system developed, supported by testing of representative candidate devices to evaluate quantitatively effects of service, age, and degradation, and to enable responsible, conservative service-life determinations. Five types of explosive components evaluated: rigid and flexible explosive transfer lines; one-way transfers; flexible, linear-shaped charges; and initiation-handles. Extension of service in realistic manner provides both cost savings and increased system reliability.

  4. Approximate formula for the escape function for nearly conservative scattering

    NASA Astrophysics Data System (ADS)

    Yanovitskij, E. G.

    2002-02-01

    The escape function u(μ) (i.e., the boundary solution of the Milne problem for a semi-infinite atmosphere) is considered. It is presented in the form u(μ) = u0 (μ ) + √ {1 - λ}u1(μ) + (1-λ)u2(μ) + ldots, where λ is the single-scattering albedo. A rather accurate approximate formula for a the function u0 (μ) is obtained for not highly elongated phase function. An approximate expression for the function u2 (μ) is also derived, it is exact in the case of the most simple anisotropic scattering.

  5. Development of a canine nociceptive thermal escape model.

    PubMed

    Wegner, Kirsten; Horais, Kjersti A; Tozier, Nicolle A; Rathbun, Michael L; Shtaerman, Yuri; Yaksh, Tony L

    2008-02-15

    Acute nociceptive models which have been validated for large animal species are limited, yet nociceptive assessment in non-rodent species is important in analgesic drug development where larger animals may be necessary because of the technical requirements of the study. Here we report development and validation of a canine hind paw thermal escape model and the effect of analgesics on withdrawal latencies. Individual focused projection bulbs were used as left and right voltage-adjusted thermal stimuli placed below a glass plate in a specifically designed canine holding apparatus. After acclimation, dogs were lightly restrained in a fabric sling while standing on the glass plate. The anterior center of the metatarsal pad of the left and right hind paw was positioned on the glass over each light, and duration of stimulation tolerance timed. For every trial, the escape latency from lamp actuation to paw withdrawal was recorded twice for each hind paw. The mean population baseline withdrawal latency of 9.3+/-1.7s (mean+/-S.D., n=12 dogs) was shown to be repeatable between paws, within and between individual animals, and between test days. This latency corresponded to a glass surface temperature of 49.5 degrees C. A cut-off time of 20s (corresponding to a glass surface temperature of 56.5 degrees C) was set to prevent tissue damage. Intravenous administration (mg/kg) of morphine (1.0), hydromorphone (0.2), butorphanol (0.4), fentanyl (0.01), and dexmedetomidine (0.01) significantly (p<0.05) increased withdrawal latency from baseline within 15-30 min of administration while buprenorphine (0.03) produced a delayed, modest but significant latency increase. Rank order of opioid analgesic duration was morphine=hydromorphone>butorphanol>bupenorphine>fentanyl=saline. A dose-effect curve for hydromorphone was generated and corresponded to previously described dose-effect relationships in other species. The non-analgesic tranquilizer acepromazine (0.1mg/kg) produced mild sedation

  6. Added value of diffusion-weighted MRI in detection of cervical cancer recurrence: comparison with morphologic and dynamic contrast-enhanced MRI sequences

    PubMed Central

    Lucas, Rita; Dias, João Lopes; Cunha, Teresa Margarida

    2015-01-01

    PURPOSE We aimed to evaluate the added value of diffusion-weighted imaging (DWI) to standard magnetic resonance imaging (MRI) for detecting post-treatment cervical cancer recurrence. The detection accuracy of T2-weighted (T2W) images was compared with that of T2W MRI combined with either dynamic contrast-enhanced (DCE) MRI or DWI. METHODS Thirty-eight women with clinically suspected uterine cervical cancer recurrence more than six months after treatment completion were examined with 1.5 Tesla MRI including T2W, DCE, and DWI sequences. Disease was confirmed histologically and correlated with MRI findings. The diagnostic performance of T2W imaging and its combination with either DCE or DWI were analyzed. Sensitivity, positive predictive value, and accuracy were calculated. RESULTS Thirty-six women had histologically proven recurrence. The accuracy for recurrence detection was 80% with T2W/DCE MRI and 92.1% with T2W/DWI. The addition of DCE sequences did not significantly improve the diagnostic ability of T2W imaging, and this sequence combination misclassified two patients as falsely positive and seven as falsely negative. The T2W/DWI combination revealed a positive predictive value of 100% and only three false negatives. CONCLUSION The addition of DWI to T2W sequences considerably improved the diagnostic ability of MRI. Our results support the inclusion of DWI in the initial MRI protocol for the detection of cervical cancer recurrence, leaving DCE sequences as an option for uncertain cases. PMID:26200480

  7. Improved vessel morphology measurements in contrast-enhanced multi-detector computed tomography coronary angiography with non-linear post-processing.

    PubMed

    Ferencik, Maros; Lisauskas, Jennifer B; Cury, Ricardo C; Hoffmann, Udo; Abbara, Suhny; Achenbach, Stephan; Karl, W Clem; Brady, Thomas J; Chan, Raymond C

    2006-03-01

    Multi-detector computed tomography (MDCT) permits detection of coronary plaque. However, noise and blurring impair accuracy and precision of plaque measurements. The aim of the study was to evaluate MDCT post-processing based on non-linear image deblurring and edge-preserving noise suppression for measurements of plaque size. Contrast-enhanced MDCT coronary angiography was performed in four subjects (mean age 55 +/- 5 years, mean heart rate 54 +/- 5 bpm) using a 16-slice scanner (Siemens Sensation 16, collimation 16 x 0.75 mm, gantry rotation 420 ms, tube voltage 120 kV, tube current 550 mAs, 80 mL of contrast). Intravascular ultrasound (IVUS; 40 MHz probe) was performed in one vessel in each patient and served as a reference standard. MDCT vessel cross-sectional images (1 mm thickness) were created perpendicular to centerline and aligned with corresponding IVUS images. MDCT images were processed using a deblurring and edge-preserving noise suppression algorithm. Then, three independent blinded observers segmented lumen and outer vessel boundaries in each modality to obtain vessel cross-sectional area and wall area in the unprocessed MDCT cross-sections, post-processed MDCT cross-sections and corresponding IVUS. The wall area measurement difference for unprocessed and post-processed MDCT images relative to IVUS was 0.4 +/- 3.8 mm2 and -0.2 +/- 2.2 mm2 (p < 0.05), respectively. Similarly, Bland-Altman analysis of vessel cross-sectional area from unprocessed and post-processed MDCT images relative to IVUS showed a measurement difference of 1.0 +/- 4.4 and 0.6 +/- 4.8 mm2, respectively. In conclusion, MDCT permitted accurate in vivo measurement of wall area and vessel cross-sectional area as compared to IVUS. Post-processing to reduce blurring and noise reduced variability of wall area measurements and reduced measurement bias for both wall area and vessel cross-sectional area. PMID:16442768

