Sample records for moss hylocomium splendens

  1. Symplasmic and apoplasmic transport inside feather moss stems of Pleurozium schreberi and Hylocomium splendens.

    PubMed

    Sokolowska, K; Turzanska, M; Nilsson, M-C

    2017-11-10

    The ubiquitous feather mosses Pleurozium schreberi and Hylocomium splendens form a thick, continuous boundary layer between the soil and the atmosphere, and play important roles in hydrology and nutrient cycling in tundra and boreal ecosystems. The water fluxes among these mosses and environmental factors controlling them are poorly understood. The aim of this study was to investigate whether feather mosses are capable of internal transport and to provide a better understanding of species-specific morphological traits underlying this function. The impacts of environmental conditions on their internal transport rates were also investigated. Cells involved in water and food conduction in P. schreberi and H. splendens were identified by transmission electron microscopy. Symplasmic and apoplasmic fluorescent tracers were applied to the moss stems to determine the routes of internal short- and long-distance transport and the impact of air humidity on the transport rates. Symplasmic transport over short distances occurs via food-conducting cells in both mosses. Pleurozium schreberi is also capable of apoplasmic internal long-distance transport via a central strand of hydroids. These are absent in H. splendens. Reduced air humidity significantly increased the internal transport of both species, and the increase was significantly faster for P. schreberi than for H. splendens. Pleurozium schreberi and Hylocomium splendens are capable of internal transport but the pathway and conductivity differ due to differences in stem anatomy. These results help explain their varying desiccation tolerance and possibly their differing physiology and autecology and, ultimately, their impact on ecosystem functioning. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  2. Mercury in mosses Hylocomium splendens (Hedw.) B.S.G. and Pleurozium schreberi (Brid.) Mitt. from Poland and Alaska: Understanding the origin of pollution sources

    USGS Publications Warehouse

    Migaszewski, Z.M.; Galuszka, A.; Dole, ogonekgowska S.; Crock, J.G.; Lamothe, P.J.

    2010-01-01

    This report shows baseline concentrations of mercury in the moss species Hylocomium splendens and Pleurozium schreberi from the Kielce area and the remaining Holy Cross Mountains (HCM) region (south-central Poland), and Wrangell-Saint Elias National Park and Preserve (Alaska) and Denali National Park and Preserve (Alaska). Like mosses from many European countries, Polish mosses were distinctly elevated in Hg, bearing a signature of cross-border atmospheric transport combined with local point sources. In contrast, Alaskan mosses showed lower Hg levels, reflecting mostly the underlying geology. Compared to HCM, Alaskan and Kielce mosses exhibited more uneven spatial distribution patterns of Hg. This variation is linked to topography and location of local point sources (Kielce) and underlying geology (Alaska). Both H. splendens and P. schreberi showed similar bioaccumulative capabilities of Hg in all four study areas. ?? 2010 Elsevier Inc.

  3. Testate amoebae (Protista) communities in Hylocomium splendens (Hedw.) B.S.G. (Bryophyta): relationships with altitude, and moss elemental chemistry.

    PubMed

    Mitchell, Edward A D; Bragazza, Luca; Gerdol, Renato

    2004-12-01

    We studied the testate amoebae in the moss Hylocomium splendens along an altitudinal gradient from 1000 to 2200 m asl. in the south-eastern Alps of Italy in relation to micro- and macro-nutrient content of moss plants. Three mountainous areas were chosen, two of them characterised by calcareous bedrock, the third by siliceous bedrock. A total of 25 testate amoebae taxa were recorded, with a mean species richness of 9.3 per sampling plot. In a canonical correspondence analysis, 63.1% of the variation in the amoebae data was explained by moss tissue chemistry, namely by C, P, Ca, Mg, Al, Fe, and Na content and a binary site variable. We interpreted this result as an indirect effect of moss chemistry on testate amoebae through an influence on prey organisms. Although two species responded to altitude, there was no overall significant relationship between testate amoebae diversity or community structure and altitude, presumably because our sampling protocol aimed at minimizing the variability due to vegetation types and soil heterogeneity. This suggests that previous evidence of altitudinal or latitudinal effects on testate amoebae diversity may at least in part be due to a sampling bias, namely differences in soil type or moss species sampled.

  4. Hydration state of the moss Hylocomium splendens and the lichen Cladina stellaris governs uptake and revolatilization of airborne α- and γ-hexachlorocyclohexane.

    PubMed

    Kylin, Henrik; Bouwman, Henk

    2012-10-16

    The partitioning of α- and γ-hexachlorocyclohexane between air and the moss Hylocomium splendens and the lichen Cladina stellaris were studied under laboratory conditions. After cultivation of the sample material to obtain a common starting point free from outside influence, the material was divided into four different treatment categories with different hydration/desiccation regimes. The concentrations of the analytes were 3-5 times higher in the hydrated moss or lichen than in the desiccated material. The results are in contrast to how these compounds are taken up by pine needles in which there is a continuous accumulation, more rapid during periods with high temperatures and dry weather. In general, the different adaptations to water economy is a more important explanatory factor for the concentration of airborne hydrophobic pollutants in mosses, lichens, and vascular plants than their designation as "plants" in a broad sense. It is, therefore, not advisible to mix data from different organism groups for monitoring or modeling purposes.

  5. Interspecies and interregional comparisons of the chemistry of PAHs and trace elements in mosses Hylocomium splendens (Hedw.) B.S.G. and Pleurozium schreberi (Brid.) Mitt. from Poland and Alaska

    USGS Publications Warehouse

    Migaszewski, Z.M.; Galuszka, A.; Crock, J.G.; Lamothe, P.J.; Dolegowska, S.

    2009-01-01

    Comparative biogeochemical studies performed on the same plant species in remote areas enable pinpointing interspecies and interregional differences of chemical composition. This report presents baseline concentrations of PAHs and trace elements in moss species Hylocomium splendens and Pleurozium schreberi from the Holy Cross Mountains (south-central Poland) (HCM) and Wrangell-Saint Elias National Park and Preserve (Alaska) and Denali National Park and Preserve (Alaska). Total PAH concentrations in the mosses of HCM were in the range of 473-2970 ??g kg-1 (dry weight basis; DW), whereas those in the same species of Alaska were 80-3390 ??g kg-1 DW. Nearly all the moss samples displayed the similar ring sequence: 3 > 4 > 5 > 6 for the PAHs. The 3 + 4 ring/total PAH ratios show statistically significant differences between HCM (0.73) and Alaska (0.91). The elevated concentrations of PAHs observed in some sampling locations of the Alaskan parks were linked to local combustion of wood, with a component of vehicle particle- and vapor-phase emissions. In HCM, the principal source of PAH emissions has been linked to residential and industrial combustion of coal and vehicle traffic. In contrast to HCM, the Alaskan mosses were distinctly elevated in most of the trace elements, bearing a signature of??the underlying geology. H.??splendens and P. schreberi showed diverse bioaccumulative capabilities of PAHs in all three study areas. ?? 2008 Elsevier Ltd.

  6. Physiological Responses of Bryophytes Thuidium tamariscinum and Hylocomium splendens to Increased Nitrogen Deposition

    PubMed Central

    Koranda, M.; Kerschbaum, S.; Wanek, W.; Zechmeister, H.; Richter, A.

    2007-01-01

    Background and Aims Increased levels of nitrogen (N) deposition lead to enhanced N contents and reduced productivity of many bryophyte species. This study aimed at elucidating the mechanisms by which enhanced N uptake may cause growth reduction of bryophytes, focusing on the effects of N addition on carbon (C) metabolism of bryophytes. Methods Plantlets of Thuidium tamariscinum and Hylocomium splendens were fertilized with NH4NO3 (N load equalling 30 kg ha−1 year−1) for 80 d, including a pulse labelling experiment with 13CO2 to dissect the partitioning of carbon in response to N addition. Key Results Growth of T. tamariscinum was not affected by N addition, while H. splendens showed a trend towards growth reduction. Total N concentration was significantly increased by N addition in H. splendens, a significant increase in amino acid-N was found in T. tamariscinum only. In both bryophyte species, a reduction in concentration of lipids, the greatest C storage pool, as well as markedly enhanced turnover rates of C storage pools in fertilized plants were observed. Conclusions The results suggest that growth reduction of H. splendens under high levels of N deposition may be caused by enhanced synthesis of N-containing organic compounds, most probably of cell wall proteins. Disturbance of cellular C metabolism, as indicated by enhanced C pool turnover, may further contribute to the decline in productivity of H. splendens. PMID:17101638

  7. Air Pollution Studies in Opole Region, Poland, using the Moss Biomonitoring and INAA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korzekwa, S.; Pankratova, Yu. S.; Frontasyeva, M.V.

    Biomonitoring of heavy metal atmospheric deposition with terrestrial moss is a well established technique for environmental studies. Moss samples of Hylocomium splendens and Pleurozium schreberi have been collected around the city of Opole. A total of 34 elements including heavy metals and rare earths have been determined by instrumental neutron activation analysis (INAA) using epithermal neutrons at the IBR-2 reactor of the Joint Institute for Nuclear Research. We observe pronounced contamination of the sampled area with pollutants such as As, Sb, V, Ni, Mo, etc. at levels similar to those in the neighboring industrial regions. These results evidences long-range atmosphericmore » transport of pollutants along with the influence of local pollution sources.« less

  8. Monitoring of heavy metal concentrations in home outdoor air using moss bags.

    PubMed

    Rivera, Marcela; Zechmeister, Harald; Medina-Ramón, Mercedes; Basagaña, Xavier; Foraster, Maria; Bouso, Laura; Moreno, Teresa; Solanas, Pascual; Ramos, Rafael; Köllensperger, Gunda; Deltell, Alexandre; Vizcaya, David; Künzli, Nino

    2011-04-01

    One monitoring station is insufficient to characterize the high spatial variation of traffic-related heavy metals within cities. We tested moss bags (Hylocomium splendens), deployed in a dense network, for the monitoring of metals in outdoor air and characterized metals' long-term spatial distribution and its determinants in Girona, Spain. Mosses were exposed outside 23 homes for two months; NO₂ was monitored for comparison. Metals were not highly correlated with NO₂ and showed higher spatial variation than NO₂. Regression models explained 61-85% of Cu, Cr, Mo, Pb, Sb, Sn, and Zn and 72% of NO₂ variability. Metals were strongly associated with the number of bus lines in the nearest street. Heavy metals are an alternative traffic-marker to NO₂ given their toxicological relevance, stronger association with local traffic and higher spatial variability. Monitoring heavy metals with mosses is appealing, particularly for long-term exposure assessment, as mosses can remain on site many months without maintenance. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Composition and diversity of nifH genes of nitrogen-fixing cyanobacteria associated with boreal forest feather mosses.

    PubMed

    Ininbergs, Karolina; Bay, Guillaume; Rasmussen, Ulla; Wardle, David A; Nilsson, Marie-Charlotte

    2011-10-01

    Recent studies have revealed that nitrogen fixation by cyanobacteria living in association with feather mosses is a major input of nitrogen to boreal forests. We characterized the community composition and diversity of cyanobacterial nifH phylotypes associated with each of two feather moss species (Pleurozium schreberi and Hylocomium splendens) on each of 30 lake islands varying in ecosystem properties in northern Sweden. Nitrogen fixation was measured using acetylene reduction, and nifH sequences were amplified using general and cyanobacterial selective primers, separated and analyzed using density gradient gel electrophoresis (DGGE) or cloning, and further sequenced for phylogenetic analyses. Analyses of DGGE fingerprinting patterns revealed two host-specific clusters (one for each moss species), and sequence analysis showed five clusters of nifH phylotypes originating from heterocystous cyanobacteria. For H. splendens only, N(2) fixation was related to both nifH composition and diversity among islands. We demonstrated that the cyanobacterial communities associated with feather mosses show a high degree of host specificity. However, phylotype composition and diversity, and nitrogen fixation, did not differ among groups of islands that varied greatly in their availability of resources. These results suggest that moss species identity, but not extrinsic environmental conditions, serves as the primary determinant of nitrogen-fixing cyanobacterial communities that inhabit mosses. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  10. [Annual production of moss layer in dark coniferous forests of Ket-Chulym Forest District (by the example of Moss Hylocomium splendens)].

    PubMed

    Koshurnikova, N N

    2007-01-01

    The biological production of the moss layer was analyzed in dark coniferous stands in progressive succession in the southern taiga in West Siberia. The rate of organic matter production by mosses changed from 15-22.2 g/(m2 y) in 50-90-year-old fir forests to 51.6 g/(m2 y) in 170-year-old mixed Siberian pine-spruce-fir stands. In forest phytocenosis that were formed with species replacement (after cuttings with understory clearing), the annual moss production (net primary production) ranged from 2.8 to 20.6 g/(m2 y). The annual moss cover production amounted to 35-36% of the moss photosynthetic biomass irrespective of the type of native stand progressive succession and the stand age.

  11. The impact of simulated chronic nitrogen deposition on the biomass and N₂-fixation activity of two boreal feather moss-cyanobacteria associations.

    PubMed

    Gundale, Michael J; Bach, Lisbet H; Nordin, Annika

    2013-01-01

    Bryophytes achieve substantial biomass and play several key functional roles in boreal forests that can influence how carbon (C) and nitrogen (N) cycling respond to atmospheric deposition of reactive nitrogen (Nr). They associate with cyanobacteria that fix atmospheric N₂, and downregulation of this process may offset anthropogenic Nr inputs to boreal systems. Bryophytes also promote soil C accumulation by thermally insulating soils, and changes in their biomass influence soil C dynamics. Using a unique large-scale (0.1 ha forested plots), long-term experiment (16 years) in northern Sweden where we simulated anthropogenic Nr deposition, we measured the biomass and N₂-fixation response of two bryophyte species, the feather mosses Hylocomium splendens and Pleurozium schreberi. Our data show that the biomass declined for both species; however, N₂-fixation rates per unit mass and per unit area declined only for H. splendens. The low and high treatments resulted in a 29% and 54% reduction in total feather moss biomass, and a 58% and 97% reduction in total N₂-fixation rate per unit area, respectively. These results help to quantify the sensitivity of feather moss biomass and N₂ fixation to chronic Nr deposition, which is relevant for modelling ecosystem C and N balances in boreal ecosystems.

  12. Changes in Species, Areal Cover, and Production of Moss across a Fire Chronosequence in Interior Alaska

    USGS Publications Warehouse

    Harden, J.W.; Munster, J.; Manies, K.L.; Mack, M.C.; Bubier, J.L.

    2009-01-01

    In an effort to characterize the species and production rates of various upland mosses and their relationship to both site drainage and time since fire, annual net primary production of six common moss species was measured. Several stands located near Delta Junction, interior Alaska, were located. These stands ranged from one to 116 years since fire in well-drained (dry) and moderately to somewhat poorly drained (wet) black spruce (Picea mariana)-feathermoss systems. Moss species composition varied greatly during the fire cycle, with Ceratodon purpureus dominating the earliest years after a fire, Aulacomnium palustre dominating the transitional and older stages, and Hylocomium splendens dominating the oldest, mature sites. Polytrichum spp. was found at all sites. Average moss cover ranged from <10 percent in the youngest sites to almost 90 percent in the mature sites. Species from the genus Polytrichum were the most productive and contributed up to 30 g m2 of organic matter in one growing season. Least productive was Rhytidium rugosum, which contributed about 1.5 g m2 of organic matter in mature stands. Recovery of moss productivity after fire was not significantly different for wet and dry sites.

  13. Conifer needles as biomonitors of atmospheric heavy metal deposition: comparison with mosses and precipitation, role of the canopy

    NASA Astrophysics Data System (ADS)

    Čeburnis, D.; Steinnes, E.

    Concentrations of seven elements (As, Cd, Cr, Mn, Pb, V, Zn) in mosses ( Hylocomium splendens, Pleurozium schreberi, Eurhynchium angustirete) and needles of Norway spruce ( Picea abies) and juniper ( Juniperus communis) were determined at 48 sites in Lithuania. Conifer needles consistently showed many times lower concentrations than mosses collected at the same site. Correlations between heavy-metal concentrations in needles and mosses indicated that accumulation processes may be similar, but mosses appear to be clearly preferable as biomonitors of atmospheric deposition because of their higher elemental concentrations and more quantitative reflection of deposition rates. Precipitation in the open field and under the canopy was investigated at two stations with respect to the same metals. The canopy was shown to retain a considerable part of lead, whereas elements such as Zn and Mn were enriched in precipitation under the canopy. Study of metal concentrations in moss growing, respectively, below and outside the canopy showed that none of so studied elements was significantly retained by the canopy. Most of the metals (Cu, Fe, Zn, Cr, Ni, V) were leached from the canopy to a smaller or greater extent.

  14. Mosses as an integrating tool for monitoring PAH atmospheric deposition: comparison with total deposition and evaluation of bioconcentration factors. A year-long case-study.

    PubMed

    Foan, Louise; Domercq, Maria; Bermejo, Raúl; Santamaría, Jesús Miguel; Simon, Valérie

    2015-01-01

    Polycyclic aromatic hydrocarbon (PAH) atmospheric deposition was evaluated at a remote site in Northern Spain using moss biomonitoring with Hylocomium splendens (Hedw.) Schimp., and by measuring the total deposition fluxes of PAHs. The year-long study allowed seasonal variations of PAH content in mosses to be observed, and these followed a similar trend to those of PAH fluxes in total deposition. Generally, atmospheric deposition of PAHs is greater in winter than in summer, due to more PAH emissions from domestic heating, less photoreactivity of the compounds, and intense leaching of the atmosphere by wet deposition. However, fractionation of these molecules between the environmental compartments occurs: PAH fluxes in total deposition and PAH concentrations in mosses are correlated with their solubility (r=0.852, p<0.01) and lipophilic properties (KOW, r=0.768, p<0.01), respectively. This annual study therefore showed that atmospheric PAH fluxes can be estimated with moss biomonitoring data if the bioconcentration or 'enriching' factors are known. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Plant, Microbiome, and Biogeochemistry: Quantifying moss-associated N fixation in Alaska

    NASA Astrophysics Data System (ADS)

    Stuart, J.; Mack, M. C.; Holland Moritz, H.; Fierer, N.; McDaniels, S.; Lewis, L.

    2017-12-01

    The future carbon (C) sequestration potential of the Arctic and boreal zones, currently the largest terrestrial C sink globally, is linked to nitrogen (N) cycling and N availability vis-a-vis C accumulation and plant species composition. Pristine environments in Alaska have low anthropogenic N deposition (<1 kg N ha-1 yr-1), and the main source of new N to these ecosystems is through previously overlooked N-fixation from microbial communities on mosses. Despite the importance of moss associated N-fixation, the relationship between moss species, microbial communities, and fixation rates remains ambiguous. In the summer of 2016, the fixation rates of 20 moss species from sites around both Fairbanks and Toolik Lake were quantified using 15N2 incubations. Subsequently, the microbial community and moss genome of the samples were also analyzed by collaborators. The most striking result is that all sampled moss genera fixed N, including well-studied feather mosses such as Hylocomium splendens and Pleurozium schreberi as well as less common but ecologically relevant mosses such as Aulacomnium spp., Dicranum spp., Ptilium crista-castrensis, and Tomentypnum nitens. Across all samples, preliminary fixation rates ranged from 0.004-19.994 µg N g-1 moss d-1. Depending upon percent cover, moss-associated N fixation is the largest input of new N to the ecosystem. Given this, linking variation in N-fixation rates to microbial and moss community structures can be helpful in predicting future trends of C and N cycling in northern latitudes. Vegetation changes, alterations in downstream biogeochemical N processes, and anthropogenic N deposition could all interact with or alter moss associated N-fixation, thereby changing ecosystem N inputs. Further elucidation of the species level signal in N-fixation rates and microbial community will augment our knowledge of N cycling in northern latitudes, both current and future.

  16. The role of sample preparation in interpretation of trace element concentration variability in moss bioindication studies

    USGS Publications Warehouse

    Migaszewski, Z.M.; Lamothe, P.J.; Crock, J.G.; Galuszka, A.; Dolegowska, S.

    2011-01-01

    Trace element concentrations in plant bioindicators are often determined to assess the quality of the environment. Instrumental methods used for trace element determination require digestion of samples. There are different methods of sample preparation for trace element analysis, and the selection of the best method should be fitted for the purpose of a study. Our hypothesis is that the method of sample preparation is important for interpretation of the results. Here we compare the results of 36 element determinations performed by ICP-MS on ashed and on acid-digested (HNO3, H2O2) samples of two moss species (Hylocomium splendens and Pleurozium schreberi) collected in Alaska and in south-central Poland. We found that dry ashing of the moss samples prior to analysis resulted in considerably lower detection limits of all the elements examined. We also show that this sample preparation technique facilitated the determination of interregional and interspecies differences in the chemistry of trace elements. Compared to the Polish mosses, the Alaskan mosses displayed more positive correlations of the major rock-forming elements with ash content, reflecting those elements' geogenic origin. Of the two moss species, P. schreberi from both Alaska and Poland was also highlighted by a larger number of positive element pair correlations. The cluster analysis suggests that the more uniform element distribution pattern of the Polish mosses primarily reflects regional air pollution sources. Our study has shown that the method of sample preparation is an important factor in statistical interpretation of the results of trace element determinations. ?? 2010 Springer-Verlag.

  17. Methanotrophy Induces Nitrogen Fixation in Boreal Mosses

    NASA Astrophysics Data System (ADS)

    Tiirola, M. A.

    2014-12-01

    Many methanotrophic bacterial groups fix nitrogen in laboratory conditions. Furthermore, nitrogen (N) is a limiting nutrient in many environments where methane concentrations are highest. Despite these facts, methane-induced N fixation has previously been overlooked, possibly due to methodological problems. To study the possible link between methanotrophy and diazotrophy in terrestrial and aquatic habitats, we measured the co-occurrence of these two processes in boreal forest, peatland and stream mosses using a stable isotope labeling approach (15 N2 and 13 CH4 double labeling) and sequencing of the nifH gene marker. N fixation associated with forest mosses was dependent on the annual N deposition, whereas methane stimulate N fixation neither in high (>3 kg N ha -1 yr -1) nor low deposition areas, which was in accordance with the nifH gene sequencing showing that forest mosses (Pleurozium schreberi and Hylocomium splendens ) carried mainly cyanobacterial N fixers. On the other extreme, in stream mosses (Fontinalis sp.) methane was actively oxidized throughout the year, whereas N fixation showed seasonal fluctuation. The co-occurrence of the two processes in single cell level was proven by co-localizing both N and methane-carbon fixation with the secondary ion mass spectrometry (SIMS) approach. Methanotrophy and diazotrophy was also studied in peatlands of different primary successional stages in the land-uplift coast of Bothnian Bay, in the Siikajoki chronosequence, where N accumulation rates in peat profiles indicate significant N fixation. Based on experimental evidence it was counted that methane-induced N fixation explained over one-third of the new N input in the younger peatland successional stages, where the highest N fixation rates and highest methane oxidation activities co-occurred in the water-submerged Sphagnum moss vegetation. The linkage between methanotrophic carbon cycling and N fixation may therefore constitute an important mechanism in the rapid

  18. Development of ion-exchange collectors for monitoring atmospheric deposition of inorganic pollutants in Alaska parklands

    USGS Publications Warehouse

    Brumbaugh, William G.; Arms, Jesse W.; Linder, Greg L.; Melton, Vanessa D.

    2016-09-19

    Between 2010 and 2014, the U.S. Geological Survey completed a series of laboratory and field experiments designed to develop methodology to support the National Park Service’s long-term atmospheric pollutant monitoring efforts in parklands of Arctic Alaska. The goals of this research were to develop passive sampling methods that could be used for long-term monitoring of inorganic pollutants in remote areas of arctic parklands and characterize relations between wet and dry deposition of atmospheric pollutants to that of concentrations accumulated by mosses, specifically the stair-step, splendid feather moss, Hylocomium splendens. Mosses and lichens have been used by National Park Service managers as atmospheric pollutant biomonitors since about 1990; however, additional research is needed to better characterize the dynamics of moss bioaccumulation for various classes of atmospheric pollutants. To meet these research goals, the U.S. Geological Survey investigated the use of passive ionexchange collectors (IECs) that were adapted from the design of Fenn and others (2004). Using a modified IEC configuration, mulitple experiments were completed that included the following: (a) preliminary laboratory and development testing of IECs, (b) pilot-scale validation field studies during 2012 with IECs at sites with instrumental monitoring stations, and (c) deployment of IECs in 2014 at sites in Alaska having known or suspected regional sources of atmospheric pollutants where samples of Hylocomium splendens moss also could be collected for comparison. The targeted substances primarily included ammonium, nitrate, and sulfate ions, and certain toxicologically important trace metals, including cadmium, cobalt, copper, nickel, lead, and zinc.Deposition of atmospheric pollutants is comparatively low throughout most of Alaska; consequently, modifications of the original IEC design were needed. The most notable modification was conversion from a single-stage mixed-bed column to a two

  19. The impact of simulated chronic nitrogen deposition on the biomass and N2-fixation activity of two boreal feather moss–cyanobacteria associations

    PubMed Central

    Gundale, Michael J.; Bach, Lisbet H.; Nordin, Annika

    2013-01-01

    Bryophytes achieve substantial biomass and play several key functional roles in boreal forests that can influence how carbon (C) and nitrogen (N) cycling respond to atmospheric deposition of reactive nitrogen (Nr). They associate with cyanobacteria that fix atmospheric N2, and downregulation of this process may offset anthropogenic Nr inputs to boreal systems. Bryophytes also promote soil C accumulation by thermally insulating soils, and changes in their biomass influence soil C dynamics. Using a unique large-scale (0.1 ha forested plots), long-term experiment (16 years) in northern Sweden where we simulated anthropogenic Nr deposition, we measured the biomass and N2-fixation response of two bryophyte species, the feather mosses Hylocomium splendens and Pleurozium schreberi. Our data show that the biomass declined for both species; however, N2-fixation rates per unit mass and per unit area declined only for H. splendens. The low and high treatments resulted in a 29% and 54% reduction in total feather moss biomass, and a 58% and 97% reduction in total N2-fixation rate per unit area, respectively. These results help to quantify the sensitivity of feather moss biomass and N2 fixation to chronic Nr deposition, which is relevant for modelling ecosystem C and N balances in boreal ecosystems. PMID:24196519

  20. Baseline element concentrations in soils and plants, Wattenmeer National Park, North and East Frisian Islands, Federal Republic of Germany

    USGS Publications Warehouse

    Severson, R.C.; Gough, L.P.; van den Boom, G.

    1992-01-01

    Baseline element concentrations are given for dune grass (Ammophilia arenaria), willow (Salix repens), moss (Hylocomium splendens) and associated surface soils. Baseline and variability data for pH, ash, Al, As, Ba, C, Ca, Cd, Ce, Co, Cr, Cu, Fe, Hg, K, La, Li, Mg, Mn, Na, Nb, Nd, Ni, P, Pb, S, Sc, Se, Sr, Th, Ti, V, Y, Yb, and Zn are reported; however, not all variables are reported for all media because, in some media, certain elements were below the analytical detection limit. Spatial variation in element concentration between five Frisian Islands are given for each of the sample media. In general, only a few elements in each media showed statistically significant differences between the islands sampled. The measured concentrations in all sample media exhibited ranges that cannot be attributed to anthropogenic additions of trace elements, with the possible exception of Hg and Pb in surface soils.Baseline element concentrations are given for dune grass (Ammophilia arenaria), willow (Salix repens), moss (Hylocomium splendens) and associated surface soils. Baseline and variability data for pH, ash, Al, As, Ba, C, Ca, Cd, Ce, Co, Cr, Cu, Fe, Hg, K, La, Li, Mg, Mn, Na, Nb, Nd, Ni, P, Pb, S, Sc, Se, Sr, Th, Ti, V, Y, Yb, and Zn are reported; however, not all variables are reported for all media because, in some media, certain elements were below the analytical detection limit. Spatial variation in element concentration between five Frisian Islands are given for each of the sample media. In general, only a few elements in each media showed statistically significant differences between the islands sampled. The measured concentrations in all sample media exhibited ranges that cannot be attributed to anthropogenic additions of trace elements, with the possible exception of Hg and Pb in surface soils.

  1. Determining baselines and variability of elements in plants and soils near the Kenai National Wildlife Refuge, Alaska

    USGS Publications Warehouse

    Crock, J.G.; Severson, R.C.; Gough, L.P.

    1992-01-01

    Recent investigations on the Kenai Peninsula had two major objectives: (1) to establish elemental baseline concentrations ranges for native vegetation and soils; and, (2) to determine the sampling density required for preparing stable regional geochemical maps for various elements in native plants and soils. These objectives were accomplished using an unbalanced, nested analysis-of-variance (ANOVA) barbell sampling design. Hylocomium splendens (Hedw.) BSG (feather moss, whole plant), Picea glauca (Moench) Voss (white spruce, twigs and needles), and soil horizons (02 and C) were collected and analyzed for major and trace total element concentrations. Using geometric means and geometric deviations, expected baseline ranges for elements were calculated. Results of the ANOVA show that intensive soil or plant sampling is needed to reliably map the geochemistry of the area, due to large local variability. For example, producing reliable element maps of feather moss using a 50 km cell (at 95% probability) would require sampling densities of from 4 samples per cell for Al, Co, Fe, La, Li, and V, to more than 15 samples per cell for Cu, Pb, Se, and Zn.Recent investigations on the Kenai Peninsula had two major objectives: (1) to establish elemental baseline concentrations ranges for native vegetation and soils; and, (2) to determine the sampling density required for preparing stable regional geochemical maps for various elements in native plants and soils. These objectives were accomplished using an unbalanced, nested analysis-of-variance (ANOVA) barbell sampling design. Hylocomium splendens (Hedw.) BSG (feather moss, whole plant), Picea glauca (Moench) Voss (white spruce, twigs and needles), and soil horizons (02 and C) were collected and analyzed for major and trace total element concentrations. Using geometric means and geometric deviations, expected baseline ranges for elements were calculated. Results of the ANOVA show that intensive soil or plant sampling is needed to

  2. The interactive effects of temperature and light on biological nitrogen fixation in boreal forests.

    PubMed

    Gundale, Michael J; Nilsson, Madeleine; Bansal, Sheel; Jäderlund, Anders

    2012-04-01

    Plant productivity is predicted to increase in northern latitudes as a result of climate warming; however, this may depend on whether biological nitrogen (N)-fixation also increases. We evaluated how the variation in temperature and light affects N-fixation by two boreal feather mosses, Pleurozium schreberi and Hylocomium splendens, which are the primary source of N-fixation in most boreal environments. We measured N-fixation rates 2 and 4 wk after exposure to a factorial combination of environments of normal, intermediate and high temperature (16.3, 22.0 and 30.3°C) and light (148.0, 295.7 and 517.3 μmol m(-2) s(-1)). Our results showed that P. schreberi achieved higher N-fixation rates relative to H. splendens in response to warming treatments, but that the highest warming treatment eventually caused N-fixation to decline for both species. Light strongly interacted with warming treatments, having positive effects at low or intermediate temperatures and damaging effects at high temperatures. These results suggest that climate warming may increase N-fixation in boreal forests, but that increased shading by the forest canopy or the occurrence of extreme temperature events could limit increases. They also suggest that P. schreberi may become a larger source of N in boreal forests relative to H. splendens as climate warming progresses. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  3. Atmospheric deposition and critical loads for nitrogen and metals in Arctic Alaska: Review and current status

    USGS Publications Warehouse

    Linder, Greg L.; Brumbaugh, William G.; Neitlich, Peter; Little, Edward

    2013-01-01

    To protect important resources under their bureau’s purview, the United States National Park Service’s (NPS) Arctic Network (ARCN) has developed a series of “vital signs” that are to be periodically monitored. One of these vital signs focuses on wet and dry deposition of atmospheric chemicals and further, the establishment of critical load (CL) values (thresholds for ecological effects based on cumulative depositional loadings) for nitrogen (N), sulfur, and metals. As part of the ARCN terrestrial monitoring programs, samples of the feather moss Hylocomium splendens are being col- lected and analyzed as a cost-effective means to monitor atmospheric pollutant deposition in this region. Ultimately, moss data combined with refined CL values might be used to help guide future regulation of atmospheric contaminant sources potentially impacting Arctic Alaska. But first, additional long-term studies are needed to determine patterns of contaminant deposition as measured by moss biomonitors and to quantify ecosystem responses at particular loadings/ ranges of contaminants within Arctic Alaska. Herein we briefly summarize 1) current regulatory guidance related to CL values 2) derivation of CL models for N and metals, 3) use of mosses as biomonitors of atmospheric deposition and loadings, 4) preliminary analysis of vulnerabilities and risks associated with CL estimates for N, 5) preliminary analysis of existing data for characterization of CL values for N for interior Alaska and 6) implications for managers and future research needs.

  4. Accumulation and ultrastructural distribution of copper in Elsholtzia splendens *

    PubMed Central

    Peng, Hong-yun; Yang, Xiao-e; Tian, Sheng-ke

    2005-01-01

    Copper accumulation and intracellular distribution in Elsholtzia splendens, a native Chinese Cu-tolerant and accumulating plant species, was investigated by transmission electron microscope (TEM) and gradient centrifugation techniques. Copper concentrations in roots, stems and leaves of E. splendens increased with increasing Cu levels in solution. After exposure to 500 μmol/L Cu for 8 d, about 1000 mg/kg Cu were accumulated in the stem and 250 mg/kg Cu in the leaf of E. splendens. At 50 µmol/L Cu, no significant toxicity was observed in the chloroplast and mitochondrion within its leaf cells, but separation appeared at the cytoplasm and the cell wall within the root cells. At >250 µmol/L Cu, both root and leaf organelles in E. splendens were damaged heavily by excessive Cu in vivo. Copper subcellular localization in the plant leaf after 8 days’ exposure to 500 µmol/L Cu using gradient centrifugation techniques was found to be decreased in the order: chloroplast>cell wall>soluble fraction>other organelles. The plant root cell wall was found to be the site of highest Cu localization. Increase of Cu exposure time from 8 d to 16 d, increased slightly Cu concentration in cell wall fraction in roots and leaves, while that in the chloroplast fraction decreased in leaves of the plants grown in both 0.25 μmol/L and 500 μmol/L Cu. TEM confirmed that much more Cu localized in cell walls of E. splendens roots and leaves, but also more Cu localized in E. splendens’ chloroplast when the plant is exposed to Cu levels>250 μmol/L, as compared to those in the plant grown in 0.25 μmol/L Cu. Copper treatment at levels>250 μmol/L caused pronounced damage in the leaf chloroplast and root organelles. Copper localization in cell walls and chloroplasts could mainly account for the high detoxification of Cu in E. splendens. PMID:15822140

  5. Characterization of the surface and interfacial properties of the lamina splendens

    NASA Astrophysics Data System (ADS)

    Rexwinkle, Joe T.; Hunt, Heather K.; Pfeiffer, Ferris M.

    2017-06-01

    Joint disease affects approximately 52.5 million patients in the United States alone, costing 80.8 billion USD in direct healthcare costs. The development of treatment programs for joint disease and trauma requires accurate assessment of articular cartilage degradation. The articular cartilage is the interfacial tissue between articulating surfaces, such as bones, and acts as low-friction interfaces. Damage to the lamina splendens, which is the articular cartilage's topmost layer, is an early indicator of joint degradation caused by injury or disease. By gaining comprehensive knowledge on the lamina splendens, particularly its structure and interfacial properties, researchers could enhance the accuracy of human and animal biomechanical models, as well as develop appropriate biomimetic materials for replacing damaged articular cartilage, thereby leading to rational treatment programs for joint disease and injury. Previous studies that utilize light, electron, and force microscopy techniques have found that the lamina splendens is composed of collagen fibers oriented parallel to the cartilage surface and encased in a proteoglycan matrix. Such orientation maximizes wear resistance and proteoglycan retention while promoting the passage of nutrients and synovial fluid. Although the structure of the lamina splendens has been explored in the literature, the low-friction interface of this tissue remains only partially characterized. Various functional models are currently available for the interface, such as pure boundary lubrication, thin films exuded under pressure, and sheets of trapped proteins. Recent studies suggest that each of these lubrication models has certain advantages over one another. Further research is needed to fully model the interface of this tissue. In this review, we summarize the methods for characterizing the lamina splendens and the results of each method. This paper aims to serve as a resource for existing studies to date and a roadmap of the

  6. Arbuscular mycorrhiza fungi facilitate rapid adaptation of Elsholtzia splendens to copper.

    PubMed

    Li, Junmin; Liang, Huijuan; Yan, Ming; Chen, Luxi; Zhang, Huating; Liu, Jie; Wang, Suizi; Jin, Zexin

    2017-12-01

    Closely associated microbes have been shown to drive local adaptation of plants. However, few studies provide direct evidence, disclosing the role of arbuscular mycorrhiza fungi (AMF) in their rapid adaptation of plants toward heavy metal tolerance. Elsholtzia splendens is a Cu-tolerant plant that was used as a model plant to study seed morphological traits as well as traits related to seed germination and seedling growth. This was achieved after acclimation for two generations with 1000mg/kg CuSO 4 in either absence or presence of AMF. In the absence of AMF, acclimation to Cu for two generations significantly decreased surface area, perimeter length, and perimeter width of E. splendens seeds, as well as seedling survival rate and fresh weight of the radicle of seedlings. However, in the presence of AMF, both the germination rate and the germination index of E. splendens seeds as well as the fresh weights of hypocotyl and radicle significantly increased. These results revealed that after Cu acclimation treatment, seeds and seedlings that had been inoculated with AMF outperformed those without AMF inoculation under Cu addition, indicating that AMF can facilitate rapid adaptation of E. splendens to Cu stress. In addition, two generations of Cu acclimation under AMF absence significantly increased radicle length, while amplitude increased under AMF presence, indicating that the direct adaptive plasticity response of radicle length to Cu stress helps with the Cu stress adaptation of E. splendens. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Spatial patterns of cadmium and lead deposition on and adjacent to National Park Service lands in the vicinity of Red Dog Mine, Alaska.

    PubMed

    Hasselbach, L; Ver Hoef, J M; Ford, J; Neitlich, P; Crecelius, E; Berryman, S; Wolk, B; Bohle, T

    2005-09-15

    Heavy metal escapement associated with ore trucks is known to occur along the DeLong Mountain Regional Transportation System (DMTS) haul road corridor in Cape Krusenstern National Monument, northwest Alaska. Heavy metal concentrations in Hylocomium splendens moss (n = 226) were used in geostatistical models to predict the extent and pattern of atmospheric deposition of Cd and Pb on Monument lands. A stratified grid-based sample design was used with more intensive sampling near mine-related activity areas. Spatial predictions were used to produce maps of concentration patterns, and to estimate the total area in 10 moss concentration categories. Heavy metal levels in moss were highest immediately adjacent to the DMTS haul road (Cd > 24 mg/kg dw; Pb > 900 mg/kg dw). Spatial regression analyses indicated that heavy metal deposition decreased with the log of distance from the DMTS haul road and the DMTS port site. Analysis of subsurface soil suggested that observed patterns of heavy metal deposition reflected in moss were not attributable to subsurface lithology at the sample points. Further, moss Pb concentrations throughout the northern half of the study area were high relative to concentrations previously reported from other Arctic Alaska sites. Collectively, these findings indicate the presence of mine-related heavy metal deposition throughout the northern portion of Cape Krusenstern National Monument. Geospatial analyses suggest that the Pb depositional area extends 25 km north of the haul road to the Kisimilot/Iyikrok hills, and possibly beyond. More study is needed to determine whether higher moss heavy metal concentrations in the northernmost portion of the study area reflect deposition from mining-related activities, weathering from mineralized Pb/Zn outcrops in the broader region, or a combination of the two. South of the DMTS haul road, airborne deposition appears to be constrained by the Tahinichok Mountains. Heavy metal levels continue to diminish south of

  8. Influence of container design on predation rate of potential biocontrol agent, Toxorhynchites splendens (Diptera: Culicidae) against dengue vector.

    PubMed

    Mohamad, N; Zuharah, W F

    2014-03-01

    Toxorhynchites splendens larvae are a natural predator of dengue vector mosquito larvae, Aedes albopictus. This study was carried out to evaluate the predation rate of Tx. splendens third instar larvae on Ae. albopictus larvae in 24 h. Each predator was offered prey at a density between 10 to 50 individuals. Predation rate of Tx. splendens were also tested with two manipulated factors; various types of container and different water volumes. The experiment was evaluated in man-made containers (tin cans, plastic drinking glasses and rubber tires) and natural container (bamboo stumps) which were filled with different water volumes (full, half full, 1/4 full, and 1/8 full). The prey density and the characteristics of the container were found as significant factors which influence the predation rate of Tx. splendens. The predator consumed significantly more prey at higher prey densities (40 and 50 preys) compared to the lowest density (10 preys) (F=3.935, df=4, p=0.008). The results showed significantly higher consumption in horizontal shaped container of rubber tire than in vertical shape of bamboo stumps (F=3.100, df=3, p=0.029). However, the water volume had no significant effect on predation rate of Tx. splendens (F=1.736, df=3, p=0.162). We generally suggest that Tx. splendens is best to be released in discarded tires or any other containers with horizontal shape design with wide opening since Tx. splendens can become more effective in searching prey in this type of container design. This predator is also a suitable biocontrol candidates to be introduced either in wet and dry seasons in Malaysia.

  9. Influence of temperature on Pythium splendens--induced root disease on carambola, Averrhoa carambola.

    PubMed

    Ploetz, Randy C

    2004-02-01

    A series of glasshouse and incubator studies were conducted to investigate the role played by Pythium splendens in a decline disorder of carambola, Averrhoa carambola. Plants, 4-6 months old, were grown in native calcareous soil either infested or not infested with the pathogen. Isolates recovered from atemoya, carambola and passion fruit grew optimally at 30 degrees C, and significantly (P < 0.05) increased root necrosis and reduced root, shoot and total biomass of carambola. Temperature had a profound impact on the latter relationships. Two or more times more necrosis developed at 10 and 15 degrees C than at 25 and 30 degrees C. Total biomass accumulations were over four times greater at 30 degrees C than at 10 degrees C, and were always lower in soil infested with P. splendens. When biomass totals from infested and noninfested soil were compared, relative values were lowest at 15 and 20 degrees C and were almost two times greater at 30 degrees C than at 20 degrees C. Root infection by P. splendens was greatest at 15 and 20 degrees C, far below the species' optimum for growth, and at 30 degrees C was over nine times lower than at 15 and 20 degrees C. This is the first detailed report of P. splendens as a pathogen of carambola.

  10. Forestry impacts on the hidden fungal biodiversity associated with bryophytes.

    PubMed

    Davey, Marie L; Kauserud, Håvard; Ohlson, Mikael

    2014-10-01

    Recent studies have revealed an unexpectedly high, cryptic diversity of fungi associated with boreal forest bryophytes. Forestry practices heavily influence the boreal forest and fundamentally transform the landscape. However, little is known about how bryophyte-associated fungal communities are affected by these large-scale habitat transformations. This study assesses to what degree bryophyte-associated fungal communities are structured across the forest successional stages created by current forestry practices. Shoots of Hylocomium splendens were collected in Picea abies dominated forests of different ages, and their associated fungal communities were surveyed by pyrosequencing of ITS2 amplicons. Although community richness, diversity and evenness were relatively stable across the forest types and all were consistently dominated by ascomycete taxa, there was a marked shift in fungal community composition between young and old forests. Numerous fungal operational taxonomic units (OTUs) showed distinct affinities for different forest ages. Spatial structure was also detected among the sites, suggesting that environmental gradients resulting from the topography of the study area and dispersal limitations may also significantly affect bryophyte-associated fungal community structure. This study confirms that Hylocomium splendens hosts an immense diversity of fungi and demonstrates that this community is structured in part by forest age, and as such is highly influenced by modern forestry practices. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  11. The effect of body coloration and group size on social partner preferences in female fighting fish (Betta splendens).

    PubMed

    Blakeslee, C; McRobert, S P; Brown, A C; Clotfelter, E D

    2009-02-01

    Females of the fighting fish Betta splendens have been shown to associate with other B. splendens females in a manner reminiscent of shoaling behavior. Since body coloration varies dramatically in this species, and since body coloration has been shown to affect shoalmate choice in other species of fish, we examined the influence of body coloration on association preferences in female B. splendens. In dichotomous choice tests, B. splendens females spent more time swimming near groups of females (regardless of coloration) than swimming near an empty chamber, and chose to swim near fish of similar coloration to their own when choosing between two distinctly colored groups of females. When examining the interplay between body coloration and group size, focal fish spent more time swimming near larger groups (N=5) of similarly colored fish than swimming near an individual female of similar coloration. However, focal fish showed no preference when presented with an individual female of similar coloration and a larger group of females of dissimilar coloration. These results suggest that association choices in B. splendens females are strongly affected by both body coloration and by group size.

  12. Genomic Features of the Damselfly Calopteryx splendens Representing a Sister Clade to Most Insect Orders

    PubMed Central

    Ioannidis, Panagiotis; Simao, Felipe A.; Waterhouse, Robert M.; Manni, Mosè; Seppey, Mathieu; Robertson, Hugh M.; Misof, Bernhard; Niehuis, Oliver

    2017-01-01

    Insects comprise the most diverse and successful animal group with over one million described species that are found in almost every terrestrial and limnic habitat, with many being used as important models in genetics, ecology, and evolutionary research. Genome sequencing projects have greatly expanded the sampling of species from many insect orders, but genomic resources for species of certain insect lineages have remained relatively limited to date. To address this paucity, we sequenced the genome of the banded demoiselle, Calopteryx splendens, a damselfly (Odonata: Zygoptera) belonging to Palaeoptera, the clade containing the first winged insects. The 1.6 Gbp C. splendens draft genome assembly is one of the largest insect genomes sequenced to date and encodes a predicted set of 22,523 protein-coding genes. Comparative genomic analyses with other sequenced insects identified a relatively small repertoire of C. splendens detoxification genes, which could explain its previously noted sensitivity to habitat pollution. Intriguingly, this repertoire includes a cytochrome P450 gene not previously described in any insect genome. The C. splendens immune gene repertoire appears relatively complete and features several genes encoding novel multi-domain peptidoglycan recognition proteins. Analysis of chemosensory genes revealed the presence of both gustatory and ionotropic receptors, as well as the insect odorant receptor coreceptor gene (OrCo) and at least four partner odorant receptors (ORs). This represents the oldest known instance of a complete OrCo/OR system in insects, and provides the molecular underpinning for odonate olfaction. The C. splendens genome improves the sampling of insect lineages that diverged before the radiation of Holometabola and offers new opportunities for molecular-level evolutionary, ecological, and behavioral studies. PMID:28137743

  13. Toxicity and deficiency of copper in Elsholtzia splendens affect photosynthesis biophysics, pigments and metal accumulation.

    PubMed

    Peng, Hongyun; Kroneck, Peter M H; Küpper, Hendrik

    2013-06-18

    Elsholtzia splendens is a copper-tolerant plant species growing on copper deposits in China. Spatially and spectrally resolved kinetics of in vivo absorbance and chlorophyll fluorescence in mesophyll of E. splendens were used to investigate the copper-induced stress from deficiency and toxicity as well as the acclimation to excess copper stress. The plants were cultivated in nutrient solutions containing either Fe(III)-EDTA or Fe(III)-EDDHA. Copper toxicity affected light-acclimated electron flow much stronger than nonphotochemical quenching (NPQ) or dark-acclimated photochemical efficiency of PSIIRC (Fv/Fm). It also changed spectrally resolved Chl fluorescence kinetics, in particular by strengthening the short-wavelength (<700 nm) part of NPQ altering light harvesting complex II (LHCII) aggregation. Copper toxicity reduced iron accumulation, decreased Chls and carotenoids in leaves. During acclimation to copper toxicity, leaf copper decreased but leaf iron increased, with photosynthetic activity and pigments recovering to normal levels. Copper tolerance in E. splendens was inducible; acclimation seems be related to homeostasis of copper and iron in E. splendens. Copper deficiency appeared at 10 mg copper per kg leaf DW, leading to reduced growth and decreased photosynthetic parameters (F0, Fv/Fm, ΦPSII). The importance of these results for evaluating responses of phytoremediation plants to stress in their environment is discussed.

  14. Environmental modulation of the onset of air breathing and survival of Betta splendens and Trichopodus trichopterus.

    PubMed

    Mendez-Sanchez, J F; Burggren, W W

    2014-03-01

    The effect of hypoxia on air-breathing onset and survival was determined in larvae of the air-breathing fishes, the three spot gourami Trichopodus trichopterus and the Siamese fighting fish Betta splendens. Larvae were exposed continuously or intermittently (12 h nightly) to an oxygen partial pressure (PO2 ) of 20, 17 and 14 kPa from 1 to 40 days post-fertilization (dpf). Survival and onset of air breathing were measured daily. Continuous normoxic conditions produced a larval survival rate of 65-75% for B. splendens and 15-30% for T. trichopterus, but all larvae of both species died at 9 dpf in continuous hypoxia conditions. Larvae under intermittent (nocturnal) hypoxia showed a 15% elevated survival rate in both species. The same conditions altered the onset of air breathing, advancing onset by 4 days in B. splendens and delaying onset by 9 days in T. trichopterus. These interspecific differences were attributed to air-breathing characteristics: B. splendens was a non-obligatory air breather after 36 dpf, whereas T. trichopterus was an obligatory air breather after 32 dpf. © 2014 The Fisheries Society of the British Isles.

  15. Gama-aminobutyric acid accumulation in Elsholtzia splendens in response to copper toxicity*

    PubMed Central

    Yang, Xiao-e; Peng, Hong-yun; Tian, Sheng-ke

    2005-01-01

    A solution with different Cu supply levels was cultured to investigate gama-aminobutyric acid (GABA) accumulation in Elsholtzia splendens, a native Chinese Cu-tolerant and accumulating plant species. Increasing Cu from 0.25 to 500 μmol/L significantly enhanced levels of GABA and histidine (His), but considerably decreased levels of aspartate (Asp) and glutamate (Glu) in the leaves. The leaf Asp level negatively correlated with leaf Cu level, while leaf GABA level positively correlated with leaf Cu level. The leaf Glu level negatively correlated with leaf GABA level in Elsholtzia splendens. The depletion of leaf Glu may be related to the enhanced synthesis of leaf GABA under Cu stress. PMID:15633244

  16. Visual Reinforcement in the Female Siamese Fighting Fish, "Betta Splendens"

    ERIC Educational Resources Information Center

    Elcoro, Mirari; da Silva, Stephanie P.; Lattal, Kennon A.

    2008-01-01

    Operant conditioning with "Betta splendens" ("Bettas") has been investigated extensively using males of the species. Ethological studies of female "Bettas" have revealed aggressive interactions that qualitatively parallel those between male "Bettas". Given these similarities, four experiments were conducted with female "Bettas" to examine the…

  17. Risky behaviors: effects of Toxorhynchites splendens (Diptera: Culicidae) predator on the behavior of three mosquito species.

    PubMed

    Zuharah, Wan Fatma; Fadzly, Nik; Yusof, Nur Aishah; Dieng, Hamady

    2015-01-01

    Viable biocontrol agents for mosquito control are quite rare, therefore improving the efficacy of existing biological agents is an important study. We need to have a better understanding of the predation-risk behavioral responses toward prey. This research examined prey choices by Toxorhynchites splendens by monitoring the behavioral responses of Aedes aegypti, Aedes albopictus, and Anopheles sinensis larvae when exposed to the predator. The results show that Tx. splendens prefers to consume Ae. aegypti larvae. The larvae exhibited different behavioral responses when Tx. splendens was present which suggest vulnerability in the presence of predators. "Thrashing" and "browsing" activities were greater in Ae. aegypti larvae. Such active and risky movements could cause vulnerability for the Ae. aegypti larvae due to increasing of water disturbance. In contrast, Ae. albopictus and An. sinensis larvae exhibited passive, low-risk behaviors, spending most of the time on the "wall" position near the edges of the container. We postulated that Ae. aegypti has less ability to perceive cues from predation and could not successfully alter its behavior to reduce risk of predation risk compared with Ae. albopictus and An. sinensis. Our results suggest that Tx. splendens is a suitable biocontrol agent in controlling dengue hemorrhagic vector, Ae. aegypti. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  18. Fluoxetine exposure impacts boldness in female Siamese fighting fish, Betta splendens.

    PubMed

    Dzieweczynski, Teresa L; Kane, Jessica L; Campbell, Brennah A; Lavin, Lindsey E

    2016-01-01

    The present study examined the effects of the selective serotonin reuptake inhibitor, fluoxetine, on the behavior of female Siamese fighting fish, Betta splendens, in three different boldness assays (Empty Tank, Novel Environment, Social Tendency). When females were unexposed to fluoxetine, boldness was consistent within a context and correlated across assays. Fluoxetine exposure affected behavior within and among individuals on multiple levels. Exposure reduced overall boldness levels, made females behave in a less consistent manner, and significantly reduced correlations over time and across contexts. Fluoxetine exerted its effects on female Betta splendens behavior in a dose-dependent fashion and these effects persisted even after females were housed in clean water. If fluoxetine exposure impacts behaviors such as exploration that are necessary to an individual’s success, this may yield evolutionary consequences. In conclusion, the results show that fluoxetine exposure alters behavior beyond the level of overall response and highlights the importance of studying the behavioral effects of inadvertent pharmaceutical exposure in multiple contexts and with different dosing regimes.

  19. Impacts of long-term enhanced UV-B radiation on bryophytes in two sub-Arctic heathland sites of contrasting water availability.

    PubMed

    Arróniz-Crespo, M; Gwynn-Jones, D; Callaghan, T V; Núñez-Olivera, E; Martínez-Abaigar, J; Horton, P; Phoenix, G K

    2011-09-01

    Anthropogenic depletion of stratospheric ozone in Arctic latitudes has resulted in an increase of ultraviolet-B radiation (UV-B) reaching the biosphere. UV-B exposure is known to reduce above-ground biomass and plant height, to increase DNA damage and cause accumulation of UV-absorbing compounds in polar plants. However, many studies on Arctic mosses tended to be inconclusive. The importance of different water availability in influencing UV-B impacts on lower plants in the Arctic has been poorly explored and might partially explain the observed wide variation of responses, given the importance of water in controlling bryophyte physiology. This study aimed to assess the long-term responses of three common sub-Arctic bryophytes to enhanced UV-B radiation (+UV-B) and to elucidate the influence of water supply on those responses. Responses of three sub-Arctic bryophytes (the mosses Hylocomium splendens and Polytrichum commune and the liverwort Barbilophozia lycopodioides) to +UV-B for 15 and 13 years were studied in two field experiments using lamps for UV-B enhancement with identical design and located in neighbouring areas with contrasting water availability (naturally mesic and drier sites). Responses evaluated included bryophyte abundance, growth, sporophyte production and sclerophylly; cellular protection by accumulation of UV-absorbing compounds, β-carotene, xanthophylls and development of non-photochemical quenching (NPQ); and impacts on photosynthesis performance by maximum quantum yield (F(v) /F(m)) and electron transport rate (ETR) through photosystem II (PSII) and chlorophyll concentrations. Responses were species specific: H. splendens responded most to +UV-B, with reduction in both annual growth (-22 %) and sporophyte production (-44 %), together with increased β-carotene, violaxanthin, total chlorophyll and NPQ, and decreased zeaxanthin and de-epoxidation of the xanthophyll cycle pool (DES). Barbilophozia lycopodioides responded less to +UV-B, showing

  20. Comparison of the element composition in several plant species and their substrate from a 1500000-km2 area in Northern Europe.

    PubMed

    Reimann, C; Koller, F; Frengstad, B; Kashulina, G; Niskavaara, H; Englmaier, P

    2001-10-20

    Leaves of 9 different plant species (terrestrial moss represented by: Hylocomium splendens and Pleurozium schreberi; and 7 species of vascular plants: blueberry, Vaccinium myrtillus; cowberry, Vaccinium titis-idaea; crowberry, Empetrum nigrum; birch, Betula pubescens; willow, Salix spp.; pine, Pinus sylvestris and spruce, Picea abies) have been collected from up to 9 catchments (size 14-50 km2) spread over a 1500000 km2 area in Northern Europe. Soil samples were taken of the O-horizon and of the C-horizon at each plant sample site. All samples were analysed for 38 elements (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Rb, S, Sb, Sc, Se, Si, Sn, Sr, Th, Tl, U, V, Y, Zn and Zr) by ICP-MS, ICP-AES or CV-AAS (for Hg-analysis) techniques. The concentrations of some elements vary significantly between different plants (e.g. Cd, V, Co, Pb, Ba and Y). Other elements show surprisingly similar levels in all plants (e.g. Rb, S, Cu, K, Ca, P and Mg). Each group of plants (moss, shrubs, deciduous and conifers) shows a common behaviour for some elements. Each plant accumulates or excludes some selected elements. Compared to the C-horizon, a number of elements (S, K, B, Ca, P and Mn) are clearly enriched in plants. Elements showing very low plant/C-horizon ratios (e.g. Zr, Th, U, Y, Fe, Li and Al) can be used as an indicator of minerogenic dust. The plant/O-horizon and O-horizon/C-horizon ratios show that some elements are accumulated in the O-horizon (e.g. Pb, Bi, As, Ag, Sb). Airborne organic material attached to the leaves can thus, result in high values of these elements without any pollution source.

  1. Survival of Betta splendens fish (Regan, 1910) in domestic water containers and its effectiveness in controlling Aedes aegypti larvae (Linnaeus, 1762) in Northeast Brazil.

    PubMed

    de Oliveira Lima, José Wellington; de Góes Cavalcanti, Luciano Pamplona; Pontes, Ricardo José Soares; Heukelbach, Jörg

    2010-12-01

    In Northeast Brazil, large domestic containers used to store water are important breeding sites of Aedes aegypti, the main vector of dengue fever. The objective of this study was to estimate the survival of Betta splendens (Perciformes: Osphronemidae) fish in domestic containers in Fortaleza (Ceará State), as well as its effectiveness in the control of premature A. aegypti stages. The use of B. splendens was compared to Bacillus thuringiensis israelensis (Bti) in domestic containers. In a first home visit, B. splendens or Bti were applied to water containers. Two follow-up visits were conducted after 3-4 and 5-6 months to assess the presence of viable fish in the containers and infestation by larvae. Betta splendens fish were still present in 97.6% of containers 45-60 days after application. When the fish was present, the infestation rate was significantly higher (P < 0.001) in the Bti group (IR ratio= 21.60; 95% CI: 6.46-72.28). In deposits where the fish remained, efficacy was 85% better than Bti. The permanence of fish was higher in concrete tanks (48.5%) located outside the house (47.5%) and at ground level (53.3%). We conclude that B. splendens may be suitable for biological control of A. aegypti larvae in large domestic water containers, but that appropriate measures should be taken to assure prolonged survival and the presence of fish in the containers. © 2010 Blackwell Publishing Ltd.

  2. 77 FR 14963 - Special Local Regulation; Moss Point Rockin' the Riverfront Festival; O'Leary Lake; Moss Point, MS

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-14

    ...-AA08 Special Local Regulation; Moss Point Rockin' the Riverfront Festival; O'Leary Lake; Moss Point, MS..., and persons on navigable waters during the Moss Point Rockin' the Riverfront Festival high speed boat... and vessels from safety hazards associated with the Moss Point Rockin' the Riverfront Festival high...

  3. Direct uptake of soil nitrogen by mosses

    PubMed Central

    Ayres, Edward; van der Wal, René; Sommerkorn, Martin; Bardgett, Richard D

    2006-01-01

    Mosses are one of the most diverse and widespread groups of plants and often form the dominant vegetation in montane, boreal and arctic ecosystems. However, unlike higher plants, mosses lack developed root and vascular systems, which is thought to limit their access to soil nutrients. Here, we test the ability of two physiologically and taxonomically distinct moss species to take up soil- and wet deposition-derived nitrogen (N) in natural intact turfs using stable isotopic techniques (15N). Both species exhibited increased concentrations of shoot 15N when exposed to either soil- or wet deposition-derived 15N, demonstrating conclusively and for the first time, that mosses derive N from the soil. Given the broad physiological and taxonomic differences between these moss species, we suggest soil N uptake may be common among mosses, although further studies are required to test this prediction. Soil N uptake by moss species may allow them to compete for soil N in a wide range of ecosystems. Moreover, since many terrestrial ecosystems are N limited, soil N uptake by mosses may have implications for plant community structure and nutrient cycling. Finally, soil N uptake may place some moss species at greater risk from N pollution than previously appreciated. PMID:17148384

  4. Direct uptake of soil nitrogen by mosses.

    PubMed

    Ayres, Edward; van der Wal, René; Sommerkorn, Martin; Bardgett, Richard D

    2006-06-22

    Mosses are one of the most diverse and widespread groups of plants and often form the dominant vegetation in montane, boreal and arctic ecosystems. However, unlike higher plants, mosses lack developed root and vascular systems, which is thought to limit their access to soil nutrients. Here, we test the ability of two physiologically and taxonomically distinct moss species to take up soil- and wet deposition-derived nitrogen (N) in natural intact turfs using stable isotopic techniques (15N). Both species exhibited increased concentrations of shoot 15N when exposed to either soil- or wet deposition-derived 15N, demonstrating conclusively and for the first time, that mosses derive N from the soil. Given the broad physiological and taxonomic differences between these moss species, we suggest soil N uptake may be common among mosses, although further studies are required to test this prediction. Soil N uptake by moss species may allow them to compete for soil N in a wide range of ecosystems. Moreover, since many terrestrial ecosystems are N limited, soil N uptake by mosses may have implications for plant community structure and nutrient cycling. Finally, soil N uptake may place some moss species at greater risk from N pollution than previously appreciated.

  5. 46 CFR 148.290 - Peat moss.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Peat moss. 148.290 Section 148.290 Shipping COAST GUARD... SPECIAL HANDLING Special Requirements for Certain Materials § 148.290 Peat moss. (a) Before shipment, peat... handling or coming into contact with peat moss must wear gloves, a dust mask, and goggles. ...

  6. 1,3,5-Hydroxybenzene structures in mosses

    USGS Publications Warehouse

    Wilson, M.A.; Sawyer, J.; Hatcher, P.G.; Lerch, H. E.

    1989-01-01

    A number of mosses from widely different families have been studied by cross polarization solid state 13C NMR spectroscopy. Although polysaccharide-type materials dominate the NMR spectra, significant amounts of aromatic carbons are observed in some mosses. Some of this material can be removed by ultrasonic bath treatment, and is lignin derived, probably from impurities from fine root material from associated higher plants. However other material is truly moss-derived and appears to be from 1,3,5-hydroxybenzene structures. This is inconsistent with lignin as being a component of mosses, and suggests a tannin or hydroxybenzofuran polymer is responsible for moss rigidity. ?? 1989.

  7. Evaporation from a sphagnum moss surface

    Treesearch

    D.S. Nichols; J.M. Brown

    1980-01-01

    Peat cores, 45 cm in diameter, were collected from a sphagnum bog in northern Minnesota, and used to measure the effects of different temperatures and water levels on evaporation from a sphagnum moss surface in a growth chamber. Under all conditions, evaporation from the moss surface was greater than that from a free-water surface. Evaporation from the moss increased...

  8. Lichen-moss interactions within biological soil crusts

    NASA Astrophysics Data System (ADS)

    Ruckteschler, Nina; Williams, Laura; Büdel, Burkhard; Weber, Bettina

    2015-04-01

    Biological soil crusts (biocrusts) create well-known hotspots of microbial activity, being important components of hot and cold arid terrestrial regions. They colonize the uppermost millimeters of the soil, being composed of fungi, (cyano-) bacteria, algae, lichens, bryophytes and archaea in varying proportions. Biocrusts protect the (semi-) arid landscape from wind and water erosion, and also increase water holding capacity and nutrient content. Depending on location and developmental stage, composition and species abundance vary within biocrusts. As species live in close contact, they are expected to influence each other, but only a few interactions between different organisms have so far been explored. In the present study, we investigated the effects of the lichen Fulgensia fulgens whilst growing on the moss Trichostomum crispulum. While 77% of Fulgensia fulgens thalli were found growing associated with mosses in a German biocrust, up to 95% of Fulgensia bracteata thalli were moss-associated in a Swedish biocrust. In 49% (Germany) and in 78% (Sweden) of cases, thalli were observed on the moss T. crispulum and less frequently on four and three different moss species. Beneath F. fulgens and F. bracteata thalli, the mosses were dead and in close vicinity to the lichens the mosses appeared frail, bringing us to the assumption that the lichens may release substances harming the moss. We prepared a water extract from the lichen F. fulgens and used this to water the moss thalli (n = 6) on a daily basis over a time-span of three weeks. In a control setup, artificial rainwater was applied to the moss thalli (n = 6). Once a week, maximum CO2 gas exchange rates of the thalli were measured under constant conditions and at the end of the experiment the chlorophyll content of the moss samples was determined. In the course of the experiment net photosynthesis (NP) of the treatment samples decreased concurrently with an increase in dark respiration (DR). The control samples

  9. [Effects of bryophytes in dark coniferous forest of Changbai Mountains on three conifers seed germination and seedling growth].

    PubMed

    Lin, Fei; Hao, Zhanqing; Ye, Ji; Jiang, Ping

    2006-08-01

    This paper studied the effects of Hylocomium splendens and Rhytidiadelphus triquetrus, the main bryophytes in dark coniferous forests of Changbai Mountains, on the seed germination and seedling growth of Pinus koraiensis, Picea koraiensis and Larix olgensis. The results indicated that at definite concentrations, the water extract of H. splendens inhibited Picea koraiensis seed germination, while that of R. triquetrus promoted it. Although the water extracts of the two bryophytes had no obvious effects on the seed germination of Picea koraiensis and Larix olgensis, they expedited the occurrence of the tree species' daily germination peak. The water extracts of test bryophytes inhibited the seedling growth of P. koraiensis and Picea koraiensis, but promoted that of Larix olgensis. The living shoots of the two bryophytes had no obvious effects on the seed germination of Picea koraiensis and Larix olgensis, but delayed the daily germination peak of Picea koraiensis while promoted that of Larix olgensis, andthe killed shoots inhibited the seed germination of all test tree species. Living shoots in larger amounts promoted the seedling growth of Picea koraiensis and Larix olgensis, but killed shoots were inadverse.

  10. Wound healing properties and kill kinetics of Clerodendron splendens G. Don, a Ghanaian wound healing plant

    PubMed Central

    Gbedema, Stephen Y.; Emelia, Kisseih; Francis, Adu; Kofi, Annan; Eric, Woode

    2010-01-01

    As part of our general objective of investigating indigenous plants used in wound healing in Ghana, we hereby report our findings from some in vitro and in vivo studies related to wound healing activities of Clerodendron splendens G. Don (Verbanaceae). Methanolic extract of the aerial parts of the plant was tested for antimicrobial activity against Gram positive bacteria (Bacillus subtilis, Staphylococcus aureus, Streptococcus faecalis, Micrococcus flavus, as well as resistant strains of Staph. aureus SA1199B, RN4220 and XU212), Gram negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Proteous mirabilis, Klebsiella pneumoniae) and Candida albicans using the micro-well dilution method. Survivor–time studies of the microorganisms, radical scavenging activity using 2,2’-diphenylpicrylhydrazyl (DPPH) and various in vivo wound healing activity studies were also conducted on the extract. The extract exhibited biostatic action against all the test microorganisms with a Minimum Inhibition Concentration (MIC) ranging between 64 and 512 μg/ml and a free radical scavenging property with an IC50 value of 103.2 μg/ml. The results of the in vivo wound healing tests showed that upon application of C. splendens ointment, there was a reduction in the epithelization period from 26.7 days (control) to 13.6 days along with a marked decrease in the scar area from 54.2 mm2 (control) to 25.2 mm2. Significant increase in the tensile strength and hydroxyproline content were also observed as compared to the control and was comparable to nitrofurazone. The above results appear to justify the traditional use of C. splendens in wound healing and treatment of skin infections in Ghana. PMID:21808542

  11. The Complete Moss Mitochondrial Genome in the Angiosperm Amborella Is a Chimera Derived from Two Moss Whole-Genome Transfers.

    PubMed

    Taylor, Z Nathan; Rice, Danny W; Palmer, Jeffrey D

    2015-01-01

    Sequencing of the 4-Mb mitochondrial genome of the angiosperm Amborella trichopoda has shown that it contains unprecedented amounts of foreign mitochondrial DNA, including four blocks of sequences that together correspond almost perfectly to one entire moss mitochondrial genome. This implies whole-genome transfer from a single moss donor but conflicts with phylogenetic results from an earlier, PCR-based study that suggested three different moss donors to Amborella. To resolve this conflict, we conducted an expanded set of phylogenetic analyses with respect to both moss lineages and mitochondrial loci. The moss DNA in Amborella was consistently placed in either of two positions, depending on the locus analyzed, as sister to the Ptychomniales or within the Hookeriales. This agrees with two of the three previously suggested donors, whereas the third is no longer supported. These results, combined with synteny analyses and other considerations, lead us to favor a model involving two successive moss-to-Amborella whole-genome transfers, followed by recombination that produced a single intact and chimeric moss mitochondrial genome integrated in the Amborella mitochondrial genome. Eight subsequent recombination events account for the state of fragmentation, rearrangement, duplication, and deletion of this chimeric moss mitochondrial genome as it currently exists in Amborella. Five of these events are associated with short-to-intermediate sized repeats. Two of the five probably occurred by reciprocal homologous recombination, whereas the other three probably occurred in a non-reciprocal manner via microhomology-mediated break-induced replication (MMBIR). These findings reinforce and extend recent evidence for an important role of MMBIR in plant mitochondrial DNA evolution.

  12. Arctic mosses govern below-ground environment and ecosystem processes.

    PubMed

    Gornall, J L; Jónsdóttir, I S; Woodin, S J; Van der Wal, R

    2007-10-01

    Mosses dominate many northern ecosystems and their presence is integral to soil thermal and hydrological regimes which, in turn, dictate important ecological processes. Drivers, such as climate change and increasing herbivore pressure, affect the moss layer thus, assessment of the functional role of mosses in determining soil characteristics is essential. Field manipulations conducted in high arctic Spitsbergen (78 degrees N), creating shallow (3 cm), intermediate (6 cm) and deep (12 cm) moss layers over the soil surface, had an immediate impact on soil temperature in terms of both average temperatures and amplitude of fluctuations. In soil under deep moss, temperature was substantially lower and organic layer thaw occurred 4 weeks later than in other treatment plots; the growing season for vascular plants was thereby reduced by 40%. Soil moisture was also reduced under deep moss, reflecting the influence of local heterogeneity in moss depth, over and above the landscape-scale topographic control of soil moisture. Data from field and laboratory experiments show that moss-mediated effects on the soil environment influenced microbial biomass and activity, resulting in warmer and wetter soil under thinner moss layers containing more plant-available nitrogen. In arctic ecosystems, which are limited by soil temperature, growing season length and nutrient availability, spatial and temporal variation in the depth of the moss layer has significant repercussions for ecosystem function. Evidence from our mesic tundra site shows that any disturbance causing reduction in the depth of the moss layer will alleviate temperature and moisture constraints and therefore profoundly influence a wide range of ecosystem processes, including nutrient cycling and energy transfer.

  13. Differentiation and Tropisms in Space-Grown Moss

    NASA Technical Reports Server (NTRS)

    Sack, Fred D.; Kern, Volker

    1999-01-01

    This grant supported a Space Shuttle experiment on the effects of microgravity on moss cells. Moss provides a rich system for gravitational and spaceflight research. The early phase of the moss life cycle consists of chains of cells that only grow only at their tips. In the moss Ceratodon purpureus these filaments (protonemata) grow away from gravity in the dark, in a process called gravitropism. The tipmost cells, the apical cells, contain heavy starch-filled bodies called amyloplasts that probably function in g-sensing and that sediment within the apical cell. The SPM-A (Space Moss aka SPAM) experiment flew in November - December, 1997 on STS-87 as part of the Collaborative US Ukrainian Experiment (CLTE). The experiment was accommodated in hardware purpose-built by NASA KSC and Bionetics and included Petri Dish Fixation Units (PDFU) and BRIC-LEDs. Together, this hardware allowed for the culture of the moss on agar in commercial petri dishes, for unilateral illumination with red light of varying intensity, and for chemical fixation in situ. The key findings of the spaceflight were quite unexpected. Neither the orientation of tip-growth nor the distribution of amyloplasts was random in microgravity.

  14. Atmospheric particulate matter intercepted by moss-bags: Relations to moss trace element uptake and land use.

    PubMed

    Di Palma, Anna; Capozzi, Fiore; Spagnuolo, Valeria; Giordano, Simonetta; Adamo, Paola

    2017-06-01

    Particulate matter has to be constantly monitored because it is an important atmospheric transport form of potentially harmful contaminants. The cost-effective method of the moss-bags can be employed to evaluate both loads and chemical composition of PM. PM entrapped by the moss Pseudoscleropodium purum exposed in bags in 9 European sites was characterized for number, size and chemical composition by SEM/EDX. Moreover, moss elemental uptake of 53 elements including rare earth elements was estimated by ICP-MS analysis. All above was aimed to find possible relations between PM profile and moss uptake and to find out eventual element markers of the different land use (i.e. agricultural, urban, industrial) of the selected sites. After exposure, about 12,000 particles, mostly within the inhalable fraction, were counted on P. purum leaves; their number generally increased from the agricultural sites to the urban and industrial ones. ICP analysis indicated that twenty-three elements were significantly accumulated by mosses with different element profile according to the various land uses. The PM from agricultural sites were mainly made of natural/crustal elements or derived from rural activities. Industrial-related PM covered a wider range of sources, from those linked to specific industrial activities, to those related to manufacturing processes or use of heavy-duty vehicles. This study indicates a close association between PM amount and moss element-uptake, which increases in parallel with PM amount. Precious metals and REEs may constitute novel markers of air pollution in urban and agricultural sites, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Resurgence in Siamese fighting fish, Betta splendens.

    PubMed

    da Silva, Stephanie P; Cançado, Carlos R X; Lattal, Kennon A

    2014-03-01

    Resurgence of previously reinforced responding was investigated in male Siamese fighting fish (Betta splendens). Swimming through a ring produced 15-s mirror presentations according to, with different fish, either a fixed-ratio 1 or a variable-interval 60-s schedule of reinforcement. When responding was stable, a differential-reinforcement-of-other-behavior schedule was substituted for the mirror-presentation schedule. Following this, mirror presentations were discontinued (extinction). During this latter phase, there were transient increases in the ring-swim response relative to the frequency of such responding during the differential-reinforcement-of-other behavior schedule. Resurgence was similar for the fish exposed previously to the fixed-ratio or to the variable-interval schedule. These results extend to Siamese fighting fish a well-established behavioral phenomenon previously not observed in this species or with this response topography, and only rarely reported following the removal of a non-consumable reinforcer. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Tolerance to environmental desiccation in moss sperm.

    PubMed

    Shortlidge, Erin E; Rosenstiel, Todd N; Eppley, Sarah M

    2012-05-01

    • Sexual reproduction in mosses requires that sperm be released freely into the environment before finding and fertilizing a receptive female. After release from the male plant, moss sperm may experience a range of abiotic stresses; however, few data are available examining stress tolerance of moss sperm and whether there is genetic variation for stress tolerance in this important life stage. • Here, we investigated the effects of environmental desiccation and recovery on the sperm cells of three moss species (Bryum argenteum, Campylopus introflexus, and Ceratodon purpureus). • We found that a fraction of sperm cells were tolerant to environmental desiccation for extended periods (d) and that tolerance did not vary among species. We found that this tolerance occurs irrespective of ambient dehydration conditions, and that the addition of sucrose during dry-down improved cell recovery. Although we observed no interspecific variation, significant variation among individuals within species in sperm cell tolerance to environmental desiccation was observed, suggesting selection could potentially act on this basic reproductive trait. • The observation of desiccation-tolerant sperm in multiple moss species has important implications for understanding bryophyte reproduction, suggesting the presence of a significant, uncharacterized complexity in the ecology of moss mating systems. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  17. GIRAS TO MOSS INTERFACE.

    USGS Publications Warehouse

    DiNardo, Thomas P.; Jackson, R. Alan

    1984-01-01

    An analysis of land use change for an area in Boulder County, Colorado, was conducted using digital cartographic data. The authors selected data in the Geographic Information Retrieval and Analysis System (GIRAS) format which is digitized from the 1:250,000-scale land use and land cover map series. The Map Overlay and Statistical System (MOSS) was used as an analytical tool for the study. The authors describe the methodology used in converting the GIRAS file into a MOSS format and the activities associated with the conversion.

  18. 33 CFR 80.1136 - Moss Landing Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Moss Landing Harbor, CA. 80.1136... NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1136 Moss Landing Harbor, CA. A line drawn from the seaward extremity of the pier located 0.3 mile south of Moss Landing Harbor Entrance to the...

  19. 33 CFR 80.1136 - Moss Landing Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Moss Landing Harbor, CA. 80.1136... NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1136 Moss Landing Harbor, CA. A line drawn from the seaward extremity of the pier located 0.3 mile south of Moss Landing Harbor Entrance to the...

  20. Active moss biomonitoring of trace elements with Sphagnum girgensohnii moss bags in relation to atmospheric bulk deposition in Belgrade, Serbia.

    PubMed

    Anicić, M; Tasić, M; Frontasyeva, M V; Tomasević, M; Rajsić, S; Mijić, Z; Popović, A

    2009-02-01

    Active biomonitoring with wet and dry moss bags was used to examine trace element atmospheric deposition in the urban area of Belgrade. The element accumulation capability of Sphagnum girgensohnii Russow was tested in relation to atmospheric bulk deposition. Moss bags were mounted for five 3-month periods (July 2005-October 2006) at three representative urban sites. For the same period monthly bulk atmospheric deposition samples were collected. The concentrations of Al, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, and Pb were determined by instrumental neutron activation analyses and atomic absorption spectrometry. Significant accumulation of most elements occurred in the exposed moss bags compared with the initial moss content. High correlations between the elements in moss and bulk deposits were found for V, Cu, As, and Ni. The enrichment factors of the elements for both types of monitor followed the same pattern at the corresponding sites.

  1. Bioactive phenolic derivatives from Acaena splendens methanol extract.

    PubMed

    Backhouse, N; Delporte, C; Negrete, R; Feliciano, S A San; López-Pérez, J L

    2002-09-01

    Acaena splendens H. et A. has been used in Chilean folk medicine for the treatment of fever and inflammation. A description of the in vivo reduction of bacterial pyrogen-induced fever in rabbits and carrageenan-induced paw oedema in guinea pigs is presented. The methanol extract named ME-1, obtained after succesive extractions with petroleum ether and dichloromethane, showed a strong antipyretic action (45.7% of effect), though the antiinflammatory activity was only observed after submitting this extract to column fractionation, giving a crude mixture of flavonoids named C4 with both activities (55.7% and 98.9% of antiinflammatory and antipyretic effect respectively at a dose of 600 mg/kg). The bioassay-guided fractionation by column chromatography afforded the active fraction, which contained (-,-)-epicatechin, tiliroside, 7-O-acetyl-3-O-beta-D-glucosyl-kaempferol and 7-beta-D-glucosyloxy-5-hydroxy-chromone. Copyright 2002 John Wiley & Sons, Ltd.

  2. Co-production of biochar, bio-oil and syngas from halophyte grass (Achnatherum splendens L.) under three different pyrolysis temperatures.

    PubMed

    Irfan, Muhammad; Chen, Qun; Yue, Yan; Pang, Renzhong; Lin, Qimei; Zhao, Xiaorong; Chen, Hao

    2016-07-01

    In the present study, pyrolysis of Achnatherum splendens L. was performed under three different pyrolysis temperature (300, 500, and 700°C) to investigate the characteristics of biochar, bio-oil, and syngas. Biochar yield decreased from 48% to 24%, whereas syngas yield increased from 34% to 54% when pyrolysis temperature was increased from 300 to 700°C. Maximum bio-oil yield (27%) was obtained at 500°C. The biochar were characterized for elemental composition, surface, and adsorption properties. The results showed that obtained biochar could be used as a potential soil amendment. The bio-oil and syngas co-products will be evaluated in the future as bioenergy sources. Overall, our results suggests that A. splendens L. could be utilized as a potential feedstock for biochar and bioenergy production through pyrolytic route. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. The Moss Techniques for Air Pollution Study in Bulgaria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marinova, S.; Marinov, A.; Frontasyeva, M.

    2010-01-21

    The paper presents new results on atmospheric deposition of 41 elements in four areas of Bulgaria during the European moss survey in 2005. The results have been obtained by the moss biomonitoring technique. Ninety seven moss samples were analyzed by instrumental neutron activation analysis (ENAA) and atomic absorption spectrometry (AAS).

  4. Hydrogeological controls on post-fire moss recovery in peatlands

    NASA Astrophysics Data System (ADS)

    Lukenbach, M. C.; Devito, K. J.; Kettridge, N.; Petrone, R. M.; Waddington, J. M.

