Sample records for morphometry reveals reduced

  1. Voxel-based morphometry of auditory and speech-related cortex in stutterers.

    PubMed

    Beal, Deryk S; Gracco, Vincent L; Lafaille, Sophie J; De Nil, Luc F

    2007-08-06

    Stutterers demonstrate unique functional neural activation patterns during speech production, including reduced auditory activation, relative to nonstutterers. The extent to which these functional differences are accompanied by abnormal morphology of the brain in stutterers is unclear. This study examined the neuroanatomical differences in speech-related cortex between stutterers and nonstutterers using voxel-based morphometry. Results revealed significant differences in localized grey matter and white matter densities of left and right hemisphere regions involved in auditory processing and speech production.

  2. Prospective motion correction with volumetric navigators (vNavs) reduces the bias and variance in brain morphometry induced by subject motion.

    PubMed

    Tisdall, M Dylan; Reuter, Martin; Qureshi, Abid; Buckner, Randy L; Fischl, Bruce; van der Kouwe, André J W

    2016-02-15

    Recent work has demonstrated that subject motion produces systematic biases in the metrics computed by widely used morphometry software packages, even when the motion is too small to produce noticeable image artifacts. In the common situation where the control population exhibits different behaviors in the scanner when compared to the experimental population, these systematic measurement biases may produce significant confounds for between-group analyses, leading to erroneous conclusions about group differences. While previous work has shown that prospective motion correction can improve perceived image quality, here we demonstrate that, in healthy subjects performing a variety of directed motions, the use of the volumetric navigator (vNav) prospective motion correction system significantly reduces the motion-induced bias and variance in morphometry. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Obeticholic Acid Improves Adipose Morphometry and Inflammation and Reduces Steatosis in Dietary but not Metabolic Obesity in Mice

    PubMed Central

    Haczeyni, Fahrettin; Poekes, Laurence; Wang, Hans; Mridha, Auvro R.; Barn, Vanessa; Haigh, W. Geoffrey; Ioannou, George N.; Yeh, Matthew M; Leclercq, Isabelle A.; Teoh, Narcissus C.; Farrell, Geoffrey C.

    2018-01-01

    Objective Non-alcoholic steatohepatitis (NASH) is the outcome of interactions between overnutrition, energy metabolism, and adipose function. Obeticholic acid (OCA) improves steatosis in patients, but for unknown reason does not resolve NASH pathology. We therefore investigated OCA effects in Wt mice which develop obesity with atherogenic dietary feeding, and appetite-dysregulated, Alms1 mutant foz/foz mice fed the same diet which develop metabolic obesity and diabetes. Methods OCA (1mg/kg) was administered orally to female foz/foz mice and Wt littermates from weaning until 28 weeks. We studied adipose indices, glucose tolerance and fatty liver pathology. Experiments were repeated with OCA 10mg/kg. Results OCA reduced body weight and hepatic lipids and improved glucose disposal only in Wt mice. OCA limited Wt adipose expansion, altered morphometry in favour of small adipocytes, enhanced expression of genes indicating adipose browning, and reduced crown-like structure (CLS) number in visceral adipose. foz/foz mice showed more CLSs in all compartments; OCA failed to alter adipose morphometry, browning, inflammation, or improve NASH severity, even at 10mg/kg. Conclusion OCA improves adipose indices, glucose tolerance and steatosis in milder metabolic phenotype, but fails to improve these factors in morbidly obese diabetic mice. These results help explain OCA’s limited efficacy to reverse human NASH. PMID:27804232

  4. Cortical morphometry in frontoparietal and default mode networks in math-gifted adolescents.

    PubMed

    Navas-Sánchez, Francisco J; Carmona, Susana; Alemán-Gómez, Yasser; Sánchez-González, Javier; Guzmán-de-Villoria, Juan; Franco, Carolina; Robles, Olalla; Arango, Celso; Desco, Manuel

    2016-05-01

    Math-gifted subjects are characterized by above-age performance in intelligence tests, exceptional creativity, and high task commitment. Neuroimaging studies reveal enhanced functional brain organization and white matter microstructure in the frontoparietal executive network of math-gifted individuals. However, the cortical morphometry of these subjects remains largely unknown. The main goal of this study was to compare the cortical morphometry of math-gifted adolescents with that of an age- and IQ-matched control group. We used surface-based methods to perform a vertex-wise analysis of cortical thickness and surface area. Our results show that math-gifted adolescents present a thinner cortex and a larger surface area in key regions of the frontoparietal and default mode networks, which are involved in executive processing and creative thinking, respectively. The combination of reduced cortical thickness and larger surface area suggests above-age neural maturation of these networks in math-gifted individuals. Hum Brain Mapp 37:1893-1902, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Obeticholic acid improves adipose morphometry and inflammation and reduces steatosis in dietary but not metabolic obesity in mice.

    PubMed

    Haczeyni, Fahrettin; Poekes, Laurence; Wang, Hans; Mridha, Auvro R; Barn, Vanessa; Geoffrey Haigh, W; Ioannou, George N; Yeh, Matthew M; Leclercq, Isabelle A; Teoh, Narcissus C; Farrell, Geoffrey C

    2017-01-01

    Nonalcoholic steatohepatitis (NASH) is the outcome of interactions between overnutrition, energy metabolism, and adipose function. Obeticholic acid (OCA) improves steatosis in patients but for unknown reasons does not resolve NASH pathology. This study therefore investigated OCA effects in Wt mice, which develop obesity with atherogenic dietary feeding, and appetite-dysregulated, Alms1 mutant foz/foz mice fed the same diet, which develop metabolic obesity and diabetes. OCA (1 mg/kg) was administered orally to female foz/foz mice and Wt littermates from weaning until 28 weeks. Adipose indices, glucose tolerance, and fatty liver pathology were studied. Experiments were repeated with OCA 10 mg/kg. OCA reduced body weight and hepatic lipids and improved glucose disposal only in Wt mice. OCA limited Wt adipose expansion, altered morphometry in favor of small adipocytes, enhanced expression of genes indicating adipose browning, and reduced crown-like structure number in visceral adipose tissue. foz/foz mice showed more crown-like structures in all compartments; OCA failed to alter adipose morphometry, browning, inflammation, or improve NASH severity, even at 10 mg/kg. OCA improved adipose indices, glucose tolerance, and steatosis in a milder metabolic phenotype but failed to improve these factors in morbidly obese diabetic mice. These results help explain OCA's limited efficacy to reverse human NASH. © 2016 The Obesity Society.

  6. Tensor-Based Morphometry Reveals Volumetric Deficits in Moderate=Severe Pediatric Traumatic Brain Injury.

    PubMed

    Dennis, Emily L; Hua, Xue; Villalon-Reina, Julio; Moran, Lisa M; Kernan, Claudia; Babikian, Talin; Mink, Richard; Babbitt, Christopher; Johnson, Jeffrey; Giza, Christopher C; Thompson, Paul M; Asarnow, Robert F

    2016-05-01

    Traumatic brain injury (TBI) can cause widespread and prolonged brain degeneration. TBI can affect cognitive function and brain integrity for many years after injury, often with lasting effects in children, whose brains are still immature. Although TBI varies in how it affects different individuals, image analysis methods such as tensor-based morphometry (TBM) can reveal common areas of brain atrophy on magnetic resonance imaging (MRI), secondary effects of the initial injury, which will differ between subjects. Here we studied 36 pediatric moderate to severe TBI (msTBI) participants in the post-acute phase (1-6 months post-injury) and 18 msTBI participants who returned for their chronic assessment, along with well-matched controls at both time-points. Participants completed a battery of cognitive tests that we used to create a global cognitive performance score. Using TBM, we created three-dimensional (3D) maps of individual and group differences in regional brain volumes. At both the post-acute and chronic time-points, the greatest group differences were expansion of the lateral ventricles and reduction of the lingual gyrus in the TBI group. We found a number of smaller clusters of volume reduction in the cingulate gyrus, thalamus, and fusiform gyrus, and throughout the frontal, temporal, and parietal cortices. Additionally, we found extensive associations between our cognitive performance measure and regional brain volume. Our results indicate a pattern of atrophy still detectable 1-year post-injury, which may partially underlie the cognitive deficits frequently found in TBI.

  7. Meditation effects within the hippocampal complex revealed by voxel-based morphometry and cytoarchitectonic probabilistic mapping

    PubMed Central

    Luders, Eileen; Kurth, Florian; Toga, Arthur W.; Narr, Katherine L.; Gaser, Christian

    2013-01-01

    Scientific studies addressing anatomical variations in meditators' brains have emerged rapidly over the last few years, where significant links are most frequently reported with respect to gray matter (GM). To advance prior work, this study examined GM characteristics in a large sample of 100 subjects (50 meditators, 50 controls), where meditators have been practicing close to 20 years, on average. A standard, whole-brain voxel-based morphometry approach was applied and revealed significant meditation effects in the vicinity of the hippocampus, showing more GM in meditators than in controls as well as positive correlations with the number of years practiced. However, the hippocampal complex is regionally segregated by architecture, connectivity, and functional relevance. Thus, to establish differential effects within the hippocampal formation (cornu ammonis, fascia dentata, entorhinal cortex, subiculum) as well as the hippocampal-amygdaloid transition area, we utilized refined cytoarchitectonic probabilistic maps of (peri-) hippocampal subsections. Significant meditation effects were observed within the subiculum specifically. Since the subiculum is known to play a key role in stress regulation and meditation is an established form of stress reduction, these GM findings may reflect neuronal preservation in long-term meditators—perhaps due to an attenuated release of stress hormones and decreased neurotoxicity. PMID:23847572

  8. Pronounced within-individual plasticity in sperm morphometry across social environments.

    PubMed

    Immler, Simone; Pryke, Sarah R; Birkhead, Tim R; Griffith, Simon C

    2010-06-01

    Sperm morphometry (i.e., size and shape) and function are important determinants of male reproductive success and are thought to be under stabilizing selection. However, recent studies suggest that sperm morphometry can be a phenotypically plastic trait, which can be adjusted to varying conditions. We tested whether different behavioral strategies in aggression between aggressive red and nonaggressive black males of the color polymorphic Gouldian finch (Erythrura gouldiae) can influence sperm morphometry. We show pronounced within-individual phenotypic plasticity in sperm morphometry of male Gouldian finches in three different social environments. Both red and black males placed in intermediate to high competitive environments (high frequency of red males) increased the relative length of their sperm midpiece. By contrast, red males placed in low to intermediate competitive environments (higher frequency of black males) increased the length of the sperm flagellum. Significant changes in stress and sex steroid hormone levels (in response to the competitive environment) appear to influence sperm traits in red but not in black males, suggesting that changes in hormonal levels are not solely responsible for the observed changes in sperm morphometry. These findings imply that males can adjust sperm morphometry across social environments.

  9. Studying ventricular abnormalities in mild cognitive impairment with hyperbolic Ricci flow and tensor-based morphometry.

    PubMed

    Shi, Jie; Stonnington, Cynthia M; Thompson, Paul M; Chen, Kewei; Gutman, Boris; Reschke, Cole; Baxter, Leslie C; Reiman, Eric M; Caselli, Richard J; Wang, Yalin

    2015-01-01

    Mild Cognitive Impairment (MCI) is a transitional stage between normal aging and dementia and people with MCI are at high risk of progression to dementia. MCI is attracting increasing attention, as it offers an opportunity to target the disease process during an early symptomatic stage. Structural magnetic resonance imaging (MRI) measures have been the mainstay of Alzheimer's disease (AD) imaging research, however, ventricular morphometry analysis remains challenging because of its complicated topological structure. Here we describe a novel ventricular morphometry system based on the hyperbolic Ricci flow method and tensor-based morphometry (TBM) statistics. Unlike prior ventricular surface parameterization methods, hyperbolic conformal parameterization is angle-preserving and does not have any singularities. Our system generates a one-to-one diffeomorphic mapping between ventricular surfaces with consistent boundary matching conditions. The TBM statistics encode a great deal of surface deformation information that could be inaccessible or overlooked by other methods. We applied our system to the baseline MRI scans of a set of MCI subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI: 71 MCI converters vs. 62 MCI stable). Although the combined ventricular area and volume features did not differ between the two groups, our fine-grained surface analysis revealed significant differences in the ventricular regions close to the temporal lobe and posterior cingulate, structures that are affected early in AD. Significant correlations were also detected between ventricular morphometry, neuropsychological measures, and a previously described imaging index based on fluorodeoxyglucose positron emission tomography (FDG-PET) scans. This novel ventricular morphometry method may offer a new and more sensitive approach to study preclinical and early symptomatic stage AD. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. STUDYING VENTRICULAR ABNORMALITIES IN MILD COGNITIVE IMPAIRMENT WITH HYPERBOLIC RICCI FLOW AND TENSOR-BASED MORPHOMETRY

    PubMed Central

    Shi, Jie; Stonnington, Cynthia M.; Thompson, Paul M.; Chen, Kewei; Gutman, Boris; Reschke, Cole; Baxter, Leslie C.; Reiman, Eric M.; Caselli, Richard J.; Wang, Yalin

    2014-01-01

    Mild Cognitive Impairment (MCI) is a transitional stage between normal aging and dementia and people with MCI are at high risk of progression to dementia. MCI is attracting increasing attention, as it offers an opportunity to target the disease process during an early symptomatic stage. Structural magnetic resonance imaging (MRI) measures have been the mainstay of Alzheimer’s disease (AD) imaging research, however, ventricular morphometry analysis remains challenging because of its complicated topological structure. Here we describe a novel ventricular morphometry system based on the hyperbolic Ricci flow method and tensor-based morphometry (TBM) statistics. Unlike prior ventricular surface parameterization methods, hyperbolic conformal parameterization is angle-preserving and does not have any singularities. Our system generates a one-to-one diffeomorphic mapping between ventricular surfaces with consistent boundary matching conditions. The TBM statistics encode a great deal of surface deformation information that could be inaccessible or overlooked by other methods. We applied our system to the baseline MRI scans of a set of MCI subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI: 71 MCI converters vs. 62 MCI stable). Although the combined ventricular area and volume features did not differ between the two groups, our fine-grained surface analysis revealed significant differences in the ventricular regions close to the temporal lobe and posterior cingulate, structures that are affected early in AD. Significant correlations were also detected between ventricular morphometry, neuropsychological measures, and a previously described imaging index based on fluorodeoxyglucose positron emission tomography (FDG-PET) scans. This novel ventricular morphometry method may offer a new and more sensitive approach to study preclinical and early symptomatic stage AD. PMID:25285374

  11. lakemorpho: Calculating lake morphometry metrics in R.

    PubMed

    Hollister, Jeffrey; Stachelek, Joseph

    2017-01-01

    Metrics describing the shape and size of lakes, known as lake morphometry metrics, are important for any limnological study. In cases where a lake has long been the subject of study these data are often already collected and are openly available. Many other lakes have these data collected, but access is challenging as it is often stored on individual computers (or worse, in filing cabinets) and is available only to the primary investigators. The vast majority of lakes fall into a third category in which the data are not available. This makes broad scale modelling of lake ecology a challenge as some of the key information about in-lake processes are unavailable. While this valuable in situ information may be difficult to obtain, several national datasets exist that may be used to model and estimate lake morphometry. In particular, digital elevation models and hydrography have been shown to be predictive of several lake morphometry metrics. The R package lakemorpho has been developed to utilize these data and estimate the following morphometry metrics: surface area, shoreline length, major axis length, minor axis length, major and minor axis length ratio, shoreline development, maximum depth, mean depth, volume, maximum lake length, mean lake width, maximum lake width, and fetch. In this software tool article we describe the motivation behind developing lakemorpho , discuss the implementation in R, and describe the use of lakemorpho with an example of a typical use case.

  12. Nonconscious attention bias to threat is correlated with anterior cingulate cortex gray matter volume: a voxel-based morphometry result and replication.

    PubMed

    Carlson, Joshua M; Beacher, Felix; Reinke, Karen S; Habib, Reza; Harmon-Jones, Eddie; Mujica-Parodi, Lilianne R; Hajcak, Greg

    2012-01-16

    An important aspect of the fear response is the allocation of spatial attention toward threatening stimuli. This response is so powerful that modulations in spatial attention can occur automatically without conscious awareness. Functional neuroimaging research suggests that the amygdala and anterior cingulate cortex (ACC) form a network involved in the rapid orienting of attention to threat. A hyper-responsive attention bias to threat is a common component of anxiety disorders. Yet, little is known of how individual differences in underlying brain morphometry relate to variability in attention bias to threat. Here, we performed two experiments using dot-probe tasks that measured individuals' attention bias to backward masked fearful faces. We collected whole-brain structural magnetic resonance images and used voxel-based morphometry to measure brain morphometry. We tested the hypothesis that reduced gray matter within the amygdala and ACC would be associated with reduced attention bias to threat. In Experiment 1, we found that backward masked fearful faces captured spatial attention and that elevated attention bias to masked threat was associated with greater ACC gray matter volumes. In Experiment 2, this association was replicated in a separate sample. Thus, we provide initial and replicating evidence that ACC gray matter volume is correlated with biased attention to threat. Importantly, we demonstrate that variability in affective attention bias within the healthy population is associated with ACC morphometry. This result opens the door for future research into the underlying brain morphometry associated with attention bias in clinically anxious populations. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Feature-based Morphometry

    PubMed Central

    Toews, Matthew; Wells, William M.; Collins, Louis; Arbel, Tal

    2013-01-01

    This paper presents feature-based morphometry (FBM), a new, fully data-driven technique for identifying group-related differences in volumetric imagery. In contrast to most morphometry methods which assume one-to-one correspondence between all subjects, FBM models images as a collage of distinct, localized image features which may not be present in all subjects. FBM thus explicitly accounts for the case where the same anatomical tissue cannot be reliably identified in all subjects due to disease or anatomical variability. A probabilistic model describes features in terms of their appearance, geometry, and relationship to sub-groups of a population, and is automatically learned from a set of subject images and group labels. Features identified indicate group-related anatomical structure that can potentially be used as disease biomarkers or as a basis for computer-aided diagnosis. Scale-invariant image features are used, which reflect generic, salient patterns in the image. Experiments validate FBM clinically in the analysis of normal (NC) and Alzheimer’s (AD) brain images using the freely available OASIS database. FBM automatically identifies known structural differences between NC and AD subjects in a fully data-driven fashion, and obtains an equal error classification rate of 0.78 on new subjects. PMID:20426102

  14. EFFECTS OF LINDANE AND LINURON ON CALCIUM METABOLISM, MORPHOMETRY, AND THE KIDNEY

    EPA Science Inventory

    The effects of lindane and linuron on calcium metabolism, bone morphometry and the kidney. xperiments were performed to investigate the effects of lindane and linuron on calcium metabolism, femur morphometry and nephrotoxicity. ong-Evans hooded rats were dosed daily for 10 weeks ...

  15. The study of Lake Urmia desiccation: morphometry impress

    NASA Astrophysics Data System (ADS)

    Moradi, Ayoub; Rasouli, Ali Akbar; Roostaei, Shahram

    2017-04-01

    Located in northwestern Iran, the hypersaline Lake Urmia has started a serious uninterrupted desiccation since 1995. The lake has lost about eight meters of water level and about 75% of water surface area during past 20 years. In particular, the lake water volume decrement has been accelerated in recent years. The importance of the Lake Urmia for human life in northwestern Iran, and its destructive effects on a vast region if totally dry up, demands comprehensive studies of the lake level fluctuations mechanism. According to literature review, the water volume of the lake behaves sometimes differently from the water storage of the whole basin. Our time series analysis using Land Data Assimilation Systems also confirms those differences within last decades. In other hand, many studies addressed the lake desiccation to climatic changes and/or anthropogenic influences such as excessive dam constructions in the watershed during last decades. As water leaves the lake only through evaporation, the fluctuation of evaporation has a distinctive role in the lake level variations. Dramatic decreament in the lake extent indicates of a special morphometry. The lake's morphometry has made it vulnerable to temperature and salinity changes. It strongly controls the lake's water heat capacity and water density. And, it therefore controls the rate of evaporation from water surface. We study the role of lake's morphometry on the lake desiccation. Although, the global climatic change is known as the primary reason for current droughts in the Middle East generally, our preliminary results show that the lake's morphometry is the main cause for the accelerating of water volume lost in Lake Urmia. In particular, after 2007, lake's water temperature and density show significant variations. Water heat capacity and evaporation rate are consistent with information of lake's hypsometry.

  16. Mindboggling morphometry of human brains

    PubMed Central

    Bao, Forrest S.; Giard, Joachim; Stavsky, Eliezer; Lee, Noah; Rossa, Brian; Reuter, Martin; Chaibub Neto, Elias

    2017-01-01

    Mindboggle (http://mindboggle.info) is an open source brain morphometry platform that takes in preprocessed T1-weighted MRI data and outputs volume, surface, and tabular data containing label, feature, and shape information for further analysis. In this article, we document the software and demonstrate its use in studies of shape variation in healthy and diseased humans. The number of different shape measures and the size of the populations make this the largest and most detailed shape analysis of human brains ever conducted. Brain image morphometry shows great potential for providing much-needed biological markers for diagnosing, tracking, and predicting progression of mental health disorders. Very few software algorithms provide more than measures of volume and cortical thickness, while more subtle shape measures may provide more sensitive and specific biomarkers. Mindboggle computes a variety of (primarily surface-based) shapes: area, volume, thickness, curvature, depth, Laplace-Beltrami spectra, Zernike moments, etc. We evaluate Mindboggle’s algorithms using the largest set of manually labeled, publicly available brain images in the world and compare them against state-of-the-art algorithms where they exist. All data, code, and results of these evaluations are publicly available. PMID:28231282

  17. Brain structure differences between Chinese and Caucasian cohorts: A comprehensive morphometry study.

    PubMed

    Tang, Yuchun; Zhao, Lu; Lou, Yunxia; Shi, Yonggang; Fang, Rui; Lin, Xiangtao; Liu, Shuwei; Toga, Arthur

    2018-05-01

    Numerous behavioral observations and brain function studies have demonstrated that neurological differences exist between East Asians and Westerners. However, the extent to which these factors relate to differences in brain structure is still not clear. As the basis of brain functions, the anatomical differences in brain structure play a primary and critical role in the origination of functional and behavior differences. To investigate the underlying differences in brain structure between the two cultural/ethnic groups, we conducted a comparative study on education-matched right-handed young male adults (age = 22-29 years) from two cohorts, Han Chinese (n = 45) and Caucasians (n = 45), using high-dimensional structural magnetic resonance imaging (MRI) data. Using two well-validated imaging analysis techniques, surface-based morphometry (SBM) and voxel-based morphometry (VBM), we performed a comprehensive vertex-wise morphometric analysis of the brain structures between Chinese and Caucasian cohorts. We identified consistent significant between-group differences in cortical thickness, volume, and surface area in the frontal, temporal, parietal, occipital, and insular lobes as well as the cingulate cortices. The SBM analyses revealed that compared with Caucasians, the Chinese population showed larger cortical structures in the temporal and cingulate regions, and smaller structural measures in the frontal and parietal cortices. The VBM data of the same sample was well-aligned with the SBM findings. Our findings systematically revealed comprehensive brain structural differences between young male Chinese and Caucasians, and provided new neuroanatomical insights to the behavioral and functional distinctions in the two cultural/ethnic populations. © 2018 Wiley Periodicals, Inc.

  18. An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer's disease

    PubMed Central

    Schmitter, Daniel; Roche, Alexis; Maréchal, Bénédicte; Ribes, Delphine; Abdulkadir, Ahmed; Bach-Cuadra, Meritxell; Daducci, Alessandro; Granziera, Cristina; Klöppel, Stefan; Maeder, Philippe; Meuli, Reto; Krueger, Gunnar

    2014-01-01

    Voxel-based morphometry from conventional T1-weighted images has proved effective to quantify Alzheimer's disease (AD) related brain atrophy and to enable fairly accurate automated classification of AD patients, mild cognitive impaired patients (MCI) and elderly controls. Little is known, however, about the classification power of volume-based morphometry, where features of interest consist of a few brain structure volumes (e.g. hippocampi, lobes, ventricles) as opposed to hundreds of thousands of voxel-wise gray matter concentrations. In this work, we experimentally evaluate two distinct volume-based morphometry algorithms (FreeSurfer and an in-house algorithm called MorphoBox) for automatic disease classification on a standardized data set from the Alzheimer's Disease Neuroimaging Initiative. Results indicate that both algorithms achieve classification accuracy comparable to the conventional whole-brain voxel-based morphometry pipeline using SPM for AD vs elderly controls and MCI vs controls, and higher accuracy for classification of AD vs MCI and early vs late AD converters, thereby demonstrating the potential of volume-based morphometry to assist diagnosis of mild cognitive impairment and Alzheimer's disease. PMID:25429357

  19. Sexual dimorphism of sulcal morphology of the ferret cerebrum revealed by MRI-based sulcal surface morphometry

    PubMed Central

    Sawada, Kazuhiko; Horiuchi-Hirose, Miwa; Saito, Shigeyoshi; Aoki, Ichio

    2015-01-01

    The present study quantitatively assessed sexual dimorphism of cortical convolution and sulcal morphology in young adult ferrets by MRI-based sulcal surface morphometry. Ex vivo T1-weighted (short TR/TE) MRI of the ferret cerebrum was acquired with high spatial resolution at 7-tesla. The degree of cortical convolution, evaluated quantitatively based on 3D MRI data by sulcation index (SI), was significantly greater in males (0.553 ± 0.036) than in females (0.502 ± 0.043) (p < 0.001). The rostrocaudal distribution of the cortical convolution revealed a greater convolution in the frontal region of the cortex in males than in females and by a posterior extension of the convolution in the temporo-parieto-occipital region of males. Although the cerebral width in the frontal region was not different between sexes, the rhinal fissure and rostral region of splenial sulcus were more infolded in males than in females. On the contrary, the cerebral width was greater in males in the temporo-parieto-occipital region, and male-prominent posterior extension of infolding was noted in the lateral sulcus, caudal suprasylvian sulcus, pesudosylvian sulcus, hippocampal sulcus, and the caudal region of splenial sulcus. Notably, the caudal descending region of lateral sulcus was clearly infolded in males, but obscured in females. The present results suggest a region-related sexual dimorphism of the sulcal infolding, which is reflected by local cortical expansion in the ferret cerebrum. In particular, male-favored sulcal infolding with expansion of the temporo-parieto-occipital neocortex may be relevant to the human cerebral cortex regarding visuo-spatial and emotion processing, which are known to differ between sexes. The present results will provide fundamental information assessing sex-related changes in the regional sulcal infolding, when ferrets with experimentally-induced gyrification abnormality will be used as models for male-prevalent or male-earlier-onset neurodevelopmental

  20. Structural covariance in the hallucinating brain: a voxel-based morphometry study

    PubMed Central

    Modinos, Gemma; Vercammen, Ans; Mechelli, Andrea; Knegtering, Henderikus; McGuire, Philip K.; Aleman, André

    2009-01-01

    Background Neuroimaging studies have indicated that a number of cortical regions express altered patterns of structural covariance in schizophrenia. The relation between these alterations and specific psychotic symptoms is yet to be investigated. We used voxel-based morphometry to examine regional grey matter volumes and structural covariance associated with severity of auditory verbal hallucinations. Methods We applied optimized voxel-based morphometry to volumetric magnetic resonance imaging data from 26 patients with medication-resistant auditory verbal hallucinations (AVHs); statistical inferences were made at p < 0.05 after correction for multiple comparisons. Results Grey matter volume in the left inferior frontal gyrus was positively correlated with severity of AVHs. Hallucination severity influenced the pattern of structural covariance between this region and the left superior/middle temporal gyri, the right inferior frontal gyrus and hippocampus, and the insula bilaterally. Limitations The results are based on self-reported severity of auditory hallucinations. Complementing with a clinician-based instrument could have made the findings more compelling. Future studies would benefit from including a measure to control for other symptoms that may covary with AVHs and for the effects of antipsychotic medication. Conclusion The results revealed that overall severity of AVHs modulated cortical intercorrelations between frontotemporal regions involved in language production and verbal monitoring, supporting the critical role of this network in the pathophysiology of hallucinations. PMID:19949723

  1. Mapping abnormal subcortical brain morphometry in an elderly HIV+ cohort.

    PubMed

    Wade, Benjamin S C; Valcour, Victor G; Wendelken-Riegelhaupt, Lauren; Esmaeili-Firidouni, Pardis; Joshi, Shantanu H; Gutman, Boris A; Thompson, Paul M

    2015-01-01

    Over 50% of HIV + individuals exhibit neurocognitive impairment and subcortical atrophy, but the profile of brain abnormalities associated with HIV is still poorly understood. Using surface-based shape analyses, we mapped the 3D profile of subcortical morphometry in 63 elderly HIV + participants and 31 uninfected controls. The thalamus, caudate, putamen, pallidum, hippocampus, amygdala, brainstem, accumbens, callosum and ventricles were segmented from high-resolution MRIs. To investigate shape-based morphometry, we analyzed the Jacobian determinant (JD) and radial distances (RD) defined on each region's surfaces. We also investigated effects of nadir CD4 + T-cell counts, viral load, time since diagnosis (TSD) and cognition on subcortical morphology. Lastly, we explored whether HIV + participants were distinguishable from unaffected controls in a machine learning context. All shape and volume features were included in a random forest (RF) model. The model was validated with 2-fold cross-validation. Volumes of HIV + participants' bilateral thalamus, left pallidum, left putamen and callosum were significantly reduced while ventricular spaces were enlarged. Significant shape variation was associated with HIV status, TSD and the Wechsler adult intelligence scale. HIV + people had diffuse atrophy, particularly in the caudate, putamen, hippocampus and thalamus. Unexpectedly, extended TSD was associated with increased thickness of the anterior right pallidum. In the classification of HIV + participants vs. controls, our RF model attained an area under the curve of 72%.

  2. lakemorpho: Calculating lake morphometry metrics in R

    EPA Science Inventory

    Metrics describing the shape and size of lakes, known as lake morphometry metrics, are important for any limnological study. In cases where a lake has long been the subject of study these data are often already collected and are openly available. Many other lakes have these data ...

  3. [Voxel-Based Morphometry in Autism Spectrum Disorder].

    PubMed

    Yamasue, Hidenori

    2017-05-01

    Autism spectrum disorder shows deficits in social communication and interaction including nonverbal communicative behaviors (e.g., eye contact, gestures, voice prosody, and facial expressions) and restricted and repetitive behaviors as its core symptoms. These core symptoms are emerged as an atypical behavioral development in toddlers with the disorder. Atypical neural development is considered to be a neural underpinning of such behaviorally atypical development. A number of studies using voxel-based morphometry have already been conducted to compare regional brain volumes between individuals with autism spectrum disorder and those with typical development. Furthermore, more than ten papers employing meta-analyses of the comparisons using voxel based morphometry between individuals with autism spectrum disorder and those with typical development have already been published. The current review paper adds some brief discussions about potential factors contributing to the inconsistency observed in the previous findings such as difficulty in controlling the confounding effects of different developmental phases among study participants.

  4. Disentangling diatom species complexes: does morphometry suffice?

    PubMed Central

    Borrego-Ramos, María; Olenici, Adriana

    2017-01-01

    Accurate taxonomic resolution in light microscopy analyses of microalgae is essential to achieve high quality, comparable results in both floristic analyses and biomonitoring studies. A number of closely related diatom taxa have been detected to date co-occurring within benthic diatom assemblages, sharing many morphological, morphometrical and ecological characteristics. In this contribution, we analysed the hypothesis that, where a large sample size (number of individuals) is available, common morphometrical parameters (valve length, width and stria density) are sufficient to achieve a correct identification to the species level. We focused on some common diatom taxa belonging to the genus Gomphonema. More than 400 valves and frustules were photographed in valve view and measured using Fiji software. Several statistical tools (mixture and discriminant analysis, k-means clustering, classification trees, etc.) were explored to test whether mere morphometry, independently of other valve features, leads to correct identifications, when compared to identifications made by experts. In view of the results obtained, morphometry-based determination in diatom taxonomy is discouraged. PMID:29250472

  5. CT morphometry of adult thoracic intervertebral discs.

    PubMed

    Fletcher, Justin G R; Stringer, Mark D; Briggs, Christopher A; Davies, Tilman M; Woodley, Stephanie J

    2015-10-01

    Despite being commonly affected by degenerative disorders, there are few data on normal thoracic intervertebral disc dimensions. A morphometric analysis of adult thoracic intervertebral discs was, therefore, undertaken. Archival computed tomography scans of 128 recently deceased individuals (70 males, 58 females, 20-79 years) with no known spinal pathology were analysed to determine thoracic disc morphometry and variations with disc level, sex and age. Reliability was assessed by intraclass correlation coefficients (ICCs). Anterior and posterior intervertebral disc heights and axial dimensions were significantly greater in men (anterior disc height 4.0±1.4 vs 3.6±1.3 mm; posterior disc height 3.6±0.90 vs 3.4±0.93 mm; p<0.01). Disc heights and axial dimensions at T4-5 were similar or smaller than at T2-3, but thereafter increased caudally (mean anterior disc height T4-5 and T10-11, 2.7±0.7 and 5.4±1.2 mm, respectively, in men; 2.6±0.8 and 5.1±1.3 mm, respectively, in women; p<0.05). Except at T2-3, anterior disc height decreased with advancing age and anteroposterior and transverse disc dimensions increased; posterior and middle disc heights and indices of disc shape showed no consistent statistically significant changes. Most parameters showed substantial to almost perfect agreement for intra- and inter-rater reliability. Thoracic disc morphometry varies significantly and consistently with disc level, sex and age. This study provides unique reference data on adult thoracic intervertebral disc morphometry, which may be useful when interpreting pathological changes and for future biomechanical and functional studies.

  6. Comparative Minicolumnar Morphometry of Three Distinguished Scientists

    ERIC Educational Resources Information Center

    Casanova, Manuel F.; Switala, Andrew E.; Trippe, Juan; Fitzgerald, Michael

    2007-01-01

    It has been suggested that the cell minicolumn is the smallest module capable of information processing within the brain. In this case series, photomicrographs of six regions of interests (Brodmann areas 4, 9, 17, 21, 22, and 40) were analyzed by computerized image analysis for minicolumnar morphometry in the brains of three distinguished…

  7. Anterior Temporal Lobe Morphometry Predicts Categorization Ability.

    PubMed

    Garcin, Béatrice; Urbanski, Marika; Thiebaut de Schotten, Michel; Levy, Richard; Volle, Emmanuelle

    2018-01-01

    Categorization is the mental operation by which the brain classifies objects and events. It is classically assessed using semantic and non-semantic matching or sorting tasks. These tasks show a high variability in performance across healthy controls and the cerebral bases supporting this variability remain unknown. In this study we performed a voxel-based morphometry study to explore the relationships between semantic and shape categorization tasks and brain morphometric differences in 50 controls. We found significant correlation between categorization performance and the volume of the gray matter in the right anterior middle and inferior temporal gyri. Semantic categorization tasks were associated with more rostral temporal regions than shape categorization tasks. A significant relationship was also shown between white matter volume in the right temporal lobe and performance in the semantic tasks. Tractography revealed that this white matter region involved several projection and association fibers, including the arcuate fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, and inferior longitudinal fasciculus. These results suggest that categorization abilities are supported by the anterior portion of the right temporal lobe and its interaction with other areas.

  8. Fatigue Is Associated With Global and Regional Thalamic Morphometry in Veterans With a History of Mild Traumatic Brain Injury.

    PubMed

    Clark, Alexandra L; Sorg, Scott F; Holiday, Kelsey; Bigler, Erin D; Bangen, Katherine J; Evangelista, Nicole D; Bondi, Mark W; Schiehser, Dawn M; Delano-Wood, Lisa

    2018-01-30

    Fatigue is a complex, multidimensional phenomenon that commonly occurs following traumatic brain injury (TBI). The thalamus-a structure vulnerable to both primary and secondary injuries in TBI-is thought to play a pivotal role in the manifestation of fatigue. We explored how neuroimaging markers of local and global thalamic morphometry relate to the subjective experience of fatigue post-TBI. Sixty-three Veterans with a history of mild TBI underwent structural magnetic resonance imaging and completed questionnaires related to fatigue and psychiatric symptoms. FMRIB's Software (FSL) was utilized to obtain whole brain and thalamic volume estimates, as well as to perform regional thalamic morphometry analyses. Independent of age, sex, intracranial volume, posttraumatic stress disorder, and depressive symptoms, greater levels of self-reported fatigue were significantly associated with decreased right (P = .026) and left (P = .046) thalamic volumes. Regional morphometry analyses revealed that fatigue was significantly associated with reductions in the anterior and dorsomedial aspects of the right thalamic body (P < .05). Similar trends were observed for the left thalamic body (P < .10). Both global and regional thalamic morphometric changes are associated with the subjective experience of fatigue in Veterans with a history of mild TBI. These findings support a theory in which disruption of thalamocorticostriatal circuitry may result in the manifestation of fatigue in individuals with a history of neurotrauma.

  9. Pelvic belt effects on pelvic morphometry, muscle activity and body balance in patients with sacroiliac joint dysfunction.

    PubMed

    Soisson, Odette; Lube, Juliane; Germano, Andresa; Hammer, Karl-Heinz; Josten, Christoph; Sichting, Freddy; Winkler, Dirk; Milani, Thomas L; Hammer, Niels

    2015-01-01

    The sacroiliac joint (SIJ) is frequently involved in low back and pelvic girdle pain. However, morphometrical and functional characteristics related to SIJ pain are poorly defined. Pelvic belts represent one treatment option, but evidence still lacks as to their pain-reducing effects and the mechanisms involved. Addressing these two issues, this case-controlled study compares morphometric, functional and clinical data in SIJ patients and healthy controls and evaluates the effects of short-term pelvic belt application. Morphometric and functional data pertaining to pelvic belt effects were compared in 17 SIJ patients and 17 controls. Lumbar spine and pelvis morphometries were obtained from 3T magnetic resonance imaging. Functional electromyography data of pelvis and leg muscles and center of pressure excursions were measured in one-leg stance. The numerical rating scale was used to evaluate immediate pain-reducing effects. Pelvic morphometry was largely unaltered in SIJ patients and also by pelvic belt application. The angle of lumbar lateral flexion was significantly larger in SIJ patients without belt application. Muscle activity and center of pressure were unaffected by SIJ pain or by belt application in one-leg stance. Nine of 17 patients reported decreased pain intensities under moderate belt application, four reported no change and four reported increased pain intensity. For the entire population investigated here, this qualitative description was not confirmed on a statistical significant level. Minute changes were observed in the alignment of the lumbar spine in the frontal plane in SIJ patients. The potential pain-decreasing effects of pelvic belts could not be attributed to altered muscle activity, pelvic morphometry or body balance in a static short-term application. Long-term belt effects will therefore be of prospective interest.

  10. Pelvic Belt Effects on Pelvic Morphometry, Muscle Activity and Body Balance in Patients with Sacroiliac Joint Dysfunction

    PubMed Central

    Soisson, Odette; Lube, Juliane; Germano, Andresa; Hammer, Karl-Heinz; Josten, Christoph; Sichting, Freddy; Winkler, Dirk; Milani, Thomas L.; Hammer, Niels

    2015-01-01

    Introduction The sacroiliac joint (SIJ) is frequently involved in low back and pelvic girdle pain. However, morphometrical and functional characteristics related to SIJ pain are poorly defined. Pelvic belts represent one treatment option, but evidence still lacks as to their pain-reducing effects and the mechanisms involved. Addressing these two issues, this case-controlled study compares morphometric, functional and clinical data in SIJ patients and healthy controls and evaluates the effects of short-term pelvic belt application. Methods Morphometric and functional data pertaining to pelvic belt effects were compared in 17 SIJ patients and 17 controls. Lumbar spine and pelvis morphometries were obtained from 3T magnetic resonance imaging. Functional electromyography data of pelvis and leg muscles and center of pressure excursions were measured in one-leg stance. The numerical rating scale was used to evaluate immediate pain-reducing effects. Results Pelvic morphometry was largely unaltered in SIJ patients and also by pelvic belt application. The angle of lumbar lateral flexion was significantly larger in SIJ patients without belt application. Muscle activity and center of pressure were unaffected by SIJ pain or by belt application in one-leg stance. Nine of 17 patients reported decreased pain intensities under moderate belt application, four reported no change and four reported increased pain intensity. For the entire population investigated here, this qualitative description was not confirmed on a statistical significant level. Discussion Minute changes were observed in the alignment of the lumbar spine in the frontal plane in SIJ patients. The potential pain-decreasing effects of pelvic belts could not be attributed to altered muscle activity, pelvic morphometry or body balance in a static short-term application. Long-term belt effects will therefore be of prospective interest. PMID:25781325

  11. Glaucoma anterior chamber morphometry based on optical Scheimpflug images.

    PubMed

    Alonso, Ruiz Simonato; Ambrósio Junior, Renato; Paranhos Junior, Augusto; Sakata, Lisandro Massanori; Ventura, Marcelo Palis

    2010-01-01

    To compare the performance of gonioscopy and noncontact morphometry with anterior chamber tomography (High Resolution Pentacam - HR) using optical Scheimpflug images in the evaluation of the anterior chamber angle (ACA). Transversal study. 112 eyes from 74 subjects evaluated at the Glaucoma Department, Fluminense Federal University, underwent gonioscopy and Pentacam HR. Using gonioscopy, the ACA was graded using the Shaffer Classification (SC) by a single experienced examiner masked to the Pentacam HR findings. Narrow angle was determined in eyes in which the posterior trabecular meshwork could not be seen in two or more quadrants on non-indentation gonioscopy (SC Grade 2 or less). Pentacam HR images of the nasal and temporal quadrants were evaluated by custom software to automatically obtain anterior chamber measurements, such as: anterior chamber angle (ACA), anterior chamber volume (ACV) and anterior chamber depth (ACD). Based on gonioscopy results, 74 (60.07%) eyes of patients classified as open-angle (SC 3 and 4) and 38 (33.93%) eyes of patients classified as narrow-angle (SC 1 and 2). Noncontact morphometry with Scheimpflug images revealed a mean ACA of 39.20 ± 5.31 degrees for open-angle and 21.18 ± 7.98 degrees for narrow-angle. The open-angle group showed significant greater ACV and ACD values when compared to narrow-angle group (ACV of 193 ± 36 mm³ vs. 90 ± 25 mm³, respectively, p<0.001; and ACD of 3,09 ± 0,42 mm vs. 1,55 ± 0,64 mm, respectively, p<0.0001.). In screening eyes with open-angle and narrow-angle with the Pentacam ACA of 20º (SC Grade 2) using the ROC curves, the analysis showed 52.6% of sensitivity and 100% of specificity. The Pentacam showed ability in detecting eyes at risk for angle closure analyzing ACV and ACD.

  12. Frontotemporal alterations in pediatric bipolar disorder: results of a voxel-based morphometry study.

    PubMed

    Dickstein, Daniel P; Milham, Michael P; Nugent, Allison C; Drevets, Wayne C; Charney, Dennis S; Pine, Daniel S; Leibenluft, Ellen

    2005-07-01

    While numerous magnetic resonance imaging (MRI) studies have evaluated adults with bipolar disorder (BPD), few have examined MRI changes in children with BPD. To determine volume alterations in children with BPD using voxel-based morphometry, an automated MRI analysis method with reduced susceptibility to various biases. A priori regions of interest included amygdala, accumbens, hippocampus, dorsolateral prefrontal cortex (DLPFC), and orbitofrontal cortex. Ongoing study of the pathophysiology of pediatric BPD. Intramural National Institute of Mental Health; approved by the institutional review board. Patients Pediatric subjects with BPD (n = 20) with at least 1 manic or hypomanic episode meeting strict DSM-IV criteria for duration and elevated, expansive mood. Controls (n = 20) and their first-degree relatives lacked psychiatric disorders. Groups were matched for age and sex and did not differ in IQ. With a 1.5-T MRI machine, we collected 1.2-mm axial sections (124 per subject) with an axial 3-dimensional spoiled gradient recalled echo in the steady state sequence. Image analysis was by optimized voxel-based morphometry. Subjects with BPD had reduced gray matter volume in the left DLPFC. With a less conservative statistical threshold, additional gray matter reductions were found in the left accumbens and left amygdala. No difference was found in the hippocampus or orbitofrontal cortex. Our results are consistent with data implicating the prefrontal cortex in emotion regulation, a process that is perturbed in BPD. Reductions in amygdala and accumbens volumes are consistent with neuropsychological data on pediatric BPD. Further study is required to determine the relationship between these findings in children and adults with BPD.

  13. Atlas warping for brain morphometry

    NASA Astrophysics Data System (ADS)

    Machado, Alexei M. C.; Gee, James C.

    1998-06-01

    In this work, we describe an automated approach to morphometry based on spatial normalizations of the data, and demonstrate its application to the analysis of gender differences in the human corpus callosum. The purpose is to describe a population by a reduced and representative set of variables, from which a prior model can be constructed. Our approach is rooted in the assumption that individual anatomies can be considered as quantitative variations on a common underlying qualitative plane. We can therefore imagine that a given individual's anatomy is a warped version of some referential anatomy, also known as an atlas. The spatial warps which transform a labeled atlas into anatomic alignment with a population yield immediate knowledge about organ size and shape in the group. Furthermore, variation within the set of spatial warps is directly related to the anatomic variation among the subjects. Specifically, the shape statistics--mean and variance of the mappings--for the population can be calculated in a special basis, and an eigendecomposition of the variance performed to identify the most significant modes of shape variation. The results obtained with the corpus callosum study confirm the existence of substantial anatomical differences between males and females, as reported in previous experimental work.

  14. Quantitative computed tomography and aerosol morphometry in COPD and alpha1-antitrypsin deficiency.

    PubMed

    Shaker, S B; Maltbaek, N; Brand, P; Haeussermann, S; Dirksen, A

    2005-01-01

    Relative area of emphysema below -910 Hounsfield units (RA-910) and 15th percentile density (PD15) are quantitative computed tomography (CT) parameters used in the diagnosis of emphysema. New concepts for noninvasive diagnosis of emphysema are aerosol-derived airway morphometry, which measures effective airspace dimensions (EAD) and aerosol bolus dispersion (ABD). Quantitative CT, ABD and EAD were compared in 20 smokers with chronic obstructive pulmonary disease (COPD) and 22 patients with alpha1-antitrypsin deficiency (AAD) with a similar degree of airway obstruction and reduced diffusion capacity. In both groups, there was a significant correlation between RA-910 and PD15 and pulmonary function tests (PFTs). A significant correlation was also found between EAD, RA-910 and PD15 in the study population as a whole. Upon separation into two groups, the significance disappeared for the smokers with COPD and strengthened for those with AAD, where EAD correlated significantly with RA-910 and PD15. ABD was similar in the two groups and did not correlate with PFT and quantitative CT in either group. In conclusion, based on quantitative computed tomography and aerosol-derived airway morphometry, emphysema was significantly more severe in patients with alpha1-antitrypsin deficiency compared with patients with usual emphysema, despite similar measures of pulmonary function tests.

  15. Surface-based morphometry reveals the neuroanatomical basis of the five-factor model of personality

    PubMed Central

    Riccelli, Roberta; Toschi, Nicola; Nigro, Salvatore; Terracciano, Antonio

    2017-01-01

    Abstract The five-factor model (FFM) is a widely used taxonomy of human personality; yet its neuro anatomical basis remains unclear. This is partly because past associations between gray-matter volume and FFM were driven by different surface-based morphometry (SBM) indices (i.e. cortical thickness, surface area, cortical folding or any combination of them). To overcome this limitation, we used Free-Surfer to study how variability in SBM measures was related to the FFM in n = 507 participants from the Human Connectome Project. Neuroticism was associated with thicker cortex and smaller area and folding in prefrontal–temporal regions. Extraversion was linked to thicker pre-cuneus and smaller superior temporal cortex area. Openness was linked to thinner cortex and greater area and folding in prefrontal–parietal regions. Agreeableness was correlated to thinner prefrontal cortex and smaller fusiform gyrus area. Conscientiousness was associated with thicker cortex and smaller area and folding in prefrontal regions. These findings demonstrate that anatomical variability in prefrontal cortices is linked to individual differences in the socio-cognitive dispositions described by the FFM. Cortical thickness and surface area/folding were inversely related each others as a function of different FFM traits (neuroticism, extraversion and consciousness vs openness), which may reflect brain maturational effects that predispose or protect against psychiatric disorders. PMID:28122961

  16. Morphometry Based on Effective and Accurate Correspondences of Localized Patterns (MEACOLP)

    PubMed Central

    Wang, Hu; Ren, Yanshuang; Bai, Lijun; Zhang, Wensheng; Tian, Jie

    2012-01-01

    Local features in volumetric images have been used to identify correspondences of localized anatomical structures for brain morphometry. However, the correspondences are often sparse thus ineffective in reflecting the underlying structures, making it unreliable to evaluate specific morphological differences. This paper presents a morphometry method (MEACOLP) based on correspondences with improved effectiveness and accuracy. A novel two-level scale-invariant feature transform is used to enhance the detection repeatability of local features and to recall the correspondences that might be missed in previous studies. Template patterns whose correspondences could be commonly identified in each group are constructed to serve as the basis for morphometric analysis. A matching algorithm is developed to reduce the identification errors by comparing neighboring local features and rejecting unreliable matches. The two-sample t-test is finally adopted to analyze specific properties of the template patterns. Experiments are performed on the public OASIS database to clinically analyze brain images of Alzheimer's disease (AD) and normal controls (NC). MEACOLP automatically identifies known morphological differences between AD and NC brains, and characterizes the differences well as the scaling and translation of underlying structures. Most of the significant differences are identified in only a single hemisphere, indicating that AD-related structures are characterized by strong anatomical asymmetry. In addition, classification trials to differentiate AD subjects from NC confirm that the morphological differences are reliably related to the groups of interest. PMID:22540000

  17. Three-dimensional confocal morphometry – a new approach for studying dynamic changes in cell morphology in brain slices

    PubMed Central

    Chvátal, Alexandr; Anděrová, Miroslava; Kirchhoff, Frank

    2007-01-01

    Pathological states in the central nervous system lead to dramatic changes in the activity of neuroactive substances in the extracellular space, to changes in ionic homeostasis and often to cell swelling. To quantify changes in cell morphology over a certain period of time, we employed a new technique, three-dimensional confocal morphometry. In our experiments, performed on enhanced green fluorescent protein/glial fibrillary acidic protein astrocytes in brain slices in situ and thus preserving the extracellular microenvironment, confocal morphometry revealed that the application of hypotonic solution evoked two types of volume change. In one population of astrocytes, hypotonic stress evoked small cell volume changes followed by a regulatory volume decrease, while in the second population volume changes were significantly larger without subsequent volume regulation. Three-dimensional cell reconstruction revealed that even though the total astrocyte volume increased during hypotonic stress, the morphological changes in various cell compartments and processes were more complex than have been previously shown, including swelling, shrinking and structural rearrangement. Our data show that astrocytes in brain slices in situ during hypotonic stress display complex behaviour. One population of astrocytes is highly capable of cell volume regulation, while the second population is characterized by prominent cell swelling, accompanied by plastic changes in morphology. It is possible to speculate that these two astrocyte populations play different roles during physiological and pathological states. PMID:17488344

  18. Cytological Evaluation of Thyroid Lesions by Nuclear Morphology and Nuclear Morphometry.

    PubMed

    Yashaswini, R; Suresh, T N; Sagayaraj, A

    2017-01-01

    Fine needle aspiration (FNA) of the thyroid gland is an effective diagnostic method. The Bethesda system for reporting thyroid cytopathology classifies them into six categories and gives implied risk for malignancy and management protocol in each category. Though the system gives specific criteria, diagnostic dilemma still exists. Using nuclear morphometry, we can quantify the number of parameters, such as those related to nuclear size and shape. The evaluation of nuclear morphometry is not well established in thyroid cytology. To classify thyroid lesions on fine needle aspiration cytology (FNAC) using Bethesda system and to evaluate the significance of nuclear parameters in improving the prediction of thyroid malignancy. In the present study, 120 FNAC cases of thyroid lesions with histological diagnosis were included. Computerized nuclear morphometry was done on 81 cases which had confirmed cytohistological correlation, using Aperio computer software. One hundred nuclei from each case were outlined and eight nuclear parameters were analyzed. In the present study, thyroid lesions were common in female with M: F ratio of 1:5 and most commonly in 40-60 yrs. Under Bethesda system, 73 (60.83%) were category II; 14 (11.6%) were category III, 3 (2.5%) were category IV, 8 (6.6%) were category V, and 22 (18.3%) were category VI, which were malignant on histopathological correlation. Sensitivity, specificity, and diagnostic accuracy of Bethesda reporting system are 62.5, 84.38, and 74.16%, respectively. Minimal nuclear diameter, maximal nuclear diameter, nuclear perimeter, and nuclear area were higher in malignant group compared to nonneoplastic and benign group. The Bethesda system is a useful standardized system of reporting thyroid cytopathology. It gives implied risk of malignancy. Nuclear morphometry by computerized image analysis can be utilized as an additional diagnostic tool.

  19. Creativity and borderline personality disorder: evidence from a voxel-based morphometry study.

    PubMed

    Leutgeb, Verena; Ille, Rottraut; Wabnegger, Albert; Schienle, Anne; Schöggl, Helmut; Weber, Bernhard; Papousek, Ilona; Weiss, Elisabeth M; Fink, Andreas

    2016-05-01

    Throughout the history, various examples of eminent creative people suffering from mental disorders along with some empirical research reports strengthened the idea of a potential link between creativity and psychopathology. This study investigated different facets of psychometrically determined creativity in 20 females diagnosed with borderline personality disorder (BPD) relative to 19 healthy female controls. In addition, group differences in grey matter (GM) were examined. Behavioural findings revealed no significant differences between the BPD group and healthy controls with respect to verbal and figural-graphic creative task performance and creativity-related personality characteristics. Whole-brain voxel-based morphometry analyses revealed a distinct pattern of GM reductions in the BPD group (relative to controls) in a network of brain regions closely associated with various cognitive and emotional functions (including the bilateral orbital inferior frontal gyri and the left superior temporal gyrus), partly overlapping with creativity-related brain regions. Correlation analyses moreover revealed that in the BPD group GM reductions in the orbital parts of the inferior and middle frontal gyri were associated with lower levels of creativity. This study provides no indications in favour of the putative link between creativity and psychopathology, as sometimes reported in the literature.

  20. Computer-assisted sperm morphometry fluorescence-based analysis has potential to determine progeny sex.

    PubMed

    Santolaria, Pilar; Pauciullo, Alfredo; Silvestre, Miguel A; Vicente-Fiel, Sandra; Villanova, Leyre; Pinton, Alain; Viruel, Juan; Sales, Ester; Yániz, Jesús L

    2016-01-01

    This study was designed to determine the ability of computer-assisted sperm morphometry analysis (CASA-Morph) with fluorescence to discriminate between spermatozoa carrying different sex chromosomes from the nuclear morphometrics generated and different statistical procedures in the bovine species. The study was divided into two experiments. The first was to study the morphometric differences between X- and Y-chromosome-bearing spermatozoa (SX and SY, respectively). Spermatozoa from eight bulls were processed to assess simultaneously the sex chromosome by FISH and sperm morphometry by fluorescence-based CASA-Morph. SX cells were larger than SY cells on average (P < 0.001) although with important differences between bulls. A simultaneous evaluation of all the measured features by discriminant analysis revealed that nuclear area and average fluorescence intensity were the variables selected by stepwise discriminant function analysis as the best discriminators between SX and SY. In the second experiment, the sperm nuclear morphometric results from CASA-Morph in nonsexed (mixed SX and SY) and sexed (SX) semen samples from four bulls were compared. FISH allowed a successful classification of spermatozoa according to their sex chromosome content. X-sexed spermatozoa displayed a larger size and fluorescence intensity than nonsexed spermatozoa (P < 0.05). We conclude that the CASA-Morph fluorescence-based method has the potential to find differences between X- and Y-chromosome-bearing spermatozoa in bovine species although more studies are needed to increase the precision of sex determination by this technique.

  1. Quantification and Comparison of Anti-Fibrotic Therapies by Polarized SRM and SHG-Based Morphometry in Rat UUO Model

    PubMed Central

    Weldon, Steve M.; Matera, Damian; Lee, ChungWein; Yang, Haichun; Fryer, Ryan M.; Fogo, Agnes B.; Reinhart, Glenn A.

    2016-01-01

    Renal interstitial fibrosis (IF) is an important pathologic manifestation of disease progression in a variety of chronic kidney diseases (CKD). However, the quantitative and reproducible analysis of IF remains a challenge, especially in experimental animal models of progressive IF. In this study, we compare traditional polarized Sirius Red morphometry (SRM) to novel Second Harmonic Generation (SHG)-based morphometry of unstained tissues for quantitative analysis of IF in the rat 5 day unilateral ureteral obstruction (UUO) model. To validate the specificity of SHG for detecting fibrillar collagen components in IF, co-localization studies for collagens type I, III, and IV were performed using IHC. In addition, we examined the correlation, dynamic range, sensitivity, and ability of polarized SRM and SHG-based morphometry to detect an anti-fibrotic effect of three different treatment regimens. Comparisons were made across three separate studies in which animals were treated with three mechanistically distinct pharmacologic agents: enalapril (ENA, 15, 30, 60 mg/kg), mycophenolate mofetil (MMF, 2, 20 mg/kg) or the connective tissue growth factor (CTGF) neutralizing antibody, EX75606 (1, 3, 10 mg/kg). Our results demonstrate a strong co-localization of the SHG signal with fibrillar collagens I and III but not non-fibrillar collagen IV. Quantitative IF, calculated as percent cortical area of fibrosis, demonstrated similar response profile for both polarized SRM and SHG-based morphometry. The two methodologies exhibited a strong correlation across all three pharmacology studies (r2 = 0.89–0.96). However, compared with polarized SRM, SHG-based morphometry delivered a greater dynamic range and absolute magnitude of reduction of IF after treatment. In summary, we demonstrate that SHG-based morphometry in unstained kidney tissues is comparable to polarized SRM for quantitation of fibrillar collagens, but with an enhanced sensitivity to detect treatment-induced reductions in

  2. Polymorphism of DCDC2 Reveals Differences in Cortical Morphology of Healthy Individuals—A Preliminary Voxel Based Morphometry Study

    PubMed Central

    Gelernter, Joel; Gruen, Jeffrey R.; Calhoun, Vince D.; Meng, Haiying; Cope, Natalie A.; Pearlson, Godfrey D.

    2008-01-01

    Objective The purpose of this investigation was to determine whether there is an association between the putative reading disability (RD) susceptibility gene Doublecortin Domain Containing 2 (DCDC2), and gray matter (GM) distribution in the brain, in a sample of healthy control individuals. Method Fifty-six control subjects were genotyped for an RD-associated deletion in intron 2 of DCDC2. Voxel based morphometry (VBM) was used to examine structural magnetic resonance imaging (MRI) scans to assess GM differences between the two groups. Results Individuals heterozygous for the deletion exhibited significantly higher GM volumes in reading/language and symbol-decoding related brain regions including superior, medial and inferior temporal, fusiform, hippocampal/para-hippocampal, inferior occipito-parietal, inferior and middle frontal gyri, especially in the left hemisphere. GM values correlated with published data on regional DCDC2 expression in a lateralized manner. Conclusions These data suggest a role for DCDC2 in GM distribution in language-related brain regions in healthy individuals. PMID:19096528

  3. DNA fragmentation and sperm head morphometry in cat epididymal spermatozoa.

    PubMed

    Vernocchi, Valentina; Morselli, Maria Giorgia; Lange Consiglio, Anna; Faustini, Massimo; Luvoni, Gaia Cecilia

    2014-10-15

    Sperm DNA fragmentation is an important parameter to assess sperm quality and can be a putative fertility predictor. Because the sperm head consists almost entirely of DNA, subtle differences in sperm head morphometry might be related to DNA status. Several techniques are available to analyze sperm DNA fragmentation, but they are labor-intensive and require expensive instrumentations. Recently, a kit (Sperm-Halomax) based on the sperm chromatin dispersion test and developed for spermatozoa of different species, but not for cat spermatozoa, became commercially available. The first aim of the present study was to verify the suitability of Sperm-Halomax assay, specifically developed for canine semen, for the evaluation of DNA fragmentation of epididymal cat spermatozoa. For this purpose, DNA fragmentation indexes (DFIs) obtained with Sperm-Halomax and terminal deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL) were compared. The second aim was to investigate whether a correlation between DNA status, sperm head morphology, and morphometry assessed by computer-assisted semen analysis exists in cat epididymal spermatozoa. No differences were observed in DFIs obtained with Sperm-Halomax and TUNEL. This result indicates that Sperm-Halomax assay provides a reliable evaluation of DNA fragmentation of epididymal feline spermatozoa. The DFI seems to be independent from all the measured variables of sperm head morphology and morphometry. Thus, the evaluation of the DNA status of spermatozoa could effectively contribute to the completion of the standard analysis of fresh or frozen semen used in assisted reproductive technologies. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Adolescent drinking and brain morphometry: A co-twin control analysis.

    PubMed

    Wilson, Sylia; Malone, Stephen M; Thomas, Kathleen M; Iacono, William G

    2015-12-01

    Developmental changes in structure and functioning are thought to make the adolescent brain particularly sensitive to the negative effects of alcohol. Although alcohol use disorders are relatively rare in adolescence, the initiation of alcohol use, including problematic use, becomes increasingly prevalent during this period. The present study examined associations between normative drinking (alcohol initiation, binge drinking, intoxication) and brain morphometry in a sample of 96 adolescent monozygotic twins. A priori regions of interest included 11 subcortical and 20 cortical structures implicated in the existing empirical literature as associated with normative alcohol use in adolescence. In addition, co-twin control analyses were used to disentangle risk for alcohol use from consequences of alcohol exposure on the developing brain. Results indicated significant associations reflecting preexisting vulnerability toward problematic alcohol use, including reduced volume of the amygdala, increased volume of the cerebellum, and reduced cortical volume and thickness in several frontal and temporal regions, including the superior and middle frontal gyri, pars triangularis, and middle and inferior temporal gyri. Results also indicated some associations consistent with a neurotoxic effect of alcohol exposure, including reduced volume of the ventral diencephalon and the middle temporal gyrus. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Monogenean anchor morphometry: systematic value, phylogenetic signal, and evolution

    PubMed Central

    Soo, Oi Yoon Michelle; Tan, Wooi Boon; Lim, Lee Hong Susan

    2016-01-01

    Background. Anchors are one of the important attachment appendages for monogenean parasites. Common descent and evolutionary processes have left their mark on anchor morphometry, in the form of patterns of shape and size variation useful for systematic and evolutionary studies. When combined with morphological and molecular data, analysis of anchor morphometry can potentially answer a wide range of biological questions. Materials and Methods. We used data from anchor morphometry, body size and morphology of 13 Ligophorus (Monogenea: Ancyrocephalidae) species infecting two marine mugilid (Teleostei: Mugilidae) fish hosts: Moolgarda buchanani (Bleeker) and Liza subviridis (Valenciennes) from Malaysia. Anchor shape and size data (n = 530) were generated using methods of geometric morphometrics. We used 28S rRNA, 18S rRNA, and ITS1 sequence data to infer a maximum likelihood phylogeny. We discriminated species using principal component and cluster analysis of shape data. Adams’s Kmult was used to detect phylogenetic signal in anchor shape. Phylogeny-correlated size and shape changes were investigated using continuous character mapping and directional statistics, respectively. We assessed morphological constraints in anchor morphometry using phylogenetic regression of anchor shape against body size and anchor size. Anchor morphological integration was studied using partial least squares method. The association between copulatory organ morphology and anchor shape and size in phylomorphospace was used to test the Rohde-Hobbs hypothesis. We created monogeneaGM, a new R package that integrates analyses of monogenean anchor geometric morphometric data with morphological and phylogenetic data. Results. We discriminated 12 of the 13 Ligophorus species using anchor shape data. Significant phylogenetic signal was detected in anchor shape. Thus, we discovered new morphological characters based on anchor shaft shape, the length between the inner root point and the outer root

  6. Validation of voxel-based morphometry (VBM) based on MRI

    NASA Astrophysics Data System (ADS)

    Yang, Xueyu; Chen, Kewei; Guo, Xiaojuan; Yao, Li

    2007-03-01

    Voxel-based morphometry (VBM) is an automated and objective image analysis technique for detecting differences in regional concentration or volume of brain tissue composition based on structural magnetic resonance (MR) images. VBM has been used widely to evaluate brain morphometric differences between different populations, but there isn't an evaluation system for its validation until now. In this study, a quantitative and objective evaluation system was established in order to assess VBM performance. We recruited twenty normal volunteers (10 males and 10 females, age range 20-26 years, mean age 22.6 years). Firstly, several focal lesions (hippocampus, frontal lobe, anterior cingulate, back of hippocampus, back of anterior cingulate) were simulated in selected brain regions using real MRI data. Secondly, optimized VBM was performed to detect structural differences between groups. Thirdly, one-way ANOVA and post-hoc test were used to assess the accuracy and sensitivity of VBM analysis. The results revealed that VBM was a good detective tool in majority of brain regions, even in controversial brain region such as hippocampus in VBM study. Generally speaking, much more severity of focal lesion was, better VBM performance was. However size of focal lesion had little effects on VBM analysis.

  7. Morphometry of boar sperm head and flagellum in semen backflow after insemination.

    PubMed

    García-Vázquez, Francisco Alberto; Hernández-Caravaca, Iván; Yánez-Quintana, Wellington; Matás, Carmen; Soriano-Úbeda, Cristina; Izquierdo-Rico, María José

    2015-09-01

    Once deposited in the female reproductive system, sperm begin their competition and undergo a selection to reach the site of fertilization. Little is known about the special characteristics of sperm that reach the oviduct and are able to fertilize, with even less information on the role of sperm dimension and shape in transport and fertilization. Here, we examine whether sperm morphometry could be involved in their journey within the uterus. For this purpose, sperm head dimension (length, width, area, and perimeter) and shape (shape factor, ellipticity, elongation, and regularity), and flagellum length were analyzed in the backflow at different times after insemination (0-15, 16-30, and 31-60 minutes). Sperm morphometry in the backflow was also analyzed taking into account the site of semen deposition (cervical vs. intrauterine). Finally, flagellum length was measured at the uterotubal junction. Sperm analyzed in the backflow were small (head and flagellum) with different head shapes compared with sperm observed in the dose before insemination. The site of deposition influenced head morphometry and tail size both being smaller in the backflow after cervical insemination compared with intrauterine insemination. Mean tail length of sperm collected in the backflow was smaller than that in the insemination dose and at the uterotubal junction. Overall, our results suggest that sperm size may be involved in sperm transport either because of environment or through sperm selection and competence on their way to encounter the female gamete. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Morphometry and mixing regime of a tropical lake: Lake Nova (Southeastern Brazil).

    PubMed

    Gonçalves, Monica A; Garcia, Fábio C; Barroso, Gilberto F

    2016-09-01

    Lake Nova (15.5 km2) is the second largest lake in the Lower Doce River Valley (Southeastern Brazil). A better understanding of ecosystem structure and functioning requires knowledge about lake morphometry, given that lake basin form influences water column stratification. The present study aims to contribute to the understanding of relationship between morphometry and mixing patterns of deep tropical lakes in Brazil. Water column profiles of temperature and dissolved oxygen were taken on four sampling sites along the lake major axis during 2011, 2012 and 2013. The bathymetric survey was carried out in July 2011, along 131.7 km of hydrographic tracks yield 51,692 depth points. Morphometric features of lake size and form factors describe the relative deep subrectangular elongated basin with maximum length of 15.7 km, shoreline development index 5.0, volume of 0.23 km3, volume development of 1.3, and maximum, mean and relative depths of 33.9 m, 14.7 m and 0.7 %, respectively. The deep basin induces a monomictic pattern, with thermal stratification during the wet/warm season associated with anoxic bottom waters (1/3 of lake volume), and mixing during dry and cool season. Based on in situ measurements of tributary river discharges, theoretical retention time (RT) has been estimated in 13.4 years. The morphometry of Lake Nova promote long water RT and the warm monomictic mixing pattern, which is in accordance to the deep tropical lakes in Brazil.

  9. GENETIC INFLUENCE OF APOE4 GENOTYPE ON HIPPOCAMPAL MORPHOMETRY - AN N=725 SURFACE-BASED ADNI STUDY

    PubMed Central

    Shi, Jie; Leporé, Natasha; Gutman, Boris A.; Thompson, Paul M.; Baxter, Leslie C.; Caselli, Richard L.; Wang, Yalin

    2014-01-01

    The apolipoprotein E (APOE) e4 allele is the most prevalent genetic risk factor for Alzheimer’s disease (AD). Hippocampal volumes are generally smaller in AD patients carrying the e4 allele compared to e4 non-carriers. Here we examined the effect of APOE e4 on hippocampal morphometry in a large imaging database – the Alzheimer’s Disease Neuroimaging Initiative (ADNI). We automatically segmented and constructed hippocampal surfaces from the baseline MR images of 725 subjects with known APOE genotype information including 167 with AD, 354 with mild cognitive impairment (MCI), and 204 normal controls. High-order correspondences between hippocampal surfaces were enforced across subjects with a novel inverse consistent surface fluid registration method. Multivariate statistics consisting of multivariate tensor-based morphometry (mTBM) and radial distance were computed for surface deformation analysis. Using Hotelling’s T2 test, we found significant morphological deformation in APOE e4 carriers relative to non-carriers in the entire cohort as well as in the non-demented (pooled MCI and control) subjects, affecting the left hippocampus more than the right, and this effect was more pronounced in e4 homozygotes than heterozygotes. Our findings are consistent with previous studies that showed e4 carriers exhibit accelerated hippocampal atrophy; we extend these findings to a novel measure of hippocampal morphometry. Hippocampal morphometry has significant potential as an imaging biomarker of early stage AD. PMID:24453132

  10. Assessment of the impact of the scanner-related factors on brain morphometry analysis with Brainvisa

    PubMed Central

    2011-01-01

    Background Brain morphometry is extensively used in cross-sectional studies. However, the difference in the estimated values of the morphometric measures between patients and healthy subjects may be small and hence overshadowed by the scanner-related variability, especially with multicentre and longitudinal studies. It is important therefore to investigate the variability and reliability of morphometric measurements between different scanners and different sessions of the same scanner. Methods We assessed the variability and reliability for the grey matter, white matter, cerebrospinal fluid and cerebral hemisphere volumes as well as the global sulcal index, sulcal surface and mean geodesic depth using Brainvisa. We used datasets obtained across multiple MR scanners at 1.5 T and 3 T from the same groups of 13 and 11 healthy volunteers, respectively. For each morphometric measure, we conducted ANOVA analysis and verified whether the estimated values were significantly different across different scanners or different sessions of the same scanner. The between-centre and between-visit reliabilities were estimated from their contribution to the total variance, using a random-effects ANOVA model. To estimate the main processes responsible for low reliability, the results of brain segmentation were compared to those obtained using FAST within FSL. Results In a considerable number of cases, the main effects of both centre and visit factors were found to be significant. Moreover, both between-centre and between-visit reliabilities ranged from poor to excellent for most morphometric measures. A comparison between segmentation using Brainvisa and FAST revealed that FAST improved the reliabilities for most cases, suggesting that morphometry could benefit from improving the bias correction. However, the results were still significantly different across different scanners or different visits. Conclusions Our results confirm that for morphometry analysis with the current version

  11. Brain Morphometry using MRI in Schizophrenia Patients

    NASA Astrophysics Data System (ADS)

    Abanshina, I.; Pirogov, Yu.; Kupriyanov, D.; Orlova, V.

    2010-01-01

    Schizophrenia has been the focus of intense neuroimaging research. Although its fundamental pathobiology remains elusive, neuroimaging studies provide evidence of abnormalities of cerebral structure and function in patients with schizophrenia. We used morphometry as a quantitative method for estimation of volume of brain structures. Seventy eight right-handed subjects aged 18-45 years were exposed to MRI-examination. Patients were divided into 3 groups: patients with schizophrenia, their relatives and healthy controls. The volumes of interested structures (caudate nucleus, putamen, ventricles, frontal and temporal lobe) were measured using T2-weighted MR-images. Correlations between structural differences and functional deficit were evaluated.

  12. Structural graph-based morphometry: A multiscale searchlight framework based on sulcal pits.

    PubMed

    Takerkart, Sylvain; Auzias, Guillaume; Brun, Lucile; Coulon, Olivier

    2017-01-01

    Studying the topography of the cortex has proved valuable in order to characterize populations of subjects. In particular, the recent interest towards the deepest parts of the cortical sulci - the so-called sulcal pits - has opened new avenues in that regard. In this paper, we introduce the first fully automatic brain morphometry method based on the study of the spatial organization of sulcal pits - Structural Graph-Based Morphometry (SGBM). Our framework uses attributed graphs to model local patterns of sulcal pits, and further relies on three original contributions. First, a graph kernel is defined to provide a new similarity measure between pit-graphs, with few parameters that can be efficiently estimated from the data. Secondly, we present the first searchlight scheme dedicated to brain morphometry, yielding dense information maps covering the full cortical surface. Finally, a multi-scale inference strategy is designed to jointly analyze the searchlight information maps obtained at different spatial scales. We demonstrate the effectiveness of our framework by studying gender differences and cortical asymmetries: we show that SGBM can both localize informative regions and estimate their spatial scales, while providing results which are consistent with the literature. Thanks to the modular design of our kernel and the vast array of available kernel methods, SGBM can easily be extended to include a more detailed description of the sulcal patterns and solve different statistical problems. Therefore, we suggest that our SGBM framework should be useful for both reaching a better understanding of the normal brain and defining imaging biomarkers in clinical settings. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Morphometry and land cover based multi-criteria analysis for assessing the soil erosion susceptibility of the western Himalayan watershed.

    PubMed

    Altaf, Sadaff; Meraj, Gowhar; Romshoo, Shakil Ahmad

    2014-12-01

    Complex mountainous environments such as Himalayas are highly susceptibility to natural hazards particular those that are triggered by the action of water such as floods, soil erosion, mass movements and siltation of the hydro-electric power dams. Among all the natural hazards, soil erosion is the most implicit and the devastating hazard affecting the life and property of the millions of people living in these regions. Hence to review and devise strategies to reduce the adverse impacts of soil erosion is of utmost importance to the planners of watershed management programs in these regions. This paper demonstrates the use of satellite based remote sensing data coupled with the observational field data in a multi-criteria analytical (MCA) framework to estimate the soil erosion susceptibility of the sub-watersheds of the Rembiara basin falling in the western Himalaya, using geographical information system (GIS). In this paper, watershed morphometry and land cover are used as an inputs to the MCA framework to prioritize the sub-watersheds of this basin on the basis of their different susceptibilities to soil erosion. Methodology included the derivation of a set of drainage and land cover parameters that act as the indicators of erosion susceptibility. Further the output from the MCA resulted in the categorization of the sub-watersheds into low, medium, high and very high erosion susceptibility classes. A detailed prioritization map for the susceptible sub-watersheds based on the combined role of land cover and morphometry is finally presented. Besides, maps identifying the susceptible sub-watersheds based on morphometry and land cover only are also presented. The results of this study are part of the watershed management program in the study area and are directed to instigate appropriate measures to alleviate the soil erosion in the study area.

  14. Structural MRI in Frontotemporal Dementia: Comparisons between Hippocampal Volumetry, Tensor-Based Morphometry and Voxel-Based Morphometry

    PubMed Central

    Muñoz-Ruiz, Miguel Ángel; Hartikainen, Päivi; Koikkalainen, Juha; Wolz, Robin; Julkunen, Valtteri; Niskanen, Eini; Herukka, Sanna-Kaisa; Kivipelto, Miia; Vanninen, Ritva; Rueckert, Daniel; Liu, Yawu; Lötjönen, Jyrki; Soininen, Hilkka

    2012-01-01

    Background MRI is an important clinical tool for diagnosing dementia-like diseases such as Frontemporal Dementia (FTD). However there is a need to develop more accurate and standardized MRI analysis methods. Objective To compare FTD with Alzheimer’s Disease (AD) and Mild Cognitive Impairment (MCI) with three automatic MRI analysis methods - Hippocampal Volumetry (HV), Tensor-based Morphometry (TBM) and Voxel-based Morphometry (VBM), in specific regions of interest in order to determine the highest classification accuracy. Methods Thirty-seven patients with FTD, 46 patients with AD, 26 control subjects, 16 patients with progressive MCI (PMCI) and 48 patients with stable MCI (SMCI) were examined with HV, TBM for shape change, and VBM for gray matter density. We calculated the Correct Classification Rate (CCR), sensitivity (SS) and specificity (SP) between the study groups. Results We found unequivocal results differentiating controls from FTD with HV (hippocampus left side) (CCR = 0.83; SS = 0.84; SP = 0.80), with TBM (hippocampus and amygdala (CCR = 0.80/SS = 0.71/SP = 0.94), and with VBM (all the regions studied, especially in lateral ventricle frontal horn, central part and occipital horn) (CCR = 0.87/SS = 0.81/SP = 0.96). VBM achieved the highest accuracy in differentiating AD and FTD (CCR = 0.72/SS = 0.67/SP = 0.76), particularly in lateral ventricle (frontal horn, central part and occipital horn) (CCR = 0.73), whereas TBM in superior frontal gyrus also achieved a high accuracy (CCR = 0.71/SS = 0.68/SP = 0.73). TBM resulted in low accuracy (CCR = 0.62) in the differentiation of AD from FTD using all regions of interest, with similar results for HV (CCR = 0.55). Conclusion Hippocampal atrophy is present not only in AD but also in FTD. Of the methods used, VBM achieved the highest accuracy in its ability to differentiate between FTD and AD. PMID:23285078

  15. Multivariate Tensor-based Morphometry on Surfaces: Application to Mapping Ventricular Abnormalities in HIV/AIDS

    PubMed Central

    Wang, Yalin; Zhang, Jie; Gutman, Boris; Chan, Tony F.; Becker, James T.; Aizenstein, Howard J.; Lopez, Oscar L.; Tamburo, Robert J.; Toga, Arthur W.; Thompson, Paul M.

    2010-01-01

    Here we developed a new method, called multivariate tensor-based surface morphometry (TBM), and applied it to study lateral ventricular surface differences associated with HIV/AIDS. Using concepts from differential geometry and the theory of differential forms, we created mathematical structures known as holomorphic one-forms, to obtain an efficient and accurate conformal parameterization of the lateral ventricular surfaces in the brain. The new meshing approach also provides a natural way to register anatomical surfaces across subjects, and improves on prior methods as it handles surfaces that branch and join at complex 3D junctions. To analyze anatomical differences, we computed new statistics from the Riemannian surface metrics - these retain multivariate information on local surface geometry. We applied this framework to analyze lateral ventricular surface morphometry in 3D MRI data from 11 subjects with HIV/AIDS and 8 healthy controls. Our method detected a 3D profile of surface abnormalities even in this small sample. Multivariate statistics on the local tensors gave better effect sizes for detecting group differences, relative to other TBM-based methods including analysis of the Jacobian determinant, the largest and smallest eigenvalues of the surface metric, and the pair of eigenvalues of the Jacobian matrix. The resulting analysis pipeline may improve the power of surface-based morphometry studies of the brain. PMID:19900560

  16. A reexamination of age-related variation in body weight and morphometry of Maryland nutria

    USGS Publications Warehouse

    Sherfy, M.H.; Mollett, T.A.; McGowan, K.R.; Daugherty, S.L.

    2006-01-01

    Age-related variation in morphometry has been documented for many species. Knowledge of growth patterns can be useful for modeling energetics, detecting physiological influences on populations, and predicting age. These benefits have shown value in understanding population dynamics of invasive species, particularly in developing efficient control and eradication programs. However, development and evaluation of descriptive and predictive models is a critical initial step in this process. Accordingly, we used data from necropsies of 1,544 nutria (Myocastor coypus) collected in Maryland, USA, to evaluate the accuracy of previously published models for prediction of nutria age from body weight. Published models underestimated body weights of our animals, especially for ages <3. We used cross-validation procedures to develop and evaluate models for describing nutria growth patterns and for predicting nutria age. We derived models from a randomly selected model-building data set (n = 192-193 M, 217-222 F) and evaluated them with the remaining animals (n = 487-488 M, 642-647 F). We used nonlinear regression to develop Gompertz growth-curve models relating morphometric variables to age. Predicted values of morphometric variables fell within the 95% confidence limits of their true values for most age classes. We also developed predictive models for estimating nutria age from morphometry, using linear regression of log-transformed age on morphometric variables. The evaluation data set corresponded with 95% prediction intervals from the new models. Predictive models for body weight and length provided greater accuracy and less bias than models for foot length and axillary girth. Our growth models accurately described age-related variation in nutria morphometry, and our predictive models provided accurate estimates of ages from morphometry that will be useful for live-captured individuals. Our models offer better accuracy and precision than previously published models

  17. Influence of Gestational Overfeeding on Cardiac Morphometry and Hypertrophic Protein Markers in Fetal Sheep

    PubMed Central

    Fan, Xiujuan; Turdi, Subat; Ford, Stephen P.; Hua, Yinan; Nijland, Mark J.; Zhu, Meijun; Nathanielsz, Peter W.; Ren, Jun

    2010-01-01

    Intrauterine overnutrition is associated with development of cardiovascular disease in adulthood although the underlying mechanism has not been precisely elucidated. This study evaluated the effects of maternal overnutrition on fetal cardiac morphometry and hypertrophy-related mRNA/protein expression. Multiparous ewes were fed either 150% of NRC nutrient requirements (overfed group) or 100% of NRC requirements (control group) from 60 days before mating to day 75 (D75) of gestation, when ewes were euthanized. Cardiac morphometry, histology and expression of Akt, forkhead-3a (Foxo3a), glycogen synthase kinase-3β (GSK3β), mammalian target of rapamycin (mTOR), NFATc3 and GATA4, atrial natriuretic factor (ANF), calcineurin A and caspase-8 were examined. Crown rump length, left and right ventricular free wall weights and left ventricular wall thickness were increased in D75 overnourished fetuses. H&E staining revealed irregular myofiber orientation and increased interstitial space in heart tissues from overfed group. Masson’s trichrome staining displayed myofiber hypertrophy and fascicular disarray in heart tissues from overfed group. Overfeeding significantly enhanced Foxo3a phosphorylation in both ventricles while protein expression of Akt, Foxo3a, GSK3β and caspase-8 as well as phosphorylated Akt and GSK3β in either ventricle was unaffected. Overfeeding increased left ventricular mTOR, NFATc3 (both total and phosphorylated) and calcineurin A. GATA4, pGATA4 and ANF expression were unchanged in both ventricles. Collectively, our data suggested that overfeeding during early to mid gestation (D75) leads to morphometric changes without overt pathology which may be related to elevated expression of mTOR, NFATc3, calcineurin A and phosphorylation of Foxo3a, mTOR and NFATc3. PMID:20188535

  18. Use of specular microscopy to determine corneal endothelial cell morphology and morphometry in enucleated cat eyes.

    PubMed

    Franzen, Angela A; Pigatto, João A T; Abib, Fernando C; Albuquerque, Luciane; Laus, José L

    2010-07-01

    The purpose of this study was to investigate the effect of age on endothelial morphology and morphometry in cats. The corneal endothelium was studied using a contact specular microscope. A total of 18 cats (Felis catus Linnaeus, 1758) were evaluated in this study. The subjects were divided into three groups of six cats each in function of age: G1 (1 to 3 months old), G2 (5 to 12 months old), and G3 (24 to 40 months old). The examination presented data as endothelial cell density (ECD), average cell area, corneal thickness, polymegathism, and pleomorphism. Results revealed ECD decrease in corneas of normal cats with age, as well as a corresponding increase in endothelial cell area and pleomorphism. The present work suggests that the endothelial parameters evaluated change with advancing age.

  19. Crater studies: Part A: lunar crater morphometry

    USGS Publications Warehouse

    Pike, Richard J.

    1973-01-01

    Morphometry, the quantitative study of shape, complements the visual observation and photointerpretation in analyzing the most outstanding landforms of the Moon, its craters (refs. 32-1 and 32-2). All three of these interpretative tools, which were developed throughout the long history of telescopic lunar study preceding the Apollo Program, will continue to be applicable to crater analysis until detailed field work becomes possible. Although no large (>17.5 km diameter) craters were examined in situ on any of the Apollo landings, the photographs acquired from the command modules will markedly strengthen results of less direct investigations of the craters. For morphometry, the most useful materials are the orbital metric and panoramic photographs from the final three Apollo missions. These photographs permit preparation of contour maps, topographic profiles, and other numerical data that accurately portray for the first time the surface geometry of lunar craters of all sizes. Interpretations of craters no longer need be compromised by inadequate topographic data. In the pre-Apollo era, hypotheses for the genesis of lunar craters usually were constructed without any numerical descriptive data. Such speculations will have little credibility unless supported by accurate, quantitative data, especially those generated from Apollo orbital photographs. This paper presents a general study of the surface geometry of 25 far-side craters and a more detailed study of rim-crest evenness for 15 near-side and far-side craters. Analysis of this preliminary sample of Apollo 15 and 17 data, which includes craters between 1.5 and 275 km in diameter, suggests that most genetic interpretations of craters made from pre-Apollo topographic measurements may require no drastic revision. All measurements were made from topographic profiles generated on a stereoplotter at the Photogrammetric Unit of the U.S. Geological Survey, Center of Astrogeology, Flagstaff, Arizona.

  20. [Voxel-Based Morphometry in Medicated-naive Boys with Attention-deficit/hyperactivity Disorder(ADHD)].

    PubMed

    Liu, Qi; Chen, Lizhou; Li, Fei; Chen, Ying; Guo, Lanting; Gong, Qiyong; Huang, Xiaoqi

    2016-06-01

    Attention-deficit/hyperactivity disorder(ADHD)is one of the most common neuro-developmental disorders occurring in childhood,characterized by symptoms of age-inappropriate inattention,hyperactivity/impulsivity,and the prevalence is higher in boys.Although gray matter volume deficits have been frequently reported for ADHD children via structural magnetic resonance imaging,few of them had specifically focused on male patients.The present study aimed to explore the alterations of gray matter volumes in medicated-naive boys with ADHD via a relatively new voxel-based morphometry technique.According to the criteria of DSM-IV-TR,43medicated-naive ADHD boys and 44age-matched healthy boys were recruited.The magnetic resonance image(MRI)scan was performed via a 3T MRI system with three-dimensional(3D)spoiled gradient recalled echo(SPGR)sequence.Voxel-based morphometry with diffeomorphic anatomical registration through exponentiated lie algebra in SPM8 was used to preprocess the3DT1-weighted images.To identify gray matter volume differences between the ADHD and the controls,voxelbased analysis of whole brain gray matter volumes between two groups were done via two sample t-test in SPM8 with age as covariate,threshold at P<0.001.Finally,compared to the controls,significantly reduced gray matter volumes were identified in the right orbitofrontal cortex(peak coordinates[-2,52,-25],t=4.01),and bilateral hippocampus(Left:peak coordinates[14,0,-18],t=3.61;Right:peak coordinates[-14,15,-28],t=3.64)of ADHD boys.Our results demonstrated obvious reduction of whole brain gray matter volumes in right orbitofrontal cortex and bilateral hippocampus in boys with ADHD.This suggests that the abnormalities of prefrontal-hippocampus circuit may be the underlying cause of the cognitive dysfunction and abnormal behavioral inhibition in medicatednaive boys with ADHD.

  1. Voxel-based morphometry analysis reveals frontal brain differences in participants with ADHD and their unaffected siblings.

    PubMed

    Bralten, Janita; Greven, Corina U; Franke, Barbara; Mennes, Maarten; Zwiers, Marcel P; Rommelse, Nanda N J; Hartman, Catharina; van der Meer, Dennis; O'Dwyer, Laurence; Oosterlaan, Jaap; Hoekstra, Pieter J; Heslenfeld, Dirk; Arias-Vasquez, Alejandro; Buitelaar, Jan K

    2016-06-01

    Data on structural brain alterations in patients with attention-deficit/hyperactivity disorder (ADHD) have been inconsistent. Both ADHD and brain volumes have a strong genetic loading, but whether brain alterations in patients with ADHD are familial has been underexplored. We aimed to detect structural brain alterations in adolescents and young adults with ADHD compared with healthy controls. We examined whether these alterations were also found in their unaffected siblings, using a uniquely large sample. We performed voxel-based morphometry analyses on MRI scans of patients with ADHD, their unaffected siblings and typically developing controls. We identified brain areas that differed between participants with ADHD and controls and investigated whether these areas were different in unaffected siblings. Influences of medication use, age, sex and IQ were considered. Our sample included 307 patients with ADHD, 169 unaffected siblings and 196 typically developing controls (mean age 17.2 [range 8-30] yr). Compared with controls, participants with ADHD had significantly smaller grey matter volume in 5 clusters located in the precentral gyrus, medial and orbitofrontal cortex, and (para)cingulate cortices. Unaffected siblings showed intermediate volumes significantly different from controls in 4 of these clusters (all except the precentral gyrus). Medication use, age, sex and IQ did not have an undue influence on the results. Our sample was heterogeneous, most participants with ADHD were taking medication, and the comparison was cross-sectional. Brain areas involved in decision making, motivation, cognitive control and motor functioning were smaller in participants with ADHD than in controls. Investigation of unaffected siblings indicated familiality of 4 of the structural brain differences, supporting their potential in molecular genetic analyses in ADHD research.

  2. A New Method for Automated Identification and Morphometry of Myelinated Fibers Through Light Microscopy Image Analysis.

    PubMed

    Novas, Romulo Bourget; Fazan, Valeria Paula Sassoli; Felipe, Joaquim Cezar

    2016-02-01

    Nerve morphometry is known to produce relevant information for the evaluation of several phenomena, such as nerve repair, regeneration, implant, transplant, aging, and different human neuropathies. Manual morphometry is laborious, tedious, time consuming, and subject to many sources of error. Therefore, in this paper, we propose a new method for the automated morphometry of myelinated fibers in cross-section light microscopy images. Images from the recurrent laryngeal nerve of adult rats and the vestibulocochlear nerve of adult guinea pigs were used herein. The proposed pipeline for fiber segmentation is based on the techniques of competitive clustering and concavity analysis. The evaluation of the proposed method for segmentation of images was done by comparing the automatic segmentation with the manual segmentation. To further evaluate the proposed method considering morphometric features extracted from the segmented images, the distributions of these features were tested for statistical significant difference. The method achieved a high overall sensitivity and very low false-positive rates per image. We detect no statistical difference between the distribution of the features extracted from the manual and the pipeline segmentations. The method presented a good overall performance, showing widespread potential in experimental and clinical settings allowing large-scale image analysis and, thus, leading to more reliable results.

  3. The Morphometry of Lake Palmas, a Deep Natural Lake in Brazil

    PubMed Central

    Barroso, Gilberto F.; Gonçalves, Monica A.; Garcia, Fábio da C.

    2014-01-01

    Lake Palmas (A = 10.3km2) is located in the Lower Doce River Valley (LDRV), on the southeastern coast of Brazil. The Lake District of the LDRV includes 90 lakes, whose basic geomorphology is associated with the alluvial valleys of the Barreiras Formation (Cenozoic, Neogene) and with the Holocene coastal plain. This study aimed to investigate the relationship of morphometry and thermal pattern of a LDRV deep lake, Lake Palmas. A bathymetric survey carried out in 2011 and the analysis of hydrographic and wind data with a geographic information system allowed the calculation of several metrics of lake morphometry. The vertical profiling of physical and chemical variables in the water column during the wet/warm and dry/mild cold seasons of 2011 to 2013 has furnished a better understanding of the influence of the lake morphometry on its structure and function. The overdeepened basin has a subrectangular elongated shape and is aligned in a NW-SE direction in an alluvial valley with a maximum depth (Zmax) of 50.7m, a volume of 2.2×108 m3 (0.22km3) and a mean depth (Zmv) of 21.4m. These metrics suggest Lake Palmas as the deepest natural lake in Brazil. Water column profiling has indicated strong physical and chemical stratification during the wet/warm season, with a hypoxic/anoxic layer occupying one-half of the lake volume. The warm monomictic pattern of Lake Palmas, which is in an accordance to deep tropical lakes, is determined by water column mixing during the dry and mild cold season, especially under the influence of a high effective fetch associated with the incidence of cold fronts. Lake Palmas has a very long theoretical retention time, with a mean of 19.4 years. The changes observed in the hydrological flows of the tributary rivers may disturb the ecological resilience of Lake Palmas. PMID:25406062

  4. Feature-Based Morphometry: Discovering Group-related Anatomical Patterns

    PubMed Central

    Toews, Matthew; Wells, William; Collins, D. Louis; Arbel, Tal

    2015-01-01

    This paper presents feature-based morphometry (FBM), a new, fully data-driven technique for discovering patterns of group-related anatomical structure in volumetric imagery. In contrast to most morphometry methods which assume one-to-one correspondence between subjects, FBM explicitly aims to identify distinctive anatomical patterns that may only be present in subsets of subjects, due to disease or anatomical variability. The image is modeled as a collage of generic, localized image features that need not be present in all subjects. Scale-space theory is applied to analyze image features at the characteristic scale of underlying anatomical structures, instead of at arbitrary scales such as global or voxel-level. A probabilistic model describes features in terms of their appearance, geometry, and relationship to subject groups, and is automatically learned from a set of subject images and group labels. Features resulting from learning correspond to group-related anatomical structures that can potentially be used as image biomarkers of disease or as a basis for computer-aided diagnosis. The relationship between features and groups is quantified by the likelihood of feature occurrence within a specific group vs. the rest of the population, and feature significance is quantified in terms of the false discovery rate. Experiments validate FBM clinically in the analysis of normal (NC) and Alzheimer's (AD) brain images using the freely available OASIS database. FBM automatically identifies known structural differences between NC and AD subjects in a fully data-driven fashion, and an equal error classification rate of 0.80 is achieved for subjects aged 60-80 years exhibiting mild AD (CDR=1). PMID:19853047

  5. Morphometry of A1 segment of the anterior cerebral artery and its clinical importance.

    PubMed

    Krishnamurthy, A; Nayak, S R; Bagoji, I B; D'Costa, S; Pai, M M; Jiji, P J; Kumar, C G; Rai, R

    2010-01-01

    Anterior cerebral artery, one of the terminal branches of the internal carotid artery is an important vessel taking part in the formation of circle of Willis. It supplies a large part of the medial surface of the cerebral hemisphere containing the areas of motor and somatosensory cortices of the lower limb. Aim of this study was the morphometry of A1 segment of the anterior cerebral artery. 93 formalin fixed brain specimen of either sex and of Indian origin were studied. The mean length, mean external diameter and the anomalies present in A1 segment of the vessel were studied in detail and photographed. The mean length of A1 segment of the vessel was 14.49+/-0.28 mm and 14.22+/-0.22 mm on right and left side respectively. The mean external diameter of the vessel on right and left side was 2.12+/-0.07 mm and 2.32+/-0.06 mm respectively. Narrowing, aneurysm formation, buttonhole formation and median anterior cerebral artery were the anomalies seen with an occurrence of 15.05%, 5.37%, 3.22% and 12.9%, respectively. The above anomalies did not have any sex or side predilection. Knowledge of morphometry of the vessel will be of use to neurosurgeons while performing the shunt operation, in assessing the feasibility of such operations and in the choice of patients. From this study we infer that the morphometry of anterior cerebral artery varies in different population and that the neurosurgeons operating should have a thorough knowledge of the possible variations.