  8. Male sexual ornament size is positively associated with reproductive morphology and enhanced fertility in the stalk-eyed fly Teleopsis dalmanni

    PubMed Central

    2008-01-01

    Background Exaggerated male ornaments and displays often evolve in species where males only provide females with ejaculates during reproduction. Although "good genes" arguments are typically invoked to explain this phenomenon, a simpler alternative is possible if variation in male reproductive quality (e.g. sperm number, ejaculate content, mating rate) is an important determinant of female reproductive success. The "phenotype-linked fertility hypothesis" states that female preference for male ornaments or displays has been selected to ensure higher levels of fertility and has driven the evolution of exaggerated male traits. Females of the stalk-eyed fly Teleopsis dalmanni must mate frequently to maintain high levels of fertility and prefer to mate with males exhibiting large eyespan, a condition-dependent sexual ornament. If eyespan indicates male reproductive quality, females could directly increase their reproductive success by mating with males with large eyespan. Here we investigate whether male eyespan indicates accessory gland and testis length, and then ask whether mating with large eyespan males affects female fertility. Results Male eyespan was a better predictor of two key male reproductive traits – accessory gland and testis length – than was body size alone. This positive relationship held true over three levels of increasing environmental stress during the maturation of the adult accessory glands and testes. Furthermore, females housed with a large eyespan male exhibited higher levels of fertility than those with small eyespan males. Conclusion Male eyespan in stalk-eyed flies is subject to strong directional mate preference and is a reliable indicator of male reproductive quality – both because males with larger eyespan have bigger accessory glands and testes, and also as they confer higher fertility on females. Fertility enhancement may have arisen because males with larger eyespan mated more often and/or because they transferred more sperm or

  9. Numerical simulation of a self-propelled copepod during escape

    NASA Astrophysics Data System (ADS)

    Sotiropoulos, Fotis; Borazjani, Iman; Malkiel, Edwin; Katz, Josef

    2008-11-01

    Obtaining the 3D flow field, forces, and power is essential for understanding the high accelerations of a copepod during the escap. We carry out numerical simulations to study a free swimming copepod using the sharp-interface immersed boundary, fluid-structure interaction (FSI) approach of Borazjani et al. (J Compu Phys, 2008, 227, p 7587-7620). We use our previous tethered copepod model with a realistic copepod-like body, including all the appendages with the appendages motion prescribed from high-resolution, cinematic dual digital holography. The simulations are performed in a frame of reference attached to the copepod whose velocity is calculated by considering the forces acting on the copepod. The self-propelled simulations are challenging due to the destabilizing effects of the large added mass resulting from the low copepod mass and fast acceleration during the escape. Strongly-coupled FSI with under-relaxation and the Aitken acceleration technique is used to obtain stable and robust FSI iterations. The computed results for the self-propelled model are analyzed and compared with our earlier results for the tethered model.

  10. Pair interaction of catalytically active colloids: from assembly to escape

    NASA Astrophysics Data System (ADS)

    Sharifi-Mood, Nima; Mozaffari, Ali; Córdova-Figueroa, Ubaldo M.

    2016-07-01

    The dynamics and pair trajectory of two self-propelled colloids are reported. The autonomous motions of the colloids are due to a catalytic chemical reaction taking place asymmetrically on their surfaces that generates a concentration gradient of interactive solutes around the particles and actuate particle propulsion. We consider two spherical particles with symmetric catalytic caps extending over the local polar angles $\\theta^1_{cap}$ and $\\theta^2_{cap}$ from the centers of active sectors in an otherwise quiescent fluid. A combined analytical-numerical technique was developed to solve the coupled mass transfer equation and the hydrodynamics in the Stokes flow regime. The ensuing pair trajectory of the colloids is controlled by the reacting coverages $\\theta^j_{cap}$ and their initial relative orientation with respect to each other. Our analysis indicates two possible scenarios for pair trajectories of catalytic self-propelled particles: either the particles approach, come into contact and assemble or they interact and move away from each other (escape). For arbitrary motions of the colloids, it is found that the direction of particle rotations is the key factor in determining the escape or assembly scenario. Based on the analysis, a phase diagram is sketched for the pair trajectory of the catalytically active particles as a function of active coverages and their initial relative orientations. We believe this study has important implications in elucidation of collective behaviors of auotophoretically self-propelled colloids.

  11. FEM analysis of escape capsule suffered to gas explosion

    NASA Astrophysics Data System (ADS)

    Li, Chang-lu; Mei, Rui-bin; Li, Chang-sheng; Cai, Ban; Liu, Xiang-hua

    2013-05-01

    Escape capsules are new devices for underground coal mines that provide air, water, food and supplies in the event of an emergency in where miners are unable to escape. It is difficult to carry out the experiments of explosion and safety because the danger and nonrepeatability of explosion. The structure deformation and distribution of equivalent stress has been investigated under different impact pressure conditions including unimodal and bimodal loads based on the FEM and software LS-DYNA. The results show that the distribution of deformation and equivalent stress has the same trend on the same surface with the increment of explosion pressure. The deformation and stress are larger with side impact pressure compared with that of the same front impact pressure. Furthermore, the maximum equivalent stress is 246MPa and 260MPa on the front and sides of capsule with five times for national standard impact pressure 1.5MPa. Under these conditions, the deformation is less than about 9.97mm and 10.47mm, respectively. When the front impact pressure is 2.0MPa, the deformation of capsule still belongs to elasticity but the less plastic deformation occurs on the Ushape stiffening channels with the same side impact pressure. However, it is safe for capsule structure because the equivalent stress 283MPa is much less than the tensile strength. It is noted that bimodal load accelerates the capsule deformation so that it is more dangerous compared with unimodal load.