    2015-11-01

    Wildfire is the largest disturbance affecting boreal peatlands, however, little is known about the controls on post-fire peatland vegetation recovery. While small-scale variation in burn severity can reduce post-fire moss water availability, high water table (WT) positions following wildfire are also critical to enable the re-establishment of keystone peatland mosses (i.e. Sphagnum). Thus, post-fire moss water availability is also likely a function of landscape-scale controls on peatland WT dynamics, specifically, connectivity to groundwater flow systems (i.e. hydrogeological setting). For this reason, we assessed the interacting controls of hydrogeological setting and burn severity on post-fire moss water availability in three burned, Sphagnum-dominated peatlands in Alberta's Boreal Plains. At all sites, variation in burn severity resulted in a dichotomy between post-fire surface covers that: (1) exhibited low water availability, regardless of WT position, and had minimal (<5%) moss re-establishment (i.e. lightly burned feather mosses and severely burned Sphagnum fuscum) or (2) exhibited high water availability, depending on WT position, and had substantial (>50%) moss re-establishment (i.e. lightly burned S. fuscum and where depth of burn was >0.05 m). Notably, hydrogeological setting influenced the spatial coverage of these post-fire surface covers by influencing pre-fire WTs and stand characteristics (e.g., shading). Because feather moss cover is controlled by tree shading, lightly burned feather mosses were ubiquitous (>25%) in drier peatlands (deeper pre-fire WTs) that were densely treed and had little connection to large groundwater flow systems. Moreover, hydrogeological setting also controlled post-fire WT positions, thereby affecting moss re-establishment in post-fire surface covers that were dependent on WT position (e.g., lightly burned S. fuscum). Accordingly, higher recolonization rates were observed in a peatland located in a groundwater flow through

  5. Litter of the hemiparasite Bartsia alpina enhances plant growth: evidence for a functional role in nutrient cycling.

    PubMed

    Quested, Helen M; Press, Malcolm C; Callaghan, Terry V

    2003-05-01

    Hemiparasitic angiosperms concentrate nutrients in their leaves and also produce high quality litter, which can decompose faster and release more nutrients than that of surrounding species. The impact of these litters on plant growth may be particularly important in nutrient-poor communities where hemiparisites can be abundant, such as the sub-Arctic. We tested the hypothesis that plant growth is enhanced by the litter of the hemiparasite Bartsia alpina, in comparison with litter of co-occurring dwarf shrub species, using a pot based bioassay approach. Growth of Betula nana and Poa alpina was up to 51% and 41% greater, respectively, in the presence of Bartsia alpina litter than when grown with dwarf shrub litter (Vaccinium uliginosum, Betula nana and Empetrum nigrum subsp. hermaphroditum). The nutrient concentrations of Betula nana plants grown with Bartsia alpina litter were almost double those of plants grown with dwarf shrub litter, and a significantly greater proportion of biomass was allocated to shoots rather than roots, strongly suggesting that nutrient availability was higher where Bartsia alpina litter was present. The presence of litter from dwarf shrubs, or the moss Hylocomium splendens, did not reduce the positive effect of Bartsia alpina litter on plant growth. E. nigrum litter did not appear to affect plant growth substantially differently from litter of other dwarf shrub species, despite earlier reports of its allelopathic action. The enhanced nutrient uptake and growth of plants in the presence of Bartsia alpina (and potentially other hemiparasitic species) litter could have important implications for communities in which it occurs, including enhanced survival of seedlings of co-occurring species and increased resource patchiness.

  6. Development of gas exchange and ion regulation in two species of air-breathing fish, Betta splendens and Macropodus opercularis.

    PubMed

    Huang, Chun-Yen; Lin, Cheng-Huang; Lin, Hui-Chen

    2015-07-01

    Aquatic air-breathing anabantoids, a group of fish species characterized by the presence of a labyrinth organ and some gills, exhibit morphological variations. This study aimed to examine whether unequal gill growth begins during the early stages and described the sequence of the early gill developmental events in Betta splendens and Macropodus opercularis. To determine when the ion regulatory and gas exchange abilities first appear in the gills, mitochondria-rich cells (MRCs) and neuroepithelial cells (NECs) were examined in young B. splendens. To evaluate the relative importance of the gills and the labyrinth organ under different levels of oxygen uptake stress, the levels of carbonic anhydrase II (CAII) and Na(+)/K(+)-ATPase (NKA) protein expressions in 2 gills and the labyrinth organ were examined in M. opercularis. We found that the first 3 gills developed earlier than the 4th gill in both species, an indication that the morphological variation begins early in life. In B. splendens, the MRCs and NECs clearly appeared in the first 3 gills at 4 dph and were first found in the 4th gill until 11 dph. The oxygen-sensing ability of the gills was concordant with the ionoregulatory function. In M. opercularis, the hypoxic group had a significantly higher air-breathing frequency. CAII protein expression was higher in the labyrinth organ in the hypoxic group. The gills exhibited increased NKA protein expression in the hypoxic and restricted groups, respectively. Functional plasticity in CAII and NKA protein expressions was found between the gills and the labyrinth organ in adult M. opercularis. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Dynamic Moss Observed with Hi-C

    NASA Technical Reports Server (NTRS)

    Alexander, Caroline; Winebarger, Amy; Morton, Richard; Savage, Sabrina

    2014-01-01

    The High-resolution Coronal Imager (Hi-C), flown on 11 July 2012, has revealed an unprecedented level of detail and substructure within the solar corona. Hi-­-C imaged a large active region (AR11520) with 0.2-0.3'' spatial resolution and 5.5s cadence over a 5 minute period. An additional dataset with a smaller FOV, the same resolution, but with a higher temporal cadence (1s) was also taken during the rocket flight. This dataset was centered on a large patch of 'moss' emission that initially seemed to show very little variability. Image processing revealed this region to be much more dynamic than first thought with numerous bright and dark features observed to appear, move and disappear over the 5 minute observation. Moss is thought to be emission from the upper transition region component of hot loops so studying its dynamics and the relation between the bright/dark features and underlying magnetic features is important to tie the interaction of the different atmospheric layers together. Hi-C allows us to study the coronal emission of the moss at the smallest scales while data from SDO/AIA and HMI is used to give information on these structures at different heights/temperatures. Using the high temporal and spatial resolution of Hi-C the observed moss features were tracked and the distribution of displacements, speeds, and sizes were measured. This allows us to comment on both the physical processes occurring within the dynamic moss and the scales at which these changes are occurring.

  8. Dynamic Moss Observed with Hi-C

    NASA Technical Reports Server (NTRS)

    Alexander, Caroline; Winebarger, Amy; Morton, Richard; Savage, Sabrina

    2014-01-01

    The High-resolution Coronal Imager (Hi-C), flown on 11 July 2012, has revealed an unprecedented level of detail and substructure within the solar corona. Hi-C imaged a large active region (AR11520) with 0.2-0.3'' spatial resolution and 5.5s cadence over a 5 minute period. An additional dataset with a smaller FOV, the same resolution, but with a higher temporal cadence (1s) was also taken during the rocket flight. This dataset was centered on a large patch of 'moss' emission that initially seemed to show very little variability. Image processing revealed this region to be much more dynamic than first thought with numerous bright and dark features observed to appear, move and disappear over the 5 minute observation. Moss is thought to be emission from the upper transition region component of hot loops so studying its dynamics and the relation between the bright/dark features and underlying magnetic features is important to tie the interaction of the different atmospheric layers together. Hi-C allows us to study the coronal emission of the moss at the smallest scales while data from SDO/AIA and HMI is used to give information on these structures at different heights/temperatures. Using the high temporal and spatial resolution of Hi-C the observed moss features were tracked and the distribution of displacements, speeds, and sizes were measured. This allows us to comment on both the physical processes occurring within the dynamic moss and the scales at which these changes are occurring.

  9. OBSERVING CORONAL NANOFLARES IN ACTIVE REGION MOSS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Testa, Paola; DeLuca, Ed; Golub, Leon

    2013-06-10

    The High-resolution Coronal Imager (Hi-C) has provided Fe XII 193A images of the upper transition region moss at an unprecedented spatial ({approx}0.''3-0.''4) and temporal (5.5 s) resolution. The Hi-C observations show in some moss regions variability on timescales down to {approx}15 s, significantly shorter than the minute-scale variability typically found in previous observations of moss, therefore challenging the conclusion of moss being heated in a mostly steady manner. These rapid variability moss regions are located at the footpoints of bright hot coronal loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly in the 94 A channel, and by the Hinode/X-Raymore » Telescope. The configuration of these loops is highly dynamic, and suggestive of slipping reconnection. We interpret these events as signatures of heating events associated with reconnection occurring in the overlying hot coronal loops, i.e., coronal nanoflares. We estimate the order of magnitude of the energy in these events to be of at least a few 10{sup 23} erg, also supporting the nanoflare scenario. These Hi-C observations suggest that future observations at comparable high spatial and temporal resolution, with more extensive temperature coverage, are required to determine the exact characteristics of the heating mechanism(s).« less

  10. Investigation of metal ions sorption of brown peat moss powder

    NASA Astrophysics Data System (ADS)

    Kelus, Nadezhda; Blokhina, Elena; Novikov, Dmitry; Novikova, Yaroslavna; Chuchalin, Vladimir

    2017-11-01

    For regularities research of sorptive extraction of heavy metal ions by cellulose and its derivates from aquatic solution of electrolytes it is necessary to find possible mechanism of sorption process and to choice a model describing this process. The present article investigates the regularities of aliovalent metals sorption on brown peat moss powder. The results show that sorption isotherm of Al3+ ions is described by Freundlich isotherm and sorption isotherms of Na+ i Ni2+ are described by Langmuir isotherm. To identify the mechanisms of brown peat moss powder sorption the IR-spectra of the initial brown peat moss powder samples and brown peat moss powder samples after Ni (II) sorption were studied. Metal ion binding mechanisms by brown peat moss powder points to ion exchange, physical adsorption, and complex formation with hydroxyl and carboxyl groups.

  11. Spectral reflectance patterns and temporal dynamics of common understory types in hemi-boreal forests in Järvselja, Estonia

    NASA Astrophysics Data System (ADS)

    Nikopensius, Maris; Raabe, Kairi; Pisek, Jan

    2014-05-01

    The knowledge about spectral properties and seasonal dynamics of understory layers in boreal forests currently holds several gaps. This introduces severe uncertainties while modelling the carbon balance of this ecosystem, which is expected to be prone to major shifts with climate change in the future. In this work the seasonal reflectance dynamics in European hemi-boreal forests are studied. The data for this study was collected at Järvselja Training and Experimental Forestry District (Estonia, 27.26°E 58.30°N). Measurements were taken in three different stands. The silver birch (Betula Pendula Roth) stand grows on typical brown gley-soil and its understory vegetation is dominated by a mixture of several grass species. The Scots pine (Pinus sylvestris) stand grows on a bog with understory vegetation composed of sparse labrador tea, cotton grass, and a continuous Sphagnum moss layer. The third stand, Norway spruce (Picea abies), grows on a Gleyi Ferric Podzol site with understory vegetation either partially missing or consisting of mosses such as Hylocomium splendens or Pleurozium schreberi [1]. The sampling design was similar to the study by Rautiainen et al. [3] in northern European boreal forests. At each study site, a 100 m long permanent transect was marked with flags. In addition, four intensive study plots (1 m × 1 m) were marked next to the transects at 20 m intervals. The field campaign lasted from May to September 2013. For each site the fractional cover of understory and understory spectra were estimated ten times i.e. every 2 to 3 weeks. Results from Järvselja forest were compared with the seasonal profiles from boreal forests in Hyytiälä, Finland [2]. References [1] A. Kuusk, M. Lang, J. Kuusk, T. Lükk, T. Nilson, M. Mõttus, M. Rautiainen, and A. Eenmäe, "Database of optical and structural data for validation of radiative transfer models", Technical Report, September 2009 [2] M. Rautiainen, M. Mõttus, J. Heiskanen, A. Akujärvi, T. Majasalmi

  12. Physiological and molecular diversity of feather moss associative N2-fixing cyanobacteria.

    PubMed

    Gentili, Francesco; Nilsson, Marie-Charlotte; Zackrisson, Olle; DeLuca, Thomas H; Sellstedt, Anita

    2005-12-01

    Cyanobacteria colonizing the feather moss Pleurozium schreberi were isolated from moss samples collected in northern Sweden and subjected to physiological and molecular characterization. Morphological studies of isolated and moss-associated cyanobacteria were carried out by light microscopy. Molecular tools were used for cyanobacteria identification, and a reconstitution experiment of the association between non-associative mosses and cyanobacteria was conducted. The influence of temperature on N2 fixation in the different cyanobacterial isolates and the influence of light and temperature on N2-fixation rates in the moss were studied using the acetylene reduction assay. Two different cyanobacteria were effectively isolated from P. schreberi: Nostoc sp. and Calothrix sp. A third genus, Stigonema sp. was identified by microscopy, but could not be isolated. The Nostoc sp. was found to fix N2 at lower temperatures than Calothrix sp. Nostoc sp. and Stigonema sp. were the predominant cyanobacteria colonizing the moss. The attempt to reconstitute the association between the moss and cyanobacteria was successful. The two isolated genera of cyanobacteria in feather moss samples collected in northern Sweden differ in their temperature optima, which may have important ecological implications.

  13. Improved eicosapentaenoic acid production in Pythium splendens RBB-5 based on metabolic regulation analysis.

    PubMed

    Ren, Liang; Zhou, Pengpeng; Zhu, Yuanmin; Zhang, Ruijiao; Yu, Longjiang

    2017-05-01

    Eicosapentaenoic acid (EPA) is an essential polyunsaturated fatty acid for human beings. At present, the production of commercially available long-chain polyunsaturated fatty acids, mainly from wild-caught ocean fish, is struggling to meet the increasing demand for EPA. Production of EPA by microorganisms may be an alternative, effective and economical method. The oleaginous fungus Pythium splendens RBB-5 is a potential source of EPA, and thanks to the simple culture conditions required, high yields can be achieved in a facile manner. In the study, lipid metabolomics was performed in an attempt to enhance EPA biosynthesis in Pythium splendens. Synthetic, metabolic regulation and gene expression analyses were conducted to clarify the mechanism of EPA biosynthesis, and guide optimization of EPA production. The results showed that the Δ 6 desaturase pathway is the main EPA biosynthetic route in this organism, and ∆ 6 , ∆ 12 and Δ 17 desaturases are the rate-limiting enzymes. All the three desaturase genes were separately introduced into the parent strain to increase the flow of fatty acids into the Δ 6 desaturase pathway. Enhanced expression of these key enzymes, in combination with improved regulation of metabolism, resulted in a maximum yield of 1.43 g/L in the D12 transgenic strain, which represents a tenfold increase over the parent strain before optimization. This is the higher EPA production yield yet reported for a microbial system. Our findings may allow the production of EPA at an industrial scale, and the strategy employed could be used to increase the production of EPA or other lipids in oleaginous microorganisms.

  14. Herbivore impacts to the moss layer determine tundra ecosystem response to grazing and warming.

    PubMed

    Gornall, Jemma L; Woodin, Sarah J; Jónsdóttir, Ingibjörg S; Van der Wal, Rene

    2009-10-01

    Herbivory and climate are key environmental drivers, shaping ecosystems at high latitudes. Here, we focus on how these two drivers act in concert, influencing the high arctic tundra. We aim to investigate mechanisms through which herbivory by geese influences vegetation and soil processes in tundra ecosystems under ambient and warmed conditions. To achieve this, two grazing treatments, clipping plus faecal additions and moss removal, were implemented in conjunction with passive warming. Our key finding was that, in many cases, the tundra ecosystem response was determined by treatment impacts on the moss layer. Moss removal reduced the remaining moss layer depth by 30% and increased peak grass biomass by 27%. These impacts were probably due to observed higher soil temperatures and decomposition rates associated with moss removal. The positive impact of moss removal on grass biomass was even greater with warming, further supporting this conclusion. In contrast, moss removal reduced dwarf shrub biomass possibly resulting from increased exposure to desiccating winds. An intact moss layer buffered the soil to increased air temperature and as a result there was no response of vascular plant productivity to warming over the course of this study. In fact, moss removal impacts on soil temperature were nearly double those of warming, suggesting that the moss layer is a key component in controlling soil conditions. The moss layer also absorbed nutrients from faeces, promoting moss growth. We conclude that both herbivory and warming influence this high arctic ecosystem but that herbivory is the stronger driver of the two. Disturbance to the moss layer resulted in a shift towards a more grass-dominated system with less abundant mosses and shrubs, a trend that was further enhanced by warming. Thus herbivore impacts to the moss layer are key to understanding arctic ecosystem response to grazing and warming.

  15. 33 CFR 80.1136 - Moss Landing Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Moss Landing Harbor, CA. 80.1136 Section 80.1136 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1136 Moss Landing Harbor, CA. A line drawn from...

  16. 33 CFR 80.1136 - Moss Landing Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Moss Landing Harbor, CA. 80.1136 Section 80.1136 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1136 Moss Landing Harbor, CA. A line drawn from...

  17. 33 CFR 80.1136 - Moss Landing Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Moss Landing Harbor, CA. 80.1136 Section 80.1136 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1136 Moss Landing Harbor, CA. A line drawn from...

  18. Visual reinforcement in the female Siamese fighting fish, Betta splendens.

    PubMed

    Elcoro, Mirari; Silva, Stephanie P; Lattal, Kennon A

    2008-07-01

    Operant conditioning with Betta splendens (Bettas) has been investigated extensively using males of the species. Ethological studies of female Bettas have revealed aggressive interactions that qualitatively parallel those between male Bettas. Given these similarities, four experiments were conducted with female Bettas to examine the generality of a widely reported finding with males: mirror-image reinforcement. Swimming through a ring was reinforced by a 10-s mirror presentation. As with males, ring swimming was acquired and maintained when mirror presentations were immediate (Experiments 1, 2, and 3) and delayed (Experiment 4). The failure of conventional extinction (Experiments 1 and 2) and response-independent mirror presentations (Experiment 3) to maintain responding confirmed the reinforcing properties of mirror presentation. These results extend previous findings of mirror images as reinforcers in males of the same species and illustrate a complementarity between behavioral ecology and the experimental analysis of behavior.

  19. Terrestrial mosses as biomonitors of atmospheric POPs pollution: a review.

    PubMed

    Harmens, H; Foan, L; Simon, V; Mills, G

    2013-02-01

    Worldwide there is concern about the continuing release of persistent organic pollutants (POPs) into the environment. In this study we review the application of mosses as biomonitors of atmospheric deposition of POPs. Examples in the literature show that mosses are suitable organisms to monitor spatial patterns and temporal trends of atmospheric concentrations or deposition of POPs. These examples include polycyclic aromatic hydrocarbons (PAHs), polychlorobiphenyls (PCBs), dioxins and furans (PCDD/Fs), and polybrominated diphenyl ethers (PBDEs). The majority of studies report on PAHs concentrations in mosses and relative few studies have been conducted on other POPs. So far, many studies have focused on spatial patterns around pollution sources or the concentration in mosses in remote areas such as the polar regions, as an indication of long-range transport of POPs. Very few studies have determined temporal trends or have directly related the concentrations in mosses with measured atmospheric concentrations and/or deposition fluxes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Mosses and the struggle for light in a nitrogen-polluted world.

    PubMed

    van der Wal, René; Pearce, Imogen S K; Brooker, Rob W

    2005-01-01

    The impact of reduced light conditions as an indirect effect of nitrogen (N) deposition was determined on three mosses in a montane ecosystem, where sedge and grass cover increase due to N enrichment. Additionally, in the greenhouse we established the importance of low light to moss growth as an indirect N deposition effect relative to the direct toxic effects of N. The amount of light reaching the moss layer was strongly and negatively related to graminoid abundance. Mosses showed differing sensitivities to reduced light in the field. Racomitrium lanuginosum biomass was found to be highest under high-light conditions, Polytrichum alpinum at intermediate light levels, whilst that of Dicranum fuscescens was unrelated to light availability. Moreover, Racomitrium biomass decreased with increasing amounts of graminoid litter, whereas the other species were little affected. All three mosses responded differently to the combination of elevated N (20 vs 10 kg N ha(-1) year(-1)) and reduced light (60 and 80% reduction) in the greenhouse. Racomitrium growth was strongly influenced by both light reduction and elevated N, in combination reducing shoot biomass up to 76%. There was a tendency for Dicranum growth to be modestly reduced by elevated N when shaded, causing up to 19% growth reduction. Polytrichum growth was not influenced by elevated N but was reduced up to 40% by shading. We conclude that competition for light, induced by vascular plants, can strongly influence moss performance even in unproductive low biomass ecosystems. The effects of reduced light arising from N pollution can be as important to mosses as direct toxicity from N deposition. Yet, different sensitivities of mosses to both toxic and shading effects of elevated N prevent generalisation and can lead to competitive species replacement within moss communities. This study demonstrates the importance of understanding moss-vascular plant interactions to allow interpretation and prediction of ecosystem

  1. The resilience and functional role of moss in boreal and arctic ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turetsky, Merritt; Bond-Lamberty, Benjamin; Euskirchen, Eugenie S.

    2012-08-24

    Mosses in boreal and arctic ecosystems are ubiquitous components of plant communities, represent an important component of plant diversity, and strongly influence the cycling of water, nutrients, energy and carbon. Here we use a literature review and synthesis as well as model simulations to explore the role of moss in ecological stability and resilience. Our literature review of moss community responses to disturbance showed all possible responses (increases, decreases, no change) within most disturbance categories in boreal and arctic regions. Our modeling simulations suggest that loss of moss within northern plant communities will reduce soil carbon accumulation primarily by influencingmore » decomposition rates and soil nitrogen availability. While two models (HPM and STM-TEM) showed a significant effect of moss removal, results from the Biome-BGC and DVM-TEM models suggest that northern, moss-rich ecosystems would need to experience extreme perturbation before mosses were eliminated. We highlight a number of issues that have not been adequately explored in moss communities, such as functional redundancy and singularity, relationships between response and effect traits, phenotypical plasticity in traits, and whether the effects of moss on ecosystem processes scale with local abundance. We also suggest that as more models explore issues related to ecological resilience, issues related to both parameter and conceptual uncertainty should be addressed: are the models more limited by uncertainty in the parameterization of the processes included or by what is not represented in the model at all? It seems clear from our review that mosses need to be incorporated into models as one or more plant functional types, but more empirical work is needed to determine how to best aggregate species.« less

  2. Mosses in Ohio wetlands respond to indices of disturbance and vascular plant integrity

    USGS Publications Warehouse

    Stapanian, Martin A.; Schumacher, William; Gara, Brian; Viau, Nick

    2016-01-01

    We examined the relationships between an index of wetland habitat quality and disturbance (ORAM score) and an index of vascular plant integrity (VIBI-FQ score) with moss species richness and a moss quality assessment index (MQAI) in 45 wetlands in three vegetation types in Ohio, USA. Species richness of mosses and MQAI were positively associated with ORAM and VIBI-FQ scores. VIBI-FQ score was a better predictor of both moss species richness and MQAI than was either ORAM score or vegetation type. This result was consistent with the strict microhabitat requirements for many moss species, which may be better assessed by VIBI-FQ than ORAM. Probability curves as a function of VIBI-FQ score were then generated for presence of groups of moss species having the same degree of fidelity to substrate and plant communities relative to other species in the moss flora (coefficients of conservatism, CCs). Species having an intermediate- or high degree of fidelity to substrate and plant communities (i.e., species with CC ≥ 5) had a 50% probability of presence (P50) and 90% probability of presence (P90) in wetlands with intermediate- and high VIBI-FQ scores, respectively. Although moss species richness, probability of presence of species based on CC, and MQAI may reflect wetland habitat quality, the 95% confidence intervals around P50 and P90 values may be too wide for regulatory use. Moss species richness, MQAI, and presence of groups of mosses may be more useful for evaluating moss habitat quality in wetlands than a set of “indicator species.”

  3. The resilience and functional role of moss in boreal and arctic ecosystems.

    PubMed

    Turetsky, M R; Bond-Lamberty, B; Euskirchen, E; Talbot, J; Frolking, S; McGuire, A D; Tuittila, E-S

    2012-10-01

    Mosses in northern ecosystems are ubiquitous components of plant communities, and strongly influence nutrient, carbon and water cycling. We use literature review, synthesis and model simulations to explore the role of mosses in ecological stability and resilience. Moss community responses to disturbance showed all possible responses (increases, decreases, no change) within most disturbance categories. Simulations from two process-based models suggest that northern ecosystems would need to experience extreme perturbation before mosses were eliminated. But simulations with two other models suggest that loss of moss will reduce soil carbon accumulation primarily by influencing decomposition rates and soil nitrogen availability. It seems clear that mosses need to be incorporated into models as one or more plant functional types, but more empirical work is needed to determine how to best aggregate species. We highlight several issues that have not been adequately explored in moss communities, such as functional redundancy and singularity, relationships between response and effect traits, and parameter vs conceptual uncertainty in models. Mosses play an important role in several ecosystem processes that play out over centuries - permafrost formation and thaw, peat accumulation, development of microtopography - and there is a need for studies that increase our understanding of slow, long-term dynamical processes. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  4. The resilience and functional role of moss in boreal and arctic ecosystems

    USGS Publications Warehouse

    Turetsky, M.; Bond-Lamberty, B.; Euskirchen, E.S.; Talbot, J. J.; Frolking, S.; McGuire, A.D.; Tuittila, E.S.

    2012-01-01

    Mosses in northern ecosystems are ubiquitous components of plant communities, and strongly influence nutrient, carbon and water cycling. We use literature review, synthesis and model simulations to explore the role of mosses in ecological stability and resilience. Moss community responses to disturbance showed all possible responses (increases, decreases, no change) within most disturbance categories. Simulations from two process-based models suggest that northern ecosystems would need to experience extreme perturbation before mosses were eliminated. But simulations with two other models suggest that loss of moss will reduce soil carbon accumulation primarily by influencing decomposition rates and soil nitrogen availability. It seems clear that mosses need to be incorporated into models as one or more plant functional types, but more empirical work is needed to determine how to best aggregate species. We highlight several issues that have not been adequately explored in moss communities, such as functional redundancy and singularity, relationships between response and effect traits, and parameter vs conceptual uncertainty in models. Mosses play an important role in several ecosystem processes that play out over centuries – permafrost formation and thaw, peat accumulation, development of microtopography – and there is a need for studies that increase our understanding of slow, long-term dynamical processes.

  5. How do patch quality and spatial context affect invertebrate communities in a natural moss microlandscape?

    NASA Astrophysics Data System (ADS)

    Trekels, Hendrik; Driesen, Mario; Vanschoenwinkel, Bram

    2017-11-01

    Globally, moss associated invertebrates remain poorly studied and it is largely unknown to what extent their diversity is driven by local environmental conditions or the landscape context. Here, we investigated small scale drivers of invertebrate communities in a moss landscape in a temperate forest in Western Europe. By comparing replicate quadrats of 5 different moss species in a continuous moss landscape, we found that mosses differed in invertebrate density and community composition. Although, in general, richness was similar among moss species, some invertebrate taxa were significantly linked to certain moss species. Only moss biomass and not relative moisture content could explain differences in invertebrate densities among moss species. Second, we focused on invertebrate communities associated with the locally common moss species Kindbergia praelonga in isolated moss patches on dead tree trunks to look at effects of patch size, quality, heterogeneity and connectivity on invertebrate communities. Invertebrate richness was higher in patches under closed canopies than under more open canopies, presumably due to the higher input of leaf litter and/or lower evaporation. In addition, increased numbers of other moss species in the same patch seemed to promote invertebrate richness in K. praelonga, possibly due to mass effects. Since invertebrate richness was unaffected by patch size and isolation, dispersal was probably not limiting in this system with patches separated by tens of meters, or stochastic extinctions may be uncommon. Overall, we conclude that invertebrate composition in moss patches may not only depend on local patch conditions, in a particular moss species, but also on the presence of other moss species in the direct vicinity.

  6. Elemental atmospheric pollution assessment via moss-based measurements in Portland, Oregon

    Treesearch

    Demetrios Gatziolis; Sarah Jovan; Geoffrey Donovan; Michael Amacher; Vicente Monleon

    2016-01-01

    Mosses accumulate pollutants from the atmosphere and can serve as an inexpensive screening tool for mapping air quality and guiding the placement of monitoring instruments. We measured 22 elements using 346 moss samples collected across Portland, Oregon, in December 2013. Our objectives were to develop citywide maps showing concentrations of each element in moss and...

  7. The role of mosses in ecosystem succession and function in Alaska's boreal forest

    Treesearch

    Merritt R. Turetsky; Michelle C. Mack; Teresa N. Hollingsworth; Jennifer W. Harden

    2010-01-01

    Shifts in moss communities may affect the resilience of boreal ecosystems to a changing climate because of the role of moss species in regulating soil climate and biogeochemical cycling. Here, we use long-term data analysis and literature synthesis to examine the role of moss in ecosystem succession, productivity, and decomposition. In Alaskan forests, moss abundance...

  8. Moss on a Roof, and What Lives in It

    ERIC Educational Resources Information Center

    Corbet, Sarah; Lan, Oey Biauw

    1974-01-01

    Based on the assumption that even city dwellers have access to clumps of moss growing on buildings and on pavements, information concerning some of the inhabitants of these mosses and some aspects of the environment in which they live is presented. (PEB)

  9. Effects of volume change on the unsaturated hydraulic conductivity of Sphagnum moss

    NASA Astrophysics Data System (ADS)

    Golubev, V.; Whittington, P.

    2018-04-01

    Due to the non-vascular nature of Sphagnum mosses, the capitula (growing surface) of the moss must rely solely on capillary action to receive water from beneath. Moss subsides and swells in accordance with water table levels, an effect called "mire-breathing", which has been thought to be a self-preservation mechanism, although no systematic studies have been done to demonstrate exactly how volume change affects hydrophysical properties of moss. In this study, the unsaturated hydraulic conductivity (Kunsat) and water content of two different species of Sphagnum moss were measured at different compression rates, up to the maximum of 77%. The findings show that the Kunsat increases by up to an order of magnitude (10×) with compression up to a certain bulk density of the moss, after which higher levels of compression result in lowered unsaturated hydraulic conductivity. This was coupled with an increase in soil water retention with increased compression. The increase of the Kunsat with compression suggests that the mire-breathing effect should be considered a self-preservation mechanism to provide sufficient amount of water to growing moss in times of low water availability.

  10. Moisture content measurements of moss (Sphagnum spp.) using commercial sensors

    USGS Publications Warehouse

    Yoshikawa, K.; Overduin, P.P.; Harden, J.W.

    2004-01-01

    Sphagnum (spp.) is widely distributed in permafrost regions around the arctic and subarctic. The moisture content of the moss layer affects the thermal insulative capacity and preservation of permafrost. It also controls the growth and collapse history of palsas and other peat mounds, and is relevant, in general terms, to permafrost thaw (thermokarst). In this study, we test and calibrate seven different soil moisture sensors for measuring the moisture content of Sphagnum moss under laboratory conditions. The soil volume to which each probe is sensitive is one of the important parameters influencing moisture measurement, particularly in a heterogeneous medium such as moss. Each sensor has a unique response to changing moisture content levels, solution salinity, moss bulk density and to the orientation (structure) of the Sphagnum relative to the sensor. All of the probes examined here require unique polynomial calibration equations to obtain moisture content from probe output. We provide polynomial equations for dead and live Sphagnum moss (R2 > 0.99. Copyright ?? 2004 John Wiley & Sons, Ltd.

  11. Detoxification of Dissolved SO2 (Bisulfite) by Terricolous Mosses

    PubMed Central

    BHARALI, BHAGAWAN; BATES, JEFFREY W.

    2006-01-01

    • Background and Aims The widespread calcifuge moss Pleurozium schreberi is moderately tolerant of SO2, whereas Rhytidiadelphus triquetrus is limited to calcareous soils in regions of the UK that were strongly affected by SO2 pollution in the 20th century. The proposition that tolerance of SO2 by these terricolous mosses depends on metabolic detoxification of dissolved bisulfite was investigated. • Methods The capacities of the two mosses to accelerate loss of bisulfite from aqueous solutions of NaHSO3 were studied using DTNB [5, 5-dithio-(2-nitrobenzoic acid)] to assay bisulfite, and HPLC to assay sulfate in the incubation solutions. Incubations were performed for different durations, in the presence and absence of light, at a range of solution pH values, in the presence of metabolic inhibitors and with altered moss apoplastic Ca2+ and Fe3+ levels. • Key Results Bisulfite disappearance was markedly stimulated in the light and twice as great for R. triquetrus as for P. schreberi. DCMU, an inhibitor of photosynthetic electron chain transport, significantly reduced bisufite loss. • Conclusions Bisulfite (SO2) tolerance in these terricolous mosses involves extracellular oxidation using metabolic (photo-oxidative) energy, passive oxidation by adsorbed Fe3+ (only available to the calcifuge) and probably also internal metabolic detoxification. PMID:16319108

  12. Using devitalized moss for active biomonitoring of water pollution.

    PubMed

    Debén, S; Fernández, J A; Carballeira, A; Aboal, J R

    2016-03-01

    This paper presents the results of an experiment carried out for the first time in situ to select a treatment to devitalize mosses for use in active biomonitoring of water pollution. Three devitalizing treatments for the aquatic moss Fontinalis antipyretica were tested (i.e. oven-drying at 100 °C, oven-drying with a 50-80-100 °C temperature ramp, and boiling in water), and the effects of these on loss of material during exposure of the transplants and on the accumulation of different heavy metals and metalloids were determined. The suitability of using devitalized samples of the terrestrial moss Sphagnum denticulatum to biomonitor aquatic environments was also tested. The structure of mosses was altered in different ways by the devitalizing treatments. Devitalization by boiling water led to significantly less loss of material (p < 0.01) than the oven-drying treatments. However, devitalization by oven-drying with a temperature ramp yielded more stable results in relation to both loss of material and accumulation of elements. With the aim of standardizing the moss bag technique, the use of F. antipyretica devitalized by oven-drying with a temperature ramp is recommended, rather than other devitalization treatments or use of S. denticulatum. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Metal and proton adsorption capacities of natural and cloned Sphagnum mosses.

    PubMed

    Gonzalez, Aridane G; Pokrovsky, Oleg S; Beike, Anna K; Reski, Ralf; Di Palma, Anna; Adamo, Paola; Giordano, Simonetta; Angel Fernandez, J

    2016-01-01

    Terrestrial mosses are commonly used as bioindicators of atmospheric pollution. However, there is a lack of standardization of the biomonitoring preparation technique and the efficiency of metal adsorption by various moss species is poorly known. This is especially true for in vitro-cultivated moss clones, which are promising candidates for a standardized moss-bag technique. We studied the adsorption of copper and zinc on naturally grown Sphagnum peat moss in comparison with in vitro-cultivated Sphagnum palustre samples in order to provide their physico-chemical characterization and to test the possibility of using cloned peat mosses as bioindicators within the protocol of moss-bag technique. We demonstrate that in vitro-grown clones of S. palustre exhibit acid-base properties similar to those of naturally grown Sphagnum samples, whereas the zinc adsorption capacity of the clones is approx. twice higher than that of the samples from the field. At the same time, the field samples adsorbed 30-50% higher amount of Cu(2+) compared to that of the clones. This contrast may be related to fine differences in the bulk chemical composition, specific surface area, morphological features, type and abundance of binding sites at the cell surfaces and in the aqueous solution of natural and cloned Sphagnum. The clones exhibited much lower concentration of most metal pollutants in their tissues relative to the natural samples thus making the former better indicators of low metal loading. Overall, in vitro-produced clones of S. palustre can be considered as an adequate, environmentally benign substitution for protected natural Sphagnum sp. samples to be used in moss-bags for atmospheric monitoring. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Precipitation-driven carbon balance controls survivorship of desert biocrust mosses.

    PubMed

    Coe, Kirsten K; Belnap, Jayne; Sparks, Jed P

    2012-07-01

    Precipitation patterns including the magnitude, timing, and seasonality of rainfall are predicted to undergo substantial alterations in arid regions in the future, and desert organisms may be more responsive to such changes than to shifts in only mean annual rainfall. Soil biocrust communities (consisting of cyanobacteria, lichen, and mosses) are ubiquitous to desert ecosystems, play an array of ecological roles, and display a strong sensitivity to environmental changes. Crust mosses are particularly responsive to changes in precipitation and exhibit rapid declines in biomass and mortality following the addition of small rainfall events. Further, loss of the moss component in biocrusts leads to declines in crust structure and function. In this study, we sought to understand the physiological responses of the widespread and often dominant biocrust moss Syntrichia caninervis to alterations in rainfall. Moss samples were collected during all four seasons and exposed to two rainfall event sizes and three desiccation period (DP) lengths. A carbon balance approach based on single precipitation events was used to define the carbon gain or loss during a particular hydration period. Rainfall event size was the strongest predictor of carbon balance, and the largest carbon gains were associated with the largest precipitation events. In contrast, small precipitation events resulted in carbon deficits for S. caninervis. Increasing the length of the DP prior to an event resulted in reductions in carbon balance, probably because of the increased energetic cost of hydration following more intense bouts of desiccation. The season of collection (i.e., physiological status of the moss) modulated these responses, and the effects of DP and rainfall on carbon balance were different in magnitude (and often in sign) for different seasons. In particular, S. caninervis displayed higher carbon balances in the winter than in the summer, even for events of identical size. Overall, our results

  15. Passive warming reduces stress and shifts reproductive effort in the Antarctic moss, Polytrichastrum alpinum

    PubMed Central

    Shortlidge, Erin E.; Eppley, Sarah M.; Kohler, Hans; Rosenstiel, Todd N.; Zúñiga, Gustavo E.; Casanova-Katny, Angélica

    2017-01-01

    Background and Aims The Western Antarctic Peninsula is one of the most rapidly warming regions on Earth, and many biotic communities inhabiting this dynamic region are responding to these well-documented climatic shifts. Yet some of the most prevalent organisms of terrestrial Antarctica, the mosses, and their responses to warming have been relatively overlooked and understudied. In this research, the impacts of 6 years of passive warming were investigated using open top chambers (OTCs), on moss communities of Fildes Peninsula, King George Island, Antarctica. Methods The effects of experimental passive warming on the morphology, sexual reproductive effort and stress physiology of a common dioicous Antarctic moss, Polytrichastrum alpinum, were tested, gaining the first species-specific mechanistic insight into moss responses to warming in the Antarctic. Additionally community analyses were conducted examining the impact of warming on overall moss percentage cover and sporophyte production in intact Antarctic moss communities. Key Results Our results show a generally greater percentage moss cover under warming conditions as well as increased gametangia production in P. alpinum. Distinct morphological and physiological shifts in P. alpinum were found under passive warming compared with those without warming: warmed mosses reduced investment in cellular stress defences, but invested more towards primary productivity and gametangia development. Conclusions Taken together, results from this study of mosses under passive warming imply that in ice-free moss-dominated regions, continued climate warming will probably have profound impacts on moss biology and colonization along the Western Antarctic Peninsula. Such findings highlight the fundamental role that mosses will play in influencing the terrestrialization of a warming Antarctica. PMID:27794516

  16. Image analysis supported moss cell disruption in photo-bioreactors.

    PubMed

    Lucumi, A; Posten, C; Pons, M-N

    2005-05-01

    Diverse methods for the disruption of cell entanglements and pellets of the moss Physcomitrella patens were tested in order to improve the homogeneity of suspension cultures. The morphological characterization of the moss was carried out by means of image analysis. Selected morphological parameters were defined and compared to the reduction of the carbon dioxide fixation, and the released pigments after cell disruption. The size control of the moss entanglements based on the rotor stator principle allowed a focused shear stress, avoiding a severe reduction in the photosynthesis. Batch cultures of P. patens in a 30.0-l pilot tubular photo-bioreactor with cell disruption showed no significant variation in growth rate and a delayed cell differentiation, when compared to undisrupted cultures. A highly controlled photoautotrophic culture of P. patens in a scalable photo-bioreactor was established, contributing to the development required for the future use of mosses as producers of relevant heterologous proteins.

  17. The use of mosses as environmental metal pollution indicators.

    PubMed

    Aceto, Maurizio; Abollino, Ornella; Conca, Raffaele; Malandrino, Mery; Mentasti, Edoardo; Sarzanini, Corrado

    2003-01-01

    The possibility of using mosses as environmental indicators of metal pollution has been investigated. Mosses of the species Bryum argenteum were collected from different parts of Piedmont (Italy), ranging from highly polluted areas to nearly uncontaminated mountain areas. Periodical samplings were planned in every site on a monthly base, in order to check variations of metal uptake throughout one year; correlations with pluviometric and thermal patterns were investigated for all sampling stations. On every moss sample 20 elements, ranging from major (K, P, Al, Ca, Fe and Mg) to minor (Mn, Na, Ti and Zn) and trace (As, Ba, Cd, Co, Cr, Cu, Li, Ni, Pb and Sr), were quantitatively determined by inductively coupled plasma-atomic emission spectrometry or graphite furnace-atomic absorption spectrometry, depending on the needed sensitivity. Statistical analyses, carried out with principal component analysis and cluster analysis methods, revealed that a good correlation exists between metal content in mosses and pollution degree in the areas sampled.

  18. Development of the sphagnoid areolation pattern in leaves of Palaeozoic protosphagnalean mosses.

    PubMed

    Ivanov, Oleg V; Maslova, Elena V; Ignatov, Michael S

    2018-04-11

    Protosphagnalean mosses constitute the largest group of extinct mosses of still uncertain affinity. Having the general morphology of the Bryopsida, some have leaves with an areolation pattern characteristic of modern Sphagna. This study describes the structure and variation of these patterns in protosphagnalean mosses and provides a comparison with those of modern Sphagna. Preparations of fossil mosses showing preserved leaf cell structure were obtained by dissolving rock, photographed, and the resulting images were transformed to graphical format and analysed with Areoana computer software. The sphagnoid areolation pattern is identical in its basic structure for both modern Sphagnum and Palaeozoic protosphagnalean mosses. However, in the former group the pattern develops through unequal oblique cell divisions, while in the latter the same pattern is a result of equal cell divisions taking place in a specific order with subsequent uneven cell growth. The protosphagnalean pathway leads to considerable variability in leaf structure. Protosphagnalean mosses had a unique ability to switch the development of leaf areolation between a pathway unique to Sphagnum and another one common to all other mosses. This developmental polyvariancy hinders attempts to classify these mosses, as characters previously considered to be of generic significance can be shown to co-occur in one individual leaf. New understanding of the ontogeny has allowed us to re-evaluate the systematic significance of such diagnostic characters in these Palaeozoic plants, showing that their similarity to Sphagnum is less substantial.

  19. "Fire Moss" Cover and Function in Severely Burned Forests of the Western United States

    NASA Astrophysics Data System (ADS)

    Grover, H.; Doherty, K.; Sieg, C.; Robichaud, P. R.; Fulé, P. Z.; Bowker, M.

    2017-12-01

    With wildfires increasing in severity and extent throughout the Western United States, land managers need new tools to stabilize recently burned ecosystems. "Fire moss" consists of three species, Ceratodon purpureus, Funaria hygrometrica, and Bryum argentum. These mosses colonize burned landscapes quickly, aggregate soils, have extremely high water holding capacity, and can be grown rapidly ex-situ. In this talk, I will focus on our efforts to understand how Fire Moss naturally interacts with severely burned landscapes. We examined 14 fires in Arizona, New Mexico, Washington, and Idaho selecting a range of times since fire, and stratified plots within each wildfire by winter insolation and elevation. At 75+ plots we measured understory plant cover, ground cover, Fire Moss cover, and Fire Moss reproductive effort. On plots in the Southwest, we measured a suite of soil characteristics on moss covered and adjacent bare soil including aggregate stability, shear strength, compressional strength, and infiltration rates. Moss cover ranged from 0-75% with a mean of 16% across all plots and was inversely related to insolation (R2 = .32, p = <.01), directly related to elevation (R2 = .13, p = .02), and not related to slope (R2 = .02, p =.41). Moss covered areas had twice as much shear strength and compressional strength, and three times higher aggregate stability and infiltration rates as adjacent bare ground. These results will allow us to model locations where Fire Moss will naturally increase postfire hillslope soil stability, locations for targeting moss restoration efforts, and suggest that Fire Moss could be a valuable tool to mitigate post wildfire erosion.

  20. Passive warming reduces stress and shifts reproductive effort in the Antarctic moss, Polytrichastrum alpinum.

    PubMed

    Shortlidge, Erin E; Eppley, Sarah M; Kohler, Hans; Rosenstiel, Todd N; Zúñiga, Gustavo E; Casanova-Katny, Angélica

    2017-01-01

    The Western Antarctic Peninsula is one of the most rapidly warming regions on Earth, and many biotic communities inhabiting this dynamic region are responding to these well-documented climatic shifts. Yet some of the most prevalent organisms of terrestrial Antarctica, the mosses, and their responses to warming have been relatively overlooked and understudied. In this research, the impacts of 6 years of passive warming were investigated using open top chambers (OTCs), on moss communities of Fildes Peninsula, King George Island, Antarctica. The effects of experimental passive warming on the morphology, sexual reproductive effort and stress physiology of a common dioicous Antarctic moss, Polytrichastrum alpinum ,: were tested, gaining the first species-specific mechanistic insight into moss responses to warming in the Antarctic. Additionally community analyses were conducted examining the impact of warming on overall moss percentage cover and sporophyte production in intact Antarctic moss communities. Our results show a generally greater percentage moss cover under warming conditions as well as increased gametangia production in P. alpinum Distinct morphological and physiological shifts in P. alpinum were found under passive warming compared with those without warming: warmed mosses reduced investment in cellular stress defences, but invested more towards primary productivity and gametangia development. Taken together, results from this study of mosses under passive warming imply that in ice-free moss-dominated regions, continued climate warming will probably have profound impacts on moss biology and colonization along the Western Antarctic Peninsula. Such findings highlight the fundamental role that mosses will play in influencing the terrestrialization of a warming Antarctica. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Moss-cyanobacteria associations as biogenic sources of nitrogen in boreal forest ecosystems.

    PubMed

    Rousk, Kathrin; Jones, Davey L; Deluca, Thomas H

    2013-01-01

    The biological fixation of atmospheric nitrogen (N) is a major pathway for available N entering ecosystems. In N-limited boreal forests, a significant amount of N2 is fixed by cyanobacteria living in association with mosses, contributing up to 50% to the total N input. In this review, we synthesize reports on the drivers of N2 fixation in feather moss-cyanobacteria associations to gain a deeper understanding of their role for ecosystem-N-cycling. Nitrogen fixation in moss-cyanobacteria associations is inhibited by N inputs and therefore, significant fixation occurs only in low N-deposition areas. While it has been shown that artificial N additions in the laboratory as well as in the field inhibit N2 fixation in moss-cyanobacteria associations, the type, as well as the amounts of N that enters the system, affect N2 fixation differently. Another major driver of N2 fixation is the moisture status of the cyanobacteria-hosting moss, wherein moist conditions promote N2 fixation. Mosses experience large fluctuations in their hydrological status, undergoing significant natural drying and rewetting cycles over the course of only a few hours, especially in summer, which likely compromises the N input to the system via N2 fixation. Perhaps the most central question, however, that remains unanswered is the fate of the fixed N2 in mosses. The cyanobacteria are likely to leak N, but whether this N is transferred to the soil and if so, at which rates and timescales, is unknown. Despite our increasing understanding of the drivers of N2 fixation, the role moss-cyanobacteria associations play in ecosystem-N-cycling remains unresolved. Further, the relationship mosses and cyanobacteria share is unknown to date and warrants further investigation.

  2. Sulphur isotopic ratios in mosses indicating atmospheric sulphur sources in southern Chinese mountainous areas

    NASA Astrophysics Data System (ADS)

    Xiao, Hua-Yun; Tang, Cong-Guo; Liu, Xue-Yan; Xiao, Hong-Wei; Liu, Cong-Qiang

    2008-10-01

    Many mountainous regions in South China have been confronted with the consequences of acidic deposition, but studies on atmospheric S sources are still very limited. In this study, isotopic ratios in mosses were used to discriminate atmospheric S sources. A continuous increase in S isotopic ratios was observed from the south to the north in mountainous mosses and in accord with the previously reported changing trends in urban mosses, indicating a contribution of local anthropogenic S from urban cities. Based on comparisons of S isotopic ratios in mountainous mosses with those in nearby urban mosses, we found that mountainous mosses had significantly higher 34S contents than urban mosses, especially in West China, reflecting an introduction of 34S-enriched sulphur. In conjunction with cloud water data in the literature, we concluded that 34S-enriched sulphur in northerly air masses contributed much to atmospheric S in southern Chinese mountainous areas.

  3. Cellulose and Lignin Carbon Isotope Signatures in Sphagnum Moss Reveal Complementary Environmental Properties

    NASA Astrophysics Data System (ADS)

    Loisel, J.; Nichols, J. E.; Kaiser, K.; Beilman, D. W.; Yu, Z.

    2016-12-01

    The carbon isotope signature (δ13C) of Sphagnum moss is increasingly used as a proxy for past surface wetness in peatlands. However, conflicting interpretations of these carbon isotope records have recently been published. While the water film hypothesis suggests that the presence of a thick (thin) water film around hollow (hummock) mosses leads to less (more) negative δ13C values, the carbon source hypothesis poses that a significant (insignificant) amount of CH4 assimilation by hollow (hummock) mosses leads to more (less) negative δ13C values. To evaluate these competing mechanisms and their impact on moss δ13C, we gathered 30 moss samples from 6 peatlands in southern Patagonia. Samples were collected along a strong hydrological gradient, from very dry hummocks (80 cm above water table depth) to submerged hollows (5 cm below water surface). These peat bogs have the advantage of being colonized by a single cosmopolitan moss species, Sphagnum magellanicum, limiting potential biases introduced by species-specific carbon discrimination. We measured δ13C from stem cellulose and leaf waxes on the same samples to quantify compound-specific carbon signatures. We found that stem cellulose and leaf-wax lipids were both strongly negatively correlated with moss water content, suggesting a primary role of water film thickness on carbon assimilation. In addition, isotopic fractionation during wax synthesis was greater than for cellulose. This offset decreases as conditions get drier, due to (i) a more effective carbon assimilation, or (ii) CH4 uptake through symbiosis with methanotrophic bacteria within the leaves of wet mosses. Biochemical analysis (carbohydrates, amino acids, hydrophenols, cutin acids) of surface moss are currently being conducted to characterize moss carbon allocation under different hydrological conditions. Overall, this modern calibration work should be of use for interpreting carbon isotope records from peatlands.

  4. Strigolactones Inhibit Caulonema Elongation and Cell Division in the Moss Physcomitrella patens

    PubMed Central

    Hoffmann, Beate; Proust, Hélène; Belcram, Katia; Labrune, Cécile; Boyer, François-Didier; Rameau, Catherine; Bonhomme, Sandrine

    2014-01-01

    In vascular plants, strigolactones (SLs) are known for their hormonal role and for their role as signal molecules in the rhizosphere. SLs are also produced by the moss Physcomitrella patens, in which they act as signaling factors for controlling filament extension and possibly interaction with neighboring individuals. To gain a better understanding of SL action at the cellular level, we investigated the effect of exogenously added molecules (SLs or analogs) in moss growth media. We used the previously characterized Ppccd8 mutant that is deficient in SL synthesis and showed that SLs affect moss protonema extension by reducing caulonema cell elongation and mainly cell division rate, both in light and dark conditions. Based on this effect, we set up bioassays to examine chemical structure requirements for SL activity in moss. The results suggest that compounds GR24, GR5, and 5-deoxystrigol are active in moss (as in pea), while other analogs that are highly active in the control of pea branching show little activity in moss. Interestingly, the karrikinolide KAR1, which shares molecular features with SLs, did not have any effect on filament growth, even though the moss genome contains several genes homologous to KAI2 (encoding the KAR1 receptor) and no canonical homologue to D14 (encoding the SL receptor). Further studies should investigate whether SL signaling pathways have been conserved during land plant evolution. PMID:24911649

  5. Effects of storage temperature on the physiological characteristics and vegetative propagation of desiccation-tolerant mosses

    NASA Astrophysics Data System (ADS)

    Guo, Yuewei; Zhao, Yunge

    2018-02-01

    Mosses, as major components of later successional biological soil crusts (biocrusts), play many critical roles in arid and semiarid ecosystems. Recently, some species of desiccation-tolerant mosses have been artificially cultured with the aim of accelerating the recovery of biocrusts. Revealing the factors that influence the vegetative propagation of mosses, which is an important reproductive mode of mosses in dry habitats, will benefit the restoration of moss crusts. In this study, three air-dried desiccation-tolerant mosses (Barbula unguiculata, Didymodon vinealis, and Didymodon tectorum) were hermetically sealed and stored at five temperature levels (0, 4, 17, 25, and 30 °C) for 40 days. Then, the vegetative propagation and physiological characteristics of the three mosses were investigated to determine the influence of storage temperature on the vegetative propagation of desiccation-tolerant mosses and the mechanism. The results showed that the vegetative propagation of the three mosses varied with temperature. The most variation in vegetative propagation among storage temperatures was observed in D. tectorum, followed by the variation observed in B. unguiculata. In contrast, no significant difference in propagation among temperatures was found in D. vinealis. The regenerative capacity of the three mosses increased with increasing temperature from 0 to 17 °C, accompanied by a decrease in malondialdehyde (MDA) content, and decreased thereafter. As the temperature increased, the chlorophyll and soluble protein contents increased in B. unguiculata but decreased in D. vinealis and D. tectorum. As to storage, the MDA and soluble sugar contents increased after storage. The MDA content of the three mosses increased at each of the investigated temperatures by more than 50 % from the initial values, and the soluble sugar content became higher than before in the three mosses. The integrity of cells and cell membranes is likely the most important factor influencing the

  6. Inter-species and intra-annual variations of moss nitrogen utilization: Implications for nitrogen deposition assessment.

    PubMed

    Dong, Yu-Ping; Liu, Xue-Yan; Sun, Xin-Chao; Song, Wei; Zheng, Xu-Dong; Li, Rui; Liu, Cong-Qiang

    2017-11-01

    Moss nitrogen (N) concentrations and natural 15 N abundance (δ 15 N values) have been widely employed to evaluate annual levels and major sources of atmospheric N deposition. However, different moss species and one-off sampling were often used among extant studies, it remains unclear whether moss N parameters differ with species and different samplings, which prevented more accurate assessment of N deposition via moss survey. Here concentrations, isotopic ratios of bulk carbon (C) and bulk N in natural epilithic mosses (Bryum argenteum, Eurohypnum leptothallum, Haplocladium microphyllum and Hypnum plumaeforme) were measured monthly from August 2006 to August 2007 at Guiyang, SW China. The H. plumaeforme had significantly (P < 0.05) lower bulk N concentrations and higher δ 13 C values than other species. Moss N concentrations were significantly (P < 0.05) lower in warmer months than in cooler months, while moss δ 13 C values exhibited an opposite pattern. The variance component analyses showed that different species contributed more variations of moss N concentrations and δ 13 C values than different samplings. Differently, δ 15 N values did not differ significantly between moss species, and its variance mainly reflected variations of assimilated N sources, with ammonium as the dominant contributor. These results unambiguously reveal the influence of inter-species and intra-annual variations of moss N utilization on N deposition assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Monitoring of Antarctic moss ecosystems using a high spatial resolution imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Malenovsky, Zbynek; Lucieer, Arko; Robinson, Sharon; Harwin, Stephen; Turner, Darren; Veness, Tony

    2013-04-01

    The most abundant photosynthetically active plants growing along the rocky Antarctic shore are mosses of three species: Schistidium antarctici, Ceratodon purpureus, and Bryum pseudotriquetrum. Even though mosses are well adapted to the extreme climate conditions, their existence in Antarctica depends strongly on availability of liquid water from snowmelt during the short summer season. Recent changes in temperature, wind speed and stratospheric ozone are stimulating faster evaporation, which in turn influences moss growing rate, health state and abundance. This makes them an ideal bio-indicator of the Antarctic climate change. Very short growing season, lasting only about three months, requires a time efficient, easily deployable and spatially resolved method for monitoring the Antarctic moss beds. Ground and/or low-altitude airborne imaging spectroscopy (called also hyperspectral remote sensing) offers a fast and spatially explicit approach to investigate an actual spatial extent and physiological state of moss turfs. A dataset of ground-based spectral images was acquired with a mini-Hyperspec imaging spectrometer (Headwall Inc., the USA) during the Antarctic summer 2012 in the surroundings of the Australian Antarctic station Casey (Windmill Islands). The collection of high spatial resolution spectral images, with pixels about 2 cm in size containing from 162 up to 324 narrow spectral bands of wavelengths between 399 and 998 nm, was accompanied with point moss reflectance measurements recorded with the ASD HandHeld-2 spectroradiometer (Analytical Spectral Devices Inc., the USA). The first spectral analysis indicates significant differences in red-edge and near-infrared reflectance of differently watered moss patches. Contrary to high plants, where the Normalized Difference Vegetation Index (NDVI) represents an estimate of green biomass, NDVI of mosses indicates mainly the actual water content. Similarly to high plants, reflectance of visible wavelengths is

  8. Correlation of unsupported ²¹⁰Pb activity in soil and moss.

    PubMed

    Krmar, M; Radnović, D; Hansman, J

    2014-03-01

    The activities of unsupported (210)Pb, a naturally occurring radionuclide, were measured in samples of soil and terrestrial mosses collected in Serbia. Considering that clay particles in soil have a high affinity for Pb adsorption, and that mosses usually capture aerosol particles to obtain necessary nutrients, measurable amounts of airborne (210)Pb, the daughter of (222)Rn, can be registered in both soil and mosses. The objective of the present study was to determine if it is possible to compare the activity of unsupported (210)Pb in soil and moss collected at the same sampling site, and to establish if a correlation exists between these measured values. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Assessment of Antarctic moss health from multi-sensor UAS imagery with Random Forest Modelling

    NASA Astrophysics Data System (ADS)

    Turner, Darren; Lucieer, Arko; Malenovský, Zbyněk; King, Diana; Robinson, Sharon A.

    2018-06-01

    Moss beds are one of very few terrestrial vegetation types that can be found on the Antarctic continent and as such mapping their extent and monitoring their health is important to environmental managers. Across Antarctica, moss beds are experiencing changes in health as their environment changes. As Antarctic moss beds are spatially fragmented with relatively small extent they require very high resolution remotely sensed imagery to monitor their distribution and dynamics. This study demonstrates that multi-sensor imagery collected by an Unmanned Aircraft System (UAS) provides a novel data source for assessment of moss health. In this study, we train a Random Forest Regression Model (RFM) with long-term field quadrats at a study site in the Windmill Islands, East Antarctica and apply it to UAS RGB and 6-band multispectral imagery, derived vegetation indices, 3D topographic data, and thermal imagery to predict moss health. Our results suggest that moss health, expressed as a percentage between 0 and 100% healthy, can be estimated with a root mean squared error (RMSE) between 7 and 12%. The RFM also quantifies the importance of input variables for moss health estimation showing the multispectral sensor data was important for accurate health prediction, such information being essential for planning future field investigations. The RFM was applied to the entire moss bed, providing an extrapolation of the health assessment across a larger spatial area. With further validation the resulting maps could be used for change detection of moss health across multiple sites and seasons.

  10. Production of greenhouse-grown biocrust mosses and associated cyanobacteria to rehabilitate dryland soil function

    USGS Publications Warehouse

    Antoninka, Anita; Bowker, Matthew A.; Reed, Sasha C.; Doherty, Kyle

    2016-01-01

    Mosses are an often-overlooked component of dryland ecosystems, yet they are common members of biological soil crust communities (biocrusts) and provide key ecosystem services, including soil stabilization, water retention, carbon fixation, and housing of N2 fixing cyanobacteria. Mosses are able to survive long dry periods, respond rapidly to precipitation, and reproduce vegetatively. With these qualities, dryland mosses have the potential to be an excellent dryland restoration material. Unfortunately, dryland mosses are often slow growing in nature, and ex situ cultivation methods are needed to enhance their utility. Our goal was to determine how to rapidly produce, vegetatively, Syntrichia caninervis and S. ruralis, common and abundant moss species in drylands of North America and elsewhere, in a greenhouse. We manipulated the length of hydration on a weekly schedule (5, 4, 3, or 2 days continuous hydration per week), crossed with fertilization (once at the beginning, monthly, biweekly, or not at all). Moss biomass increased sixfold for both species in 4 months, an increase that would require years under dryland field conditions. Both moss species preferred short hydration and monthly fertilizer. Remarkably, we also unintentionally cultured a variety of other important biocrust organisms, including cyanobacteria and lichens. In only 6 months, we produced functionally mature biocrusts, as evidenced by high productivity and ecosystem-relevant levels of N2 fixation. Our results suggest that biocrust mosses might be the ideal candidate for biocrust cultivation for restoration purposes. With optimization, these methods are the first step in developing a moss-based biocrust rehabilitation technology.

  11. Air quality for metals and sulfur in Shanghai, China, determined with moss bags.

    PubMed

    Cao, Tong; Wang, Min; An, Li; Yu, Yinghao; Lou, Yuxia; Guo, Shuiliang; Zuo, Benrong; Liu, Yan; Wu, Jiming; Cao, Yang; Zhu, Zhirui

    2009-04-01

    In order to better understand the spatial and temporal distribution pattern of metals and sulfur present in Shanghai, moss bags with Haplocladium microphyllum (Hedw.) Broth. were suspended at 14 local monitoring stations from April through June 2006 in Shanghai, the largest city in China. The results showed that the concentrations of S, Cu, Pb, and Zn in the moss bags after exposure were higher at the sites in the industrial district and most urban districts and lower at the sites in suburban areas, and well correlated with SO(2) API and PM10 API in the air both in terms of space and time. The present study provided evidence that the moss H. microphyllum is suitable for bio-monitoring air pollution with moss bags and further confirmed that the moss-bag method is a simple, inexpensive and useful technique.

  12. Using essential oils to control moss and liverwort in containers

    Treesearch

    Nabil Khadduri

    2011-01-01

    Liverwort and moss are economically significant weeds across a range of US container production sites, including forest seedling greenhouse culture in the Pacific Northwest. We have demonstrated the effectiveness of essential oils, or distilled plant extracts, in controlling liverwort and moss container weeds over three seasons of trials. When applied at the...

  13. Filling the interspace—restoring arid land mosses: source populations, organic matter, and overwintering govern success

    USGS Publications Warehouse

    Condon, Lea; Pyke, David A.

    2016-01-01

    Biological soil crusts contribute to ecosystem functions and occupy space that could be available to invasive annual grasses. Given disturbances in the semiarid shrub steppe communities, we embarked on a set of studies to investigate restoration potential of mosses in sagebrush steppe ecosystems. We examined establishment and growth of two moss species common to the Great Basin, USA: Bryum argenteum and Syntrichia ruralis from two environmental settings (warm dry vs. cool moist). Moss fragments were inoculated into a third warm dry setting, on bare soil in spring and fall, both with and without a jute net and with and without spring irrigation. Moss cover was monitored in spring seasons of three consecutive years. Both moss species increased in cover over the winter. When Bryum received spring irrigation that was out of sync with natural precipitation patterns, moss cover increased and then crashed, taking two seasons to recover. Syntrichia did not respond to the irrigation treatment. The addition of jute net increased moss cover under all conditions, except Syntrichia following fall inoculation, which required a second winter to increase in cover. The warm dry population of Bryum combined with jute achieved on average 60% cover compared to the cool moist population that achieved only 28% cover by the end of the study. Differences were less pronounced for Syntrichia where moss from the warm dry population with jute achieved on average 51% cover compared to the cool moist population that achieved 43% cover by the end of the study. Restoration of arid land mosses may quickly protect soils from erosion while occupying sites before invasive plants. We show that higher moss cover will be achieved quickly with the addition of organic matter and when moss fragments originate from sites with a climate that is similar to that of the restoration site.

  14. Vortex rings from Sphagnum moss capsules

    NASA Astrophysics Data System (ADS)

    Whitaker, Dwight; Strassman, Sam; Cha, Jung; Chang, Emily; Guo, Xinyi; Edwards, Joan

    2010-11-01

    The capsules of Sphagnum moss use vortex rings to disperse spores to suitable habitats many kilometers away. Vortex rings are created by the sudden release of pressurized air when the capsule ruptures, and are an efficient way to carry the small spores with low terminal velocities to heights where they can be carried by turbulent wind currents. We will present our computational model of these explosions, which are carried out using a 2-D large eddy simulation (LES) on FLUENT. Our simulations can reproduce the observed motion of the spore clouds observed from moss capsules with high-speed videos, and we will discuss the roles of bursting pressure, cap mass, and capsule morphology on the formation and quality of vortex rings created by this plant.

  15. Active biomonitoring with the moss Pseudoscleropodium purum: Comparison between different types of transplants and bulk deposition.

    PubMed

    Ares, A; Varela, Z; Aboal, J R; Carballeira, A; Fernández, J A

    2015-10-01

    Active biomonitoring with terrestrial mosses can be used to complement traditional air pollution monitoring techniques. Several studies have been carried out to compare the uptake capacity of different types of moss transplants. However, until now the relationship between the uptake of elements in devitalized moss bags and in irrigated transplants has not been explored. In this study, the final concentrations of Cd, Cu, Hg, Pb and Zn were determined in irrigated and devitalized moss transplants in the surroundings of a steelworks. The concentrations were also compared with those of the same elements in the bulk deposition to determine which type of moss transplant yields the closest correlations. Devitalized moss retained higher concentrations of all of the elements (except Hg) than the irrigated moss. Both irrigated and devitalized moss transplants appear to detect the same type of contamination (i.e. particulate matter and dissolved metals rather than gaseous forms) as significant correlations were found for Cu, Hg, Pb and Zn, whereas, neither type of the moss transplant was sensitive enough to detect changes in the soluble fraction load of bulk deposition. Further studies will be needed to a better understanding of the correlation between the concentrations of elements in moss transplants with the particulate fraction of the bulk deposition. This will enable the establishment of a more robust and accurate biomonitoring tool. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. 76 FR 10581 - Moss Bluff Hub, LLC; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-25

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR11-87-000] Moss Bluff Hub, LLC; Notice of Filing Take notice that on February 11, 2011, Moss Bluff Hub, LLC filed to revise its... Rules 211 and 214 of the Commission's Rules of Practice and Procedure (18 CFR 385.211 and 385.214...

  17. Kinase inhibition by the Jamaican ball moss, Tillandsia recurvata L.

    PubMed

    Lowe, Henry I C; Watson, Charah T; Badal, Simone; Toyang, Ngeh J; Bryant, Joseph

    2012-10-01

    This research was undertaken in order to investigate the inhibitory potential of the Jamaican ball moss, Tillandsia recurvata against several kinases. The inhibition of these kinases has emerged as a potential solution to restoring the tight regulation of normal cellular growth, the loss of which leads to cancer cell formation. Kinase inhibition was investigated using competition binding (to the ATP sites) assays, which have been previously established and authenticated. Four hundred and fifty one kinases were tested against the Jamaican ball moss extract and a dose-response was tested on 40 kinases, which were inhibited by more than 35% compared to the control. Out of the 40 kinases, the Jamaican ball moss selectively inhibited 5 (CSNK2A2, MEK5, GAK, FLT and DRAK1) and obtained Kd(50)s were below 20 μg/ml. Since MEK5 and GAK kinases have been associated with aggressive prostate cancer, the inhibitory properties of the ball moss against them, coupled with its previously found bioactivity towards the PC-3 cell line, makes it promising in the arena of drug discovery towards prostate cancer.

  18. Using Moss to Detect Fine-Scaled Deposition of Heavy Metals in Urban Environments

    NASA Astrophysics Data System (ADS)

    Jovan, S.; Donovan, G.; Demetrios, G.; Monleon, V. J.; Amacher, M. C.

    2017-12-01

    Mosses are commonly used as bio-indicators of heavy metal deposition to forests. Their application in urban airsheds is relatively rare. Our objective was to develop fine-scaled, city-wide maps for heavy metals in Portland, Oregon, to identify pollution "hotspots" and serve as a screening tool for more effective placement of air quality monitoring instruments. In 2013 we measured twenty-two elements in epiphytic moss sampled on a 1km x1km sampling grid (n = 346). We detected large hotspots of cadmium and arsenic in two neighborhoods associated with stained glass manufacturers. Air instruments deployed by local regulators measured cadmium concentrations 49 times and arsenic levels 155 times the state health benchmarks. Moss maps also detected a large nickel hotspot in a neighborhood near a forge where air instruments later measured concentrations 4 times the health benchmark. In response, the facilities implemented new pollution controls, air quality improved in all three affected neighborhoods, revision of regulations for stained glass furnace emissions are underway, and Oregon's governor launched an initiative to develop health-based (vs technology-based) regulations for air toxics in the state. The moss maps also indicated a couple dozen smaller hotspots of heavy metals, including lead, chromium, and cobalt, in Portland neighborhoods. Ongoing follow-up work includes: 1) use of moss sampling by local regulators to investigate source and extent of the smaller hotspots, 2) use of lead isotopes to determine origins of higher lead levels observed in moss collected from the inner city, and 3) co-location of air instruments and moss sampling to determine accuracy, timeframe represented, and seasonality of heavy metals in moss.

  19. Mosses new to New Mexico

    USDA-ARS?s Scientific Manuscript database

    A bryophyte inventory was conducted in the Valles Caldera National Preserve (VCNP), New Mexico, from 2009 to 2011. Specimens representing 113 species of bryophytes were collected. Of those bryophytes, seven of the mosses were new to New Mexico: Atrichum tenellum (Rohling) Bruch & Schimper, Dicranum ...

  20. BOREAS HYD-6 Moss/Humus Moisture Data

    NASA Technical Reports Server (NTRS)

    Peck, Eugene L.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Carroll, Thomas; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-6 team collected several data sets related to the moisture content of soil and overlying humus layers. This data set contains water content measurements of the moss/humus layer, where it existed. These data were collected along various flight lines in the Southern Study Area (SSA) and Northern Study Area (NSA) during 1994. The data are available in tabular ASCII files. The HYD-06 moss/humus moisture data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  1. Reduced content of chloroatranol and atranol in oak moss absolute significantly reduces the elicitation potential of this fragrance material.

    PubMed

    Andersen, Flemming; Andersen, Kirsten H; Bernois, Armand; Brault, Christophe; Bruze, Magnus; Eudes, Hervé; Gadras, Catherine; Signoret, Anne-Cécile J; Mose, Kristian F; Müller, Boris P; Toulemonde, Bernard; Andersen, Klaus Ejner

    2015-02-01

    Oak moss absolute, an extract from the lichen Evernia prunastri, is a valued perfume ingredient but contains extreme allergens. To compare the elicitation properties of two preparations of oak moss absolute: 'classic oak moss', the historically used preparation, and 'new oak moss', with reduced contents of the major allergens atranol and chloroatranol. The two preparations were compared in randomized double-blinded repeated open application tests and serial dilution patch tests in 30 oak moss-sensitive volunteers and 30 non-allergic control subjects. In both test models, new oak moss elicited significantly less allergic contact dermatitis in oak moss-sensitive subjects than classic oak moss. The control subjects did not react to either of the preparations. New oak moss is still a fragrance allergen, but elicits less allergic contact dermatitis in previously oak moss-sensitized individuals, suggesting that new oak moss is less allergenic to non-sensitized individuals. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Development of a HS-SPME-GC/MS protocol assisted by chemometric tools to study herbivore-induced volatiles in Myrcia splendens.

    PubMed

    Souza Silva, Érica A; Saboia, Giovanni; Jorge, Nina C; Hoffmann, Camila; Dos Santos Isaias, Rosy Mary; Soares, Geraldo L G; Zini, Claudia A

    2017-12-01

    A headspace solid phase microextraction (HS-SPME) method combined with gas chromatography-mass spectrometry (GC/MS) was developed and optimized for extraction and analysis of volatile organic compounds (VOC) of leaves and galls of Myrcia splendens. Through a process of optimization of main factors affecting HS-SPME efficiency, the coating divivnilbenzene-carboxen-polydimethylsiloxane (DVB/Car/PDMS) was chosen as the optimum extraction phase, not only in terms of extraction efficiency, but also for its broader analyte coverage. Optimum extraction temperature was 30°C, while an extraction time of 15min provided the best compromise between extraction efficiencies of lower and higher molecular weight compounds. The optimized protocol was demonstrated to be capable of sampling plant material with high reproducibility, considering that most classes of analytes met the 20% RSD FDA criterion. The optimized method was employed for the analysis of three classes of M. splendens samples, generating a final list of 65 tentatively identified VOC, including alcohols, aldehydes, esters, ketones, phenol derivatives, as well as mono and sesquiterpenes. Significant differences were evident amongst the volatile profiles obtained from non-galled leaves (NGL) and leaf-folding galls (LFG) of M. splendens. Several differences pertaining to amounts of alcohols and aldehydes were detected between samples, particularly regarding quantities of green leaf volatiles (GLV). Alcohols represented about 14% of compounds detected in gall samples, whereas in non-galled samples, alcohol content was below 5%. Phenolic derived compounds were virtually absent in reference samples, while in non-galled leaves and galls their content ranged around 0.2% and 0.4%, respectively. Likewise, methyl salicylate, a well-known signal of plant distress, amounted for 1.2% of the sample content of galls, whereas it was only present in trace levels in reference samples. Chemometric analysis based on Heatmap associated

  3. Peatland water repellency: Importance of soil water content, moss species, and burn severity

    NASA Astrophysics Data System (ADS)

    Moore, P. A.; Lukenbach, M. C.; Kettridge, N.; Petrone, R. M.; Devito, K. J.; Waddington, J. M.

    2017-11-01

    Wildfire is the largest disturbance affecting peatlands, with northern peat reserves expected to become more vulnerable to wildfire as climate change enhances the length and severity of the fire season. Recent research suggests that high water table positions after wildfire are critical to limit atmospheric carbon losses and enable the re-establishment of keystone peatland mosses (i.e. Sphagnum). Post-fire recovery of the moss surface in Sphagnum-feathermoss peatlands, however, has been shown to be limited where moss type and burn severity interact to result in a water repellent surface. While in situ measurements of moss water repellency in peatlands have been shown to be greater for feathermoss in both a burned and unburned state in comparison to Sphagnum moss, it is difficult to separate the effect of water content from species. Consequently, we carried out a laboratory based drying experiment where we compared the water repellency of two dominant peatland moss species, Sphagnum and feathermoss, for several burn severity classes including unburned samples. The results suggest that water repellency in moss is primarily controlled by water content, where a sharp threshold exists at gravimetric water contents (GWC) lower than ∼1.4 g g-1. While GWC is shown to be a strong predictor of water repellency, the effect is enhanced by burning. Based on soil water retention curves, we suggest that it is highly unlikely that Sphagnum will exhibit strong hydrophobic conditions under field conditions.

  4. Heavy - metal biomonitoring by using moss bags in Florence urban area, Italy

    NASA Astrophysics Data System (ADS)

    Pellizzaro, Grazia; Canu, Annalisa; Arca, Angelo; Duce, Pierpaolo

    2013-04-01

    In the last century, pollution has become one of the most important risks for environment. In particular, heavy metal presence in air, water and soil induces toxic effects on ecosystems and human health. Monitoring airborne trace element over large areas is a task not easy to reach since the concentrations of pollutants are variable in space and time. Data from automatic devices are site-specific and very limited in number to describe spatial-temporal trends of pollutants. In addition, especially in Italy, trace elements concentrations are not often recorded by most of the automated monitoring stations. In the last decades, development of alternative and complementary methods as bio-monitoring techniques, allowed to map deposition patterns not only near single pollution sources, but also over relatively large areas at municipal or even regional scale. Bio-monitoring includes a wide array of methodologies finalised to study relationships between pollution and living organisms. Mosses and lichens have been widely used as bio-accumulators for assessing the atmospheric deposition of heavy metals in natural ecosystems and urban areas. In this study bio-monitoring of airborne trace metals was made using moss bags technique. The moss Hypnum cupressiforme was used as bio-indicator for estimating atmospheric traces metal deposition in the urban area of Florence. Moss carpets were collected in a forested area of central Sardinia (municipality of Bolotana - Nuoro), which is characterised by absence of air pollution. Moss bags were located in the urban area of Florence close to three monitoring air quality stations managed by ARPAT (Agenzia Regionale Protezione Ambiente Toscana). Two stations were located in high-traffic roads whereas the other one was located in a road with less traffic density. In each site moss bags were exposed during three campaigns of measurement conducted during the periods March-April, May-July, and August-October 2010. Two moss bags, used as control

  5. Radiocesium accumulation in mosses from highlands of Serbia and Montenegro: chemical and physiological aspects.

    PubMed

    Dragović, S; Nedić, O; Stanković, S; Bacić, G

    2004-01-01

    The aim of this work was (i) to determine the activity levels of 137Cs in mosses from highland ecosystems of Serbia and Montenegro, (ii) to find out if radiocesium is associated with essential biomacromolecules, and (iii) to investigate 137Cs distribution among intracellular compartments. It was found that biomolecules of mosses do not bind significant amounts of radiocesium (2.3-3.3% of the absorbed 137Cs), a behavior that was independent of the moss species. Cellular fractionation of mosses showed that membranes are the primary 137Cs-binding sites at the cellular level. They contained 26.1-43.1% of the initial radiocesium activity. It seems that 137Cs-binding molecules in different mosses are of similar chemical nature, and their distribution between various cellular compartments is not species specific.

  6. BOREAS HYD-8 1994 Gravimetric Moss Moisture Data

    NASA Technical Reports Server (NTRS)

    Wang, Xuewen; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-8 team made measurements of surface hydrological processes that were collected at the Northern Study Area-Old Black Spruce (NSA-OBS) Tower Flux site in 1994 and at Joey Lake, Manitoba, to support its research into point hydrological processes and the spatial variation of these processes. The data collected may be useful in characterizing canopy interception, drip, throughfall, moss interception, drainage, evaporation, and capacity during the growing season at daily temporal resolution. This particular data set contains the gravimetric moss moisture measurements from June to September 1994. A nested spatial sampling plan was implemented to support research into spatial variations of the measured hydrological processes and ultimately the impact of these variations on modeled carbon and water budgets. These data are stored in tabular ASCII files. The HYD-08 1994 gravimetric moss moisture data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  7. BOREAS HYD-8 1996 Gravimetric Moss Moisture Data

    NASA Technical Reports Server (NTRS)

    Fernandes, Richard; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-8 team made measurements of surface hydrological processes that were collected at the southern study area-Old Black Spruce (SSA-OBS) Tower Flux site in 1996 to support its research into point hydrological processes and the spatial variation of these processes. Data collected may be useful in characterizing canopy interception, drip, throughfall, moss interception, drainage, evaporation, and capacity during the growing season at daily temporal resolution. This particular data set contains the gravimetric moss moisture measurements from July to August 1996. To collect these data, a nested spatial sampling plan was implemented to support research into spatial variations of the measured hydrological processes and ultimately the impact of these variations on modeled carbon and water budgets. These data are stored in ASCII text files. The HYD-08 1996 gravimetric moss moisture data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  8. 75 FR 33799 - Moss Bluff Hub, LLC; Notice of Baseline Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-28-000] Moss Bluff Hub, LLC; Notice of Baseline Filing June 8, 2010. Take notice that on June 1, 2010, Moss Bluff Hub, LLC submitted a baseline filing of its Statement of General Terms and Standard Operations Conditions for storage...

  9. Branch length mediates flower production and inflorescence architecture of Fouquieria splendens (ocotillo)

    USGS Publications Warehouse

    Bowers, Janice E.

    2006-01-01

    The capacity of individual branches to store water and fix carbon can have profound effects on inflorescence size and architecture, thus on floral display, pollination, and fecundity. Mixed regression was used to investigate the relation between branch length, a proxy for plant resources, and floral display of Fouquieria splendens (ocotillo), a woody, candelabraform shrub of wide distribution in arid North America. Long branches produced three times as many flowers as short branches, regardless of overall plant size. Long branches also had more complex panicles with more cymes and cyme types than short branches; thus, branch length also influenced inflorescence architecture. Within panicles, increasing the number of cymes by one unit added about two flowers, whereas increasing the number of cyme types by one unit added about 21 flowers. Because flower production is mediated by branch length, and because most plants have branches of various lengths, the floral display of individual plants necessarily encompasses a wide range of inflorescence size and structure. ?? Springer 2006.

  10. Moss protonemata are dispersed by water, wind, and snails.

    PubMed

    Pasiche-Lisboa, Carlos J; Jesús, Inés Sastre-De

    2018-04-01

    Mosses produce asexual propagules, which are dispersed, thus allowing population establishment and maintenance. However, it is unknown if or how protonemata-one of their asexually produced propagules-are dispersed. Moss protonemata were exposed to three dispersal vectors (water, wind, and snails) to describe the dispersal capability and survival after dispersal. The protonemata of mosses Callicostella belangeriana and Taxiphyllum taxirameum were splashed with water drops from a 1 or 2 m height, exposed to two wind velocities (V 1 = 2.74 mps and V 2 = 3.76 mps), and fed to terrestrial snails. Dispersal of protonemata was described for wind and water by studying the dispersal distance and the relationships between protonemata sizes and dispersal distances. Survival after dispersal was recorded for the three vectors. Water and wind dispersed protonemata up to 80 and 265.5 cm, respectively. The protonemata dispersed the farthest distance when splashed by 2 m drops and hit by V 2 wind velocities. No, or little, relationship between protonemata size and dispersal distance was found for the water and wind vectors. Protonemata survived and became established after dispersal: survival was high when dispersed by water and snails, but was low for wind. For the first time, it was shown that protonemata are dispersed mostly close to the source, which is suggested to aid in moss population maintenance. © 2018 Botanical Society of America.

  11. Calculating the Velocity in the Moss

    NASA Technical Reports Server (NTRS)

    Womebarger, Amy R.; Tripathi, Durgesh; Mason, Helen

    2011-01-01

    The velocity of the warm (1 MK) plasma in the footpoint of the hot coronal loops (commonly called moss) could help discriminate between different heating frequencies in the active region core. Strong velocities would indicated low-frequency heating, while velocities close to zero would indicate high-frequency heating. Previous results have found disparaging observations, with both strong velocities and velocities close to zero reported. Previous results are based on observations from Hinode/EIS. The wavelength arrays for EIS spectra are typically calculated by assuming quiet Sun velocities are zero. In this poster, we determine the velocity in the moss using observations with SoHO/SUMER. We rely on neutral or singly ionized spectral lines to determine accurately the wavelength array associated with the spectra. SUMER scanned the active region twice, so we also report the stability of the velocity.