  6. Voxel-based morphometry analysis reveals frontal brain differences in participants with ADHD and their unaffected siblings

    PubMed Central

    Bralten, Janita; Greven, Corina U.; Franke, Barbara; Mennes, Maarten; Zwiers, Marcel P.; Rommelse, Nanda N.J.; Hartman, Catharina; van der Meer, Dennis; O’Dwyer, Laurence; Oosterlaan, Jaap; Hoekstra, Pieter J.; Heslenfeld, Dirk; Arias-Vasquez, Alejandro; Buitelaar, Jan K.

    2016-01-01

    Background Data on structural brain alterations in patients with attention-deficit/hyperactivity disorder (ADHD) have been inconsistent. Both ADHD and brain volumes have a strong genetic loading, but whether brain alterations in patients with ADHD are familial has been underexplored. We aimed to detect structural brain alterations in adolescents and young adults with ADHD compared with healthy controls. We examined whether these alterations were also found in their unaffected siblings, using a uniquely large sample. Methods We performed voxel-based morphometry analyses on MRI scans of patients with ADHD, their unaffected siblings and typically developing controls. We identified brain areas that differed between participants with ADHD and controls and investigated whether these areas were different in unaffected siblings. Influences of medication use, age, sex and IQ were considered. Results Our sample included 307 patients with ADHD, 169 unaffected siblings and 196 typically developing controls (mean age 17.2 [range 8–30] yr). Compared with controls, participants with ADHD had significantly smaller grey matter volume in 5 clusters located in the precentral gyrus, medial and orbitofrontal cortex, and (para)cingulate cortices. Unaffected siblings showed intermediate volumes significantly different from controls in 4 of these clusters (all except the precentral gyrus). Medication use, age, sex and IQ did not have an undue influence on the results. Limitations Our sample was heterogeneous, most participants with ADHD were taking medication, and the comparison was cross-sectional. Conclusion Brain areas involved in decision making, motivation, cognitive control and motor functioning were smaller in participants with ADHD than in controls. Investigation of unaffected siblings indicated familiality of 4 of the structural brain differences, supporting their potential in molecular genetic analyses in ADHD research. PMID:26679925

  7. Gray Matter Alterations in Adults with Attention-Deficit/Hyperactivity Disorder Identified by Voxel Based Morphometry

    PubMed Central

    Seidman, Larry J.; Biederman, Joseph; Liang, Lichen; Valera, Eve M.; Monuteaux, Michael C.; Brown, Ariel; Kaiser, Jonathan; Spencer, Thomas; Faraone, Stephen V.; Makris, Nikos

    2014-01-01

    Background Gray and white matter volume deficits have been reported in many structural magnetic resonance imaging (MRI) studies of children with attention-deficit/hyperactivity disorder (ADHD); however, there is a paucity of structural MRI studies of adults with ADHD. This study used voxel based morphometry and applied an a priori region of interest approach based on our previous work, as well as from well-developed neuroanatomical theories of ADHD. Methods Seventy-four adults with DSM-IV ADHD and 54 healthy control subjects comparable on age, sex, race, handedness, IQ, reading achievement, frequency of learning disabilities, and whole brain volume had an MRI on a 1.5T Siemens scanner. A priori region of interest hypotheses focused on reduced volumes in ADHD in dorsolateral prefrontal cortex, anterior cingulate cortex, caudate, putamen, inferior parietal lobule, and cerebellum. Analyses were carried out by FSL-VBM 1.1. Results Relative to control subjects, ADHD adults had significantly smaller gray matter volumes in parts of six of these regions at p ≤ .01, whereas parts of the dorsolateral prefrontal cortex and inferior parietal lobule were significantly larger in ADHD at this threshold. However, a number of other regions were smaller and larger in ADHD (especially fronto-orbital cortex) at this threshold. Only the caudate remained significantly smaller at the family-wise error rate. Conclusions Adults with ADHD have subtle volume reductions in the caudate and possibly other brain regions involved in attention and executive control supporting frontostriatal models of ADHD. Modest group brain volume differences are discussed in the context of the nature of the samples studied and voxel based morphometry methodology. PMID:21183160

  8. Study of nuclear morphometry on cytology specimens of benign and malignant breast lesions: A study of 122 cases.

    PubMed

    Kashyap, Anamika; Jain, Manjula; Shukla, Shailaja; Andley, Manoj

    2017-01-01

    Breast cancer has emerged as a leading site of cancer among women in India. Fine needle aspiration cytology (FNAC) has been routinely applied in assessment of breast lesions. Cytological evaluation in breast lesions is subjective with a "gray zone" of 6.9-20%. Quantitative evaluation of nuclear size, shape, texture, and density parameters by morphometry can be of diagnostic help in breast tumor. To apply nuclear morphometry on cytological breast aspirates and assess its role in differentiating between benign and malignant breast lesions with derivation of suitable cut-off values between the two groups. The present study was a descriptive cross-sectional hospital-based study of nuclear morphometric parameters of benign and malignant cases. The study included 50 benign breast disease (BBD), 8 atypical ductal hyperplasia (ADH), and 64 carcinoma cases. Image analysis was performed on Papanicolaou-stained FNAC slides by Nikon Imaging Software (NIS)-Elements Advanced Research software (Version 4.00). Nuclear morphometric parameters analyzed included 5 nuclear size, 2 shape, 4 texture, and 2 density parameters. Nuclear morphometry could differentiate between benign and malignant aspirates with a gradually increasing nuclear size parameters from BBD to ADH to carcinoma. Cut-off values of 31.93 μm 2 , 6.325 μm, 5.865 μm, 7.855 μm, and 21.55 μm for mean nuclear area, equivalent diameter, minimum feret, maximum ferret, and perimeter, respectively, were derived between benign and malignant cases, which could correctly classify 7 out of 8 ADH cases. Nuclear morphometry is a highly objective tool that could be used to supplement FNAC in differentiating benign from malignant lesions, with an important role in cases with diagnostic dilemma.

  9. Brain Morphometry on Congenital Hand Deformities based on Teichmüller Space Theory.

    PubMed

    Peng, Hao; Wang, Xu; Duan, Ye; Frey, Scott H; Gu, Xianfeng

    2015-01-01

    Congenital Hand Deformities (CHD) are usually occurred between fourth and eighth week after the embryo is formed. Failure of the transformation from arm bud cells to upper limb can lead to an abnormal appearing/functioning upper extremity which is presented at birth. Some causes are linked to genetics while others are affected by the environment, and the rest have remained unknown. CHD patients develop prehension through the use of their hands, which affect the brain as time passes. In recent years, CHD have gain increasing attention and researches have been conducted on CHD, both surgically and psychologically. However, the impacts of CHD on brain structure are not well-understood so far. Here, we propose a novel approach to apply Teichmüller space theory and conformal welding method to study brain morphometry in CHD patients. Conformal welding signature reflects the geometric relations among different functional areas on the cortex surface, which is intrinsic to the Riemannian metric, invariant under conformal deformation, and encodes complete information of the functional area boundaries. The computational algorithm is based on discrete surface Ricci flow, which has theoretic guarantees for the existence and uniqueness of the solutions. In practice, discrete Ricci flow is equivalent to a convex optimization problem, therefore has high numerically stability. In this paper, we compute the signatures of contours on general 3D surfaces with surface Ricci flow method, which encodes both global and local surface contour information. Then we evaluated the signatures of pre-central and post-central gyrus on healthy control and CHD subjects for analyzing brain cortical morphometry. Preliminary experimental results from 3D MRI data of CHD/control data demonstrate the effectiveness of our method. The statistical comparison between left and right brain gives us a better understanding on brain morphometry of subjects with Congenital Hand Deformities, in particular, missing

  10. Histologic morphometry confirms a prophylactic effect for hyperbaric oxygen in the prevention of delayed radiation enteropathy.

    PubMed

    Feldmeier, J J; Davolt, D A; Court, W S; Onoda, J M; Alecu, R

    1998-01-01

    In a previous publication (Feldmeier et al., Radiother Oncol 1995; 35:138-144) we reported our success in preventing delayed radiation enteropathy in a murine model by the application of hyperbaric oxygen (HBO2). In this study we introduce a histologic morphometric technique for assessing fibrosis in the submucosa of these same animal specimens and relate this assay to the previous results. The histologic morphometry, like the previous gross morphometry and compliance assays, demonstrates a significant protective effect for HBO2. The present assay is related to the previous assays in a statistically significant fashion. The predictive value for the histologic morphometric assay demonstrates a sensitivity of 75% and a specificity of 62.5%. The applicability of this assay to other organ systems and its potential superiority to the compliance assay are discussed.

  11. Modern morphometry: new perspectives in physical anthropology.

    PubMed

    Mantini, Simone; Ripani, Maurizio

    2009-06-01

    In the past one hundred years physical anthropology has recourse to more and more efficient methods, which provide several new information regarding, human evolution and biology. Apart from the molecular approach, the introduction of new computed assisted techniques gave rise to a new concept of morphometry. Computed tomography and 3D-imaging, allowed providing anatomical description of the external and inner structures exceeding the problems encountered with the traditional morphometric methods. Furthermore, the support of geometric morphometrics, allowed creating geometric models to investigate morphological variation in terms of evolution, ontogeny and variability. The integration of these new tools gave rise to the virtual anthropology and to a new image of the anthropologist in which anatomical, biological, mathematical statistical and data processing information are fused in a multidisciplinary approach.

  12. Dog sperm head morphometry: its diversity and evolution.

    PubMed

    Soler, Carles; Alambiaga, Ana; Martí, Maria A; García-Molina, Almudena; Valverde, Anthony; Contell, Jesús; Campos, Marcos

    2017-01-01

    Dogs have been under strong artificial selection as a consequence of their relationship with man. Differences between breeds are evident that could be reflected in seminal characteristics. The present study was to evaluate differences in sperm head morphometry between seven well-defined breeds of dog: the British Bulldog, Chihuahua, German Shepherd, Labrador Retriever, Spanish Mastiff, Staffordshire Terrier, and Valencian Rat Hunting dog. Semen samples were obtained by masturbation and smears stained with Diff-Quik. Morphometric analysis (CASA-Morph) produced four size and four shape parameters. Length, Ellipticity, and Elongation showed higher differences between breeds. MANOVA revealed differences among all breeds. Considering the whole dataset, principal component analysis (PCA) showed that PC1 was related to head shape and PC2 to size. Procluster analysis showed the British Bulldog to be the most isolated breed, followed by the German Shepherd. The PCA breed by breed showed the Chihuahua, Labrador Retriever, Spanish Mastiff, and Staffordshire Terrier to have PC1 related to shape and PC2 to size, whereas the British Bulldog, Valencia Rat Hunting dog, and German Shepherd had PC1 related to size and PC2 to shape. The dendrogram for cluster groupings and the distance between them showed the British Bulldog to be separated from the rest of the breeds. Future work on dog semen must take into account the large differences in the breeds' sperm characteristics. The results provide a base for future work on phylogenetic and evolutionary studies of dogs, based on their seminal characteristics.

  13. Dog sperm head morphometry: its diversity and evolution

    PubMed Central

    Soler, Carles; Alambiaga, Ana; Martí, Maria A; García-Molina, Almudena; Valverde, Anthony; Contell, Jesús; Campos, Marcos

    2017-01-01

    Dogs have been under strong artificial selection as a consequence of their relationship with man. Differences between breeds are evident that could be reflected in seminal characteristics. The present study was to evaluate differences in sperm head morphometry between seven well-defined breeds of dog: the British Bulldog, Chihuahua, German Shepherd, Labrador Retriever, Spanish Mastiff, Staffordshire Terrier, and Valencian Rat Hunting dog. Semen samples were obtained by masturbation and smears stained with Diff-Quik. Morphometric analysis (CASA-Morph) produced four size and four shape parameters. Length, Ellipticity, and Elongation showed higher differences between breeds. MANOVA revealed differences among all breeds. Considering the whole dataset, principal component analysis (PCA) showed that PC1 was related to head shape and PC2 to size. Procluster analysis showed the British Bulldog to be the most isolated breed, followed by the German Shepherd. The PCA breed by breed showed the Chihuahua, Labrador Retriever, Spanish Mastiff, and Staffordshire Terrier to have PC1 related to shape and PC2 to size, whereas the British Bulldog, Valencia Rat Hunting dog, and German Shepherd had PC1 related to size and PC2 to shape. The dendrogram for cluster groupings and the distance between them showed the British Bulldog to be separated from the rest of the breeds. Future work on dog semen must take into account the large differences in the breeds’ sperm characteristics. The results provide a base for future work on phylogenetic and evolutionary studies of dogs, based on their seminal characteristics. PMID:27751991

  14. 3He Lung Morphometry Technique: Accuracy Analysis and Pulse Sequence Optimization

    PubMed Central

    Sukstanskii, A.L.; Conradi, M.S.; Yablonskiy, D.A.

    2010-01-01

    The 3He lung morphometry technique (Yablonskiy et al, JAP, 2009), based on MRI measurements of hyperpolarized gas diffusion in lung airspaces, provides unique information on the lung microstructure at the alveolar level. 3D tomographic images of standard morphological parameters (mean airspace chord length, lung parenchyma surface-to-volume ratio, and the number of alveoli per unit lung volume) can be created from a rather short (several seconds) MRI scan. These parameters are most commonly used to characterize lung morphometry but were not previously available from in vivo studies. A background of the 3He lung morphometry technique is based on a previously proposed model of lung acinar airways, treated as cylindrical passages of external radius R covered by alveolar sleeves of depth h, and on a theory of gas diffusion in these airways. The initial works approximated the acinar airways as very long cylinders, all with the same R and h. The present work aims at analyzing effects of realistic acinar airway structures, incorporating airway branching, physiological airway lengths, a physiological ratio of airway ducts and sacs, and distributions of R and h. By means of Monte Carlo computer simulations, we demonstrate that our technique allows rather accurate measurements of geometrical and morphological parameters of acinar airways. In particular, the accuracy of determining one of the most important physiological parameter of acinar airways – surface-to-volume ratio – does not exceed several percent. Second, we analyze the effect of the susceptibility induced inhomogeneous magnetic field on the parameter estimate and demonstrate that this effect is rather negligible at B0 ≤ 3T and becomes substantial only at higher B0 Third, we theoretically derive an optimal choice of MR pulse sequence parameters, which should be used to acquire a series of diffusion attenuated MR signals, allowing a substantial decrease in the acquisition time and improvement in accuracy of

  15. Grey matter abnormalities in untreated hyperthyroidism: a voxel-based morphometry study using the DARTEL approach.

    PubMed

    Zhang, Wei; Song, Lingheng; Yin, Xuntao; Zhang, Jiuquan; Liu, Chen; Wang, Jian; Zhou, Daiquan; Chen, Bing; Lii, Haitao

    2014-01-01

    Hyperthyroidism is frequently associated with pronounced neuropsychiatric symptoms such as impulsiveness, irritability, poor concentration, and memory impairments. Functional neuroimaging has revealed changes in cerebral metabolism in hyperthyroidism, but regional changes in cortical morphology associated with specific neurological deficits have not been studied so far. To investigate the pathophysiology underlying hyperthyroid-associated neural dysfunction, we compared grey matter volume (GMV) between adult hyperthyroid patients and matched healthy controls using voxel-based morphometry (VBM). High resolution 3D T1-weighted images were acquired by 3T MRI from 51 hyperthyroid patients and 51 controls. VBM analysis was performed using SPM8. Correlations between regional GMV and both serum free thyroid hormone (TH) concentrations and disease duration were assessed by multiple regression analysis. Compared to controls, GM volumes in the bilateral hippocampus, parahippocampal gyrus, calcarine, lingual gyrus, and left temporal pole were lower and bilateral supplementary motor area GMV higher in hyperthyroid patients. Serum free triiodothyronine (FT3) concentration was negatively correlated with the normalized regional volume (NRV) of the left parahippocampal gyrus and serum free thyroxine (FT4) concentration negatively correlated with the NRV of the left hippocampus and right parahippocampal gyrus. Disease duration was negatively correlated with the NRV of the left hippocampus, bilateral parahippocampal gyrus, and left temporal pole. Hyperthyroid patients exhibited reduced GMV in regions associated with memory, attention, emotion, vision, and motor planning. Negative correlations between GMV and both free TH and disease duration suggest that chronic TH elevation induces abnormalities in the adult cortex. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Study of nuclear morphometry on cytology specimens of benign and malignant breast lesions: A study of 122 cases

    PubMed Central

    Kashyap, Anamika; Jain, Manjula; Shukla, Shailaja; Andley, Manoj

    2017-01-01

    Background: Breast cancer has emerged as a leading site of cancer among women in India. Fine needle aspiration cytology (FNAC) has been routinely applied in assessment of breast lesions. Cytological evaluation in breast lesions is subjective with a “gray zone” of 6.9–20%. Quantitative evaluation of nuclear size, shape, texture, and density parameters by morphometry can be of diagnostic help in breast tumor. Aims: To apply nuclear morphometry on cytological breast aspirates and assess its role in differentiating between benign and malignant breast lesions with derivation of suitable cut-off values between the two groups. Settings and Designs: The present study was a descriptive cross-sectional hospital-based study of nuclear morphometric parameters of benign and malignant cases. Materials and Methods: The study included 50 benign breast disease (BBD), 8 atypical ductal hyperplasia (ADH), and 64 carcinoma cases. Image analysis was performed on Papanicolaou-stained FNAC slides by Nikon Imaging Software (NIS)–Elements Advanced Research software (Version 4.00). Nuclear morphometric parameters analyzed included 5 nuclear size, 2 shape, 4 texture, and 2 density parameters. Results: Nuclear morphometry could differentiate between benign and malignant aspirates with a gradually increasing nuclear size parameters from BBD to ADH to carcinoma. Cut-off values of 31.93 μm2, 6.325 μm, 5.865 μm, 7.855 μm, and 21.55 μm for mean nuclear area, equivalent diameter, minimum feret, maximum ferret, and perimeter, respectively, were derived between benign and malignant cases, which could correctly classify 7 out of 8 ADH cases. Conclusion: Nuclear morphometry is a highly objective tool that could be used to supplement FNAC in differentiating benign from malignant lesions, with an important role in cases with diagnostic dilemma. PMID:28182052

  17. REVEAL: An Extensible Reduced Order Model Builder for Simulation and Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Khushbu; Sharma, Poorva; Ma, Jinliang

    2013-04-30

    Many science domains need to build computationally efficient and accurate representations of high fidelity, computationally expensive simulations. These computationally efficient versions are known as reduced-order models. This paper presents the design and implementation of a novel reduced-order model (ROM) builder, the REVEAL toolset. This toolset generates ROMs based on science- and engineering-domain specific simulations executed on high performance computing (HPC) platforms. The toolset encompasses a range of sampling and regression methods that can be used to generate a ROM, automatically quantifies the ROM accuracy, and provides support for an iterative approach to improve ROM accuracy. REVEAL is designed to bemore » extensible in order to utilize the core functionality with any simulator that has published input and output formats. It also defines programmatic interfaces to include new sampling and regression techniques so that users can ‘mix and match’ mathematical techniques to best suit the characteristics of their model. In this paper, we describe the architecture of REVEAL and demonstrate its usage with a computational fluid dynamics model used in carbon capture.« less

  18. Automated search of control points in surface-based morphometry.

    PubMed

    Canna, Antonietta; Russo, Andrea G; Ponticorvo, Sara; Manara, Renzo; Pepino, Alessandro; Sansone, Mario; Di Salle, Francesco; Esposito, Fabrizio

    2018-04-16

    Cortical surface-based morphometry is based on a semi-automated analysis of structural MRI images. In FreeSurfer, a widespread tool for surface-based analyses, a visual check of gray-white matter borders is followed by the manual placement of control points to drive the topological correction (editing) of segmented data. A novel algorithm combining radial sampling and machine learning is presented for the automated control point search (ACPS). Four data sets with 3 T MRI structural images were used for ACPS validation, including raw data acquired twice in 36 healthy subjects and both raw and FreeSurfer preprocessed data of 125 healthy subjects from public databases. The unedited data from a subgroup of subjects were submitted to manual control point search and editing. The ACPS algorithm was trained on manual control points and tested on new (unseen) unedited data. Cortical thickness (CT) and fractal dimensionality (FD) were estimated in three data sets by reconstructing surfaces from both unedited and edited data, and the effects of editing were compared between manual and automated editing and versus no editing. The ACPS-based editing improved the surface reconstructions similarly to manual editing. Compared to no editing, ACPS-based and manual editing significantly reduced CT and FD in consistent regions across different data sets. Despite the extra processing of control point driven reconstructions, CT and FD estimates were highly reproducible in almost all cortical regions, albeit some problematic regions (e.g. entorhinal cortex) may benefit from different editing. The use of control points improves the surface reconstruction and the ACPS algorithm can automate their search reducing the burden of manual editing. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Puma (Puma concolor) epididymal sperm morphometry.

    PubMed

    Cucho, Hernán; Alarcón, Virgilio; Ordóñez, César; Ampuero, Enrique; Meza, Aydee; Soler, Carles

    2016-01-01

    The Andean puma (Puma concolor) has not been widely studied, particularly in reference to its semen characteristics. The aim of the present study was to define the morphometry of puma sperm heads and classify their subpopulations by cluster analysis. Samples were recovered postmortem from two epididymides from one animal and prepared for morphological observation after staining with the Hemacolor kit. Morphometric data were obtained from 581 spermatozoa using a CASA-Morph system, rendering 13 morphometric parameters. The principal component (PC) analysis was performed followed by cluster analysis for the establishment of subpopulations. Two PC components were obtained, the first related to size and the second to shape. Three subpopulations were observed, corresponding to elongated and intermediate-size sperm heads and acrosomes, to large heads with large acrosomes, and to small heads with short acrosomes. In conclusion, puma spermatozoa showed no uniform sperm morphology but three clear subpopulations. These results should be used for future work in the establishment of an adequate germplasm bank of this species.

  20. Morphometry of Left Frontal and Temporal Poles Predicts Analogical Reasoning Abilities.

    PubMed

    Aichelburg, Clarisse; Urbanski, Marika; Thiebaut de Schotten, Michel; Humbert, Frederic; Levy, Richard; Volle, Emmanuelle

    2016-03-01

    Analogical reasoning is critical for making inferences and adapting to novelty. It can be studied experimentally using tasks that require creating similarities between situations or concepts, i.e., when their constituent elements share a similar organization or structure. Brain correlates of analogical reasoning have mostly been explored using functional imaging that has highlighted the involvement of the left rostrolateral prefrontal cortex (rlPFC) in healthy subjects. However, whether inter-individual variability in analogical reasoning ability in a healthy adult population is related to differences in brain architecture is unknown. We investigated this question by employing linear regression models of performance in analogy tasks and voxel-based morphometry in 54 healthy subjects. Our results revealed that the ability to reason by analogy was associated with structural variability in the left rlPFC and the anterior part of the inferolateral temporal cortex. Tractography of diffusion-weighted images suggested that these 2 regions have a different set of connections but may exchange information via the arcuate fasciculus. These results suggest that enhanced integrative and semantic abilities supported by structural variation in these areas (or their connectivity) may lead to more efficient analogical reasoning. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Effect of SOHAM meditation on human brain: a voxel-based morphometry study.

    PubMed

    Kumar, Uttam; Guleria, Anupam; Kishan, Sadguru Sri Kunal; Khetrapal, C L

    2014-01-01

    The anatomical correlates of long-term meditators involved in practice of "SOHAM" meditation have been studied using voxel-based morphometry (VBM). The VBM analysis indicates significantly higher gray matter density in brain stem, ventral pallidum, and supplementary motor area in the meditators as compared with age-matched nonmeditators. The observed changes in brain structure are compared with other forms of meditation. Copyright © 2013 by the American Society of Neuroimaging.

  2. Time course of changes in sperm morphometry and semen variables during testosterone-induced suppression of human spermatogenesis.

    PubMed

    Garrett, C; Liu, D Y; McLachlan, R I; Baker, H W G

    2005-11-01

    Quantification of changes in semen may give insight into the testosterone (T)-induced disruption of spermatogenesis in man. A model analogous to flushing of sperm from the genital tract after vasectomy was used to quantify the time course of semen changes in subjects participating in male contraceptive trials using 800 mg T-implant (n = 25) or 200 mg weekly intramuscular injection (IM-T; n = 33). A modified exponential decay model allowed for delayed onset and incomplete disruption to spermatogenesis. Semen variables measured weekly during a 91-day period after initial treatment were fitted to the model. Sperm concentration, total count, motility and morphometry exhibited similar average decay rates (5 day half-life). The mean delay to onset of decline in concentration was 15 (IM-T) and 18 (T-implant) days. The significantly longer (P < 0.005) delays deduced for the commencement of fall in normal morphology (41 days), normal morphometry (40 days) and sperm viability (43 and 55 days), and the change of morphometry to smaller more compact sperm heads are consistent with sperm being progressively cleared from the genital tract rather than continued shedding of immature or abnormal sperm by the seminiferous epithelium. A significant negative relationship was found between lag time and baseline sperm concentration, consistent with longer sperm-epididymal transit times associated with lower daily production rates.

  3. A New Fiji-Based Algorithm That Systematically Quantifies Nine Synaptic Parameters Provides Insights into Drosophila NMJ Morphometry

    PubMed Central

    Wolf, Louis; Scheffer-de Gooyert, Jolanda M.; Monedero, Ignacio; Torroja, Laura; Coromina, Lluis; van der Laak, Jeroen A. W. M.; Schenck, Annette

    2016-01-01

    The morphology of synapses is of central interest in neuroscience because of the intimate relation with synaptic efficacy. Two decades of gene manipulation studies in different animal models have revealed a repertoire of molecules that contribute to synapse development. However, since such studies often assessed only one, or at best a few, morphological features at a given synapse, it remained unaddressed how different structural aspects relate to one another. Furthermore, such focused and sometimes only qualitative approaches likely left many of the more subtle players unnoticed. Here, we present the image analysis algorithm ‘Drosophila_NMJ_Morphometrics’, available as a Fiji-compatible macro, for quantitative, accurate and objective synapse morphometry of the Drosophila larval neuromuscular junction (NMJ), a well-established glutamatergic model synapse. We developed this methodology for semi-automated multiparametric analyses of NMJ terminals immunolabeled for the commonly used markers Dlg1 and Brp and showed that it also works for Hrp, Csp and Syt. We demonstrate that gender, genetic background and identity of abdominal body segment consistently and significantly contribute to variability in our data, suggesting that controlling for these parameters is important to minimize variability in quantitative analyses. Correlation and principal component analyses (PCA) were performed to investigate which morphometric parameters are inter-dependent and which ones are regulated rather independently. Based on nine acquired parameters, we identified five morphometric groups: NMJ size, geometry, muscle size, number of NMJ islands and number of active zones. Based on our finding that the parameters of the first two principal components hardly correlated with each other, we suggest that different molecular processes underlie these two morphometric groups. Our study sets the stage for systems morphometry approaches at the well-studied Drosophila NMJ. PMID:26998933

  4. Volcano morphometry and volume scaling on Venus

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Williams, R. S., Jr.

    1994-01-01

    A broad variety of volcanic edifices have been observed on Venus. They ranged in size from the limits of resolution of the Magellan SAR (i.e., hundreds of meters) to landforms over 500 km in basal diameter. One of the key questions pertaining to volcanism on Venus concerns the volume eruption rate or VER, which is linked to crustal productivity over time. While less than 3 percent of the surface area of Venus is manifested as discrete edifices larger than 50 km in diameter, a substantial component of the total crustal volume of the planet over the past 0.5 Ga is related to isolated volcanoes, which are certainly more easily studied than the relatively diffusely defined plains volcanic flow units. Thus, we have focused our efforts on constraining the volume productivity of major volcanic edifices larger than 100 km in basal diameter. Our approach takes advantage of the topographic data returned by Magellan, as well as our database of morphometric statistics for the 20 best known lava shields of Iceland, plus Mauna Loa of Hawaii. As part of this investigation, we have quantified the detailed morphometry of nearly 50 intermediate to large scale edifices, with particular attention to their shape systematics. We found that a set of venusian edifices which include Maat, Sapas, Tepev, Sif, Gula, a feature at 46 deg S, 215 deg E, as well as the shield-like structure at 10 deg N, 275 deg E are broadly representative of the approx. 400 volcanic landforms larger than 50 km. The cross-sectional shapes of these 7 representative edifices range from flattened cones (i.e., Sif) similar to classic terrestrial lava shields such as Mauna Loa and Skjaldbreidur, to rather dome-like structures which include Maat and Sapas. The majority of these larger volcanoes surveyed as part of our study displayed cross-sectional topographies with paraboloidal shaped, in sharp contrast with the cone-like appearance of most simple terrestrial lava shields. In order to more fully explore the

  5. Neural Correlates of Communication Skill and Symptom Severity in Autism: A Voxel-Based Morphometry Study

    ERIC Educational Resources Information Center

    Parks, Lauren K.; Hill, Dina E.; Thoma, Robert J.; Euler, Matthew J.; Lewine, Jeffrey D.; Yeo, Ronald A.

    2009-01-01

    Although many studies have compared the brains of normal controls and individuals with autism, especially older, higher-functioning individuals with autism, little is known of the neural correlates of the vast clinical heterogeneity characteristic of the disorder. In this study, we used voxel-based morphometry (VBM) to examine gray matter…

  6. Comparison of DXA Scans and Conventional X-rays for Spine Morphometry and Bone Age Determination in Children.

    PubMed

    Hoyer-Kuhn, Heike; Knoop, Kai; Semler, Oliver; Kuhr, Kathrin; Hellmich, Martin; Schoenau, Eckhard; Koerber, Friederike

    2016-01-01

    Conventional lateral spine and hand radiographs are the standard tools to evaluate vertebral morphometry and bone age in children. Beside bone mineral density analyses, dual-energy X-ray absorptiometry (DXA) measurements with lower radiation exposure provide high-resolution scans which are not approved for diagnostic purposes. Data about the comparability of conventional radiographs and DXA in children are missing yet. The purpose of the trial was to evaluate whether conventional hand and spine radiographs can be replaced by DXA scans to diminish radiation exposure. Thirty-eight children with osteogenesis imperfecta or secondary osteoporosis or short stature (male, n=20; age, 5.0-17.0 yr) were included and assessed once by additional DXA (GE iDXA) of the spine or the left hand. Intraclass correlation coefficients (ICCs) were used to express agreement between X-ray and iDXA assessment. Evaluation of the spine morphometry showed reasonable agreement between iDXA and radiography (ICC for fish-shape, 0.75; for wedge-shape, 0.65; and for compression fractures, 0.70). Bone age determination showed excellent agreement between iDXA and radiography (ICC, 0.97). IDXA-scans of the spine in a pediatric population should be used not only to assess bone mineral density but also to evaluate anatomic structures and vertebral morphometry. Therefore, iDXA can replace some radiographs in children with skeletal diseases. Copyright © 2016 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  7. Comparative minicolumnar morphometry of three distinguished scientists.

    PubMed

    Casanova, Manuel F; Switala, Andrew E; Trippe, Juan; Fitzgerald, Michael

    2007-11-01

    It has been suggested that the cell minicolumn is the smallest module capable of information processing within the brain. In this case series, photomicrographs of six regions of interests (Brodmann areas 4, 9, 17, 21, 22, and 40) were analyzed by computerized image analysis for minicolumnar morphometry in the brains of three distinguished scientists and six normative controls. Overall, there were significant differences (p < 0.001) between the comparison groups in both minicolumnar width (CW) and mean cell spacing (MCS). Although our scientists did not exhibit deficits in communication or interpersonal skills, the resultant minicolumnar phenotype bears similarity to that described for both autism and Asperger's syndrome. Computer modeling has shown that smaller columns account for discrimination among signals during information processing. A minicolumnar phenotype that provides for discrimination and/or focused attention may help explain the savant abilities observed in some autistic people and the intellectually gifted.

  8. Pelvic floor morphometry and function in women with and without puborectalis avulsion in the early postpartum period.

    PubMed

    Cyr, Marie-Pierre; Kruger, Jennifer; Wong, Vivien; Dumoulin, Chantale; Girard, Isabelle; Morin, Mélanie

    2017-03-01

    stiffness at 20-mm aperture (P ≤ .048). Significantly lower strength, speed of contraction, and endurance were also found in women with avulsion (P ≤ .005). They also presented more urinary incontinence symptoms (P = .040) whereas vaginal and bowel symptoms were found to be similar in the 2 groups. Pelvic Organ Prolapse Quantification revealed greater anterior compartment descent in women with avulsion (P ≤ .010). The impact of pelvic floor disorders on quality of life was found to be significantly higher in women with avulsion (P = .038). This study confirms that pelvic floor muscle morphometry and function are impaired in primiparous women with puborectalis avulsion in the early postpartum period. Moreover, it highlights specific muscle parameters that are altered such as passive properties, strength, speed of contraction, and endurance. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Puma (Puma concolor) epididymal sperm morphometry

    PubMed Central

    Cucho, Hernán; Alarcón, Virgilio; Ordóñez, César; Ampuero, Enrique; Meza, Aydee; Soler, Carles

    2016-01-01

    The Andean puma (Puma concolor) has not been widely studied, particularly in reference to its semen characteristics. The aim of the present study was to define the morphometry of puma sperm heads and classify their subpopulations by cluster analysis. Samples were recovered postmortem from two epididymides from one animal and prepared for morphological observation after staining with the Hemacolor kit. Morphometric data were obtained from 581 spermatozoa using a CASA-Morph system, rendering 13 morphometric parameters. The principal component (PC) analysis was performed followed by cluster analysis for the establishment of subpopulations. Two PC components were obtained, the first related to size and the second to shape. Three subpopulations were observed, corresponding to elongated and intermediate-size sperm heads and acrosomes, to large heads with large acrosomes, and to small heads with short acrosomes. In conclusion, puma spermatozoa showed no uniform sperm morphology but three clear subpopulations. These results should be used for future work in the establishment of an adequate germplasm bank of this species. PMID:27678466

  10. New experimental results in atlas-based brain morphometry

    NASA Astrophysics Data System (ADS)

    Gee, James C.; Fabella, Brian A.; Fernandes, Siddharth E.; Turetsky, Bruce I.; Gur, Ruben C.; Gur, Raquel E.

    1999-05-01

    In a previous meeting, we described a computational approach to MRI morphometry, in which a spatial warp mapping a reference or atlas image into anatomic alignment with the subject is first inferred. Shape differences with respect to the atlas are then studied by calculating the pointwise Jacobian determinant for the warp, which provides a measure of the change in differential volume about a point in the reference as it transforms to its corresponding position in the subject. In this paper, the method is used to analyze sex differences in the shape and size of the corpus callosum in an ongoing study of a large population of normal controls. The preliminary results of the current analysis support findings in the literature that have observed the splenium to be larger in females than in males.

  11. Three-dimensional brain growth abnormalities in childhood-onset schizophrenia visualized by using tensor-based morphometry.

    PubMed

    Gogtay, Nitin; Lu, Allen; Leow, Alex D; Klunder, Andrea D; Lee, Agatha D; Chavez, Alex; Greenstein, Deanna; Giedd, Jay N; Toga, Arthur W; Rapoport, Judith L; Thompson, Paul M

    2008-10-14

    Earlier studies revealed progressive cortical gray matter (GM) loss in childhood-onset schizophrenia (COS) across both lateral and medial surfaces of the developing brain. Here, we use tensor-based morphometry to visualize white matter (WM) growth abnormalities in COS throughout the brain. Using high-dimensional elastic image registration, we compared 3D maps of local WM growth rates in COS patients and healthy children over a 5-year period, based on analyzing longitudinal brain MRIs from 12 COS patients and 12 healthy controls matched for age, gender, and scan interval. COS patients showed up to 2.2% slower growth rates per year than healthy controls in WM (P = 0.02, all P values corrected). The greatest differences were in the right hemisphere (P = 0.006). This asymmetry was attributable to a right slower than left hemisphere growth rate mapped in COS patients (P = 0.037) but not in healthy controls. WM growth rates reached 2.6% per year in healthy controls (P = 0.0002). COS patients showed only a 1.3% per year trend for growth in the left hemisphere (P = 0.066). In COS, WM growth rates were associated with improvement in the Children's Global Assessment Scale (R = 0.64, P = 0.029). Growth rates were reduced throughout the brain in COS, but this process appeared to progress in a front-to-back (frontal-parietal) fashion, and this effect was not attributable to lower IQ. Growth rates were correlated with functional prognosis and were visualized as detailed 3D maps. Finally, these findings also confirm that the progressive GM deficits seen in schizophrenia are not the result of WM overgrowth.

  12. Intravital Computer Morphometry on Protozoa: A Method for Monitoring of the Morphofunctional Disorders in Cells Exposed in the Cell Phone Communication Electromagnetic Field.

    PubMed

    Uskalova, D V; Igolkina, Yu V; Sarapultseva, E I

    2016-08-01

    Morphofunctional disorders in unicellular aquatic protozoa - Spirostomum ambiguum infusorians after 30-, 60-, and 360-min exposure in electromagnetic field at a radiation frequency of 1 GHz and energy flow density of 50 μW/cm(2) were analyzed by intravital computer morphometry. Significant disorders in morphometric values correlated with low mobility of the protozoa. The results suggested the use of intravital computer morphometry on the protozoa for early diagnosis of radiation-induced effects of the mobile communication electromagnetic field, for example, low mobility of spermatozoa.

  13. Neuroanatomical correlates of time perspective: A voxel-based morphometry study.

    PubMed

    Chen, Zhiyi; Guo, Yiqun; Feng, Tingyong

    2018-02-26

    Previous studies indicated that time perspective can affect many behaviors, such as decisions, risk taking, substance abuse and health behaviors. However, very little is known about the neural substrates of time perspective (TP). To address this question, we characterized different dimensions of TP (including the Past, Present, and Future TP) using standardized Zimbardo Time Perspective Inventory (ZTPI), and quantified the gray matter volume using voxel-based morphometry (VBM) method across two independent samples. Our whole-brain analysis (sample 1, N=150) revealed Past-Negative TP was positively correlated with the GMV of a cluster in LPFC whereas Past-Positive was negatively correlated with the GMV in OFC, and Future TP was negatively correlated with GMV in mPFC. Moreover, two present scales (Present-Hedonistic and Present-Fatalistic TPs) were positively correlated with the GMV of regions in MTG and precuneus, respectively. We further examined the reliability of these correlations between multidimensional TPs and neuroanatomical structures in another independent sample (sample 2, N=58). Results verified our findings that GMV in LPFC could predict Past-Negative TP while GMV in OFC could predict Past-Positive TP, and the GMV in MTG could predict Present-Hedonistic while the GMV in presuneus could predict Present-Fatalistic, as well as the GMV in mPFC could predict Future TP. Thus, our findings suggest that the existence of selective neural basis underlying TPs, and further provide the stable biomarkers for multidimensional TPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. [CT morphometry for calcaneal fractures and comparison of the Zwipp and Sanders classifications].

    PubMed

    Andermahr, J; Jesch, A B; Helling, H J; Jubel, A; Fischbach, R; Rehm, K E

    2002-01-01

    The aim of the study is to correlate the CT-morphological changes of fractured calcaneus and the classifications of Zwipp and Sanders with the clinical outcome. In a retrospective clinical study, the preoperative CT scans of 75 calcaneal fractures were analysed. The morphometry of the fractures was determined by measuring height, length diameter and calcaneo-cuboidal angle in comparison to the intact contralateral side. At a mean of 38 months after trauma 44 patients were clinically followed-up. The data of CT image morphometry were correlated with the severity of fracture classified by Zwipp or Sanders as well as with the functional outcome. There was a good correlation between the fracture classifications and the morphometric data. Both fracture classifying systems have a predictive impact for functional outcome. The more exacting and accurate Zwipp classification considers the most important cofactors like involvement of the calcaneo-cuboidal joint, soft tissue damage, additional fractures etc. The Sanders classification is easier to use during clinical routine. The Zwipp classification includes more relevant cofactors (fracture of the calcaneo-cuboidal-joint, soft tissue swelling, etc.) and presents a higher correlation to the choice of therapy. Both classification systems present a prognostic impact concerning the clinical outcome.

  15. Brain morphometry in blind and sighted subjects.

    PubMed

    Maller, Jerome J; Thomson, Richard H; Ng, Amanda; Mann, Collette; Eager, Michael; Ackland, Helen; Fitzgerald, Paul B; Egan, Gary; Rosenfeld, Jeffrey V

    2016-11-01

    Previous neuroimaging studies have demonstrated structural brain alterations in blind subjects, but most have focused on primary open angle glaucoma or retinopathy of prematurity, used low-field scanners, a limited number of receive channels, or have presented uncorrected results. We recruited 10 blind and 10 age and sex-matched controls to undergo high-resolution MRI using a 3T scanner and a 32-channel receive coil. We evaluated whole-brain morphological differences between the groups as well as manual segmentation of regional hippocampal volumes. There were no hippocampal volume differences between the groups. Whole-brain morphometry showed white matter volume differences between blind and sighted groups including localised larger regions in the visual cortex (occipital gyral volume and thickness) among those with blindness early in life compared to those with blindness later in life. Hence, in our patients, blindness resulted in brain volumetric differences that depend upon duration of blindness. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Alexithymia is related to differences in gray matter volume: a voxel-based morphometry study.

    PubMed

    Ihme, Klas; Dannlowski, Udo; Lichev, Vladimir; Stuhrmann, Anja; Grotegerd, Dominik; Rosenberg, Nicole; Kugel, Harald; Heindel, Walter; Arolt, Volker; Kersting, Anette; Suslow, Thomas

    2013-01-23

    Alexithymia has been characterized as the inability to identify and describe feelings. Functional imaging studies have revealed that alexithymia is linked to reactivity changes in emotion- and face-processing-relevant brain areas. In this respect, anterior cingulate cortex (ACC), amygdala, anterior insula and fusiform gyrus (FFG) have been consistently reported. However, it remains to be clarified whether alexithymia is also associated with structural differences. Voxel-based morphometry on T1-weighted magnetic resonance images was used to investigate gray matter volume in 17 high alexithymics (HA) and 17 gender-matched low alexithymics (LA), which were selected from a sample of 161 healthy volunteers on basis of the 20-item Toronto Alexithymia Scale. Data were analyzed as statistic parametric maps for the comparisons LA>HA and HA>LA in a priori determined regions of interests (ROIs), i.e., ACC, amygdala, anterior insula and FFG. Moreover, an exploratory whole brain analysis was accomplished. For the contrast LA>HA, significant clusters were detected in the ACC, left amygdala and left anterior insula. Additionally, the whole brain analysis revealed volume differences in the left middle temporal gyrus. No significant differences were found for the comparison HA>LA. Our findings suggest that high compared to low alexithymics show less gray matter volume in several emotion-relevant brain areas. These structural differences might contribute to the functional alterations found in previous imaging studies in alexithymia. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. The effects of apolipoprotein ε 4 on aging brain in cognitively normal Chinese elderly: a surface-based morphometry study.

    PubMed

    Lu, Hanna; Ma, Suk Ling; Chan, Sandra Sau Man; Lam, Linda Chiu Wa

    2016-09-01

    Default mode network (DMN) has been reported to be susceptible to APOE ε 4 genotype. However, the APOE ε 4-related brain changes in young carriers are different from the ones in elderly carriers. The current study aimed to evaluate the cortical morphometry of DMN subregions in cognitively normal elderly with APOE ε 4. 11 cognitively normal senior APOE ε 4 carriers and 27 matched healthy controls (HC) participated the neuropsychological tests, genotyping, and magnetic resonance imaging (MRI) scanning. Voxel-based morphometry (VBM) analysis was used to assess the global volumetric changes. Surface-based morphometry (SBM) analysis was performed to measure regional gray matter volume (GMV) and gray matter thickness (GMT). Advancing age was associated with decreased GMV of DMN subregions. Compared to HC, APOE ε 4 carriers presented cortical atrophy in right cingulate gyrus (R_CG) (GMV: APOE carriers: 8475.23 ± 1940.73 mm3, HC: 9727.34 ± 1311.57 mm3, t = 2.314, p = 0.026, corrected) and left insular (GMT: APOE ε 4 carriers: 3.83 ± 0.37 mm, HC: 4.05 ± 0.25 mm, t = 2.197, p = 0.033, corrected). Our results highlight the difference between different cortical measures and suggest that the cortical reduction of CG and insular maybe a potential neuroimaging marker for APOE 4 ε senior carriers, even in the context of relatively intact cognition.

  18. Investigations of Martian Impact Crater Morphologies and Morphometries

    NASA Technical Reports Server (NTRS)

    Barlow, Nadine G.

    2002-01-01

    We have made substantial progress towards completion of the original objectives and are continuing to include new data from the Mars Global Surveyor MOC and TES instruments as they become available (the MOLA instrument has ceased operation as of 2002). The project funding has been used to provide salary support to the PI and several undergraduate students, cover publication charges for two papers, reimburse travel expenses to conferences and workshops incurred by the PI and students, and cover a number of other expenses such as software upgrades and production costs of slides and color prints. This study is revising the PI's Catalog of Large Martian Impact Craters with information obtained from MGS and is utilizing data in the revised Catalog to investigate which planetary factors (such as location, elevation, terrain type, etc.) primarily affect the formation of specific ejecta morphologies and morphometries.

  19. Computed tomography, anatomy and morphometry of the lower extremity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoogewoud, H.M.; Rager, G.; Burch, H.

    1989-01-01

    This book presents up-to-date information on CT imaging of the lower extremity. It includes an atlas correlating new, high-resolution CT scans with identical thin anatomical slices covering the lower extremity from the crista iliaca to the planta pedis. Additional figures, including CT arthrograms of the hip, knee and ankle, depict the anatomy in detail The technique and clinical relevance of CT measurements especially in orthopedic surgery are also clearly explained. Of special interest is the new method developed by the authors for assessing the coverage of the femoral head. The special morphometry software and a 3D program allowing representation inmore » space make it possible to precisely and accurately measure the coverage with normal CT scans of the hip.« less

  20. Study of morphometry to debit drainage basin (DAS) arau Padang city

    NASA Astrophysics Data System (ADS)

    Utama, Lusi; Amrizal, Berd, Isril; Zuherna

    2017-11-01

    High intensity rain that happened in Padang city cause the happening of floods at DAS Arau. Floods that happened in Padang besides caused high rain intensity, require to be by research about morphometry that is cause parameter the happening of floods. Morphometry drainage basin physical network (DAS) quantitatively related to DAS geomorphology that is related to form of DAS, river network, closeness of stream, ramp, usage of farm, high and gradient steepness of river. Form DAS will influence rain concentration to outlet. Make an index to closeness of stream depict closeness of river stream at one particular DAS. Speed of river stream influenced by storey, level steepness of river. Steepness storey, level is comparison of difference height of river downstream and upstream. Ever greater of steepness of river stream, excelsior speed of river stream that way on the contrary. High to lower speed of river stream influence occurrence of floods, more than anything else if when influenced by debit big. Usage of farm in glove its link to process of infiltration where if geology type which is impermeable, be difficult the happening of infiltration, this matter will enlarge value of run off. Research by descriptive qualitative that is about characteristic of DAS. Method the used is method survey with data collecting, in the form of rainfall data of year 2005 until year 2015 and Image of DEM IFSAR with resolution 5 meter, analyzed use Software ARGIS. Result of research got by DAS reside in at condition of floods gristle.

  1. Facial morphometry of Ecuadorian patients with growth hormone receptor deficiency/Laron syndrome.

    PubMed Central

    Schaefer, G B; Rosenbloom, A L; Guevara-Aguirre, J; Campbell, E A; Ullrich, F; Patil, K; Frias, J L

    1994-01-01

    Facial morphometry using computerised image analysis was performed on patients with growth hormone receptor deficiency (Laron syndrome) from an inbred population of southern Ecuador. Morphometrics were compared for 49 patients, 70 unaffected relatives, and 14 unrelated persons. Patients with growth hormone receptor deficiency showed significant decreases in measures of vertical facial growth as compared to unaffected relatives and unrelated persons with short stature from other causes. This report validates and quantifies the clinical impression of foreshortened facies in growth hormone receptor deficiency. Images PMID:7815422

  2. DTI and VBM reveal white matter changes without associated gray matter changes in patients with idiopathic restless legs syndrome

    PubMed Central

    Belke, Marcus; Heverhagen, Johannes T; Keil, Boris; Rosenow, Felix; Oertel, Wolfgang H; Stiasny-Kolster, Karin; Knake, Susanne; Menzler, Katja

    2015-01-01

    Background and Purpose We evaluated cerebral white and gray matter changes in patients with iRLS in order to shed light on the pathophysiology of this disease. Methods Twelve patients with iRLS were compared to 12 age- and sex-matched controls using whole-head diffusion tensor imaging (DTI) and voxel-based morphometry (VBM) techniques. Evaluation of the DTI scans included the voxelwise analysis of the fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD). Results Diffusion tensor imaging revealed areas of altered FA in subcortical white matter bilaterally, mainly in temporal regions as well as in the right internal capsule, the pons, and the right cerebellum. These changes overlapped with changes in RD. Voxel-based morphometry did not reveal any gray matter alterations. Conclusions We showed altered diffusion properties in several white matter regions in patients with iRLS. White matter changes could mainly be attributed to changes in RD, a parameter thought to reflect altered myelination. Areas with altered white matter microstructure included areas in the internal capsule which include the corticospinal tract to the lower limbs, thereby supporting studies that suggest changes in sensorimotor pathways associated with RLS. PMID:26442748

  3. Annual Research Review: Progress in Using Brain Morphometry as a Clinical Tool for Diagnosing Psychiatric Disorders

    ERIC Educational Resources Information Center

    Haubold, Alexander; Peterson, Bradley S.; Bansal, Ravi

    2012-01-01

    Brain morphometry in recent decades has increased our understanding of the neural bases of psychiatric disorders by localizing anatomical disturbances to specific nuclei and subnuclei of the brain. At least some of these disturbances precede the overt expression of clinical symptoms and possibly are endophenotypes that could be used to diagnose an…

  4. Cytological Study of Breast Carcinoma Before and After Oncotherapy with Special Reference to Morphometry and Proliferative Activity.

    PubMed

    Koley, Sananda; Chakrabarti, Srabani; Pathak, Swapan; Manna, Asim Kumar; Basu, Siddhartha

    2015-12-01

    Our study was done to assess the cytological changes due to oncotherapy in breast carcinoma especially on morphometry and proliferative activity. Cytological aspirates were collected from a total of 32 cases of invasive ductal carcinoma both before and after oncotherapy. Morphometry was done on the stained cytological smears to assess the different morphological parameters of cell dimension by using the ocular morphometer and the software AutoCAD 2007. Staining was done with Ki-67 and proliferating cell nuclear antigen (PCNA) as proliferative markers. Different morphological parameters were compared before and after oncotherapy by unpaired Student's t test. Statistically significant differences were found in morphometric parameters, e.g., mean nuclear diameter, mean nuclear area, mean cell diameter, and mean cell area, and in the expression of proliferative markers (Ki-67 and PCNA). Statistical analysis was done by obtaining p values. There are statistically significant differences between morphological parameter of breast carcinoma cells before and after oncotherapy.

  5. Differences in Cell Morphometry, Cell Wall Topography and Gp70 Expression Correlate with the Virulence of Sporothrix brasiliensis Clinical Isolates

    PubMed Central

    Castro, Rafaela A.; Kubitschek-Barreira, Paula H.; Teixeira, Pedro A. C.; Sanches, Glenda F.; Teixeira, Marcus M.; Quintella, Leonardo P.; Almeida, Sandro R.; Costa, Rosane O.; Camargo, Zoilo P.; Felipe, Maria S. S.; de Souza, Wanderley; Lopes-Bezerra, Leila M.

    2013-01-01

    Sporotrichosis is a chronic infectious disease affecting both humans and animals. For many years, this subcutaneous mycosis had been attributed to a single etiological agent; however, it is now known that this taxon consists of a complex of at least four pathogenic species, including Sporothrix schenckii and Sporothrix brasiliensis. Gp70 was previously shown to be an important antigen and adhesin expressed on the fungal cell surface and may have a key role in immunomodulation and host response. The aim of this work was to study the virulence, morphometry, cell surface topology and gp70 expression of clinical isolates of S. brasiliensis compared with two reference strains of S. schenckii. Several clinical isolates related to severe human cases or associated with the Brazilian zoonotic outbreak of sporotrichosis were genotyped and clustered as S. brasiliensis. Interestingly, in a murine subcutaneous model of sporotrichosis, these isolates showed a higher virulence profile compared with S. schenckii. A single S. brasiliensis isolate from an HIV-positive patient not only showed lower virulence but also presented differences in cell morphometry, cell wall topography and abundant gp70 expression compared with the virulent isolates. In contrast, the highly virulent S. brasiliensis isolates showed reduced levels of cell wall gp70. These observations were confirmed by the topographical location of the gp70 antigen using immunoelectromicroscopy in both species. In addition, the gp70 molecule was sequenced and identified using mass spectrometry, and the sequenced peptides were aligned into predicted proteins using Blastp with the S. schenckii and S. brasiliensis genomes. PMID:24116065

  6. Diffusion tensor imaging and voxel based morphometry study in amyotrophic lateral sclerosis: relationships with motor disability

    PubMed Central

    Thivard, Lionel; Pradat, Pierre‐François; Lehéricy, Stéphane; Lacomblez, Lucette; Dormont, Didier; Chiras, Jacques; Benali, Habib; Meininger, Vincent

    2007-01-01

    The aim of this study was to investigate the extent of cortical and subcortical lesions in amyotrophic lateral sclerosis (ALS) using, in combination, voxel based diffusion tensor imaging (DTI) and voxel based morphometry (VBM). We included 15 patients with definite or probable ALS and 25 healthy volunteers. Patients were assessed using the revised ALS Functional Rating Scale (ALSFRS‐R). In patients, reduced fractional anisotropy was found in bilateral corticospinal tracts, the left insula/ventrolateral premotor cortex, the right parietal cortex and the thalamus, which correlated with the ALSFRS‐R. Increased mean diffusivity (MD) was found bilaterally in the motor cortex, the ventrolateral premotor cortex/insula, the hippocampal formations and the right superior temporal gyrus, which did not correlate with the ALSFRS‐R. VBM analysis showed no changes in white matter but widespread volume decreases in grey matter in several regions exhibiting MD abnormalities. In ALS patients, our results show that subcortical lesions extend beyond the corticospinal tract and are clinically relevant. PMID:17635981

  7. Diffusion tensor imaging and voxel based morphometry study in amyotrophic lateral sclerosis: relationships with motor disability.

    PubMed

    Thivard, Lionel; Pradat, Pierre-François; Lehéricy, Stéphane; Lacomblez, Lucette; Dormont, Didier; Chiras, Jacques; Benali, Habib; Meininger, Vincent

    2007-08-01

    The aim of this study was to investigate the extent of cortical and subcortical lesions in amyotrophic lateral sclerosis (ALS) using, in combination, voxel based diffusion tensor imaging (DTI) and voxel based morphometry (VBM). We included 15 patients with definite or probable ALS and 25 healthy volunteers. Patients were assessed using the revised ALS Functional Rating Scale (ALSFRS-R). In patients, reduced fractional anisotropy was found in bilateral corticospinal tracts, the left insula/ventrolateral premotor cortex, the right parietal cortex and the thalamus, which correlated with the ALSFRS-R. Increased mean diffusivity (MD) was found bilaterally in the motor cortex, the ventrolateral premotor cortex/insula, the hippocampal formations and the right superior temporal gyrus, which did not correlate with the ALSFRS-R. VBM analysis showed no changes in white matter but widespread volume decreases in grey matter in several regions exhibiting MD abnormalities. In ALS patients, our results show that subcortical lesions extend beyond the corticospinal tract and are clinically relevant.

  8. Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia

    PubMed Central

    Pinaya, Walter H. L.; Gadelha, Ary; Doyle, Orla M.; Noto, Cristiano; Zugman, André; Cordeiro, Quirino; Jackowski, Andrea P.; Bressan, Rodrigo A.; Sato, João R.

    2016-01-01

    Neuroimaging-based models contribute to increasing our understanding of schizophrenia pathophysiology and can reveal the underlying characteristics of this and other clinical conditions. However, the considerable variability in reported neuroimaging results mirrors the heterogeneity of the disorder. Machine learning methods capable of representing invariant features could circumvent this problem. In this structural MRI study, we trained a deep learning model known as deep belief network (DBN) to extract features from brain morphometry data and investigated its performance in discriminating between healthy controls (N = 83) and patients with schizophrenia (N = 143). We further analysed performance in classifying patients with a first-episode psychosis (N = 32). The DBN highlighted differences between classes, especially in the frontal, temporal, parietal, and insular cortices, and in some subcortical regions, including the corpus callosum, putamen, and cerebellum. The DBN was slightly more accurate as a classifier (accuracy = 73.6%) than the support vector machine (accuracy = 68.1%). Finally, the error rate of the DBN in classifying first-episode patients was 56.3%, indicating that the representations learned from patients with schizophrenia and healthy controls were not suitable to define these patients. Our data suggest that deep learning could improve our understanding of psychiatric disorders such as schizophrenia by improving neuromorphometric analyses. PMID:27941946

  9. Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia

    NASA Astrophysics Data System (ADS)

    Pinaya, Walter H. L.; Gadelha, Ary; Doyle, Orla M.; Noto, Cristiano; Zugman, André; Cordeiro, Quirino; Jackowski, Andrea P.; Bressan, Rodrigo A.; Sato, João R.

    2016-12-01

    Neuroimaging-based models contribute to increasing our understanding of schizophrenia pathophysiology and can reveal the underlying characteristics of this and other clinical conditions. However, the considerable variability in reported neuroimaging results mirrors the heterogeneity of the disorder. Machine learning methods capable of representing invariant features could circumvent this problem. In this structural MRI study, we trained a deep learning model known as deep belief network (DBN) to extract features from brain morphometry data and investigated its performance in discriminating between healthy controls (N = 83) and patients with schizophrenia (N = 143). We further analysed performance in classifying patients with a first-episode psychosis (N = 32). The DBN highlighted differences between classes, especially in the frontal, temporal, parietal, and insular cortices, and in some subcortical regions, including the corpus callosum, putamen, and cerebellum. The DBN was slightly more accurate as a classifier (accuracy = 73.6%) than the support vector machine (accuracy = 68.1%). Finally, the error rate of the DBN in classifying first-episode patients was 56.3%, indicating that the representations learned from patients with schizophrenia and healthy controls were not suitable to define these patients. Our data suggest that deep learning could improve our understanding of psychiatric disorders such as schizophrenia by improving neuromorphometric analyses.

  10. Voxel-Based Morphometry and fMRI Revealed Differences in Brain Gray Matter in Breastfed and Milk Formula-Fed Children.

    PubMed

    Ou, X; Andres, A; Pivik, R T; Cleves, M A; Snow, J H; Ding, Z; Badger, T M

    2016-04-01

    Infant diets may have significant impact on brain development in children. The aim of this study was to evaluate brain gray matter structure and function in 8-year-old children who were predominantly breastfed or fed cow's milk formula as infants. Forty-two healthy children (breastfed: n = 22, 10 boys and 12 girls; cow's milk formula: n = 20, 10 boys and 10 girls) were studied by using structural MR imaging (3D T1-weighted imaging) and blood oxygen level-dependent fMRI (while performing tasks involving visual perception and language functions). They were also administered standardized tests evaluating intelligence (Reynolds Intellectual Assessment Scales) and language skills (Clinical Evaluation of Language Fundamentals). Total brain gray matter volume did not differ between the breastfed and cow's milk formula groups. However, breastfed children had significantly higher (P < .05, corrected) regional gray matter volume measured by voxel-based morphometry in the left inferior temporal lobe and left superior parietal lobe compared with cow's milk formula-fed children. Breastfed children showed significantly more brain activation in the right frontal and left/right temporal lobes on fMRI when processing the perception task and in the left temporal/occipital lobe when processing the visual language task than cow's milk formula-fed children. The imaging findings were associated with significantly better performance for breastfed than cow's milk formula-fed children on both tasks. Our findings indicated greater regional gray matter development and better regional gray matter function in breastfed than cow's milk formula-fed children at 8 years of age and suggested that infant diets may have long-term influences on brain development in children. © 2016 by American Journal of Neuroradiology.

  11. Ejaculate fractioning effect on llama sperm head morphometry as assessed by the ISAS(®) CASA system.

    PubMed

    Soler, C; Sancho, M; García, A; Fuentes, Mc; Núñez, J; Cucho, H

    2014-02-01

    South American camelid sperm characteristics are poorly known compared with those of other domestic animals. The long-term duration of ejaculation makes difficult to gather all the seminal fluid, implying possible ejaculation portion losses. Thus, the aim of this research was to evaluate the characteristics of the morphology and morphometry of the spermatozoa change during ejaculation. The morphometric characterization was tested on nine specimens of the Lanuda breed, using a special artificial vagina. In five of the animals, a fractioning of the ejaculate was performed by taking samples every 5 min. for a total of 20 min. Air-dried seminal smears were stained with Hemacolor and mounted permanently with Eukitt. Morphometric analysis was carried out with the morphometry module of the ISAS(®) CASA system. Almost 350 cells were analysed per sample, with a total number of 3207 spermatozoa. Mean values were given as follows: length: 5.51 μm; width: 3.38 μm; area: 17.75 μm(2) ; perimeter: 14.8 μm; ellipticity: 0.24; elongation: 0.56; rugosity: 0.87; regularity: 1.07; and shape factor: 1.41. Different animals showed differences in their morphometric values. When we compared the values from different fractions, only two samples showed differences in morphometric parameter values and four samples showed differences in shape parameters. Multivariate analysis allowed the size classification of the cells into three classes and five classes of shapes. The distribution of classes among fractions showed no differences. Despite the individual morphometric differences observed in some fractions, the characteristics of the sperm head morphometry can be considered constant along the ejaculatory period in the llama. © 2013 Blackwell Verlag GmbH.

  12. DEVELOPMENT OF THE SMALL AIRWAYS AND ALVEOLI FROM CHILDHOOD TO ADULT LUNG MEASURED BY AEROSOL-DERIVED AIRWAY MORPHOMETRY

    EPA Science Inventory

    Understanding the human development of pulmonary airspaces is important for calculating the dose from exposure to inhaled materials as a function of age. We have measured, in vivo, the airspace caliber of the small airways and alveoli by aerosol-derived airway morphometry (ADAM) ...

  13. The pterygoalar bar: A meta-analysis of its prevalence, morphology and morphometry.

    PubMed

    Pękala, Przemysław A; Henry, Brandon Michael; Pękala, Jakub R; Frączek, Paulina A; Taterra, Dominik; Natsis, Konstantinos; Piagkou, Maria; Skrzat, Janusz; Tomaszewska, Iwona M

    2017-09-01

    The pterygoalar (PA) bar is a bony bridge resulting from the partial or complete ossification of a PA ligament. The aim of this meta-analysis was to systematically analyze and provide the most comprehensive data on the prevalence, morphology and topographical anatomy of the PA bar. A comprehensive search of the major electronic databases (PubMed, Embase, ScienceDirect, SciELO, BIOSIS, and Web of Science) was conducted in order to identify relevant studies. Studies reporting the prevalence, side of occurrence, gender dimorphism and morphometry of the PA bar were included in the current study. A total of 25 articles (n = 16,168 subjects) were included in the meta-analysis. The overall pooled prevalence of the complete PA bar was 4.4% (95% CI: 3.0-6.0) and of the incomplete was 8.4% (95% CI: 4.6-13.3). The PA bar was most often observed unilaterally, on the left side. Analysis of geographical subgroups revealed considerable differences, with the lowest prevalence rates in Europe for both incomplete and complete PA bars. Considering the prevalence and anatomical characteristics of the PA bar, caution is recommended while planning or performing transfacial needle approach to the foramen ovale and when considering a differential diagnosis for nerve compression or entrapment syndromes. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  14. Analyses of Rock Size-Frequency Distributions and Morphometry of Modified Hawaiian Lava Flows: Implications for Future Martian Landing Sites

    NASA Technical Reports Server (NTRS)

    Craddock, Robert A.; Golombek, Matthew; Howard, Alan D.

    2000-01-01

    Both the size-frequency distribution and morphometry of rock populations emplaced by a variety of geologic processes in Hawaii indicate that such information may be useful in planning future landing sites on Mars and interpreting the surface geology.

  15. Morphometry, Bite-Force, and Paleobiology of the Late Miocene Caiman Purussaurus brasiliensis

    PubMed Central

    Aureliano, Tito; Ghilardi, Aline M.; Guilherme, Edson; Souza-Filho, Jonas P.; Cavalcanti, Mauro; Riff, Douglas

    2015-01-01

    Purussaurus brasiliensis thrived in the northwestern portion of South America during the Late Miocene. Although substantial material has been recovered since its early discovery, this fossil crocodilian can still be considered as very poorly understood. In the present work, we used regression equations based on modern crocodilians to present novel details about the morphometry, bite-force and paleobiology of this species. According to our results, an adult Purussaurus brasiliensis was estimated to reach around 12.5 m in length, weighing around 8.4 metric tons, with a mean daily food intake of 40.6 kg. It was capable of generating sustained bite forces of 69,000 N (around 7 metric tons-force). The extreme size and strength reached by this animal seems to have allowed it to include a wide range of prey in its diet, making it a top predator in its ecosystem. As an adult, it would have preyed upon large to very large vertebrates, and, being unmatched by any other carnivore, it avoided competition. The evolution of a large body size granted P. brasiliensis many advantages, but it may also have led to its vulnerability. The constantly changing environment on a large geological scale may have reduced its long-term survival, favoring smaller species more resilient to ecological shifts. PMID:25689140

  16. Morphometry, bite-force, and paleobiology of the late miocene caiman Purussaurus brasiliensis.

    PubMed

    Aureliano, Tito; Ghilardi, Aline M; Guilherme, Edson; Souza-Filho, Jonas P; Cavalcanti, Mauro; Riff, Douglas

    2015-01-01

    Purussaurus brasiliensis thrived in the northwestern portion of South America during the Late Miocene. Although substantial material has been recovered since its early discovery, this fossil crocodilian can still be considered as very poorly understood. In the present work, we used regression equations based on modern crocodilians to present novel details about the morphometry, bite-force and paleobiology of this species. According to our results, an adult Purussaurus brasiliensis was estimated to reach around 12.5 m in length, weighing around 8.4 metric tons, with a mean daily food intake of 40.6 kg. It was capable of generating sustained bite forces of 69,000 N (around 7 metric tons-force). The extreme size and strength reached by this animal seems to have allowed it to include a wide range of prey in its diet, making it a top predator in its ecosystem. As an adult, it would have preyed upon large to very large vertebrates, and, being unmatched by any other carnivore, it avoided competition. The evolution of a large body size granted P. brasiliensis many advantages, but it may also have led to its vulnerability. The constantly changing environment on a large geological scale may have reduced its long-term survival, favoring smaller species more resilient to ecological shifts.

  17. Pupillometry reveals reduced unconscious emotional reactivity in autism.

    PubMed

    Nuske, Heather J; Vivanti, Giacomo; Hudry, Kristelle; Dissanayake, Cheryl

    2014-09-01

    Recent theoretical conceptualisations have suggested that emotion processing impairments in autism stem from disruption to the sub-cortical, rapid emotion-processing system. We argue that a clear way to ascertain whether this system is affected in autism is by measuring unconscious emotional reactivity. Using backwards masking, we presented fearful expressions non-consciously (subliminally) as well as consciously (supraliminally), and measured pupillary responses as an index of emotional reactivity in 19 children with autism and 19 typically developing children, aged 2-5 years. The pupillary responses of the children with autism revealed reduced unconscious emotional reactivity, with no group differences on consciously presented emotion. Together, these results indicate a hyporesponsiveness to non-consciously presented emotion suggesting a fundamental difference in emotion processing in autism, which requires consciousness and more time. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Reduced thalamic volume in men with antisocial personality disorder or schizophrenia and a history of serious violence and childhood abuse.

    PubMed

    Kumari, V; Gudjonsson, G H; Raghuvanshi, S; Barkataki, I; Taylor, P; Sumich, A; Das, K; Kuipers, E; Ffytche, D H; Das, M

    2013-05-01

    Violent behaviour has been associated with presence of certain mental disorders, most notably antisocial personality disorder (ASPD) and schizophrenia, childhood abuse, and multiple brain abnormalities. This study examined for the first time, to the authors' knowledge, the role of psychosocial deprivation (PSD), including childhood physical and sexual abuse, in structural brain volumes of violent individuals with ASPD or schizophrenia. Fifty-six men (26 with ASPD or schizophrenia and a history of serious violence, 30 non-violent) underwent magnetic resonance imaging and were assessed on PSD. Stereological volumetric brain ratings were examined for group differences and their association with PSD ratings. PSD-brain associations were examined further using voxel-based-morphometry. The findings revealed: reduced thalamic volume in psychosocially-deprived violent individuals, relative to non-deprived violent individuals and healthy controls; negative association between thalamic volume and abuse ratings (physical and sexual) in violent individuals; and trend-level negative associations between PSD and hippocampal and prefrontal volumes in non-violent individuals. The voxel-based-morphometry analysis detected a negative association between PSD and localised grey matter volumes in the left inferior frontal region across all individuals, and additionally in the left middle frontal and precentral gyri in non-violent individuals. Violent mentally-disordered individuals with PSD, relative to those with no or minimal PSD, suffer from an additional brain deficit, i.e., reduced thalamic volume; this may affect sensory information processing, and have implications for management, of these individuals. PSD may have a stronger relationship with volumetric loss of stress-linked regions, namely the frontal cortex, in non-violent individuals. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  19. "Where do auditory hallucinations come from?"--a brain morphometry study of schizophrenia patients with inner or outer space hallucinations.

    PubMed

    Plaze, Marion; Paillère-Martinot, Marie-Laure; Penttilä, Jani; Januel, Dominique; de Beaurepaire, Renaud; Bellivier, Franck; Andoh, Jamila; Galinowski, André; Gallarda, Thierry; Artiges, Eric; Olié, Jean-Pierre; Mangin, Jean-François; Martinot, Jean-Luc; Cachia, Arnaud

    2011-01-01

    Auditory verbal hallucinations are a cardinal symptom of schizophrenia. Bleuler and Kraepelin distinguished 2 main classes of hallucinations: hallucinations heard outside the head (outer space, or external, hallucinations) and hallucinations heard inside the head (inner space, or internal, hallucinations). This distinction has been confirmed by recent phenomenological studies that identified 3 independent dimensions in auditory hallucinations: language complexity, self-other misattribution, and spatial location. Brain imaging studies in schizophrenia patients with auditory hallucinations have already investigated language complexity and self-other misattribution, but the neural substrate of hallucination spatial location remains unknown. Magnetic resonance images of 45 right-handed patients with schizophrenia and persistent auditory hallucinations and 20 healthy right-handed subjects were acquired. Two homogeneous subgroups of patients were defined based on the hallucination spatial location: patients with only outer space hallucinations (N=12) and patients with only inner space hallucinations (N=15). Between-group differences were then assessed using 2 complementary brain morphometry approaches: voxel-based morphometry and sulcus-based morphometry. Convergent anatomical differences were detected between the patient subgroups in the right temporoparietal junction (rTPJ). In comparison to healthy subjects, opposite deviations in white matter volumes and sulcus displacements were found in patients with inner space hallucination and patients with outer space hallucination. The current results indicate that spatial location of auditory hallucinations is associated with the rTPJ anatomy, a key region of the "where" auditory pathway. The detected tilt in the sulcal junction suggests deviations during early brain maturation, when the superior temporal sulcus and its anterior terminal branch appear and merge.

  20. Morphometry-based impedance boundary conditions for patient-specific modeling of blood flow in pulmonary arteries.

    PubMed

    Spilker, Ryan L; Feinstein, Jeffrey A; Parker, David W; Reddy, V Mohan; Taylor, Charles A

    2007-04-01

    Patient-specific computational models could aid in planning interventions to relieve pulmonary arterial stenoses common in many forms of congenital heart disease. We describe a new approach to simulate blood flow in subject-specific models of the pulmonary arteries that consists of a numerical model of the proximal pulmonary arteries created from three-dimensional medical imaging data with terminal impedance boundary conditions derived from linear wave propagation theory applied to morphometric models of distal vessels. A tuning method, employing numerical solution methods for nonlinear systems of equations, was developed to modify the distal vasculature to match measured pressure and flow distribution data. One-dimensional blood flow equations were solved with a finite element method in image-based pulmonary arterial models using prescribed inlet flow and morphometry-based impedance at the outlets. Application of these methods in a pilot study of the effect of removal of unilateral pulmonary arterial stenosis induced in a pig showed good agreement with experimental measurements for flow redistribution and main pulmonary arterial pressure. Next, these methods were applied to a patient with repaired tetralogy of Fallot and predicted insignificant hemodynamic improvement with relief of the stenosis. This method of coupling image-based and morphometry-based models could enable increased fidelity in pulmonary hemodynamic simulation.

  1. Coupled 0D-1D CFD Modeling of Right Heart and Pulmonary Artery Morphometry Tree

    NASA Astrophysics Data System (ADS)

    Dong, Melody; Yang, Weiguang; Feinstein, Jeffrey A.; Marsden, Alison

    2017-11-01

    Pulmonary arterial hypertension (PAH) is characterized by elevated pulmonary artery (PA) pressure and remodeling of the distal PAs resulting in right ventricular (RV) dysfunction and failure. It is hypothesized that patients with untreated ventricular septal defects (VSD) may develop PAH due to elevated flows and pressures in the PAs. Wall shear stress (WSS), due to elevated flows, and circumferential stress, due to elevated pressures, are known to play a role in vascular mechanobiology. Thus, simulating VSD hemodynamics and wall mechanics may facilitate our understanding of mechanical stimuli leading to PAH initiation and progression. Although 3D CFD models can capture detailed hemodynamics in the proximal PAs, they cannot easily model hemodynamics and wave propagation in the distal PAs, where remodeling occurs. To improve current PA models, we will present a new method that couples distal PA hemodynamics with RV function. Our model couples a 0D lumped parameter model of the RV to a 1D model of the PA tree, based on human PA morphometry data, to characterize RV performance and WSS changes in the PA tree. We will compare a VSD 0D-1D model and a 0D-3D model coupled to a mathematical morphometry tree model to quantify WSS in the entire PA vascular tree.

  2. Combining the boundary shift integral and tensor-based morphometry for brain atrophy estimation

    NASA Astrophysics Data System (ADS)

    Michalkiewicz, Mateusz; Pai, Akshay; Leung, Kelvin K.; Sommer, Stefan; Darkner, Sune; Sørensen, Lauge; Sporring, Jon; Nielsen, Mads

    2016-03-01

    Brain atrophy from structural magnetic resonance images (MRIs) is widely used as an imaging surrogate marker for Alzheimers disease. Their utility has been limited due to the large degree of variance and subsequently high sample size estimates. The only consistent and reasonably powerful atrophy estimation methods has been the boundary shift integral (BSI). In this paper, we first propose a tensor-based morphometry (TBM) method to measure voxel-wise atrophy that we combine with BSI. The combined model decreases the sample size estimates significantly when compared to BSI and TBM alone.

  3. Aging-related changes in respiratory system mechanics and morphometry in mice.

    PubMed

    Elliott, Jonathan E; Mantilla, Carlos B; Pabelick, Christina M; Roden, Anja C; Sieck, Gary C

    2016-07-01

    Previous work investigating respiratory system mechanics in mice has reported an aging-related increase in compliance and mean linear intercept (Lm). However, these changes were assessed using only a young (2-mo-old) and old (20- and 26-mo-old) group yet were interpreted to reflect a linear evolution across the life span. Therefore, to investigate respiratory system mechanics and lung morphometry across a more complete spectrum of ages, we utilized 2 (100% survival, n = 6)-, 6 (100% survival, n = 12)-, 18 (90% survival, n = 12)-, 24 (75% survival, n = 12)-, and 30 (25% survival, n = 12)-mo-old C57BL/6 mice. We found a nonlinear aging-related decrease in respiratory system resistance and increase in dynamic compliance and hysteresis between 2- and 24-mo-old mice. However, in 30-mo-old mice, respiratory system resistance increased, and dynamic compliance and hysteresis decreased relative to 24-mo-old mice. Respiratory system impedance spectra were measured between 1-20.5 Hz at positive end-expiratory pressures (PEEP) of 1, 3, 5, and 7 cmH2O. Respiratory system resistance and reactance at each level of PEEP were increased and decreased, respectively, only in 2-mo-old animals. No differences in the respiratory system impedance spectra were observed in 6-, 18-, 24-, and 30-mo-old mice. Additionally, lungs were fixed following tracheal instillation of 4% paraformaldehyde at 25 cmH2O and processed for Lm and airway collagen deposition. There was an aging-related increase in Lm consistent with emphysematous-like changes and no evidence of increased airway collagen deposition. Accordingly, we demonstrate nonlinear aging-related changes in lung mechanics and morphometry in C57BL/6 mice. Copyright © 2016 the American Physiological Society.

  4. Tracking the development of agrammatic aphasia: A tensor-based morphometry study.

    PubMed

    Whitwell, Jennifer L; Duffy, Joseph R; Machulda, Mary M; Clark, Heather M; Strand, Edythe A; Senjem, Matthew L; Gunter, Jeffrey L; Spychalla, Anthony J; Petersen, Ronald C; Jack, Clifford R; Josephs, Keith A

    2017-05-01

    Agrammatic aphasia can be observed in neurodegenerative disorders and has been traditionally linked with damage to Broca's area, although there have been disagreements concerning whether damage to Broca's area is necessary or sufficient for the development of agrammatism. We aimed to investigate the neuroanatomical correlates of the emergence of agrammatic aphasia utilizing a unique cohort of patients with primary progressive apraxia of speech (PPAOS) that did not have agrammatism at baseline but developed agrammatic aphasia over time. Twenty PPAOS patients were recruited and underwent detailed speech/language assessments and 3T MRI at two visits, approximately two years apart. None of the patients showed evidence of agrammatism in writing or speech at baseline. Eight patients developed aphasia at follow-up (progressors) and 12 did not (non-progressors). Tensor-based morphometry utilizing symmetric normalization (SyN) was used to assess patterns of grey matter atrophy and voxel-based morphometry was used to assess patterns of grey matter loss at baseline. The progressors were younger at onset and more likely to show distorted sound substitutions or additions compared to non-progressors. Both groups showed change over time in premotor and motor cortices, posterior frontal lobe, basal ganglia, thalamus and midbrain, but the progressors showed greater rates of atrophy in left pars triangularis, thalamus and putamen compared to non-progressors. The progressors also showed greater grey matter loss in pars triangularis and putamen at baseline. This cohort provided a unique opportunity to assess the anatomical changes that accompany the development of agrammatic aphasia. The results suggest that damage to a network of regions including Broca's area, thalamus and basal ganglia are responsible for the development of agrammatic aphasia in PPAOS. Clinical and neuroimaging abnormalities were also present before the onset of agrammatism that could help improve prognosis in

  5. Surface-based brain morphometry and diffusion tensor imaging in schizoaffective disorder.

    PubMed

    Landin-Romero, Ramón; Canales-Rodríguez, Erick J; Kumfor, Fiona; Moreno-Alcázar, Ana; Madre, Mercè; Maristany, Teresa; Pomarol-Clotet, Edith; Amann, Benedikt L

    2017-01-01

    The profile of grey matter abnormalities and related white-matter pathology in schizoaffective disorder has only been studied to a limited extent. The aim of this study was to identify grey- and white-matter abnormalities in patients with schizoaffective disorder using complementary structural imaging techniques. Forty-five patients meeting Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition criteria and Research Diagnostic Criteria for schizoaffective disorder and 45 matched healthy controls underwent structural-T1 and diffusion magnetic resonance imaging to enable surface-based brain morphometry and diffusion tensor imaging analyses. Analyses were conducted to determine group differences in cortical volume, cortical thickness and surface area, as well as in fractional anisotropy and mean diffusivity. At a threshold of p = 0.05 corrected, all measures revealed significant differences between patients and controls at the group level. Spatial overlap of abnormalities was observed across the various structural neuroimaging measures. In grey matter, patients with schizoaffective disorder showed abnormalities in the frontal and temporal lobes, striatum, fusiform, cuneus, precuneus, lingual and limbic regions. White-matter abnormalities were identified in tracts connecting these areas, including the corpus callosum, superior and inferior longitudinal fasciculi, anterior thalamic radiation, uncinate fasciculus and cingulum bundle. The spatial overlap of abnormalities across the different imaging techniques suggests widespread and consistent brain pathology in schizoaffective disorder. The abnormalities were mainly detected in areas that have commonly been reported to be abnormal in schizophrenia, and to some extent in bipolar disorder, which may explain the clinical and aetiological overlap in these disorders.

  6. Dyslexia and Voxel-Based Morphometry: Correlations between Five Behavioural Measures of Dyslexia and Gray and White Matter Volumes

    ERIC Educational Resources Information Center

    Tamboer, Peter; Scholte, H. Steven; Vorst, Harrie C. M.

    2015-01-01

    In voxel-based morphometry studies of dyslexia, the relation between causal theories of dyslexia and gray matter (GM) and white matter (WM) volume alterations is still under debate. Some alterations are consistently reported, but others failed to reach significance. We investigated GM alterations in a large sample of Dutch students (37 dyslexics…

  7. White matter volume loss in amyotrophic lateral sclerosis: A meta-analysis of voxel-based morphometry studies.

    PubMed

    Chen, Guangxiang; Zhou, Baiwan; Zhu, Hongyan; Kuang, Weihong; Bi, Feng; Ai, Hua; Gu, Zhongwei; Huang, Xiaoqi; Lui, Su; Gong, Qiyong

    2018-04-20

    Structural neuroimaging studies of white matter (WM) volume in amyotrophic lateral sclerosis (ALS) using voxel-based morphometry (VBM) have yielded inconsistent findings. This study aimed to perform a quantitative voxel-based meta-analysis using effect-size signed differential mapping (ES-SDM) to establish a statistical consensus between published studies for WM volume alterations in ALS. The pooled meta-analysis revealed significant WM volume losses in the bilateral supplementary motor areas (SMAs), bilateral precentral gyri (PGs), left middle cerebellar peduncle and right cerebellum in patients with ALS, involving the corticospinal tract (CST), interhemispheric fibers, subcortical arcuate fibers, projection fibers to the striatum and cortico-ponto-cerebellar tract. The meta-regression showed that the ALS functional rating scale-revised (ALSFRS-R) was positively correlated with decreased WM volume in the bilateral SMAs, whereas illness duration was negatively correlated with WM volume reduction in the right SMA. This study provides a thorough profile of WM volume loss in ALS and robust evidence that ALS is a multisystem neurodegenerative disease that involves a variety of subcortical WM tracts extending beyond motor cortex involvement. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Regional flux analysis for discovering and quantifying anatomical changes: An application to the brain morphometry in Alzheimer's disease.

    PubMed

    Lorenzi, M; Ayache, N; Pennec, X

    2015-07-15

    In this study we introduce the regional flux analysis, a novel approach to deformation based morphometry based on the Helmholtz decomposition of deformations parameterized by stationary velocity fields. We use the scalar pressure map associated to the irrotational component of the deformation to discover the critical regions of volume change. These regions are used to consistently quantify the associated measure of volume change by the probabilistic integration of the flux of the longitudinal deformations across the boundaries. The presented framework unifies voxel-based and regional approaches, and robustly describes the volume changes at both group-wise and subject-specific level as a spatial process governed by consistently defined regions. Our experiments on the large cohorts of the ADNI dataset show that the regional flux analysis is a powerful and flexible instrument for the study of Alzheimer's disease in a wide range of scenarios: cross-sectional deformation based morphometry, longitudinal discovery and quantification of group-wise volume changes, and statistically powered and robust quantification of hippocampal and ventricular atrophy. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Recreational marijuana use impacts white matter integrity and subcortical (but not cortical) morphometry.

    PubMed

    Orr, Joseph M; Paschall, Courtnie J; Banich, Marie T

    2016-01-01

    A recent shift in legal and social attitudes toward marijuana use has also spawned a surge of interest in understanding the effects of marijuana use on the brain. There is considerable evidence that an adolescent onset of marijuana use negatively impacts white matter coherence. On the other hand, a recent well-controlled study demonstrated no effects of marijuana use on the morphometry of subcortical or cortical structures when users and non-users were matched for alcohol use. Regardless, most studies have involved small, carefully selected samples, so the ability to generalize to larger populations is limited. In an attempt to address this issue, we examined the effects of marijuana use on white matter integrity and cortical and subcortical morphometry using data from the Human Connectome Project (HCP) consortium. The HCP data consists of ultra-high resolution neuroimaging data from a large community sample, including 466 adults reporting recreational marijuana use. Rather than just contrasting two groups of individuals who vary significantly in marijuana usage as typifies prior studies, we leveraged the large sample size provided by the HCP data to examine parametric effects of recreational marijuana use. Our results indicate that the earlier the age of onset of marijuana use, the lower was white matter coherence. Age of onset also also affected the shape of the accumbens, while the number of lifetime uses impacted the shape of the amygdala and hippocampus. Marijuana use had no effect on cortical volumes. These findings suggest subtle but significant effects of recreational marijuana use on brain structure.

  10. “Soft that molds the hard:” Geometric morphometry of lateral atlantoaxial joints focusing on the role of cartilage in changing the contour of bony articular surfaces

    PubMed Central

    Prasad, Prashant Kumar; Salunke, Pravin; Sahni, Daisy; Kalra, Parveen

    2017-01-01

    Purpose: The existing literature on lateral atlantoaxial joints is predominantly on bony facets and is unable to explain various C1-2 motions observed. Geometric morphometry of facets would help us in understanding the role of cartilages in C1-2 biomechanics/kinematics. Objective: Anthropometric measurements (bone and cartilage) of the atlantoaxial joint and to assess the role of cartilages in joint biomechanics. Materials and Methods: The authors studied 10 cadaveric atlantoaxial lateral joints with the articular cartilage in situ and after removing it, using three-dimensional laser scanner. The data were compared using geometric morphometry with emphasis on surface contours of articulating surfaces. Results: The bony inferior articular facet of atlas is concave in both sagittal and coronal plane. The bony superior articular facet of axis is convex in sagittal plane and is concave (laterally) and convex medially in the coronal plane. The bony articulating surfaces were nonconcordant. The articular cartilages of both C1 and C2 are biconvex in both planes and are thicker than the concavities of bony articulating surfaces. Conclusion: The biconvex structure of cartilage converts the surface morphology of C1-C2 bony facets from concave on concavo-convex to convex on convex. This reduces the contact point making the six degrees of freedom of motion possible and also makes the joint gyroscopic. PMID:29403249

  11. Observations of debris flows at Chalk Cliffs, Colorado, USA: Part 2, changes in surface morphometry from terrestrial laser scanning in the summer of 2009

    USGS Publications Warehouse

    Staley, Dennis M.; Wasklewicz, Thad A.; Coe, Jeffrey A.; Kean, Jason W.; McCoy, Scott W.; Tucker, Greg E.

    2011-01-01

    High resolution topographic data that quantify changes in channel form caused by sequential debris flows in natural channels are rare at the reach scale. Terrestrial laser scanning (TLS) techniques are utilized to capture morphological changes brought about by a high-frequency of debris-flow events at Chalk Cliffs, Colorado. The purpose of this paper is to compare and contrast the topographic response of a natural channel to the documented debris-flow events. TLS survey data allowed for the generation of high-resolution (2-cm) digital terrain models (DTM) of the channel. A robust network of twelve permanent control points permitted repeat scanning sessions that provided multiple DTM to evaluate fine-scale topographic change associated with three debris-flow events. Difference surfaces from the DTM permit the interpretations of spatial variations in channel morphometry and net volume of material deposited and eroded within and between a series of channel reaches. Each channel reach experienced erosion, deposition, and both net volumetric gains and losses were measured. Analysis of potential relationships between erosion and deposition magnitudes yielded no strong correlations with measures of channel-reach morphometry, suggesting that channel reach-specific predictions of potential erosion or deposition locations or rates cannot be adequately derived from statistical analyses of pre-event channel-reach morphometry.

  12. Analysis of histological and immunohistochemical patterns of benign and malignant adrenocortical tumors by computerized morphometry.

    PubMed

    Dalino Ciaramella, Paolo; Vertemati, Maurizio; Petrella, Duccio; Bonacina, Edgardo; Grossrubatscher, Erika; Duregon, Eleonora; Volante, Marco; Papotti, Mauro; Loli, Paola

    2017-07-01

    Diagnosis of benign and purely localized malignant adrenocortical lesions is still a complex issue. Moreover, histology-based diagnosis may suffer of a moment of subjectivity due to inter- and intra-individual variations. The aim of the present study was to assess, by computerized morphometry, the morphological features in benign and malignant adrenocortical neoplasms. Eleven adrenocortical adenomas (ACA) were compared with 18 adrenocortical cancers (ACC). All specimens were stained with H&E, cellular proliferation marker Ki-67 and reticulin. We generated a morphometric model based on the analysis of volume fractions occupied by Ki-67 positive and negative cells (nuclei and cytoplasm), vascular and inflammatory compartment; we also analyzed the surface fraction occupied by reticulin. We compared the quantitative data of Ki-67 obtained by morphometry with the quantification resulting from pathologist's visual reading. The volume fraction of Ki-67 positive cells in ACCs was higher than in ACAs. The volume fraction of nuclei in unit volume and the nuclear/cytoplasmic ratio in both Ki-67 negative cells and Ki-67 positive cells were prominent in ACCs. The surface fraction of reticulin was considerably lower in ACCs. Our computerized morphometric model is simple, reproducible and can be used by the pathologist in the histological workup of adrenocortical tumors to achieve precise and reader-independent quantification of several morphological characteristics of adrenocortical tumors. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. Stereological Cell Morphometry In Right Atrium Myocardium Of Primates

    NASA Astrophysics Data System (ADS)

    Mandarim-De-Lacerda, Carlos A...; Hureau, Jacques

    1986-07-01

    The mechanism by which the cardiac impulse is propagated in normal hearts from its origin in the sinus node to the atrio-ventricular node has not been agreed on fully. We studied the "internodal posterior tract" through the crista terminalis by light microscopy and stereological morphometry. The hearts of 12 Papio cynocephalus were perfused , after sacrifice,with phosphate-buffered formol saline. The regions of the crista terminalis (CT), interatrial septum (IAS), atrioventricular bundle (AVB) and interventricular septum (IVS) were cut off and embedded in paraplast and sectioned (10 4m). The multipurpose test system M 42 was superimposed over the photomicrographs (1,890 points test, ESR = 2%) to the stereological computing. The quantitative results show that the cells from CT were more closely relationed with IAS cells than others cells (IVS and AVB cells). This results are not a morphological evidence to establish the specificity of the "internodal posterior tract". The cellular arrangement and anatomical variation in CT myocardium is very important.

  14. The overlapping brain region accounting for the relationship between procrastination and impulsivity: A voxel-based morphometry study.

    PubMed

    Liu, Peiwei; Feng, Tingyong

    2017-09-30

    Procrastination is a prevalent problematic behavior that brings serious consequences, such as lower levels of health, wealth, and well-being. Previous research has verified that impulsivity is one of the traits most strongly correlated with procrastination. However, little is known about why there is a tight behavioral relationship between them. To address this question, we used voxel-based morphometry (VBM) to explore the common neural substrates between procrastination and impulsivity. In line with previous findings, the behavioral results showed a strong behavioral correlation between procrastination and impulsivity. Neuroimaging results showed impulsivity and procrastination shared the common neurobiological underpinnings in the dorsolateral prefrontal cortex (DLPFC) based on the data from 85 participants (sample 1). Furthermore, the mediation analysis revealed that impulsivity mediated the impact of gray matter (GM) volumes of this overlapping region in the DLPFC on procrastination on another independent 84 participants' data (sample 2). In conclusion, the overlapping brain region in the DLPFC would be responsible for the close relationship between procrastination and impulsivity. As a whole, the present study extends our knowledge on procrastination, and provides a novel perspective to explain the tight impulsivity - procrastination relationship. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Exploring the effects of acid mine drainage on diatom teratology using geometric morphometry.