  12. Trapped subsurface oil plumes and critical escape phenomena

    NASA Astrophysics Data System (ADS)

    Tzou, Chung-Nan; Camassa, Roberto; Lin, Zhi; McLaughlin, Rich; Mertens, Keith; White, Brian

    2012-11-01

    A critical phenomenon concerning the escape/trap of buoyant miscible plumes rising through strongly stratified fluids is presented experimentally and theoretically. The criticality is determined by the distance between plume release height and depth of ambient density transition. For fluid released closer to the background density transition than this critical distance, the buoyant fluid escapes and rises indefinitely. For fluid released further than this critical distance, the buoyant fluid is forever trapped within the fluid. Two new mathematically exact formulas will be presented for the cases of linear and sharp ambient stratification and they show quantitative agreement with experiments. The new solution for linear stratification is analyzed in the limit of vanishing transition layer thickness. The analytic solution for sharp stratification is shown to accurately estimate the depth at which subsurface plumes trapped during the Deepwater Horizon oil disaster. Also, a dimensional analysis argument is presented which captures the essential physics to provide a simple understanding of this phenomenon. We gratefully acknowledge support from NSF CMG ARC-1025523, NSF RAPID CBET-1045653, NSF DMS-1009750 and NSF RTG DMS-0943851.

  13. Viral resistance evolution fully escapes a rationally designed lethal inhibitor.

    PubMed

    Keller, Thomas E; Molineux, Ian J; Bull, James J

    2009-09-01

    Viruses are notoriously capable of evolving resistance to drugs. However, if the endpoint of resistance evolution is only partial escape, a feasible strategy should be to stack drugs, so the combined effect of partial inhibition by several drugs results in net inhibition. Assessing the feasibility of this approach requires quantitative data on viral fitness before and after evolution of resistance to a drug, as done here with bacteriophage T7. An inhibitory gene expressed from a phage promoter aborts wild-type T7 infections. The effect is so severe that the phage population declines when exposed to the inhibitor but expands a billion-fold per hour in its absence. In prior work, T7 evolved modest resistance to this inhibitor, an expected result. Given the nature of the inhibitor, that it used the phage's own promoter to target the phage's destruction, we anticipated that resistance evolution would be limited as the phage may need to evolve a new regulatory system, with simultaneous changes in its RNA polymerase (RNAP) and many of its promoters to fully escape inhibition. We show here that further adaptation of the partially resistant phage led to complete resistance. Resistance evolution was due to three mutations in the RNAP gene and two other genes; unexpectedly, no changes were observed in promoters. Consideration of other mechanisms of T7 inhibition leaves hope that permanent inhibition of viral growth with drugs can in principle be achieved. PMID:19494036

  14. Quantification of Nociceptive Escape Response in C.elegans

    NASA Astrophysics Data System (ADS)

    Leung, Kawai; Mohammadi, Aylia; Ryu, William; Nemenman, Ilya

    2013-03-01

    Animals cannot rank and communicate their pain consciously. Thus in pain studies on animal models, one must infer the pain level from high precision experimental characterization of behavior. This is not trivial since behaviors are very complex and multidimensional. Here we explore the feasibility of C.elegans as a model for pain transduction. The nematode has a robust neurally mediated noxious escape response, which we show to be partially decoupled from other sensory behaviors. We develop a nociceptive behavioral response assay that allows us to apply controlled levels of pain by locally heating worms with an IR laser. The worms' motions are captured by machine vision programming with high spatiotemporal resolution. The resulting behavioral quantification allows us to build a statistical model for inference of the experienced pain level from the behavioral response. Based on the measured nociceptive escape of over 400 worms, we conclude that none of the simple characteristics of the response are reliable indicators of the laser pulse strength. Nonetheless, a more reliable statistical inference of the pain stimulus level from the measured behavior is possible based on a complexity-controlled regression model that takes into account the entire worm behavioral output. This work was partially supported by NSF grant No. IOS/1208126 and HFSP grant No. RGY0084/2011.

  15. Tectonic escape in the evolution of the continental crust

    NASA Technical Reports Server (NTRS)

    Burke, K.; Sengor, C.

    1986-01-01

    The continental crust originated by processes similar to those operating today and continents consist of material most of which originated long ago in arc-systems that have later been modified, especially at Andean margins and in continental collisions where crustal thickening is common. Collision-related strike-slip motion is a general process in continental evolution. Because buoyant continental (or arc) material generally moves during collision toward a nearby oceanic margin where less buoyant lithosphere crops out, the process of major strike-slip dominated motion toward a 'free-face' is called 'tectonic escape'. Tectonic escape is and has been an element in continental evolution throughout recorded earth-history. It promotes: (1) rifting and the formation of rift-basins with thinning of thickened crust; (2) pervasive strike-slip faulting late in orogenic history which breaks up mountain belts across strike and may juxtapose unrelated sectors in cross-section; (3) localized compressional mountains and related foreland-trough basins.

  16. Group chase and escape model with chasers' interaction

    NASA Astrophysics Data System (ADS)

    Saito, Takuya; Nakamura, Tomomichi; Ohira, Toru

    2016-04-01

    Group chase and escape is a new direction of studying collective behaviors merged with the traditional mathematical problems of chases and escapes proposed by Kamimura and Ohira in 2010. In their model, the chasers recognize only the escapees and pursue the nearest neighbor escapee, and the escapees recognize only the chasers and flee from the nearest neighbor chaser. We call the basic moving rule the nearest opponent interaction (NOI) strategy. In this paper we introduce a new strategy in the model. It is a local interaction that the chasers do not get too close each other, where we call the chasers' local interaction (CLI) strategy. The result of comparisons of the two strategies shows that when the number of the chasers is relatively small compared to the number of the escapees, the trapping time by the CLI strategy is much shorter than that by the NOI strategy. On the other hand, when the number of the chasers is larger than that of the escapees, this advantage of the CLI strategy does not appear. Also, we find that although chasers form clusters (spatial aggregates of chasers) when we apply the NOI strategy, the clusters appear less when we apply the CLI strategy.