  12. Sex-Related Effects in the Superhydrophobic Properties of Damselfly Wings in Young and Old Calopteryx splendens

    PubMed Central

    Kuitunen, Katja; Kovalev, Alexander; Gorb, Stanislav N.

    2014-01-01

    Numerous sex-related morphological adaptations are connected to reproductive behavior in animals. For example, females of some insect species can submerge during oviposition, which may lead to sex-related adaptations in the hydrophobicity (water-repellency) due to specialization of certain morphological structures. On the other hand, ageing can cause changes in hydrophobicity of the surface, because the morphological structures can wear with age. Here, we investigated sex-and age-related differences in wing hydrophobicity and in morphology (spine density, wax cover characteristics, size of females' pseudopterostigma) potentially related to hydrophobicity of Calopteryx splendens damselflies. Hydrophobicity was measured with two methods, by measuring the contact angle (CA) between a wing and water droplet, and by dipping a wing into water and measuring forces needed to submerge, withdraw, and pull-out a wing from water. We found that C. splendens wings are superhydrophobic, having mean CAs of 161°. The only sex and age related difference in the hydrophobicity measurements was that young females had stronger amplitude of force fluctuations during withdrawal of wings from water than young males. This suggests that young females may form less uniform air pockets on their wings while submerged. From the morphological structures measured here, the only sex related finding was that old females had denser spine cover than young females in their wing veins. The difference may be explained by better survival of females with denser spine cover. The most important morphological character that predicted superhydrophobicity was the prevalence of long wax rods on wing veins. In addition, female pseudopterostigma area (a trait present only in females) was negatively related to pull-out force, suggesting that large pseudopterostigmas might help females to emerge from water following oviposition. The subtle sex-related differences in hydrophobicity could be explained by the fact

  13. Short-term N2 fixation kinetics in a moss-associated cyanobacteria.

    PubMed

    Jean, Marie-Eve; Cassar, Nicolas; Setzer, Cameron; Bellenger, Jean-Philippe

    2012-08-21

    N(2) fixation by moss-associated cyanobacteria plays an important role in the nitrogen cycling of terrestrial ecosystems. Recent studies have mainly focused on boreal ecosystems; little is known about such association in other ecosystems. Moss-associated cyanobacteria are subject to rapid changes (hourly or less) in environmental conditions that may affect N(2) fixation kinetics. Using a recently developed method (Acetylene Reduction Assays by Cavity ring-down laser Absorption Spectroscopy, ARACAS) with higher sensitivity and sampling frequency than the conventional method, we characterize short-term kinetics of N(2) fixation by cyanobacteria on moss carpets from warm and cold temperate forests. We report the identification of a heretofore unknown multispecies true-moss-cyanobacteria diazotrophic association. We demonstrate that short-term change in abiotic variables greatly influences N(2) fixation. We also show that difference in relative proportion of two epiphytic diazotrophs is consistent with divergent influences of temperature on their N(2) fixation kinetics. Further research is needed to determine whether this difference is consistent with a latitudinal trend.

  14. Active Moss Biomonitoring of Atmospheric Trace Element Deposition in Belgrade Urban Area using ENAA and AAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anicic, M.; Tasic, M.; Tomasevic, M.

    2007-11-26

    Active biomonitoring of air quality in Belgrade, Serbia, was performed using the moss Sphagnum girgensohnii. Moss bags were exposed in parallel with and without irrigation respectively for four consecutive 3-month periods at three urban sites. Twenty-nine elements were determined in the exposed moss samples by ENAA and three (Cu, Cd, and Pb) by AAS. The relative accumulation factor (RAF) was greater than 1 for the majority of elements. Elements such as Cl, K, Rb and Cs, however, leached from the moss tissue during the exposure time. For all exposure periods, higher uptake in the irrigated moss bags was evident formore » Al, Cr, Fe, Cu, Zn, Sr, Pb, and Cd.« less

  15. [Chemical-nutritional characterization of the moss Spagnum magellanicum].

    PubMed

    Villarroel, Mario; Biolley, Edith; Yáñez, Enrique; Peralta, Rosario

    2002-12-01

    The goal of the present study was to know the chemical characteristics of the moss Sphagnum magellanicum (S.M.) growing in the southern part of Chile, spreading approximately. in a geographic area of 500.000 Has. Very few antecedents are reported in the literature concerning the functional properties of this resource, with the exception of the water absorption and holding capacity. Many of the industrial or agricultural uses of this moss are strongly related with this characteristic. Looking for other alternatives of utilization, it has been planned its incorporation to staple foods as a source of dietary fiber. But first it is necessary to know its chemical characteristics Representative samples of this material were submitted to different chemical analysis such as proximal analysis, fractional fiber analysis and anti nutrient factors.. Results of those analysis show the high amount of dietary fiber founded in this resource (77%), higher than reported data for other traditional fiber sources such as lupin bran, rice hull, barley hull, oat bran, etc. Finally it is important emphasize the absence of antinutrient factor in this moss, that could make feasible its use for human nutrition.

  16. Moss and lichen cover mapping at local and regional scales in the boreal forest ecosystem of central Canada

    USGS Publications Warehouse

    Rapalee, G.; Steyaert, L.T.; Hall, F.G.

    2001-01-01

    Mosses and lichens are important components of boreal landscapes [Vitt et al., 1994; Bubier et al., 1997]. They affect plant productivity and belowground carbon sequestration and alter the surface runoff and energy balance. We report the use of multiresolution satellite data to map moss and lichens over the BOREAS region at a 10 m, 30 m, and 1 km scales. Our moss and lichen classification at the 10 m scale is based on ground observations of associations among soil drainage classes, overstory composition, and cover type among four broad classes of ground cover (feather, sphagnum, and brown mosses and lichens). For our 30 m map, we used field observations of ground cover-overstory associations to map mosses and lichens in the BOREAS southern study area (SSA). To scale up to a 1 km (AVHRR) moss map of the BOREAS region, we used the TM SSA mosaics plus regional field data to identify AVHRR overstory-ground cover associations. We found that: 1) ground cover, overstory composition and density are highly correlated, permitting inference of moss and lichen cover from satellite-based land cover classifications; 2) our 1 km moss map reveals that mosses dominate the boreal landscape of central Canada, thereby a significant factor for water, energy, and carbon modeling; 3) TM and AVHRR moss cover maps are comparable; 4) satellite data resolution is important; particularly in detecting the smaller wetland features, lakes, and upland jack pine sites; and 5) distinct regional patterns of moss and lichen cover correspond to latitudinal and elevational gradients. Copyright 2001 by the American Geophysical Union.

  17. Moss harvest truncates the successional development of epiphytic bryophytes in the Pacific Northwest.

    PubMed

    Peck, Jerilynn E; Frelich, Lee E

    2008-01-01

    We evaluated the impact of commercial moss harvest on the development of an understory epiphyte community in the Pacific Northwest by characterizing natural development stages using data from both a long-term regrowth study and demographic sampling. First, experimentally stripped 1 m long cylindrats on 46 shrub stems in the Oregon Coast Range were monitored for species composition and abundance annually during the first five years of recovery and again in year 10. Second, a pathway of community development was inferred by examining the relative species composition and abundance of epiphytic species present in moss mats in a four-stage chronosequence. We (1) characterized the change in richness and composition from year 1 through 10 of regrowth following experimental disturbance, (2) quantified the proportion of approximately 1-, 10-, 25-, and 50-year-old moss mats of commercially harvestable species that were monodominant, diverse, and late successional, and (3) contrasted these proportions with estimates from a compositional transition matrix derived from long-term monitoring. Roughly half of the observed moss mats demonstrated neutral dynamics and were composed of a mixture of readily dispersed acrocarps and pleurocarps. The remaining half exhibited positive dynamics and were dominated by aggressively growing pleurocarpous species such as Isothecium myosuroides. Following structural developmental pathways well established for vascular plants, moss mats shift with time from high diversity and evenness in the initial colonization and extended establishment phases to increasing Isothecium dominance during a presumed competitive-exclusion phase. Old mats exist in alternate states of either Isothecium dominance or mixed composition, either of which may have late-successional species. Patchy historic commercial moss harvest likely facilitated high diversity by increasing the simultaneous occurrence of all moss mat age classes, while modern strip harvesting methods are

  18. Gravity regulation in tuber-bearing moss Leptobryum pyriforme (Hedw.) Wilson

    NASA Astrophysics Data System (ADS)

    Lobachevska, Oksana

    Considerable number of moss species is propagated asexually, and asexual reproduction is the key factor of their life strategy and effective mechanism of rapid population and attaching plants to habitats with great environmental fluctuations (Velde et al., 2001; Frey, Kűrshner, 2010). It has been shown for the first time for gravisensitive species Leptobryum pyriforme (Hedw.) Wilson that the development of propagules as organs of vegetative reproduction and accumulation of nutrient substances is gravidependent phenomenon. L. pyriforme differs from other moss species in higher growth and development rate. In darkness the greatest bundle of gravisensitive negatively gravitropic filaments (above 50 filaments) of both caulonemal and chloronemal type arised from 1 protonemal ball of moss. Perhaps, it is caused by high protonema gravisensitivity and morphogenetic effectiveness of gravitation force. It has been shown that propagules of L. pyriforme are formed much faster in darkness and their number is twice higher than on light. After five-day clinorotation of the L. pyriforme turfs the number of propagules is lower in darkness compared to gravistimulated turfs and higher than on the light. Thus, vegetative reproduction of L. pyriforme is the gravidependent process and gravitation force has stimulating influence on the formation of propagula. In L. pyriforme rhizoid tubers from round to oval (93-116 x ({) } (x) 120-148 muμm) are formed from 5-6 big cells (70 x ({) } (x) 80 muμm). Due to small capsules, L{it pyriforme }does not have a lot of big spores which are spread to insignificant distances, the mass formation of brood organs promotes moss survival and its preservation. The results of investigation prove the participation of rhizoids and rhizoid tubers as imperceptible but important phase of vital cycle of moss species - settlers in realization of vital tolerance strategy to extreme conditions of temporarily available habitats: due to rapid method of spatial

  19. Chemical and histochemical analysis of 'Quatre Saisons Blanc Mousseux', a Moss Rose of the Rosa x damascena group.

    PubMed

    Caissard, Jean-Claude; Bergougnoux, Véronique; Martin, Magali; Mauriat, Mélanie; Baudino, Sylvie

    2006-02-01

    Moss roses are old garden roses covered with a mossy growth on flower pedicel and calyx. This moss releases a pine-scented oleoresin that is very sticky and odoriferous. Rosa x centifolia 'muscosa' was the first moss rose to be obtained by bud-mutation but, interestingly, R. x damascena 'Quatre Saisons Blanc Mousseux' was the first repeat-blooming cultivar, thus interesting breeders. In the present study, the anatomy of these sports (i.e. bud-mutations) is characterized and the volatile organic compounds (VOCs) produced by the moss versus the petals are identified. They are compared between the two lines and their respective parents. Anatomy of the moss is studied by environmental scanning electron microscopy and histochemical light microscopy. Sudan Red IV and Fluorol Yellow 088 are used to detect lipids, and 1-naphthol reaction with N,N-dimethyl-p-phenylenediamine to detect terpenes (Nadi reaction). Head-space or solid/liquid extraction followed by gas chromatography and mass spectrometry are used to identify VOCs in moss, trichomes and petals. Moss of the two cultivars has the same structure with trichomes on other trichomes but not exactly the same VOCs. These VOCs are specific to the moss, with lots of terpenes. An identical VOC composition is found in leaves but not in petals. They are nearly the same in the moss mutants and in the respective wild types. Sepals of moss roses and their parents have a specific VOC pattern, different from that of the petals. The moss corresponds to a heterochronic mutation with trichomes developing on other trichomes. Such a mutation has probably appeared twice and independently in the two lines.

  20. Detection, isolation, and characterization of acidophilic methanotrophs from Sphagnum mosses.

    PubMed

    Kip, Nardy; Ouyang, Wenjing; van Winden, Julia; Raghoebarsing, Ashna; van Niftrik, Laura; Pol, Arjan; Pan, Yao; Bodrossy, Levente; van Donselaar, Elly G; Reichart, Gert-Jan; Jetten, Mike S M; Damsté, Jaap S Sinninghe; Op den Camp, Huub J M

    2011-08-15

    Sphagnum peatlands are important ecosystems in the methane cycle. Methane-oxidizing bacteria in these ecosystems serve as a methane filter and limit methane emissions. Yet little is known about the diversity and identity of the methanotrophs present in and on Sphagnum mosses of peatlands, and only a few isolates are known. The methanotrophic community in Sphagnum mosses, originating from a Dutch peat bog, was investigated using a pmoA microarray. A high biodiversity of both gamma- and alphaproteobacterial methanotrophs was found. With Sphagnum mosses as the inoculum, alpha- and gammaproteobacterial acidophilic methanotrophs were isolated using established and newly designed media. The 16S rRNA, pmoA, pxmA, and mmoX gene sequences showed that the alphaproteobacterial isolates belonged to the Methylocystis and Methylosinus genera. The Methylosinus species isolated are the first acid-tolerant members of this genus. Of the acidophilic gammaproteobacterial strains isolated, strain M5 was affiliated with the Methylomonas genus, and the other strain, M200, may represent a novel genus, most closely related to the genera Methylosoma and Methylovulum. So far, no acidophilic or acid-tolerant methanotrophs in the Gammaproteobacteria class are known. All strains showed the typical features of either type I or II methanotrophs and are, to the best of our knowledge, the first isolated (acidophilic or acid-tolerant) methanotrophs from Sphagnum mosses.

  1. Chemical and structural characterization of copper adsorbed on mosses (Bryophyta).

    PubMed

    González, Aridane G; Jimenez-Villacorta, Felix; Beike, Anna K; Reski, Ralf; Adamo, Paola; Pokrovsky, Oleg S

    2016-05-05

    The adsorption of copper on passive biomonitors (devitalized mosses Hypnum sp., Sphagnum denticulatum, Pseudoscleropodium purum and Brachythecium rutabulum) was studied under different experimental conditions such as a function of pH and Cu concentration in solution. Cu assimilation by living Physcomitrella patents was also investigated. Molecular structure of surface adsorbed and incorporated Cu was studied by X-ray Absorption Spectroscopy (XAS). Devitalized mosses exhibited the universal adsorption pattern of Cu as a function of pH, with a total binding sites number 0.05-0.06 mmolg(dry)(-1) and a maximal adsorption capacity of 0.93-1.25 mmolg(dry)(-1) for these devitalized species. The Extended X-ray Absorption Fine Structure (EXAFS) fit of the first neighbor demonstrated that for all studied mosses there are ∼4.5 O/N atoms around Cu at ∼1.95 Å likely in a pseudo-square geometry. The X-ray Absorption Near Edge Structure (XANES) analysis demonstrated that Cu(II)-cellulose (representing carboxylate groups) and Cu(II)-phosphate are the main moss surface binding moieties, and the percentage of these sites varies as a function of solution pH. P. patens exposed during one month to Cu(2+) yielded ∼20% of Cu(I) in the form of Cu-S(CN) complexes, suggesting metabolically-controlled reduction of adsorbed and assimilated Cu(2+). Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Genetics Home Reference: Gorlin-Chaudhry-Moss syndrome

    MedlinePlus

    ... described as progeroid. Affected individuals also have excessive hair growth (hypertrichosis) on their face and body. They have a low hairline on the forehead and their scalp hair is often coarse. People with Gorlin-Chaudhry-Moss ...

  3. Key Factors Influencing Rapid Development of Potentially Dune-Stabilizing Moss-Dominated Crusts

    PubMed Central

    Bu, Chongfeng; Zhang, Kankan; Zhang, Chunyun; Wu, Shufang

    2015-01-01

    Biological soil crusts (BSCs) are a widespread photosynthetic ground cover in arid and semiarid areas. They have many positive ecological functions, such as increasing soil stability, and reducing water and wind erosion. Using artificial technology to achieve the rapid development of BSCs is expected to become a low-cost and highly beneficial ecological restoration measure. In the present study, typical moss-dominated crusts in a region characterized by mobile dunes (Mu Us Sandland, China) were collected, and a 40-day cultivation experiment was performed to investigate key factors, including watering frequency, light intensity and a nutrient addition, which affect the rapid development of moss crusts and their optimal combination. The results demonstrated that watering frequency and illumination had a significant positive effect (P=0.049, three-factor ANOVA) and a highly significant, complicated effect (P=0.000, three-factor ANOVA), respectively, on the plant density of bryophytes, and a highly significant positive effect on the chlorophyll a and exopolysaccharide contents (P=0.000, P=0.000; P=0.000, P=0.000; one-way ANOVA). Knop nutrient solution did not have a significant positive but rather negative effect on the promotion of moss-dominated crust development (P=0.270, three-factor ANOVA). Moss-dominated crusts treated with the combination of moderate-intensity light (6,000 lx) + high watering frequency (1 watering/2 days) - Knop had the highest moss plant densities, while the treatment with high-intensity light (12,000 lx) + high watering frequency (1 watering/2 days) + Knop nutrient solution had higher chlorophyll a contents than that under other treatments. It is entirely feasible to achieve the rapid development of moss crusts under laboratory conditions by regulating key factors and creating the right environment. Future applications may seek to use cultured bryophytes to control erosion in vulnerable areas with urgent needs. PMID:26230324

  4. The Numerical Competency of Two Bird Species (Corvus splendens and Acridotheres tristis).

    PubMed

    Rahman, Nor Amira Abdul; Fadzly, Nik; Dzakwan, Najibah Mohd; Zulkifli, Nur Hazwani

    2014-08-01

    We conducted a series of experiments to test the numerical competency of two species of birds, Corvus splendens (House Crow) and Acridotheres tristis (Common Myna). Both species were allowed to choose from seven different groups of mealworms with varying proportions. We considered the birds to have made a correct choice when it selected the food group with the highest number of mealworms. Our overall results indicated that the Common Myna is able to count numbers (161 successful choices out of 247 trials) better than House Crows (133 successful choices out of 241 trials). We suspect that House Crows do not rely on a numerical sense when selecting food. Although House Crows mostly chose the cup with more mealworms (from seven food item proportions), only one proportion was chosen at rate above random chance. The Common Myna, however, were slow performers at the beginning but became increasingly more capable of numerical sense during the remainder of the experiment (four out of seven food proportion groups were chosen at a rate above random chance).

  5. The Numerical Competency of Two Bird Species (Corvus splendens and Acridotheres tristis)

    PubMed Central

    Rahman, Nor Amira Abdul; Fadzly, Nik; Dzakwan, Najibah Mohd; Zulkifli, Nur Hazwani

    2014-01-01

    We conducted a series of experiments to test the numerical competency of two species of birds, Corvus splendens (House Crow) and Acridotheres tristis (Common Myna). Both species were allowed to choose from seven different groups of mealworms with varying proportions. We considered the birds to have made a correct choice when it selected the food group with the highest number of mealworms. Our overall results indicated that the Common Myna is able to count numbers (161 successful choices out of 247 trials) better than House Crows (133 successful choices out of 241 trials). We suspect that House Crows do not rely on a numerical sense when selecting food. Although House Crows mostly chose the cup with more mealworms (from seven food item proportions), only one proportion was chosen at rate above random chance. The Common Myna, however, were slow performers at the beginning but became increasingly more capable of numerical sense during the remainder of the experiment (four out of seven food proportion groups were chosen at a rate above random chance). PMID:25210590

  6. Biomonitoring persistent organic pollutants in the atmosphere with mosses: performance and application.

    PubMed

    Wu, Qimei; Wang, Xin; Zhou, Qixing

    2014-05-01

    Persistent organic pollutants (POPs) have aroused environmentalists and public concerns due to their toxicity, bioaccumulation and persistency in the environment. However, monitoring atmospheric POPs using conventional instrumental methods is difficult and expensive, and POP levels in air samples represent an instantaneous value at a sampling time. Biomonitoring methods can overcome this limitation, because biomonitors can accumulate POPs, serve as long-term integrators of POPs and provide reliable information to assess the impact of pollutants on the biota and various ecosystems. Recently, mosses are increasingly employed to monitor atmospheric POPs. Mosses have been applied to indicate POP pollution levels in the remote continent of Antarctica, trace distribution of POPs in the vicinity of pollution sources, describe the spatial patterns at the regional scale, and monitor the changes in the pollution intensity along time. In the future, many aspects need to be improved and strengthened: (i) the relationship between the concentrations of POPs in mosses and in the atmosphere (different size particulates and vapor phases); and (ii) the application of biomonitoring with mosses in human health studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Gravitropism in caulonemata of the moss Pottia intermedia

    NASA Technical Reports Server (NTRS)

    Chaban, C. I.; Kern, V. D.; Ripetskyj, R. T.; Demkiv, O. T.; Sack, F. D.

    1998-01-01

    The gravitropism of caulonemata of Pottia intermedia is described and compared with that of other mosses. Spore germination produces primary protonemata including caulonemata which give rise to buds that form the leafy moss plant, the gametophore. Primary caulonemata are negatively gravitropic but their growth and the number of filaments are limited in the dark. Axenic culture of gametophores results in the production of secondary caulonemata that usually arise near the leaf base. Secondary protonemata that form in the light are agravitropic. Secondary caulonemata that form when gametophores are placed in the dark for several days show strong negative gravitropism and grow well in the dark. When upright caulonemata are reorientated to the horizontal or are inverted, upward bending can be detected after 1 h and caulonemata reach the vertical within 1-2 d. Clear amyloplast sedimentation occurs 10-15 minutes after horizontal placement and before the start of upward curvature. This sedimentation takes place in a sub-apical zone. Amyloplast sedimentation also takes place along the length of upright and inverted Pottia protonemata. These results support the hypothesis that amyloplast sedimentation functions in gravitropic sensing since sedimentation occurs before gravitropism in Pottia and since the location and presence of a unique sedimentation zone is conserved in all four mosses known to gravitropic protonomata.

  8. New methods reveal oldest known fossil epiphyllous moss: Bryiidites utahensis gen. et sp. nov. (Bryidae).

    PubMed

    Barclay, Richard S; McElwain, Jennifer C; Duckett, Jeffrey G; van Es, Maarten H; Mostaert, Anika S; Pressel, Silvia; Sageman, Bradley B

    2013-12-01

    Epiphyllous bryophytes are a highly characteristic feature of many humid tropical forest ecosystems. In contrast to the extensive fossil record for the leaves of their host plants, the record is virtually nonexistent for the epiphylls themselves, despite a fossil record for mosses that begins in the Middle Carboniferous Period, 330 million years ago. Epifluorescence optical microscopy, scanning electron microscopy, and atomic force microscopy were employed to investigate an intimate association between a newly discovered epiphyllous moss and a Lauraceae plant host from the middle Cretaceous. We describe the oldest fossil specimen of an epiphyllous moss, Bryiidites utahensis gen. et sp. nov., identified from an individual specimen only 450 µm long, situated on an approximately one millimeter square fossil leaf fragment. The moss epiphyll is exquisitely preserved as germinating spores and short-celled protonemata with transverse and oblique cross-walls closely matching those of extant epiphyllous mosses on the surface of the plant-leaf hosts. The extension of the epiphyll record back to the middle Cretaceous provides fossil evidence for the appearance of epiphyllous mosses during the diversification of flowering plants, at least 95 million years ago. It also provides substantive evidence for a tropical maritime climate in central North America during the middle Cretaceous.

  9. Moss and vascular plant indices in Ohio wetlands have similar environmental predictors

    USGS Publications Warehouse

    Stapanian, Martin A.; Schumacher, William; Gara, Brian; Adams, Jean V.; Viau, Nick

    2016-01-01

    Mosses and vascular plants have been shown to be reliable indicators of wetland habitat delineation and environmental quality. Knowledge of the best ecological predictors of the quality of wetland moss and vascular plant communities may determine if similar management practices would simultaneously enhance both populations. We used Akaike's Information Criterion to identify models predicting a moss quality assessment index (MQAI) and a vascular plant index of biological integrity based on floristic quality (VIBI-FQ) from 27 emergent and 13 forested wetlands in Ohio, USA. The set of predictors included the six metrics from a wetlands disturbance index (ORAM) and two landscape development intensity indices (LDIs). The best single predictor of MQAI and one of the predictors of VIBI-FQ was an ORAM metric that assesses habitat alteration and disturbance within the wetland, such as mowing, grazing, and agricultural practices. However, the best single predictor of VIBI-FQ was an ORAM metric that assessed wetland vascular plant communities, interspersion, and microtopography. LDIs better predicted MQAI than VIBI-FQ, suggesting that mosses may either respond more rapidly to, or recover more slowly from, anthropogenic disturbance in the surrounding landscape than vascular plants. These results supported previous predictive studies on amphibian indices and metrics and a separate vegetation index, indicating that similar wetland management practices may result in qualitatively the same ecological response for three vastly different wetland biological communities (amphibians, vascular plants, and mosses).

  10. Post-accident recovery of hardware and moss cultures from STS-107

    NASA Astrophysics Data System (ADS)

    Kern, V. D.; Reed, D. W.; Sack, F. D.

    In a follow-up investigation to our STS-87 moss experiment, 99 cultures of the moss Ceratodon purpureus were launched on January 16, 2003, and incubated under microgravity conditions for up to 15 days onboard the orbiter Columbia during the STS-107 mission. Following a flawless performance during the on-orbit experiment phase, cultures were chemically fixed in space by the crew at pre-determined intervals. After the accidental break up of Columbia during descent on February 1, 2003, it was assumed that no results would be available since all cultures and data were to be retrieved for analysis post-landing. However, during the subsequent months seven out of eight BRIC (Biological Research in Canisters)-LED containers were recovered on the ground by searchers in Eastern Texas. Each canister housed six polycarbonate Petri Dish Fixation Units (PDFUs) containing petri dishes with 1 or 3 moss cultures each. When these canisters were opened in late April at Kennedy Space Center, 86 out of 87 moss cultures were recovered. Many but not all cultures were severely fragmented and it was impossible to discern growth patterns. However, thousands of well-fixed moss apical cells were found and documented by microscopy. Data retrieved from an internal temperature logger indicated that the canisters experienced intense but transient heat shortly after Columbia broke apart. Some PDFU polycarbonate had fused to the aluminum canister wall. Interior temperatures were sufficient to melt the agarose substrate (˜ 88C), but none of the 41 petri dishes was heat damaged. Initial results from the examination of culture and cell morphology will be presented. (Supported by NASA: NAG10-0179.)

  11. Bringing back the rare - biogeochemical constraints of peat moss establishment in restored cut-over bogs

    NASA Astrophysics Data System (ADS)

    Raabe, Peter; Blodau, Christian; Hölzel, Norbert; Kleinebecker, Till; Knorr, Klaus-Holger

    2016-04-01

    In rewetted cut-over bogs in north-western Germany and elsewhere almost no spontaneous recolonization of hummock peat mosses, such as Sphagnum magellanicum, S. papillosum or S. rubellum can be observed. However, to reach goals of climate protection every restoration of formerly mined peatlands should aim to enable the re-establishment of these rare but functionally important plant species. Besides aspects of biodiversity, peatlands dominated by mosses can be expected to emit less methane compared to sites dominated by graminoids. To assess the hydrological and biogeochemical factors constraining the successful establishment of hummock Sphagnum mosses we conducted a field experiment by actively transferring hummock species into six existing restoration sites in the Vechtaer Moor, a large peatland complex with active peat harvesting and parallel restoration efforts. The mosses were transferred as intact sods in triplicate at the beginning of June 2016. Six weeks (mid-July) and 18 weeks later (beginning of October) pore water was sampled in two depths (5 and 20 cm) directly beneath the inoculated Sphagnum sods as well as in untreated control plots and analysed for phosphate, ferrous iron, ammonia, nitrate and total organic carbon (TOC). On the same occasions and additionally in December, the vitality of mosses was estimated. Furthermore, the increment of moss height between July and December was measured by using cranked wires and peat cores were taken for lab analyses of nutrients and major element inventories at the depths of pore water sampling. Preliminary results indicate that vitality of mosses during the period of summer water level draw down was strongly negatively related to plant available phosphate in deeper layers of the residual peat. Furthermore, increment of moss height was strongly negatively related to TOC in the upper pore waters sampled in October. Concentration of ferrous iron in deeper pore waters was in general significantly higher beneath

  12. Evaluation of the use of moss transplants (Pseudoscleropodium purum) for biomonitoring different forms of air pollutant nitrogen compounds.

    PubMed

    Varela, Z; García-Seoane, R; Arróniz-Crespo, M; Carballeira, A; Fernández, J A; Aboal, J R

    2016-06-01

    We investigated whether three different types of moss transplants (devitalized moss bags with and without cover and auto-irrigated moss transplants) are suitable for use as biomonitors of the deposition of oxidised and/or reduced forms of N. For this purpose, we determined whether the concentration of atmospheric NO2 was related to the % N, δ(15)N and the activity of the enzyme biomarkers phosphomonoesterase (PME) and nitrate reductase (NR) in the tissues of moss transplants. We exposed the transplants in 5 different environments of Galicia (NW Spain) and Cataluña (NE Spain): industrial environments, urban and periurban environments, the surroundings of a cattle farm and in a monitoring site included in the sampling network of the European Monitoring Programme. The results showed that the moss in the auto-irrigated transplants was able of incorporating the N in its tissues because it was metabolically active, whereas in devitalized moss bags transplants, moss simply intercepts physically the N compounds that reached it in particulate or gaseous form. In addition, this devitalization could limit the capacity of moss to capture gaseous compounds (i.e. reduced N) and to reduce the oxidised compounds that reach the specimens. These findings indicate that devitalized moss transplants cannot be used to monitor either oxidised or reduced N compounds, whereas transplants of metabolically active moss can be used for this purpose. Finally, the NR and PME biomarkers should be used with caution because of the high variability in their activities and the limits of quantification should be evaluated in each case. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Moss and soil contributions to the annual net carbon flux of a maturing boreal forest

    USGS Publications Warehouse

    Harden, J.W.; O'Neill, K. P.; Trumbore, S.E.; Veldhuis, H.; Stocks, B.J.

    1997-01-01

    We used input and decomposition data from 14C studies of soils to determine rates of vertical accumulation of moss combined with carbon storage inventories on a sequence of burns to model how carbon accumulates in soils and moss after a stand-killing fire. We used soil drainage - moss associations and soil drainage maps of the old black spruce (OBS) site at the BOREAS northern study area (NSA) to areally weight the contributions of each moderately well drained, feathermoss areas; poorly drained sphagnum - feathermoss areas; and very poorly drained brown moss areas to the carbon storage and flux at the OBS NSA site. On this very old (117 years) complex of black spruce, sphagnum bog veneer, and fen systems we conclude that these systems are likely sequestering 0.01-0.03 kg C m-2 yr-' at OBS-NSA today. Soil drainage in boreal forests near Thompson, Manitoba, controls carbon storage and flux by controlling moss input and decomposition rates and by controlling through fire the amount and quality of carbon left after burning. On poorly drained soils rich in sphagnum moss, net accumulation and long-term storage of carbon is higher than on better drained soils colonized by feathermosses. The carbon flux of these contrasting ecosystems is best characterized by soil drainage class and stand age, where stands recently burned are net sources of CO2, and maturing stands become increasingly stronger sinks of atmospheric CO2. This approach to measuring carbon storage and flux presents a method of scaling to larger areas using soil drainage, moss cover, and stand age information.

  14. Photosynthetic traits of Sphagnum and feather moss species in undrained, drained and rewetted boreal spruce swamp forests

    PubMed Central

    Kangas, Laura; Maanavilja, Liisa; Hájek, Tomáš; Juurola, Eija; Chimner, Rodney A; Mehtätalo, Lauri; Tuittila, Eeva-Stiina

    2014-01-01

    In restored peatlands, recovery of carbon assimilation by peat-forming plants is a prerequisite for the recovery of ecosystem functioning. Restoration by rewetting may affect moss photosynthesis and respiration directly and/or through species successional turnover. To quantify the importance of the direct effects and the effects mediated by species change in boreal spruce swamp forests, we used a dual approach: (i) we measured successional changes in moss communities at 36 sites (nine undrained, nine drained, 18 rewetted) and (ii) photosynthetic properties of the dominant Sphagnum and feather mosses at nine of these sites (three undrained, three drained, three rewetted). Drainage and rewetting affected moss carbon assimilation mainly through species successional turnover. The species differed along a light-adaptation gradient, which separated shade-adapted feather mosses from Sphagnum mosses and Sphagnum girgensohnii from other Sphagna, and a productivity and moisture gradient, which separated Sphagnum riparium and Sphagnum girgensohnii from the less productive S. angustifolium, S. magellanicum and S. russowii. Undrained and drained sites harbored conservative, low-production species: hummock-Sphagna and feather mosses, respectively. Ditch creation and rewetting produced niches for species with opportunistic strategies and high carbon assimilation. The direct effects also caused higher photosynthetic productivity in ditches and in rewetted sites than in undrained and drained main sites. PMID:24634723

  15. Changes to dryland rainfall result in rapid moss mortality and altered soil fertility

    USGS Publications Warehouse

    Reed, Sasha C.; Coe, Kirsten K.; Sparks, Jed P.; Housman, David C.; Zelikova, Tamara J.; Belnap, Jayne

    2012-01-01

    Arid and semi-arid ecosystems cover ~40% of Earth’s terrestrial surface, but we know little about how climate change will affect these widespread landscapes. Like many drylands, the Colorado Plateau in southwestern United States is predicted to experience elevated temperatures and alterations to the timing and amount of annual precipitation. We used a factorial warming and supplemental rainfall experiment on the Colorado Plateau to show that altered precipitation resulted in pronounced mortality of the widespread moss Syntrichia caninervis. Increased frequency of 1.2 mm summer rainfall events reduced moss cover from ~25% of total surface cover to <2% after only one growing season, whereas increased temperature had no effect. Laboratory measurements identified a physiological mechanism behind the mortality: small precipitation events caused a negative moss carbon balance, whereas larger events maintained net carbon uptake. Multiple metrics of nitrogen cycling were notably different with moss mortality and had significant implications for soil fertility. Mosses are important members in many dryland ecosystems and the community changes observed here reveal how subtle modifications to climate can affect ecosystem structure and function on unexpectedly short timescales. Moreover, mortality resulted from increased precipitation through smaller, more frequent events, underscoring the importance of precipitation event size and timing, and highlighting our inadequate understanding of relationships between climate and ecosystem function in drylands.

  16. Chemical and Histochemical Analysis of ‘Quatre Saisons Blanc Mousseux’, a Moss Rose of the Rosa × damascena Group

    PubMed Central

    CAISSARD, JEAN-CLAUDE; BERGOUGNOUX, VÉRONIQUE; MARTIN, MAGALI; MAURIAT, MÉLANIE; BAUDINO, SYLVIE

    2006-01-01

    • Background and Aims Moss roses are old garden roses covered with a mossy growth on flower pedicel and calyx. This moss releases a pine-scented oleoresin that is very sticky and odoriferous. Rosa × centifolia ‘muscosa’ was the first moss rose to be obtained by bud-mutation but, interestingly, R. × damascena ‘Quatre Saisons Blanc Mousseux’ was the first repeat-blooming cultivar, thus interesting breeders. In the present study, the anatomy of these sports (i.e. bud-mutations) is characterized and the volatile organic compounds (VOCs) produced by the moss versus the petals are identified. They are compared between the two lines and their respective parents. • Methods Anatomy of the moss is studied by environmental scanning electron microscopy and histochemical light microscopy. Sudan Red IV and Fluorol Yellow 088 are used to detect lipids, and 1-naphthol reaction with N,N-dimethyl-p-phenylenediamine to detect terpenes (Nadi reaction). Head-space or solid/liquid extraction followed by gas chromatography and mass spectrometry are used to identify VOCs in moss, trichomes and petals. • Key Results Moss of the two cultivars has the same structure with trichomes on other trichomes but not exactly the same VOCs. These VOCs are specific to the moss, with lots of terpenes. An identical VOC composition is found in leaves but not in petals. They are nearly the same in the moss mutants and in the respective wild types. • Conclusions Sepals of moss roses and their parents have a specific VOC pattern, different from that of the petals. The moss corresponds to a heterochronic mutation with trichomes developing on other trichomes. Such a mutation has probably appeared twice and independently in the two lines. PMID:16344264

  17. Dehydration protection provided by a maternal cuticle improves offspring fitness in the moss Funaria hygrometrica.

    PubMed

    Budke, Jessica M; Goffinet, Bernard; Jones, Cynthia S

    2013-05-01

    In bryophytes the sporophyte offspring are in contact with, nourished from, and partially surrounded by the maternal gametophyte throughout their lifespan. During early development, the moss sporophyte is covered by the calyptra, a cap of maternal gametophyte tissue that has a multilayered cuticle. In this study the effects on sporophyte offspring fitness of removing the maternal calyptra cuticle, in combination with dehydration stress, is experimentally determined. Using the moss Funaria hygrometrica, calyptra cuticle waxes were removed by chemical extraction and individuals were exposed to a short-term dehydration event. Sporophytes were returned to high humidity to complete development and then aspects of sporophyte survival, development, functional morphology, and reproductive output were measured. It was found that removal of calyptra cuticle under low humidity results in significant negative impacts to moss sporophyte fitness, resulting in decreased survival, increased tissue damage, incomplete sporophyte development, more peristome malformations, and decreased reproductive output. This study represents the strongest evidence to date that the structure of the calyptra cuticle functions in dehydration protection of the immature moss sporophyte. The investment in a maternal calyptra with a multilayered cuticle increases offspring fitness and provides a functional explanation for calyptra retention across mosses. The moss calyptra may represent the earliest occurance of maternal protection via structural provisioning of a cuticle in green plants.

  18. Monitoring of trace element atmospheric deposition using dry and wet moss bags: accumulation capacity versus exposure time.

    PubMed

    Anicić, M; Tomasević, M; Tasić, M; Rajsić, S; Popović, A; Frontasyeva, M V; Lierhagen, S; Steinnes, E

    2009-11-15

    To clarify the peculiarities of trace element accumulation in moss bags technique (active biomonitoring), samples of the moss Sphagnum girgensohnii Rusow were exposed in bags with and without irrigation for 15 days up to 5 months consequently in the semi-urban area of Belgrade (Serbia) starting from July 2007. The accumulation capacity for 49 elements determined by ICP-MS in wet and dry moss bags was compared. The concentration of some elements, i.e. Al, V, Cr, Fe, Zn, As, Se, Sr, Pb, and Sm increased continuously with exposure time in both dry and wet moss bags, whereas concentration of Na, Cl, K, Mn, Rb, Cs, and Ta decreased. Irrigation of moss resulted in a higher accumulation capacity for most of the elements, especially for Cr, Zn, As, Se, Br, and Sr. Principal component analysis was performed on the datasets of element concentrations in wet and dry moss bags for source identification. Results of the factor analysis were similar but not identical in the two cases due to possible differences in element accumulation mechanisms.

  19. Restoration of floodplain meadows: Effects on the re-establishment of mosses.

    PubMed

    Michalska-Hejduk, Dorota; Wolski, Grzegorz J; Harnisch, Matthias; Otte, Annette; Bomanowska, Anna; Donath, Tobias W

    2017-01-01

    Vascular plants serve as target species for the evaluation of restoration success as they account for most of the plant species diversity and vegetation cover. Although bryophytes contribute considerably to the species diversity of meadows, they are rarely addressed in restoration projects. This project is a first step toward making recommendations for including mosses in alluvial floodplain restoration projects. The opportunity to assess the diversity and ecological requirements of mosses on floodplain meadows presented itself within the framework of a vegetation monitoring that took place in 2014 on meadows located along the northern Upper Rhine. In this area, large-scale meadow restoration projects have taken place since 1997 in both the functional and fossil floodplains. Other studies have shown that bryophytes are generally present in green hay used in restoration, providing inadvertent bryophyte introduction. We compared bryophyte communities in donor and restored communities and correlated these communities with environmental variables-taking into account that the mosses on the restoration sites possibly developed from green hay. This analysis provided insights as to which species of bryophytes should be included in future restoration projects, what diaspores should be used, and how they should be transferred. Data on bryophyte occurrence were gathered from old meadows, and from restoration sites. We found distinct differences in bryophyte composition (based on frequency) in restored communities in functional flood plains compared to donor communities. Generally, restoration sites are still characterized by a lower species-richness, with a significantly lower occurrence of rare and red listed species and a lower species-heterogeneity. In conclusion, our research establishes what mosses predominate in donor and restored alluvial meadows along the northern Upper River, and what microsite conditions favour particular species. This points the way to deliberate

  20. Restoration of floodplain meadows: Effects on the re-establishment of mosses

    PubMed Central

    Wolski, Grzegorz J.; Harnisch, Matthias; Otte, Annette; Bomanowska, Anna; Donath, Tobias W.

    2017-01-01

    Vascular plants serve as target species for the evaluation of restoration success as they account for most of the plant species diversity and vegetation cover. Although bryophytes contribute considerably to the species diversity of meadows, they are rarely addressed in restoration projects. This project is a first step toward making recommendations for including mosses in alluvial floodplain restoration projects. The opportunity to assess the diversity and ecological requirements of mosses on floodplain meadows presented itself within the framework of a vegetation monitoring that took place in 2014 on meadows located along the northern Upper Rhine. In this area, large-scale meadow restoration projects have taken place since 1997 in both the functional and fossil floodplains. Other studies have shown that bryophytes are generally present in green hay used in restoration, providing inadvertent bryophyte introduction. We compared bryophyte communities in donor and restored communities and correlated these communities with environmental variables—taking into account that the mosses on the restoration sites possibly developed from green hay. This analysis provided insights as to which species of bryophytes should be included in future restoration projects, what diaspores should be used, and how they should be transferred. Data on bryophyte occurrence were gathered from old meadows, and from restoration sites. We found distinct differences in bryophyte composition (based on frequency) in restored communities in functional flood plains compared to donor communities. Generally, restoration sites are still characterized by a lower species-richness, with a significantly lower occurrence of rare and red listed species and a lower species-heterogeneity. In conclusion, our research establishes what mosses predominate in donor and restored alluvial meadows along the northern Upper River, and what microsite conditions favour particular species. This points the way to deliberate

  1. FLOWS AND MOTIONS IN MOSS IN THE CORE OF A FLARING ACTIVE REGION: EVIDENCE FOR STEADY HEATING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, David H.; Warren, Harry P., E-mail: dhbrooks@ssd5.nrl.navy.mi

    2009-09-20

    We present new measurements of the time variability of intensity, Doppler, and nonthermal velocities in moss in an active region core observed by the EUV Imaging Spectrometer on Hinode in 2007 June. The measurements are derived from spectral profiles of the Fe XII 195 A line. Using the 2'' slit, we repeatedly scanned 150'' by 150'' in a few minutes. This is the first time it has been possible to make such velocity measurements in the moss, and the data presented are the highest cadence spatially resolved maps of moss Doppler and nonthermal velocities ever obtained in the corona. Themore » observed region produced numerous C- and M-class flares with several occurring in the core close to the moss. The magnetic field was therefore clearly changing in the active region core, so we ought to be able to detect dynamic signatures in the moss if they exist. Our measurements of moss intensities agree with previous studies in that a less than 15% variability is seen over a period of 16 hr. Our new measurements of Doppler and nonthermal velocities reveal no strong flows or motions in the moss, nor any significant variability in these quantities. The results confirm that moss at the bases of high temperature coronal loops is heated quasi-steadily. They also show that quasi-steady heating can contribute significantly even in the core of a flare productive active region. Such heating may be impulsive at high frequency, but if so it does not give rise to large flows or motions.« less

  2. Comparison of elicitation potential of chloroatranol and atranol--2 allergens in oak moss absolute.

    PubMed

    Johansen, Jeanne D; Bernard, Guillaume; Giménez-Arnau, Elena; Lepoittevin, Jean-Pierre; Bruze, Magnus; Andersen, Klaus E

    2006-04-01

    Chloroatranol and atranol are degradation products of chloroatranorin and atranorin, respectively, and have recently been identified as important contact allergens in the natural fragrance extract, oak moss absolute. Oak moss absolute is widely used in perfumery and is the cause of many cases of fragrance allergic contact dermatitis. Chloroatranol elicits reactions at very low levels of exposure. In oak moss absolute, chloroatranol and atranol are present together and both may contribute to the allergenicity and eliciting capacity of the natural extract. In this study, 10 eczema patients with known sensitization to chloroatranol and oak moss absolute were tested simultaneously to a serial dilution of chloroatranol and atranol in ethanol, in equimolar concentrations (0.0034-1072 microM). Dose-response curves were estimated and analysed by logistic regression. The estimated difference in elicitation potency of chloroatranol relative to atranol based on testing with equimolar concentrations was 217% (95% confidence interval 116-409%). Both substances elicited reactions at very low levels of exposure. It is concluded that the differences in elicitation capacity between the 2 substances are counterbalanced by exposure being greater to atranol than to chloroatranol and that both substances contribute to the clinical problems seen in oak moss absolute-sensitized individuals.

  3. High-resolution observations of active region moss and its dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morton, R. J.; McLaughlin, J. A., E-mail: richard.morton@northumbria.ac.uk

    2014-07-10

    The High Resolution Coronal Imager has provided the sharpest view of the EUV corona to date. In this paper, we exploit its impressive resolving power to provide the first analysis of the fine-scale structure of moss in an active region. The data reveal that the moss is made up of a collection of fine threads that have widths with a mean and standard deviation of 440 ± 190 km (FWHM). The brightest moss emission is located at the visible head of the fine-scale structure and the fine structure appears to extend into the lower solar atmosphere. The emission decreases alongmore » the features, implying that the lower sections are most likely dominated by cooler transition region plasma. These threads appear to be the cool, lower legs of the hot loops. In addition, the increased resolution allows for the first direct observation of physical displacements of the moss fine structure in a direction transverse to its central axis. Some of these transverse displacements demonstrate periodic behavior, which we interpret as a signature of kink (Alfvénic) waves. Measurements of the properties of the transverse motions are made and the wave motions have means and standard deviations of 55 ± 37 km for the transverse displacement amplitude, 77 ± 33 s for the period, and 4.7 ± 2.5 km s{sup –1} for the velocity amplitude. The presence of waves in the transition region of hot loops could have important implications for the heating of active regions.« less

  4. Subirrigation reduces water use, nitrogen loss, and moss growth in a container nursery

    Treesearch

    R. Kasten Dumroese; Jeremy R. Pinto; Douglass F. Jacobs; Anthony S. Davis; Baron Horiuchi

    2006-01-01

    With about half the amount of water, subirrigated Metrosideros polymorpha Gaud. (Myrtaceae) grown 9 mo in a greenhouse were similar to those irrigated with an existing fixed overhead irrigation system; moss growth was about 3X greater in the fixed overhead system after 3 mo. Moss growth was affected by the rate of preplant controlled release fertilizer added (more...

  5. Seasonal comparison of moss bag technique against vertical snow samples for monitoring atmospheric pollution.

    PubMed

    Salo, Hanna; Berisha, Anna-Kaisa; Mäkinen, Joni

    2016-03-01

    This is the first study seasonally applying Sphagnum papillosum moss bags and vertical snow samples for monitoring atmospheric pollution. Moss bags, exposed in January, were collected together with snow samples by early March 2012 near the Harjavalta Industrial Park in southwest Finland. Magnetic, chemical, scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), K-means clustering, and Tomlinson pollution load index (PLI) data showed parallel spatial trends of pollution dispersal for both materials. Results strengthen previous findings that concentrate and slag handling activities were important (dust) emission sources while the impact from Cu-Ni smelter's pipe remained secondary at closer distances. Statistically significant correlations existed between the variables of snow and moss bags. As a summary, both methods work well for sampling and are efficient pollutant accumulators. Moss bags can be used also in winter conditions and they provide more homogeneous and better controlled sampling method than snow samples. Copyright © 2015. Published by Elsevier B.V.

  6. EVOLUTIONARY SIGNIFICANCE OF ISOPRENE EMISSION FROM MOSSES

    EPA Science Inventory

    Isoprene emission has been documented and characterized from species in all major groups of vascular plants. We report in our survey that isoprene emission is much more common in mosses and ferns than later divergent land plants but is absent in liverworts and hornworts. The li...

  7. Sensitivity of Spruce/Moss Boreal Forest Net Ecosystem Productivity to Seasonal Anomalies in Weather

    NASA Technical Reports Server (NTRS)

    Frolking, Steve

    1997-01-01

    Abstract. A process-oriented, daily time step model of a spruce/moss boreal ecosystem simulated 1994 and 1995 productivity for a Boreal Ecosystem-Atmosphere Study site near Thompson, Manitoba. Simulated black spruce net primary productivity (NPP) was 139 g C m(exp -2) in 1994 and 112 in 1995; feathermoss NPP was 13.0 g C m(exp -2) in 1994 and 9.7 in 1995; decomposition was 126 g C m(exp -2) in 1994 and 130 in 1995; net ecosystem productivity (NEP) was an uptake of 26.3 g C m(exp -2)in 1994 and 2.5 in 1995. A very dry period for the first half of the 1995 summer was the major cause of that year's lower productivity. Sensitivity simulations explored the impact of 2-month long warmer, cooler, wetter, and drier spells on ecosystem productivity. Warmer summers decreased spruce NPP, moss NPP, and NEP; cooler summers had the opposite effect. Earlier snowmelt (due to either warmer spring temperatures or reduced winter precipitation) increased moss and spruce NPP; later snowmelt had the opposite effect. The largest effect on decomposition was a 5% reduction due to a drier summer. One-month droughts (April through October) were also imposed on 1975 base year weather. Early summer droughts reduced moss annual NPP by -30-40%; summer droughts reduced spruce annual NPP by 10%; late summer droughts increased moss NPP by about 20% due to reduced respiration; May to September monthly droughts reduced heterotrophic respiration by about 10%. Variability in NEP was up to roughly +/- 35%. Finally, 1975 growing season precipitation was redistributed into frequent, small rainstorms and infrequent, large rainstorms. These changes had no effect on spruce NPP. Frequent rainstorms increased decomposition by a few percent, moss NPP by 50%, and NEP by 20%. Infrequent rainstorms decreased decomposition by 5%, moss NPP by 50% and NEP by 15%. The impact of anomalous weather patterns on productivity of this ecosystem depended on their timing during the year. Multiyear data sets are necessary to

  8. The potential value of the seaweed Ceylon moss (Gelidium amansii) as an alternative bioenergy resource.

    PubMed

    Wi, Seung Gon; Kim, Hyun Joo; Mahadevan, Shobana Arumugam; Yang, Duck-Joo; Bae, Hyeun-Jong

    2009-12-01

    Sea weed (Ceylon moss) possesses comparable bioenergy production potential to that of land plants. Ceylon moss has high content of carbohydrates, typically galactose (23%) and glucose (20%). We have explored the possibility of sodium chlorite in Ceylon moss pretreatment that can ultimately increase the efficiency of enzymatic saccharification. In an acidic medium, chlorite generates ClO(2) molecules that transform lignin into soluble compounds without any significant loss of carbohydrate content and this procedure is widely used as an analytical method for holocellulose determination. Sodium chlorite-pretreated samples resulted in glucose yield up to 70% with contrast of only 5% was obtained from non-pretreated samples. The efficiency of enzymatic hydrolysis is significantly improved by sodium chlorite pretreatment, and thus sodium chlorite pretreatment is potentially a very useful tool in the utilisation of Ceylon moss biomass for ethanol production or bioenergy purposes.

  9. Air pollution monitoring using emission inventories combined with the moss bag approach.

    PubMed

    Iodice, P; Adamo, P; Capozzi, F; Di Palma, A; Senatore, A; Spagnuolo, V; Giordano, S

    2016-01-15

    Inventory of emission sources and biomonitoring with moss transplants are two different methods to evaluate air pollution. In this study, for the first time, both these approaches were simultaneously applied in five municipalities in Campania (southern Italy), deserving attention for health-oriented interventions as part of a National Interest Priority Site. The pollutants covered by the inventory were CO, NOx, particulate matter (PM10), volatile organic compounds (VOCs), and some heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, and Zn). The biomonitoring survey was based on the use of the devitalized moss Hypnum cupressiforme transplanted into bags, following a harmonized protocol. The exposure covered 40 agricultural and urban/residential sites, with half of them located in proximity to roads. The pollutants monitored were Al, As, Cd, Cr, Cu, Fe, Hg, Ni, Pb, Se, and Zn, as well as total polycyclic aromatic hydrocarbons (PAHs) only in five sites. Using the emission inventory approach, high emission loads were detected for all the major air pollutants and the following heavy metals: Cr, Cu, Ni, Pb and Zn, over the entire study area. Arsenic, Pb, and Zn were the elements most accumulated by moss. Total PAH postexposure contents were higher than the preexposure values (~20-50% of initial value). Moss uptakes did not differ substantially among municipalities or within exposure sites. In the five municipalities, a similar spatial pattern was evidenced for Pb by emission inventory and moss accumulation. Both approaches indicated the same most polluted municipality, suggesting their combined use as a valuable resource to reveal contaminants that are not routinely monitored. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Invited review: climate change impacts in polar regions: lessons from Antarctic moss bank archives.

    PubMed

    Royles, Jessica; Griffiths, Howard

    2015-03-01

    Mosses are the dominant plants in polar and boreal regions, areas which are experiencing rapid impacts of regional warming. Long-term monitoring programmes provide some records of the rate of recent climate change, but moss peat banks contain an unrivalled temporal record of past climate change on terrestrial plant Antarctic systems. We summarise the current understanding of climatic proxies and determinants of moss growth for contrasting continental and maritime Antarctic regions, as informed by 13C and 18O signals in organic material. Rates of moss accumulation are more than three times higher in the maritime Antarctic than continental Antarctica with growing season length being a critical determinant of growth rate, and high carbon isotope discrimination values reflecting optimal hydration conditions. Correlation plots of 13C and 18O values show that species (Chorisodontium aciphyllum / Polytrichum strictum) and growth form (hummock / bank) are the major determinants of measured isotope ratios. The interplay between moss growth form, photosynthetic physiology, water status and isotope composition are compared with developments of secondary proxies, such as chlorophyll fluorescence. These approaches provide a framework to consider the potential impact of climate change on terrestrial Antarctic habitats as well as having implications for future studies of temperate, boreal and Arctic peatlands. There are many urgent ecological and environmental problems in the Arctic related to mosses in a changing climate, but the geographical ranges of species and life-forms are difficult to track individually. Our goal was to translate what we have learned from the more simple systems in Antarctica, for application to Arctic habitats. © 2014 John Wiley & Sons Ltd.

  11. Effects of plant leachates from four boreal understorey species on soil N mineralization, and white spruce (Picea glauca) germination and seedling growth.

    PubMed

    Castells, Eva; Peñuelas, Josep; Valentine, David W

    2005-06-01

    Natural regeneration of white spruce (Picea glauca) after disturbance has been reported to be very poor. Here a study was made to determine whether C compounds released from understorey species growing together with white spruce could be involved in this regeneration failure, either by (1) changing soil nutrient dynamics, (2) inhibiting germination, and/or (3) delaying seedling growth. Foliage leachates were obtained from two shrubs (Ledum palustre and Empetrum hermaphroditum) and one bryophyte (Sphagnum sp.) with high phenolic compound concentrations that have been reported to depress growth of conifers in boreal forests, and, as a comparison, one bryophyte (Hylocomium splendens) with negligible phenolic compounds. Mineral soil from a white spruce forest was amended with plant leachates to examine the effect of each species on net N mineralization. Additionally, white spruce seeds and seedlings were watered with plant leachates to determine their effects on germination and growth. Leachates from the shrubs L. palustre and E. hermaphroditum contained high phenolic compound concentrations and dissolved organic carbon (DOC), while no detectable levels of C compounds were released from the bryophytes Sphagnum sp. or H. splendens. A decrease in net N mineralization was determined in soils amended with L. palustre or E. hermaphroditum leachates, and this effect was inversely proportional to the phenolic concentrations, DOC and leachate C/N ratio. The total percentage of white spruce germination and the growth of white spruce seedlings were similar among treatments. These results suggest that the shrubs L. palustre and E. hermaphroditum could negatively affect the performance of white spruce due to a decrease in soil N availability, but not by direct effects on plant physiology.

  12. Endemism in the moss flora of North America.

    PubMed

    Carter, Benjamin E; Shaw, Blanka; Shaw, A Jonathan

    2016-04-01

    Identifying regions of high endemism is a critical step toward understanding the mechanisms underlying diversification and establishing conservation priorities. Here, we identified regions of high moss endemism across North America. We also identified lineages that contribute disproportionately to endemism and document the progress of efforts to inventory the endemic flora. To understand the documentation of endemic moss diversity in North America, we tabulated species publication dates to document the progress of species discovery across the continent. We analyzed herbarium specimen data and distribution data from the Flora of North America project to delineate major regions of moss endemism. Finally, we surveyed the literature to assess the importance of intercontinental vs. within-continent diversification for generating endemic species. Three primary regions of endemism were identified and two of these were further divided into a total of nine subregions. Overall endemic richness has two peaks, one in northern California and the Pacific Northwest, and the other in the southern Appalachians. Description of new endemic species has risen steeply over the last few decades, especially in western North America. Among the few studies documenting sister species relationships of endemics, recent diversification appears to have played a larger role in western North America, than in the east. Our understanding of bryophyte endemism continues to grow rapidly. Large continent-wide data sets confirm early views on hotspots of endemic bryophyte richness and indicate a high rate of ongoing species discovery in North America. © 2016 Botanical Society of America.

  13. Gravity-induced buds formation from protonemata apical cells in the mosses

    NASA Astrophysics Data System (ADS)

    Kyyak, Natalia; Khorkavtsiv, Yaroslava

    The acceleration of moss protonemata development after the exit it to light from darkness is important gravidependent morphogenetic manifestation of the moss protonemata. The accelerated development of mosses shows in transformation of apical protonemata cells into the gametophores buds (Ripetskyj et al., 1999). In order to establish, that such reaction on gravitation is general property of gravisensity species, or its typical only for single moss species, experiments with the following moss species - Bryum intermedium (Ludw.) Brig., Bryum caespiticium Hedw., Bryum argenteum Hedw., Dicranodontium denudatum (Brid.) Britt. were carried out. All these species in response to influence of gravitation were capable to form rich bunches of gravitropical protonemata in darkness, that testified to their gravisensity. After the transference of Petri dishes with gravitropical protonemata from darkness on light was revealed, that in 3 of the investigated species the gametophores buds were absent. Only B. argenteum has reacted to action of gravitation by buds formation from apical cells of the gravitropical protonemata. With the purpose of strengthening of buds formation process, the experiments with action of exogenous kinetin (in concentration of 10 (-6) M) were carried out. Kinetin essentially stimulated apical buds formation of B. argenteum. The quantity of apical buds has increased almost in three times in comparison with the control. Besides, on separate stolons a few (3-4) buds from one apical cell were formed. Experimentally was established, that the gametophores buds formation in mosses is controlled by phytohormones (Bopp, 1985; Demkiv et al., 1991). In conditions of gravity influence its essentially accelerated. Probably, gravity essentially strengthened acropetal transport of phytohormones and formation of attractive center in the protonemata apical cell. Our investigations have allowed to make the conclusion, that gravi-dependent formation of the apical buds is

  14. Vertical distribution of a deep-water moss and associated epiphytes in Crater Lake, Oregon

    USGS Publications Warehouse

    McIntire, C.D.; Phinney, H.K.; Larson, Gary L.; Buktenica, M.W.

    1994-01-01

    A one-person submersible was used to examine the vertical distribution of the deep-water moss Drepanocladus aduncus (Hedw.) Warnst in Crater Lake (Oregon). Living specimens were found attached to sediment and rocks at depths between 25 m and 140 m. Dense beds of the moss were observed at depths between 30 m and 80 m, a region that corresponded roughly to the zone of maximum primary production by phytoplankton. The moss population supported a diverse assemblage of epiphytic algae, of which the most abundant genera included Cladophora,Oedogonium, Rhizoclonium, Tribonema, Vaucheria, and the diatoms Cocconeis, Cymbella, Epithemia, Fragilaria, Gomphonema, Melosira, Navicula, and Synedra. Chemical and physical data supported the hypothesis that the lower limit of distribution of the moss is determined by light limitation, whereas the upper limit is related to the availability of nutrients, particularly nitrate-nitrogen and trace elements. Deep-water videotapes of the moss population indicated that D. aduncus with its epiphytic algae was abundant enough in regions associated with the metalimnion and upper hypolimnion to have a potential influence on the nutrient dynamics of the Crater Lake ecosystem. Although the maximum depth at which living bryophytes occur in Crater Lake is similar to that found for Lake Tahoe, conditions in Lake Tahoe allow the growth and survival of a much more diverse assemblage of bryophytes and charophytes than is present in Crater Lake.

  15. Moss bags as sentinels for human safety in mercury-polluted groundwaters.

    PubMed

    Cesa, Mattia; Nimis, Pier Luigi; Buora, Clara; Lorenzonetto, Alberta; Pozzobon, Alessandro; Raris, Marina; Rosa, Maria; Salvadori, Michela

    2014-05-01

    An equation to estimate Hg concentrations of <4 μg/L in groundwaters of a polluted area in NE Italy was set out by using transplants of the aquatic moss Rhynchostegium riparioides as trace element bioaccumulators. The equation is derived from a previous mathematical model which was implemented under laboratory conditions. The work aimed at (1) checking the compliance of the uptake kinetics with the model, (2) improving/adapting the model for groundwater monitoring, (3) comparing the performances of two populations of moss collected from different sites, and (4) assessing the environmental impact of Hg contamination on a small river. The main factors affecting Hg uptake in the field were-as expected-water concentration and time of exposure, even though the uptake kinetics in the field were slightly different from those which were previously observed in the lab, since the redox environmental conditions influence the solubility of cationic Fe, which is a negative competitor of Hg(2+). The equation was improved by including the variable 'dissolved oxygen concentration'. A numerical parameter depending on the moss collection site was also provided, since the differences in uptake efficiency were observed between the two populations tested. Predicted Hg concentrations well fitted the values measured in situ (approximately ±50%), while a notable underestimation was observed when the equation was used to predict Hg concentration in a neighbouring river (-96%), probably due to the organic pollution which hampers metal uptake by mosses.

  16. The first survey of airborne trace elements at airport using moss bag technique.

    PubMed

    Vuković, Gordana; Urošević, Mira Aničić; Škrivanj, Sandra; Vergel, Konstantin; Tomašević, Milica; Popović, Aleksandar

    2017-06-01

    Air traffic represents an important way of social mobility in the world, and many ongoing discussions are related to the impacts that air transportation has on local air quality. In this study, moss Sphagnum girgensohnii was used for the first time in the assessment of trace element content at the international airport. The moss bags were exposed during the summer of 2013 at four sampling sites at the airport 'Nikola Tesla' (Belgrade, Serbia): runway (two), auxiliary runway and parking lot. According to the relative accumulation factor (RAF) and the limit of quantification of the moss bag technique (LOQ T ), the most abundant elements in the samples were Zn, Na, Cr, V, Cu and Fe. A comparison between the element concentrations at the airport and the corresponding values in different land use classes (urban central, suburban, industrial and green zones) across the city of Belgrade did not point out that the air traffic and associated activities significantly contribute to the trace element air pollution. This study emphasised an easy operational and robust (bio)monitoring, using moss bags as a suitable method for assessment of air quality within various microenvironments with restriction in positioning referent instrumental devices.

  17. Bags with oven-dried moss for the active monitoring of airborne trace elements in urban areas.

    PubMed

    Giordano, S; Adamo, P; Monaci, F; Pittao, E; Tretiach, M; Bargagli, R

    2009-10-01

    To define a harmonized methodology for the use of moss and lichen bags as active monitoring devices of airborne trace elements in urban areas, we evaluated the element accumulation in bags exposed in Naples in different spring weather conditions for 6- and 12-weeks. Three different pre-exposure treatments were applied to moss and lichen materials: water-washing, acid-washing and oven-drying. During the different exposure periods in the Naples urban environment the moss accumulated always higher amounts of elements (except Hg) than lichens and the element accumulation increased during wetter weather and higher PM(10) conditions. The oven pre-treatment did not substantially modify the morphology and element composition of moss and the exposure in bags of this material for 6-weeks was sufficient to detect the pattern of airborne trace elements.

  18. Sensitivity of the xerophytic moss Syntrichia caninervis to prolonged simulated nitrogen deposition.

    PubMed

    Zhang, Yuanming; Zhou, Xiaobing; Yin, Benfeng; Downing, Alison

    2016-06-01

    Biological soil crusts, comprising assemblages of cyanobacteria, fungi, lichens and mosses, are common in dryland areas and are important elements in these ecosystems. Increasing N deposition has led to great changes in community structure and function in desert ecosystems worldwide. However, it is unclear how moss crusts respond to increased atmospheric N deposition, especially in terms of growth and physiological parameters. The aim of this study was to understand how Syntrichia caninervis, a dominant species in moss crusts in many northern hemisphere desert ecosystems, responds to added N. The population and shoot growth, and physiological responses of S. caninervis to six different doses of simulated N deposition (0, 0·3, 0·5, 1·0, 1·5 and 3·0 g N m(-2) year(-1)) were studied over a 3 year period. Low amounts of added N increased shoot length and leaf size, whereas high doses reduced almost all growth parameters. Moss shoot density increased, but population biomass decreased with high N. Low N augmented chlorophyll b, total chlorophyll content and soluble protein concentrations, but not chlorophyll a or chlorophyll fluorescence. High N was detrimental to all these indices. Soluble sugar concentration declined with increased N, but proline concentration was not affected significantly. Antioxidant enzyme activities generally decreased with low N additions and increased with high doses of simulated N deposition. Low amounts of added N (0-0·5 g N m(-2) year(-1)) may enhance moss growth and vitality, while higher amounts have detrimental effects. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Biogeomorphic relationships between slope processes and globular Grimmia mosses in Haleakala's Crater (Maui, Hawai’i)

    NASA Astrophysics Data System (ADS)

    Pérez, Francisco L.

    2010-04-01

    Globular mosses were found in Haleakala's crater (Maui) at five locations between 2175 and 2725 m; the highest-altitude site, with abundant epilithic mosses growing on alkali-olivine basalt outcrops and a large mossball population, was studied. Mossballs form when moss cushions are dislodged from rocks but continue growing unattached to substrate; detachment agents include rainsplash, desiccation, wind, frost, and disturbance by birds (dark-rumped petrels) that burrow nests under outcrops, or by goats. When loosened, moss polsters are transported down steep (26-34°) slopes by different geomorphic processes, including frost—mainly needle ice—activity, runoff, and wind. Mossballs contained two species, Grimmia trichophylla Grev. and Grimmia torquata Drumm., growing separately or commingled. Weight, size, and various shape indices were determined for 260 specimens. Shape and size were correlated; larger mosses become less spheroidal because heavier specimens are less disturbed by needle ice, remaining immobile for increasingly longer time periods, thus becoming flattened. Distance of downslope transport from source rockwalls was measured for 330 specimens; 83% shifted ≤ 100 cm, but only ˜ 5% had moved > 200-839 cm. Heavier mossballs moved short distances, thus ˜ 88% of all biomass remained within 200 cm from outcrops. Substrate soils were compared with those within globoids; surface site soils were much coarser than mossball grains. Twelve substrate samples had, on average, 21.3% gravel (≥ 2 mm), 6.1% fines (≤ 0.063 mm) and 2.1% organic matter; in contrast, 12 mossballs contained < 0.1% gravel, 47.9% fines, and 34.1% organic matter. G. torquata polsters had slightly finer soil (53.2%) than G. trichophylla (43.5%). This significant fine-grain concentration results as mosses trap aeolian dust among stems and leaves; ˜ 91% of moss grains were ≤ 0.25 mm, but only ˜ 30% of substrate particles measured ≤ 0.25 mm. Such fine texture, along with abundant

  20. Detection, Isolation, and Characterization of Acidophilic Methanotrophs from Sphagnum Mosses ▿ †

    PubMed Central

    Kip, Nardy; Ouyang, Wenjing; van Winden, Julia; Raghoebarsing, Ashna; van Niftrik, Laura; Pol, Arjan; Pan, Yao; Bodrossy, Levente; van Donselaar, Elly G.; Reichart, Gert-Jan; Jetten, Mike S. M.; Sinninghe Damsté, Jaap S.; Op den Camp, Huub J. M.

    2011-01-01

    Sphagnum peatlands are important ecosystems in the methane cycle. Methane-oxidizing bacteria in these ecosystems serve as a methane filter and limit methane emissions. Yet little is known about the diversity and identity of the methanotrophs present in and on Sphagnum mosses of peatlands, and only a few isolates are known. The methanotrophic community in Sphagnum mosses, originating from a Dutch peat bog, was investigated using a pmoA microarray. A high biodiversity of both gamma- and alphaproteobacterial methanotrophs was found. With Sphagnum mosses as the inoculum, alpha- and gammaproteobacterial acidophilic methanotrophs were isolated using established and newly designed media. The 16S rRNA, pmoA, pxmA, and mmoX gene sequences showed that the alphaproteobacterial isolates belonged to the Methylocystis and Methylosinus genera. The Methylosinus species isolated are the first acid-tolerant members of this genus. Of the acidophilic gammaproteobacterial strains isolated, strain M5 was affiliated with the Methylomonas genus, and the other strain, M200, may represent a novel genus, most closely related to the genera Methylosoma and Methylovulum. So far, no acidophilic or acid-tolerant methanotrophs in the Gammaproteobacteria class are known. All strains showed the typical features of either type I or II methanotrophs and are, to the best of our knowledge, the first isolated (acidophilic or acid-tolerant) methanotrophs from Sphagnum mosses. PMID:21724892

  1. Trace element content and molecular biodiversity in the epiphytic moss Leptodon smithii: two independent tracers of human disturbance.

    PubMed

    Spagnuolo, Valeria; Terracciano, Stefano; Giordano, Simonetta

    2009-03-01

    This paper focuses on chemical composition of the epiphytic moss Leptodon smithii, gathered on Quercus ilex bark, assessed in seven sites located in urban and extra-urban/remote areas of southern Italy, a poorly surveyed geographic area. The concentrations of Cr, Cu, Pb and Zn in moss tissue are generally more abundant in moss gathered in the urban sites; among extra-urban/remote sites Valle delle Ferriere showed the highest metal concentrations, mostly related to an industrial activity occurred in the past. L. smithii chemistry seems influenced by airborne dust locally enhanced by erosion phenomena, long-range transport of pollutants and marine aerosols. Element content in moss is compared with genetic variability of L. smithii estimated in the same sites. Pearson's correlation coefficient between gene diversity and total element load (r=-0.851; p=0.03) suggests that anthropogenic pressure, determining habitat disturbance and fragmentation, leads both to genetic impoverishment consequent to population shrink, and to a higher accumulation in moss tissues, as a consequence of increased airborne major/trace elements. Thus, the coupled evaluation of chemical composition in mosses and gene diversity may prove a useful tool to highlight environmental disturbance in a gradient of land use.

  2. Active Region Moss: Doppler Shifts from Hinode/EIS Observations

    NASA Technical Reports Server (NTRS)

    Tripathi, Durgesh; Mason, Helen E.; Klimchuk, James A.

    2012-01-01

    Studying the Doppler shifts and the temperature dependence of Doppler shifts in moss regions can help us understand the heating processes in the core of the active regions. In this paper we have used an active region observation recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) onboard Hinode on 12-Dec- 2007 to measure the Doppler shifts in the moss regions. We have distinguished the moss regions from the rest of the active region by defining a low density cut-off as derived by Tripathi et al. (2010). We have carried out a very careful analysis of the EIS wavelength calibration based on the method described in Young, O Dwyer and Mason (2012). For spectral lines having maximum sensitivity between log T = 5.85 and log T = 6.25 K, we find that the velocity distribution peaks at around 0 km/s with an estimated error of 4 km/s. The width of the distribution decreases with temperature. The mean of the distribution shows a blue shift which increases with increasing temperature and the distribution also shows asymmetries towards blue-shift. Comparing these results with observables predicted from different coronal heating models, we find that these results are consistent with both steady and impulsive heating scenarios. Further observational constraints are needed to distinguish between these two heating scenarios.

  3. Active Sphagnum girgensohnii Russow Moss Biomonitoring of an Industrial Site in Romania: Temporal Variation in the Elemental Content.

    PubMed

    Culicov, Otilia A; Zinicovscaia, Inga; Duliu, O G

    2016-05-01

    The moss-bag transplant technique was used to investigate the kinetics of the accumulation of 38 elements in Sphagnum girgensohni moss samples in the highly polluted municipality of Baia Mare, Romania. The moss samples collected from the unpolluted Vitosha Mountain Natural Reserve, Bulgaria, were analyzed after 1, 2, 3, and 4 months of exposure, respectively. The ANOVA method was used to assay the statistical significance of the observed changes in elemental content, as determined by neutron activation analysis. The content of Zn, Se, As, Ag, Cd, and Sb increased steadily, while that of physiologically active K and Cl, as well as Rb and Cs, decreased exponentially. The study showed that an adequate application of the moss transplant technique in an urban environment should consider the exposure time as a critical parameter, since particular elements are depleted in the moss at sites with high atmospheric loading of metals.

  4. A new species of Cangshanaltica Konstantinov et al., a moss-inhabiting flea beetle from Thailand (Coleoptera: Chrysomelidae: Galerucinae: Alticini).

    PubMed

    Damaška, Albert; Konstantinov, Alexander

    2016-04-29

    Moss cushions represent an interesting, but poorly understood habitat, which hosts many species of flea beetles (Coleoptera: Chrysomelidae: Galerucinae: Alticini). However, the diversity of moss-inhabiting flea beetles is not well studied, and collecting in tropical and subtropical locations that were not sampled in the past led to the discovery of many new species (Konstantinov et al. 2013). Here, a new species of a moss-inhabiting flea beetle from the genus Cangshanaltica Konstantinov et al. 2013 is described and illustrated. This genus is one of the recently described moss-inhabiting flea beetle genera and before this study, only one species was known (Konstantinov et al., 2013). This publication raises the number of flea beetle species that are known to occur in moss cushions around the world to 30, distributed among 15 genera.

  5. Sphagnum mosses from 21 ombrotrophic bogs in the athabasca bituminous sands region show no significant atmospheric contamination of "heavy metals".

    PubMed

    Shotyk, William; Belland, Rene; Duke, John; Kempter, Heike; Krachler, Michael; Noernberg, Tommy; Pelletier, Rick; Vile, Melanie A; Wieder, Kelman; Zaccone, Claudio; Zhang, Shuangquan

    2014-11-04

    Sphagnum moss was collected from 21 ombrotrophic (rain-fed) peat bogs surrounding open pit mines and upgrading facilities of Athabasca bituminous sands in Alberta (AB). In comparison to contemporary Sphagnum moss from four bogs in rural locations of southern Germany (DE), the AB mosses yielded lower concentrations of Ag, Cd, Ni, Pb, Sb, and Tl, similar concentrations of Mo, but greater concentrations of Ba, Th, and V. Except for V, in comparison to the "cleanest", ancient peat samples ever tested from the northern hemisphere (ca. 6000-9000 years old), the concentrations of each of these metals in the AB mosses are within a factor of 3 of "natural, background" values. The concentrations of "heavy metals" in the mosses, however, are proportional to the concentration of Th (a conservative, lithophile element) and, therefore, contributed to the plants primarily in the form of mineral dust particles. Vanadium, the single most abundant trace metal in bitumen, is the only anomaly: in the AB mosses, V exceeds that of ancient peat by a factor of 6; it is therefore enriched in the mosses, relative to Th, by a factor of 2. In comparison to the surface layer of peat cores collected in recent years from across Canada, from British Columbia to New Brunswick, the Pb concentrations in the mosses from AB are far lower.

  6. Phototolerance of lichens, mosses and higher plants in an alpine environment: analysis of photoreactions.

    PubMed

    Heber, U; Bilger, W; Bligny, R; Lange, O L

    2000-11-01

    Adaptation to excessive light is one of the requirements of survival in an alpine environment particularly for poikilohydric organisms which in contrast to the leaves of higher plants tolerate full dehydration. Changes in modulated chlorophyll fluorescence and 820-nm absorption were investigated in the lichens Xanthoria elegans (Link) Th. Fr. and Rhizocarpon geographicum (L.) DC, in the moss Grimmia alpestris Limpr. and the higher plants Geum montanum L., Gentiana lutea L. and Pisum sativum L., all collected at altitudes higher than 2000 m above sea level. In the dehydrated state, chlorophyll fluorescence was very low in the lichens and the moss, but high in the higher plants. It increased on rehydration in the lichens and the moss, but decreased in the higher plants. Light-induced charge separation in photosystem II was indicated by pulse-induced fluorescence increases only in dried leaves, not in the dry moss and dry lichens. Strong illumination caused photodamage in the dried leaves, but not in the dry moss and dry lichens. Light-dependent increases in 820-nm absorption revealed formation of potential quenchers of chlorophyll fluorescence in all dehydrated plants, but energy transfer to quenchers decreased chlorophyll fluorescence only in the moss and the lichens, not in the higher plants. In hydrated systems, coupled cyclic electron transport is suggested to occur concurrently with linear electron transport under strong actinic illumination particularly in the lichens because far more electrons became available after actinic illumination for the reduction of photo-oxidized P700 than were available in the pool of electron carriers between photosystems II and I. In the moss Grimmia, but not in the lichens or in leaves, light-dependent quenching of chlorophyll fluorescence was extensive even under nitrogen, indicating anaerobic thylakoid acidification by persistent cyclic electron transport. In the absence of actinic illumination, acidification by ca. 8% CO2 in

  7. The density and diversity of gymnamoebae associated with terrestrial moss communities (Bryophyta: Bryopsida) in a northeastern U.S. forest.

    PubMed

    Anderson, O Roger

    2006-01-01

    Moss communities are commonly found in temperate forests and form a nearly continuous understory in some high latitude forests. However, little is known about the microbial component of these communities, especially the non-testate amoeboid protists. Fifty morphospecies of naked amoebae were identified in samples collected at eight sites in a northeastern North American forest. The mean number (+/-SE) of morphospecies found per sample site based on laboratory cultures was 17+/-2.1. The density of amoebae expressed as number/g dry weight of moss ranged from 3.5+/-0.04 x 10(3) to 4.3+/-0.2 x 10(4) and was positively correlated with the moss moisture content (r=0.9, P<0.001, df=26). Densities of gymnamoebae in the moss are generally higher than found in the surrounding soil, but this may be due in part to the greater weight of soil per unit volume compared with moss. The percentage of encysted forms was inversely related to the moisture content of the moss sample.

  8. Interactive Effects of Moss-Dominated Crusts and Artemisia ordosica on Wind Erosion and Soil Moisture in Mu Us Sandland, China

    PubMed Central

    Yang, Yongsheng; Bu, Chongfeng; Mu, Xingmin; Shao, Hongbo; Zhang, Kankan

    2014-01-01

    To better understand the effects of biological soil crusts (BSCs) on soil moisture and wind erosion and study the necessity and feasibility of disturbance of BSCs in the Mu Us sandland, the effects of four treatments, including moss-dominated crusts alone, Artemisia ordosica alone, bare sand, and Artemisia ordosica combined with moss-dominated crusts, on rainwater infiltration, soil moisture, and annual wind erosion were observed. The major results are as follows. (1) The development of moss-dominated crusts exacerbated soil moisture consumption and had negative effects on soil moisture in the Mu Us sandland. (2) Moss-dominated crusts significantly increased soil resistance to wind erosion, and when combined with Artemisia ordosica, this effect became more significant. The contribution of moss-dominated crusts under Artemisia ordosica was significantly lower than that of moss-dominated crusts alone in sites where vegetative coverage > 50%. (3) Finally, an appropriate disturbance of moss-dominated crusts in the rainy season in sites with high vegetative coverage improved soil water environment and vegetation succession, but disturbance in sites with little or no vegetative cover should be prohibited to avoid the exacerbation of wind erosion. PMID:24982973

  9. Interactive effects of moss-dominated crusts and Artemisia ordosica on wind erosion and soil moisture in Mu Us sandland, China.

    PubMed

    Yang, Yongsheng; Bu, Chongfeng; Mu, Xingmin; Shao, Hongbo; Zhang, Kankan

    2014-01-01

    To better understand the effects of biological soil crusts (BSCs) on soil moisture and wind erosion and study the necessity and feasibility of disturbance of BSCs in the Mu Us sandland, the effects of four treatments, including moss-dominated crusts alone, Artemisia ordosica alone, bare sand, and Artemisia ordosica combined with moss-dominated crusts, on rainwater infiltration, soil moisture, and annual wind erosion were observed. The major results are as follows. (1) The development of moss-dominated crusts exacerbated soil moisture consumption and had negative effects on soil moisture in the Mu Us sandland. (2) Moss-dominated crusts significantly increased soil resistance to wind erosion, and when combined with Artemisia ordosica, this effect became more significant. The contribution of moss-dominated crusts under Artemisia ordosica was significantly lower than that of moss-dominated crusts alone in sites where vegetative coverage > 50%. (3) Finally, an appropriate disturbance of moss-dominated crusts in the rainy season in sites with high vegetative coverage improved soil water environment and vegetation succession, but disturbance in sites with little or no vegetative cover should be prohibited to avoid the exacerbation of wind erosion.