    PubMed

    Olenici, Adriana; Blanco, Saúl; Borrego-Ramos, María; Momeu, Laura; Baciu, Călin

    2017-10-01

    Metal pollution of aquatic habitats is a major and persistent environmental problem. Acid mine drainage (AMD) affects lotic systems in numerous and interactive ways. In the present work, a mining area (Roșia Montană) was chosen as study site, and we focused on two aims: (i) to find the set of environmental predictors leading to the appearance of the abnormal diatom individuals in the study area and (ii) to assess the relationship between the degree of valve outline deformation and AMD-derived pollution. In this context, morphological differences between populations of Achnanthidium minutissimum and A. macrocephalum, including normal and abnormal individuals, were evidenced by means of valve shape analysis. Geometric morphometry managed to capture and discriminate normal and abnormal individuals. Multivariate analyses (NMDS, PLS) separated the four populations of the two species mentioned and revealed the main physico-chemical parameters that influenced valve deformation in this context, namely conductivity, Zn, and Cu. ANOSIM test evidenced the presence of statistically significant differences between normal and abnormal individuals within both chosen Achnanthidium taxa. In order to determine the relative contribution of each of the measured physico-chemical parameters in the observed valve outline deformations, a PLS was conducted, confirming the results of the NMDS. The presence of deformed individuals in the study area can be attributed to the fact that the diatom communities were strongly affected by AMD released from old mining works and waste rock deposits.

  16. Effects of HIV and childhood trauma on brain morphometry and neurocognitive function.

    PubMed

    Spies, Georgina; Ahmed-Leitao, Fatima; Fennema-Notestine, Christine; Cherner, Mariana; Seedat, Soraya

    2016-04-01

    A wide spectrum of neurocognitive deficits characterises HIV infection in adults. HIV infection is additionally associated with morphological brain abnormalities affecting neural substrates that subserve neurocognitive function. Early life stress (ELS) also has a direct influence on brain morphology. However, the combined impact of ELS and HIV on brain structure and neurocognitive function has not been examined in an all-female sample with advanced HIV disease. The present study examined the effects of HIV and childhood trauma on brain morphometry and neurocognitive function. Structural data were acquired using a 3T Magnetom MRI scanner, and a battery of neurocognitive tests was administered to 124 women: HIV-positive with ELS (n = 32), HIV-positive without ELS (n = 30), HIV-negative with ELS (n = 31) and HIV-negative without ELS (n = 31). Results revealed significant group volumetric differences for right anterior cingulate cortex (ACC), bilateral hippocampi, corpus callosum, left and right caudate and left and right putamen. Mean regional volumes were lowest in HIV-positive women with ELS compared to all other groups. Although causality cannot be inferred, findings also suggest that alterations in the left frontal lobe, right ACC, left hippocampus, corpus callosum, left and right amygdala and left caudate may be associated with poorer neurocognitive performance in the domains of processing speed, attention/working memory, abstraction/executive functions, motor skills, learning and language/fluency with these effects more pronounced in women living with both HIV and childhood trauma. This study highlights the potential contributory role of childhood trauma to brain alterations and neurocognitive decline in HIV-infected individuals.

  17. WHAT MAKES A GOOD PEDIATRIC TRANSPLANT LUNG: INSIGHTS FROM IN VIVO LUNG MORPHOMETRY WITH HYPERPOLARIZED 3HE MRI (WHAT MAKES A GOOD PEDIATRIC TRANSPLANT LUNG)

    PubMed Central

    Fishman, Emily F.; Quirk, James D.; Sweet, Stuart C.; Woods, Jason C.; Gierada, David S.; Conradi, Mark S.; Siegel, Marilyn J.; Yablonskiy, Dmitriy A.

    2016-01-01

    Background Obtaining information on transplanted lung microstructure is an important part of the current care for monitoring transplant recipients. However, until now this information was only available from invasive lung biopsy. The objective of this study was to evaluate the use of an innovative non-invasive technique in vivo lung morphometry with hyperpolarized 3He MRI - to characterize lung microstructure in the pediatric lung transplant population. This technique yields quantitative measurements of acinar airways’ (alveolar ducts and sacs) parameters, such as acinar airways radii and alveolar depth. Methods Six pediatric lung transplant recipients with cystic fibrosis underwent in vivo lung morphometry MRI, pulmonary function testing, and quantitative CT. Results We found a strong correlation between lung lifespan and alveolar depth - patients with more shallow alveoli were likely to have a negative outcome sooner than those with larger alveolar depth. Combining morphometric results with CT we also determined mean alveolar wall thickness and found substantial increases in this parameter in some patients that negatively correlated with DLCO. Conclusion In vivo lung morphometry uniquely provides previously unavailable information on lung microstructure that may be predictive of a negative outcome and has a potential to aid in lung selection for transplantation. PMID:28120553

  18. Morphometry of terrestrial shield volcanoes

    NASA Astrophysics Data System (ADS)

    Grosse, Pablo; Kervyn, Matthieu

    2018-03-01

    Shield volcanoes are described as low-angle edifices built primarily by the accumulation of successive lava flows. This generic view of shield volcano morphology is based on a limited number of monogenetic shields from Iceland and Mexico, and a small set of large oceanic islands (Hawaii, Galápagos). Here, the morphometry of 158 monogenetic and polygenetic shield volcanoes is analyzed quantitatively from 90-meter resolution SRTM DEMs using the MORVOLC algorithm. An additional set of 24 lava-dominated 'shield-like' volcanoes, considered so far as stratovolcanoes, are documented for comparison. Results show that there is a large variation in shield size (volumes from 0.1 to > 1000 km3), profile shape (height/basal width (H/WB) ratios mostly from 0.01 to 0.1), flank slope gradients (average slopes mostly from 1° to 15°), elongation and summit truncation. Although there is no clear-cut morphometric difference between shield volcanoes and stratovolcanoes, an approximate threshold can be drawn at 12° average slope and 0.10 H/WB ratio. Principal component analysis of the obtained database enables to identify four key morphometric descriptors: size, steepness, plan shape and truncation. Hierarchical cluster analysis of these descriptors results in 12 end-member shield types, with intermediate cases defining a continuum of morphologies. The shield types can be linked in terms of growth stages and shape evolution, related to (1) magma composition and rheology, effusion rate and lava/pyroclast ratio, which will condition edifice steepness; (2) spatial distribution of vents, in turn related to the magmatic feeding system and the tectonic framework, which will control edifice plan shape; and (3) caldera formation, which will condition edifice truncation.

  19. CT-scout based, semi-automated vertebral morphometry after digital image enhancement.

    PubMed

    Glinkowski, Wojciech M; Narloch, Jerzy

    2017-09-01

    Radiographic diagnosis of osteoporotic vertebral fracture is necessary to reduce its substantial associated morbidity. Computed tomography (CT) scout has recently been demonstrated as a reliable technique for vertebral fracture diagnosis. Software assistance may help to overcome some limitations of that diagnostics. We aimed to evaluate whether digital image enhancement improved the capacity of one of the existing software to detect fractures semi-automatically. CT scanograms of patients suffering from osteoporosis, with or without vertebral fractures were analyzed. The original set of CT scanograms were triplicated and digitally modified to improve edge detection using three different techniques: SHARPENING, UNSHARP MASKING, and CONVOLUTION. The manual morphometric analysis identified 1485 vertebrae, 200 of which were classified as fractured. Unadjusted morphometry (AUTOMATED with no digital enhancement) found 63 fractures, 33 of which were true positive (i.e., it correctly identified 52% of the fractures); SHARPENING detected 57 fractures (30 true positives, 53%); UNSHARP MASKING yielded 30 (13 true positives, 43%); and CONVOLUTION found 24 fractures (9 true positives, 38%). The intra-reader reliability for height ratios did not significantly improve with image enhancement (kappa ranged 0.22-0.41 for adjusted measurements and 0.16-0.38 for unadjusted). Similarly, the inter-reader agreement for prevalent fractures did not significantly improve with image enhancement (kappa 0.29-0.56 and -0.01 to 0.23 for adjusted and unadjusted measurements, respectively). Our results suggest that digital image enhancement does not improve software-assisted vertebral fracture detection by CT scout. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Early Gray-Matter and White-Matter Concentration in Infancy Predict Later Language Skills: A Whole Brain Voxel-Based Morphometry Study

    ERIC Educational Resources Information Center

    Can, Dilara Deniz; Richards, Todd; Kuhl, Patricia K.

    2013-01-01

    Magnetic Resonance Imaging (MRI) brain scans were obtained from 19 infants at 7 months. Expressive and receptive language performance was assessed at 12 months. Voxel-based morphometry (VBM) identified brain regions where gray-matter and white-matter concentrations at 7 months correlated significantly with children's language scores at 12 months.…

  1. Morphometry, geometry, function, and the future.

    PubMed

    Mcnulty, Kieran P; Vinyard, Christopher J

    2015-01-01

    The proliferation of geometric morphometrics (GM) in biological anthropology and more broadly throughout the biological sciences has resulted in a multitude of studies that adopt landmark-based approaches for addressing a variety of questions in evolutionary morphology. In some cases, particularly in the realm of systematics, the fit between research question and analytical design is quite good. Functional-adaptive studies, however, do not readily conform to the methods available in the GM toolkit. The symposium organized by Terhune and Cooke entitled "Assessing function via shape: What is the place of GM in functional morphology?" held at the 2013 meetings of the American Association of Physical Anthropologists was designed specifically to explore this relationship between landmark-based methods and analyses of functional morphology, and the articles in this special issue, which stem in large part from this symposium, provide numerous examples of how the two approaches can complement and contrast each other. Here, we underscore some of the major difficulties in interpreting GM results within a functional regime. In combination with other contributions in this issue, we identify emerging areas of research that will help bridge the gap between multivariate morphometry and functional-adaptive analysis. Ultimately, neither geometric nor functional morphometric approaches is sufficient to elaborate the adaptive pathways that explain morphological evolution through natural selection. These perspectives must be further integrated with research from physiology, developmental biology, genomics, and ecology. © 2014 Wiley Periodicals, Inc.

  2. Computational Morphometry for Detecting Changes in Brain Structure Due to Development, Aging, Learning, Disease and Evolution

    PubMed Central

    Mietchen, Daniel; Gaser, Christian

    2009-01-01

    The brain, like any living tissue, is constantly changing in response to genetic and environmental cues and their interaction, leading to changes in brain function and structure, many of which are now in reach of neuroimaging techniques. Computational morphometry on the basis of Magnetic Resonance (MR) images has become the method of choice for studying macroscopic changes of brain structure across time scales. Thanks to computational advances and sophisticated study designs, both the minimal extent of change necessary for detection and, consequently, the minimal periods over which such changes can be detected have been reduced considerably during the last few years. On the other hand, the growing availability of MR images of more and more diverse brain populations also allows more detailed inferences about brain changes that occur over larger time scales, way beyond the duration of an average research project. On this basis, a whole range of issues concerning the structures and functions of the brain are now becoming addressable, thereby providing ample challenges and opportunities for further contributions from neuroinformatics to our understanding of the brain and how it changes over a lifetime and in the course of evolution. PMID:19707517

  3. Gray matter changes in right superior temporal gyrus in criminal psychopaths. Evidence from voxel-based morphometry.

    PubMed

    Müller, Jürgen L; Gänssbauer, Susanne; Sommer, Monika; Döhnel, Katrin; Weber, Tatjana; Schmidt-Wilcke, Tobias; Hajak, Göran

    2008-08-30

    "Psychopathy" according to the PCL-R describes a specific subgroup of antisocial personality disorder with a high risk for criminal relapses. Lesion and imaging studies point towards frontal or temporal brain regions connected with disturbed social behavior, antisocial personality disorder (APD) and psychopathy. Morphologically, some studies described a reduced prefrontal brain volume, whereas others reported on temporal lobe atrophy. To further investigate whether participants with psychopathy according to the Psychopathy Checklist-Revised Version (PCL-R) show abnormalities in brain structure, we used voxel-based morphometry (VBM) to investigate region-specific changes in gray matter in 17 forensic male inpatients with high PCL-R scores (PCL-R>28) and 17 male control subjects with low PCL-R scores (PCL<10). We found significant gray matter reductions in frontal and temporal brain regions in psychopaths compared with controls. In particular, we found a highly significant volume loss in the right superior temporal gyrus. This is the first study to show that psychopathy is associated with a decrease in gray matter in both frontal and temporal brain regions, in particular in the right superior temporal gyrus, supporting the hypothesis that a disturbed frontotemporal network is critically involved in the pathogenesis of psychopathy.

  4. Hippocampal substructural vulnerability to sleep disturbance and cognitive impairment in patients with chronic primary insomnia: magnetic resonance imaging morphometry.

    PubMed

    Joo, Eun Yeon; Kim, Hosung; Suh, Sooyeon; Hong, Seung Bong

    2014-07-01

    Despite compelling evidence from animal studies indicating hippocampal subfield-specific vulnerability to poor sleep quality and related cognitive impairment, there have been no human magnetic resonance imaging (MRI) studies investigating the relationship between hippocampal subfield volume and sleep disturbance. Our aim was to investigate the pattern of volume changes across hippocampal subfields in patients with primary insomnia relative to controls. Pointwise morphometry allowed for volume measurements of hippocampal regions on T1-weighted MRI. University hospital. Twenty-seven unmedicated patients (age: 51.2 ± 9.6 y) and 30 good sleepers as controls (50.4 ± 7.1 y). N/A. We compared hippocampal subfield volumes between patients and controls and correlated volume with clinical and neuropsychological features in patients. Patients exhibited bilateral atrophy across all hippocampal subfields (P < 0.05 corrected). Cornu ammonis (CA) 1 subfield atrophy was associated with worse sleep quality (higher Pittsburgh Sleep Quality Index and higher arousal index of polysomnography) (r < -0.45, P < 0.005). The volume of the combined region, including the dentate gyrus (DG) and CA3-4, negatively correlated with verbal memory, verbal information processing, and verbal fluency in patients (|r| > 0.45, P < 0.05). Hemispheric volume asymmetry of this region (left smaller than right) was associated with impaired verbal domain functions (r = 0.50, P < 0.005). Hippocampal subfield atrophy in chronic insomnia suggests reduced neurogenesis in the dentate gyrus (DG) and neuronal loss in the cornu ammonis (CA) subfields in conditions of sleep fragmentation and related chronic stress condition. Atrophy in the CA3-4-DG region was associated with impaired cognitive functions in patients. These observations may provide insight into pathophysiological mechanisms that make patients with chronic sleep disturbance vulnerable to cognitive impairment. Joo EY, Kim H, Suh S, Hong SB. Hippocampal

  5. Hippocampal Substructural Vulnerability to Sleep Disturbance and Cognitive Impairment in Patients with Chronic Primary Insomnia: Magnetic Resonance Imaging Morphometry

    PubMed Central

    Joo, Eun Yeon; Kim, Hosung; Suh, Sooyeon; Hong, Seung Bong

    2014-01-01

    Study Objectives: Despite compelling evidence from animal studies indicating hippocampal subfield-specific vulnerability to poor sleep quality and related cognitive impairment, there have been no human magnetic resonance imaging (MRI) studies investigating the relationship between hippocampal subfield volume and sleep disturbance. Our aim was to investigate the pattern of volume changes across hippocampal subfields in patients with primary insomnia relative to controls. Design: Pointwise morphometry allowed for volume measurements of hippocampal regions on T1-weighted MRI. Setting: University hospital. Patients: Twenty-seven unmedicated patients (age: 51.2 ± 9.6 y) and 30 good sleepers as controls (50.4 ± 7.1 y). Interventions: N/A. Measurements: We compared hippocampal subfield volumes between patients and controls and correlated volume with clinical and neuropsychological features in patients. Results: Patients exhibited bilateral atrophy across all hippocampal subfields (P < 0.05 corrected). Cornu ammonis (CA) 1 subfield atrophy was associated with worse sleep quality (higher Pittsburgh Sleep Quality Index and higher arousal index of polysomnography) (r < -0.45, P < 0.005). The volume of the combined region, including the dentate gyrus (DG) and CA3-4, negatively correlated with verbal memory, verbal information processing, and verbal fluency in patients (|r| > 0.45, P < 0.05). Hemispheric volume asymmetry of this region (left smaller than right) was associated with impaired verbal domain functions (r = 0.50, P < 0.005). Conclusion: Hippocampal subfield atrophy in chronic insomnia suggests reduced neurogenesis in the dentate gyrus (DG) and neuronal loss in the cornu ammonis (CA) subfields in conditions of sleep fragmentation and related chronic stress condition. Atrophy in the CA3-4-DG region was associated with impaired cognitive functions in patients. These observations may provide insight into pathophysiological mechanisms that make patients with chronic

  6. Effects of steroid hormones on nuclear membrane and membrane-bound heterochromatin from breast cancer cells evaluated by fractal morphometry.

    PubMed

    Losa, G A; Graber, R; Baumann, G; Nonnenmacher, T F

    1999-10-01

    To evaluate the effect of steroid hormones on the ultrastructure of nuclear heterochromatin and perinuclear membranes in human MCF-7 breast cancer cells. MCF-7 cells were cultured briefly (five minutes) in the presence of 10(-9) M estrogen 17 beta-estradiol, a stimulator of cell proliferation and/or 10(-9) M glucocorticoid dexamethasone. Changes in the morphologic complexity of nuclear membrane-bound heterochromatin (NMBHC) and nuclear membranes (ENM) were assessed by means of the fractal capacity dimension, D, a noneuclidean geometric descriptor of complex, irregular bodies. 17 beta-estradiol (10(-9) M) enhanced the ultrastructural irregularity of NMBHC, as documented by the increased value of D, whereas dexamethasone (10(-9) M) reduced it when compared to NMBHC from untreated MCF-7 control cells. In contrast, neither steroid modified ENM ultrastructure. Changes in the nuclear heterochromatin complexity induced by estrogen 17 beta-estradiol occurred concomitantly with functional changes at the cell periphery, such as activation of the phospholipase C, a cell membrane-associated enzyme involved in signal transduction. Dexamethasone reduced the ultrastructural complexity of NMBHC without affecting functional processes. Fractal morphometry proved its usefulness in quantifying early ultrastructural changes in nuclear components induced in MCF-7 cells by steroid hormones, 17 beta-estradiol and dexamethasone.

  7. Regional gray and white matter volume associated with Stroop interference: evidence from voxel-based morphometry.

    PubMed

    Takeuchi, Hikaru; Taki, Yasuyuki; Sassa, Yuko; Hashizume, Hiroshi; Sekiguchi, Atsushi; Nagase, Tomomi; Nouchi, Rui; Fukushima, Ai; Kawashima, Ryuta

    2012-02-01

    During Stroop tasks, subjects experience cognitive interference when they resolve interferences such as identifying the ink color of a printed word while ignoring the word's identity. Stroop paradigms are commonly used as an index of attention deficits and a tool for investigating the functions of the frontal lobes and other associated structures. Despite these uses and the vast amount of attention given to Stroop paradigms, the regional gray matter volume/regional white matter volume (rGMV/rWMV) correlates of Stroop interference have not yet been identified at the whole brain level in normal adults. We examined this issue using voxel-based morphometry in right-handed healthy young adults. We found significant negative relationships between the Stroop interference rate and rGMV in the anterior cingulate cortex (ACC), right inferior frontal gyrus, and cerebellum. Furthermore, we found relationships between the Stroop interference rate and rWMV in bilateral anatomical clusters that extended around extensive WM regions in the dorsal part of the frontal lobe. These findings are the first to reveal rGMV/rWMV that underlie the performance of the Stroop task, a widely used psychological paradigm at the whole brain level. Of note, our findings support the notion that ACC contributes to Stroop performance and show the involvement of regions that have been implicated in response inhibition and attention. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Voxel-based morphometry in autopsy proven PSP and CBD.

    PubMed

    Josephs, Keith A; Whitwell, Jennifer L; Dickson, Dennis W; Boeve, Bradley F; Knopman, David S; Petersen, Ronald C; Parisi, Joseph E; Jack, Clifford R

    2008-02-01

    The aim of this study was to compare the patterns of grey and white matter atrophy on MRI in autopsy confirmed progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD), and to determine whether the patterns vary depending on the clinical syndrome. Voxel-based morphometry was used to compare patterns of atrophy in 13 PSP and 11 CBD subjects and 24 controls. PSP and CBD subjects were also subdivided into those with a dominant dementia or extrapyramidal syndrome. PSP subjects showed brainstem atrophy with involvement of the cortex and underlying white matter. Frontoparietal grey and subcortical grey matter atrophy occurred in CBD. When subdivided, PSP subjects with an extrapyramidal syndrome had more brainstem atrophy and less cortical atrophy than CBD subjects with an extrapyramidal syndrome. PSP subjects with a dementia syndrome had more subcortical white matter atrophy than CBD subjects with a dementia syndrome. These results show regional differences between PSP and CBD that are useful in predicting the underlying pathology, and help to shed light on the in vivo distribution of regional atrophy in PSP and CBD.

  9. Censoring distances based on labeled cortical distance maps in cortical morphometry.

    PubMed

    Ceyhan, Elvan; Nishino, Tomoyuki; Alexopolous, Dimitrios; Todd, Richard D; Botteron, Kelly N; Miller, Michael I; Ratnanather, J Tilak

    2013-01-01

    It has been demonstrated that shape differences in cortical structures may be manifested in neuropsychiatric disorders. Such morphometric differences can be measured by labeled cortical distance mapping (LCDM) which characterizes the morphometry of the laminar cortical mantle of cortical structures. LCDM data consist of signed/labeled distances of gray matter (GM) voxels with respect to GM/white matter (WM) surface. Volumes and other summary measures for each subject and the pooled distances can help determine the morphometric differences between diagnostic groups, however they do not reveal all the morphometric information contained in LCDM distances. To extract more information from LCDM data, censoring of the pooled distances is introduced for each diagnostic group where the range of LCDM distances is partitioned at a fixed increment size; and at each censoring step, the distances not exceeding the censoring distance are kept. Censored LCDM distances inherit the advantages of the pooled distances but also provide information about the location of morphometric differences which cannot be obtained from the pooled distances. However, at each step, the censored distances aggregate, which might confound the results. The influence of data aggregation is investigated with an extensive Monte Carlo simulation analysis and it is demonstrated that this influence is negligible. As an illustrative example, GM of ventral medial prefrontal cortices (VMPFCs) of subjects with major depressive disorder (MDD), subjects at high risk (HR) of MDD, and healthy control (Ctrl) subjects are used. A significant reduction in laminar thickness of the VMPFC in MDD and HR subjects is observed compared to Ctrl subjects. Moreover, the GM LCDM distances (i.e., locations with respect to the GM/WM surface) for which these differences start to occur are determined. The methodology is also applicable to LCDM-based morphometric measures of other cortical structures affected by disease.

  10. Cortical and Subcortical Brain Morphometry Differences Between Patients With Autism Spectrum Disorder and Healthy Individuals Across the Lifespan: Results From the ENIGMA ASD Working Group.

    PubMed

    van Rooij, Daan; Anagnostou, Evdokia; Arango, Celso; Auzias, Guillaume; Behrmann, Marlene; Busatto, Geraldo F; Calderoni, Sara; Daly, Eileen; Deruelle, Christine; Di Martino, Adriana; Dinstein, Ilan; Duran, Fabio Luis Souza; Durston, Sarah; Ecker, Christine; Fair, Damien; Fedor, Jennifer; Fitzgerald, Jackie; Freitag, Christine M; Gallagher, Louise; Gori, Ilaria; Haar, Shlomi; Hoekstra, Liesbeth; Jahanshad, Neda; Jalbrzikowski, Maria; Janssen, Joost; Lerch, Jason; Luna, Beatriz; Martinho, Mauricio Moller; McGrath, Jane; Muratori, Filippo; Murphy, Clodagh M; Murphy, Declan G M; O'Hearn, Kirsten; Oranje, Bob; Parellada, Mara; Retico, Alessandra; Rosa, Pedro; Rubia, Katya; Shook, Devon; Taylor, Margot; Thompson, Paul M; Tosetti, Michela; Wallace, Gregory L; Zhou, Fengfeng; Buitelaar, Jan K

    2018-04-01

    Neuroimaging studies show structural differences in both cortical and subcortical brain regions in children and adults with autism spectrum disorder (ASD) compared with healthy subjects. Findings are inconsistent, however, and it is unclear how differences develop across the lifespan. The authors investigated brain morphometry differences between individuals with ASD and healthy subjects, cross-sectionally across the lifespan, in a large multinational sample from the Enhancing Neuroimaging Genetics Through Meta-Analysis (ENIGMA) ASD working group. The sample comprised 1,571 patients with ASD and 1,651 healthy control subjects (age range, 2-64 years) from 49 participating sites. MRI scans were preprocessed at individual sites with a harmonized protocol based on a validated automated-segmentation software program. Mega-analyses were used to test for case-control differences in subcortical volumes, cortical thickness, and surface area. Development of brain morphometry over the lifespan was modeled using a fractional polynomial approach. The case-control mega-analysis demonstrated that ASD was associated with smaller subcortical volumes of the pallidum, putamen, amygdala, and nucleus accumbens (effect sizes [Cohen's d], 0.13 to -0.13), as well as increased cortical thickness in the frontal cortex and decreased thickness in the temporal cortex (effect sizes, -0.21 to 0.20). Analyses of age effects indicate that the development of cortical thickness is altered in ASD, with the largest differences occurring around adolescence. No age-by-ASD interactions were observed in the subcortical partitions. The ENIGMA ASD working group provides the largest study of brain morphometry differences in ASD to date, using a well-established, validated, publicly available analysis pipeline. ASD patients showed altered morphometry in the cognitive and affective parts of the striatum, frontal cortex, and temporal cortex. Complex developmental trajectories were observed for the different

  11. Morphometry of impact craters on Mercury from MESSENGER altimetry and imaging

    NASA Astrophysics Data System (ADS)

    Susorney, Hannah C. M.; Barnouin, Olivier S.; Ernst, Carolyn M.; Johnson, Catherine L.

    2016-06-01

    Data acquired by the Mercury Laser Altimeter and the Mercury Dual Imaging System on the MESSENGER spacecraft in orbit about Mercury provide a means to measure the geometry of many of the impact craters in Mercury's northern hemisphere in detail for the first time. The combination of topographic and imaging data permit a systematic evaluation of impact crater morphometry on Mercury, a new calculation of the diameter Dt at which craters transition with increasing diameter from simple to complex forms, and an exploration of the role of target properties and impact velocity on final crater size and shape. Measurements of impact crater depth on Mercury confirm results from previous studies, with the exception that the depths of large complex craters are typically shallower at a given diameter than reported from Mariner 10 data. Secondary craters on Mercury are generally shallower than primary craters of the same diameter. No significant differences are observed between the depths of craters within heavily cratered terrain and those of craters within smooth plains. The morphological attributes of craters that reflect the transition from simple to complex craters do not appear at the same diameter; instead flat floors first appear with increasing diameter in craters at the smallest diameters, followed with increasing diameter by reduced crater depth and rim height, and then collapse and terracing of crater walls. Differences reported by others in Dt between Mercury and Mars (despite the similar surface gravitational acceleration on the two bodies) are confirmed in this study. The variations in Dt between Mercury and Mars cannot be adequately attributed to differences in either surface properties or mean projectile velocity.

  12. A Large Scale (N=400) Investigation of Gray Matter Differences in Schizophrenia Using Optimized Voxel-based Morphometry

    PubMed Central

    Meda, Shashwath A.; Giuliani, Nicole R.; Calhoun, Vince D.; Jagannathan, Kanchana; Schretlen, David J.; Pulver, Anne; Cascella, Nicola; Keshavan, Matcheri; Kates, Wendy; Buchanan, Robert; Sharma, Tonmoy; Pearlson, Godfrey D.

    2008-01-01

    Background Many studies have employed voxel-based morphometry (VBM) of MRI images as an automated method of investigating cortical gray matter differences in schizophrenia. However, results from these studies vary widely, likely due to different methodological or statistical approaches. Objective To use VBM to investigate gray matter differences in schizophrenia in a sample significantly larger than any published to date, and to increase statistical power sufficiently to reveal differences missed in smaller analyses. Methods Magnetic resonance whole brain images were acquired from four geographic sites, all using the same model 1.5T scanner and software version, and combined to form a sample of 200 patients with both first episode and chronic schizophrenia and 200 healthy controls, matched for age, gender and scanner location. Gray matter concentration was assessed and compared using optimized VBM. Results Compared to the healthy controls, schizophrenia patients showed significantly less gray matter concentration in multiple cortical and subcortical regions, some previously unreported. Overall, we found lower concentrations of gray matter in regions identified in prior studies, most of which reported only subsets of the affected areas. Conclusions Gray matter differences in schizophrenia are most comprehensively elucidated using a large, diverse and representative sample. PMID:18378428

  13. Multitaxon activity profiling reveals differential microbial response to reduced seawater pH and oil pollution.

    PubMed

    Coelho, Francisco J R C; Cleary, Daniel F R; Costa, Rodrigo; Ferreira, Marina; Polónia, Ana R M; Silva, Artur M S; Simões, Mário M Q; Oliveira, Vanessa; Gomes, Newton C M

    2016-09-01

    There is growing concern that predicted changes to global ocean chemistry will interact with anthropogenic pollution to significantly alter marine microbial composition and function. However, knowledge of the compounding effects of climate change stressors and anthropogenic pollution is limited. Here, we used 16S and 18S rRNA (cDNA)-based activity profiling to investigate the differential responses of selected microbial taxa to ocean acidification and oil hydrocarbon contamination under controlled laboratory conditions. Our results revealed that a lower relative abundance of sulphate-reducing bacteria (Desulfosarcina/Desulfococcus clade) due to an adverse effect of seawater acidification and oil hydrocarbon contamination (reduced pH-oil treatment) may be coupled to changes in sediment archaeal communities. In particular, we observed a pronounced compositional shift and marked reduction in the prevalence of otherwise abundant operational taxonomic units (OTUs) belonging to the archaeal Marine Benthic Group B and Marine Hydrothermal Vent Group (MHVG) in the reduced pH-oil treatment. Conversely, the abundance of several putative hydrocarbonoclastic fungal OTUs was higher in the reduced pH-oil treatment. Sediment hydrocarbon profiling, furthermore, revealed higher concentrations of several alkanes in the reduced pH-oil treatment, corroborating the functional implications of the structural changes to microbial community composition. Collectively, our results advance the understanding of the response of a complex microbial community to the interaction between reduced pH and anthropogenic pollution. In future acidified marine environments, oil hydrocarbon contamination may alter the typical mixotrophic and k-/r-strategist composition of surface sediment microbiomes towards a more heterotrophic state with lower doubling rates, thereby impairing the ability of the ecosystem to recover from acute oil contamination events. © 2016 John Wiley & Sons Ltd.

  14. Transient elastography compared to liver biopsy and morphometry for predicting fibrosis in pediatric chronic liver disease: Does etiology matter?

    PubMed Central

    Behairy, Behairy El-Sayed; Sira, Mostafa Mohamed; Zalata, Khaled Refat; Salama, El-Sayed Ebrahem; Abd-Allah, Mohamed Ahmed

    2016-01-01

    AIM: To evaluate transient elastography (TE) as a noninvasive tool in staging liver fibrosis compared with liver biopsy and morphometry in children with different chronic liver diseases. METHODS: A total of 90 children [50 with chronic hepatitis C virus (HCV), 20 with autoimmune hepatitis (AIH) and 20 with Wilson disease] were included in the study and underwent liver stiffness measurement (LSM) using TE. Liver biopsies were evaluated for fibrosis, qualitatively, by Ishak score and quantitatively by fibrosis area fraction (FAF) using digital image analysis (morphometry). LSM was correlated with fibrosis and other studied variables using spearman correlation. A stepwise multiple regression analysis was also performed to examine independent factors associated with LSM. Different cut-off values of LSM were calculated for predicting individual fibrosis stages using receiver-operating characteristic curve. Cut-off values with optimal clinical performance (optimal sensitivity and specificity simultaneously) were selected. RESULTS: The majority of HCV group had minimal activity (80%) and no/mild fibrosis (72%). On the other hand, the majority of AIH group had mild to moderate activity (70%) and moderate to severe fibrosis (95%) and all Wilson disease group had mild to moderate activity (100%) and moderate to severe fibrosis (100%). LSM correlated significantly with both FAF and Ishak scores and the correlation appeared better with the latter (r = 0.839 vs 0.879, P < 0.0001 for both). LSM discriminated individual stages of fibrosis with high performance. Sensitivity ranged from 81.4% to 100% and specificity ranged from 75.0% to 97.2%. When we compared LSM values for the same stage of fibrosis, they varied according to the different etiologies. Higher values were in AIH (16.15 ± 7.23 kPa) compared to Wilson disease (8.30 ± 0.84 kPa) and HCV groups (7.43 ± 1.73 kPa). Multiple regression analysis revealed that Ishak fibrosis stage was the only independent variable

  15. Fully automated corneal endothelial morphometry of images captured by clinical specular microscopy

    NASA Astrophysics Data System (ADS)

    Bucht, Curry; Söderberg, Per; Manneberg, Göran

    2010-02-01

    The corneal endothelium serves as the posterior barrier of the cornea. Factors such as clarity and refractive properties of the cornea are in direct relationship to the quality of the endothelium. The endothelial cell density is considered the most important morphological factor of the corneal endothelium. Pathological conditions and physical trauma may threaten the endothelial cell density to such an extent that the optical property of the cornea and thus clear eyesight is threatened. Diagnosis of the corneal endothelium through morphometry is an important part of several clinical applications. Morphometry of the corneal endothelium is presently carried out by semi automated analysis of pictures captured by a Clinical Specular Microscope (CSM). Because of the occasional need of operator involvement, this process can be tedious, having a negative impact on sampling size. This study was dedicated to the development and use of fully automated analysis of a very large range of images of the corneal endothelium, captured by CSM, using Fourier analysis. Software was developed in the mathematical programming language Matlab. Pictures of the corneal endothelium, captured by CSM, were read into the analysis software. The software automatically performed digital enhancement of the images, normalizing lights and contrasts. The digitally enhanced images of the corneal endothelium were Fourier transformed, using the fast Fourier transform (FFT) and stored as new images. Tools were developed and applied for identification and analysis of relevant characteristics of the Fourier transformed images. The data obtained from each Fourier transformed image was used to calculate the mean cell density of its corresponding corneal endothelium. The calculation was based on well known diffraction theory. Results in form of estimated cell density of the corneal endothelium were obtained, using fully automated analysis software on 292 images captured by CSM. The cell density obtained by the

  16. Morphometry of network and nonnetwork space of basins

    NASA Astrophysics Data System (ADS)

    Chockalingam, L.; Daya Sagar, B. S.

    2005-08-01

    Morphometric analysis of channel network of a basin provides several scale- independent measures. To better characterize basin morphology, one requires, besides channel morphometric properties, scale-independent but shape-dependent measures to record the sensitive differences in the morphological organization of nonnetwork spaces. These spaces are planar forms of hillslopes or the retained portion after subtracting the channel network from the basin space. The principal aim of this paper is to focus on explaining the importance of alternative scale-independent but shape-dependent measures of nonnetwork spaces of basins. Toward this goal, we explore how mathematical morphology-based decomposition procedures can be used to derive basic measures required to quantify estimates, such as dimensionless power laws, that are useful to express the importance of characteristics of nonnetwork spaces via decomposition rules. We demonstrate our results through characterization of nonnetwork spaces of eight subbasins of the Gunung Ledang region of peninsular Malaysia. We decompose the nonnetwork spaces of eight fourth-order basins in a two-dimensional discrete space into simple nonoverlapping disks (NODs) of various sizes by employing morphological transformations. Furthermore, we show relationships between the dimensions estimated via morphometries of the network and their corresponding nonnetwork spaces. This study can be extended to characterize hillslope morphologies, where decomposition of three-dimensional hillslopes needs to be addressed.

  17. Lung Morphometry with Hyperpolarized 129Xe: Theoretical Background

    PubMed Central

    Sukstanskii, A.L.; Yablonskiy, D.A.

    2011-01-01

    The 3He lung morphometry technique, based on MRI measurements of hyperpolarized 3He gas diffusion in lung airspaces, provides unique information on the lung microstructure at the alveolar level. In vivo 3D tomographic images of standard morphological parameters (airspace chord length, lung parenchyma surface-to-volume ratio, number of alveoli per unit volume) can be generated from a rather short (several seconds) MRI scan. The technique is based on a theory of gas diffusion in lung acinar airways and experimental measurements of diffusion attenuated MRI signal. The present work aims at developing the theoretical background of a similar technique based on hyperpolarized 129Xe gas. As the diffusion coefficient and gyromagnetic ratio of 129Xe gas are substantially different from those of 3He gas, the specific details of the theory and experimental measurements with 129Xe should be amended. We establish phenomenological relationships between acinar airway geometrical parameters and the diffusion attenuated MR signal for human and small animal lungs, both normal lungs and lungs with mild emphysema. Optimal diffusion times are shown to be about 5 ms for human and 1.3 ms for small animals. The expected uncertainties in measuring main morphometrical parameters of the lungs are estimated in the framework of Bayesian probability theory. PMID:21713985

  18. Voxel-Based Morphometry ALE meta-analysis of Bipolar Disorder

    NASA Astrophysics Data System (ADS)

    Magana, Omar; Laird, Robert

    2012-03-01

    A meta-analysis was performed independently to view the changes in gray matter (GM) on patients with Bipolar disorder (BP). The meta-analysis was conducted on a Talairach Space using GingerALE to determine the voxels and their permutation. In order to achieve the data acquisition, published experiments and similar research studies were uploaded onto the online Voxel-Based Morphometry database (VBM). By doing so, coordinates of activation locations were extracted from Bipolar disorder related journals utilizing Sleuth. Once the coordinates of given experiments were selected and imported to GingerALE, a Gaussian was performed on all foci points to create the concentration points of GM on BP patients. The results included volume reductions and variations of GM between Normal Healthy controls and Patients with Bipolar disorder. A significant amount of GM clusters were obtained in Normal Healthy controls over BP patients on the right precentral gyrus, right anterior cingulate, and the left inferior frontal gyrus. In future research, more published journals could be uploaded onto the database and another VBM meta-analysis could be performed including more activation coordinates or a variation of age groups.

  19. Reproducibility of Brain Morphometry from Short-Term Repeat Clinical MRI Examinations: A Retrospective Study

    PubMed Central

    Liu, Hon-Man; Chen, Shan-Kai; Chen, Ya-Fang; Lee, Chung-Wei; Yeh, Lee-Ren

    2016-01-01

    Purpose To assess the inter session reproducibility of automatic segmented MRI-derived measures by FreeSurfer in a group of subjects with normal-appearing MR images. Materials and Methods After retrospectively reviewing a brain MRI database from our institute consisting of 14,758 adults, those subjects who had repeat scans and had no history of neurodegenerative disorders were selected for morphometry analysis using FreeSurfer. A total of 34 subjects were grouped by MRI scanner model. After automatic segmentation using FreeSurfer, label-wise comparison (involving area, thickness, and volume) was performed on all segmented results. An intraclass correlation coefficient was used to estimate the agreement between sessions. Wilcoxon signed rank test was used to assess the population mean rank differences across sessions. Mean-difference analysis was used to evaluate the difference intervals across scanners. Absolute percent difference was used to estimate the reproducibility errors across the MRI models. Kruskal-Wallis test was used to determine the across-scanner effect. Results The agreement in segmentation results for area, volume, and thickness measurements of all segmented anatomical labels was generally higher in Signa Excite and Verio models when compared with Sonata and TrioTim models. There were significant rank differences found across sessions in some labels of different measures. Smaller difference intervals in global volume measurements were noted on images acquired by Signa Excite and Verio models. For some brain regions, significant MRI model effects were observed on certain segmentation results. Conclusions Short-term scan-rescan reliability of automatic brain MRI morphometry is feasible in the clinical setting. However, since repeatability of software performance is contingent on the reproducibility of the scanner performance, the scanner performance must be calibrated before conducting such studies or before using such software for retrospective

  20. Morphology and Morphometry of the Lung in Corn Snakes (Pantherophis guttatus) Infected with Three Different Strains of Ferlavirus.

    PubMed

    Starck, J M; Neul, A; Schmidt, V; Kolb, T; Franz-Guess, S; Balcecean, D; Pees, M

    2017-05-01

    Ophidian paramyxovirus (ferlavirus) is a global threat to reptilian sauropsids in herpetological collections, with occasional but fatal effects. This study characterizes the effects of three different genetic strains of ferlavirus on the dynamic changes of histology and morphometry of the lung of corn snakes (Pantherophis guttatus). Lungs from 42 corn snakes were either sham-infected or infected experimentally under standardized conditions. From 4 to 49 days after intratracheal inoculation, the lungs were examined qualitatively and quantitatively. Progressive microscopical changes were seen in the lung. Initially, increased numbers of heterophils were observed in the interstitium followed by proliferation and vacuolation of epithelial cells lining faveoli. Electron microscopy revealed loss of type-I pneumocytes, hyperplasia of type-II pneumocytes, and interstitial infiltrates of heterophils and mononuclear cells. With progression of disease the respiratory epithelium was initially overgrown by transformed type-II pneumocytes and later became multilayered. The results of the study suggest that the respiratory capacity of the lungs declines with disease development. The dynamics of disease development and histopathology differed in snakes infected with different ferlavirus genogroups. Animals infected with virus genogroup B developed histopathological changes and morphometric changes more rapidly and of greater intensity than snakes infected with viruses from genogroups A or C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Morphometry and subpopulation structure of Holstein bull spermatozoa: variations in ejaculates and cryopreservation straws

    PubMed Central

    Valverde, Anthony; Arenán, Héctor; Sancho, María; Contell, Jesús; Yániz, Jesús; Fernández, Alejandro; Soler, Carles

    2016-01-01

    Sperm quality is evaluated for the calculation of sperm dosage in artificial reproductive programs. The most common parameter used is motility, but morphology has a higher potential as a predictor of genetic quality. Morphometry calculations from CASA-Morph technology improve morphological evaluation and allow mathematical approaches to the problem. Semen from 28 Holstein bulls was collected by artificial vagina, and several ejaculates were studied. After general evaluation, samples were diluted, packaged in 0.25 ml straws, and stored in liquid nitrogen. Two straws per sample were thawed, and slides were processed and stained with Diff-Quik. Samples were analyzed by a CASA-Morph system for eight morphometric parameters. In addition to the “classical” statistical approach, based on variance analysis (revealing differences between animals, ejaculates, and straws), principal component (PC) analysis showed that the variables were grouped into PC1, related to size, and PC2 to shape. Subpopulation structure analysis showed four groups, namely, big, small, short, and narrow from their dominant characteristics, representing 31.0%, 27.3%, 24.1%, and 17.7% of the total population, respectively. The distributions varied between animals and ejaculates, but between straws, there were no differences in only four animals. This modern approach of considering an ejaculate sperm population as divided into subpopulations reflecting quantifiable parameters generated by CASA-Morph systems technology opens a new view on sperm function. This is the first study applying this approach to evaluate different ejaculates and straws from the same individual. More work must be done to improve seminal dose calculations in assisted reproductive programs. PMID:27678464

  2. Morphometry and subpopulation structure of Holstein bull spermatozoa: variations in ejaculates and cryopreservation straws.

    PubMed

    Valverde, Anthony; Arenán, Héctor; Sancho, María; Contell, Jesús; Yániz, Jesús; Fernández, Alejandro; Soler, Carles

    2016-01-01

    Sperm quality is evaluated for the calculation of sperm dosage in artificial reproductive programs. The most common parameter used is motility, but morphology has a higher potential as a predictor of genetic quality. Morphometry calculations from CASA-Morph technology improve morphological evaluation and allow mathematical approaches to the problem. Semen from 28 Holstein bulls was collected by artificial vagina, and several ejaculates were studied. After general evaluation, samples were diluted, packaged in 0.25 ml straws, and stored in liquid nitrogen. Two straws per sample were thawed, and slides were processed and stained with Diff-Quik. Samples were analyzed by a CASA-Morph system for eight morphometric parameters. In addition to the "classical" statistical approach, based on variance analysis (revealing differences between animals, ejaculates, and straws), principal component (PC) analysis showed that the variables were grouped into PC1, related to size, and PC2 to shape. Subpopulation structure analysis showed four groups, namely, big, small, short, and narrow from their dominant characteristics, representing 31.0%, 27.3%, 24.1%, and 17.7% of the total population, respectively. The distributions varied between animals and ejaculates, but between straws, there were no differences in only four animals. This modern approach of considering an ejaculate sperm population as divided into subpopulations reflecting quantifiable parameters generated by CASA-Morph systems technology opens a new view on sperm function. This is the first study applying this approach to evaluate different ejaculates and straws from the same individual. More work must be done to improve seminal dose calculations in assisted reproductive programs.

  3. Applications of low altitude photogrammetry for morphometry, displacements, and landform modeling

    NASA Astrophysics Data System (ADS)

    Gomez, F. G.; Polun, S. G.; Hickcox, K.; Miles, C.; Delisle, C.; Beem, J. R.

    2016-12-01

    Low-altitude aerial surveying is emerging as a tool that greatly improves the ease and efficiency of measuring landforms for quantitative geomorphic analyses. High-resolution, close-range photogrammetry produces dense, 3-dimensional point clouds that facilitate the construction of digital surface models, as well as a potential means of classifying ground targets using spatial structure. This study presents results from recent applications of UAS-based photogrammetry, including high resolution surface morphometry of a lava flow, repeat-pass applications to mass movements, and fault scarp degradation modeling. Depending upon the desired photographic resolution and the platform/payload flown, aerial photos are typically acquired at altitudes of 40 - 100 meters above the ground surface. In all cases, high-precision ground control points are key for accurate (and repeatable) orientation - relying on low-precision GPS coordinates (whether on the ground or geotags in the aerial photos) typically results in substantial rotations (tilt) of the reference frame. Using common ground control points between repeat surveys results in matching point clouds with RMS residuals better than 10 cm. In arid regions, the point cloud is used to assess lava flow surface roughness using multi-scale measurements of point cloud dimensionality. For the landslide study, the point cloud provides a basis for assessing possible displacements. In addition, the high resolution orthophotos facilitate mapping of fractures and their growth. For neotectonic applications, we compare fault scarp modeling results from UAV-derived point clouds versus field-based surveys (kinematic GPS and electronic distance measurements). In summary, there is a wide ranging toolbox of low-altitude aerial platforms becoming available for field geoscientists. In many instances, these tools will present convenience and reduced cost compared with the effort and expense to contract acquisitions of aerial imagery.

  4. Mapping the Regional Influence of Genetics on Brain Structure Variability - A Tensor-Based Morphometry Study

    PubMed Central

    Brun, Caroline; Leporé, Natasha; Pennec, Xavier; Lee, Agatha D.; Barysheva, Marina; Madsen, Sarah K.; Avedissian, Christina; Chou, Yi-Yu; de Zubicaray, Greig I.; McMahon, Katie; Wright, Margaret; Toga, Arthur W.; Thompson, Paul M.

    2010-01-01

    Genetic and environmental factors influence brain structure and function profoundly The search for heritable anatomical features and their influencing genes would be accelerated with detailed 3D maps showing the degree to which brain morphometry is genetically determined. As part of an MRI study that will scan 1150 twins, we applied Tensor-Based Morphometry to compute morphometric differences in 23 pairs of identical twins and 23 pairs of same-sex fraternal twins (mean age: 23.8 ± 1.8 SD years). All 92 twins’ 3D brain MRI scans were nonlinearly registered to a common space using a Riemannian fluid-based warping approach to compute volumetric differences across subjects. A multi-template method was used to improve volume quantification. Vector fields driving each subject’s anatomy onto the common template were analyzed to create maps of local volumetric excesses and deficits relative to the standard template. Using a new structural equation modeling method, we computed the voxelwise proportion of variance in volumes attributable to additive (A) or dominant (D) genetic factors versus shared environmental (C) or unique environmental factors (E). The method was also applied to various anatomical regions of interest (ROIs). As hypothesized, the overall volumes of the brain, basal ganglia, thalamus, and each lobe were under strong genetic control; local white matter volumes were mostly controlled by common environment. After adjusting for individual differences in overall brain scale, genetic influences were still relatively high in the corpus callosum and in early-maturing brain regions such as the occipital lobes, while environmental influences were greater in frontal brain regions which have a more protracted maturational time-course. PMID:19446645

  5. The association between the brain and mind pops: a voxel-based morphometry study in 256 Chinese college students.

    PubMed

    Zhang, Lei; Li, Wenfu; Wei, Dongtao; Yang, Wenjing; Yang, Ning; Qiao, Lei; Qiu, Jiang; Zuo, Xi-Nian; Zhang, Qinglin

    2016-06-01

    Mind pops or involuntary semantic memories refer to words, phrases, images, or melodies that suddenly pop into one's mind without any deliberate attempt to recall them. Despite their prevalence in everyday life, research on mind pops has started only recently. Notably, mind pops are very similar to clinical involuntary phenomena such as hallucinations in schizophrenia, suggesting their potential role in pathology. The present study aimed to investigate the relationship between mind pops and the brain morphometry measured in 302 healthy young adults; after exclusions, 256 participants were included in our analyses. Specifically, the Mind Popping Questionnaire (MPQ) was employed to measure the degree of individual mind pops, whereas the Voxel-Based Morphometry (VBM) was used to compute the volumes of both gray and white matter tissues. Multiple regression analyses on MPQ and VBM metrics indicated that high-frequency mind pops were significantly associated with smaller gray matter volume in the left middle temporal gyrus as well as with larger gray and white matter volume in the right medial prefrontal cortex. This increase in mind pops is also linked to higher creativity and the personality trait of 'openness'. These data not only suggest a key role of the two regions in generating self-related thoughts, but also open a possible link between brain and creativity or personality.

  6. Voxel based morphometry in optical coherence tomography: validation and core findings

    NASA Astrophysics Data System (ADS)

    Antony, Bhavna J.; Chen, Min; Carass, Aaron; Jedynak, Bruno M.; Al-Louzi, Omar; Solomon, Sharon D.; Saidha, Shiv; Calabresi, Peter A.; Prince, Jerry L.

    2016-03-01

    Optical coherence tomography (OCT) of the human retina is now becoming established as an important modality for the detection and tracking of various ocular diseases. Voxel based morphometry (VBM) is a long standing neuroimaging analysis technique that allows for the exploration of the regional differences in the brain. There has been limited work done in developing registration based methods for OCT, which has hampered the advancement of VBM analyses in OCT based population studies. Following on from our recent development of an OCT registration method, we explore the potential benefits of VBM analysis in cohorts of healthy controls (HCs) and multiple sclerosis (MS) patients. Specifically, we validate the stability of VBM analysis in two pools of HCs showing no significant difference between the two populations. Additionally, we also present a retrospective study of age and sex matched HCs and relapsing remitting MS patients, demonstrating results consistent with the reported literature while providing insight into the retinal changes associated with this MS subtype.

  7. Using tensor-based morphometry to detect structural brain abnormalities in rats with adolescent intermittent alcohol exposure

    NASA Astrophysics Data System (ADS)

    Paniagua, Beatriz; Ehlers, Cindy; Crews, Fulton; Budin, Francois; Larson, Garrett; Styner, Martin; Oguz, Ipek

    2011-03-01

    Understanding the effects of adolescent binge drinking that persist into adulthood is a crucial public health issue. Adolescent intermittent ethanol exposure (AIE) is an animal model that can be used to investigate these effects in rodents. In this work, we investigate the application of a particular image analysis technique, tensor-based morphometry, for detecting anatomical differences between AIE and control rats using Diffusion Tensor Imaging (DTI). Deformation field analysis is a popular method for detecting volumetric changes analyzing Jacobian determinants calculated on deformation fields. Recent studies showed that computing deformation field metrics on the full deformation tensor, often referred to as tensor-based morphometry (TBM), increases the sensitivity to anatomical differences. In this paper we conduct a comprehensive TBM study for precisely locating differences between control and AIE rats. Using a DTI RARE sequence designed for minimal geometric distortion, 12-directional images were acquired postmortem for control and AIE rats (n=9). After preprocessing, average images for the two groups were constructed using an unbiased atlas building approach. We non-rigidly register the two atlases using Large Deformation Diffeomorphic Metric Mapping, and analyze the resulting deformation field using TBM. In particular, we evaluate the tensor determinant, geodesic anisotropy, and deformation direction vector (DDV) on the deformation field to detect structural differences. This yields data on the local amount of growth, shrinkage and the directionality of deformation between the groups. We show that TBM can thus be used to measure group morphological differences between rat populations, demonstrating the potential of the proposed framework.

  8. Morphometry and distribution of isolated caves as a guide for phreatic and confined paleohydrological conditions

    NASA Astrophysics Data System (ADS)

    Frumkin, Amos; Fischhendler, Itay

    2005-04-01

    Isolated caves are a special cave type common in most karst terrains, formed by prolonged slow water flow where aggressivity is locally boosted. The morphometry and distribution of isolated caves are used here to reconstruct the paleohydrology of a karstic mountain range. Within a homogenous karstic rock sequence, two main types of isolated caves are distinguished, and each is associated with a special hydrogeologic setting: maze caves form by rising water in the confined zone of the aquifer, under the Mt. Scopus Group (Israel) confinement, while chamber caves are formed in phreatic conditions, apparently by lateral flow mixing with a vadose input from above.

  9. Longitudinal stability of MRI for mapping brain change using tensor-based morphometry.

    PubMed

    Leow, Alex D; Klunder, Andrea D; Jack, Clifford R; Toga, Arthur W; Dale, Anders M; Bernstein, Matt A; Britson, Paula J; Gunter, Jeffrey L; Ward, Chadwick P; Whitwell, Jennifer L; Borowski, Bret J; Fleisher, Adam S; Fox, Nick C; Harvey, Danielle; Kornak, John; Schuff, Norbert; Studholme, Colin; Alexander, Gene E; Weiner, Michael W; Thompson, Paul M

    2006-06-01

    Measures of brain change can be computed from sequential MRI scans, providing valuable information on disease progression, e.g., for patient monitoring and drug trials. Tensor-based morphometry (TBM) creates maps of these brain changes, visualizing the 3D profile and rates of tissue growth or atrophy, but its sensitivity depends on the contrast and geometric stability of the images. As part of the Alzheimer's Disease Neuroimaging Initiative (ADNI), 17 normal elderly subjects were scanned twice (at a 2-week interval) with several 3D 1.5 T MRI pulse sequences: high and low flip angle SPGR/FLASH (from which Synthetic T1 images were generated), MP-RAGE, IR-SPGR (N = 10) and MEDIC (N = 7) scans. For each subject and scan type, a 3D deformation map aligned baseline and follow-up scans, computed with a nonlinear, inverse-consistent elastic registration algorithm. Voxelwise statistics, in ICBM stereotaxic space, visualized the profile of mean absolute change and its cross-subject variance; these maps were then compared using permutation testing. Image stability depended on: (1) the pulse sequence; (2) the transmit/receive coil type (birdcage versus phased array); (3) spatial distortion corrections (using MEDIC sequence information); (4) B1-field intensity inhomogeneity correction (using N3). SPGR/FLASH images acquired using a birdcage coil had least overall deviation. N3 correction reduced coil type and pulse sequence differences and improved scan reproducibility, except for Synthetic T1 images (which were intrinsically corrected for B1-inhomogeneity). No strong evidence favored B0 correction. Although SPGR/FLASH images showed least deviation here, pulse sequence selection for the ADNI project was based on multiple additional image analyses, to be reported elsewhere.

  10. Computed Tomographic Morphometry of the Internal Anatomy of Mandibular Second Primary Molars.

    PubMed

    Kurthukoti, Ameet J; Sharma, Pranjal; Swamy, Dinesh Francis; Shashidara, R; Swamy, Elaine Barretto

    2015-01-01

    Need for the study: The most important procedure for a successful endodontic treatment is the cleaning and shaping of the canal system. Understanding the internal anatomy of teeth provides valuable information to the clinician that would help him achieve higher clinical success during endodontic therapy. To evaluate by computed tomography-the internal anatomy of mandibular second primary molars with respect to the number of canals, cross-sectional shape of canals, cross-sectional area of canals and the root dentin thickness. A total of 31 mandibular second primary molars were subjected to computed-tomographic evaluation in the transverse plane, after mounting them in a prefabricated template. The images, thus, obtained were analyzed using De-winter Bio-wizard® software. All the samples demonstrated two canals in the mesial root, while majority of the samples (65.48%) demonstrated two canals in the distal root. The cross-sectional images of the mesial canals demonstrated a round shape, while the distal canals demonstrated an irregular shape. The root dentin thickness was highly reduced on the distal aspect of mesial and mesial aspect of distal canals. The mandibular second primary molars demonstrated wide variation and complexities in their internal anatomy. A thorough understanding of the complexity of the root canal system is essential for understanding the principles and problems of shaping and cleaning, determining the apical limits and dimensions of canal preparations, and for performing successful endodontic procedures. How to cite this article: Kurthukoti AJ, Sharma P, Swamy DF, Shashidara R, Swamy EB. Computed Tomographic Morphometry of the Internal Anatomy of Mandibular Second Primary Molars. Int J Clin Pediatr Dent 2015;8(3):202-207.

  11. Computed Tomographic Morphometry of the Internal Anatomy of Mandibular Second Primary Molars

    PubMed Central

    Sharma, Pranjal; Swamy, Dinesh Francis; Shashidara, R; Swamy, Elaine Barretto

    2015-01-01

    ABSTRACT Need for the study: The most important procedure for a successful endodontic treatment is the cleaning and shaping of the canal system. Understanding the internal anatomy of teeth provides valuable information to the clinician that would help him achieve higher clinical success during endodontic therapy. Aims: To evaluate by computed tomography—the internal anatomy of mandibular second primary molars with respect to the number of canals, cross-sectional shape of canals, cross-sectional area of canals and the root dentin thickness. Materials and methods: A total of 31 mandibular second primary molars were subjected to computed-tomographic evaluation in the transverse plane, after mounting them in a prefabricated template. The images, thus, obtained were analyzed using De-winter Bio-wizard® software. Results: All the samples demonstrated two canals in the mesial root, while majority of the samples (65.48%) demonstrated two canals in the distal root. The cross-sectional images of the mesial canals demonstrated a round shape, while the distal canals demonstrated an irregular shape. The root dentin thickness was highly reduced on the distal aspect of mesial and mesial aspect of distal canals. Conclusion: The mandibular second primary molars demonstrated wide variation and complexities in their internal anatomy. A thorough understanding of the complexity of the root canal system is essential for understanding the principles and problems of shaping and cleaning, determining the apical limits and dimensions of canal preparations, and for performing successful endodontic procedures. How to cite this article: Kurthukoti AJ, Sharma P, Swamy DF, Shashidara R, Swamy EB. Computed Tomographic Morphometry of the Internal Anatomy of Mandibular Second Primary Molars. Int J Clin Pediatr Dent 2015;8(3):202-207. PMID:26628855

  12. Surface morphology and morphometry of rat alveolar macrophages after ozone exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dormans, J.A.; Rombout, P.J.; van Loveren, H.

    1990-09-01

    As the ultrastructural data on the effects of ozone on pulmonary alveolar macrophages (PAM) are lacking, transmission (TEM) and scanning (SEM) electron microscopy were performed on rat PAM present in alveolar lavages following exposure to ozone. Rats were continuously exposed for 7 d to ozone concentrations ranging from 0.25 to 1.50 mg/m3 for 7 d followed by a 5-d recovery period. Additionally, morphometry on lung sections was performed to quantitate PAM. In a second experiment rats were continuously exposed to 1.50 mg O3/m3 for 1, 3, 5, or 7 d. To study the influence of concurrent ozone exposure and lungmore » infection, due to Listeria monocytogenes, rats were exposed for 7 d to 1.50 mg O3/m3 after a Listeria infection. The surface area of lavaged control PAM was uniformly covered with ruffles as shown by SEM and TEM. Exposure to 0.5 mg ozone/m3 for 7 d resulted in cells partly covered with microvilli and blebs in addition to normal ruffles. The number of large size PAM increased with an increase in ozone concentration. After 1 d of exposure, normal-appearing as well as many small macrophages with ruffles and scattered lymphocytes were seen. Lavage samples taken after 5 or 7 d of exposure showed an identical cell composition to that taken after 3 d of exposure. After Listeria infection alone, lavage samples consisted of mainly lymphocytes and some macrophages. Small quantitative changes, such as an increase in the number of polymorphonuclear neutrophils and large-size PAM, occurred in lavages after ozone exposure and infection with L. monocytogenes. Morphometric examination of lung sections revealed a concentration-related increase in the number of PAM, even in animals exposed to 0.25 mg ozone/m3 for 7 d. Centriacinar regions were more severely affected than other regions of lung tissue.« less

  13. The Pivotal Role of the Parieto-Occipital Lobe in Card Game-Induced Reflex Epilepsy: A Voxel-Based Morphometry Study.

    PubMed

    Park, Kang Min; Kim, Sung Eun; Lee, Byung In

    2016-01-01

    The pathogenesis of card game-induced reflex epilepsy has not been determined so far. The aim of this study was to evaluate structural abnormalities using voxel-based morphometry (VBM) analysis, which may give some clue about the pathogenesis in card game-induced reflex epilepsy. The 3 subjects were diagnosed with card game-induced reflex epilepsy. Evaluation involved a structured interview to obtain clinical information and brain MRI. In VBM analysis, Statistical Parametric Mapping 8 running on the MATLAB platform was employed to analyze the structural differences between patients with card game-induced reflex epilepsy and age- and sex-matched control subjects. The results of VBM analysis revealed that patients with card game-induced reflex epilepsy had significantly increased gray matter volume in the right occipital and parietal lobe. However, there were no structures with decreased gray matter volume in patients with card game-induced reflex epilepsy compared with control subjects. In addition, we found that the patients with card game-induced reflex epilepsy had onset of seizures in adulthood rather than in adolescence, and all of the patients were men. The parieto-occipital lobes might be partially involved in the neuronal network responsible for card game-induced reflex epilepsy. © 2016 S. Karger AG, Basel.

  14. Gray Matter Differences between Pediatric Obsessive-Compulsive Disorder Patients and High-Risk Siblings: A Preliminary Voxel-Based Morphometry Study

    PubMed Central

    Gilbert, Andrew R.; Keshavan, Matcheri S.; Diwadkar, Vaibhav; Nutche, Jeffrey; MacMaster, Frank; Easter, Phillip C.; Buhagiar, Christian J.; Rosenberg, David R.

    2008-01-01

    Neuroimaging studies have identified alterations in frontostriatal circuitry in OCD. Voxel-based morphometry (VBM) allows for the assessment of differences in gray matter density across the whole brain. VBM has not previously been used to examine regional gray matter density in pediatric OCD patients and the siblings of pediatric OCD patients. Volumetric magnetic resonance imaging (MRI) studies were conducted in 10 psychotropic-naïve pediatric patients with OCD, 10 unaffected siblings of pediatric patients with OCD, and 10 healthy controls. VBM analysis was conducted using SPM2. Statistical comparisons were performed with the general linear model, implementing small volume random field corrections for a priori regions of interest (anterior cingulate cortex or ACC, striatum and thalamus). VBM analysis revealed significantly lower gray matter density in OCD patients compared to healthy in the left ACC and bilateral medial superior frontal gyrus (SFG). Furthermore, a small volume correction was used to identify a significantly greater gray matter density in the right putamen in OCD patients as compared to unaffected siblings of OCD patients. These findings in patients, siblings, and healthy controls, although preliminary, suggest the presence of gray matter structural differences between affected subjects and healthy controls as well as between affected subjects and individuals at risk for OCD. PMID:18314272

  15. Assessing age-related gray matter decline with voxel-based morphometry depends significantly on segmentation and normalization procedures

    PubMed Central

    Callaert, Dorothée V.; Ribbens, Annemie; Maes, Frederik; Swinnen, Stephan P.; Wenderoth, Nicole

    2014-01-01

    Healthy ageing coincides with a progressive decline of brain gray matter (GM) ultimately affecting the entire brain. For a long time, manual delineation-based volumetry within predefined regions of interest (ROI) has been the gold standard for assessing such degeneration. Voxel-Based Morphometry (VBM) offers an automated alternative approach that, however, relies critically on the segmentation and spatial normalization of a large collection of images from different subjects. This can be achieved via different algorithms, with SPM5/SPM8, DARTEL of SPM8 and FSL tools (FAST, FNIRT) being three of the most frequently used. We complemented these voxel based measurements with a ROI based approach, whereby the ROIs are defined by transforms of an atlas (containing different tissue probability maps as well as predefined anatomic labels) to the individual subject images in order to obtain volumetric information at the level of the whole brain or within separate ROIs. Comparing GM decline between 21 young subjects (mean age 23) and 18 elderly (mean age 66) revealed that volumetric measurements differed significantly between methods. The unified segmentation/normalization of SPM5/SPM8 revealed the largest age-related differences and DARTEL the smallest, with FSL being more similar to the DARTEL approach. Method specific differences were substantial after segmentation and most pronounced for the cortical structures in close vicinity to major sulci and fissures. Our findings suggest that algorithms that provide only limited degrees of freedom for local deformations (such as the unified segmentation and normalization of SPM5/SPM8) tend to overestimate between-group differences in VBM results when compared to methods providing more flexible warping. This difference seems to be most pronounced if the anatomy of one of the groups deviates from custom templates, a finding that is of particular importance when results are compared across studies using different VBM methods. PMID

  16. Investigation of mindfulness meditation practitioners with voxel-based morphometry

    PubMed Central

    Hölzel, Britta K.; Ott, Ulrich; Gard, Tim; Hempel, Hannes; Weygandt, Martin; Morgen, Katrin; Vaitl, Dieter

    2008-01-01

    Mindfulness meditators practice the non-judgmental observation of the ongoing stream of internal experiences as they arise. Using voxel-based morphometry, this study investigated MRI brain images of 20 mindfulness (Vipassana) meditators (mean practice 8.6 years; 2 h daily) and compared the regional gray matter concentration to that of non-meditators matched for sex, age, education and handedness. Meditators were predicted to show greater gray matter concentration in regions that are typically activated during meditation. Results confirmed greater gray matter concentration for meditators in the right anterior insula, which is involved in interoceptive awareness. This group difference presumably reflects the training of bodily awareness during mindfulness meditation. Furthermore, meditators had greater gray matter concentration in the left inferior temporal gyrus and right hippocampus. Both regions have previously been found to be involved in meditation. The mean value of gray matter concentration in the left inferior temporal gyrus was predictable by the amount of meditation training, corroborating the assumption of a causal impact of meditation training on gray matter concentration in this region. Results suggest that meditation practice is associated with structural differences in regions that are typically activated during meditation and in regions that are relevant for the task of meditation. PMID:19015095

  17. An in vivo MRI Template Set for Morphometry, Tissue Segmentation, and fMRI Localization in Rats

    PubMed Central

    Valdés-Hernández, Pedro Antonio; Sumiyoshi, Akira; Nonaka, Hiroi; Haga, Risa; Aubert-Vásquez, Eduardo; Ogawa, Takeshi; Iturria-Medina, Yasser; Riera, Jorge J.; Kawashima, Ryuta

    2011-01-01

    Over the last decade, several papers have focused on the construction of highly detailed mouse high field magnetic resonance image (MRI) templates via non-linear registration to unbiased reference spaces, allowing for a variety of neuroimaging applications such as robust morphometric analyses. However, work in rats has only provided medium field MRI averages based on linear registration to biased spaces with the sole purpose of approximate functional MRI (fMRI) localization. This precludes any morphometric analysis in spite of the need of exploring in detail the neuroanatomical substrates of diseases in a recent advent of rat models. In this paper we present a new in vivo rat T2 MRI template set, comprising average images of both intensity and shape, obtained via non-linear registration. Also, unlike previous rat template sets, we include white and gray matter probabilistic segmentations, expanding its use to those applications demanding prior-based tissue segmentation, e.g., statistical parametric mapping (SPM) voxel-based morphometry. We also provide a preliminary digitalization of latest Paxinos and Watson atlas for anatomical and functional interpretations within the cerebral cortex. We confirmed that, like with previous templates, forepaw and hindpaw fMRI activations can be correctly localized in the expected atlas structure. To exemplify the use of our new MRI template set, were reported the volumes of brain tissues and cortical structures and probed their relationships with ontogenetic development. Other in vivo applications in the near future can be tensor-, deformation-, or voxel-based morphometry, morphological connectivity, and diffusion tensor-based anatomical connectivity. Our template set, freely available through the SPM extension website, could be an important tool for future longitudinal and/or functional extensive preclinical studies. PMID:22275894

  18. Fractal dimension brain morphometry: a novel approach to quantify white matter in traumatic brain injury.

    PubMed

    Rajagopalan, Venkateswaran; Das, Abhijit; Zhang, Luduan; Hillary, Frank; Wylie, Glenn R; Yue, Guang H

    2018-06-16

    Traumatic brain injury (TBI) is the main cause of disability in people younger than 35 in the United States. The mechanisms of TBI are complex resulting in both focal and diffuse brain damage. Fractal dimension (FD) is a measure that can characterize morphometric complexity and variability of brain structure especially white matter (WM) structure and may provide novel insights into the injuries evident following TBI. FD-based brain morphometry may provide information on WM structural changes after TBI that is more sensitive to subtle structural changes post injury compared to conventional MRI measurements. Anatomical and diffusion tensor imaging (DTI) data were obtained using a 3 T MRI scanner in subjects with moderate to severe TBI and in healthy controls (HC). Whole brain WM volume, grey matter volume, cortical thickness, cortical area, FD and DTI metrics were evaluated globally and for the left and right hemispheres separately. A neuropsychological test battery sensitive to cognitive impairment associated with traumatic brain injury was performed. TBI group showed lower structural complexity (FD) bilaterally (p < 0.05). No significant difference in either grey matter volume, cortical thickness or cortical area was observed in any of the brain regions between TBI and healthy controls. No significant differences in whole brain WM volume or DTI metrics between TBI and HC groups were observed. Behavioral data analysis revealed that WM FD accounted for a significant amount of variance in executive functioning and processing speed beyond demographic and DTI variables. FD therefore, may serve as a sensitive marker of injury and may play a role in outcome prediction in TBI.

  19. Increased gray matter density in the parietal cortex of mathematicians: a voxel-based morphometry study.

    PubMed

    Aydin, K; Ucar, A; Oguz, K K; Okur, O O; Agayev, A; Unal, Z; Yilmaz, S; Ozturk, C

    2007-01-01

    The training to acquire or practicing to perform a skill, which may lead to structural changes in the brain, is called experience-dependent structural plasticity. The main purpose of this cross-sectional study was to investigate the presence of experience-dependent structural plasticity in mathematicians' brains, which may develop after long-term practice of mathematic thinking. Twenty-six volunteer mathematicians, who have been working as academicians, were enrolled in the study. We applied an optimized method of voxel-based morphometry in the mathematicians and the age- and sex-matched control subjects. We assessed the gray and white matter density differences in mathematicians and the control subjects. Moreover, the correlation between the cortical density and the time spent as an academician was investigated. We found that cortical gray matter density in the left inferior frontal and bilateral inferior parietal lobules of the mathematicians were significantly increased compared with the control subjects. Furthermore, increase in gray matter density in the right inferior parietal lobule of the mathematicians was strongly correlated with the time spent as an academician (r = 0.84; P < .01). Left-inferior frontal and bilateral parietal regions are involved in arithmetic processing. Inferior parietal regions are also involved in high-level mathematic thinking, which requires visuospatial imagery, such as mental creation and manipulation of 3D objects. The voxel-based morphometric analysis of mathematicians' brains revealed increased gray matter density in the cortical regions related to mathematic thinking. The correlation between cortical density increase and the time spent as an academician suggests experience-dependent structural plasticity in mathematicians' brains.

  20. Examining Brain Morphometry Associated with Self-Esteem in Young Adults Using Multilevel-ROI-Features-Based Classification Method

    PubMed Central

    Peng, Bo; Lu, Jieru; Saxena, Aditya; Zhou, Zhiyong; Zhang, Tao; Wang, Suhong; Dai, Yakang

    2017-01-01

    Purpose: This study is to exam self-esteem related brain morphometry on brain magnetic resonance (MR) images using multilevel-features-based classification method. Method: The multilevel region of interest (ROI) features consist of two types of features: (i) ROI features, which include gray matter volume, white matter volume, cerebrospinal fluid volume, cortical thickness, and cortical surface area, and (ii) similarity features, which are based on similarity calculation of cortical thickness between ROIs. For each feature type, a hybrid feature selection method, comprising of filter-based and wrapper-based algorithms, is used to select the most discriminating features. ROI features and similarity features are integrated by using multi-kernel support vector machines (SVMs) with appropriate weighting factor. Results: The classification performance is improved by using multilevel ROI features with an accuracy of 96.66%, a specificity of 96.62%, and a sensitivity of 95.67%. The most discriminating ROI features that are related to self-esteem spread over occipital lobe, frontal lobe, parietal lobe, limbic lobe, temporal lobe, and central region, mainly involving white matter and cortical thickness. The most discriminating similarity features are distributed in both the right and left hemisphere, including frontal lobe, occipital lobe, limbic lobe, parietal lobe, and central region, which conveys information of structural connections between different brain regions. Conclusion: By using ROI features and similarity features to exam self-esteem related brain morphometry, this paper provides a pilot evidence that self-esteem is linked to specific ROIs and structural connections between different brain regions. PMID:28588470

  1. Standardization of whole slide image morphologic assessment with definition of a new application: Digital slide dynamic morphometry.

    PubMed

    Puppa, Giacomo; Risio, Mauro; Sheahan, Kieran; Vieth, Michael; Zlobec, Inti; Lugli, Alessandro; Pecori, Sara; Wang, Lai Mun; Langner, Cord; Mitomi, Hiroyuki; Nakamura, Takatoshi; Watanabe, Masahiko; Ueno, Hideki; Chasle, Jacques; Senore, Carlo; Conley, Stephen A; Herlin, Paulette; Lauwers, Gregory Y

    2011-01-01

    In histopathology, the quantitative assessment of various morphologic features is based on methods originally conceived on specific areas observed through the microscope used. Failure to reproduce the same reference field of view using a different microscope will change the score assessed. Visualization of a digital slide on a screen through a dedicated viewer allows selection of the magnification. However, the field of view is rectangular, unlike the circular field of optical microscopy. In addition, the size of the selected area is not evident, and must be calculated. A digital slide morphometric system was conceived to reproduce the various methods published for assessing tumor budding in colorectal cancer. Eighteen international experts in colorectal cancer were invited to participate in a web-based study by assessing tumor budding with five different methods in 100 digital slides. The specific areas to be tested by each method were marked by colored circles. The areas were grouped in a target-like pattern and then saved as an .xml file. When a digital slide was opened, the .xml file was imported in order to perform the measurements. Since the morphometric tool is composed of layers that can be freely moved on top of the digital slide, the technique was named digital slide dynamic morphometry. Twelve investigators completed the task, the majority of them performing the multiple evaluations of each of the cases in less than 12 minutes. Digital slide dynamic morphometry has various potential applications and might be a useful tool for the assessment of histologic parameters originally conceived for optical microscopy that need to be quantified.

  2. Examining Brain Morphometry Associated with Self-Esteem in Young Adults Using Multilevel-ROI-Features-Based Classification Method.

    PubMed

    Peng, Bo; Lu, Jieru; Saxena, Aditya; Zhou, Zhiyong; Zhang, Tao; Wang, Suhong; Dai, Yakang

    2017-01-01

    Purpose: This study is to exam self-esteem related brain morphometry on brain magnetic resonance (MR) images using multilevel-features-based classification method. Method: The multilevel region of interest (ROI) features consist of two types of features: (i) ROI features, which include gray matter volume, white matter volume, cerebrospinal fluid volume, cortical thickness, and cortical surface area, and (ii) similarity features, which are based on similarity calculation of cortical thickness between ROIs. For each feature type, a hybrid feature selection method, comprising of filter-based and wrapper-based algorithms, is used to select the most discriminating features. ROI features and similarity features are integrated by using multi-kernel support vector machines (SVMs) with appropriate weighting factor. Results: The classification performance is improved by using multilevel ROI features with an accuracy of 96.66%, a specificity of 96.62%, and a sensitivity of 95.67%. The most discriminating ROI features that are related to self-esteem spread over occipital lobe, frontal lobe, parietal lobe, limbic lobe, temporal lobe, and central region, mainly involving white matter and cortical thickness. The most discriminating similarity features are distributed in both the right and left hemisphere, including frontal lobe, occipital lobe, limbic lobe, parietal lobe, and central region, which conveys information of structural connections between different brain regions. Conclusion: By using ROI features and similarity features to exam self-esteem related brain morphometry, this paper provides a pilot evidence that self-esteem is linked to specific ROIs and structural connections between different brain regions.

  3. Structural Differences in Gray Matter between Glider Pilots and Non-Pilots. A Voxel-Based Morphometry Study

    PubMed Central

    Ahamed, Tosif; Kawanabe, Motoaki; Ishii, Shin; Callan, Daniel E.

    2014-01-01

    Glider flying is a unique skill that requires pilots to control an aircraft at high speeds in three dimensions and amidst frequent full-body rotations. In the present study, we investigated the neural correlates of flying a glider using voxel-based morphometry. The comparison between gray matter densities of 15 glider pilots and a control group of 15 non-pilots exhibited significant gray matter density increases in left ventral premotor cortex, anterior cingulate cortex, and the supplementary eye field. We posit that the identified regions might be associated with cognitive and motor processes related to flying, such as joystick control, visuo-vestibular interaction, and oculomotor control. PMID:25506339

  4. Structural Differences in Gray Matter between Glider Pilots and Non-Pilots. A Voxel-Based Morphometry Study.

    PubMed

    Ahamed, Tosif; Kawanabe, Motoaki; Ishii, Shin; Callan, Daniel E

    2014-01-01

    Glider flying is a unique skill that requires pilots to control an aircraft at high speeds in three dimensions and amidst frequent full-body rotations. In the present study, we investigated the neural correlates of flying a glider using voxel-based morphometry. The comparison between gray matter densities of 15 glider pilots and a control group of 15 non-pilots exhibited significant gray matter density increases in left ventral premotor cortex, anterior cingulate cortex, and the supplementary eye field. We posit that the identified regions might be associated with cognitive and motor processes related to flying, such as joystick control, visuo-vestibular interaction, and oculomotor control.

  5. The neural substrates of procrastination: A voxel-based morphometry study.

    PubMed

    Hu, Yue; Liu, Peiwei; Guo, Yiqun; Feng, Tingyong

    2018-03-01

    Procrastination is a pervasive phenomenon across different cultures and brings about lots of serious consequences, including performance, subjective well-being, and even public policy. However, little is known about the neural substrates of procrastination. In order to shed light upon this question, we investigated the neuroanatomical substrates of procrastination across two independent samples using voxel-based morphometry (VBM) method. The whole-brain analysis showed procrastination was positively correlated with the graymatter (GM) volume of clusters in the parahippocampal gyrus (PHG) and the orbital frontal cortex (OFC), while negatively correlated with the GM volume of clusters in the inferior frontal gyrus (IFG) and the middle frontal gyrus (MFG) in sample one (151 participants). We further conducted a verification procedure on another sample (108 participants) using region-of-interest analysis to examine the reliability of these results. Results showed procrastination can be predicted by the GM volume of the OFC and the MFG. The present findings suggest that the MFG and OFC, which are the key regions of self-control and emotion regulation, may play an important role in procrastination. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. [Morphometry of pulmonary tissue: From manual to high throughput automation].

    PubMed

    Sallon, C; Soulet, D; Tremblay, Y

    2017-12-01

    Weibel's research has shown that any alteration of the pulmonary structure has effects on function. This demonstration required a quantitative analysis of lung structures called morphometry. This is possible thanks to stereology, a set of methods based on principles of geometry and statistics. His work has helped to better understand the morphological harmony of the lung, which is essential for its proper functioning. An imbalance leads to pathophysiology such as chronic obstructive pulmonary disease in adults and bronchopulmonary dysplasia in neonates. It is by studying this imbalance that new therapeutic approaches can be developed. These advances are achievable only through morphometric analytical methods, which are increasingly precise and focused, in particular thanks to the high-throughput automation of these methods. This review makes a comparison between an automated method that we developed in the laboratory and semi-manual methods of morphometric analyzes. The automation of morphometric measurements is a fundamental asset in the study of pulmonary pathophysiology because it is an assurance of robustness, reproducibility and speed. This tool will thus contribute significantly to the acceleration of the race for the development of new drugs. Copyright © 2017 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  7. Longitudinal stability of MRI for mapping brain change using tensor-based morphometry

    PubMed Central

    Leow, Alex D.; Klunder, Andrea D.; Jack, Clifford R.; Toga, Arthur W.; Dale, Anders M.; Bernstein, Matt A.; Britson, Paula J.; Gunter, Jeffrey L.; Ward, Chadwick P.; Whitwell, Jennifer L.; Borowski, Bret J.; Fleisher, Adam S.; Fox, Nick C.; Harvey, Danielle; Kornak, John; Schuff, Norbert; Studholme, Colin; Alexander, Gene E.; Weiner, Michael W.; Thompson, Paul M.

    2007-01-01

    Measures of brain change can be computed from sequential MRI scans, providing valuable information on disease progression, e.g., for patient monitoring and drug trials. Tensor-based morphometry (TBM) creates maps of these brain changes, visualizing the 3D profile and rates of tissue growth or atrophy, but its sensitivity depends on the contrast and geometric stability of the images. A s part of the Alzheimer’s Disease Neuroimaging Initiative (ADNI), 17 normal elderly subjects were scanned twice (at a 2-week interval) with several 3D 1.5 T MRI pulse sequences: high and low flip angle SPGR/FLASH (from which Synthetic T1 images were generated), MP-RAGE, IR-SPGR (N = 10) and MEDIC (N = 7) scans. For each subject and scan type, a 3D deformation map aligned baseline and follow-up scans, computed with a nonlinear, inverse-consistent elastic registration algorithm. Voxelwise statistics, in ICBM stereotaxic space, visualized the profile of mean absolute change and its cross-subject variance; these maps were then compared using permutation testing. Image stability depended on: (1) the pulse sequence; (2) the transmit/receive coil type (birdcage versus phased array); (3) spatial distortion corrections (using MEDIC sequence information); (4) B1-field intensity inhomogeneity correction (using N3). SPGR/FLASH images acquired using a birdcage coil had least overall deviation. N3 correction reduced coil type and pulse sequence differences and improved scan reproducibility, except for Synthetic T1 images (which were intrinsically corrected for B1-inhomogeneity). No strong evidence favored B0 correction. Although SPGR/FLASH images showed least deviation here, pulse sequence selection for the ADNI project was based on multiple additional image analyses, to be reported elsewhere. PMID:16480900

  8. Preclinical evaluation of nuclear morphometry and tissue topology for breast carcinoma detection and margin assessment

    PubMed Central

    Nyirenda, Ndeke; Farkas, Daniel L.

    2010-01-01

    Prevention and early detection of breast cancer are the major prophylactic measures taken to reduce the breast cancer related mortality and morbidity. Clinical management of breast cancer largely relies on the efficacy of the breast-conserving surgeries and the subsequent radiation therapy. A key problem that limits the success of these surgeries is the lack of accurate, real-time knowledge about the positive tumor margins in the surgically excised tumors in the operating room. This leads to tumor recurrence and, hence, the need for repeated surgeries. Current intraoperative techniques such as frozen section pathology or touch imprint cytology severely suffer from poor sampling and non-optimal detection sensitivity. Even though histopathology analysis can provide information on positive tumor margins post-operatively (~2–3 days), this information is of no immediate utility in the operating rooms. In this article, we propose a novel image analysis method for tumor margin assessment based on nuclear morphometry and tissue topology and demonstrate its high sensitivity/specificity in preclinical animal model of breast carcinoma. The method relies on imaging nuclear-specific fluorescence in the excised surgical specimen and on extracting nuclear morphometric parameters (size, number, and area fraction) from the spatial distribution of the observed fluorescence in the tissue. We also report the utility of tissue topology in tumor margin assessment by measuring the fractal dimension in the same set of images. By a systematic analysis of multiple breast tissues specimens, we show here that the proposed method is not only accurate (~97% sensitivity and 96% specificity) in thin sections, but also in three-dimensional (3D) thick tissues that mimic the realistic lumpectomy specimens. Our data clearly precludes the utility of nuclear size as a reliable diagnostic criterion for tumor margin assessment. On the other hand, nuclear area fraction addresses this issue very

  9. Absence of gender effect on children with attention-deficit/hyperactivity disorder as assessed by optimized voxel-based morphometry.

    PubMed

    Yang, Pinchen; Wang, Pei-Ning; Chuang, Kai-Hsiang; Jong, Yuh-Jyh; Chao, Tzu-Cheng; Wu, Ming-Ting

    2008-12-30

    Brain abnormalities, as determined by structural magnetic resonance imaging (MRI), have been reported in patients with attention-deficit hyperactivity disorder (ADHD); however, female subjects have been underrepresented in previous reports. In this study, we used optimized voxel-based morphometry to compare the total and regional gray matter volumes between groups of 7- to 17-year-old ADHD and healthy children (total 114 subjects). Fifty-seven children with ADHD (n=57, 35 males and 22 females) and healthy children (n=57) received MRI scans. Segmented brain MRI images were normalized into standardized stereotactic space, modulated to allow volumetric analysis, smoothed and compared at the voxel level with statistical parametric mapping. Global volumetric comparisons between groups revealed that the total brain volumes of ADHD children were smaller than those of the control children. As for the regional brain analysis, the brain volumes of ADHD children were found to be bilaterally smaller in the following regions as compared with normal control values: the caudate nucleus and the cerebellum. There were two clusters of regional decrease in the female brain, left posterior cingulum and right precuneus, as compared with the male brain. Brain regions showing the interaction effect of diagnosis and gender were negligible. These results were consistent with the hypothesized dysfunctional systems in ADHD, and they also suggested that neuroanatomical abnormalities in ADHD were not influenced by gender.

  10. Pulmonary hyperpolarized (129) Xe morphometry for mapping xenon gas concentrations and alveolar oxygen partial pressure: Proof-of-concept demonstration in healthy and COPD subjects.

    PubMed

    Ouriadov, A; Farag, A; Kirby, M; McCormack, D G; Parraga, G; Santyr, G E

    2015-12-01

    Diffusion-weighted (DW) hyperpolarized (129) Xe morphometry magnetic resonance imaging (MRI) can be used to map regional differences in lung tissue micro-structure. We aimed to generate absolute xenon concentration ([Xe]) and alveolar oxygen partial pressure (pA O2 ) maps by extracting the unrestricted diffusion coefficient (D0 ) of xenon as a morphometric parameter. In this proof-of-concept demonstration, morphometry was performed using multi b-value (0, 12, 20, 30 s/cm(2) ) DW hyperpolarized (129) Xe images obtained in four never-smokers and four COPD ex-smokers. Morphometric parameters and D0 maps were computed and the latter used to generate [Xe] and pA O2 maps. Xenon concentration phantoms estimating a range of values mimicking those observed in vivo were also investigated. Xenon D0 was significantly increased (P = 0.035) in COPD (0.14 ± 0.03 cm(2) /s) compared with never-smokers (0.12 ± 0.02 cm(2) /s). COPD ex-smokers also had significantly decreased [Xe] (COPD = 8 ± 7% versus never-smokers = 13 ± 8%, P = 0.012) and increased pA O2 (COPD = 18 ± 3% versus never-smokers = 15 ± 3%, P = 0.009) compared with never-smokers. Phantom measurements showed the expected dependence of D0 on [Xe] over the range of concentrations anticipated in vivo. DW hyperpolarized (129) Xe MRI morphometry can be used to simultaneously map [Xe] and pA O2 in addition to providing micro-structural biomarkers of emphysematous destruction in COPD. Phantom measurements of D0 ([Xe]) supported the hypotheses that differences in subjects may reflect differences in functional residual capacity. © 2014 Wiley Periodicals, Inc.

  11. Divide and Conquer: Sub-Grouping of ASD Improves ASD Detection Based on Brain Morphometry.

    PubMed

    Katuwal, Gajendra J; Baum, Stefi A; Cahill, Nathan D; Michael, Andrew M

    2016-01-01

    Low success (<60%) in autism spectrum disorder (ASD) classification using brain morphometry from the large multi-site ABIDE dataset and inconsistent findings on brain morphometric abnormalities in ASD can be attributed to the ASD heterogeneity. In this study, we show that ASD brain morphometry is highly heterogeneous, and demonstrate that the heterogeneity can be mitigated and classification improved if autism severity (AS), verbal IQ (VIQ) and age are used with morphometric features. Morphometric features from structural MRIs (sMRIs) of 734 males (ASD: 361, controls: 373) of ABIDE were derived using FreeSurfer. Applying the Random Forest classifier, an AUC of 0.61 was achieved. Adding VIQ and age to morphometric features, AUC improved to 0.68. Sub-grouping the subjects by AS, VIQ and age improved the classification with the highest AUC of 0.8 in the moderate-AS sub-group (AS = 7-8). Matching subjects on age and/or VIQ in each sub-group further improved the classification with the highest AUC of 0.92 in the low AS sub-group (AS = 4-5). AUC decreased with AS and VIQ, and was the lowest in the mid-age sub-group (13-18 years). The important features were mainly from the frontal, temporal, ventricular, right hippocampal and left amygdala regions. However, they highly varied with AS, VIQ and age. The curvature and folding index features from frontal, temporal, lingual and insular regions were dominant in younger subjects suggesting their importance for early detection. When the experiments were repeated using the Gradient Boosting classifier similar results were obtained. Our findings suggest that identifying brain biomarkers in sub-groups of ASD can yield more robust and insightful results than searching across the whole spectrum. Further, it may allow identification of sub-group specific brain biomarkers that are optimized for early detection and monitoring, increasing the utility of sMRI as an important tool for early detection of ASD.

  12. Divide and Conquer: Sub-Grouping of ASD Improves ASD Detection Based on Brain Morphometry

    PubMed Central

    Baum, Stefi A.; Cahill, Nathan D.; Michael, Andrew M.

    2016-01-01

    Low success (<60%) in autism spectrum disorder (ASD) classification using brain morphometry from the large multi-site ABIDE dataset and inconsistent findings on brain morphometric abnormalities in ASD can be attributed to the ASD heterogeneity. In this study, we show that ASD brain morphometry is highly heterogeneous, and demonstrate that the heterogeneity can be mitigated and classification improved if autism severity (AS), verbal IQ (VIQ) and age are used with morphometric features. Morphometric features from structural MRIs (sMRIs) of 734 males (ASD: 361, controls: 373) of ABIDE were derived using FreeSurfer. Applying the Random Forest classifier, an AUC of 0.61 was achieved. Adding VIQ and age to morphometric features, AUC improved to 0.68. Sub-grouping the subjects by AS, VIQ and age improved the classification with the highest AUC of 0.8 in the moderate-AS sub-group (AS = 7–8). Matching subjects on age and/or VIQ in each sub-group further improved the classification with the highest AUC of 0.92 in the low AS sub-group (AS = 4–5). AUC decreased with AS and VIQ, and was the lowest in the mid-age sub-group (13–18 years). The important features were mainly from the frontal, temporal, ventricular, right hippocampal and left amygdala regions. However, they highly varied with AS, VIQ and age. The curvature and folding index features from frontal, temporal, lingual and insular regions were dominant in younger subjects suggesting their importance for early detection. When the experiments were repeated using the Gradient Boosting classifier similar results were obtained. Our findings suggest that identifying brain biomarkers in sub-groups of ASD can yield more robust and insightful results than searching across the whole spectrum. Further, it may allow identification of sub-group specific brain biomarkers that are optimized for early detection and monitoring, increasing the utility of sMRI as an important tool for early detection of ASD. PMID:27065101

  13. FlowerMorphology: fully automatic flower morphometry software.

    PubMed

    Rozov, Sergey M; Deineko, Elena V; Deyneko, Igor V

    2018-05-01

    The software FlowerMorphology is designed for automatic morphometry of actinomorphic flowers. The novel complex parameters of flowers calculated by FlowerMorphology allowed us to quantitatively characterize a polyploid series of tobacco. Morphological differences of plants representing closely related lineages or mutants are mostly quantitative. Very often, there are only very fine variations in plant morphology. Therefore, accurate and high-throughput methods are needed for their quantification. In addition, new characteristics are necessary for reliable detection of subtle changes in morphology. FlowerMorphology is an all-in-one software package to automatically image and analyze five-petal actinomorphic flowers of the dicotyledonous plants. Sixteen directly measured parameters and ten calculated complex parameters of a flower allow us to characterize variations with high accuracy. The program was developed for the needs of automatic characterization of Nicotiana tabacum flowers, but is applicable to many other plants with five-petal actinomorphic flowers and can be adopted for flowers of other merosity. A genetically similar polyploid series of N. tabacum plants was used to investigate differences in flower morphology. For the first time, we could quantify the dependence between ploidy and size and form of the tobacco flowers. We found that the radius of inner petal incisions shows a persistent positive correlation with the chromosome number. In contrast, a commonly used parameter-radius of outer corolla-does not discriminate 2n and 4n plants. Other parameters show that polyploidy leads to significant aberrations in flower symmetry and are also positively correlated with chromosome number. Executables of FlowerMorphology, source code, documentation, and examples are available at the program website: https://github.com/Deyneko/FlowerMorphology .

  14. Role of Nuclear Morphometry in Breast Cancer and its Correlation with Cytomorphological Grading of Breast Cancer: A Study of 64 Cases.