  17. Magnetic buoyancy and the escape of magnetic fields from stars

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1984-01-01

    A loss of magnetic flux through the free surface of a star into the surrounding space has important implications for the generation of the field within the star. The present investigation is concerned with the physics of the escape of net azimuthal flux from a star. The obtained results are used as a basis for the interpretation of some recent observations of the detailed behavior of magnetic fields emerging through the surface of the sun. The buoyancy of an isolated horizontal magnetic flux tube beneath the surface of a star causes the tube to rise at a rate comparable to the Alfven speed. The necessary conditions for escape of the flux are considered along with aspects of magnetic buoyancy, and the conditions on the sun. It appears that the observed retraction of bipolar magnetic fields at the end of their life at the surface is the one phenomenon which requires dynamical intervention. Attention is given to known dynamical effects which suppress the buoyant rise of an azimuthal magnetic field.

  18. The C. elegans touch response facilitates escape from predacious fungi.

    PubMed

    Maguire, Sean M; Clark, Christopher M; Nunnari, John; Pirri, Jennifer K; Alkema, Mark J

    2011-08-01

    Predator-prey interactions are vital determinants in the natural selection of behavioral traits. Gentle touch to the anterior half of the body of Caenorhabditis elegans elicits an escape response in which the animal quickly reverses and suppresses exploratory head movements [1, 2]. Here, we investigate the ecological significance of the touch response in predator-prey interactions between C. elegans and predacious fungi that catch nematodes using constricting hyphal rings. We show that the constricting rings of Drechslerella doedycoides catch early larval stages with a diameter similar to the trap opening. There is a delay between the ring entry and ring closure, which allows the animal to withdraw from the trap before being caught. Mutants that fail to suppress head movements in response to touch are caught more efficiently than the wild-type. This demonstrates that the coordination of motor programs allows C. elegans to smoothly retract from a fungal noose and evade capture. Our results suggest that selective pressures imposed by predacious fungi have shaped the evolution of C. elegans escape behavior. PMID:21802299

  19. Ultra-fast Escape of a Octopus-inspired Rocket

    NASA Astrophysics Data System (ADS)

    Weymouth, Gabriel; Triantafyllou, Michael

    2013-11-01

    The octopus, squid, and other cephalopods inflate with water and then release a jet to accelerate in the opposite direction. This escape mechanism is particularly interesting in the octopus because they become initially quite bluff, yet this does not hinder them in achieving impressive bursts of speed. We examine this somewhat paradoxical maneuver using a simple deflating spheroid model in both potential and viscous flow. We demonstrate that the dynamic reduction of the width of the body completely changes the flow and forces acting on the escaping rocket in three ways. First, a body which reduces in size can generate an added mass thrust which counteracts the added mass inertia. Second, the motion of the shrinking wall acts similar to suction on a static wall, reducing separation and drag forces in a viscous fluid, but that this effects depends on the rate of size change. Third, using a combination of these two features it is possible to initially load the fluid with kinetic energy when heavy and bluff and then recover that energy when streamlined and light, enabling ultra-fast accelerations. As a notable example, these mechanisms allow a shrinking spheroid rocket in a heavy inviscid fluid to achieve speeds greater than an identical rocket in the vacuum of space. Southampton Marine and Maritime Institute.

  20. Autoimmunity as a result of escape from RNA surveillance.

    PubMed

    Bachmann, Michael P; Bartsch, Holger; Gross, Joanne K; Maier, Shannon M; Gross, Timothy F; Workman, Jennifer L; James, Judith A; Farris, A Darise; Jung, Bettina; Franke, Claudia; Conrad, Karsten; Schmitz, Marc; Büttner, Cordula; Buyon, Jill P; Semsei, Imre; Harley, John B; Rieber, E Peter

    2006-08-01

    In previous studies, we detected a frame shift mutation in the gene encoding the autoantigen La of a patient with systemic lupus erythematosus. The mutant La mRNA contains a premature termination codon. mRNAs that prematurely terminate translation should be eliminated by RNA quality control mechanisms. As we find Abs specific for the mutant La form in approximately 30% of sera from anti-La-positive patients, we expected that mutant La mRNAs circumvent RNA control and the expression of mutant La protein could become harmful. Indeed, real-time PCR, immunostaining, and immunoblotting data of mice transgenic for the mutant La form show that mutant La mRNAs are not repressed in these animals and are translated to mutant La protein. In addition to the mutant La protein, we detected a minor portion of native human La in the mutant La-transgenic mice. Therefore, ribosomal frame shifting may allow the mutant La mRNA to escape from RNA control. Interestingly, expression of the mutant La mRNA results in a lupus-like disease in the experimental mice. Consequently, escape of mutant La mRNA from RNA control can have two effects: it 1) results in the expression of an immunogenic (neo)epitope, and 2) predisposes to autoimmunity. PMID:16849479

  1. Autoimmunity as a Result of Escape from RNA Surveillance

    PubMed Central

    Bachmann, Michael P.; Bartsch, Holger; Gross, Joanne K.; Maier, Shannon M.; Gross, Timothy F.; Workman, Jennifer L.; James, Judith A.; Farris, A. Darise; Jung, Bettina; Franke, Claudia; Conrad, Karsten; Schmitz, Marc; Büttner, Cordula; Buyon, Jill P.; Semsei, Imre; Harley, John B.; Rieber, E. Peter

    2006-01-01

    In previous studies we detected a frame shift mutation in the gene encoding the autoantigen La of a patient with systemic lupus erythematosus. The mutant La mRNA contains a premature termination codon. mRNAs that prematurely terminate translation should be eliminated by RNA quality control mechanisms. As we find Abs specific for the mutant La form in about 30% of sera from anti-La positive patients we expected that mutant La mRNAs circumvent RNA control and the expression of mutant La protein could become harmful. Indeed, realtime PCR, immunostaining, and immunoblotting data of mice transgenic for the mutant La form show that mutant La mRNAs are not repressed in these animals and are translated to mutant La protein. In addition to the mutant La protein, we detected a minor portion of native human La in the mutant La transgenic mice. Therefore, ribosomal frame shifting may allow the mutant La mRNA to escape from RNA control. Interestingly, expression of the mutant La mRNA results in a lupus like disease in the experimental mice. Consequently, escape of mutant La mRNA from RNA control can have two effects: It (i) results in the expression of an immunogenic (neo)epitope, and (ii) predisposes to autoimmunity. PMID:16849479

  2. Escape of a mesoscopic particle from a modulated optical trap

    NASA Astrophysics Data System (ADS)

    Kruse, J. R.; Dykman, M. I.; Golding, B.