  10. The Moss Flora of Akdağ Mountain (Amasya, Turkey)

    PubMed Central

    Canli, Kerem; Çetin, Barbaros

    2014-01-01

    The moss flora of Akdağ Mountain (Amasya, Turkey) was investigated. At the result of identifications of 1500 moss specimens, collected from the research area, 178 taxa belonging to 69 genera and 26 families were determined. Among them, 94 taxa are new for A3 grid square according to the Turkey grid system which was adopted by Henderson. The location data of Grimmia crinitoleucophaea Cardot and Barbula enderesii Garov. are the first records for Turkey, and Encalypta spathulata Müll. Hal., Schistidium dupretii (Thér.) W. A. Weber, Weissia condensa var. armata (Thér. & Trab.) M. J. Cano, Ros & J. Guerra, Tortella bambergeri (Schimp.), Barbula enderesii Garov., Hedwigia ciliata var. leucophaea Bruch & Schimp., and Campyliadelphus elodes (Lindb.) Kanda are recorded for the second time to the byroflora of Turkey. PMID:25587573

  11. Caulonemal gravitropism and amyloplast sedimentation in the moss Funaria

    NASA Technical Reports Server (NTRS)

    Schwuchow, J. M.; Kim, D.; Sack, F. D.

    1995-01-01

    Caulonemata of the moss Funaria were examined to determine whether they are gravitropic. Funaria and Physcomitrella were also evaluated to compare amyloplast sedimentation with that of Ceratodon. Protonemata were either chemically fixed in place or examined alive using infrared timelapse videomicroscopy. Funaria caulonemata were found to be negatively gravitropic, i.e., they grew upwards in the dark. Upward curvature reversed temporarily before cytokinesis in Funaria, a phenomenon already known for Ceratodon and Physcomitrella. Most horizontal and upward-curving Funaria tip cells contained a broad subapical zone where plastid sedimentation occurred. In dark-grown Physcomitrella caulonemata, sedimentation was detected by the presence of a thin, amyloplast-free strip of cytoplasm at the top of the cell. These results suggest that gravitropism and subapical amyloplast sedimentation may be relatively common in moss caulonemata.

  12. Ferromagnetism induced by point defect in Janus monolayer MoSSe regulated by strain engineering

    NASA Astrophysics Data System (ADS)

    Meng, Ming; Li, Tinghui; Li, Shaofeng; Liu, Kuili

    2018-03-01

    The formation and regulation of magnetism dependent on introduced defects in the Janus MoSSe monolayer has attracted much attention because of its potential application in spintronics. Here, we present a theoretical study of defect formation in the MoSSe monolayer and its introduced magnetism under external strain. The tensile deformation induced by external strain not only leads to decreases in defect formation energy, but also enhances magnetic characteristics. However, as compressed deformation increases, the magnetism in the structure induced by Se or S defects remains unchanged because this microstructural deformation adequately spin polarizes unpaired electrons of neighboring Mo atoms. Our results suggest the use of point defect and strain engineering in the Janus MoSSe monolayer for spintronics applications.

  13. Antifungal and antioxidant activities of mature leaves of Myrcia splendens (Sw.) DC.

    PubMed

    Pontes, F C; Abdalla, V C P; Imatomi, M; Fuentes, L F G; Gualtieri, S C J

    2018-05-07

    In recent years, natural products with antifungal and antioxidant activities are being increasingly researched for a more sustainable alternative to the chemicals currently used for the same purpose. The plant pathogenic fungus Alternaria alternata is a causative agent of diseases in citrus, leading to huge economic losses. Antioxidants are important for the production of medicines for various diseases that may be related to the presence of free radicals, such as cancer, and in the cosmetic industry as an anti-aging agent and the food industry as preservatives. This study evaluated the antifungal and antioxidant potential of extracts of mature leaves of Myrcia splendens, a tree species that occurs in the Brazilian Cerrado. The antioxidant potential was analyzed by an assay of 1,1-diphenyl-2-picrylhydrazyl radical-scavenging method, and the antifungal activity was assessed through the evaluation of mycelial growth. Majority of the extracts exhibited a strong antioxidant activity, especially the acetonic extract (4A). The antioxidant activity may be related to the presence of phenolic compounds. However, the extracts showed no inhibitory activity of mycelial growth of the fungus tested, with the exception of dichloromethanic extract (2B), which had an inhibitory effect (10.2%) at the end of testing.

  14. Strong environmental tolerance of moss Venturiella under very high pressure

    NASA Astrophysics Data System (ADS)

    Ono, F.; Mori, Y.; Takarabe, K.; Nishihira, N.; Shindo, A.; Saigusa, M.; Matsushima, Y.; Saini, N. L.; Yamashita, M.

    2010-03-01

    It was shown by the present authors group that tardigrade can survive under high pressure of 7.5 GPa. In the case of land plants, however, no result of such experiment has been reported. We have extended our experiments to moss searching for lives under very high pressure. Spore placentas of moss Venturiella were sealed in a small Teflon capsule together with a liquid pressure medium. The capsule was put in the center of a pyrophillite cube, and the maximum pressure of 7.5 GPa was applied using a two-stage cubic anvil press. The pressure was kept constant at the maximum pressure for12, 24, 72 and 144 hours. After the pressure was released, the spores were seeded on a ager medium, and incubated for one week and more longer at 25°C with white light of 2000 lux. It was proved that 70-90% of the spores were alive and germinated after exposed to the maximum pressure of 7.5 GPa for up to 72 hours. However, after exposed to 7.5 GPa for 6 days, only 4 individuals in a hundred were germinated. The pressure tolerance of moss Venturiella is found to be stronger than a small animal, tardigrade.

  15. Atmospheric heavy metal deposition in Northern Vietnam: Hanoi and Thainguyen case study using the moss biomonitoring technique, INAA and AAS.

    PubMed

    Viet, Hung Nguyen; Frontasyeva, Marina Vladimirovna; Thi, Thu My Trinh; Gilbert, Daniel; Bernard, Nadine

    2010-06-01

    The moss technique is widely used to monitor atmospheric deposition of heavy metals in many countries in Europe, whereas this technique is scarcely used in Asia. To implement this international reliable and cheap methodology in the Asian countries, it is necessary to find proper moss types typical for the Asian environment and suitable for the biomonitoring purposes. Such a case study was undertaken in Vietnam for assessing the environmental situation in strongly contaminated areas using local species of moss Barbula indica. The study is focused on two areas characterized by different pollution sources: the Hanoi urban area and the Thainguyen metallurgical zone. Fifty-four moss samples were collected there according to standard sampling procedure adopted in Europe. Two complementary analytical techniques, atomic absorption spectrometry (AAS) and instrumental neutron activation analysis (INAA), were used for determination of elemental concentrations in moss samples. To characterize the pollution sources, multivariate statistical analysis was applied. A total of 38 metal elements were determined in the moss by the two analytical techniques. The results of descriptive statistics of metal concentration in moss from the city center and periphery of Hanoi determined by AAS are presented. The similar results for moss from Thainguyen province determined by INAA and AAS are given also. A comparison of mean elemental concentrations in moss of this work with those in different environmental conditions of other authors provides reasonable information on heavy metal atmospheric deposition levels. Factor loadings and factor scores were used to identify and apportion contamination sources at the sampling sites. The values of percentage of total of factors show two highly different types of pollution in the two examined areas-the Hanoi pollution composition with high portion of urban-traffic activity and soil dust (62%), and the one of Thainguyen with factors related to industrial

  16. Soil data for a vegetation gradient located at Bonanza Creek Long Term Ecological Research Site, interior Alaska

    USGS Publications Warehouse

    Manies, Kristen L.; Harden, Jennifer W.; Fuller, Christopher C.; Xu, Xiaomei; McGeehin, John P.

    2016-07-28

    Boreal soils play an important role in the global carbon cycle owing to the large amount of carbon stored within this northern region. To understand how carbon and nitrogen storage varied among different ecosystems, a vegetation gradient was established in the Bonanza Creek Long Term Ecological Research (LTER) site, located in interior Alaska. The ecosystems represented are a black spruce (Picea mariana)–feather moss (for example, Hylocomium sp.) forest ecosystem, a shrub-dominated ecosystem, a tussock-grass-dominated ecosystem, a sedge-dominated ecosystem, and a rich fen ecosystem. Here, we report the physical, chemical, and descriptive properties for the soil cores collected at these sites. These data have been used to calculate carbon and nitrogen accumulation rates on a long-term (decadal and century) basis (Manies and others, in press).

  17. Comparative analysis of bacteria associated with different mosses by 16S rRNA and 16S rDNA sequencing.

    PubMed

    Tian, Yang; Li, Yan Hong

    2017-01-01

    To understand the differences of the bacteria associated with different mosses, a phylogenetic study of bacterial communities in three mosses was carried out based on 16S rDNA and 16S rRNA sequencing. The mosses used were Hygroamblystegium noterophilum, Entodon compressus and Grimmia montana, representing hygrophyte, shady plant and xerophyte, respectively. In total, the operational taxonomic units (OTUs), richness and diversity were different regardless of the moss species and the library level. All the examined 1183 clones were assigned to 248 OTUs, 56 genera were assigned in rDNA libraries and 23 genera were determined at the rRNA level. Proteobacteria and Bacteroidetes were considered as the most dominant phyla in all the libraries, whereas abundant Actinobacteria and Acidobacteria were detected in the rDNA library of Entodon compressus and approximately 24.7% clones were assigned to Candidate division TM7 in Grimmia montana at rRNA level. The heatmap showed the bacterial profiles derived from rRNA and rDNA were partly overlapping. However, the principle component analysis of all the profiles derived from rDNA showed sharper differences between the different mosses than that of rRNA-based profiles. This suggests that the metabolically active bacterial compositions in different mosses were more phylogenetically similar and the differences of the bacteria associated with different mosses were mainly detected at the rDNA level. Obtained results clearly demonstrate that combination of 16S rDNA and 16S rRNA sequencing is preferred approach to have a good understanding on the constitution of the microbial communities in mosses. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Physiological ecology of desert biocrust moss following 10 years exposure to elevated CO2: evidence for enhanced photosynthetic thermotolerance

    USGS Publications Warehouse

    Coe, Kirsten K.; Belnap, Jayne; Grote, Edmund E.; Sparks, Jed P.

    2012-01-01

    In arid regions, biomes particularly responsive to climate change, mosses play an important biogeochemical role as key components of biocrusts. Using the biocrust moss Syntrichia caninervis collected from the Nevada Desert Free Air CO2 Enrichment Facility, we examined the physiological effects of 10 years of exposure to elevated CO2, and the effect of high temperature events on the photosynthetic performance of moss grown in CO2-enriched air. Moss exposed to elevated CO2 exhibited a 46% decrease in chlorophyll, a 20% increase in carbon and no difference in either nitrogen content or photosynthetic performance. However, when subjected to high temperatures (35–40°C), mosses from the elevated CO2 environment showed higher photosynthetic performance and photosystem II (PSII) efficiency compared to those grown in ambient conditions, potentially reflective of a shift in nitrogen allocation to components that offer a higher resistance of PSII to heat stress. This result suggests that mosses may respond to climate change in markedly different ways than vascular plants, and observed CO2-induced photosynthetic thermotolerance in S. caninervis will likely have consequences for future desert biogeochemistry.

  19. Moss Mediates the Influence of Shrub Species on Soil Properties and Processes in Alpine Tundra.

    PubMed

    Bueno, C Guillermo; Williamson, Scott N; Barrio, Isabel C; Helgadóttir, Ágústa; HiK, David S

    2016-01-01

    In tundra ecosystems, bryophytes influence soil processes directly and indirectly through interactions with overstory shrub species. We experimentally manipulated moss cover and measured seasonal soil properties and processes under two species of deciduous shrubs with contrasting canopy structures, Salix planifolia pulchra and Betula glandulosa-nana complex. Soil properties (seasonal temperature, moisture and C:N ratios) and processes (seasonal litter decomposition and soil respiration) were measured over twelve months. Shrub species identity had the largest influence on summer soil temperatures and soil respiration rates, which were higher under Salix canopies. Mosses were associated with lower soil moisture irrespective of shrub identity, but modulated the effects of shrubs on winter soil temperatures and soil C:N ratios so that moss cover reduced differences in soil winter temperatures between shrub species and reduced C:N ratios under Betula but not under Salix canopies. Our results suggest a central role of mosses in mediating soil properties and processes, with their influence depending on shrub species identity. Such species-dependent effects need to be accounted for when forecasting vegetation dynamics under ongoing environmental changes.

  20. Moss Mediates the Influence of Shrub Species on Soil Properties and Processes in Alpine Tundra

    PubMed Central

    Williamson, Scott N.; Barrio, Isabel C.; Helgadóttir, Ágústa; HiK, David S.

    2016-01-01

    In tundra ecosystems, bryophytes influence soil processes directly and indirectly through interactions with overstory shrub species. We experimentally manipulated moss cover and measured seasonal soil properties and processes under two species of deciduous shrubs with contrasting canopy structures, Salix planifolia pulchra and Betula glandulosa-nana complex. Soil properties (seasonal temperature, moisture and C:N ratios) and processes (seasonal litter decomposition and soil respiration) were measured over twelve months. Shrub species identity had the largest influence on summer soil temperatures and soil respiration rates, which were higher under Salix canopies. Mosses were associated with lower soil moisture irrespective of shrub identity, but modulated the effects of shrubs on winter soil temperatures and soil C:N ratios so that moss cover reduced differences in soil winter temperatures between shrub species and reduced C:N ratios under Betula but not under Salix canopies. Our results suggest a central role of mosses in mediating soil properties and processes, with their influence depending on shrub species identity. Such species-dependent effects need to be accounted for when forecasting vegetation dynamics under ongoing environmental changes. PMID:27760156

  1. Assessment of species-specific and temporal variations of major, trace and rare earth elements in vineyard ambient using moss bags.

    PubMed

    Milićević, Tijana; Aničić Urošević, Mira; Vuković, Gordana; Škrivanj, Sandra; Relić, Dubravka; Frontasyeva, Marina V; Popović, Aleksandar

    2017-10-01

    Since the methodological parameters of moss bag biomonitoring have rarely been investigated for the application in agricultural areas, two mosses, Sphagnum girgensohnii (a species of the most recommended biomonitoring genus) and Hypnum cupressiforme (commonly available), were verified in a vineyard ambient. The moss bags were exposed along transects in six vineyard parcels during the grapevine season (March‒September 2015). To select an appropriate period for the reliable 'signal' of the element enrichment in the mosses, the bags were simultaneously exposed during five periods (3 × 2 months, 1 × 4 months, and 1 × 6 months). Assuming that vineyard is susceptible to contamination originated from different agricultural treatments, a wide range of elements (41) were determined in the moss and topsoil samples. The mosses were significantly enriched by the elements during the 2-month bag exposure which gradually increasing up to 6 months, but Cu and Ni exhibited the noticeable fluctuations during the grapevine season. However, the 6-month exposure of moss bags could be recommended for comparative studies among different vineyards because it reflects the ambient pollution comprising unpredictable treatments of grapevine applied during the whole season. Although higher element concentrations were determined in S. girgensohnii than H. cupressiforme, both species reflected the spatio-temporal changes in the ambient element content. Moreover, the significant correlation of the element (Cr, Cu, Sb, and Ti) concentrations between the mosses, and the same pairs of the elements correlated within the species, imply the comparable use of S. girgensohnii and H. cupressiforme in the vineyard (agricultural) ambient. Finally, both the moss bags and the soil analyses suggest that vineyard represents a dominant diffuse pollution source of As, Cr, Cu, Ni, Fe, and V. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Measuring spore settling velocity for an improved assessment of dispersal rates in mosses

    PubMed Central

    Zanatta, Florian; Patiño, Jairo; Lebeau, Frederic; Massinon, Mathieu; Hylander, Kristofer; de Haan, Myriam; Ballings, Petra; Degreef, Jerôme; Vanderpoorten, Alain

    2016-01-01

    Background and Aims The settling velocity of diaspores is a key parameter for the measurement of dispersal ability in wind-dispersed plants and one of the most relevant parameters in explicit dispersal models, but remains largely undocumented in bryophytes. The settling velocities of moss spores were measured and it was determined whether settling velocities can be derived from spore diameter using Stokes’ Law or if specific traits of spore ornamentation cause departures from theoretical expectations. Methods A fall tower design combined with a high-speed camera was used to document spore settling velocities in nine moss species selected to cover the range of spore diameters within the group. Linear mixed effect models were employed to determine whether settling velocity can be predicted from spore diameter, taking specific variation in shape and surface roughness into account. Key Results Average settling velocity of moss spores ranged from 0·49 to 8·52 cm s–1. There was a significant positive relationship between spore settling velocity and size, but the inclusion of variables of shape and texture of spores in the best-fit models provides evidence for their role in shaping spore settling velocities. Conclusions Settling velocities in mosses can significantly depart from expectations derived from Stokes’ Law. We suggest that variation in spore shape and ornamentation affects the balance between density and drag, and results in different dispersal capacities, which may be correlated with different life-history traits or ecological requirements. Further studies on spore ultrastructure would be necessary to determine the role of complex spore ornamentation patterns in the drag-to-mass ratio and ultimately identify what is the still poorly understood function of the striking and highly variable ornamentation patterns of the perine layer on moss spores. PMID:27296133

  3. 78 FR 23843 - Special Local Regulations; Moss Point Rockin' the Riverfront Festival; Robertson Lake & O'Leary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-23

    ...-AA08 Special Local Regulations; Moss Point Rockin' the Riverfront Festival; Robertson Lake & O'Leary... Festival high speed boat races. Entry into, transiting or anchoring in this area is prohibited to all... Rockin' the Riverfront Festival; Robertson Lake & O'Leary Lake; Moss Point, MS. (a) Location. The...

  4. Effect of crustose lichen on soil CO2 efflux in sphagnum moss regime of tundra, west Alaska

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Park, S. J.; Suzuki, R.; Lee, B. Y.

    2017-12-01

    Increasing ambient temperatures across the Arctic have induced changes in plant extent and phenology, degradation of permafrost, snow depth and covered extent, decomposition of soil organic matter, and subsequently, soil carbon emission to the atmosphere. However, there is fully not understood on the effect of crustose lichen on soil CO2 emission to the atmosphere. Although the spores of lichen are spread by wind and animals, the crustose lichen is infected to the only sphagnum moss widely distributed in the Arctic, and is terminally killed the moss. Here, we report the research findings on the soil CO2 efflux-measurement with forced diffusion (FD) chamber system that is continuously monitored in sphagnum moss regime of west Alaska for the growing season of 2016. The environmental parameters (e.g., soil temperature and moisture) were measured at intact and infected sphagnum moss regime. The FD chamber is measured at an interval of 10-min and 30-min, which is not significant difference between both intervals (R2 = 0.94; n = 1360; RMSE = 0.043; p < 0.001) based on a one-way ANOVA at the 95% confidence level. Mean soil CO2 effluxes (standard deviation) in June, July, August, and September of 2016 were 0.47(0.22), 0.52(0.21), 0.55(0.31), and 0.32(0.54) in infected sphagnum moss, and 0.27(0.47), 0.45(0.17), 0.50(0.22), and 0.31(0.49) in intact sphagnum moss, respectively. This finding demonstrates that 1) soil CO2 in infected sphagnum moss is one of atmospheric CO2 source in June and July, and 2) soil CO2 efflux is not significant difference between both regimes for August and September of 2016.

  5. Mosses Are Better than Leaves of Vascular Plants in Monitoring Atmospheric Heavy Metal Pollution in Urban Areas.

    PubMed

    Jiang, Yanbin; Fan, Miao; Hu, Ronggui; Zhao, Jinsong; Wu, Yupeng

    2018-05-29

    Mosses and leaves of vascular plants have been used as bioindicators of environmental contamination by heavy metals originating from various sources. This study aims to compare the metal accumulation capabilities of mosses and vascular species in urban areas and quantify the suitability of different taxa for monitoring airborne heavy metals. One pleurocarpous feather moss species, Haplocladium angustifolium , and two evergreen tree species, Cinnamomum bodinieri Osmanthus fragrans , and substrate soil were sampled in the urban area of different land use types in Wuhan City in China. The concentrations of Ag, As, Cd, Co, Cr, Cu, Mn, Mo, Ni, V, Pb, and Zn in these samples were analyzed by inductively coupled plasma mass spectrometry. The differences of heavy metals concentration in the three species showed that the moss species was considerably more capable of accumulating heavy metals than tree leaves (3 times to 51 times). The accumulated concentration of heavy metals in the moss species depended on the metal species and land use type. The enrichment factors of metals for plants and the correlations of metals in plants with corresponding metals in soil reflected that the accumulated metals in plants stemmed mostly from atmospheric deposition, rather than the substrate soil. Anthropogenic factors, such as traffic emissions from automobile transportation and manufacturing industries, were primarily responsible for the variations in metal pollutants in the atmosphere and subsequently influenced the metal accumulation in the mosses. This study elucidated that the moss species H. angustifolium is relatively more suitable than tree leaves of C. bodinieri and O. fragrans in monitoring heavy metal pollution in urban areas, and currently Wuhan is at a lower contamination level of atmospheric heavy metals than some other cities in China.

  6. Plasma membrane-targeted PIN proteins drive shoot development in a moss.

    PubMed

    Bennett, Tom A; Liu, Maureen M; Aoyama, Tsuyoshi; Bierfreund, Nicole M; Braun, Marion; Coudert, Yoan; Dennis, Ross J; O'Connor, Devin; Wang, Xiao Y; White, Chris D; Decker, Eva L; Reski, Ralf; Harrison, C Jill

    2014-12-01

    Plant body plans arise by the activity of meristematic growing tips during development and radiated independently in the gametophyte (n) and sporophyte (2n) stages of the life cycle during evolution. Although auxin and its intercellular transport by PIN family efflux carriers are primary regulators of sporophytic shoot development in flowering plants, the extent of conservation in PIN function within the land plants and the mechanisms regulating bryophyte gametophytic shoot development are largely unknown. We have found that treating gametophytic shoots of the moss Physcomitrella patens with exogenous auxins and auxin transport inhibitors disrupts apical function and leaf development. Two plasma membrane-targeted PIN proteins are expressed in leafy shoots, and pin mutants resemble plants treated with auxins or auxin transport inhibitors. PIN-mediated auxin transport regulates apical cell function, leaf initiation, leaf shape, and shoot tropisms in moss gametophytes. pin mutant sporophytes are sometimes branched, reproducing a phenotype only previously seen in the fossil record and in rare natural moss variants. Our results show that PIN-mediated auxin transport is an ancient, conserved regulator of shoot development. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Biomonitoring chromium III or VI soluble pollution by moss chlorophyll fluorescence.

    PubMed

    Chen, Yang-Er; Mao, Hao-Tian; Ma, Jie; Wu, Nan; Zhang, Chao-Ming; Su, Yan-Qiu; Zhang, Zhong-Wei; Yuan, Ming; Zhang, Huai-Yu; Zeng, Xian-Yin; Yuan, Shu

    2018-03-01

    We systematically compared the impacts of four Cr salts (chromic chloride, chromic nitrate, potassium chromate and potassium bichromate) on physiological parameters and chlorophyll fluorescence in indigenous moss Taxiphyllum taxirameum. Among the four Cr salts, K 2 Cr 2 O 7 treatment resulted in the most significant decrease in photosynthetic efficiency and antioxidant enzymes, increase in reactive oxygen species (ROS), and obvious cell death. Different form the higher plants, although hexavalent Cr(VI) salt treatments resulted in higher accumulation levels of Cr and were more toxic than Cr(III) salts, Cr(III) also induced significant changes in moss physiological parameters and chlorophyll fluorescence. Our results showed that Cr(III) and Cr(VI) could be monitored distinguishably according to the non-photochemical quenching (NPQ) fluorescence of sporadic purple and sporadic lavender images respectively. Then, the valence states and concentrations of Cr contaminations could be evaluated according to the image of maximum efficiency of PSII photochemistry (Fv/Fm) and the quantum yield of PSII electron transport (ΦPSII). Therefore, this study provides new ideas of moss's sensibility to Cr(III) and a new method to monitor Chromium contaminations rapidly and non-invasively in water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Influence of soil characteristics on rare earth fingerprints in mosses and mushrooms: Example of a pristine temperate rainforest (Slavonia, Croatia).

    PubMed

    Fiket, Željka; Medunić, Gordana; Furdek Turk, Martina; Ivanić, Maja; Kniewald, Goran

    2017-07-01

    The present study aims to investigate levels and distribution of rare earth elements (REE) in soils, mosses and mushrooms of a pristine temperate rainforest, a non-polluted natural system, in order to characterise their environmental availability and mobility. The multielement analysis of digested soil, moss and mushroom samples was performed by High Resolution Inductively Coupled Plasma Mass Spectrometry. The distribution of rare earths in mosses and mushrooms was found primarily affected by local pedological setting. Mosses displayed a consistent lithological signature with an almost insignificant REE fractionation compared to soils. Mushrooms showed differences in REE concentrations in certain parts of the fruiting body with regard to their main physiological function and indicated a significant impact of soil organic content on the overall REEs uptake. Results of our work highlight the importance of substrate characteristics on the initial levels of REEs in mosses and mushrooms. Moreover, this study provides baseline data on the rare earth element levels in mosses and mushrooms growing in a pristine forest area characterised by naturally elevated REE levels in the soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. New moss species with gravitropic protonemata

    NASA Astrophysics Data System (ADS)

    Lobachevska, O. V.

    Gravitropism of 30 moss species was analysed at different stages of development: germination of spores, protonemata, gametophore and sporophyte formation. Spores were sowed in sterile conditions from the closed capsules on 1 % bactoagar with 0,2 % glucose and cultivated in the dark in vertically oriented petri dishes. In the same conditions fragments of protonemata and gametophores were grown being transferred aseptically from sterile cultures of spores germinated in controled light conditions. To assess gravity sensitivity the dishes were kept upright for 7 10 days in darkness and then 90o turned. After 20 h gravistimulation the angles of apical cell gravity bending were determined. The amount of amyloplasts and their distribution during growth and spatial reorientation of sporophytes selected from nature samples on different stages of species-specific capsule formation were analyzed after JK2J staining. The gravitropic sensing was established in 7 new moss species only. The general traits of all such species were the ark-like cygneous seta bending and inclined, to pendulous, capsules. JK2J staining of young isolated sporophytes has shown, that twisting and bending of seta as well as the spatial capsule reorientation result from the changes of distribution of amyloplasts in the direction of gravitropic growth or caused by their lateral sedimentation. In the dark protonemata of investigated mosses grew upwards on agar surface giving rise to bundles of negatively gravitropic stolons in 7-10 days. During germination at first negatively gravitropic primary chloronema and then positively gravitropic primary rizoid appeared. In 3 days, however, the growth of all primary filaments was negatively gravitropic. In Dicranella cerviculata majority of primary filaments were negatively gravitropic from the very beginning. After 20 h gravistimulation of protonemata of different moss species the following mean values of gravity bending (degrees) were established: Leptobryum

  10. Towards the methodological optimization of the moss bag technique in terms of contaminants concentrations and replicability values

    NASA Astrophysics Data System (ADS)

    Ares, A.; Fernández, J. A.; Carballeira, A.; Aboal, J. R.

    2014-09-01

    The moss bag technique is a simple and economical environmental monitoring tool used to monitor air quality. However, routine use of the method is not possible because the protocols involved have not yet been standardized. Some of the most variable methodological aspects include (i) selection of moss species, (ii) ratio of moss weight to surface area of the bag, (iii) duration of exposure, and (iv) height of exposure. In the present study, the best option for each of these aspects was selected on the basis of the mean concentrations and data replicability of Cd, Cu, Hg, Pb and Zn measured during at least two exposure periods in environments affected by different degrees of contamination. The optimal choices for the studied aspects were the following: (i) Sphagnum denticulatum, (ii) 5.68 mg of moss tissue for each cm-2 of bag surface, (iii) 8 weeks of exposure, and (iv) 4 m height of exposure. Duration of exposure and height of exposure accounted for most of the variability in the data. The aim of this methodological study was to provide data to help establish a standardized protocol that will enable use of the moss bag technique by public authorities.

  11. Assessment of radionuclides (uranium and thorium) atmospheric pollution around Manjung district, Perak using moss as bio-indicator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arshad, Nursyairah, E-mail: nursyairah1990@gmail.com; Hamzah, Zaini; Wood, Ab. Khalik

    2016-01-22

    Bio-monitoring method using mosses have been widely done around the world and the effectiveness has been approved. Mosses can be used to assess the levels of atmospheric pollution as mosses pick up nutrients from the atmosphere and deposition retaining many trace elements. In this study, the deposition of two radionuclides; uranium (U) and thorium (Th) around Manjung districts have been evaluated using Leucobryum aduncum as bio-monitoring medium. The samples were collected from 24 sampling sites covering up to 40 km radius to the North, North-East and South-East directions from Teluk Rubiah. The concentrations of U and Th in moss samples weremore » analysed using Energy Dispersive X-Ray Fluorescence (EDXRF) Spectrometer. The concentrations of Th are in the range of 0.07-2.09 mg/kg. Meanwhile, the concentrations of U in the moss are in the range of 0.03-0.18 mg/kg. The Enrichment Factor (EF) was calculated to determine the origin of the radionuclides distributions. Other than that, the distribution maps were developed to observe the distribution of the radionuclides around the study area.« less

  12. Moss antheridia are desiccation tolerant: Rehydration dynamics influence sperm release in Bryum argenteum.

    PubMed

    Stark, Lloyd R; McLetchie, D Nicholas; Greenwood, Joshua L; Eppley, Sarah M

    2016-05-01

    Free-living sperm of mosses are known to be partially desiccation tolerant. We hypothesized that mature moss antheridia should also tolerate desiccation and that rehydration to partial turgor (prehydration) or rehydration to full turgor (rehydration) before immersion in water is required for full recovery from any damaging effects of prior desiccation. Bryum argenteum (silvery-thread moss) was grown in continuous culture for several months, produced mature perigonia (clusters of antheridia), and these were subjected to a slow rate of drying (∼36 h from full turgor to desiccation) and equilibration with 50% relative humidity. Perigonia were prehydrated (exposed to a saturated atmosphere) or rehydrated (planted upright in saturated media) for 0, 45, 90, 135, 180, and 1440 min, then immersed in sterile water. Time to first sperm mass release, number of antheridia releasing sperm masses, and the integrity of the first sperm mass released were assessed. Rehydration of dried antheridia for at least 3 h before immersion in water resulted in antheridia functioning similar to control undried antheridia. Compared with rehydration, prehydration was not effective in the recovery of antheridia from desiccation. For the first time, moss antheridia are shown to be fully desiccation tolerant at a functional level, capable of releasing fully functional sperm following a slow drying event provided the antheridia are allowed to rehydrate at least 3 h before immersion in water. © 2016 Botanical Society of America.

  13. 78 FR 9866 - Special Local Regulation; Moss Point Rockin' the Riverfront Festival; Robertson Lake & O'Leary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ... 1625-AA08 Special Local Regulation; Moss Point Rockin' the Riverfront Festival; Robertson Lake & O... Riverfront Festival high speed boat races. Entry into, transiting or anchoring in this area is prohibited to... Point Rockin' the Riverfront Festival; Robertson Lake & O'Leary Lake; Moss Point, MS. (a) Location. The...

  14. Biocrust-forming mosses mitigate the negative impacts of increasing aridity on ecosystem multifunctionality in drylands.

    PubMed

    Delgado-Baquerizo, Manuel; Maestre, Fernando T; Eldridge, David J; Bowker, Matthew A; Ochoa, Victoria; Gozalo, Beatriz; Berdugo, Miguel; Val, James; Singh, Brajesh K

    2016-03-01

    The increase in aridity predicted with climate change will have a negative impact on the multiple functions and services (multifunctionality) provided by dryland ecosystems worldwide. In these ecosystems, soil communities dominated by mosses, lichens and cyanobacteria (biocrusts) play a key role in supporting multifunctionality. However, whether biocrusts can buffer the negative impacts of aridity on important biogeochemical processes controlling carbon (C), nitrogen (N), and phosphorus (P) pools and fluxes remains largely unknown. Here, we conducted an empirical study, using samples from three continents (North America, Europe and Australia), to evaluate how the increase in aridity predicted by climate change will alter the capacity of biocrust-forming mosses to modulate multiple ecosystem processes related to C, N and P cycles. Compared with soil surfaces lacking biocrusts, biocrust-forming mosses enhanced multiple functions related to C, N and P cycling and storage in semiarid and arid, but not in humid and dry-subhumid, environments. Most importantly, we found that the relative positive effects of biocrust-forming mosses on multifunctionality compared with bare soil increased with increasing aridity. These results were mediated by plant cover and the positive effects exerted by biocrust-forming mosses on the abundance of soil bacteria and fungi. Our findings provide strong evidence that the maintenance of biocrusts is crucial to buffer negative effects of climate change on multifunctionality in global drylands. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  15. Accumulation of Polycyclic Aromatic Hydrocarbons in Soils and Mosses of Southern Tundra at Different Distances from the Thermal Power Plant

    NASA Astrophysics Data System (ADS)

    Yakovleva, E. V.; Gabov, D. N.; Beznosikov, V. A.; Kondratenok, B. M.

    2018-05-01

    A number of polycyclic aromatic hydrocarbon (PAH) structures have been identified in organic horizons of surface-gley tundra soils (Stagnic Cambisols) and the moss Pleurozium schreberi. The total content of polyarenes in soils and P. schreberi exceeds the background values in 3.5-5 times. A tendency of increasing content of polyarenes with the distance from the source to 1 km has been revealed. High coefficients of variation have been found between the contents of PAHs in snow cover, organic soil horizons, and mosses. Light hydrocarbons dominate in the composition of PAHs from the snow and ground covers and mosses. Naphthalene dominates on the surface of mosses in all of the studied plots, which is largely related to its intensive uptake by mosses under pollution conditions. It has been found that when the input of polyarenes onto the surface of tundra phytocenoses increases, the bioaccumulation of PAHs by P. schreberi is intensified, and PAHs begin to penetrate into moss. The increase in the concentration of high-molecularweight polyarenes in the environment plays the key role in the activation of PAH bioaccumulation by moss. It has been shown that P. schreberi can be used as an indicator species for monitoring the contamination of tundra phytocenoses by polyarenes. Both living and dead parts of P. schreberi are suitable for the environmental monitoring of PAH contamination.

  16. Spatially valid data of atmospheric deposition of heavy metals and nitrogen derived by moss surveys for pollution risk assessments of ecosystems.

    PubMed

    Schröder, Winfried; Nickel, Stefan; Schönrock, Simon; Meyer, Michaela; Wosniok, Werner; Harmens, Harry; Frontasyeva, Marina V; Alber, Renate; Aleksiayenak, Julia; Barandovski, Lambe; Carballeira, Alejo; Danielsson, Helena; de Temmermann, Ludwig; Godzik, Barbara; Jeran, Zvonka; Karlsson, Gunilla Pihl; Lazo, Pranvera; Leblond, Sebastien; Lindroos, Antti-Jussi; Liiv, Siiri; Magnússon, Sigurður H; Mankovska, Blanka; Martínez-Abaigar, Javier; Piispanen, Juha; Poikolainen, Jarmo; Popescu, Ion V; Qarri, Flora; Santamaria, Jesus Miguel; Skudnik, Mitja; Špirić, Zdravko; Stafilov, Trajce; Steinnes, Eiliv; Stihi, Claudia; Thöni, Lotti; Uggerud, Hilde Thelle; Zechmeister, Harald G

    2016-06-01

    For analysing element input into ecosystems and associated risks due to atmospheric deposition, element concentrations in moss provide complementary and time-integrated data at high spatial resolution every 5 years since 1990. The paper reviews (1) minimum sample sizes needed for reliable, statistical estimation of mean values at four different spatial scales (European and national level as well as landscape-specific level covering Europe and single countries); (2) trends of heavy metal (HM) and nitrogen (N) concentrations in moss in Europe (1990-2010); (3) correlations between concentrations of HM in moss and soil specimens collected across Norway (1990-2010); and (4) canopy drip-induced site-specific variation of N concentration in moss sampled in seven European countries (1990-2013). While the minimum sample sizes on the European and national level were achieved without exception, for some ecological land classes and elements, the coverage with sampling sites should be improved. The decline in emission and subsequent atmospheric deposition of HM across Europe has resulted in decreasing HM concentrations in moss between 1990 and 2010. In contrast, hardly any changes were observed for N in moss between 2005, when N was included into the survey for the first time, and 2010. In Norway, both, the moss and the soil survey data sets, were correlated, indicating a decrease of HM concentrations in moss and soil. At the site level, the average N deposition inside of forests was almost three times higher than the average N deposition outside of forests.

  17. Spatial analysis of trace elements in a moss bio-monitoring data over France by accounting for source, protocol and environmental parameters.

    PubMed

    Lequy, Emeline; Saby, Nicolas P A; Ilyin, Ilia; Bourin, Aude; Sauvage, Stéphane; Leblond, Sébastien

    2017-07-15

    Air pollution in trace elements (TE) remains a concern for public health in Europe. For this reasons, networks of air pollution concentrations or exposure are deployed, including a moss bio-monitoring programme in Europe. Spatial determinants of TE concentrations in mosses remain unclear. In this study, the French dataset of TE in mosses is analyzed by spatial autoregressive model to account for spatial structure of the data and several variables proven or suspected to affect TE concentrations in mosses. Such variables include source (atmospheric deposition and soil concentrations), protocol (sampling month, collector, and moss species), and environment (forest type and canopy density, distance to the coast or the highway, and elevation). Modeled atmospheric deposition was only available for Cd and Pb and was one of the main explanatory variables of the concentrations in mosses. Predicted soil content was also an important explanatory variable except for Cr, Ni, and Zn. However, the moss species was the main factor for all the studied TE. The other environmental variables affected differently the TE. In particular, the forest type and canopy density were important in most cases. These results stress the need for further research on the effect of the moss species on the capture and retention of TE, as well as for accounting for several variables and the spatial structure of the data in statistical analyses. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Atmospheric deposition of organic micropollutants in Norway studied by means of moss and lichen analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlberg, G.E.; Ofstad, E.B.; Drangsholt, H.

    1983-01-01

    Moss and lichen samples from eleven remote sites from all parts of Norway were analyzed for persistent chlorinated hydrocarbons. The highest and lowest concentration levels were found in the most southwesterly and northerly locations, respectively. Moss and lichen samples from one site were also analyzed for other organic micropollutants. They were found to contain alkanes, mostly of biogenic origin, PAH and phthalates.

  19. First survey of atmospheric heavy metal deposition in Kosovo using moss biomonitoring.

    PubMed

    Maxhuni, Albert; Lazo, Pranvera; Kane, Sonila; Qarri, Flora; Marku, Elda; Harmens, Harry

    2016-01-01

    Bryophytes act as bioindicators and bioaccumulators of metal deposition in the environment. The atmospheric deposition of Cd, Cr, Cu, Fe, Hg, Ni, Mn, Pb, and Zn in Kosovo was investigated by using carpet-forming moss species (Pseudocleropodium purum and Hypnum cupressiforme) as bioindicators. This research is part of the European moss survey coordinated by the ICP Vegetation, an International Cooperative Programme reporting on the effects of air pollution on vegetation to the UNECE Convention on Long-range Transboundary Air Pollution. Sampling was performed during the summer of 2011 at 25 sampling sites homogenously distributed over Kosovo. Unwashed, dried samples were digested by using wet digestion in Teflon tubes. The concentrations of metal elements were determined by atomic absorption spectrometry (AAS) equipped with flame and/or furnace systems. The heavy metal concentration in mosses reflected local emission sources. The data obtained in this study were compared with those of similar studies in neighboring countries and Europe (2010-2014 survey). The geographical distribution maps of the elements over the sampled territory were constructed using geographic information system (GIS) technology. The concentrations of Cr, Ni, Pb, and Zn were higher than the respective median values of Europe, suggesting that the zones with heavy vehicular traffic and industry emission input are important emitters of these elements. Selected zones are highly polluted particularly by Cd, Pb, Hg, and Ni. The statistical analyses revealed that a strong correlation exists between the Pb and Cd content in mosses, and the degree of pollution in the studied sites was assessed.

  20. Efficacy of Moss as a Bioindicator of Heavy Metals When Controlling for Microbial Variables

    NASA Astrophysics Data System (ADS)

    Hall, K. M.; Atkinson, D. B.

    2017-12-01

    Interest in pollution has lead to the use of plants as indicators of particulate levels, acting as a cheaper, more widely dispersed resource than human manufactured alternatives. These biomonitors could provide accurate, current data across cities and in localized regions once the mechanism of accumulation is fully understood. One possible variable that could affect the efficacy of mosses as bioindicators of heavy metal absorption is the microbial colonies that thrive on the surface of these non vascular plants. Each micro organism has shown variance in absorption of heavy metals, leading to the question how much do the colonies contribute to measured variation? For this experiment samples of living mosses were collected from different trees in a region, each showing a different set of organisms growing on them. Measurements of cadmium were taken from a portion of the first samples, and second samples will be taken after dosing the rest of the living samples in a lab environment over time. Two of the mosses are being treated to limit microbial growth to compare to samples from the same tree. We hypothesize that there will be a significant difference either from one tree's absorption to the next, or between mosses from the same tree with limited growth due to the variation of microbial influence.

  1. Lead spatio-temporal pattern identification in urban microenvironments using moss bags and the Kohonen self-organizing maps

    NASA Astrophysics Data System (ADS)

    Deljanin, Isidora; Antanasijević, Davor; Vuković, Gordana; Urošević, Mira Aničić; Tomašević, Milica; Perić-Grujić, Aleksandra; Ristić, Mirjana

    2015-09-01

    The first investigation of the use of the Kohonen self-organizing map (SOM) which includes lead concentration and its isotopic composition in moss bags to assess the spatial and temporal patterns of lead in the urban microenvironments is presented in this paper. The moss bags experiment was carried out during 2011 in the city tunnel in Belgrade, as well as in street canyons at different heights (4, 8 and 16 m) and in public garages. The moss bags were exposed for 5 and 10 weeks. The results revealed that the 10 weeks period represents suitable exposure time in screening Pb isotopic composition in active biomonitoring analysis. The obtained results showed that the SOM analysis, by recognizing slight differences among moss samples regarding exposure time, horizontal and vertical spatial distribution, with both, contribution of stable lead isotopes and Pb concentration, could be recommended in biomonitoring analysis of lead distribution in urban microenvironments.

  2. Multicarrier orthogonal spread-spectrum (MOSS) data communications

    DOEpatents

    Smith, Stephen F [London, TN; Dress, William B [Camas, WA

    2008-01-01

    Systems and methods are described for multicarrier orthogonal spread-spectrum (MOSS) data communication. A method includes individually spread-spectrum modulating at least two of a set of orthogonal frequency division multiplexed carriers, wherein the resulting individually spread-spectrum modulated at least two of a set of orthogonal frequency division multiplexed carriers are substantially mutually orthogonal with respect to both frequency division multiplexing and spread-spectrum modulation.

  3. Sphagnum Mosses - Masters of Efficient N-Uptake while Avoiding Intoxication

    PubMed Central

    Fritz, Christian; Lamers, Leon P. M.; Riaz, Muhammad; van den Berg, Leon J. L.; Elzenga, Theo J. T. M.

    2014-01-01

    Peat forming Sphagnum mosses are able to prevent the dominance of vascular plants under ombrotrophic conditions by efficiently scavenging atmospherically deposited nitrogen (N). N-uptake kinetics of these mosses are therefore expected to play a key role in differential N availability, plant competition, and carbon sequestration in Sphagnum peatlands. The interacting effects of rain N concentration and exposure time on moss N-uptake rates are, however, poorly understood. We investigated the effects of N-concentration (1, 5, 10, 50, 100, 500 µM), N-form (15N - ammonium or nitrate) and exposure time (0.5, 2, 72 h) on uptake kinetics for Sphagnum magellanicum from a pristine bog in Patagonia (Argentina) and from a Dutch bog exposed to decades of N-pollution. Uptake rates for ammonium were higher than for nitrate, and N-binding at adsorption sites was negligible. During the first 0.5 h, N-uptake followed saturation kinetics revealing a high affinity (Km 3.5–6.5 µM). Ammonium was taken up 8 times faster than nitrate, whereas over 72 hours this was only 2 times. Uptake rates decreased drastically with increasing exposure times, which implies that many short-term N-uptake experiments in literature may well have overestimated long-term uptake rates and ecosystem retention. Sphagnum from the polluted site (i.e. long-term N exposure) showed lower uptake rates than mosses from the pristine site, indicating an adaptive response. Sphagnum therefore appears to be highly efficient in using short N pulses (e.g. rainfall in pristine areas). This strategy has important ecological and evolutionary implications: at high N input rates, the risk of N-toxicity seems to be reduced by lower uptake rates of Sphagnum, at the expense of its long-term filter capacity and related competitive advantage over vascular plants. As shown by our conceptual model, interacting effects of N-deposition and climate change (changes in rainfall) will seriously alter the functioning of Sphagnum peatlands

  4. Sphagnum mosses--masters of efficient N-uptake while avoiding intoxication.

    PubMed

    Fritz, Christian; Lamers, Leon P M; Riaz, Muhammad; van den Berg, Leon J L; Elzenga, Theo J T M

    2014-01-01

    Peat forming Sphagnum mosses are able to prevent the dominance of vascular plants under ombrotrophic conditions by efficiently scavenging atmospherically deposited nitrogen (N). N-uptake kinetics of these mosses are therefore expected to play a key role in differential N availability, plant competition, and carbon sequestration in Sphagnum peatlands. The interacting effects of rain N concentration and exposure time on moss N-uptake rates are, however, poorly understood. We investigated the effects of N-concentration (1, 5, 10, 50, 100, 500 µM), N-form ((15)N-ammonium or nitrate) and exposure time (0.5, 2, 72 h) on uptake kinetics for Sphagnum magellanicum from a pristine bog in Patagonia (Argentina) and from a Dutch bog exposed to decades of N-pollution. Uptake rates for ammonium were higher than for nitrate, and N-binding at adsorption sites was negligible. During the first 0.5 h, N-uptake followed saturation kinetics revealing a high affinity (Km 3.5-6.5 µM). Ammonium was taken up 8 times faster than nitrate, whereas over 72 hours this was only 2 times. Uptake rates decreased drastically with increasing exposure times, which implies that many short-term N-uptake experiments in literature may well have overestimated long-term uptake rates and ecosystem retention. Sphagnum from the polluted site (i.e. long-term N exposure) showed lower uptake rates than mosses from the pristine site, indicating an adaptive response. Sphagnum therefore appears to be highly efficient in using short N pulses (e.g. rainfall in pristine areas). This strategy has important ecological and evolutionary implications: at high N input rates, the risk of N-toxicity seems to be reduced by lower uptake rates of Sphagnum, at the expense of its long-term filter capacity and related competitive advantage over vascular plants. As shown by our conceptual model, interacting effects of N-deposition and climate change (changes in rainfall) will seriously alter the functioning of Sphagnum peatlands.

  5. Effects of Plant Leachates from Four Boreal Understorey Species on Soil N Mineralization, and White Spruce (Picea glauca) Germination and Seedling Growth

    PubMed Central

    CASTELLS, EVA; PEÑUELAS, JOSEP; VALENTINE, DAVID W.

    2005-01-01

    • Background and Aims Natural regeneration of white spruce (Picea glauca) after disturbance has been reported to be very poor. Here a study was made to determine whether C compounds released from understorey species growing together with white spruce could be involved in this regeneration failure, either by (1) changing soil nutrient dynamics, (2) inhibiting germination, and/or (3) delaying seedling growth. • Methods Foliage leachates were obtained from two shrubs (Ledum palustre and Empetrum hermaphroditum) and one bryophyte (Sphagnum sp.) with high phenolic compound concentrations that have been reported to depress growth of conifers in boreal forests, and, as a comparison, one bryophyte (Hylocomium splendens) with negligible phenolic compounds. Mineral soil from a white spruce forest was amended with plant leachates to examine the effect of each species on net N mineralization. Additionally, white spruce seeds and seedlings were watered with plant leachates to determine their effects on germination and growth. • Key Results Leachates from the shrubs L. palustre and E. hermaphroditum contained high phenolic compound concentrations and dissolved organic carbon (DOC), while no detectable levels of C compounds were released from the bryophytes Sphagnum sp. or H. splendens. A decrease in net N mineralization was determined in soils amended with L. palustre or E. hermaphroditum leachates, and this effect was inversely proportional to the phenolic concentrations, DOC and leachate C/N ratio. The total percentage of white spruce germination and the growth of white spruce seedlings were similar among treatments. • Conclusions These results suggest that the shrubs L. palustre and E. hermaphroditum could negatively affect the performance of white spruce due to a decrease in soil N availability, but not by direct effects on plant physiology. PMID:15802310

  6. Origin and spatial distribution of metals in moss samples in Albania: A hotspot of heavy metal contamination in Europe.

    PubMed

    Lazo, Pranvera; Steinnes, Eiliv; Qarri, Flora; Allajbeu, Shaniko; Kane, Sonila; Stafilov, Trajce; Frontasyeva, Marina V; Harmens, Harry

    2018-01-01

    This study presents the spatial distribution of 37 elements in 48 moss samples collected over the whole territory of Albania and provides information on sources and factors controlling the concentrations of elements in the moss. High variations of trace metals indicate that the concentrations of elements are affected by different factors. Relations between the elements in moss, geochemical interpretation of the data, and secondary effects such as redox conditions generated from local soil and/or long distance atmospheric transport of the pollutants are discussed. Zr normalized data, and the ratios of different elements are calculated to assess the origin of elements present in the current moss samples with respect to different geogenic and anthropogenic inputs. Factor analysis (FA) is used to identify the most probable sources of the elements. Four dominant factors are identified, i.e. natural contamination; dust emission from local mining operations; atmospheric transport of contaminants from local and long distance sources; and contributions from air borne marine salts. Mineral particle dust from local emission sources is classified as the most important factor affecting the atmospheric deposition of elements accumulated in the current moss samples. The open slag dumps of mining operation in Albania is probably the main factor contributing to high contents of Cr, Ni, Fe, Ti and Al in the moss. Enrichment factors (EF) were calculated to clarify whether the elements in the present moss samples mainly originate from atmospheric deposition and/or local substrate materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Differential effects of lichens, mosses and grasses on respiration and nitrogen mineralization in soils of the New Jersey Pinelands.

    PubMed

    Sedia, Ekaterina G; Ehrenfeld, Joan G

    2005-06-01

    In the New Jersey Pinelands, severely disturbed areas often do not undergo a rapid succession to forest; rather, a patchy cover of lichens, mosses and grasses persists for decades. We hypothesized that these plant covers affect soil microbial processes in different ways, and that these effects may alter the successional dynamics of the patches. We predicted that the moss and grass covers stimulate soil microbial activity, whereas lichens inhibit it, which may in turn inhibit succession. We collected soil cores from beneath each type of cover plus bare soil within two types of highly disturbed areas--sites subjected to hot wildfires, and areas mined for sand. Organic matter (OM) content, soil respiration and potential N mineralization were measured in the cores. Soils under mosses were similar to those under grasses; they accumulated more OM and produced more mineral N, predominantly in the form of ammonium, than either the bare soils or the soils beneath lichens. Mineralization under lichens, like that of the bare soils but unlike the soils beneath mosses or grasses, was dominated by net nitrification. These patterns were reproduced in experimentally transplanted moss and lichen mats. Mosses appear to create high-nutrient microsites via high rates of OM accumulation and production of ammonium, whereas lichens maintain low-nutrient patches similar to bare soil via low OM accumulation rates and production of mineral N predominantly in the mobile nitrate form. These differences in soil properties may explain the lack of vascular plant invasion in lichen mats, in contrast to the moss-dominated areas.

  8. Green mosses date the Storegga tsunami to the chilliest decades of the 8.2 ka cold event

    NASA Astrophysics Data System (ADS)

    Bondevik, Stein; Stormo, Svein Kristian; Skjerdal, Gudrun

    2012-06-01

    Chlorophyll in dead plants ordinarily decomposes completely before permanent burial through exposure to light, water and oxygen. Here we describe 8000-year-old terrestrial mosses that retain several percent of its original chlorophyll. The mosses were ripped of the land surface, carried 50-100 m off the Norwegian coast of the time, and deposited in depressions on the sea floor by the Storegga tsunami. A little of the chlorophyll survived because, within hours after entraining it, the tsunami buried the mosses in shell-rich sediments. These sediments preserved the chlorophyll by keeping out light and oxygen, and by keeping the pH above 7—three factors known to favour chlorophyll's stability. Because the green mosses were buried alive, their radiocarbon clock started ticking within hours after the Storegga Slide had set off the tsunami. Radiocarbon measurement of the mosses therefore give slide ages of uncommon geological precision, and these, together with a sequence of ages above and below the boundary, date the Storegga Slide to the chilliest decades of the 8.2 ka cold event at 8120-8175 years before AD 1950. North Atlantic coastal- and fjord- climatic records claimed to show evidence of the 8.2 cold event should be carefully examined for possible contamination and disturbance from the Storegga tsunami.

  9. Radioactivity measurements in moss (Hypnum cupressiforme) and lichen (Cladonia rangiformis) samples collected from Marmara region of Turkey.

    PubMed

    Belivermiş, Murat; Cotuk, Yavuz

    2010-11-01

    The present study was conducted to compare the (137)Cs, (40)K, (232)Th, and (238)U activity concentrations in epigeic moss (Hypnum cupressiforme) and lichen (Cladonia rangiformis). The activity levels in 37 moss and 38 lichen samples collected from the Marmara region of Turkey were measured using a gamma spectrometer equipped with a high purity germanium (HPGe) detector. The activity concentrations of (137)Cs, (40)K, (232)Th, and (238)U in the moss samples were found to be in the range of 0.36-8.13, 17.1-181.1, 1.51-6.17, and 0.87-6.70 Bq kg(-1) respectively, while these values were below detection limit (BDL)-4.32, 16.6-240.0, 1.32-6.47, and BDL-3.57 Bq kg(-1) respectively in lichen. The average moss/lichen activity ratios of (137)Cs, (40)K, (232)Th, and (238)U were found to be 1.32 +/- 0.57, 2.79 +/- 1.67, 2.11 +/- 0.82, and 2.19 +/- 1.02, respectively. Very low (137)Cs concentrations were observed in moss and lichen samples compared to soil samples collected from the same locations in a previous study. Seasonal variations of the measured radionuclide activities were also examined in the three sampling stations.

  10. Bioweathering of a basalt from Etna (Sicily) by the moss Grimmia pulvinata (Hedw.) Sm.

    NASA Astrophysics Data System (ADS)

    Giordano, S.; Vingiani, S.; Adamo, P.

    2012-04-01

    Lichens and mosses, as pioneer plants, firstly colonize rocky surfaces enhancing biogeophysical and biogeochemical degradation of their substrates. Indeed, the contact area between the lithological substrates and the cryptogams is considered a simplified environment for studying the mechanisms of bioweathering, which, in many cases, characterize the initial stages of pedogenesis. In this paper we report the results of a study conducted for the recognition and characterization of the bioweathering processes of a basaltic lava present on the slopes of Mt Etna (western Sicily) at an altitude of 1550 m above sea level, associated with the growth of the moss Grimmia pulvinata (Hedw.) Sm. The Etnean rock, characterised by a porphiric structure, is mainly made by a microcrystalline groundmass in which are immersed abundant phenocrysts of plagioclase, augite and rare olivine crystals. The groundmass shows the same mineral assemblage. With the use of X-ray fluorescence spectroscopy, we determined the chemical composition of the fresh rock, of the materials collected at the rock-moss interface and of the plant tissues. The X-ray diffraction has allowed to have detailed information on the mineralogy of the bioaltered rocky and interface materials. Scanning electron microscope observations and microanalytical investigations carried out on fragments of rock colonized by moss showed a significant disintegration of the rock and the presence of crystals with tabular habit, containing Cu and Fe, aligned tangentially to the surface of Grimmia pulvinata rhizoids. The weathered material covered by the moss cushion has the chemical and physical characteristics of low pedogenized soils. The high value of the C/N ratio has to be referred to the presence of plant residues with high resistance to mineralize. The significant amount of plant available phosphorus, as assessed by Olsen extraction, confirmed the possibility that the bryophytes constitute important reserves of phosphorus

  11. Anthropogenic deposition of heavy metals and phosphorus may reduce biological N2 fixation in boreal forest mosses.

    PubMed

    Scott, Dalton L; Bradley, Robert L; Bellenger, Jean-Philippe; Houle, Daniel; Gundale, Michael J; Rousk, Kathrin; DeLuca, Thomas H

    2018-07-15

    A study was undertaken to test the effects of molybdenum (Mo) and phosphorus (P) amendments on biological nitrogen (N) fixation (BNF) by boreal forest moss-associated cyanobacteria. Feather moss (Pleurozium schreberi) samples were collected on five sites, on two dates and at different roadside distances (0-100m) corresponding to an assumed gradient of reactive N deposition. Potential BNF of Mo and P amended moss samples was measured using the acetylene reduction assay. Total N, P and heavy metal concentrations of mosses collected at 0 and 100m from roadsides were also measured. Likewise, the needles from Norway spruce trees (Picea abies) at different roadside distances were collected in late summer and analyzed for total N, P and heavy metals. There was a significant increase in BNF with roadside distance on 7-of-10 individual Site×Date combinations. We found no clear evidence of an N gradient across roadside distances. Elemental analyses of feather moss and Norway spruce needle tissues suggested decreasing deposition of heavy metals (Mo-Co-Cr-Ni-V-Pb-Ag-Cu) as well as P with increasing distance from the roadside. The effects of Mo and P amendments on BNF were infrequent and inconsistent across roadside distances and across sites. One particular site, however, displayed greater concentrations of heavy metals near the roadside, as well as a steeper P fertility gradient with roadside distance, than the other sites. Here, BNF increased with roadside distance only when moss samples were amended with P. Also at this site, BNF across all roadside distances was higher when mosses were amended with both Mo and P, suggesting a co-limitation of these two nutrients in controlling BNF. In summary, our study showed a potential for car emissions to increase heavy metals and P along roadsides and underscored the putative roles of these anthropogenic pollutants on BNF in northern latitudes. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Assessment of trace metal air pollution in Paris using slurry-TXRF analysis on cemetery mosses.

    PubMed

    Natali, Marco; Zanella, Augusto; Rankovic, Aleksandar; Banas, Damien; Cantaluppi, Chiara; Abbadie, Luc; Lata, Jean -Christophe

    2016-12-01

    Mosses are useful, ubiquitous accumulation biomonitors and as such can be used for biomonitoring surveys. However, the biomonitoring of atmospheric pollution can be compromised in urban contexts if the targeted biomonitors are regularly disturbed, irregularly distributed, or are difficult to access. Here, we test the hypothesis that cemeteries are appropriate moss sampling sites for the evaluation of air pollution in urban areas. We sampled mosses growing on gravestones in 21 urban and peri-urban cemeteries in the Paris metropolitan area. We focused on Grimmia pulvinata (Hedwig) Smith, a species abundantly found in all studied cemeteries and very common in Europe. The concentration of Al, As, Br, Ca, Ce, Cl, Cr, Cu, Fe, K, Mn, Ni, V, P, Pb, Rb, S, Sr, Ti, and Zn was determined by a total reflection X-ray fluorescence technique coupled with a slurry sampling method (slurry-TXRF). This method avoids a digestion step, reduces the risk of sample contamination, and works even at low sample quantities. Elemental markers of road traffic indicated that the highest polluted cemeteries were located near the highly frequented Parisian ring road and under the influence of prevailing winds. The sites with the lowest pollution were found not only in the peri-urban cemeteries, adjoining forest or farming landscapes, but also in the large and relatively wooded cemeteries located in the center of Paris. Our results suggest that (1) slurry-TXRF might be successfully used with moss material, (2) G. pulvinata might be a good biomonitor of trace metals air pollution in urban context, and (3) cemetery moss sampling could be a useful complement for monitoring urban areas. Graphical abstract We tested the hypothesis that cemeteries are appropriate moss sampling sites for the evaluation of air pollution in urban areas. We sampled 110 moss cushions (Grimmia pulvinata) growing on gravestones in 21 urban and peri-urban cemeteries in the Paris metropolitan area. The concentration of 20

  13. Validating modelled data on major and trace element deposition in southern Germany using Sphagnum moss

    NASA Astrophysics Data System (ADS)

    Kempter, Heike; Krachler, Michael; Shotyk, William; Zaccone, Claudio

    2017-10-01

    Sphagnum mosses were collected from four ombrotrophic bogs in two regions of southern Germany: Upper Bavaria (Oberbayern, OB) and the Northern Black Forest (Nordschwarzwald, NBF). Surfaces of Sphagnum carpets were marked with plastic mesh and, one year later, plant matter was harvested and productivity determined. Major and trace element concentrations (Ag, Al, As, Ba, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Pb, Rb, Sb, Sc, Sr, Th, Ti, Tl, U, V, Zn) were determined in acid digests using sector field ICP-MS. Up to 12 samples (40 × 40 cm) were collected per site, and 6-10 sites investigated per bog. Variation in element accumulation rates within a bog is mostly the result of the annual production rate of the Sphagnum mosses which masks not only the impact of site effects, such as microtopography and the presence of dwarf trees, but also local and regional conditions, including land use in the surrounding area, topography, etc. The difference in productivity between peat bogs results in distinctly higher element accumulation rates at the NBF bogs compared to those from OB for all studied elements. The comparison with the European Monitoring and Evaluation Program (EMEP; wet-only and total deposition) and Modelling of Air Pollutants and Ecosystem Impact (MAPESI; total deposition) data shows that accumulation rates obtained using Sphagnum are in the same range of published values for direct measurements of atmospheric deposition of As, Cd, Cu, Co, Pb, and V in both regions. The accordance is very dependent on how atmospheric deposition rates were obtained, as different models to calculate the deposition rates may yield different fluxes even for the same region. In future studies of atmospheric deposition of trace metals, both Sphagnum moss and deposition collectors have to be used on the same peat bog and results compared. Antimony, however, shows considerable discrepancy, because it is either under-estimated by Sphagnum moss or over-estimated by both atmospheric deposition

  14. The role of Sphagnum mosses in the methane cycling of a boreal mire.

    PubMed

    Larmola, Tuula; Tuittila, Eeva-Stiina; Tiirola, Marja; Nykänen, Hannu; Martikainen, Pertti J; Yrjälä, Kim; Tuomivirta, Tero; Fritze, Hannu

    2010-08-01

    Peatlands are a major natural source of atmospheric methane (CH4). Emissions from Sphagnum-dominated mires are lower than those measured from other mire types. This observation may partly be due to methanotrophic (i.e., methane-consuming) bacteria associated with Sphagnum. Twenty-three of the 41 Sphagnum species in Finland can be found in the peatland at Lakkasuo. To better understand the Sphagnum-methanotroph system, we tested the following hypotheses: (1) all these Sphagnum species support methanotrophic bacteria; (2) water level is the key environmental determinant for differences in methanotrophy across habitats; (3) under dry conditions, Sphagnum species will not host methanotrophic bacteria; and (4) methanotrophs can move from one Sphagnum shoot to another in an aquatic environment. To address hypotheses 1 and 2, we measured the water table and CH4 oxidation for all Sphagnum species at Lakkasuo in 1-5 replicates for each species. Using this systematic approach, we included Sphagnum spp. with narrow and broad ecological tolerances. To estimate the potential contribution of CH4 to moss carbon, we measured the uptake of delta13C supplied as CH4 or as carbon dioxide dissolved in water. To test hypotheses 2-4, we transplanted inactive moss patches to active sites and measured their methanotroph communities before and after transplantation. All 23 Sphagnum species showed methanotrophic activity, confirming hypothesis 1. We found that water level was the key environmental factor regulating methanotrophy in Sphagnum (hypothesis 2). Mosses that previously exhibited no CH4 oxidation became active when transplanted to an environment in which the microbes in the control mosses were actively oxidizing CH4 (hypothesis 4). Newly active transplants possessed a Methylocystis signature also found in the control Sphagnum spp. Inactive transplants also supported a Methylocystis signature in common with active transplants and control mosses, which rejects hypothesis 3. Our

  15. Cravity modulation of the moss Tortula modica branching

    NASA Astrophysics Data System (ADS)

    Khorkavtsiv, Yaroslava; Kit, Nadja

    Among various abiotic factors the sensor system of plants constantly perceives light and gravitation impulses and reacts on their action by photo- and gravitropisms. Tropisms play fundamental part in ontogenesis and determination of plant forms. Essentially important question is how light initiating phototropic bending modulates gravitropism. In contrast to flower plants, red light is phototropically active for mosses, and phytochromic system controls initiation of apical growth, branching and photomorphogenesis of mosses. The aim of this investigation was to analyse cell branching of protonemata Tortula modica Zander depending on the direction of light and gravitation vector. The influence of light and gravitation on the form of protonemal turf T. modica, branching and the angle of lateral branches relative to axis of mother cell growth has been investigated. As moss protonemata is not branched in the darkness, light is necessary for branching activation. Minimally low intensity of the red light (0.2 mmol (.) m (-2) ({) .}sec (-1) ) induced branching without visual display of phototropic growth. It has been established that unidirectional action of light and gravitation intensifies branching, and, on the contrary, perpendicularly oriented vectors of factors weaken branches formation. Besides, parallel oriented vectors initiated branching from both cell sides, but oppositely directed vectors initiated branching only from one side. Clinostate rotation the change of the vector gravity and causes uniform cell branching, hence, light and gravitation mutually influence the branching system form of the protonemata cell. It has been shown that the angle of lateral branches in darkness does not depend on the direction of light and gravitation action. After lighting the local growth of the cell wall took place mainly under the angle 90 (o) to the axes of mother cell growth. Then the angle gradually decreased and in 3-4 cell divisions the lateral branch grew under the angle

  16. Gene refashioning through innovative shifting of reading frames in mosses.

    PubMed

    Guan, Yanlong; Liu, Li; Wang, Qia; Zhao, Jinjie; Li, Ping; Hu, Jinyong; Yang, Zefeng; Running, Mark P; Sun, Hang; Huang, Jinling

    2018-04-19

    Early-diverging land plants such as mosses are known for their outstanding abilities to grow in various terrestrial habitats, incorporating tremendous structural and physiological innovations, as well as many lineage-specific genes. How these genes and functional innovations evolved remains unclear. In this study, we show that a dual-coding gene YAN/AltYAN in the moss Physcomitrella patens evolved from a pre-existing hemerythrin gene. Experimental evidence indicates that YAN/AltYAN is involved in fatty acid and lipid metabolism, as well as oil body and wax formation. Strikingly, both the recently evolved dual-coding YAN/AltYAN and the pre-existing hemerythrin gene might have similar physiological effects on oil body biogenesis and dehydration resistance. These findings bear important implications in understanding the mechanisms of gene origination and the strategies of plants to fine-tune their adaptation to various habitats.

  17. A survey of natural terrestrial and airborne radionuclides in moss samples from the peninsular Thailand.

    PubMed

    Wattanavatee, Komrit; Krmar, Miodrag; Bhongsuwan, Tripob

    2017-10-01

    The aim of this study was to determine the activity concentrations of natural terrestrial radionuclides ( 238 U, 226 Ra, 232 Th and 40 K) and airborne radionuclides ( 210 Pb, 210 Pb ex and 7 Be) in natural terrestrial mosses. The collected moss samples (46) representing 17 species were collected from 17 sampling localities in the National Parks and Wildlife Sanctuaries of Thailand, situated in the mountainous areas between the northern and the southern ends of peninsular Thailand (∼7-12 °N, 99-102 °E). Activity concentrations of radionuclides in the samples were measured using a low background gamma spectrometer. The results revealed non-uniform spatial distributions of all the radionuclides in the study area. Principal component analysis and cluster analysis revealed two distinct origins for the studied radionuclides, and furthermore, the Pearson correlations were strong within 226 Ra, 232 Th, 238 U and 40 K as well as within 210 Pb and 210 Pb ex , but there was no significant correlation between these two groups. Also 7 Be was uncorrelated to the others, as expected due to different origins of the airborne and terrestrial radionuclides. The radionuclide activities of moss samples varied by moss species, topography, geology, and meteorology of each sampling area. The observed abnormally high concentrations of some radionuclides probably indicate that the concentrations of airborne and terrestrial radionuclides in moss samples were directly related to local geological features of the sampling site, or that high levels of 7 Be were most probably linked with topography and regional NE monsoonal winds from mainland China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Biomonitoring of heavy metals contamination by mosses and lichens around Slovinky tailing pond (Slovakia).

    PubMed

    Demková, Lenka; Bobul'ská, Lenka; Árvay, Július; Jezný, Tomáš; Ducsay, Ladislav

    2017-01-02

    Three moss (Pleurozium spp., Polytrichum spp., and Rhytidiadelphus spp.) and two lichen (Hypogymnia physodes and Pseudevernia furfuracea) taxons covered in the bags were used to monitor air quality. Bags were exposed at the different distances from the tailing pond because of insufficient security and source of heavy metal pollution. Moss/lichen bags were exposed for six weeks at 0-, 50-, 100-, 150- and 200-m distances from Slovinky tailing pond, in the main wind direction (down the valley). Accumulation ability of heavy metals expressed by relative accumulation factor (RAF) increases in the order of Polytrichum spp.Moss/lichen species showed different accumulation capacity for individual heavy metals. Rhytidiadelphus spp. was found to possess the significantly highest (P < 0.01) ability to accumulate Cd, Zn, Ni, Mn and Fe. The highest RAF values of Pb, Zn, Ni and Fe were determined in samples exposed at 200-m distance from pollution source.

  19. Polonium (²¹⁰Po), uranium (²³⁴U, ²³⁸U) isotopes and trace metals in mosses from Sobieszewo Island, northern Poland.

    PubMed

    Boryło, Alicja; Nowicki, Waldemar; Olszewski, Grzegorz; Skwarzec, Bogdan

    2012-01-01

    The activity of polonium (210)Po and uranium (234)U, (238)U radionuclides, as well as trace metals in mosses, collected from Sobieszewo Island area (northern Poland), were determined using the alpha spectrometry, AAS (atomic absorption spectrometry) and OES-ICP (atomic emission spectrometry with inductively coupled plasma). The concentrations of mercury (directly from the solid sample) were determined by the cold vapor technique of CV AAS. The obtained results revealed that the concentrations of (210)Po, (234)U, and (238)U in the two analyzed kinds of mosses: schrebers big red stem moss (Pleurozium schreberi) and broom moss (Dicranum scoparium) were similar. The higher polonium concentrations were found in broom moss (Dicranum scoparium), but uranium concentrations were relatively low for both species of analyzed mosses. Among the analyzed trace metals the highest concentration in mosses was recorded for iron, while the lowest for nickel, cadmium and mercury. The obtained studies showed that the sources of polonium and uranium isotopes, as well as trace metals in analyzed mosses are air city contaminations transported from Gdańsk and from existing in the vicinity the phosphogypsum waste heap in Wiślinka (near Gdańsk).

  20. The Contribution of Mosses to the Complex Pattern of Diurnal and Seasonal Metabolism the wet Coastal Tundra Ecosystems Near Barrow Alaska.

    NASA Astrophysics Data System (ADS)

    Zona, D.; Oechel, W.; Hastings, S.; Oberbauer, S.; Kopetz, I.; Ikawa, H.

    2006-12-01

    Despite the abundance and importance bryophytes in the Alaskan Arctic tundra there is relatively little information on the role of these plants in determining the CO2 fluxes of Arctic tundra and, in particular, the environmental controls and climate change sensitivities of current and future photosynthesis in Arctic mosses. Studies in the tundra biome during the IBP program implicated high light together with high temperature as causes of decreases in photosynthesis in arctic mosses. Several authors have reported midday depression of moss photosynthesis due to high irradiance, even under optimum temperature and fully hydrated conditions. The focus of this study is to understand the role of Sphagnum ssp. mosses of various species, the dominant moss in the Alaska coastal wet Tundra on the total ecosystem carbon exchange throughout the season and in particular soon after snowmelt when the ecosystem is a carbon source. Our hypothesis is that the ecosystem carbon source activity during this critical period may be a result of sensitivity of mosses to light and photoinhibition in the absence of the protective canopy layer of vascular plants. In this study we measured daily courses of photosynthesis and fluorescence in the moss layer and we compare it to the total ecosystem carbon fluxes determined by the eddy covariance technique. The measurements were conducted in wet coastal tundra from June 2006, right after the snow melt, to August 2006 in the Biological Experimental Observatory (BEO) in Barrow, Alaska. The photosynthesis in the moss layer was found to be strongly inhibited when the radiation exceeded 800 ìmol m-2 s-1. Mosses remained fully hydrated throughout the season, precluding drying as a cause of decreased photosynthesis. Dark-adapted fluorescence measurements (Fv/Fm) showed a relatively low value (0.6) right after the snow melt, and remained fairly stable throughout the season. This low value was previously reported as characteristic of photoinhibited

  1. Unsaturated hydraulic properties of Sphagnum moss and peat reveal trimodal pore-size distributions

    NASA Astrophysics Data System (ADS)

    Weber, Tobias K. D.; Iden, Sascha C.; Durner, Wolfgang

    2017-01-01

    In ombrotrophic peatlands, the moisture content of the vadose zone (acrotelm) controls oxygen diffusion rates, redox state, and the turnover of organic matter. Whether peatlands act as sinks or sources of atmospheric carbon thus relies on variably saturated flow processes. The Richards equation is the standard model for water flow in soils, but it is not clear whether it can be applied to simulate water flow in live Sphagnum moss. Transient laboratory evaporation experiments were conducted to observe evaporative water fluxes in the acrotelm, containing living Sphagnum moss, and a deeper layer containing decomposed moss peat. The experimental data were evaluated by inverse modeling using the Richards equation as process model for variably-saturated flow. It was tested whether water fluxes and time series of measured pressure heads during evaporation could be simulated. The results showed that the measurements could be matched very well providing the hydraulic properties are represented by a suitable model. For this, a trimodal parametrization of the underlying pore-size distribution was necessary which reflects three distinct pore systems of the Sphagnum constituted by inter-, intra-, and inner-plant water. While the traditional van Genuchten-Mualem model led to great discrepancies, the physically more comprehensive Peters-Durner-Iden model which accounts for capillary and noncapillary flow, led to a more consistent description of the observations. We conclude that the Richards equation is a valid process description for variably saturated moisture fluxes over a wide pressure range in peatlands supporting the conceptualization of the live moss as part of the vadose zone.

  2. The coastal environment affects lead and sodium uptake by the moss Hypnum cupressiforme used as an air pollution biomonitor.

    PubMed

    Renaudin, Marie; Leblond, Sébastien; Meyer, Caroline; Rose, Christophe; Lequy, Emeline

    2018-02-01

    Several studies suggest that potential competition exists between marine cations and heavy metals for binding sites on the cell wall of mosses. This competition would impact the heavy metal concentration measured in mosses by biomonitoring programs, which may underestimate air pollution by heavy metals in a coastal environment. In the present study, we aim to identify possible mechanisms affecting lead uptake by mosses in a coastal environment, specifically, the competition between lead (Pb 2+ ) and sodium (Na + ) for binding sites in Hypnum cupressiforme (Hc). We also compared the response of continental and coastal Hc populations to Pb 2+ exposure by immersing the moss samples in artificial solutions that comprised six experimental treatments and subsequently locating and quantifying Pb 2+ and Na + using the sequential elution technique and X-ray microanalyses with a scanning electron microscope. We demonstrated that high concentrations of Pb 2+ prevented Na + from binding to the cell wall. We also examined the effect of the salt acclimation of Hc on Pb 2+ and Na + accumulation. Coastal Hc populations accumulated more Na and less Pb than continental Hc populations in all treatments. Moreover, our results showed treatment effects on the intra/extracellular distribution of Na + , as well as site. This feedback on the influence of salt stress tolerance on Pb 2+ uptake by mosses requires further study and can be investigated for other heavy metals, leading to a better use of mosses as biomonitoring tools. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Comparison of moss and pine needles as bioindicators of transboundary polycyclic aromatic hydrocarbon pollution in central Japan.

    PubMed

    Oishi, Yoshitaka

    2018-03-01

    Atmospheric pollution by polycyclic aromatic hydrocarbons (PAHs) has become a serious problem, especially in Asia, as PAHs can severely affect ecologically important mountainous areas. Using pine needles and mosses as bio-indicators, this study examined PAH pollution in a mountainous study area and evaluated the influence of transboundary PAHs. PAHs in urban areas were also evaluated for comparison. The study sites were alpine areas and urban areas (inland or coastal cities) across central Japan, in the easternmost part of Asia where atmospheric pollutants are transported from mainland Asia. The mean PAH concentrations of pine needles and mosses were 198.9 ± 184.2 ng g -1 dry weight (dw) and 131.8 ± 60.7 ng g -1 dw (mean ± SD), respectively. Pine needles preferentially accumulated PAHs with low molecular weights (LMW PAHs) and exhibited large differences in both PAH concentration and isomer ratios between alpine and urban sites. These differences can be explained by the strong influence of LMW PAHs emitted from domestic sources, which decreased and changed during transport from urban to alpine sites due to dry/wet deposition and photodegradation. In contrast, mosses accumulated a higher ratio of PAHs with high molecular weight (HMW PAHs). A comparison of isomer ratios showed that the PAH source for alpine moss was similar to that for northern coastal cities, which are typically influenced by long-transported PAHs from East Asia. Thus, these results indicate that alpine moss can also be strongly affected by the transboundary PAHs. It is likely that the uptake characteristics of moss, alpine climate, and alpine locations far from urban areas can strengthen the influence of transboundary pollution. Based on these results, the limitations and most effective use of bioindicators of PAH pollution for preserving alpine ecosystems are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Modelling Temporal Variability in the Carbon Balance of a Spruce/Moss Boreal Forest

    NASA Technical Reports Server (NTRS)

    Frolking, S.; Goulden, M. L.; Wofsy, S. C.; Fan, S.-M.; Sutton, D. J.; Munger, J. W.; Bazzaz, A. M.; Daube, B. C.; Crill, P. M.; Aber, J. D.; hide

    1996-01-01

    A model of the daily carbon balance of a black spruce/feathermoss boreal forest ecosystem was developed and results compared to preliminary data from the 1994 BOREAS field campaign in northern Manitoba, Canada. The model, driven by daily weather conditions, simulated daily soil climate status (temperature and moisture profiles), spruce photosynthesis and respiration, moss photosynthesis and respiration, and litter decomposition. Model agreement with preliminary field data was good for net ecosystem exchange (NEE), capturing both the asymmetrical seasonality and short-term variability. During the growing season simulated daily NEE ranged from -4 g C m(exp -2) d(exp -1) (carbon uptake by ecosystem) to + 2 g C m(exp -2) d(exp -1) (carbon flux to atmosphere), with fluctuations from day to day. In the early winter simulated NEE values were + 0.5 g C m(exp -2) d(exp -1), dropping to + 0.2 g C m(exp -2) d(exp -1) in mid-winter. Simulated soil respiration during the growing season (+ 1 to + 5 g C m(exp -2) d(exp -1)) was dominated by metabolic respiration of the live moss, with litter decomposition usually contributing less than 30% and live spruce root respiration less than 10% of the total. Both spruce and moss net primary productivity (NPP) rates were higher in early summer than late summer. Simulated annual NEE for 1994 was -51 g C m(exp -2) y(exp -1), with 83% going into tree growth and 17% into the soil carbon accumulation. Moss NPP (58 g C m(exp -2) d(exp -1)) was considered to be litter (i.e. soil carbon input; no net increase in live moss biomass). Ecosystem respiration during the snow-covered season (84 g Cm(exp -2)) was 58% of the growing season net carbon uptake. A simulation of the same site for 1968-1989 showed about 10-20% year-to-year variability in heterotrophic respiration (mean of + 113 g C m-2 y@1). Moss NPP ranged from 19 to 114 g C m(exp -2) y(exp -1); spruce NPP from 81 to 150 g C nt-2 y,@l; spruce growth (NPP minus litterfall) from 34 to 103 g C m

  5. Environmentally friendly elimination of moss from open-graded asphalt pavement.

    DOT National Transportation Integrated Search

    2011-04-01

    Caltrans has discovered moss growing on U.S. Highway 101 in Del Norte and Humboldt counties, U.S. : Highway 199 near the Smith River and other roadways in Caltrans District 1. These areas are heavily : forested, and the heavy tree canopies shielding ...

  6. Biosynthesis, characterization, and acute toxicity of Berberis tinctoria-fabricated silver nanoparticles against the Asian tiger mosquito, Aedes albopictus, and the mosquito predators Toxorhynchites splendens and Mesocyclops thermocyclopoides.

    PubMed

    Kumar, Palanisamy Mahesh; Murugan, Kadarkarai; Madhiyazhagan, Pari; Kovendan, Kalimuthu; Amerasan, Duraisamy; Chandramohan, Balamurugan; Dinesh, Devakumar; Suresh, Udaiyan; Nicoletti, Marcello; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Wei, Hui; Kalimuthu, Kandasamy; Hwang, Jiang-Shiou; Lo Iacono, Annalisa; Benelli, Giovanni

    2016-02-01

    Aedes albopictus is an important arbovirus vector, including dengue. Currently, there is no specific treatment for dengue. Its prevention solely depends on effective vector control measures. In this study, silver nanoparticles (AgNPs) were biosynthesized using a cheap leaf extract of Berberis tinctoria as reducing and stabilizing agent and tested against Ae. albopictus and two mosquito natural enemies. AgNPs were characterized by using UV–vis spectrophotometry, X-ray diffraction, and scanning electron microscopy. In laboratory conditions, the toxicity of AgNPs was evaluated on larvae and pupae of Ae. albopictus. Suitability Index/Predator Safety Factor was assessed on Toxorhynchites splendens and Mesocyclops thermocyclopoides. The leaf extract of B. tinctoria was toxic against larval instars (I–IV) and pupae of Ae. albopictus; LC50 was 182.72 ppm (I instar), 230.99 ppm (II), 269.65 ppm (III), 321.75 ppm (IV), and 359.71 ppm (pupa). B. tinctoria-synthesized AgNPs were highly effective, with LC50 of 4.97 ppm (I instar), 5.97 ppm (II), 7.60 ppm (III), 9.65 ppm (IV), and 14.87 ppm (pupa). Both the leaf extract and AgNPs showed reduced toxicity against the mosquito natural enemies M. thermocyclopoides and T. splendens. Overall, this study firstly shed light on effectiveness of B. tinctoria-synthesized AgNPs as an eco-friendly nanopesticide, highlighting the concrete possibility to employ this newer and safer tool in arbovirus vector control programs.