    PubMed

    Kashyap, Anamika; Jain, Manjula; Shukla, Shailaja; Andley, Manoj

    2018-01-01

    Fine needle aspiration cytology (FNAC) is a simple, rapid, inexpensive, and reliable method of diagnosis of breast mass. Cytoprognostic grading in breast cancers is important to identify high-grade tumors. Computer-assisted image morphometric analysis has been developed to quantitate as well as standardize various grading systems. To apply nuclear morphometry on cytological aspirates of breast cancer and evaluate its correlation with cytomorphological grading with derivation of suitable cutoff values between various grades. Descriptive cross-sectional hospital-based study. This study included 64 breast cancer cases (29 of grade 1, 22 of grade 2, and 13 of grade 3). Image analysis was performed on Papanicolaou stained FNAC slides by NIS -Elements Advanced Research software (Ver 4.00). Nuclear morphometric parameters analyzed included 5 nuclear size, 2 shape, 4 texture, and 2 density parameters. Nuclear size parameters showed an increase in values with increasing cytological grades of carcinoma. Nuclear shape parameters were not found to be significantly different between the three grades. Among nuclear texture parameters, sum intensity, and sum brightness were found to be different between the three grades. Nuclear morphometry can be applied to augment the cytology grading of breast cancer and thus help in classifying patients into low and high-risk groups.

  15. Voxel-Based Morphometry for Separation of Schizophrenia From Other Types of Psychosis in First-Episode Psychosis: Diagnostic Test Review.

    PubMed

    Palaniyappan, Lena; Maayan, Nicola; Bergman, Hanna; Davenport, Clare; Adams, Clive E; Soares-Weiser, Karla

    2016-03-01

    Subtle but widespread deficit in the cortical and subcortical grey matter is a consistent neuroimaging observation in schizophrenia. Several studies have used voxel based morphometry (VBM) to investigate the nature of this structural deficit. We conducted a diagnostic test review to explore the diagnostic potential of VBM in differentiating schizophrenia from other types of first-episode psychoses. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Grey matter damage in progressive multiple sclerosis versus amyotrophic lateral sclerosis: a voxel-based morphometry MRI study.

    PubMed

    Tavazzi, Eleonora; Laganà, Maria Marcella; Bergsland, Niels; Tortorella, Paola; Pinardi, Giovanna; Lunetta, Christian; Corbo, Massimo; Rovaris, Marco

    2015-03-01

    Primary progressive multiple sclerosis (PPMS) and amyotrophic lateral sclerosis (ALS) seem to share some clinical and pathological features. MRI studies revealed the presence of grey matter (GM) atrophy in both diseases, but no comparative data are available. The objective was to compare the regional patterns of GM tissue loss in PPMS and ALS with voxel-based morphometry (VBM). Eighteen PPMS patients, 20 ALS patients, and 31 healthy controls (HC) were studied with a 1.5 Tesla scanner. VBM was performed to assess volumetric GM differences with age and sex as covariates. Threshold-free cluster enhancement analysis was used to obtain significant clusters. Group comparisons were tested with family-wise error correction for multiple comparisons (p < 0.05) except for HC versus MND which was tested at a level of p < 0.001 uncorrected and a cluster threshold of 20 contiguous voxels. Compared to HC, ALS patients showed GM tissue reduction in selected frontal and temporal areas, while PPMS patients showed a widespread bilateral GM volume decrease, involving both deep and cortical regions. Compared to ALS, PPMS patients showed tissue volume reductions in both deep and cortical GM areas. This preliminary study confirms that PPMS is characterized by a more diffuse cortical and subcortical GM atrophy than ALS and that, in the latter condition, brain damage is present outside the motor system. These results suggest that PPMS and ALS may share pathological features leading to GM tissue loss.

  17. Taxonomic Identity of the Invasive Fruit Fly Pest, Bactrocera invadens: Concordance in Morphometry and DNA Barcoding

    PubMed Central

    Khamis, Fathiya M.; Masiga, Daniel K.; Mohamed, Samira A.; Salifu, Daisy; de Meyer, Marc; Ekesi, Sunday

    2012-01-01

    In 2003, a new fruit fly pest species was recorded for the first time in Kenya and has subsequently been found in 28 countries across tropical Africa. The insect was described as Bactrocera invadens, due to its rapid invasion of the African continent. In this study, the morphometry and DNA Barcoding of different populations of B. invadens distributed across the species range of tropical Africa and a sample from the pest's putative aboriginal home of Sri Lanka was investigated. Morphometry using wing veins and tibia length was used to separate B. invadens populations from other closely related Bactrocera species. The Principal component analysis yielded 15 components which correspond to the 15 morphometric measurements. The first two principal axes contributed to 90.7% of the total variance and showed partial separation of these populations. Canonical discriminant analysis indicated that only the first five canonical variates were statistically significant. The first two canonical variates contributed a total of 80.9% of the total variance clustering B. invadens with other members of the B. dorsalis complex while distinctly separating B. correcta, B. cucurbitae, B. oleae and B. zonata. The largest Mahalanobis squared distance (D2 = 122.9) was found to be between B. cucurbitae and B. zonata, while the lowest was observed between B. invadens populations against B. kandiensis (8.1) and against B. dorsalis s.s (11.4). Evolutionary history inferred by the Neighbor-Joining method clustered the Bactrocera species populations into four clusters. First cluster consisted of the B. dorsalis complex (B. invadens, B. kandiensis and B. dorsalis s. s.), branching from the same node while the second group was paraphyletic clades of B. correcta and B. zonata. The last two are monophyletic clades, consisting of B. cucurbitae and B. oleae, respectively. Principal component analysis using the genetic distances confirmed the clustering inferred by the NJ tree. PMID:23028649

  18. Tensor-based morphometry of cannabis use on brain structure in individuals at elevated genetic risk of schizophrenia.

    PubMed

    Welch, K A; Moorhead, T W; McIntosh, A M; Owens, D G C; Johnstone, E C; Lawrie, S M

    2013-10-01

    Schizophrenia is associated with various brain structural abnormalities, including reduced volume of the hippocampi, prefrontal lobes and thalami. Cannabis use increases the risk of schizophrenia but reports of brain structural abnormalities in the cannabis-using population have not been consistent. We used automated image analysis to compare brain structural changes over time in people at elevated risk of schizophrenia for familial reasons who did and did not use cannabis. Magnetic resonance imaging (MRI) scans were obtained from subjects at high familial risk of schizophrenia at entry to the Edinburgh High Risk Study (EHRS) and approximately 2 years later. Differential grey matter (GM) loss in those exposed (n=23) and not exposed to cannabis (n=32) in the intervening period was compared using tensor-based morphometry (TBM). Cannabis exposure was associated with significantly greater loss of right anterior hippocampal (pcorrected=0.029, t=3.88) and left superior frontal lobe GM (pcorrected=0.026, t=4.68). The former finding remained significant even after the exclusion of individuals who had used other drugs during the inter-scan interval. Using an automated analysis of longitudinal data, we demonstrate an association between cannabis use and GM loss in currently well people at familial risk of developing schizophrenia. This observation may be important in understanding the link between cannabis exposure and the subsequent development of schizophrenia.

  19. Shape Classification Using Wasserstein Distance for Brain Morphometry Analysis.

    PubMed

    Su, Zhengyu; Zeng, Wei; Wang, Yalin; Lu, Zhong-Lin; Gu, Xianfeng

    2015-01-01

    Brain morphometry study plays a fundamental role in medical imaging analysis and diagnosis. This work proposes a novel framework for brain cortical surface classification using Wasserstein distance, based on uniformization theory and Riemannian optimal mass transport theory. By Poincare uniformization theorem, all shapes can be conformally deformed to one of the three canonical spaces: the unit sphere, the Euclidean plane or the hyperbolic plane. The uniformization map will distort the surface area elements. The area-distortion factor gives a probability measure on the canonical uniformization space. All the probability measures on a Riemannian manifold form the Wasserstein space. Given any 2 probability measures, there is a unique optimal mass transport map between them, the transportation cost defines the Wasserstein distance between them. Wasserstein distance gives a Riemannian metric for the Wasserstein space. It intrinsically measures the dissimilarities between shapes and thus has the potential for shape classification. To the best of our knowledge, this is the first. work to introduce the optimal mass transport map to general Riemannian manifolds. The method is based on geodesic power Voronoi diagram. Comparing to the conventional methods, our approach solely depends on Riemannian metrics and is invariant under rigid motions and scalings, thus it intrinsically measures shape distance. Experimental results on classifying brain cortical surfaces with different intelligence quotients demonstrated the efficiency and efficacy of our method.

  20. Shape Classification Using Wasserstein Distance for Brain Morphometry Analysis

    PubMed Central

    Su, Zhengyu; Zeng, Wei; Wang, Yalin; Lu, Zhong-Lin; Gu, Xianfeng

    2015-01-01

    Brain morphometry study plays a fundamental role in medical imaging analysis and diagnosis. This work proposes a novel framework for brain cortical surface classification using Wasserstein distance, based on uniformization theory and Riemannian optimal mass transport theory. By Poincare uniformization theorem, all shapes can be conformally deformed to one of the three canonical spaces: the unit sphere, the Euclidean plane or the hyperbolic plane. The uniformization map will distort the surface area elements. The area-distortion factor gives a probability measure on the canonical uniformization space. All the probability measures on a Riemannian manifold form the Wasserstein space. Given any 2 probability measures, there is a unique optimal mass transport map between them, the transportation cost defines the Wasserstein distance between them. Wasserstein distance gives a Riemannian metric for the Wasserstein space. It intrinsically measures the dissimilarities between shapes and thus has the potential for shape classification. To the best of our knowledge, this is the first work to introduce the optimal mass transport map to general Riemannian manifolds. The method is based on geodesic power Voronoi diagram. Comparing to the conventional methods, our approach solely depends on Riemannian metrics and is invariant under rigid motions and scalings, thus it intrinsically measures shape distance. Experimental results on classifying brain cortical surfaces with different intelligence quotients demonstrated the efficiency and efficacy of our method. PMID:26221691

  1. Fibrosis progression under maintenance interferon in hepatitis C is better detected by blood test than liver morphometry.

    PubMed

    Calès, P; Zarski, J P; Chapplain, J Marc; Bertrais, S; Sturm, N; Michelet, C; Babany, G; Chaigneau, J; Eddine Charaf, M

    2012-02-01

    We evaluated whether quantitative measurements of liver fibrosis with recently developed diagnostics outperform histological staging in detecting natural or interferon-induced changes. We compared Metavir staging, morphometry (area and fractal dimension) and six blood tests in 157 patients with chronic hepatitis C from two trials testing maintenance interferon for 96 weeks. Paired liver biopsies and blood tests were available for 101 patients, and there was a significant improvement in Metavir activity and a significant increase in blood tests reflecting fibrosis quantity in patients treated with interferon when compared with controls - all per cent changes in histological fibrosis measures were significantly increased in F1 vs F2-4 stages only in the interferon group. For the whole population studied between weeks 0 and 96, there was significant progression only in the area of fibrosis (AOF) (P = 0.026), FibroMeter (P = 0.020) and CirrhoMeter (P = 0.003). With regards to dynamic reproducibility, agreement was good (r(ic) ≥ 0.72) only for Metavir fibrosis score, FibroMeter and CirrhoMeter. The per cent change in AOF was significantly higher than that of fractal dimension (P = 0.003) or Metavir fibrosis score (P = 0.015). CirrhoMeter was the only blood test with a change significantly higher than that of AOF (P = 0.039). AOF and two blood tests, reflecting fibrosis quantity, have high sensitivity and/or reproducibility permitting the detection of a small progression in liver fibrosis over two years. A blood test reflecting fibrosis quantity is more sensitive and reproducible than morphometry. The study also shows that maintenance interferon does not improve fibrosis, whatever its stage. © 2011 Blackwell Publishing Ltd.

  2. Effect of propolis ethanol extract on myostatin gene expression and muscle morphometry of Nile tilapia in net cages.

    PubMed

    Buck, E L; Mizubuti, I Y; Alfieri, A A; Otonel, R A A; Buck, L Y; Souza, F P; Prado-Calixto, O P; Poveda-Parra, A R; Alexandre Filho, L; Lopera-Barrero, N M

    2017-03-16

    Propolis can be used as growth enhancer due to its antimicrobial, antioxidant, and immune-stimulant properties, but its effects on morphometry and muscle gene expression are largely unknown. The present study evaluates the influence of propolis on muscle morphometry and myostatin gene expression in Nile tilapia (Oreochromis niloticus) bred in net cages. Reversed males (GIFT strain) with an initial weight of 170 ± 25 g were distributed in a (2 x 4) factorial scheme, with two diets (DPRO, commercial diet with 4% propolis ethanol extract and DCON, commercial diet without propolis, control) and four assessment periods (0, 35, 70, and 105 experimental days). Muscles were evaluated at each assessment period. Histomorphometric analysis classified the fiber diameters into four groups: <20 μm; 20-30 μm; 30-50 μm; and > 50 μm. RT-qPCR was performed to assess myostatin gene expression. Fibers < 20 µm diameter were more frequent in DPRO than in DCON at all times. Fiber percentages >30 µm (30-50 and > 50 µm) at 70 days were 25.39% and 40.07% for DPRO and DCON, respectively. There was greater myostatin gene expression at 105 days, averaging 1.93 and 1.89 for DCON and DPRO, respectively, with no significant difference in any of the analyzed periods. Propolis ethanol extract did not affect the diameter of muscle fibers or the gene expression of myostatin. Future studies should describe the mechanisms of natural products' effects on muscle growth and development since these factors are highly relevant for fish production performance.

  3. What’s special about task in dystonia? A voxel-based morphometry and diffusion weighted imaging study

    PubMed Central

    Ramdhani, Ritesh A.; Kumar, Veena; Velickovic, Miodrag; Frucht, Steven J.; Tagliati, Michele; Simonyan, Kristina

    2014-01-01

    Background Numerous brain imaging studies have demonstrated structural changes in the basal ganglia, thalamus, sensorimotor cortex and cerebellum across different forms of primary dystonia. However, our understanding of brain abnormalities contributing to the clinically well-described phenomenon of task-specificity in dystonia remained limited. Methods We used high-resolution MRI with voxel-based morphometry and diffusion tensor imaging with tract-based spatial statistics of fractional anisotropy to examine gray and white matter organization in two task-specific dystonia forms, writer’s cramp and laryngeal dystonia, and two non-task-specific dystonia forms, cervical dystonia and blepharospasm. Results A direct comparison between the both dystonia forms revealed that characteristic gray matter volumetric changes in task-specific dystonia involve the brain regions responsible for sensorimotor control during writing and speaking, such as primary somatosensory cortex, middle frontal gyrus, superior/inferior temporal gyrus, middle/posterior cingulate cortex, occipital cortex as well as the striatum and cerebellum (lobules VI-VIIa). These gray matter changes were accompanied by white matter abnormalities in the premotor cortex, middle/inferior frontal gyrus, genu of the corpus callosum, anterior limb/genu of the internal capsule, and putamen. Conversely, gray matter volumetric changes in non-task-specific group were limited to the left cerebellum (lobule VIIa) only, while white matter alterations were found to underlie the primary sensorimotor cortex, inferior parietal lobule and middle cingulate gyrus. Conclusion Distinct microstructural patterns in task-specific and non-task-specific dystonias may represent neuroimaging markers and provide evidence that these two dystonia subclasses likely follow divergent pathophysiological mechanisms precipitated by different triggers. PMID:24925463

  4. Brain morphometry shows effects of long-term musical practice in middle-aged keyboard players

    PubMed Central

    Gärtner, H.; Minnerop, M.; Pieperhoff, P.; Schleicher, A.; Zilles, K.; Altenmüller, E.; Amunts, K.

    2013-01-01

    To what extent does musical practice change the structure of the brain? In order to understand how long-lasting musical training changes brain structure, 20 male right-handed, middle-aged professional musicians and 19 matched controls were investigated. Among the musicians, 13 were pianists or organists with intensive practice regimes. The others were either music teachers at schools or string instrumentalists, who had studied the piano at least as a subsidiary subject, and practiced less intensively. The study was based on T1-weighted MR images, which were analyzed using deformation-based morphometry. Cytoarchitectonic probabilistic maps of cortical areas and subcortical nuclei as well as myeloarchitectonic maps of fiber tracts were used as regions of interest to compare volume differences in the brains of musicians and controls. In addition, maps of voxel-wise volume differences were computed and analyzed. Musicians showed a significantly better symmetric motor performance as well as a greater capability of controlling hand independence than controls. Structural MRI-data revealed significant volumetric differences between the brains of keyboard players, who practiced intensively and controls in right sensorimotor areas and the corticospinal tract as well as in the entorhinal cortex and the left superior parietal lobule. Moreover, they showed also larger volumes in a comparable set of regions than the less intensively practicing musicians. The structural changes in the sensory and motor systems correspond well to the behavioral results, and can be interpreted in terms of plasticity as a result of intensive motor training. Areas of the superior parietal lobule and the entorhinal cortex might be enlarged in musicians due to their special skills in sight-playing and memorizing of scores. In conclusion, intensive and specific musical training seems to have an impact on brain structure, not only during the sensitive period of childhood but throughout life. PMID

  5. Brain morphometry shows effects of long-term musical practice in middle-aged keyboard players.

    PubMed

    Gärtner, H; Minnerop, M; Pieperhoff, P; Schleicher, A; Zilles, K; Altenmüller, E; Amunts, K

    2013-01-01

    To what extent does musical practice change the structure of the brain? In order to understand how long-lasting musical training changes brain structure, 20 male right-handed, middle-aged professional musicians and 19 matched controls were investigated. Among the musicians, 13 were pianists or organists with intensive practice regimes. The others were either music teachers at schools or string instrumentalists, who had studied the piano at least as a subsidiary subject, and practiced less intensively. The study was based on T1-weighted MR images, which were analyzed using deformation-based morphometry. Cytoarchitectonic probabilistic maps of cortical areas and subcortical nuclei as well as myeloarchitectonic maps of fiber tracts were used as regions of interest to compare volume differences in the brains of musicians and controls. In addition, maps of voxel-wise volume differences were computed and analyzed. Musicians showed a significantly better symmetric motor performance as well as a greater capability of controlling hand independence than controls. Structural MRI-data revealed significant volumetric differences between the brains of keyboard players, who practiced intensively and controls in right sensorimotor areas and the corticospinal tract as well as in the entorhinal cortex and the left superior parietal lobule. Moreover, they showed also larger volumes in a comparable set of regions than the less intensively practicing musicians. The structural changes in the sensory and motor systems correspond well to the behavioral results, and can be interpreted in terms of plasticity as a result of intensive motor training. Areas of the superior parietal lobule and the entorhinal cortex might be enlarged in musicians due to their special skills in sight-playing and memorizing of scores. In conclusion, intensive and specific musical training seems to have an impact on brain structure, not only during the sensitive period of childhood but throughout life.

  6. On the morphometry of terrestrial shield volcanoes

    NASA Astrophysics Data System (ADS)

    Grosse, Pablo; Kervyn, Matthieu

    2016-04-01

    Shield volcanoes are described as low angle edifices that have convex up topographic profiles and are built primarily by the accumulation of lava flows. This generic view of shields' morphology is based on a limited number of monogenetic shields from Iceland and Mexico, and a small set of large oceanic islands (Hawaii, Galapagos). Here, the morphometry of over 150 monogenetic and polygenetic shield volcanoes, identified inthe Global Volcanism Network database, are analysed quantitatively from 90-meter resolution DEMs using the MORVOLC algorithm. An additional set of 20 volcanoes identified as stratovolcanoes but having low slopes and being dominantly built up by accumulation of lava flows are documented for comparison. Results show that there is a large variation in shield size (volumes range from 0.1 to >1000 km3), profile shape (height/basal width ratios range from 0.01 to 0.1), flank slope gradients, elongation and summit truncation. Correlation and principal component analysis of the obtained quantitative database enables to identify 4 key morphometric descriptors: size, steepness, plan shape and truncation. Using these descriptors through clustering analysis, a new classification scheme is proposed. It highlights the control of the magma feeding system - either central, along a linear structure, or spatially diffuse - on the resulting shield volcano morphology. Genetic relationships and evolutionary trends between contrasted morphological end-members can be highlighted within this new scheme. Additional findings are that the Galapagos-type morphology with a central deep caldera and steep upper flanks are characteristic of other shields. A series of large oceanic shields have slopes systematically much steeper than the low gradients (<4-8°) generally attributed to large Hawaiian-type shields. Finally, the continuum of morphologies from flat shields to steeper complex volcanic constructs considered as stratovolcanoes calls for a revision of this oversimplified

  7. A voxel-based morphometry study of anosmic patients

    PubMed Central

    Peng, P; Xiao, W; Si, L F; Wang, J F; Wang, S K; Zhai, R Y; Wei, Y X

    2013-01-01

    Objective: The aim of our study was to compare volume change in grey matter (GM) and white matter (WM) in a group of subjects with anosmia and a healthy control group. We tried to find a regular pattern of atrophy within and between GM and WM and to determine whether any particular areas are more sensitive to olfactory injury. Methods: There were 19 anosmic patients and 20 age- and sex-matched control subjects. We acquired MR images on a 3-T scanner and performed voxel-based morphometry using the VBM8 toolbox and SPM8 in a MATLAB® (MathWorks®, Natick, MA) environment. Results: Patients with anosmia showed a significant decrease in GM volume, mainly in the anterior cingulate cortex, middle temporal gyrus, superior temporal gyrus, fusiform gyrus, supramarginal gyrus, superior frontal gyrus, middle frontal gyrus, middle occipital gyrus, anterior insular cortex and cerebellum. In addition, we observed volume decreases in smaller areas such as the piriform cortex, the inferior temporal gyrus, the precuneus and the subcallosal gyrus. All WM areas with atrophy were near those GM areas that experienced volume loss. There was more volume atrophy in GM areas corresponding to WM areas with more volume loss. Atrophy increased with disease duration. Conclusion: There is simultaneous atrophy in GM and WM, and the degree of atrophy is greater with longer disease duration. Different GM and WM areas have different sensitivities to olfactory injury. Advances in knowledge: This study examines the atrophy pattern in and between GM and WM—a subject that has not been widely researched previously. PMID:24133057

  8. Whole lung morphometry with 3D multiple b-value hyperpolarized gas MRI and compressed sensing.

    PubMed

    Chan, Ho-Fung; Stewart, Neil J; Parra-Robles, Juan; Collier, Guilhem J; Wild, Jim M

    2017-05-01

    To demonstrate three-dimensional (3D) multiple b-value diffusion-weighted (DW) MRI of hyperpolarized 3 He gas for whole lung morphometry with compressed sensing (CS). A fully-sampled, two b-value, 3D hyperpolarized 3 He DW-MRI dataset was acquired from the lungs of a healthy volunteer and retrospectively undersampled in the k y and k z phase-encoding directions for CS simulations. Optimal k-space undersampling patterns were determined by minimizing the mean absolute error between reconstructed and fully-sampled 3 He apparent diffusion coefficient (ADC) maps. Prospective three-fold, undersampled, 3D multiple b-value 3 He DW-MRI datasets were acquired from five healthy volunteers and one chronic obstructive pulmonary disease (COPD) patient, and the mean values of maps of ADC and mean alveolar dimension (Lm D ) were validated against two-dimensional (2D) and 3D fully-sampled 3 He DW-MRI experiments. Reconstructed undersampled datasets showed no visual artifacts and good preservation of the main image features and quantitative information. A good agreement between fully-sampled and prospective undersampled datasets was found, with a mean difference of +3.4% and +5.1% observed in mean global ADC and Lm D values, respectively. These differences were within the standard deviation range and consistent with values reported from healthy and COPD lungs. Accelerated CS acquisition has facilitated 3D multiple b-value 3 He DW-MRI scans in a single breath-hold, enabling whole lung morphometry mapping. Magn Reson Med 77:1916-1925, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on

  9. Role of Nuclear Morphometry in Breast Cancer and its Correlation with Cytomorphological Grading of Breast Cancer: A Study of 64 Cases

    PubMed Central

    Kashyap, Anamika; Jain, Manjula; Shukla, Shailaja; Andley, Manoj

    2018-01-01

    Background: Fine needle aspiration cytology (FNAC) is a simple, rapid, inexpensive, and reliable method of diagnosis of breast mass. Cytoprognostic grading in breast cancers is important to identify high-grade tumors. Computer-assisted image morphometric analysis has been developed to quantitate as well as standardize various grading systems. Aims: To apply nuclear morphometry on cytological aspirates of breast cancer and evaluate its correlation with cytomorphological grading with derivation of suitable cutoff values between various grades. Settings and Designs: Descriptive cross-sectional hospital-based study. Materials and Methods: This study included 64 breast cancer cases (29 of grade 1, 22 of grade 2, and 13 of grade 3). Image analysis was performed on Papanicolaou stained FNAC slides by NIS –Elements Advanced Research software (Ver 4.00). Nuclear morphometric parameters analyzed included 5 nuclear size, 2 shape, 4 texture, and 2 density parameters. Results: Nuclear size parameters showed an increase in values with increasing cytological grades of carcinoma. Nuclear shape parameters were not found to be significantly different between the three grades. Among nuclear texture parameters, sum intensity, and sum brightness were found to be different between the three grades. Conclusion: Nuclear morphometry can be applied to augment the cytology grading of breast cancer and thus help in classifying patients into low and high-risk groups. PMID:29403169

  10. Transient exposure to oxygen or nitrate reveals ecophysiology of fermentative and sulfate‐reducing benthic microbial populations

    PubMed Central

    Saad, Sainab; Bhatnagar, Srijak; Tegetmeyer, Halina E.; Geelhoed, Jeanine S.; Strous, Marc

    2017-01-01

    Summary For the anaerobic remineralization of organic matter in marine sediments, sulfate reduction coupled to fermentation plays a key role. Here, we enriched sulfate‐reducing/fermentative communities from intertidal sediments under defined conditions in continuous culture. We transiently exposed the cultures to oxygen or nitrate twice daily and investigated the community response. Chemical measurements, provisional genomes and transcriptomic profiles revealed trophic networks of microbial populations. Sulfate reducers coexisted with facultative nitrate reducers or aerobes enabling the community to adjust to nitrate or oxygen pulses. Exposure to oxygen and nitrate impacted the community structure, but did not suppress fermentation or sulfate reduction as community functions, highlighting their stability under dynamic conditions. The most abundant sulfate reducer in all cultures, related to Desulfotignum balticum, appeared to have coupled both acetate‐ and hydrogen oxidation to sulfate reduction. We describe a novel representative of the widespread uncultured candidate phylum Fermentibacteria (formerly candidate division Hyd24‐12). For this strictly anaerobic, obligate fermentative bacterium, we propose the name ‘USabulitectum silens’ and identify it as a partner of sulfate reducers in marine sediments. Overall, we provide insights into the function of fermentative, as well as sulfate‐reducing microbial communities and their adaptation to a dynamic environment. PMID:28836729

  11. Image interpolation allows accurate quantitative bone morphometry in registered micro-computed tomography scans.

    PubMed

    Schulte, Friederike A; Lambers, Floor M; Mueller, Thomas L; Stauber, Martin; Müller, Ralph

    2014-04-01

    Time-lapsed in vivo micro-computed tomography is a powerful tool to analyse longitudinal changes in the bone micro-architecture. Registration can overcome problems associated with spatial misalignment between scans; however, it requires image interpolation which might affect the outcome of a subsequent bone morphometric analysis. The impact of the interpolation error itself, though, has not been quantified to date. Therefore, the purpose of this ex vivo study was to elaborate the effect of different interpolator schemes [nearest neighbour, tri-linear and B-spline (BSP)] on bone morphometric indices. None of the interpolator schemes led to significant differences between interpolated and non-interpolated images, with the lowest interpolation error found for BSPs (1.4%). Furthermore, depending on the interpolator, the processing order of registration, Gaussian filtration and binarisation played a role. Independent from the interpolator, the present findings suggest that the evaluation of bone morphometry should be done with images registered using greyscale information.

  12. Giant panda (Ailuropoda melanoleuca) sperm morphometry and function after repeated freezing and thawing.

    PubMed

    Santiago-Moreno, J; Esteso, M C; Pradiee, J; Castaño, C; Toledano-Díaz, A; O'Brien, E; Lopez-Sebastián, A; Martínez-Nevado, E; Delclaux, M; Fernández-Morán, J; Zhihe, Z

    2016-05-01

    This work examines the effects of subsequent cycles of freezing-thawing on giant panda (Ailuropoda melanoleuca) sperm morphometry and function, and assesses whether density-gradient centrifugation (DGC) can increase the number of freezing-thawing cycles this sperm can withstand. A sperm sample was collected by electroejaculation from a mature giant panda and subjected to five freezing-thawing cycles. Although repeated freezing-thawing negatively affected (P < 0.05) sperm motility and membrane integrity, in both nonselected and DCG-selected sperm samples, >60% of the sperm cells in both treatments showed acrosome integrity even after the fifth freezing cycle. In fresh semen, the sperm head length was 4.7 μm, the head width 3.6 μm, area 14.3 μm(2) and perimeter length 14.1 μm. The present results suggest that giant panda sperm trends to be resistant to repeated freezing-thawing, even without DGC selection. © 2015 Blackwell Verlag GmbH.

  13. Effect of Experimental Thyrotoxicosis on Brain Gray Matter: A Voxel-Based Morphometry Study.

    PubMed

    Göbel, Anna; Heldmann, Marcus; Göttlich, Martin; Dirk, Anna-Luise; Brabant, Georg; Münte, Thomas F

    2015-09-01

    Hyper-as well hypothyroidism have an effect on behavior and brain function. Moreover, during development thyroid hormones influence brain structure. This study aimed to demonstrate an effect of experimentally induced hyperthyroidism on brain gray matter in healthy adult humans. High-resolution 3D T1-weighted images were acquired in 29 healthy young subjects prior to as well as after receiving 250 µg of T4 per day for 8 weeks. Voxel-based morphometry analysis was performed using Statistical Parametric Mapping 8 (SPM8). Laboratory testing confirmed the induction of hyperthyroidism. In the hyperthyroid condition, gray matter volumes were increased in the right posterior cerebellum (lobule VI) and decreased in the bilateral visual cortex and anterior cerebellum (lobules I-IV) compared to the euthyroid condition. Our study provides evidence that short periods of hyperthyroidism induce distinct alterations in brain structures of cerebellar regions that have been associated with sensorimotor functions as well as working memory in the literature.

  14. Volumetric and Voxel-Based Morphometry Findings in Autism Subjects With and Without Macrocephaly

    PubMed Central

    Bigler, Erin D.; Abildskov, Tracy J.; Petrie, Jo Ann; Johnson, Michael; Lange, Nicholas; Chipman, Jonathan; Lu, Jeffrey; McMahon, William; Lainhart, Janet E.

    2015-01-01

    This study sought to replicate Herbert et al. (2003a), which found increased overall white matter (WM) volume in subjects with autism, even after controlling for head size differences. To avoid the possibility that greater WM volume in autism is merely an epiphenomena of macrocephaly over-representation associated with the disorder, the current study included control subjects with benign macrocephaly. The control group also included subjects with a reading disability to insure cognitive heterogeneity. WM volume in autism was significantly larger, even when controlling for brain volume, rate of macrocephaly, and other demographic variables. Autism and controls differed little on whole-brain WM voxel-based morphometry (VBM) analyses suggesting that the overall increase in WM volume was non-localized. Autism subjects exhibited a differential pattern of IQ relationships with brain volumetry findings from controls. Current theories of brain overgrowth and their importance in the development of autism are discussed in the context of these findings. PMID:20446133

  15. Changes in neutrophil morphology and morphometry following exposure to cigarette smoke.

    PubMed Central

    Lannan, S.; McLean, A.; Drost, E.; Gillooly, M.; Donaldson, K.; Lamb, D.; MacNee, W.

    1992-01-01

    Acute cigarette smoking delays neutrophils within the pulmonary circulation in some smokers. Evidence from an in-vitro Micropore filter model of the pulmonary capillaries indicates that this may be due to a smoke induced decrease in cell deformability. In order to determine whether changes in cell shape are associated with the observed decrease in neutrophil deformability following smoke exposure, cell morphology, using scanning electron microscopy, and morphometric measurements, made using transmission electron microscopy, were performed on aliquots of neutrophils harvested from whole blood in non-smoking subjects before and after exposure in vitro to cigarette smoke. Smoke exposure increased the maximum diameter and circumference of neutrophils, without changing their area. There was also a change in the maximum to minimum cell diameter ratio, which indicated that the cells had become less spherical. Scanning electron microscopy showed that smoke exposed cells had developed blebbing of their surface membranes, suggestive of an oxidative injury to the cell membrane rather than the shape changes associated with cell activation. These changes in the morphology and morphometry of smoke exposed neutrophils may contribute to the reduction in cell deformability induced by cigarette smoke. Images Fig. 3 Fig. 4 Fig. 5 PMID:1571278

  16. Voxel-based morphometry study of the insular cortex in bipolar depression.

    PubMed

    Tang, Li-Rong; Liu, Chun-Hong; Jing, Bin; Ma, Xin; Li, Hai-Yun; Zhang, Yu; Li, Feng; Wang, Yu-Ping; Yang, Zhi; Wang, Chuan-Yue

    2014-11-30

    Bipolar depression (BD) is a common psychiatric illness characterized by deficits in emotional and cognitive processing. Abnormalities in the subregions of the insula are common findings in neuroanatomical studies of patients with bipolar disorder. However, the specific relationships between morphometric changes in specific insular subregions and the pathogenesis of BD are not clear. In this study, structural magnetic resonance imaging (MRI) was used to investigate gray matter volume abnormalities in the insular subregion in 27 patients with BD and in 27 age and sex-matched controls. Using DARTEL (diffeomorphic anatomical registration through exponentiated lie algebra) for voxel-based morphometry (VBM), we examined changes in regional gray matter volumes of the insula in patients with BD. As compared with healthy controls, the BD patients showed decreased gray matter volumes in the right posterior insula and left ventral anterior insula and increased gray matter volumes in the left dorsal anterior insula. Consistent with the emerging theory of insular interference as a contributor to emotional-cognitive dysregulation, the current findings suggest that the insular cortex may be involved in the neural substrates of BD. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Multi-template tensor-based morphometry: Application to analysis of Alzheimer's disease

    PubMed Central

    Koikkalainen, Juha; Lötjönen, Jyrki; Thurfjell, Lennart; Rueckert, Daniel; Waldemar, Gunhild; Soininen, Hilkka

    2012-01-01

    In this paper methods for using multiple templates in tensor-based morphometry (TBM) are presented and comparedtothe conventional single-template approach. TBM analysis requires non-rigid registrations which are often subject to registration errors. When using multiple templates and, therefore, multiple registrations, it can be assumed that the registration errors are averaged and eventually compensated. Four different methods are proposed for multi-template TBM. The methods were evaluated using magnetic resonance (MR) images of healthy controls, patients with stable or progressive mild cognitive impairment (MCI), and patients with Alzheimer's disease (AD) from the ADNI database (N=772). The performance of TBM features in classifying images was evaluated both quantitatively and qualitatively. Classification results show that the multi-template methods are statistically significantly better than the single-template method. The overall classification accuracy was 86.0% for the classification of control and AD subjects, and 72.1%for the classification of stable and progressive MCI subjects. The statistical group-level difference maps produced using multi-template TBM were smoother, formed larger continuous regions, and had larger t-values than the maps obtained with single-template TBM. PMID:21419228

  18. Reduced Gray Matter Volume of the Thalamus and Hippocampal Region in Elderly Healthy Adults with no Impact of APOE ɛ4: A Longitudinal Voxel-Based Morphometry Study.

    PubMed

    Squarzoni, Paula; Duran, Fabio Luis Souza; Busatto, Geraldo F; Alves, Tania Correa Toledo de Ferraz

    2018-01-01

    Many cross-sectional voxel-based morphometry (VBM) investigations have shown significant inverse correlations between chronological age and gray matter (GM) volume in several brain regions in healthy humans. However, few VBM studies have documented GM decrements in the healthy elderly with repeated MRI measurements obtained in the same subjects. Also, the extent to which the APOE ɛ4 allele influences longitudinal findings of GM reduction in the healthy elderly is unclear. Verify whether regional GM changes are associated with significant decrements in cognitive performance taking in account the presence of the APOE ɛ4 allele. Using structural MRI datasets acquired in 55 cognitively intact elderly subjects at two time-points separated by approximately three years, we searched for voxels showing significant GM reductions taking into account differences in APOE genotype. We found global GM reductions as well as regional GM decrements in the right thalamus and left parahippocampal gyrus (p < 0.05, family-wise error corrected for multiple comparisons over the whole brain). These findings were not affected by APOE ɛ4. Irrespective of APOE ɛ4, longitudinal VBM analyses show that the hippocampal region and thalamus are critical sites where GM shrinkage is greater than the degree of global volume reduction in healthy elderly subjects.

  19. How does tobacco smoke influence the morphometry of the fetus and the umbilical cord?-Research on pregnant women with intrauterine growth restriction exposed to tobacco smoke.

    PubMed

    Milnerowicz-Nabzdyk, Ewa; Bizoń, Anna

    2015-12-01

    Proper structure of the umbilical cord is important for the fetal development. We evaluated effects of toxic factors from tobacco smoke on fetal and umbilical cord morphometry. 109 women in weeks 29-40 of pregnancy (31 smokers with intrauterine growth restriction (IUGR); 28 non-smoking women with IUGR; 50 healthy pregnancies) were included. In smokers with IUGR, cotinine, cadmium and lead concentrations were significantly higher than in controls (mean 55.23ng/l; 1.52ng/ml; 14.85ng/ml vs 1.07; 0.34; 9.42) and inverse correlation between lead concentration and uncoiled umbilical cord was significant (r=-0.80). In smokers with IUGR, area of Wharton's jelly was increased compared to nonsmokers and controls. Inverse correlations occurred between cotinine and cadmium concentration and fetal percentile in smokers (r=-0.87; r=-0.87) and non-smokers (r=-0.47; r=-0.78) with IUGR. Exposure to tobacco smoke measured by cotinine, cadmium and lead concentration has an impact on fetal growth and umbilical cord morphometry and correlates with intensity of IUGR. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Brain correlates of pro-social personality traits: a voxel-based morphometry study.

    PubMed

    Coutinho, Joana F; Sampaio, Adriana; Ferreira, Miguel; Soares, José M; Gonçalves, Oscar F

    2013-09-01

    Of the five personality dimensions described by the Big Five Personality Model (Costa and McCrae 1992), Extraversion and Agreeableness are the traits most commonly associated with a pro-social orientation. In this study we tested whether a pro-social orientation, as expressed in terms of Extraversion and Agreeableness, is associated with a specific grey matter phenotype. Fifty-two healthy participants underwent magnetic resonance imaging (MRI) and completed the NEO-Five Factor Inventory (NEO-FFI), a self-report measure of the Big Five personality traits. Voxel-based morphometry (VBM) was used to investigate the correlation between brain structure and the personality traits of Agreeableness and Extraversion. We found that Extraversion was negatively correlated with grey matter density in the middle frontal and orbitofrontal gyri while Agreeableness was negatively correlated with grey matter density in the inferior parietal, middle occipital and posterior cingulate gyri. No positive correlations were found. These results suggest that pro-social personality traits seem to be associated with decreases in grey matter density in more frontal regions for Extraversion, and more posterior regions for Agreeableness.

  1. Reduced insulin secretion and glucose intolerance are involved in the fasting susceptibility of common vampire bats.

    PubMed

    Freitas, Mariella B; Queiroz, Joicy F; Dias Gomes, Carolinne I; Collares-Buzato, Carla B; Barbosa, Helena C; Boschero, Antonio C; Gonçalves, Carlos A; Pinheiro, Eliana C

    2013-03-01

    Susceptibility during fasting has been reported for the common vampire bat (Desmodus rotundus), to the point of untimely deaths after only 2-3 nights of fasting. To investigate the underlying physiology of this critical metabolic condition, we analyzed serum insulin levels, pancreatic islets morphometry and immunocytochemistry (ICC), static insulin secretion in pancreas fragments, and insulin signaling mechanism in male vampire bats. A glucose tolerance test (ipGTT) was also performed. Serum insulin was found to be lower in fed vampires compared to other mammals, and was significantly reduced after 24h fasting. Morphometrical analyses revealed small irregular pancreatic islets with reduced percentage of β-cell mass compared to other bats. Static insulin secretion analysis showed that glucose-stimulated insulin secretion was impaired, as insulin levels did not reach significance under high glucose concentrations, whereas the response to the amino acid leucin was preserved. Results from ipGTT showed a failure on glucose clearance, indicating glucose intolerance due to diminished pancreatic insulin secretion and/or decreased β-cell response to glucose. In conclusion, data presented here indicate lower insulinemia and impaired insulin secretion in D. rotundus, which is consistent with the limited ability to store body energy reserves, previously reported in these animals. Whether these metabolic and hormonal features are associated with their blood diet remains to be determined. The peculiar food sharing through blood regurgitation, reported to this species, might be an adaptive mechanism overcoming this metabolic susceptibility. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Voxel-based morphometry in Alzheimers disease and mild cognitive impairment: Systematic review of studies addressing the frontal lobe.

    PubMed

    Ribeiro, Luís Gustavo; Busatto, Geraldo

    2016-01-01

    Voxel-based morphometry (VBM) is a useful approach for investigating neurostructural brain changes in dementia. We systematically reviewed VBM studies of Alzheimer's disease (AD) and mild cognitive impairment (MCI), specifically focusing on grey matter (GM) atrophy in the frontal lobe. Two searches were performed on the Pubmed database. A set of exclusion criteria was applied to ensure the selection of only VBM studies that directly investigated GM volume abnormalities in AD and/or MCI patients compared to cognitively normal controls. From a total of 46 selected articles, 35 VBM studies reported GM volume reductions in the frontal lobe. The frontal subregions, where most of the volume reductions were reported, included the inferior, superior and middle frontal gyri, as well as the anterior cingulate gyrus. We also found studies in which reduced frontal GM was detected in MCI patients who converted to AD. In a minority of studies, correlations between frontal GM volumes and behavioural changes or cognitive deficits in AD patients were investigated, with variable findings. Results of VBM studies indicate that the frontal lobe should be regarded as an important brain area when investigating GM volume deficits in association with AD. Frontal GM loss might not be a feature specific to late AD only. Future VBM studies involving large AD samples are warranted to further investigate correlations between frontal volume deficits and both cognitive impairment and neuropsychiatric symptoms.

  3. Regional gray matter volume is associated with trait modesty: Evidence from voxel-based morphometry.

    PubMed

    Zheng, Chuhua; Wu, Qiong; Jin, Yan; Wu, Yanhong

    2017-11-02

    Modesty when defined as a personality trait, is highly beneficial to interpersonal relationship, group performance, and mental health. However, the potential neural underpinnings of trait modesty remain poorly understood. In the current study, we used voxel-based morphometry (VBM) to investigate the structural neural basis of trait modesty in Chinese college students. VBM results showed that higher trait modesty score was associated with lager regional gray matter volume in the dorsomedial prefrontal cortex, right dorsolateral prefrontal cortex, left superior temporal gyrus/left temporal pole, and right posterior insular cortex. These results suggest that individual differences in trait modesty are linked to brain regions associated with self-evaluation, self-regulation, and social cognition. The results remained robust after controlling the confounding factor of global self-esteem, suggesting unique structural correlates of trait modesty. These findings provide evidence for the structural neural basis of individual differences in trait modesty.

  4. Transient exposure to oxygen or nitrate reveals ecophysiology of fermentative and sulfate-reducing benthic microbial populations.

    PubMed

    Saad, Sainab; Bhatnagar, Srijak; Tegetmeyer, Halina E; Geelhoed, Jeanine S; Strous, Marc; Ruff, S Emil

    2017-12-01

    For the anaerobic remineralization of organic matter in marine sediments, sulfate reduction coupled to fermentation plays a key role. Here, we enriched sulfate-reducing/fermentative communities from intertidal sediments under defined conditions in continuous culture. We transiently exposed the cultures to oxygen or nitrate twice daily and investigated the community response. Chemical measurements, provisional genomes and transcriptomic profiles revealed trophic networks of microbial populations. Sulfate reducers coexisted with facultative nitrate reducers or aerobes enabling the community to adjust to nitrate or oxygen pulses. Exposure to oxygen and nitrate impacted the community structure, but did not suppress fermentation or sulfate reduction as community functions, highlighting their stability under dynamic conditions. The most abundant sulfate reducer in all cultures, related to Desulfotignum balticum, appeared to have coupled both acetate- and hydrogen oxidation to sulfate reduction. We describe a novel representative of the widespread uncultured candidate phylum Fermentibacteria (formerly candidate division Hyd24-12). For this strictly anaerobic, obligate fermentative bacterium, we propose the name ' U Sabulitectum silens' and identify it as a partner of sulfate reducers in marine sediments. Overall, we provide insights into the function of fermentative, as well as sulfate-reducing microbial communities and their adaptation to a dynamic environment. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Investigating structural brain changes of dehydration using voxel-based morphometry.

    PubMed

    Streitbürger, Daniel-Paolo; Möller, Harald E; Tittgemeyer, Marc; Hund-Georgiadis, Margret; Schroeter, Matthias L; Mueller, Karsten

    2012-01-01

    Dehydration can affect the volume of brain structures, which might imply a confound in volumetric and morphometric studies of normal or diseased brain. Six young, healthy volunteers were repeatedly investigated using three-dimensional T(1)-weighted magnetic resonance imaging during states of normal hydration, hyperhydration, and dehydration to assess volume changes in gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). The datasets were analyzed using voxel-based morphometry (VBM), a widely used voxel-wise statistical analysis tool, FreeSurfer, a fully automated volumetric segmentation measure, and SIENAr a longitudinal brain-change detection algorithm. A significant decrease of GM and WM volume associated with dehydration was found in various brain regions, most prominently, in temporal and sub-gyral parietal areas, in the left inferior orbito-frontal region, and in the extra-nuclear region. Moreover, we found consistent increases in CSF, that is, an expansion of the ventricular system affecting both lateral ventricles, the third, and the fourth ventricle. Similar degrees of shrinkage in WM volume and increase of the ventricular system have been reported in studies of mild cognitive impairment or Alzheimer's disease during disease progression. Based on these findings, a potential confound in GM and WM or ventricular volume studies due to the subjects' hydration state cannot be excluded and should be appropriately addressed in morphometric studies of the brain.

  6. Investigating Structural Brain Changes of Dehydration Using Voxel-Based Morphometry

    PubMed Central

    Streitbürger, Daniel-Paolo; Möller, Harald E.; Tittgemeyer, Marc; Hund-Georgiadis, Margret; Schroeter, Matthias L.; Mueller, Karsten

    2012-01-01

    Dehydration can affect the volume of brain structures, which might imply a confound in volumetric and morphometric studies of normal or diseased brain. Six young, healthy volunteers were repeatedly investigated using three-dimensional T 1-weighted magnetic resonance imaging during states of normal hydration, hyperhydration, and dehydration to assess volume changes in gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). The datasets were analyzed using voxel-based morphometry (VBM), a widely used voxel-wise statistical analysis tool, FreeSurfer, a fully automated volumetric segmentation measure, and SIENAr a longitudinal brain-change detection algorithm. A significant decrease of GM and WM volume associated with dehydration was found in various brain regions, most prominently, in temporal and sub-gyral parietal areas, in the left inferior orbito-frontal region, and in the extra-nuclear region. Moreover, we found consistent increases in CSF, that is, an expansion of the ventricular system affecting both lateral ventricles, the third, and the fourth ventricle. Similar degrees of shrinkage in WM volume and increase of the ventricular system have been reported in studies of mild cognitive impairment or Alzheime s disease during disease progression. Based on these findings, a potential confound in GM and WM or ventricular volume studies due to the subjects’ hydration state cannot be excluded and should be appropriately addressed in morphometric studies of the brain. PMID:22952926

  7. Prospective multi-centre Voxel Based Morphometry study employing scanner specific segmentations: Procedure development using CaliBrain structural MRI data

    PubMed Central

    2009-01-01

    Background Structural Magnetic Resonance Imaging (sMRI) of the brain is employed in the assessment of a wide range of neuropsychiatric disorders. In order to improve statistical power in such studies it is desirable to pool scanning resources from multiple centres. The CaliBrain project was designed to provide for an assessment of scanner differences at three centres in Scotland, and to assess the practicality of pooling scans from multiple-centres. Methods We scanned healthy subjects twice on each of the 3 scanners in the CaliBrain project with T1-weighted sequences. The tissue classifier supplied within the Statistical Parametric Mapping (SPM5) application was used to map the grey and white tissue for each scan. We were thus able to assess within scanner variability and between scanner differences. We have sought to correct for between scanner differences by adjusting the probability mappings of tissue occupancy (tissue priors) used in SPM5 for tissue classification. The adjustment procedure resulted in separate sets of tissue priors being developed for each scanner and we refer to these as scanner specific priors. Results Voxel Based Morphometry (VBM) analyses and metric tests indicated that the use of scanner specific priors reduced tissue classification differences between scanners. However, the metric results also demonstrated that the between scanner differences were not reduced to the level of within scanner variability, the ideal for scanner harmonisation. Conclusion Our results indicate the development of scanner specific priors for SPM can assist in pooling of scan resources from different research centres. This can facilitate improvements in the statistical power of quantitative brain imaging studies. PMID:19445668

  8. Change of Retinal Nerve Layer Thickness in Non-Arteritic Anterior Ischemic Optic Neuropathy Revealed by Fourier Domain Optical Coherence Tomography.

    PubMed

    Han, Mei; Zhao, Chen; Han, Quan-Hong; Xie, Shiyong; Li, Yan

    2016-08-01

    To examine the changes of non-arteritic anterior ischemic optic neuropathy (NAION) by serial morphometry using Fourier domain optical coherence tomography (FD-OCT). Retrospective study in patients with newly diagnosed NAION (n=33, all unilateral) and controls (n=75 unilateral NAION patients with full contralateral eye vision) who underwent FD-OCT of the optic disk, optic nerve head (ONH), and macula within 1 week of onset and again 1, 3, 6, and 12 months later. The patients showed no improvement in vision during follow-up. Within 1 week of onset, all NAION eyes exhibited severe ONH fiber crowding and peripapillary retinal nerve fiber layer (RNFL) edema. Four had subretinal fluid accumulation and 12 had posterior vitreous detachment (PVD) at the optic disc surface. Ganglion cell complex (GCC) and RNFL thicknesses were reduced at 1 and 3 months (p < 0.05), with no deterioration thereafter. Initial RNFL/GCC contraction magnitude in the superior hemisphere correlated with the severity of inferior visual field deficits. NAION progression is characterized by an initial phase of accelerated RNFL and GCC deterioration. These results reveal that the kinetic change of neural retina in NAION and may have implication on the time window for treatment of NAION. FD-OCT is useful in the evaluation of NAION.

  9. Morphometry and Lens of Eyes Bilih Fish (mystacoleucus padangensis, Bleeker) from Lake Toba, North Sumatra and Lake Singkarak, West Sumatra

    NASA Astrophysics Data System (ADS)

    Razak, A.

    2018-04-01

    This research has been carried out 2015. Bilih fish today need conservation and attention for sustainability. Habitat this fish is treated by human activities in Lake Singkarak, West Sumatera and Lake Toba in North Sumatera. The objectives of the research are describes morphometry of the body and relation with lens of eyes. The methods of the reasearch for measure all parts of surface body fish according www.fishbase.org. For measure and chemical composition of lens of eyes Bilih Fish (M. padangensis) are according Razak (2005). T he result of the research are indicated the size of morphology body Bilih Fish from Lake Toba and from Lake Singkarak is diffrent. Furthermore, diameter of lens is trend linier follow the growth of the body Bilih Fish from Lake Singkarak and Lake Toba. The chemical composition of lens of eyes Bilih Fish from Lake Singkarak contains Sulfur until 73.77% per 100 ppm, another substances like Calcium, Silicone, Magnesium, Phosporus 4.09%-4.83% per 100 ppm. The chemical composition of lens of eyes Bilih Fish from Lake Toba contains Sulfur only 50.08% per 100 ppm, another substances like Kalium, Calcium, Silicone, Magnesium, Phosporus 1.09%-10.43% per 100 ppm. Kalium substance only found in lens of eyes Bilih Fish from Lake Toba. As conclusion, morphometry body Bilih Fish from Lake Toba is bigger better than Bilih Fish from Lake Singkarak and chemical composition lens of eyes Bilih Fish from Lake Toba is influenced by environmental waters factors.

  10. The relationship between facial 3-D morphometry and the perception of attractiveness in children.

    PubMed

    Ferrario, V F; Sforza, C; Poggio, C E; Colombo, A; Tartaglia, G

    1997-01-01

    The aim of this investigation was to determine whether attractive children differ in their three-dimensional facial characteristics from nonattractive children of the same age, race, and sex. The facial characteristics of 36 boys and 44 girls aged 8 to 9 years were investigated. Frontal and profile photographs were analyzed independently by 21 judges, and, for each view, four groups were obtained: attractive boys, nonattractive boys, attractive girls, and nonattractive girls. For each child, the three-dimensional coordinates of 16 standardized soft tissue facial landmarks were automatically collected using an infrared system and used to calculate several three-dimensional angles, linear distances, and linear distance ratios. Mean values were computed in the eight groups, and attractive and nonattractive children were compared within sex and view. Most children received a different esthetic evaluation in the separate frontal and profile assessments; concordance in both attractive and nonattractive groups was only 50%. Moreover, three-dimensional facial morphometry was not able to separate attractive and nonattractive children.

  11. Regional Gray Matter Density Associated with Cognitive Reflectivity–Impulsivity: Evidence from Voxel-Based Morphometry

    PubMed Central

    Yokoyama, Ryoichi; Nozawa, Takayuki; Takeuchi, Hikaru; Taki, Yasuyuki; Sekiguchi, Atsushi; Nouchi, Rui; Kotozaki, Yuka; Nakagawa, Seishu; Miyauchi, Carlos Makoto; Iizuka, Kunio; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Hashizume, Hiroshi; Kunitoki, Keiko; Hanihara, Mayu; Sassa, Yuko; Kawashima, Ryuta

    2015-01-01

    When faced with a problem or choice, humans can use two different strategies: “cognitive reflectivity,” which involves slow responses and fewer mistakes, or “cognitive impulsivity,” which comprises of quick responses and more mistakes. Different individuals use these two strategies differently. To our knowledge, no study has directly investigated the brain regions involved in reflectivity–impulsivity; therefore, this study focused on associations between these cognitive strategies and the gray matter structure of several brain regions. In order to accomplish this, we enrolled 776 healthy, right-handed individuals (432 men and 344 women; 20.7 ± 1.8 years) and used voxel-based morphometry with administration of a cognitive reflectivity–impulsivity questionnaire. We found that high cognitive reflectivity was associated with greater regional gray matter density in the ventral medial prefrontal cortex. Our finding suggests that this area plays an important role in defining an individual’s trait associated with reflectivity and impulsivity. PMID:25803809

  12. Predicting human age using regional morphometry and inter-regional morphological similarity

    NASA Astrophysics Data System (ADS)

    Wang, Xun-Heng; Li, Lihua

    2016-03-01

    The goal of this study is predicting human age using neuro-metrics derived from structural MRI, as well as investigating the relationships between age and predictive neuro-metrics. To this end, a cohort of healthy subjects were recruited from 1000 Functional Connectomes Project. The ages of the participations were ranging from 7 to 83 (36.17+/-20.46). The structural MRI for each subject was preprocessed using FreeSurfer, resulting in regional cortical thickness, mean curvature, regional volume and regional surface area for 148 anatomical parcellations. The individual age was predicted from the combination of regional and inter-regional neuro-metrics. The prediction accuracy is r = 0.835, p < 0.00001, evaluated by Pearson correlation coefficient between predicted ages and actual ages. Moreover, the LASSO linear regression also found certain predictive features, most of which were inter-regional features. The turning-point of the developmental trajectories in human brain was around 40 years old based on regional cortical thickness. In conclusion, structural MRI could be potential biomarkers for the aging in human brain. The human age could be successfully predicted from the combination of regional morphometry and inter-regional morphological similarity. The inter-regional measures could be beneficial to investigating human brain connectome.

  13. Scaling of myocardial mass to flow and morphometry of coronary arteries.

    PubMed

    Choy, Jenny Susana; Kassab, Ghassan S

    2008-05-01

    There is no doubt that scaling relations exist between myocardial mass and morphometry of coronary vasculature. The purpose of this study is to quantify several morphological (diameter, length, and volume) and functional (flow) parameters of the coronary arterial tree in relation to myocardial mass. Eight normal porcine hearts of 117-244 g (mean of 177.5 +/- 32.7) were used in this study. Various coronary subtrees of the left anterior descending, right coronary, and left circumflex arteries were perfused at pressure of 100 mmHg with different colors of a polymer (Microfil) to obtain rubber casts of arterial trees corresponding to different regions of myocardial mass. Volume, diameter, and cumulative length of coronary arteries were reconstructed from casts to analyze their relationship to the perfused myocardial mass. Volumetric flow was measured in relationship with perfused myocardial mass. Our results show that arterial volume is linearly related to regional myocardial mass, whereas the sum of coronary arterial branch lengths, vessel diameters, and volumetric flow show an approximately 3/4, 3/8, and 3/4 power-law relationship, respectively, in relation to myocardial mass. These scaling laws suggest fundamental design principles underlying the structure-function relationship of the coronary arterial tree that may facilitate diagnosis and management of diffuse coronary artery disease.

  14. Anatomical correlates of quality of life: evidence from voxel-based morphometry.

    PubMed

    Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Hashizume, Hiroshi; Sassa, Yuko; Sekiguchi, Atsushi; Kotozaki, Yuka; Nakagawa, Seishu; Nagase, Tomomi; Miyauchi, Carlos Makoto; Kawashima, Ryuta

    2014-05-01

    Quality of life (QOL) has been defined in many ways, and these definitions usually emphasize happiness and satisfaction with life. Health-related problems are known to cause lower QOL. However, the neural mechanisms underlying individual differences in QOL measured by questionnaire (QOLMQ) in young healthy subjects are unknown. QOL is essential to our well-being, and investigation of the neural mechanisms underlying QOL in uncompromised subjects is obviously of great scientific and social interest. We used voxel-based morphometry to investigate the association between regional gray matter volume (rGMV) and QOLMQ across the brain in healthy young adults (age, 21.4 ± 1.8 years) men (n = 88) and women (n = 68) in humans. We found significant negative relationships between QOLMQ and rGMV in a region in the left rostrolateral prefrontal cortex and regions in the dorsal part of the anterior cingulate gyrus and contingent cingulate regions. These findings show that structural variations in regions associated with processing of negative emotions such as fear and anger as well as those associated with evaluation of internally generated information are associated with QOLMQ. These findings suggest that these processes might be related to QOLMQ in healthy young adults. Copyright © 2013 Wiley Periodicals, Inc.

  15. [The importance of handprint morphometry for determining the human body length].

    PubMed

    Grigor'eva, M A

    2018-01-01

    Handprint morphometry for the purpose of personality identification still remains a relatively novel approach. The methods employed for the measurements are not infrequently difficult to reproduce and therefore cause controversy. The objective of the present study was to introduce the system of methods for the measurement of handprints suitable for the reliable determination of the human body length. The study included the measurement of the size of 40 handprints left by124 adult subjects (52 men and 72 women). Two methods of the regression analysis, stepwise and forced inclusion, were applied to the combined group of handprints to select the equations with the high (R>0.800) coefficients of multiple correlation with the body length. 13 equations of multiple regression were obtained and analyzed. The standard error of estimating (SEE) varied from 4.30 to 5.19 cm. The best results were obtained with the equations constructed from the sizes I, II, and III of the rays without their distal phalanges. It was shown that the body length can be successfully reconstructed within the height range from 168 to 183 cm for men and from 157 to 176 cm for women. The examples of the use of the equations for the purpose of expertise of illegible and incomplete handprints are presented.

  16. Computed Tomography Measurement of Rib Cage Morphometry in Emphysema

    PubMed Central

    Sverzellati, Nicola; Colombi, Davide; Randi, Giorgia; Pavarani, Antonio; Silva, Mario; Walsh, Simon L.; Pistolesi, Massimo; Alfieri, Veronica; Chetta, Alfredo; Vaccarezza, Mauro; Vitale, Marco; Pastorino, Ugo

    2013-01-01

    Background Factors determining the shape of the human rib cage are not completely understood. We aimed to quantify the contribution of anthropometric and COPD-related changes to rib cage variability in adult cigarette smokers. Methods Rib cage diameters and areas (calculated from the inner surface of the rib cage) in 816 smokers with or without COPD, were evaluated at three anatomical levels using computed tomography (CT). CTs were analyzed with software, which allows quantification of total emphysema (emphysema%). The relationship between rib cage measurements and anthropometric factors, lung function indices, and %emphysema were tested using linear regression models. Results A model that included gender, age, BMI, emphysema%, forced expiratory volume in one second (FEV1)%, and forced vital capacity (FVC)% fit best with the rib cage measurements (R2 = 64% for the rib cage area variation at the lower anatomical level). Gender had the biggest impact on rib cage diameter and area (105.3 cm2; 95% CI: 111.7 to 98.8 for male lower area). Emphysema% was responsible for an increase in size of upper and middle CT areas (up to 5.4 cm2; 95% CI: 3.0 to 7.8 for an emphysema increase of 5%). Lower rib cage areas decreased as FVC% decreased (5.1 cm2; 95% CI: 2.5 to 7.6 for 10 percentage points of FVC variation). Conclusions This study demonstrates that simple CT measurements can predict rib cage morphometric variability and also highlight relationships between rib cage morphometry and emphysema. PMID:23935872

  17. Gray matter alteration in isolated congenital anosmia patient: a voxel-based morphometry study.

    PubMed

    Yao, Linyin; Yi, Xiaoli; Wei, Yongxiang

    2013-09-01

    Decreased volume of gray matter (GM) was observed in olfactory loss in patients with neurodegenerative disorder. However, GM volume has not yet been investigated in isolated congenital anosmia (ICA) people. We herewith investigated the volume change of gray matter of an ICA boy by morphometric analysis of magnetic resonance images (voxel-based morphometry), and compared with that of 20 age-matched healthy controls. ICA boy presented a significant decrease in GM volume in the orbitofrontal cortex, anterior cingulate cortex, middle cingulate cortex, thalamus, insular cortex, cerebellum, precuneus, gyrus rectus, subcallosal gyrus, middle temporal gyrus, fusiform gyrus and piriform cortex. No significant GM volume increase was detected in other brain areas. The pattern of GM atrophy was similar as previous literature reported. Our results identified similar GM volume alterations regardless of the causes of olfactory impairment. Decreased GM volume was not only shown in olfactory bulbs, olfactory tracts and olfactory sulcus, also in primary olfactory cortex and the secondary cerebral olfactory areas in ICA people. This is the first study to evaluate GM volume alterations in ICA people.

  18. The effects of Δ9-Tetrahydrocannabinole treatment on gonadal micro-vascularization and affected fertility examined by SEM and 3D-morphometry

    NASA Astrophysics Data System (ADS)

    Erlbacher, K. M. T.; Minnich, B.

    2015-10-01

    The present study focuses on the effects of Δ9-tetrahydrocannabinol (THC) on the reproductive system in nude rats with special emphasis on how Δ9-THC impacts the vascularization of testes which in turn indirectly influences fertility. Basically, Δ9-tetrahydrocannabinol (THC) causes not only negative (psychoactive) effects in the human body as cannabinole administration in medical use (dose-dependent) offers multiple new treatment opportunities such as pain relief or containment of various cancers. Concerning the reproductive system it strongly influences CB-receptors along the hypothalamic-pituitary-gonadal axis resulting in reduced plasma testosterone levels. There is also altered sperm quality parameters reported such as sperm motility or sperm count. On the other hand Δ9-THC effects endothelial growth factors (VEGF, Ang-1 etc.) respectively acts on their specific receptors which in turn modify angiogenesis and vascularization of tissues and organs (e.g. tumorous tissues). This leads to new therapeutical strategies in the suppression of various cancers by inhibiting (neo-)vascularization and in turn famishment of tumorous tissues (lack of nutrition supply). Here we studied the micro-vascularization of gonads in a long-term THC-treated nude rat model by vascular corrosion casting, SEM and 3D-morphometry.

  19. Systematic Morphometry of Catecholamine Nuclei in the Brainstem.

    PubMed

    Bucci, Domenico; Busceti, Carla L; Calierno, Maria T; Di Pietro, Paola; Madonna, Michele; Biagioni, Francesca; Ryskalin, Larisa; Limanaqi, Fiona; Nicoletti, Ferdinando; Fornai, Francesco

    2017-01-01

    Catecholamine nuclei within the brainstem reticular formation (RF) play a pivotal role in a variety of brain functions. However, a systematic characterization of these nuclei in the very same experimental conditions is missing so far. Tyrosine hydroxylase (TH) immune-positive cells of the brainstem correspond to dopamine (DA)-, norepinephrine (NE)-, and epinephrine (E)-containing cells. Here, we report a systematic count of TH-positive neurons in the RF of the mouse brainstem by using stereological morphometry. All these nuclei were analyzed for anatomical localization, rostro-caudal extension, volume, neuron number, neuron density, and mean neuronal area for each nucleus. The present data apart from inherent informative value wish to represent a reference for neuronal mapping in those studies investigating the functional anatomy of the brainstem RF. These include: the sleep-wake cycle, movement control, muscle tone modulation, mood control, novelty orienting stimuli, attention, archaic responses to internal and external stressful stimuli, anxiety, breathing, blood pressure, and innumerable activities modulated by the archaic iso-dendritic hard core of the brainstem RF. Most TH-immune-positive cells fill the lateral part of the RF, which indeed possesses a high catecholamine content. A few nuclei are medial, although conventional nosography considers all these nuclei as part of the lateral column of the RF. Despite the key role of these nuclei in psychiatric and neurological disorders, only a few of them aspired a great attention in biomedical investigation, while most of them remain largely obscure although intense research is currently in progress. A simultaneous description of all these nuclei is not simply key to comprehend the variety of brainstem catecholamine reticular neurons, but probably represents an intrinsically key base for understanding brain physiology and physiopathology.

  20. Systematic Morphometry of Catecholamine Nuclei in the Brainstem

    PubMed Central

    Bucci, Domenico; Busceti, Carla L.; Calierno, Maria T.; Di Pietro, Paola; Madonna, Michele; Biagioni, Francesca; Ryskalin, Larisa; Limanaqi, Fiona; Nicoletti, Ferdinando; Fornai, Francesco

    2017-01-01

    Catecholamine nuclei within the brainstem reticular formation (RF) play a pivotal role in a variety of brain functions. However, a systematic characterization of these nuclei in the very same experimental conditions is missing so far. Tyrosine hydroxylase (TH) immune-positive cells of the brainstem correspond to dopamine (DA)-, norepinephrine (NE)-, and epinephrine (E)-containing cells. Here, we report a systematic count of TH-positive neurons in the RF of the mouse brainstem by using stereological morphometry. All these nuclei were analyzed for anatomical localization, rostro-caudal extension, volume, neuron number, neuron density, and mean neuronal area for each nucleus. The present data apart from inherent informative value wish to represent a reference for neuronal mapping in those studies investigating the functional anatomy of the brainstem RF. These include: the sleep-wake cycle, movement control, muscle tone modulation, mood control, novelty orienting stimuli, attention, archaic responses to internal and external stressful stimuli, anxiety, breathing, blood pressure, and innumerable activities modulated by the archaic iso-dendritic hard core of the brainstem RF. Most TH-immune-positive cells fill the lateral part of the RF, which indeed possesses a high catecholamine content. A few nuclei are medial, although conventional nosography considers all these nuclei as part of the lateral column of the RF. Despite the key role of these nuclei in psychiatric and neurological disorders, only a few of them aspired a great attention in biomedical investigation, while most of them remain largely obscure although intense research is currently in progress. A simultaneous description of all these nuclei is not simply key to comprehend the variety of brainstem catecholamine reticular neurons, but probably represents an intrinsically key base for understanding brain physiology and physiopathology. PMID:29163071

  1. How reliable are gray matter disruptions in specific reading disability across multiple countries and languages? Insights from a large-scale voxel-based morphometry study.

    PubMed

    Jednoróg, Katarzyna; Marchewka, Artur; Altarelli, Irene; Monzalvo Lopez, Ana Karla; van Ermingen-Marbach, Muna; Grande, Marion; Grabowska, Anna; Heim, Stefan; Ramus, Franck

    2015-05-01

    The neural basis of specific reading disability (SRD) remains only partly understood. A dozen studies have used voxel-based morphometry (VBM) to investigate gray matter volume (GMV) differences between SRD and control children, however, recent meta-analyses suggest that few regions are consistent across studies. We used data collected across three countries (France, Poland, and Germany) with the aim of both increasing sample size (236 SRD and controls) to obtain a clearer picture of group differences, and of further assessing the consistency of the findings across languages. VBM analysis reveals a significant group difference in a single cluster in the left thalamus. Furthermore, we observe correlations between reading accuracy and GMV in the left supramarginal gyrus and in the left cerebellum, in controls only. Most strikingly, we fail to replicate all the group differences in GMV reported in previous studies, despite the superior statistical power. The main limitation of this study is the heterogeneity of the sample drawn from different countries (i.e., speaking languages with varying orthographic transparencies) and selected based on different assessment batteries. Nevertheless, analyses within each country support the conclusions of the cross-linguistic analysis. Explanations for the discrepancy between the present and previous studies may include: (1) the limited suitability of VBM to reveal the subtle brain disruptions underlying SRD; (2) insufficient correction for multiple statistical tests and flexibility in data analysis, and (3) publication bias in favor of positive results. Thus the study echoes widespread concerns about the risk of false-positive results inherent to small-scale VBM studies. © 2015 Wiley Periodicals, Inc.

  2. Voxel-based morphometry in Alzheimers disease and mild cognitive impairment: Systematic review of studies addressing the frontal lobe

    PubMed Central

    Ribeiro, Luís Gustavo; Busatto, Geraldo

    2016-01-01

    ABSTRACT Voxel-based morphometry (VBM) is a useful approach for investigating neurostructural brain changes in dementia. We systematically reviewed VBM studies of Alzheimer's disease (AD) and mild cognitive impairment (MCI), specifically focusing on grey matter (GM) atrophy in the frontal lobe. Methods: Two searches were performed on the Pubmed database. A set of exclusion criteria was applied to ensure the selection of only VBM studies that directly investigated GM volume abnormalities in AD and/or MCI patients compared to cognitively normal controls. Results: From a total of 46 selected articles, 35 VBM studies reported GM volume reductions in the frontal lobe. The frontal subregions, where most of the volume reductions were reported, included the inferior, superior and middle frontal gyri, as well as the anterior cingulate gyrus. We also found studies in which reduced frontal GM was detected in MCI patients who converted to AD. In a minority of studies, correlations between frontal GM volumes and behavioural changes or cognitive deficits in AD patients were investigated, with variable findings. Conclusion: Results of VBM studies indicate that the frontal lobe should be regarded as an important brain area when investigating GM volume deficits in association with AD. Frontal GM loss might not be a feature specific to late AD only. Future VBM studies involving large AD samples are warranted to further investigate correlations between frontal volume deficits and both cognitive impairment and neuropsychiatric symptoms. PMID:29213441

  3. Grey matter atrophy in mild cognitive impairment / early Alzheimer disease associated with delusions: a voxel-based morphometry study.

    PubMed

    Ting, Windsor Kwan-Chun; Fischer, Corinne E; Millikin, Colleen P; Ismail, Zahinoor; Chow, Tiffany W; Schweizer, Tom A

    2015-01-01

    Grey matter atrophy in the right hemisphere has been shown to be more severe in dementia patients with delusions, suggesting a neuroanatomical localization that may be pertinent to impending neurodegeneration. Delusional symptoms may arise when atrophy in these areas reduces the regulatory functions of the right hemisphere, in tandem with asymmetric neuropathology in the left hemisphere. We hypothesized that delusional patients with either amnestic mild cognitive impairment (MCI) or early Alzheimer Disease (AD) would experience more pronounced grey matter atrophy in the right frontal lobe compared with matched patients without delusions. We used neuroimaging and clinical data obtained from the Alzheimer's Disease Neuroimaging Initiative. A comparison group of twenty-nine nondelusional MCI/early AD participants were compared with twenty-nine delusional participants using voxel-based morphometry, matched at baseline by age, sex, education, and Mini-Mental State Exam score. All included participants were diagnosed with amnestic MCI at study baseline. Fifteen voxel clusters of decreased grey matter in participants with delusions were detected. Prominent grey matter decrease was observed in the right precentral gyrus, right inferior frontal gyrus, right insula, and left middle occipital gyrus, areas that may be involved in control of thought and emotions. Greater right fronto-temporal grey matter atrophy was observed in MCI or early AD participants with delusions compared to matched patients without delusions. Consistent with our predictions, asymmetric grey matter atrophy in the right hemisphere may contribute to development of delusions through loss of executive inhibition.

  4. Quantitative analysis and implications of drainage morphometry of the Agula watershed in the semi-arid northern Ethiopia

    NASA Astrophysics Data System (ADS)

    Fenta, Ayele Almaw; Yasuda, Hiroshi; Shimizu, Katsuyuki; Haregeweyn, Nigussie; Woldearegay, Kifle

    2017-11-01

    This study aimed at quantitative analysis of morphometric parameters of Agula watershed and its sub-watersheds using remote sensing data, geographic information system, and statistical methods. Morphometric parameters were evaluated from four perspectives: drainage network, watershed geometry, drainage texture, and relief characteristics. A sixth-order river drains Agula watershed and the drainage network is mainly dendritic type. The mean bifurcation ratio ( R b) was 4.46 and at sub-watershed scale, high R b values ( R b > 5) were observed which might be expected in regions of steeply sloping terrain. The longest flow path of Agula watershed is 48.5 km, with knickpoints along the main river which could be attributed to change of lithology and major faults which are common along the rift escarpments. The watershed has elongated shape suggesting low peak flows for longer duration and hence easier flood management. The drainage texture analysis revealed fine drainage which implies the dominance of impermeable soft rock with low resistance against erosion. High relief and steep slopes dominates, by which rough landforms (hills, breaks, and low mountains) make up 76% of the watershed. The S-shaped hypsometric curve with hypsometric integral of 0.4 suggests that Agula watershed is in equilibrium or mature stage of geomorphic evolution. At sub-watershed scale, the derived morphometric parameters were grouped into three clusters (low, moderate, and high) and considerable spatial variability was observed. The results of this study provide information on drainage morphometry that can help better understand the watershed characteristics and serve as a basis for improved planning, management, and decision making to ensure sustainable use of watershed resources.

  5. A comparison of manual neuronal reconstruction from biocytin histology or 2-photon imaging: morphometry and computer modeling

    PubMed Central

    Blackman, Arne V.; Grabuschnig, Stefan; Legenstein, Robert; Sjöström, P. Jesper

    2014-01-01

    Accurate 3D reconstruction of neurons is vital for applications linking anatomy and physiology. Reconstructions are typically created using Neurolucida after biocytin histology (BH). An alternative inexpensive and fast method is to use freeware such as Neuromantic to reconstruct from fluorescence imaging (FI) stacks acquired using 2-photon laser-scanning microscopy during physiological recording. We compare these two methods with respect to morphometry, cell classification, and multicompartmental modeling in the NEURON simulation environment. Quantitative morphological analysis of the same cells reconstructed using both methods reveals that whilst biocytin reconstructions facilitate tracing of more distal collaterals, both methods are comparable in representing the overall morphology: automated clustering of reconstructions from both methods successfully separates neocortical basket cells from pyramidal cells but not BH from FI reconstructions. BH reconstructions suffer more from tissue shrinkage and compression artifacts than FI reconstructions do. FI reconstructions, on the other hand, consistently have larger process diameters. Consequently, significant differences in NEURON modeling of excitatory post-synaptic potential (EPSP) forward propagation are seen between the two methods, with FI reconstructions exhibiting smaller depolarizations. Simulated action potential backpropagation (bAP), however, is indistinguishable between reconstructions obtained with the two methods. In our hands, BH reconstructions are necessary for NEURON modeling and detailed morphological tracing, and thus remain state of the art, although they are more labor intensive, more expensive, and suffer from a higher failure rate due to the occasional poor outcome of histological processing. However, for a subset of anatomical applications such as cell type identification, FI reconstructions are superior, because of indistinguishable classification performance with greater ease of use

  6. Age-related differences in regional brain volumes: A comparison of optimized voxel-based morphometry to manual volumetry

    PubMed Central

    Kennedy, Kristen M.; Erickson, Kirk I.; Rodrigue, Karen M.; Voss, Michelle W.; Colcombe, Stan J.; Kramer, Arthur F.; Acker, James D.; Raz, Naftali

    2009-01-01

    Regional manual volumetry is the gold standard of in vivo neuroanatomy, but is labor-intensive, can be imperfectly reliable, and allows for measuring limited number of regions. Voxel-based morphometry (VBM) has perfect repeatability and assesses local structure across the whole brain. However, its anatomic validity is unclear, and with its increasing popularity, a systematic comparison of VBM to manual volumetry is necessary. The few existing comparison studies are limited by small samples, qualitative comparisons, and limited selection and modest reliability of manual measures. Our goal was to overcome those limitations by quantitatively comparing optimized VBM findings with highly reliable multiple regional measures in a large sample (N = 200) across a wide agespan (18–81). We report a complex pattern of similarities and differences. Peak values of VBM volume estimates (modulated density) produced stronger age differences and a different spatial distribution from manual measures. However, when we aggregated VBM-derived information across voxels contained in specific anatomically defined regions (masks), the patterns of age differences became more similar, although important discrepancies emerged. Notably, VBM revealed stronger age differences in the regions bordering CSF and white matter areas prone to leukoaraiosis, and VBM was more likely to report nonlinearities in age-volume relationships. In the white matter regions, manual measures showed stronger negative associations with age than the corresponding VBM-based masks. We conclude that VBM provides realistic estimates of age differences in the regional gray matter only when applied to anatomically defined regions, but overestimates effects when individual peaks are interpreted. It may be beneficial to use VBM as a first-pass strategy, followed by manual measurement of anatomically-defined regions. PMID:18276037

  7. Spermiogram and sperm head morphometry assessed by multivariate cluster analysis results during adolescence (12-18 years) and the effect of varicocele

    PubMed Central

    Vásquez, Fernando; Soler, Carles; Camps, Patricia; Valverde, Anthony; García-Molina, Almudena

    2016-01-01

    This work evaluates sperm head morphometric characteristics in adolescents from 12 to 18 years of age, and the effect of varicocele. Volunteers between 150 and 224 months of age (mean 191, n = 87), who had reached oigarche by 12 years old, were recruited in the area of Barranquilla, Colombia. Morphometric analysis of sperm heads was performed with principal component (PC) and discriminant analysis. Combining seminal fluid and sperm parameters provided five PCs: two related to sperm morphometry, one to sperm motility, and two to seminal fluid components. Discriminant analysis on the morphometric results of varicocele and nonvaricocele groups did not provide a useful classification matrix. Of the semen-related PCs, the most explanatory (40%) was related to sperm motility. Two PCs, including sperm head elongation and size, were sufficient to evaluate sperm morphometric characteristics. Most of the morphometric variables were correlated with age, with an increase in size and decrease in the elongation of the sperm head. For head size, the entire sperm population could be divided into two morphometric subpopulations, SP1 and SP2, which did not change during adolescence. In general, for varicocele individuals, SP1 had larger and more elongated sperm heads than SP2, which had smaller and more elongated heads than in nonvaricocele men. In summary, sperm head morphometry assessed by CASA-Morph and multivariate cluster analysis provides a better comprehension of the ejaculate structure and possibly sperm function. Morphometric analysis provides much more information than data obtained from conventional semen analysis. PMID:27751986

  8. Pelvic floor morphometry: a predictor of success of pelvic floor muscle training for women with stress and mixed urinary incontinence.

    PubMed

    Dumoulin, Chantale; Tang, An; Pontbriand-Drolet, Stéphanie; Madill, Stephanie J; Morin, Mélanie

    2017-08-01

    The aim of this study was to determine if pelvic floor muscle (PFM) morphometry at baseline, as measured by MRI, can predict response to PFM training in women with stress or mixed urinary incontinence (UI). This study was a prospective quasi-experimental pre-test, post-test cohort study of women with UI, aged 60 years and older. All participants completed a baseline assessment of UI severity and impact, using the 72-h bladder diary and the Incontinence Impact Questionnaire. They underwent a pelvic MRI examination to assess the PFM anatomy. Women then participated in a 12-week PFM training program. Finally, they attended a post intervention assessment of UI severity and impact. The association between morphometry and PFM training response was assessed by univariate analysis, multivariate analysis, and receiver operating characteristic (ROC) curve analysis. The urethro-vesical junction height at rest, as measured by MRI before treatment, was associated with response to PFM training both on univariate (p ≤ 0.005) and multivariate analyses (p = 0.007). The area under the ROC curve was 0.82 (95% confidence interval [CI]: 0.67-0.96). Using a cut-off point of 11.4 mm, participants' response to PFM training was predicted with a sensitivity of 77% and a specificity of 83%. Incontinent women with a urethro-vesical junction height above this threshold were 35% more likely to respond to PFM training (OR 1.35; 95% CI: 1.08-1.67). In older women with UI, a urethro-vesical junction height at rest of at least 11.4 mm appears to be predictive of PFM training response.

  9. Mean template for tensor-based morphometry using deformation tensors.

    PubMed

    Leporé, Natasha; Brun, Caroline; Pennec, Xavier; Chou, Yi-Yu; Lopez, Oscar L; Aizenstein, Howard J; Becker, James T; Toga, Arthur W; Thompson, Paul M

    2007-01-01

    Tensor-based morphometry (TBM) studies anatomical differences between brain images statistically, to identify regions that differ between groups, over time, or correlate with cognitive or clinical measures. Using a nonlinear registration algorithm, all images are mapped to a common space, and statistics are most commonly performed on the Jacobian determinant (local expansion factor) of the deformation fields. In, it was shown that the detection sensitivity of the standard TBM approach could be increased by using the full deformation tensors in a multivariate statistical analysis. Here we set out to improve the common space itself, by choosing the shape that minimizes a natural metric on the deformation tensors from that space to the population of control subjects. This method avoids statistical bias and should ease nonlinear registration of new subjects data to a template that is 'closest' to all subjects' anatomies. As deformation tensors are symmetric positive-definite matrices and do not form a vector space, all computations are performed in the log-Euclidean framework. The control brain B that is already the closest to 'average' is found. A gradient descent algorithm is then used to perform the minimization that iteratively deforms this template and obtains the mean shape. We apply our method to map the profile of anatomical differences in a dataset of 26 HIV/AIDS patients and 14 controls, via a log-Euclidean Hotelling's T2 test on the deformation tensors. These results are compared to the ones found using the 'best' control, B. Statistics on both shapes are evaluated using cumulative distribution functions of the p-values in maps of inter-group differences.

  10. Morphometric information to reduce the semantic gap in the characterization of microscopic images of thyroid nodules.

    PubMed

    Macedo, Alessandra A; Pessotti, Hugo C; Almansa, Luciana F; Felipe, Joaquim C; Kimura, Edna T

    2016-07-01

    The analyses of several systems for medical-imaging processing typically support the extraction of image attributes, but do not comprise some information that characterizes images. For example, morphometry can be applied to find new information about the visual content of an image. The extension of information may result in knowledge. Subsequently, results of mappings can be applied to recognize exam patterns, thus improving the accuracy of image retrieval and allowing a better interpretation of exam results. Although successfully applied in breast lesion images, the morphometric approach is still poorly explored in thyroid lesions due to the high subjectivity thyroid examinations. This paper presents a theoretical-practical study, considering Computer Aided Diagnosis (CAD) and Morphometry, to reduce the semantic discontinuity between medical image features and human interpretation of image content. The proposed method aggregates the content of microscopic images characterized by morphometric information and other image attributes extracted by traditional object extraction algorithms. This method carries out segmentation, feature extraction, image labeling and classification. Morphometric analysis was included as an object extraction method in order to verify the improvement of its accuracy for automatic classification of microscopic images. To validate this proposal and verify the utility of morphometric information to characterize thyroid images, a CAD system was created to classify real thyroid image-exams into Papillary Cancer, Goiter and Non-Cancer. Results showed that morphometric information can improve the accuracy and precision of image retrieval and the interpretation of results in computer-aided diagnosis. For example, in the scenario where all the extractors are combined with the morphometric information, the CAD system had its best performance (70% of precision in Papillary cases). Results signalized a positive use of morphometric information from

  11. Scaling of Myocardial Mass to Flow and Morphometry of Coronary Arteries

    PubMed Central

    Choy, Jenny Susana; Kassab, Ghassan S.

    2009-01-01

    There is no doubt that scaling relations exist between myocardial mass and morphometry of coronary vasculature. The purpose of this study is to quantify several morphological (diameter, length, and volume) and functional (flow) parameters of the coronary arterial tree in relation to myocardial mass. Eight normal porcine hearts of 117-244 g (mean of 177.5±32.7) were used in this study. Various coronary sub-trees of the Left Anterior Descending (LAD), Right Coronary (RCA) and Left Circumflex (LCX) arteries were perfused at pressure of 100 mmHg with different colors of a polymer (Microfil) in order to obtain rubber casts of arterial trees corresponding to different regions of myocardial mass. Volume, diameter and cumulative length of coronary arteries were reconstructed from casts to analyze their relationship to the perfused myocardial mass. Volumetric flow was measured in relationship with perfused myocardial mass. Our results show that arterial volume is linearly related to regional myocardial mass, whereas the sum of coronary arterial branch lengths, vessel diameters and volumetric flow show an approximately 3/4, 3/8 and 3/4 power-law relationship, respectively, in relation to myocardial mass. These scaling laws suggest fundamental design principles underlying the structure-function relationship of the coronary arterial tree that may facilitate diagnosis and management of diffuse coronary artery disease. PMID:18323461

  12. Neural correlates of post-conventional moral reasoning: a voxel-based morphometry study.

    PubMed

    Prehn, Kristin; Korczykowski, Marc; Rao, Hengyi; Fang, Zhuo; Detre, John A; Robertson, Diana C

    2015-01-01

    Going back to Kohlberg, moral development research affirms that people progress through different stages of moral reasoning as cognitive abilities mature. Individuals at a lower level of moral reasoning judge moral issues mainly based on self-interest (personal interests schema) or based on adherence to laws and rules (maintaining norms schema), whereas individuals at the post-conventional level judge moral issues based on deeper principles and shared ideals. However, the extent to which moral development is reflected in structural brain architecture remains unknown. To investigate this question, we used voxel-based morphometry and examined the brain structure in a sample of 67 Master of Business Administration (MBA) students. Subjects completed the Defining Issues Test (DIT-2) which measures moral development in terms of cognitive schema preference. Results demonstrate that subjects at the post-conventional level of moral reasoning were characterized by increased gray matter volume in the ventromedial prefrontal cortex and subgenual anterior cingulate cortex, compared with subjects at a lower level of moral reasoning. Our findings support an important role for both cognitive and emotional processes in moral reasoning and provide first evidence for individual differences in brain structure according to the stages of moral reasoning first proposed by Kohlberg decades ago.

  13. Neural Correlates of Post-Conventional Moral Reasoning: A Voxel-Based Morphometry Study

    PubMed Central

    Prehn, Kristin; Korczykowski, Marc; Rao, Hengyi; Fang, Zhuo; Detre, John A.; Robertson, Diana C.

    2015-01-01

    Going back to Kohlberg, moral development research affirms that people progress through different stages of moral reasoning as cognitive abilities mature. Individuals at a lower level of moral reasoning judge moral issues mainly based on self-interest (personal interests schema) or based on adherence to laws and rules (maintaining norms schema), whereas individuals at the post-conventional level judge moral issues based on deeper principles and shared ideals. However, the extent to which moral development is reflected in structural brain architecture remains unknown. To investigate this question, we used voxel-based morphometry and examined the brain structure in a sample of 67 Master of Business Administration (MBA) students. Subjects completed the Defining Issues Test (DIT-2) which measures moral development in terms of cognitive schema preference. Results demonstrate that subjects at the post-conventional level of moral reasoning were characterized by increased gray matter volume in the ventromedial prefrontal cortex and subgenual anterior cingulate cortex, compared with subjects at a lower level of moral reasoning. Our findings support an important role for both cognitive and emotional processes in moral reasoning and provide first evidence for individual differences in brain structure according to the stages of moral reasoning first proposed by Kohlberg decades ago. PMID:26039547

  14. Regional gray matter density associated with emotional conflict resolution: evidence from voxel-based morphometry.

    PubMed

    Deng, Z; Wei, D; Xue, S; Du, X; Hitchman, G; Qiu, J

    2014-09-05

    Successful emotion regulation is a fundamental prerequisite for well-being and dysregulation may lead to psychopathology. The ability to inhibit spontaneous emotions while behaving in accordance with desired goals is an important dimension of emotion regulation and can be measured using emotional conflict resolution tasks. Few studies have investigated the gray matter correlates underlying successful emotional conflict resolution at the whole-brain level. We had 190 adults complete an emotional conflict resolution task (face-word task) and examined the brain regions significantly correlated with successful emotional conflict resolution using voxel-based morphometry. We found successful emotional conflict resolution was associated with increased regional gray matter density in widely distributed brain regions. These regions included the dorsal anterior cingulate/dorsal medial prefrontal cortex, ventral medial prefrontal cortex, supplementary motor area, amygdala, ventral striatum, precuneus, posterior cingulate cortex, inferior parietal lobule, superior temporal gyrus and fusiform face area. Together, our results indicate that individual differences in emotional conflict resolution ability may be attributed to regional structural differences across widely distributed brain regions. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Different brain structures associated with artistic and scientific creativity: a voxel-based morphometry study.

    PubMed

    Shi, Baoguo; Cao, Xiaoqing; Chen, Qunlin; Zhuang, Kaixiang; Qiu, Jiang

    2017-02-21

    Creativity is the ability to produce original and valuable ideas or behaviors. In real life, artistic and scientific creativity promoted the development of human civilization; however, to date, no studies have systematically investigated differences in the brain structures responsible for artistic and scientific creativity in a large sample. Using voxel-based morphometry (VBM), this study identified differences in regional gray matter volume (GMV) across the brain between artistic and scientific creativity (assessed by the Creative Achievement Questionnaire) in 356 young, healthy subjects. The results showed that artistic creativity was significantly negatively associated with the regional GMV of the supplementary motor area (SMA) and anterior cingulate cortex (ACC). In contrast, scientific creativity was significantly positively correlated with the regional GMV of the left middle frontal gyrus (MFG) and left inferior occipital gyrus (IOG). Overall, artistic creativity was associated with the salience network (SN), whereas scientific creativity was associated with the executive attention network and semantic processing. These results may provide an effective marker that can be used to predict and evaluate individuals' creative performance in the fields of science and art.

  16. Different brain structures associated with artistic and scientific creativity: a voxel-based morphometry study

    PubMed Central

    Shi, Baoguo; Cao, Xiaoqing; Chen, Qunlin; Zhuang, Kaixiang; Qiu, Jiang

    2017-01-01

    Creativity is the ability to produce original and valuable ideas or behaviors. In real life, artistic and scientific creativity promoted the development of human civilization; however, to date, no studies have systematically investigated differences in the brain structures responsible for artistic and scientific creativity in a large sample. Using voxel-based morphometry (VBM), this study identified differences in regional gray matter volume (GMV) across the brain between artistic and scientific creativity (assessed by the Creative Achievement Questionnaire) in 356 young, healthy subjects. The results showed that artistic creativity was significantly negatively associated with the regional GMV of the supplementary motor area (SMA) and anterior cingulate cortex (ACC). In contrast, scientific creativity was significantly positively correlated with the regional GMV of the left middle frontal gyrus (MFG) and left inferior occipital gyrus (IOG). Overall, artistic creativity was associated with the salience network (SN), whereas scientific creativity was associated with the executive attention network and semantic processing. These results may provide an effective marker that can be used to predict and evaluate individuals’ creative performance in the fields of science and art. PMID:28220826

  17. Neurostructural correlates of two subtypes of specific phobia: a voxel-based morphometry study.

    PubMed

    Hilbert, Kevin; Evens, Ricarda; Maslowski, Nina Isabel; Wittchen, Hans-Ulrich; Lueken, Ulrike

    2015-02-28

    The animal and blood-injection-injury (BII) subtypes of specific phobia are both characterized by subjective fear but distinct autonomic reactions to threat. Previous functional neuroimaging studies have related these characteristic responses to shared and non-shared neural underpinnings. However, no comparative structural data are available. This study aims to fill this gap by comparing the two subtypes and also comparing them with a non-phobic control group. Gray and white matter data of 33 snake phobia subjects (SP), 26 dental phobia subjects (DP), and 37 healthy control (HC) subjects were analyzed with voxel-based morphometry. Especially DP differed from HC and SP by showing significantly increased grey matter volumes in widespread areas including the right subgenual anterior cingulate gyrus, left insula, left orbitofrontal and left prefrontal (PFC) cortices. In addition, white matter volume was significantly increased in the left PFC in DP compared with SP. These results are in line with functional changes observed in dental phobia and point toward those brain circuits associated with emotional processing and regulation. Future studies should aim to further delineate functional and structural connectivity alterations in specific phobia. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Dyslexia and voxel-based morphometry: correlations between five behavioural measures of dyslexia and gray and white matter volumes.