    2003-03-01

    We describe experiments on noise-induced escape of a mesoscopic particle from a bistable potential well. The potential is created by the interaction of two focused laser beams with a glass sphere of diameter ˜ 1 μm. The trapping potential is mapped quantitatively in 3-dimensions by a statistical method [1]. The dynamics of the particle can be varied from highly overdamped to underdamped by tuning the density of the surrounding environment. The eigenfrequencies of the trapped particle, as well as over-barrier transition rates W, have been directly measured as a function of damping. When the potential is modulated, the escape probability of the particle over the potential barrier becomes synchronized with the driving field. At large modulation amplitude, we find that the system approaches a saddle-node bifurcation. We have measured the critical exponent that describes the amplitude dependence of ln W as the bifurcation point is approached. By varying the modulation frequency, it is possible to probe the non-adiabatic region where the critical exponent has been predicted to change, with results in agreement with theory and numerical simulations. [1] L.I. McCann, M.I. Dykman, and B. Golding, Nature 402, 785 (1999).

  3. Formation and Internal Structure of Terrestrial Planets, and Atmospheric Escape

    NASA Astrophysics Data System (ADS)

    Jin, S.

    2014-11-01

    As of 2014 April 21, over 1490 confirmed exoplanets and 3705 Kepler candidates have been detected. This implies that exoplanets may be ubiquitous in the universe. In this paper, we focus on the formation, evolution, and internal structure of terrestrial planets, and the atmospheric escape of close-in planets. In chapter 2, we investigate the dynamical evolution of planetary system after the protoplanetary disk has dissipated. We find that in the final assembly stage, the occurrence of terrestrial planets is quite common and in 40% of our simulations finally at least one planet is formed in the habitable zone. We also find that if there is a highly-inclined giant planet in the system, a great many bodies will be either driven out of the system, or collide with the giant planet or the central star. This will lead to the difficulty in planetary accretion. Moreover, our results show that planetary migration can lead to the formation of close-in planets. Besides migration, close-in terrestrial planets can also be formed by a collision-merger mechanism, which means that planetary embryos can kick terrestrial planets directly into orbits that are extremely close to their parent stars. In chapter 3, we construct numerically an internal structure model for terrestrial planets, and provide three kinds of possible internal structures of Europa (Jupiter's moon) based on this model. Then, we calculate the radii of low-mass exoplanets for various mass combinations of core and mantle, and find that some of them are inconsistent with the observed radius of rocky planets. This phenomenon can be explained only if there exists a large amount of water in the core, or they own gaseous envelopes. In chapter 4, we improve our planetary evolution codes using the semi-gray model of Guillot (2010), which includes the incident flux from the host star as a heating source in planetary atmosphere. The updated codes can solve the structure of the top radiative zone of intensely irradiated

  4. Morphological classification of nanoceramic aggregates

    NASA Astrophysics Data System (ADS)

    Crosta, Giovanni F.; Kang, Bongwoo; Ospina, Carolina; Sung, Changmo

    2005-01-01

    Aluminum silicate nanoaggregates grown at near-room temperature on an organic template under a variety of experimental conditions have been imaged by transmission electron microscopy. Images have been automatically classified by an algorithm based on "spectrum enhancement", multivariate statistics and supervised optimization. Spectrum enhancement consists of subtracting, in the log scale, a known function of wavenumber from the angle averaged power spectral density of the image. Enhanced spectra of each image, after polynomial interpolation, have been regarded as morphological descriptors and as such submitted to principal components analysis nested with a multiobjective parameter optimization algorithm. The latter has maximized pairwise discrimination between classes of materials. The role of the organic template and of a reaction parameter on aggregate morphology has been assessed at two magnification scales. Classification results have also been related to crystal structure data derived from selected area electron diffraction patterns.

  5. Filamentous morphology of bacteria delays the timing of phagosome morphogenesis in macrophages

    PubMed Central

    Prashar, Akriti; Bhatia, Sonam; Gigliozzi, Darren; Martin, Tonya; Duncan, Carla; Guyard, Cyril

    2013-01-01

    Although filamentous morphology in bacteria has been associated with resistance to phagocytosis, our understanding of the cellular mechanisms behind this process is limited. To investigate this, we followed the phagocytosis of both viable and dead Legionella pneumophila filaments. The engulfment of these targets occurred gradually and along the longitudinal axis of the filament, therefore defining a long-lasting phagocytic cup stage that determined the outcome of phagocytosis. We found that these phagocytic cups fused with endosomes and lysosomes, events linked to the maturation of phagosomes according to the canonical pathway, and not with the remodeling of phagocytic cups. Nevertheless, despite acquiring phagolysosomal features these phagocytic cups failed to develop hydrolytic capacity before their sealing. This phenomenon hampered the microbicidal activity of the macrophage and enhanced the capacity of viable filamentous L. pneumophila to escape phagosomal killing in a length-dependent manner. Our results demonstrate that key aspects in phagocytic cup remodeling and phagosomal maturation could be influenced by target morphology. PMID:24368810

  6. Little evidence for morphological change in a resilient endemic species following the introduction of a novel predator.