  7. Development of Miniaturized Optimized Smart Sensors (MOSS) for space plasmas

    NASA Technical Reports Server (NTRS)

    Young, D. T.

    1993-01-01

    The cost of space plasma sensors is high for several reasons: (1) Most are one-of-a-kind and state-of-the-art, (2) the cost of launch to orbit is high, (3) ruggedness and reliability requirements lead to costly development and test programs, and (4) overhead is added by overly elaborate or generalized spacecraft interface requirements. Possible approaches to reducing costs include development of small 'sensors' (defined as including all necessary optics, detectors, and related electronics) that will ultimately lead to cheaper missions by reducing (2), improving (3), and, through work with spacecraft designers, reducing (4). Despite this logical approach, there is no guarantee that smaller sensors are necessarily either better or cheaper. We have previously advocated applying analytical 'quality factors' to plasma sensors (and spacecraft) and have begun to develop miniaturized particle optical systems by applying quantitative optimization criteria. We are currently designing a Miniaturized Optimized Smart Sensor (MOSS) in which miniaturized electronics (e.g., employing new power supply topology and extensive us of gate arrays and hybrid circuits) are fully integrated with newly developed particle optics to give significant savings in volume and mass. The goal of the SwRI MOSS program is development of a fully self-contained and functional plasma sensor weighing 1 lb and requiring 1 W. MOSS will require only a typical spacecraft DC power source (e.g., 30 V) and command/data interfaces in order to be fully functional, and will provide measurement capabilities comparable in most ways to current sensors.

  8. Use of geochemical signatures, including rare earth elements, in mosses and lichens to assess spatial integration and the influence of forest environment

    NASA Astrophysics Data System (ADS)

    Gandois, L.; Agnan, Y.; Leblond, S.; Séjalon-Delmas, N.; Le Roux, G.; Probst, A.

    2014-10-01

    In order to assess the influence of local environment and spatial integration of Trace Metals (TM) by biomonitors, Al, As, Cd, Cr, Cs, Cu, Fe, Mn, Ni, Pb, Sb, Sn, V and Zn and some rare earth element (REE) concentrations have been measured in lichens and mosses collected in three French forest sites located in three distinct mountainous areas, as well as in the local soil and bedrock, and in both bulk deposition (BD) and throughfall (TF). Similar enrichment factors (EF) were calculated using lichens and mosses and local bedrock for most elements, except for Cs, Mn, Ni, Pb, and Cu which were significantly (KW, p < 0.05) more enriched in mosses. Similar REE ratios were measured in soils, bedrock, lichens and mosses at each study sites, indicating a regional integration of atmospheric deposition by both biomonitors. Both TM signature and REE composition of mosses revealed that this biomonitor is highly influenced by throughfall composition, and reflect atmospheric deposition interaction with the forest canopy. This explained the higher enrichment measured in mosses for elements which concentration in deposition were influenced by the canopy, either due to leaching (Mn), direct uptake (Ni), or dry deposition dissolution (Pb, Cu, Cs).

  9. Tangled history of the European uses of Sphagnum moss and sphagnol.

    PubMed

    Drobnik, Jacek; Stebel, Adam

    2017-09-14

    Sphagnum mosses and peat could have been utilized as wound dressings for centuries, however reliable data on this subject are ambiguous; sometimes even no distinction between peat moss (Sphagnum spp.) and peat is made or these terms become confused. The first scientific account on surgical use of peat comes from 1882: a peat digger who successfully, by himself and in the way unknown to the then medicine, cured an open fracture of his forearm with peat. The peat, and very soon the peat moss itself (which is the major constituent of peat) drew attention of the 19th-century surgeons. We search for reliable information on: (1) inspirations for Sphagnum usage for medical purposes and its beginnings in the 19th century, (2) substances or products named sphagnol and their connections with (1); (3) on the origin of this name, (4) and on the occurrence of this name in medical sources. We have identified and studied published sources on the uses of peat-based and Sphagnum-based preparations and products of any processing level (including herbal stock, distillate, isolated pure or impure active principle, or a mixture of such) in surgery, pharmacy or cosmetics. A special attention was paid to the name sphagnol, which appeared many a time, in more than one context since 1899. Source publications were critically analysed from the taxonomical, pharmacognostical and ethnopharmacological points of view. Gathered data were cross-checked with the modern knowledge of the biologically active principles of Sphagnum and the prospects of their medical use. The application of peat in surgery started 1882. The use of peat moss as dressings was developed in the 1880's. It returned to surgical practice during WW1. The name sphagnol has two meanings: (1) A chemical substance isolated from the cell walls of Sphagnum mosses in 1899. A post-1950 research showed it to be a mixture of phenols dominated by sphagnum acid. (2) A product of dry distillation of peat contains solid and liquid fractions

  10. 33 CFR 207.169 - Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and navigation. 207.169 Section 207.169 Navigation... REGULATIONS § 207.169 Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and...

  11. 33 CFR 207.169 - Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and navigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and navigation. 207.169 Section 207.169 Navigation... REGULATIONS § 207.169 Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and...

  12. Gravitropic moss cells default to spiral growth on the clinostat and in microgravity during spaceflight

    NASA Technical Reports Server (NTRS)

    Kern, Volker D.; Schwuchow, Jochen M.; Reed, David W.; Nadeau, Jeanette A.; Lucas, Jessica; Skripnikov, Alexander; Sack, Fred D.

    2005-01-01

    In addition to shoots and roots, the gravity (g)-vector orients the growth of specialized cells such as the apical cell of dark-grown moss protonemata. Each apical cell of the moss Ceratodon purpureus senses the g-vector and adjusts polar growth accordingly producing entire cultures of upright protonemata (negative gravitropism). The effect of withdrawing a constant gravity stimulus on moss growth was studied on two NASA Space Shuttle (STS) missions as well as during clinostat rotation on earth. Cultures grown in microgravity (spaceflight) on the STS-87 mission exhibited two successive phases of non-random growth and patterning, a radial outgrowth followed by the formation of net clockwise spiral growth. Also, cultures pre-aligned by unilateral light developed clockwise hooks during the subsequent dark period. The second spaceflight experiment flew on STS-107 which disintegrated during its descent on 1 February 2003. However, most of the moss experimental hardware was recovered on the ground, and most cultures, which had been chemically fixed during spaceflight, were retrieved. Almost all intact STS-107 cultures displayed strong spiral growth. Non-random culture growth including clockwise spiral growth was also observed after clinostat rotation. Together these data demonstrate the existence of default non-random growth patterns that develop at a population level in microgravity, a response that must normally be overridden and masked by a constant g-vector on earth.

  13. Atmospheric Pb and Ti accumulation rates from Sphagnum moss: dependence upon plant productivity.

    PubMed

    Kempter, H; Krachler, M; Shotyk, W

    2010-07-15

    The accumulation rates of atmospheric Pb and Ti were obtained using the production rates of Sphagnum mosses collected in four ombrotrophic bogs from two regions of southern Germany: Upper Bavaria (Oberbayern, OB) and the Northern Black Forest (Nordschwarzwald, NBF). Surfaces of Sphagnum carpets were marked with plastic mesh and one year later the production of plant matter was harvested. Metal concentrations were determined in acid digests using sector field ICP-MS employing well established analytical procedures. Up to 12 samples (40 x 40 cm) were collected per site, and 6-10 sites were investigated per bog. Variations within a given sampling site were in the range 2.3-4x for Pb concentrations, 1.8-2.5x for Ti concentrations, 3-8.3x for Pb/Ti, 5.6-7.8x for Pb accumulation rates, and 2.3-6.4x for Ti accumulation rates. However, the median values of these parameters for the sites (6-10 per bog) were quite consistent. The mosses from the bogs in NBF exhibited significantly greater productivity (187-202 g m(-2) a(-1)) compared to the OB peat bogs (71-91 g m(-2) a(-1)), and these differences had a pronounced effect on the Pb and Ti accumulation rates. Highly productive mosses showed no indication of a "dilution effect" of Pb or Ti concentrations, suggesting that more productive plants were simply able to accumulate more particles from the air. The median rates of net Pb accumulation by the mosses are in excellent agreement with the fluxes obtained by direct atmospheric measurements at nearby monitoring stations in both regions (EMEP and MAPESI data).

  14. Protonema of the moss Funaria hygrometrica can function as a lead (Pb) adsorbent

    PubMed Central

    Itouga, Misao; Hayatsu, Manabu; Sato, Mayuko; Tsuboi, Yuuri; Kato, Yukari; Toyooka, Kiminori; Suzuki, Suechika; Nakatsuka, Seiji; Kawakami, Satoshi; Kikuchi, Jun

    2017-01-01

    Water contamination by heavy metals from industrial activities is a serious environmental concern. To mitigate heavy metal toxicity and to recover heavy metals for recycling, biomaterials used in phytoremediation and bio-sorbent filtration have recently drawn renewed attention. The filamentous protonemal cells of the moss Funaria hygrometrica can hyperaccumulate lead (Pb) up to 74% of their dry weight when exposed to solutions containing divalent Pb. Energy-dispersive X-ray spectroscopy revealed that Pb is localized to the cell walls, endoplasmic reticulum-like membrane structures, and chloroplast thylakoids, suggesting that multiple Pb retention mechanisms are operating in living F. hygrometrica. The main Pb-accumulating compartment was the cell wall, and prepared cell-wall fractions could also adsorb Pb. Nuclear magnetic resonance analysis showed that polysaccharides composed of polygalacturonic acid and cellulose probably serve as the most effective Pb-binding components. The adsorption abilities were retained throughout a wide range of pH values, and bound Pb was not desorbed under conditions of high ionic strength. In addition, the moss is highly tolerant to Pb. These results suggest that the moss F. hygrometrica could be a useful tool for the mitigation of Pb-toxicity in wastewater. PMID:29261745

  15. Dependence on epiphytic bacteria for freezing protection in an Antarctic moss, Bryum argenteum.

    PubMed

    Raymond, James A

    2016-02-01

    Mosses are the dominant flora of Antarctica, but their mechanisms of survival in the face of extreme low temperatures are poorly understood. A variety of Bryum argenteum from 77° S was previously shown to have strong ice-pitting activity, a sign of the presence of ice-binding proteins (IBPs) that mitigate freezing damage. Here, using samples that had been stored at -25(o) C for 10 years, it is shown that much if not all of the activity is due to bacterial ice-binding proteins secreted on the leaves of the moss. Sequencing of the leaf metagenome revealed the presence of hundreds of genes from a variety of bacteria (mostly Actinobacteria and Bacteroidetes) that encode a domain (DUF3494) that is associated with ice binding. The frequency of occurrence of this domain is one to two orders of magnitude higher than it is in representative mesophilic bacterial metagenomes. Genes encoding 42 bacterial IBPs with N-terminal secretion signals were assembled. There appears to be a commensal relationship in which the moss provides sustenance to the bacteria in return for freezing protection. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Formalized classification of moss litters in swampy spruce forests of intermontane depressions of Kuznetsk Alatau

    NASA Astrophysics Data System (ADS)

    Efremova, T. T.; Avrova, A. F.; Efremov, S. P.

    2016-09-01

    The approaches of multivariate statistics have been used for the numerical classification of morphogenetic types of moss litters in swampy spruce forests according to their physicochemical properties (the ash content, decomposition degree, bulk density, pH, mass, and thickness). Three clusters of moss litters— peat, peaty, and high-ash peaty—have been specified. The functions of classification for identification of new objects have been calculated and evaluated. The degree of decomposition and the ash content are the main classification parameters of litters, though all other characteristics are also statistically significant. The final prediction accuracy of the assignment of a litter to a particular cluster is 86%. Two leading factors participating in the clustering of litters have been determined. The first factor—the degree of transformation of plant remains (quality)—specifies 49% of the total variance, and the second factor—the accumulation rate (quantity)— specifies 26% of the total variance. The morphogenetic structure and physicochemical properties of the clusters of moss litters are characterized.

  17. Biomonitoring of atmospheric pollution by moss bags: Discriminating urban-rural structure in a fragmented landscape.

    PubMed

    Capozzi, F; Giordano, S; Di Palma, A; Spagnuolo, V; De Nicola, F; Adamo, P

    2016-04-01

    In this paper we investigated the possibility to use moss bags to detect pollution inputs - metals, metalloids and polycyclic aromatic hydrocarbons (PAHs) - in sites chosen for their different land use (agricultural, urban/residential scenarios) and proximity to roads (sub-scenarios), in a fragmented conurbation of Campania (southern Italy). We focused on thirty-nine elements including rare earths. For most of them, moss uptake was higher in agricultural than in urban scenarios and in front road sites. Twenty PAHs were analyzed in a subset of agricultural sites; 4- and 5-ringed PAHs were the most abundant, particularly chrysene, fluoranthene and pyrene. Overall results indicated that investigated pollutants have a similar spatial distribution pattern over the entire study area, with road traffic and agricultural practices as the major diffuse pollution sources. Moss bags proved a very sensitive tool, able to discriminate between different land use scenarios and proximity to roads in a mixed rural-urban landscape. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Dynamic response of peatbank moss communities to hydroclimate over the last 2000 years in the western Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Stelling, J.; Yu, Z.; Beilman, D. W.

    2016-12-01

    The western Antarctic Peninsula experienced rapid warming in late half of the 20th century in part due to a positive phase of the Southern Annular Mode (SAM) causing poleward expansion of the southern westerly wind belt that brings warmer and moister air to the peninsula. However, we do not know how coastal terrestrial ecosystems have responded to changes in temperature and hydroclimate. Here we present a paleoecological and geochemical record of ecosystem history derived from late Holocene peatbank deposits on Litchfield Island (64°46'S; 64°06'W) to reconstruct terrestrial response to temperature and hydroclimate fluctuations. Chronology of our 80-cm-long peat core from the north-facing slope is constrained by 11 AMS 14C dates covering the last 2500 years. Our macrofossil results show that relative abundance of the two dominant moss species fluctuates between <10 and 90%. Furthermore, the δ13C values of bulk peat range from -26.4 to -22.1‰ that mostly reflects species relative abundance change through time. The periods with C:N values of <20—lower than the expected C:N values (40 to 80) of fresh moss plants—corresponds with intervals containing abundant fine debris (>50%), indicating greater decomposition and selective removal of carbon from peat. Our record shows that periods where moss dominance shifts to Polytrichum, a dry and cold tolerant moss, peat decomposition increases, and coincides with periods of negative SAM. Conversely, dominance shifts to Chorisodontium, a less drought tolerant moss, with decomposition decreased during periods of strong positive SAM. This study demonstrates that ecosystem structure and geochemical signature within these moss peatbanks is sensitive to regional moisture change that can potentially be used to reconstruct shifts in hydroclimate and possibly atmospheric circulation.

  19. Practical Application of Methanol-Mediated Mutualistic Symbiosis between Methylobacterium Species and a Roof Greening Moss, Racomitrium japonicum

    PubMed Central

    Tani, Akio; Takai, Yuichiro; Suzukawa, Ikko; Akita, Motomu; Murase, Haruhiko; Kimbara, Kazuhide

    2012-01-01

    Bryophytes, or mosses, are considered the most maintenance-free materials for roof greening. Racomitrium species are most often used due to their high tolerance to desiccation. Because they grow slowly, a technology for forcing their growth is desired. We succeeded in the efficient production of R. japonicum in liquid culture. The structure of the microbial community is crucial to stabilize the culture. A culture-independent technique revealed that the cultures contain methylotrophic bacteria. Using yeast cells that fluoresce in the presence of methanol, methanol emission from the moss was confirmed, suggesting that it is an important carbon and energy source for the bacteria. We isolated Methylobacterium species from the liquid culture and studied their characteristics. The isolates were able to strongly promote the growth of some mosses including R. japonicum and seed plants, but the plant-microbe combination was important, since growth promotion was not uniform across species. One of the isolates, strain 22A, was cultivated with R. japonicum in liquid culture and in a field experiment, resulting in strong growth promotion. Mutualistic symbiosis can thus be utilized for industrial moss production. PMID:22479445

  20. Shape analysis of moss (Bryophyta) sporophytes: Insights into land plant evolution.

    PubMed

    Rose, Jeffrey P; Kriebel, Ricardo; Sytsma, Kenneth J

    2016-04-01

    The alternation of generations life cycle represents a key feature of land-plant evolution and has resulted in a diverse array of sporophyte forms and modifications in all groups of land plants. We test the hypothesis that evolution of sporangium (capsule) shape of the mosses-the second most diverse land-plant lineage-has been driven by differing physiological demands of life in diverse habitats. This study provides an important conceptual framework for analyzing the evolution of a single, homologous character in a continuous framework across a deep expanse of time, across all branches of the tree of life. We reconstruct ancestral sporangium shape and ancestral habitat on the largest phylogeny of mosses to date, and use phylogenetic generalized least squares regression to test the association between habitat and sporangium shape. In addition, we examine the association between shifts in sporangium shape and species diversification. We demonstrate that sporangium shape is convergent, under natural selection, and associated with habitat type, and that many shifts in speciation rate are associated with shifts in sporangium shape. Our results suggest that natural selection in different microhabitats results in the diversity of sporangium shape found in mosses, and that many increasing shifts in speciation rate result in changes in sporangium shape across their 480 million year history. Our framework provides a way to examine if diversification shifts in other land plants are also associated with massive changes in sporophyte form, among other morphological traits. © 2016 Botanical Society of America.

  1. Monitoring chronic and acute PAH atmospheric pollution using transplants of the moss Hypnum cupressiforme and Robinia pseudacacia leaves

    NASA Astrophysics Data System (ADS)

    Capozzi, F.; Di Palma, A.; Adamo, P.; Spagnuolo, V.; Giordano, S.

    2017-02-01

    Few studies are focused on correlations between the concentrations of PAHs in mosses and other bioindicator plant species. This study was carried out to investigate the potential of the joint use of devitalized H. cupressiforme transplants and R. pseudoacacia leaves as cost effective biomonitors for the assessment of PAHs in the air. The test was performed in a land historically devoted to agriculture, where recurrent waste burnings randomly occur, especially in the season we chose for the investigation. The presence of 20 PAHs was assessed following EPA 3550 C 2007 and EPA 8270 D 2014 protocols. R. pseudoacacia was able to accumulate both LMW and HMW PAHs, while moss prevalently collected the latter. It is suggested that R. pseudoacacia combined chronic pyrogenic and petrogenic PAH inputs, while moss transplants reflected PAH depositions from recent pyrogenic events. Our approach revealed long and short-term pollution footprints, with R. pseudoacacia recording the chronic input of PAH compounds loaded along its vegetative growth, and moss bags reflecting acute pollution inputs occurred during the exposure duration.

  2. Adaptation Mechanisms in the Evolution of Moss Defenses to Microbes

    PubMed Central

    Ponce de León, Inés; Montesano, Marcos

    2017-01-01

    Bryophytes, including mosses, liverworts and hornworts are early land plants that have evolved key adaptation mechanisms to cope with abiotic stresses and microorganisms. Microbial symbioses facilitated plant colonization of land by enhancing nutrient uptake leading to improved plant growth and fitness. In addition, early land plants acquired novel defense mechanisms to protect plant tissues from pre-existing microbial pathogens. Due to its evolutionary stage linking unicellular green algae to vascular plants, the non-vascular moss Physcomitrella patens is an interesting organism to explore the adaptation mechanisms developed in the evolution of plant defenses to microbes. Cellular and biochemical approaches, gene expression profiles, and functional analysis of genes by targeted gene disruption have revealed that several defense mechanisms against microbial pathogens are conserved between mosses and flowering plants. P. patens perceives pathogen associated molecular patterns by plasma membrane receptor(s) and transduces the signal through a MAP kinase (MAPK) cascade leading to the activation of cell wall associated defenses and expression of genes that encode proteins with different roles in plant resistance. After pathogen assault, P. patens also activates the production of ROS, induces a HR-like reaction and increases levels of some hormones. Furthermore, alternative metabolic pathways are present in P. patens leading to the production of a distinct metabolic scenario than flowering plants that could contribute to defense. P. patens has acquired genes by horizontal transfer from prokaryotes and fungi, and some of them could represent adaptive benefits for resistance to biotic stress. In this review, the current knowledge related to the evolution of plant defense responses against pathogens will be discussed, focusing on the latest advances made in the model plant P. patens. PMID:28360923

  3. Interaction between the moss Physcomitrella patens and Phytophthora: a novel pathosystem for live-cell imaging of subcellular defence.

    PubMed

    Overdijk, Elysa J R; DE Keijzer, Jeroen; DE Groot, Deborah; Schoina, Charikleia; Bouwmeester, Klaas; Ketelaar, Tijs; Govers, Francine

    2016-08-01

    Live-cell imaging of plant-pathogen interactions is often hampered by the tissue complexity and multicell layered nature of the host. Here, we established a novel pathosystem with the moss Physcomitrella patens as host for Phytophthora. The tip-growing protonema cells of this moss are ideal for visualizing interactions with the pathogen over time using high-resolution microscopy. We tested four Phytophthora species for their ability to infect P. patens and showed that P. sojae and P. palmivora were only rarely capable to infect P. patens. In contrast, P. infestans and P. capsici frequently and successfully penetrated moss protonemal cells, showed intracellular hyphal growth and formed sporangia. Next to these successful invasions, many penetration attempts failed. Here the pathogen was blocked by a barrier of cell wall material deposited in papilla-like structures, a defence response that is common in higher plants. Another common response is the upregulation of defence-related genes upon infection and also in moss we observed this upregulation in tissues infected with Phytophthora. For more advanced analyses of the novel pathosystem we developed a special set-up that allowed live-cell imaging of subcellular defence processes by high-resolution microscopy. With this set-up, we revealed that Phytophthora infection of moss induces repositioning of the nucleus, accumulation of cytoplasm and rearrangement of the actin cytoskeleton, but not of microtubules. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  4. Two sisters resembling Gorlin-Chaudhry-Moss syndrome.

    PubMed

    Aravena, Teresa; Passalacqua, Cristóbal; Pizarro, Oscar; Aracena, Mariana

    2011-10-01

    The Gorlin-Chaudhry-Moss syndrome (GCMS), was describe initially by Gorlin et al. [Gorlin et al. (1960)] in two sisters with craniosynostosis, hypertrichosis, hypoplastic labia majora, dental defects, eye anomalies, patent ductus arteriosus, and normal intelligence. Two other sporadic instances have been documented. Here, we report on two sisters with a condition with some similarities to GCMS as well as some differences, which could represent either previously unreported variability in GCMS, or it may represent a novel disorder. Copyright © 2011 Wiley-Liss, Inc.

  5. Laparoscopic insertion of the Moss feeding tube.

    PubMed

    Albrink, M H; Hagan, K; Rosemurgy, A S

    1993-12-01

    Placement of enteral feeding tubes is an important part of a surgeon's skill base. Surgical insertion of feeding tubes has been performed safely for many years with very few modifications. With the recent surge in interest and applicability of other laparoscopic procedures, it is well within the skills of the average laparoscopic surgeon to insert feeding tubes. We describe herein a simple technique for the insertion of the Moss feeding tube. The procedure described has a minimum of invasion, along with simplicity, safety, and accuracy.

  6. Multi-element atmospheric deposition in Macedonia studied by the moss biomonitoring technique.

    PubMed

    Barandovski, Lambe; Frontasyeva, Marina V; Stafilov, Trajče; Šajn, Robert; Ostrovnaya, Tatyana M

    2015-10-01

    Moss biomonitoring technique using moss species Homolothecium lutescens (Hedw.) Robins and Hypnum cupressiforme (Hedw.) was applied to air pollution studies in the Republic of Macedonia. The study was performed in the framework of the International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops under the auspices of the United Nations Economic Commission for Europe (UNECE) Convention on Long-Range Transboundary Air Pollution (LRTAP). The presence of 47 elements was determined by instrumental epithermal neutron activation analysis, atomic absorption spectrometry and atomic emission spectrometry with inductively coupled plasma. Normality of the datasets of elements was investigated, and Box-Cox transformation was used in order to achieve normal distributions of the data. Different pollution sources were identified and characterized using principal component analysis (PCA). Distribution maps were prepared to point out the regions most affected by pollution and to relate this to the known sources of contamination. The cities of Veles, Skopje, Tetovo, Radoviš and Kavadarci were determined to experience particular environmental stress. Moreover, three reactivated lead-zinc mines were also shown to contribute to a high content of lead and zinc in the eastern part of the country. However, a comparison with the previous moss survey conducted in 2005 showed a decreasing trend of pollution elements that are usually associated with emission from industrial activities.

  7. Systemic acquired resistance in moss: further evidence for conserved defense mechanisms in plants.

    PubMed

    Winter, Peter S; Bowman, Collin E; Villani, Philip J; Dolan, Thomas E; Hauck, Nathanael R

    2014-01-01

    Vascular plants possess multiple mechanisms for defending themselves against pathogens. One well-characterized defense mechanism is systemic acquired resistance (SAR). In SAR, a plant detects the presence of a pathogen and transmits a signal throughout the plant, inducing changes in the expression of various pathogenesis-related (PR) genes. Once SAR is established, the plant is capable of mounting rapid responses to subsequent pathogen attacks. SAR has been characterized in numerous angiosperm and gymnosperm species; however, despite several pieces of evidence suggesting SAR may also exist in non-vascular plants6-8, its presence in non-vascular plants has not been conclusively demonstrated, in part due to the lack of an appropriate culture system. Here, we describe and use a novel culture system to demonstrate that the moss species Amblystegium serpens does initiate a SAR-like reaction upon inoculation with Pythium irregulare, a common soil-borne oomycete. Infection of A. serpens gametophores by P. irregulare is characterized by localized cytoplasmic shrinkage within 34 h and chlorosis and necrosis within 7 d of inoculation. Within 24 h of a primary inoculation (induction), moss gametophores grown in culture became highly resistant to infection following subsequent inoculation (challenge) by the same pathogen. This increased resistance was a response to the pathogen itself and not to physical wounding. Treatment with β-1,3 glucan, a structural component of oomycete cell walls, was equally effective at triggering SAR. Our results demonstrate, for the first time, that this important defense mechanism exists in a non-vascular plant, and, together with previous studies, suggest that SAR arose prior to the divergence of vascular and non-vascular plants. In addition, this novel moss - pathogen culture system will be valuable for future characterization of the mechanism of SAR in moss, which is necessary for a better understanding of the evolutionary history of SAR in

  8. Using an epiphytic moss to identify previously unknown sources of atmospheric cadmium pollution.

    PubMed

    Donovan, Geoffrey H; Jovan, Sarah E; Gatziolis, Demetrios; Burstyn, Igor; Michael, Yvonne L; Amacher, Michael C; Monleon, Vicente J

    2016-07-15

    Urban networks of air-quality monitors are often too widely spaced to identify sources of air pollutants, especially if they do not disperse far from emission sources. The objectives of this study were to test the use of moss bio-indicators to develop a fine-scale map of atmospherically-derived cadmium and to identify the sources of cadmium in a complex urban setting. We collected 346 samples of the moss Orthotrichum lyellii from deciduous trees in December, 2013 using a modified randomized grid-based sampling strategy across Portland, Oregon. We estimated a spatial linear model of moss cadmium levels and predicted cadmium on a 50m grid across the city. Cadmium levels in moss were positively correlated with proximity to two stained-glass manufacturers, proximity to the Oregon-Washington border, and percent industrial land in a 500m buffer, and negatively correlated with percent residential land in a 500m buffer. The maps showed very high concentrations of cadmium around the two stained-glass manufacturers, neither of which were known to environmental regulators as cadmium emitters. In addition, in response to our findings, the Oregon Department of Environmental Quality placed an instrumental monitor 120m from the larger stained-glass manufacturer in October, 2015. The monthly average atmospheric cadmium concentration was 29.4ng/m(3), which is 49 times higher than Oregon's benchmark of 0.6ng/m(3), and high enough to pose a health risk from even short-term exposure. Both stained-glass manufacturers voluntarily stopped using cadmium after the monitoring results were made public, and the monthly average cadmium levels precipitously dropped to 1.1ng/m(3) for stained-glass manufacturer #1 and 0.67ng/m(3) for stained-glass manufacturer #2. Published by Elsevier B.V.

  9. Differentiating moss from higher plants is critical in studying the carbon cycle of the boreal biome.

    PubMed

    Yuan, Wenping; Liu, Shuguang; Dong, Wenjie; Liang, Shunlin; Zhao, Shuqing; Chen, Jingming; Xu, Wenfang; Li, Xianglan; Barr, Alan; Andrew Black, T; Yan, Wende; Goulden, Mike L; Kulmala, Liisa; Lindroth, Anders; Margolis, Hank A; Matsuura, Yojiro; Moors, Eddy; van der Molen, Michiel; Ohta, Takeshi; Pilegaard, Kim; Varlagin, Andrej; Vesala, Timo

    2014-06-26

    The satellite-derived normalized difference vegetation index (NDVI), which is used for estimating gross primary production (GPP), often includes contributions from both mosses and vascular plants in boreal ecosystems. For the same NDVI, moss can generate only about one-third of the GPP that vascular plants can because of its much lower photosynthetic capacity. Here, based on eddy covariance measurements, we show that the difference in photosynthetic capacity between these two plant functional types has never been explicitly included when estimating regional GPP in the boreal region, resulting in a substantial overestimation. The magnitude of this overestimation could have important implications regarding a change from a current carbon sink to a carbon source in the boreal region. Moss abundance, associated with ecosystem disturbances, needs to be mapped and incorporated into GPP estimates in order to adequately assess the role of the boreal region in the global carbon cycle.

  10. Differentiating moss from higher plants is critical in studying the carbon cycle of the boreal biome

    USGS Publications Warehouse

    Yuan, Wenping; Liu, Shuguang; Dong, Wenjie; Liang, Shunlin; Zhao, Shuqing; Chen, Jingming; Xu, Wenfang; Li, Xianglan; Barr, Alan; Black, T. Andrew; Yan, Wende; Goulden, Michael; Kulmala, Liisa; Lindroth, Anders; Margolis, Hank A.; Matsuura, Yojiro; Moors, Eddy; van der Molen, Michiel; Ohta, Takeshi; Pilegaard, Kim; Varlagin, Andrej; Vesala, Timo

    2014-01-01

    The satellite-derived normalized difference vegetation index (NDVI), which is used for estimating gross primary production (GPP), often includes contributions from both mosses and vascular plants in boreal ecosystems. For the same NDVI, moss can generate only about one-third of the GPP that vascular plants can because of its much lower photosynthetic capacity. Here, based on eddy covariance measurements, we show that the difference in photosynthetic capacity between these two plant functional types has never been explicitly included when estimating regional GPP in the boreal region, resulting in a substantial overestimation. The magnitude of this overestimation could have important implications regarding a change from a current carbon sink to a carbon source in the boreal region. Moss abundance, associated with ecosystem disturbances, needs to be mapped and incorporated into GPP estimates in order to adequately assess the role of the boreal region in the global carbon cycle.

  11. Are Alcohol Expectancies Associations? Comment on Moss and Albery (2009)

    ERIC Educational Resources Information Center

    Wiers, Reinout W.; Stacy, Alan W.

    2010-01-01

    Moss and Albery (2009) presented a dual-process model of the alcohol-behavior link, integrating alcohol expectancy and alcohol myopia theory. Their integrative theory rests on a number of assumptions including, first, that alcohol expectancies are associations that can be activated automatically by an alcohol-relevant context, and second, that…

  12. Biocrust-forming mosses mitigate the impact of aridity on soil microbial communities in drylands: observational evidence from three continents.

    PubMed

    Delgado-Baquerizo, Manuel; Maestre, Fernando T; Eldridge, David J; Bowker, Matthew A; Jeffries, Thomas C; Singh, Brajesh K

    2018-04-02

    Recent research indicates that increased aridity linked to climate change will reduce the diversity of soil microbial communities and shift their community composition in drylands, Earth's largest biome. However, we lack both a theoretical framework and solid empirical evidence of how important biotic components from drylands, such as biocrust-forming mosses, will regulate the responses of microbial communities to expected increases in aridity with climate change. Here we report results from a cross-continental (North America, Europe and Australia) survey of 39 locations from arid to humid ecosystems, where we evaluated how biocrust-forming mosses regulate the relationship between aridity and the community composition and diversity of soil bacteria and fungi in dryland ecosystems. Increasing aridity was negatively related to the richness of fungi, and either positively or negatively related to the relative abundance of selected microbial phyla, when biocrust-forming mosses were absent. Conversely, we found an overall lack of relationship between aridity and the relative abundance and richness of microbial communities under biocrust-forming mosses. Our results suggest that biocrust-forming mosses mitigate the impact of aridity on the community composition of globally distributed microbial taxa, and the diversity of fungi. They emphasize the importance of maintaining biocrusts as a sanctuary for soil microbes in drylands. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  13. Gravi- and photostimuli in moss protonema growth movements

    NASA Astrophysics Data System (ADS)

    Demkiv, O. T.; Kordyum, E. L.; Khorkavtsiv, Ya D.; Kardash, O. R.; Chaban, Ch. I.

    Moss protonemal growth direction is controlled by at least three factors, photo-, gravi- and autotropism. It is possible to experimentally separate these factors and to control selectively their morphological appearance. In darkness protonema grow negatively gravitropically, and unilateral illumination initiated positive phototropism. Red light suppressed auto- and gravitropism, blue light suppressed only gravitropism. Green light allowed both gravi- and autotropism. The effect of light on gravitropism might involve changes in starch synthesis.

  14. Gravi- and photostimuli in moss protonema growth movements.

    PubMed

    Demkiv, O T; Kordyum, E L; Khorkavtsiv YaD; Kardash, O R; Chaban ChI

    1998-01-01

    Moss protonemal growth direction is controlled by at least three factors, photo-, gravi- and autotropism. It is possible to experimentally separate these factors and to control selectively their morphological appearance. In darkness protonema grow negatively gravitropically, and unilateral illumination initiated positive phototropism. Red light suppressed auto- and gravitropism, blue light suppressed only gravitropism. Green light allowed both gravi- and autotropism. The effect of light on gravitropism might involve changes in starch synthesis.

  15. Shallow peatland ecohydrology - the control of peat depth on moss productivity

    NASA Astrophysics Data System (ADS)

    Dixon, Simon; Kettridge, Nicholas; Moore, Paul; Devito, Kevin; Tilak, Amey; Petrone, Rich; Mendoza, Carl; Waddington, Mike

    2017-04-01

    Northern peatlands represent an important sink in the global carbon cycle. Shallow peatlands and marginal connective wetlands can be essential components of many northern peatland landscape mosaics, playing a vital role in landscape connectivity and wider landscape hydrology. However the ecohydrological function of these shallow, marginal systems has been largely overlooked, with peatland hydrology research focused on relatively deep bog systems. In order to predict landscape scale wetland function and its vulnerability to climate change we need to understand how these shallow connective systems function. The balance between moss productivity and water loss provide a key component of these systems, as water use efficiency controls the rate of moss growth and thus controls the amount of atmospheric carbon sequestered in peat. Understanding how productivity of shallow peatland systems responds to changes in evaporative stress will aid predictions of peatland landscape hydrological function in a changing climate. To determine the factors influencing peat productivity, water balance simulations using Hydrus 1-D were conducted over annual growing seasons for different soil profile depths, compositions and antecedent moisture conditions. Our results demonstrate a bimodal distribution of peatland responses; either primarily conserving water by limiting evapotranspiration or, maximizing productivity. For sustained periods of evaporative stress, shallow marginal systems are least able to buffer periods of evaporative stress due to limited labile water storage, and will limit evaporation, conserve water and be less productive. Conversely, where present, both deep water storage and a shallow initial water table prolong the onset of high vegetative stress, thus maximizing moss productivity. However, a total depth of 0.8 m is identified as the threshold above which increasing peat depth has no further effect on changing vegetative stress response and thus landscape function

  16. Phytochrome mediated gravimorphogenesis in the moss protonemata

    NASA Astrophysics Data System (ADS)

    Demkiv, O.; Khorkavtsiv, Y.

    Moss protonemata are among the few cell types known that both sense and respond to gravity and light. Apical cells of moss protonemata grow by oriented tip growth which is negatively gravitropic in the dark or positively phototropic in unilateral light. Gametophore buds always arise some 4 - 6 cells behind the apical cells of main protonemal filaments differentiating from apical cells of shortened side branches. It has been shown, however, that in Pohlia nutans, as in Pottia intermedia (Ripetskyj et al, 1997) the apical cells of main filaments of dark grown protonemata differentiate buds under the influence of light. We tested the effectiveness of white and monochromatic light of the visible spectrum on the bud formation of Pohlia nutans which had been grown in darkness. The most morphogenetically effective light was red light, but green, yellow and white light were also active. Blue light alone completely inhibits bud formation but supplemented with red light this inhibitory effect of blue light is couneracted and buds are formed, provided a minimum exposure of red light is maintained. M.Bopp (1985) had demosnrated that exclusively cell that had not reached 80 μm in length initiated bud formation. Red light seemed to inhibit growth of apical cells and to promote bud formation. The action spectra for the induction of buds formation are, as expected, very similar to the absorption spectra of Pf r . The relatively small effectivity of quanta in the short-wave spectral range is caused by the strong absorption of radiation of < 520 nm by carotenoids and flavines. Red light might act as a triger for morphogenetic processes in dark-grown cells. The white or red light stopped an elongation of main filaments apical cells of protonema grown in the dark for 7 days retaining the rate of the cell divisions practically constant. As a result short apical cells are formed ready for a transition to new morphogenetic pathway of gametophore buds formation. The reaction proved to be

  17. Sporophytic inbreeding depression in mosses occurs in a species with separate sexes but not in a species with combined sexes.

    PubMed

    Taylor, Philip J; Eppley, Sarah M; Jesson, Linley K

    2007-11-01

    Inbreeding depression is a critical factor countering the evolution of inbreeding and thus potentially shaping the evolution of plant sexual systems. Current theory predicts that inbreeding depression could have important evolutionary consequences, even in haploid-dominant organisms. To date, no data have been reported on inbreeding depression in moss species. Here, we present data on the magnitude of inbreeding depression in sporophytic traits of moss species with contrasting breeding systems. In Ceratodon purpureus (Ditrichaceae), a moss species with separate sexes, self-fertilizations between sibling gametophytes (intergametophytic selfing) significantly reduced fitness in two of four traits quantified, with seta length and capsule length having inbreeding coefficients significantly different from zero, resulting in a cumulative inbreeding depression that was also significantly greater than zero (δ = 0.619 ± 0.076). In hermaphroditic Funaria hygrometrica (Funariaceae), there was no evidence of inbreeding depression in seta length, spore number, capsule mass, or capsule length resulting from sporophytes generated by self-fertilization within an individual (intragametophytic selfing), and cumulative inbreeding depression was also not different from zero (δ = 0.038 ± 0.022). These results provide evidence that, despite haploid dominance, inbreeding depression can be expressed at the diploid stage in mosses and may have implications for the evolution and maintenance of combined versus separate sexes in mosses.

  18. Effects of sand burial and wind disturbances on moss soil crusts in a revegetated area of the Tennger Desert, Northern China

    NASA Astrophysics Data System (ADS)

    Jia, R. L.; Li, X. R.; Liu, L. C.; Gao, Y. H.

    2012-04-01

    Sand burial and wind are two predominant natural disturbances in the desert ecosystems worldwide. However, the effects of sand burial and wind disturbances on moss soil crusts are still largely unexplored. In this study, two sets of experiments were conducted separately to evaluated the effects of sand burial (sand depth of 0, 1, 2, 3 and 4 mm) and wind blowing (wind speed of 0.2, 3, 6 and 9ms-1) on ecophysiological variables of two moss soil crusts collected from a revegetated area of the Tengger Desert, Northern China. Firstly, the results from the sand burial experiment revealed that respiration rate was significantly decreased and that moss shoot elongation was significantly increased after burial. In addition, Bryum argenteum crust showed the fastest speed of emergence and highest tolerance index, followed by Didymodon vinealis crust. This sequence was consistent with the successional order of the two moss crusts that happened in our study area, indicating that differential sand burial tolerance explains their succession sequence. Secondly, the results from the wind experiment showed that CO2 exchange, PSII photochemical efficiency, photosynthetic pigments, shoot upgrowth, productivity and regeneration potential of the two moss soil crust mentioned above were all substantially depressed. Furthermore, D. vinealis crust exhibited stronger wind resistance than B. argenteum crust from all aspects mentioned above. And this is comparison was identical with their contrasting microhabitats with B. argenteum crust being excluded from higher wind speed microsites in the windward slopes, suggesting that the differential wind resistance of moss soil crusts explains their microdistribution pattern. In conclusion, the ecogeomorphological processes of moss soil crusts in desert ecosystems can be largely determined by natural disturbances caused by sand burial and wind blowing in desert ecosystems.

  19. Effects of sand burial on dew deposition on moss soil crust in a revegetated area of the Tennger Desert, Northern China

    NASA Astrophysics Data System (ADS)

    Jia, Rong-liang; Li, Xin-rong; Liu, Li-chao; Pan, Yan-xia; Gao, Yan-hong; Wei, Yong-ping

    2014-11-01

    Sand burial and dew deposition are two fundamental phenomena profoundly influencing biological soil crusts in desert areas. However, little information is available regarding the effects of sand burial on dew deposition on biological soil crusts in desert ecosystems. In this study, we evaluated the effects of sand burial at depths of 0 (control), 0.5, 1, 2 and 4 mm on dew formation and evaporation of three dominant moss crusts in a revegetated area of the Tengger Desert (Northern China) in 2010. The results revealed that sand burial significantly decreased the amount of dew deposited on the three moss crust types by acting as a semi-insulator retarding the dew formation and evaporation rates. The changes in surface temperature cannot fully explain the variations of the formation and evaporation rates of dew by moss crusts buried by sand. The extension of dew retention time was reflected by the higher dew ratios (the ratio of dew amount at a certain time to the maximum value in a daily course) in the daytime, and may to some extent have acted as compensatory mechanisms that diminished the negative effects of the reduction of dew amount induced by sand burial of moss crusts. The resistances to reduction of dewfall caused by sand burial among the three moss crusts were also compared and it was found that Bryum argenteum crust showed the highest tolerance, followed by crusts dominated by Didymodon vinealis and Syntrichia caninervis. This sequence corresponds well with the successional order of the three moss crusts in the revegetated area, thereby suggesting that resistance to reduction of dewfall may act as one mechanism by which sand burial drives the succession of moss crusts in desert ecosystems. This side effect of dew reduction induced by sand burial on biological soil crusts should be considered in future ecosystem construction and management of desert area.

  20. Assessment of atmospheric deposition of heavy metals and other elements in Belgrade using the moss biomonitoring technique and neutron activation analysis.

    PubMed

    Anicić, Mira; Frontasyeva, Marina V; Tomasević, Milica; Popović, Aleksandar

    2007-06-01

    This study aimed at assessing atmospheric deposition of heavy metals and other elements using the moss genera Brachythecium sp. (B. rutabulum and B. salebrosum) and Eurhynchium sp. (E. hians and E. striatum) collected in autumn 2004 in the urban area of Belgrade. The concentrations of 36 elements (Na, Mg, Al, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Br, Rb, Sr, Mo, Sb, I, Cs, Ba, La, Ce, Sm, Tb, Dy, Hf, Ta, W, Hg, Th, U) were determined in moss and local topsoil samples by instrumental neutron activation analysis. The concentration of elements in moss positively correlated to those obtained for topsoil. High enrichment factors for As, Zn, Mo, Br, Sb, Se, Hg and Cl, calculated to continental crust composition, gave an evidence for anthropogenic impact on urban area, mainly due to intensive vehicular traffic and fossil fuel combustion. The concentration of elements in moss, characteristic for fossil fuel combustion, obtained in this study were substantially lower than in the previous investigation (2000) conducted in the area of Belgrade. The level of concentrations for V, Cr, Ni, and As in moss from this study correlated to those measured for neighboring countries, and were several times higher than the base-level data from low polluted areas. The level of accumulated elements in both investigated moss genera were similar and all studied species could be combined for biomonitoring purposes in urban areas.

  1. Trends of atmospheric deposition of trace elements in Macedonia studied by the moss biomonitoring technique.

    PubMed

    Barandovski, Lambe; Frontasyeva, Marina V; Stafilov, Trajče; Sajn, Robert; Pavlov, Sergey; Enimiteva, Vangelica

    2012-01-01

    In 2002 and 2005 the moss biomonitoring technique was applied to air pollution studies in the Republic of Macedonia in the framework of the International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops under the auspices of the United Nations Economic Commission for Europe (UNECE-ICP Vegetation) Convention on Long-Range Transboundary Air Pollution (LRTAP). In August 2005 samples of the terrestrial mosses Homolothecium lutescens and Hypnum cupressiforme were collected at 72 sites evenly distributed over the territory of the country, in accordance with the sampling strategy of the European moss survey programme. A total of 41 elements (Na, Mg, Al, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Zr, Mo, Cd, Sb, I, Cs, Ba, La, Ce, Sm, Eu, Tb, Dy Hf, Ta, W, Hg, Pb, Th, and U) were determined by instrumental epithermal neutron activation analysis and atomic absorption spectrometry. Principal component analysis was used to identify and characterize different pollution sources. Distributional maps were prepared to point out the regions most affected by pollution and to relate this to known sources of contamination. A few areas, as in 2002, are experiencing particular environmental stress: Veles, Skopje, Tetovo, Radoviš and Kavadarci-Negotino, whereas the agricultural regions in the south, south-west, and south-east show median European values for most elements of mainly pollution origin. A significant increase in the content of Ni is noticed in the 2005 moss survey compared with 2002, due to the increased production of the ferro-nickel smelter in Kavadarci. A higher content of Cd, Hg, and Pb in 2005 relative to 2002 can be explained by pollution from the lead-zinc smelter in Veles, as well as the pollution that comes from the open slag waste dump of this smelter. Protection activities on the dump of slag from the former ferrochromium smelter located near Tetovo resulted in a lower content of Cr in the 2005 moss

  2. Novel biogenic aggregation of moss gemmae on a disappearing African glacier.

    PubMed

    Uetake, Jun; Tanaka, Sota; Hara, Kosuke; Tanabe, Yukiko; Samyn, Denis; Motoyama, Hideaki; Imura, Satoshi; Kohshima, Shiro

    2014-01-01

    Tropical regions are not well represented in glacier biology, yet many tropical glaciers are under threat of disappearance due to climate change. Here we report a novel biogenic aggregation at the terminus of a glacier in the Rwenzori Mountains, Uganda. The material was formed by uniseriate protonemal moss gemmae and protonema. Molecular analysis of five genetic markers determined the taxon as Ceratodon purpureus, a cosmopolitan species that is widespread in tropical to polar region. Given optimal growing temperatures of isolate is 20-30 °C, the cold glacier surface might seem unsuitable for this species. However, the cluster of protonema growth reached approximately 10 °C in daytime, suggesting that diurnal increase in temperature may contribute to the moss's ability to inhabit the glacier surface. The aggregation is also a habitat for microorganisms, and the disappearance of this glacier will lead to the loss of this unique ecosystem.

  3. Patch testing with serial dilutions and thin-layer chromatograms of oak moss absolutes containing high and low levels of atranol and chloroatranol.

    PubMed

    Mowitz, Martin; Zimerson, Erik; Svedman, Cecilia; Bruze, Magnus

    2013-12-01

    Oak moss absolute (Evernia prunastri extract) contains a large number of substances, among them the potent allergens atranol and chloroatranol. Since 2008, their content in oak moss absolute has been restricted by the International Fragrance Association to a maximum level of 100 ppm each. To compare the elicitation capacities of a traditional (sample A) and a treated (sample B) oak moss absolute containing, in total, 27 000 and 66 ppm of atranol and chloroatranol, respectively, and to investigate reactions to components of oak moss absolute separated by thin-layer chromatography (TLC). Fifteen oak moss-allergic subjects were patch tested with serial dilutions and TLC strips of samples A and B. Fifteen subjects reacted to sample A at concentrations ≤ 2.0%, and 2 subjects reacted to sample B at 2.0% but not to lower concentrations. Among 13 subjects reacting to the TLC strip of sample A, 11 reacted to spots with retardation factor values corresponding to those of atranol and/or chloroatranol, and 11 reacted to other areas on the TLC strip. Only one subject reacted to the TLC strip of sample B. The patch test reactivity of sample B was significantly lower than that of sample A. The TLC patch tests indicate the presence of sensitizers other than atranol and chloroatranol in oak moss absolute. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Response of photosynthetic carbon gain to ecosystem retrogression of vascular plants and mosses in the boreal forest.

    PubMed

    Bansal, Sheel; Nilsson, Marie-Charlotte; Wardle, David A

    2012-07-01

    In the long-term absence of rejuvenating disturbances, forest succession frequently proceeds from a maximal biomass phase to a retrogressive phase characterized by reduced nutrient availability [notably nitrogen (N) and phosphorus (P)] and net primary productivity. Few studies have considered how retrogression induces changes in ecophysiological responses associated with photosynthetic carbon (C) gain, and only for trees. We tested the hypothesis that retrogression would negatively impact photosynthetic C gain of four contrasting species, and that this impact would be greater for vascular plants (i.e., trees and shrubs) than for non-vascular plants (i.e., mosses). We used a 5,000-year-old chronosequence of forested islands in Sweden, where retrogression occurs in the long-term absence of lightning-ignited wildfires. Despite fundamental differences in plant form and ecological niche among species, vascular plants and mosses showed similar ecophysiological responses to retrogression. The most common effects of retrogression were reductions in photosynthesis and respiration per unit foliar N, increases in foliar N, δ(13)C and δ(15)N, and decreases in specific leaf areas. In contrast, photosynthesis per unit mass or area generally did not change along the chronosequence, but did vary many-fold between vascular plants and mosses. The consistent increases in foliar N without corresponding increases in mass- or area-based photosynthesis suggest that other factor(s), such as P co-limitation, light conditions or water availability, may co-regulate C gain in retrogressive boreal forests. Against our predictions, traits of mosses associated with C and N were generally highly responsive to retrogression, which has implications for how mosses influence ecosystem processes in boreal forests.

  5. Tip-growing cells of the moss Ceratodon purpureus Are gravitropic in high-density media

    NASA Technical Reports Server (NTRS)

    Schwuchow, Jochen Michael; Kern, Volker Dieter; Sack, Fred David

    2002-01-01

    Gravity sensing in plants and algae is hypothesized to rely upon either the mass of the entire cell or that of sedimenting organelles (statoliths). Protonemata of the moss Ceratodon purpureus show upward gravitropism and contain amyloplasts that sediment. If moss sensing were whole-cell based, then media denser than the cell should prevent gravitropism or reverse its direction. Cells that were inverted or reoriented to the horizontal displayed distinct negative gravitropism in solutions of iodixanol with densities of 1.052 to 1.320 as well as in bovine serum albumin solutions with densities of 1.037 to 1.184 g cm(-3). Studies using tagged molecules of different sizes and calculations of diffusion times suggest that both types of media penetrate through the apical cell wall. Estimates of the density of the apical cell range from 1.004 to 1.085. Because protonemata grow upward when the cells have a density that is lower than the surrounding medium, gravitropic sensing probably utilizes an intracellular mass in moss protonemata. These data provide additional support for the idea that sedimenting amyloplasts function as statoliths in gravitropism.

  6. [Heavy metals contents and Hg adsorption characteristics of mosses in virgin forest of Gongga Mountain].

    PubMed

    Liang, Peng; Yang, Yong-Kui; He, Lei; Wang, Ding-Yong

    2008-06-01

    Seven main moss species in the Hailuogou virgin forest of Gongga Mountain were sampled to determine their heavy metals (Hg, Cr, Cd, Ni, Pb, Cu, Mn, Zn and Fe) content, and two widely distributed species, Pleurozium schreberi (Brid.) Mitt. and Racomitrium laetum Besch., were selected to study their Hg adsorption characteristics. The results showed that the heavy metals contents in the mosses were lower than the background values in Europe and America, except that the Cd had a comparable value, which indicated that the atmosphere in study area was not polluted by heavy metals and good in quality. The Hg adsorption by P. schreberi and R. laetum was an initiative and rapid process, with the equilibrium reached in about two hours, and could be well fitted by Freundlich and Langmuir equations. Based on Langmuir equation, the maximum Hg adsorption capacities of P. schreberi and R. laetum were 15.24 and 8.19 mg x g(-1), respectively, suggesting that the two mosses had a good capacity of Hg adsorption, and could be used as the bio-monitors of atmospheric Hg pollution.

  7. Dust is the dominant source of "heavy metals" to peat moss (Sphagnum fuscum) in the bogs of the Athabasca Bituminous Sands region of northern Alberta.

    PubMed

    Shotyk, William; Bicalho, Beatriz; Cuss, Chad W; Duke, M John M; Noernberg, Tommy; Pelletier, Rick; Steinnes, Eiliv; Zaccone, Claudio

    2016-01-01

    Sphagnum fuscum was collected from twenty-five ombrotrophic (rain-fed) peat bogs surrounding open pit mines and upgrading facilities of Athabasca Bituminous Sands (ABS) in northern Alberta (AB) in order to assess the extent of atmospheric contamination by trace elements. As a control, this moss species was also collected at a bog near Utikuma (UTK) in an undeveloped part of AB and 264km SW of the ABS region. For comparison, this moss was also collected in central AB, in the vicinity of the City of Edmonton which is approximately 500km to the south of the ABS region, from the Wagner Wetland which is 22km W of the City, from Seba Beach (ca. 90km W) and from Elk Island National Park (ca. 45km E). All of the moss samples were digested and trace elements concentrations determined using ICP-SMS at a commercial laboratory, with selected samples also analyzed using instrumental neutron activation analysis at the University of Alberta. The mosses from the ABS region yielded lower concentrations of Ag, As, Bi, Cd, Cu, Pb, Sb, Tl, and Zn compared to the moss from the Edmonton area. Concentrations of Ni and Mo in the mosses were comparable in these two regions, but V was more abundant in the ABS samples. Compared with the surface vegetation of eight peat cores collected in recent years from British Columbia, Ontario, Quebec and New Brunswick, the mean concentrations of Ag, As, Bi, Cd, Cu, Mo, Ni, Pb, Sb, Tl and Zn in the mosses from the ABS region are generally much lower. In fact, the concentrations of these trace elements in the samples from the ABS region are comparable to the corresponding values in forest moss from remote regions of central and northern Norway. Lithophile element concentrations (Ba, Be, Ga, Ge, Li, Sc, Th, Ti, Zr) explain most of the variation in trace metal concentrations in the moss samples. The mean concentrations of Th and Zr are greatest in the moss samples from the ABS region, reflecting dust inputs to the bogs from open pit mines, aggregate

  8. Differing source water inputs, moderated by evaporative enrichment, determine the contrasting δ18OCELLULOSE signals in maritime Antarctic moss peat banks

    NASA Astrophysics Data System (ADS)

    Royles, Jessica; Sime, Louise C.; Hodgson, Dominic A.; Convey, Peter; Griffiths, Howard

    2013-03-01

    Oxygen isotope palaeoclimate records, preserved in moss tissue cellulose, are complicated by environmental influences on the relationships between source water inputs and evaporative conditions. We carried out stable isotope analyses of precipitation collected from the maritime Antarctic and cellulose extracted from co-located Chorisodontium aciphyllum dominated moss peat bank deposits accumulated since 1870 A.D. Analyses of stable oxygen and hydrogen isotope composition of summer precipitation on Signy Island (60.7°S, 45.6°W) established a local meteoric water line (LMWL) similar to both the global MWL and other LMWLs, and almost identical to the HadAM3 isotope-enabled global circulation model output. The oxygen isotopic composition of cellulose (δ18OC) revealed little temporal variation between four moss peat banks on Signy Island since 1870. However, δ18OC followed two patterns with Sites A and D consistently 3‰ enriched relative to δ18OC values from Sites B and C. The growing moss surfaces at Sites A and D are likely to have been hydrated by isotopically heavier summer precipitation, whilst at Sites B and C, the moss banks are regularly saturated by the isotopically depleted snow melt streams. Laboratory experiments revealed that evaporative enrichment of C. aciphyllum moss leaf water by 5‰ occurred rapidly following saturation (ecologically equivalent to post-rainfall or snow melt periods). In addition to the recognized source water-cellulose fractionation extent of 27 ± 3‰, such a shift would account for the 32‰ difference measured between δ18O of Signy Island precipitation and cellulose.

  9. Evolution of niche preference in Sphagnum peat mosses.

    PubMed

    Johnson, Matthew G; Granath, Gustaf; Tahvanainen, Teemu; Pouliot, Remy; Stenøien, Hans K; Rochefort, Line; Rydin, Håkan; Shaw, A Jonathan

    2015-01-01

    Peat mosses (Sphagnum) are ecosystem engineers-species in boreal peatlands simultaneously create and inhabit narrow habitat preferences along two microhabitat gradients: an ionic gradient and a hydrological hummock-hollow gradient. In this article, we demonstrate the connections between microhabitat preference and phylogeny in Sphagnum. Using a dataset of 39 species of Sphagnum, with an 18-locus DNA alignment and an ecological dataset encompassing three large published studies, we tested for phylogenetic signal and within-genus changes in evolutionary rate of eight niche descriptors and two multivariate niche gradients. We find little to no evidence for phylogenetic signal in most component descriptors of the ionic gradient, but interspecific variation along the hummock-hollow gradient shows considerable phylogenetic signal. We find support for a change in the rate of niche evolution within the genus-the hummock-forming subgenus Acutifolia has evolved along the multivariate hummock-hollow gradient faster than the hollow-inhabiting subgenus Cuspidata. Because peat mosses themselves create some of the ecological gradients constituting their own habitats, the classic microtopography of Sphagnum-dominated peatlands is maintained by evolutionary constraints and the biological properties of related Sphagnum species. The patterns of phylogenetic signal observed here will instruct future study on the role of functional traits in peatland growth and reconstruction. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  10. Monitoring Heavy Metal Contents with Sphagnum Junghuhnianum Moss Bags in Relation to Traffic Volume in Wuxi, China.

    PubMed

    Hu, Rong; Yan, Yun; Zhou, Xiaoli; Wang, Yanan; Fang, Yanming

    2018-02-22

    Despite its small size, a moss bag can reveal the different temporal and spatial deposition patterns of pollutants at a particular site; therefore, researchers can use moss bags to determine pollution sources and to put forward strategies for pollution control. Although the use of moss bags to monitor atmospheric pollution has been widely reported in Europe, there are few such empirical studies in China. Thus, in this study, bags containing the moss Sphagnum junghuhnianum were used to assess the concentrations of heavy metals (chromium (Cr), copper (Cu), lead (Pb), vanadium (V), and zinc (Zn)) at five sampling sites (four roads and a forest park) during the summer and winter of 2012. According to the relative accumulation factor (RAF) and contamination factor (CF) results, pollution in winter was heavier than that in summer, and Cr was found to be the most contaminating, having the highest mean CF. There was a significant positive correlation ( p < 0.05) between traffic volume and concentration for three heavy metals (Cr, Cu, and V) in winter, whereas a significant positive correlation ( p < 0.05) was observed between traffic volume and concentrations for four heavy metal elements (Cr, Pb, V, and Zn) in summer, indicating a close relationship between heavy metal contents and traffic volume. Although there was substantial variation in the concentrations of the five heavy metals in the moss bags, significant correlations between heavy metals suggested that the contaminants originated from a common source, namely vehicle emissions. The results demonstrated that the four roads were subject to different degrees of pollution depending on the volume of traffic using each road. Therefore, the results of this study suggest that traffic volume is a major reason for heavy metal pollution.

  11. Monitoring Heavy Metal Contents with Sphagnum Junghuhnianum Moss Bags in Relation to Traffic Volume in Wuxi, China

    PubMed Central

    Hu, Rong; Yan, Yun; Zhou, Xiaoli; Wang, Yanan; Fang, Yanming

    2018-01-01

    Despite its small size, a moss bag can reveal the different temporal and spatial deposition patterns of pollutants at a particular site; therefore, researchers can use moss bags to determine pollution sources and to put forward strategies for pollution control. Although the use of moss bags to monitor atmospheric pollution has been widely reported in Europe, there are few such empirical studies in China. Thus, in this study, bags containing the moss Sphagnum junghuhnianum were used to assess the concentrations of heavy metals (chromium (Cr), copper (Cu), lead (Pb), vanadium (V), and zinc (Zn)) at five sampling sites (four roads and a forest park) during the summer and winter of 2012. According to the relative accumulation factor (RAF) and contamination factor (CF) results, pollution in winter was heavier than that in summer, and Cr was found to be the most contaminating, having the highest mean CF. There was a significant positive correlation (p < 0.05) between traffic volume and concentration for three heavy metals (Cr, Cu, and V) in winter, whereas a significant positive correlation (p < 0.05) was observed between traffic volume and concentrations for four heavy metal elements (Cr, Pb, V, and Zn) in summer, indicating a close relationship between heavy metal contents and traffic volume. Although there was substantial variation in the concentrations of the five heavy metals in the moss bags, significant correlations between heavy metals suggested that the contaminants originated from a common source, namely vehicle emissions. The results demonstrated that the four roads were subject to different degrees of pollution depending on the volume of traffic using each road. Therefore, the results of this study suggest that traffic volume is a major reason for heavy metal pollution. PMID:29470433

  12. 76 FR 79066 - Drawbridge Operation Regulation; Escatawpa River, Moss Point, MS

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2011-1082] Drawbridge Operation Regulation; Escatawpa River, Moss Point, MS AGENCY: Coast Guard, DHS. ACTION: Notice of temporary...-2011-1082 and are available online by going to http://www.regulations.gov , inserting USCG-2011-1082 in...

  13. Studies on the moss flora of the Bío-Bío Region of Chile: Part 3.

    PubMed

    Ireland, Robert R; Bellolio, Gilda; Larraín, Juan; Rodríguez, Roberto

    2017-01-01

    This is the final report on the moss flora of the Bío-Bío Region (Región VIII) in south-central Chile where collections were made in 2001-2003. Reported in this paper are one species new to South America, four species new to Chile and 16 species new to the Region. With these new additions the total number of taxa in the Bío-Bío Region is 343, corresponding to 331 species and 12 infraspecific taxa. A complete checklist of the mosses for all the provinces in the Region is presented.

  14. Best options for the exposure of traditional and innovative moss bags: A systematic evaluation in three European countries.

    PubMed

    Capozzi, F; Giordano, S; Aboal, J R; Adamo, P; Bargagli, R; Boquete, T; Di Palma, A; Real, C; Reski, R; Spagnuolo, V; Steinbauer, K; Tretiach, M; Varela, Z; Zechmeister, H; Fernández, J A

    2016-07-01

    To develop an internationally standardized protocol for the moss bag technique application, the research team participating in the FP7 European project "MOSSclone" focused on the optimization of the moss bags exposure in terms of bag characteristics (shape of the bags, mesh size, weight/surface ratio), duration and height of exposure by comparing traditional moss bags to a new concept bag, "Mossphere". In particular, the effects of each variable on the metal uptake from the air were evaluated by a systematic experimental design carried out in urban, industrial, agricultural and background areas of three European countries with oceanic, Mediterranean and continental climate. The results evidenced that the shape, the mesh size of the bags and the exposure height (in the tested ranges), did not significantly influence the uptake capacity of the transplanted moss. The aspects more affecting the element uptake were represented by the density of the moss inside the bags and the relative ratio between its weight and the surface area of the bag. We found that, the lower the density, the higher the uptake recorded. Moreover, three weeks of exposure were not enough to have a consistent uptake signal in all the environments tested, thus we suggest an exposure period not shorter than 6 weeks, which is appropriate in most situations. The above results were confirmed in all the countries and scenarios tested. The adoption of a shared exposure protocol by the research community is strongly recommended since it is a key aspect to make biomonitoring surveys directly comparable, also in view of its recognition as a monitoring method by the EU legislation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Automatic Event Detection in Search for Inter-Moss Loops in IRIS Si IV Slit-Jaw Images

    NASA Technical Reports Server (NTRS)

    Fayock, Brian; Winebarger, Amy R.; De Pontieu, Bart

    2015-01-01

    The high-resolution capabilities of the Interface Region Imaging Spectrometer (IRIS) mission have allowed the exploration of the finer details of the solar magnetic structure from the chromosphere to the lower corona that have previously been unresolved. Of particular interest to us are the relatively short-lived, low-lying magnetic loops that have foot points in neighboring moss regions. These inter-moss loops have also appeared in several AIA pass bands, which are generally associated with temperatures that are at least an order of magnitude higher than that of the Si IV emission seen in the 1400 angstrom pass band of IRIS. While the emission lines seen in these pass bands can be associated with a range of temperatures, the simultaneous appearance of these loops in IRIS 1400 and AIA 171, 193, and 211 suggest that they are not in ionization equilibrium. To study these structures in detail, we have developed a series of algorithms to automatically detect signal brightening or events on a pixel-by-pixel basis and group them together as structures for each of the above data sets. These algorithms have successfully picked out all activity fitting certain adjustable criteria. The resulting groups of events are then statistically analyzed to determine which characteristics can be used to distinguish the inter-moss loops from all other structures. While a few characteristic histograms reveal that manually selected inter-moss loops lie outside the norm, a combination of several characteristics will need to be used to determine the statistical likelihood that a group of events be categorized automatically as a loop of interest. The goal of this project is to be able to automatically pick out inter-moss loops from an entire data set and calculate the characteristics that have previously been determined manually, such as length, intensity, and lifetime. We will discuss the algorithms, preliminary results, and current progress of automatic characterization.

  16. Copper mediates auxin signalling to control cell differentiation in the copper moss Scopelophila cataractae

    PubMed Central

    Nomura, Toshihisa; Itouga, Misao; Kojima, Mikiko; Kato, Yukari; Sakakibara, Hitoshi; Hasezawa, Seiichiro

    2015-01-01

    The copper (Cu) moss Scopelophila cataractae (Mitt.) Broth. is often found in Cu-enriched environments, but it cannot flourish under normal conditions in nature. Excess Cu is toxic to almost all plants, and therefore how this moss species thrives in regions with high Cu concentration remains unknown. In this study, we investigated the effect of Cu on gemma germination and protonemal development in S. cataractae. A high concentration of Cu (up to 800 µM) did not affect gemma germination. In the protonemal stage, a low concentration of Cu promoted protonemal gemma formation, which is the main strategy adopted by S. cataractae to expand its habitat to new locations. Cu-rich conditions promoted auxin accumulation and induced differentiation of chloronema into caulonema cells, whereas it repressed protonemal gemma formation. Under low-Cu conditions, auxin treatment mimicked the effects of high-Cu conditions. Furthermore, Cu-induced caulonema differentiation was severely inhibited in the presence of the auxin antagonist α-(phenylethyl-2-one)-indole-3-acetic acid, or the auxin biosynthesis inhibitor l-kynurenine. These results suggest that S. cataractae flourishes in Cu-rich environments via auxin-regulated cell differentiation. The copper moss might have acquired this mechanism during the evolutionary process to benefit from its advantageous Cu-tolerance ability. PMID:25428998

  17. Effect of Water Content Components on Desiccation and Recovery in Sphagnum Mosses

    PubMed Central

    Hájek, Tomáš; Beckett, Richard P.

    2008-01-01

    Background and Aims The basic parameters of water relations were measured in Sphagnum mosses. The relationships of these parameters to the photosynthetic response to desiccation and the ecology of these mosses were then tested. Methods The water relations parameters of six Sphagnum species (mosses typical of wet habitats) and Atrichum androgynum (a moss more typical of mesophytic conditions) were calculated from pressure–volume isotherms. Photosynthetic properties during and after moderate desiccation were monitored by chlorophyll fluorescence. Key Results When desiccated, the hummock-forming species S. fuscum and S. magellanicum lost more water before turgor started dropping than other sphagna inhabiting less exposed habitats (73 % compared with 56 % on average). Osmotic potentials at full turgor were similar in all species, with an average value of −1·1 MPa. Hummock sphagna had clearly more rigid cell walls than species of wet habitats (ε = 3·55 compared with 1·93 MPa). As a result, their chlorophyllous cells lost turgor at higher relative water contents (RWCs) than species of wet habitats (0·61 compared with 0·46) and at less negative osmotic potentials (–2·28 compared with −3·00 MPa). During drying, ΦPSII started declining earlier in hummock species (at an RWC of 0·65 compared with 0·44), and Fv/Fm behaved similarly. Compared with other species, hummock sphagna desiccated to −20 or −40 MPa recovered more completely after rehydration. Atrichum androgynum responded to desiccation similarly to hummock sphagna, suggesting that their desiccation tolerance may have a similar physiological basis. Conclusions Assuming a fixed rate of desiccation, the higher water-holding capacities of hummock sphagna will allow them to continue metabolism for longer than other species. While this could be viewed as a form of ‘desiccation avoidance’, hummock species also recover faster than other species during rehydration, suggesting that they have higher

  18. Air Pollution Study in the Republic of Moldova Using Moss Biomonitoring Technique.

    PubMed

    Zinicovscaia, Inga; Hramco, Constantin; Duliu, Octavian G; Vergel, Konstantin; Culicov, Otilia A; Frontasyeva, Marina V; Duca, Gheorghe

    2017-02-01

    Moss biomonitoring using the species Hypnum cupressiforme (Hedw.) and Pleurocarpous sp was applied to study air pollution in the Republic of Moldova. A total of 41 elements (Na, Mg, Al, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Zr, Cd, Sb, Cs, Ba, La, Ce, Nd, Sm, Eu, Gd, Tb, Tm, Yb, Hf, Ta, W, Pb, Th, and U) were determined by instrumental epithermal neutron activation analysis and atomic absorption spectrometry. Principal component analysis was used to identify and characterize different pollution sources. Geographical distribution maps were prepared to point out the regions most affected by air pollution and relate this to potential sources of contamination. Median values of the elements studied were compared with data from the European moss biomonitoring program. The cities of Chisinau and Balti were determined to experience particular environmental stress.

  19. Residential heating contribution to level of air pollutants (PAHs, major, trace, and rare earth elements): a moss bag case study.

    PubMed

    Vuković, Gordana; Aničić Urošević, Mira; Pergal, Miodrag; Janković, Milan; Goryainova, Zoya; Tomašević, Milica; Popović, Aleksandar

    2015-12-01

    In areas with moderate to continental climates, emissions from residential heating system lead to the winter air pollution peaks. The EU legislation requires only the monitoring of airborne concentrations of particulate matter, As, Cd, Hg, Ni, and B[a]P. Transition metals and rare earth elements (REEs) have also arisen questions about their detrimental health effects. In that sense, this study examined the level of extensive set of air pollutants: 16 polycyclic aromatic hydrocarbons (PAHs), and 41 major elements, trace elements, and REEs using Sphagnum girgensohnii moss bag technique. During the winter of 2013/2014, the moss bags were exposed across Belgrade (Serbia) to study the influence of residential heating system to the overall air quality. The study was set as an extension to our previous survey during the summer, i.e., non-heating season. Markedly higher concentrations of all PAHs, Sb, Cu, V, Ni, and Zn were observed in the exposed moss in comparison to the initial values. The patterns of the moss REE concentrations normalized to North American Shale Composite and Post-Archean Australian Shales were identical across the study area but enhanced by anthropogenic activities. The results clearly demonstrate the seasonal variations in the moss enrichment of the air pollutants. Moreover, the results point out a need for monitoring of air quality during the whole year, and also of various pollutants, not only those regulated by the EU Directive.

  20. Stable isotopes and Antarctic moss banks: Plants and soil microbes respond to recent warming on the Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Royles, Jessica; Amesbury, Matthew; Ogée, Jérôme; Wingate, Lisa; Convey, Peter; Hodgson, Dominic; Griffiths, Howard; Leng, Melanie; Charman, Dan

    2014-05-01

    The Antarctic Peninsula is one of the most rapidly warming regions on Earth, with air temperature increases of as much as 3°C recorded since the 1950s. However, the longer-term context of this change is limited and existing records, largely relying on ice core data, are not suitably located to be able to trace the spatial signature of change over time. We are working on a project exploiting stable isotope records preserved in moss peat banks spanning 10 degrees of latitude along the Antarctic Peninsula as an archive of late Holocene climate variability. Here we present a unique time series of past moss growth and soil microbial activity that has been produced from a 150 year old moss bank at Lazarev Bay, Alexander Island (69°S), a site at the southern limit of significant plant growth in the Antarctic Peninsula region. These moss banks are ideal archives for palaeoclimate research as they are well-preserved by freezing, generally monospecific, easily dated by radiocarbon techniques, and have sufficiently high accumulation rates to permit decadal resolution. We use accumulation rates, cellulose δ13C and fossil testate amoebae to show that growth rates, assimilation and microbial productivity rose rapidly in the 1960s, consistent with temperature change, although recently may have stalled, concurrent with other evidence. The increase in biological activity is unprecedented in the last 150 years. Along with work completed on Signy Island (60°S), in the South Orkney Islands, in which we used carbon isotope evidence to show recent climate-related enhancement of CO2 assimilation and peat accumulation rates in Antarctica, the observed relationships between moss growth, microbial activity and climate suggests that moss bank records have the potential to test the regional expression of temperature variability shown by instrumental data on the Antarctic Peninsula over centennial to millennial timescales, by providing long-term records of summer growth conditions

  1. The Physcomitrella patens chromosome-scale assembly reveals moss genome structure and evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, Daniel; Ullrich, Kristian K.; Murat, Florent

    Here, the draft genome of the moss model, Physcomitrella patens, comprised approximately 2000 unordered scaffolds. In order to enable analyses of genome structure and evolution we generated a chromosome–scale genome assembly using genetic linkage as well as (end) sequencing of long DNA fragments. We find that 57% of the genome comprises transposable elements (TEs), some of which may be actively transposing during the life cycle. Unlike in flowering plant genomes, gene– and TE–rich regions show an overall even distribution along the chromosomes. However, the chromosomes are mono–centric with peaks of a class of Copia elements potentially coinciding with centromeres. Genemore » body methylation is evident in 5.7% of the protein–coding genes, typically coinciding with low GC and low expression. Some giant virus insertions are transcriptionally active and might protect gametes from viral infection via siRNA mediated silencing. Structure–based detection methods show that the genome evolved via two rounds of whole genome duplications (WGDs), apparently common in mosses but not in liverworts and hornworts. Several hundred genes are present in colinear regions conserved since the last common ancestor of plants. These syntenic regions are enriched for functions related to plant–specific cell growth and tissue organization. The P. patens genome lacks the TE–rich pericentromeric and gene–rich distal regions typical for most flowering plant genomes. More non–seed plant genomes are needed to unravel how plant genomes evolve, and to understand whether the P. patens genome structure is typical for mosses or bryophytes.« less

  2. The Physcomitrella patens chromosome-scale assembly reveals moss genome structure and evolution

    DOE PAGES

    Lang, Daniel; Ullrich, Kristian K.; Murat, Florent; ...

    2017-12-13

    Here, the draft genome of the moss model, Physcomitrella patens, comprised approximately 2000 unordered scaffolds. In order to enable analyses of genome structure and evolution we generated a chromosome–scale genome assembly using genetic linkage as well as (end) sequencing of long DNA fragments. We find that 57% of the genome comprises transposable elements (TEs), some of which may be actively transposing during the life cycle. Unlike in flowering plant genomes, gene– and TE–rich regions show an overall even distribution along the chromosomes. However, the chromosomes are mono–centric with peaks of a class of Copia elements potentially coinciding with centromeres. Genemore » body methylation is evident in 5.7% of the protein–coding genes, typically coinciding with low GC and low expression. Some giant virus insertions are transcriptionally active and might protect gametes from viral infection via siRNA mediated silencing. Structure–based detection methods show that the genome evolved via two rounds of whole genome duplications (WGDs), apparently common in mosses but not in liverworts and hornworts. Several hundred genes are present in colinear regions conserved since the last common ancestor of plants. These syntenic regions are enriched for functions related to plant–specific cell growth and tissue organization. The P. patens genome lacks the TE–rich pericentromeric and gene–rich distal regions typical for most flowering plant genomes. More non–seed plant genomes are needed to unravel how plant genomes evolve, and to understand whether the P. patens genome structure is typical for mosses or bryophytes.« less

  3. ACTIVE REGION MOSS: DOPPLER SHIFTS FROM HINODE/EXTREME-ULTRAVIOLET IMAGING SPECTROMETER OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, Durgesh; Mason, Helen E.; Klimchuk, James A.

    2012-07-01

    Studying the Doppler shifts and the temperature dependence of Doppler shifts in moss regions can help us understand the heating processes in the core of the active regions. In this paper, we have used an active region observation recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) on board Hinode on 2007 December 12 to measure the Doppler shifts in the moss regions. We have distinguished the moss regions from the rest of the active region by defining a low-density cutoff as derived by Tripathi et al. in 2010. We have carried out a very careful analysis of the EIS wavelength calibrationmore » based on the method described by Young et al. in 2012. For spectral lines having maximum sensitivity between log T = 5.85 and log T = 6.25 K, we find that the velocity distribution peaks at around 0 km s{sup -1} with an estimated error of 4-5 km s{sup -1}. The width of the distribution decreases with temperature. The mean of the distribution shows a blueshift which increases with increasing temperature and the distribution also shows asymmetries toward blueshift. Comparing these results with observables predicted from different coronal heating models, we find that these results are consistent with both steady and impulsive heating scenarios. However, the fact that there are a significant number of pixels showing velocity amplitudes that exceed the uncertainty of 5 km s{sup -1} is suggestive of impulsive heating. Clearly, further observational constraints are needed to distinguish between these two heating scenarios.« less

  4. AmeriFlux CA-WP2 Alberta - Western Peatland - Poor Fen (Sphagnum moss)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flanagan, Lawrence B.

    This is the AmeriFlux version of the carbon flux data for the site CA-WP2 Alberta - Western Peatland - Poor Fen (Sphagnum moss). Site Description - Peatland (poor fen) Alberta. 55.5375°N, 112.3343°W North of the AB-WPL site.

  5. Superfund record of decision amendment (EPA Region 5): Moss-American (Kerr-McGee Oil Co.), Milwaukee, WI, September 30, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The purpose of this decision document is to present an amendment to the Record of Decision (ROD) for the Moss-American Site, which is located in Milwaukee, Wisconsin. The ROD amendment for the Moss-American site has three principal components: (1) changes in soil treatment technology, (2) potential changes in cleanup standards, and (3) changes in cover design and requirements.

  6. Studies on the moss flora of the Bío-Bío Region of Chile: Part 3

    PubMed Central

    Ireland, Robert R.; Bellolio, Gilda; Larraín, Juan; Rodríguez, Roberto

    2017-01-01

    Abstract This is the final report on the moss flora of the Bío-Bío Region (Región VIII) in south-central Chile where collections were made in 2001–2003. Reported in this paper are one species new to South America, four species new to Chile and 16 species new to the Region. With these new additions the total number of taxa in the Bío-Bío Region is 343, corresponding to 331 species and 12 infraspecific taxa. A complete checklist of the mosses for all the provinces in the Region is presented. PMID:28814916

  7. AirMOSS P-Band Radar Retrieval of Subcanopy Soil Moisture Profile

    NASA Astrophysics Data System (ADS)

    Tabatabaeenejad, A.; Burgin, M. S.; Duan, X.; Moghaddam, M.

    2013-12-01

    Knowledge of soil moisture, as a key variable of the Earth system, plays an important role in our under-standing of the global water, energy, and carbon cycles. The importance of such knowledge has led NASA to fund missions such as Soil Moisture Active and Passive (SMAP) and Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS). The AirMOSS mission seeks to improve the estimates of the North American Net Ecosystem Exchange (NEE) by providing high-resolution observations of the root zone soil moisture (RZSM) over regions representative of the major North American biomes. AirMOSS flies a P-band SAR to penetrate vegetation and into the root zone to provide estimates of RZSM. The flights cover areas containing flux tower sites in regions from the boreal forests in Saskatchewan, Canada, to the tropical forests in La Selva, Costa Rica. The radar snapshots are used to generate estimates of RZSM via inversion of a scattering model of vegetation overlying soils with variable moisture profiles. These retrievals will be used to generate a time record of RZSM, which will be integrated with an ecosystem demography model in order to estimate the respiration and photosynthesis carbon fluxes. The aim of this work is the retrieval of the moisture profile over AirMOSS sites using the collected P-band radar data. We have integrated layered-soil scattering models into a forest scattering model; for the backscattering from ground and for the trunk-ground double-bounce mechanism, we have used a layered small perturbation method and a coherent scattering model of layered soil, respectively. To estimate the soil moisture profile, we represent it as a second-order polynomial in the form of az2 + bz + c, where z is the depth and a, b, and c are the coefficients to be retrieved from radar measurements. When retrieved, these coefficients give us the soil moisture up to a prescribed depth of validity. To estimate the unknown coefficients of the polynomial, we use simulated

  8. Chlorinated hydrocarbons in lichen and moss samples from the Antarctic Peninsula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacci, E.; Calamari, D.; Gaggi, C.