    PubMed

    Tamboer, Peter; Scholte, H Steven; Vorst, Harrie C M

    2015-10-01

    In voxel-based morphometry studies of dyslexia, the relation between causal theories of dyslexia and gray matter (GM) and white matter (WM) volume alterations is still under debate. Some alterations are consistently reported, but others failed to reach significance. We investigated GM alterations in a large sample of Dutch students (37 dyslexics and 57 non-dyslexics) with two analyses: group differences in local GM and total GM and WM volume and correlations between GM and WM volumes and five behavioural measures. We found no significant group differences after corrections for multiple comparisons although total WM volume was lower in the group of dyslexics when age was partialled out. We presented an overview of uncorrected clusters of voxels (p < 0.05, cluster size k > 200) with reduced or increased GM volume. We found four significant correlations between factors of dyslexia representing various behavioural measures and the clusters found in the first analysis. In the whole sample, a factor related to performances in spelling correlated negatively with GM volume in the left posterior cerebellum. Within the group of dyslexics, a factor related to performances in Dutch-English rhyme words correlated positively with GM volume in the left and right caudate nucleus and negatively with increased total WM volume. Most of our findings were in accordance with previous reports. A relatively new finding was the involvement of the caudate nucleus. We confirmed the multiple cognitive nature of dyslexia and suggested that experience greatly influences anatomical alterations depending on various subtypes of dyslexia, especially in a student sample.

  19. Effects of cumulative illness severity on hippocampal gray matter volume in major depression: a voxel-based morphometry study.

    PubMed

    Zaremba, Dario; Enneking, Verena; Meinert, Susanne; Förster, Katharina; Bürger, Christian; Dohm, Katharina; Grotegerd, Dominik; Redlich, Ronny; Dietsche, Bruno; Krug, Axel; Kircher, Tilo; Kugel, Harald; Heindel, Walter; Baune, Bernhard T; Arolt, Volker; Dannlowski, Udo

    2018-02-08

    Patients with major depression show reduced hippocampal volume compared to healthy controls. However, the contribution of patients' cumulative illness severity to hippocampal volume has rarely been investigated. It was the aim of our study to find a composite score of cumulative illness severity that is associated with hippocampal volume in depression. We estimated hippocampal gray matter volume using 3-tesla brain magnetic resonance imaging in 213 inpatients with acute major depression according to DSM-IV criteria (employing the SCID interview) and 213 healthy controls. Patients' cumulative illness severity was ascertained by six clinical variables via structured clinical interviews. A principal component analysis was conducted to identify components reflecting cumulative illness severity. Regression analyses and a voxel-based morphometry approach were used to investigate the influence of patients' individual component scores on hippocampal volume. Principal component analysis yielded two main components of cumulative illness severity: Hospitalization and Duration of Illness. While the component Hospitalization incorporated information from the intensity of inpatient treatment, the component Duration of Illness was based on the duration and frequency of illness episodes. We could demonstrate a significant inverse association of patients' Hospitalization component scores with bilateral hippocampal gray matter volume. This relationship was not found for Duration of Illness component scores. Variables associated with patients' history of psychiatric hospitalization seem to be accurate predictors of hippocampal volume in major depression and reliable estimators of patients' cumulative illness severity. Future studies should pay attention to these measures when investigating hippocampal volume changes in major depression.

  20. Assessment of pingo distribution and morphometry using an IfSAR derived digital surface model, western Arctic Coastal Plain, Northern Alaska

    NASA Astrophysics Data System (ADS)

    Jones, Benjamin M.; Grosse, Guido; Hinkel, Kenneth M.; Arp, Christopher D.; Walker, Shane; Beck, Richard A.; Galloway, John P.

    2012-02-01

    Pingos are circular to elongate ice-cored mounds that form by injection and freezing of pressurized water in near-surface permafrost. Here we use a digital surface model (DSM) derived from an airborne Interferometric Synthetic Aperture Radar (IfSAR) system to assess the distribution and morphometry of pingos within a 40,000 km 2 area on the western Arctic Coastal Plain of northern Alaska. We have identified 1247 pingo forms in the study region, ranging in height from 2 to 21 m, with a mean height of 4.6 m. Pingos in this region are of hydrostatic origin, with 98% located within 995 drained lake basins, most of which are underlain by thick eolian sand deposits. The highest pingo density (0.18 km - 2 ) occurs where streams have reworked these deposits. Morphometric analyses indicate that most pingos are small to medium in size (< 200 m diameter), gently to moderately sloping (< 30°), circular to slightly elongate (mean circularity index of 0.88), and of relatively low height (2 to 5 m). However, 57 pingos stand higher than 10 m, 26 have a maximum slope greater than 30°, and 42 are larger than 200 m in diameter. Comparison with a legacy pingo dataset based on 1950s stereo-pair photography indicates that 66 may have partially or completely collapsed over the last half-century. However, we mapped over 400 pingos not identified in the legacy dataset, and identified only three higher than 2 m to have formed between ca. 1955 and ca. 2005, indicating that caution should be taken when comparing contemporary and legacy datasets derived by different techniques. This comprehensive database of pingo location and morphometry based on an IfSAR DSM may prove useful for land and resource managers as well as aid in the identification of pingo-like features on Mars.

  1. Assessment of pingo distribution and morphometry using an IfSAR derived digital surface model, western Arctic Coastal Plain, Northern Alaska

    USGS Publications Warehouse

    Jones, Benjamin M.; Grosse, G.; Hinkel, Kenneth M.; Arp, C.D.; Walker, S.; Beck, R.A.; Galloway, J.P.

    2012-01-01

    Pingos are circular to elongate ice-cored mounds that form by injection and freezing of pressurized water in near-surface permafrost. Here we use a digital surface model (DSM) derived from an airborne Interferometric Synthetic Aperture Radar (IfSAR) system to assess the distribution and morphometry of pingos within a 40,000km2 area on the western Arctic Coastal Plain of northern Alaska. We have identified 1247 pingo forms in the study region, ranging in height from 2 to 21m, with a mean height of 4.6m. Pingos in this region are of hydrostatic origin, with 98% located within 995 drained lake basins, most of which are underlain by thick eolian sand deposits. The highest pingo density (0.18km-2) occurs where streams have reworked these deposits. Morphometric analyses indicate that most pingos are small to medium in size (<200m diameter), gently to moderately sloping (<30??), circular to slightly elongate (mean circularity index of 0.88), and of relatively low height (2 to 5m). However, 57 pingos stand higher than 10m, 26 have a maximum slope greater than 30??, and 42 are larger than 200m in diameter. Comparison with a legacy pingo dataset based on 1950s stereo-pair photography indicates that 66 may have partially or completely collapsed over the last half-century. However, we mapped over 400 pingos not identified in the legacy dataset, and identified only three higher than 2m to have formed between ca. 1955 and ca. 2005, indicating that caution should be taken when comparing contemporary and legacy datasets derived by different techniques. This comprehensive database of pingo location and morphometry based on an IfSAR DSM may prove useful for land and resource managers as well as aid in the identification of pingo-like features on Mars. ?? 2011.

  2. Revealing, Reducing, and Representing Uncertainties in New Hydrologic Projections for Climate-changed Futures

    NASA Astrophysics Data System (ADS)

    Arnold, Jeffrey; Clark, Martyn; Gutmann, Ethan; Wood, Andy; Nijssen, Bart; Rasmussen, Roy

    2016-04-01

    The United States Army Corps of Engineers (USACE) has had primary responsibility for multi-purpose water resource operations on most of the major river systems in the U.S. for more than 200 years. In that time, the USACE projects and programs making up those operations have proved mostly robust against the range of natural climate variability encountered over their operating life spans. However, in some watersheds and for some variables, climate change now is known to be shifting the hydroclimatic baseline around which that natural variability occurs and changing the range of that variability as well. This makes historical stationarity an inappropriate basis for assessing continued project operations under climate-changed futures. That means new hydroclimatic projections are required at multiple scales to inform decisions about specific threats and impacts, and for possible adaptation responses to limit water-resource vulnerabilities and enhance operational resilience. However, projections of possible future hydroclimatologies have myriad complex uncertainties that require explicit guidance for interpreting and using them to inform those decisions about climate vulnerabilities and resilience. Moreover, many of these uncertainties overlap and interact. Recent work, for example, has shown the importance of assessing the uncertainties from multiple sources including: global model structure [Meehl et al., 2005; Knutti and Sedlacek, 2013]; internal climate variability [Deser et al., 2012; Kay et al., 2014]; climate downscaling methods [Gutmann et al., 2012; Mearns et al., 2013]; and hydrologic models [Addor et al., 2014; Vano et al., 2014; Mendoza et al., 2015]. Revealing, reducing, and representing these uncertainties is essential for defining the plausible quantitative climate change narratives required to inform water-resource decision-making. And to be useful, such quantitative narratives, or storylines, of climate change threats and hydrologic impacts must sample

  3. The relationship between human placental morphometry and ultrasonic measurements of utero-placental blood flow and fetal growth.

    PubMed

    Salavati, N; Sovio, U; Mayo, R Plitman; Charnock-Jones, D S; Smith, G C S

    2016-02-01

    Ultrasonic fetal biometry and arterial Doppler flow velocimetry are widely used to assess the risk of pregnancy complications. There is an extensive literature on the relationship between pregnancy outcomes and the size and shape of the placenta. However, ultrasonic fetal biometry and arterial Doppler flow velocimetry have not previously been studied in relation to postnatal placental morphometry in detail. We conducted a prospective cohort study of nulliparous women in The Rosie Hospital, Cambridge (UK). We studied a group of 2120 women who had complete data on uterine and umbilical Doppler velocimetry and fetal biometry at 20, 28 and 36 weeks' gestational age, digital images of the placenta available, and delivered a liveborn infant at term. Associations were expressed as the difference in the standard deviation (SD) score of the gestational age adjusted ultrasound measurement (z-score) comparing the lowest and highest decile of the given placental morphometric measurement. The lowest decile of placental surface area was associated with 0.87 SD higher uterine artery Doppler mean pulsatility index (PI) at 20 weeks (95% CI: 0.68 to 1.07, P < 0.001). The lowest decile of placental weight was associated with 0.73 SD higher umbilical artery Doppler PI at 36 weeks (95% CI: 0.54 to 0.93, P < 0.001). The lowest decile of both placental weight and placental area were associated with reduced growth velocity of the fetal abdominal circumference between 20 and 36 weeks (both P < 0.001). Placental area and weight are associated with uterine and umbilical blood flow, respectively, and both are associated with fetal growth rate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. The density of parasympathetic axons is reduced in the exocrine pancreas of individuals recently diagnosed with type 1 diabetes.

    PubMed

    Lundberg, Marcus; Lindqvist, Andreas; Wierup, Nils; Krogvold, Lars; Dahl-Jørgensen, Knut; Skog, Oskar

    2017-01-01

    To elucidate the etiology of type 1 diabetes, the affected pancreas needs to be thoroughly characterized. Pancreatic innervation has been suggested to be involved in the pathology of the disease and a reduction of sympathetic innervation of the islets was recently reported. In the present study, we hypothesized that parasympathetic innervation would be altered in the type 1 diabetes pancreas. Human pancreatic specimens were obtained from a unique cohort of individuals with recent onset or long standing type 1 diabetes. Density of parasympathetic axons was assessed by immunofluorescence and morphometry. Our main finding was a reduced density of parasympathetic axons in the exocrine, but not endocrine compartment of the pancreas in individuals with recent onset type 1 diabetes. The reduced density of parasympathetic axons in the exocrine compartment could have functional implications, e.g. be related to the exocrine insufficiency reported in type 1 diabetes patients. Further studies are needed to understand whether reduced parasympathetic innervation is a cause or consequence of type 1 diabetes.

  5. Reducing contralateral SI activity reveals hindlimb receptive fields in the SI forelimb-stump representation of neonatally amputated rats.

    PubMed

    Pluto, Charles P; Chiaia, Nicolas L; Rhoades, Robert W; Lane, Richard D

    2005-09-01

    In adult rats that sustained forelimb amputation on the day of birth, >30% of multiunit recording sites in the forelimb-stump representation of primary somatosensory cortex (SI) also respond to cutaneous hindlimb stimulation when cortical GABA(A+B) receptors are blocked (GRB). This study examined whether hindlimb receptive fields could also be revealed in forelimb-stump sites by reducing one known source of excitatory input to SI GABAergic neurons, the contralateral SI cortex. Corpus callosum projection neurons connect homotopic SI regions, making excitatory contacts onto pyramidal cells and interneurons. Thus in addition to providing monosynaptic excitation in SI, callosal fibers can produce disynaptic inhibition through excitatory synapses with inhibitory interneurons. Based on the latter of these connections, we hypothesized that inactivating the contralateral (intact) SI forelimb region would "unmask" normally suppressed hindlimb responses by reducing the activity of SI GABAergic neurons. The SI forelimb-stump representation was first mapped under normal conditions and then during GRB to identify stump/hindlimb responsive sites. After GRB had dissipated, the contralateral (intact) SI forelimb region was mapped and reversibly inactivated with injections of 4% lidocaine, and selected forelimb-stump sites were retested. Contralateral SI inactivation revealed hindlimb responses in approximately 60% of sites that were stump/hindlimb responsive during GRB. These findings indicate that activity in the contralateral SI contributes to the suppression of reorganized hindlimb receptive fields in neonatally amputated rats.

  6. MANDIBULAR MORPHOMETRY APPLIED TO ANESTHETIC BLOCKAGE IN THE MANED WOLF (CHRYSOCYON BRACHYURUS).

    PubMed

    de Souza Junior, Paulo; de Moraes, Flavio Machado; de Carvalho, Natan da Cruz; Canelo, Evandro Alves; Thiesen, Roberto; Santos, André Luiz Quagliatto

    2016-03-01

    Chrysocyon brachyurus (maned wolf) is the biggest South American canid and has a high frequency of dental injuries, both in the wild and in captivity. Thus, veterinary procedures are necessary to preserve the feeding capacity of hundreds of captive specimens worldwide. The aim of this study was to investigate the mandibular morphometry of the maned wolf with emphasis on the establishment of anatomic references for anesthetic block of the inferior alveolar and mental nerves. Therefore, 16 measurements in 22 mandibles of C. brachyurus adults were taken. For extraoral block of the inferior alveolar nerve at the level of the mandibular foramen, the needle should be advanced close to the medial face of the mandibular ramus for 11.4 mm perpendicular to the palpable concavity. In another extraoral approach, the needle may be introduced for 30.4 mm from the angular process at a 20-25° angle to the ventral margin. For blocking only the mental nerve, the needle should be inserted for 10 mm from ventral border, close to the labial surface of the mandibular body, at the level of the lower first premolar. The mandibular foramen showed similar position, size, and symmetry in the maned wolf specimens examined. Comparison of the data observed here with those available for other carnivores indicates the need to determine these anatomic references specifically for each species.

  7. Mis-segmentation in voxel-based morphometry due to a signal intensity change in the putamen.

    PubMed

    Goto, Masami; Abe, Osamu; Miyati, Tosiaki; Aoki, Shigeki; Gomi, Tsutomu; Takeda, Tohoru

    2017-12-01

    The aims of this study were to demonstrate an association between changes in the signal intensity of the putamen on three-dimensional T1-weighted magnetic resonance images (3D-T1WI) and mis-segmentation, using the voxel-based morphometry (VBM) 8 toolbox. The sagittal 3D-T1WIs of 22 healthy volunteers were obtained for VBM analysis using the 1.5-T MR scanner. We prepared five levels of 3D-T1WI signal intensity (baseline, same level, background level, low level, and high level) in regions of interest containing the putamen. Groups of smoothed, spatially normalized tissue images were compared to the baseline group using a paired t test. The baseline was compared to the other four levels. In all comparisons, significant volume changes were observed around and outside the area that included the signal intensity change. The present study demonstrated an association between a change in the signal intensity of the putamen on 3D-T1WI and changed volume in segmented tissue images.

  8. A Matlab user interface for the statistically assisted fluid registration algorithm and tensor-based morphometry

    NASA Astrophysics Data System (ADS)

    Yepes-Calderon, Fernando; Brun, Caroline; Sant, Nishita; Thompson, Paul; Lepore, Natasha

    2015-01-01

    Tensor-Based Morphometry (TBM) is an increasingly popular method for group analysis of brain MRI data. The main steps in the analysis consist of a nonlinear registration to align each individual scan to a common space, and a subsequent statistical analysis to determine morphometric differences, or difference in fiber structure between groups. Recently, we implemented the Statistically-Assisted Fluid Registration Algorithm or SAFIRA,1 which is designed for tracking morphometric differences among populations. To this end, SAFIRA allows the inclusion of statistical priors extracted from the populations being studied as regularizers in the registration. This flexibility and degree of sophistication limit the tool to expert use, even more so considering that SAFIRA was initially implemented in command line mode. Here, we introduce a new, intuitive, easy to use, Matlab-based graphical user interface for SAFIRA's multivariate TBM. The interface also generates different choices for the TBM statistics, including both the traditional univariate statistics on the Jacobian matrix, and comparison of the full deformation tensors.2 This software will be freely disseminated to the neuroimaging research community.

  9. Surface Polysaccharide Mutants Reveal that Absence of O Antigen Reduces Biofilm Formation of Actinobacillus pleuropneumoniae

    PubMed Central

    Hathroubi, S.; Hancock, M. A.; Langford, P. R.; Tremblay, Y. D. N.; Labrie, J.

    2015-01-01

    Actinobacillus pleuropneumoniae is a Gram-negative bacterium belonging to the Pasteurellaceae family and the causative agent of porcine pleuropneumonia, a highly contagious lung disease causing important economic losses. Surface polysaccharides, including lipopolysaccharides (LPS) and capsular polysaccharides (CPS), are implicated in the adhesion and virulence of A. pleuropneumoniae, but their role in biofilm formation is still unclear. In this study, we investigated the requirement for these surface polysaccharides in biofilm formation by A. pleuropneumoniae serotype 1. Well-characterized mutants were used: an O-antigen LPS mutant, a truncated core LPS mutant with an intact O antigen, a capsule mutant, and a poly-N-acetylglucosamine (PGA) mutant. We compared the amount of biofilm produced by the parental strain and the isogenic mutants using static and dynamic systems. Compared to the findings for the biofilm of the parental or other strains, the biofilm of the O antigen and the PGA mutants was dramatically reduced, and it had less cell-associated PGA. Real-time PCR analyses revealed a significant reduction in the level of pgaA, cpxR, and cpxA mRNA in the biofilm cells of the O-antigen mutant compared to that in the biofilm cells of the parental strain. Specific binding between PGA and LPS was consistently detected by surface plasmon resonance, but the lack of O antigen did not abolish these interactions. In conclusion, the absence of the O antigen reduces the ability of A. pleuropneumoniae to form a biofilm, and this is associated with the reduced expression and production of PGA. PMID:26483403

  10. Does MRI scan acceleration affect power to track brain change?

    PubMed

    Ching, Christopher R K; Hua, Xue; Hibar, Derrek P; Ward, Chadwick P; Gunter, Jeffrey L; Bernstein, Matt A; Jack, Clifford R; Weiner, Michael W; Thompson, Paul M

    2015-01-01

    The Alzheimer's Disease Neuroimaging Initiative recently implemented accelerated T1-weighted structural imaging to reduce scan times. Faster scans may reduce study costs and patient attrition by accommodating people who cannot tolerate long scan sessions. However, little is known about how scan acceleration affects the power to detect longitudinal brain change. Using tensor-based morphometry, no significant difference was detected in numerical summaries of atrophy rates from accelerated and nonaccelerated scans in subgroups of patients with Alzheimer's disease, early or late mild cognitive impairment, or healthy controls over a 6- and 12-month scan interval. Whole-brain voxelwise mapping analyses revealed some apparent regional differences in 6-month atrophy rates when comparing all subjects irrespective of diagnosis (n = 345). No such whole-brain difference was detected for the 12-month scan interval (n = 156). Effect sizes for structural brain changes were not detectably different in accelerated versus nonaccelerated data. Scan acceleration may influence brain measures but has minimal effects on tensor-based morphometry-derived atrophy measures, at least over the 6- and 12-month intervals examined here. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Sex differences in impulsivity and brain morphometry in methamphetamine users

    PubMed Central

    Kogachi, Shannon; Chang, Linda; Alicata, Daniel; Cunningham, Eric; Ernst, Thomas

    2016-01-01

    Methamphetamine (METH) is an addictive stimulant, and METH users have abnormal brain structures and function. The aims of this study were to investigate the relationships between impulsivity, brain structures, and possible sex-specific differences between METH users and non-drug using Controls. Structural MRI and the Barratt Impulsiveness Scale (BIS) questionnaire were completed in 124 subjects: 62 METH (ages 41.2 ± 1.4 years, 34 males) and 62 Controls (ages 43.3 ± 2.3 years, 36 males). Independent and interactive effects of METH use status and sex were evaluated. Relationships between METH usage characteristics, brain morphometry, and impulsivity scores were examined. METH users had higher impulsivity scores, on both the Cognitive and Behavioral Factors from the BIS (p < 0.0001–0.0001). Compared with same-sex Controls, male METH users had larger, while female METH users had smaller, right superior frontal cortex (interaction-p = 0.0005). The male METH users with larger frontal volumes and female METH users with smaller or thinner frontal cortices had greater Cognitive impulsivity (interaction-p ≤ 0.05). Only female METH users showed relatively larger nucleus accumbens (interaction-p = 0.03). Greater impulsivity and thinner frontal cortices in METH users are validated. Larger superior frontal cortex in male METH users with greater cognitive impulsivity suggest decreased dendritic pruning during adolescence might have contributed to their impulsive and drug use behaviors. In the female METH users, smaller frontal cortices and the associated greater impulsivity suggest greater neurotoxicity to these brain regions, while their relatively larger nucleus accumbens suggest an estrogen-mediated neuroprotective glial response. Men and women may be affected differently by METH use. PMID:27095357

  12. Morphology and digitally aided morphometry of the human paracentral lobule.

    PubMed

    Spasojević, Goran; Malobabic, Slobodan; Pilipović-Spasojević, Olivera; Djukić-Macut, Nataša; Maliković, Aleksandar

    2013-02-01

    The human paracentral lobule, the junction of the precentral and postcentral gyri at the medial hemispheric surface, contains several important functional regions, and its variable morphology requires exact morphological and quantitativedata. In order to obtain precise data we investigated the morphology of the paracentral lobule and quantified its visible (extrasulcal) surface. This surface corresponds to commonly used magnetic resonance imaging scout images. We studied 84 hemispheres of adult persons (42 brains; 26 males and 16 females; 20-65 years) fixed in neutral formalin for at least 4 weeks. The medial hemispheric surface was photographed at standard distance and each digital photo was calibrated. Using the intercommissural line system (commissura anterior-commissura posterior or CA-CP line), we performed standardised measurements of the paracentral lobule. Exact determination of its boundaries and morphological types was followed by digital morphometry of its extrasulcal surface using AutoCAD software. We found two distinct morphological types of the human paracentral lobule: continuous type, which was predominant (95.2%), and rare segmented type (4.8%). In hemispheres with segmented cingulate sulcus we also found the short transitional lobulo-limbic gyrus (13.1%). The mean extrasulcal surface of the left paracentral lobule was significantly larger, both in males (left 6.79 cm2 vs. right 5.76 cm2) and in females (left 6.05 cm2 vs. right 5.16 cm2). However, even larger average surfaces in males were not significantly different than the same in females. Reported morphological and quantitative data will be useful during diagnostics and treatment of pathologies affecting the human paracentral lobule, and in further studies of its cytoarchitectonic and functional parcellations.

  13. From Cortical and Subcortical Grey Matter Abnormalities to Neurobehavioral Phenotype of Angelman Syndrome: A Voxel-Based Morphometry Study

    PubMed Central

    Aghakhanyan, Gayane; Bonanni, Paolo; Randazzo, Giovanna; Nappi, Sara; Tessarotto, Federica; De Martin, Lara; Frijia, Francesca; De Marchi, Daniele; De Masi, Francesco; Kuppers, Beate; Lombardo, Francesco; Caramella, Davide; Montanaro, Domenico

    2016-01-01

    Angelman syndrome (AS) is a rare neurogenetic disorder due to loss of expression of maternal ubiquitin-protein ligase E3A (UBE3A) gene. It is characterized by severe developmental delay, speech impairment, movement or balance disorder and typical behavioral uniqueness. Affected individuals show normal magnetic resonance imaging (MRI) findings, although mild dysmyelination may be observed. In this study, we adopted a quantitative MRI analysis with voxel-based morphometry (FSL-VBM) method to investigate disease-related changes in the cortical/subcortical grey matter (GM) structures. Since 2006 to 2013 twenty-six AS patients were assessed by our multidisciplinary team. From those, sixteen AS children with confirmed maternal 15q11-q13 deletions (mean age 7.7 ± 3.6 years) and twenty-one age-matched controls were recruited. The developmental delay and motor dysfunction were assessed using Bayley III and Gross Motor Function Measure (GMFM). Principal component analysis (PCA) was applied to the clinical and neuropsychological datasets. High-resolution T1-weighted images were acquired and FSL-VBM approach was applied to investigate differences in the local GM volume and to correlate clinical and neuropsychological changes in the regional distribution of GM. We found bilateral GM volume loss in AS compared to control children in the striatum, limbic structures, insular and orbitofrontal cortices. Voxel-wise correlation analysis with the principal components of the PCA output revealed a strong relationship with GM volume in the superior parietal lobule and precuneus on the left hemisphere. The anatomical distribution of cortical/subcortical GM changes plausibly related to several clinical features of the disease and may provide an important morphological underpinning for clinical and neurobehavioral symptoms in children with AS. PMID:27626634

  14. Regional gray matter density is associated with achievement motivation: evidence from voxel-based morphometry.

    PubMed

    Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Sekiguchi, Atsushi; Kotozaki, Yuka; Miyauchi, Carlos Makoto; Yokoyama, Ryoichi; Iizuka, Kunio; Hashizume, Hiroshi; Nakagawa, Seishu; Kunitoki, Keiko; Sassa, Yuko; Kawashima, Ryuta

    2014-01-01

    Achievement motivation can be defined as a recurrent need to improve one's past performance. Despite previous functional imaging studies on motivation-related functional activation, the relationship between regional gray matter (rGM) morphology and achievement motivation has never been investigated. We used voxel-based morphometry and a questionnaire (achievement motivation scale) to measure individual achievement motivation and investigated the association between rGM density (rGMD) and achievement motivation [self-fulfillment achievement motivation (SFAM) and competitive achievement motivation (CAM) across the brain in healthy young adults (age 21.0 ± 1.8 years, men (n = 94), women (n = 91)]. SFAM and rGMD significantly and negatively correlated in the orbitofrontal cortex (OFC). CAM and rGMD significantly and positively correlated in the right putamen, insula, and precuneus. These results suggest that the brain areas that play central roles in externally modulated motivation (OFC and putamen) also contribute to SFAM and CAM, respectively, but in different ways. Furthermore, the brain areas in which rGMD correlated with CAM are related to cognitive processes associated with distressing emotions and social cognition, and these cognitive processes may characterize CAM.

  15. Greater cerebellar gray matter volume in car drivers: an exploratory voxel-based morphometry study

    PubMed Central

    Sakai, Hiroyuki; Ando, Takafumi; Sadato, Norihiro; Uchiyama, Yuji

    2017-01-01

    Previous functional neuroimaging studies have identified multiple brain areas associated with distinct aspects of car driving in simulated traffic environments. Few studies, however, have examined brain morphology associated with everyday car-driving experience in real traffic. Thus, the aim of the current study was to identify gray matter volume differences between drivers and non-drivers. We collected T1-weighted structural brain images from 73 healthy young adults (36 drivers and 37 non-drivers). We performed a whole-brain voxel-based morphometry analysis to examine between-group differences in regional gray matter volume. Compared with non-drivers, drivers showed significantly greater gray matter volume in the left cerebellar hemisphere, which has been associated with cognitive rather than motor functioning. In contrast, we found no brain areas with significantly greater gray matter volume in non-drivers compared with drivers. Our findings indicate that experience with everyday car driving in real traffic is associated with greater gray matter volume in the left cerebellar hemisphere. This brain area may be involved in abilities that are critical for driving a car, but are not commonly or frequently used during other daily activities. PMID:28417971

  16. A comparison between pre- and posthibernation morphometry, hematology, and blood chemistry in viperid snakes.

    PubMed

    Dutton, Christopher J; Taylor, Peter

    2003-03-01

    Snakes from temperate climates are often made to hibernate in zoos to stimulate reproduction. Unfortunately, deaths have occurred during and after hibernation. This study evaluated the health status, pre- and posthibernation, of 31 adult viperid snakes. It included morphometric measurements, hematology, and blood chemistry. No differences were seen in body weights and weight to length ratios between pre- and posthibernation examinations, suggesting that the overall condition of the snakes did not change. No differences were seen in hematologic and blood chemistry parameters, except that bile acids (3alpha-hydroxybile acids) decreased, the implications of which are unknown. Three individuals had markedly high plasma uric acid levels posthibernation; of these, two individuals died from extensive visceral gout and one recovered with fluid therapy. Viperid snakes should be clinically healthy, well hydrated, and in good body condition when they are put into hibernation. They should be maintained in an environment with sufficient humidity and should have access to water. Blood samples should be collected on arousal for measuring plasma uric acid levels. Changes in morphometry, hematology, and blood chemistry appear to be abnormal and should be investigated thoroughly.

  17. Greater cerebellar gray matter volume in car drivers: an exploratory voxel-based morphometry study.

    PubMed

    Sakai, Hiroyuki; Ando, Takafumi; Sadato, Norihiro; Uchiyama, Yuji

    2017-04-18

    Previous functional neuroimaging studies have identified multiple brain areas associated with distinct aspects of car driving in simulated traffic environments. Few studies, however, have examined brain morphology associated with everyday car-driving experience in real traffic. Thus, the aim of the current study was to identify gray matter volume differences between drivers and non-drivers. We collected T1-weighted structural brain images from 73 healthy young adults (36 drivers and 37 non-drivers). We performed a whole-brain voxel-based morphometry analysis to examine between-group differences in regional gray matter volume. Compared with non-drivers, drivers showed significantly greater gray matter volume in the left cerebellar hemisphere, which has been associated with cognitive rather than motor functioning. In contrast, we found no brain areas with significantly greater gray matter volume in non-drivers compared with drivers. Our findings indicate that experience with everyday car driving in real traffic is associated with greater gray matter volume in the left cerebellar hemisphere. This brain area may be involved in abilities that are critical for driving a car, but are not commonly or frequently used during other daily activities.

  18. Larger Gray Matter Volume in the Basal Ganglia of Heavy Cannabis Users Detected by Voxel-Based Morphometry and Subcortical Volumetric Analysis.

    PubMed

    Moreno-Alcázar, Ana; Gonzalvo, Begoña; Canales-Rodríguez, Erick J; Blanco, Laura; Bachiller, Diana; Romaguera, Anna; Monté-Rubio, Gemma C; Roncero, Carlos; McKenna, Peter J; Pomarol-Clotet, Edith

    2018-01-01

    Background: Structural imaging studies of cannabis users have found evidence of both cortical and subcortical volume reductions, especially in cannabinoid receptor-rich regions such as the hippocampus and amygdala. However, the findings have not been consistent. In the present study, we examined a sample of adult heavy cannabis users without other substance abuse to determine whether long-term use is associated with brain structural changes, especially in the subcortical regions. Method: We compared the gray matter volume of 14 long-term, heavy cannabis users with non-using controls. To provide robust findings, we conducted two separate studies using two different MRI techniques. Each study used the same sample of cannabis users and a different control group, respectively. Both control groups were independent of each other. First, whole-brain voxel-based morphometry (VBM) was used to compare the cannabis users against 28 matched controls (HC1 group). Second, a volumetric analysis of subcortical regions was performed to assess differences between the cannabis users and a sample of 100 matched controls (HC2 group) obtained from a local database of healthy volunteers. Results: The VBM study revealed that, compared to the control group HC1, the cannabis users did not show cortical differences nor smaller volume in any subcortical structure but showed a cluster ( p < 0.001) of larger GM volume in the basal ganglia, involving the caudate, putamen, pallidum, and nucleus accumbens, bilaterally. The subcortical volumetric analysis revealed that, compared to the control group HC2, the cannabis users showed significantly larger volumes in the putamen ( p = 0.001) and pallidum ( p = 0.0015). Subtle trends, only significant at the uncorrected level, were also found in the caudate ( p = 0.05) and nucleus accumbens ( p = 0.047). Conclusions: This study does not support previous findings of hippocampal and/or amygdala structural changes in long-term, heavy cannabis users. It does

  19. Psorodonotus venosus group (Orthoptera, Tettigoniidae; Tettigoniinae): geometric morphometry revealed two new species in the group.

    PubMed

    Kaya, Sarp; Korkmaz, E Mahir; Ciplak, Battal

    2013-12-17

    Psorodonotus (Orthoptera, Tettigoniidae) includes 11 species distributed in Caucasus, Anatolia and Balkans. Although its present taxonomy is problematic, mainly three species groups can be distinguished; (i) The Specularis Group, (ii) The Caucasicus Group and (iii) The Venosus Group. Our recent studies on the genus have revealed presence of two new species in the last species group. Morphology of the species group studied both qualitatively and quantitatively using linear metric data of pronotum, tegmina and hind femur, and geometric data of male cerci and ovipositor. Morphological data were accompanied by data obtained from male calling song. Morphological and song data were produced from six different populations from North and Eastern part of Turkey: (1) Hakkari, (2) Tendürek, (3) Giresun, (4) Artvin, (5) Kars and (6) Ağrı. Qualitative and quantitative morphology, either linear-metric or geometric, suggest last three population as members of the same unit, but each of other three as different units. Song data are also largely in support of the morphological results. Necessary illustrations were provided to document results visually. Following conclusions were made: (1) the Artvin, Kars and Ağrı populations represent typical P. venosus and the Giresun population P. rugulosus, (2) each of the Hakkari and Tendürek populations represents a new species and P. hakkari sp. n. and P. tendurek sp. n. described by comparing with other members of P. venosus group, (3) P. rugulosus, P. hakkari sp. n. and P. tendurek sp. n. differ from P. venosus mainly by the longer cerci (extend to or beyond end of abdomen) and indistinct tubercles on surface of pronotal disc in female. P. rugulosus and P. tendurek sp. n. are also similar by sharing presence of two loud elements in a syllable (one in P. venosus, song of P. hakkari sp. n. is not available). But, similarities in phenotype are in conflict with relationships suggested by genetic data. 

  20. The common traits of the ACC and PFC in anxiety disorders in the DSM-5: meta-analysis of voxel-based morphometry studies.

    PubMed

    Shang, Jing; Fu, Yuchuan; Ren, Zhengjia; Zhang, Tao; Du, Mingying; Gong, Qiyong; Lui, Su; Zhang, Wei

    2014-01-01

    The core domains of social anxiety disorder (SAD), generalized anxiety disorder (GAD), panic disorder (PD) with and without agoraphobia (GA), and specific phobia (SP) are cognitive and physical symptoms that are related to the experience of fear and anxiety. It remains unclear whether these highly comorbid conditions that constitute the anxiety disorder subgroups of the Diagnostic and Statistical Manual for Mental Disorders--Fifth Edition (DSM-5) represent distinct disorders or alternative presentations of a single underlying pathology. A systematic search of voxel-based morphometry (VBM) studies of SAD, GAD, PD, GA, and SP was performed with an effect-size signed differential mapping (ES-SDM) meta-analysis to estimate the clusters of significant gray matter differences between patients and controls. Twenty-four studies were eligible for inclusion in the meta-analysis. Reductions in the right anterior cingulate gyrus and the left inferior frontal gyrus gray matter volumes (GMVs) were noted in patients with anxiety disorders when potential confounders, such as comorbid major depressive disorder (MDD), age, and antidepressant use were controlled for. We also demonstrated increased GMVs in the right dorsolateral prefrontal cortex (DLPFC) in comorbid depression-anxiety (CDA), drug-naïve and adult patients. Furthermore, we identified a reduced left middle temporal gyrus and right precentral gyrus in anxiety patients without comorbid MDD. Our findings indicate that a reduced volume of the right ventral anterior cingulate gyrus and left inferior frontal gyrus is common in anxiety disorders and is independent of comorbid depression, medication use, and age. This generic effect supports the notion that the four types of anxiety disorders have a clear degree of overlap that may reflect shared etiological mechanisms. The results are consistent with neuroanatomical DLPFC models of physiological responses, such as worry and fear, and the importance of the ventral anterior

  1. Transdermal delivery of AT1 receptor antagonists reduce blood pressure and reveals a vasodilatory effect in kidney blood vessels.

    PubMed

    Michalatou, Michaila; Androutsou, Maria Eleni; Antonopoulos, Markos; Vlahakos, Demetrios V; Agelis, George; Zulli, Anthony; Qaradakhi, Tawar; Mikkelsen, Kathleen; Apostolopoulos, Vasso; Matsoukas, John

    2018-04-19

    The Renin Angiotensin System (RAS) is pharmacologically targeted to reduce blood pressure, and patient compliance to oral medications is a clinical issue. The mechanisms of action of angiotensin receptor blockers (ARBs) in reducing blood pressure are not well understood, and is purported to be via a reduction of angiotensin II signaling. We aimed to develop a transdermal delivery method for ARBs (losartan potassium and valsartan) and to determine if ARBs reveal a vasodilatory effect of the novel RAS peptide, alamandine. In addition we determined the anti-hypertensive effects of the transdermal delivery patch. In vitro and in vivo experiments were performed to develop an appropriate therapeutic system, promising an alternative and more effective therapy in the treatment of hypertension. A variety of penetration enhancers were selected such as isopropyl myristate, propylene glycol, transcutol and dimenthyl sulfoxide to obtain a constant release of drugs through human skin. Small resistance vessels (kidney interlobar arteries) were mounted in organ baths and incubated with an ARB. Vasodilatory curves to alamandine were constructed Results: The in vivo studies demonstrates that systemic absorption of valsartan and losartan potassium using the appropriate formulations provides a steady state release and anti-hypertensive effect even after 24 hours of transdermal administration. No apparent skin irritations (erythema, edema) were observed with the tested formulations. We also show that blocking the AT1 receptor of rabbit interlobar arteries in vitro reveals a vasodilatory effect of alamandine. This study reveals potential mechanism of AT1 receptor blockade via alamandine, and is an important contribution in developing a favorable, convenient and painless antihypertensive therapy of prolonged duration through transdermal delivery of AT1 blockers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Morphology and morphometry of the meningo-orbital foramen as a result of plastic responses to the ambient temperature and its clinical relevance.

    PubMed

    Tomaszewska, Agnieszka; Zelaźniewicz, Agnieszka

    2014-05-01

    The meningo-orbital foramen (FMO) is an osteal opening, containing vessels providing an accessory blood supply to the orbit, situated close to the superior orbital fissure. Recent studies show FMO to be ubiquitous, with localization and occurrence varying, depending on a population, what may be due to environmental conditions (ie, temperature). It is often located near the operating area in surgeries in the orbital cavity, and its accurate localization allows avoiding unexpected bleeding during intervention. Because there is a lack of clarity in the literature concerning the morphology and the morphometry of the FMO, this study aimed to clarify the issue with clinical relevance. We studied dry adult human skulls (50 men and 33 women). The morphology and minimal distances between the FMO and standard anthropologic landmarks (nasion, frontomalare orbitale, supraorbital foramen, and zygomaticomaxillary suture) were measured, using MicroScribe G2L, a three-dimensional contact scanner. We compared the result with results of previous studies on populations from various climate zones. The FMO was present in 69.88% of the skulls (56.02% of orbits): in 60.34% of the skulls, the FMO was bilateral; and in 39.66%, unilateral. We observed 74 single, 10 double, and 2 triple foramina. The FMO was present mostly on the sphenoid and the frontal bone. There was no difference in minimal distances between the FMO and the anthropologic landmarks, depending on sex, except the distance to the nasion (shorter in women). The occurrence of the FMO in the population differed from that of other populations. The results show that it is possible that the morphology and the morphometry of the FMO depend on the climate zone or ambient temperature during growth, which should be considered before performing surgery in the orbital cavity.

  3. A case study of a multiply talented savant with an autism spectrum disorder: neuropsychological functioning and brain morphometry.

    PubMed

    Wallace, Gregory L; Happé, Francesca; Giedd, Jay N

    2009-05-27

    Neuropsychological functioning and brain morphometry in a savant (case GW) with an autism spectrum disorder (ASD) and both calendar calculation and artistic skills are quantified and compared with small groups of neurotypical controls. Good memory, mental calculation and visuospatial processing, as well as (implicit) knowledge of calendar structure and 'weak' central coherence characterized the cognitive profile of case GW. Possibly reflecting his savant skills, the superior parietal region of GW's cortex was the only area thicker (while areas such as the superior and medial prefrontal, middle temporal and motor cortices were thinner) than that of a neurotypical control group. Taken from the perspective of learning/practice-based models, skills in domains (e.g. calendars, art, music) that capitalize upon strengths often associated with ASD, such as detail-focused processing, are probably further enhanced through over-learning and massive exposure, and reflected in atypical brain structure.

  4. A case study of a multiply talented savant with an autism spectrum disorder: neuropsychological functioning and brain morphometry

    PubMed Central

    Wallace, Gregory L.; Happé, Francesca; Giedd, Jay N.

    2009-01-01

    Neuropsychological functioning and brain morphometry in a savant (case GW) with an autism spectrum disorder (ASD) and both calendar calculation and artistic skills are quantified and compared with small groups of neurotypical controls. Good memory, mental calculation and visuospatial processing, as well as (implicit) knowledge of calendar structure and ‘weak’ central coherence characterized the cognitive profile of case GW. Possibly reflecting his savant skills, the superior parietal region of GW's cortex was the only area thicker (while areas such as the superior and medial prefrontal, middle temporal and motor cortices were thinner) than that of a neurotypical control group. Taken from the perspective of learning/practice-based models, skills in domains (e.g. calendars, art, music) that capitalize upon strengths often associated with ASD, such as detail-focused processing, are probably further enhanced through over-learning and massive exposure, and reflected in atypical brain structure. PMID:19528026

  5. Sex differences in impulsivity and brain morphometry in methamphetamine users.

    PubMed

    Kogachi, Shannon; Chang, Linda; Alicata, Daniel; Cunningham, Eric; Ernst, Thomas

    2017-01-01

    Methamphetamine (METH) is an addictive stimulant, and METH users have abnormal brain structures and function. The aims of this study were to investigate the relationships between impulsivity, brain structures, and possible sex-specific differences between METH users and non-drug using Controls. Structural MRI and the Barratt Impulsiveness Scale (BIS) questionnaire were completed in 124 subjects: 62 METH (ages 41.2 ± 1.4 years, 34 males) and 62 Controls (ages 43.3 ± 2.3 years, 36 males). Independent and interactive effects of METH use status and sex were evaluated. Relationships between METH usage characteristics, brain morphometry, and impulsivity scores were examined. METH users had higher impulsivity scores, on both the Cognitive and Behavioral Factors from the BIS (p < 0.0001-0.0001). Compared with same-sex Controls, male METH users had larger, while female METH users had smaller, right superior frontal cortex (interaction-p = 0.0005). The male METH users with larger frontal volumes and female METH users with smaller or thinner frontal cortices had greater Cognitive impulsivity (interaction-p ≤ 0.05). Only female METH users showed relatively larger nucleus accumbens (interaction-p = 0.03). Greater impulsivity and thinner frontal cortices in METH users are validated. Larger superior frontal cortex in male METH users with greater cognitive impulsivity suggest decreased dendritic pruning during adolescence might have contributed to their impulsive and drug use behaviors. In the female METH users, smaller frontal cortices and the associated greater impulsivity suggest greater neurotoxicity to these brain regions, while their relatively larger nucleus accumbens suggest an estrogen-mediated neuroprotective glial response. Men and women may be affected differently by METH use.

  6. Structural neural correlates of multitasking: A voxel-based morphometry study.

    PubMed

    Zhang, Rui-Ting; Yang, Tian-Xiao; Wang, Yi; Sui, Yuxiu; Yao, Jingjing; Zhang, Chen-Yuan; Cheung, Eric F C; Chan, Raymond C K

    2016-12-01

    Multitasking refers to the ability to organize assorted tasks efficiently in a short period of time, which plays an important role in daily life. However, the structural neural correlates of multitasking performance remain unclear. The present study aimed at exploring the brain regions associated with multitasking performance using global correlation analysis. Twenty-six healthy participants first underwent structural brain scans and then performed the modified Six Element Test, which required participants to attempt six subtasks in 10 min while obeying a specific rule. Voxel-based morphometry of the whole brain was used to detect the structural correlates of multitasking ability. Grey matter volume of the anterior cingulate cortex (ACC) was positively correlated with the overall performance and time monitoring in multitasking. In addition, white matter volume of the anterior thalamic radiation (ATR) was also positively correlated with time monitoring during multitasking. Other related brain regions associated with multitasking included the superior frontal gyrus, the inferior occipital gyrus, the lingual gyrus, and the inferior longitudinal fasciculus. No significant correlation was found between grey matter volume of the prefrontal cortex (Brodmann Area 10) and multitasking performance. Using a global correlation analysis to examine various aspects of multitasking performance, this study provided new insights into the structural neural correlates of multitasking ability. In particular, the ACC was identified as an important brain region that played both a general and a specific time-monitoring role in multitasking, extending the role of the ACC from lesioned populations to healthy populations. The present findings also support the view that the ATR may influence multitasking performance by affecting time-monitoring abilities. © 2016 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  7. Morphometry of the distribution of hydrostatic pulmonary oedema in dogs.

    PubMed Central

    Michel, R. P.; Meterissian, S.; Poulsen, R. S.

    1986-01-01

    Light microscopic morphometry was utilized to examine the distribution of fluid in the interstitium around arteries, veins and within bronchovascular bundles in hydrostatic oedema, comparing it with previous control and permeability oedema experiments. Pulmonary artery wedge pressure was raised with fluid overload and an aortic balloon in five anaesthetized dogs to produce oedema (wet weight to dry weight ratios of 11.66 +/- 0.84). Lung lobes were fixed by freeze-substitution at 20 mmHg airway pressure. Photomicrographs of arteries, veins and bronchovascular bundles were taken, and areas were digitized to obtain the following: for arteries and veins, an oedema ratio=perivascular oedema cuff area/vessel area; for bronchovascular bundles, T=total bundle area, A1=interstitial area around airways, B=airway (respiratory bronchiole, bronchiole, or bronchus) area, A2=periarterial interstitium, V=artery area. From these, oedema ratios were calculated as A1/B and A2/V. We found that the oedema ratios were greater (P less than 0.01) for arteries (1.18, n=675) than veins (0.56, n=263), and were greater for the larger vessels; A1 rose significantly (P less than 0.01) only in bronchovascular bundles with bronchioles and bronchi, not in those with respiratory bronchioles; A2 increased from three- to 25-fold (P less than 0.01) in all bundles; A1/B only increased in bundles with bronchi while A2/V increased two- to six-fold in all bundles with oedema compared with controls. We conclude that these preferential patterns of distribution resemble those reported in permeability oedema, and may shed light on mechanisms of accumulation, and on the physiological effects of oedema on airways and vessels of the lung. Images Fig. 1 Fig. 2 PMID:3801300

  8. Intratumoral stromal morphometry predicts disease recurrence but not response to 5-fluorouracil-results from the QUASAR trial of colorectal cancer.

    PubMed

    Hutchins, Gordon G A; Treanor, Darren; Wright, Alexander; Handley, Kelly; Magill, Laura; Tinkler-Hundal, Emma; Southward, Katie; Seymour, Matthew; Kerr, David; Gray, Richard; Quirke, Philip

    2018-02-01

    The biological importance of tumour-associated stroma is becoming increasingly apparent, but its clinical utility remains ill-defined. For stage II/Dukes B colorectal cancer (CRC), clinical biomarkers are urgently required to direct therapeutic options. We report here prognostic/predictive analyses, and molecular associations, of stromal morphometric quantification in the Quick and Simple and Reliable (QUASAR) trial of CRC. Relative proportions of tumour epithelium (PoT) or stroma (PoS) were morphometrically quantified on digitised haematoxylin and eosin (H&E) sections derived from 1800 patients enrolled in QUASAR, which randomised 3239 (91% stage II) CRC patients between adjuvant fluorouracil/folinic acid (FUFA) chemotherapy and observation. The prognostic and predictive values of PoT/PoS measurements were determined by the use of stratified log-rank analyses. A high proportion of tumour stroma (≥50%) was associated with an increased recurrence risk: 31.3% (143/457) recurrence for ≥50% versus 21.9% (294/1343) for <50% [rate ratio (RR) 1.62; 95% confidence interval (CI) 1.30-2.02; P < 0.0001]. Of patients with stromal proportions of ≥65%, 40% (46/115) had recurrent disease within 10 years. The adverse prognostic effect of a high stromal proportion was independent of established prognostic variables, and was maintained in stage II/Dukes B patients (RR 1.62; 95% CI 1.26-2.08; P = 0.0002). KRAS mutation in the presence of a high stromal proportion augmented recurrence risk (RR 2.93; 95% CI 1.87-4.59; P = 0.0005). Stromal morphometry did not predict response to FUFA chemotherapy. Simple digital morphometry applied to a single representative H&E section identifies CRC patients with a >50% higher risk of disease recurrence. This technique can reliably partition patients into subpopulations with different risks of tumour recurrence in a simple and cost-effective manner. Further prospective validation is warranted. © 2017 John Wiley & Sons Ltd.

  9. Childhood adversity is linked to differential brain volumes in adolescents with alcohol use disorder: a voxel-based morphometry study.

    PubMed

    Brooks, Samantha J; Dalvie, Shareefa; Cuzen, Natalie L; Cardenas, Valerie; Fein, George; Stein, Dan J

    2014-06-01

    Previous neuroimaging studies link both alcohol use disorder (AUD) and early adversity to neurobiological differences in the adult brain. However, the association between AUD and childhood adversity and effects on the developing adolescent brain are less clear, due in part to the confound of psychiatric comorbidity. Here we examine early life adversity and its association with brain volume in a unique sample of 116 South African adolescents (aged 12-16) with AUD but without psychiatric comorbidity. Participants were 58 adolescents with DSM-IV alcohol dependence and with no other psychiatric comorbidities, and 58 age-, gender- and protocol-matched light/non-drinking controls (HC). Assessments included the Childhood Trauma Questionnaire (CTQ). MR images were acquired on a 3T Siemens Magnetom Allegra scanner. Volumes of global and regional structures were estimated using SPM8 Voxel Based Morphometry (VBM), with analysis of covariance (ANCOVA) and regression analyses. In whole brain ANCOVA analyses, a main effect of group when examining the AUD effect after covarying out CTQ was observed on brain volume in bilateral superior temporal gyrus. Subsequent regression analyses to examine how childhood trauma scores are linked to brain volumes in the total cohort revealed a negative correlation in the left hippocampus and right precentral gyrus. Furthermore, bilateral (but most significantly left) hippocampal volume was negatively associated with sub-scores on the CTQ in the total cohort. These findings support our view that some alterations found in brain volumes in studies of adolescent AUD may reflect the impact of confounding factors such as psychiatric comorbidity rather than the effects of alcohol per se. In particular, early life adversity may influence the developing adolescent brain in specific brain regions, such as the hippocampus.

  10. Differences in regional brain volume related to the extraversion-introversion dimension--a voxel based morphometry study.

    PubMed

    Forsman, Lea J; de Manzano, Orjan; Karabanov, Anke; Madison, Guy; Ullén, Fredrik

    2012-01-01

    Extraverted individuals are sociable, behaviorally active, and happy. We report data from a voxel based morphometry study investigating, for the first time, if regional volume in gray and white matter brain regions is related to extraversion. For both gray and white matter, all correlations between extraversion and regional brain volume were negative, i.e. the regions were larger in introverts. Gray matter correlations were found in regions that included the right prefrontal cortex and the cortex around the right temporo-parietal junction--regions that are known to be involved in behavioral inhibition, introspection, and social-emotional processing, e.g. evaluation of social stimuli and reasoning about the mental states of others. White matter correlations extended from the brainstem to widespread cortical regions, and were largely due to global effects, i.e. a larger total white matter volume in introverts. We speculate that these white matter findings may reflect differences in ascending modulatory projections affecting cortical regions involved in behavioral regulation. Copyright © 2011 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  11. Predictive variables for the biological behaviour of basal cell carcinoma of the face: relevance of morphometry of the nuclei.

    PubMed

    Appel, T; Bierhoff, E; Appel, K; von Lindern, J-J; Bergé, S; Niederhagen, B

    2003-06-01

    We did a morphometric analysis of 130 histological sections of basal cell carcinoma (BCC) of the face to find out whether morphometric variables in the structure of the nuclei of BCC cells could serve as predictors of the biological behaviour. We considered the following variables: maximum and minimum diameters, perimeter, nuclear area and five form factors that characterise and quantify the shape of a structure (axis ratio, shape factor, nuclear contour index, nuclear roundness and circumference ratio). We did a statistical analysis of primary and recurring tumours and four histology-based groups (multifocal superficial BCCs, nodular BCCs, sclerosing BCCs and miscellaneous forms) using a two-sided t test for independent samples. Multifocal superficial BCCs showed significantly smaller values for the directly measured variables (maximum and minimum diameters, perimeter and nuclear area). Morphometry could not distinguish between primary and recurring tumours.

  12. Reduced Orbitofrontal Gray Matter Concentration as a Marker of Premorbid Childhood Trauma in Cocaine Use Disorder.

    PubMed

    Bachi, Keren; Parvaz, Muhammad A; Moeller, Scott J; Gan, Gabriela; Zilverstand, Anna; Goldstein, Rita Z; Alia-Klein, Nelly

    2018-01-01

    Background : Childhood trauma affects neurodevelopment and promotes vulnerability to impaired constraint, depression, and addiction. Reduced gray matter concentration (GMC) in the mesocorticolimbic regions implicated in reward processing and cognitive control may be an underlying substrate, as documented separately in addiction and for childhood trauma. The purpose of this study was to understand the contribution of childhood maltreatment to GMC effects in individuals with cocaine use disorder. Methods : Individuals with cocaine use disorder were partitioned into groups of low vs. high childhood trauma based on median split of the total score of the Childhood Trauma Questionnaire (CTQ; CUD-L, N = 23; CUD-H, N = 24) and compared with age, race, and gender matched healthy controls with low trauma ( N = 29). GMC was obtained using voxel-based morphometry applied to T1-weighted MRI scans. Drug use, depression and constraint were assessed with standardized instruments. Results : Whole-brain group comparisons showed reduced GMC in the right lateral orbitofrontal cortex (OFC) in CUD-H as compared with controls (cluster-level p FWE-corr < 0.001) and CUD-L (cluster-level p FWE-corr = 0.035); there were no significant differences between CUD-L and controls. A hierarchical regression analysis across both CUD groups revealed that childhood trauma, but not demographics and drug use, and beyond constraint and depression, accounted for 37.7% of the variance in the GMC in the right lateral OFC ( p < 0.001). Conclusions : Beyond other contributing factors, childhood trauma predicted GMC reductions in the OFC in individuals with cocaine use disorder. These findings underscore a link between premorbid environmental stress and morphological integrity of a brain region central for behaviors underlying drug addiction. These results further highlight the importance of accounting for childhood trauma, potentially as a factor predisposing to addiction, when examining and interpreting

  13. Reduced Orbitofrontal Gray Matter Concentration as a Marker of Premorbid Childhood Trauma in Cocaine Use Disorder

    PubMed Central

    Bachi, Keren; Parvaz, Muhammad A.; Moeller, Scott J.; Gan, Gabriela; Zilverstand, Anna; Goldstein, Rita Z.; Alia-Klein, Nelly

    2018-01-01

    Background: Childhood trauma affects neurodevelopment and promotes vulnerability to impaired constraint, depression, and addiction. Reduced gray matter concentration (GMC) in the mesocorticolimbic regions implicated in reward processing and cognitive control may be an underlying substrate, as documented separately in addiction and for childhood trauma. The purpose of this study was to understand the contribution of childhood maltreatment to GMC effects in individuals with cocaine use disorder. Methods: Individuals with cocaine use disorder were partitioned into groups of low vs. high childhood trauma based on median split of the total score of the Childhood Trauma Questionnaire (CTQ; CUD-L, N = 23; CUD-H, N = 24) and compared with age, race, and gender matched healthy controls with low trauma (N = 29). GMC was obtained using voxel-based morphometry applied to T1-weighted MRI scans. Drug use, depression and constraint were assessed with standardized instruments. Results: Whole-brain group comparisons showed reduced GMC in the right lateral orbitofrontal cortex (OFC) in CUD-H as compared with controls (cluster-level pFWE-corr < 0.001) and CUD-L (cluster-level pFWE-corr = 0.035); there were no significant differences between CUD-L and controls. A hierarchical regression analysis across both CUD groups revealed that childhood trauma, but not demographics and drug use, and beyond constraint and depression, accounted for 37.7% of the variance in the GMC in the right lateral OFC (p < 0.001). Conclusions: Beyond other contributing factors, childhood trauma predicted GMC reductions in the OFC in individuals with cocaine use disorder. These findings underscore a link between premorbid environmental stress and morphological integrity of a brain region central for behaviors underlying drug addiction. These results further highlight the importance of accounting for childhood trauma, potentially as a factor predisposing to addiction, when examining and interpreting neural

  14. Correlation between morphometry of the suprascapular notch and anthropometric measurements of the scapula.

    PubMed

    Polguj, M; Jędrzejewski, K S; Podgórski, M; Topol, M

    2011-05-01

    The concept of the study was to find the correlation between the morphometry of the suprascapular notch and basic anthropometric measurements of the human scapula. The measurements of the human scapulae included: morphological length and width, maximal width and length projection of scapular spine, length of acromion, and maximal length of the coracoid process. The glenoid cavity was measured in two perpendicular directions to evaluate its width and length. The width-length scapular and glenoid cavity indexes were calculated for every bone. In addition to standard anthropometric measurements two other measurements were defined and evaluated for every suprascapular notch: maximal depth (MD) and superior transverse diameter (STD). The superior transverse suprascapular ligament was completely ossified in 7% of cases. Ten (11.6%) scapulae had a discrete notch. In the studied material, in 21 (24.4%) scapulae the MD was longer than the STD. Two (2.3%) scapulae had equal maximal depth and superior transverse diameter. In 47 (57.7%) scapulae the superior transverse diameter was longer than the maximal depth. There was no statistically significant difference between anthropometric measurements in the group with higher MD and the group with higher STD. The maximal depth of the suprascapular notch negatively correlated with the scapular width-length index. The maximal depth of the scapular notch correlated with the morphological length of the scapulae.

  15. Brain structural changes following adaptive cognitive training assessed by Tensor-Based Morphometry (TBM).

    PubMed

    Colom, Roberto; Hua, Xue; Martínez, Kenia; Burgaleta, Miguel; Román, Francisco J; Gunter, Jeffrey L; Carmona, Susanna; Jaeggi, Susanne M; Thompson, Paul M

    2016-10-01

    Tensor-Based Morphometry (TBM) allows the automatic mapping of brain changes across time building 3D deformation maps. This technique has been applied for tracking brain degeneration in Alzheimer's and other neurodegenerative diseases with high sensitivity and reliability. Here we applied TBM to quantify changes in brain structure after completing a challenging adaptive cognitive training program based on the n-back task. Twenty-six young women completed twenty-four training sessions across twelve weeks and they showed, on average, large cognitive improvements. High-resolution MRI scans were obtained before and after training. The computed longitudinal deformation maps were analyzed for answering three questions: (a) Are there differential brain structural changes in the training group as compared with a matched control group? (b) Are these changes related to performance differences in the training program? (c) Are standardized changes in a set of psychological factors (fluid and crystallized intelligence, working memory, and attention control) measured before and after training, related to structural changes in the brain? Results showed (a) greater structural changes for the training group in the temporal lobe, (b) a negative correlation between these changes and performance across training sessions (the greater the structural change, the lower the cognitive performance improvements), and (c) negligible effects regarding the psychological factors measured before and after training. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Brain structural changes following adaptive cognitive training assessed by Tensor-Based Morphometry (TBM)

    PubMed Central

    Colom, Roberto; Hua, Xue; Martínez, Kenia; Burgaleta, Miguel; Román, Francisco J.; Gunter, Jeffrey L.; Carmona, Susanna; Jaeggi, Susanne M.; Thompson, Paul M.

    2016-01-01

    Tensor-Based Morphometry (TBM) allows the automatic mapping of brain changes across time building 3D deformation maps. This technique has been applied for tracking brain degeneration in Alzheimer's and other neurodegenerative diseases with high sensitivity and reliability. Here we applied TBM to quantify changes in brain structure after completing a challenging adaptive cognitive training program based on the n-back task. Twenty-six young women completed twenty-four training sessions across twelve weeks and they showed, on average, large cognitive improvements. High-resolution MRI scans were obtained before and after training. The computed longitudinal deformation maps were analyzed for answering three questions: (a) Are there differential brain structural changes in the training group as compared with a matched control group? (b) Are these changes related to performance differences in the training program? (c) Are standardized changes in a set of psychological factors (fluid and crystallized intelligence, working memory, and attention control) measured before and after training, related to structural changes in the brain? Results showed (a) greater structural changes for the training group in the temporal lobe, (b) a negative correlation between these changes and performance across training sessions (the greater the structural change, the lower the cognitive performance improvements), and (c) negligible effects regarding the psychological factors measured before and after training. PMID:27477628

  17. A voxel-based morphometry study of regional gray and white matter correlate of self-disclosure.

    PubMed

    Wang, ShanShan; Wei, DongTao; Li, WenFu; Li, HaiJiang; Wang, KangCheng; Xue, Song; Zhang, Qinglin; Qiu, Jiang

    2014-01-01

    Self-disclosure is an important performance in human social communication. Generally, an individual is likely to have a good physical and mental health if he is prone to self-disclosure under stressful life events. However, as for now, little is known about the neural structure associated with self-disclosure. Therefore, in this study, we used voxel-based morphometry to explore regional gray matter volume (rGMV) and white matter volume (rWMV) associated with self-disclosure measured by the Jourard Self-disclosure Questionnaire in a large sample of college students. Results showed that individual self-disclosure was significantly and positively associated with rGMV of the left postcentral gyrus, which might be related to strengthen individual's ability of body feeling; while self-disclosure was significantly and negatively associated with rGMV of the right orbitofrontal cortex (OFC), which might be involved in increased positive emotion experience seeking (intrinsically rewarding). In addition, individual self-disclosure was also associated with smaller rWMV in the right inferior parietal lobule (IPL). These findings suggested a biological basis for individual self-disclosure, distributed across different gray and white matter areas of the brain.

  18. A Voxel Based Morphometry Study of Brain Gray Matter Volumes in Juvenile Obsessive Compulsive Disorder.

    PubMed

    Jayarajan, Rajan Nishanth; Agarwal, Sri Mahavir; Viswanath, Biju; Kalmady, Sunil V; Venkatasubramanian, Ganesan; Srinath, Shoba; Chandrashekar, C R; Janardhan Reddy, Y C

    2015-01-01

    Adult patients with Obsessive Compulsive Disorder (OCD) have been shown to have gray matter (GM) volume differences from healthy controls in multiple regions - the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), medial frontal gyri (MFG), striatum, thalamus, and superior parietal lobule. However, there is paucity of data with regard to juvenile OCD. Hence, we examined GM volume differences between juvenile OCD patients and matched healthy controls using voxel based morphometry (VBM) with the above apriori regions of interest. Fifteen right handed juvenile patients with OCD and age- sex- handedness- matched healthy controls were recruited after administering the Mini International Neuropsychiatric Interview-KID and the Children's Yale-Brown Obsessive Compulsive Scale, and scanned using a 3 Tesla magnetic resonance imaging scanner. VBM methodology was followed. In comparison with healthy controls, patients had significantly smaller GM volumes in left ACC. YBOCS total score (current) showed significant negative correlation with GM volumes in bilateral OFC, and left superior parietal lobule. These findings while reiterating the important role of the orbito-fronto-striatal circuitry, also implicate in the parietal lobe - especially the superior parietal lobule as an important structure involved in the pathogenesis of OCD.

  19. Detection of whole-brain abnormalities in temporal lobe epilepsy using tensor-based morphometry with DARTEL

    NASA Astrophysics Data System (ADS)

    Li, Wenjing; He, Huiguang; Lu, Jingjing; Lv, Bin; Li, Meng; Jin, Zhengyu

    2009-10-01

    Tensor-based morphometry (TBM) is an automated technique for detecting the anatomical differences between populations by examining the gradients of the deformation fields used to nonlinearly warp MR images. The purpose of this study was to investigate the whole-brain volume changes between the patients with unilateral temporal lobe epilepsy (TLE) and the controls using TBM with DARTEL, which could achieve more accurate inter-subject registration of brain images. T1-weighted images were acquired from 21 left-TLE patients, 21 right-TLE patients and 21 healthy controls, which were matched in age and gender. The determinants of the gradient of deformation fields at voxel level were obtained to quantify the expansion or contraction for individual images relative to the template, and then logarithmical transformation was applied on it. A whole brain analysis was performed using general lineal model (GLM), and the multiple comparison was corrected by false discovery rate (FDR) with p<0.05. For left-TLE patients, significant volume reductions were found in hippocampus, cingulate gyrus, precentral gyrus, right temporal lobe and cerebellum. These results potentially support the utility of TBM with DARTEL to study the structural changes between groups.

  20. Increased Grey Matter Associated with Long-Term Sahaja Yoga Meditation: A Voxel-Based Morphometry Study.

    PubMed

    Hernández, Sergio Elías; Suero, José; Barros, Alfonso; González-Mora, José Luis; Rubia, Katya

    2016-01-01

    To investigate regional differences in grey matter volume associated with the practice of Sahaja Yoga Meditation. Twenty three experienced practitioners of Sahaja Yoga Meditation and twenty three non-meditators matched on age, gender and education level, were scanned using structural Magnetic Resonance Imaging and their grey matter volume were compared using Voxel-Based Morphometry. Grey matter volume was larger in meditators relative to non-meditators across the whole brain. In addition, grey matter volume was larger in several predominantly right hemispheric regions: in insula, ventromedial orbitofrontal cortex, inferior temporal and parietal cortices as well as in left ventrolateral prefrontal cortex and left insula. No areas with larger grey matter volume were found in non-meditators relative to meditators. The study shows that long-term practice of Sahaja Yoga Meditation is associated with larger grey matter volume overall, and with regional enlargement in several right hemispheric cortical and subcortical brain regions that are associated with sustained attention, self-control, compassion and interoceptive perception. The increased grey matter volume in these attention and self-control mediating regions suggests use-dependent enlargement with regular practice of this meditation.

  1. Increased Grey Matter Associated with Long-Term Sahaja Yoga Meditation: A Voxel-Based Morphometry Study

    PubMed Central

    Hernández, Sergio Elías; Suero, José; Barros, Alfonso; González-Mora, José Luis; Rubia, Katya

    2016-01-01

    Objectives To investigate regional differences in grey matter volume associated with the practice of Sahaja Yoga Meditation. Design Twenty three experienced practitioners of Sahaja Yoga Meditation and twenty three non-meditators matched on age, gender and education level, were scanned using structural Magnetic Resonance Imaging and their grey matter volume were compared using Voxel-Based Morphometry. Results Grey matter volume was larger in meditators relative to non-meditators across the whole brain. In addition, grey matter volume was larger in several predominantly right hemispheric regions: in insula, ventromedial orbitofrontal cortex, inferior temporal and parietal cortices as well as in left ventrolateral prefrontal cortex and left insula. No areas with larger grey matter volume were found in non-meditators relative to meditators. Conclusions The study shows that long-term practice of Sahaja Yoga Meditation is associated with larger grey matter volume overall, and with regional enlargement in several right hemispheric cortical and subcortical brain regions that are associated with sustained attention, self-control, compassion and interoceptive perception. The increased grey matter volume in these attention and self-control mediating regions suggests use-dependent enlargement with regular practice of this meditation. PMID:26938433

  2. Interrogating Key Positions of Size-Reduced TALE Repeats Reveals a Programmable Sensor of 5-Carboxylcytosine.

    PubMed

    Maurer, Sara; Giess, Mario; Koch, Oliver; Summerer, Daniel

    2016-12-16

    Transcription-activator-like effector (TALE) proteins consist of concatenated repeats that recognize consecutive canonical nucleobases of DNA via the major groove in a programmable fashion. Since this groove displays unique chemical information for the four human epigenetic cytosine nucleobases, TALE repeats with epigenetic selectivity can be engineered, with potential to establish receptors for the programmable decoding of all human nucleobases. TALE repeats recognize nucleobases via key amino acids in a structurally conserved loop whose backbone is positioned very close to the cytosine 5-carbon. This complicates the engineering of selectivities for large 5-substituents. To interrogate a more promising structural space, we engineered size-reduced repeat loops, performed saturation mutagenesis of key positions, and screened a total of 200 repeat-nucleobase interactions for new selectivities. This provided insight into the structural requirements of TALE repeats for affinity and selectivity, revealed repeats with improved or relaxed selectivity, and resulted in the first selective sensor of 5-carboxylcytosine.

  3. Reduced Gray Matter Volume in the Social Brain Network in Adults with Autism Spectrum Disorder

    PubMed Central

    Sato, Wataru; Kochiyama, Takanori; Uono, Shota; Yoshimura, Sayaka; Kubota, Yasutaka; Sawada, Reiko; Sakihama, Morimitsu; Toichi, Motomi

    2017-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by behavioral impairment in social interactions. Although theoretical and empirical evidence suggests that impairment in the social brain network could be the neural underpinnings of ASD, previous structural magnetic resonance imaging (MRI) studies in adults with ASD have not provided clear support for this, possibly due to confounding factors, such as language impairments. To further explore this issue, we acquired structural MRI data and analyzed gray matter volume in adults with ASD (n = 36) who had no language impairments (diagnosed with Asperger’s disorder or pervasive developmental disorder not otherwise specified, with symptoms milder than those of Asperger’s disorder), had no comorbidity, and were not taking medications, and in age- and sex-matched typically developing (TD) controls (n = 36). Univariate voxel-based morphometry analyses revealed that regional gray matter volume was lower in the ASD than in the control group in several brain regions, including the right inferior occipital gyrus, left fusiform gyrus, right middle temporal gyrus, bilateral amygdala, right inferior frontal gyrus, right orbitofrontal cortex, and left dorsomedial prefrontal cortex. A multivariate approach using a partial least squares (PLS) method showed that these regions constituted a network that could be used to discriminate between the ASD and TD groups. A PLS discriminant analysis using information from these regions showed high accuracy, sensitivity, specificity, and precision (>80%) in discriminating between the groups. These results suggest that reduced gray matter volume in the social brain network represents the neural underpinnings of behavioral social malfunctioning in adults with ASD. PMID:28824399

  4. Influence of parameter settings in voxel-based morphometry 8. Using DARTEL and region-of-interest on reproducibility in gray matter volumetry.

    PubMed

    Goto, M; Abe, O; Aoki, S; Hayashi, N; Miyati, T; Takao, H; Matsuda, H; Yamashita, F; Iwatsubo, T; Mori, H; Kunimatsu, A; Ino, K; Yano, K; Ohtomo, K

    2015-01-01

    To investigate whether reproducibility of gray matter volumetry is influenced by parameter settings for VBM 8 using Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra (DARTEL) with region-of-interest (ROI) analyses. We prepared three-dimensional T1-weighted magnetic resonance images (3D-T1WIs) of 21 healthy subjects. All subjects were imaged with each of five MRI systems. Voxel-based morphometry 8 (VBM 8) and WFU PickAtlas software were used for gray matter volumetry. The bilateral ROI labels used were those provided as default settings with the software: Frontal Lobe, Hippocampus, Occipital Lobe, Orbital Gyrus, Parietal Lobe, Putamen, and Temporal Lobe. All 3D-T1WIs were segmented to gray matter with six parameters of VBM 8, with each parameter having between three and eight selectable levels. Reproducibility was evaluated as the standard deviation (mm³) of measured values for the five MRI systems. Reproducibility was influenced by 'Bias regularization (BiasR)', 'Bias FWHM', and 'De-noising filter' settings, but not by 'MRF weighting', 'Sampling distance', or 'Warping regularization' settings. Reproducibility in BiasR was influenced by ROI. Superior reproducibility was observed in Frontal Lobe with the BiasR1 setting, and in Hippocampus, Parietal Lobe, and Putamen with the BiasR3*, BiasR1, and BiasR5 settings, respectively. Reproducibility of gray matter volumetry was influenced by parameter settings in VBM 8 using DARTEL and ROI. In multi-center studies, the use of appropriate settings in VBM 8 with DARTEL results in reduced scanner effect.

  5. Regional gray matter correlates of memory for emotion-laden words in middle-aged and older adults: A voxel-based morphometry study.

    PubMed

    Saarela, Carina; Joutsa, Juho; Laine, Matti; Parkkola, Riitta; Rinne, Juha O; Karrasch, Mira

    2017-01-01

    Emotional content is known to enhance memory in a content-dependent manner in healthy populations. In middle-aged and older adults, a reduced preference for negative material, or even an enhanced preference for positive material has been observed. This preference seems to be modulated by the emotional arousal that the material evokes. The neuroanatomical basis for emotional memory processes is, however, not well understood in middle-aged and older healthy people. Previous research on local gray matter correlates of emotional memory in older populations has mainly been conducted with patients suffering from various neurodegenerative diseases. To our knowledge, this is the first study to examine regional gray matter correlates of immediate free recall and recognition memory of intentionally encoded positive, negative, and emotionally neutral words using voxel-based morphometry (VBM) in a sample of 50-to-79-year-old cognitively intact normal adults. The behavioral analyses yielded a positivity bias in recognition memory, but not in immediate free recall. No associations with memory performance emerged from the region-of-interest (ROI) analyses using amygdalar and hippocampal volumes. Controlling for total intracranial volume, age, and gender, the whole-brain VBM analyses showed statistically significant associations between immediate free recall of negative words and volumes in various frontal regions, between immediate free recall of positive words and cerebellar volume, and between recognition memory of positive words and primary visual cortex volume. The findings indicate that the neural areas subserving memory for emotion-laden information encompass posterior brain areas, including the cerebellum, and that memory for emotion-laden information may be driven by cognitive control functions.

  6. Possible involvement of rumination in gray matter abnormalities in persistent symptoms of major depression: an exploratory magnetic resonance imaging voxel-based morphometry study.

    PubMed

    Machino, Akihiko; Kunisato, Yoshihiko; Matsumoto, Tomoya; Yoshimura, Shinpei; Ueda, Kazutaka; Yamawaki, Yosuke; Okada, Go; Okamoto, Yasumasa; Yamawaki, Shigeto

    2014-10-01

    A recent meta-analysis of many magnetic resonance imaging (MRI) studies has identified brain regions with gray matter (GM) abnormalities in patients with major depressive disorder (MDD). A few studies addressing GM abnormalities in patients with treatment-resistant depression (TRD) have yielded inconsistent results. Moreover, although TRD patients tend to exhibit ruminative thoughts, it remains unclear whether rumination is related to GM abnormalities in such patients or not. We conducted structural MRI scans and voxel-based morphometry (VBM) to identify GM differences among 29 TRD patients and 29 healthy age-matched and sex-matched controls. A response style questionnaire was used to assess the respective degrees of rumination in TRD patients. Structural correlates of rumination were examined. TRD patients showed several regions with smaller GM volume than in healthy subjects: the left dorsal anterior cingulate cortex (ACC), right ventral ACC, right superior frontal gyrus, right cerebellum (Crus I), and cerebellar vermis. GM volumes in these regions did not correlate to rumination. However, whole-brain analysis revealed that rumination was positively correlated with the GM volume in the right superior temporal gyrus in TRD patients. Structural correlates of rumination were examined only in TRD patients. Our data provide additional evidence supporting the hypothesis that TRD patients show GM abnormalities compared with healthy subjects. Furthermore, this report is the first to describe a study identifying brain regions for which the GM volume is correlated with rumination in TRD patients. These results improve our understanding of the anatomical characteristics of TRD. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Periodic assessment of plasma sFlt-1 and PlGF concentrations and its association with placental morphometry in gestational hypertension (GH) - a prospective follow-up study.

    PubMed

    Jeevaratnam, Kamalan; Nadarajah, Vishna Devi; Judson, John Paul; Nalliah, Sivalingam; Abdullah, Mohd Farouk

    2010-09-28

    Hypertensive disorders in pregnancy contributes to about 12% of maternal deaths in Malaysia and similarly worldwide. Early detection and adequate management are preventable strategies. Biochemical markers of abnormal angiogenesis would be more specific in early detection than routine blood pressure and proteinuria measurements. The aim of this study was to estimate maternal plasma PlGF and sFlt-1 levels in pregnant women with gestational hypertension at three intervals of pregnancy and correlate these biomarker levels with placental morphometry. Venous blood samples (antepartum, intrapartum and post partum periods) were drawn to estimate for sFlt-1 and PlGF levels while placental tissue samples were examined for placental morphometry. PlGF levels were lower in gestational hypertension (GH) compared to normotensive during antepartum and intrapartum period, whereas sFlt-1 levels were elevated in GH at antepartum, intrapartum and postpartum intervals during pregnancy. An inverse relationship between these two biomarkers was observed through correlation analysis. PlGF levels were inversely correlated with total villous surface area of the placental periphery (TCsa-C) and villous capillarization (VC-C) of the placental periphery. We established periodic values of for sFlt-1 and PlGF levels for the first time in an ethnically diverse Malaysian setting. We suggest the development of GH in women is related to defective capillarization. In demonstrating periodic changes, this study suggest the possibility of developing GH and other long term health complications as a result of prolonged exposure to sFlt-1. The correlation between PlGF levels and morphometric findings also support possible capillarization defect.

  8. Escherichia coli K-12 pathogenicity in the pea aphid, Acyrthosiphon pisum, reveals reduced antibacterial defense in aphids.

    PubMed

    Altincicek, Boran; Ter Braak, Bas; Laughton, Alice M; Udekwu, Klas I; Gerardo, Nicole M

    2011-10-01

    To better understand the molecular basis underlying aphid immune tolerance to beneficial bacteria and immune defense to pathogenic bacteria, we characterized how the pea aphid Acyrthosiphon pisum responds to Escherichia coli K-12 infections. E. coli bacteria, usually cleared in the hemolymph of other insect species, were capable of growing exponentially and killing aphids within a few days. Red fluorescence protein expressing E. coli K-12 laboratory strain multiplied in the aphid hemolymph as well as in the digestive tract, resulting in death of infected aphids. Selected gene deletion mutants of the E. coli K-12 predicted to have reduced virulence during systemic infections showed no difference in either replication or killing rate when compared to the wild type E. coli strain. Of note, however, the XL1-Blue E. coli K-12 strain exhibited a significant lag phase before multiplying and killing aphids. This bacterial strain has recently been shown to be more sensitive to oxidative stress than other E. coli K-12 strains, revealing a potential role for reactive oxygen species-mediated defenses in the otherwise reduced aphid immune system. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Impaired Limbic Cortico-Striatal Structure and Sustained Visual Attention in a Rodent Model of Schizophrenia

    PubMed Central

    Barnes, Samuel A.; Sawiak, Stephen J.; Caprioli, Daniele; Jupp, Bianca; Buonincontri, Guido; Mar, Adam C.; Harte, Michael K.; Fletcher, Paul C.; Robbins, Trevor W.; Neill, Jo C.

    2015-01-01

    Background: N-methyl-d-aspartate receptor (NMDAR) dysfunction is thought to contribute to the pathophysiology of schizophrenia. Accordingly, NMDAR antagonists such as phencyclidine (PCP) are used widely in experimental animals to model cognitive impairment associated with this disorder. However, it is unclear whether PCP disrupts the structural integrity of brain areas relevant to the profile of cognitive impairment in schizophrenia. Methods: Here we used high-resolution magnetic resonance imaging and voxel-based morphometry to investigate structural alterations associated with sub-chronic PCP treatment in rats. Results: Sub-chronic exposure of rats to PCP (5mg/kg twice daily for 7 days) impaired sustained visual attention on a 5-choice serial reaction time task, notably when the attentional load was increased. In contrast, sub-chronic PCP had no significant effect on the attentional filtering of a pre-pulse auditory stimulus in an acoustic startle paradigm. Voxel-based morphometry revealed significantly reduced grey matter density bilaterally in the hippocampus, anterior cingulate cortex, ventral striatum, and amygdala. PCP-treated rats also exhibited reduced cortical thickness in the insular cortex. Conclusions: These findings demonstrate that sub-chronic NMDA receptor antagonism is sufficient to produce highly-localized morphological abnormalities in brain areas implicated in the pathogenesis of schizophrenia. Furthermore, PCP exposure resulted in dissociable impairments in attentional function. PMID:25552430

  10. Fully automated corneal endothelial morphometry of images captured by clinical specular microscopy

    NASA Astrophysics Data System (ADS)

    Bucht, Curry; Söderberg, Per; Manneberg, Göran

    2009-02-01

    The corneal endothelium serves as the posterior barrier of the cornea. Factors such as clarity and refractive properties of the cornea are in direct relationship to the quality of the endothelium. The endothelial cell density is considered the most important morphological factor. Morphometry of the corneal endothelium is presently done by semi-automated analysis of pictures captured by a Clinical Specular Microscope (CSM). Because of the occasional need of operator involvement, this process can be tedious, having a negative impact on sampling size. This study was dedicated to the development of fully automated analysis of images of the corneal endothelium, captured by CSM, using Fourier analysis. Software was developed in the mathematical programming language Matlab. Pictures of the corneal endothelium, captured by CSM, were read into the analysis software. The software automatically performed digital enhancement of the images. The digitally enhanced images of the corneal endothelium were transformed, using the fast Fourier transform (FFT). Tools were developed and applied for identification and analysis of relevant characteristics of the Fourier transformed images. The data obtained from each Fourier transformed image was used to calculate the mean cell density of its corresponding corneal endothelium. The calculation was based on well known diffraction theory. Results in form of estimated cell density of the corneal endothelium were obtained, using fully automated analysis software on images captured by CSM. The cell density obtained by the fully automated analysis was compared to the cell density obtained from classical, semi-automated analysis and a relatively large correlation was found.

  11. Joint source based morphometry identifies linked gray and white matter group differences.

    PubMed

    Xu, Lai; Pearlson, Godfrey; Calhoun, Vince D

    2009-02-01

    We present a multivariate approach called joint source based morphometry (jSBM), to identify linked gray and white matter regions which differ between groups. In jSBM, joint independent component analysis (jICA) is used to decompose preprocessed gray and white matter images into joint sources and statistical analysis is used to determine the significant joint sources showing group differences and their relationship to other variables of interest (e.g. age or sex). The identified joint sources are groupings of linked gray and white matter regions with common covariation among subjects. In this study, we first provide a simulation to validate the jSBM approach. To illustrate our method on real data, jSBM is then applied to structural magnetic resonance imaging (sMRI) data obtained from 120 chronic schizophrenia patients and 120 healthy controls to identify group differences. JSBM identified four joint sources as significantly associated with schizophrenia. Linked gray-white matter regions identified in each of the joint sources included: 1) temporal--corpus callosum, 2) occipital/frontal--inferior fronto-occipital fasciculus, 3) frontal/parietal/occipital/temporal--superior longitudinal fasciculus and 4) parietal/frontal--thalamus. Age effects on all four joint sources were significant, but sex effects were significant only for the third joint source. Our findings demonstrate that jSBM can exploit the natural linkage between gray and white matter by incorporating them into a unified framework. This approach is applicable to a wide variety of problems to study linked gray and white matter group differences.

  12. Joint source based morphometry identifies linked gray and white matter group differences

    PubMed Central

    Xu, Lai; Pearlson, Godfrey; Calhoun, Vince D.

    2009-01-01

    We present a multivariate approach called joint source based morphometry (jSBM), to identify linked gray and white matter regions which differ between groups. In jSBM, joint independent component analysis (jICA) is used to decompose preprocessed gray and white matter images into joint sources and statistical analysis is used to determine the significant joint sources showing group differences and their relationship to other variables of interest (e.g. age or sex). The identified joint sources are groupings of linked gray and white matter regions with common covariation among subjects. In this study, we first provide a simulation to validate the jSBM approach. To illustrate our method on real data, jSBM is then applied to structural magnetic resonance imaging (sMRI) data obtained from 120 chronic schizophrenia patients and 120 healthy controls to identify group differences. JSBM identified four joint sources as significantly associated with schizophrenia. Linked gray–white matter regions identified in each of the joint sources included: 1) temporal — corpus callosum, 2) occipital/frontal — inferior fronto-occipital fasciculus, 3) frontal/parietal/occipital/temporal —superior longitudinal fasciculus and 4) parietal/frontal — thalamus. Age effects on all four joint sources were significant, but sex effects were significant only for the third joint source. Our findings demonstrate that jSBM can exploit the natural linkage between gray and white matter by incorporating them into a unified framework. This approach is applicable to a wide variety of problems to study linked gray and white matter group differences. PMID:18992825

  13. A Voxel-Based Morphometry Study of the Brain of University Students Majoring in Music and Nonmusic Disciplines.

    PubMed

    Sato, Kanako; Kirino, Eiji; Tanaka, Shoji

    2015-01-01

    The brain changes flexibly due to various experiences during the developmental stages of life. Previous voxel-based morphometry (VBM) studies have shown volumetric differences between musicians and nonmusicians in several brain regions including the superior temporal gyrus, sensorimotor areas, and superior parietal cortex. However, the reported brain regions depend on the study and are not necessarily consistent. By VBM, we investigated the effect of musical training on the brain structure by comparing university students majoring in music with those majoring in nonmusic disciplines. All participants were right-handed healthy Japanese females. We divided the nonmusic students into two groups and therefore examined three groups: music expert (ME), music hobby (MH), and nonmusic (NM) group. VBM showed that the ME group had the largest gray matter volumes in the right inferior frontal gyrus (IFG; BA 44), left middle occipital gyrus (BA 18), and bilateral lingual gyrus. These differences are considered to be caused by neuroplasticity during long and continuous musical training periods because the MH group showed intermediate volumes in these regions.

  14. Integration of co-localized glandular morphometry and protein biomarker expression in immunofluorescent images for prostate cancer prognosis

    NASA Astrophysics Data System (ADS)

    Scott, Richard; Khan, Faisal M.; Zeineh, Jack; Donovan, Michael; Fernandez, Gerardo

    2015-03-01

    Immunofluorescent (IF) image analysis of tissue pathology has proven to be extremely valuable and robust in developing prognostic assessments of disease, particularly in prostate cancer. There have been significant advances in the literature in quantitative biomarker expression as well as characterization of glandular architectures in discrete gland rings. However, while biomarker and glandular morphometric features have been combined as separate predictors in multivariate models, there is a lack of integrative features for biomarkers co-localized within specific morphological sub-types; for example the evaluation of androgen receptor (AR) expression within Gleason 3 glands only. In this work we propose a novel framework employing multiple techniques to generate integrated metrics of morphology and biomarker expression. We demonstrate the utility of the approaches in predicting clinical disease progression in images from 326 prostate biopsies and 373 prostatectomies. Our proposed integrative approaches yield significant improvements over existing IF image feature metrics. This work presents some of the first algorithms for generating innovative characteristics in tissue diagnostics that integrate co-localized morphometry and protein biomarker expression.

  15. Reduced gray matter volume in the anterior cingulate, orbitofrontal cortex and thalamus as a function of mild depressive symptoms: a voxel-based morphometric analysis.

    PubMed

    Webb, C A; Weber, M; Mundy, E A; Killgore, W D S

    2014-10-01

    Studies investigating structural brain abnormalities in depression have typically employed a categorical rather than dimensional approach to depression [i.e., comparing subjects with Diagnostic and Statistical Manual of Mental Disorders (DSM)-defined major depressive disorder (MDD) v. healthy controls]. The National Institute of Mental Health, through their Research Domain Criteria initiative, has encouraged a dimensional approach to the study of psychopathology as opposed to an over-reliance on categorical (e.g., DSM-based) diagnostic approaches. Moreover, subthreshold levels of depressive symptoms (i.e., severity levels below DSM criteria) have been found to be associated with a range of negative outcomes, yet have been relatively neglected in neuroimaging research. To examine the extent to which depressive symptoms--even at subclinical levels--are linearly related to gray matter volume reductions in theoretically important brain regions, we employed whole-brain voxel-based morphometry in a sample of 54 participants. The severity of mild depressive symptoms, even in a subclinical population, was associated with reduced gray matter volume in the orbitofrontal cortex, anterior cingulate, thalamus, superior temporal gyrus/temporal pole and superior frontal gyrus. A conjunction analysis revealed concordance across two separate measures of depression. Reduced gray matter volume in theoretically important brain regions can be observed even in a sample that does not meet DSM criteria for MDD, but who nevertheless report relatively elevated levels of depressive symptoms. Overall, these findings highlight the need for additional research using dimensional conceptual and analytic approaches, as well as further investigation of subclinical populations.

  16. Reducing multi-sensor data to a single time course that reveals experimental effects

    PubMed Central

    2013-01-01

    Background Multi-sensor technologies such as EEG, MEG, and ECoG result in high-dimensional data sets. Given the high temporal resolution of such techniques, scientific questions very often focus on the time-course of an experimental effect. In many studies, researchers focus on a single sensor or the average over a subset of sensors covering a “region of interest” (ROI). However, single-sensor or ROI analyses ignore the fact that the spatial focus of activity is constantly changing, and fail to make full use of the information distributed over the sensor array. Methods We describe a technique that exploits the optimality and simplicity of matched spatial filters in order to reduce experimental effects in multivariate time series data to a single time course. Each (multi-sensor) time sample of each trial is replaced with its projection onto a spatial filter that is matched to an observed experimental effect, estimated from the remaining trials (Effect-Matched Spatial filtering, or EMS filtering). The resulting set of time courses (one per trial) can be used to reveal the temporal evolution of an experimental effect, which distinguishes this approach from techniques that reveal the temporal evolution of an anatomical source or region of interest. Results We illustrate the technique with data from a dual-task experiment and use it to track the temporal evolution of brain activity during the psychological refractory period. We demonstrate its effectiveness in separating the means of two experimental conditions, and in significantly improving the signal-to-noise ratio at the single-trial level. It is fast to compute and results in readily-interpretable time courses and topographies. The technique can be applied to any data-analysis question that can be posed independently at each sensor, and we provide one example, using linear regression, that highlights the versatility of the technique. Conclusion The approach described here combines established techniques in a

  17. Sexual differentiation of the adolescent rat brain: A longitudinal voxel-based morphometry study.

    PubMed

    Sumiyoshi, Akira; Nonaka, Hiroi; Kawashima, Ryuta

    2017-03-06

    The sexual differentiation of the rat brain during the adolescent period has been well documented in post-mortem histological studies. However, to further understand the morphological changes occurring in the entire brain, a noninvasive neuroimaging method allowing an unbiased, comprehensive, and longitudinal investigation of brain morphology should be used. In this study, we investigated the sexual differentiation of the rat brain during the adolescent period using longitudinal voxel-based morphometry (VBM) analysis. Male and female Wistar rats (n=12 of each) were scanned in a 7.0-T MRI scanner at five time points from 6 to 10 weeks of age. The T2-weighted MRI images were segmented using the rat brain tissue priors that have been published by our laboratory. At the global level, the results of the VBM analysis showed greater increases in total gray matter volume in the males during the adolescent period, although we did not find significant differences in total white matter volume. At the voxel level, we found significant increases in the regional gray matter volume of the occipital cortex, amygdala, hippocampal formation, and cerebellum. At the regional level, only the occipital cortex in the females exhibited decreases during the adolescent period. These results were, at least in part, consistent with those of previous longitudinal VBM studies in humans, thus providing translational evidence of the sexual differentiation of the developing brain between rodents and humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Role of morphometry in the cytological differentiation of benign and malignant thyroid lesions

    PubMed Central

    Khatri, Pallavi; Choudhury, Monisha; Jain, Manjula; Thomas, Shaji

    2017-01-01

    Context: Thyroid nodules represent a common problem, with an estimated prevalence of 4–7%. Although fine needle aspiration cytology (FNAC) has been accepted as a first line diagnostic test, the rate of false negative reports of malignancy is still high. Nuclear morphometry is the measurement of nuclear parameters by image analysis. Image analysis can merge the advantages of morphologic interpretation with those of quantitative data. Aims: To evaluate the nuclear morphometric parameters in fine needle aspirates of thyroid lesions and to study its role in differentiating benign from malignant thyroid lesions. Material and Methods: The study included 19 benign and 16 malignant thyroid lesions. Image analysis was performed on Giemsa-stained FNAC slides by Nikon NIS-Elements Advanced Research software (Version 4.00). Nuclear morphometric parameters analyzed included nuclear size, shape, texture, and density parameters. Statistical Analysis: Normally distributed continuous variables were compared using the unpaired t-test for two groups and analysis of variance was used for three or more groups. Tukey or Tamhane's T2 multiple comparison test was used to assess the differences between the individual groups. Categorical variables were analyzed using the chi square test. Results and Conclusion: Five out of the six nuclear size parameters as well as all the texture and density parameters studied were significant in distinguishing between benign and malignant thyroid lesions (P < 0.05). Cut-off values were derived to differentiate between benign and malignant cases. PMID:28182069

  19. Gray matter correlates of creative potential: A latent variable voxel-based morphometry study

    PubMed Central

    Jauk, Emanuel; Neubauer, Aljoscha C.; Dunst, Beate; Fink, Andreas; Benedek, Mathias

    2015-01-01

    There is increasing research interest in the structural and functional brain correlates underlying creative potential. Recent investigations found that interindividual differences in creative potential relate to volumetric differences in brain regions belonging to the default mode network, such as the precuneus. Yet, the complex interplay between creative potential, intelligence, and personality traits and their respective neural bases is still under debate. We investigated regional gray matter volume (rGMV) differences that can be associated with creative potential in a heterogeneous sample of N = 135 individuals using voxel-based morphometry (VBM). By means of latent variable modeling and consideration of recent psychometric advancements in creativity research, we sought to disentangle the effects of ideational originality and fluency as two independent indicators of creative potential. Intelligence and openness to experience were considered as common covariates of creative potential. The results confirmed and extended previous research: rGMV in the precuneus was associated with ideational originality, but not with ideational fluency. In addition, we found ideational originality to be correlated with rGMV in the caudate nucleus. The results indicate that the ability to produce original ideas is tied to default-mode as well as dopaminergic structures. These structural brain correlates of ideational originality were apparent throughout the whole range of intellectual ability and thus not moderated by intelligence. In contrast, structural correlates of ideational fluency, a quantitative marker of creative potential, were observed only in lower intelligent individuals in the cuneus/lingual gyrus. PMID:25676914

  20. Cerebral morphology and dopamine D2/D3receptor distribution in humans: A combined [18F]fallypride and voxel-based morphometry study

    PubMed Central

    Woodward, Neil D.; Zald, David H.; Ding, Zhaohua; Riccardi, Patrizia; Ansari, M. Sib; Baldwin, Ronald M.; Cowan, Ronald L.; Li, Rui; Kessler, Robert M.