    PubMed

    Sharpe, D M T; Langerhans, R B; Low-Décarie, E; Chapman, L J

    2015-11-01

    Human activities, such as species introductions, are dramatically and rapidly altering natural ecological processes and often result in novel selection regimes. To date, we still have a limited understanding of the extent to which such anthropogenic selection may be driving contemporary phenotypic change in natural populations. Here, we test whether the introduction of the piscivorous Nile perch, Lates niloticus, into East Africa's Lake Victoria and nearby lakes coincided with morphological change in one resilient native prey species, the cyprinid fish Rastrineobola argentea. Drawing on prior ecomorphological research, we predicted that this novel predator would select for increased allocation to the caudal region in R. argentea to enhance burst-swimming performance and hence escape ability. To test this prediction, we compared body morphology of R. argentea across space (nine Ugandan lakes differing in Nile perch invasion history) and through time (before and after establishment of Nile perch in Lake Victoria). Spatial comparisons of contemporary populations only partially supported our predictions, with R. argentea from some invaded lakes having larger caudal regions and smaller heads compared to R. argentea from uninvaded lakes. There was no clear evidence of predator-associated change in body shape over time in Lake Victoria. We conclude that R. argentea have not responded to the presence of Nile perch with consistent morphological changes and that other factors are driving observed patterns of body shape variation in R. argentea. PMID:26278629

  7. Tectonic escape of the Caribbean plate since the Paleocene: a consequence of the Chicxulub meteor impact?

    NASA Astrophysics Data System (ADS)

    Rangin, C.; Martinez-Reyes, J.; Crespy, A.; Zitter, T. A. C.

    2012-04-01

    The debate for Pacific exotic origin versus in situ inter American plate Atlantic origin of the Caribbean plate is active in the scientific community since decades. Independently of the origin of this plate, its fast motion towards the east at a present rate of 2cm/yr is accepted to have been initiated during the early-most Cenozoic. The Paleocene is a key period in the global evolution of Central America mainly marked also by the Chicxulub multiring meteor impact in Yucatan. We question here the genetic relationship between this impact event and the incipient tectonic escape of the Caribbean plate. The mostly recent published models suggest this impact has affected the whole crust down to the Moho, the upper mantle being rapidly and considerably uplifted. The crust was then fragmented 600km at least from the point of impact, and large circular depressions were rapidly filled by clastic sediments from Cantarell to Western Cuba via Chiapas and Belize. North of the impact, the whole Gulf of Mexico was affected by mass gravity sliding, initiated also during the Paleocene in Texas, remaining active in this basin up to present time. South of the impact, in the Caribbean plate, the Yucatan basin was rapidly opened, indicating a fast escape of the crustal material towards the unique free boundary, the paleo-Antilles subduction zone. Shear waves velocity data below the Caribbean plate suggest this crustal tectonic escape was enhanced by the fast eastward flowing mantle supporting a fragmented and stretched crust. The proposed model suggests Chicxulub impact (but also the hypothetic Beata impact) have fragmented brittle crust, then easily drifted towards the east. This could explain the Paleogene evolution of the Caribbean plate largely stretched during its early evolution. Geologically, this evolution could explain the absence of evident Paleogene oblique subduction along the Caribbean plate northern and southern margins, marked only by Mid Cretaceous dragged volcanic

  8. CORE-COLLAPSE MODEL OF BROADBAND EMISSION FROM SNR RX J1713.7-3946 WITH THERMAL X-RAYS AND GAMMA RAYS FROM ESCAPING COSMIC RAYS

    SciTech Connect

    Ellison, Donald C.; Slane, Patrick; Patnaude, Daniel J.; Bykov, Andrei M. E-mail: byk@astro.ioffe.ru

    2012-01-01

    We present a spherically symmetric, core-collapse model of SNR RX J1713.7-3946 that includes a hydrodynamic simulation of the remnant evolution coupled to the efficient production of cosmic rays (CRs) by nonlinear diffusive shock acceleration. High-energy CRs that escape from the forward shock (FS) are propagated in surrounding dense material that simulates either a swept-up, pre-supernova shell or a nearby molecular cloud. The continuum emission from trapped and escaping CRs, along with the thermal X-ray emission from the shocked heated interstellar medium behind the FS, integrated over the remnant, is compared against broadband observations. Our results show conclusively that, overall, the GeV-TeV emission is dominated by inverse-Compton from CR electrons if the supernova is isolated regardless of its type, i.e., not interacting with a >>100 M{sub Sun} shell or cloud. If the supernova remnant is interacting with a much larger mass {approx}> 10{sup 4} M{sub Sun }, pion decay from the escaping CRs may dominate the TeV emission, although a precise fit at high energy will depend on the still uncertain details of how the highest energy CRs are accelerated by, and escape from, the FS. Based on morphological and other constraints, we consider the 10{sup 4} M{sub Sun} pion-decay scenario highly unlikely for SNR RX J1713.7-3946 regardless of the details of CR escape. Importantly, even though CR electrons dominate the GeV-TeV emission, the efficient production of CR ions is an essential part of our leptonic model.

  9. Exploitation of an ancient escape circuit by an avian predator: relationships between taxon-specific prey escape circuits and the sensitivity to visual cues from the predator.

    PubMed

    Jabłoński, P G; Strausfeld, N J

    2001-01-01

    The painted redstart Myioborus pictus uses visual displays to flush, pursue, and then capture an abundance of brachyceran Diptera that are equipped with giant fiber escape circuits. This paper investigates the relationships between features of the giant fiber system, the structure of visual stimuli produced by redstarts and their effectiveness in eliciting escape reactions by flies. The results show that dipterous taxa having large-diameter giant fibers extending short distances from the brain to motor neurons involved in escape are flushed at greater distances than taxa with longer and small-diameter giant fibers. The results of behavioral tests show the importance of angular acceleration of expanding image edges on the compound eye in eliciting escape responses. Lateral motion of stimulus profile edges as well as structured visual profiles additionally contribute to the sensitivity of one or more neural systems that trigger escape. Retinal subtense and angular velocity are known to trigger physiological responses in fly giant fiber circuits, but the contributions of edge length and lateral motion in a looming stimulus suggest that escape pathways might also receive inputs from circuits that are tuned to different types of motion. The present results suggest that these several properties of escape pathways have contributed to the evolution of foraging displays and plumage patterns in flush-pursuing birds. PMID:11964498

  10. Strong plume fluxes at Mars observed by MAVEN: An important planetary ion escape channel

    NASA Astrophysics Data System (ADS)

    Dong, Y.; Fang, X.; Brain, D. A.; McFadden, J. P.; Halekas, J. S.; Connerney, J. E.; Curry, S. M.; Harada, Y.; Luhmann, J. G.; Jakosky, B. M.