    1986-01-01

    The concentrations of some chlorinated hydrocarbon residues (HCB, HCH isomers, p,p'DDT and DDE, PCB cogeners) in lichen and moss samples from the Antarctic Peninsula are reported and compared with available data from other parts of the world. The use of these materials as indicators of tropospheric contamination levels in Antarctica is discussed.

  9. Environmental concentrations of metformin exposure affect aggressive behavior in the Siamese fighting fish, Betta splendens.

    PubMed

    MacLaren, Ronald David; Wisniewski, Kathryn; MacLaren, Christina

    2018-01-01

    Metformin, the medicine most commonly prescribed for treatment of Type II diabetes, is among the most abundant pharmaceuticals being introduced into the environment. Pharmaceuticals are increasingly found in wastewater and surface waters around the world, often due to incomplete metabolism in humans and subsequent excretion in human waste. Risk analyses and exposure studies have raised concerns about potential negative impacts of pharmaceuticals at current environmental levels. Results of the present study indicate that metformin at concentrations in the range of what has been documented in freshwater systems and waste-water effluent (40 μg/L) affects aggressive behavior in adult male Betta splendens. Subjects exhibited less aggression toward a male dummy stimulus after four weeks exposure to metformin-treated water when compared to behavior measured immediately prior to their exposure, and in comparison to a separate cohort of un-exposed control fish. This effect persisted after 20 weeks exposure as well. Subjects exposed to metformin at a concentration twice that currently observed in nature (80 μg/L) exhibited an even more substantial reduction in aggressive behaviors compared to controls and pre-exposure measurements than those observed in the low-dose treatment group. Such changes in behavior have the potential to affect male fitness and possibly impact the health of natural populations of aquatic organisms exposed to the drug.

  10. Impacts of Environmental Heterogeneity on Moss Diversity and Distribution of Didymodon (Pottiaceae) in Tibet, China.

    PubMed

    Song, Shanshan; Liu, Xuehua; Bai, Xueliang; Jiang, Yanbin; Zhang, Xianzhou; Yu, Chengqun; Shao, Xiaoming

    2015-01-01

    Tibet makes up the majority of the Qinghai-Tibet Plateau, often referred to as the roof of the world. Its complex landforms, physiognomy, and climate create a special heterogeneous environment for mosses. Each moss species inhabits its own habitat and ecological niche. This, in combination with its sensitivity to environmental change, makes moss species distribution a useful indicator of vegetation alteration and climate change. This study aimed to characterize the diversity and distribution of Didymodon (Pottiaceae) in Tibet, and model the potential distribution of its species. A total of 221 sample plots, each with a size of 10 × 10 m and located at different altitudes, were investigated across all vegetation types. Of these, the 181 plots in which Didymodon species were found were used to conduct analyses and modeling. Three noteworthy results were obtained. First, a total of 22 species of Didymodon were identified. Among these, Didymodon rigidulus var. subulatus had not previously been recorded in China, and Didymodon constrictus var. constrictus was the dominant species. Second, analysis of the relationships between species distributions and environmental factors using canonical correspondence analysis revealed that vegetation cover and altitude were the main factors affecting the distribution of Didymodon in Tibet. Third, based on the environmental factors of bioclimate, topography and vegetation, the distribution of Didymodon was predicted throughout Tibet at a spatial resolution of 1 km, using the presence-only MaxEnt model. Climatic variables were the key factors in the model. We conclude that the environment plays a significant role in moss diversity and distribution. Based on our research findings, we recommend that future studies should focus on the impacts of climate change on the distribution and conservation of Didymodon.

  11. Impacts of Environmental Heterogeneity on Moss Diversity and Distribution of Didymodon (Pottiaceae) in Tibet, China

    PubMed Central

    Song, Shanshan; Bai, Xueliang; Jiang, Yanbin; Zhang, Xianzhou; Yu, Chengqun

    2015-01-01

    Tibet makes up the majority of the Qinghai-Tibet Plateau, often referred to as the roof of the world. Its complex landforms, physiognomy, and climate create a special heterogeneous environment for mosses. Each moss species inhabits its own habitat and ecological niche. This, in combination with its sensitivity to environmental change, makes moss species distribution a useful indicator of vegetation alteration and climate change. This study aimed to characterize the diversity and distribution of Didymodon (Pottiaceae) in Tibet, and model the potential distribution of its species. A total of 221 sample plots, each with a size of 10 × 10 m and located at different altitudes, were investigated across all vegetation types. Of these, the 181 plots in which Didymodon species were found were used to conduct analyses and modeling. Three noteworthy results were obtained. First, a total of 22 species of Didymodon were identified. Among these, Didymodon rigidulus var. subulatus had not previously been recorded in China, and Didymodon constrictus var. constrictus was the dominant species. Second, analysis of the relationships between species distributions and environmental factors using canonical correspondence analysis revealed that vegetation cover and altitude were the main factors affecting the distribution of Didymodon in Tibet. Third, based on the environmental factors of bioclimate, topography and vegetation, the distribution of Didymodon was predicted throughout Tibet at a spatial resolution of 1 km, using the presence-only MaxEnt model. Climatic variables were the key factors in the model. We conclude that the environment plays a significant role in moss diversity and distribution. Based on our research findings, we recommend that future studies should focus on the impacts of climate change on the distribution and conservation of Didymodon. PMID:26181326

  12. PCA and multidimensional visualization techniques united to aid in the bioindication of elements from transplanted Sphagnum palustre moss exposed in the Gdańsk City area.

    PubMed

    Astel, Aleksander; Astel, Karolina; Biziuk, Marek

    2008-01-01

    During the last decades, a technique for assessing atmospheric deposition of heavy elements was developed based on the principle that samples of moss are able to accumulate elements and airborne particles from rain, melting snow and dry deposition. Despite a broad interest in bioindication there are still ongoing works aimed at the preparation of a standard procedure allowing for a comparison of research carried out in various areas. This is why the comparison of living and dry moss of the same species and growth site seems to be interesting, logical and promising. A most reliable approach seems to be the application of bioindication connected with multivariate statistics and efficient visualization techniques in the interpretation of monitoring data. The aim of this study was: (i) to present cumulative properties of transplanted Sphagnum palustre moss with differentiation into dry and living biomaterial; (ii) to determine and geographically locate types of pollution sources responsible for a structure of the monitoring data set; (iii) to visualize geographical distribution of analytes in the Gdańsk metropolitan area and to identify the high-risk areas which can be targeted for environmental hazards and public health. A six month air pollution study based on Sphagnum palustre bioindication is presented and a simplified procedure of the experiment is given. The study area was located at the mouth of the Vistula River on the Baltic Sea, in Gdańsk City (Poland). Sphagnum palustre was selected for research because of its extraordinary morphological properties and its ease in being raised. The capability of dry and living moss to accumulate elements characteristic for anthropogenic and natural sources was shown by application of Principal Component Analysis. The high-risk areas and pollution profiles are detected and visualized using surface maps based on Kriging algorithm. The original selection of elements included all those that could be reliably determined by

  13. Newly resolved relationships in an early land plant lineage: Bryophyta class Sphagnopsida (peat mosses).

    PubMed

    Shaw, A Jonathan; Cox, Cymon J; Buck, William R; Devos, Nicolas; Buchanan, Alex M; Cave, Lynette; Seppelt, Rodney; Shaw, Blanka; Larraín, Juan; Andrus, Richard; Greilhuber, Johann; Temsch, Eva M

    2010-09-01

    The Sphagnopsida, an early-diverging lineage of mosses (phylum Bryophyta), are morphologically and ecologically unique and have profound impacts on global climate. The Sphagnopsida are currently classified in two genera, Sphagnum (peat mosses) with some 350-500 species and Ambuchanania with one species. An analysis of phylogenetic relationships among species and genera in the Sphagnopsida were conducted to resolve major lineages and relationships among species within the Sphagnopsida. • Phylogenetic analyses of nucleotide sequences from the nuclear, plastid, and mitochondrial genomes (11 704 nucleotides total) were conducted and analyzed using maximum likelihood and Bayesian inference employing seven different substitution models of varying complexity. • Phylogenetic analyses resolved three lineages within the Sphagnopsida: (1) Sphagnum sericeum, (2) S. inretortum plus Ambuchanania leucobryoides, and (3) all remaining species of Sphagnum. Sister group relationships among these three clades could not be resolved, but the phylogenetic results indicate that the highly divergent morphology of A. leucobryoides is derived within the Sphagnopsida rather than plesiomorphic. A new classification is proposed for class Sphagnopsida, with one order (Sphagnales), three families, and four genera. • The Sphagnopsida are an old lineage within the phylum Bryophyta, but the extant species of Sphagnum represent a relatively recent radiation. It is likely that additional species critical to understanding the evolution of peat mosses await discovery, especially in the southern hemisphere.

  14. Pathology of Piscinoodinium sp. (Protozoa: Dinoflagellida), parasites of the ornamental freshwater catfishes Corydoras spp. and Brochis splendens (Pisces: Callichthyidae).

    PubMed

    Ferraz, E; Sommerville, C

    1998-05-14

    Piscinoodinium sp. (Protozoa, Dinoflagellida) was commonly found on routine smears of samples of Brochis splendens and Corydoras spp. imported into Britain from South America, and on samples of the same group of fish examined at the exporters' holding facilities in Brazil. Infected fish had trophonts of different sizes on the gills and skin. In histological sections of the skin, the trophonts were found to be attached within depressions of different depths or enclosed by hyperplastic epithelial cells. Such enclosed trophonts have not previously been reported. Since some of the enclosed trophonts were dead, it was thought that enclosure was a result of the deep penetration of the trophont and the host defence mechanism. On the gills the Piscinoodinium infection was commonly associated with epithelial hypertrophy, focal and diffuse hyperplasia, oedema of the respiratory epithelium and lamellar fusion. The presence of this protozoan on different species of fish from the same shipment suggests that the infection was acquired before export. The source of infection and the stages of the export process which expose the fish to the highest risk of infection are discussed.

  15. Moss Pathogenesis-Related-10 Protein Enhances Resistance to Pythium irregulare in Physcomitrella patens and Arabidopsis thaliana

    PubMed Central

    Castro, Alexandra; Vidal, Sabina; Ponce de León, Inés

    2016-01-01

    Plants respond to pathogen infection by activating signaling pathways leading to the accumulation of proteins with diverse roles in defense. Here, we addressed the functional role of PpPR-10, a pathogenesis-related (PR)-10 gene, of the moss Physcomitrella patens, in response to biotic stress. PpPR-10 belongs to a multigene family and encodes a protein twice the usual size of PR-10 proteins due to the presence of two Bet v1 domains. Moss PR-10 genes are differentially regulated during development and inoculation with the fungal pathogen Botrytis cinerea. Specifically, PpPR-10 transcript levels increase significantly by treatments with elicitors of Pectobacterium carotovorum subsp. carotovorum, spores of B. cinerea, and the defense hormone salicylic acid. To characterize the role of PpPR-10 in plant defense against pathogens, we conducted overexpression analysis in P. patens and in Arabidopsis thaliana. We demonstrate that constitutive expression of PpPR-10 in moss tissues increased resistance against the oomycete Pythium irregulare. PpPR-10 overexpressing moss plants developed less symptoms and decreased mycelium growth than wild type plants. In addition, PpPR-10 overexpressing plants constitutively produced cell wall depositions in protonemal tissue. Ectopic expression of PpPR-10 in Arabidopsis resulted in increased resistance against P. irregulare as well, evidenced by smaller lesions and less cellular damage compared to wild type plants. These results indicate that PpPR-10 is functionally active in the defense against the pathogen P. irregulare, in both P. patens and Arabidopsis, two evolutionary distant plants. Thus, P. patens can serve as an interesting source of genes to improve resistance against pathogen infection in flowering plants. PMID:27200053

  16. Nitrogen multitemporal monitoring through mosses in urban areas affected by mud volcanoes around Mt. Etna, Italy.

    PubMed

    Bonanno, Giuseppe

    2013-10-01

    Nitrogen emissions were assessed by using mosses as bioindicators in a densely inhabited area affected by mud volcanoes. Such volcanoes, locally called Salinelle, are phenomena that occur around Mt. Etna (Sicily, Italy), and are interpreted as the surface outflow of a hydrothermal system located below Mt. Etna, which releases sedimentary fluids (hydrocarbons and Na-Cl brines) along with magmatic gases (mainly CO2 and He). To date, N emissions from such mud volcanoes have been only quantitatively assessed, and no biomonitoring campaigns are reported about the cumulative effects of these emissions. This study analyzed N concentrations in moss, water and soil samples, collected in a 4-year monitoring campaign. The bryophyte Bryum argenteum, a species widely adopted in surveys of atmospheric pollution, was used as a biological indicator. N concentrations in biomonitors showed relatively low values in the study sites. However, the results of this study suggest that N emissions from Salinelle may have an impact on surrounding ecosystems because N values in moss and water showed a significant correlation. N oxides, in particular, contribute to acidification of ecosystems, thus multitemporal biomonitoring is recommended, especially in those areas where N emitting sources are anthropogenic and natural.

  17. Characterization of the Etna volcanic emissions through an active biomonitoring technique (moss-bags): part 2--morphological and mineralogical features.

    PubMed

    Calabrese, S; D'Alessandro, W

    2015-01-01

    Volcanic emissions were studied at Mount Etna (Italy) by using moss-bags technique. Mosses were exposed around the volcano at different distances from the active vents to evaluate the impact of volcanic emissions in the atmosphere. Morphology and mineralogy of volcanic particulate intercepted by mosses were investigated using scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS). Particles emitted during passive degassing activity from the two active vents, Bocca Nuova and North East Crater (BNC and NEC), were identified as silicates, sulfates and halide compounds. In addition to volcanic particles, we found evidences also of geogenic, anthropogenic and marine spray input. The study has shown the robustness of this active biomonitoring technique to collect particles, very useful in active volcanic areas characterized by continuous degassing and often not easily accessible to apply conventional sampling techniques. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. 137Cs activity concentration in mosses in the Calabria region, south of Italy

    NASA Astrophysics Data System (ADS)

    Caridi, F.; Belvedere, A.; D'Agostino, M.; Marguccio, S.

    2017-05-01

    Many studies carried out after the Chernobyl nuclear accident in 1986 showed that mosses are suitable bioindicators of the radioactive fall-out, given their long life expectancy. 137Cs activity concentration was measured through HPGe gamma spectrometry in different mosses (Hypnum Cupressiforme, Hypnum Andoi, Homalothecium Sericeum, Philonotis Fontana), collected, in 2008 and 2015, from four sampling sites in the Calabria region, south of Italy. Experimental specific activities allowed us to determine the effective and the biological half-time of 137Cs for the investigated plants. The effective half-time was found in the range from (4.2 ± 1.1) to (7.4 ± 1.8) years; the biological half-time varied from (4.9 ± 1.3) to (9.9 ± 2.4) years. Data reported in this article provide useful information on the environmental risk of the studied area and can be further used for a radiological mapping.

  19. Discovery of Polyesterases from Moss-Associated Microorganisms

    PubMed Central

    Perz, Veronika; Provasnek, Christoph; Quartinello, Felice; Guebitz, Georg M.; Berg, Gabriele

    2016-01-01

    ABSTRACT The growing pollution of the environment with plastic debris is a global threat which urgently requires biotechnological solutions. Enzymatic recycling not only prevents pollution but also would allow recovery of valuable building blocks. Therefore, we explored the existence of microbial polyesterases in microbial communities associated with the Sphagnum magellanicum moss, a key species within unexploited bog ecosystems. This resulted in the identification of six novel esterases, which were isolated, cloned, and heterologously expressed in Escherichia coli. The esterases were found to hydrolyze the copolyester poly(butylene adipate-co-butylene terephthalate) (PBAT) and the oligomeric model substrate bis[4-(benzoyloxy)butyl] terephthalate (BaBTaBBa). Two promising polyesterase candidates, EstB3 and EstC7, which clustered in family VIII of bacterial lipolytic enzymes, were purified and characterized using the soluble esterase substrate p-nitrophenyl butyrate (Km values of 46.5 and 3.4 μM, temperature optima of 48°C and 50°C, and pH optima of 7.0 and 8.5, respectively). In particular, EstC7 showed outstanding activity and a strong preference for hydrolysis of the aromatic ester bond in PBAT. Our study highlights the potential of plant-associated microbiomes from extreme natural ecosystems as a source for novel hydrolytic enzymes hydrolyzing polymeric compounds. IMPORTANCE In this study, we describe the discovery and analysis of new enzymes from microbial communities associated with plants (moss). The recovered enzymes show the ability to hydrolyze not only common esterase substrates but also the synthetic polyester poly(butylene adipate-co-butylene terephthalate), which is a common material employed in biodegradable plastics. The widespread use of such synthetic polyesters in industry and society requires the development of new sustainable technological solutions for their recycling. The discovered enzymes have the potential to be used as catalysts for

  20. Effects of leaf hair points of a desert moss on water retention and dew formation: implications for desiccation tolerance.

    PubMed

    Tao, Ye; Zhang, Yuan Ming

    2012-05-01

    Leaf hair points (LHPs) are important morphological structures in many desiccation-tolerant mosses, but study of their functions has been limited. A desert moss, Syntrichia caninervis, was chosen for examination of the ecological effects of LHPs on water retention and dew formation at individual and population (patch) levels. Although LHPs were only 4.77% of shoot weight, they were able to increase absolute water content (AWC) by 24.87%. The AWC of samples with LHPs was always greater than for those without LHPs during dehydration. The accumulative evaporation ratio (AER) showed an opposite trend. AWC, evaporation ratio and AER of shoots with LHPs took 20 min longer to reach a completely dehydrated state than shoots without LHPs. At the population level, dew formation on moss crusts with LHPs was faster than on crusts without LHPs, and the former had higher daily and total dew amounts. LHPs were able to improve dew amounts on crusts by 10.26%. Following three simulated rainfall events (1, 3 and 6 mm), AERs from crusts with LHPs were always lower than from crusts without LHPs. LHPs can therefore significantly delay and reduce evaporation. We confirm that LHPs are important desiccation-tolerant features of S. caninervis at both individual and population levels. LHPs greatly aid moss crusts in adapting to arid conditions.

  1. The effect of moisture content on the thermal conductivity of moss and organic soil horizons from black spruce ecosystems in interior alaska

    USGS Publications Warehouse

    O'Donnell, J. A.; Romanovsky, V.E.; Harden, J.W.; McGuire, A.D.

    2009-01-01

    Organic soil horizons function as important controls on the thermal state of near-surface soil and permafrost in high-latitude ecosystems. The thermal conductivity of organic horizons is typically lower than mineral soils and is closely linked to moisture content, bulk density, and water phase. In this study, we examined the relationship between thermal conductivity and soil moisture for different moss and organic horizon types in black spruce ecosystems of interior Alaska. We sampled organic horizons from feather moss-dominated and Sphagnum-dominated stands and divided horizons into live moss and fibrous and amorphous organic matter. Thermal conductivity measurements were made across a range of moisture contents using the transient line heat source method. Our findings indicate a strong positive and linear relationship between thawed thermal conductivity (Kt) and volumetric water content. We observed similar regression parameters (?? or slope) across moss types and organic horizons types and small differences in ??0 (y intercept) across organic horizon types. Live Sphagnum spp. had a higher range of Kt than did live feather moss because of the field capacity (laboratory based) of live Sphagnum spp. In northern regions, the thermal properties of organic soil horizons play a critical role in mediating the effects of climate warming on permafrost conditions. Findings from this study could improve model parameterization of thermal properties in organic horizons and enhance our understanding of future permafrost and ecosystem dynamics. ?? 2009 by Lippincott Williams & Wilkins, Inc.

  2. Spatiotemporal distribution of airborne elements monitored with the moss bags technique in the Greater Thriasion Plain, Attica, Greece.

    PubMed

    Saitanis, C J; Frontasyeva, M V; Steinnes, E; Palmer, M W; Ostrovnaya, T M; Gundorina, S F

    2013-01-01

    The well-known moss bags technique was applied in the heavily polluted Thriasion Plain region, Attica, Greece, in order to study the spatiotemporal distribution, in the atmosphere, of the following 32 elements: Na, Al, Cl, Ca, Sc, Ti, V, Cr, Mn, Fe, Ni, Co, Zn, As, Se, Br, Sr, Mo, Sb, I, Ba, La, Ce, Sm, Tb, Dy, Yb, Hf, Ta, Hg, Th, and U. The moss bags were constituted of Sphagnum girgensohnii materials. The bags were exposed to ambient air in a network of 12 monitoring stations scattered throughout the monitoring area. In order to explore the temporal variation of the pollutants, four sets of moss bags were exposed for 3, 6, 9, and 12 months. Instrumental neutral activation analysis was used for the determinations of the elements. The data were analyzed using the Pearson correlations, the partial redundancy analysis, and the biplot statistical methods. Some pairs of elements were highly correlated indicating a probable common source of origin. The levels of the measured pollutants were unevenly distributed throughout the area and different pollutants exhibited different spatial patterns. In general, higher loads were observed in the stations close to and within the industrial zone. Most of the measured elements (e.g., Al, Ca, Ni, I, Zn, Cr, and As) exhibited a monotonic accumulation trend over time. Some elements exhibited different dynamics. The elements Mn, Mo, and Hg showed a decreasing trend, probably due to leaching and/or volatilization processes over time. Na and Br initially showed an increasing trend during the winter and early spring periods but decreased drastically during the late warm period. The results further suggest that the moss bags technique would be considered valuable for the majority of elements but should be used with caution in the cases of elements vulnerable to leaching and/or volatilization. It also suggests that the timing and the duration of the exposure of moss materials should be considered in the interpretation of the results.

  3. Vertical transmission explains the specific Burkholderia pattern in Sphagnum mosses at multi-geographic scale

    PubMed Central

    Bragina, Anastasia; Cardinale, Massimiliano; Berg, Christian; Berg, Gabriele

    2013-01-01

    The betaproteobacterial genus Burkholderia is known for its versatile interactions with its hosts that can range from beneficial to pathogenic. A plant-beneficial-environmental (PBE) Burkholderia cluster was recently separated from the pathogen cluster, yet still little is known about burkholderial diversity, distribution, colonization, and transmission patterns on plants. In our study, we applied a combination of high-throughput molecular and microscopic methods to examine the aforementioned factors for Burkholderia communities associated with Sphagnum mosses – model plants for long-term associations – in Austrian and Russian bogs. Analysis of 16S rRNA gene amplicons libraries revealed that most of the Burkholderia are part of the PBE group, but a minor fraction was closely related to B. glathei and B. andropogonis from the pathogen cluster. Notably, Burkholderia showed highly similar composition patterns for each moss species independent of the geographic region, and Burkholderia-specific fluorescent in situ hybridization of Sphagnum gametophytes exhibited similar colonization patterns in different Sphagnum species at multi-geographic scales. To explain these patterns, we compared the compositions of the surrounding water, gametophyte-, and sporophyte-associated microbiome at genus level and discovered that Burkholderia were present in the Sphagnum sporophyte and gametophyte, but were absent in the flark water. Therefore, Burkholderia is a part of the core microbiome transmitted from the moss sporophyte to the gametophyte. This suggests a vertical transmission of Burkholderia strains, and thus underlines their importance for the plants themselves. PMID:24391630

  4. Antagonistic effects of drought and sand burial enable the survival of the biocrust moss Bryum argenteum in an arid sandy desert

    NASA Astrophysics Data System (ADS)

    Jia, Rongliang; Zhao, Yun; Gao, Yanhong; Hui, Rong; Yang, Haotian; Wang, Zenru; Li, Yixuan

    2018-02-01

    Biocrust moss is an essential soil surface bio-cover. It can represent the latest succession stage among the diverse range of surface-dwelling cryptogams (e.g., cyanobacteria, green algae, and lichen, which are also referred to as biocrusts), and it can make a major contribution to soil stability and fertility in many arid sandy desert ecosystems. The soil surface represents a very large ecological niche that is poikilohydric in nature. Biocrust moss is therefore highly susceptible to drought and sand burial, which are two ubiquitous stressors in arid sandy deserts. However, little information is available regarding the mechanism by which biocrust moss can survive and flourish in these habitats when stressed simultaneously by the two stressors. The combined effects of drought and sand burial were evaluated in a field experiment using the predominant biocrust moss, Bryum argenteum Hedw., in the Tengger Desert, China. Drought was simulated by applying distilled water in three artificial rainfall regimes at 8-day intervals in spring and autumn: 4 and 6 mm (average rainfall, control), 2 and 3 mm (double drought), and 1 and 1.5 mm (4-fold drought), respectively. The effect of sand burial was determined by applying six treatments, i.e., sand depths of 0 (control), 0.5, 1, 2, 4, and 10 mm. The four parameters of chlorophyll a content, PSII photochemical efficiency, regeneration potential, and shoot upgrowth were evaluated in the moss. It was found that the combined effects of drought and sand burial did not exacerbate the single negative effects of the four parameters tested. Drought significantly ameliorated the negative effects of deep-sand burial on the retention of chlorophyll a content, PSII photochemical efficiency, and the regeneration potential of B. argenteum. Sand burial diminished and even reversed the negative effects of drought on the maintenance of chlorophyll a content, PSII photochemical efficiency, and regeneration potential. Although drought and sand

  5. Conservation of the plastid sedimentation zone in all moss genera with known gravitropic protonemata

    NASA Technical Reports Server (NTRS)

    Schwuchow, J. M.; Kern, V. D.; White, N. J.; Sack, F. D.

    2002-01-01

    Moss protonemata from several species are known to be gravitropic. The characterization of additional gravitropic species would be valuable to identify conserved traits that may relate to the mechanism of gravitropism. In this study, four new species were found to have gravitropic protonemata, Fissidens adianthoides, Fissidens cristatus, Physcomitrium pyriforme, and Barbula unguiculata. Comparison of upright and inverted apical cells of P. pyriforme and Fissidens species showed clear axial sedimentation. This sedimentation is highly regulated and not solely dependent on amyloplast size. Additionally, the protonemal tip cells of these species contained broad subapical zones that displayed lateral amyloplast sedimentation. The conservation of a zone of lateral sedimentation in a total of nine gravitropic moss species from five different orders supports the idea that this sedimentation serves a specialized and conserved function in gravitropism, probably in gravity sensing.

  6. North American origin and recent European establishments of the amphi-Atlantic peat moss Sphagnum angermanicum.

    PubMed

    Stenøien, Hans K; Shaw, A Jonathan; Shaw, Blanka; Hassel, Kristian; Gunnarsson, Urban

    2011-04-01

    Genetic and morphological similarity between populations separated by large distances may be caused by frequent long-distance dispersal or retained ancestral polymorphism. The frequent lack of differentiation between disjunct conspecific moss populations on different continents has traditionally been explained by the latter model, and has been cited as evidence that many or most moss species are extremely ancient and slowly diverging. We have studied intercontinental differentiation in the amphi-Atlantic peat moss Sphagnum angermanicum using 23 microsatellite markers. Two major genetic clusters are found, both of which occur throughout the distributional range. Patterns of genetic structuring and overall migration patterns suggest that the species probably originated in North America, and seems to have been established twice in Northern Europe during the past 40,000 years. We conclude that similarity between S. angermanicum populations on different continents is not the result of ancient vicariance and subsequent stasis. Rather, the observed pattern can be explained by multiple long-distance dispersal over limited evolutionary time. The genetic similarity can also partly be explained by incomplete lineage sorting, but this appears to be caused by the short time since separation. Our study adds to a growing body of evidence suggesting that Sphagnum, constituting a significant part of northern hemisphere biodiversity, may be more evolutionary dynamic than previously assumed. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.

  7. The complete chloroplast genome sequence of the CAM epiphyte Spanish moss (Tillandsia usneoides, Bromeliaceae) and its comparative analysis.

    PubMed

    Poczai, Péter; Hyvönen, Jaakko

    2017-01-01

    Spanish moss (Tillandsia usneoides) is an epiphytic bromeliad widely distributed throughout tropical and warm temperate America. This plant is highly adapted to extreme environmental conditions. Striking features of this species include specialized trichomes (scales) covering the surface of its shoots aiding the absorption of water and nutrients directly from the atmosphere and a specific photosynthesis using crassulacean acid metabolism (CAM). Here we report the plastid genome of Spanish moss and present the comparison of genome organization and sequence evolution within Poales. The plastome of Spanish moss has a quadripartite structure consisting of a large single copy (LSC, 87,439 bp), two inverted regions (IRa and IRb, 26,803 bp) and short single copy (SSC, 18,612 bp) region. The plastid genome had 37.2% GC content and 134 genes with 88 being unique protein-coding genes and 20 of these are duplicated in the IR, similar to other reported bromeliads. Our study shows that early diverging lineages of Poales do not have high substitution rates as compared to grasses, and plastid genomes of bromeliads show structural features considered to be ancestral in graminids. These include the loss of the introns in the clpP and rpoC1 genes and the complete loss or partial degradation of accD and ycf genes in the Graminid clade. Further structural rearrangements appeared in the graminids lacking in Spanish moss, which include a 28-kb inversion between the trnG-UCC-rps14 region and 6-kb in the trnG-UCC-psbD, followed by a third <1kb inversion in the trnT sequence.

  8. Air quality in urban parking garages (PM10, major and trace elements, PAHs): Instrumental measurements vs. active moss biomonitoring

    NASA Astrophysics Data System (ADS)

    Vuković, Gordana; Aničić Urošević, Mira; Razumenić, Ivana; Kuzmanoski, Maja; Pergal, Miodrag; Škrivanj, Sandra; Popović, Aleksandar

    2014-03-01

    This study was performed in four parking garages in downtown of Belgrade with the aim to provide multi-pollutant assessment. Concentrations of 16 US EPA priority PAHs and Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr and Zn were determined in PM10 samples. The carcinogenic health risk of employees' occupational exposure to heavy metals (Cd, Cr, Ni and Pb) and PAHs (B[a]A, Cry, B[b]F, B[k]F, B[a]P and DB[ah]A) was estimated. A possibility of using Sphagnum girgensohnii moss bags for monitoring of trace element air pollution in semi-enclosed spaces was evaluated as well. The results showed that concentrations of PM10, Cd, Ni and B[a]P exceeded the EU Directive target values. Concentration of Zn, Ba and Cu were two orders of magnitude higher than those measured at different urban sites in European cities. Cumulative cancer risk obtained for heavy metals and PAHs was 4.51 × 10-5 and 3.75 × 10-5 in M and PP, respectively; upper limit of the acceptable US EPA range is 10-4. In the moss, higher post-exposure than pre-exposure (background) element concentrations was observed. In comparison with instrumental monitoring data, similar order of abundances of the most elements in PM10 and moss samples was found. However, using of the S. girgensohnii moss bag technique in indoor environments needs further justification.

  9. 33 CFR 207.170 - Federal Dam, Oklawaha River, Moss Bluff, Fla.; pool level.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Federal Dam, Oklawaha River, Moss Bluff, Fla.; pool level. 207.170 Section 207.170 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.170 Federal Dam, Oklawaha River...

  10. 33 CFR 207.170 - Federal Dam, Oklawaha River, Moss Bluff, Fla.; pool level.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Federal Dam, Oklawaha River, Moss Bluff, Fla.; pool level. 207.170 Section 207.170 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.170 Federal Dam, Oklawaha River...

  11. 33 CFR 207.170 - Federal Dam, Oklawaha River, Moss Bluff, Fla.; pool level.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Federal Dam, Oklawaha River, Moss Bluff, Fla.; pool level. 207.170 Section 207.170 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.170 Federal Dam, Oklawaha River...

  12. Immuno and Affinity Cytochemical Analysis of Cell Wall Composition in the Moss Physcomitrella patens

    DOE PAGES

    Berry, Elizabeth A.; Tran, Mai L.; Dimos, Christos S.; ...

    2016-03-08

    In contrast to homeohydric vascular plants, mosses employ a poikilohydric strategy for surviving in the dry aerial environment. A detailed understanding of the structure, composition, and development of moss cell walls can contribute to our understanding of not only the evolution of overall cell wall complexity, but also the differences that have evolved in response to selection for different survival strategies. The model moss species Physcomitrella patens has a predominantly haploid lifecycle consisting of protonemal filaments that regenerate from protoplasts and enlarge by tip growth, and leafy gametophores composed of cells that enlarge by diffuse growth and differentiate into severalmore » different types. Advantages for genetic studies include methods for efficient targeted gene modification and extensive genomic resources. Immuno and affinity cytochemical labeling were used to examine the distribution of polysaccharides and proteins in regenerated protoplasts, protonemal filaments, rhizoids, and sectioned gametophores of P. patens. The cell wall composition of regenerated protoplasts was also characterized by flow cytometry. Crystalline cellulose was abundant in the cell walls of regenerating protoplasts and protonemal cells that developed on media of high osmolarity, whereas homogalactuonan was detected in the walls of protonemal cells that developed on low osmolarity media and not in regenerating protoplasts. Mannan was the major hemicellulose detected in all tissues tested. Arabinogalactan proteins were detected in different cell types by different probes, consistent with structural heterogneity. The results reveal developmental and cell type specific differences in cell wall composition and provide a basis for analyzing cell wall phenotypes in knockout mutants.« less

  13. Eight types of stem cells in the life cycle of the moss Physcomitrella patens.

    PubMed

    Kofuji, Rumiko; Hasebe, Mitsuyasu

    2014-02-01

    Stem cells self-renew and produce cells that differentiate to become the source of the plant body. The moss Physcomitrella patens forms eight types of stem cells during its life cycle and serves as a useful model in which to explore the evolution of such cells. The common ancestor of land plants is inferred to have been haplontic and to have formed stem cells only in the gametophyte generation. A single stem cell would have been maintained in the ancestral gametophyte meristem, as occurs in extant basal land plants. During land plant evolution, stem cells diverged in the gametophyte generation to form different types of body parts, including the protonema and rhizoid filaments, leafy-shoot and thalloid gametophores, and gametangia formed in moss. A simplex meristem with a single stem cell was acquired in the sporophyte generation early in land plant evolution. Subsequently, sporophyte stem cells became multiple in the meristem and were elaborated further in seed plant lineages, although the evolutionary origin of niche cells, which maintain stem cells is unknown. Comparisons of gene regulatory networks are expected to give insights into the general mechanisms of stem cell formation and maintenance in land plants and provide information about their evolution. P. patens develops at least seven types of simplex meristem in the gametophyte and at least one type in the sporophyte generation and is a good material for regulatory network comparisons. In this review, we summarize recently revealed molecular mechanisms of stem cell initiation and maintenance in the moss. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes.

    PubMed

    Ding, Jia; Wang, Huanlei; Li, Zhi; Kohandehghan, Alireza; Cui, Kai; Xu, Zhanwei; Zahiri, Beniamin; Tan, Xuehai; Lotfabad, Elmira Memarzadeh; Olsen, Brian C; Mitlin, David

    2013-12-23

    We demonstrate that peat moss, a wild plant that covers 3% of the earth's surface, serves as an ideal precursor to create sodium ion battery (NIB) anodes with some of the most attractive electrochemical properties ever reported for carbonaceous materials. By inheriting the unique cellular structure of peat moss leaves, the resultant materials are composed of three-dimensional macroporous interconnected networks of carbon nanosheets (as thin as 60 nm). The peat moss tissue is highly cross-linked, being rich in lignin and hemicellulose, suppressing the nucleation of equilibrium graphite even at 1100 °C. Rather, the carbons form highly ordered pseudographitic arrays with substantially larger intergraphene spacing (0.388 nm) than graphite (c/2 = 0.3354 nm). XRD analysis demonstrates that this allows for significant Na intercalation to occur even below 0.2 V vs Na/Na(+). By also incorporating a mild (300 °C) air activation step, we introduce hierarchical micro- and mesoporosity that tremendously improves the high rate performance through facile electrolyte access and further reduced Na ion diffusion distances. The optimized structures (carbonization at 1100 °C + activation) result in a stable cycling capacity of 298 mAh g(-1) (after 10 cycles, 50 mA g(-1)), with ∼150 mAh g(-1) of charge accumulating between 0.1 and 0.001 V with negligible voltage hysteresis in that region, nearly 100% cycling Coulombic efficiency, and superb cycling retention and high rate capacity (255 mAh g(-1) at the 210th cycle, stable capacity of 203 mAh g(-1) at 500 mA g(-1)).

  15. Immuno and Affinity Cytochemical Analysis of Cell Wall Composition in the Moss Physcomitrella patens.

    PubMed

    Berry, Elizabeth A; Tran, Mai L; Dimos, Christos S; Budziszek, Michael J; Scavuzzo-Duggan, Tess R; Roberts, Alison W

    2016-01-01

    In contrast to homeohydric vascular plants, mosses employ a poikilohydric strategy for surviving in the dry aerial environment. A detailed understanding of the structure, composition, and development of moss cell walls can contribute to our understanding of not only the evolution of overall cell wall complexity, but also the differences that have evolved in response to selection for different survival strategies. The model moss species Physcomitrella patens has a predominantly haploid lifecycle consisting of protonemal filaments that regenerate from protoplasts and enlarge by tip growth, and leafy gametophores composed of cells that enlarge by diffuse growth and differentiate into several different types. Advantages for genetic studies include methods for efficient targeted gene modification and extensive genomic resources. Immuno and affinity cytochemical labeling were used to examine the distribution of polysaccharides and proteins in regenerated protoplasts, protonemal filaments, rhizoids, and sectioned gametophores of P. patens. The cell wall composition of regenerated protoplasts was also characterized by flow cytometry. Crystalline cellulose was abundant in the cell walls of regenerating protoplasts and protonemal cells that developed on media of high osmolarity, whereas homogalactuonan was detected in the walls of protonemal cells that developed on low osmolarity media and not in regenerating protoplasts. Mannan was the major hemicellulose detected in all tissues tested. Arabinogalactan proteins were detected in different cell types by different probes, consistent with structural heterogneity. The results reveal developmental and cell type specific differences in cell wall composition and provide a basis for analyzing cell wall phenotypes in knockout mutants.

  16. Immuno and Affinity Cytochemical Analysis of Cell Wall Composition in the Moss Physcomitrella patens

    PubMed Central

    Berry, Elizabeth A.; Tran, Mai L.; Dimos, Christos S.; Budziszek, Michael J.; Scavuzzo-Duggan, Tess R.; Roberts, Alison W.

    2016-01-01

    In contrast to homeohydric vascular plants, mosses employ a poikilohydric strategy for surviving in the dry aerial environment. A detailed understanding of the structure, composition, and development of moss cell walls can contribute to our understanding of not only the evolution of overall cell wall complexity, but also the differences that have evolved in response to selection for different survival strategies. The model moss species Physcomitrella patens has a predominantly haploid lifecycle consisting of protonemal filaments that regenerate from protoplasts and enlarge by tip growth, and leafy gametophores composed of cells that enlarge by diffuse growth and differentiate into several different types. Advantages for genetic studies include methods for efficient targeted gene modification and extensive genomic resources. Immuno and affinity cytochemical labeling were used to examine the distribution of polysaccharides and proteins in regenerated protoplasts, protonemal filaments, rhizoids, and sectioned gametophores of P. patens. The cell wall composition of regenerated protoplasts was also characterized by flow cytometry. Crystalline cellulose was abundant in the cell walls of regenerating protoplasts and protonemal cells that developed on media of high osmolarity, whereas homogalactuonan was detected in the walls of protonemal cells that developed on low osmolarity media and not in regenerating protoplasts. Mannan was the major hemicellulose detected in all tissues tested. Arabinogalactan proteins were detected in different cell types by different probes, consistent with structural heterogneity. The results reveal developmental and cell type specific differences in cell wall composition and provide a basis for analyzing cell wall phenotypes in knockout mutants. PMID:27014284

  17. Gravitropism and phototropism in protonemata of the moss Pohlia nutans (HEDW.) lindb.

    NASA Astrophysics Data System (ADS)

    Demkiv, O. T.; Kordyum, E. L.; Kardash, O. R.; Khorkavtsiv, O. Ya.

    1999-01-01

    The gravitropism of protonemata of Pohlia nutans is described and compared with that of other mosses. In darkness, protonemata showed negative gravitropism. Under uniform illumination they grew radially over the substrate surface, whereas unilateral illumination induced positive phototropic growth. Gravitropism was coupled with starch synthesis and amyloplast formation. Protonematal gravitropic growth is more variable than the strict negative gravitropism of Ceratodon chloronema.

  18. 33 CFR 207.170 - Federal Dam, Oklawaha River, Moss Bluff, Fla.; pool level.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Federal Dam, Oklawaha River, Moss..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.170 Federal Dam, Oklawaha River... high water, the discharge past the dam shall be regulated in such manner as he may direct until he...

  19. 33 CFR 207.170 - Federal Dam, Oklawaha River, Moss Bluff, Fla.; pool level.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Federal Dam, Oklawaha River, Moss..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.170 Federal Dam, Oklawaha River... high water, the discharge past the dam shall be regulated in such manner as he may direct until he...

  20. Protein encoding genes in an ancient plant: analysis of codon usage, retained genes and splice sites in a moss, Physcomitrella patens

    PubMed Central

    Rensing, Stefan A; Fritzowsky, Dana; Lang, Daniel; Reski, Ralf

    2005-01-01

    Background The moss Physcomitrella patens is an emerging plant model system due to its high rate of homologous recombination, haploidy, simple body plan, physiological properties as well as phylogenetic position. Available EST data was clustered and assembled, and provided the basis for a genome-wide analysis of protein encoding genes. Results We have clustered and assembled Physcomitrella patens EST and CDS data in order to represent the transcriptome of this non-seed plant. Clustering of the publicly available data and subsequent prediction resulted in a total of 19,081 non-redundant ORF. Of these putative transcripts, approximately 30% have a homolog in both rice and Arabidopsis transcriptome. More than 130 transcripts are not present in seed plants but can be found in other kingdoms. These potential "retained genes" might have been lost during seed plant evolution. Functional annotation of these genes reveals unequal distribution among taxonomic groups and intriguing putative functions such as cytotoxicity and nucleic acid repair. Whereas introns in the moss are larger on average than in the seed plant Arabidopsis thaliana, position and amount of introns are approximately the same. Contrary to Arabidopsis, where CDS contain on average 44% G/C, in Physcomitrella the average G/C content is 50%. Interestingly, moss orthologs of Arabidopsis genes show a significant drift of codon fraction usage, towards the seed plant. While averaged codon bias is the same in Physcomitrella and Arabidopsis, the distribution pattern is different, with 15% of moss genes being unbiased. Species-specific, sensitive and selective splice site prediction for Physcomitrella has been developed using a dataset of 368 donor and acceptor sites, utilizing a support vector machine. The prediction accuracy is better than those achieved with tools trained on Arabidopsis data. Conclusion Analysis of the moss transcriptome displays differences in gene structure, codon and splice site usage in

  1. Determination of element composition and extraterrestrial material occurrence in moss and lichen samples from King George Island (Antarctica) using reactor neutron activation analysis and SEM microscopy.

    PubMed

    Mróz, Tomasz; Szufa, Katarzyna; Frontasyeva, Marina V; Tselmovich, Vladimir; Ostrovnaya, Tatiana; Kornaś, Andrzej; Olech, Maria A; Mietelski, Jerzy W; Brudecki, Kamil

    2018-01-01

    Seven lichens (Usnea antarctica and U. aurantiacoatra) and nine moss samples (Sanionia uncinata) collected in King George Island were analyzed using instrumental neutron activation analysis, and concentration of major and trace elements was calculated. For some elements, the concentrations observed in moss samples were higher than corresponding values reported from other sites in the Antarctica, but in the lichens, these were in the same range of concentrations. Scanning electron microscopy (SEM) and statistical analysis showed large influence of volcanic-origin particles. Also, the interplanetary cosmic particles (ICP) were observed in investigated samples, as mosses and lichens are good collectors of ICP and micrometeorites.

  2. Desorption of 137Cs from Brachythecium mildeanum moss using acid solutions with pH 4.60-6.50

    NASA Astrophysics Data System (ADS)

    Čučulović, Ana; Veselinović, Dragan

    2015-12-01

    The desorption of 137Cs from the moss Brachythecium mildeanum (Schimp.) was performed using the following solutions: H2SO4 ( I), HNO3 ( II), H2SO4 + HNO3 ( III) with pH values of 4.60, 5.15, and 5.75, respectively, as well as distilled water (D) with pH 6.50. After five successive desorptions, each lasting 24 h, 20.5-37.6% 137Cs was desorbed from the moss using these solutions, while 30.7% of the starting content was desorbed using distilled water. The first desorption removed the highest percent of the original content of 137Cs in the moss (11.3-18.4%). This was determined by measuring 137Cs activity. If the current results are compared with those obtained earlier it may be concluded that 137Cs desorption from mosses is not species-dependent. The obtained results indicate the necessity of investigating the influence of acid rain, or rather, of H+ ions, on desorption of other ions from biological systems, i.e., the role of H+ ions in spreading other polluting compounds and thus producing secondary environmental pollution. From the results of this study it follows that acid rain will lead, through H+ ion action, to a similar increasing pollution of fallout waters with other ionic compounds which may not be present in the water before the contact with the plants and thus enable the pollution spreading. In the investigated system, the replacement of H+ ions from acid rains by more dangerous radioactive ions occured, increasing the concentration of the radioactive ions in the water, which demonstrates that the same process takes place in fallout water.

  3. The complete chloroplast genome sequence of the CAM epiphyte Spanish moss (Tillandsia usneoides, Bromeliaceae) and its comparative analysis

    PubMed Central

    Hyvönen, Jaakko

    2017-01-01

    Spanish moss (Tillandsia usneoides) is an epiphytic bromeliad widely distributed throughout tropical and warm temperate America. This plant is highly adapted to extreme environmental conditions. Striking features of this species include specialized trichomes (scales) covering the surface of its shoots aiding the absorption of water and nutrients directly from the atmosphere and a specific photosynthesis using crassulacean acid metabolism (CAM). Here we report the plastid genome of Spanish moss and present the comparison of genome organization and sequence evolution within Poales. The plastome of Spanish moss has a quadripartite structure consisting of a large single copy (LSC, 87,439 bp), two inverted regions (IRa and IRb, 26,803 bp) and short single copy (SSC, 18,612 bp) region. The plastid genome had 37.2% GC content and 134 genes with 88 being unique protein-coding genes and 20 of these are duplicated in the IR, similar to other reported bromeliads. Our study shows that early diverging lineages of Poales do not have high substitution rates as compared to grasses, and plastid genomes of bromeliads show structural features considered to be ancestral in graminids. These include the loss of the introns in the clpP and rpoC1 genes and the complete loss or partial degradation of accD and ycf genes in the Graminid clade. Further structural rearrangements appeared in the graminids lacking in Spanish moss, which include a 28-kb inversion between the trnG-UCC–rps14 region and 6-kb in the trnG-UCC–psbD, followed by a third <1kb inversion in the trnT sequence. PMID:29095905

  4. Holocene climate variability revealed by oxygen isotope analysis of Sphagnum cellulose from Walton Moss, northern England

    NASA Astrophysics Data System (ADS)

    Daley, T. J.; Barber, K. E.; Street-Perrott, F. A.; Loader, N. J.; Marshall, J. D.; Crowley, S. F.; Fisher, E. H.

    2010-07-01

    Stable isotope analyses of Sphagnum alpha-cellulose, precipitation and bog water from three sites across northwestern Europe (Raheenmore, Ireland, Walton Moss, northern England and Dosenmoor, northern Germany) over a total period of 26 months were used to investigate the nature of the climatic signal recorded by Sphagnum moss. The δ18O values of modern alpha-cellulose tracked precipitation more closely than bog water, with a mean isotopic fractionation factor αcellulose-precipitation of 1.0274 ± 0.001 (1 σ) (≈27‰). Sub-samples of isolated Sphagnum alpha-cellulose were subsequently analysed from core WLM22, Walton Moss, northern England yielding a Sphagnum-specific isotope record spanning the last 4300 years. The palaeo-record, calibrated using the modern data, provides evidence for large amplitude variations in the estimated oxygen isotope composition of precipitation during the mid- to late Holocene. Estimates of palaeotemperature change derived from statistical relationships between modern surface air temperatures and δ18O precipitation values for the British Isles give unrealistically large variation in comparison to proxies from other archives. We conclude that use of such relationships to calibrate mid-latitude palaeo-data must be undertaken with caution. The δ18O record from Sphagnum cellulose was highly correlated with a palaeoecologically-derived index of bog surface wetness (BSW), suggesting a common climatic driver.

  5. Comparison of headspace-oxylipin-volatilomes of some Eastern Himalayan mosses extracted by sample enrichment probe and analysed by gas chromatography-mass spectrometry.

    PubMed

    Mitra, Souvik; Burger, Barend V; Poddar-Sarkar, Mousumi

    2017-03-01

    Mosses have an inherent adaptability against different biotic and abiotic stresses. Oxylipins, the volatile metabolites derived from polyunsaturated fatty acids (PUFAs), play a key role in the chemical defence strategy of mosses. In the present study, a comparative survey of these compounds, including an investigation into their precursor fatty acids (FAs), was carried out for the first time on the mosses Brachymenium capitulatum (Mitt.) Paris, Hydrogonium consanguineum (Thwaites & Mitt.) Hilp., Barbula hastata Mitt., and Octoblepharum albidum Hedw. collected from the Eastern Himalayan Biodiversity hotspot. Their headspace volatiles were sampled using a high-efficiency sample enrichment probe (SEP) and were characterized by gas chromatography-mass spectrometric analysis. FAs from neutral lipid (NL) and phospholipid (PL) fractions were also evaluated. Analysis of the oxylipin volatilome revealed the generation of diverse metabolites from C 5 to C 18 , dominated by alkanes, alkenes, saturated and unsaturated alcohols, aldehydes, ketones and cyclic compounds, with pronounced structural variations. The C 6 and C 8 compounds dominated the total volatilome of all the samples. Analyses of FAs from membrane PL and storage NL highlighted the involvement of C 18 and C 20 PUFAs in oxylipin generation. The volatilome of each moss is characterized by a 'signature oxylipin mixture'. Quantitative differences in the C 6 and C 8 metabolites indicate their phylogenetic significance.

  6. Discovery of Polyesterases from Moss-Associated Microorganisms.

    PubMed

    Müller, Christina Andrea; Perz, Veronika; Provasnek, Christoph; Quartinello, Felice; Guebitz, Georg M; Berg, Gabriele

    2017-02-15

    The growing pollution of the environment with plastic debris is a global threat which urgently requires biotechnological solutions. Enzymatic recycling not only prevents pollution but also would allow recovery of valuable building blocks. Therefore, we explored the existence of microbial polyesterases in microbial communities associated with the Sphagnum magellanicum moss, a key species within unexploited bog ecosystems. This resulted in the identification of six novel esterases, which were isolated, cloned, and heterologously expressed in Escherichia coli The esterases were found to hydrolyze the copolyester poly(butylene adipate-co-butylene terephthalate) (PBAT) and the oligomeric model substrate bis[4-(benzoyloxy)butyl] terephthalate (BaBTaBBa). Two promising polyesterase candidates, EstB3 and EstC7, which clustered in family VIII of bacterial lipolytic enzymes, were purified and characterized using the soluble esterase substrate p-nitrophenyl butyrate (K m values of 46.5 and 3.4 μM, temperature optima of 48°C and 50°C, and pH optima of 7.0 and 8.5, respectively). In particular, EstC7 showed outstanding activity and a strong preference for hydrolysis of the aromatic ester bond in PBAT. Our study highlights the potential of plant-associated microbiomes from extreme natural ecosystems as a source for novel hydrolytic enzymes hydrolyzing polymeric compounds. In this study, we describe the discovery and analysis of new enzymes from microbial communities associated with plants (moss). The recovered enzymes show the ability to hydrolyze not only common esterase substrates but also the synthetic polyester poly(butylene adipate-co-butylene terephthalate), which is a common material employed in biodegradable plastics. The widespread use of such synthetic polyesters in industry and society requires the development of new sustainable technological solutions for their recycling. The discovered enzymes have the potential to be used as catalysts for selective recovery of

  7. Mineral dynamics in Spanish moss, Tillandsia usneoides L. (Bromeliaceae), from Central Florida, USA.

    PubMed

    Husk, George J; Weishampel, John F; Schlesinger, William H

    2004-04-05

    Epiphytes absorb water and nutrients from the atmosphere through precipitation and dry deposition and from their hosts through stemflow and throughfall. These commensals have been used as biological indicators or monitors of air quality. To measure temporal changes in Spanish moss (Tillandsia usneoides) mineral concentrations, we revisited sites in Central Florida where this epiphyte was collected and analyzed in 1973/1974. After 24-25 years, using comparable methods, concentrations of Ca, Mg, K and Cu decreased in the tissue samples while Fe increased. These declines in base cations corresponded to global atmospheric decreases. In the earlier study, patterns of elemental concentrations in Spanish moss corresponded to the host tree categories primarily reflecting a P gradient that increased from pine (Pinus spp.) to cypress (Taxodium spp.) to hardwood (e.g. Quercus spp.) hosts. Such host-specific associations were mostly absent from the recent study, suggesting that epiphytic preferences based on the chemistry of phorophyte leachates have become less important in this region, perhaps, resulting from local (suburbanization) or regional (atmospheric composition) changes.

  8. Biodegradation of diesel by mixed bacteria immobilized onto a hybrid support of peat moss and additives: a batch experiment.

    PubMed

    Lee, Young-Chul; Shin, Hyun-Jae; Ahn, Yeonghee; Shin, Min-Chul; Lee, Myungjin; Yang, Ji-Won

    2010-11-15

    We report microbial cell immobilization onto a hybrid support of peat moss for diesel biodegradation. Three strains isolated from a site contaminated with diesel oil were used in this study: Acinetobacter sp., Gordonia sp., and Rhodococcus sp. To increase not only diesel adsorption but also diesel biodegradation, additives such as zeolite, bentonite, chitosan, and alginate were tested. In this study, a peat moss, bentonite, and alginate (2/2.9/0.1 g, w/w/w) hybrid support (PBA) was the best support matrix, considering both diesel physical adsorption capacity and mixed microbial immobilization. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Effect of commercial grade endosulfan on growth and reproduction of the fighting fish Betta splendens.

    PubMed

    Balasubramani, A; Pandian, T J

    2014-09-01

    To study the effects of endosulfan on survival, growth and reproduction of the obligate air-breathing male heterogametic fighting fish Betta splendens, posthatchlings of the fighting fish were discretely immersed for 3 h/day during the labile period on the 2nd, 5th, and 8th day posthatching (dph) at selected concentrations of commercial grade endosulfan ranging from 175 to 1400 ng/L. The immersions at 1,400 ng/L led to 21% mortality, among the 79% of surviving fry, 80% developed into females. The endosulfan reduced the air-breathing frequency of 5- and 8-day old hatchlings, and the reduction in the frequency persisted even after a depuration period of 172 days. In the ovary of the treated females, reduced number of vitellogenic oocytes with increased vacuolar cavities was observed. In the testis of the treated males, the reduced number of spermatogonia with increased vacuolar cavities was observed. The treated male induced the female to spawn a fewer eggs, which were subsequently incubated in his smaller bubble nest. The control females attained puberty on the 138th dph and spawned 120 eggs once in every 15 days, the females, which were previously treated at 1400 ng/L, postponed puberty to the 179th dph and spawned 70 eggs once in every 32 days. During the 240-day experiment, endosulfan is found to reduce significantly the cumulative progeny production from 760 to 144, reducing significantly to 19% of the control. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.

  10. The omnivorous Tyrolean Iceman: colon contents (meat, cereals, pollen, moss and whipworm) and stable isotope analyses.

    PubMed Central

    Dickson, J H; Oeggl, K; Holden, T G; Handley, L L; O'Connell, T C; Preston, T

    2000-01-01

    The contents of the colon of the Tyrolean Iceman who lived ca. 5300 years ago include muscle fibres, cereal remains, a diversity of pollen, and most notably that of the hop hornbeam (Ostrya carpinifolia) retaining cellular contents, as well as a moss leaf (Neckera complanata) and eggs of the parasitic whipworm (Trichuris trichiura). Based almost solely on stable isotope analyses and ignoring the work on the colon contents, two recently published papers on the Iceman's diet draw ill-founded conclusions about vegetarianism and even veganism. Neither the pollen nor the moss is likely to have been deliberately consumed as food by the Iceman. All the available evidence concerning the Iceman's broad-based diet is reviewed and the significance of the colon contents for matters other than assessment of food intake is outlined. PMID:11205345

  11. Cellular Differentiation in Moss Protonemata: A Morphological and Experimental Study

    PubMed Central

    Pressel, Silvia; Ligrone, Roberto; Duckett, Jeffrey G.

    2008-01-01

    Background and Aims Previous studies of protonemal morphogenesis in mosses have focused on the cytoskeletal basis of tip growth and the production of asexual propagules. This study provides the first comprehensive description of the differentiation of caulonemata and rhizoids, which share the same cytology, and the roles of the cytoskeleton in organelle shaping and spatial arrangement. Methods Light and electron microscope observations were carried out on in vitro cultured and wild protonemata from over 200 moss species. Oryzalin and cytochalasin D were used to investigate the role of the cytoskeleton in the cytological organization of fully differentiated protonemal cells; time-lapse photography was employed to monitor organelle positions. Key Results The onset of differentiation in initially highly vacuolate subapical cells is marked by the appearance of tubular endoplasmic reticulum (ER) profiles with crystalline inclusions, closely followed by an increase in rough endoplasmic reticulum (RER). The tonoplast disintegrates and the original vacuole is replaced by a population of vesicles and small vacuoles originating de novo from RER. The cytoplasm then becomes distributed throughout the cell lumen, an event closely followed by the appearance of endoplasmic microtubules (MTs) in association with sheets of ER, stacks of vesicles that subsequently disperse, elongate mitochondria and chloroplasts and long tubular extensions at both poles of the nucleus. The production of large vesicles by previously inactive dictysomes coincides with the deposition of additional cell wall layers. At maturity, the numbers of endoplasmic microtubules decline, dictyosomes become inactive and the ER is predominantly smooth. Fully developed cells remain largely unaffected by cytochalasin; oryzalin elicits profound cytological changes. Both inhibitors elicit the formation of giant plastids. The plastids and other organelles in fully developed cells are largely stationary. Conclusions

  12. Cellular differentiation in moss protonemata: a morphological and experimental study.

    PubMed

    Pressel, Silvia; Ligrone, Roberto; Duckett, Jeffrey G

    2008-08-01

    Previous studies of protonemal morphogenesis in mosses have focused on the cytoskeletal basis of tip growth and the production of asexual propagules. This study provides the first comprehensive description of the differentiation of caulonemata and rhizoids, which share the same cytology, and the roles of the cytoskeleton in organelle shaping and spatial arrangement. Light and electron microscope observations were carried out on in vitro cultured and wild protonemata from over 200 moss species. Oryzalin and cytochalasin D were used to investigate the role of the cytoskeleton in the cytological organization of fully differentiated protonemal cells; time-lapse photography was employed to monitor organelle positions. The onset of differentiation in initially highly vacuolate subapical cells is marked by the appearance of tubular endoplasmic reticulum (ER) profiles with crystalline inclusions, closely followed by an increase in rough endoplasmic reticulum (RER). The tonoplast disintegrates and the original vacuole is replaced by a population of vesicles and small vacuoles originating de novo from RER. The cytoplasm then becomes distributed throughout the cell lumen, an event closely followed by the appearance of endoplasmic microtubules (MTs) in association with sheets of ER, stacks of vesicles that subsequently disperse, elongate mitochondria and chloroplasts and long tubular extensions at both poles of the nucleus. The production of large vesicles by previously inactive dictysomes coincides with the deposition of additional cell wall layers. At maturity, the numbers of endoplasmic microtubules decline, dictyosomes become inactive and the ER is predominantly smooth. Fully developed cells remain largely unaffected by cytochalasin; oryzalin elicits profound cytological changes. Both inhibitors elicit the formation of giant plastids. The plastids and other organelles in fully developed cells are largely stationary. Differentiation of caulonemata and rhizoids involves a

  13. Precipitation frequency alters peatland ecosystem structure and CO2 exchange: Contrasting effects on moss, sedge, and shrub communities.

    PubMed

    Radu, Danielle D; Duval, Tim P

    2018-05-01

    Climate projections forecast a redistribution of seasonal precipitation for much of the globe into fewer, larger events spaced between longer dry periods, with negligible changes in seasonal rainfall totals. This intensification of the rainfall regime is expected to alter near-surface water availability, which will affect plant performance and carbon uptake. This could be especially important in peatland systems, where large stores of carbon are tightly coupled to water surpluses limiting decomposition. Here, we examined the role of precipitation frequency on vegetation growth and carbon dioxide (CO 2 ) balances for communities dominated by a Sphagnum moss, a sedge, and an ericaceous shrub in a cool temperate poor fen. Field plots and laboratory monoliths received one of three rainfall frequency treatments, ranging from one event every three days to one event every 14 days, while total rain delivered in a two-week cycle and the entire season to each treatment remained the same. Separating incident rain into fewer but larger events increased vascular cover in all peatland communities: vascular plant cover increased 6× in the moss-dominated plots, nearly doubled in the sedge plots, and tripled in the shrub plots in Low-Frequency relative to High-Frequency treatments. Gross ecosystem productivity was lowest in moss communities receiving low-frequency rain, but higher in sedge and shrub communities under the same conditions. Net ecosystem exchange followed this pattern: fewer events with longer dry periods increased CO 2 flux to the atmosphere from the moss while vascular plant-dominated communities became more of a sink for CO 2 . Results of this study suggest that changes to rainfall frequency already occurring and predicted to continue will lead to increased vascular plant cover in peatlands and will impact their carbon-sink function. © 2018 John Wiley & Sons Ltd.

  14. Moss stable isotopes (carbon-13, oxygen-18) and testate amoebae reflect environmental inputs and microclimate along a latitudinal gradient on the Antarctic Peninsula.

    PubMed

    Royles, Jessica; Amesbury, Matthew J; Roland, Thomas P; Jones, Glyn D; Convey, Peter; Griffiths, Howard; Hodgson, Dominic A; Charman, Dan J

    2016-07-01

    The stable isotope compositions of moss tissue water (δ(2)H and δ(18)O) and cellulose (δ(13)C and δ(18)O), and testate amoebae populations were sampled from 61 contemporary surface samples along a 600-km latitudinal gradient of the Antarctic Peninsula (AP) to provide a spatial record of environmental change. The isotopic composition of moss tissue water represented an annually integrated precipitation signal with the expected isotopic depletion with increasing latitude. There was a weak, but significant, relationship between cellulose δ(18)O and latitude, with predicted source water inputs isotopically enriched compared to measured precipitation. Cellulose δ(13)C values were dependent on moss species and water content, and may reflect site exposure to strong winds. Testate amoebae assemblages were characterised by low concentrations and taxonomic diversity, with Corythion dubium and Microcorycia radiata types the most cosmopolitan taxa. The similarity between the intra- and inter-site ranges measured in all proxies suggests that microclimate and micro-topographical conditions around the moss surface were important determinants of proxy values. Isotope and testate amoebae analyses have proven value as palaeoclimatic, temporal proxies of climate change, whereas this study demonstrates that variations in isotopic and amoeboid proxies between microsites can be beyond the bounds of the current spatial variability in AP climate.

  15. Evolution of plant cell wall: Arabinogalactan-proteins from three moss genera show structural differences compared to seed plants.

    PubMed

    Bartels, Desirée; Baumann, Alexander; Maeder, Malte; Geske, Thomas; Heise, Esther Marie; von Schwartzenberg, Klaus; Classen, Birgit

    2017-05-01

    Arabinogalactan-proteins (AGPs) are important proteoglycans of plant cell walls. They seem to be present in most, if not all seed plants, but their occurrence and structure in bryophytes is widely unknown and actually the focus of AGP research. With regard to evolution of plant cell wall, we isolated AGPs from the three mosses Sphagnum sp., Physcomitrella patens and Polytrichastrum formosum. The moss AGPs show structural characteristics common for AGPs of seed plants, but also unique features, especially 3-O-methyl-rhamnose (trivial name acofriose) as terminal monosaccharide not found in arabinogalactan-proteins of angiosperms and 1,2,3-linked galactose as branching point never found in arabinogalactan-proteins before. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Functional Specialization of Cellulose Synthase Isoforms in a Moss Shows Parallels with Seed Plants1[OPEN

    PubMed Central

    Li, Xingxing; Huang, Shixin; Van de Meene, Allison M.L.; Tran, Mai L.; Killeavy, Erin; Mercure, Danielle; Burton, Rachel A.

    2017-01-01

    The secondary cell walls of tracheary elements and fibers are rich in cellulose microfibrils that are helically oriented and laterally aggregated. Support cells within the leaf midribs of mosses deposit cellulose-rich secondary cell walls, but their biosynthesis and microfibril organization have not been examined. Although the Cellulose Synthase (CESA) gene families of mosses and seed plants diversified independently, CESA knockout analysis in the moss Physcomitrella patens revealed parallels with Arabidopsis (Arabidopsis thaliana) in CESA functional specialization, with roles for both subfunctionalization and neofunctionalization. The similarities include regulatory uncoupling of the CESAs that synthesize primary and secondary cell walls, a requirement for two or more functionally distinct CESA isoforms for secondary cell wall synthesis, interchangeability of some primary and secondary CESAs, and some CESA redundancy. The cellulose-deficient midribs of ppcesa3/8 knockouts provided negative controls for the structural characterization of stereid secondary cell walls in wild type P. patens. Sum frequency generation spectra collected from midribs were consistent with cellulose microfibril aggregation, and polarization microscopy revealed helical microfibril orientation only in wild type leaves. Thus, stereid secondary walls are structurally distinct from primary cell walls, and they share structural characteristics with the secondary walls of tracheary elements and fibers. We propose a mechanism for the convergent evolution of secondary walls in which the deposition of aggregated and helically oriented microfibrils is coupled to rapid and highly localized cellulose synthesis enabled by regulatory uncoupling from primary wall synthesis. PMID:28768816

  17. Contrasting diversity of testate amoebae communities in Sphagnum and brown-moss dominated patches in relation to shell counts.

    PubMed

    Lizoňová, Zuzana; Horsák, Michal

    2017-04-01

    Ecological studies of peatland testate amoebae are generally based on totals of 150 individuals per sample. However, the suitability of this standard has never been assessed for alkaline habitats such as spring fens. We explored the differences in testate amoeba diversity between Sphagnum and brown-moss microhabitats at a mire site with a highly diversified moss layer which reflects the small-scale heterogeneity in groundwater chemistry. Relationships between sampling efficiency and sample completeness were explored using individual-based species accumulation curves and the effort required to gain an extra species was assessed. Testate amoeba diversity differed substantially between microhabitats, with brown mosses hosting on average twice as many species and requiring greater shell totals to reach comparable sample analysis efficiency as for Sphagnum. Thus, for samples from alkaline conditions an increase in shell totals would be required and even an overall doubling up to 300 individuals might be considered for reliable community description. Our small-scale data are likely not robust enough to provide an ultimate solution for the optimization of shell totals. However, the results proved that testate amoebae communities from acidic and alkaline environments differ sharply in both species richness and composition and they might call for different methodological approaches. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Medicinal mosses in pre-Linnaean bryophyte floras of central Europe. An example from the natural history of Poland.

    PubMed

    Drobnik, Jacek; Stebel, Adam

    2014-05-14

    The paper presents information about the earliest botanical work from Poland, Warsavia physice illustrata which takes bryophytes into account. It was elaborated by a German physician Christian Heinrich Erndtel and issued in 1730 in Dresden. That time understanding of bryophytes was imprecise and in many cases they were confused with lichens and club mosses. Bryophyte taxa polynomials (18 names) were identified using pre- and post-Linnaean botanical monographs from years 1590 to 1801. Their current names and pharmacological value are provided, as well as the old ethnobotanical data about bryophytes (cited from 18th-century sources). Altogether 18 bryophyte species were identified from the vicinity of Warsaw (17 mosses and 1 liverwort). Some of them are still abundant in this area (for example Climacium dendroides, Plagiomnium undulatum and Polytrichum juniperinum) while some other are rare or extinct (for example Neckera crispa and Rhodobryum roseum). Despite the technical ability to observe specific microscopic differences among bryophytes, physicians of 18th century were hardly interested in using any of them as medicinal stock. It may be concluded that the competences in pre-Linnaean bryology did not put into practice using moss-derived materia medica of 18th century (the only exceptions were Fontinalis antipyretica and Polytrichum spp.). Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Using an epiphytic moss to identify previously unknown sources of atmospheric cadmium pollution

    Treesearch

    Geoffrey H. Donovan; Sarah E. Jovan; Demetrios Gatziolis; Igor Burstyn; Yvonne L. Michael; Michael C. Amacher; Vicente J. Monleon

    2016-01-01

    Urban networks of air-quality monitors are often too widely spaced to identify sources of air pollutants, especially if they do not disperse far from emission sources. The objectives of this study were to test the use of moss bio-indicators to develop a fine-scale map of atmospherically-derived cadmium and to identify the sources of cadmium in a complex urban setting....

  20. Crown Group Lejeuneaceae and Pleurocarpous Mosses in Early Eocene (Ypresian) Indian Amber.

    PubMed

    Heinrichs, Jochen; Scheben, Armin; Bechteler, Julia; Lee, Gaik Ee; Schäfer-Verwimp, Alfons; Hedenäs, Lars; Singh, Hukam; Pócs, Tamás; Nascimbene, Paul C; Peralta, Denilson F; Renner, Matt; Schmidt, Alexander R

    2016-01-01

    Cambay amber originates from the warmest period of the Eocene, which is also well known for the appearance of early angiosperm-dominated megathermal forests. The humid climate of these forests may have triggered the evolution of epiphytic lineages of bryophytes; however, early Eocene fossils of bryophytes are rare. Here, we present evidence for lejeuneoid liverworts and pleurocarpous mosses in Cambay amber. The preserved morphology of the moss fossil is inconclusive for a detailed taxonomic treatment. The liverwort fossil is, however, distinctive; its zig-zagged stems, suberect complicate-bilobed leaves, large leaf lobules, and small, deeply bifid underleaves suggest a member of Lejeuneaceae subtribe Lejeuneinae (Harpalejeunea, Lejeunea, Microlejeunea). We tested alternative classification possibilities by conducting divergence time estimates based on DNA sequence variation of Lejeuneinae using the age of the fossil for corresponding age constraints. Consideration of the fossil as a stem group member of Microlejeunea or Lejeunea resulted in an Eocene to Late Cretaceous age of the Lejeuneinae crown group. This reconstruction is in good accordance with published divergence time estimates generated without the newly presented fossil evidence. Balancing available evidence, we describe the liverwort fossil as the extinct species Microlejeunea nyiahae, representing the oldest crown group fossil of Lejeuneaceae.

  1. Effect of fire on phosphorus forms in Sphagnum moss and peat soils of ombrotrophic bogs.

    PubMed

    Wang, Guoping; Yu, Xiaofei; Bao, Kunshan; Xing, Wei; Gao, Chuanyu; Lin, Qianxin; Lu, Xianguo

    2015-01-01

    The effect of burning Sphagnum moss and peat on phosphorus forms was studied with controlled combustion in the laboratory. Two fire treatments, a light fire (250 °C) and a severe fire (600 °C), were performed in a muffle furnace with 1-h residence time to simulate the effects of different forest fire conditions. The results showed that fire burning Sphagnum moss and peat soils resulted in losses of organic phosphorus (Po), while inorganic phosphorus (Pi) concentrations increased. Burning significantly changed detailed phosphorus composition and availability, with severe fires destroying over 90% of organic phosphorus and increasing the availability of inorganic P by more than twofold. Our study suggest that, while decomposition processes in ombrotrophic bogs occur very slowly, rapid changes in the form and availability of phosphorus in vegetation and litter may occur as the result of forest fires on peat soils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Magnetic biomonitoring by moss bags for industry-derived air pollution in SW Finland

    NASA Astrophysics Data System (ADS)

    Salo, Hanna; Mäkinen, Joni

    2014-11-01

    We provide the first detailed case study using Sphagnum papillosum moss bags for active magnetic monitoring of airborne industrial pollution in order to evaluate the actual role of various emission sources and the competence of current environmental protection actions relative to the air quality. The origin and spatial spreading of particulate matter (PM) based on magnetic, chemical, and SEM-EDX analyses was studied around the Industrial Park in Harjavalta, SW Finland. The data was collected during two 6-month sampling periods along 8 km transects in 2010-2011. The results support our hypothesis that the main emission source of PM is not the Cu-Ni smelter's pipe as presumed in previous chemical monitorings. We argue that the hot spot area within the severe impact pollution zone is related to slag processing and/or other unidentified industrial activity. At short distances various dust-providing sources outweigh the fly-ash load from the Cu-Ni smelter's pipe. Active magnetic monitoring by moss bags will help in planning environmental actions as well as in improvement of health conditions for industrial staff and town residents living next to the Industrial Park.

  3. High Throughput Sequencing to Detect Differences in Methanotrophic Methylococcaceae and Methylocystaceae in Surface Peat, Forest Soil, and Sphagnum Moss in Cranesville Swamp Preserve, West Virginia, USA

    PubMed Central

    Lau, Evan; Nolan, Edward J.; Dillard, Zachary W.; Dague, Ryan D.; Semple, Amanda L.; Wentzell, Wendi L.

    2015-01-01

    Northern temperate forest soils and Sphagnum-dominated peatlands are a major source and sink of methane. In these ecosystems, methane is mainly oxidized by aerobic methanotrophic bacteria, which are typically found in aerated forest soils, surface peat, and Sphagnum moss. We contrasted methanotrophic bacterial diversity and abundances from the (i) organic horizon of forest soil; (ii) surface peat; and (iii) submerged Sphagnum moss from Cranesville Swamp Preserve, West Virginia, using multiplex sequencing of bacterial 16S rRNA (V3 region) gene amplicons. From ~1 million reads, >50,000 unique OTUs (Operational Taxonomic Units), 29 and 34 unique sequences were detected in the Methylococcaceae and Methylocystaceae, respectively, and 24 potential methanotrophs in the Beijerinckiaceae were also identified. Methylacidiphilum-like methanotrophs were not detected. Proteobacterial methanotrophic bacteria constitute <2% of microbiota in these environments, with the Methylocystaceae one to two orders of magnitude more abundant than the Methylococcaceae in all environments sampled. The Methylococcaceae are also less diverse in forest soil compared to the other two habitats. Nonmetric multidimensional scaling analyses indicated that the majority of methanotrophs from the Methylococcaceae and Methylocystaceae tend to occur in one habitat only (peat or Sphagnum moss) or co-occurred in both Sphagnum moss and peat. This study provides insights into the structure of methanotrophic communities in relationship to habitat type, and suggests that peat and Sphagnum moss can influence methanotroph community structure and biogeography. PMID:27682082

  4. Complete Genome Sequence of Methylobacterium aquaticum Strain 22A, Isolated from Racomitrium japonicum Moss

    PubMed Central

    Ogura, Yoshitoshi; Hayashi, Tetsuya; Kimbara, Kazuhide

    2015-01-01

    Methylobacterium species colonize plant surfaces and utilize methanol emitted from plants. Methylobacterium aquaticum strain 22A was isolated from a hydroponic culture of a moss, Racomitrium japonicum, and is a potent plant growth promoter. The complete genome sequencing of the strain confirmed the presence of genes related to plant growth promotion and methylotrophy. PMID:25858842

  5. An ancient genome duplication contributed to the abundance of metabolic genes in the moss Physcomitrella patens

    PubMed Central

    Rensing, Stefan A; Ick, Julia; Fawcett, Jeffrey A; Lang, Daniel; Zimmer, Andreas; Van de Peer, Yves; Reski, Ralf

    2007-01-01

    Background: Analyses of complete genomes and large collections of gene transcripts have shown that most, if not all seed plants have undergone one or more genome duplications in their evolutionary past. Results: In this study, based on a large collection of EST sequences, we provide evidence that the haploid moss Physcomitrella patens is a paleopolyploid as well. Based on the construction of linearized phylogenetic trees we infer the genome duplication to have occurred between 30 and 60 million years ago. Gene Ontology and pathway association of the duplicated genes in P. patens reveal different biases of gene retention compared with seed plants. Conclusion: Metabolic genes seem to have been retained in excess following the genome duplication in P. patens. This might, at least partly, explain the versatility of metabolism, as described for P. patens and other mosses, in comparison to other land plants. PMID:17683536

  6. The moss Funaria hygrometrica has cuticular wax similar to vascular plants, with distinct composition on leafy gametophyte, calyptra and sporophyte capsule surfaces.

    PubMed

    Busta, Lucas; Budke, Jessica M; Jetter, Reinhard

    2016-09-01

    Aerial surfaces of land plants are covered with a waxy cuticle to protect against water loss. The amount and composition of cuticular waxes on moss surfaces had rarely been investigated. Accordingly, the degree of similarity between moss and vascular plant waxes, and between maternal and offspring moss structure waxes is unknown. To resolve these issues, this study aimed at providing a comprehensive analysis of the waxes on the leafy gametophyte, gametophyte calyptra and sporophyte capsule of the moss Funaria hygrometrica Waxes were extracted from the surfaces of leafy gametophytes, gametophyte calyptrae and sporophyte capsules, separated by gas chromatography, identified qualitatively with mass spectrometry, and quantified with flame ionization detection. Diagnostic mass spectral peaks were used to determine the isomer composition of wax esters. The surfaces of the leafy gametophyte, calyptra and sporophyte capsule of F. hygrometrica were covered with 0·94, 2·0 and 0·44 μg cm(-2) wax, respectively. While each wax mixture was composed of mainly fatty acid alkyl esters, the waxes from maternal and offspring structures had unique compositional markers. β-Hydroxy fatty acid alkyl esters were limited to the leafy gametophyte and calyptra, while alkanes, aldehydes and diol esters were restricted to the sporophyte capsule. Ubiquitous fatty acids, alcohols, fatty acid alkyl esters, aldehydes and alkanes were all found on at least one surface. This is the first study to determine wax coverage (μg cm(-2)) on a moss surface, enabling direct comparisons with vascular plants, which were shown to have an equal amount or more wax than F. hygrometrica Wax ester biosynthesis is of particular importance in this species, and the ester-forming enzyme(s) in different parts of the moss may have different substrate preferences. Furthermore, the alkane-forming wax biosynthesis pathway, found widely in vascular plants, is active in the sporophyte capsule, but not in the leafy

  7. Sphagnum palustre clone vs native Pseudoscleropodium purum: A first trial in the field to validate the future of the moss bag technique.

    PubMed

    Capozzi, F; Adamo, P; Di Palma, A; Aboal, J R; Bargagli, R; Fernandez, J A; Lopez Mahia, P; Reski, R; Tretiach, M; Spagnuolo, V; Giordano, S

    2017-06-01

    Although a large body of literature exists on the use of transplanted mosses for biomonitoring of air pollution, no article has addressed so far the use and the accumulation performance of a cloned moss for this purpose. In this work, a direct comparison of metal accumulation between bags filled with a Sphagnum palustre L. clone or with native Pseudoscleropodium purum Hedw., one of the most used moss species in biomonitoring surveys, was investigated. The test was performed in sites with different atmospheric contamination levels selected in urban, industrial, agricultural and background areas of Italy and Spain. Among the eighteen elements investigated, S. palustre was significantly enriched in 10 elements (Al, Ba, Cr, Cu, Fe, Hg, Pb, Sr, V and Zn), while P. purum was enriched only in 6 elements (Al, Ba, Cu, Hg, Pb and Sr), and had a consistently lower uptake capacity than S. palustre. The clone proved to be more sensitive in terms of metal uptake and showed a better performance as a bioaccumulator, providing a higher accumulation signal and allowing a finer distinction among the different land uses and levels of pollution. The excellent uptake performance of the S. palustre clone compared to the native P. purum and its low and stable baseline elemental content, evidenced in this work, are key features for the improvement of the moss bag approach and its large scale application. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Heavy Metal Absorption Efficiency of two Species of Mosses (Physcomitrella patens and Funaria hygrometrica) Studied in Mercury Treated Culture under Laboratory Condition

    NASA Astrophysics Data System (ADS)

    Pradhan, Abanti; Kumari, Sony; Dash, Saktisradha; Prasad Biswal, Durga; Kishore Dash, Aditya; Panigrahi, Kishore C. S.

    2017-08-01

    As an important component of ecosystems, mosses have a strong influence on the cycling of water, energy and nutrient. Given their sensitivity to environmental change, mosses can be used as bioindicators of water quality, air pollution, metal accumulation and climate change. In the present study, the growth, differentiation and heavy metal (Hg) absorption of two species of mosses like Physcomitrella patens and Funariahygrometrica were studied in solid cultures under laboratory conditions. It was observed that, the number of gametophores developed from single inoculated gametophores after 45 days of growth of F. hygrometrica was 11±2.0 in control where as it has decreased at higher concentrations, 4±1.5 in 1ppm of mercury treatment. P. patens also shows a similar trend. The heavy metal uptake of both the species of mosses was studied. It was observed that Hg content in pseudo leaves of P. patens ranged from 0.98 ppm to 2.76 ppm at different Hg treatment (0.1-1 ppm), whereas in F. hygrometrica it ranged from 0.78 ppm to 2.43 ppm under the same treatment condition. Comparing between the Hg content in pseudo-leaves and rhizoids of P. patens and F. hygrometrica, it was observed that the Hg content was elevated about 60-64% in rhizoids than that of pseudo-leaves at 0.1% treatment level, whereas it was increased almost up to 50% in other treatment level.

  9. Characterization of the Etna volcanic emissions through an active biomonitoring technique (moss-bags): part 1--major and trace element composition.