    2009-01-01

    The relationship between cerebral morphology and the expression of dopamine receptors has not been extensively studied in humans. Elucidation of such relationships may have important methodological implications for clinical studies of dopamine receptor ligand binding differences between control and patient groups. The association between cerebral morphology and dopamine receptor distribution was examined in 45 healthy subjects who completed T1-weighted structural MRI and PET scanning with the D2/D3 ligand [18F]fallypride. Optimized voxel-based morphometry was used to create grey matter volume and density images. Grey matter volume and density images were correlated with binding potential (BPND) images on a voxel-by-voxel basis using the Biological Parametric Mapping toolbox. Associations between cerebral morphology and BPND were also examined for selected regions-of-interest (ROIs) after spatial normalization. Voxel-wise analyses indicated that grey matter volume and density positively correlated with BPND throughout the midbrain, including the substantia nigra. Positive correlations were observed in medial cortical areas, including anterior cingulate and medial prefrontal cortex, and circumscribed regions of the temporal, frontal, and parietal lobes. ROI analyses revealed significant positive correlations between BPND and cerebral morphology in the caudate, thalamus, and amygdala. Few negative correlations between morphology and BPND were observed. Overall, grey matter density appeared more strongly correlated with BPND than grey matter volume. Cerebral morphology, particularly grey matter density, correlates with [18F]fallypride BPND in a regionally specific manner. Clinical studies comparing dopamine receptor availability between clinical and control groups may benefit by accounting for potential differences in cerebral morphology that exist even after spatial normalization. PMID:19457373

  1. Cerebral morphology and dopamine D2/D3 receptor distribution in humans: a combined [18F]fallypride and voxel-based morphometry study.

    PubMed

    Woodward, Neil D; Zald, David H; Ding, Zhaohua; Riccardi, Patrizia; Ansari, M Sib; Baldwin, Ronald M; Cowan, Ronald L; Li, Rui; Kessler, Robert M

    2009-05-15

    The relationship between cerebral morphology and the expression of dopamine receptors has not been extensively studied in humans. Elucidation of such relationships may have important methodological implications for clinical studies of dopamine receptor ligand binding differences between control and patient groups. The association between cerebral morphology and dopamine receptor distribution was examined in 45 healthy subjects who completed T1-weighted structural MRI and PET scanning with the D(2)/D(3) ligand [(18)F]fallypride. Optimized voxel-based morphometry was used to create grey matter volume and density images. Grey matter volume and density images were correlated with binding potential (BP(ND)) images on a voxel-by-voxel basis using the Biological Parametric Mapping toolbox. Associations between cerebral morphology and BP(ND) were also examined for selected regions-of-interest (ROIs) after spatial normalization. Voxel-wise analyses indicated that grey matter volume and density positively correlated with BP(ND) throughout the midbrain, including the substantia nigra. Positive correlations were observed in medial cortical areas, including anterior cingulate and medial prefrontal cortex, and circumscribed regions of the temporal, frontal, and parietal lobes. ROI analyses revealed significant positive correlations between BP(ND) and cerebral morphology in the caudate, thalamus, and amygdala. Few negative correlations between morphology and BP(ND) were observed. Overall, grey matter density appeared more strongly correlated with BP(ND) than grey matter volume. Cerebral morphology, particularly grey matter density, correlates with [(18)F]fallypride BP(ND) in a regionally specific manner. Clinical studies comparing dopamine receptor availability between clinical and control groups may benefit by accounting for potential differences in cerebral morphology that exist even after spatial normalization.

  2. Hypothyroidism modifies morphometry and thyroid-hormone receptor expression in periurethral muscles of female rabbits.

    PubMed

    Sánchez-García, Octavio; Rodríguez-Castelán, Julia; Martínez-Gómez, Margarita; Cuevas, Estela; Castelán, Francisco

    2016-11-01

    To evaluate the morphometry and thyroid-hormone receptor (TR) expression in pelvic (pubococcygeus, Pcm) and perineal (bulbospongiosus, Bsm) muscles of control and hypothyroid female rabbits. Hypothyroidism was induced administering 0.02% methimazole in the drinking water for one month. Hematoxylin-eosin stained muscle sections were used to evaluate the fiber cross-sectional area (CSA) and the number of peripheral myonuclei per fiber. Immunohistochemistry was used to calculate the proportion of TR immunoreactive nuclei per fiber. Significant differences were considered at a P ≤ 0.05. As compared to control rabbits, hypothyroidism increased the averaged fiber CSA and the myonuclei per fiber in the Bsm. Although the myonuclei number per fiber was also increased in the Pcm, the effect concerning the fiber CSA was only observed in a fraction of the Pcm fibers. Both TRα and TRβ were similarly expressed in the Pcm and Bsm. Hypothyroidism increased the expression of the TRα in the Bsm. Meanwhile, the expression of TR isoforms in the Pcm was not altered. Our findings support that the TR signaling is directly involved in morphometrical changes induced by hypothyroidism in the Pcm and Bsm. The effect of hypothyroidism on the Pcm and Bsm could be related to the different type of fiber and metabolism that these muscles have. Neurourol. Urodynam. 35:895-901, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  3. Impact of Early and Late Visual Deprivation on the Structure of the Corpus Callosum: A Study Combining Thickness Profile with Surface Tensor-Based Morphometry.

    PubMed

    Shi, Jie; Collignon, Olivier; Xu, Liang; Wang, Gang; Kang, Yue; Leporé, Franco; Lao, Yi; Joshi, Anand A; Leporé, Natasha; Wang, Yalin

    2015-07-01

    Blindness represents a unique model to study how visual experience may shape the development of brain organization. Exploring how the structure of the corpus callosum (CC) reorganizes ensuing visual deprivation is of particular interest due to its important functional implication in vision (e.g., via the splenium of the CC). Moreover, comparing early versus late visually deprived individuals has the potential to unravel the existence of a sensitive period for reshaping the CC structure. Here, we develop a novel framework to capture a complete set of shape differences in the CC between congenitally blind (CB), late blind (LB) and sighted control (SC) groups. The CCs were manually segmented from T1-weighted brain MRI and modeled by 3D tetrahedral meshes. We statistically compared the combination of local area and thickness at each point between subject groups. Differences in area are found using surface tensor-based morphometry; thickness is estimated by tracing the streamlines in the volumetric harmonic field. Group differences were assessed on this combined measure using Hotelling's T(2) test. Interestingly, we observed that the total callosal volume did not differ between the groups. However, our fine-grained analysis reveals significant differences mostly localized around the splenium areas between both blind groups and the sighted group (general effects of blindness) and, importantly, specific dissimilarities between the LB and CB groups, illustrating the existence of a sensitive period for reorganization. The new multivariate statistics also gave better effect sizes for detecting morphometric differences, relative to other statistics. They may boost statistical power for CC morphometric analyses.

  4. IMPACT OF EARLY AND LATE VISUAL DEPRIVATION ON THE STRUCTURE OF THE CORPUS CALLOSUM: A STUDY COMBINING THICKNESS PROFILE WITH SURFACE TENSOR-BASED MORPHOMETRY

    PubMed Central

    Shi, Jie; Collignon, Olivier; Xu, Liang; Wang, Gang; Kang, Yue; Leporé, Franco; Lao, Yi; Joshi, Anand A.

    2015-01-01

    Blindness represents a unique model to study how visual experience may shape the development of brain organization. Exploring how the structure of the corpus callosum (CC) reorganizes ensuing visual deprivation is of particular interest due to its important functional implication in vision (e.g. via the splenium of the CC). Moreover, comparing early versus late visually deprived individuals has the potential to unravel the existence of a sensitive period for reshaping the CC structure. Here, we develop a novel framework to capture a complete set of shape differences in the CC between congenitally blind (CB), late blind (LB) and sighted control (SC) groups. The CCs were manually segmented from T1-weighted brain MRI and modeled by 3D tetrahedral meshes. We statistically compared the combination of local area and thickness at each point between subject groups. Differences in area are found using surface tensor-based morphometry; thickness is estimated by tracing the streamlines in the volumetric harmonic field. Group differences were assessed on this combined measure using Hotelling’s T2 test. Interestingly, we observed that the total callosal volume did not differ between the groups. However, our fine-grained analysis reveals significant differences mostly localized around the splenium areas between both blind groups and the sighted group (general effects of blindness) and, importantly, specific dissimilarities between the LB and CB groups, illustrating the existence of a sensitive period for reorganization. The new multivariate statistics also gave better effect sizes for detecting morphometric differences, relative to other statistics. They may boost statistical power for CC morphometric analyses. PMID:25649876

  5. MRI morphometry of mamillary bodies, caudate nuclei, and prefrontal cortices after chemotherapy for childhood leukemia: multivariate models of early and late developing memory subsystems.

    PubMed

    Ciesielski, K T; Lesnik, P G; Benzel, E C; Hart, B L; Sanders, J A

    1999-06-01

    Neurotoxic intrathecal chemotherapy for childhood acute lymphoblastic leukemia (ALL) affects developing structures and functions of memory and learning subsystems selectively. Results show significant reductions in magnetic resonance imaging morphometry of mamillary bodies, components of the corticolimbic-diencephalic subsystem subserving functionally later developing, single-trial memory, nonsignificant changes in bilateral heads of the caudate nuclei, components of the corticostriatal subsystem subserving functionally earlier developing, multitrial learning, significant reductions in prefrontal cortical volume, visual and verbal single-trial memory deficits, and visuospatial, but not verbal, multitrial learning deficits. Multiple regression models provide evidence for partial dissociation and connectivity between the subsystems, and suggest that greater involvement of caudate may compensate for inefficient corticolimbic-diencephalic components.

  6. Morphology, morphometry and probability mapping of the pars opercularis of the inferior frontal gyrus: an in vivo MRI analysis.

    PubMed

    Tomaiuolo, F; MacDonald, J D; Caramanos, Z; Posner, G; Chiavaras, M; Evans, A C; Petrides, M

    1999-09-01

    The pars opercularis occupies the posterior part of the inferior frontal gyrus. Electrical stimulation or damage of this region interferes with language production. The present study investigated the morphology and morphometry of the pars opercularis in 108 normal adult human cerebral hemispheres by means of magnetic resonance imaging. The brain images were transformed into a standardized proportional steoreotaxic space (i.e. that of Talairach and Tournoux) in order to minimize interindividual brain size variability. There was considerable variability in the shape and location of the pars opercularis across brains and between cerebral hemispheres. There was no significant difference or correlation between left and right hemisphere grey matter volumes. There was also no significant difference between sex and side of asymmetry of the pars opercularis. A probability map of the pars opercularis was constructed by averaging its location and extent in each individual normalized brain into Talairach space to aid in localization of activity changes in functional neuroimaging studies.

  7. Numerical Transcoding Proficiency in 10-Year-Old Schoolchildren is Associated with Gray Matter Inter-Individual Differences: A Voxel-Based Morphometry Study.

    PubMed

    Lubin, Amélie; Rossi, Sandrine; Simon, Grégory; Lanoë, Céline; Leroux, Gaëlle; Poirel, Nicolas; Pineau, Arlette; Houdé, Olivier

    2013-01-01

    Are individual differences in numerical performance sustained by variations in gray matter volume in schoolchildren? To our knowledge, this challenging question for neuroeducation has not yet been investigated in typical development. We used the Voxel-Based Morphometry method to search for possible structural brain differences between two groups of 10-year-old schoolchildren (N = 22) whose performance differed only in numerical transcoding between analog and symbolic systems. The results indicated that children with low numerical proficiency have less gray matter volume in the parietal (particularly in the left intraparietal sulcus and the bilateral angular gyri) and occipito-temporal areas. All the identified regions have previously been shown to be functionally involved in transcoding between analog and symbolic numerical systems. Our data contribute to a better understanding of the intertwined relationships between mathematics learning and brain structure in healthy schoolchildren.

  8. Numerical Transcoding Proficiency in 10-Year-Old Schoolchildren is Associated with Gray Matter Inter-Individual Differences: A Voxel-Based Morphometry Study

    PubMed Central

    Lubin, Amélie; Rossi, Sandrine; Simon, Grégory; Lanoë, Céline; Leroux, Gaëlle; Poirel, Nicolas; Pineau, Arlette; Houdé, Olivier

    2013-01-01

    Are individual differences in numerical performance sustained by variations in gray matter volume in schoolchildren? To our knowledge, this challenging question for neuroeducation has not yet been investigated in typical development. We used the Voxel-Based Morphometry method to search for possible structural brain differences between two groups of 10-year-old schoolchildren (N = 22) whose performance differed only in numerical transcoding between analog and symbolic systems. The results indicated that children with low numerical proficiency have less gray matter volume in the parietal (particularly in the left intraparietal sulcus and the bilateral angular gyri) and occipito-temporal areas. All the identified regions have previously been shown to be functionally involved in transcoding between analog and symbolic numerical systems. Our data contribute to a better understanding of the intertwined relationships between mathematics learning and brain structure in healthy schoolchildren. PMID:23630510

  9. Whole-brain voxel-based morphometry in Kallmann syndrome associated with mirror movements.

    PubMed

    Koenigkam-Santos, M; Santos, A C; Borduqui, T; Versiani, B R; Hallak, J E C; Crippa, J A S; Castro, M

    2008-10-01

    There are 2 main hypotheses concerning the cause of mirror movements (MM) in Kallmann syndrome (KS): abnormal development of the primary motor system, involving the ipsilateral corticospinal tract; and lack of contralateral motor cortex inhibitory mechanisms, mainly through the corpus callosum. The purpose of our study was to determine white and gray matter volume changes in a KS population by using optimized voxel-based morphometry (VBM) and to investigate the relationship between the abnormalities and the presence of MM, addressing the 2 mentioned hypotheses. T1-weighted volumetric images from 21 patients with KS and 16 matched control subjects were analyzed with optimized VBM. Images were segmented and spatially normalized, and these deformation parameters were then applied to the original images before the second segmentation. Patients were divided into groups with and without MM, and a t test statistic was then applied on a voxel-by-voxel basis between the groups and controls to evaluate significant differences. When considering our hypothesis a priori, we found that 2 areas of increased gray matter volume, in the left primary motor and sensorimotor cortex, were demonstrated only in patients with MM, when compared with healthy controls. Regarding white matter alterations, no areas of altered volume involving the corpus callosum or the projection of the corticospinal tract were demonstrated. The VBM study did not show significant white matter changes in patients with KS but showed gray matter alterations in keeping with a hypertrophic response to a deficient pyramidal decussation in patients with MM. In addition, gray matter alterations were observed in patients without MM, which can represent more complex mechanisms determining the presence or absence of this symptom.

  10. Automated Cell Detection and Morphometry on Growth Plate Images of Mouse Bone

    PubMed Central

    Ascenzi, Maria-Grazia; Du, Xia; Harding, James I; Beylerian, Emily N; de Silva, Brian M; Gross, Ben J; Kastein, Hannah K; Wang, Weiguang; Lyons, Karen M; Schaeffer, Hayden

    2014-01-01

    Microscopy imaging of mouse growth plates is extensively used in biology to understand the effect of specific molecules on various stages of normal bone development and on bone disease. Until now, such image analysis has been conducted by manual detection. In fact, when existing automated detection techniques were applied, morphological variations across the growth plate and heterogeneity of image background color, including the faint presence of cells (chondrocytes) located deeper in tissue away from the image’s plane of focus, and lack of cell-specific features, interfered with identification of cell. We propose the first method of automated detection and morphometry applicable to images of cells in the growth plate of long bone. Through ad hoc sequential application of the Retinex method, anisotropic diffusion and thresholding, our new cell detection algorithm (CDA) addresses these challenges on bright-field microscopy images of mouse growth plates. Five parameters, chosen by the user in respect of image characteristics, regulate our CDA. Our results demonstrate effectiveness of the proposed numerical method relative to manual methods. Our CDA confirms previously established results regarding chondrocytes’ number, area, orientation, height and shape of normal growth plates. Our CDA also confirms differences previously found between the genetic mutated mouse Smad1/5CKO and its control mouse on fluorescence images. The CDA aims to aid biomedical research by increasing efficiency and consistency of data collection regarding arrangement and characteristics of chondrocytes. Our results suggest that automated extraction of data from microscopy imaging of growth plates can assist in unlocking information on normal and pathological development, key to the underlying biological mechanisms of bone growth. PMID:25525552

  11. Regional gray matter correlates of memory for emotion-laden words in middle-aged and older adults: A voxel-based morphometry study

    PubMed Central

    Joutsa, Juho; Laine, Matti; Parkkola, Riitta; Rinne, Juha O.; Karrasch, Mira

    2017-01-01

    Emotional content is known to enhance memory in a content-dependent manner in healthy populations. In middle-aged and older adults, a reduced preference for negative material, or even an enhanced preference for positive material has been observed. This preference seems to be modulated by the emotional arousal that the material evokes. The neuroanatomical basis for emotional memory processes is, however, not well understood in middle-aged and older healthy people. Previous research on local gray matter correlates of emotional memory in older populations has mainly been conducted with patients suffering from various neurodegenerative diseases. To our knowledge, this is the first study to examine regional gray matter correlates of immediate free recall and recognition memory of intentionally encoded positive, negative, and emotionally neutral words using voxel-based morphometry (VBM) in a sample of 50-to-79-year-old cognitively intact normal adults. The behavioral analyses yielded a positivity bias in recognition memory, but not in immediate free recall. No associations with memory performance emerged from the region-of-interest (ROI) analyses using amygdalar and hippocampal volumes. Controlling for total intracranial volume, age, and gender, the whole-brain VBM analyses showed statistically significant associations between immediate free recall of negative words and volumes in various frontal regions, between immediate free recall of positive words and cerebellar volume, and between recognition memory of positive words and primary visual cortex volume. The findings indicate that the neural areas subserving memory for emotion-laden information encompass posterior brain areas, including the cerebellum, and that memory for emotion-laden information may be driven by cognitive control functions. PMID:28771634

  12. Atlas-derived perfusion correlates of white matter hyperintensities in patients with reduced cardiac output.

    PubMed

    Jefferson, Angela L; Holland, Christopher M; Tate, David F; Csapo, Istvan; Poppas, Athena; Cohen, Ronald A; Guttmann, Charles R G

    2011-01-01

    Reduced cardiac output is associated with increased white matter hyperintensities (WMH) and executive dysfunction in older adults, which may be secondary to relations between systemic and cerebral perfusion. This study preliminarily describes the regional distribution of cerebral WMH in the context of a normal cerebral perfusion atlas and aims to determine if these variables are associated with reduced cardiac output. Thirty-two participants (72 ± 8 years old, 38% female) with cardiovascular risk factors or disease underwent structural MRI acquisition at 1.5T using a standard imaging protocol that included FLAIR sequences. WMH distribution was examined in common anatomical space using voxel-based morphometry and as a function of normal cerebral perfusion patterns by overlaying a single photon emission computed tomography (SPECT) atlas. Doppler echocardiogram data was used to dichotomize the participants on the basis of low (n=9) and normal (n=23) cardiac output. Global WMH count and volume did not differ between the low and normal cardiac output groups; however, atlas-derived SPECT perfusion values in regions of hyperintensities were reduced in the low versus normal cardiac output group (p<0.001). Our preliminary data suggest that participants with low cardiac output have WMH in regions of relatively reduced perfusion, while normal cardiac output participants have WMH in regions with relatively higher regional perfusion. This spatial perfusion distribution difference for areas of WMH may occur in the context of reduced systemic perfusion, which subsequently impacts cerebral perfusion and contributes to subclinical or clinical microvascular damage. Copyright © 2009 Elsevier Inc. All rights reserved.

  13. Computational Assay of H7N9 Influenza Neuraminidase Reveals R292K Mutation Reduces Drug Binding Affinity

    NASA Astrophysics Data System (ADS)

    Woods, Christopher J.; Malaisree, Maturos; Long, Ben; McIntosh-Smith, Simon; Mulholland, Adrian J.

    2013-12-01

    The emergence of a novel H7N9 avian influenza that infects humans is a serious cause for concern. Of the genome sequences of H7N9 neuraminidase available, one contains a substitution of arginine to lysine at position 292, suggesting a potential for reduced drug binding efficacy. We have performed molecular dynamics simulations of oseltamivir, zanamivir and peramivir bound to H7N9, H7N9-R292K, and a structurally related H11N9 neuraminidase. They show that H7N9 neuraminidase is structurally homologous to H11N9, binding the drugs in identical modes. The simulations reveal that the R292K mutation disrupts drug binding in H7N9 in a comparable manner to that observed experimentally for H11N9-R292K. Absolute binding free energy calculations with the WaterSwap method confirm a reduction in binding affinity. This indicates that the efficacy of antiviral drugs against H7N9-R292K will be reduced. Simulations can assist in predicting disruption of binding caused by mutations in neuraminidase, thereby providing a computational `assay.'

  14. Regional gray matter density associated with emotional intelligence: evidence from voxel-based morphometry.

    PubMed

    Takeuchi, Hikaru; Taki, Yasuyuki; Sassa, Yuko; Hashizume, Hiroshi; Sekiguchi, Atsushi; Fukushima, Ai; Kawashima, Ryuta

    2011-09-01

    Emotional Intelligence (EI) is the ability to monitor one's own and others' emotions and the ability to use the gathered information to guide one's thinking and action. EI is thought to be important for social life making it a popular subject of research. However, despite the existence of previous functional imaging studies on EI, the relationship between regional gray matter morphology and EI has never been investigated. We used voxel-based morphometry (VBM) and a questionnaire (Emotional Intelligence Scale) to measure EI to identify the gray matter correlates of each factor of individual EI (Intrapersonal factor, Interpersonal factor, Situation Management factor). We found significant negative relationships between the Intrapersonal factor and regional gray matter density (rGMD) (1-a) in an anatomical cluster that included the right anterior insula, (1-b) in the right cerebellum, (1-c) in an anatomical cluster that extends from the cuneus to the precuneus, (1-d) and in an anatomical cluster that extends from the medial prefrontal cortex to the left lateral fronto-polar cortex. We also found significant positive correlations between the Interpersonal factor and rGMD in the right superior temporal sulcus, and significant negative correlations between the Situation Management factor and rGMD in the ventromedial prefrontal cortex. These findings suggest that each factor of EI in healthy young people is related to the specific brain regions known to be involved in the networks of social cognition and self-related recognition, and in the somatic marker circuitry. Copyright © 2010 Wiley-Liss, Inc.

  15. Relating Inter-Individual Differences in Verbal Creative Thinking to Cerebral Structures: An Optimal Voxel-Based Morphometry Study

    PubMed Central

    Zhu, Feifei; Zhang, Qinglin; Qiu, Jiang

    2013-01-01

    Creativity can be defined the capacity of an individual to produce something original and useful. An important measurable component of creativity is divergent thinking. Despite existing studies on creativity-related cerebral structural basis, no study has used a large sample to investigate the relationship between individual verbal creativity and regional gray matter volumes (GMVs) and white matter volumes (WMVs). In the present work, optimal voxel-based morphometry (VBM) was employed to identify the structure that correlates verbal creativity (measured by the verbal form of Torrance Tests of Creative Thinking) across the brain in young healthy subjects. Verbal creativity was found to be significantly positively correlated with regional GMV in the left inferior frontal gyrus (IFG), which is believed to be responsible for language production and comprehension, new semantic representation, and memory retrieval, and in the right IFG, which may involve inhibitory control and attention switching. A relationship between verbal creativity and regional WMV in the left and right IFG was also observed. Overall, a highly verbal creative individual with superior verbal skills may demonstrate a greater computational efficiency in the brain areas involved in high-level cognitive processes including language production, semantic representation and cognitive control. PMID:24223921

  16. Relating inter-individual differences in verbal creative thinking to cerebral structures: an optimal voxel-based morphometry study.

    PubMed

    Zhu, Feifei; Zhang, Qinglin; Qiu, Jiang

    2013-01-01

    Creativity can be defined the capacity of an individual to produce something original and useful. An important measurable component of creativity is divergent thinking. Despite existing studies on creativity-related cerebral structural basis, no study has used a large sample to investigate the relationship between individual verbal creativity and regional gray matter volumes (GMVs) and white matter volumes (WMVs). In the present work, optimal voxel-based morphometry (VBM) was employed to identify the structure that correlates verbal creativity (measured by the verbal form of Torrance Tests of Creative Thinking) across the brain in young healthy subjects. Verbal creativity was found to be significantly positively correlated with regional GMV in the left inferior frontal gyrus (IFG), which is believed to be responsible for language production and comprehension, new semantic representation, and memory retrieval, and in the right IFG, which may involve inhibitory control and attention switching. A relationship between verbal creativity and regional WMV in the left and right IFG was also observed. Overall, a highly verbal creative individual with superior verbal skills may demonstrate a greater computational efficiency in the brain areas involved in high-level cognitive processes including language production, semantic representation and cognitive control.

  17. Nuclear morphometry in flat epithelial atypia of the breast as a predictor of malignancy: a digital image-based histopathologic analysis.

    PubMed

    Williams, Phillip A; Djordjevic, Bojana; Ayroud, Yasmine; Islam, Shahidul; Gravel, Denis; Robertson, Susan J; Parra-Herran, Carlos

    2014-12-01

    To identify morphometric features unique to flat epithelial atypia associated with cancer using digital image analysis. Cases with diagnosis of flat epithelial atypia were retrieved and divided into 2 groups: flat epithelial atypia associated with invasive or in situ carcinoma (n = 31) and those without malignancy (n = 27). Slides were digitally scanned. Nuclear features were analyzed on representative images at 20x magnification using digital morphometric software. Parameters related to nuclear shape and size (diameter, perimeter) were similar in both groups. However, cases with malignancy had significantly higher densitometric green (p = 0.02), red (p = 0.03), and grey (p = 0.02) scale levels as compared to cases without cancer. A mean grey densitometric level > 119.45 had 71% sensitivity and 70.4% specificity in detecting cases with concomitant carcinoma. Morphometry of features related to nuclear staining appears to be useful in predicting risk of concurrent malignancy in patients with flat epithelial atypia, when added to a comprehensive histopathologic evaluation.

  18. Early gray-matter and white-matter concentration in infancy predict later language skills: a whole brain voxel-based morphometry study.

    PubMed

    Deniz Can, Dilara; Richards, Todd; Kuhl, Patricia K

    2013-01-01

    Magnetic resonance imaging (MRI) brain scans were obtained from 19 infants at 7 months. Expressive and receptive language performance was assessed at 12 months. Voxel-based morphometry (VBM) identified brain regions where gray-matter and white-matter concentrations at 7 months correlated significantly with children's language scores at 12 months. Early gray-matter concentration in the right cerebellum, early white-matter concentration in the right cerebellum, and early white-matter concentration in the left posterior limb of the internal capsule (PLIC)/cerebral peduncle were positively and strongly associated with infants' receptive language ability at 12 months. Early gray-matter concentration in the right hippocampus was positively and strongly correlated with infants' expressive language ability at 12 months. Our results suggest that the cerebellum, PLIC/cerebral peduncle, and the hippocampus may be associated with early language development. Potential links between these structural predictors and infants' linguistic functions are discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Voxel-based morphometry findings in Alzheimer's disease: neuropsychiatric symptoms and disability correlations - preliminary results.

    PubMed

    Vasconcelos, Luciano de Gois; Jackowski, Andrea Parolin; Oliveira, Maira Okada de; Flor, Yoná Mayara Ribeiro; Bueno, Orlando Francisco Amodeo; Brucki, Sonia Maria Dozzi

    2011-01-01

    The role of structural brain changes and their correlations with neuropsychiatric symptoms and disability in Alzheimer's disease are still poorly understood. To establish whether structural changes in grey matter volume in patients with mild Alzheimer's disease are associated with neuropsychiatric symptoms and disability Nineteen Alzheimer's disease patients (9 females; total mean age =75.2 y old +4.7; total mean education level =8.5 y +4.9) underwent a magnetic resonance imaging (MRI) examination and voxel-based morphometry analysis. T1-weighted images were spatially normalized and segmented. Grey matter images were smoothed and analyzed using a multiple regression design. The results were corrected for multiple comparisons. The Neuropsychiatric Inventory was used to evaluate the neuropsychiatric symptoms, and the Functional Activities Questionnaire and Disability Assessment for Dementia were used for functional evaluation A significant negative correlation was found between the bilateral middle frontal gyri, left inferior temporal gyrus, right orbitofrontal gyrus, and Neuropsychiatric Inventory scores. A negative correlation was found between bilateral middle temporal gyri, left hippocampus, bilateral fusiform gyri, and the Functional Activities Questionnaire. There was a positive correlation between the right amygdala, bilateral fusiform gyri, right anterior insula, left inferior and middle temporal gyri, right superior temporal gyrus, and Disability Assessment for Dementia scores The results suggest that the neuropsychiatric symptoms observed in Alzheimer's disease patients could be mainly due to frontal structural abnormalities, whereas disability could be associated with reductions in temporal structures.

  20. White matter and schizophrenia: A meta-analysis of voxel-based morphometry and diffusion tensor imaging studies.

    PubMed

    Vitolo, Enrico; Tatu, Mona Karina; Pignolo, Claudia; Cauda, Franco; Costa, Tommaso; Ando', Agata; Zennaro, Alessandro

    2017-12-30

    Voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) are the most implemented methodologies to detect alterations of both gray and white matter (WM). However, the role of WM in mental disorders is still not well defined. We aimed at clarifying the role of WM disruption in schizophrenia and at identifying the most frequently involved brain networks. A systematic literature search was conducted to identify VBM and DTI studies focusing on WM alterations in patients with schizophrenia compared to control subjects. We selected studies reporting the coordinates of WM reductions and we performed the anatomical likelihood estimation (ALE). Moreover, we labeled the WM bundles with an anatomical atlas and compared VBM and DTI ALE-scores of each significant WM tract. A total of 59 studies were eligible for the meta-analysis. WM alterations were reported in 31 and 34 foci with VBM and DTI methods, respectively. The most occurred WM bundles in both VBM and DTI studies and largely involved in schizophrenia were long projection fibers, callosal and commissural fibers, part of motor descending fibers, and fronto-temporal-limbic pathways. The meta-analysis showed a widespread WM disruption in schizophrenia involving specific cerebral circuits instead of well-defined regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Voxel-based morphometry in creative writers: Gray-matter increase in a prefronto-thalamic-cerebellar network.

    PubMed

    Neumann, Nicola; Domin, Martin; Erhard, Katharina; Lotze, Martin

    2018-05-18

    Continuous practice modulates those features of brain anatomy specifically associated with requirements of the respective training task. The current study aimed to highlight brain structural changes going along with long-term experience in creative writing. To this end, we investigated the gray-matter volume of 23 expert writers with voxel-based morphometry and compared it to 28 matched non-expert controls. Expert writers had higher gray-matter volume in the right superior frontal and middle frontal gyri (BA 9,10) as well as left middle frontal gyrus (BA 9, 10, 46), the bilateral medial dorsal nuclei of the thalamus and left posterior cerebellum. A regression analysis confirmed the association of enhanced gray-matter volume in the right superior frontal gyrus (BA 10) with practice index of writing. In region-of interest based regression analyses, we found associations of gray-matter volume in the right Broca's analogue (BA 44) and right primary visual cortex (BA 17) with creativity ratings of the texts written during scanning, but not with a standardized verbal creativity test. Creative writing thus seems to be strongly connected to a prefronto-thalamic-cerebellar network that supports the continuous generation, organization and revision of ideas that is necessary to write literary texts. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Structural Changes Induced by Daily Music Listening in the Recovering Brain after Middle Cerebral Artery Stroke: A Voxel-Based Morphometry Study

    PubMed Central

    Särkämö, Teppo; Ripollés, Pablo; Vepsäläinen, Henna; Autti, Taina; Silvennoinen, Heli M.; Salli, Eero; Laitinen, Sari; Forsblom, Anita; Soinila, Seppo; Rodríguez-Fornells, Antoni

    2014-01-01

    Music is a highly complex and versatile stimulus for the brain that engages many temporal, frontal, parietal, cerebellar, and subcortical areas involved in auditory, cognitive, emotional, and motor processing. Regular musical activities have been shown to effectively enhance the structure and function of many brain areas, making music a potential tool also in neurological rehabilitation. In our previous randomized controlled study, we found that listening to music on a daily basis can improve cognitive recovery and improve mood after an acute middle cerebral artery stroke. Extending this study, a voxel-based morphometry (VBM) analysis utilizing cost function masking was performed on the acute and 6-month post-stroke stage structural magnetic resonance imaging data of the patients (n = 49) who either listened to their favorite music [music group (MG), n = 16] or verbal material [audio book group (ABG), n = 18] or did not receive any listening material [control group (CG), n = 15] during the 6-month recovery period. Although all groups showed significant gray matter volume (GMV) increases from the acute to the 6-month stage, there was a specific network of frontal areas [left and right superior frontal gyrus (SFG), right medial SFG] and limbic areas [left ventral/subgenual anterior cingulate cortex (SACC) and right ventral striatum (VS)] in patients with left hemisphere damage in which the GMV increases were larger in the MG than in the ABG and in the CG. Moreover, the GM reorganization in the frontal areas correlated with enhanced recovery of verbal memory, focused attention, and language skills, whereas the GM reorganization in the SACC correlated with reduced negative mood. This study adds on previous results, showing that music listening after stroke not only enhances behavioral recovery, but also induces fine-grained neuroanatomical changes in the recovering brain. PMID:24860466

  3. Structural changes induced by daily music listening in the recovering brain after middle cerebral artery stroke: a voxel-based morphometry study.

    PubMed

    Särkämö, Teppo; Ripollés, Pablo; Vepsäläinen, Henna; Autti, Taina; Silvennoinen, Heli M; Salli, Eero; Laitinen, Sari; Forsblom, Anita; Soinila, Seppo; Rodríguez-Fornells, Antoni

    2014-01-01

    Music is a highly complex and versatile stimulus for the brain that engages many temporal, frontal, parietal, cerebellar, and subcortical areas involved in auditory, cognitive, emotional, and motor processing. Regular musical activities have been shown to effectively enhance the structure and function of many brain areas, making music a potential tool also in neurological rehabilitation. In our previous randomized controlled study, we found that listening to music on a daily basis can improve cognitive recovery and improve mood after an acute middle cerebral artery stroke. Extending this study, a voxel-based morphometry (VBM) analysis utilizing cost function masking was performed on the acute and 6-month post-stroke stage structural magnetic resonance imaging data of the patients (n = 49) who either listened to their favorite music [music group (MG), n = 16] or verbal material [audio book group (ABG), n = 18] or did not receive any listening material [control group (CG), n = 15] during the 6-month recovery period. Although all groups showed significant gray matter volume (GMV) increases from the acute to the 6-month stage, there was a specific network of frontal areas [left and right superior frontal gyrus (SFG), right medial SFG] and limbic areas [left ventral/subgenual anterior cingulate cortex (SACC) and right ventral striatum (VS)] in patients with left hemisphere damage in which the GMV increases were larger in the MG than in the ABG and in the CG. Moreover, the GM reorganization in the frontal areas correlated with enhanced recovery of verbal memory, focused attention, and language skills, whereas the GM reorganization in the SACC correlated with reduced negative mood. This study adds on previous results, showing that music listening after stroke not only enhances behavioral recovery, but also induces fine-grained neuroanatomical changes in the recovering brain.

  4. Mapping grey matter reductions in schizophrenia: an anatomical likelihood estimation analysis of voxel-based morphometry studies.

    PubMed

    Fornito, A; Yücel, M; Patti, J; Wood, S J; Pantelis, C

    2009-03-01

    Voxel-based morphometry (VBM) is a popular tool for mapping neuroanatomical changes in schizophrenia patients. Several recent meta-analyses have identified the brain regions in which patients most consistently show grey matter reductions, although they have not examined whether such changes reflect differences in grey matter concentration (GMC) or grey matter volume (GMV). These measures assess different aspects of grey matter integrity, and may therefore reflect different pathological processes. In this study, we used the Anatomical Likelihood Estimation procedure to analyse significant differences reported in 37 VBM studies of schizophrenia patients, incorporating data from 1646 patients and 1690 controls, and compared the findings of studies using either GMC or GMV to index grey matter differences. Analysis of all studies combined indicated that grey matter reductions in a network of frontal, temporal, thalamic and striatal regions are among the most frequently reported in literature. GMC reductions were generally larger and more consistent than GMV reductions, and were more frequent in the insula, medial prefrontal, medial temporal and striatal regions. GMV reductions were more frequent in dorso-medial frontal cortex, and lateral and orbital frontal areas. These findings support the primacy of frontal, limbic, and subcortical dysfunction in the pathophysiology of schizophrenia, and suggest that the grey matter changes observed with MRI may not necessarily result from a unitary pathological process.

  5. Blood-Gene Expression Reveals Reduced Circadian Rhythmicity in Individuals Resistant to Sleep Deprivation

    PubMed Central

    Arnardottir, Erna S.; Nikonova, Elena V.; Shockley, Keith R.; Podtelezhnikov, Alexei A.; Anafi, Ron C.; Tanis, Keith Q.; Maislin, Greg; Stone, David J.; Renger, John J.; Winrow, Christopher J.; Pack, Allan I.

    2014-01-01

    Study Objectives: To address whether changes in gene expression in blood cells with sleep loss are different in individuals resistant and sensitive to sleep deprivation. Design: Blood draws every 4 h during a 3-day study: 24-h normal baseline, 38 h of continuous wakefulness and subsequent recovery sleep, for a total of 19 time-points per subject, with every 2-h psychomotor vigilance task (PVT) assessment when awake. Setting: Sleep laboratory. Participants: Fourteen subjects who were previously identified as behaviorally resistant (n = 7) or sensitive (n = 7) to sleep deprivation by PVT. Intervention: Thirty-eight hours of continuous wakefulness. Measurements and Results: We found 4,481 unique genes with a significant 24-h diurnal rhythm during a normal sleep-wake cycle in blood (false discovery rate [FDR] < 5%). Biological pathways were enriched for biosynthetic processes during sleep. After accounting for circadian effects, two genes (SREBF1 and CPT1A, both involved in lipid metabolism) exhibited small, but significant, linear changes in expression with the duration of sleep deprivation (FDR < 5%). The main change with sleep deprivation was a reduction in the amplitude of the diurnal rhythm of expression of normally cycling probe sets. This reduction was noticeably higher in behaviorally resistant subjects than sensitive subjects, at any given P value. Furthermore, blood cell type enrichment analysis showed that the expression pattern difference between sensitive and resistant subjects is mainly found in cells of myeloid origin, such as monocytes. Conclusion: Individual differences in behavioral effects of sleep deprivation are associated with differences in diurnal amplitude of gene expression for genes that show circadian rhythmicity. Citation: Arnardottir ES, Nikonova EV, Shockley KR, Podtelezhnikov AA, Anafi RC, Tanis KQ, Maislin G, Stone DJ, Renger JJ, Winrow CJ, Pack AI. Blood-gene expression reveals reduced circadian rhythmicity in individuals resistant to

  6. Lava dome morphometry and geochronology of the youngest eruptive activity in Eastern Central Europe: Ciomadul (Csomád), East Carpathians, Romania

    NASA Astrophysics Data System (ADS)

    Karátson, D.; Telbisz, T.; Harangi, Sz.; Magyari, E.; Kiss, B.; Dunkl, I.; Veres, D.; Braun, M.

    2012-04-01

    Volcanic evolution of the Ciomadul (Csomád) lava dome complex, site of the youngest (Late Pleistocene, late Marine Isotope Stage 3) eruptive activity in the Carpathians, has been studied by advanced morphometry and radiometric (U/Pb, U/He and 14C) geochronology. The volcano produced alternating effusive and intermittent explosive eruptions from individual domes, typical of common andesitic-dacitic lava domes. A comparative morphometry shows steep ≥30° mean slopes of domes' upper flank and the Csomád domes fit well to the 100-200 ka domes worldwide. Morphometric ages obtained from the mean slope vs age precipitation correlation results in ≤100 ka ages. The morphometric approach is supported by U/Pb and U/He chronology: preliminary results of zircon dating indicate ages ranging between 200(250) and 30 ka. The youngest ages of the data set obtained both from lavas and pumiceous pyroclastics argue for a more or less coeval effusive and explosive volcanism. Based also on volcanological data, we propose vulcanian eruptions and explosive dome collapses especially toward the end of volcanic activity. Moreover, radiometric chronology suggests that, possibly subsequently to the peripheral domes, a central lava dome complex built up ≤100 ka ago. This dome complex, exhibiting even more violent, up to sub-plinian explosions, emplaced pumiceous pyroclastic flow and fall deposits as far as 17 km. We propose that the explosive activity produced caldera-forming eruptions as well, creating a half-caldera. This caldera rim is manifested by the asymmetric morphology of the central edifice: the present-day elevated ridge of Ciomadul Mare (Nagy Csomád), encompassing the twin craters of Mohoş (Mohos) peat bog and Sf. Ana (Szent [St.] Anna). These latter craters may have been formed subsequently, ca. ~100-30 ka ago, after the caldera formation. Drilling of lacustrine sediments in the St. Anna crater shows that beneath the Holocene gyttja several meters of Late Pleistocene

  7. Human fetal lung morphometry at autopsy with new modeling to quantitate structural maturity.

    PubMed

    Lipsett, Jill

    2017-06-01

    To demonstrate a simplified morphometric procedure, including a new model for acinar structural maturity, applicable to autopsy fetal lung and present reference values for these parameters. Cases with autopsy consent for research were studied. To simplify analysis only critical morphometric parameters were measured to allow calculation of gas-exchange surface area. A total of 58 fetuses, 16-40 weeks were included. Subjects were rejected with any condition predisposing to pulmonary hypo/hyperplasia, significant maceration, or if lung weight/bodyweight or microscopy identified pulmonary hypoplasia or lung growth disorders. Lungs were inflation fixed, weights and volumes determined, sampled, then returned to the body. Volume densities (V V ) of parenchyma/non-parenchyma and air-space/gas-exchange tissue, gas-exchange surface density (S V ), and total surface area (SA) were determined. The number, mean radius, and septal thickness of modeled airspace-spheres were calculated. Equations were generated for each parameter function of gestation and bodyweight. From 16 to 40-week weights and volumes increased as power functions from ∼4 g/mL to ∼90 g/mL. Parenchyma/non-parenchyma changed little-75:25 (16 weeks) to 71:29 (term). Parenchyma was 10% airspace:90% tissue early and 50:50 by term. Gas-exchange S V increased from 175 to 450 cm 2 /cm 3 and total SA increased from 0.059 to 4.793 m 2 . There were 3.31 × 10 6 airspace-spheres, 12 µ radius, septal thickness 30 µ at 16 weeks, increasing to 56.92 × 10 6 , 26 µ radius, septal thickness 13 µ by term. Morphometry can feasibly be performed at autopsy, providing more informative quantitative data on lung structural development than current methods utilized. This reference data set compares well with published data. © 2017 Wiley Periodicals, Inc.

  8. On the Influence of Confounding Factors in Multisite Brain Morphometry Studies of Developmental Pathologies: Application to Autism Spectrum Disorder.

    PubMed

    Auzias, G; Takerkart, S; Deruelle, C

    2016-05-01

    Pooling data acquired on different MR scanners is a commonly used practice to increase the statistical power of studies based on MRI-derived measurements. Such studies are very appealing since they should make it possible to detect more subtle effects related to pathologies. However, the influence of confounds introduced by scanner-related variations remains unclear. When studying brain morphometry descriptors, it is crucial to investigate whether scanner-induced errors can exceed the effect of the disease itself. More specifically, in the context of developmental pathologies such as autism spectrum disorders (ASD), it is essential to evaluate the influence of the scanner on age-related effects. In this paper, we studied a dataset composed of 159 anatomical MR images pooled from three different scanners, including 75 ASD patients and 84 healthy controls. We quantitatively assessed the effects of the age, pathology, and scanner factors on cortical thickness measurements. Our results indicate that scan pooling from different sites would be less fruitful in some cortical regions than in others. Although the effect of age is consistent across scanners, the interaction between the age and scanner factors is important and significant in some specific cortical areas.

  9. The pedunculopontine nucleus is related to visual hallucinations in Parkinson's disease: preliminary results of a voxel-based morphometry study.

    PubMed

    Janzen, J; van 't Ent, D; Lemstra, A W; Berendse, H W; Barkhof, F; Foncke, E M J

    2012-01-01

    Visual hallucinations (VH) are common in Parkinson's disease (PD) and lead to a poor quality of life. For a long time, dopaminergic therapy was considered to be the most important risk factor for the development of VH in PD. Recently, the cholinergic system, including the pedunculopontine nucleus (PPN), has been implicated in the pathophysiology of VH. The aim of the present study was to investigate grey matter density of the PPN region and one of its projection areas, the thalamus. Thirteen non-demented PD patients with VH were compared to 16 non-demented PD patients without VH, 13 demented PD patients (PDD) with VH and 11 patients with dementia with Lewy bodies (DLB). Isotropic 3-D T1-weighted MRI images (3T) were analysed using voxel-based morphometry (VBM) with the PPN region and thalamus as ROIs. PD and PDD patients with VH showed grey matter reductions of the PPN region and the thalamus compared to PD patients without VH. VH in PD(D) patients are associated with atrophy of the PPN region and its thalamic target area, suggesting that a cholinergic deficit may be involved in the development of VH in PD(D).

  10. Metabolic Characterization of Intact Cells Reveals Intracellular Amyloid Beta but Not Its Precursor Protein to Reduce Mitochondrial Respiration

    PubMed Central

    Schaefer, Patrick M.; von Einem, Bjoern; Walther, Paul; Calzia, Enrico; von Arnim, Christine A. F.

    2016-01-01

    One hallmark of Alzheimer´s disease are senile plaques consisting of amyloid beta (Aβ), which derives from the processing of the amyloid precursor protein (APP). Mitochondrial dysfunction has been linked to the pathogenesis of Alzheimer´s disease and both Aβ and APP have been reported to affect mitochondrial function in isolated systems. However, in intact cells, considering a physiological localization of APP and Aβ, it is pending what triggers the mitochondrial defect. Thus, the aim of this study was to dissect the impact of APP versus Aβ in inducing mitochondrial alterations with respect to their subcellular localization. We performed an overexpression of APP or beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), increasing APP and Aβ levels or Aβ alone, respectively. Conducting a comprehensive metabolic characterization we demonstrate that only APP overexpression reduced mitochondrial respiration, despite lower extracellular Aβ levels compared to BACE overexpression. Surprisingly, this could be rescued by a gamma secretase inhibitor, oppositionally indicating an Aβ-mediated mitochondrial toxicity. Analyzing Aβ localization revealed that intracellular levels of Aβ and an increased spatial association of APP/Aβ with mitochondria are associated with reduced mitochondrial respiration. Thus, our data provide marked evidence for a prominent role of intracellular Aβ accumulation in Alzheimer´s disease associated mitochondrial dysfunction. Thereby it highlights the importance of the localization of APP processing and intracellular transport as a decisive factor for mitochondrial function, linking two prominent hallmarks of neurodegenerative diseases. PMID:28005987

  11. Noninvasive quantification of alveolar morphometry in elderly never- and ex-smokers

    PubMed Central

    Paulin, Gregory A; Ouriadov, Alexei; Lessard, Eric; Sheikh, Khadija; McCormack, David G; Parraga, Grace

    2015-01-01

    Diffusion-weighted magnetic resonance imaging (MRI) provides a way to generate in vivo lung images with contrast sensitive to the molecular displacement of inhaled gas at subcellular length scales. Here, we aimed to evaluate hyperpolarized 3He MRI estimates of the alveolar dimensions in 38 healthy elderly never-smokers (73 ± 6 years, 15 males) and 21 elderly ex-smokers (70 ± 10 years, 14 males) with (n = 8, 77 ± 6 years) and without emphysema (n = 13, 65 ± 10 years). The ex-smoker and never-smoker subgroups were significantly different for FEV1/FVC (P = 0.0001) and DLCO (P = 0.009); while ex-smokers with emphysema reported significantly diminished FEV1/FVC (P = 0.02) and a trend toward lower DLCO (P = 0.05) than ex-smokers without emphysema. MRI apparent diffusion coefficients (ADC) and CT measurements of emphysema (relative area–CT density histogram, RA950) were significantly different (P = 0.001 and P = 0.007) for never-smoker and ex-smoker subgroups. In never-smokers, the MRI estimate of mean linear intercept (260 ± 27 μm) was significantly elevated as compared to the results previously reported in younger never-smokers (210 ± 30 μm), and trended smaller than in the age-matched ex-smokers (320 ± 72 μm, P = 0.06) evaluated here. Never-smokers also reported significantly smaller internal (220 ± 24 μm, P = 0.01) acinar radius but greater alveolar sheath thickness (120 ± 4 μm, P < 0.0001) than ex-smokers. Never-smokers were also significantly different than ex-smokers without emphysema for alveolar sheath thickness but not ADC, while ex-smokers with emphysema reported significantly different ADC but not alveolar sheath thickness compared to ex-smokers without CT evidence of emphysema. Differences in alveolar measurements in never- and ex-smokers demonstrate the sensitivity of MRI measurements to the different effects of smoking and aging on acinar morphometry. PMID:26462748

  12. Long-term treatment with nebivolol improves arterial reactivity and reduces ventricular hypertrophy in spontaneously hypertensive rats.

    PubMed

    Guerrero, Estela; Voces, Felipe; Ardanaz, Noelia; Montero, María José; Arévalo, Miguel; Sevilla, María Angeles

    2003-09-01

    The aim of this study was to assess the effects of long-term nebivolol therapy on high blood pressure, impaired endothelial function in aorta, and damage observed in heart and conductance arteries in spontaneously hypertensive rats (SHR). For this purpose, SHR were treated for 9 weeks with nebivolol (8 mg/kg per day). Untreated SHR and Wistar Kyoto rats were used as hypertensive and normotensive controls, respectively. The left ventricle/body weight ratio was used as an index of cardiac hypertrophy, and to evaluate vascular function, responses induced by potassium chloride, noradrenaline, acetylcholine, and sodium nitroprusside were tested on aortic rings. Aortic morphometry and fibrosis were determined in parallel by a quantitative technique. Systolic blood pressure, measured by the tail-cuff method, was lower in treated SHR than in the untreated group (194 +/- 3 versus 150 +/- 4 mm Hg). The cardiac hypertrophy index was significantly reduced by the treatment. In aortic rings, treatment with nebivolol significantly reduced the maximal response to both KCl and NA in SHR. In vessels precontracted with phenylephrine relaxant, activity due to acetylcholine was higher in normotensive rats than in SHR and the treatment significantly improved this response. The effect of sodium nitroprusside on aortic rings was similar in all groups. Medial thickness and collagen content were significantly reduced in comparison with SHR. In conclusion, the chronic antihypertensive effect of nebivolol in SHR was accompanied by an improvement in vascular structure and function and in the cardiac hypertrophy index.

  13. Brain volumes in healthy adults aged 40 years and over: a voxel-based morphometry study.

    PubMed

    Riello, Roberta; Sabattoli, Francesca; Beltramello, Alberto; Bonetti, Matteo; Bono, Giorgio; Falini, Andrea; Magnani, Giuseppe; Minonzio, Giorgio; Piovan, Enrico; Alaimo, Giuseppina; Ettori, Monica; Galluzzi, Samantha; Locatelli, Enrico; Noiszewska, Malgorzata; Testa, Cristina; Frisoni, Giovanni B

    2005-08-01

    Gender and age effect on brain morphology have been extensively investigated. However, the great variety in methods applied to morphology partly explain the conflicting results of linear patterns of tissue changes and lateral asymmetry in men and women. The aim of the present study was to assess the effect of age, gender and laterality on the volumes of gray matter (GM) and white matter (WM) in a large group of healthy adults by means of voxel-based morphometry. This technique, based on observer-independent algorithms, automatically segments the 3 types of tissue and computes the amount of tissue in each single voxel. Subjects were 229 healthy subjects of 40 years of age or older, who underwent magnetic resonance (MR) for reasons other than cognitive impairment. MR images were reoriented following the AC-PC line and, after removing the voxels below the cerebellum, were processed by Statistical Parametric Mapping (SPM99). GM and WM volumes were normalized for intracranial volume. Women had more fractional GM and WM volumes than men. Age was negatively correlated with both fractional GM and WM, and a gender x age interaction effect was found for WM, men having greater WM loss with advancing age. Pairwise differences between left and right GM were negative (greater GM in right hemisphere) in men, and positive (greater GM in left hemisphere) in women (-0.56+/-4.2 vs 0.99+/-4.8; p=0.019). These results support side-specific accelerated WM loss in men, and may help our better understanding of changes in regional brain structures associated with pathological aging.

  14. Response of Thalassia Testudinum Morphometry and Distribution to Environmental Drivers in a Pristine Tropical Lagoon

    PubMed Central

    2016-01-01

    This study was undertaken to determine the relationships between the biomass, morphometry, and density of short shoots (SS) of the tropical seagrass Thalassia testudinum and the physical-environmental forcing in the region. Seasonal sampling surveys were undertaken four times in Bahia de la Ascension, a shallow estuary in the western Mexican Caribbean, to measure plant morphology and environmental variables. The estuary has a fresh water-influenced inner bay, a large central basin and a marine zone featuring a barrier reef at the seaward margin. Leaf size was positively correlated with increasing salinity, but total biomass was not, being similar across most of the sites. Aboveground biomass exhibited seasonal differences in dry and rainy seasons along the bay, most markedly in the brackish inner bay where an abrupt decline in biomass coincided with the rainy season. The relationship between nutrients and biomass indicates that the aboveground/belowground biomass ratio increases as nutrient availability increases. Areal cover was inversely correlated with SS density during both dry and rainy seasons. Maximum SS recruitment coincided with the rainy season. Peaks in SS density were recorded in the freshwater-influenced inner bay during an ENSO cold phase in 2007 (“La Niña”) which is associated with a wetter dry season and following a strong storm (Hurricane Dean). The onset of the rainy season influences both shoot density and T. testudinum biomass by controlling the freshwater input to the bay and thus, the system’s salinity gradient and external nutrients supply from the coastal wetland. PMID:27736904

  15. Response of Thalassia Testudinum Morphometry and Distribution to Environmental Drivers in a Pristine Tropical Lagoon.

    PubMed

    Medina-Gómez, Israel; Madden, Christopher J; Herrera-Silveira, Jorge; Kjerfve, Björn

    2016-01-01

    This study was undertaken to determine the relationships between the biomass, morphometry, and density of short shoots (SS) of the tropical seagrass Thalassia testudinum and the physical-environmental forcing in the region. Seasonal sampling surveys were undertaken four times in Bahia de la Ascension, a shallow estuary in the western Mexican Caribbean, to measure plant morphology and environmental variables. The estuary has a fresh water-influenced inner bay, a large central basin and a marine zone featuring a barrier reef at the seaward margin. Leaf size was positively correlated with increasing salinity, but total biomass was not, being similar across most of the sites. Aboveground biomass exhibited seasonal differences in dry and rainy seasons along the bay, most markedly in the brackish inner bay where an abrupt decline in biomass coincided with the rainy season. The relationship between nutrients and biomass indicates that the aboveground/belowground biomass ratio increases as nutrient availability increases. Areal cover was inversely correlated with SS density during both dry and rainy seasons. Maximum SS recruitment coincided with the rainy season. Peaks in SS density were recorded in the freshwater-influenced inner bay during an ENSO cold phase in 2007 ("La Niña") which is associated with a wetter dry season and following a strong storm (Hurricane Dean). The onset of the rainy season influences both shoot density and T. testudinum biomass by controlling the freshwater input to the bay and thus, the system's salinity gradient and external nutrients supply from the coastal wetland.

  16. Grey matter, an endophenotype for schizophrenia? A voxel-based morphometry study in siblings of patients with schizophrenia.

    PubMed

    van der Velde, Jorien; Gromann, Paula M; Swart, Marte; de Haan, Lieuwe; Wiersma, Durk; Bruggeman, Richard; Krabbendam, Lydia; Aleman, André

    2015-05-01

    Grey matter, both volume and concentration, has been proposed as an endophenotype for schizophrenia given a number of reports of grey matter abnormalities in relatives of patients with schizophrenia. However, previous studies on grey matter abnormalities in relatives have produced inconsistent results. The aim of the present study was to examine grey matter differences between controls and siblings of patients with schizophrenia and to examine whether the age, genetic loading or subclinical psychotic symptoms of selected individuals could explain the previously reported inconsistencies. We compared the grey matter volume and grey matter concentration of healthy siblings of patients with schizophrenia and healthy controls matched for age, sex and education using voxel-based morphometry (VBM). Furthermore, we selected subsamples based on age (< 30 yr), genetic loading and subclinical psychotic symptoms to examine whether this would lead to different results. We included 89 siblings and 69 controls in our study. The results showed that siblings and controls did not differ significantly on grey matter volume or concentration. Furthermore, specifically selecting participants based on age, genetic loading or subclinical psychotic symptoms did not alter these findings. The main limitation was that subdividing the sample resulted in smaller samples for the subanalyses. Furthermore, we used MRI data from 2 different scanner sites. These results indicate that grey matter measured through VBM might not be a suitable endophenotype for schizophrenia.

  17. In vivo voxel based morphometry: detection of increased hippocampal volume and decreased glutamate levels in exercising mice.

    PubMed

    Biedermann, Sarah; Fuss, Johannes; Zheng, Lei; Sartorius, Alexander; Falfán-Melgoza, Claudia; Demirakca, Traute; Gass, Peter; Ende, Gabriele; Weber-Fahr, Wolfgang

    2012-07-16

    Voluntary exercise has tremendous effects on adult hippocampal plasticity and metabolism and thus sculpts the hippocampal structure of mammals. High-field (1)H magnetic resonance (MR) investigations at 9.4 T of metabolic and structural changes can be performed non-invasively in the living rodent brain. Numerous molecular and cellular mechanisms mediating the effects of exercise on brain plasticity and behavior have been detected in vitro. However, in vivo attempts have been rare. In this work a method for voxel based morphometry (VBM) was developed with automatic tissue segmentation in mice using a 9.4 T animal scanner equipped with a (1)H-cryogenic coil. The thus increased signal to noise ratio enabled the acquisition of high resolution T2-weighted images of the mouse brain in vivo and the creation of group specific tissue class maps for the segmentation and normalization with SPM. The method was used together with hippocampal single voxel (1)H MR spectroscopy to assess the structural and metabolic differences in the mouse brain due to voluntary wheel running. A specific increase of hippocampal volume with a concomitant decrease of hippocampal glutamate levels in voluntary running mice was observed. An inverse correlation of hippocampal gray matter volume and glutamate concentration indicates a possible implication of the glutamatergic system for hippocampal volume. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Multivariate statistics of the Jacobian matrices in tensor based morphometry and their application to HIV/AIDS.

    PubMed

    Lepore, Natasha; Brun, Caroline A; Chiang, Ming-Chang; Chou, Yi-Yu; Dutton, Rebecca A; Hayashi, Kiralee M; Lopez, Oscar L; Aizenstein, Howard J; Toga, Arthur W; Becker, James T; Thompson, Paul M

    2006-01-01

    Tensor-based morphometry (TBM) is widely used in computational anatomy as a means to understand shape variation between structural brain images. A 3D nonlinear registration technique is typically used to align all brain images to a common neuroanatomical template, and the deformation fields are analyzed statistically to identify group differences in anatomy. However, the differences are usually computed solely from the determinants of the Jacobian matrices that are associated with the deformation fields computed by the registration procedure. Thus, much of the information contained within those matrices gets thrown out in the process. Only the magnitude of the expansions or contractions is examined, while the anisotropy and directional components of the changes are ignored. Here we remedy this problem by computing multivariate shape change statistics using the strain matrices. As the latter do not form a vector space, means and covariances are computed on the manifold of positive-definite matrices to which they belong. We study the brain morphology of 26 HIV/AIDS patients and 14 matched healthy control subjects using our method. The images are registered using a high-dimensional 3D fluid registration algorithm, which optimizes the Jensen-Rényi divergence, an information-theoretic measure of image correspondence. The anisotropy of the deformation is then computed. We apply a manifold version of Hotelling's T2 test to the strain matrices. Our results complement those found from the determinants of the Jacobians alone and provide greater power in detecting group differences in brain structure.

  19. Voxel-based morphometry in opera singers: Increased gray-matter volume in right somatosensory and auditory cortices.

    PubMed

    Kleber, Boris; Veit, Ralf; Moll, Christina Valérie; Gaser, Christian; Birbaumer, Niels; Lotze, Martin

    2016-06-01

    In contrast to instrumental musicians, professional singers do not train on a specific instrument but perfect a motor system that has already been extensively trained during speech motor development. Previous functional imaging studies suggest that experience with singing is associated with enhanced somatosensory-based vocal motor control. However, experience-dependent structural plasticity in vocal musicians has rarely been studied. We investigated voxel-based morphometry (VBM) in 27 professional classical singers and compared gray matter volume in regions of the "singing-network" to an age-matched group of 28 healthy volunteers with no special singing experience. We found right hemispheric volume increases in professional singers in ventral primary somatosensory cortex (larynx S1) and adjacent rostral supramarginal gyrus (BA40), as well as in secondary somatosensory (S2) and primary auditory cortices (A1). Moreover, we found that earlier commencement with vocal training correlated with increased gray-matter volume in S1. However, in contrast to studies with instrumental musicians, this correlation only emerged in singers who began their formal training after the age of 14years, when speech motor development has reached its first plateau. Structural data thus confirm and extend previous functional reports suggesting a pivotal role of somatosensation in vocal motor control with increased experience in singing. Results furthermore indicate a sensitive period for developing additional vocal skills after speech motor coordination has matured. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Entorhinal volume, aerobic fitness, and recognition memory in healthy young adults: A voxel-based morphometry study.

    PubMed

    Whiteman, Andrew S; Young, Daniel E; Budson, Andrew E; Stern, Chantal E; Schon, Karin

    2016-02-01

    Converging evidence supports the hypothesis effects of aerobic exercise and environmental enrichment are beneficial for cognition, in particular for hippocampus-supported learning and memory. Recent work in humans suggests that exercise training induces changes in hippocampal volume, but it is not known if aerobic exercise and fitness also impact the entorhinal cortex. In animal models, aerobic exercise increases expression of growth factors, including brain derived neurotrophic factor (BDNF). This exercise-enhanced expression of growth hormones may boost synaptic plasticity, and neuronal survival and differentiation, potentially supporting function and structure in brain areas including but not limited to the hippocampus. Here, using voxel based morphometry and a standard graded treadmill test to determine cardio-respiratory fitness (Bruce protocol; ·VO2 max), we examined if entorhinal and hippocampal volumes were associated with cardio-respiratory fitness in healthy young adults (N=33). In addition, we examined if volumes were modulated by recognition memory performance and by serum BDNF, a putative marker of synaptic plasticity. Our results show a positive association between volume in right entorhinal cortex and cardio-respiratory fitness. In addition, average gray matter volume in the entorhinal cortex, bilaterally, was positively associated with memory performance. These data extend prior work on the cerebral effects of aerobic exercise and fitness to the entorhinal cortex in healthy young adults thus providing compelling evidence for a relationship between aerobic fitness and structure of the medial temporal lobe memory system. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Spatial distribution and morphometry of permafrost-related landforms in the Central Pyrenees

    NASA Astrophysics Data System (ADS)

    Fernandes, Marcelo; Oliva, Marc; Lopes, Luís; Ruiz-Fernández, Jesus; Palma, Pedro; Pereira, Paulo

    2017-04-01

    corresponds to the highest parts of the cirques, oscillating between 2700 m a.s.l. for protalus lobes and 2900 m a.s.l. for rock glaciers. Nevertheless, 77% of the rock glaciers and 78% of the protalus lobes are located in the elevation belt ranging from 2200 to 2600 m a.s.l., which is assumed to be the optimal elevation range for their development in the study area. Aspect does not show any prevailing orientation in the case of rock glaciers, though protalus lobe formed preferably on SW aspects (27%), being almost absent in the S, SE and E aspects (only 5%). Regarding morphometry, the average area occupied by the rock glaciers decreases with altitude (6.4 ha to 1.2 ha). This trend is not observed in the case of protalus lobes, which show the largest surfaces between 2200 and 2600 m a.s.l. The W/L ratio reveals that the rock glaciers distributed at lower altitudes are more elongated (W/L ratio > 2), while those at higher elevations are shorter. No clear patterns are observed when comparing the morphology of protalus lobes and the altitude. The average slope of both landforms lies between 21-22°, with a maximum of 29° for rock glaciers and 31° for protalus lobes. The minimum slope necessary for the development of these two landforms is 11°. The geomorphological mapping of the glacial landforms that is being now conducted will allow identifying the chronology of the development of these landforms based on its chronostratigraphic position within the valley and with respect to the four moraine complexes (glacial stages) identified in the area.

  2. Bias in Estimation of Hippocampal Atrophy using Deformation-Based Morphometry Arises from Asymmetric Global Normalization: An Illustration in ADNI 3 Tesla MRI Data

    PubMed Central

    Yushkevich, Paul A.; Avants, Brian B.; Das, Sandhitsu R.; Pluta, John; Altinay, Murat; Craige, Caryne

    2009-01-01

    Measurement of brain change due to neurodegenerative disease and treatment is one of the fundamental tasks of neuroimaging. Deformation-based morphometry (DBM) has been long recognized as an effective and sensitive tool for estimating the change in the volume of brain regions over time. This paper demonstrates that a straightforward application of DBM to estimate the change in the volume of the hippocampus can result in substantial bias, i.e., an overestimation of the rate of change in hippocampal volume. In ADNI data, this bias is manifested as a non-zero intercept of the regression line fitted to the 6 and 12 month rates of hippocampal atrophy. The bias is further confirmed by applying DBM to repeat scans of subjects acquired on the same day. This bias appears to be the result of asymmetry in the interpolation of baseline and followup images during longitudinal image registration. Correcting this asymmetry leads to bias-free atrophy estimation. PMID:20005963

  3. Reduced anterior insula, enlarged amygdala in alcoholism and associated depleted von Economo neurons

    PubMed Central

    Senatorov, Vladimir V.; Damadzic, Ruslan; Mann, Claire L.; Schwandt, Melanie L.; George, David T.; Hommer, Daniel W.; Heilig, Markus

    2015-01-01

    The insula, a structure involved in higher order representation of interoceptive states, has recently been implicated in drug craving and social stress. Here, we performed brain magnetic resonance imaging to measure volumes of the insula and amygdala, a structure with reciprocal insular connections, in 26 alcohol-dependent patients and 24 healthy volunteers (aged 22–56 years, nine females in each group). We used an established morphometry method to quantify total and regional insular volumes. Volumetric measurements of the amygdala were obtained using a model-based segmentation/registration tool. In alcohol-dependent patients, anterior insula volumes were bilaterally reduced compared to healthy volunteers (left by 10%, right by 11%, normalized to total brain volumes). Furthermore, alcohol-dependent patients, compared with healthy volunteers, had bilaterally increased amygdala volumes. The left amygdala was increased by 28% and the right by 29%, normalized to total brain volumes. Post-mortem studies of the anterior insula showed that the reduced anterior insular volume may be associated with a population of von Economo neurons, which were 60% diminished in subjects with a history of alcoholism (n = 6) as compared to subjects without a history of alcoholism (n = 6) (aged 32–56 years, all males). The pattern of neuroanatomical change observed in our alcohol-dependent patients might result in a loss of top-down control of amygdala function, potentially contributing to impaired social cognition as well as an inability to control negatively reinforced alcohol seeking and use. PMID:25367022

  4. Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra provides reduced effect of scanner for cortex volumetry with atlas-based method in healthy subjects.

    PubMed

    Goto, Masami; Abe, Osamu; Aoki, Shigeki; Hayashi, Naoto; Miyati, Tosiaki; Takao, Hidemasa; Iwatsubo, Takeshi; Yamashita, Fumio; Matsuda, Hiroshi; Mori, Harushi; Kunimatsu, Akira; Ino, Kenji; Yano, Keiichi; Ohtomo, Kuni

    2013-07-01

    This study aimed to investigate whether the effect of scanner for cortex volumetry with atlas-based method is reduced using Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra (DARTEL) normalization compared with standard normalization. Three-dimensional T1-weighted magnetic resonance images (3D-T1WIs) of 21 healthy subjects were obtained and evaluated for effect of scanner in cortex volumetry. 3D-T1WIs of the 21 subjects were obtained with five MRI systems. Imaging of each subject was performed on each of five different MRI scanners. We used the Voxel-Based Morphometry 8 tool implemented in Statistical Parametric Mapping 8 and WFU PickAtlas software (Talairach brain atlas theory). The following software default settings were used as bilateral region-of-interest labels: "Frontal Lobe," "Hippocampus," "Occipital Lobe," "Orbital Gyrus," "Parietal Lobe," "Putamen," and "Temporal Lobe." Effect of scanner for cortex volumetry using the atlas-based method was reduced with DARTEL normalization compared with standard normalization in Frontal Lobe, Occipital Lobe, Orbital Gyrus, Putamen, and Temporal Lobe; was the same in Hippocampus and Parietal Lobe; and showed no increase with DARTEL normalization for any region of interest (ROI). DARTEL normalization reduces the effect of scanner, which is a major problem in multicenter studies.

  5. Multivariate pattern analysis reveals subtle brain anomalies relevant to the cognitive phenotype in neurofibromatosis type 1.

    PubMed

    Duarte, João V; Ribeiro, Maria J; Violante, Inês R; Cunha, Gil; Silva, Eduardo; Castelo-Branco, Miguel

    2014-01-01

    Neurofibromatosis Type 1 (NF1) is a common genetic condition associated with cognitive dysfunction. However, the pathophysiology of the NF1 cognitive deficits is not well understood. Abnormal brain structure, including increased total brain volume, white matter (WM) and grey matter (GM) abnormalities have been reported in the NF1 brain. These previous studies employed univariate model-driven methods preventing detection of subtle and spatially distributed differences in brain anatomy. Multivariate pattern analysis allows the combination of information from multiple spatial locations yielding a discriminative power beyond that of single voxels. Here we investigated for the first time subtle anomalies in the NF1 brain, using a multivariate data-driven classification approach. We used support vector machines (SVM) to classify whole-brain GM and WM segments of structural T1 -weighted MRI scans from 39 participants with NF1 and 60 non-affected individuals, divided in children/adolescents and adults groups. We also employed voxel-based morphometry (VBM) as a univariate gold standard to study brain structural differences. SVM classifiers correctly classified 94% of cases (sensitivity 92%; specificity 96%) revealing the existence of brain structural anomalies that discriminate NF1 individuals from controls. Accordingly, VBM analysis revealed structural differences in agreement with the SVM weight maps representing the most relevant brain regions for group discrimination. These included the hippocampus, basal ganglia, thalamus, and visual cortex. This multivariate data-driven analysis thus identified subtle anomalies in brain structure in the absence of visible pathology. Our results provide further insight into the neuroanatomical correlates of known features of the cognitive phenotype of NF1. Copyright © 2012 Wiley Periodicals, Inc.

  6. 3D pattern of brain atrophy in HIV/AIDS visualized using tensor-based morphometry

    PubMed Central

    Chiang, Ming-Chang; Dutton, Rebecca A.; Hayashi, Kiralee M.; Lopez, Oscar L.; Aizenstein, Howard J.; Toga, Arthur W.; Becker, James T.; Thompson, Paul M.

    2011-01-01

    35% of HIV-infected patients have cognitive impairment, but the profile of HIV-induced brain damage is still not well understood. Here we used tensor-based morphometry (TBM) to visualize brain deficits and clinical/anatomical correlations in HIV/AIDS. To perform TBM, we developed a new MRI-based analysis technique that uses fluid image warping, and a new α-entropy-based information-theoretic measure of image correspondence, called the Jensen–Rényi divergence (JRD). Methods 3D T1-weighted brain MRIs of 26 AIDS patients (CDC stage C and/or 3 without HIV-associated dementia; 47.2 ± 9.8 years; 25M/1F; CD4+ T-cell count: 299.5 ± 175.7/µl; log10 plasma viral load: 2.57 ± 1.28 RNA copies/ml) and 14 HIV-seronegative controls (37.6 ± 12.2 years; 8M/6F) were fluidly registered by applying forces throughout each deforming image to maximize the JRD between it and a target image (from a control subject). The 3D fluid registration was regularized using the linearized Cauchy–Navier operator. Fine-scale volumetric differences between diagnostic groups were mapped. Regions were identified where brain atrophy correlated with clinical measures. Results Severe atrophy (~15–20% deficit) was detected bilaterally in the primary and association sensorimotor areas. Atrophy of these regions, particularly in the white matter, correlated with cognitive impairment (P=0.033) and CD4+ T-lymphocyte depletion (P=0.005). Conclusion TBM facilitates 3D visualization of AIDS neuropathology in living patients scanned with MRI. Severe atrophy in frontoparietal and striatal areas may underlie early cognitive dysfunction in AIDS patients, and may signal the imminent onset of AIDS dementia complex. PMID:17035049

  7. Theory of mind and frontal lobe pathology in schizophrenia: a voxel-based morphometry study.

    PubMed

    Hirao, Kazuyuki; Miyata, Jun; Fujiwara, Hironobu; Yamada, Makiko; Namiki, Chihiro; Shimizu, Mitsuaki; Sawamoto, Nobukatsu; Fukuyama, Hidenao; Hayashi, Takuji; Murai, Toshiya

    2008-10-01

    Impaired ability to infer the mental states of others (theory of mind; ToM) is considered to be a key contributor to the poor social functioning of patients with schizophrenia. Although neuroimaging and lesion studies have provided empirical evidence for the neural basis of ToM ability, including the involvement of several prefrontal and temporal structures, the association between pathology of these structures and ToM impairment in schizophrenia patients is less well understood. To address this issue, we investigated structural brain abnormalities and ToM impairment in patients with schizophrenia, and examined the relationship between them. Twenty schizophrenia patients and 20 age-, sex- and education-matched healthy participants underwent magnetic resonance imaging (MRI) and were examined for ToM ability based on the revised version of the "Reading the Mind in the Eyes" (or Eyes) test [Baron-Cohen, S., Wheelwright, S., Hill, J., Raste, Y., Plumb, I., 2001. The 'Reading the Mind in the Eyes' test revised version: A study with normal adults, and adults with Asperger syndrome or high-functioning autism. J. Child Psychol. Psychiatry 42, 241-251]. Voxel-based morphometry (VBM) was performed to investigate regional brain alterations. Relative to normal controls, schizophrenia patients exhibited gray matter reductions in the dorsomedial prefrontal cortex (DMPFC), left ventrolateral prefrontal cortex (VLPFC), ventromedial prefrontal cortex (VMPFC), anterior cingulate cortex (ACC), right superior temporal gyrus (STG) and right insula. The patients performed poorly on the Eyes test. Importantly, poor performance on the Eyes test was found to be associated with gray matter reduction in the left VLPFC in the patient group. These results suggest that prefrontal cortical reduction, especially in the left VLPFC, is a key pathology underlying the difficulties faced by schizophrenia patients in inferring the mental states of others.

  8. Crater Morphometry and Crater Degradation on Mercury: Mercury Laser Altimeter (MLA) Measurements and Comparison to Stereo-DTM Derived Results

    NASA Technical Reports Server (NTRS)

    Leight, C.; Fassett, C. I.; Crowley, M. C.; Dyar, M. D.

    2017-01-01

    Two types of measurements of Mercury's surface topography were obtained by the MESSENGER (MErcury Surface Space ENvironment, GEochemisty and Ranging) spacecraft: laser ranging data from Mercury Laser Altimeter (MLA) [1], and stereo imagery from the Mercury Dual Imaging System (MDIS) camera [e.g., 2, 3]. MLA data provide precise and accurate elevation meaurements, but with sparse spatial sampling except at the highest northern latitudes. Digital terrain models (DTMs) from MDIS have superior resolution but with less vertical accuracy, limited approximately to the pixel resolution of the original images (in the case of [3], 15-75 m). Last year [4], we reported topographic measurements of craters in the D=2.5 to 5 km diameter range from stereo images and suggested that craters on Mercury degrade more quickly than on the Moon (by a factor of up to approximately 10×). However, we listed several alternative explanations for this finding, including the hypothesis that the lower depth/diameter ratios we observe might be a result of the resolution and accuracy of the stereo DTMs. Thus, additional measurements were undertaken using MLA data to examine the morphometry of craters in this diameter range and assess whether the faster crater degradation rates proposed to occur on Mercury is robust.

  9. Regional grey matter structure differences between transsexuals and healthy controls--a voxel based morphometry study.

    PubMed

    Simon, Lajos; Kozák, Lajos R; Simon, Viktória; Czobor, Pál; Unoka, Zsolt; Szabó, Ádám; Csukly, Gábor

    2013-01-01

    Gender identity disorder (GID) refers to transsexual individuals who feel that their assigned biological gender is incongruent with their gender identity and this cannot be explained by any physical intersex condition. There is growing scientific interest in the last decades in studying the neuroanatomy and brain functions of transsexual individuals to better understand both the neuroanatomical features of transsexualism and the background of gender identity. So far, results are inconclusive but in general, transsexualism has been associated with a distinct neuroanatomical pattern. Studies mainly focused on male to female (MTF) transsexuals and there is scarcity of data acquired on female to male (FTM) transsexuals. Thus, our aim was to analyze structural MRI data with voxel based morphometry (VBM) obtained from both FTM and MTF transsexuals (n = 17) and compare them to the data of 18 age matched healthy control subjects (both males and females). We found differences in the regional grey matter (GM) structure of transsexual compared with control subjects, independent from their biological gender, in the cerebellum, the left angular gyrus and in the left inferior parietal lobule. Additionally, our findings showed that in several brain areas, regarding their GM volume, transsexual subjects did not differ significantly from controls sharing their gender identity but were different from those sharing their biological gender (areas in the left and right precentral gyri, the left postcentral gyrus, the left posterior cingulate, precuneus and calcarinus, the right cuneus, the right fusiform, lingual, middle and inferior occipital, and inferior temporal gyri). These results support the notion that structural brain differences exist between transsexual and healthy control subjects and that majority of these structural differences are dependent on the biological gender.

  10. Brain volumetric abnormalities in patients with anorexia and bulimia nervosa: a voxel-based morphometry study.

    PubMed

    Amianto, Federico; Caroppo, Paola; D'Agata, Federico; Spalatro, Angela; Lavagnino, Luca; Caglio, Marcella; Righi, Dorico; Bergui, Mauro; Abbate-Daga, Giovanni; Rigardetto, Roberto; Mortara, Paolo; Fassino, Secondo

    2013-09-30

    Recent studies focussing on neuroimaging features of eating disorders have observed that anorexia nervosa (AN) is characterized by significant grey matter (GM) atrophy in many brain regions, especially in the cerebellum and anterior cingulate cortex. To date, no studies have found GM atrophy in bulimia nervosa (BN) or have directly compared patients with AN and BN. We used voxel-based morphometry (VBM) to characterize brain abnormalities in AN and BN patients, comparing them with each other and with a control group, and correlating brain volume with clinical features. We recruited 17 AN, 13 BN and 14 healthy controls. All subjects underwent high-resolution magnetic resonance imaging (MRI) with a T1-weighted 3D image. VBM analysis was carried out with the FSL-VBM 4.1 tool. We found no global atrophy, but regional GM reduction in AN with respect to controls and BN in the cerebellum, fusiform area, supplementary motor area, and occipital cortex, and in the caudate in BN compared to AN and controls. Both groups of patients had a volumetric increase bilaterally in somatosensory regions with respect to controls, in areas that are typically involved in the sensory-motor integration of body stimuli and in mental representation of the body image. Our VBM study documented, for the first time in BN patients, the presence of volumetric alterations and replicated previous findings in AN patients. We evidenced morphological differences between AN and BN, demonstrating in the latter atrophy of the caudate nucleus, a region involved in reward mechanisms and processes of self-regulation, perhaps involved in the genesis of the binge-eating behaviors of this disorder. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Regional Grey Matter Structure Differences between Transsexuals and Healthy Controls—A Voxel Based Morphometry Study

    PubMed Central

    Simon, Lajos; Kozák, Lajos R.; Simon, Viktória; Czobor, Pál; Unoka, Zsolt; Szabó, Ádám; Csukly, Gábor

    2013-01-01

    Gender identity disorder (GID) refers to transsexual individuals who feel that their assigned biological gender is incongruent with their gender identity and this cannot be explained by any physical intersex condition. There is growing scientific interest in the last decades in studying the neuroanatomy and brain functions of transsexual individuals to better understand both the neuroanatomical features of transsexualism and the background of gender identity. So far, results are inconclusive but in general, transsexualism has been associated with a distinct neuroanatomical pattern. Studies mainly focused on male to female (MTF) transsexuals and there is scarcity of data acquired on female to male (FTM) transsexuals. Thus, our aim was to analyze structural MRI data with voxel based morphometry (VBM) obtained from both FTM and MTF transsexuals (n = 17) and compare them to the data of 18 age matched healthy control subjects (both males and females). We found differences in the regional grey matter (GM) structure of transsexual compared with control subjects, independent from their biological gender, in the cerebellum, the left angular gyrus and in the left inferior parietal lobule. Additionally, our findings showed that in several brain areas, regarding their GM volume, transsexual subjects did not differ significantly from controls sharing their gender identity but were different from those sharing their biological gender (areas in the left and right precentral gyri, the left postcentral gyrus, the left posterior cingulate, precuneus and calcarinus, the right cuneus, the right fusiform, lingual, middle and inferior occipital, and inferior temporal gyri). These results support the notion that structural brain differences exist between transsexual and healthy control subjects and that majority of these structural differences are dependent on the biological gender. PMID:24391851

  12. Preemptive heme oxygenase-1 gene delivery reveals reduced mortality and preservation of left ventricular function 1 yr after acute myocardial infarction.

    PubMed

    Liu, Xiaoli; Simpson, Jeremy A; Brunt, Keith R; Ward, Christopher A; Hall, Sean R R; Kinobe, Robert T; Barrette, Valerie; Tse, M Yat; Pang, Stephen C; Pachori, Alok S; Dzau, Victor J; Ogunyankin, Kofo O; Melo, Luis G

    2007-07-01

    We reported previously that predelivery of heme oxygenase-1 (HO-1) gene to the heart by adeno-associated virus-2 (AAV-2) markedly reduces ischemia and reperfusion (I/R)-induced myocardial injury. However, the effect of preemptive HO-1 gene delivery on long-term survival and prevention of postinfarction heart failure has not been determined. We assessed the effect of HO-1 gene delivery on long-term survival, myocardial function, and left ventricular (LV) remodeling 1 yr after myocardial infarction (MI) using echocardiographic imaging, pressure-volume (PV) analysis, and histomorphometric approaches. Two groups of Lewis rats were injected with 2 x 10(11) particles of AAV-LacZ (control) or AAV-human HO-1 (hHO-1) in the anterior-posterior apical region of the LV wall. Six weeks after gene transfer, animals were subjected to 30 min of ischemia by ligation of the left anterior descending artery followed by reperfusion. Echocardiographic measurements and PV analysis of LV function were obtained at 2 wk and 12 mo after I/R. One year after acute MI, mortality was markedly reduced in the HO-1-treated animals compared with the LacZ-treated animals. PV analysis demonstrated significantly enhanced LV developed pressure, elevated maximal dP/dt, and lower end-diastolic volume in the HO-1 animals compared with the LacZ animals. Echocardiography showed a larger apical anterior-to-posterior wall ratio in HO-1 animals compared with LacZ animals. Morphometric analysis revealed extensive myocardial scarring and fibrosis in the infarcted LV area of LacZ animals, which was reduced by 62% in HO-1 animals. These results suggest that preemptive HO-1 gene delivery may be useful as a therapeutic strategy to reduce post-MI LV remodeling and heart failure.

  13. Sharp Curvature of Frontal Lobe White Matter Pathways in Children with Autism Spectrum Disorder: Tract-Based Morphometry Analysis

    PubMed Central

    Jeong, Jeong-Won; Kumar, Ajay; Sundaram, Senthil K.; Chugani, Harry T.; Chugani, Diane C.

    2013-01-01

    Background and Purpose As we had previously observed geometrical changes of frontal lobe association pathways in children with autism spectrum disorder (ASD), in the present study we analyzed the curvature of these white matter pathways using an objective tract based morphometry (TBM) analysis. Materials and Methods Diffusion tensor imaging (DTI) was performed in 32 children with ASD and 14 children with typical development. Curvature, fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD) of bilateral arcuate fasciculus (AF), uncinate fasciculus (UF), and genu of corpus callosum (gCC) were investigated using the TBM group analysis assessed by False Discovery Rate p-value (PFDR) for multiple comparisons. Results Significantly higher curvatures were found in children with ASD especially at the parieto-temporal junction for AF (left: PFDR < 0.001; right: PFDR < 0.01), at the fronto-temporal junction for UF (left: PFDR < 0.005; right: PFDR < 0.03), and at the midline of the gCC (PFDR < 0.0001). RD was significantly higher in children with ASD at the same bending regions of AF (left: PFDR < 0.03, right: PFDR < 0.02), UF (left: PFDR < 0.04), and gCC (PFDR < 0.01). Conclusion Higher curvature and curvature dependent RD changes in children with ASD may be the result of higher density of thinner axons in these frontal lobe tracts. PMID:21757519

  14. Large-scale brain network associated with creative insight: combined voxel-based morphometry and resting-state functional connectivity analyses.

    PubMed

    Ogawa, Takeshi; Aihara, Takatsugu; Shimokawa, Takeaki; Yamashita, Okito

    2018-04-24

    Creative insight occurs with an "Aha!" experience when solving a difficult problem. Here, we investigated large-scale networks associated with insight problem solving. We recruited 232 healthy participants aged 21-69 years old. Participants completed a magnetic resonance imaging study (MRI; structural imaging and a 10 min resting-state functional MRI) and an insight test battery (ITB) consisting of written questionnaires (matchstick arithmetic task, remote associates test, and insight problem solving task). To identify the resting-state functional connectivity (RSFC) associated with individual creative insight, we conducted an exploratory voxel-based morphometry (VBM)-constrained RSFC analysis. We identified positive correlations between ITB score and grey matter volume (GMV) in the right insula and middle cingulate cortex/precuneus, and a negative correlation between ITB score and GMV in the left cerebellum crus 1 and right supplementary motor area. We applied seed-based RSFC analysis to whole brain voxels using the seeds obtained from the VBM and identified insight-positive/negative connections, i.e. a positive/negative correlation between the ITB score and individual RSFCs between two brain regions. Insight-specific connections included motor-related regions whereas creative-common connections included a default mode network. Our results indicate that creative insight requires a coupling of multiple networks, such as the default mode, semantic and cerebral-cerebellum networks.

  15. Assessing the clinical outcome of Vim radiosurgery with voxel-based morphometry: visual areas are linked with tremor arrest!

    PubMed

    Tuleasca, Constantin; Witjas, Tatiana; Najdenovska, Elena; Verger, Antoine; Girard, Nadine; Champoudry, Jerome; Thiran, Jean-Philippe; Van de Ville, Dimitri; Cuadra, Meritxell Bach; Levivier, Marc; Guedj, Eric; Régis, Jean

    2017-11-01

    Radiosurgery (RS) is an alternative to open standard stereotactic procedures (deep-brain stimulation or radiofrequency thalamotomy) for drug-resistant essential tremor (ET), aiming at the same target (ventro-intermediate nucleus, Vim). We investigated the Vim RS outcome using voxel-based morphometry by evaluating the interaction between clinical response and time. Thirty-eight patients with right-sided ET benefited from left unilateral Vim RS. Targeting was performed using 130 Gy and a single 4-mm collimator. Neurological and neuroimaging assessment was completed at baseline and 1 year. Clinical responders were considered those with at least 50% improvement in tremor score on the treated hand (TSTH). Interaction between clinical response and time showed the left temporal pole and occipital cortex (Brodmann area 19, including V4, V5 and the parahippocampal place area) as statistically significant. A decrease in gray matter density (GMD) 1 year after Vim RS correlated with higher TSTH improvement (Spearman = 0.01) for both anatomical areas. Higher baseline GMD within the left temporal pole correlated with better TSTH improvement (Spearman = 0.004). Statistically significant structural changes in the relationship to clinical response after Vim RS are present in remote areas, advocating a distant neurobiological effect. The former regions are mainly involved in locomotor monitoring toward the local and distant environment, suggesting the recruiting requirement in targeting of the specific visuomotor networks.

  16. Depression in Parkinson's disease: convergence from voxel-based morphometry and functional magnetic resonance imaging in the limbic thalamus.

    PubMed

    Cardoso, Ellison Fernando; Maia, Fernanda Martins; Fregni, Felipe; Myczkowski, Martin Luis; Melo, Luciano M; Sato, João R; Marcolin, Marco Antonio; Rigonatti, Sergio P; Cruz, Antonio Cesário; Barbosa, Egberto Reis; Amaro, Edson

    2009-08-15

    Depression is the most frequent psychiatric disorder in Parkinson's disease (PD). Although evidence suggests that depression in PD is related to the degenerative process that underlies the disease, further studies are necessary to better understand the neural basis of depression in this population of patients. In order to investigate neuronal alterations underlying the depression in PD, we studied thirty-six patients with idiopathic PD. Twenty of these patients had the diagnosis of major depression disorder and sixteen did not. The two groups were matched for PD motor severity according to Unified Parkinson Disease Rating Scale (UPDRS). First we conducted a functional magnetic resonance imaging (fMRI) using an event-related parametric emotional perception paradigm with test retest design. Our results showed decreased activation in the left mediodorsal (MD) thalamus and in medial prefrontal cortex in PD patients with depression compared to those without depression. Based upon these results and the increased neuron count in MD thalamus found in previous studies, we conducted a region of interest (ROI) guided voxel-based morphometry (VBM) study comparing the thalamic volume. Our results showed an increased volume in mediodorsal thalamic nuclei bilaterally. Converging morphological changes and functional emotional processing in mediodorsal thalamus highlight the importance of limbic thalamus in PD depression. In addition this data supports the link between neurodegenerative alterations and mood regulation.

  17. Changes in regional gray matter volume in women with chronic pelvic pain - a voxel based morphometry study

    PubMed Central

    As-Sanie, Sawsan; Harris, Richard; Napadow, Vitaly; Kim, Jieun; Neshewat, Gina; Kairys, Anson; Williams, David; Clauw, Daniel; Schmidt-Wilcke, Tobias

    2012-01-01

    Chronic pelvic pain (CPP) is a highly prevalent pain condition, estimated to affect 15-20% of women in the United States. Endometriosis is often associated with CPP, however other factors, such as pre-existing or concomitant changes of the central pain system, might contribute to the development of chronic pain. We applied voxel-based morphometry to determine whether women with CPP with and without endometriosis display changes in brain morphology in regions known to be involved in pain processing.Four subgroups of women participated: 17 with endometriosis and CPP, 15 with endometriosis without CPP, 6 with CPP without endometriosis, as well as 23 healthy controls. All patients with endometriosis and/or CPP were surgically-confirmed. Relative to controls, women with endometriosis-associated CPP displayed decreased gray matter volume in brain regions involved in pain perception including the left thalamus, left cingulategyrus, right putamen, and right insula. Women with CPP without endometriosis also showed decreases in gray matter volume in the left thalamus. Such decreases were not observed in patients with endometriosis that had no CPP. We conclude thatCPP is associated with changes in regional gray matter volume within the central pain system. Although endometriosis may be an important risk factor for the development of CPP, acting as a cyclic source of peripheral nociceptive input, our data support the notion that changes in the central pain system also play an important role in the development of chronic pain, regardless of the presence of endometriosis. PMID:22387096

  18. Hepatic Hemangiomas Alter Morphometry and Impair Hemodynamics of the Abdominal Aorta and Primary Branches From Computer Simulations.

    PubMed

    Yin, Xiaoping; Huang, Xu; Li, Qiao; Li, Li; Niu, Pei; Cao, Minglu; Guo, Fei; Li, Xuechao; Tan, Wenchang; Huo, Yunlong

    2018-01-01

    Background: The formation of hepatic hemangiomas (HH) is associated with VEGF and IL-7 that alter conduit arteries and small arterioles. To our knowledge, there are no studies to investigate the effects of HH on the hemodynamics in conduit arteries. The aim of the study is to perform morphometric and hemodynamic analysis in abdominal conduit arteries and bifurcations of HH patients and controls. Methods: Based on morphometry reconstructed from CT images, geometrical models were meshed with prismatic elements for the near wall region and tetrahedral and hexahedral elements for the core region. Simulations were performed for computation of the non-Newtonian blood flow using the Carreau-Yasuda model, based on which multiple hemodynamic parameters were determined. Results: There was an increase of the lumen size, diameter ratio, and curvature in the abdominal arterial tree of HH patients as compared with controls. This significantly increased the surface area ratio of low time-averaged wall shear stress (i.e., SAR-TAWSS [Formula: see text] 100%) (24.1 ± 7.9 vs. 5 ± 6%, 11.6 ± 12.8 vs. < 0.1%, and 44.5 ± 9.2 vs. 21 ± 24% at hepatic bifurcations, common hepatic arteries, and abdominal aortas, respectively, between HH and control patients). Conclusions: Morphometric changes caused by HH significantly deteriorated the hemodynamic environment in abdominal conduit arteries and bifurcations, which could be an important risk factor for the incidence and progression of vascular diseases.