    2015-11-01

    We present observations by the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission of a substantial plume-like distribution of escaping ions from the Martian atmosphere, organized by the upstream solar wind convection electric field. From a case study of MAVEN particle-and-field data during one spacecraft orbit, we identified three escaping planetary ion populations: plume fluxes mainly along the upstream electric field over the north pole region of the Mars-Sun-Electric field (MSE) coordinate system, antisunward ion fluxes in the tail region, and much weaker upstream pickup ion fluxes. A statistical study of O+ fluxes using 3 month MAVEN data shows that the plume is a constant structure with strong fluxes widely distributed in the MSE northern hemisphere, which constitutes an important planetary ion escape channel. The escape rate through the plume is estimated to be ~30% of the tailward escape and ~23% of the total escape for > 25 eV O+ ions.

  11. Escape from water or remain quiescent? Lotus tenuis changes its strategy depending on depth of submergence

    PubMed Central

    Manzur, M. E.; Grimoldi, A. A.; Insausti, P.; Striker, G. G.

    2009-01-01

    Background and Aims Two main strategies that allow plants to cope with soil waterlogging or deeper submergence are: (1) escaping by means of upward shoot elongation or (2) remaining quiescent underwater. This study investigates these strategies in Lotus tenuis, a forage legume of increasing importance in areas prone to soil waterlogging, shallow submergence or complete submergence. Methods Plants of L. tenuis were subjected for 30 d to well-drained (control), waterlogged (water-saturated soil), partially submerged (6 cm water depth) and completely submerged conditions. Plant responses assessed were tissue porosity, shoot number and length, biomass and utilization of water-soluble carbohydrates (WSCs) and starch in the crown. Key Results Lotus tenuis adjusted its strategy depending on the depth of submergence. Root growth of partially submerged plants ceased and carbon allocation prioritized shoot lengthening (32 cm vs. 24·5 cm under other treatments), without depleting carbohydrate reserves to sustain the faster growth. These plants also developed more shoot and root porosity. In contrast, completely submerged plants became quiescent, with no associated biomass accumulation, new shoot production or shoot elongation. In addition, tissue porosity was not enhanced. The survival of completely submerged plants is attributed to consumption of WSCs and starch reserves from crowns (concentrations 50–75 % less than in other treatments). Conclusions The forage legume L. tenuis has the flexibility either to escape from partial submergence by elongating its shoot more vigorously to avoid becoming totally submerged or to adopt a non-elongating quiescent strategy when completely immersed that is based on utilizing stored reserves. The possession of these alternative survival strategies helps to explain the success of L. tenuis in environments subjected to unpredictable flooding depths. PMID:19687031

  12. Clonal Plasticity of Aquatic Plant Species Submitted to Mechanical Stress: Escape versus Resistance Strategy

    PubMed Central

    Puijalon, Sara; Bouma, Tjeerd J.; Van Groenendael, Jan; Bornette, Gudrun

    2008-01-01

    Background and Aims The plastic alterations of clonal architecture are likely to have functional consequences, as they affect the spatial distribution of ramets over patchy environments. However, little is known about the effect of mechanical stresses on the clonal growth. The aim of the present study was to investigate the clonal plasticity induced by mechanical stress consisting of continuous water current encountered by aquatic plants. More particularly, the aim was to test the capacity of the plants to escape this stress through clonal plastic responses. Methods The transplantation of ramets of the same clone in two contrasting flow velocity conditions was carried out for two species (Potamogeton coloratus and Mentha aquatica) which have contrasting clonal growth forms. Relative allocation to clonal growth, to creeping stems in the clonal biomass, number and total length of creeping stems, spacer length and main creeping stem direction were measured. Key Results For P. coloratus, plants exposed to water current displayed increased total length of creeping stems, increased relative allocation to creeping stems within the clonal dry mass and increased spacer length. For M. aquatica, plants exposed to current displayed increased number and total length of creeping stems. Exposure to current induced for both species a significant increase of the proportion of creeping stems in the downstream direction to the detriment of creeping stems perpendicular to flow. Conclusions This study demonstrates that mechanical stress from current flow induced plastic variation in clonal traits for both species. The responses of P. coloratus could lead to an escape strategy, with low benefits with respect to sheltering and anchorage. The responses of M. aquatica that may result in a denser canopy and enhancement of anchorage efficiency could lead to a resistance strategy. PMID:18854376

  13. Escape through a time-dependent hole in the doubling map

    NASA Astrophysics Data System (ADS)

    Livorati, André L. P.; Georgiou, Orestis; Dettmann, Carl P.; Leonel, Edson D.

    2014-05-01

    We investigate the escape dynamics of the doubling map with a time-periodic hole. Ulam's method was used to calculate the escape rate as a function of the control parameters. We consider two cases, oscillating or breathing holes, where the sides of the hole are moving in or out of phase respectively. We find out that the escape rate is well described by the overlap of the hole with its images, for holes centered at periodic orbits.

  14. Fifty years of chasing lizards: new insights advance optimal escape theory.

    PubMed

    Samia, Diogo S M; Blumstein, Daniel T; Stankowich, Theodore; Cooper, William E

    2016-05-01

    Systematic reviews and meta-analyses often examine data from diverse taxa to identify general patterns of effect sizes. Meta-analyses that focus on identifying generalisations in a single taxon are also valuable because species in a taxon are more likely to share similar unique constraints. We conducted a comprehensive phylogenetic meta-analysis of flight initiation distance in lizards. Flight initiation distance (FID) is a common metric used to quantify risk-taking and has previously been shown to reflect adaptive decision-making. The past decade has seen an explosion of studies focused on quantifying FID in lizards, and, because lizards occur in a wide range of habitats, are ecologically diverse, and are typically smaller and differ physiologically from the better studied mammals and birds, they are worthy of detailed examination. We found that variables that reflect the costs or benefits of flight (being engaged in social interactions, having food available) as well as certain predator effects (predator size and approach speed) had large effects on FID in the directions predicted by optimal escape theory. Variables that were associated with morphology (with the exception of crypsis) and physiology had relatively small effects, whereas habitat selection factors typically had moderate to large effect sizes. Lizards, like other taxa, are very sensitive to the costs of flight. PMID:25620002

  15. Escape dynamics and fractal basin boundaries in the planar Earth-Moon system

    NASA Astrophysics Data System (ADS)

    de Assis, Sheila C.; Terra, Maisa O.