    PubMed

    Calabrese, S; D'Alessandro, W; Bellomo, S; Brusca, L; Martin, R S; Saiano, F; Parello, F

    2015-01-01

    Active biomonitoring using moss-bags was applied to an active volcanic environment for the first time. Bioaccumulation originating from atmospheric deposition was evaluated by exposing mixtures of washed and air-dried mosses (Sphagnum species) at 24 sites on Mt. Etna volcano (Italy). Concentrations of major and a large suite of trace elements were analysed by inductively coupled mass and optical spectrometry (ICP-MS and ICP-OES) after total acid digestion. Of the 49 elements analysed those which closely reflect summit volcanic emissions were S, Tl, Bi, Se, Cd, As, Cu, B, Na, Fe, Al. Enrichment factors and cluster analysis allowed clear distinction between volcanogenic, geogenic and anthropogenic inputs that affect the local atmospheric deposition. This study demonstrates that active biomonitoring with moss-bags is a suitable and robust technique for implementing inexpensive monitoring in scarcely accessible and harsh volcanic environments, giving time-averaged quantitative results of the local exposure to volcanic emissions. This task is especially important in the study area because the summit area of Mt. Etna is visited by nearly one hundred thousand tourists each year who are exposed to potentially harmful volcanic emissions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Predicting Calcite (CaCO3) Requirements of Sphagnum Peat Moss from pH Titration Curves

    USDA-ARS?s Scientific Manuscript database

    Liming materials are required to neutralize acidity in peat moss to make it a suitable substrate for growing container crops. A series of time-consuming incubations of peat:lime mixtures are typically used to determine the liming rate to achieve a desired pH. Our objective was to evaluate the util...

  11. Participation of IAA in transduction of gravistimulus in apical cells of moss protonema

    NASA Astrophysics Data System (ADS)

    Oksyniuk, U. A.; Khorkavtsiv, O. Y.; Lesniak, Y. I.

    Growth movements of vascular plant axis organs -- photo-, gravi- and other tropisms -- are tightly connected with IAA transport (Hertel, 1983; Medvedev, 1996; Kiss, 2000). Moss protonema synthesizes IAA (indole-3-acetic acid) and transports it basipetally favouring growth and differentiation of caulonema (Bopp, 1979; Rose, Bopp, 1983; Rose et al., 1983). We aimed at studying the role of IAA in moss protonema gravitropism using exogenous IAA, 1-NAA (1-naphthaleneacetic acid), 2,4D (2,4-dichlorophenoxyacetic acid) and inhibitors of polar IAA transport -- phytotropins NPA (N-1-naphthylphthalamic acid) and TIBA (2,3,5-triiodobenzoic acid). Six-day gravitropic protonema of Ceratodon purpureus and Pohlia nutans were taken for experiments. Auxin and phytotropins solutions were laid on protonema mats the latters being kept in solutions for 30 min. Then the surplus of solutions were poured off and Petri dishes were placed vertically for 6 h. 20 μ M of IAA and of other synthetic auxins did not significantly influence the angle of protonema gravity bending, 40 μ M of the agents, howewer, reduced the per cent of apical cells bendings and their angles. The most expressed influence on the angles of bending had the inhibitors of polar IAA transport -- NPA. 0,1 -- 3,0 μ M of this phytotropin did not change the form of apical cell, did not disturb the general distribution of amyloplasts and did not significantly lower the per cent and the value of gravity bending angle, though 10 μ M of the phytotropin - inhibited gravity bending. The mixture of 1-NAA and NPA having been added into the medium the influence of NPA was lowered and gravitropic growth renewed in course of time. 10 μ M of other phytopropin TIBA also inhibited gravitropism of Ceratodon purpureus and Pohlia nutans protonema. The analysis of basipetal transport of IAA in moss rhizoids and protonema may indicate the availability of special IAA transport in these structures (Bopp, Cerier, 1988). On the basis of the

  12. Using moss and lichens in biomonitoring of heavy-metal contamination of forest areas in southern and north-eastern Poland.

    PubMed

    Kłos, Andrzej; Ziembik, Zbigniew; Rajfur, Małgorzata; Dołhańczuk-Śródka, Agnieszka; Bochenek, Zbigniew; Bjerke, Jarle W; Tømmervik, Hans; Zagajewski, Bogdan; Ziółkowski, Dariusz; Jerz, Dominik; Zielińska, Maria; Krems, Paweł; Godyń, Piotr; Marciniak, Michał; Świsłowski, Paweł

    2018-06-15

    In the years 2014-2016 biomonitoring studies were conducted in the forest areas of south and north-eastern Poland: the Karkonosze Mountains, the Beskidy Mountains, the Borecka Forest, the Knyszyńska Forest and the Białowieska Forest. This study used epigeic moss Pleurozium schreberi and epiphytic lichens Hypogymnia physodes. Samples were collected in spring, summer and autumn. Approximately 500 samples of moss and lichens were collected for the study. In the samples, Mn, Ni, Cu, Zn, Cd, Hg and Pb concentrations were determined. Based on the obtained results, the studied areas were ranked by extent of heavy-metal deposition: Beskidy > Karkonosze Mountains > forests of north-eastern Poland. Some seasonal changes in concentrations of metals accumulated in moss and lichens were also indicated. There was observed, i.a., an increase in Cd concentration at the beginning of the growing season, which may be related to low emissions during the heating season. Analysis of the surface distribution of deposition of metals in the studied areas showed a significant contribution of nearby territorial emissions and unidentified local emission sources. The contribution of distant emission to Zn, Hg and Pb deposition levels in the Karkonosze and Beskidy region was also indicated. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. An impact of moss sample cleaning on uncertainty of analytical measurement and pattern profiles of rare earth elements.

    PubMed

    Dołęgowska, Sabina; Gałuszka, Agnieszka; Migaszewski, Zdzisław M

    2017-12-01

    The main source of rare earth elements (REE) in mosses is atmospheric deposition of particles. Sample treatment operations including shaking, rinsing or washing, which are made in a standard way on moss samples prior to chemical analysis, may lead to removing particles adsorbed onto their tissues. This in turn causes differences in REE concentrations in treated and untreated samples. For the present study, 27 combined moss samples were collected within three wooded areas and prepared for REE determinations by ICP-MS using both manual cleaning by shaking and triple rinsing with deionized water. Higher concentrations of REE were found in manually cleaned samples. The comparison of REE signatures and shale-normalized REE concentration patterns showed that the treatment procedure did not lead to fractionation of REE. All the samples were enriched in medium rare earth elements, and the δMREE factor remained practically unchanged after rinsing. Positive anomalies of Nd, Sm, Eu, Gd, Er and Yb were observed in both, manually cleaned and rinsed samples. For all the elements examined, analytical uncertainty was below 3.0% whereas sample preparation uncertainty computed with ANOVA, RANOVA, modified RANOVA and range statistics methods varied from 3.5 to 29.7%. In most cases the lowest s rprep values were obtained with the modified RANOVA method. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Phototropism in gametophytic shoots of the moss Physcomitrella patens.

    PubMed

    Bao, Liang; Yamamoto, Kotaro T; Fujita, Tomomichi

    2015-01-01

    Shoot phototropism enables plants to position their photosynthetic organs in favorable light conditions and thus benefits growth and metabolism in land plants. To understand the evolution of this response, we established an experimental system to study phototropism in gametophores of the moss Physcomitrella patens. The phototropic response of gametophores occurs slowly; a clear response takes place more than 24 hours after the onset of unilateral light irradiation, likely due to the slow growth rate of gametophores. We also found that red and far-red light can induce phototropism, with blue light being less effective. These results suggest that plants used a broad range of light wavelengths as phototropic signals during the early evolution of land plants.

  15. Phototropism in gametophytic shoots of the moss Physcomitrella patens

    PubMed Central

    Bao, Liang; Yamamoto, Kotaro T; Fujita, Tomomichi

    2015-01-01

    Shoot phototropism enables plants to position their photosynthetic organs in favorable light conditions and thus benefits growth and metabolism in land plants. To understand the evolution of this response, we established an experimental system to study phototropism in gametophores of the moss Physcomitrella patens. The phototropic response of gametophores occurs slowly; a clear response takes place more than 24 hours after the onset of unilateral light irradiation, likely due to the slow growth rate of gametophores. We also found that red and far-red light can induce phototropism, with blue light being less effective. These results suggest that plants used a broad range of light wavelengths as phototropic signals during the early evolution of land plants. PMID:25848889

  16. Multi-decadal survival of an Antarctic nematode, Plectus murrayi, in a -20°C stored moss sample.

    PubMed

    Kagoshima, H; Kito, K; Aizu, T; Shin-i, T; Kanda, H; Kobayashi, S; Toyoda, A; Fujiyama, A; Kohara, Y; Convey, P; Niki, H

    2012-01-01

    It is not clear for how long Antarctic soil nematodes might tolerate freezing. Samples of the Antarctic moss, Bryum argenteum, were collected on 1 October 1983 at Langhovde, Soya coast, eastern Antarctica and were stored at -20°C. After 25.5 years of storage, living nematodes were recovered from the samples and were identified as Plectus murrayi by morphological examination and nucleotide sequencing of ribosomal RNA loci. The nematodes can grow and reproduce in a water agar plate with bacteria (mainly Pseudomonas sp.) cultured from the moss extract. They showed freezing tolerance at -20°C and -80°C and their survival rate after exposure to -20°C, but not -80°C, was increased if they were initially frozen slowly at a high sub-zero temperature. They also showed some ability to tolerate desiccation stress.

  17. Profiling Abscisic Acid-Induced Changes in Fatty Acid Composition in Mosses.

    PubMed

    Shinde, Suhas; Devaiah, Shivakumar; Kilaru, Aruna

    2017-01-01

    In plants, change in lipid composition is a common response to various abiotic stresses. Lipid constituents of bryophytes are of particular interest as they differ from that of flowering plants. Unlike higher plants, mosses have high content of very long-chain polyunsaturated fatty acids. Such lipids are considered to be important for survival of nonvascular plants. Here, using abscisic acid (ABA )-induced changes in lipid composition in Physcomitrella patens as an example, a protocol for total lipid extraction and quantification by gas chromatography (GC) coupled with flame ionization detector (FID) is described.

  18. Complete Genome Sequence of Methylobacterium aquaticum Strain 22A, Isolated from Racomitrium japonicum Moss.

    PubMed

    Tani, Akio; Ogura, Yoshitoshi; Hayashi, Tetsuya; Kimbara, Kazuhide

    2015-04-09

    Methylobacterium species colonize plant surfaces and utilize methanol emitted from plants. Methylobacterium aquaticum strain 22A was isolated from a hydroponic culture of a moss, Racomitrium japonicum, and is a potent plant growth promoter. The complete genome sequencing of the strain confirmed the presence of genes related to plant growth promotion and methylotrophy. Copyright © 2015 Tani et al.

  19. Studying the atmospheric chemistry: Statististical study of epiphyte plant Spanish Moss in Florida, USA

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Parker, W.; Odom, L.

    2003-04-01

    The detrimental influence which airborne contaminants has on vegetation in many parts of the world has become of increasing interest and concern in recent years. The use of suitable plants such as epiphytes (vegetation which grows on another plant) for measuring concentrations of airborne materials provides the advantages of (a) an integration of the periodic fluctuations in amounts of these materials that occur over relatively long periods of time and (b) economy in sampling. This class of plants, which are mosses and lichens, are somewhat less dependent on their substrates and may act more purely as air indicators. The epiphytes do not derive nutrients from soil, but depend on airborne moisture and particulates for elemental sources. The way with which they absorb nutrients from these external sources gives rise to an uncommon sensitivity to the harmful effects of air pollution. Also in addition, plants of this class absorb constituents of airborne particulates which may not be directly toxic to the plant but of environmental concern to humans. In particular, trace element accumulation in epiphytic Tillandsia usneoides L. (Spanish Moss) common in Atlantic and Gulf Coastal plains has been used in air pollution studies. Recent studies have also evaluated Spanish moss as an indicator of contamination of pesticides and other organic aromatic compounds. Two hundred and six samples of Spanish moss (Tillandsia usneoides L.) were collected from over its geographic range in Florida for this study. The samples were analyzed for a variety of major and minor elements, and the resulting data were statistically analyzed for pertinent geochemical associations. Three statistical methods have been used on the geochemical data of Spanish moss to evaluate the nature of probable sources for each of the elements. This kind of work is being done because the exact nature and location of each specimen is unknown. So, the three different statistical methods have been used to classify or

  20. Targeted knock-out of a gene encoding sulfite reductase in the moss Physcomitrella patens affects gametophytic and sporophytic development.

    PubMed

    Wiedemann, Gertrud; Hermsen, Corinna; Melzer, Michael; Büttner-Mainik, Annette; Rennenberg, Heinz; Reski, Ralf; Kopriva, Stanislav

    2010-06-03

    A key step in sulfate assimilation into cysteine is the reduction of sulfite to sulfide by sulfite reductase (SiR). This enzyme is encoded by three genes in the moss Physcomitrella patens. To obtain a first insight into the roles of the individual isoforms, we deleted the gene encoding the SiR1 isoform in P. patens by homologous recombination and subsequently analysed the DeltaSiR1 mutants. While DeltaSiR1 mutants showed no obvious alteration in sulfur metabolism, their regeneration from protoplasts and their ability to produce mature spores was significantly affected, highlighting an unexpected link between moss sulfate assimilation and development, that is yet to be characterized. Copyright 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. Phylogeny-based comparative methods question the adaptive nature of sporophytic specializations in mosses.

    PubMed

    Huttunen, Sanna; Olsson, Sanna; Buchbender, Volker; Enroth, Johannes; Hedenäs, Lars; Quandt, Dietmar

    2012-01-01

    Adaptive evolution has often been proposed to explain correlations between habitats and certain phenotypes. In mosses, a high frequency of species with specialized sporophytic traits in exposed or epiphytic habitats was, already 100 years ago, suggested as due to adaptation. We tested this hypothesis by contrasting phylogenetic and morphological data from two moss families, Neckeraceae and Lembophyllaceae, both of which show parallel shifts to a specialized morphology and to exposed epiphytic or epilithic habitats. Phylogeny-based tests for correlated evolution revealed that evolution of four sporophytic traits is correlated with a habitat shift. For three of them, evolutionary rates of dual character-state changes suggest that habitat shifts appear prior to changes in morphology. This suggests that they could have evolved as adaptations to new habitats. Regarding the fourth correlated trait the specialized morphology had already evolved before the habitat shift. In addition, several other specialized "epiphytic" traits show no correlation with a habitat shift. Besides adaptive diversification, other processes thus also affect the match between phenotype and environment. Several potential factors such as complex genetic and developmental pathways yielding the same phenotypes, differences in strength of selection, or constraints in phenotypic evolution may lead to an inability of phylogeny-based comparative methods to detect potential adaptations.

  2. Cytological stress and element uptake in moss and lichen exposed in bags in urban area.

    PubMed

    Spagnuolo, V; Zampella, M; Giordano, S; Adamo, P

    2011-07-01

    In this study cytological ultrastructure, total content of C, N and S, and cellular location of major and trace elements (K, Ca, Mg, Cu, Pb and Zn) were investigated in the moss Hypnum cupressiforme and in the lichen Pseudevernia furfuracea exposed in bags for a spring-summer 12-weeks period in the urban area of Naples city. In the moss, severe ultrastructural damages, such as membrane interruptions and dehydration, developed after exposure supporting the occurrence of a dead biomonitor. In the lichen, the post-exposure stress marks, such as the development of lysosome-like vesicles and concentric bodies, or the production of melanin, were overall compatible with life. With exposure, N, S, major and trace element contents all increased in both biomonitors, while C remained substantially unchanged. Copper and Pb were mainly retained in extracellular and particulate forms. Intracellular concentration of Zn consistently increased in both biomonitors, irrespective of their vitality. In transplants, cellular location of elements can better reflect the form in which they occur in the environment. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Imaging Mitosis in the Moss Physcomitrella patens.

    PubMed

    Yamada, Moé; Miki, Tomohiro; Goshima, Gohta

    2016-01-01

    At first glance, mitosis in plants looks quite different from that in animals. In fact, terrestrial plants have lost the centrosome during evolution, and the mitotic spindle is assembled independently of a strong microtubule organizing center. The phragmoplast is a plant-specific mitotic apparatus formed after anaphase, which expands centrifugally towards the cell cortex. However, the extent to which plant mitosis differs from that of animals at the level of the protein repertoire is uncertain, largely because of the difficulty in the identification and in vivo characterization of mitotic genes of plants. Here, we discuss protocols for mitosis imaging that can be combined with endogenous green fluorescent protein (GFP) tagging or conditional RNA interference (RNAi) in the moss Physcomitrella patens, which is an emergent model plant for cell and developmental biology. This system has potential for use in the high-throughput study of mitosis and other intracellular processes, as is being done with various animal cell lines.

  4. Natural radionuclides in lichens, mosses and ferns in a thermal power plant and in an adjacent coal mine area in southern Brazil.

    PubMed

    Galhardi, Juliana Aparecida; García-Tenorio, Rafael; Díaz Francés, Inmaculada; Bonotto, Daniel Marcos; Marcelli, Marcelo Pinto

    2017-02-01

    The radio-elements 234 U, 235 U, 238 U, 230 Th, 232 Th and 210 Po were characterized in lichens, mosses and ferns species sampled in an adjacent coal mine area at Figueira City, Paraná State, Brazil, due to their importance for the assessment of human exposure related to the natural radioactivity. The coal is geologically associated with a uranium deposit and has been used as a fossil fuel in a thermal power plant in the city. Samples were initially prepared at LABIDRO (Isotopes and Hydrochemistry Laboratory), UNESP, Rio Claro (SP), Brazil. Then, alpha-spectrometry after several radiochemical steps was used at the Applied Nuclear Physics Laboratories, University of Seville, Seville, Spain, for measuring the activity concentration of the radionuclides. It was 210 Po the radionuclide that most bio-accumulates in the organisms, reaching the highest levels in mosses. The ferns species were less sensitive as bio-monitor than the mosses and lichens, considering polonium in relation to other radionuclides. Fruticose lichens exhibited lower polonium content than the foliose lichens sampled in the same site. Besides biological features, environmental characteristics also modify the radio-elements absorption by lichens and mosses like the type of vegetation covering these organisms, their substrate, the prevailing wind direction, elevation and climatic conditions. Only 210 Po and 238 U correlated in ferns and in soil and rock materials, being particulate emissions from the coal-fired power plant the most probable U-source in the region. Thus, the biomonitors used were able to detect atmospheric contamination by the radionuclides monitored. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Histopathology and culturable bacteria associated with "big belly" and "skin nodule" syndromes in ornamental Siamese fighting fish, Betta splendens.

    PubMed

    Dong, H T; Senapin, S; Phiwsaiya, K; Techatanakitarnan, C; Dokladda, K; Ruenwongsa, P; Panijpan, B

    2018-06-02

    The Siamese fighting fish (Betta splendens) is one of the popular aquarium ornamental fish in the global trade. Large numbers of ornamental fish farmed in central Thailand suffered from two common syndromes; preliminarily named skin nodule syndrome (SNS) and big belly syndrome (BBS): they showed noticeable clinical signs of abnormal appearances resulting in depressed saleability. Since very few specifics are known about causative agents of these syndromes, this study aimed at investigating histopathological features and culturable bacteria associated with these fish infected in the process of farming. Histopathologically, SNS fish consistently exhibited necrosis and severe melanization in the muscles and multiple internal organs. Whereas BBS fish exhibited either typical granulomas or tissue damage associated with acid-fast stained bacteria and Gram negative bacteria, respectively. Six different Gram negative bacterial species were recovered from BBS fish while 23 bacterial species belonging to 14 genera were recovered from fish suffering from SNS. Most of the culturable bacteria are new to betta fish and some of them are known to be marine bacteria, suggesting possible entry route via a contaminated live feed, commercial Artemia shrimp. The true causative agents of these syndromes remain unclear. However, histopathological changes and existence of a wide range of bacteria associated with the naturally diseased fish suggest involvement of multiple bacterial infections. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Trace element biomonitoring using mosses in urban areas affected by mud volcanoes around Mt. Etna. The case of the Salinelle, Italy.

    PubMed

    Bonanno, Giuseppe; Lo Giudice, Rosa; Pavone, Pietro

    2012-08-01

    Trace element impact was assessed using mosses in a densely inhabited area affected by mud volcanoes. Such volcanoes, locally called Salinelle, are phenomena that occur around Mt. Etna (Sicily, Italy) and are interpreted as the surface outflow of a hydrothermal system located below Mt. Etna, releasing sedimentary fluids (hydrocarbons and NaCl brines) along with magmatic gases (mainly CO(2) and He). To date, scarce data are available about the presence of trace elements, and no biomonitoring campaigns are reported about the cumulative effects of such emissions. In this study, concentrations of Al, As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, V, and Zn were detected in the moss Bryum argenteum, in soil and water. Results showed that the trace element contribution of the Salinelle to the general pollution was significant for Al, Mn, Ni, and Zn. The comparison of trace concentrations in mosses from Salinelle and Etna showed that the mud volcanoes release a greater amount of Al and Mn, whereas similar values of Ni were found. Natural emissions of trace elements could be hazardous in human settlements, in particular, the Salinelle seem to play an important role in environmental pollution.

  7. Evaluating carbon stores at the earth-atmosphere interface: moss and lichen mats of subarctic Alaska

    Treesearch

    Robert J. Smith; Sarah Jovan; Bruce McCune

    2015-01-01

    A fundamental goal of the forest inventory in interior Alaska is to accurately estimate carbon pools in a way that sheds light on the feedbacks between forests and climate. In boreal forests, moss and lichen mats often serve as the interface between soils and the atmosphere, therefore characterizing the biomass and composition of mats is essential for understanding how...

  8. In Vitro Anticancer Activity of the Crude Extract and two Dicinnamate Isolates from the Jamaican Ball Moss (Tillandsia Recurvata L.)

    PubMed Central

    Lowe, Henry IC; Toyang, Ngeh J.; Watson, Charah; Badal, Simone; Bahado-Singh, Perceval; Bryant, Joseph

    2015-01-01

    A crude chloroform extract from the Jamaican Ball Moss (Tillandsia recurvata L.) was tested for activity against three human cancer cell lines including; A375 (human melanoma), MCF-7 (human breast) and PC-3 (human prostate cancer) using the WST-1 assay. IC50s obtained against these cell lines; A375, MCF-7 and PC-3 in the presence of the crude extract are; 0.9μg/ml, 40.51μg/ml and 5.97μg/ml respectively indicating the promising anti-cancer activity of the ball moss extract. Further, preliminary phytochemical study was conducted in an attempt to identify and isolate the phytochemicals that could possibly be responsible for the observed bioactivity of the ball moss chloroform extract. As a result, two dicinnamates were isolated; 1,3-di-O-Cinnamoyl-glycerol (1) and (E)-3-(cinnamoyloxy)-2-hydroxypropyl 3-(3,4-dimethoxyphenyl)acrylate (2) and we report for the first time isolation of compound 2. Even though the bioactivity of these two islaotes were fairly weak against the cell lines, the results presented here will prove useful for further research aimed at identifying molecules that maybe effective against melanoma, breast and prostate cancers associated with fewer side-effects. PMID:26161295

  9. In Vitro Anticancer Activity of the Crude Extract and two Dicinnamate Isolates from the Jamaican Ball Moss (Tillandsia Recurvata L.).

    PubMed

    Lowe, Henry Ic; Toyang, Ngeh J; Watson, Charah; Badal, Simone; Bahado-Singh, Perceval; Bryant, Joseph

    2013-01-01

    A crude chloroform extract from the Jamaican Ball Moss (Tillandsia recurvata L.) was tested for activity against three human cancer cell lines including; A375 (human melanoma), MCF-7 (human breast) and PC-3 (human prostate cancer) using the WST-1 assay. IC 50 s obtained against these cell lines; A375, MCF-7 and PC-3 in the presence of the crude extract are; 0.9μg/ml, 40.51μg/ml and 5.97μg/ml respectively indicating the promising anti-cancer activity of the ball moss extract. Further, preliminary phytochemical study was conducted in an attempt to identify and isolate the phytochemicals that could possibly be responsible for the observed bioactivity of the ball moss chloroform extract. As a result, two dicinnamates were isolated; 1,3-di-O-Cinnamoyl-glycerol ( 1 ) and (E)-3-(cinnamoyloxy)-2-hydroxypropyl 3-(3,4-dimethoxyphenyl)acrylate ( 2 ) and we report for the first time isolation of compound 2 . Even though the bioactivity of these two islaotes were fairly weak against the cell lines, the results presented here will prove useful for further research aimed at identifying molecules that maybe effective against melanoma, breast and prostate cancers associated with fewer side-effects.

  10. Clonal in vitro propagation of peat mosses (Sphagnum L.) as novel green resources for basic and applied research.

    PubMed

    Beike, Anna K; Spagnuolo, Valeria; Lüth, Volker; Steinhart, Feray; Ramos-Gómez, Julia; Krebs, Matthias; Adamo, Paola; Rey-Asensio, Ana Isabel; Angel Fernández, J; Giordano, Simonetta; Decker, Eva L; Reski, Ralf

    As builders and major components of peatlands, Sphagnopsida (peat mosses) are very important organisms for ecosystems and world's climate. Nowadays many Sphagnum species as well as their habitats are largely protected, while their scientific and economic relevance remains considerable. Advanced methods of in vitro cultivation provide the potential to work in a sustainable way with peat mosses and address aspects of basic research as well as biotechnological and economical topics like biomonitoring or the production of renewable substrates for horticulture ( Sphagnum farming). Here, we describe the establishment of axenic in vitro cultures of the five peat moss species Sphagnum fimbriatum Wils. and Hook., Sphagnum magellanicum Brid., Sphagnum palustre L., Sphagnum rubellum Wils. and Sphagnum subnitens Russ. and Warnst. with specific focus on large-scale cultivation of S. palustre in bioreactors. Axenic, clonal cultures were established to produce high quantities of biomass under standardized laboratory conditions. For advanced production of S. palustre we tested different cultivation techniques, growth media and inocula, and analyzed the effects of tissue disruption. While cultivation on solid medium is suitable for long term storage, submerse cultivation in liquid medium yielded highest amounts of biomass. By addition of sucrose and ammonium nitrate we were able to increase the biomass by around 10- to 30-fold within 4 weeks. The morphology of in vitro-cultivated gametophores showed similar phenotypic characteristics compared to material from the field. Thus the tested culture techniques are suitable to produce S. palustre material for basic and applied research.

  11. Direct and Indirect Drivers of Moss Community Structure, Function, and Associated Microfauna Across a Successional Gradient

    Treesearch

    Micael Jonsson; Paul Kardol; Michael J. Gundale; Sheel Bansal; Marie-Charlotte Nilsson; Daniel B. Metcalfe; David A. Wardle

    2015-01-01

    Relative to vascular plants, little is known about what factors control bryophyte communities or how they respond to successional and environmental changes. Bryophytes are abundant in boreal forests, thus changes in moss community composition and functional traits (for example, moisture and nutrient content; rates of photosynthesis and respiration) may have important...

  12. Distribution and floristics of moss- and lichen-dominated soil crusts in a patterned Callitris glaucophylla woodland in eastern Australia

    NASA Astrophysics Data System (ADS)

    Eldridge, David J.

    1999-05-01

    The distribution and abundance of soil crust lichens and bryophytes was examined in a patterned Callitris glaucophylla woodland in eastern Australia. Twenty-one lichen species and 26 bryophyte species were collected within thirty quadrats along a sequence of runoff, interception and runoff zones. Crust cover was significantly greatest in the interception zones (79.0 %), followed by the runoff zones (24.0 %), and lowest in the groved, runon zones (6.6 %). Lichens and bryophytes were distributed across all geomorphic zones, and, although there were significantly more moss species in the interception zones (mean = 9.1) compared with either the runoff (4.2) or runon (3.2) zones, the number of lichen species did not vary between zones. Ordination of a reduced data set of 32 species revealed a separation of taxa into distinct groups corresponding to the three geomorphic zones. Canonical correspondence analysis (CCA) of the 32 species and thirteen environmental variables revealed that the most important factors associated with the distribution of species were sheet and scarp erosion, soil stability and coherence, litter cover and crust cover. Surface cracking, microtopography and plant cover were of intermediate importance. The CCA biplot revealed that the timbered runon zones (groves) were dominated by `shade-tolerant' mosses Fissidens vittatus and Barbula hornschuchiana, whilst the heavily eroded runoff zones supported sparse populations of `erosion tolerant' lichens ( Endocarpon rogersii) and mosses (Bryum argenteum and Didymodon torquatus). Interception zones supported a rich suite of `crust forming' mosses and lichens capable of tolerating moderate inundation by overland flow. Two other groups of taxa were identified by this analysis: the `pioneer' group, comprising mainly nitrogen-fixing lichens which occupy the zone of active erosion at the lower edge of the groves, and the `opportunists' dominated by liverworts, occupying the shallow depressions or bays at the

  13. Effect of Peat Moss and Pumice on Douglas Fir Bark based Soilless Substrate Physical and Hydraulic Properties

    USDA-ARS?s Scientific Manuscript database

    Douglas fir [Pseudotsuga menziesii Mirb.(Franco)] bark (DFB), sphagnum peat moss, and pumice are the most common substrate components used in the Oregon nursery industry. The objective of this study was to document the effect of peat and pumice addition on the physical and hydrological properties o...

  14. GPR survey to detect buried prehistorical remains at North Ballachulish Moss (Scotland).

    NASA Astrophysics Data System (ADS)

    Soldovieri, F.; Persico, R.; Utsi, E.

    2009-04-01

    This work deals with the Ground Penetrating Radar (GPR) exploitation to map the underlying topography of North Ballachulish Moss as part of an archaeological evaluation of the area that was under threat of development. The aim of the survey has been to reconstruct peat depth and detect and locate buried localised targets [1]. During the survey many radar anomalies have been detected and the reliability of the radar survey has been confirmed by ground-truthing under the form of sediment coring, test-pitting and trial excavations. Sediment coring and test-pitting provided corroborative evidence for the peat depths as defined by the radar survey. Trial trenching revealed that a suite of radar anomalies, identified during the course of the survey, are related to a buried prehistoric surface with an associated abundance of man-made artefacts (wooden stakes). The data interpretation has benefited of the representation of the GPR results under the format of horizontal time-slices that well pointed out the depth of the peat and the localization and the shape of the buried localised targets. In particular, the series of time-slices show the development of discrete surfaces and their relationship to an adjacent headland. The orientation of the site and its proximity to the location of a buried prehistoric wooden figure suggest ritual importance. Finally, the measurements have been processed by a novel data processing approach based on the microwave tomography [3-4]; the results of this data processing have been compared with the ones of the standard data processing and have confirmed the above said outcomes of the standard data processing. [1] C.M. Clarke, E.Utsi, V. Utsi, "Ground penetrating radar investigations at North Ballachulish Moss, Highland, Scotland", Archaeological Prospection, vol. 6, no. 2, pp. 107-121-75 , 1999 [2] E. Utsi, "Ground-penetrating radar time-slices from North Ballachulish Moss", Archaeological Prospection, vol. 11, no. 2, pp. 65-75, 2004. [3] F

  15. Elevational patterns of genetic variation in the cosmopolitan moss Bryum argenteum (Bryaceae).

    PubMed

    Pisa, Sergio; Werner, Olaf; Vanderpoorten, Alain; Magdy, Mahmoud; Ros, Rosa M

    2013-10-01

    The Baas Becking tenet posits that 'everything is everywhere, but the environment selects' to explain cosmopolitan distributions in highly vagile taxa. Bryophyte species show wider distributions than vascular plants and include examples of truly cosmopolitan ranges, which have been interpreted as a result of high dispersal capacities and ecological plasticity. In the current study, we documented patterns of genetic structure and diversity in the cosmopolitan moss Bryum argenteum along an elevational gradient to determine if genetic diversity and structure is homogenized by intense migrations in the lack of ecological differentiation. • 60 specimens were collected in the Sierra Nevada Mountains (Spain) between 100 and 2870 m and sequenced for ITS and rps4. Comparative analyses, genetic diversity estimators, and Mantel's tests were employed to determine the relationship between genetic variation, elevation, and geographic distance and to look for signs of demographic shifts. • Genetic diversity peaked above 1900 m and no signs of demographic shifts were detected at any elevation. There was a strong phylogenetic component in elevational variation. Genetic variation was significantly correlated with elevation, but not with geographic distance. • The results point to the long-term persistence of Bryum argenteum in a range that was glaciated during the Late Pleistocene. Evidence for an environmentally driven pattern of genetic differentiation suggests adaptive divergence. This supports the Baas Becking tenet and indicates that ecological specialization might play a key role in explaining patterns of genetic structure in cosmopolitan mosses.

  16. Multiple factors influence population sex ratios in the Mojave Desert moss Syntrichia caninervis.

    PubMed

    Baughman, Jenna T; Payton, Adam C; Paasch, Amber E; Fisher, Kirsten M; McDaniel, Stuart F

    2017-05-01

    Natural populations of many mosses appear highly female-biased based on the presence of reproductive structures. This bias could be caused by increased male mortality, lower male growth rate, or a higher threshold for achieving sexual maturity in males. Here we test these hypotheses using samples from two populations of the Mojave Desert moss Syntrichia caninervis . We used double-digest restriction-site associated DNA (RAD) sequencing to identify candidate sex-associated loci in a panel of sex-expressing plants. Next, we used putative sex-associated markers to identify the sex of individuals without sex structures. We found a 17:1 patch-level phenotypic female to male sex ratio in the higher elevation site (Wrightwood) and no sex expression at the low elevation site (Phelan). In contrast, on the basis of genetic data, we found a 2:1 female bias at the Wrightwood site and only females at the Phelan site. The relative area occupied by male and female genets was indistinguishable, but males were less genetically diverse. Our data suggest that both male-biased mortality and sexual dimorphism in thresholds for sex expression could explain genetic and phenotypic sex ratio biases and that phenotypic sex expression alone over-estimates the extent of actual sex ratio bias present in these two populations of S. caninervis . © 2017 Botanical Society of America.

  17. Quantitative assessment of metal elements using moss species as biomonitors in downwind area of lead-zinc mine.

    PubMed

    Balabanova, Biljana; Stafilov, Trajče; Šajn, Robert; Andonovska, Katerina Bačeva

    2017-02-23

    Distributions of a total of 21 elements were monitored in significantly lead-zinc polluted area using moss species (Hypnum cupressiforme and Camptothecium lutescens) used interchangeably, covering a denser sampling network. Interspecies comparison was conducted using Box-Cox transformed values, due to their skewed distribution. The median concentrations of trace elements in the both mosses examined decreased in the following order: Fe>Mn>Zn>Pb>Cu>Ni∼Cr∼As>Co>Cd>Hg. For almost all analyzed elements, H. cupressiforme revealed higher bio-accumulative abilities. For arsenic contents was obtained ER-value in favor of C. lutescens. The ER for the element contents according to the distance from the pollution source in selected areas was significantly enriched for the anthropogenic introduced elements As, Cd, Cu, Pb and Zn. After Box-Cox transformation of the content values, T B was significantly different for As (4.82), Cd (3.84), Cu (2.95), Pb (4.38), and Zn (4.23). Multivariate factor analysis singled out four elemental associations: F1 (Al-Co-Cr-Fe-Li-Ni-V), F2 (Cd-Pb-Zn), F3 (Ca-Mg-Na-P) and F4 (Cu) with a total variance of 89%. Spatial distribution visualized the hazardously higher contents of "hot spots" of Cd > 1.30 mg/kg, Cu > 22 mg/kg, Pb > 130 mg/kg and Zn > 160 mg/kg. Therefore, main approach in moss biomonitoring should be based on data management of the element distribution by reducing the effect of extreme values (considering Box-Cox data transformation); the interspecies variation in sampling media does not deviate in relation to H. cupressiforme vs. C. lutescens.

  18. Use of a moss biomonitoring method to compile emission inventories for small-scale industries.

    PubMed

    Varela, Z; Aboal, J R; Carballeira, A; Real, C; Fernández, J A

    2014-06-30

    We used a method of detecting small-scale pollution sources (DSSP) that involves measurement of the concentrations of elements in moss tissues, with the following aims: (i) to determine any common qualitative patterns of contaminant emissions for individual industrial sectors, (ii) to compare any such patterns with previously described patterns, and (iii) to compile an inventory of the metals and metalloids emitted by the industries considered. Cluster analysis revealed that there were no common patterns of emission associated with the industrial sectors, probably because of differences in production processes and in the types of fuel and raw materials. However, when these variables were shared by different factories, the concentrations of the elements in moss tissues enabled the factories to be grouped according to their emissions. We compiled a list of the metals and metalloids emitted by the factories under study and found that the DSSP method was satisfactory for this purpose in most cases (53 of 56). The method appears to be a useful tool for compiling contaminant inventories; it may also be useful for determining the efficacy of technical improvements aimed at reducing the industrial emission of contaminants and could be incorporated in environmental monitoring and control programmes. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Hawking-Moss instanton in nonlinear massive gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ying-li; Saito, Ryo; Sasaki, Misao, E-mail: yingli@yukawa.kyoto-u.ac.jp, E-mail: rsaito@yukawa.kyoto-u.ac.jp, E-mail: misao@yukawa.kyoto-u.ac.jp

    2013-02-01

    As a first step toward understanding a lanscape of vacua in a theory of non-linear massive gravity, we consider a landscape of a single scalar field and study tunneling between a pair of adjacent vacua. We study the Hawking-Moss (HM) instanton that sits at a local maximum of the potential, and evaluate the dependence of the tunneling rate on the parameters of the theory. It is found that provided with the same physical HM Hubble parameter H{sub HM}, depending on the values of parameters α{sub 3} and α{sub 4} in the action (2.2), the corresponding tunneling rate can be eithermore » enhanced or suppressed when compared to the one in the context of General Relativity (GR). Furthermore, we find the constraint on the ratio of the physical Hubble parameter to the fiducial one, which constrains the form of potential. This result is in sharp contrast to GR where there is no bound on the minimum value of the potential.« less

  20. Stevesaltica, a new genus of moss and leaf-litter inhabiting flea beetles from Bolivia (Coleoptera: Chrysomelidae: Galerucinae: Alticini)

    USDA-ARS?s Scientific Manuscript database

    A new genus (Stevesaltica) with two new species (S. normi and S. perdita) from Bolivia is described and illustrated. It is similar to Exoceras Jacoby. An identification key for all flea beetle genera known to occur in mosses in the Western Hemisphere is provided....

  1. Methane oxidation associated to submerged brown-mosses buffers methane emissions from Siberian polygonal peatlands

    NASA Astrophysics Data System (ADS)

    Liebner, Susanne; Zeyer, Josef; Knoblauch, Christian

    2010-05-01

    Circumpolar peatlands store roughly 18 % of the globally stored carbon in soils [based on 1, 2]. Also, northern wetlands and tundra are a net source of methane (CH4), an effective greenhouse gas (GHG), with an estimated annual CH4 release of 7.2% [3] or 8.1% [4] of the global total CH4 emission. Although it is definite that Arctic tundra significantly contributes to the global methane emissions in general, regional variations in GHG fluxes are enormous. CH4 fluxes of polygonal tundra within the Siberian Lena Delta, for example, were reported to be low [5, 6], particularly at open water polygonal ponds and small lakes [7] which make up around 10 % of the delta's surface. Low methane emissions from polygonal ponds oppose that Arctic permafrost thaw ponds are generally known to emit large amounts of CH4 [8]. Combining tools of biogeochemistry and molecular microbiology, we identified sinks of CH4 in polygonal ponds from the Lena Delta that were not considered so far in GHG studies from Arctic wetlands. Pore water CH4 profiling in polygonal ponds on Samoylov, a small island in the central part of the Lena Delta, revealed a pronounced zone of CH4 oxidation near the vegetation surface in submerged layers of brown-mosses. Here, potential CH4 oxidation was an order of magnitude higher than in non-submerged mosses and in adjacent bulk soil. We could additionally show that this moss associated methane oxidation (MAMO) is hampered when exposure of light is prevented. Shading of plots with submerged Scorpidium scorpioides inhibited MAMO leading to higher CH4 concentrations and an increase in CH4 fluxes by a factor of ~13. Compared to non-submerged mosses, the submerged mosses also showed significantly lower δ13C values indicating that they use carbon dioxide derived from methane oxidation for photosynthesis. Applying stable isotope probing of DNA, type II methanotrophs were identified to be responsible for the oxidation of CH4 in the submerged Scorpidium scorpioides. Our

  2. De novo assembly and characterization of the transcriptome in the desiccation-tolerant moss Syntrichia caninervis

    PubMed Central

    2014-01-01

    Background Syntrichia caninervis is a desiccation-tolerant moss and the dominant bryophyte of the Biological Soil Crusts (BSCs) found in the Mojave and Gurbantunggut deserts. Next generation high throughput sequencing technologies offer an efficient and economic choice for characterizing non-model organism transcriptomes with little or no prior molecular information available. Results In this study, we employed next generation, high-throughput, Illumina RNA-Seq to analyze the poly-(A) + mRNA from hydrated, dehydrating and desiccated S. caninervis gametophores. Approximately 58.0 million paired-end short reads were obtained and 92,240 unigenes were assembled with an average size of 493 bp, N50 value of 662 bp and a total size of 45.48 Mbp. Sequence similarity searches against five public databases (NR, Swiss-Prot, COSMOSS, KEGG and COG) found 54,125 unigenes (58.7%) with significant similarity to an existing sequence (E-value ≤ 1e-5) and could be annotated. Gene Ontology (GO) annotation assigned 24,183 unigenes to the three GO terms: Biological Process, Cellular Component or Molecular Function. GO comparison between P. patens and S. caninervis demonstrated similar sequence enrichment across all three GO categories. 29,370 deduced polypeptide sequences were assigned Pfam domain information and categorized into 4,212 Pfam domains/families. Using the PlantTFDB, 778 unigenes were predicted to be involved in the regulation of transcription and were classified into 49 transcription factor families. Annotated unigenes were mapped to the KEGG pathways and further annotated using MapMan. Comparative genomics revealed that 44% of protein families are shared in common by S. caninervis, P. patens and Arabidopsis thaliana and that 80% are shared by both moss species. Conclusions This study is one of the first comprehensive transcriptome analyses of the moss S. caninervis. Our data extends our knowledge of bryophyte transcriptomes, provides an insight to plants

  3. Band gap renormalization and Burstein-Moss effect in silicon- and germanium-doped wurtzite GaN up to 1020 cm-3

    NASA Astrophysics Data System (ADS)

    Feneberg, Martin; Osterburg, Sarah; Lange, Karsten; Lidig, Christian; Garke, Bernd; Goldhahn, Rüdiger; Richter, Eberhard; Netzel, Carsten; Neumann, Maciej D.; Esser, Norbert; Fritze, Stephanie; Witte, Hartmut; Bläsing, Jürgen; Dadgar, Armin; Krost, Alois

    2014-08-01

    The interplay between band gap renormalization and band filling (Burstein-Moss effect) in n-type wurtzite GaN is investigated. For a wide range of electron concentrations up to 1.6×1020cm-3 spectroscopic ellipsometry and photoluminescence were used to determine the dependence of the band gap energy and the Fermi edge on electron density. The band gap renormalization is the dominating effect up to an electron density of about 9×1018cm-3; at higher values the Burstein-Moss effect is stronger. Exciton screening, the Mott transition, and formation of Mahan excitons are discussed. A quantitative understanding of the near gap transition energies on electron density is obtained. Higher energy features in the dielectric functions up to 10eV are not influenced by band gap renormalization.

  4. Adaptive strategies of overwintering adults: reproductive diapause and mating behavior in a grasshopper, Stenocatantops splendens (Orthoptera: Catantopidae).

    PubMed

    Zhu, Dao-Hong; Cui, Shuang-Shuang; Fan, Yong-Sheng; Liu, Zhiwei

    2013-04-01

    To understand the adaptive strategies of the overwintering adults of Stenocatantops splendens, the mechanism of maintenance and termination of the reproductive diapause, the variation in mortality between overwintering females and males, and the mating strategy of the males were investigated. The results indicated that the adult reproductive diapause in natural conditions was mainly regulated by photoperiod in the fall - long photoperiods promoted reproductive development and short photoperiods maintained reproductive diapause, and the sensitivity of the overwintering adults to photoperiod was over before the end of the winter. When transferred from natural conditions to controlled laboratory conditions on dates from September through February, pre-oviposition became increasingly shorter with increasingly deferred transfer dates regardless of photoperiod conditions. The adults treated with low temperature for 30 days in September through November had significantly shorter pre-oviposition, suggesting that low temperatures in winter had an important role in the termination of reproductive diapause. The female had a significantly lower supercooling point than the male, which was related to their lower mortality after winter. In addition, observations of wild populations of the species indicated that mating behavior prior to winter and the duration of pre-mating period were not affected by photoperiod; mating and sperm transfer were mostly completed by November. Compared with females only mating before winter, females mating in the spring had shorter life span, longer pre-oviposition, lower hatching rate and laid fewer egg pods while showing no significant difference with regard to ovipositional interval, per pod number of eggs and nymph dry weight. © 2012 The Authors Insect Science © 2012 Institute of Zoology, Chinese Academy of Sciences.

  5. Microfilament distribution in protonemata of the moss Ceratodon

    NASA Technical Reports Server (NTRS)

    Walker, L. M.; Sack, F. D.

    1995-01-01

    Microfilaments were visualized in dark-grown protonemata of the moss Ceratodon to assess their possible role in tip growth and gravitropism. The relative effectiveness of rhodamine phalloidin (with or without m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS)) and of immunofluorescence (using the C4 antibody) was evaluated for actin localization in the same cell type. Using immunofluorescence, microfilaments were primarily in an axial orientation within the apical cell. However, a more complex network of microfilaments was observed using rhodamine phalloidin after MBS pretreatment, especially when viewed by confocal laser scanning microscopy. This method revealed a rich three dimensional network of fine microfilaments throughout the apical cell, including the extreme apex. Although there were numerous internal microfilaments, peripheral microfilaments were more abundant. No major redistribution of microfilaments was detected after gravistimulation. The combination of MBS, rhodamine phalloidin, and confocal laser scanning microscopy preserves and reveals microfilaments remarkably well and documents perhaps the most extensive F-actin network visualized to date in any tip-growing cell.

  6. Crassulacean Acid Metabolism in the Epiphyte Tillandsia usneoides L. (Spanish Moss) 1

    PubMed Central

    Martin, Craig E.; Siedow, James N.

    1981-01-01

    Patterns of CO2 exchange in Spanish moss under various experimental conditions were measured using an infrared gas analysis system. Plants were collected from a study site in North Carolina and placed in a gas exchange chamber for several days of continuous measurements. No substantial seasonal effects on CO2 exchange were observed. High rates of nocturnal CO2 uptake were observed under day/night temperature regimes of 25/10, 25/15, 25/20, 30/20, and 35/20 C; however, daytime temperatures of 40 C eliminated nighttime CO2 uptake and a nighttime temperature of 5 C eliminated nocturnal CO2 uptake, regardless of day temperature. Constant chamber conditions also inhibited nocturnal CO2 uptake. Constant high relative humidity (RH) slightly stimulated CO2 uptake while low nighttime RH reduced nocturnal CO2 uptake. Reductions in daytime irradiance to approximately 25% full sunlight had no effect on CO2 exchange. Continuous darkness resulted in continuous CO2 loss by the plants, but a CO2 exchange pattern similar to normal day/night conditions was observed under constant illumination. High tissue water content inhibited CO2 uptake. Wetting of the tissue at any time of day or night resulted in net CO2 loss. Abrupt increases in temperature or decreases in RH resulted in sharp decreases in net CO2 uptake. The results indicate that Spanish moss is tolerant of a wide range of temperatures, irradiances, and water contents. They also indicate that high nighttime RH is a prerequisite for high rates of CO2 uptake. PMID:16661912

  7. Sporophyte Formation and Life Cycle Completion in Moss Requires Heterotrimeric G-Proteins.

    PubMed

    Hackenberg, Dieter; Perroud, Pierre-François; Quatrano, Ralph; Pandey, Sona

    2016-10-01

    In this study, we report the functional characterization of heterotrimeric G-proteins from a nonvascular plant, the moss Physcomitrella patens. In plants, G-proteins have been characterized from only a few angiosperms to date, where their involvement has been shown during regulation of multiple signaling and developmental pathways affecting overall plant fitness. In addition to its unparalleled evolutionary position in the plant lineages, the P. patens genome also codes for a unique assortment of G-protein components, which includes two copies of Gβ and Gγ genes, but no canonical Gα Instead, a single gene encoding an extra-large Gα (XLG) protein exists in the P. patens genome. Here, we demonstrate that in P. patens the canonical Gα is biochemically and functionally replaced by an XLG protein, which works in the same genetic pathway as one of the Gβ proteins to control its development. Furthermore, the specific G-protein subunits in P. patens are essential for its life cycle completion. Deletion of the genomic locus of PpXLG or PpGβ2 results in smaller, slower growing gametophores. Normal reproductive structures develop on these gametophores, but they are unable to form any sporophyte, the only diploid stage in the moss life cycle. Finally, the mutant phenotypes of ΔPpXLG and ΔPpGβ2 can be complemented by the homologous genes from Arabidopsis, AtXLG2 and AtAGB1, respectively, suggesting an overall conservation of their function throughout the plant evolution. © 2016 American Society of Plant Biologists. All Rights Reserved.

  8. The performance of moss, grass, and 1- and 2-year old spruce needles as bioindicators of contamination: a comparative study at the scale of the Czech Republic.

    PubMed

    Suchara, Ivan; Sucharova, Julie; Hola, Marie; Reimann, Clemens; Boyd, Rognvald; Filzmoser, Peter; Englmaier, Peter

    2011-05-01

    Moss (Pleurozium schreberi), grass (Avenella flexuosa), and 1- and 2-year old spruce (Picea abies) needles were collected over the territory of the Czech Republic at an average sample density of 1 site per 290km(2). The samples were analysed for 39 elements (Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Hg, K, La, Li, Mg, Mn, Mo, Na, Nd, Ni, Pb, Pr, Rb, S, Sb, Se, Sn, Sr, Th, Tl, U, V, Y and Zn) using ICP-MS and ICP-AES techniques (the major nutrients Ca, K, Mg and Na were not analysed in moss). Moss showed by far the highest element concentrations for most elements. Exceptions were Ba (spruce), Mn (spruce), Mo (grass), Ni (spruce), Rb (grass) and S (grass). Regional distribution maps and spatial trend analysis were used to study the suitability of the four materials as bioindicators of anthropogenic contamination. The highly industrialised areas in the north-west and the far east of the country and several more local contamination sources were indicated in the distribution maps of one or several sample materials. At the scale of the whole country moss was the best indicator of known contamination sources. However, on a more local scale, it appeared that spruce needles were especially well suited for detection of urban contamination. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Ozone effects on the ultrastructure of peatland plants: Sphagnum mosses, Vaccinium oxycoccus, Andromeda polifolia and Eriophorum vaginatum.

    PubMed

    Rinnan, Riikka; Holopainen, Toini

    2004-10-01

    Ozone effects on peatland vegetation are poorly understood. Since stress responses are often first visible in cell ultrastructure, electron microscopy was used to assess the sensitivity of common peatland plants to elevated ozone concentrations. Three moss species (Sphagnum angustifolium, S. magellanicum and S. papillosum), a graminoid (Eriophorum vaginatum) and two dwarf shrubs (Vaccinium oxycoccus and Andromeda polifolia), all growing within an intact canopy on peat monoliths, were exposed to a concentration of 0, 50, 100 or 150 ppb ozone in two separate growth chamber experiments simulating either summer or autumn conditions in central Finland. After a 4- or 5-week-long exposure, samples were photographed in a transmission electron microscope and analysed quantitatively using image processing software. In the chlorophyllose cells of the Sphagnum moss leaves from the capitulum, ozone exposure led to a decrease in chloroplast area and in granum stack thickness and various changes in plastoglobuli and cell wall thickness, depending on the species and the experiment. In E. vaginatum, ozone exposure significantly reduced chloroplast cross-sectional areas and the amount of starch, whereas there were no clear changes in the plastoglobuli. In the dwarf shrubs, ozone induced thickening of the cell wall and an increase in the size of plastoglobuli under summer conditions. In contrast, under autumn conditions the cell wall thickness remained unchanged but ozone exposure led to a transient increase in the chloroplast and starch areas, and in the number and size of plastoglobuli. Ozone responses in the Sphagnum mosses were comparable to typical ozone stress symptoms of higher plants, and indicated sensitivity especially in S. angustifolium. The responses in the dwarf shrubs suggest stimulation of photosynthesis by low ozone concentrations and ozone sensitivity only under cool autumn conditions.

  10. Ozone Effects on the Ultrastructure of Peatland Plants: Sphagnum Mosses, Vaccinium oxycoccus, Andromeda polifolia and Eriophorum vaginatum

    PubMed Central

    RINNAN, RIIKKA; HOLOPAINEN, TOINI

    2004-01-01

    • Background and Aims Ozone effects on peatland vegetation are poorly understood. Since stress responses are often first visible in cell ultrastructure, electron microscopy was used to assess the sensitivity of common peatland plants to elevated ozone concentrations. • Methods Three moss species (Sphagnum angustifolium, S. magellanicum and S. papillosum), a graminoid (Eriophorum vaginatum) and two dwarf shrubs (Vaccinium oxycoccus and Andromeda polifolia), all growing within an intact canopy on peat monoliths, were exposed to a concentration of 0, 50, 100 or 150 ppb ozone in two separate growth chamber experiments simulating either summer or autumn conditions in central Finland. After a 4- or 5-week-long exposure, samples were photographed in a transmission electron microscope and analysed quantitatively using image processing software. • Key Results In the chlorophyllose cells of the Sphagnum moss leaves from the capitulum, ozone exposure led to a decrease in chloroplast area and in granum stack thickness and various changes in plastoglobuli and cell wall thickness, depending on the species and the experiment. In E. vaginatum, ozone exposure significantly reduced chloroplast cross-sectional areas and the amount of starch, whereas there were no clear changes in the plastoglobuli. In the dwarf shrubs, ozone induced thickening of the cell wall and an increase in the size of plastoglobuli under summer conditions. In contrast, under autumn conditions the cell wall thickness remained unchanged but ozone exposure led to a transient increase in the chloroplast and starch areas, and in the number and size of plastoglobuli. • Conclusions Ozone responses in the Sphagnum mosses were comparable to typical ozone stress symptoms of higher plants, and indicated sensitivity especially in S. angustifolium. The responses in the dwarf shrubs suggest stimulation of photosynthesis by low ozone concentrations and ozone sensitivity only under cool autumn conditions. PMID:15333464

  11. The Physcomitrella patens exocyst subunit EXO70.3d has distinct roles in growth and development, and is essential for completion of the moss life cycle.

    PubMed

    Rawat, Anamika; Brejšková, Lucie; Hála, Michal; Cvrčková, Fatima; Žárský, Viktor

    2017-10-01

    The exocyst, an evolutionarily conserved secretory vesicle-tethering complex, spatially controls exocytosis and membrane turnover in fungi, metazoans and plants. The exocyst subunit EXO70 exists in multiple paralogs in land plants, forming three conserved clades with assumed distinct roles. Here we report functional analysis of the first moss exocyst subunit to be studied, Physcomitrella patens PpEXO70.3d (Pp1s97_91V6), from the, as yet, poorly characterized EXO70.3 clade. Following phylogenetic analysis to confirm the presence of three ancestral land plant EXO70 clades outside angiosperms, we prepared and phenotypically characterized loss-of-function Ppexo70.3d mutants and localized PpEXO70.3d in vivo using green fluorescent protein-tagged protein expression. Disruption of PpEXO70.3d caused pleiotropic cell elongation and differentiation defects in protonemata, altered response towards exogenous auxin, increased endogenous IAA concentrations, along with defects in bud and gametophore development. During mid-archegonia development, an abnormal egg cell is formed and subsequently collapses, resulting in mutant sterility. Mutants exhibited altered cell wall and cuticle deposition, as well as compromised cytokinesis, consistent with the protein localization to the cell plate. Despite some functional redundancy allowing survival of moss lacking PpEXO70.3d, this subunit has an essential role in the moss life cycle, indicating sub-functionalization within the moss EXO70 family. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  12. Generational differences in response to desiccation stress in the desert moss Tortula inermis.

    PubMed

    Stark, Lloyd R; Oliver, Melvin J; Mishler, Brent D; McLetchie, D Nicholas

    2007-01-01

    Active growth in post-embryonic sporophytes of desert mosses is restricted to the cooler, wetter months. However, most desert mosses have perennial gametophytes. It is hypothesized that these life history patterns are due, in part, to a reduced desiccation tolerance for sporophytes relative to gametophytes. Gametophytes with attached post-embryonic sporophytes of Tortula inermis (early seta elongation phenophase) were exposed to two levels of desiccation stress, one rapid-dry cycle and two rapid-dry cycles, then moistened and allowed to recover, resume development, and/or regenerate for 35 d in a growth chamber. Gametophytes tolerated the desiccation treatments well, with 93 % survival through regenerated shoot buds and/or protonemata. At the high stress treatment, a significantly higher frequency of burned leaves and browned shoots occurred. Sporophytes were far more sensitive to desiccation stress, with only 23 % surviving after the low desiccation stress treatment, and 3 % surviving after the high desiccation stress treatment. While the timing of protonemal production and sporophytic phenophases was relatively unaffected by desiccation stress, shoots exposed to one rapid-dry cycle produced shoots more rapidly than shoots exposed to two rapid-dry cycles. It is concluded that sporophytes of Tortula inermis are more sensitive to rapid drying than are maternal gametophytes, and that sporophyte abortion in response to desiccation results from either reduced desiccation tolerance of sporophytes relative to gametophytes, or from a termination of the sporophyte on the part of the gametophyte in response to stress.

  13. Atmospheric deposition of rare earth elements in Albania studied by the moss biomonitoring technique, neutron activation analysis and GIS technology.

    PubMed

    Allajbeu, Sh; Yushin, N S; Qarri, F; Duliu, O G; Lazo, P; Frontasyeva, M V

    2016-07-01

    Rare earth elements (REEs) are typically conservative elements that are scarcely derived from anthropogenic sources. The mobilization of REEs in the environment requires the monitoring of these elements in environmental matrices, in which they are present at trace level. The determination of 11 REEs in carpet-forming moss species (Hypnum cupressiforme) collected from 44 sampling sites over the whole territory of the country were done by using epithermal neutron activation analysis (ENAA) at IBR-2 fast pulsed reactor in Dubna. This paper is focused on REEs (lanthanides) and Sc. Fe as typical consistent element and Th that appeared good correlations between the elements of lanthanides are included in this paper. Th, Sc, and REEs were never previously determined in the air deposition of Albania. Descriptive statistics were used for data treatment using MINITAB 17 software package. The median values of the elements under investigation were compared with those of the neighboring countries such as Bulgaria, Macedonia, Romania, and Serbia, as well as Norway which is selected as a clean area. Geographical distribution maps of the elements over the sampled territory were constructed using geographic information system (GIS) technology. Geochemical behavior of REEs in moss samples has been studied by using the ternary diagram of Sc-La-Th, Spider diagrams and multivariate analysis. It was revealed that the accumulation of REEs in current mosses is associated with the wind-blowing metal-enriched soils that is pointed out as the main emitting factor of the elements under investigation.

  14. Small but Powerful, the Primary Endosymbiont of Moss Bugs, Candidatus Evansia muelleri, Holds a Reduced Genome with Large Biosynthetic Capabilities

    PubMed Central

    Santos-Garcia, Diego; Latorre, Amparo; Moya, Andrés; Gibbs, George; Hartung, Viktor; Dettner, Konrad; Kuechler, Stefan Martin; Silva, Francisco J.

    2014-01-01

    Moss bugs (Coleorrhyncha: Peloridiidae) are members of the order Hemiptera, and like many hemipterans, they have symbiotic associations with intracellular bacteria to fulfill nutritional requirements resulting from their unbalanced diet. The primary endosymbiont of the moss bugs, Candidatus Evansia muelleri, is phylogenetically related to Candidatus Carsonella ruddii and Candidatus Portiera aleyrodidarum, primary endosymbionts of psyllids and whiteflies, respectively. In this work, we report the genome of Candidatus Evansia muelleri Xc1 from Xenophyes cascus, which is the only obligate endosymbiont present in the association. This endosymbiont possesses an extremely reduced genome similar to Carsonella and Portiera. It has crossed the borderline to be considered as an autonomous cell, requiring the support of the insect host for some housekeeping cell functions. Interestingly, in spite of its small genome size, Evansia maintains enriched amino acid (complete or partial pathways for ten essential and six nonessential amino acids) and sulfur metabolisms, probably related to the poor diet of the insect, based on bryophytes, which contains very low levels of nitrogenous and sulfur compounds. Several facts, including the congruence of host (moss bugs, whiteflies, and psyllids) and endosymbiont phylogenies and the retention of the same ribosomal RNA operon during genome reduction in Evansia, Portiera, and Carsonella, suggest the existence of an ancient endosymbiotic Halomonadaceae clade associated with Hemiptera. Three possible scenarios for the origin of these three primary endosymbiont genera are proposed and discussed. PMID:25115011

  15. Carry-over of Differential Salt Tolerance in Plants Grown from Dimorphic Seeds of Suaeda splendens

    PubMed Central

    Redondo-Gómez, Susana; Mateos-Naranjo, Enrique; Cambrollé, Jesús; Luque, Teresa; Figueroa, M. Enrique; Davy, Anthony J.

    2008-01-01

    Background and Aims Halophytic species often show seed dimorphism, where seed morphs produced by a single individual may differ in germination characteristics. Particular morphs are adapted to different windows of opportunity for germination in the seasonally fluctuating and heterogeneous salt-marsh environment. The possibility that plants derived from the two morphs may also differ physiologically has not been investigated previously. Methods Experiments were designed to investigate the germination characteristics of black and brown seed morphs of Suaeda splendens, an annual, C4 shrub of non-tidal, saline steppes. The resulting seedlings were transferred to hydroponic culture to investigate their growth and photosynthetic (PSII photochemistry and gas exchange) responses to salinity. Key Results Black seeds germinated at low salinity but were particularly sensitive to increasing salt concentrations, and strongly inhibited by light. Brown seeds were unaffected by light, able to germinate at higher salinities and generally germinated more rapidly. Ungerminated black seeds maintained viability for longer than brown ones, particularly at high salinity. Seedlings derived from both seed morphs grew well at high salinity (400 mol m−3 NaCl). However, seedlings derived from brown seeds performed poorly at low salinity, as reflected in relative growth rate, numbers of branches produced, Fv/Fm and net rate of CO2 assimilation. Conclusions The seeds most likely to germinate at high salinity in the Mediterranean summer (brown ones) retain a requirement for higher salinity as seedlings that might be of adaptive value. On the other hand, black seeds, which are likely to delay germination until lower salinity prevails, produce seedlings that are less sensitive to salinity. It is not clear why performance at low salinity, later in the life cycle, might have been sacrificed by the brown seeds, to achieve higher fitness at the germination stage under high salinity. Analyses of

  16. Carry-over of differential salt tolerance in plants grown from dimorphic seeds of Suaeda splendens.

    PubMed

    Redondo-Gómez, Susana; Mateos-Naranjo, Enrique; Cambrollé, Jesús; Luque, Teresa; Figueroa, M Enrique; Davy, Anthony J

    2008-07-01

    Halophytic species often show seed dimorphism, where seed morphs produced by a single individual may differ in germination characteristics. Particular morphs are adapted to different windows of opportunity for germination in the seasonally fluctuating and heterogeneous salt-marsh environment. The possibility that plants derived from the two morphs may also differ physiologically has not been investigated previously. Experiments were designed to investigate the germination characteristics of black and brown seed morphs of Suaeda splendens, an annual, C(4) shrub of non-tidal, saline steppes. The resulting seedlings were transferred to hydroponic culture to investigate their growth and photosynthetic (PSII photochemistry and gas exchange) responses to salinity. Black seeds germinated at low salinity but were particularly sensitive to increasing salt concentrations, and strongly inhibited by light. Brown seeds were unaffected by light, able to germinate at higher salinities and generally germinated more rapidly. Ungerminated black seeds maintained viability for longer than brown ones, particularly at high salinity. Seedlings derived from both seed morphs grew well at high salinity (400 mol m(-3) NaCl). However, seedlings derived from brown seeds performed poorly at low salinity, as reflected in relative growth rate, numbers of branches produced, F(v)/F(m) and net rate of CO(2) assimilation. The seeds most likely to germinate at high salinity in the Mediterranean summer (brown ones) retain a requirement for higher salinity as seedlings that might be of adaptive value. On the other hand, black seeds, which are likely to delay germination until lower salinity prevails, produce seedlings that are less sensitive to salinity. It is not clear why performance at low salinity, later in the life cycle, might have been sacrificed by the brown seeds, to achieve higher fitness at the germination stage under high salinity. Analyses of adaptive syndromes associated with seed

  17. Spectrally monitoring the response of the biocrust moss Syntrichia caninervis to altered precipitation regimes

    DOE PAGES

    Young, Kristina E.; Reed, Sasha C.

    2017-02-06

    Climate change is expected to impact drylands worldwide by increasing temperatures and changing precipitation patterns. These effects have known feedbacks to the functional roles of dryland biological soil crust communities (biocrusts), which are expected to undergo significant climate-induced changes in community structure and function. Nevertheless, our ability to monitor the status and physiology of biocrusts with remote sensing is limited due to the heterogeneous nature of dryland landscapes and the desiccation tolerance of biocrusts, which leaves them frequently photosynthetically inactive and difficult to assess. To address this critical limitation, we subjected a dominant biocrust species Syntrichia caninervis to climate-induced stressmore » in the form of small, frequent watering events, and spectrally monitored the dry mosses’ progression towards mortality. We found points of spectral sensitivity responding to experimentally-induced stress in desiccated mosses, indicating that spectral imaging is an effective tool to monitor photosynthetically inactive biocrusts. Comparing the Normalized Difference Vegetation Index (NDVI), the Simple Ratio (SR), and the Normalized Pigment Chlorophyll Index (NPCI), we found NDVI minimally effective at capturing stress in precipitation-stressed dry mosses, while the SR and NPCI were highly effective. Lastly, our results suggest the strong potential for utilizing spectroscopy and chlorophyll-derived indices to monitor biocrust ecophysiological status, even when biocrusts are dry, with important implications for improving our understanding of dryland functioning.« less

  18. Spectrally monitoring the response of the biocrust moss Syntrichia caninervis to altered precipitation regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Kristina E.; Reed, Sasha C.

    Climate change is expected to impact drylands worldwide by increasing temperatures and changing precipitation patterns. These effects have known feedbacks to the functional roles of dryland biological soil crust communities (biocrusts), which are expected to undergo significant climate-induced changes in community structure and function. Nevertheless, our ability to monitor the status and physiology of biocrusts with remote sensing is limited due to the heterogeneous nature of dryland landscapes and the desiccation tolerance of biocrusts, which leaves them frequently photosynthetically inactive and difficult to assess. To address this critical limitation, we subjected a dominant biocrust species Syntrichia caninervis to climate-induced stressmore » in the form of small, frequent watering events, and spectrally monitored the dry mosses’ progression towards mortality. We found points of spectral sensitivity responding to experimentally-induced stress in desiccated mosses, indicating that spectral imaging is an effective tool to monitor photosynthetically inactive biocrusts. Comparing the Normalized Difference Vegetation Index (NDVI), the Simple Ratio (SR), and the Normalized Pigment Chlorophyll Index (NPCI), we found NDVI minimally effective at capturing stress in precipitation-stressed dry mosses, while the SR and NPCI were highly effective. Lastly, our results suggest the strong potential for utilizing spectroscopy and chlorophyll-derived indices to monitor biocrust ecophysiological status, even when biocrusts are dry, with important implications for improving our understanding of dryland functioning.« less

  19. Spectrally monitoring the response of the biocrust moss Syntrichia caninervis to altered precipitation regimes

    USGS Publications Warehouse

    Young, Kristina E.; Reed, Sasha C.

    2017-01-01

    Climate change is expected to impact drylands worldwide by increasing temperatures and changing precipitation patterns. These effects have known feedbacks to the functional roles of dryland biological soil crust communities (biocrusts), which are expected to undergo significant climate-induced changes in community structure and function. Nevertheless, our ability to monitor the status and physiology of biocrusts with remote sensing is limited due to the heterogeneous nature of dryland landscapes and the desiccation tolerance of biocrusts, which leaves them frequently photosynthetically inactive and difficult to assess. To address this critical limitation, we subjected a dominant biocrust species Syntrichia caninervis to climate-induced stress in the form of small, frequent watering events, and spectrally monitored the dry mosses’ progression towards mortality. We found points of spectral sensitivity responding to experimentally-induced stress in desiccated mosses, indicating that spectral imaging is an effective tool to monitor photosynthetically inactive biocrusts. Comparing the Normalized Difference Vegetation Index (NDVI), the Simple Ratio (SR), and the Normalized Pigment Chlorophyll Index (NPCI), we found NDVI minimally effective at capturing stress in precipitation-stressed dry mosses, while the SR and NPCI were highly effective. Our results suggest the strong potential for utilizing spectroscopy and chlorophyll-derived indices to monitor biocrust ecophysiological status, even when biocrusts are dry, with important implications for improving our understanding of dryland functioning.

  20. A new species of Cangshanaltica Konstantinov et al., a moss-inhabiting flea beetle from Thailand (Coleoptera: Chrysomelidae: Galerucinae: Alticini)

    USDA-ARS?s Scientific Manuscript database

    The second known species of flea beetle genus Cangshanaltica Konstantinov et al. (C. siamensis sp. nov.) from Thailand is described and illustrated. The described species is associated with moss habitats in a mountain forest. A key to the two known species of Cangshanaltica is provided...

  1. Behavior of lead in pristine and urbanized acid wetlands in the New Jersey pinelands with special reference to the role of Sphagnum moss

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vedagiri, U.K.

    1989-01-01

    The purpose of this study was to investigate the behavior of lead in naturally acidic Sphagnum moss-dominated wetlands of the New Jersey Pinelands and to compare it to the behavior of lead in similar wetlands which had been impacted by storm-water runoff. Data from the field showed that the runoff-impacted sites were characterized by elevated pH, elimination of Spaghnum ground cover, erosion of peat substrate and high lead accumulations, contributing to an effective but decreasing sink capacity. Laboratory experiments explored differences in fractionation, mobility and bioavailability of lead between the two systems. The low pH and high dissolved organic mattermore » of the pristine waters led to higher solubilization and complexing of added lead compared to impacted waters. Lead added to runoff showed unexpectedly high solubility and lability, possibly due to low suspended solids. Lead added to runoff was also much more mobile vertically through peat columns than lead added to swampwater, possibly due to its high lability. The extremely high porosity of the peat substrate allows rapid vertical migration of solutes during events of sudden influx, such as storms. Sphagnum moss greatly decreased vertical transport by binding and flow retardation. The lead that is held in the moss layer was differentially available to different species. Red maple seedlings were better able to take up lead from the peat substrate in the absence of moss cover while cranberry plants showed the reverse pattern. This may be related to differences in rooting requirements and growth of the two species. Lead added in runoff was initially less available to the plants than in swampwater, but was ultimately taken up the red maple, which could tolerate conditions in the impacted substrates.« less

  2. Counting with Colours? Effect of Colours on the Numerical Abilities of House Crows (Corvus splendens) and Common Myna (Acridotheres tristis).

    PubMed

    Rahman, Nor Amira Abdul; Ali, Zalila; Zuharah, Wan Fatma; Fadzly, Nik

    2016-08-01

    We conducted several aviary experiments to investigate the influence of colours in quantity judgments of two species of birds; house crow (Corvus splendens) and common myna (Acridotheres tristis). Different quantity (in seven different food proportions) of mealworms were presented nonsequentially to all birds using artificially coloured red mealworms, for experiment 1, and using artificially coloured green mealworms, for experiment 2. Both red and green coloured mealworms have no significant effect on house crow's quantity judgments (red: F6,30 = 1.748, p = 0.144; and green: F6,30= 1.085, p = 0.394). Common myna, however, showed a strong influence of red colour in their quantity judgment ( F6,30 = 2.922, p = 0.023) as they succeeded in choosing the largest amount of food between two cups, but not when offered food using green coloured mealworms ( F6,30 = 1.183, p = 0.342). In the next experiment, we hypothesised that both house crow and common myna will prefer red coloured food items over green coloured food items, when factors such as the amount of food is equal. We chose to test red and green colours because both colours play an important role in most avian food selections. Results showed that there were no significant differences in the selection of red or green coloured mealworms for both house crows ( F6,30 = 2.310, p = 0.06) and common myna ( F6,30 = 0.823, p = 0.561).

  3. PREFACE: The 4th Symposium on the Mechanics of Slender Structures (MoSS2013)

    NASA Astrophysics Data System (ADS)

    Cao, Dengqing; Kaczmarczyk, Stefan

    2013-07-01

    This volume of Journal of Physics: Conference Series contains papers presented at the 4th Symposium on the Mechanics of Slender Structures (MoSS2013) run under the auspices of the Institute of Physics Applied Mechanics Group and hosted by Harbin Institute of Technology (China) from 7-9 January 2013. The conference has been organized in collaboration with the Technical Committee on Vibration and Sound of the American Society of Mechanical Engineers and follows a one day seminar on Ropes, Cables, Belts and Chains: Theory and Applications and the MoSS2006 symposium held at the University of Northampton (UK) in 2004 and 2006, respectively, the MoSS2008 symposium held at the University of Maryland Baltimore County (USA) in 2008 and the MoSS2010 symposium hosted by Mondragon University and held in San Sebastian (Spain) in 2010. The remit of the Symposium on the Mechanics of Slender Structures series involves a broad range of scientific areas. Applications of slender structures include terrestrial, marine and space systems. Moving elastic elements such as ropes, cables, belts and tethers are pivotal components of many engineering systems. Their lengths often vary when the system is in operation. The applications include vertical transportation installations and, more recently, space tether propulsion systems. Traction drive elevator installations employ ropes and belts of variable length as a means of suspension, and also for the compensation of tensile forces over the traction sheave. In cranes and mine hoists, cables and ropes are subject to length variation in order to carry payloads. Tethers experiencing extension and retraction are important components of offshore and marine installations, as well as being proposed for a variety of different space vehicle propulsion systems based on different applications of momentum exchange and electrodynamic interactions with planetary magnetic fields. Furthermore, cables and slender rods are used extensively in civil engineering

  4. Biological properties of the Chilean native moss Sphagnum magellanicum.

    PubMed

    Montenegro, Gloria; Portaluppi, Mariana C; Salas, Francisco A; Díaz, María F

    2009-01-01

    An ethanol extract prepared from the gametophyte Chilean native moss Sphagnum magellanicum was dried out, weighed and dissolved in distilled water. This extract was then assayed for its antibacterial activity against the G(-) bacteria Azotobacter vinelandii, Erwinia carotovora subsp. carotovora, Enterobacter aerogenes, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, Vibrio cholerae, and the G(+) bacteria Staphylococcus aureus subsp. aureus, and Streptococcus type beta. The growth of the cultures of E. carotovora subsp. carotovora, and V. cholerae was inhibited at a concentration of 581 microg/ml of extract, while the cultures of E. coli, S. typhi and Streptococcus type beta were inhibited at a concentration of 1.16 microg/mL of extract. The concentration of phenolic compounds was 4.294 mg/mL; the presence of vanillic, chlorogenic, syringic, caffeic, gallic, 3-4 hydrozybenzoic, p-coumaric and salicylic acids was identified using RP- High Pressure Liquid Chromatography.

  5. Traffic contribution to air pollution in urban street canyons: Integrated application of the OSPM, moss biomonitoring and spectral analysis

    NASA Astrophysics Data System (ADS)

    Lazić, Lazar; Urošević, Mira Aničić; Mijić, Zoran; Vuković, Gordana; Ilić, Luka

    2016-09-01

    To investigate the air pollutant distribution within the ambient of urban street canyon, Operational Street Pollution Model (OSPM) was used to predict hourly content of NOX, NO, NO2, O3, CO, BNZ and PM10. The study was performed in five street canyons in Belgrade (Serbia) during 10-week summer period. The model receptors were located on each side of street canyons at 4 m, 8 m and 16 m height. To monitor airborne trace element content, the moss bag biomonitors were simultaneously exposed with the model receptors at two heights-4 m and 16 m. The results of both methods, modelling and biomonitoring, showed significantly decreasing trend of the air pollutants with height. The results indirectly demonstrate that biomonitoring, i.e., moss bag technique could be a valuable tool to verify model performance. In addition, spectral analysis was applied to investigate weekly variation of the daily background and modelled data set. Typical periodicities and weekend effect, caused by anthropogenic influences, have been identified.

  6. Stereological analysis of gravitropism in protonemata of the moss Ceratodon

    NASA Technical Reports Server (NTRS)

    Walker, L. M.; Sack, F. D.

    1997-01-01

    Apical cells of dark-grown protonemata of the moss Cerotodon purpureus are negatively gravitropic. Previous light microscopy has shown that reorientation to the horizontal induces amyloplast sedimentation and redistribution of microtubules. To determine whether other components become redistributed laterally or axially, the apical 35 micrometers of both vertical and horizontal apical cells were compared stereologically using transmission electron microscopy. Reorientation to the horizontal changed the longitudinal distributions of tubular ER, Golgi stacks, and vesicles but not cisternal ER, mitochondria, and plastids. Only plastids showed a statistically significant lateral redistribution after horizontal placement. Qualitative examination of the sedimentation zone showed plastids sedimented close to peripherally located ER with vacuoles displaced above plastids. These results argue against a model where differential tip growth results from a redistribution of Golgi stacks or exocytic vesicles.

  7. Population mitogenomics provides insights into evolutionary history, source of invasions and diversifying selection in the House Crow (Corvus splendens).

    PubMed

    Krzemińska, Urszula; Morales, Hernán E; Greening, Chris; Nyári, Árpád S; Wilson, Robyn; Song, Beng Kah; Austin, Christopher M; Sunnucks, Paul; Pavlova, Alexandra; Rahman, Sadequr

    2018-04-01

    The House Crow (Corvus splendens) is a useful study system for investigating the genetic basis of adaptations underpinning successful range expansion. The species originates from the Indian subcontinent, but has successfully spread through a variety of thermal environments across Asia, Africa and Europe. Here, population mitogenomics was used to investigate the colonisation history and to test for signals of molecular selection on the mitochondrial genome. We sequenced the mitogenomes of 89 House Crows spanning four native and five invasive populations. A Bayesian dated phylogeny, based on the 13 mitochondrial protein-coding genes, supports a mid-Pleistocene (~630,000 years ago) divergence between the most distant genetic lineages. Phylogeographic patterns suggest that northern South Asia is the likely centre of origin for the species. Codon-based analyses of selection and assessments of changes in amino acid properties provide evidence of positive selection on the ND2 and ND5 genes against a background of purifying selection across the mitogenome. Protein homology modelling suggests that four amino acid substitutions inferred to be under positive selection may modulate coupling efficiency and proton translocation mediated by OXPHOS complex I. The identified substitutions are found within native House Crow lineages and ecological niche modelling predicts suitable climatic areas for the establishment of crow populations within the invasive range. Mitogenomic patterns in the invasive range of the species are more strongly associated with introduction history than climate. We speculate that invasions of the House Crow have been facilitated by standing genetic variation that accumulated due to diversifying selection within the native range.

  8. Female-Specific Specialization of a Posterior End Region of the Midgut Symbiotic Organ in Plautia splendens and Allied Stinkbugs

    PubMed Central

    Hayashi, Toshinari; Hosokawa, Takahiro; Meng, Xian-Ying; Koga, Ryuichi

    2015-01-01

    Many stinkbugs (Insecta: Hemiptera: Heteroptera) are associated with bacterial symbionts in a posterior region of the midgut. In these stinkbugs, adult females excrete symbiont-containing materials from the anus for transmission of the beneficial symbionts to their offspring. For ensuring the vertical symbiont transmission, a variety of female-specific elaborate traits at the cellular, morphological, developmental, and behavioral levels have been reported from diverse stinkbugs of the families Plataspidae, Urostylididae, Parastrachiidae, etc. Meanwhile, such elaborate female-specific traits for vertical symbiont transmission have been poorly characterized for the largest and economically important stinkbug family Pentatomidae. Here, we investigated the midgut symbiotic system of a pentatomid stinkbug, Plautia splendens. A specific gammaproteobacterial symbiont was consistently present extracellularly in the cavity of numerous crypts arranged in four rows on the midgut fourth section. The symbiont was smeared on the egg surface upon oviposition by adult females, orally acquired by newborn nymphs, and thereby transmitted vertically to the next generation and important for growth and survival of the host insects. We found that, specifically in adult females, several rows of crypts at the posterior end region of the symbiotic midgut were morphologically differentiated and conspicuously enlarged, often discharging the symbiotic bacteria from the crypt cavity to the main tract of the symbiotic midgut. The female-specific enlarged end crypts were also found in other pentatomid stinkbugs Plautia stali and Carbula crassiventris. These results suggest that the enlarged end crypts represent a female-specific specialized morphological trait for vertical symbiont transmission commonly found among stinkbugs of the family Pentatomidae. PMID:25636847

  9. Cryptococcus fildesensis sp. nov., a psychrophilic basidiomycetous yeast isolated from Antarctic moss.

    PubMed

    Zhang, Tao; Zhang, Yu-Qin; Liu, Hong-Yu; Su, Jing; Zhao, Li-Xun; Yu, Li-Yan

    2014-02-01

    Two yeast strains isolated from the moss Chorisodontium aciphyllum from the Fildes Region, King George Island, maritime Antarctica, were classified as members of the genus Cryptococcus based on sequence analyses of the D1/D2 domains of the large subunit rRNA gene and the internal transcribed spacer (ITS) regions. The rRNA gene sequence analyses indicated that the two strains represented a novel species of the genus Cryptococcus, for which the name Cryptococcus fildesensis sp. nov. is proposed (type strain: CPCC 300017(T) = DSM 26442(T) = CBS 12705(T)). The MycoBank number of the novel species is MB 805542.