  19. Grey matter, an endophenotype for schizophrenia? A voxel-based morphometry study in siblings of patients with schizophrenia

    PubMed Central

    van der Velde, Jorien; Gromann, Paula M.; Swart, Marte; de Haan, Lieuwe; Wiersma, Durk; Bruggeman, Richard; Krabbendam, Lydia; Aleman, André

    2015-01-01

    Background Grey matter, both volume and concentration, has been proposed as an endophenotype for schizophrenia given a number of reports of grey matter abnormalities in relatives of patients with schizophrenia. However, previous studies on grey matter abnormalities in relatives have produced inconsistent results. The aim of the present study was to examine grey matter differences between controls and siblings of patients with schizophrenia and to examine whether the age, genetic loading or subclinical psychotic symptoms of selected individuals could explain the previously reported inconsistencies. Methods We compared the grey matter volume and grey matter concentration of healthy siblings of patients with schizophrenia and healthy controls matched for age, sex and education using voxel-based morphometry (VBM). Furthermore, we selected subsamples based on age (< 30 yr), genetic loading and subclinical psychotic symptoms to examine whether this would lead to different results. Results We included 89 siblings and 69 controls in our study. The results showed that siblings and controls did not differ significantly on grey matter volume or concentration. Furthermore, specifically selecting participants based on age, genetic loading or subclinical psychotic symptoms did not alter these findings. Limitations The main limitation was that subdividing the sample resulted in smaller samples for the subanalyses. Furthermore, we used MRI data from 2 different scanner sites. Conclusion These results indicate that grey matter measured through VBM might not be a suitable endophenotype for schizophrenia. PMID:25768029

  20. Reduced representation bisulphite sequencing of the cattle genome reveals DNA methylation patterns

    USDA-ARS?s Scientific Manuscript database

    Using reduced representation bisulphite sequencing (RRBS), we obtained the first single-base-resolution maps of bovine DNA methylation in ten somatic tissues. In total, we observed 1,868,049 cytosines in the CG-enriched regions. Similar to the methylation patterns in other species, the CG context wa...

  1. 13 C Flux Analysis Reveals that Rebalancing Medium Amino Acid Composition can Reduce Ammonia Production while Preserving Central Carbon Metabolism of CHO Cell Cultures.

    PubMed

    McAtee Pereira, Allison G; Walther, Jason L; Hollenbach, Myles; Young, Jamey D

    2018-02-06

    13 C metabolic flux analysis (MFA) provides a rigorous approach to quantify intracellular metabolism of industrial cell lines. In this study, 13 C MFA was used to characterize the metabolic response of Chinese hamster ovary (CHO) cells to a novel medium variant designed to reduce ammonia production. Ammonia inhibits growth and viability of CHO cell cultures, alters glycosylation of recombinant proteins, and enhances product degradation. Ammonia production was reduced by manipulating the amino acid composition of the culture medium; specifically, glutamine, glutamate, asparagine, aspartate, and serine levels were adjusted. Parallel 13 C flux analysis experiments determined that, while ammonia production decreased by roughly 40%, CHO cell metabolic phenotype, growth, viability, and monoclonal antibody (mAb) titer were not significantly altered by the changes in media composition. This study illustrates how 13 C flux analysis can be applied to assess the metabolic effects of media manipulations on mammalian cell cultures. The analysis revealed that adjusting the amino acid composition of CHO cell culture media can effectively reduce ammonia production while preserving fluxes throughout central carbon metabolism. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Atlantic salmon (Salmo salar) protein hydrolysate in diets for weaning piglets ─ effect on growth performance, intestinal morphometry and microbiota composition.

    PubMed

    Opheim, Margareth; Strube, Mikael Lenz; Sterten, Hallgeir; Øverland, Margareth; Kjos, Nils Petter

    2016-01-01

    Salmon protein hydrolysates (SPH) from two different rest raw materials were evaluated in diets for weaning piglets. Four experimental diets were included in the study: a diet based on plant protein with soy protein as the main protein source (Diet PP), a diet based on fishmeal in exchange for soy protein (Diet FM) and two diets in which different SPH replaced fishmeal in the FM diet. The experimental diets were fed to piglets from the day of weaning until 32 d postweaning. In addition to the record of performance data, an intestinal sampling for mucosal morphometry and microbiota 16S rRNA gene sequencing were performed at day 11 on a subset of the animals. The duodenal villi absorption area was significantly larger in piglets receiving Diets SPH compared with Diet PP (p < 0.02). A significant positive correlation between duodenal villi height and average daily gain during the first 11 d postweaning was detected. Only small differences in intestinal microbiota community and no differences in growth performance were detected between the experimental diets. To conclude, SPH seem to be an interesting novel protein source in weanling piglets.

  3. Automated systematic random sampling and Cavalieri stereology of histologic sections demonstrating acute tubular necrosis after cardiac arrest and cardiopulmonary resuscitation in the mouse.

    PubMed

    Wakasaki, Rumie; Eiwaz, Mahaba; McClellan, Nicholas; Matsushita, Katsuyuki; Golgotiu, Kirsti; Hutchens, Michael P

    2018-06-14

    A technical challenge in translational models of kidney injury is determination of the extent of cell death. Histologic sections are commonly analyzed by area morphometry or unbiased stereology, but stereology requires specialized equipment. Therefore, a challenge to rigorous quantification would be addressed by an unbiased stereology tool with reduced equipment dependence. We hypothesized that it would be feasible to build a novel software component which would facilitate unbiased stereologic quantification on scanned slides, and that unbiased stereology would demonstrate greater precision and decreased bias compared with 2D morphometry. We developed a macro for the widely used image analysis program, Image J, and performed cardiac arrest with cardiopulmonary resuscitation (CA/CPR, a model of acute cardiorenal syndrome) in mice. Fluorojade-B stained kidney sections were analyzed using three methods to quantify cell death: gold standard stereology using a controlled stage and commercially-available software, unbiased stereology using the novel ImageJ macro, and quantitative 2D morphometry also using the novel macro. There was strong agreement between both methods of unbiased stereology (bias -0.004±0.006 with 95% limits of agreement -0.015 to 0.007). 2D morphometry demonstrated poor agreement and significant bias compared to either method of unbiased stereology. Unbiased stereology is facilitated by a novel macro for ImageJ and results agree with those obtained using gold-standard methods. Automated 2D morphometry overestimated tubular epithelial cell death and correlated modestly with values obtained from unbiased stereology. These results support widespread use of unbiased stereology for analysis of histologic outcomes of injury models.

  4. Visual rating method and tensor-based morphometry in the diagnosis of mild cognitive impairment and Alzheimer's disease: a comparative magnetic resonance imaging study.

    PubMed

    Tuokkola, Terhi; Koikkalainen, Juha; Parkkola, Riitta; Karrasch, Mira; Lötjönen, Jyrki; Rinne, Juha O

    2016-03-01

    Atrophy of the medial temporal lobe (MTL) is the main structural magnetic resonance imaging (MRI) finding in the brain of patients with Alzheimer's disease (AD). However, evaluating the degree of atrophy is still demanding. The visual rating method (VRM) was compared with multi-template tensor-based morphometry (TBM), in terms of its efficacy in diagnosing of mild cognitive impairment (MCI) and AD. Forty-seven patients with MCI, 80 patients with AD and 84 controls were studied. TBM seems to be more sensitive than VRM at the early stage of dementia in the areas of MTL and ventricles. The methods were equally good in distinguishing controls and the MCI group from the AD group. At the frontal areas TBM was better than VRM in all comparisons. A user-friendly VRM is still useful for the clinical evaluation of MCI patients, but multi-template TBM is more sensitive for diagnosing the early stages of dementia. However, TBM is currently too demanding to use for daily clinical work. © The Foundation Acta Radiologica 2015.

  5. Alterations in white matter volume and its correlation with neuropsychological scales in patients with Alzheimer's disease: a DARTEL-based voxel-based morphometry study.

    PubMed

    Moon, Chung-Man; Shin, Il-Seon; Jeong, Gwang-Woo

    2017-02-01

    Background Non-invasive imaging markers can be used to diagnose Alzheimer's disease (AD) in its early stages, but an optimized quantification analysis to measure the brain integrity has been less studied. Purpose To evaluate white matter volume change and its correlation with neuropsychological scales in patients with AD using a diffeomorphic anatomical registration through exponentiated lie algebra (DARTEL)-based voxel-based morphometry (VBM). Material and Methods The 21 participants comprised 11 patients with AD and 10 age-matched healthy controls. High-resolution magnetic resonance imaging (MRI) data were processed by VBM analysis based on DARTEL algorithm. Results The patients showed significant white matter volume reductions in the posterior limb of the internal capsule, cerebral peduncle of the midbrain, and parahippocampal gyrus compared to healthy controls. In correlation analysis, the parahippocampal volume was positively correlated with the Korean-mini mental state examination score in AD. Conclusion This study provides an evidence for localized white matter volume deficits in conjunction with cognitive dysfunction in AD. These findings would be helpful to understand the neuroanatomical mechanisms in AD and to robust the diagnostic accuracy for AD.

  6. Lake morphometry and resource polymorphism determine niche segregation between cool- and cold-water-adapted fish.

    PubMed

    Hayden, Brian; Harrod, Chris; Kahilaineni, Kimmo K

    2014-02-01

    Climate change is increasing ambient temperatures in Arctic and subarctic regions, facilitating latitudinal range expansions of freshwater fishes adapted to warmer water temperatures. The relative roles of resource availability and interspecific interactions between resident and invading species in determining the outcomes of such expansions has not been adequately evaluated. Ecological interactions between a cool-water adapted fish, the perch (Perca fluviatilis), and the cold-water adapted European whitefish (Coregonus lavaretus), were studied in both shallow and deep lakes with fish communities dominated by (1) monomorphic whitefish, (2) monomorphic whitefish and perch, and (3) polymorphic whitefish and perch. A combination of stomach content, stable-isotope, and invertebrate prey availability data were used to identify resource use and niche overlap among perch, the trophic generalist large sparsely rakered (LSR) whitefish morph, and the pelagic specialist densely rakered (DR) whitefish morph in 10 subarctic lakes at the contemporary distribution limit of perch in northern Scandinavia. Perch utilized its putative preferred littoral niche in all lakes. LSR whitefish utilized both littoral and pelagic resources in monomorphic whitefish-dominated lakes. When found in sympatry with perch, LSR whitefish exclusively utilized pelagic prey in deep lakes, but displayed niche overlap with perch in shallow littoral lakes. DR whitefish was a specialist zooplanktivore, relegating LSR whitefish from pelagic habitats, leading to an increase in niche overlap between LSR whitefish and perch in deep lakes. Our results highlight how resource availability (lake depth and fish community) governs ecological interactions between native and invading species, leading to different outcomes even at the same latitudes. These findings suggest that lake morphometry and fish community structure data should be included in bioclimate envelope-based models of species distribution shifts

  7. Right Brodmann area 18 predicts tremor arrest after Vim radiosurgery: a voxel-based morphometry study.

    PubMed

    Tuleasca, Constantin; Witjas, Tatiana; Van de Ville, Dimitri; Najdenovska, Elena; Verger, Antoine; Girard, Nadine; Champoudry, Jerome; Thiran, Jean-Philippe; Cuadra, Meritxell Bach; Levivier, Marc; Guedj, Eric; Régis, Jean

    2018-03-01

    Drug-resistant essential tremor (ET) can benefit from open standard stereotactic procedures, such as deep-brain stimulation or radiofrequency thalamotomy. Non-surgical candidates can be offered either high-focused ultrasound (HIFU) or radiosurgery (RS). All procedures aim to target the same thalamic site, the ventro-intermediate nucleus (e.g., Vim). The mechanisms by which tremor stops after Vim RS or HIFU remain unknown. We used voxel-based morphometry (VBM) on pretherapeutic neuroimaging data and assessed which anatomical site would best correlate with tremor arrest 1 year after Vim RS. Fifty-two patients (30 male, 22 female; mean age 71.6 years, range 49-82) with right-sided ET benefited from left unilateral Vim RS in Marseille, France. Targeting was performed in a uniform manner, using 130 Gy and a single 4-mm collimator. Neurological (pretherapeutic and 1 year after) and neuroimaging (baseline) assessments were completed. Tremor score on the treated hand (TSTH) at 1 year after Vim RS was included in a statistical parametric mapping analysis of variance (ANOVA) model as a continuous variable with pretherapeutic neuroimaging data. Pretherapeutic gray matter density (GMD) was further correlated with TSTH improvement. No a priori hypothesis was used in the statistical model. The only statistically significant region was right Brodmann area (BA) 18 (visual association area V2, p = 0.05, cluster size K c  = 71). Higher baseline GMD correlated with better TSTH improvement at 1 year after Vim RS (Spearman's rank correlation coefficient = 0.002). Routine baseline structural neuroimaging predicts TSTH improvement 1 year after Vim RS. The relevant anatomical area is the right visual association cortex (BA 18, V2). The question whether visual areas should be included in the targeting remains open.

  8. 3D PATTERN OF BRAIN ABNORMALITIES IN FRAGILE X SYNDROME VISUALIZED USING TENSOR-BASED MORPHOMETRY

    PubMed Central

    Lee, Agatha D.; Leow, Alex D.; Lu, Allen; Reiss, Allan L.; Hall, Scott; Chiang, Ming-Chang; Toga, Arthur W.; Thompson, Paul M.

    2007-01-01

    Fragile X syndrome (FraX), a genetic neurodevelopmental disorder, results in impaired cognition with particular deficits in executive function and visuo-spatial skills. Here we report the first detailed 3D maps of the effects of the Fragile X mutation on brain structure, using tensor-based morphometry. TBM visualizes structural brain deficits automatically, without time-consuming specification of regions-of-interest. We compared 36 subjects with FraX (age: 14.66+/−1.58SD, 18 females/18 males), and 33 age-matched healthy controls (age: 14.67+/−2.2SD, 17 females/16 males), using high-dimensional elastic image registration. All 69 subjects' 3D T1-weighted brain MRIs were spatially deformed to match a high-resolution single-subject average MRI scan in ICBM space, whose geometry was optimized to produce a minimal deformation target. Maps of the local Jacobian determinant (expansion factor) were computed from the deformation fields. Statistical maps showed increased caudate (10% higher; p=0.001) and lateral ventricle volumes (19% higher; p=0.003), and trend-level parietal and temporal white matter excesses (10% higher locally; p=0.04). In affected females, volume abnormalities correlated with reduction in systemically measured levels of the fragile X mental retardation protein (FMRP; Spearman's r<−0.5 locally). Decreased FMRP correlated with ventricular expansion (p=0.042; permutation test), and anterior cingulate tissue reductions (p=0.0026; permutation test) supporting theories that FMRP is required for normal dendritic pruning in fronto-striatal-limbic pathways. No sex differences were found; findings were confirmed using traditional volumetric measures in regions of interest. Deficit patterns were replicated using Lie group statistics optimized for tensor-valued data. Investigation of how these anomalies emerge over time will accelerate our understanding of FraX and its treatment. PMID:17161622

  9. Brain-volume changes in young and middle-aged smokers: a DARTEL-based voxel-based morphometry study.

    PubMed

    Peng, Peng; Wang, Zhenchang; Jiang, Tao; Chu, Shuilian; Wang, Shuangkun; Xiao, Dan

    2017-09-01

    Many studies have reported brain volume changes in smokers. However, the volume differences of grey matter (GM) and white matter (WM) in young and middle-aged male smokers with different lifetime tobacco consumption (pack-years) remain uncertain. To examine the brain volume change, especially whether more pack-years smoking would be associated with smaller gray matter and white matter volume in young and middle-aged male smokers. We used a 3T MR scanner and performed Diffeomorphic anatomical registration through exponentiated lie algebra (DARTEL)-based voxel-based morphometry on 53 long-term male smokers (30.72 ± 4.19 years) and 53 male healthy non-smokers (30.83 ± 5.18 years). We separated smokers to light and heavy smokers by pack-years and compared brain volume between different smoker groups and non-smokers. And then we did analysis of covariance (ANCOVA) between smokers and non-smokers by setting pack-years as covariates. Light and heavy smokers all displayed smaller GM and WM volume than non-smokers and more obviously in heavy smokers. The main smaller areas in light and heavy smokers were superior temporal gyrus, insula, middle occipital gyrus, posterior cingulate, precuneus in GM and posterior cingulate, thalamus and midbrain in WM, in addition, we also observed more pack-years smoking was associated with some certain smaller GM and WM volumes by ANCOVA. Young and middle-aged male smokers had many smaller brain areas than non-smokers. Some of these areas' volume had negative correlation with pack-years, while some had not. These may due to different pathophysiological role of smokings. © 2015 John Wiley & Sons Ltd.

  10. Genetic and environmental influences on structural variability of the brain in pediatric twin: deformation based morphometry.

    PubMed

    Yoon, Uicheul; Perusse, Daniel; Lee, Jong-Min; Evans, Alan C

    2011-04-08

    Twin studies are one of the most powerful study designs for estimating the relative contribution of genetic and environmental influences on phenotypic variation inhuman brain morphology. In this study, we applied deformation based morphometry, a technique that provides a voxel-wise index of local tissue growth or atrophy relative to a template brain, combined with univariate ACE model, to investigate the genetic and environmental effects on the human brain structural variations in a cohort of homogeneously aged healthy pediatric twins. In addition, anatomical regions of interest (ROIs) were defined in order to explore global and regional genetic effects. ROI results showed that the influence of genetic factors on cerebrum (h(2)=0.70), total gray matter (0.67), and total white matter (0.73) volumes were significant. In particular, structural variability of left-side lobar volumes showed a significant heritability. Several subcortical structures such as putamen (h(ROI)(2)=0.79/0.77(L/R),h(MAX)(2)=0.82/0.79) and globus pallidus (0.81/0.76, 0.88/0.82) were also significantly heritable in both voxel-wise and ROI-based results. In the voxel-wise results, lateral parts of right cerebellum (c(2)=0.68) and the posterior portion of the corpus callosum (0.63) were rather environmentally determined, but it failed to reach statistical significance. Pediatric twin studies are important because they can discriminate several influences on developmental brain trajectories and identify relationships between gene and behavior. Several brain structures showed significant genetic effects and might therefore serve as biological markers for inherited traits, or as targets for genetic linkage and association studies. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Neurostructural impact of co-occurring anxiety in pediatric patients with major depressive disorder: a voxel-based morphometry study.

    PubMed

    Wehry, Anna M; McNamara, Robert K; Adler, Caleb M; Eliassen, James C; Croarkin, Paul; Cerullo, Michael A; DelBello, Melissa P; Strawn, Jeffrey R

    2015-01-15

    Depressive and anxiety disorders are among the most frequently occurring psychiatric conditions in children and adolescents and commonly present occur together. Co-occurring depression and anxiety is associated with increased functional impairment and suicidality compared to depression alone. Despite this, little is known regarding the neurostructural differences between anxiety disorders and major depressive disorder (MDD). Moreover, the neurophysiologic impact of the presence of anxiety in adolescents with MDD is unknown. Using voxel-based morphometry, gray matter volumes were compared among adolescents with MDD (and no co-morbid anxiety disorders, n=14), adolescents with MDD and co-morbid anxiety ("anxious depression," n=12), and healthy comparison subjects (n=41). Patients with anxious depression exhibited decreased gray matter volumes in the dorsolateral prefrontal cortex (DLPFC) compared to patients with MDD alone. Compared to healthy subjects, adolescents with anxious depression had increased gray matter volumes in the pre- and post-central gyri. The current sample size was small and precluded an analysis of multiple covariates which may influence GMV. Gray matter deficits in the DLPFC in youth with anxious depression compared to patients with MDD and no co-occurring anxiety may reflect the more severe psychopathology in these patients. Additionally, the distinct gray matter fingerprints of MDD and anxious depression (compared to healthy subjects) suggest differing neurophysiologic substrates for these conditions, though the etiology and longitudinal trajectory of the differences remain to be determined. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Evaluation of calabash chalk effect on femur bone morphometry and mineralization in young wistar rats: A pilot study.

    PubMed

    Ekong, Moses B; Ekanem, Theresa B; Sunday, Abraham O; Aquaisua, Aquaisua N; Akpanabiatu, Monday I

    2012-07-01

    Calabash chalk, a popularly consumed geophagic material in Nigeria has been reported to contain lead, arsenic, alpha lindane, endrin, and endosulfan 11 among other pollutants. The continuous exposure of young children to this chalk necessitated this study on the bone morphometry and mineralization in young Wistar rats. Fourteen young (weanling) Wistar rats of both sexes weighing 54-72 g were assigned into two groups of seven animals each. Group I served as control, while group II was the test group (TG). 40 mg/ml of C. chalk was administered as suspension to the test animals in group II. Animals in the control group were orally treated with 1ml of distilled water. Administration of the C. chalk in the animals lasted for 28 days, and the animals were sacrificed on day 29, using chloroform anaesthesia. The femur bones were dissected out, cleaned of flesh and sun-dried. The lengths and weights of the femur bones were measured using graphite furnace atomic mass spectrophotometer. Results showed 1.6% decrease in body weight change in the TG, insignificant decreases in the weights and lengths of both the right and left femur bones, and significant decreased (P < 0.0126) organ-somatic index, and femur bones concentrations (mg/l) of zinc, phosphate, carbonate, calcium, sodium, and potassium (P < 0.05). In conclusion, this study showed that C. chalk may alter growth rate, and cause de-mineralization in the femur bone, hence, it may be detrimental to bone growth.

  13. Neural substrates underlying balanced time perspective: A combined voxel-based morphometry and resting-state functional connectivity study.

    PubMed

    Guo, Yiqun; Chen, Zhiyi; Feng, Tingyong

    2017-08-14

    Balanced time perspective (BTP), which is defined as a mental ability to switch flexibly among different time perspectives Zimbardo and Boyd (1999), has been suggested to be a central component of positive psychology Boniwell and Zimbardo (2004). BTP reflects individual's cognitive flexibility towards different time frames, which leads to many positive outcomes, including positive mood, subjective wellbeing, emotional intelligence, fluid intelligence, and executive control. However, the neural basis of BTP is still unclear. To address this question, we quantified individual's deviation from the BTP (DBTP), and investigated the neural substrates of DBTP using both voxel-based morphometry (VBM) and resting-state functional connectivity (RSFC) methods VBM analysis found that DBTP scores were positively correlated with gray matter volume (GMV) in the ventral precuneus. We further found that DBTP scores were negatively associated with RSFCs between the ventral precuneus seed region and medial prefrontal cortex (mPFC), bilateral temporoparietal junction (TPJ), parahippocampa gyrus (PHG), and middle frontal gyrus (MFG). These brain regions found in both VBM and RSFC analyses are commonly considered as core nodes of the default mode network (DMN) that is known to be involved in many functions, including episodic and autobiographical memory, self-related processing, theory of mind, and imagining the future. These functions of the DMN are also essential to individuals with BTP. Taken together, we provide the first evidence for the structural and functional neural basis of BTP, and highlight the crucial role of the DMN in cultivating an individual's BTP. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Coconut water alters maternal high fat diet induced changes in hormones and pup morphometry of Wistar rats.

    PubMed

    Kunle-Alabi, O T; Akindele, O O; Raji, Y

    2015-06-01

    Maternal high fat diet (HFD) during gestation adversely programmes foetal metabolism and cardiovascular function for the development of obesity and its related cardiovascular diseases in adult life. The hypolipidemic actions of coconut water (CW) in the presence of HFD have been reported. This study examined the effects of oral administration of CW on lipid panel, hormone profile, pup and placental morphometry of dams fed HFD during gestation. Twenty-four pregnant Wistar rats were assigned to four groups (n = 6) and treated daily from gestation day (GD) 1 to 21 as follows; Group 1: 1 ml/100g b.wt. distilled water; Group 2: 1ml/100g b.wt. CW; Group 3: HFD (70% standard rat feed plus 30% butter); Group 4: HFD + 1 ml/100g b.wt. CW. Animals were sacrificed on GD 21. Random blood glucose was measured using tail blood. Caesarean section was performed to remove the pups and their placentas which were immediately measured. Oxidative stress status of the placentas; serum lipid and hormone profiles of dams were assessed. HFD+CW resulted in significant (P < 0.05) reductions in pup weight and morphometric indices when compared with pups from HFD. These changes were accompanied by significant improvements in maternal serum lipid profile, alterations in hormone levels and higher placental lipid peroxidation. These results suggest that coconut water is protective against maternal high fat diet-induced changes. Further studies are on-going to determine the actions of coconut water of maternal high fat diet induced foetal programming of adult health.

  15. Zinc deficiency reduces bone mineral density in the spine of young adult rats: a pilot study.

    PubMed

    Ryz, Natasha R; Weiler, Hope A; Taylor, Carla G

    2009-01-01

    The objective of this study was to investigate the effects of zinc deficiency initiated during adolescence on skeletal densitometry, serum markers of bone metabolism, femur minerals and morphometry in young adult rats. Ten-week-old male rats were fed a <1-mg Zn/kg diet (9ZD), a 5-mg Zn/kg diet (9MZD) or a 30-mg Zn/kg diet (9CTL) for up to 9 weeks. Analyses included bone mineral density, serum osteocalcin and C-terminal peptides of type I collagen, serum zinc, femur zinc, calcium and phosphorus, and femur morphometry. Bone mineral density was 14% lower in the spine of 9ZD, but was not altered in the whole body, tibia or femur, or in any of the aforementioned sites in 9MZD, compared to 9CTL. When adjusted for size, spine bone mineral apparent density was still 8% lower in 9ZD than 9CTL. Serum osteocalcin, a marker for bone formation, was approximately 33% lower in 9ZD compared to both 9MZD and 9CTL. The 9ZD and 9MZD had 57% lower femur zinc and 56-88% lower serum zinc concentrations compared to 9CTL. These findings indicate that severe zinc deficiency initiated during adolescence may have important implications for future bone health, especially with regards to bone consolidation in the spine. 2009 S. Karger AG, Basel.

  16. Fractal morphometry of cell complexity.

    PubMed

    Losa, Gabriele A

    2002-01-01

    Irregularity and self-similarity under scale changes are the main attributes of the morphological complexity of both normal and abnormal cells and tissues. In other words, the shape of a self-similar object does not change when the scale of measurement changes, because each part of it looks similar to the original object. However, the size and geometrical parameters of an irregular object do differ when it is examined at increasing resolution, which reveals more details. Significant progress has been made over the past three decades in understanding how irregular shapes and structures in the physical and biological sciences can be analysed. Dominant influences have been the discovery of a new practical geometry of Nature, now known as fractal geometry, and the continuous improvements in computation capabilities. Unlike conventional Euclidean geometry, which was developed to describe regular and ideal geometrical shapes which are practically unknown in nature, fractal geometry can be used to measure the fractal dimension, contour length, surface area and other dimension parameters of almost all irregular and complex biological tissues. We have used selected examples to illustrate the application of the fractal principle to measuring irregular and complex membrane ultrastructures of cells at specific functional and pathological stage.

  17. Yeast population dynamics reveal a potential 'collaboration' between Metschnikowia pulcherrima and Saccharomyces uvarum for the production of reduced alcohol wines during Shiraz fermentation.

    PubMed

    Contreras, A; Curtin, C; Varela, C

    2015-02-01

    The wine sector is actively seeking strategies and technologies that facilitate the production of wines with lower alcohol content. One of the simplest approaches to achieve this aim would be the use of wine yeast strains which are less efficient at transforming grape sugars into ethanol; however, commercial wine yeasts have very similar ethanol yields. We recently demonstrated that Metschnikowia pulcherrima AWRI1149 was able to produce wine with reduced alcohol concentration when used in sequential inoculation with a wine strain of Saccharomyces cerevisiae. Here, different inoculation regimes were explored to study the effect of yeast population dynamics and potential yeast interactions on the metabolism of M. pulcherrima AWRI1149 during fermentation of non-sterile Shiraz must. Of all inoculation regimes tested, only ferments inoculated with M. pulcherrima AWRI1149 showed reduced ethanol concentration. Population dynamics revealed the presence of several indigenous yeast species and one of these, Saccharomyces uvarum (AWRI 2846), was able to produce wine with reduced ethanol concentration in sterile conditions. Both strains however, were inhibited when a combination of three non-Saccharomyces strains, Hanseniaspora uvarum AWRI863, Pichia kluyveri AWRI1896 and Torulaspora delbrueckii AWRI2845 were inoculated into must, indicating that the microbial community composition might impact on the growth of M. pulcherrima AWRI1149 and S. uvarum AWRI 2846. Our results indicate that mixed cultures of M. pulcherrima AWRI1149 and S. uvarum AWRI2846 enable an additional reduction of wine ethanol concentration compared to the same must fermented with either strain alone. This work thus provides a foundation to develop inoculation regimes for the successful application of non-cerevisiae yeast to the production of wines with reduced alcohol.

  18. Neutral lipid-storage disease with myopathy and extended phenotype with novel PNPLA2 mutation.

    PubMed

    Massa, Roberto; Pozzessere, Simone; Rastelli, Emanuele; Serra, Laura; Terracciano, Chiara; Gibellini, Manuela; Bozzali, Marco; Arca, Marcello

    2016-04-01

    Neutral lipid-storage disease with myopathy is caused by mutations in PNPLA2, which produce skeletal and cardiac myopathy. We report a man with multiorgan neutral lipid storage and unusual multisystem clinical involvement, including cognitive impairment. Quantitative brain MRI with voxel-based morphometry and extended neuropsychological assessment were performed. In parallel, the coding sequences and intron/exon boundaries of the PNPLA2 gene were screened by direct sequencing. Neuropsychological assessment revealed global cognitive impairment, and brain MRI showed reduced gray matter volume in the temporal lobes. Molecular characterization revealed a novel homozygous mutation in exon 5 of PNPLA2 (c.714C>A), resulting in a premature stop codon (p.Cys238*). Some PNPLA2 mutations, such as the one described here, may present with an extended phenotype, including brain involvement. In these cases, complete neuropsychological testing, combined with quantitative brain MRI, may help to characterize and quantify cognitive impairment. © 2016 Wiley Periodicals, Inc.

  19. The beneficial effects of exercise on cartilage are lost in mice with reduced levels of ECSOD in tissues.

    PubMed

    Pate, Kathryn M; Sherk, Vanessa D; Carpenter, R Dana; Weaver, Michael; Crapo, Silvia; Gally, Fabienne; Chatham, Lillian S; Goldstrohm, David A; Crapo, James D; Kohrt, Wendy M; Bowler, Russell P; Oberley-Deegan, Rebecca E; Regan, Elizabeth A

    2015-03-15

    Osteoarthritis (OA) is associated with increased mechanical damage to joint cartilage. We have previously found that extracellular superoxide dismutase (ECSOD) is decreased in OA joint fluid and cartilage, suggesting oxidant damage may play a role in OA. We explored the effect of forced running as a surrogate for mechanical damage in a transgenic mouse with reduced ECSOD tissue binding. Transgenic mice heterozygous (Het) for the human ECSOD R213G polymorphism and 129-SvEv (wild-type, WT) mice were exposed to forced running on a treadmill for 45 min/day, 5 days/wk, over 8 wk. At the end of the running protocol, knee joint tissue was obtained for histology, immunohistochemistry, and protein analysis. Sedentary Het and WT mice were maintained for comparison. Whole tibias were studied for bone morphometry, finite element analysis, and mechanical testing. Forced running improved joint histology in WT mice. However, when ECSOD levels were reduced, this beneficial effect with running was lost. Het ECSOD runner mice had significantly worse histology scores compared with WT runner mice. Runner mice for both strains had increased bone strength in response to the running protocol, while Het mice showed evidence of a less robust bone structure in both runners and untrained mice. Reduced levels of ECSOD in cartilage produced joint damage when joints were stressed by forced running. The bone tissues responded to increased loading with hypertrophy, regardless of mouse strain. We conclude that ECSOD plays an important role in protecting cartilage from damage caused by mechanical loading. Copyright © 2015 the American Physiological Society.

  20. Uranium reduction and resistance to reoxidation under iron-reducing and sulfate-reducing conditions.

    PubMed

    Boonchayaanant, Benjaporn; Nayak, Dipti; Du, Xin; Criddle, Craig S

    2009-10-01

    Oxidation and mobilization of microbially-generated U(IV) is of great concern for in situ uranium bioremediation. This study investigated the reoxidation of uranium by oxygen and nitrate in a sulfate-reducing enrichment and an iron-reducing enrichment derived from sediment and groundwater from the Field Research Center in Oak Ridge, Tennessee. Both enrichments were capable of reducing U(VI) rapidly. 16S rRNA gene clone libraries of the two enrichments revealed that Desulfovibrio spp. are dominant in the sulfate-reducing enrichment, and Clostridium spp. are dominant in the iron-reducing enrichment. In both the sulfate-reducing enrichment and the iron-reducing enrichment, oxygen reoxidized the previously reduced uranium but to a lesser extent in the iron-reducing enrichment. Moreover, in the iron-reducing enrichment, the reoxidized U(VI) was eventually re-reduced to its previous level. In both, the sulfate-reducing enrichment and the iron-reducing enrichment, uranium reoxidation did not occur in the presence of nitrate. The results indicate that the Clostridium-dominated iron-reducing communities created conditions that were more favorable for uranium stability with respect to reoxidation despite the fact that fewer electron equivalents were added to these systems. The likely reason is that more of the added electrons are present in a form that can reduce oxygen to water and U(VI) back to U(IV).

  1. Reduced anterior insula, enlarged amygdala in alcoholism and associated depleted von Economo neurons.

    PubMed

    Senatorov, Vladimir V; Damadzic, Ruslan; Mann, Claire L; Schwandt, Melanie L; George, David T; Hommer, Daniel W; Heilig, Markus; Momenan, Reza

    2015-01-01

    The insula, a structure involved in higher order representation of interoceptive states, has recently been implicated in drug craving and social stress. Here, we performed brain magnetic resonance imaging to measure volumes of the insula and amygdala, a structure with reciprocal insular connections, in 26 alcohol-dependent patients and 24 healthy volunteers (aged 22-56 years, nine females in each group). We used an established morphometry method to quantify total and regional insular volumes. Volumetric measurements of the amygdala were obtained using a model-based segmentation/registration tool. In alcohol-dependent patients, anterior insula volumes were bilaterally reduced compared to healthy volunteers (left by 10%, right by 11%, normalized to total brain volumes). Furthermore, alcohol-dependent patients, compared with healthy volunteers, had bilaterally increased amygdala volumes. The left amygdala was increased by 28% and the right by 29%, normalized to total brain volumes. Post-mortem studies of the anterior insula showed that the reduced anterior insular volume may be associated with a population of von Economo neurons, which were 60% diminished in subjects with a history of alcoholism (n = 6) as compared to subjects without a history of alcoholism (n = 6) (aged 32-56 years, all males). The pattern of neuroanatomical change observed in our alcohol-dependent patients might result in a loss of top-down control of amygdala function, potentially contributing to impaired social cognition as well as an inability to control negatively reinforced alcohol seeking and use. Published by Oxford University Press on behalf of the Guarantors of Brain 2014. This work is written by US Government employees and is in the public domain in the US.

  2. Embryonic cardiac morphometry in Carnegie stages 15-23, from the Complutense University of Madrid Institute of Embryology Human Embryo Collection.

    PubMed

    Arráez-Aybar, L A; Turrero-Nogués, A; Marantos-Gamarra, D G

    2008-01-01

    We performed a morphometric study of cardiac development on human embryos to complement the scarce data on human embryonic cardiac morphometry and to attempt to establish, from these, algorithms describing cardiac growth during the second month of gestation. Thirty human embryos from Carnegie stages 15-23 were included in the study. Shrinkage and compression effects from fixation and inclusion in paraffin were considered in our calculations. Growth of the cardiac (whole heart) volume and volume of ventricular myocardium through the Carnegie stages were analysed by ANOVA. Linear correlation was used to describe the relationship between the ventricular myocardium and cardiac volumes. Comparisons of models were carried out through the R2 statistic. The relationship volume of ventricular myocardium versus cardiac volume is expressed by the equation: cardiac volume = 0.6266 + 2.4778 volume of ventricular myocardium. The relationship cardiac volume versus crown-rump length is expressed by the equation: cardiac volume = 1.3 e(0.126 CR length), where e is the base of natural logarithms. At a clinical level, these results can contribute towards the establishment of a normogram for cardiac development, useful for the design of strategies for early diagnosis of congenital heart disease. They can also help in the study of embryogenesis, for example in the discussion of ventricular trabeculation. Copyright 2007 S. Karger AG, Basel.

  3. Altered Associations between Pain Symptoms and Brain Morphometry in the Pain Matrix of HIV-Seropositive Individuals.

    PubMed

    Castillo, Deborrah; Ernst, Thomas; Cunningham, Eric; Chang, Linda

    2018-03-01

    Pain remains highly prevalent in HIV-seropositive (HIV+) patients despite their well-suppressed viremia with combined antiretroviral therapy. Investigating brain abnormalities within the pain matrix, and in relation to pain symptoms, in HIV+ participants may provide objective biomarkers and insights regarding their pain symptoms. We used Patient-Reported Outcome Measurement Information System (PROMIS®) pain questionnaire to evaluate pain symptoms (pain intensity, pain interference and pain behavior), and structural MRI to assess brain morphometry using FreeSurfer (cortical area, cortical thickness and subcortical volumes were evaluated in 12 regions within the pain matrix). Compared to seronegative (SN) controls, HIV+ participants had smaller surface areas in prefrontal pars triangularis (right: p = 0.04, left: p = 0.007) and right anterior cingulate cortex (p = 0.03) and smaller subcortical regions (thalamus: p ≤ 0.003 bilaterally; right putamen: p = 0.01), as well as higher pain scores (pain intensity-p = 0.005; pain interference-p = 0.008; pain-behavior-p = 0.04). Furthermore, higher pain scores were associated with larger cortical areas, thinner cortices and larger subcortical volumes in HIV+ participants; but smaller cortical areas, thicker cortices and smaller subcortical volumes in SN controls (interaction-p = 0.009 to p = 0.04). These group differences in the pain-associated brain abnormalities suggest that HIV+ individuals have abnormal pain responses. Since these abnormal pain-associated brain regions belong to the affective component of the pain matrix, affective symptoms may influence pain perception in HIV+ patients and should be treated along with their physical pain symptoms. Lastly, associations of lower pain scores with better physical or mental health scores, regardless of HIV-serostatus (p < 0.001), suggest adequate pain treatment would lead to better quality of life in all participants.

  4. Voxel-based morphometry and automated lobar volumetry: The trade-off between spatial scale and statistical correction

    PubMed Central

    Voormolen, Eduard H.J.; Wei, Corie; Chow, Eva W.C.; Bassett, Anne S.; Mikulis, David J.; Crawley, Adrian P.

    2011-01-01

    Voxel-based morphometry (VBM) and automated lobar region of interest (ROI) volumetry are comprehensive and fast methods to detect differences in overall brain anatomy on magnetic resonance images. However, VBM and automated lobar ROI volumetry have detected dissimilar gray matter differences within identical image sets in our own experience and in previous reports. To gain more insight into how diverging results arise and to attempt to establish whether one method is superior to the other, we investigated how differences in spatial scale and in the need to statistically correct for multiple spatial comparisons influence the relative sensitivity of either technique to group differences in gray matter volumes. We assessed the performance of both techniques on a small dataset containing simulated gray matter deficits and additionally on a dataset of 22q11-deletion syndrome patients with schizophrenia (22q11DS-SZ) vs. matched controls. VBM was more sensitive to simulated focal deficits compared to automated ROI volumetry, and could detect global cortical deficits equally well. Moreover, theoretical calculations of VBM and ROI detection sensitivities to focal deficits showed that at increasing ROI size, ROI volumetry suffers more from loss in sensitivity than VBM. Furthermore, VBM and automated ROI found corresponding GM deficits in 22q11DS-SZ patients, except in the parietal lobe. Here, automated lobar ROI volumetry found a significant deficit only after a smaller subregion of interest was employed. Thus, sensitivity to focal differences is impaired relatively more by averaging over larger volumes in automated ROI methods than by the correction for multiple comparisons in VBM. These findings indicate that VBM is to be preferred over automated lobar-scale ROI volumetry for assessing gray matter volume differences between groups. PMID:19619660

  5. Micro-imaging of the Mouse Lung via MRI

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    Quantitative measurement of lung microstructure is of great significance in assessment of pulmonary disease, particularly in the earliest stages. Conventional stereological assessment of ex-vivo fixed tissue specimens under the microscope has a long and successful tradition and is regarded as a gold standard, but the invasive nature limits its applications and the practicality of use in longitudinal studies. The technique for diffusion MRI-based 3He lung morphometry was previously developed and validated for human lungs, and was recently extended to ex-vivo mouse lungs. The technique yields accurate, quantitative information about the microstructure and geometry of acinar airways. In this dissertation, the 3He lung morphometry technique is for the first time successfully implemented for in-vivo studies of mice. It can generate spatially-resolved maps of parameters that reveal the microstructure of mouse lung. Results in healthy mice indicate excellent agreement between in-vivo morphometry via 3He MRI and microscopic morphometry after sacrifice. The implementation and validation of 3He morphometry in healthy mice open up new avenues for application of the technique as a precise, noninvasive, in-vivo biomarker of changes in lung microstructure, within various mouse models of lung disease. We have applied 3He morphometry to the Sendai mouse model of lung disease. Specifically, the Sendai-virus model of chronic obstructive lung disease has demonstrated an innate immune response in mouse airways that exhibits similarities to the chronic airway inflammation in human COPD and asthma, but the effect on distal lung parenchyma had not been investigated. We imaged the time course and regional distribution of mouse lung microstructural changes in vivo after Sendai virus (SeV) infection with 1H and 3He diffusion MRI. 1H MR images detected the SeV-induced pulmonary inflammation in vivo and 3He lung morphometry showed modest increase in alveolar duct radius distal to airway

  6. Medial prefrontal aberrations in major depressive disorder revealed by cytoarchitectonically informed voxel-based morphometry

    PubMed Central

    Bludau, Sebastian; Bzdok, Danilo; Gruber, Oliver; Kohn, Nils; Riedl, Valentin; Sorg, Christian; Palomero-Gallagher, Nicola; Müller, Veronika I.; Hoffstaedter, Felix; Amunts, Katrin; Eickhoff, Simon B.

    2017-01-01

    Objective The heterogeneous human frontal pole has been identified as a node in the dysfunctional network of major depressive disorder. The contribution of the medial (socio-affective) versus lateral (cognitive) frontal pole to major depression pathogenesis is currently unclear. The present study performs morphometric comparison of the microstructurally informed subdivisions of human frontal pole between depressed patients and controls using both uni- and multivariate statistics. Methods Multi-site voxel- and region-based morphometric MRI analysis of 73 depressed patients and 73 matched controls without psychiatric history. Frontal pole volume was first compared between depressed patients and controls by subdivision-wise classical morphometric analysis. In a second approach, frontal pole volume was compared by subdivision-naive multivariate searchlight analysis based on support vector machines. Results Subdivision-wise morphometric analysis found a significantly smaller medial frontal pole in depressed patients with a negative correlation of disease severity and duration. Histologically uninformed multivariate voxel-wise statistics provided converging evidence for structural aberrations specific to the microstructurally defined medial area of the frontal pole in depressed patients. Conclusions Across disparate methods, we demonstrated subregion specificity in the left medial frontal pole volume in depressed patients. Indeed, the frontal pole was shown to structurally and functionally connect to other key regions in major depression pathology like the anterior cingulate cortex and the amygdala via the uncinate fasciculus. Present and previous findings consolidate the left medial portion of the frontal pole as particularly altered in major depression. PMID:26621569

  7. MDMA (Ecstasy) use is associated with reduced BOLD signal change during semantic recognition in abstinent human polydrug users: a preliminary fMRI study

    PubMed Central

    Raj, Vidya; Liang, Han-Chun; Woodward, Neil D.; Bauernfeind, Amy L.; Lee, Junghee; Dietrich, Mary; Park, Sohee; Cowan, Ronald L.

    2011-01-01

    Objectives MDMA users have impaired verbal memory, and voxel-based morphometry has demonstrated decreased gray matter in Brodmann area (BA) 18, 21 and 45. Because these regions play a role in verbal memory, we hypothesized that MDMA users would show altered brain activation in these areas during performance of an fMRI task that probed semantic verbal memory. Methods Polysubstance users enriched for MDMA exposure participated in a semantic memory encoding and recognition fMRI task that activated left BA 9, 18, 21/22 and 45. Primary outcomes were percent BOLD signal change in left BA 9, 18, 21/22 and 45, accuracy and response time. Results During semantic recognition, lifetime MDMA use was associated with decreased activation in left BA 9, 18 and 21/22 but not 45. This was partly influenced by contributions from cannabis and cocaine use. MDMA exposure was not associated with accuracy or response time during the semantic recognition task. Conclusions During semantic recognition, MDMA exposure is associated with reduced regional brain activation in regions mediating verbal memory. These findings partially overlap with prior structural evidence for reduced gray matter in MDMA users and may, in part, explain the consistent verbal memory impairments observed in other studies of MDMA users. PMID:19304866

  8. Structural correlates of creative thinking in patients with bipolar disorder and healthy controls-a voxel-based morphometry study.

    PubMed

    Tu, Pei-Chi; Kuan, Yi-Hsuan; Li, Cheng-Ta; Su, Tung-Ping

    2017-06-01

    This study investigated the structural correlates of creative thinking in patients with bipolar disorder (BD) to understand the possible neural mechanism of creative thinking in BD. We recruited 59 patients with BD I or BD II (35.3±8.5 y) and 56 age- and sex-matched controls (HCs; 34±7.4 y). Each participant underwent structural magnetic resonance imaging and evaluation of creative thinking, which was assessed using two validated tools: the Chinese version of the Abbreviated Torrance Test for Adults for divergent thinking and the Chinese Word Remote Associates Test for remote association. Voxel-based morphometry was performed using SPM12. In patients with BD, divergent thinking positively correlated with the gray matter volume (GMV) in right medial frontal gyrus (Brodmann area [BA] 9), and remote association positively correlated with the GMV in the medial prefrontal gyrus (BA 10). In the HCs, divergent thinking negatively correlated with the GMV in left superior frontal gyrus (BA 8) and positively correlated with the GMV in the precuneus and occipital regions, and remote association positively correlated with the GMV in the hippocampus. Patients with BD were receiving various dosages of antipsychotics, antidepressants and mood stabilizer. These medications may confound the GMV-creative thinking relationship in patients with BD. Our findings indicate that medial prefrontal cortex plays a major and positive role in creative thinking in patients with BD. By contrary, creative thinking involves more diverse structures, and the prefrontal cortex may have an opposite effect in HCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Regional gray matter reduction and theory of mind deficit in the early phase of schizophrenia: a voxel-based morphometric study.

    PubMed

    Herold, R; Feldmann, A; Simon, M; Tényi, T; Kövér, F; Nagy, F; Varga, E; Fekete, S

    2009-03-01

    We tested the association between theory of mind (ToM) performance and structural changes in the brains of patients in the early course of schizophrenia. Voxel-based morphometry (VBM) data of 18 patients with schizophrenia were compared with those of 21 controls. ToM skills were assessed by computerized faux pas (FP) tasks. Patients with schizophrenia performed significantly worse in FP tasks than healthy subjects. VBM revealed significantly reduced gray matter density in certain frontal, temporal and subcortical regions in patients with schizophrenia. Poor FP performance of schizophrenics correlated with gray matter reduction in the left orbitofrontal cortex and right temporal pole. Our data indicate an association between poor ToM performance and regional gray matter reduction in the left orbitofrontal cortex and right temporal pole shortly after the onset of schizophrenia.

  10. Cannabis use is quantitatively associated with nucleus accumbens and amygdala abnormalities in young adult recreational users.

    PubMed

    Gilman, Jodi M; Kuster, John K; Lee, Sang; Lee, Myung Joo; Kim, Byoung Woo; Makris, Nikos; van der Kouwe, Andre; Blood, Anne J; Breiter, Hans C

    2014-04-16

    Marijuana is the most commonly used illicit drug in the United States, but little is known about its effects on the human brain, particularly on reward/aversion regions implicated in addiction, such as the nucleus accumbens and amygdala. Animal studies show structural changes in brain regions such as the nucleus accumbens after exposure to Δ9-tetrahydrocannabinol, but less is known about cannabis use and brain morphometry in these regions in humans. We collected high-resolution MRI scans on young adult recreational marijuana users and nonusing controls and conducted three independent analyses of morphometry in these structures: (1) gray matter density using voxel-based morphometry, (2) volume (total brain and regional volumes), and (3) shape (surface morphometry). Gray matter density analyses revealed greater gray matter density in marijuana users than in control participants in the left nucleus accumbens extending to subcallosal cortex, hypothalamus, sublenticular extended amygdala, and left amygdala, even after controlling for age, sex, alcohol use, and cigarette smoking. Trend-level effects were observed for a volume increase in the left nucleus accumbens only. Significant shape differences were detected in the left nucleus accumbens and right amygdala. The left nucleus accumbens showed salient exposure-dependent alterations across all three measures and an altered multimodal relationship across measures in the marijuana group. These data suggest that marijuana exposure, even in young recreational users, is associated with exposure-dependent alterations of the neural matrix of core reward structures and is consistent with animal studies of changes in dendritic arborization.

  11. Trends in maar crater size and shape using the global Maar Volcano Location and Shape (MaarVLS) database

    NASA Astrophysics Data System (ADS)

    Graettinger, A. H.

    2018-05-01

    A maar crater is the top of a much larger subsurface diatreme structure produced by phreatomagmatic explosions and the size and shape of the crater reflects the growth history of that structure during an eruption. Recent experimental and geophysical research has shown that crater complexity can reflect subsurface complexity. Morphometry provides a means of characterizing a global population of maar craters in order to establish the typical size and shape of features. A global database of Quaternary maar crater planform morphometry indicates that maar craters are typically not circular and frequently have compound shapes resembling overlapping circles. Maar craters occur in volcanic fields that contain both small volume and complex volcanoes. The global perspective provided by the database shows that maars are common in many volcanic and tectonic settings producing a similar diversity of size and shape within and between volcanic fields. A few exceptional populations of maars were revealed by the database, highlighting directions of future research to improve our understanding on the geometry and spacing of subsurface explosions that produce maars. These outlying populations, such as anomalously large craters (>3000 m), chains of maars, and volcanic fields composed of mostly maar craters each represent a small portion of the database, but provide opportunities to reinvestigate fundamental questions on maar formation. Maar crater morphometry can be integrated with structural, hydrological studies to investigate lateral migration of phreatomagmatic explosion location in the subsurface. A comprehensive database of intact maar morphometry is also beneficial for the hunt for maar-diatremes on other planets.

  12. Urinary Loss of Tricarboxylic Acid Cycle Intermediates As Revealed by Metabolomics Studies: An Underlying Mechanism to Reduce Lipid Accretion by Whey Protein Ingestion?

    PubMed Central

    2015-01-01

    Whey protein intake is associated with the modulation of energy metabolism and altered body composition both in human subjects and in animals, but the underlying mechanisms are not yet elucidated. We fed obesity-prone C57BL/6J mice high-fat diets with either casein (HF casein) or whey (HF whey) for 6 weeks. At equal energy intake and apparent fat and nitrogen digestibility, mice fed HF whey stored less energy as lipids, evident both as lower white adipose tissue mass and as reduced liver lipids, compared with HF-casein-fed mice. Explorative analyses of 48 h urine, both by 1H NMR and LC–MS metabolomic platforms, demonstrated higher urinary excretion of tricarboxylic acid (TCA) cycle intermediates citric acid and succinic acid (identified by both platforms), and cis-aconitic acid and isocitric acid (identified by LC–MS platform) in the HF whey, relative to in the HF-casein-fed mice. Targeted LC–MS analyses revealed higher citric acid and cis-aconitic acid concentrations in fed state plasma, but not in liver of HF-whey-fed mice. We propose that enhanced urinary loss of TCA cycle metabolites drain available substrates for anabolic processes, such as lipogenesis, thereby leading to reduced lipid accretion in HF-whey-fed compared to HF-casein-fed mice. PMID:24702026

  13. SU-E-QI-12: Morphometry Based Measurements of the Structural Response to Whole Brain Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuentes, D; Castillo, R; Castillo, E

    2014-06-15

    Purpose: Although state of the art radiation therapy techniques for treating intracranial malignancies have eliminated acute brain injury, cognitive impairment occurs in 50–90% of patients who survive >6mo post irradiation. Quantitative characterization of therapy response is needed to facilitate therapeutic strategies to minimize radiation induced cognitive impairment [1]. Deformation based morphometry techniques [2, 3] are presented as a quantitative imaging biomarker of therapy response in patients receiving whole brain radiation for treating medulloblastoma. Methods: Post-irradiation magnetic resonance imaging (MRI) data sets were retrospectively analyzed in N=15 patients, >60 MR image datasets. As seen in Fig 1(a), volume changes at multiplemore » time points post-irradiation were quantitatively measured in the cerebrum and ventricles with respect to pre-irradiation MRI. A high resolution image Template, was registered to the pre-irradiation MRI of each patient to create a brain atlas for the cerebrum, cerebellum, and ventricles. Skull stripped images for each patient were registered to the initial pre-treatment scan. Average volume changes in the labeled regions were measured using the determinant of the displacement field Jacobian. Results: Longitudinal measurements, Fig 1(b-c), show a negative correlation p=.06, of the cerebral volume change with the time interval from irradiation. A corresponding positive correlation, p=.01, between ventricular volume change and time interval from irradiation is seen. One sample t-test for correlations were computed using a Spearman method. An average decrease in cerebral volume, p=.08, and increase in ventricular volume, p<.001, was observed. The radiation dose was seen directly proportional to the induced volume changes in the cerebrum, r=−.44, p<.001, Fig 1(d). Conclusion: Results indicate that morphometric monitoring of brain tissue volume changes may potentially be used to quantitatively assess toxicity and

  14. Experimentally reduced root-microbe interactions reveal limited plasticity in functional root traits in Acer and Quercus.

    PubMed

    Lee, Mei-Ho; Comas, Louise H; Callahan, Hilary S

    2014-02-01

    Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the magnitude of plasticity relative to differences between species, studies of plasticity can ascertain if plasticity is predictable and whether an environmental factor elicits changes in traits that are functionally advantageous. To compare functional traits and trait plasticities in fine root tissues with natural and reduced levels of colonization by microbial symbionts, trimmed and surface-sterilized root segments of 2-year-old Acer rubrum and Quercus rubra seedlings were manipulated. Segments were then replanted into satellite pots filled with control or heat-treated soil, both originally derived from a natural forest. Mycorrhizal colonization was near zero in roots grown in heat-treated soil; roots grown in control soil matched the higher colonization levels observed in unmanipulated root samples collected from field locations. Between-treatment comparisons revealed negligible plasticity for root diameter, branching intensity and nitrogen concentration across both species. Roots from treated soils had decreased tissue density (approx. 10-20 %) and increased specific root length (approx. 10-30 %). In contrast, species differences were significant and greater than treatment effects in traits other than tissue density. Interspecific trait differences were also significant in field samples, which generally resembled greenhouse samples. The combination of experimental and field approaches was useful for contextualizing trait plasticity in comparison with inter- and intra-specific trait variation. Findings that root traits are largely species dependent, with the exception of root tissue density, are discussed in the context of current literature on root trait variation, interactions with symbionts and recent

  15. Experimentally reduced root–microbe interactions reveal limited plasticity in functional root traits in Acer and Quercus

    PubMed Central

    Lee, Mei-Ho; Comas, Louise H.; Callahan, Hilary S.

    2014-01-01

    Background and Aims Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the magnitude of plasticity relative to differences between species, studies of plasticity can ascertain if plasticity is predictable and whether an environmental factor elicits changes in traits that are functionally advantageous. Methods To compare functional traits and trait plasticities in fine root tissues with natural and reduced levels of colonization by microbial symbionts, trimmed and surface-sterilized root segments of 2-year-old Acer rubrum and Quercus rubra seedlings were manipulated. Segments were then replanted into satellite pots filled with control or heat-treated soil, both originally derived from a natural forest. Mycorrhizal colonization was near zero in roots grown in heat-treated soil; roots grown in control soil matched the higher colonization levels observed in unmanipulated root samples collected from field locations. Key Results Between-treatment comparisons revealed negligible plasticity for root diameter, branching intensity and nitrogen concentration across both species. Roots from treated soils had decreased tissue density (approx. 10–20 %) and increased specific root length (approx. 10–30 %). In contrast, species differences were significant and greater than treatment effects in traits other than tissue density. Interspecific trait differences were also significant in field samples, which generally resembled greenhouse samples. Conclusions The combination of experimental and field approaches was useful for contextualizing trait plasticity in comparison with inter- and intra-specific trait variation. Findings that root traits are largely species dependent, with the exception of root tissue density, are discussed in the context of current literature on root

  16. Metabolomics reveals the mechanisms for the cardiotoxicity of Pinelliae Rhizoma and the toxicity-reducing effect of processing

    NASA Astrophysics Data System (ADS)

    Su, Tao; Tan, Yong; Tsui, Man-Shan; Yi, Hua; Fu, Xiu-Qiong; Li, Ting; Chan, Chi Leung; Guo, Hui; Li, Ya-Xi; Zhu, Pei-Li; Tse, Anfernee Kai Wing; Cao, Hui; Lu, Ai-Ping; Yu, Zhi-Ling

    2016-10-01

    Pinelliae Rhizoma (PR) is a commonly used Chinese medicinal herb, but it has been frequently reported about its toxicity. According to the traditional Chinese medicine theory, processing can reduce the toxicity of the herbs. Here, we aim to determine if processing reduces the toxicity of raw PR, and to explore the underlying mechanisms of raw PR-induced toxicities and the toxicity-reducing effect of processing. Biochemical and histopathological approaches were used to evaluate the toxicities of raw and processed PR. Rat serum metabolites were analyzed by LC-TOF-MS. Ingenuity pathway analysis of the metabolomics data highlighted the biological pathways and network functions involved in raw PR-induced toxicities and the toxicity-reducing effect of processing, which were verified by molecular approaches. Results showed that raw PR caused cardiotoxicity, and processing reduced the toxicity. Inhibition of mTOR signaling and activation of the TGF-β pathway contributed to raw PR-induced cardiotoxicity, and free radical scavenging might be responsible for the toxicity-reducing effect of processing. Our data shed new light on the mechanisms of raw PR-induced cardiotoxicity and the toxicity-reducing effect of processing. This study provides scientific justifications for the traditional processing theory of PR, and should help in optimizing the processing protocol and clinical combinational application of PR.

  17. Genome, transcriptome and methylome sequencing of a primitively eusocial wasp reveal a greatly reduced DNA methylation system in a social insect.

    PubMed

    Standage, Daniel S; Berens, Ali J; Glastad, Karl M; Severin, Andrew J; Brendel, Volker P; Toth, Amy L

    2016-04-01

    Comparative genomics of social insects has been intensely pursued in recent years with the goal of providing insights into the evolution of social behaviour and its underlying genomic and epigenomic basis. However, the comparative approach has been hampered by a paucity of data on some of the most informative social forms (e.g. incipiently and primitively social) and taxa (especially members of the wasp family Vespidae) for studying social evolution. Here, we provide a draft genome of the primitively eusocial model insect Polistes dominula, accompanied by analysis of caste-related transcriptome and methylome sequence data for adult queens and workers. Polistes dominula possesses a fairly typical hymenopteran genome, but shows very low genomewide GC content and some evidence of reduced genome size. We found numerous caste-related differences in gene expression, with evidence that both conserved and novel genes are related to caste differences. Most strikingly, these -omics data reveal a major reduction in one of the major epigenetic mechanisms that has been previously suggested to be important for caste differences in social insects: DNA methylation. Along with a conspicuous loss of a key gene associated with environmentally responsive DNA methylation (the de novo DNA methyltransferase Dnmt3), these wasps have greatly reduced genomewide methylation to almost zero. In addition to providing a valuable resource for comparative analysis of social insect evolution, our integrative -omics data for this important behavioural and evolutionary model system call into question the general importance of DNA methylation in caste differences and evolution in social insects. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  18. Examining brain structures associated with the motive to achieve success and the motive to avoid failure: A voxel-based morphometry study.

    PubMed

    Ming, Dan; Chen, Qunlin; Yang, Wenjing; Chen, Rui; Wei, Dongtao; Li, Wenfu; Qiu, Jiang; Xu, Zhan; Zhang, Qinglin

    2016-01-01

    The motive to achieve success (MAS) and motive to avoid failure (MAF) are two different but classical kinds of achievement motivation. Though many functional magnetic resonance imaging studies have explored functional activation in motivation-related conditions, research has been silent as to the brain structures associated with individual differences in achievement motivation, especially with respect to MAS and MAF. In this study, the voxel-based morphometry method was used to uncover focal differences in brain structures related to MAS and MAF measured by the Mehrabian Achieving Tendency Scale in 353 healthy young Chinese adults. The results showed that the brain structures associated with individual differences in MAS and MAF were distinct. MAS was negatively correlated with regional gray matter volume (rGMV) in the medial prefrontal cortex (mPFC)/orbitofrontal cortex while MAF was negatively correlated with rGMV in the mPFC/subgenual cingulate gyrus. After controlling for mutual influences of MAS and MAF scores, MAS scores were found to be related to rGMV in the mPFC/orbitofrontal cortex and another cluster containing the parahippocampal gyrus and precuneus. These results may predict that compared with MAF, the generation process of MAS may be more complex and rational, thus in the real world, perhaps MAS is more beneficial to personal growth and guaranteeing the quality of task performance.

  19. Early visual cortical structural changes in diabetic patients without diabetic retinopathy.

    PubMed

    Ferreira, Fábio S; Pereira, João M S; Reis, Aldina; Sanches, Mafalda; Duarte, João V; Gomes, Leonor; Moreno, Carolina; Castelo-Branco, Miguel

    2017-11-01

    It is known that diabetic patients have changes in cortical morphometry as compared to controls, but it remains to be clarified whether the visual cortex is a disease target, even when diabetes complications such as retinopathy are absent. Therefore, we compared type 2 diabetes patients without diabetic retinopathy with control subjects using magnetic resonance imaging to assess visual cortical changes when retinal damage is not yet present. We performed T1-weighted imaging in 24 type 2 diabetes patients without diabetic retinopathy and 27 age- and gender-matched controls to compare gray matter changes in the occipital cortex between groups using voxel based morphometry. Patients without diabetic retinopathy showed reduced gray matter volume in the occipital lobe when compared with controls. Reduced gray matter volume in the occipital cortex was found in diabetic patients without retinal damage. We conclude that cortical early visual processing regions may be affected in diabetic patients even before retinal damage occurs.

  20. Reduced prefrontal cortical gray matter volume in young adults exposed to harsh corporal punishment.

    PubMed

    Tomoda, Akemi; Suzuki, Hanako; Rabi, Keren; Sheu, Yi-Shin; Polcari, Ann; Teicher, Martin H

    2009-08-01

    Harsh corporal punishment (HCP) during childhood is a chronic, developmental stressor associated with depression, aggression and addictive behaviors. Exposure to traumatic stressors, such as sexual abuse, is associated with alteration in brain structure, but nothing is known about the potential neurobiological consequences of HCP. The aim of this study was to investigate whether HCP was associated with discernible alterations in gray matter volume (GMV) using voxel-based morphometry (VBM). 1455 young adults (18-25 years) were screened to identify 23 with exposure to HCP (minimum 3 years duration, 12 episodes per year, frequently involving objects) and 22 healthy controls. High-resolution T1-weighted MRI datasets were obtained using Siemens 3 T trio scanner. GMV was reduced by 19.1% in the right medial frontal gyrus (medial prefrontal cortex; MPFC, BA10) (P=0.037, corrected cluster level), by 14.5% in the left medial frontal gyrus (dorsolateral prefrontal cortex; DLPFC, BA9) (P=0.015, uncorrected cluster level) and by 16.9% in the right anterior cingulate gyrus (BA24) (P<0.001, uncorrected cluster level) of HCP subjects. There were significant correlations between GMV in these identified regions and performance IQ on the WAIS-III. Exposing children to harsh HCP may have detrimental effects on trajectories of brain development. However, it is also conceivable that differences in prefrontal cortical development may increase risk of exposure to HCP.

  1. 3D morphometry using automated aortic segmentation in native MR angiography: an alternative to contrast enhanced MRA?

    PubMed

    Müller-Eschner, Matthias; Müller, Tobias; Biesdorf, Andreas; Wörz, Stefan; Rengier, Fabian; Böckler, Dittmar; Kauczor, Hans-Ulrich; Rohr, Karl; von Tengg-Kobligk, Hendrik

    2014-04-01

    Native-MR angiography (N-MRA) is considered an imaging alternative to contrast enhanced MR angiography (CE-MRA) for patients with renal insufficiency. Lower intraluminal contrast in N-MRA often leads to failure of the segmentation process in commercial algorithms. This study introduces an in-house 3D model-based segmentation approach used to compare both sequences by automatic 3D lumen segmentation, allowing for evaluation of differences of aortic lumen diameters as well as differences in length comparing both acquisition techniques at every possible location. Sixteen healthy volunteers underwent 1.5-T-MR Angiography (MRA). For each volunteer, two different MR sequences were performed, CE-MRA: gradient echo Turbo FLASH sequence and N-MRA: respiratory-and-cardiac-gated, T2-weighted 3D SSFP. Datasets were segmented using a 3D model-based ellipse-fitting approach with a single seed point placed manually above the celiac trunk. The segmented volumes were manually cropped from left subclavian artery to celiac trunk to avoid error due to side branches. Diameters, volumes and centerline length were computed for intraindividual comparison. For statistical analysis the Wilcoxon-Signed-Ranked-Test was used. Average centerline length obtained based on N-MRA was 239.0±23.4 mm compared to 238.6±23.5 mm for CE-MRA without significant difference (P=0.877). Average maximum diameter obtained based on N-MRA was 25.7±3.3 mm compared to 24.1±3.2 mm for CE-MRA (P<0.001). In agreement with the difference in diameters, volumes obtained based on N-MRA (100.1±35.4 cm(3)) were consistently and significantly larger compared to CE-MRA (89.2±30.0 cm(3)) (P<0.001). 3D morphometry shows highly similar centerline lengths for N-MRA and CE-MRA, but systematically higher diameters and volumes for N-MRA.

  2. Reduced representation bisulphite sequencing of the ten bovine somatic tissues reveals DNA methylation patterns

    USDA-ARS?s Scientific Manuscript database

    As a major component epigenetics, DNA methylation has been proved that widely functions in individual development and various diseases. It has been well studied in model organisms and human but includes limited data for the economic animals. Using reduced representation bisulphite sequencing (RRBS),...

  3. Neural correlates of lexical-semantic memory: A voxel-based morphometry study in mild AD, aMCI and normal aging

    PubMed Central

    Balthazar, Marcio L.F.; Yasuda, Clarissa L.; Lopes, Tátila M.; Pereira, Fabrício R.S.; Damasceno, Benito Pereira; Cendes, Fernando

    2011-01-01

    Neuroanatomical correlations of naming and lexical-semantic memory are not yet fully understood. The most influential approaches share the view that semantic representations reflect the manner in which information has been acquired through perception and action, and that each brain area processes different modalities of semantic representations. Despite these anatomical differences in semantic processing, generalization across different features that have similar semantic significance is one of the main characteristics of human cognition. Methods We evaluated the brain regions related to naming, and to the semantic generalization, of visually presented drawings of objects from the Boston Naming Test (BNT), which comprises different categories, such as animals, vegetables, tools, food, and furniture. In order to create a model of lesion method, a sample of 48 subjects presenting with a continuous decline both in cognitive functions, including naming skills, and in grey matter density (GMD) was compared to normal young adults with normal aging, amnestic mild cognitive impairment (aMCI) and mild Alzheimer’s disease (AD). Semantic errors on the BNT, as well as naming performance, were correlated with whole brain GMD as measured by voxel-based morphometry (VBM). Results The areas most strongly related to naming and to semantic errors were the medial temporal structures, thalami, superior and inferior temporal gyri, especially their anterior parts, as well as prefrontal cortices (inferior and superior frontal gyri). Conclusion The possible role of each of these areas in the lexical-semantic networks was discussed, along with their contribution to the models of semantic memory organization. PMID:29213726

  4. Influence of magnetic field strength and image registration strategy on voxel-based morphometry in a study of Alzheimer's disease.

    PubMed

    Marchewka, Artur; Kherif, Ferath; Krueger, Gunnar; Grabowska, Anna; Frackowiak, Richard; Draganski, Bogdan

    2014-05-01

    Multi-centre data repositories like the Alzheimer's Disease Neuroimaging Initiative (ADNI) offer a unique research platform, but pose questions concerning comparability of results when using a range of imaging protocols and data processing algorithms. The variability is mainly due to the non-quantitative character of the widely used structural T1-weighted magnetic resonance (MR) images. Although the stability of the main effect of Alzheimer's disease (AD) on brain structure across platforms and field strength has been addressed in previous studies using multi-site MR images, there are only sparse empirically-based recommendations for processing and analysis of pooled multi-centre structural MR data acquired at different magnetic field strengths (MFS). Aiming to minimise potential systematic bias when using ADNI data we investigate the specific contributions of spatial registration strategies and the impact of MFS on voxel-based morphometry in AD. We perform a whole-brain analysis within the framework of Statistical Parametric Mapping, testing for main effects of various diffeomorphic spatial registration strategies, of MFS and their interaction with disease status. Beyond the confirmation of medial temporal lobe volume loss in AD, we detect a significant impact of spatial registration strategy on estimation of AD related atrophy. Additionally, we report a significant effect of MFS on the assessment of brain anatomy (i) in the cerebellum, (ii) the precentral gyrus and (iii) the thalamus bilaterally, showing no interaction with the disease status. We provide empirical evidence in support of pooling data in multi-centre VBM studies irrespective of disease status or MFS. Copyright © 2013 Wiley Periodicals, Inc.

  5. Is there any relation between distal parameters of the femur and its height and width?

    PubMed

    Yazar, Fatih; Imre, Nurcan; Battal, Bilal; Bilgic, Serkan; Tayfun, Cem

    2012-03-01

    The purpose of this study was to reveal the association whether the distal morphometry of femur had a relation with femur height or width. Sixty-six adult (35 right and 31 left) dry femurs from Caucasians were used in this study. Computed tomography (CT) imaging was applied to obtain measurement values of the femur. Femur height (413.29 ± 28.40 mm) and width (29.86 ± 2.72 mm) were all checked one by one to determine the correlation with the parameters obtained. Both values exposed high rates of correlation with height (26 ± 2.34 mm) and width (20.85 ± 2.76 mm) of femur notch; also, measures of epicondylar, bicondylar and condylar diameters of femur were obtained. Measures were checked if there was a correlation with femur height and width. Differences displayed in distal morphometry of femur according to race and sex are due to other morphometric measures of femur rather than race and sex. We believe that displaying the high rates of correlation of distal morphometry of femur with femur height and width will be the factor which determines the selection and production of prosthesis among the long or short individuals of folks.

  6. Small animal bone density and morphometry analysis with a dual energy x-ray absorptiometry bone densitometer using a 2D digital radiographic detector

    NASA Astrophysics Data System (ADS)

    Boudousq, V.; Bordy, T.; Gonon, G.; Dinten, J. M.

    2005-04-01

    The LEXXOS (DMS, Montpellier, France) is the first axial and total body cone beam bone densitometer using a 2D digital radiographic detector. Technical principles and performances for BMD measurements have been presented in previous papers. Bone densitometers are also used on small animals for drug development. In this paper, we show how the LEXXOS system can be adapted to small animals examinations, and its performances are evaluated. At first, in order to take advantage of the whole area of the digital flat panel X-ray detector, the geometrical configuration has been adapted. Secondly, as small animals present low BMD, a specific dual energy calibration has been defined. This adapted system has then been evaluated on two sets of mice: six reference mice and six ovariectomized mice. Each month, these two populations have been examined and the total body BMD has been measured. This evaluation has shown that the right order of BMD magnitude has been obtained and, as expected, BMD increases on the two sets until age of puberty and after this period, decreases significantly for the ovariectomized set. Moreover, the bone image obtained by dual energy processing on LEXXOS presents a radiographic image quality providing with useful complementary information on bone morphometry and architecture.

  7. Origin of reduced magnetization and domain formation in small magnetite nanoparticles

    DOE PAGES

    Nedelkoski, Zlatko; Kepaptsoglou, Demie; Lari, Leonardo; ...

    2017-04-10

    We compare the structural, chemical, and magnetic properties of magnetite nanoparticles. Aberration corrected scanning transmission electron microscopy reveals the prevalence of antiphase boundaries in nanoparticles that have significantly reduced magnetization, relative to the bulk. We show that atomistic magnetic modelling of nanoparticles with and without these defects reveal the origin of the reduced moment. Strong antiferromagnetic interactions across antiphase boundaries support multiple magnetic domains even in particles as small as 12–14 nm.

  8. Reducing Skin Picking via Competing Activities

    ERIC Educational Resources Information Center

    Lane, Kathleen Lynne; Thompson, Ada; Reske, Cara L.; Gable, Lauren M.; Barton-Arwood, Sally

    2006-01-01

    This study examined the outcomes of a competing activities intervention to decrease skin picking exhibited by a 9-year-old student with comorbid diagnoses. Results of an ABCBAB design revealed that the use of student-selected manipulatives resulted in reduced skin picking. (Contains 1 figure.)

  9. Assessment methods for the evaluation of vitiligo.

    PubMed

    Alghamdi, K M; Kumar, A; Taïeb, A; Ezzedine, K

    2012-12-01

    There is no standardized method for assessing vitiligo. In this article, we review the literature from 1981 to 2011 on different vitiligo assessment methods. We aim to classify the techniques available for vitiligo assessment as subjective, semi-objective or objective; microscopic or macroscopic; and as based on morphometry or colorimetry. Macroscopic morphological measurements include visual assessment, photography in natural or ultraviolet light, photography with computerized image analysis and tristimulus colorimetry or spectrophotometry. Non-invasive micromorphological methods include confocal laser microscopy (CLM). Subjective methods include clinical evaluation by a dermatologist and a vitiligo disease activity score. Semi-objective methods include the Vitiligo Area Scoring Index (VASI) and point-counting methods. Objective methods include software-based image analysis, tristimulus colorimetry, spectrophotometry and CLM. Morphometry is the measurement of the vitiliginous surface area, whereas colorimetry quantitatively analyses skin colour changes caused by erythema or pigment. Most methods involve morphometry, except for the chromameter method, which assesses colorimetry. Some image analysis software programs can assess both morphometry and colorimetry. The details of these programs (Corel Draw, Image Pro Plus, AutoCad and Photoshop) are discussed in the review. Reflectance confocal microscopy provides real-time images and has great potential for the non-invasive assessment of pigmentary lesions. In conclusion, there is no single best method for assessing vitiligo. This review revealed that VASI, the rule of nine and Wood's lamp are likely to be the best techniques available for assessing the degree of pigmentary lesions and measuring the extent and progression of vitiligo in the clinic and in clinical trials. © 2012 The Authors. Journal of the European Academy of Dermatology and Venereology © 2012 European Academy of Dermatology and Venereology.

  10. Significant association between sulfate-reducing bacteria and uranium-reducing microbial communities as revealed by a combined massively parallel sequencing-indicator species approach.

    PubMed

    Cardenas, Erick; Wu, Wei-Min; Leigh, Mary Beth; Carley, Jack; Carroll, Sue; Gentry, Terry; Luo, Jian; Watson, David; Gu, Baohua; Ginder-Vogel, Matthew; Kitanidis, Peter K; Jardine, Philip M; Zhou, Jizhong; Criddle, Craig S; Marsh, Terence L; Tiedje, James M

    2010-10-01

    Massively parallel sequencing has provided a more affordable and high-throughput method to study microbial communities, although it has mostly been used in an exploratory fashion. We combined pyrosequencing with a strict indicator species statistical analysis to test if bacteria specifically responded to ethanol injection that successfully promoted dissimilatory uranium(VI) reduction in the subsurface of a uranium contamination plume at the Oak Ridge Field Research Center in Tennessee. Remediation was achieved with a hydraulic flow control consisting of an inner loop, where ethanol was injected, and an outer loop for flow-field protection. This strategy reduced uranium concentrations in groundwater to levels below 0.126 μM and created geochemical gradients in electron donors from the inner-loop injection well toward the outer loop and downgradient flow path. Our analysis with 15 sediment samples from the entire test area found significant indicator species that showed a high degree of adaptation to the three different hydrochemical-created conditions. Castellaniella and Rhodanobacter characterized areas with low pH, heavy metals, and low bioactivity, while sulfate-, Fe(III)-, and U(VI)-reducing bacteria (Desulfovibrio, Anaeromyxobacter, and Desulfosporosinus) were indicators of areas where U(VI) reduction occurred. The abundance of these bacteria, as well as the Fe(III) and U(VI) reducer Geobacter, correlated with the hydraulic connectivity to the substrate injection site, suggesting that the selected populations were a direct response to electron donor addition by the groundwater flow path. A false-discovery-rate approach was implemented to discard false-positive results by chance, given the large amount of data compared.

  11. Refinement of the karyological aspects of Psidium guineense (Swartz, 1788): a comparison with Psidium guajava (Linnaeus, 1753)

    PubMed Central

    Marques, Anelise Machado; Tuler, Amélia Carlos; Carvalho, Carlos Roberto; Carrijo, Tatiana Tavares; Ferreira, Marcia Flores da Silva; Clarindo, Wellington Ronildo

    2016-01-01

    Abstract Euploidy plays an important role in the evolution and diversification of Psidium Linnaeus, 1753. However, few data about the nuclear DNA content, chromosome characterization (morphometry and class) and molecular markers have been reported for this genus. In this context, the present study aims to shed light on the genome of Psidium guineense Swartz, 1788, comparing it with Psidium guajava Linnaeus, 1753. Using flow cytometry, the nuclear 2C value of Psidium guineense was 2C = 1.85 picograms (pg), and the karyotype showed 2n = 4x = 44 chromosomes. Thus, Psidium guineense has four chromosome sets, in accordance with the basic chromosome number of Psidium (x = 11). In addition, karyomorphometric analysis revealed morphologically identical chromosome groups in the karyotype of Psidium guineense. The high transferability of microsatellites (98.6%) further corroborates with phylogenetic relationship between Psidium guajava and Psidium guineense. Based on the data regarding nuclear genome size, karyotype morphometry and molecular markers of Psidium guineense and Psidium guajava (2C = 0.95 pg, 2n = 2x = 22 chromosomes), Psidium guineense is a tetraploid species. These data reveal the role of euploidy in the diversification of the genus Psidium. PMID:27186342

  12. Cognitive training with action-related verbs induces neural plasticity in the action representation system as assessed by gray matter brain morphometry.

    PubMed

    Ghio, Marta; Locatelli, Matteo; Tettamanti, Andrea; Perani, Daniela; Gatti, Roberto; Tettamanti, Marco

    2018-06-01

    Embodied cognition theories of semantic memory still face the need for multiple sources of converging evidence in support of the involvement of sensory-motor systems in action-related knowledge. Previous studies showed that training manual actions improves semantic processing of verbs referring to the trained actions. The present work aimed to provide complementary evidence by measuring the brain plasticity effects of a cognitive training requiring sustained lexical-semantic processing of action-related verbs. We included two groups of participants, namely the Proximal Group (PG) and the Distal Group (DG), which underwent a 3-week training with verbs referring to actions involving the proximal and the distal upper limb musculature, respectively. Before and after training, we measured gray matter voxel brain morphometry based on T1 structural magnetic resonance imaging. By means of this 2 (Group: PG, DG) × 2 (Time: pre-, post-training) factorial design, we tested whether sustained cognitive experience with specific action-related verbs induces congruent brain plasticity modifications in target regions of interest pertaining to the action representation system. We found significant post- versus pre-training gray matter volume increases, specifically for PG in the left dorsal precentral gyrus, and for DG in the right cerebellar lobule VIIa. These preliminary results suggest that a cognitive training can induce structural plasticity modifications in brain regions specifically coding for the distal and proximal motor actions the trained verbs refer to. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Pilot study of brain morphometry in a sample of Brazilian children with attention deficit hyperactivity disorder: influence of clinical presentation.

    PubMed

    Pastura, Giuseppe; Kubo, Tadeu Takao Almodovar; Gasparetto, Emerson Leandro; Figueiredo, Otavio; Mattos, Paulo; Prüfer Araújo, Alexandra

    2017-12-01

    Currently, the diagnosis of attention deficit hyperactivity disorder (ADHD) rests on clinical criteria. Nonetheless, neuroimaging studies have demonstrated that children with ADHD have different cortical thickness and volume measures to typically developing children (TDC). In general, studies do not evaluate the influence of clinical presentation in the brain morphometry of ADHD children. Our objective was to perform a pilot study in order to evaluate cortical thickness and brain volume in a sample of Brazilian ADHD children and compare these to those of TDC, taking into account the influence of clinical presentation. We performed an analytic study comparing 17 drug-naïve ADHD children of both genders, aged between 7 and 10, and 16 TDC. ADHD subjects were first considered as one group and further separated based on clinical presentation. The brain volume did not differ between patients and TDC. Smaller cortical thicknesses were identified on the left superior, medium and inferior temporal cortex, as well as in the left inferior parietal cortex. When compared to TDC, combined and inattentive ADHD presentations depicted smaller cortical thickness with high significance and power. The same magnitude of results was not observed when comparing inattentive ADHD and TDC. In this pilot study, ADHD is associated with abnormalities involving the cortical thickness of the posterior attentional system. The cortical thickness in the left superior, medium and inferior temporal cortex, as well as in the left inferior parietal cortex may differ according to ADHD presentations.

  14. Individual differences in local gray and white matter volumes reflect differences in temperament and character: a voxel-based morphometry study in healthy young females.

    PubMed

    Van Schuerbeek, Peter; Baeken, Chris; De Raedt, Rudi; De Mey, Johan; Luypaert, Rob

    2011-01-31

    The psychobiological personality model of Cloninger distinguishes four heritable temperament traits (harm avoidance (HA), novelty seeking (NS), reward dependence (RD) and persistence (P)) and three character traits (self-directedness (SD), cooperativeness (CO) and self-transcendence (ST)) which develop during lifetime. Prior research already showed that individual differences in temperament are reflected in structural variances in specific brain areas. In this study, we used voxel-based morphometry (VBM) to correlate the different temperament and character traits with local gray and white matter volumes (GMV and WMV) in young healthy female volunteers. We found correlations between the temperament traits and GMV and WMV in the frontal, temporal and limbic regions involved in controlling and generating the corresponding behavior as proposed in Cloninger's theory: anxious for HA, impulsive for NS, reward-directed for RD and goal-directed for P. The character traits correlated with GMV and WMV in the frontal, temporal and limbic regions involved in the corresponding cognitive tasks: self-reflection for SD, mentalizing and empathizing with others for CO and religious belief for ST. This study shows that individual variations in brain morphology can be related to the temperament and character dimensions, and lends support to the hypothesis of a neurobiological basis of personality traits. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Combining Segmented Grey and White Matter Images Improves Voxel-based Morphometry for the Case of Dilated Lateral Ventricles.

    PubMed

    Goto, Masami; Abe, Osamu; Aoki, Shigeki; Kamagata, Koji; Hori, Masaaki; Miyati, Tosiaki; Gomi, Tsutomu; Takeda, Tohoru

    2018-01-18

    To evaluate the error in segmented tissue images and to show the usefulness of the brain image in voxel-based morphometry (VBM) using Statistical Parametric Mapping (SPM) 12 software and 3D T 1 -weighted magnetic resonance images (3D-T 1 WIs) processed to simulate idiopathic normal pressure hydrocephalus (iNPH). VBM analysis was performed on sagittal 3D-T 1 WIs obtained in 22 healthy volunteers using a 1.5T MR scanner. Regions of interest for the lateral ventricles of all subjects were carefully outlined on the original 3D-T 1 WIs, and two types of simulated 3D-T 1 WI were also prepared (non-dilated 3D-T 1 WI as normal control and dilated 3D-T 1 WI to simulate iNPH). All simulated 3D-T 1 WIs were segmented into gray matter, white matter, and cerebrospinal fluid images, and normalized to standard space. A brain image was made by adding the gray and white matter images. After smoothing with a 6-mm isotropic Gaussian kernel, group comparisons (dilated vs non-dilated) were made for gray and white matter, cerebrospinal fluid, and brain images using a paired t-test. In evaluation of tissue volume, estimation error was larger using gray or white matter images than using the brain image, and estimation errors in gray and white matter volume change were found for the brain surface. To our knowledge, this is the first VBM study to show the possibility that VBM of gray and white matter volume on the brain surface may be more affected by individual differences in the level of dilation of the lateral ventricles than by individual differences in gray and white matter volumes. We recommend that VBM evaluation in patients with iNPH should be performed using the brain image rather than the gray and white matter images.

  16. Greater intake of vitamins B6 and B12 spares gray matter in healthy elderly: a voxel-based morphometry study

    PubMed Central

    Erickson, Kirk I.; Suever, Barbara L.; Shaurya Prakash, Ruchika; Colcombe, Stanley J.; McAuley, Edward; Kramer, Arthur F.

    2008-01-01

    Previous studies have reported that high concentrations of homocysteine and lower concentrations of vitamin B6, B12, and folate increase the risk for cognitive decline and pathology in aging populations. In this cross-sectional study, high-resolution magnetic resonance imaging (MRI) scans and a 3-day food diary were collected on 32 community-dwelling adults between the ages of 59 and 79. We examined the relation between vitamin B6, B12, and folate intake on cortical volume using an optimized voxel-based morphometry (VBM) method and global gray and white matter volume after correcting for age, sex, body mass index, calorie intake, and education. All participants met or surpassed the recommended daily intake for these vitamins. In the VBM analysis, we found that adults with greater vitamin B6 intake had greater gray matter volume along the medial wall, anterior cingulate cortex, medial parietal cortex, middle temporal gyrus, and superior frontal gyrus, whereas people with greater B12 intake had greater volume in the left and right superior parietal sulcus. These effects were driven by vitamin supplementation and were negated when only examining vitamin intake from diet. Folate had no effect on brain volume. Furthermore, there was no relationship between vitamin B6, B12, or folate intake on global brain volume measures, indicating that VBM methods are more sensitive for detecting localized differences in gray matter volume than global measures. These results are discussed in relation to a growing literature on vitamin intake on age-related neurocognitive deterioration. PMID:18281020

  17. Nuclear resonance vibrational spectroscopy reveals the FeS cluster composition and active site vibrational properties of an O2-tolerant NAD+-reducing [NiFe] hydrogenase.

    PubMed

    Lauterbach, Lars; Wang, Hongxin; Horch, Marius; Gee, Leland B; Yoda, Yoshitaka; Tanaka, Yoshihito; Zebger, Ingo; Lenz, Oliver; Cramer, Stephen P

    Hydrogenases are complex metalloenzymes that catalyze the reversible splitting of molecular hydrogen into protons and electrons essentially without overpotential. The NAD + -reducing soluble hydrogenase (SH) from Ralstonia eutropha is capable of H 2 conversion even in the presence of usually toxic dioxygen. The molecular details of the underlying reactions are largely unknown, mainly because of limited knowledge of the structure and function the various metal cofactors present in the enzyme. Here all iron-containing cofactors of the SH were investigated by 57 Fe specific nuclear resonance vibrational spectroscopy (NRVS). Our data provide experimental evidence for one [2Fe2S] center and four [4Fe4S] clusters, which is consistent with amino acid sequence composition. Only the [2Fe2S] cluster and one of the four [4Fe4S] clusters were reduced upon incubation of the SH with NADH. This finding explains the discrepancy between the large number of FeS clusters and the small amount of FeS cluster-related signals as detected by electron paramagnetic resonance spectroscopic analysis of several NAD + -reducing hydrogenases. For the first time, Fe-CO and Fe-CN modes derived from the [NiFe] active site could be distinguished by NRVS through selective 13 C labeling of the CO ligand. This strategy also revealed the molecular coordinates that dominate the individual Fe-CO modes. The present approach explores the complex vibrational signature of the Fe-S clusters and the hydrogenase active site, thereby showing that NRVS represents a powerful tool for the elucidation of complex biocatalysts containing multiple cofactors.

  18. O-GlcNAcylation is a key modulator of skeletal muscle sarcomeric morphometry associated to modulation of protein-protein interactions.

    PubMed

    Lambert, Matthias; Richard, Elodie; Duban-Deweer, Sophie; Krzewinski, Frederic; Deracinois, Barbara; Dupont, Erwan; Bastide, Bruno; Cieniewski-Bernard, Caroline

    2016-09-01

    The sarcomere structure of skeletal muscle is determined through multiple protein-protein interactions within an intricate sarcomeric cytoskeleton network. The molecular mechanisms involved in the regulation of this sarcomeric organization, essential to muscle function, remain unclear. O-GlcNAcylation, a post-translational modification modifying several key structural proteins and previously described as a modulator of the contractile activity, was never considered to date in the sarcomeric organization. C2C12 skeletal myotubes were treated with Thiamet-G (OGA inhibitor) in order to increase the global O-GlcNAcylation level. Our data clearly showed a modulation of the O-GlcNAc level more sensitive and dynamic in the myofilament-enriched fraction than total proteome. This fine O-GlcNAc level modulation was closely related to changes of the sarcomeric morphometry. Indeed, the dark-band and M-line widths increased, while the I-band width and the sarcomere length decreased according to the myofilament O-GlcNAc level. Some structural proteins of the sarcomere such as desmin, αB-crystallin, α-actinin, moesin and filamin-C have been identified within modulated protein complexes through O-GlcNAc level variations. Their interactions seemed to be changed, especially for desmin and αB-crystallin. For the first time, our findings clearly demonstrate that O-GlcNAcylation, through dynamic regulations of the structural interactome, could be an important modulator of the sarcomeric structure and may provide new insights in the understanding of molecular mechanisms of neuromuscular diseases characterized by a disorganization of the sarcomeric structure. In the present study, we demonstrated a role of O-GlcNAcylation in the sarcomeric structure modulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Blood platelet counts, morphology and morphometry in lions, Panthera leo.

    PubMed

    Du Plessis, L

    2009-09-01

    Due to logistical problems in obtaining sufficient blood samples from apparently healthy animals in the wild in order to establish normal haematological reference values, only limited information regarding the blood platelet count and morphology of free-living lions (Panthera leo) is available. This study provides information on platelet counts and describes their morphology with particular reference to size in two normal, healthy and free-ranging lion populations. Blood samples were collected from a total of 16 lions. Platelet counts, determined manually, ranged between 218 and 358 x 10(9)/l. Light microscopy showed mostly activated platelets of various sizes with prominent granules. At the ultrastructural level the platelets revealed typical mammalian platelet morphology. However, morphometric analysis revealed a significant difference (P < 0.001) in platelet size between the two groups of animals. Basic haematological information obtained in this study may be helpful in future comparative studies between animals of the same species as well as in other felids.

  20. Reduced Prefrontal Cortical Gray Matter Volume in Young Adults Exposed to Harsh Corporal Punishment

    PubMed Central

    Tomoda, Akemi; Suzuki, Hanako; Rabi, Keren; Sheu, Yi-Shin; Polcari, Ann; Teicher, Martin H.

    2010-01-01

    Objective Harsh corporal punishment (HCP) during childhood is a chronic, developmental stressor associated with depression, aggression and addictive behaviors. Exposure to traumatic stressors, such as sexual abuse, is associated with alteration in brain structure, but nothing is known about the potential neurobiological consequences of HCP. The aim of this study was to investigate whether HCP was associated with discernible alterations in gray matter volume (GMV) using voxel-based morphometry (VBM). Methods 1,455 young adults (18–25 years) were screened to identify 23 with exposure to HCP (minimum 3 years duration, 12 episodes per year, frequently involving objects) and 22 healthy controls. High-resolution T1-weighted MRI datasets were obtained using Siemens 3T trio scanner. Results GMV was reduced by 19.1% in the right medial frontal gyrus (medial prefrontal cortex; MPFC, BA10) (P = 0.037, corrected cluster level), by 14.5% in the left medial frontal gyrus (dorsolateral prefrontal cortex; DLPFC, BA 9) (P = 0.015, uncorrected cluster level) and by 16.9% in the right anterior cingulate gyrus (BA 24) (P < 0.001, uncorrected cluster level) of HCP subjects. There were significant correlations between GMV in these identified regions and performance IQ on the WAIS-III. Conclusions Exposing children to harsh HCP may have detrimental effects on trajectories of brain development. However, it is also conceivable that differences in prefrontal cortical development may increase risk of exposure to HCP. PMID:19285558

  1. Reducing Misanthropic Memory Through Self-Awareness: Reducing Bias.

    PubMed

    Davis, Mark D

    2015-01-01

    Two experiments investigated the influence of self-awareness on misanthropic recall. Misanthropic recall is the tendency to recall more negative behaviors dispositionally attributed and positive behaviors situationally attributed than negative behaviors situationally attributed and positive behaviors dispositionally attributed. It was hypothesized that when one is self-aware, more systematic information processing would occur, thereby reducing misanthropic memory and influencing attitudinal judgments. The first experiment used a mirror and the second experiment used a live video to induce self-awareness. Participants were asked to form an impression of a group. The results of both experiments replicated the previously found pattern of misanthropic memory for non-self-aware participants (Ybarra & Stephan, 1996), and revealed less misanthropic recall bias in self-aware participants.