    2014-10-01

    The escape of trajectories of a spacecraft, or comet or asteroid in the presence of the Earth-Moon system is investigated in detail in the context of the planar circular restricted three-body problem, in a scattering region around the Moon. The escape through the necks around the collinear points and as well as the leaking produced by considering collisions with the Moon surface, taking the lunar mean radius into account, were considered. Given that different transport channels are available as a function of the Jacobi constant, four distinct escape regimes are analyzed. Besides the calculation of exit basins and of the spatial distribution of escape time, the qualitative dynamical investigation through Poincaré sections is performed in order to elucidate the escape process. Our analyses reveal the dependence of the properties of the considered escape basins with the energy, with a remarkable presence of fractal basin boundaries along all the escape regimes. Finally, we observe the plentiful presence of stickiness motion near stability islands which plays a remarkable role in the longest escape time behavior. The application of this analysis is important both in space mission design and study of natural systems, given that fractal boundaries are related with high sensitivity to initial conditions, implying in uncertainty between safe and unsafe solutions, as well as between escaping solutions that evolve to different phase space regions.

  16. The Martian escape rate as a function of upstream solar conditions

    NASA Astrophysics Data System (ADS)

    Ramstad, R.; Barabash, S.; Futaana, Y.; Nilsson, H.; Holmstrom, M.

    2014-12-01

    We investigate potential factors for influence on the Martian heavy ion escape rate (Q) by integrating Mars Express ASPERA-3/IMA heavy ion flux measurements in the Martian tail, taken at similar (binned) solar wind density (n), velocity (v) and EUV radiation flux (FEUV) upstream conditions. In the best sampled cases, with v and FEUV constrained, we find a statistically significant decrease in heavy ion escape rate with increased solar wind density. An empirical-analytical model for atmospheric escape is developed by fitting calculated escape rates to all sufficiently sampled solar conditions, indicating an overall negative dependence on solar wind density.

  17. On the hydrodynamic model of thermal escape from planetary atmospheres and its comparison with kinetic simulations

    NASA Astrophysics Data System (ADS)

    Volkov, A. N.

    2016-06-01

    Parkers' model of thermal escape implies the search of solutions of one-dimensional hydrodynamic equations for an inviscid but thermally conducting gas with a critical point and vanishing temperature far from the source. The properties of solutions of this model are studied for neutral mon- and diatomic gases with the viscosity index varying from 1/2 to 1. The domains of existence and uniqueness of solutions in terms of the source Jeans escape parameter and Knudsen number are established. The solutions are found to exist only in a narrow range of the critical point Jeans parameter. The lower and upper limits of this range correspond to solutions that are dominated by either heat conduction or adiabatic expansion. Thermal escape described by Parker's model occurs in two asymptotic regimes: the low-density (LD) regime, when escape is dominated by heat conduction, and the high-density (HD) regime, when escape is dominated by adiabatic expansion. Expressions for the mass and energy escape rates in these regimes are found theoretically. The comparison of results of hydrodynamic and kinetic simulations performed in identical conditions shows that Parker's model is capable of describing thermal escape only in the HD regime, providing decent agreement with the kinetic model in terms of the atmospheric structure below the exobase and the mass and energy escape rates. In the LD regime, Parker's model predicts a much faster drop in atmospheric temperature and less extended atmospheres, and can both over- and underestimate the escape rates in orders of magnitude.

  18. Angiogenesis in cancer: Anti-VEGF escape mechanisms

    PubMed Central

    Poettler, Marina; Unseld, Matthias; Zielinski, Christoph C.

    2012-01-01

    It is now widely accepted that tumor-angiogenesis plays a crucial role in tumor growth, tumor propagation and metastasis formation. Among several angiogenic activators, the vascular endothelial growth factor (VEGF) and its receptors represent one of the major inducers of tumor angiogenesis. Thus, this system has become the focus of therapeutic interventions, which led to the approval of the anti-VEGF blocking antibody bevacizumab and the VEGFR-2 pathway inhibitors pazopanib, sorafenib and sunitinib. However, not every cancer patient benefits from such treatment or finally becomes resistant to anti-VEGF approaches; others are suffering from adverse effects. Thus, there is an urgent need for a better understanding of VEGF-independent mechanisms leading to angiogenesis in cancer. This review focuses on anti-VEGF escape mechanisms of tumor cells and its microenvironment. PMID:25806151

  19. Sources of polar plume ion escape on Mars

    NASA Astrophysics Data System (ADS)

    Curry, S.; Liemohn, M.; Ma, Y.; Fang, X.

    2011-10-01

    The Mars pick-up ion transport model has been developed to study the relative role of kinetic processes on ion transport through near-Mars space. Mars does not have a strong, intrinsic dipole magnetic field and consequently the solar wind directly interacts with the dayside upper atmosphere causing particles to be stripped away from the atmosphere. The Mars Pickup Ion Model calculates the detailed ion velocity space distribution (VSD) through a background magnetic and electric field model at specific locations. The main objective of this work is to robustly probe the sources of polar plume ion escape relative to loss down the central tail. Because the VSDs are non-Maxwellian and reveal asymmetric, non-gyrotropic features, our simulation can investigate the role of kinetics in polar plume loss without using the Maxwellian assumptions of current MHD models.

  20. Energetic particle recurrence and escape during solar cycle 20

    NASA Astrophysics Data System (ADS)

    Gold, R. E.; Roelof, E. C.

    1980-10-01

    Low-energy solar particle data have been combined from a multi-spacecraft near-earth data set covering most of solar cycle 20 (1966-1976). Particle intensity profiles have been ordered in the natural heliographic coordinate system of the estimated high coronal connection longitude of the foot point of the interplanetary field line. The recurrence trends of approximately 1-MeV solar particles become more apparent in this coordinate system than when plotted versus time, and thereby extend the evidence for regions of continual injection and escape from the corona. Intercomparison of solar particles and solar wind streams in heliographic longitude suggests that the origin of stream-associated spatial particle events seen at 1 AU is solar rather than interplanetary.