  2. Structural and functional brain changes in early- and mid-stage primary open-angle glaucoma using voxel-based morphometry and functional magnetic resonance imaging.

    PubMed

    Jiang, Ming-Ming; Zhou, Qing; Liu, Xiao-Yong; Shi, Chang-Zheng; Chen, Jian; Huang, Xiang-He

    2017-03-01

    To investigate structural and functional brain changes in patients with primary open-angle glaucoma (POAG) by using voxel-based morphometry based on diffeomorphic anatomical registration through exponentiated Lie algebra (VBM-DARTEL) and blood oxygenation level dependent functional magnetic resonance imaging (BOLD-fMRI), respectively.Thirteen patients diagnosed with POAG and 13 age- and sex-matched healthy controls were enrolled in the study. For each participant, high-resolution structural brain imaging and blood flow imaging were acquired on a 3.0-Tesla magnetic resonance imaging (MRI) scanner. Structural and functional changes between the POAG and control groups were analyzed. An analysis was carried out to identify correlations between structural and functional changes acquired in the previous analysis and the retinal nerve fiber layer (RNFL).Patients in the POAG group showed a significant (P < 0.001) volume increase in the midbrain, left brainstem, frontal gyrus, cerebellar vermis, left inferior parietal lobule, caudate nucleus, thalamus, precuneus, and Brodmann areas 7, 18, and 46. Moreover, significant (P < 0.001) BOLD signal changes were observed in the right supramarginal gyrus, frontal gyrus, superior frontal gyrus, left inferior parietal lobule, left cuneus, and left midcingulate area; many of these regions had high correlations with the RNFL.Patients with POAG undergo widespread and complex changes in cortical brain structure and blood flow. (ClinicalTrials.gov number: NCT02570867).

  3. Structural and functional changes in the somatosensory cortex in euthymic females with bipolar disorder.

    PubMed

    Minuzzi, Luciano; Syan, Sabrina K; Smith, Mara; Hall, Alexander; Hall, Geoffrey Bc; Frey, Benicio N

    2017-12-01

    Current evidence from neuroimaging data suggests possible dysfunction of the fronto-striatal-limbic circuits in individuals with bipolar disorder. Somatosensory cortical function has been implicated in emotional recognition, risk-taking and affective responses through sensory modalities. This study investigates anatomy and function of the somatosensory cortex in euthymic bipolar women. In total, 68 right-handed euthymic women (bipolar disorder = 32 and healthy controls = 36) between 16 and 45 years of age underwent high-resolution anatomical and functional magnetic resonance imaging during the mid-follicular menstrual phase. The somatosensory cortex was used as a seed region for resting-state functional connectivity analysis. Voxel-based morphometry was used to evaluate somatosensory cortical gray matter volume between groups. We found increased resting-state functional connectivity between the somatosensory cortex and insular cortex, inferior prefrontal gyrus and frontal orbital cortex in euthymic bipolar disorder subjects compared to healthy controls. Voxel-based morphometry analysis showed decreased gray matter in the left somatosensory cortex in the bipolar disorder group. Whole-brain voxel-based morphometry analysis controlled by age did not reveal any additional significant difference between groups. This study is the first to date to evaluate anatomy and function of the somatosensory cortex in a well-characterized sample of euthymic bipolar disorder females. Anatomical and functional changes in the somatosensory cortex in this population might contribute to the pathophysiology of bipolar disorder.

  4. 3D morphometry using automated aortic segmentation in native MR angiography: an alternative to contrast enhanced MRA?

    PubMed Central

    Müller-Eschner, Matthias; Müller, Tobias; Biesdorf, Andreas; Wörz, Stefan; Rengier, Fabian; Böckler, Dittmar; Kauczor, Hans-Ulrich; Rohr, Karl

    2014-01-01

    Introduction Native-MR angiography (N-MRA) is considered an imaging alternative to contrast enhanced MR angiography (CE-MRA) for patients with renal insufficiency. Lower intraluminal contrast in N-MRA often leads to failure of the segmentation process in commercial algorithms. This study introduces an in-house 3D model-based segmentation approach used to compare both sequences by automatic 3D lumen segmentation, allowing for evaluation of differences of aortic lumen diameters as well as differences in length comparing both acquisition techniques at every possible location. Methods and materials Sixteen healthy volunteers underwent 1.5-T-MR Angiography (MRA). For each volunteer, two different MR sequences were performed, CE-MRA: gradient echo Turbo FLASH sequence and N-MRA: respiratory-and-cardiac-gated, T2-weighted 3D SSFP. Datasets were segmented using a 3D model-based ellipse-fitting approach with a single seed point placed manually above the celiac trunk. The segmented volumes were manually cropped from left subclavian artery to celiac trunk to avoid error due to side branches. Diameters, volumes and centerline length were computed for intraindividual comparison. For statistical analysis the Wilcoxon-Signed-Ranked-Test was used. Results Average centerline length obtained based on N-MRA was 239.0±23.4 mm compared to 238.6±23.5 mm for CE-MRA without significant difference (P=0.877). Average maximum diameter obtained based on N-MRA was 25.7±3.3 mm compared to 24.1±3.2 mm for CE-MRA (P<0.001). In agreement with the difference in diameters, volumes obtained based on N-MRA (100.1±35.4 cm3) were consistently and significantly larger compared to CE-MRA (89.2±30.0 cm3) (P<0.001). Conclusions 3D morphometry shows highly similar centerline lengths for N-MRA and CE-MRA, but systematically higher diameters and volumes for N-MRA. PMID:24834406

  5. Significant Association between Sulfate-Reducing Bacteria and Uranium-Reducing Microbial Communities as Revealed by a Combined Massively Parallel Sequencing-Indicator Species Approach▿ †

    PubMed Central

    Cardenas, Erick; Wu, Wei-Min; Leigh, Mary Beth; Carley, Jack; Carroll, Sue; Gentry, Terry; Luo, Jian; Watson, David; Gu, Baohua; Ginder-Vogel, Matthew; Kitanidis, Peter K.; Jardine, Philip M.; Zhou, Jizhong; Criddle, Craig S.; Marsh, Terence L.; Tiedje, James M.

    2010-01-01

    Massively parallel sequencing has provided a more affordable and high-throughput method to study microbial communities, although it has mostly been used in an exploratory fashion. We combined pyrosequencing with a strict indicator species statistical analysis to test if bacteria specifically responded to ethanol injection that successfully promoted dissimilatory uranium(VI) reduction in the subsurface of a uranium contamination plume at the Oak Ridge Field Research Center in Tennessee. Remediation was achieved with a hydraulic flow control consisting of an inner loop, where ethanol was injected, and an outer loop for flow-field protection. This strategy reduced uranium concentrations in groundwater to levels below 0.126 μM and created geochemical gradients in electron donors from the inner-loop injection well toward the outer loop and downgradient flow path. Our analysis with 15 sediment samples from the entire test area found significant indicator species that showed a high degree of adaptation to the three different hydrochemical-created conditions. Castellaniella and Rhodanobacter characterized areas with low pH, heavy metals, and low bioactivity, while sulfate-, Fe(III)-, and U(VI)-reducing bacteria (Desulfovibrio, Anaeromyxobacter, and Desulfosporosinus) were indicators of areas where U(VI) reduction occurred. The abundance of these bacteria, as well as the Fe(III) and U(VI) reducer Geobacter, correlated with the hydraulic connectivity to the substrate injection site, suggesting that the selected populations were a direct response to electron donor addition by the groundwater flow path. A false-discovery-rate approach was implemented to discard false-positive results by chance, given the large amount of data compared. PMID:20729318

  6. Nuclear resonance vibrational spectroscopy reveals the FeS cluster composition and active site vibrational properties of an O 2-tolerant NAD +-reducing [NiFe] hydrogenase

    DOE PAGES

    Lauterbach, Lars; Wang, Hongxin; Horch, Marius; ...

    2014-10-30

    Hydrogenases are complex metalloenzymes that catalyze the reversible splitting of molecular hydrogen into protons and electrons essentially without overpotential. The NAD+-reducing soluble hydrogenase (SH) from Ralstonia eutropha is capable of H 2 conversion even in the presence of usually toxic dioxygen. The molecular details of the underlying reactions are largely unknown, mainly because of limited knowledge of the structure and function of the various metal cofactors present in the enzyme. Here, all iron-containing cofactors of the SH were investigated by 57Fe specific nuclear resonance vibrational spectroscopy (NRVS). Our data provide experimental evidence for one [2Fe2S] center and four [4Fe4S] clusters,more » which is consistent with the amino acid sequence composition. Only the [2Fe2S] cluster and one of the four [4Fe4S] clusters were reduced upon incubation of the SH with NADH. This finding explains the discrepancy between the large number of FeS clusters and the small amount of FeS cluster-related signals as detected by electron paramagnetic resonance spectroscopic analysis of several NAD+-reducing hydrogenases. For the first time, Fe–CO and Fe–CN modes derived from the [NiFe] active site could be distinguished by NRVS through selective 13C labeling of the CO ligand. This strategy also revealed the molecular coordinates that dominate the individual Fe–CO modes. The present approach explores the complex vibrational signature of the Fe–S clusters and the hydrogenase active site, thereby showing that NRVS represents a powerful tool for the elucidation of complex biocatalysts containing multiple cofactors.« less

  7. Translational Approaches for Studying Neurodevelopmental Disorders Utilizing in Vivo Proton (+H) Magnetic Resonance Spectroscopic Imaging in Rats

    NASA Technical Reports Server (NTRS)

    Ronca, April E.

    2014-01-01

    Intrauterine complications have been implicated in the etiology of neuripsychiatric disorders including schizophrenia, autism and ADHD. This presentation will describe new translational studies derived from in vivo magnetic resonance imaging of developing and adult brain following perinatal asphyxia (PA). Our findings reveal significant effects of PA on neurometabolic profiles at one week of age, and significant relationships between early metabolites and later life phenotypes including behavior and brain morphometry

  8. Sensitivity of drainage morphometry based hydrological response (GIUH) of a river basin to the spatial resolution of DEM data

    NASA Astrophysics Data System (ADS)

    Sahoo, Ramendra; Jain, Vikrant

    2018-02-01

    Drainage network pattern and its associated morphometric ratios are some of the important plan form attributes of a drainage basin. Extraction of these attributes for any basin is usually done by spatial analysis of the elevation data of that basin. These planform attributes are further used as input data for studying numerous process-response interactions inside the physical premise of the basin. One of the important uses of the morphometric ratios is its usage in the derivation of hydrologic response of a basin using GIUH concept. Hence, accuracy of the basin hydrological response to any storm event depends upon the accuracy with which, the morphometric ratios can be estimated. This in turn, is affected by the spatial resolution of the source data, i.e. the digital elevation model (DEM). We have estimated the sensitivity of the morphometric ratios and the GIUH derived hydrograph parameters, to the resolution of source data using a 30 meter and a 90 meter DEM. The analysis has been carried out for 50 drainage basins in a mountainous catchment. A simple and comprehensive algorithm has been developed for estimation of the morphometric indices from a stream network. We have calculated all the morphometric parameters and the hydrograph parameters for each of these basins extracted from two different DEMs, with different spatial resolutions. Paired t-test and Sign test were used for the comparison. Our results didn't show any statistically significant difference among any of the parameters calculated from the two source data. Along with the comparative study, a first-hand empirical analysis about the frequency distribution of the morphometric and hydrologic response parameters has also been communicated. Further, a comparison with other hydrological models suggests that plan form morphometry based GIUH model is more consistent with resolution variability in comparison to topographic based hydrological model.

  9. So Near and Yet So Far: Harmonic Radar Reveals Reduced Homing Ability of Nosema Infected Honeybees

    PubMed Central

    Wolf, Stephan; McMahon, Dino P.; Lim, Ka S.; Pull, Christopher D.; Clark, Suzanne J.; Paxton, Robert J.; Osborne, Juliet L.

    2014-01-01

    Pathogens may gain a fitness advantage through manipulation of the behaviour of their hosts. Likewise, host behavioural changes can be a defence mechanism, counteracting the impact of pathogens on host fitness. We apply harmonic radar technology to characterize the impact of an emerging pathogen - Nosema ceranae (Microsporidia) - on honeybee (Apis mellifera) flight and orientation performance in the field. Honeybees are the most important commercial pollinators. Emerging diseases have been proposed to play a prominent role in colony decline, partly through sub-lethal behavioural manipulation of their hosts. We found that homing success was significantly reduced in diseased (65.8%) versus healthy foragers (92.5%). Although lost bees had significantly reduced continuous flight times and prolonged resting times, other flight characteristics and navigational abilities showed no significant difference between infected and non-infected bees. Our results suggest that infected bees express normal flight characteristics but are constrained in their homing ability, potentially compromising the colony by reducing its resource inputs, but also counteracting the intra-colony spread of infection. We provide the first high-resolution analysis of sub-lethal effects of an emerging disease on insect flight behaviour. The potential causes and the implications for both host and parasite are discussed. PMID:25098331

  10. Neuroanatomical correlates of Klinefelter syndrome studied in relation to the neuropsychological profile☆

    PubMed Central

    Skakkebæk, Anne; Gravholt, Claus Højbjerg; Rasmussen, Peter Mondrup; Bojesen, Anders; Jensen, Jens Søndergaard; Fedder, Jens; Laurberg, Peter; Hertz, Jens Michael; Østergaard, John Rosendahl; Pedersen, Anders Degn; Wallentin, Mikkel

    2013-01-01

    Brain imaging in Klinefelter syndrome (47, XXY) (KS), a genetic disorder characterized by the presence of an extra X chromosome, may contribute to understanding the relationship between gene expression, brain structure, and subsequent cognitive disabilities and psychiatric disorders. We conducted the largest to date voxel-based morphometry study of 65 KS subjects and 65 controls matched for age and education and correlated these data to neuropsychological test scores. The KS patients had significantly smaller total brain volume (TBV), total gray matter volume (GMV) and total white matter volume (WMV) compared to controls, whereas no volumetric difference in cerebral spinal fluid (CSF) was found. There were no differences in TBV, GMV, WMV or CSF between testosterone treated KS (T-KS) and untreated KS (U-KS) patients. Compared to controls, KS patients had significantly decreased GMV bilaterally in insula, putamen, caudate, hippocampus, amygdala, temporal pole and frontal inferior orbita. Additionally, the right parahippocampal region and cerebellar volumes were reduced in KS patients. KS patients had significantly larger volumes in right postcentral gyrus, precuneus and parietal regions. Multivariate classification analysis discriminated KS patients from controls with 96.9% (p < 0.001) accuracy. Regression analyses, however, revealed no significant association between GMV differences and cognitive and psychological factors within the KS patients and controls or the groups combined. These results show that although gene dosage effect of having and extra X-chromosome may lead to large scale alterations of brain morphometry and extended cognitive disabilities no simple correspondence links these measures. PMID:24266006

  11. Core/shell-type nanorods of Tb3+-doped LaPO4, modified with amine groups, revealing reduced cytotoxicity

    NASA Astrophysics Data System (ADS)

    Runowski, Marcin; Dąbrowska, Krystyna; Grzyb, Tomasz; Miernikiewicz, Paulina; Lis, Stefan

    2013-11-01

    A simple co-precipitation reaction between Ln3+ cations (Ln = lanthanide) and phosphate ions in the presence of polyethylene glycol (PEG), including post-treatment under hydrothermal conditions, leads to the formation of Tb3+-doped LaPO4 crystalline nanorods. The nanoparticles obtained can be successfully coated with amorphous and porous silica, forming core/shell-type nanorods. Both products reveal intensive green luminescence under UV lamp irradiation. The surface of the core/shell-type product can also be modified with -NH2 groups via silylation procedure, using 3-aminopropyltriethoxysilane as a modifier. Powder X-ray diffraction, transmission electron microscopy, and scanning electron microscopy confirm the desired structure and needle-like shape of the products synthesized. Fourier transform infrared spectroscopy and specific surface area measurements by Brunauer-Emmett-Teller method reveal a successful surface modification with amine groups of the core/shell-type nanoparticles prepared. The nanomaterials synthesized exhibit green luminescence characteristic of Tb3+ ions, as solid powders and aqueous colloids, examined by spectrofluorometry. The in vitro cytotoxicity studies reveal different degree toxicity of the products. LaPO4:Tb3+@SiO2@NH2 exhibits the smallest toxicity against B16F0 mouse melanoma cancer cells and human skin microvascular endothelial cell lines, in contrast to the most toxic LaPO4:Tb3+@SiO2.

  12. Core/shell-type nanorods of Tb3+-doped LaPO4, modified with amine groups, revealing reduced cytotoxicity.

    PubMed

    Runowski, Marcin; Dąbrowska, Krystyna; Grzyb, Tomasz; Miernikiewicz, Paulina; Lis, Stefan

    2013-01-01

    A simple co-precipitation reaction between Ln 3+ cations (Ln = lanthanide) and phosphate ions in the presence of polyethylene glycol (PEG), including post-treatment under hydrothermal conditions, leads to the formation of Tb 3+ -doped LaPO 4 crystalline nanorods. The nanoparticles obtained can be successfully coated with amorphous and porous silica, forming core/shell-type nanorods. Both products reveal intensive green luminescence under UV lamp irradiation. The surface of the core/shell-type product can also be modified with -NH 2 groups via silylation procedure, using 3-aminopropyltriethoxysilane as a modifier. Powder X-ray diffraction, transmission electron microscopy, and scanning electron microscopy confirm the desired structure and needle-like shape of the products synthesized. Fourier transform infrared spectroscopy and specific surface area measurements by Brunauer-Emmett-Teller method reveal a successful surface modification with amine groups of the core/shell-type nanoparticles prepared. The nanomaterials synthesized exhibit green luminescence characteristic of Tb 3+ ions, as solid powders and aqueous colloids, examined by spectrofluorometry. The in vitro cytotoxicity studies reveal different degree toxicity of the products. LaPO 4 :Tb 3+ @SiO 2 @NH 2 exhibits the smallest toxicity against B16F0 mouse melanoma cancer cells and human skin microvascular endothelial cell lines, in contrast to the most toxic LaPO 4 :Tb 3+ @SiO 2 .

  13. Non-invasive assessment of liver fibrosis progression in hepatitis C patients retreated for 96 weeks with antiviral therapy: a randomized study.

    PubMed

    Zarski, Jean-Pierre; Sturm, Nathalie; Desmorat, Hervé; Melin, Pascal; Raabe, Jean-Jacques; Bonny, Corinne; Sogni, Philippe; Pinta, Alexandrina; Rouanet, Stéphanie; Babany, Gérard; Cheveau, Alice; Chevallier, Michèle

    2010-08-01

    The efficacy of a maintenance therapy in non-responder patients with chronic hepatitis C has been essentially evaluated by histological semiquantitative scores. The aim was to evaluate the efficiency of 2 years of treatment with peginterferon alpha-2a vs alpha-tocopherol in these patients by histology, morphometry and blood markers of fibrosis. Hundred and five HCV patients with a Metavir fibrosis score > or = 2 were randomized to receive peginterferon alpha-2a 180 microg/week (PEG) (n=55) or alpha-tocopherol (TOCO) 1000 mg/day (n=50) for 96 weeks. The primary endpoint was improvement or stabilization of the Metavir fibrosis score by biopsy performed at week 96. Secondary endpoints included a quantitative assessment of fibrosis by morphometry and changes in blood markers of fibrosis. There was no difference at baseline between PEG and TOCO according to the metavir (83.3 vs 86.8%, P=0.751) stage. The median fibrosis rate, measured with morphometry was 2.72 and 2.86% at day 0, and 3.66 and 2.82% at week 96, in the PEG and TOCO groups (P=0.90) respectively. However, the percentage of patients with metavir activity grade improvement was significantly higher in the PEG group vs the TOCO group (52.8 vs 23.7%, P=0.016). Non-invasive markers analysis did not show any significant change in both groups. Long-term therapy with peginterferon alpha-2a did not reduce liver fibrosis degree assessed by morphometry and blood tests as compared with alpha-tocopherol. Blood tests could be useful to assess liver fibrosis changes in clinical trials.

  14. Multiple electron transfer systems in oxygen reducing biocathodes revealed by different conditions of aeration/agitation.

    PubMed

    Rimboud, Mickaël; Bergel, Alain; Erable, Benjamin

    2016-08-01

    Oxygen reducing biocathodes were formed at -0.2V/SCE (+0.04V/SHE) from compost leachate. Depending on whether aeration was implemented or not, two different redox systems responsible for the electrocatalysis of oxygen reduction were evidenced. System I was observed at low potential (-0.03V/SHE) on cyclic voltammetries (CVs). It appeared during the early formation of the biocathode (few hours) and resisted the hydrodynamic conditions induced by the aeration. System II was observed at higher potential on CV (+0.46V/SHE); it required a longer lag time (up to 10days) and quiescent conditions to produce an electrochemical signal. The hydrodynamic effects produced by the forced aeration led to its extinction. From their different behaviors and examples in the literature, system I was identified as being a membrane-bound cytochrome-related molecule, while system II was identified as a soluble redox mediator excreted by the biofilm. This study highlighted the importance of controlling the local hydrodynamics to design efficient oxygen reducing biocathodes able to operate at high potential. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. High pressure processing alters water distribution enabling the production of reduced-fat and reduced-salt pork sausages.

    PubMed

    Yang, Huijuan; Han, Minyi; Bai, Yun; Han, Yanqing; Xu, Xinglian; Zhou, Guanghong

    2015-04-01

    High pressure processing (HPP) was used to explore novel methods for modifying the textural properties of pork sausages with reduced-salt, reduced-fat and no fat replacement additions. A 2×7 factorial design was set up, incorporating two pressure levels (0.1 or 200 MPa) and seven fat levels (0, 5, 10, 15, 20, 25 and 30%). Sausages treated at 200 MPa exhibited improved tenderness at all fat levels compared with 0.1 MPa treated samples, and the shear force of sausages treated at 200 MPa with 15 or 20% fat content was similar to the 0.1 MPa treated sausages with 30% fat. HPP significantly changed the P₂ peak ratio of the four water components in raw sausages, resulting in improved textural properties of emulsion-type sausages with reduced-fat and reduced-salt. Significant correlations were found between pH, color, shear force and water proportions. The scanning and transmission micrographs revealed the formation of smaller fat globules and an improved network structure in the pressure treated sausages. In conclusion, there is potential to manufacture sausages with reduced-fat and reduced-salt by using HPP to maintain textural qualities. Copyright © 2014. Published by Elsevier Ltd.

  16. Distinct neural systems underlying reduced emotional enhancement for positive and negative stimuli in early Alzheimer's disease

    PubMed Central

    Mistridis, Panagiota; Taylor, Kirsten I.; Kissler, Johanna M.; Monsch, Andreas U.; Kressig, Reto W.; Kivisaari, Sasa L.

    2014-01-01

    Emotional information is typically better remembered than neutral content, and previous studies suggest that this effect is subserved particularly by the amygdala together with its interactions with the hippocampus. However, it is not known whether amygdala damage affects emotional memory performance at immediate and delayed recall, and whether its involvement is modulated by stimulus valence. Moreover, it is unclear to what extent more distributed neocortical regions involved in e.g., autobiographical memory, also contribute to emotional processing. We investigated these questions in a group of patients with Alzheimer's disease (AD), which affects the amygdala, hippocampus and neocortical regions. Healthy controls (n = 14), patients with AD (n = 15) and its putative prodrome amnestic mild cognitive impairment (n = 11) completed a memory task consisting of immediate and delayed free recall of a list of positive, negative and neutral words. Memory performance was related to brain integrity in region of interest and whole-brain voxel-based morphometry analyses. In the brain-behavioral analyses, the left amygdala volume predicted the immediate recall of both positive and negative material, whereas at delay, left and right amygdala volumes were associated with performance with positive and negative words, respectively. Whole-brain analyses revealed additional associations between left angular gyrus integrity and the immediate recall of positive words as well as between the orbitofrontal cortex and the delayed recall of negative words. These results indicate that emotional memory impairments in AD may be underpinned by damage to regions implicated in emotional processing as well as frontoparietal regions, which may exert their influence via autobiographical memories and organizational strategies. PMID:24478669

  17. Droplet morphometry and velocimetry (DMV): a video processing software for time-resolved, label-free tracking of droplet parameters.

    PubMed

    Basu, Amar S

    2013-05-21

    Emerging assays in droplet microfluidics require the measurement of parameters such as drop size, velocity, trajectory, shape deformation, fluorescence intensity, and others. While micro particle image velocimetry (μPIV) and related techniques are suitable for measuring flow using tracer particles, no tool exists for tracking droplets at the granularity of a single entity. This paper presents droplet morphometry and velocimetry (DMV), a digital video processing software for time-resolved droplet analysis. Droplets are identified through a series of image processing steps which operate on transparent, translucent, fluorescent, or opaque droplets. The steps include background image generation, background subtraction, edge detection, small object removal, morphological close and fill, and shape discrimination. A frame correlation step then links droplets spanning multiple frames via a nearest neighbor search with user-defined matching criteria. Each step can be individually tuned for maximum compatibility. For each droplet found, DMV provides a time-history of 20 different parameters, including trajectory, velocity, area, dimensions, shape deformation, orientation, nearest neighbour spacing, and pixel statistics. The data can be reported via scatter plots, histograms, and tables at the granularity of individual droplets or by statistics accrued over the population. We present several case studies from industry and academic labs, including the measurement of 1) size distributions and flow perturbations in a drop generator, 2) size distributions and mixing rates in drop splitting/merging devices, 3) efficiency of single cell encapsulation devices, 4) position tracking in electrowetting operations, 5) chemical concentrations in a serial drop dilutor, 6) drop sorting efficiency of a tensiophoresis device, 7) plug length and orientation of nonspherical plugs in a serpentine channel, and 8) high throughput tracking of >250 drops in a reinjection system. Performance metrics

  18. Right external globus pallidus changes are associated with altered causal awareness in youth with depression

    PubMed Central

    Griffiths, K R; Lagopoulos, J; Hermens, D F; Hickie, I B; Balleine, B W

    2015-01-01

    Cognitive impairment is a functionally disabling feature of depression contributing to maladaptive decision-making, a loss of behavioral control and an increased disease burden. The ability to calculate the causal efficacy of ones actions in achieving specific goals is critical to normal decision-making and, in this study, we combined voxel-based morphometry (VBM), shape analysis and diffusion tensor tractography to investigate the relationship between cortical–basal ganglia structural integrity and such causal awareness in 43 young subjects with depression and 21 demographically similar healthy controls. Volumetric analysis determined a relationship between right pallidal size and sensitivity to the causal status of specific actions. More specifically, shape analysis identified dorsolateral surface vertices where an inward location was correlated with reduced levels of causal awareness. Probabilistic tractography revealed that affected parts of the pallidum were primarily connected with the striatum, dorsal thalamus and hippocampus. VBM did not reveal any whole-brain gray matter regions that correlated with causal awareness. We conclude that volumetric reduction within the indirect pathway involving the right dorsolateral pallidum is associated with reduced awareness of the causal efficacy of goal-directed actions in young depressed individuals. This causal awareness task allows for the identification of a functionally and biologically relevant subgroup to which more targeted cognitive interventions could be applied, potentially enhancing the long-term outcomes for these individuals. PMID:26440541

  19. Reduced visual cortex gray matter volume and thickness in young adults who witnessed domestic violence during childhood.

    PubMed

    Tomoda, Akemi; Polcari, Ann; Anderson, Carl M; Teicher, Martin H

    2012-01-01

    Exposure to interparental violence is associated with negative outcomes, such as depression, post-traumatic stress disorder and reduced cognitive abilities. However, little is known about the potential effects of witnessing domestic violence during childhood on gray matter volume (GMV) or cortical thickness. High-resolution 3.0 T volumetric scans (Siemens Trio Scanner) were obtained on 52 subjects (18-25 years) including 22 (6 males/16 females) with a history of visually witnessing episodes of domestic violence, and 30 (8 males/22 females) unexposed control subjects, with neither a current nor past DSM-IV Axis I or II disorder. Potential confounding effects of age, gender, level of parental verbal aggression, parental education, financial stress, full scale IQ, and total GMV, or average thickness were modeled using voxel based morphometry and FreeSurfer. Witnessing domestic violence subjects had a 6.1% GMV reduction in the right lingual gyrus (BA18) (P = 0.029, False Discovery Rate corrected peak level). Thickness in this region was also reduced, as was thickness in V2 bilaterally and left occipital pole. Theses regions were maximally sensitive to exposure to witnessing domestic violence between 11-13 years of age. Regional reductions in GMV and thickness were observed in both susceptible and resilient witnessing domestic violence subjects. Results in subjects witnessing domestic violence were similar to previously reported results in subjects with childhood sexual abuse, as the primary region affected was visual cortex. Brain regions that process and convey the adverse sensory input of the abuse may be specifically modified by this experience, particularly in subjects exposed to a single type of maltreatment. Exposure to multiple types of maltreatment is more commonly associated with morphological alterations in corticolimbic regions. These findings fit with preclinical studies showing that visual cortex is a highly plastic structure.

  20. Alcohol consumption during adolescence is associated with reduced grey matter volumes.

    PubMed

    Heikkinen, Noora; Niskanen, Eini; Könönen, Mervi; Tolmunen, Tommi; Kekkonen, Virve; Kivimäki, Petri; Tanila, Heikki; Laukkanen, Eila; Vanninen, Ritva

    2017-04-01

    Cognitive impairment has been associated with excessive alcohol use, but its neural basis is poorly understood. Chronic excessive alcohol use in adolescence may lead to neuronal loss and volumetric changes in the brain. Our objective was to compare the grey matter volumes of heavy- and light-drinking adolescents. This was a longitudinal study: heavy-drinking adolescents without an alcohol use disorder and their light-drinking controls were followed-up for 10 years using questionnaires at three time-points. Magnetic resonance imaging was conducted at the last time-point. The area near Kuopio University Hospital, Finland. The 62 participants were aged 22-28 years and included 35 alcohol users and 27 controls who had been followed-up for approximately 10 years. Alcohol use was measured by the Alcohol Use Disorders Identification Test (AUDIT)-C at three time-points during 10 years. Participants were selected based on their AUDIT-C score. Magnetic resonance imaging was conducted at the last time-point. Grey matter volume was determined and compared between heavy- and light-drinking groups using voxel-based morphometry on three-dimensional T1-weighted magnetic resonance images using predefined regions of interest and a threshold of P < 0.05, with small volume correction applied on cluster level. Grey matter volumes were significantly smaller among heavy-drinking participants in the bilateral anterior cingulate cortex, right orbitofrontal and frontopolar cortex, right superior temporal gyrus and right insular cortex compared to the control group (P < 0.05, family-wise error-corrected cluster level). Excessive alcohol use during adolescence appears to be associated with an abnormal development of the brain grey matter. Moreover, the structural changes detected in the insula of alcohol users may reflect a reduced sensitivity to alcohol's negative subjective effects. © 2016 Society for the Study of Addiction.

  1. Developmental Ethanol Exposure Causes Reduced Feeding and Reveals a Critical Role for Neuropeptide F in Survival

    PubMed Central

    Guevara, Amanda; Gates, Hillary; Urbina, Brianna; French, Rachael

    2018-01-01

    Food intake is necessary for survival, and natural reward circuitry has evolved to help ensure that animals ingest sufficient food to maintain development, growth, and survival. Drugs of abuse, including alcohol, co-opt the natural reward circuitry in the brain, and this is a major factor in the reinforcement of drug behaviors leading to addiction. At the junction of these two aspects of reward are alterations in feeding behavior due to alcohol consumption. In particular, developmental alcohol exposure (DAE) results in a collection of physical and neurobehavioral disorders collectively referred to as Fetal Alcohol Spectrum Disorder (FASD). The deleterious effects of DAE include intellectual disabilities and other neurobehavioral changes, including altered feeding behaviors. Here we use Drosophila melanogaster as a genetic model organism to study the effects of DAE on feeding behavior and the expression and function of Neuropeptide F. We show that addition of a defined concentration of ethanol to food leads to reduced feeding at all stages of development. Further, genetic conditions that reduce or eliminate NPF signaling combine with ethanol exposure to further reduce feeding, and the distribution of NPF is altered in the brains of ethanol-supplemented larvae. Most strikingly, we find that the vast majority of flies with a null mutation in the NPF receptor die early in larval development when reared in ethanol, and provide evidence that this lethality is due to voluntary starvation. Collectively, we find a critical role for NPF signaling in protecting against altered feeding behavior induced by developmental ethanol exposure. PMID:29623043

  2. Lipid reducing activity and toxicity profiles of a library of polyphenol derivatives.

    PubMed

    Urbatzka, Ralph; Freitas, Sara; Palmeira, Andreia; Almeida, Tiago; Moreira, João; Azevedo, Carlos; Afonso, Carlos; Correia-da-Silva, Marta; Sousa, Emilia; Pinto, Madalena; Vasconcelos, Vitor

    2018-05-10

    Obesity is an increasing epidemic worldwide and novel treatments are urgently needed. Polyphenols are natural compounds derived from plants, which are known in particular for their antioxidant properties. However, some polyphenols were described to possess anti-obesity activities in vitro and in vivo. In this study, we aimed to screen a library of 85 polyphenol derivatives for their lipid reducing activity and toxicity. Compounds were analyzed at 5 μM with the zebrafish Nile red fluorescence fat metabolism assay and for general toxicity in vivo. To improve the safety profile, compounds were screened at 50 μM in murine preadipocytes in vitro for cytotoxicity. Obtained activity data were used to create a 2D-QSAR (quantitative structure activity relationship) model. 38 polyphenols showed strong lipid reducing activity. Toxicity analysis revealed that 18 of them did not show any toxicity in vitro or in vivo. QSAR analysis revealed the importance of the number of rings, fractional partial positively charged surface area, relative positive charge, relative number of oxygen atoms, and partial negative surface area for lipid-reducing activity. The five most potent compounds with EC 50 values in the nanomolar range for lipid reducing activity and without any toxic effects are strong candidates for future research and development into anti-obesity drugs. Molecular profiling for fasn, sirt1, mtp and ppary revealed one compound that reduced significantly fasn mRNA expression. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  3. TreeNetViz: revealing patterns of networks over tree structures.

    PubMed

    Gou, Liang; Zhang, Xiaolong Luke

    2011-12-01

    Network data often contain important attributes from various dimensions such as social affiliations and areas of expertise in a social network. If such attributes exhibit a tree structure, visualizing a compound graph consisting of tree and network structures becomes complicated. How to visually reveal patterns of a network over a tree has not been fully studied. In this paper, we propose a compound graph model, TreeNet, to support visualization and analysis of a network at multiple levels of aggregation over a tree. We also present a visualization design, TreeNetViz, to offer the multiscale and cross-scale exploration and interaction of a TreeNet graph. TreeNetViz uses a Radial, Space-Filling (RSF) visualization to represent the tree structure, a circle layout with novel optimization to show aggregated networks derived from TreeNet, and an edge bundling technique to reduce visual complexity. Our circular layout algorithm reduces both total edge-crossings and edge length and also considers hierarchical structure constraints and edge weight in a TreeNet graph. These experiments illustrate that the algorithm can reduce visual cluttering in TreeNet graphs. Our case study also shows that TreeNetViz has the potential to support the analysis of a compound graph by revealing multiscale and cross-scale network patterns. © 2011 IEEE

  4. The Reduction of Ventrolateral Prefrontal Cortex Gray Matter Volume Correlates with Loss of Economic Rationality in Aging.

    PubMed

    Chung, Hui-Kuan; Tymula, Agnieszka; Glimcher, Paul

    2017-12-06

    The population of people above 65 years old continues to grow, and there is mounting evidence that as humans age they are more likely to make errors. However, the specific effect of neuroanatomical aging on the efficiency of economic decision-making is poorly understood. We used whole-brain voxel-based morphometry analysis to determine where reduction of gray matter volume in healthy female and male adults over the age of 65 years correlates with a classic measure of economic irrationality: violations of the Generalized Axiom of Revealed Preference. All participants were functionally normal with Mini-Mental State Examination scores ranging between 26 and 30. While our elders showed the previously reported decline in rationality compared with younger subjects, chronological age per se did not correlate with rationality measures within our population of elders. Instead, reduction of gray matter density in ventrolateral prefrontal cortex correlates tightly with irrational behavior. Interestingly, using a large fMRI sample and meta-analytic tool with Neurosynth, we found that this brain area shows strong coactivation patterns with nearly all of the value-associated regions identified in previous studies. These findings point toward a neuroanatomic locus for economic rationality in the aging brain and highlight the importance of understanding both anatomy and function in the study of aging, cognition, and decision-making. SIGNIFICANCE STATEMENT Age is a crucial factor in decision-making, with older individuals making more errors in choices. Using whole-brain voxel-based morphometry analysis, we found that reduction of gray matter density in ventrolateral prefrontal cortex correlates with economic irrationality: reduced gray matter volume in this area correlates with the frequency and severity of violations of the Generalized Axiom of Revealed Preference. Furthermore, this brain area strongly coactivates with other reward-associated regions identified with Neurosynth

  5. The Reduction of Ventrolateral Prefrontal Cortex Gray Matter Volume Correlates with Loss of Economic Rationality in Aging

    PubMed Central

    Tymula, Agnieszka

    2017-01-01

    The population of people above 65 years old continues to grow, and there is mounting evidence that as humans age they are more likely to make errors. However, the specific effect of neuroanatomical aging on the efficiency of economic decision-making is poorly understood. We used whole-brain voxel-based morphometry analysis to determine where reduction of gray matter volume in healthy female and male adults over the age of 65 years correlates with a classic measure of economic irrationality: violations of the Generalized Axiom of Revealed Preference. All participants were functionally normal with Mini-Mental State Examination scores ranging between 26 and 30. While our elders showed the previously reported decline in rationality compared with younger subjects, chronological age per se did not correlate with rationality measures within our population of elders. Instead, reduction of gray matter density in ventrolateral prefrontal cortex correlates tightly with irrational behavior. Interestingly, using a large fMRI sample and meta-analytic tool with Neurosynth, we found that this brain area shows strong coactivation patterns with nearly all of the value-associated regions identified in previous studies. These findings point toward a neuroanatomic locus for economic rationality in the aging brain and highlight the importance of understanding both anatomy and function in the study of aging, cognition, and decision-making. SIGNIFICANCE STATEMENT Age is a crucial factor in decision-making, with older individuals making more errors in choices. Using whole-brain voxel-based morphometry analysis, we found that reduction of gray matter density in ventrolateral prefrontal cortex correlates with economic irrationality: reduced gray matter volume in this area correlates with the frequency and severity of violations of the Generalized Axiom of Revealed Preference. Furthermore, this brain area strongly coactivates with other reward-associated regions identified with Neurosynth

  6. Volumetric abnormalities of the brain in a rat model of recurrent headache.

    PubMed

    Jia, Zhihua; Tang, Wenjing; Zhao, Dengfa; Hu, Guanqun; Li, Ruisheng; Yu, Shengyuan

    2018-01-01

    Voxel-based morphometry is used to detect structural brain changes in patients with migraine. However, the relevance of migraine and structural changes is not clear. This study investigated structural brain abnormalities based on voxel-based morphometry using a rat model of recurrent headache. The rat model was established by infusing an inflammatory soup through supradural catheters in conscious male rats. Rats were subgrouped according to the frequency and duration of the inflammatory soup infusion. Tactile sensory testing was conducted prior to infusion of the inflammatory soup or saline. The periorbital tactile thresholds in the high-frequency inflammatory soup stimulation group declined persistently from day 5. Increased white matter volume was observed in the rats three weeks after inflammatory soup stimulation, brainstem in the in the low-frequency inflammatory soup-infusion group and cortex in the high-frequency inflammatory soup-infusion group. After six weeks' stimulation, rats showed gray matter volume changes. The brain structural abnormalities recovered after the stimulation was stopped in the low-frequency inflammatory soup-infused rats and persisted even after the high-frequency inflammatory soup stimulus stopped. The changes of voxel-based morphometry in migraineurs may be the result of recurrent headache. Cognition, memory, and learning may play an important role in the chronification of migraines. Reducing migraine attacks has the promise of preventing chronicity of migraine.

  7. Robust tumor morphometry in multispectral fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Tabesh, Ali; Vengrenyuk, Yevgen; Teverovskiy, Mikhail; Khan, Faisal M.; Sapir, Marina; Powell, Douglas; Mesa-Tejada, Ricardo; Donovan, Michael J.; Fernandez, Gerardo

    2009-02-01

    Morphological and architectural characteristics of primary tissue compartments, such as epithelial nuclei (EN) and cytoplasm, provide important cues for cancer diagnosis, prognosis, and therapeutic response prediction. We propose two feature sets for the robust quantification of these characteristics in multiplex immunofluorescence (IF) microscopy images of prostate biopsy specimens. To enable feature extraction, EN and cytoplasm regions were first segmented from the IF images. Then, feature sets consisting of the characteristics of the minimum spanning tree (MST) connecting the EN and the fractal dimension (FD) of gland boundaries were obtained from the segmented compartments. We demonstrated the utility of the proposed features in prostate cancer recurrence prediction on a multi-institution cohort of 1027 patients. Univariate analysis revealed that both FD and one of the MST features were highly effective for predicting cancer recurrence (p <= 0.0001). In multivariate analysis, an MST feature was selected for a model incorporating clinical and image features. The model achieved a concordance index (CI) of 0.73 on the validation set, which was significantly higher than the CI of 0.69 for the standard multivariate model based solely on clinical features currently used in clinical practice (p < 0.0001). The contributions of this work are twofold. First, it is the first demonstration of the utility of the proposed features in morphometric analysis of IF images. Second, this is the largest scale study of the efficacy and robustness of the proposed features in prostate cancer prognosis.

  8. A voxel-based morphometry (VBM) analysis of regional grey and white matter volume abnormalities within the speech production network of children who stutter.

    PubMed

    Beal, Deryk S; Gracco, Vincent L; Brettschneider, Jane; Kroll, Robert M; De Nil, Luc F

    2013-09-01

    It is well documented that neuroanatomical differences exist between adults who stutter and their fluently speaking peers. Specifically, adults who stutter have been found to have more grey matter volume (GMV) in speech relevant regions including inferior frontal gyrus, insula and superior temporal gyrus (Beal et al., 2007; Song et al., 2007). Despite stuttering having its onset in childhood only one study has investigated the neuroanatomical differences between children who do and do not stutter. Chang et al. (2008) reported children who stutter had less GMV in the bilateral inferior frontal gyri and middle temporal gyrus relative to fluently speaking children. Thus it appears that children who stutter present with unique neuroanatomical abnormalities as compared to those of adults who stutter. In order to better understand the neuroanatomical correlates of stuttering earlier in its development, near the time of onset, we used voxel-based morphometry to examine volumetric differences between 11 children who stutter and 11 fluent children. Children who stutter had less GMV in the bilateral inferior frontal gyri and left putamen but more GMV in right Rolandic operculum and superior temporal gyrus relative to fluent children. Children who stutter also had less white matter volume bilaterally in the forceps minor of the corpus callosum. We discuss our findings of widespread anatomic abnormalities throughout the cortical network for speech motor control within the context of the speech motor skill limitations identified in people who stutter (Namasivayam and van Lieshout, 2008; Smits-Bandstra et al., 2006). Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Reduced volume of gray matter in patients with trigeminal neuralgia.

    PubMed

    Li, Meng; Yan, Jianhao; Li, Shumei; Wang, Tianyue; Zhan, Wenfeng; Wen, Hua; Ma, Xiaofen; Zhang, Yong; Tian, Junzhang; Jiang, Guihua

    2017-04-01

    Accumulating evidence from brain structural imaging studies has supported that chronic pain could induce changes in brain gray matter volume. However, few studies have focused on the gray matter alterations of Trigeminal neuralgia (TN). In this study, twenty-eight TN patients (thirteen females; mean age, 45.86 years ±11.17) and 28 healthy controls (HC; thirteen females; mean age, 44.89 years ±7.67) were included. Using voxel-based morphometry (VBM), we detected abnormalities in gray matter volume in the TN patients. Based on a voxel-wise analysis, the TN group showed significantly decreased gray matter volume in the bilateral superior/middle temporal gyrus (STG/MTG), bilateral parahippocampus, left anterior cingulate cortex (ACC), caudate nucleus, right fusiform gyrus, and right cerebellum compared with the HC. In addition, we found that the gray matter volume in the bilateral STG/MTG was negatively correlated with the duration of TN. These results provide compelling evidence for gray matter abnormalities in TN and suggest that the duration of TN may be a critical factor associated with brain alterations.

  10. Lifetime use of cannabis from longitudinal assessments, cannabinoid receptor (CNR1) variation, and reduced volume of the right anterior cingulate

    PubMed Central

    Hill, Shirley Y.; Sharma, Vinod; Jones, Bobby L.

    2016-01-01

    Lifetime measures of cannabis use and co-occurring exposures were obtained from a longitudinal cohort followed an average of 13 years at the time they received a structural MRI scan. MRI scans were analyzed for 88 participants (mean age=25.9 years), 34 of whom were regular users of cannabis. Whole brain voxel based morphometry analyses (SPM8) were conducted using 50 voxel clusters at p=0.005. Controlling for age, familial risk, and gender, we found reduced volume in Regular Users compared to Non-Users, in the lingual gyrus, anterior cingulum (right and left), and the rolandic operculum (right). The right anterior cingulum reached family-wise error statistical significance at p=0.001, controlling for personal lifetime use of alcohol and cigarettes and any prenatal exposures. CNR1 haplotypes were formed from four CNR1 SNPs (rs806368, rs1049353, rs2023239, and rs6454674) and tested with level of cannabis exposure to assess their interactive effects on the lingual gyrus, cingulum (right and left) and rolandic operculum, regions showing cannabis exposure effects in the SPM8 analyses. These analyses used mixed model analyses (SPSS) to control for multiple potentially confounding variables. Level of cannabis exposure was associated with decreased volume of the right anterior cingulum and showed interaction effects with haplotype variation. PMID:27500453

  11. Linear and curvilinear correlations of brain gray matter volume and density with age using voxel-based morphometry with the Akaike information criterion in 291 healthy children.

    PubMed

    Taki, Yasuyuki; Hashizume, Hiroshi; Thyreau, Benjamin; Sassa, Yuko; Takeuchi, Hikaru; Wu, Kai; Kotozaki, Yuka; Nouchi, Rui; Asano, Michiko; Asano, Kohei; Fukuda, Hiroshi; Kawashima, Ryuta

    2013-08-01

    We examined linear and curvilinear correlations of gray matter volume and density in cortical and subcortical gray matter with age using magnetic resonance images (MRI) in a large number of healthy children. We applied voxel-based morphometry (VBM) and region-of-interest (ROI) analyses with the Akaike information criterion (AIC), which was used to determine the best-fit model by selecting which predictor terms should be included. We collected data on brain structural MRI in 291 healthy children aged 5-18 years. Structural MRI data were segmented and normalized using a custom template by applying the diffeomorphic anatomical registration using exponentiated lie algebra (DARTEL) procedure. Next, we analyzed the correlations of gray matter volume and density with age in VBM with AIC by estimating linear, quadratic, and cubic polynomial functions. Several regions such as the prefrontal cortex, the precentral gyrus, and cerebellum showed significant linear or curvilinear correlations between gray matter volume and age on an increasing trajectory, and between gray matter density and age on a decreasing trajectory in VBM and ROI analyses with AIC. Because the trajectory of gray matter volume and density with age suggests the progress of brain maturation, our results may contribute to clarifying brain maturation in healthy children from the viewpoint of brain structure. Copyright © 2012 Wiley Periodicals, Inc.

  12. Reduced Pain Sensation and Reduced BOLD Signal in Parietofrontal Networks during Religious Prayer.

    PubMed

    Elmholdt, Else-Marie; Skewes, Joshua; Dietz, Martin; Møller, Arne; Jensen, Martin S; Roepstorff, Andreas; Wiech, Katja; Jensen, Troels S

    2017-01-01

    Previous studies suggest that religious prayer can alter the experience of pain via expectation mechanisms. While brain processes related to other types of top-down modulation of pain have been studied extensively, no research has been conducted on the potential effects of active religious coping. Here, we aimed at investigating the neural mechanisms during pain modulation by prayer and their dependency on the opioidergic system. Twenty-eight devout Protestants performed religious prayer and a secular contrast prayer during painful electrical stimulation in two fMRI sessions. Naloxone or saline was administered prior to scanning. Results show that pain intensity was reduced by 11% and pain unpleasantness by 26% during religious prayer compared to secular prayer. Expectancy predicted large amounts (70-89%) of the variance in pain intensity. Neuroimaging results revealed reduced neural activity during religious prayer in a large parietofrontal network relative to the secular condition. Naloxone had no significant effect on ratings or neural activity. Our results thus indicate that, under these conditions, pain modulation by prayer is not opioid-dependent. Further studies should employ an optimized design to explore whether reduced engagement of the frontoparietal system could indicate that prayer may attenuate pain through a reduction in processing of pain stimulus saliency and prefrontal control rather than through known descending pain inhibitory systems.

  13. Altered white matter integrity and development in children with autism: a combined voxel-based morphometry and diffusion imaging study.

    PubMed

    Mengotti, Paola; D'Agostini, Serena; Terlevic, Robert; De Colle, Cristina; Biasizzo, Elsa; Londero, Danielle; Ferro, Adele; Rambaldelli, Gianluca; Balestrieri, Matteo; Zanini, Sergio; Fabbro, Franco; Molteni, Massimo; Brambilla, Paolo

    2011-02-01

    A combined protocol of voxel-based morphometry (VBM) and diffusion-weighted imaging (DWI) was applied to investigate the neurodevelopment of gray and white matter in autism. Twenty children with autism (mean age= 7 ± 2.75 years old; age range: 4-14; 2 girls) and 22 matched normally developing children (mean age = 7.68 ± 2.03 years old; age range: 4-11; 2 girls) underwent magnetic resonance imaging (MRI). VBM was employed by applying the Template-o-Matic toolbox (TOM), a new approach which constructs the age-matched customized template for tissue segmentation. Also, the apparent diffusion coefficients (ADC) of water molecules were obtained from the analysis of DWI. Regions of interests (ROIs), standardized at 5 pixels, were placed in cortical lobes and corpus callosum on the non-diffusion weighted echo-planar images (b = 0) and were then automatically transferred to the corresponding maps to obtain the ADC values. Compared to normal children, individuals with autism had significantly: (1) increased white matter volumes in the right inferior frontal gyrus, the right fusiform gyrus, the left precentral and supplementary motor area and the left hippocampus, (2) increased gray matter volumes in the inferior temporal gyri bilaterally, the right inferior parietal cortex, the right superior occipital lobe and the left superior parietal lobule, and (3) decreased gray matter volumes in the right inferior frontal gyrus and the left supplementary motor area. Abnormally increased ADC values in the bilateral frontal cortex and in the left side of the genu of the corpus callosum were also reported in autism. Finally, age correlated negatively with lobar and callosal ADC measurements in individuals with autism, but not in children with normal development. These findings suggest cerebral dysconnectivity in the early phases of autism coupled with an altered white matter maturation trajectory during childhood potentially taking place in the frontal and parietal lobes, which may

  14. Aspects of sexual precocity and morphometry of uterus, placenta and embryos/fetuses in Piau breed and Commercial line gilts.

    PubMed

    Montes, José Carlos; Penitente-Filho, Jurandy Mauro; Guimarães, Simone Eliza Facioni; Lopes, Paulo Sávio; Camilo, Breno Soares; Shiomi, Hugo Hideki; Lima, Daniel Araújo; Pinho, Rogério Oliveira; Pereira, Jhonata Vieira Tavares do Nascimento; Okano, Denise Silva; Costa, Karine Assis; Guimarães, José Domingos

    2018-01-01

    In view of the importance of the genetic material of local breeds in the swine industry and the lack of information about reproductive performance of Piau females, two experiments were conducted to evaluate puberty and sexual maturity as well as the morphometry of embryos/fetuses, placenta and uterus during the first 90 days of gestation in Piau breed and Commercial line gilts. In experiment I, 37 Piau and 25 commercial line gilts were used. From the 120 days of age, detection of estrus was performed using mature boars from the first to third estrus of each gilt. Data regarding to age, body weight and estrus duration were recorded. After third estrus, females were slaughtered and ovaries were collected to determine ovulation rate. In experiment II, 36 Piau and 18 commercial line gilts were distributed into three groups according to the mating: Commercial, commercial line females x commercial line male; cross-mated, Piau females x commercial line male; and Piau, Piau females x Piau male. Gilts were slaughtered at 7, 15, 30, 45, 60 and 90 days of pregnancy. Piau females reached puberty and sexual maturity at the same age as commercial line females, but with lower weight; moreover, Piau group showed negative correlations of birth weight with puberty (-0.27) and sexual maturity (-0.29). Commercial gilts presented higher ovulation rate, weight and length of uterus, and length and thoracic circumference of fetuses. Nevertheless, number of fetuses was similar in all groups at 90 days of gestation suggesting that Piau females present higher survival rates of the conceptuses. The results showed differences between the genetic groups related to fetal and placental development, gestational losses, number of ovulations and uterine development. In addition, an intermediate status of fetal weight was observed in Piau/Commercial line crossbred conceptuses; thus, the selection of Piau females on reproductive traits to be mated with commercial line males would be an alternative to

  15. Reduced Brain Gray Matter Concentration in Patients With Obstructive Sleep Apnea Syndrome

    PubMed Central

    Joo, Eun Yeon; Tae, Woo Suk; Lee, Min Joo; Kang, Jung Woo; Park, Hwan Seok; Lee, Jun Young; Suh, Minah; Hong, Seung Bong

    2010-01-01

    Study Objectives: To investigate differences in brain gray matter concentrations or volumes in patients with obstructive sleep apnea syndrome (OSA) and healthy volunteers. Designs: Optimized voxel-based morphometry, an automated processing technique for MRI, was used to characterize structural differences in gray matter in newly diagnosed male patients. Setting: University hospital Patients and Participants: The study consisted of 36 male OSA and 31 non-apneic male healthy volunteers matched for age (mean age, 44.8 years). Interventions: Using the t-test, gray matter differences were identified. The statistical significance level was set to a false discovery rate P < 0.05 with an extent threshold of kE > 200 voxels. Measurements and Results: The mean apnea-hypopnea index (AHI) of patients was 52.5/ h. On visual inspection of MRI, no structural abnormalities were observed. Compared to healthy volunteers, the gray matter concentrations of OSA patients were significantly decreased in the left gyrus rectus, bilateral superior frontal gyri, left precentral gyrus, bilateral frontomarginal gyri, bilateral anterior cingulate gyri, right insular gyrus, bilateral caudate nuclei, bilateral thalami, bilateral amygdalo-hippocampi, bilateral inferior temporal gyri, and bilateral quadrangular and biventer lobules in the cerebellum (false discovery rate P < 0.05). Gray matter volume was not different between OSA patients and healthy volunteers. Conclusions: The brain gray matter deficits may suggest that memory impairment, affective and cardiovascular disturbances, executive dysfunctions, and dysregulation of autonomic and respiratory control frequently found in OSA patients might be related to morphological differences in the brain gray matter areas. Citation: Joo EY; Tae WS; Lee MJ; Kang JW; Park HS; Lee JY; Suh M; Hong SB. Reduced brain gray matter concentration in patients with obstructive sleep apnea syndrome. SLEEP 2010;33(2):235-241. PMID:20175407

  16. Histologic distinction between malignant mesothelioma, benign pleural lesion and carcinoma metastasis. Evaluation of the application of morphometry combined with histochemistry and immunostaining.

    PubMed

    Kwee, W S; Veldhuizen, R W; Golding, R P; Mullink, H; Stam, J; Donner, R; Boon, M E

    1982-01-01

    Thirty men and 7 women with malignant mesothelioma seen at the Free University Hospital from 1st January 1960 until 1st July 1981 were reviewed. The histological, histochemical and morphometrical findings are reported. These findings are compared with 25 cases of pleural metastatic carcinoma and 25 cases of reactive pleural lesions. Fourty-nine percent of malignant mesotheliomas produced hyaluronic acid, however all cases of pleural metastatic carcinomas failed to produce this substance. All cases of malignant mesothelioma were D-PAS negative while 15 cases of pleural metastatic carcinoma showed reactivity to D-PAS. All cases of malignant mesothelioma and 9 cases of metastases were CEA negative. To distinguish malignant mesothelioma from metastases it is advisable to perform the D-PAS staining first. If it is negative mesothelioma can be confirmed by showing hyaluronic acid activity. A positive CEA staining rules out mesothelioma. In our study it was shown that with these methods 18 of 37 mesotheliomas could be identified with certainty, and 22 of the 25 carcinoma metastases. Morphometrically the malignant mesotheliomas could not be distinguished from the metastases, however the reactive pleural lesions had smaller nuclei than the malignant cells with mean values below 30 mu2. In the malignant cases these values had a range from 36 to 101 mu2. In distinguishing between reactive pleural lesions and malignant mesothelioma the production of hyaluronic acid points to the malignant character of the lesion. Thus histochemistry and immunostaining are important in the distinction of malignant mesothelioma from metastases, while the value of morphometry lies mainly in the seperation of reactive lesions from malignant mesothelioma.

  17. Sastrugi Geometrical Properties and Morphometry Over Two Winter Seasons at col du Lac Blanc (french Alps, 2700 m a.s.l)

    NASA Astrophysics Data System (ADS)

    Naaim, Florence; Picard, Ghislain; Bellot, Hervé; Arnaud, Laurent; Vionnet, Vincent

    2017-04-01

    Some elements of snow surface roughness, such as ripple or sastrugi, are a direct manifestation of wind erosion and in turn modify the near-surface wind field and consequently the horizontal snow mass fluxes. This leads to a negative feedback between wind strength and surface roughness that must be taken into account in numerical models. Formation of sastrugi, which are elongated metric-scale ridges of wind-packed snow whose longitudinal axis is parallel to the prevailing wind at the time of their formation, is still not well-understood. The first step to provide new information about the formation and evolution of such features is to integrate meteorological data and accurate description of geometrical properties. But the complex and dynamic surface of sastrugi cannot be easily captured by manual measurements (Bellot et al., 2014), which furthermore must be frequent as the formation of new landforms can happen very quickly. That's why the potential of a low-cost time-lapse terrestrial laserscan RLS (Picard et al., 2016) has been investigated during the winter seasons 2015-2016 and 2016-2017 at Col du Lac Blanc in the French Alps. This experimental test site, dedicated to drifting snow studies, and subject to the formation of sastrugi is well-suited for such study : accurate meteorological data, including drifting snow fluxes, are available each 10 minutes. RLS covered a surface area of around 200 m2 for a spatial horizontal resolution of nearly 2 cm and monitored successfully surface roughness once a day during the whole winter seasons. Sastrugi geometrical parameters, such as the frontal area and average height of roughness elements has been extracted from the RLS data and the sastrugi morphometry has be examined over two winter seasons in link with snow fall, drifting snow occurence and intensity and wind speed.

  18. Spectroscopy, morphometry, and photoclinometry of Titan's dunefields from Cassini/VIMS

    USGS Publications Warehouse

    Barnes, J.W.; Brown, R.H.; Soderblom, L.; Sotin, Christophe; Le, Mouelic S.; Rodriguez, S.; Jaumann, R.; Beyer, R.A.; Buratti, B.J.; Pitman, K.; Baines, K.H.; Clark, R.; Nicholson, P.

    2008-01-01

    Fine-resolution (500 m/pixel) Cassini Visual and Infrared Mapping Spectrometer (VIMS) T20 observations of Titan resolve that moon's sand dunes. The spectral variability in some dune regions shows that there are sand-free interdune areas, wherein VIMS spectra reveal the exposed dune substrate. The interdunes from T20 are, variously, materials that correspond to the equatorial bright, 5-??m-bright, and dark blue spectral units. Our observations show that an enigmatic "dark red" spectral unit seen in T5 in fact represents a macroscopic mixture with 5-??m-bright material and dunes as its spectral endmembers. Looking more broadly, similar mixtures of varying amounts of dune and interdune units of varying composition can explain the spectral and albedo variability within the dark brown dune global spectral unit that is associated with dunes. The presence of interdunes indicates that Titan's dunefields are both mature and recently active. The spectrum of the dune endmember reveals the sand to be composed of less water ice than the rest of Titan; various organics are consistent with the dunes' measured reflectivity. We measure a mean dune spacing of 2.1 km, and find that the dunes are oriented on the average in an east-west direction, but angling up to 10?? from parallel to the equator in specific cases. Where no interdunes are present, we determine the height of one set of dunes photoclinometrically to be between 30 and 70 m. These results pave the way for future exploration and interpretation of Titan's sand dunes. ?? 2007 Elsevier Inc. All rights reserved.

  19. Multimodal MRI reveals structural connectivity differences in 22q11 deletion syndrome related to impaired spatial working memory.

    PubMed

    O'Hanlon, Erik; Howley, Sarah; Prasad, Sarah; McGrath, Jane; Leemans, Alexander; McDonald, Colm; Garavan, Hugh; Murphy, Kieran C

    2016-12-01

    Impaired spatial working memory is a core cognitive deficit observed in people with 22q11 Deletion syndrome (22q11DS) and has been suggested as a candidate endophenotype for schizophrenia. However, to date, the neuroanatomical mechanisms describing its structural and functional underpinnings in 22q11DS remain unclear. We quantitatively investigate the cognitive processes and associated neuroanatomy of spatial working memory in people with 22q11DS compared to matched controls. We examine whether there are significant between-group differences in spatial working memory using task related fMRI, Voxel based morphometry and white matter fiber tractography. Multimodal magnetic resonance imaging employing functional, diffusion and volumetric techniques were used to quantitatively assess the cognitive and neuroanatomical features of spatial working memory processes in 22q11DS. Twenty-six participants with genetically confirmed 22q11DS aged between 9 and 52 years and 26 controls aged between 8 and 46 years, matched for age, gender, and handedness were recruited. People with 22q11DS have significant differences in spatial working memory functioning accompanied by a gray matter volume reduction in the right precuneus. Gray matter volume was significantly correlated with task performance scores in these areas. Tractography revealed extensive differences along fibers between task-related cortical activations with pronounced differences localized to interhemispheric commissural fibers within the parietal section of the corpus callosum. Abnormal spatial working memory in 22q11DS is associated with aberrant functional activity in conjunction with gray and white matter structural abnormalities. These anomalies in discrete brain regions may increase susceptibility to the development of psychiatric disorders such as schizophrenia. Hum Brain Mapp 37:4689-4705, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Systematics and distribution of Cristaria plicata (Bivalvia, Unionidae) from the Russian Far East

    PubMed Central

    Klishko, Olga K.; Lopes-Lima, Manuel; Froufe, Elsa; Bogan, Arthur E.; Abakumova, Vera Y.

    2016-01-01

    Abstract The number of anodontine bivalve species placed in the genus Cristaria (Bivalvia, Unionidae) from the Russian Far East is still not stable among authors. Some recognize only one valid species Cristaria plicata (Leach, 1815) while others accept two additional species, Cristaria tuberculata Schumacher, 1817 and Cristaria herculea (Middendorff, 1847). In the present study, these taxonomic doubts are addressed using analyses of mitochondrial DNA sequences and shell morphometry. No significant differences have been revealed by the COI DNA sequences or the main statistical morphometric indices from the three Cristaria forms. In the specimens analysed, changes in shell morphometry with age suggest that original descriptions of the different forms may be attributed solely to differences in age and sex. We consider that Cristaria plicata, Cristaria tuberculata and Cristaria herculea from the Russian Far East should be considered as a single species, namely Cristaria plicata (Leach, 1815), with Cristaria tuberculata and Cristaria herculea as junior synonyms. The geographic range of Cristaria plicata and its conservation status are also presented here. PMID:27110206

  1. [Basic Regularities and Characteristics of Compound Reinforcing--reducing Manipulation of Acu- puncture Revealed by Data Mining].

    PubMed

    Yang, Qing-qing; Jia, Chun-sheng; Wang, Jian-ling; Li, Jun-lei; Feng, Xin-xin; Tan, Zhan-na; Li, Bo-ying; Zhu, Xue-liang; Shi, Jing; Sun, Yan-hui; Li, Xiao-feng; Xu, Jing; Zhang, Xuan-ping; Zhang, Xin; Du, Yu-zhu; Bao, Na; Wang, Qiong

    2016-04-01

    To explore the regularities and features of compound reinforcing-reducing manipulation of acupuncture filiform needles in the treatment of clinical conditions or diseases by using data mining technique, so as to guide clinical practice. At first, the data base about the reinforcing-reducing manipulation (CRRM) of filiform needles for different clinical problems was established by collection, sorting, screening, recording, collation, data extraction of the related original papers published in journals and conferences and related academic dissertations from Jan. 1 of 1950 to Jan. 31 of 2015 by using key words of "acupuncture" "moxibustion" "needling" "filiform needle", and according to the included and excluded standards. A total of 130 835 papers met the included standards were collected. Outcomes of data mining in the present study showed that (1) the ORRM is most frequently applied in the internal medicine, followed by surgery, gynecology, ophthalmology and otorhinolaryngology, dermatology, and pediatrics, successively, mostly for lumbago and leg pain; (2) the heat-producing needling manipulation is the most frequently applied technique, followed by cool-producing needling, dragon-tiger warring, yang occluding in yin, yin occluding in yang techniques; (3) the highest effective rate of CRRM is for problems of the pediatrics, followed by those of the internal medicine, surgery, ophthalmology and otorhinolaryngology, dermatology, and gynecology; (4) the most fre- quently used acupoints are Zusanli (ST 36), then Sanyinjiao (SP 6), stimulated by heat-producing needling, and Zusanli (ST 36), then Quchi (LI 11), stimulated by cool-producing needling, and Huantiao (GB 30), stimulated by dragon-tiger warring needling. The compound reinforcing-reducing manipulation of acupuncture is most frequently applied to problems in the inter- nal medicine, predominately for lumbago and leg pain, and the best effectiveness is for pediatric conditions. The heat-producing needling and

  2. Pattern of structural brain changes in social anxiety disorder after cognitive behavioral group therapy: a longitudinal multimodal MRI study.

    PubMed

    Steiger, V R; Brühl, A B; Weidt, S; Delsignore, A; Rufer, M; Jäncke, L; Herwig, U; Hänggi, J

    2017-08-01

    Social anxiety disorder (SAD) is characterized by fears of social and performance situations. Cognitive behavioral group therapy (CBGT) has in general positive effects on symptoms, distress and avoidance in SAD. Prior studies found increased cortical volumes and decreased fractional anisotropy (FA) in SAD compared with healthy controls (HCs). Thirty-three participants diagnosed with SAD attended in a 10-week CBGT and were scanned before and after therapy. We applied three neuroimaging methods-surface-based morphometry, diffusion tensor imaging and network-based statistics-each with specific longitudinal processing protocols, to investigate CBGT-induced structural brain alterations of the gray and white matter (WM). Surface-based morphometry revealed a significant cortical volume reduction (pre- to post-treatment) in the left inferior parietal cortex, as well as a positive partial correlation between treatment success (indexed by reductions in Liebowitz Social Anxiety Scale) and reductions in cortical volume in bilateral dorsomedial prefrontal cortex. Diffusion tensor imaging analysis revealed a significant increase in FA in bilateral uncinate fasciculus and right inferior longitudinal fasciculus. Network-based statistics revealed a significant increase of structural connectivity in a frontolimbic network. No partial correlations with treatment success have been found in WM analyses. For, we believe, the first time, we present a distinctive pattern of longitudinal structural brain changes after CBGT measured with three established magnetic resonance imaging analyzing techniques. Our findings are in line with previous cross-sectional, unimodal SAD studies and extent them by highlighting anatomical brain alterations that point toward the level of HCs in parallel with a reduction in SAD symptomatology.

  3. Changes of respiratory system in mice exposed to PM4.0 or TSP from exhaust gases of combustion of cashew nut shell.

    PubMed

    Josino, Jeanne Batista; Serra, Daniel Silveira; Gomes, Maria Diana Moreira; Araújo, Rinaldo Santos; de Oliveira, Mona Lisa Moura; Cavalcante, Francisco Sales Ávila

    2017-12-01

    Air pollution is a topic discussed all over the world and the search for alternatives to reduce it is of great interest to many researchers. The use of alternative energy sources and biofuels seems to be the environmentally safer solution. In this work, the deleterious effects on the respiratory system of mice exposed to PM 4.0 or TSP, present in exhaust gases from the combustion of CNS were investigated, through data from respiratory system mechanics, oxidative stress, histopathology and morphometry of the parenchyma pulmonary. The results show changes in all variables of respiratory system mechanics, in oxidative stress, the histopathological analysis and lung morphometry. The results provide experimental support for epidemiological observations of association between effects on the respiratory system and exposure to PM 4.0 or TSP from CNS combustion exhaust gases, even at acute exposure. It can serve as a basis for regulation or adjustment of environmental laws that control the emissions of these gases. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Morphology and morphometry of fetal liver at 16-26 weeks of gestation by magnetic resonance imaging: Comparison with embryonic liver at Carnegie stage 23.

    PubMed

    Hamabe, Yui; Hirose, Ayumi; Yamada, Shigehito; Uwabe, Chigako; Okada, Tomohisa; Togashi, Kaori; Kose, Katsumi; Takakuwa, Tetsuya

    2013-06-01

    Normal liver growth was described morphologically and morphometrically using magnetic resonance imaging (MRI) data of human fetuses, and compared with embryonic liver to establish a normal reference chart for clinical use. MRI images from 21 fetuses at 16-26 weeks of gestation and eight embryos at Carnegie stage (CS)23 were investigated in the present study. Using the image data, the morphology of the liver as well as its adjacent organs was extracted and reconstructed three-dimensionally. Morphometry of fetal liver growth was performed using simple regression analysis. The fundamental morphology was similar in all cases of the fetal livers examined. The liver tended to grow along the transversal axis. The four lobes were clearly recognizable in the fetal liver but not in the embryonic liver. The length of the liver along the three axes, liver volume and four lobes correlated with the bodyweight (BW). The morphogenesis of the fetal liver on the dorsal and caudal sides was affected by the growth of the abdominal organs, such as the stomach, duodenum and spleen, and retroperitoneal organs, such as the right adrenal gland and right kidney. The main blood vessels such as inferior vena cava, portal vein and umbilical vein made a groove on the surface of the liver. Morphology of the fetal liver was different from that of the embryonic liver at CS23. The present data will be useful for evaluating the development of the fetal liver and the adjacent organs that affect its morphology. © 2012 The Japan Society of Hepatology.

  5. Effect of Reduced Tube Voltage on Diagnostic Accuracy of CT Colonography.

    PubMed

    Futamata, Yoshihiro; Koide, Tomoaki; Ihara, Riku

    2017-01-01

    The normal tube voltage in computed tomography colonography (CTC) is 120 kV. Some reports indicate that the use of a low tube voltage (lower than 120 kV) technique plays a significant role in reduction of radiation dose. However, to determine whether a lower tube voltage can reduce radiation dose without compromising diagnostic accuracy, an evaluation of images that are obtained while maintaining the volume CT dose index (CTDI vol ) is required. This study investigated the effect of reduced tube voltage in CTC, without modifying radiation dose (i.e. constant CTDI vol ), on image quality. Evaluation of image quality involved the shape of the noise power spectrum, surface profiling with volume rendering (VR), and receiver operating characteristic (ROC) analysis. The shape of the noise power spectrum obtained with a tube voltage of 80 kV and 100 kV was not similar to the one produced with a tube voltage of 120 kV. Moreover, a higher standard deviation was observed on volume-rendered images that were generated using the reduced tube voltages. In addition, ROC analysis revealed a statistically significant drop in diagnostic accuracy with reduced tube voltage, revealing that the modification of tube voltage affects volume-rendered images. The results of this study suggest that reduction of tube voltage in CTC, so as to reduce radiation dose, affects image quality and diagnostic accuracy.

  6. Influence of Gestational Overfeeding on Myocardial Pro-inflammatory Mediators in Fetal Sheep Heart

    PubMed Central

    Kandadi, Machender R.; Hua, Yinan; Zhu, Meijun; Turdi, Subat; Nathanielsz, Peter W.; Ford, Stephen P.; Nair, Sreejayan; Ren, Jun

    2013-01-01

    Maternal overnutrition is associated with predisposition of offspring to cardiovascular disease in later life. Since maternal overnutrition may promote fetal and placental inflammatory responses, we hypothesized that maternal overnutrition/obesity increases expression of fetal cardiac proinflammatory mediators and alter cardiac morphometry. Multiparous ewes were fed either 150% of National Research Council (NRC) nutrient recommendations (overfed) or 100% of NRC requirement (control) from 60 days prior to mating to gestation day 75 (D75), when ewes were euthanized. An additional cohort of overfed and control ewes were necropsied on D135. Cardiac morphometry, histology, mRNA and protein expression of TLR4, iNOS, IL-1a, IL-1b, IL-6, IL-18, CD-14, CD-68, M-CSF and protein levels of phosphorylated I-κB and NF-κB were examined. Immunohistochemistry was performed to assess neutrophil and monocyte infiltration. Crown rump length, left and right ventricular free wall weights as well as left and right ventricular wall thickness were significantly increased in D75 fetuses of overfed mothers. Hematoxylin and eosin staining revealed irregular myofiber orientation and increased interstitial space in fetal ventricular tissues born to overfed mothers. Oil red O staining exhibited marked lipid droplet accumulation in the overfed fetuses. Overfeeding significantly enhanced TLR-4, IL-1a, IL-1b IL-6 expression, promoted phosphorylation of IκB, decreased cytoplasmic NF-κB levels and increased neutrophil and monocyte infiltration. Collectively, these data suggest that maternal overfeeding prior to and throughout gestation leads to inflammation in the fetal heart and alters fetal cardiac morphometry. PMID:24075902

  7. Extraction of sandy bedforms features through geodesic morphometry

    NASA Astrophysics Data System (ADS)

    Debese, Nathalie; Jacq, Jean-José; Garlan, Thierry

    2016-09-01

    State-of-art echosounders reveal fine-scale details of mobile sandy bedforms, which are commonly found on continental shelfs. At present, their dynamics are still far from being completely understood. These bedforms are a serious threat to navigation security, anthropic structures and activities, placing emphasis on research breakthroughs. Bedform geometries and their dynamics are closely linked; therefore, one approach is to develop semi-automatic tools aiming at extracting their structural features from bathymetric datasets. Current approaches mimic manual processes or rely on morphological simplification of bedforms. The 1D and 2D approaches cannot address the wide ranges of both types and complexities of bedforms. In contrast, this work attempts to follow a 3D global semi-automatic approach based on a bathymetric TIN. The currently extracted primitives are the salient ridge and valley lines of the sand structures, i.e., waves and mega-ripples. The main difficulty is eliminating the ripples that are found to heavily overprint any observations. To this end, an anisotropic filter that is able to discard these structures while still enhancing the wave ridges is proposed. The second part of the work addresses the semi-automatic interactive extraction and 3D augmented display of the main lines structures. The proposed protocol also allows geoscientists to interactively insert topological constraints.

  8. Interhemispheric Plasticity following Intermittent Theta Burst Stimulation in Chronic Poststroke Aphasia

    PubMed Central

    Griffis, Joseph C.; Nenert, Rodolphe; Allendorfer, Jane B.; Szaflarski, Jerzy P.

    2016-01-01

    The effects of noninvasive neurostimulation on brain structure and function in chronic poststroke aphasia are poorly understood. We investigated the effects of intermittent theta burst stimulation (iTBS) applied to residual language-responsive cortex in chronic patients using functional and anatomical MRI data acquired before and after iTBS. Lateralization index (LI) analyses, along with comparisons of inferior frontal gyrus (IFG) activation and connectivity during covert verb generation, were used to assess changes in cortical language function. Voxel-based morphometry (VBM) was used to assess effects on regional grey matter (GM). LI analyses revealed a leftward shift in IFG activity after treatment. While left IFG activation increased, right IFG activation decreased. Changes in right to left IFG connectivity during covert verb generation also decreased after iTBS. Behavioral correlations revealed a negative relationship between changes in right IFG activation and improvements in fluency. While anatomical analyses did not reveal statistically significant changes in grey matter volume, the fMRI results provide evidence for changes in right and left IFG function after iTBS. The negative relationship between post-iTBS changes in right IFG activity during covert verb generation and improvements in fluency suggests that iTBS applied to residual left-hemispheric language areas may reduce contralateral responses related to language production and facilitate recruitment of residual language areas after stroke. PMID:26881111

  9. Interhemispheric Plasticity following Intermittent Theta Burst Stimulation in Chronic Poststroke Aphasia.

    PubMed

    Griffis, Joseph C; Nenert, Rodolphe; Allendorfer, Jane B; Szaflarski, Jerzy P

    2016-01-01

    The effects of noninvasive neurostimulation on brain structure and function in chronic poststroke aphasia are poorly understood. We investigated the effects of intermittent theta burst stimulation (iTBS) applied to residual language-responsive cortex in chronic patients using functional and anatomical MRI data acquired before and after iTBS. Lateralization index (LI) analyses, along with comparisons of inferior frontal gyrus (IFG) activation and connectivity during covert verb generation, were used to assess changes in cortical language function. Voxel-based morphometry (VBM) was used to assess effects on regional grey matter (GM). LI analyses revealed a leftward shift in IFG activity after treatment. While left IFG activation increased, right IFG activation decreased. Changes in right to left IFG connectivity during covert verb generation also decreased after iTBS. Behavioral correlations revealed a negative relationship between changes in right IFG activation and improvements in fluency. While anatomical analyses did not reveal statistically significant changes in grey matter volume, the fMRI results provide evidence for changes in right and left IFG function after iTBS. The negative relationship between post-iTBS changes in right IFG activity during covert verb generation and improvements in fluency suggests that iTBS applied to residual left-hemispheric language areas may reduce contralateral responses related to language production and facilitate recruitment of residual language areas after stroke.

  10. Annotation of the Asian Citrus Psyllid Genome Reveals a Reduced Innate Immune System

    PubMed Central

    Arp, Alex P.; Hunter, Wayne B.; Pelz-Stelinski, Kirsten S.

    2016-01-01

    Citrus production worldwide is currently facing significant losses due to citrus greening disease, also known as Huanglongbing. The citrus greening bacteria, Candidatus Liberibacter asiaticus (CLas), is a persistent propagative pathogen transmitted by the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae). Hemipterans characterized to date lack a number of insect immune genes, including those associated with the Imd pathway targeting Gram-negative bacteria. The D. citri draft genome was used to characterize the immune defense genes present in D. citri. Predicted mRNAs identified by screening the published D. citri annotated draft genome were manually searched using a custom database of immune genes from previously annotated insect genomes. Toll and JAK/STAT pathways, general defense genes Dual oxidase, Nitric oxide synthase, prophenoloxidase, and cellular immune defense genes were present in D. citri. In contrast, D. citri lacked genes for the Imd pathway, most antimicrobial peptides, 1,3-β-glucan recognition proteins (GNBPs), and complete peptidoglycan recognition proteins. These data suggest that D. citri has a reduced immune capability similar to that observed in A. pisum, P. humanus, and R. prolixus. The absence of immune system genes from the D. citri genome may facilitate CLas infections, and is possibly compensated for by their relationship with their microbial endosymbionts. PMID:27965582

  11. Reduced Pain Sensation and Reduced BOLD Signal in Parietofrontal Networks during Religious Prayer

    PubMed Central

    Elmholdt, Else-Marie; Skewes, Joshua; Dietz, Martin; Møller, Arne; Jensen, Martin S.; Roepstorff, Andreas; Wiech, Katja; Jensen, Troels S.

    2017-01-01

    Previous studies suggest that religious prayer can alter the experience of pain via expectation mechanisms. While brain processes related to other types of top-down modulation of pain have been studied extensively, no research has been conducted on the potential effects of active religious coping. Here, we aimed at investigating the neural mechanisms during pain modulation by prayer and their dependency on the opioidergic system. Twenty-eight devout Protestants performed religious prayer and a secular contrast prayer during painful electrical stimulation in two fMRI sessions. Naloxone or saline was administered prior to scanning. Results show that pain intensity was reduced by 11% and pain unpleasantness by 26% during religious prayer compared to secular prayer. Expectancy predicted large amounts (70–89%) of the variance in pain intensity. Neuroimaging results revealed reduced neural activity during religious prayer in a large parietofrontal network relative to the secular condition. Naloxone had no significant effect on ratings or neural activity. Our results thus indicate that, under these conditions, pain modulation by prayer is not opioid-dependent. Further studies should employ an optimized design to explore whether reduced engagement of the frontoparietal system could indicate that prayer may attenuate pain through a reduction in processing of pain stimulus saliency and prefrontal control rather than through known descending pain inhibitory systems. PMID:28701940

  12. Rheological measurements in reduced gravity

    NASA Astrophysics Data System (ADS)

    Bakhtiyarov, Sayavur I.; Overfelt, Ruel A.

    1999-01-01

    Rheology of fluidized beds and settling suspensions were studied experimentally in a series of reduced gravity parabolic flights aboard NASA's KC-135 aircraft. Silica sands of two different size distributions were fluidized by air. The slurries were made using silica sand and Glycerol solution. The experimental set up incorporated instrumentation to measure the air flow rate, the pressure drop and the apparent viscosity of the fluidized sand and sand suspensions at a wide range of the shear rates. The fluidization chamber and container had transparent walls to allow visualization of the structure changes involved in fluidization and in Couette flow in reduced gravity. Experiments were performed over a broad range of gravitational accelerations including microgravity and double gravity conditions. The results of the flight and ground experiments reveal significant differences in overall void fraction and hence in the apparent viscosity of fluidized sand and sand suspensions under microgravity as compared to one-g conditions.

  13. A methodological assessment of studies that use voxel-based morphometry to study neural changes in tinnitus patients.

    PubMed

    Scott-Wittenborn, Nicholas; Karadaghy, Omar A; Piccirillo, Jay F; Peelle, Jonathan E

    2017-11-01

    The scientific understanding of tinnitus and its etiology has transitioned from thinking of tinnitus as solely a peripheral auditory problem to an increasing awareness that cortical networks may play a critical role in tinnitus percept or bother. With this change, studies that seek to use structural brain imaging techniques to better characterize tinnitus patients have become more common. These studies include using voxel-based morphometry (VBM) to determine if there are differences in regional gray matter volume in individuals who suffer from tinnitus and those who do not. However, studies using VBM in patients with tinnitus have produced inconsistent and sometimes contradictory results. This paper is a systematic review of all of the studies to date that have used VBM to study regional gray matter volume in people with tinnitus, and explores ways in which methodological differences in these studies may account for their heterogeneous results. We also aim to provide guidance on how to conduct future studies using VBM to produce more reproducible results to further our understanding of disease processes such as tinnitus. Studies about tinnitus and VBM were searched for using PubMed and Embase. These returned 15 and 25 results respectively. Of these, nine met the study criteria and were included for review. An additional 5 studies were identified in the literature as pertinent to the topic at hand and were added to the review, for a total of 13 studies. There was significant heterogeneity among the studies in several areas, including inclusion and exclusion criteria, software programs, and statistical analysis. We were not able to find publicly shared data or code for any study. The differences in study design, software analysis, and statistical methodology make direct comparisons between the different studies difficult. Especially problematic are the differences in the inclusion and exclusion criteria of the study, and the statistical design of the studies, both of

  14. Imaging Effects of Neurotrophic Factor Genes on Brain Plasticity and Repair in Multiple Sclerosis

    DTIC Science & Technology

    2010-07-01

    cortical thickness and subcortical volume measures, lesion volumetry , and voxel-based morphometry and diffusion imaging. We are continuing to...th ickness and subcortical volume measures, lesion volumetry , and voxel-based morphometry and diffusion imaging. Regressio n and symbolic modeling

  15. Mapping the “What” and “Where” Visual Cortices and Their Atrophy in Alzheimer's Disease: Combined Activation Likelihood Estimation with Voxel-Based Morphometry

    PubMed Central

    Deng, Yanjia; Shi, Lin; Lei, Yi; Liang, Peipeng; Li, Kuncheng; Chu, Winnie C. W.; Wang, Defeng

    2016-01-01

    The human cortical regions for processing high-level visual (HLV) functions of different categories remain ambiguous, especially in terms of their conjunctions and specifications. Moreover, the neurobiology of declined HLV functions in patients with Alzheimer's disease (AD) has not been fully investigated. This study provides a functionally sorted overview of HLV cortices for processing “what” and “where” visual perceptions and it investigates their atrophy in AD and MCI patients. Based upon activation likelihood estimation (ALE), brain regions responsible for processing five categories of visual perceptions included in “what” and “where” visions (i.e., object, face, word, motion, and spatial visions) were analyzed, and subsequent contrast analyses were performed to show regions with conjunctive and specific activations for processing these visual functions. Next, based on the resulting ALE maps, the atrophy of HLV cortices in AD and MCI patients was evaluated using voxel-based morphometry. Our ALE results showed brain regions for processing visual perception across the five categories, as well as areas of conjunction and specification. Our comparisons of gray matter (GM) volume demonstrated atrophy of three “where” visual cortices in late MCI group and extensive atrophy of HLV cortices (25 regions in both “what” and “where” visual cortices) in AD group. In addition, the GM volume of atrophied visual cortices in AD and MCI subjects was found to be correlated to the deterioration of overall cognitive status and to the cognitive performances related to memory, execution, and object recognition functions. In summary, these findings may add to our understanding of HLV network organization and of the evolution of visual perceptual dysfunction in AD as the disease progresses. PMID:27445770

  16. Reduced evolutionary rates in HIV-1 reveal extensive latency periods among replicating lineages.

    PubMed

    Immonen, Taina T; Leitner, Thomas

    2014-10-16

    HIV-1 can persist for the duration of a patient's life due in part to its ability to hide from the immune system, and from antiretroviral drugs, in long-lived latent reservoirs. Latent forms of HIV-1 may also be disproportionally involved in transmission. Thus, it is important to detect and quantify latency in the HIV-1 life cycle. We developed a novel molecular clock-based phylogenetic tool to investigate the prevalence of HIV-1 lineages that have experienced latency. The method removes alternative sources that may affect evolutionary rates, such as hypermutation, recombination, and selection, to reveal the contribution of generation-time effects caused by latency. Our method was able to recover latent lineages with high specificity and sensitivity, and low false discovery rates, even on relatively short branches on simulated phylogenies. Applying the tool to HIV-1 sequences from 26 patients, we show that the majority of phylogenetic lineages have been affected by generation-time effects in every patient type, whether untreated, elite controller, or under effective or failing treatment. Furthermore, we discovered extensive effects of latency in sequence data (gag, pol, and env) from reservoirs as well as in the replicating plasma population. To better understand our phylogenetic findings, we developed a dynamic model of virus-host interactions to investigate the proportion of lineages in the actively replicating population that have ever been latent. Assuming neutral evolution, our dynamic modeling showed that under most parameter conditions, it is possible for a few activated latent viruses to propagate so that in time, most HIV-1 lineages will have been latent at some time in their past. These results suggest that cycling in and out of latency plays a major role in the evolution of HIV-1. Thus, no aspect of HIV-1 evolution can be fully understood without considering latency - including treatment, drug resistance, immune evasion, transmission, and pathogenesis.

  17. A fractional factorial probabilistic collocation method for uncertainty propagation of hydrologic model parameters in a reduced dimensional space

    NASA Astrophysics Data System (ADS)

    Wang, S.; Huang, G. H.; Huang, W.; Fan, Y. R.; Li, Z.

    2015-10-01

    In this study, a fractional factorial probabilistic collocation method is proposed to reveal statistical significance of hydrologic model parameters and their multi-level interactions affecting model outputs, facilitating uncertainty propagation in a reduced dimensional space. The proposed methodology is applied to the Xiangxi River watershed in China to demonstrate its validity and applicability, as well as its capability of revealing complex and dynamic parameter interactions. A set of reduced polynomial chaos expansions (PCEs) only with statistically significant terms can be obtained based on the results of factorial analysis of variance (ANOVA), achieving a reduction of uncertainty in hydrologic predictions. The predictive performance of reduced PCEs is verified by comparing against standard PCEs and the Monte Carlo with Latin hypercube sampling (MC-LHS) method in terms of reliability, sharpness, and Nash-Sutcliffe efficiency (NSE). Results reveal that the reduced PCEs are able to capture hydrologic behaviors of the Xiangxi River watershed, and they are efficient functional representations for propagating uncertainties in hydrologic predictions.

  18. Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin

    NASA Technical Reports Server (NTRS)

    Dhillon, Ashita; Teske, Andreas; Dillon, Jesse; Stahl, David A.; Sogin, Mitchell L.

    2003-01-01

    The Guaymas Basin (Gulf of California) is a hydrothermal vent site where thermal alteration of deposited planktonic and terrestrial organic matter forms petroliferous material which supports diverse sulfate-reducing bacteria. We explored the phylogenetic and functional diversity of the sulfate-reducing bacteria by characterizing PCR-amplified dissimilatory sulfite reductase (dsrAB) and 16S rRNA genes from the upper 4 cm of the Guaymas sediment. The dsrAB sequences revealed that there was a major clade closely related to the acetate-oxidizing delta-proteobacterial genus Desulfobacter and a clade of novel, deeply branching dsr sequences related to environmental dsr sequences from marine sediments in Aarhus Bay and Kysing Fjord (Denmark). Other dsr clones were affiliated with gram-positive thermophilic sulfate reducers (genus Desulfotomaculum) and the delta-proteobacterial species Desulforhabdus amnigena and Thermodesulforhabdus norvegica. Phylogenetic analysis of 16S rRNAs from the same environmental samples resulted in identification of four clones affiliated with Desulfobacterium niacini, a member of the acetate-oxidizing, nutritionally versatile genus Desulfobacterium, and one clone related to Desulfobacula toluolica and Desulfotignum balticum. Other bacterial 16S rRNA bacterial phylotypes were represented by non-sulfate reducers and uncultured lineages with unknown physiology, like OP9, OP8, as well as a group with no clear affiliation. In summary, analyses of both 16S rRNA and dsrAB clone libraries resulted in identification of members of the Desulfobacteriales in the Guaymas sediments. In addition, the dsrAB sequencing approach revealed a novel group of sulfate-reducing prokaryotes that could not be identified by 16S rRNA sequencing.

  19. Reduced Arogenate Dehydratase Expression: Ramifications for Photosynthesis and Metabolism1[OPEN

    PubMed Central

    Höhner, Ricarda; Ito, Tetsuro; Amakura, Yoshiaki; Weitz, Karl

    2018-01-01

    Arogenate dehydratase (ADT) catalyzes the final step of phenylalanine (Phe) biosynthesis. Previous work showed that ADT-deficient Arabidopsis (Arabidopsis thaliana) mutants had significantly reduced lignin contents, with stronger reductions in lines that had deficiencies in more ADT isoforms. Here, by analyzing Arabidopsis ADT mutants using our phenomics facility and ultra-performance liquid chromatography-mass spectrometry-based metabolomics, we describe the effects of the modulation of ADT on photosynthetic parameters and secondary metabolism. Our data indicate that a reduced carbon flux into Phe biosynthesis in ADT mutants impairs the consumption of photosynthetically produced ATP, leading to an increased ATP/ADP ratio, the overaccumulation of transitory starch, and lower electron transport rates. The effect on electron transport rates is caused by an increase in proton motive force across the thylakoid membrane that down-regulates photosystem II activity by the high-energy quenching mechanism. Furthermore, quantitation of secondary metabolites in ADT mutants revealed reduced flavonoid, phenylpropanoid, lignan, and glucosinolate contents, including glucosinolates that are not derived from aromatic amino acids, and significantly increased contents of putative galactolipids and apocarotenoids. Additionally, we used real-time atmospheric monitoring mass spectrometry to compare respiration and carbon fixation rates between the wild type and adt3/4/5/6, our most extreme ADT knockout mutant, which revealed no significant difference in both night- and day-adapted plants. Overall, these data reveal the profound effects of altered ADT activity and Phe metabolism on secondary metabolites and photosynthesis with implications for plant improvement. PMID:29523714

  20. Systems-based analysis of Arabidopsis leaf growth reveals adaptation to water deficit

    PubMed Central

    Baerenfaller, Katja; Massonnet, Catherine; Walsh, Sean; Baginsky, Sacha; Bühlmann, Peter; Hennig, Lars; Hirsch-Hoffmann, Matthias; Howell, Katharine A; Kahlau, Sabine; Radziejwoski, Amandine; Russenberger, Doris; Rutishauser, Dorothea; Small, Ian; Stekhoven, Daniel; Sulpice, Ronan; Svozil, Julia; Wuyts, Nathalie; Stitt, Mark; Hilson, Pierre; Granier, Christine; Gruissem, Wilhelm

    2012-01-01

    Leaves have a central role in plant energy capture and carbon conversion and therefore must continuously adapt their development to prevailing environmental conditions. To reveal the dynamic systems behaviour of leaf development, we profiled Arabidopsis leaf number six in depth at four different growth stages, at both the end-of-day and end-of-night, in plants growing in two controlled experimental conditions: short-day conditions with optimal soil water content and constant reduced soil water conditions. We found that the lower soil water potential led to reduced, but prolonged, growth and an adaptation at the molecular level without a drought stress response. Clustering of the protein and transcript data using a decision tree revealed different patterns in abundance changes across the growth stages and between end-of-day and end-of-night that are linked to specific biological functions. Correlations between protein and transcript levels depend on the time-of-day and also on protein localisation and function. Surprisingly, only very few of >1700 quantified proteins showed diurnal abundance fluctuations, despite strong fluctuations at the transcript level. PMID:22929616