  10. Late-Holocene climate and environmental change on the Antarctic Peninsula: multi-proxy palaeoclimate records from frozen moss banks

    NASA Astrophysics Data System (ADS)

    Roland, T.; Amesbury, M.; Royles, J.; Hodgson, D.; Convey, P.; Griffiths, H.; Charman, D.

    2017-12-01

    The Antarctic Peninsula (AP) has been one of the most rapidly warming regions on Earth, with air temperature increases of 3°C recorded since the mid-20th century. However, instrumental climate records are mostly limited to the late 1950s onwards and existing palaeoenvironmental data that provide a longer-term context to recent climate and biological changes are often spatially isolated and temporally fragmented. Ice-core records from the AP are not suitably located to be able to examine the spatial signature of climate changes over time. Moss banks located along the western AP are ideal archives for palaeoclimate research as they are well-preserved, have sufficiently high accumulation rates to permit decadally resolved analyses using multiple proxies over the last c. 4000 years, and are easily dated with 14C and 210Pb. Potential climate proxies (moss accumulation and growth rates, Δ13C in moss cellulose, testate amoebae concentration) are sensitive to regional temperature change, moderated by water availability and surface microclimate. Here we present multi-proxy records of biological change from these archives of late Holocene climate variability. We identified significant changepoints in six cores at three sites, across a transect spanning c. 600 km, observing that biological response to recent rapid warming on the AP is pervasive and unprecedented over the last 150 years. Longer records show that recent change is also unusual in the context of the past 4000 years and suggest that westerly wind strength linked to the Southern Annular Mode is the most likely driver of centennial-scale AP temperature variability. Widespread changes in the terrestrial biosphere of the AP in response to past temperature suggest that terrestrial ecosystems will alter rapidly under future warming scenarios, leading to major changes in the biology and landscape of this iconic region — an Antarctic greening to parallel well-established observations in the Arctic.

  11. A liquid chromatography-mass spectrometric method for the determination of oak moss allergens atranol and chloroatranol in perfumes.

    PubMed

    Bossi, Rossana; Rastogi, Suresh C; Bernard, Guillaume; Gimenez-Arnau, Elena; Johansen, Jeanne D; Lepoittevin, Jean-Pierre; Menné, Torkil

    2004-05-01

    This paper describes a validated liquid chromatographic-tandem mass spectrometric method for quantitative analysis of the potential oak moss allergens atranol and chloroatranol in perfumes and similar products. The method employs LC-MS-MS with electrospray ionization (ESI) in negative mode. The compounds are analysed by selective reaction monitoring (SRM) of 2 or 3 ions for each compound in order to obtain high selectivity and sensitivity. The method has been validated for the following parameters: linearity; repeatability; recovery; limit of detection; and limit of quantification. The limits of detection, 5.0 ng/mL and 2.4 ng/mL, respectively, for atranol and chloroatranol, achieved by this method allowed identification of these compounds at concentrations below those causing allergic skin reactions in oak-moss-sensitive patients. The recovery of chloratranol from spiked perfumes was 96+/-4%. Low recoveries (49+/-5%) were observed for atranol in spiked perfumes, indicating ion suppression caused by matrix components. The method has been applied to the analysis of 10 randomly selected perfumes and similar products.

  12. Moss and liverwort xyloglucans contain galacturonic acid and are structurally distinct from the xyloglucans synthesized by hornworts and vascular plants.

    PubMed

    Peña, Maria J; Darvill, Alan G; Eberhard, Stefan; York, William S; O'Neill, Malcolm A

    2008-11-01

    Xyloglucan is a well-characterized hemicellulosic polysaccharide that is present in the cell walls of all seed-bearing plants. The cell walls of avascular and seedless vascular plants are also believed to contain xyloglucan. However, these xyloglucans have not been structurally characterized. This lack of information is an impediment to understanding changes in xyloglucan structure that occurred during land plant evolution. In this study, xyloglucans were isolated from the walls of avascular (liverworts, mosses, and hornworts) and seedless vascular plants (club and spike mosses and ferns and fern allies). Each xyloglucan was fragmented with a xyloglucan-specific endo-glucanase and the resulting oligosaccharides then structurally characterized using NMR spectroscopy, MALDI-TOF and electrospray mass spectrometry, and glycosyl-linkage and glycosyl residue composition analyses. Our data show that xyloglucan is present in the cell walls of all major divisions of land plants and that these xyloglucans have several common structural motifs. However, these polysaccharides are not identical because specific plant groups synthesize xyloglucans with unique structural motifs. For example, the moss Physcomitrella patens and the liverwort Marchantia polymorpha synthesize XXGGG- and XXGG-type xyloglucans, respectively, with sidechains that contain a beta-D-galactosyluronic acid and a branched xylosyl residue. By contrast, hornworts synthesize XXXG-type xyloglucans that are structurally homologous to the xyloglucans synthesized by many seed-bearing and seedless vascular plants. Our results increase our understanding of the evolution, diversity, and function of structural motifs in land-plant xyloglucans and provide support to the proposal that hornworts are sisters to the vascular plants.

  13. The effect of sampling scheme in the survey of atmospheric deposition of heavy metals in Albania by using moss biomonitoring.

    PubMed

    Qarri, Flora; Lazo, Pranvera; Bekteshi, Lirim; Stafilov, Trajce; Frontasyeva, Marina; Harmens, Harry

    2015-02-01

    The atmospheric deposition of heavy metals in Albania was investigated by using a carpet-forming moss species (Hypnum cupressiforme) as bioindicator. Sampling was done in the dry seasons of autumn 2010 and summer 2011. Two different sampling schemes are discussed in this paper: a random sampling scheme with 62 sampling sites distributed over the whole territory of Albania and systematic sampling scheme with 44 sampling sites distributed over the same territory. Unwashed, dried samples were totally digested by using microwave digestion, and the concentrations of metal elements were determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES) and AAS (Cd and As). Twelve elements, such as conservative and trace elements (Al and Fe and As, Cd, Cr, Cu, Ni, Mn, Pb, V, Zn, and Li), were measured in moss samples. Li as typical lithogenic element is also included. The results reflect local emission points. The median concentrations and statistical parameters of elements were discussed by comparing two sampling schemes. The results of both sampling schemes are compared with the results of other European countries. Different levels of the contamination valuated by the respective contamination factor (CF) of each element are obtained for both sampling schemes, while the local emitters identified like iron-chromium metallurgy and cement industry, oil refinery, mining industry, and transport have been the same for both sampling schemes. In addition, the natural sources, from the accumulation of these metals in mosses caused by metal-enriched soil, associated with wind blowing soils were pointed as another possibility of local emitting factors.

  14. Bryophytes as Climate Indicators: moss and liverwort photosynthetic limitations and carbon isotope signals in organic material and peat deposits

    NASA Astrophysics Data System (ADS)

    Griffiths, H.; Royles, J.; Horwath, A.; Hodell, D. A.; Convey, P.; Hodgson, D.; Wingate, L.; Ogeé, J.

    2011-12-01

    Bryophytes make a significant contribution to carbon sequestration and storage in polar, boreal, temperate and tropical biomes, and yet there is limited understanding of the determinants of carbon isotope composition. Bryophytes are poikilohydric and lack stomata in the vegetative (gametophyte) stage, and lack of roots and reliance on liquid water to maintain hydration status also imposes diffusional limitations on CO2 uptake and extent of carbon isotope discrimination. Real-time gas exchange and instantaneous discrimination studies can be used to quantify responses to liquid phase limitation. Thus, wetted tissues show less negative δ13C signals due to liquid phase conductance and, as the thallus surface dries, maximum CO2 assimilation and discrimination are attained when the limitation is primarily the internal (mesophyll) conductance. Continued desiccation then leads to additional biochemical limitation in drought tolerant species, and low discrimination, although the carbon gain is low at this time. In this paper we explore the extent of carbon isotope discrimination in bulk organic material and cellulose as a function of climatic and environmental conditions, in temperate, tropical and Antarctic bryophytes. Field studies have been used to investigate seasonal variations in precipitation and water vapour inputs for cloud forest formations as a function of bryophyte biomass, diversity and isotope composition in epiphytes (particularly leafy liverworts) along an altitudinal gradient in Peru. In the Antarctic, moss banks sampled on Signy Island consisted of only two species, primarily Chorisodontium aciphyllum and some Polytrichum strictum, allowing the collection of shallow and deep cores representative of growth over the past 200 to 2000 years. The well-preserved peat has provided data on growth (14C) and stable isotopic proxies (13C, 18O) for material contemporary with recent anthropogenic climate forcing (over the past 200 years), for comparison with longer

  15. Sporophyte Formation and Life Cycle Completion in Moss Requires Heterotrimeric G-Proteins1[OPEN

    PubMed Central

    Hackenberg, Dieter; Quatrano, Ralph

    2016-01-01

    In this study, we report the functional characterization of heterotrimeric G-proteins from a nonvascular plant, the moss Physcomitrella patens. In plants, G-proteins have been characterized from only a few angiosperms to date, where their involvement has been shown during regulation of multiple signaling and developmental pathways affecting overall plant fitness. In addition to its unparalleled evolutionary position in the plant lineages, the P. patens genome also codes for a unique assortment of G-protein components, which includes two copies of Gβ and Gγ genes, but no canonical Gα. Instead, a single gene encoding an extra-large Gα (XLG) protein exists in the P. patens genome. Here, we demonstrate that in P. patens the canonical Gα is biochemically and functionally replaced by an XLG protein, which works in the same genetic pathway as one of the Gβ proteins to control its development. Furthermore, the specific G-protein subunits in P. patens are essential for its life cycle completion. Deletion of the genomic locus of PpXLG or PpGβ2 results in smaller, slower growing gametophores. Normal reproductive structures develop on these gametophores, but they are unable to form any sporophyte, the only diploid stage in the moss life cycle. Finally, the mutant phenotypes of ΔPpXLG and ΔPpGβ2 can be complemented by the homologous genes from Arabidopsis, AtXLG2 and AtAGB1, respectively, suggesting an overall conservation of their function throughout the plant evolution. PMID:27550997

  16. [The growth movements of moss protonemata under clinostatic and microgravity conditions

    NASA Technical Reports Server (NTRS)

    Demkiv, O. T.; Kordium, E. L.; Tairbekov, M. G.; Sack, F.; Kern, F.; Kardash, A. R.

    1999-01-01

    Populations of dark-grown protonemata of moss Ceratodon purpureus wt-4 (Germany) and wt-U (Ukraine) were rotated on clinostat or flown in space (experiment "Protonema" aboard Bion-11, December 24, 1996-January 7, 1997) to determine the effects of altered gravity on orientation of protonemata growing filaments. Protonemata had been cultivated 8 days in vertical stationary position at dark to be transported to microgravity or placed in clinostat for the period of 14 days. In the ground control, protonemata demonstrated the negatively gravitropic growth (straight upwards in a bundle of compact filaments). The horizontal or circular rotation in clinostat and exposure to microgravity made filaments grow every each way within the substrate plane but with an apparent trend to rightward curling resulting in "spiral galaxies".

  17. Soil pollution associated to the El Borracho Pb-Ag mine (Badajoz Province, Spain). Metal transfer to biota: oak-tree and moss.

    NASA Astrophysics Data System (ADS)

    López-Berdonces, Miguel Angel; María Esbrí, José; Fernández-Calderón, Sergio; Naharro, Elena; García-Noguero, Eva Maria; Higueras, Pablo

    2014-05-01

    El Borracho mine was active since Roman times, but with its higher production period on 19th Century. Mine closure occured without restoration works and nowadays the mining area is dedicated to deer hunting activities. In order to evaluate heavy metals distribution on mining tailings and surrounding soils of the studied area, 40 samples of dumps, soils and sediments were taken. Samples from the mine tailings were collected with an Eijkelkamp soil core sampler for undisturbed samples, with a vertical constant spacing of 25 cm. With this procedure, a total of 21 samples were taken in two points at main dump. Samples of Oak-tree leaves and moss were taken to evaluate metal transfer to biota. Analytical determinations have included soil parameters (pH, conductivity, organic matter content), and total metal contents in geological and biological samples by EDXRF. Analytical determinations shows higher metal contents in dumps, especially in surficial samples, 17,700 mg kg-1 and 470 mg kg-1 in average of Pb and Zn respectively, and lower contents in soils, 5,200 mg kg-1 and 300 mg kg-1, and sediments, 3,500 mg kg-1 and 120 mg kg-1. Metal contents in tailings profiles shows higher levels of Pb, Zn and Cu at 3.5 meters depth, a zone with lower grainsize and higher moisture. Differences in efficiency of extraction techniques and metal remobilization inside the dump can be an explanation for this enrichment level. Metal contents in agricultural soils exceeded maximum allowed levels by European Community (300 mg kg-1 for Pb and Zn and 140 mg kg-1 for Cu). Metal contents in biota evidence that Oak-tree bioaccumulates some metals, especially those with higher mobility in acidic conditions like Zn and Sb, with averages Bioaccumulation factor (BAF = plant concentration/soil concentration) of 0.48 and 0.85 respectively. Moss reaches high concentrations of Pb and Zn (3,000 mg kg-1 and 175 mg kg-1 in average respectively). Uptake pattern of Pb and Zn by plants leaves and mosses seems

  18. Global biogeographic patterns in bipolar moss species

    PubMed Central

    Jackson, J. A.; Hyvönen, J.; Koskinen, S.; Linse, K.; Griffiths, H.

    2017-01-01

    A bipolar disjunction is an extreme, yet common, biogeographic pattern in non-vascular plants, yet its underlying mechanisms (vicariance or long-distance dispersal), origin and timing remain poorly understood. Here, combining a large-scale population dataset and multiple dating analyses, we examine the biogeography of four bipolar Polytrichales mosses, common to the Holarctic (temperate and polar Northern Hemisphere regions) and the Antarctic region (Antarctic, sub-Antarctic, southern South America) and other Southern Hemisphere (SH) regions. Our data reveal contrasting patterns, for three species were of Holarctic origin, with subsequent dispersal to the SH, while one, currently a particularly common species in the Holarctic (Polytrichum juniperinum), diversified in the Antarctic region and from here colonized both the Holarctic and other SH regions. Our findings suggest long-distance dispersal as the driver of bipolar disjunctions. We find such inter-hemispheric dispersals are rare, occurring on multi-million-year timescales. High-altitude tropical populations did not act as trans-equatorial ‘stepping-stones’, but rather were derived from later dispersal events. All arrivals to the Antarctic region occurred well before the Last Glacial Maximum and previous glaciations, suggesting that, despite the harsh climate during these past glacial maxima, plants have had a much longer presence in this southern region than previously thought. PMID:28791139

  19. Orbital experiment ``Gravisensor'': phototropic reactions of the moss Physcomitrella patens to different types of LED lighting.

    NASA Astrophysics Data System (ADS)

    Nikitin, Vladimir; Berkovich, Yuliy A.; Skripnikov, Alexander; Zyablova, Natalya; Mukhoyan, Makar; Emelianov, Grigory

    The experiment was conducted on Russian Biological Satelite Bion-M #1 19.04-19.05 2013. Five transparent plastic cultural flasks were placed in five light isolated sections of Biocont-B2 cylindrical container with inner diameter of 120 mm and height of 230 mm. In four sections the flasks could be illuminated by top or side LED with wavelength of 458 nm, 630 nm, 730 nm, and white (color temperature 5000° K, peaks 453, 559 nm). Photon flux in each variant was 15 umol/(m2c). In the fifth section the flask with the shoots was in conditions of constant dark. Each section was equipped with its own video camera module. Cameras, video recorder and lighting were managed by micro controller. 12 days before launch, 5 tips of the moss shoots were explanted at each of the five flasks on the agar medium with nutrient components and were cultivated under white fluorescent lamps at 12 hour photo period till the launch. After entering the orbit and during next 14 days of flight top LEDs were turned on above the flasks. Then for the following 14 days of flight the side LEDs of similar wavelength were turned on. The moss gametophores were cultivated at 12-h photoperiod. During the experiment on an hourly basis a video recording of the moss was performed. Similar equipment was used for ground control. After the experiment video files were used to produce separate time-lapse films for each flask using AviSynth program. In flight the shoots demonstrated the maximum growth speed with far red lighting and slower speed with white lighting. With blue and red lighting after switching to side light stimuli the growth of shoots almost stopped. In the dark the shoots continued to grow until the 13 day after launch of the satellite, then their growth stopped. In ground control the relation of growth rate with various LEDs remained basically the same, with the exception of side blue lighting, where the shoots demonstrated considerable vertical growth. In flight the angle of inclination towards

  20. Counting with Colours? Effect of Colours on the Numerical Abilities of House Crows (Corvus splendens) and Common Myna (Acridotheres tristis)

    PubMed Central

    Rahman, Nor Amira Abdul; Ali, Zalila; Zuharah, Wan Fatma; Fadzly, Nik

    2016-01-01

    We conducted several aviary experiments to investigate the influence of colours in quantity judgments of two species of birds; house crow (Corvus splendens) and common myna (Acridotheres tristis). Different quantity (in seven different food proportions) of mealworms were presented nonsequentially to all birds using artificially coloured red mealworms, for experiment 1, and using artificially coloured green mealworms, for experiment 2. Both red and green coloured mealworms have no significant effect on house crow’s quantity judgments (red: ANOVA: F6,30 = 1.748, p = 0.144; and green: ANOVA: F6,30= 1.085, p = 0.394). Common myna, however, showed a strong influence of red colour in their quantity judgment (ANOVA: F6,30 = 2.922, p = 0.023) as they succeeded in choosing the largest amount of food between two cups, but not when offered food using green coloured mealworms (ANOVA: F6,30 = 1.183, p = 0.342). In the next experiment, we hypothesised that both house crow and common myna will prefer red coloured food items over green coloured food items, when factors such as the amount of food is equal. We chose to test red and green colours because both colours play an important role in most avian food selections. Results showed that there were no significant differences in the selection of red or green coloured mealworms for both house crows (ANOVA: F6,30 = 2.310, p = 0.06) and common myna (ANOVA: F6,30 = 0.823, p = 0.561). PMID:27688847

  1. The effects of fire on greenhouse gas fluxes from mosses and lichen patches in the Yukon Kuskokwim Delta, AK.

    NASA Astrophysics Data System (ADS)

    Navarro-Perez, E.; Natali, S.; Schade, J. D.; Holmes, R. M.; Mann, P. J.

    2017-12-01

    Climate change has altered patterns of temperature, emissions of greenhouse gases and increased fire frequencies, especially in the Artic. Until recently, the Arctic has been a carbon (C) sink, but have begun releasing C in recent years, likely in response to warming temperatures, permafrost thaw and resulting changes in microbial processes. In addition, increases in fire frequency and intensity are changing vegetation patterns, particularly the relative importance of mosses and lichens. These changes alter soil temperatures, nutrient availability, and moisture, consequently affecting microbial processes and the release of greenhouse gases (GHG) such as N2O, CO2 and CH4. The objective of this research was to understand how recent fires in the Yukon-Kuskokwim River Delta in southwest Alaska are affecting the emission of GHGs from peat plateau soils. We hypothesized that the presence of mosses and lichen would change soil moisture and temperature, leading to changes in GHG production after fire. We also hypothesized that fire would increase soil nutrient availability, which would increase microbial process rates and GHG emissions. To test these hypotheses, we measured N2O, CH4 and CO2 fluxes from moss and lichen patches in three burned and unburned areas and collected soil cores for analyses of gravimetric soil moisture, carbon and nitrogen concentrations, and N mineralization rates. Soil temperatures were measured in the field with a thermocouple. Results demonstrated low but measurable CH4 emissions from all patches, suggesting peat plateaus in the YK Delta may be CH4 sources. In addition, CO2 emissions were higher in soils under lichen patches in burned areas than unburned controls. Finally, results suggest that burned areas have higher concentrations of extractable NH4 and NO3, and that increased N may be increasing soil respiration.

  2. Molecular Species Delimitation in the Racomitrium canescens Complex (Grimmiaceae) and Implications for DNA Barcoding of Species Complexes in Mosses

    PubMed Central

    Stech, Michael; Veldman, Sarina; Larraín, Juan; Muñoz, Jesús; Quandt, Dietmar; Hassel, Kristian; Kruijer, Hans

    2013-01-01

    In bryophytes a morphological species concept is still most commonly employed, but delimitation of closely related species based on morphological characters is often difficult. Here we test morphological species circumscriptions in a species complex of the moss genus Racomitrium, the R. canescens complex, based on variable DNA sequence markers from the plastid (rps4-trnT-trnL region) and nuclear (nrITS) genomes. The extensive morphological variability within the complex has led to different opinions about the number of species and intraspecific taxa to be distinguished. Molecular phylogenetic reconstructions allowed to clearly distinguish all eight currently recognised species of the complex plus a ninth species that was inferred to belong to the complex in earlier molecular analyses. The taxonomic significance of intraspecific sequence variation is discussed. The present molecular data do not support the division of the R. canescens complex into two groups of species (subsections or sections). Most morphological characters, albeit being in part difficult to apply, are reliable for species identification in the R. canescens complex. However, misidentification of collections that were morphologically intermediate between species questioned the suitability of leaf shape as diagnostic character. Four partitions of the molecular markers (rps4-trnT, trnT-trnL, ITS1, ITS2) that could potentially be used for molecular species identification (DNA barcoding) performed almost equally well concerning amplification and sequencing success. Of these, ITS1 provided the highest species discrimination capacity and should be considered as a DNA barcoding marker for mosses, especially in complexes of closely related species. Molecular species identification should be complemented by redefining morphological characters, to develop a set of easy-to-use molecular and non-molecular identification tools for improving biodiversity assessments and ecological research including mosses. PMID

  3. Risky business: Changes in boldness behavior in male Siamese fighting fish, Betta splendens, following exposure to an antiandrogen.

    PubMed

    Dzieweczynski, Teresa L; Portrais, Kelley B; Stevens, Megan A; Kane, Jessica L; Lawrence, Jaslynn M

    2018-04-01

    Components of boldness, such as activity level and locomotion, influence an individual's ability to avoid predators and acquire resources, generating fitness consequences. The presence of endocrine disrupting chemicals (EDCs) in the aquatic environment may affect fitness by changing morphology or altering behaviors like courtship and exploration. Most research on EDC-generated behavioral effects has focused on estrogen mimics and reproductive endpoints. Far fewer studies have examined the effects of other types of EDCs or measured non-reproductive behaviors. EDCs with antiandrogenic properties are present in waterways yet we know little about their effects on exposed individuals although they may produce effects similar to those caused by estrogen mimics because they act on the same hormonal pathway. To examine the effects of antiandrogens on boldness, this study exposed male Siamese fighting fish, Betta splendens, to a high or low dose of one of two antiandrogens, vinclozolin or flutamide, and observed behavior in three boldness assays, both before and after exposure. Overall, antiandrogen exposure increased boldness behavior, especially following exposure to the higher dose. Whether or not antiandrogen exposure influenced boldness, as well as the nature and intensity of the effect, was assay-dependent. This demonstrates the importance of studying EDC effects in a range of contexts and, at least within this species, suggests that antiandrogenic compounds may generate distinct physiological effects in different situations. How and why the behavioral effects differ from those caused by exposure to an estrogen mimic, as well as the potential consequences of increased activity levels, are discussed. Exposure to an antiandrogen, regardless of dose, produced elevated activity levels and altered shoaling and exploration in male Siamese fighting fish. These modifications may have fitness consequences. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Cardiorespiratory physiological phenotypic plasticity in developing air-breathing anabantid fishes (Betta splendens and Trichopodus trichopterus).

    PubMed

    Mendez-Sanchez, Jose F; Burggren, Warren W

    2017-08-01

    Developmental plasticity of cardiorespiratory physiology in response to chronic hypoxia is poorly understood in larval fishes, especially larval air-breathing fishes, which eventually in their development can at least partially "escape" hypoxia through air breathing. Whether the development air breathing makes these larval fishes less or more developmentally plastic than strictly water breathing larval fishes remains unknown. Consequently, developmental plasticity of cardiorespiratory physiology was determined in two air-breathing anabantid fishes ( Betta splendens and Trichopodus trichopterus ). Larvae of both species experienced an hypoxic exposure that mimicked their natural environmental conditions, namely chronic nocturnal hypoxia (12 h at 17 kPa or 14 kPa), with a daily return to diurnal normoxia. Chronic hypoxic exposures were made from hatching through 35 days postfertilization, and opercular and heart rates measured as development progressed. Opercular and heart rates in normoxia were not affected by chronic nocturnal hypoxic. However, routine oxygen consumption M˙O2 (~4  μ mol·O 2 /g per hour in normoxia in larval Betta ) was significantly elevated by chronic nocturnal hypoxia at 17 kPa but not by more severe (14 kPa) nocturnal hypoxia. Routine M˙O2 in Trichopodus (6-7  μ mol·O 2 /g per hour), significantly higher than in Betta , was unaffected by either level of chronic hypoxia. P Crit , the PO 2 at which M˙O2 decreases as ambient PO 2 falls, was measured at 35 dpf, and decreased with increasing chronic hypoxia in Betta , indicating a large, relatively plastic hypoxic tolerance. However, in contrast, P Crit in Trichopodus increased as rearing conditions grew more hypoxic, suggesting that hypoxic acclimation led to lowered hypoxic resistance. Species-specific differences in larval physiological developmental plasticity thus emerge between the relatively closely related Betta and Trichopodus Hypoxic rearing increased hypoxic tolerance in

  5. Trends in spatial patterns of heavy metal deposition on national park service lands along the Red Dog Mine haul road, Alaska, 2001-2006.

    PubMed

    Neitlich, Peter N; Ver Hoef, Jay M; Berryman, Shanti D; Mines, Anaka; Geiser, Linda H; Hasselbach, Linda M; Shiel, Alyssa E

    2017-01-01

    Spatial patterns of Zn, Pb and Cd deposition in Cape Krusenstern National Monument (CAKR), Alaska, adjacent to the Red Dog Mine haul road, were characterized in 2001 and 2006 using Hylocomium moss tissue as a biomonitor. Elevated concentrations of Cd, Pb, and Zn in moss tissue decreased logarithmically away from the haul road and the marine port. The metals concentrations in the two years were compared using Bayesian posterior predictions on a new sampling grid to which both data sets were fit. Posterior predictions were simulated 200 times both on a coarse grid of 2,357 points and by distance-based strata including subsets of these points. Compared to 2001, Zn and Pb concentrations in 2006 were 31 to 54% lower in the 3 sampling strata closest to the haul road (0-100, 100-2000 and 2000-4000 m). Pb decreased by 40% in the stratum 4,000-5,000 m from the haul road. Cd decreased significantly by 38% immediately adjacent to the road (0-100m), had an 89% probability of a small decrease 100-2000 m from the road, and showed moderate probabilities (56-71%) for increase at greater distances. There was no significant change over time (with probabilities all ≤ 85%) for any of the 3 elements in more distant reference areas (40-60 km). As in 2001, elemental concentrations in 2006 were higher on the north side of the road. Reductions in deposition have followed a large investment in infrastructure to control fugitive dust escapement at the mine and port sites, operational controls, and road dust mitigation. Fugitive dust escapement, while much reduced, is still resulting in elevated concentrations of Zn, Pb and Cd out to 5,000 m from the haul road. Zn and Pb levels were slightly above arctic baseline values in southern CAKR reference areas.

  6. Flora and Fauna on Backs of Large Papuan Moss-Forest Weevils.

    PubMed

    Gressitt, J L; Sedlacek, J; Szent-Ivany, J J

    1965-12-31

    Large, living, flightless weevils feeding on leaves of woody plants high moss forest on various New Guinea mountain ranges have plant growth on their backs. Fungi and algae have been found on 11 species of Gymnopholus, lichens on six species, and liverworts on one species. In other genera of weevils, on the same mountains, there are additional specific associations with fungi, algae, lichens, and liverworts. The fungi and lichens, at least, are inhabited by oribatid mites of a new family, which may spread the plants from beetle to beetle. Also, nematodes, rotifers, psocids, and diatoms occur among the plants. Specialized scales or hairs, and a secretion, in depressions on the weevils' backs, appear to be associated with cpcouragement of the plant growth. Mutualistic symbiotic relationships seem to be clearly indicated.

  7. Estimation of plant sampling uncertainty: an example based on chemical analysis of moss samples.

    PubMed

    Dołęgowska, Sabina

    2016-11-01

    In order to estimate the level of uncertainty arising from sampling, 54 samples (primary and duplicate) of the moss species Pleurozium schreberi (Brid.) Mitt. were collected within three forested areas (Wierna Rzeka, Piaski, Posłowice Range) in the Holy Cross Mountains (south-central Poland). During the fieldwork, each primary sample composed of 8 to 10 increments (subsamples) was taken over an area of 10 m 2 whereas duplicate samples were collected in the same way at a distance of 1-2 m. Subsequently, all samples were triple rinsed with deionized water, dried, milled, and digested (8 mL HNO 3 (1:1) + 1 mL 30 % H 2 O 2 ) in a closed microwave system Multiwave 3000. The prepared solutions were analyzed twice for Cu, Fe, Mn, and Zn using FAAS and GFAAS techniques. All datasets were checked for normality and for normally distributed elements (Cu from Piaski, Zn from Posłowice, Fe, Zn from Wierna Rzeka). The sampling uncertainty was computed with (i) classical ANOVA, (ii) classical RANOVA, (iii) modified RANOVA, and (iv) range statistics. For the remaining elements, the sampling uncertainty was calculated with traditional and/or modified RANOVA (if the amount of outliers did not exceed 10 %) or classical ANOVA after Box-Cox transformation (if the amount of outliers exceeded 10 %). The highest concentrations of all elements were found in moss samples from Piaski, whereas the sampling uncertainty calculated with different statistical methods ranged from 4.1 to 22 %.

  8. Sphagnan--a pectin-like polymer isolated from Sphagnum moss can inhibit the growth of some typical food spoilage and food poisoning bacteria by lowering the pH.

    PubMed

    Stalheim, T; Ballance, S; Christensen, B E; Granum, P E

    2009-03-01

    Investigate if the antibacterial effect of sphagnan, a pectin-like carbohydrate polymer extracted from Sphagnum moss, can be accounted for by its ability to lower the pH. Antibacterial activity of sphagnan was assessed and compared to that of three other acids. Sphagnan in its acid form was able to inhibit growth of various food poisoning and spoilage bacteria on low-buffering solid growth medium, whereas sphagnan in its sodium form at neutral pH had no antibacterial activity. At similar acidic pH, sphagnan had comparable antibacterial activity to that of hydrochloric acid and a control rhamnogalacturonan pectin in its acid form. Sphagnan in its acid form is a weak macromolecular acid that can inhibit bacterial growth by lowering the pH of environments with a low buffering capacity. It has previously been suggested that sphagnan is an antimicrobial polysaccharide in the leaves of Sphagnum moss with a broad range of potential practical applications. Our results now show that sphagnan in its acid form can indeed inhibit bacterial growth, but only of acid-sensitive species. These findings represent increased knowledge towards our understanding on how sphagnan or Sphagnum moss might be used in practical applications.

  9. Moss-associated methylobacteria as phytosymbionts: an experimental study

    NASA Astrophysics Data System (ADS)

    Hornschuh, M.; Grotha, R.; Kutschera, U.

    2006-10-01

    Methylotrophic bacteria inhabit the surface of plant organs, but the interaction between these microbes and their host cells is largely unknown. Protonemata (gametophytes) of the moss Funaria hygrometrica were cultivated in vitro under axenic conditions and the growth of the protonemal filaments recorded. In the presence of methylobacteria (different strains of Methylobacterium), average cell length and the number of cells per filament were both enhanced. We tested the hypothesis that auxin (indole-3-acetic acid, IAA), secreted by the epiphytic bacteria and taken up by the plant cells, may in part be responsible for this promotion of protonema development. The antiauxin parachlorophenoxyisobutyric acid (PCIB) was used as a tool to analyze the role of IAA and methylobacteria in the regulation of cell growth. In the presence of PCIB, cell elongation and protonema differentiation were both inhibited. This effect was compensated for by the addition of different Methylobacterium strains to the culture medium. Biosynthesis and secretion of IAA by methylobacteria maintained in liquid culture was documented via a colorimetric assay and thin layer chromatography. Our results support the hypothesis that the development of Funaria protonemata is promoted by beneficial phytohormone-producing methylobacteria, which can be classified as phytosymbionts.

  10. Moss-associated methylobacteria as phytosymbionts: an experimental study.

    PubMed

    Hornschuh, M; Grotha, R; Kutschera, U

    2006-10-01

    Methylotrophic bacteria inhabit the surface of plant organs, but the interaction between these microbes and their host cells is largely unknown. Protonemata (gametophytes) of the moss Funaria hygrometrica were cultivated in vitro under axenic conditions and the growth of the protonemal filaments recorded. In the presence of methylobacteria (different strains of Methylobacterium), average cell length and the number of cells per filament were both enhanced. We tested the hypothesis that auxin (indole-3-acetic acid, IAA), secreted by the epiphytic bacteria and taken up by the plant cells, may in part be responsible for this promotion of protonema development. The antiauxin parachlorophenoxyisobutyric acid (PCIB) was used as a tool to analyze the role of IAA and methylobacteria in the regulation of cell growth. In the presence of PCIB, cell elongation and protonema differentiation were both inhibited. This effect was compensated for by the addition of different Methylobacterium strains to the culture medium. Biosynthesis and secretion of IAA by methylobacteria maintained in liquid culture was documented via a colorimetric assay and thin layer chromatography. Our results support the hypothesis that the development of Funaria protonemata is promoted by beneficial phytohormone-producing methylobacteria, which can be classified as phytosymbionts.

  11. In vitro and in vivo anti-cancer effects of tillandsia recurvata (ball moss) from Jamaica.

    PubMed

    Lowe, H I C; Toyang, N J; Bryant, J

    2013-03-01

    Tillandsia recurvata, also commonly known as Ball Moss, is endemic to Jamaica and some parts of the Caribbean and South America. The plant, despite being reported to be used in folk medicine, had not previously been evaluated for its anti-cancer potential. The aim of this study was to evaluate the anti-cancer activity ofBall Moss. The anti-proliferation activity of the crude methanolic extract of the T recurvata was evaluated in vitro in five different histogenic cancer cell lines (prostate cancer - PC-3, breast cancer Kaposi sarcoma, B-16 melanoma and a B-cell lymphoma from a transgenic mouse strain) using the trypan blue assay. The crude extract was also evaluated in vivo in tumour-bearing mice. Immunohistochemistry staining with Apoptag was used for histology and determination of apoptosis. The crude methanolic extract of T recurvata demonstrated anti-proliferation activity against all the cell lines, killing > 50% of the cells at a concentration of 2.5 microg/ml. Kaposi sarcoma xenograft tumours were inhibited by up to 75% compared to control in the in vivo study (p < 0.05). There was evidence of DNA fragmentation and a decrease in cell viability on histological studies. The methanolic extract showed no toxic effect in the mice at a dose of 200 mg/kg. Our data suggest that T recurvata has great potential as an anti-cancer agent and that one of its mechanisms of cell kill and tumour inhibition is by the induction of apoptosis.

  12. Alterations to throughfall water and solute flux by Tillandsias usneoides L. (Spanish moss) cover in a maritime live oak forest

    NASA Astrophysics Data System (ADS)

    Gay, T. E.; Van Stan, J. T., II; Reichard, J. S.; Moore, L. D.; Lewis, E. S.

    2014-12-01

    Alterations to forest canopy structures can have a direct effect on hydrological and biogeochemical cycles in forest ecosystems. Epiphytes act as additional canopy biomass intercepting water, effecting pathways under different micrometeorological conditions and alternating nutrient uptake/releases. Most studies on epiphyte cover have focused on non-vascular epiphytes (e.g., lichen and bryophyte mosses), leaving vascular epiphytes like Tillandsia usneoides L. (Spanish moss) relatively understudied. To fill this gap, we characterized alterations to throughfall water and dissolved ion enrichment/flux to soils by T. usneoides in a Quercus Virginiana Mill. (southern live oak) stand on St. Catherine's Island. Specifically, we compare throughfall generated from heavy T. usneoides coverage, bare canopy, and a continuum of T. usneoides cover percentages (~400 water & 210 chemistry observations over ~40 storms for each canopy cover category). Findings show T.usneoides acts as a significant water storage agent, significantly reducing throughfall. However, under certain meteorological conditions T. usneoides can become saturated and act as a funneling "hotspot." Tillandsia usneoides coverage enriched throughfall with primarily dry deposited ions (Na+,Cl-, SO42-, Li+), leached greater Mg2+, Ca2+, reduced NO3- and increased NH4+ concentrations. Dry deposited ion enrichment is likely a result of the moss' greater surface roughness. It has been shown that epiphytes prefer to leach Mg2+ and Ca2+. Increased NH4+ suggests that the saturated T. usneoides mat likely hosts microbial decomposition of leaf, branch, and bark biomass ensnared in the plant itself. K-means cluster analysis on the storms revealed 4 storm types of the differing meteorological conditions (windy/calm, dry/wet [high/low VPD], high/low intensity, intermittent/consistent), and these throughfall dynamics varied between these storm types. Discussion of future research questions regarding how these throughfall

  13. Influence of exposure sites on trace element enrichment in moss-bags and characterization of particles deposited on the biomonitor surface.

    PubMed

    Tretiach, M; Pittao, E; Crisafulli, P; Adamo, P

    2011-01-15

    The hypothesis that exposure environment and land use influence element accumulation and particulate size composition in transplants of Hypnum cupressiforme has been tested using moss-bags containing oven-devitalized material. The samples were exposed for three months in ten green sites and ten roadsides in two areas with different land use (A, residential; B, residential/industrial) in the Trieste conurbation (NE Italy). Observations by SEM and EDX-ray microanalysis revealed that particle density was smaller in samples exposed in A than in B, with prevalence of particles containing Al, Ca, Fe and Si, and in good accordance with the element contents measured by acid digestion and ICP-MS. Moss-bags were generally less contaminated in green sites than in roadsides, apparently due to the different enrichment in coarse particles. In both environments, however, the majority of entrapped particles (up to 98.2%) belongs in the inhalable, small size classes (≤PM(10)). The need for careful selection of the exposure sites during the phase of biomonitoring planning is discussed. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Protection against UV-induced oxidative stress and DNA damage by Amazon moss extracts.

    PubMed

    Fernandes, A S; Mazzei, J L; Evangelista, H; Marques, M R C; Ferraz, E R A; Felzenszwalb, I

    2018-04-27

    Amazon mosses, such as Holomitriopsis laevifolia and Leucobryum sp. are naturally exposed to high levels of solar ultraviolet (UV) radiation. Theoretically, under environmental stress conditions these mosses have developed protective chemical and metabolic strategies against UV damage, by way of biosynthesis of secondary metabolites, such as flavonoids. The present paper aimed to evaluate the free-radical scavenging activity, and the photoprotective, mutagenic and photomutagenic potencies of the methanolic (ME), aqueous (AE), hydroalcoholic (HE), ethanolic (EE) extracts of H. laevifolia and Leucobryum sp. The phenolic contents were evaluated by spectrophotometry and by High-Performance Liquid Chromatography (HPLC). The present findings showed that the AE and HE of H. laevifolia and the AE of Leucobryum sp. presented the highest phenolic contents. The HPLC analysis indicated the presence mainly of phenolic and cinnamic acids, flavonols, flavones and flavanones. The AE and EE of H. laevifolia and the AE and HE of Leucobryum sp. efficiently scavenged the 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical. All extracts showed significant values of in vitro Sun Protection Factor alone, and HE of Leucobryum sp. showed a synergistic effect in association with benzophenone-3. None of the extracts induced mutagenicity in the auxotrophic strains for histidine of Salmonella typhimurium, and photomutagenicity of the TA102 and TA104 strains was not detected after exposure to UV-A radiation. Besides, all extracts showed photoprotective activity against UV-A radiation for the TA104 strain, including synergistic protection in association with BP-3. Thus, the constituents in H. Laevifolia and Leucobryum sp. could be good candidates for cosmetic and dermatological applications, particularly in association with synthetic UV filters, since the concentration of the filters in the final product could be reduced. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Evolutionary and ecophysiological significance of sugar utilization by the peat moss Sphagnum compactum (Sphagnaceae) and the common charophycean associates Cylindrocystis brebissonii and Mougeotia sp. (Zygnemataceae).

    PubMed

    Graham, Linda E; Kim, Eunsoo; Arancibia-Avila, Patricia; Graham, James M; Wilcox, Lee W

    2010-09-01

    The goal of this study was to illuminate the evolutionary history and ecological importance of plant mixotrophy-the uptake and utilization of exogenous organic compounds. • We quantitatively assessed the effect of sugar amendments on laboratory growth of Sphagnum compactum as a representative emergent peat moss and two species of ecologically associated zygnematalean algae, Cylindrocystis brebissonii and Mougeotia sp. • Together with observations published elsewhere, our results suggest that under carbon or light limitation, the uptake of exogenous sugars by cells of charophycean algae and peat mosses may help these organisms maintain positive carbon balance. Utilization of 1% glucose by aquatic-grown algae helped to relieve dissolved inorganic carbon limitation, enhancing photoautotrophic growth by factors of 9.0 and 1.7, respectively. After an 8-wk growth period, amendments of 1% and 2% glucose enhanced air-grown moss biomass by 28 and 39 times, respectively, that of controls lacking sugar amendments. After 9 wk, 1% fructose enhanced biomass by 21 times, and 2% sucrose enhanced biomass by 31 times. • Our results indicate that plant mixotrophy is an early-evolved trait. The results also indicate that quantitative differences in sugar utilization by bryophytes and charophycean algae correlate with relative investments in protective cell-wall polyphenolics measured in previous studies, suggesting that sugar utilization may subsidize the cost of producing phenolic wall compounds in bryophytes.

  16. A rapid method for landscape assessment of carbon storage and ecosystem function in moss and lichen ground layers

    Treesearch

    Sarah Jovan; Robert J. Smith; Juan C. Benavides; Michael Amacher; Bruce McCune

    2015-01-01

    Mat-forming ‘‘ground layers’’ of mosses and lichens often have functional impacts disproportionate to their biomass, and are responsible for sequestering one-third of the world’s terrestrial carbon as they regulate water tables, cool soils and inhibit microbial decomposition. Without reliable assessment tools, the potential effects of climate and land use changes on...

  17. Swath Bathymetry Surveys of the Monterey Bay Area from Point Ano Nuevo to Moss Landing, San Mateo, Santa Cruz, and Monterey Counties, California

    USGS Publications Warehouse

    Ritchie, Andrew C.; Finlayson, David P.; Logan, Joshua B.

    2010-01-01

    This report describes swath bathymetry and backscatter data acquired by the U.S. Geological Survey on the continental shelf within the Monterey Bay National Marine Sanctuary between Point A?o Nuevo and Moss Landing, in San Mateo, Santa Cruz, and Monterey Counties, Calif. The survey was done for the California Seafloor Mapping Program (CSMP), in field activities S-7-09-MB and S-10-09-MB, by the Western Coastal and Marine Geology (WCMG) Team of the U.S. Geological Survey (USGS). The data were aquired in two seperate surveys: (1) between August 13, 2009 and September 3, 2009, personnel from WCMG completed field activity S-7-09-MB, from Point A?o Nuevo south to Table Rock, as well as a block west of Soquel Canyon; (2) between October 12 and December 16, 2009, WCMG conducted field activity S-10-09-MB, surveying between Table Rock and Moss Landing.

  18. Sex-specific morphological and physiological differences in the moss Ceratodon purpureus (Dicranales).

    PubMed

    Slate, Mandy L; Rosenstiel, Todd N; Eppley, Sarah M

    2017-11-10

    Dioecy and sexual dimorphism occur in many terrestrial plant species but are especially widespread among the bryophytes. Despite the prevalence of dioecy in non-vascular plants, surprisingly little is known about how fine-scale sex-specific cell and leaf morphological traits are correlated with sex-specific physiology and population sex ratios. Such data are critical to understanding the inter-relationship between sex-specific morphological and physiological characters and how their relationship influences population structure. In this study, these data types were assessed to determine how they vary across three populations within one moss species and whether fine-scale morphological traits scale up to physiological and sex ratio characteristics. Twenty cell-, leaf- and canopy-level traits and two photochemical measurements were compared between sexes and populations of the dioecious moss Ceratodon purpureus . Field population-expressed sex ratios were obtained for the same populations. Male and female plants differed in cell, leaf and photochemical measures. These sexual dimorphisms were female biased, with females having larger and thicker leaves and greater values for chlorophyll fluorescence-based, leaf photochemistry measurements than males. Female traits were also more variable than male traits. Interestingly, field population sex ratios were significantly male biased in two study populations and female biased in the third study population. The results demonstrate that the larger morphology and the greater physiological output of female C. purpureus gametophytes compared with males occurs across populations and is likely to have significant effects on resource allocation and biotic interactions. However, this high level of dimorphism does not explain population sex ratio variation in the three study populations tested. This research lays the groundwork for future studies on how differential sex-specific variation in cell and leaf traits influences bryophyte

  19. Pedological and geological relationships with soil lichen and moss distribution in the eastern Mojave Desert, CA, USA

    USGS Publications Warehouse

    Belnap, Jayne; Miller, David M.; Bedford, David R.; Phillips, Susan L.

    2014-01-01

    Biological soil crusts (biocrusts) are ubiquitous in drylands globally. Lichens and mosses are essential biocrust components and provide a variety of ecosystem services, making their conservation and management of interest. Accordingly, understanding what factors are correlated with their distribution is important to land managers. We hypothesized that cover would be related to geologic and pedologic factors. We sampled 32 sites throughout the eastern Mojave Desert, stratifying by parent material and the age of the geomorphic surfaces. The cover of lichens and mosses on ‘available ground’ (L + Mav; available ground excludes ground covered by rocks or plant stems) was higher on limestone and quartzite-derived soils than granite-derived soils. Cover was also higher on moderately younger-aged geomorphic surfaces (Qya2, Qya3, Qya4) and cutbanks than on very young (Qya1), older-aged surfaces (Qia1, Qia2), or soils associated with coppice mounds or animal burrowing under Larrea tridentata. When all sites and parent materials were combined, soil texture was the most important factor predicting the occurrence of L + Mav, with cover positively associated with higher silt, very fine sand, and fine sand fractions and negatively associated with the very coarse sand fraction. When parent materials were examined separately, nutrients such as available potassium, iron, and calcium became the most important predictors of L + Mav cover.

  20. Radiocesium contamination of the moss Hypnum plumaeforme caused by the Fukushima Dai-ichi Nuclear Power Plant accident.

    PubMed

    Oguri, Emiko; Deguchi, Hironori

    2018-03-07

    We investigated 134 Cs and 137 Cs activity concentrations in the common Japanese moss species Hypnum plumaeforme collected from 32 sites within ca. 100 km radius of the Fukushima Dai-ichi Nuclear Power Plant. A total of 32 samples of H. plumaeforme were collected during the field surveys from November 2013 to September 2014. The maximum radiocesium activity concentrations in H. plumaeforme were 60.9 ± 1.8 kBq kg -1 for 134 Cs and 123 ± 2.3 kBq kg -1 for 137 Cs. The mean value for the 134 Cs/ 137 Cs was 1.17 ± 0.05, and the mean T ag value was 0.09 ± 0.13. Positive correlations were obtained between total 134 Cs + 137 Cs activity concentrations in H. plumaeforme and the air dose rate with a correlation coefficient (r) of 0.55 (P = 0.001), and between 137 Cs activity concentration in H. plumaeforme and 137 Cs deposition density on soil with r of 0.55 (P = 0.001). These results suggest that the perennial moss species H. plumaeforme could be more suitable and useful as a qualitative indicator for the radiocesium pollution compared to vascular plants spreading over the lowlands including human habitation in Fukushima Prefecture. Copyright © 2018. Published by Elsevier Ltd.

  1. Immunomodulatory activity of polysaccharides isolated from Clerodendrum splendens: Beneficial effects in experimental autoimmune encephalomyelitis

    PubMed Central

    2013-01-01

    Background Extracts of leaves from Clerodendrum have been used for centuries to treat a variety of medicinal problems in tropical Africa. However, little is known about the high-molecular weight active components conferring therapeutic properties to these extracts. Methods Polysaccharides from the leaves of Clerodendrum splendens were extracted and fractionated by ion exchange and size-exclusion chromatography. Molecular weight determination, sugar analysis, degree of methyl esterification, and other chemical characterization of the fractions were performed. Immunomodulatory activity of the fractions was evaluated by determining their ability to induce monocyte/macrophage nitric oxide (NO), cytokine production, and mitogen-activated protein kinase (MAPK) phosphorylation. Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice, and severity of EAE was monitored in mice treated with intraperitoneal (i.p.) injections of the most active polysaccharide fraction. Lymph nodes (LN) and spleen were harvested, and levels of cytokines in supernatants from LN cells and splenocytes challenged with myelin oligodendrocyte glycoprotein peptide were determined. Results Fractions containing type II arabinogalactan had potent immunomodulatory activity. Specifically, the high-molecular weight sub-fraction CSP-AU1 (average of 38.5 kDa) induced NO and cytokine [interleukin (IL)-1α, -1β, -6, -10, tumor necrosis factor (TNF; designated previously as TNF-α), and granulocyte macrophage-colony stimulating factor (GM-CSF)] production by human peripheral blood mononuclear cells (PBMCs) and monocyte/macrophages. CSP-AU1-induced secretion of TNF was prevented by Toll-like receptor 4 (TLR4) antagonist LPS-RS, indicating a role for TLR4 signaling. Treatment with CSP-AU1 also induced phosphorylation of a number of MAPKs in human PBMC and activated AP-1/NF-κB. In vivo treatment of mice with CSP-AU1 and CSP-NU1 resulted in increased serum IL-6, IL-10, TNF, monocyte

  2. The desert moss Pterygoneurum lamellatum (Pottiaceae) exhibits an inducible ecological strategy of desiccation tolerance: effects of rate of drying on shoot damage and regeneration

    USDA-ARS?s Scientific Manuscript database

    Premise of the study: Bryophytes are regarded as a clade incorporating constitutive desiccation tolerance, especially terrestrial species. Here we test the hypothesis that the opposing ecological strategy of desiccation tolerance, inducibility, is present in a desert moss, and addressed by varying r...

  3. Balancing the competing requirements of air-breathing and display behaviour during male-male interactions in Siamese fighting fish Betta splendens.

    PubMed

    Alton, Lesley A; Portugal, Steven J; White, Craig R

    2013-02-01

    Air-breathing fish of the Anabantoidei group meet their metabolic requirements for oxygen through both aerial and aquatic gas exchange. Siamese fighting fish Betta splendens are anabantoids that frequently engage in aggressive male-male interactions which cause significant increases in metabolic rate and oxygen requirements. These interactions involve opercular flaring behaviour that is thought to limit aquatic oxygen uptake, and combines with the increase in metabolic rate to cause an increase in air-breathing behaviour. Air-breathing events interrupt display behaviour and increase risk of predation, raising the question of how Siamese fighting fish manage their oxygen requirements during agonistic encounters. Using open-flow respirometry, we measured rate of oxygen consumption in displaying fish to determine if males increase oxygen uptake per breath to minimise visits to the surface, or increase their reliance on aquatic oxygen uptake. We found that the increased oxygen requirements of Siamese fighting fish during display behaviour were met by increased oxygen uptake from the air with no significant changes in aquatic oxygen uptake. The increased aerial oxygen uptake was achieved almost entirely by an increase in air-breathing frequency. We conclude that limitations imposed by the reduced gill surface area of air-breathing fish restrict the ability of Siamese fighting fish to increase aquatic uptake, and limitations of the air-breathing organ of anabantoids largely restrict their capacity to increase oxygen uptake per breath. The resulting need to increase surfacing frequency during metabolically demanding agonistic encounters has presumably contributed to the evolution of the stereotyped surfacing behaviour seen during male-male interactions, during which one of the fish will lead the other to the surface, and each will take a breath of air. Copyright © 2012. Published by Elsevier Inc.

  4. Influence of gravity of the photomorphism of secondary moss protonemata

    NASA Astrophysics Data System (ADS)

    Ripetskyj, R. T.; Kit, N. A.; Chaban, Ch. I.

    1999-01-01

    In dark-grown plantlets of the moss, Pottia intermedia, negatively gravitropic secondary protonemata differentiate from the superficial cells of leafy shoots. When transferred to the light, distal parts of the protonemata nearest to the apical cells begin to ramify and the apical cells of the side branches as well as of the main protonemal filaments often differentiate as buds. Dark-grown protonemata were oriented horizontally and illuminated from below with white light of different intensities. Only light with an intensity of 4.5 μmol.m-2.s-1 was sufficient to induce: (a) phototropism in the apical cells, (b) light-directed initiation of branch primordia, and (c) directed growth of side branches and bud differentiation. Apical cells illuminated with light of lower (0.03-0.37 μmol.-2.s-1) intensity grew upwards (i.e., away from the light). It was shown that this upward growth was determined by the action of gravity. Although initiation of branch primordia was only slightly affected, their growth was strongly stimulated on the upper side of the protonemata.

  5. Microtubules restrict plastid sedimentation in protonemata of the moss Ceratodon

    NASA Technical Reports Server (NTRS)

    Schwuchow, J.; Sack, F. D.

    1994-01-01

    Apical cells of protonemata of the moss Ceratodon purpureus are unusual among plant cells with sedimentation in that only some amyloplasts sediment and these do not fall completely to the bottom of vertical cells. To determine whether the cytoskeleton restricts plastid sedimentation, the effects of amiprophos-methyl (APM) and cytochalasin D (CD) on plastid position were quantified. APM treatments of 30-60 min increased the plastid sedimentation that is normally seen along the length of untreated or control cells. Longer APM treatments often resulted in more dramatic plastid sedimentation, and in some cases almost all plastids sedimented to the lowermost point in the cell. In contrast, the microfilament inhibitor CD did not affect longitudinal plastid sedimentation compared to untreated cells, although it did disturb or eliminate plastid zonation in the tip. These data suggest that microtubules restrict the sedimentation of plastids along the length of the cell and that microtubules are load-bearing for all the plastids in the apical cell. This demonstrates the importance of the cytoskeleton in maintaining organelle position and cell organization against the force of gravity.

  6. Three ancient hormonal cues co-ordinate shoot branching in a moss.

    PubMed

    Coudert, Yoan; Palubicki, Wojtek; Ljung, Karin; Novak, Ondrej; Leyser, Ottoline; Harrison, C Jill

    2015-03-25

    Shoot branching is a primary contributor to plant architecture, evolving independently in flowering plant sporophytes and moss gametophytes. Mechanistic understanding of branching is largely limited to flowering plants such as Arabidopsis, which have a recent evolutionary origin. We show that in gametophytic shoots of Physcomitrella, lateral branches arise by re-specification of epidermal cells into branch initials. A simple model co-ordinating the activity of leafy shoot tips can account for branching patterns, and three known and ancient hormonal regulators of sporophytic branching interact to generate the branching pattern- auxin, cytokinin and strigolactone. The mode of auxin transport required in branch patterning is a key divergence point from known sporophytic pathways. Although PIN-mediated basipetal auxin transport regulates branching patterns in flowering plants, this is not so in Physcomitrella, where bi-directional transport is required to generate realistic branching patterns. Experiments with callose synthesis inhibitors suggest plasmodesmal connectivity as a potential mechanism for transport.

  7. A factor influence study of trace element bioaccumulation in moss bags.

    PubMed

    Cesa, M; Campisi, B; Bizzotto, A; Ferraro, C; Fumagalli, F; Nimis, P L

    2008-10-01

    Moss bags of Rhynchostegium riparioides were exposed to different water concentrations of 11 trace elements under laboratory conditions, according to a saturated fractional factorial design (67 treated combinations), with the aim of measuring (1) element uptake and (2) the main effects and first-order interactions of influent factors. Bioaccumulation was directly proportional to water concentration, but the uptake ratio (ranging from 10(2) to 10(5)) also depended on the concentration of other metals. The highest uptake ratios were observed for Al, Cu, Cr, Hg, and Pb. The multiple regression model showed that interactions among elements exist and induce both antagonism (Fe is the most frequent competitor) and synergism (Cr exerts a great influence on Pb and Zn uptake). Interactions might be relatively strong (as for As, Cr, and Pb) or weak (Cd and Hg). This evidence should be taken into consideration in biomonitoring surveys of industrial sites, where effluents release more than one contaminant.

  8. Calcium in Gravitropism of the Moss Pohlia nutans (Hedw.) Lindb. protonemata

    NASA Astrophysics Data System (ADS)

    Khorkavtsiv, O. Ya; Demkiv, O. T.; Khorkavtsiv, Ya. D.

    Protonemata of mosses of Pohlia nutans grow both by extension and division of single apical cells which are negatively gravitropic in darkness. The fluorescence of Ca2+ increased in the tip of apical cells from the first hours of gravitropism stimulation. Cytochemical investigations confirmed the existence of a well pronounced tip-to-base Ca2+-gradient, its formation being favoured by localization of calcium influx in the tip of the apical cell. Measurement of the cytochemical reaction intensity showed that the level of Ca2+-ATFase activity is low in apex and increases towards the base of the apical cell. The gravitropic protonemata and filaments which grew on the clinostat showed similar distributions of the Ca2+ and Ca2+-ATFase activity along the apical cell axis. Thus, these data demonstrate that growing apical cells of gravitropic protonemata have a high tip-to-base Ca2+ gradient, the Ca2+ transport being afforded by Ca2+-ATFase.

  9. Three ancient hormonal cues co-ordinate shoot branching in a moss

    PubMed Central

    Coudert, Yoan; Palubicki, Wojtek; Ljung, Karin; Novak, Ondrej; Leyser, Ottoline; Harrison, C Jill

    2015-01-01

    Shoot branching is a primary contributor to plant architecture, evolving independently in flowering plant sporophytes and moss gametophytes. Mechanistic understanding of branching is largely limited to flowering plants such as Arabidopsis, which have a recent evolutionary origin. We show that in gametophytic shoots of Physcomitrella, lateral branches arise by re-specification of epidermal cells into branch initials. A simple model co-ordinating the activity of leafy shoot tips can account for branching patterns, and three known and ancient hormonal regulators of sporophytic branching interact to generate the branching pattern- auxin, cytokinin and strigolactone. The mode of auxin transport required in branch patterning is a key divergence point from known sporophytic pathways. Although PIN-mediated basipetal auxin transport regulates branching patterns in flowering plants, this is not so in Physcomitrella, where bi-directional transport is required to generate realistic branching patterns. Experiments with callose synthesis inhibitors suggest plasmodesmal connectivity as a potential mechanism for transport. DOI: http://dx.doi.org/10.7554/eLife.06808.001 PMID:25806686

  10. Novel Biogenic Aggregation of Moss Gemmae on a Disappearing African Glacier

    PubMed Central

    Uetake, Jun; Tanaka, Sota; Hara, Kosuke; Tanabe, Yukiko; Samyn, Denis; Motoyama, Hideaki; Imura, Satoshi; Kohshima, Shiro

    2014-01-01

    Tropical regions are not well represented in glacier biology, yet many tropical glaciers are under threat of disappearance due to climate change. Here we report a novel biogenic aggregation at the terminus of a glacier in the Rwenzori Mountains, Uganda. The material was formed by uniseriate protonemal moss gemmae and protonema. Molecular analysis of five genetic markers determined the taxon as Ceratodon purpureus, a cosmopolitan species that is widespread in tropical to polar region. Given optimal growing temperatures of isolate is 20–30°C, the cold glacier surface might seem unsuitable for this species. However, the cluster of protonema growth reached approximately 10°C in daytime, suggesting that diurnal increase in temperature may contribute to the moss’s ability to inhabit the glacier surface. The aggregation is also a habitat for microorganisms, and the disappearance of this glacier will lead to the loss of this unique ecosystem. PMID:25401789

  11. Sphagnum Moss as an Indicator of Contemporary Rates of Atmospheric Dust Deposition in the Athabasca Bituminous Sands Region.

    PubMed

    Mullan-Boudreau, Gillian; Belland, Rene; Devito, Kevin; Noernberg, Tommy; Pelletier, Rick; Shotyk, William

    2017-07-05

    Sphagnum moss was collected from ombrotrophic (rain-fed) peat bogs to quantify dust emissions from the open-pit mining and upgrading of Athabasca bituminous sands (ABS). A total of 30 bogs were sampled in the ABS region, and 5 were sampled in central Alberta. Ash was separated into the acid-insoluble ash (AIA) and acid-soluble ash (ASA) fractions using HCl. The AIA concentrations increase toward industry from 0.4 ± 0.5% to 4.7 ± 2.0% over a distance of 30 km; the control site at the Utikuma Region Study Area (URSA) yielded 0.29 ± 0.07% (n = 30). Mass accumulations rates showed similar spatial variation. The morphology and mineralogy of the AIA particles were studied using scanning electron microscopy and energy-dispersive X-ray analysis and the particle size distributions using optical methods. Particle size was more variable in moss closer to industry. Major ions in the ASA fraction showed elevated accumulation rates of Ca, K, Fe, Mg, P, and S, with P being up to 5 times greater in samples nearest industry compared to those in distal locations. Given that P has been regarded as the growth-limiting nutrient in bogs, fertilization of nutrient-poor ecosystems, such as these from fugitive emissions of dusts from open-pit mining, may have long-term ecological ramifications.

  12. Deep Sequencing-Identified Kanamycin-Resistant Paenibacillus sp. Strain KS1 Isolated from Epiphyte Tillandsia usneoides (Spanish Moss) in Central Florida, USA

    PubMed Central

    Govindarajan, Subramaniam S.; Qi, Feng; Li, Jian-Liang; Sahoo, Malaya K.

    2017-01-01

    ABSTRACT Paenibacillus sp. strain KS1 was isolated from an epiphyte, Tillandsia usneoides (Spanish moss), in central Florida, USA. Here, we report a draft genome sequence of this strain, which consists of a total of 398 contigs spanning 6,508,195 bp, with a G+C content of 46.5% and comprising 5,401 predicted coding sequences. PMID:28153888

  13. Deep Sequencing-Identified Kanamycin-Resistant Paenibacillus sp. Strain KS1 Isolated from Epiphyte Tillandsia usneoides (Spanish Moss) in Central Florida, USA.

    PubMed

    Lata, Pushpa; Govindarajan, Subramaniam S; Qi, Feng; Li, Jian-Liang; Sahoo, Malaya K

    2017-02-02

    Paenibacillus sp. strain KS1 was isolated from an epiphyte, Tillandsia usneoides (Spanish moss), in central Florida, USA. Here, we report a draft genome sequence of this strain, which consists of a total of 398 contigs spanning 6,508,195 bp, with a G+C content of 46.5% and comprising 5,401 predicted coding sequences. Copyright © 2017 Lata et al.

  14. Red shift in the spectrum of a chlorophyll species is essential for the drought-induced dissipation of excess light energy in a poikilohydric moss, Bryum argenteum.

    PubMed

    Shibata, Yutaka; Mohamed, Ahmed; Taniyama, Koichiro; Kanatani, Kentaro; Kosugi, Makiko; Fukumura, Hiroshi

    2018-05-01

    Some mosses are extremely tolerant of drought stress. Their high drought tolerance relies on their ability to effectively dissipate absorbed light energy to heat under dry conditions. The energy dissipation mechanism in a drought-tolerant moss, Bryum argenteum, has been investigated using low-temperature picosecond time-resolved fluorescence spectroscopy. The results are compared between moss thalli samples harvested in Antarctica and in Japan. Both samples show almost the same quenching properties, suggesting an identical drought tolerance mechanism for the same species with two completely different habitats. A global target analysis was applied to a large set of data on the fluorescence-quenching dynamics for the 430-nm (chlorophyll-a selective) and 460-nm (chlorophyll-b and carotenoid selective) excitations in the temperature region from 5 to 77 K. This analysis strongly suggested that the quencher is formed in the major peripheral antenna of photosystem II, whose emission spectrum is significantly broadened and red-shifted in its quenched form. Two emission components at around 717 and 725 nm were assigned to photosystem I (PS I). The former component at around 717 nm is mildly quenched and probably bound to the PS I core complex, while the latter at around 725 nm is probably bound to the light-harvesting complex. The dehydration treatment caused a blue shift of the PS I emission peak via reduction of the exciton energy flow to the pigment responsible for the 725 nm band.

  15. Cytotoxic Cytochalasins and Other Metabolites from Xylariaceae sp. FL0390, a Fungal Endophyte of Spanish Moss.

    PubMed

    Xu, Ya-Ming; Bashyal, Bharat P; Liu, Mangping X; Espinosa-Artiles, Patricia; U'Ren, Jana M; Arnold, A Elizabeth; Gunatilaka, A A Leslie

    2015-10-01

    Two new metabolites, 6-oxo-12-norcytochalasin D (1) and 4,5-di-isobutyl-2(1H)-pyrimidinone (2), together with seven known metabolites, cytochalasins D (3), Q (4), and N (5), 12-hydroxyzygosporin G (6), heptelidic acid chlorohydrin (7), (+)-heptelidic acid (8), and trichoderonic acid A (9), were isolated from Xylariaceae sp. FL0390, a fungal endophyte inhabiting Spanish moss, Tillandsia usneoides. Metabolite 1 is the first example of a 12-norcytochalasin. All metabolites, except 2 and 9, showed cytotoxic activity in a panel of five human tumor cell lines with IC50S of 0.2-5.0 μM.

  16. Ferns, mosses and liverworts as model systems for light-mediated chloroplast movements.

    PubMed

    Suetsugu, Noriyuki; Higa, Takeshi; Wada, Masamitsu

    2017-11-01

    Light-induced chloroplast movement is found in most plant species, including algae and land plants. In land plants with multiple small chloroplasts, under weak light conditions, the chloroplasts move towards the light and accumulate on the periclinal cell walls to efficiently perceive light for photosynthesis (the accumulation response). Under strong light conditions, chloroplasts escape from light to avoid photodamage (the avoidance response). In most plant species, blue light induces chloroplast movement, and phototropin receptor kinases are the blue light receptors. Molecular mechanisms for photoreceptors, signal transduction and chloroplast motility systems are being studied using the model plant Arabidopsis thaliana. However, to further understand the molecular mechanisms and evolutionary history of chloroplast movement in green plants, analyses using other plant systems are required. Here, we review recent works on chloroplast movement in green algae, liverwort, mosses and ferns that provide new insights on chloroplast movement. © 2016 John Wiley & Sons Ltd.

  17. The use of feather as an indicator for heavy metal contamination in house crow (Corvus splendens) in the Klang area, Selangor, Malaysia.

    PubMed

    Janaydeh, Mohammed; Ismail, Ahmad; Zulkifli, Syaizwan Zahmir; Bejo, Mohd Hair; Aziz, Nor Azwady Abd; Taneenah, Ayat

    2016-11-01

    The Klang area of Peninsular Malaysia has experienced rapid industrial growth with intense activities, which can increase the concentration of pollutants in the environment that significantly impact on habitats and the human health. The purpose of this study was to determine the levels of selected heavy metals (Cu, Zn, Ni, Fe, and Pb) in the heart, lung, brain, liver, kidney, muscle tissues, and feathers of house crow, Corvus splendens, in Klang, Peninsular Malaysia. House crow samples were collected from the Klang area through the Department of Public Health at Majlis Perbandaran Klang. Quantitative determination of heavy metals was carried out using atomic absorption spectrophotometer (AAS). The result shows the presence of heavy metals in all biological samples of house crows. For heavy metals in all the house crow tissues analyzed, Fe concentrations were the highest, followed by those of Zn, Cu, Pb, and Ni. The feathers and kidney accumulated high concentrations of Pb, whereas the liver accumulated high concentrations of essential heavy metals (Fe > Zn > Cu > Ni). Significant variations were also detected in the concentrations of Pb among adult and juvenile and male and female bird samples. The results also revealed significant positive correlations between Pb metal concentration in the breast feathers and all internal organs. Accumulation of toxic heavy metals in feathers reflected storing and elimination processes, while the accumulation of toxic heavy metals in the kidney can be consequential to chronic exposure. The present study clearly shows the usefulness of house crow breast feather as a suitable indicator for heavy metal accumulation in the internal organs of house crows in the Klang area.

  18. The physiology mechanisms on drought tolerance and adaptation of biological soil crust moss Bryum argenteum and Didymodon vinealis in Tenger Desert

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Shi, Y.; Chen, C.; Jia, R.; Li, X.

    2012-04-01

    Bryum argenteum Hedw. and Didymodon vinealis Brid are two dominant moss species in the restored vegetation area in Tenger Desert, which sampled from biological soil crusts and where is an extreme drought regions. We found that they resorted to different osmotic adjustment strategies to mitigate osmotic stress. Under the gradual drought stress, both Bryum argenteum and Didymodon vinealis accumulated K+ and soluble sugar such as sucrose and trehalose. Their glycine betaine contents both decreased, while their proline content had no significant change. With enhanced drought stress, Bryum argenteum's Na+ content was low and decreased significantly, whereas Didymodon vinealis's Na+ content increased sharply and reached to a high level. We found the different of the mechanism of between active oxygen scavenging on Enzymatic and non - enzymatic system in two species moss of Bryum argenteum Hedw and Didymodon vinealis Brid under extreme drought stress. The result showed that two species of Moss of SOD activity gradually enhanced, and they have the material basis for effectively eliminates in vivo of Superoxide free radical. POD in Didymodon nigrescen and CAT in Bryum argeneum are major resistance o oxidative stress effects. The content of GSH rise with the stress also enhanced. The mechanism of finding Bryum argenteum Hedw and Didymodon vinealis Brid tolerance of dehydration ability were focus on different direction, but they are all given positive response to stress and enhance resistance. We investigated the responses of signal transduction substances to gradual drought stress in Didymodon vinealis and Bryum argenteum. The results suggested that: under gradual drought stress, the activities of TP H+-ATPase and PM H+-ATPase of Didymodon vinealis and Bryum argenteum both increased, resulting in their increase of K+ contents and turgor pressures, and triggered biosynthesis of signal transduction substances. ABA had no obvious effect in signal transduction of Bryum argenteum

  19. A primary assessment of the endophytic bacterial community in a xerophilous moss (Grimmia montana) using molecular method and cultivated isolates

    PubMed Central

    Liu, Xiao Lei; Liu, Su Lin; Liu, Min; Kong, Bi He; Liu, Lei; Li, Yan Hong

    2014-01-01

    Investigating the endophytic bacterial community in special moss species is fundamental to understanding the microbial-plant interactions and discovering the bacteria with stresses tolerance. Thus, the community structure of endophytic bacteria in the xerophilous moss Grimmia montana were estimated using a 16S rDNA library and traditional cultivation methods. In total, 212 sequences derived from the 16S rDNA library were used to assess the bacterial diversity. Sequence alignment showed that the endophytes were assigned to 54 genera in 4 phyla (Proteobacteria, Firmicutes, Actinobacteria and Cytophaga/Flexibacter/Bacteroids). Of them, the dominant phyla were Proteobacteria (45.9%) and Firmicutes (27.6%), the most abundant genera included Acinetobacter, Aeromonas, Enterobacter, Leclercia, Microvirga, Pseudomonas, Rhizobium, Planococcus, Paenisporosarcina and Planomicrobium. In addition, a total of 14 species belonging to 8 genera in 3 phyla (Proteobacteria, Firmicutes, Actinobacteria) were isolated, Curtobacterium, Massilia, Pseudomonas and Sphingomonas were the dominant genera. Although some of the genera isolated were inconsistent with those detected by molecular method, both of two methods proved that many different endophytic bacteria coexist in G. montana. According to the potential functional analyses of these bacteria, some species are known to have possible beneficial effects on hosts, but whether this is the case in G. montana needs to be confirmed. PMID:24948927

  20. Trace elements and nitrogen content in naturally growing moss Hypnum cupressiforme in urban and peri-urban forests of the Municipality of Ljubljana (Slovenia).

    PubMed

    Berisha, S; Skudnik, M; Vilhar, U; Sabovljević, M; Zavadlav, S; Jeran, Z

    2017-02-01

    We monitored trace metals and nitrogen using naturally growing moss Hypnum cupressiforme Hedw. in urban and peri-urban forests of the City Municipality of Ljubljana. The aim of this study was to explore the differences in atmospheric deposition of trace metals and nitrogen between urban and peri-urban forests. Samples were collected at a total of 44 sites in urban forests (forests within the motorway ring road) and peri-urban forests (forests outside the motorway ring road). Mosses collected in urban forests showed increased trace metal concentrations compared to samples collected from peri-urban forests. Higher values were significant for As, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Tl and V. Within the motorway ring road, the notable differences in element concentrations between the two urban forests were significant for Cr, Ni and Mo. Factor analysis showed three groups of elements, highlighting the contribution of traffic emissions, individual heating appliances and the resuspension of contaminated soils and dust as the main sources of trace elements in urban forests.

  1. Assessment of spatial variability of heavy metals in Metropolitan Zone of Toluca Valley, Mexico, using the biomonitoring technique in mosses and TXRF analysis.

    PubMed

    Zarazúa-Ortega, Graciela; Poblano-Bata, Josefina; Tejeda-Vega, Samuel; Ávila-Pérez, Pedro; Zepeda-Gómez, Carmen; Ortiz-Oliveros, Huemantzin; Macedo-Miranda, Guadalupe

    2013-01-01

    This study is aimed at assessing atmospheric deposition of heavy metals using the epiphytic moss genera Fabronia ciliaris collected from six urban sites in the Metropolitan Zone of the Toluca Valley in Mexico. The concentrations of K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Rb, Sr, and Pb were determined by total reflection X-ray fluorescence technique. Results show that the average metal concentration decrease in the following order: Fe (8207 mg/Kg) > Ca (7315 mg/Kg) > K (3842 mg/Kg) > Ti (387 mg/Kg) > Mn, Zn (191 mg/Kg) > Sr (71 mg/Kg) > Pb (59 mg/Kg) > Cu, V (32 mg/Kg) > Cr (24 mg/Kg) > Rb (13 mg/Kg) > Ni (10 mg/Kg). Enrichment factors show a high enrichment for Cr, Cu, Zn, and Pb which provides an evidence of anthropogenic impact in the industrial and urban areas, mainly due to the intense vehicular traffic and the fossil fuel combustion. Monitoring techniques in mosses have proved to be a powerful tool for determining the deposition of heavy metals coming from diverse point sources of pollution.

  2. Long-term (1992-2004) record of lead, cadmium, and zinc air contamination in Warsaw, Poland: determination by chemical analysis of moss bags and leaves of Crimean linden.

    PubMed

    Dmuchowski, Wojciech; Bytnerowicz, Andrzej

    2009-12-01

    Between 1992 and 2004, air contamination with lead (Pb), cadmium (Cd), and zinc (Zn) in Warsaw, Poland, was monitored annually with moss (Sphagnum fallax) bags on a network of 230 sites covering the entire city. During the study the highest contamination was near the Warszawa Steel Mill, northwestern Warsaw. Lead concentrations in moss bags decreased in time, while those of Cd and Zn did not show clear trends. Between 1994 and 2004, Pb, Cd, and Zn were also monitored in the Crimean linden (Tilia Euchlora) foliage along the main city avenue and in a northwestern warsaw park. Lead concentrations decreased more near the avenue than in the park, indicating that the phasing-out of leaded gasoline had a major effect on reduced Pb contamination in Warsaw. At the same time, foliar concentrations of Cd and Zn in both areas decreased much less.

  3. Current content of selected pollutants in moss, humus, soil and bark and long-term radial growth of pine trees in the Mezaparks forest in Riga.

    PubMed

    Pīrāga, Dace; Tabors, Guntis; Nikodemus, Oļģerts; Žīgure, Zane; Brūmelis, Guntis

    2017-05-01

    The aim of this study was to evaluate the use of various indicators in the assessment of environmental pollution and to determine the response of pine to changes of pollution levels. Mezaparks is a part of Riga that has been subject to various long-term effects of atmospheric pollution and, in particular, historically from a large superphosphate factory. To determine the spatial distribution of pollution, moss, pine bark and soil O and B horizons were used as sorbents in this study, as well as the additional annual increment of pine trees. The current spatial distribution of pollution is best shown by heavy metal accumulation in mosses and the long-term accumulation of P 2 O 5 pollution by the soil O horizon. The methodological problems of using these sorbents were explored in the study. Environmental pollution and its changes could be associated with the tree growth ring annual additional increment of Mezaparks pine forest stands. The additional increment increased after the closing of the Riga superphosphate factory.

  4. Polyphenol oxidases in Physcomitrella: functional PPO1 knockout modulates cytokinin-dependent developmentin the moss Physcomitrella patens

    PubMed Central

    von Schwartzenberg, Klaus

    2012-01-01

    Polyphenol oxidases (PPOs) are copper-binding enzymes of the plant secondary metabolism that oxidize polyphenols to quinones. Although PPOs are nearly ubiquitous in seed plants, knowledge on their evolution and function in other plant groups is missing. This study reports on the PPO gene family in the moss Physcomitrella patens (Hedw.) B.S.G. asan example for an early divergent plant. The P. patens PPO multigene family comprises 13 paralogues. Phylogenetic analyses suggest that plant PPOs evolved with the colonization of land and that PPO duplications within the monophyletic P. patens paralogue clade occurred after the separation of the moss and seed plant lineages. PPO functionality was demonstrated for recombinant PPO6. P. patens was analysed for phenolic compounds and six substances were detected intracellularly by LC-MS analysis: 4-hydroxybenzoic acid, p-cumaric acid, protocatechuic acid, salicylic acid, caffeic acid, and an ester of caffeic acid. Targeted PPO1 knockout (d|ppo1) plants were generated and plants lacking PPO1 exhibited only ~30% of the wild-type PPO activity in the culture medium, thus suggesting extracellular localization of PPO1, which is in contrast to the mostly plastidic PPO localization in seed plants. Further, d|ppo1 lines formed significantly more gametophores with a reduced areal plant size, which could be related to an increase of endogenously produced cytokinins and indicates an impact of PPO1 on plant development. d|ppo1 plants were less tolerant towards applied 4-methylcatechol compared to the wild type, which suggests a role of extracellular PPO1 in establishing appropriate conditions by the removal of inhibitory extracellular phenolic compounds. PMID:22865913

  5. Quantifying nitrogen-fixation in feather moss carpets of boreal forests.

    PubMed

    DeLuca, Thomas H; Zackrisson, Olle; Nilsson, Marie-Charlotte; Sellstedt, Anita

    2002-10-31

    Biological nitrogen (N) fixation is the primary source of N within natural ecosystems, yet the origin of boreal forest N has remained elusive. The boreal forests of Eurasia and North America lack any significant, widespread symbiotic N-fixing plants. With the exception of scattered stands of alder in early primary successional forests, N-fixation in boreal forests is considered to be extremely limited. Nitrogen-fixation in northern European boreal forests has been estimated at only 0.5 kg N ha(-1) yr(-1); however, organic N is accumulated in these ecosystems at a rate of 3 kg N ha(-1) yr(-1) (ref. 8). Our limited understanding of the origin of boreal N is unacceptable given the extent of the boreal forest region, but predictable given our imperfect knowledge of N-fixation. Herein we report on a N-fixing symbiosis between a cyanobacterium (Nostoc sp.) and the ubiquitous feather moss, Pleurozium schreberi (Bird) Mitt. that alone fixes between 1.5 and 2.0 kg N ha(-1) yr(-1) in mid- to late-successional forests of northern Scandinavia and Finland. Previous efforts have probably underestimated N-fixation potential in boreal forests.

  6. Using testate amoeba as potential biointegrators of atmospheric deposition of phenanthrene (polycyclic aromatic hydrocarbon) on "moss/soil interface-testate amoeba community" microecosystems.

    PubMed

    Meyer, Caroline; Desalme, Dorine; Bernard, Nadine; Binet, Philippe; Toussaint, Marie-Laure; Gilbert, Daniel

    2013-03-01

    Microecosystem models could allow understanding of the impacts of pollutants such as polycyclic aromatic hydrocarbons on ecosystem functioning. We studied the effects of atmospheric phenanthrene (PHE) deposition on the microecosystem "moss/soil interface-testate amoebae (TA) community" over a 1-month period under controlled conditions. We found that PHE had an impact on the microecosystem. PHE was accumulated by the moss/soil interface and was significantly negatively correlated (0.4 < r(2) < 0.7) with total TA abundance and the abundance of five species of TA (Arcella sp., Centropyxis sp., Nebela lageniformis, Nebela tincta and Phryganella sp.). Among sensitive species, species with a superior trophic level (determined by the test aperture size) were more sensitive than other TA species. This result suggests that links between microbial groups in the microecosystems are disrupted by PHE and that this pollutant had effects both direct (ingestion of the pollutant or direct contact with cell) and/or indirect (decrease of prey) on the TA community. The TA community seems to offer a potential integrative tool to understand mechanisms and processes by which the atmospheric PHE deposition affects the links between microbial communities.

  7. Responses to Three USARIEM Job Analysis Questionnaires (JAQs) Conducted with Cavalry Scouts and Armor Crewmen (MOSs 19D and 19K)

    DTIC Science & Technology

    2016-11-18

    researchers from the U.S. Army Research Institute of Environmental Medicine (USARIEM) designed and conducted a total of three web - administered job...USARIEM) and Human Performance Systems, Inc. designed three web -administered job analyses questionnaires JAQs to be completed by Army cavalry scouts and...responses from Soldiers in many Army MOSs. This may have affected the quality of some item responses. 3) This survey was web -administered, and

  8. Using a Popular Pet Fish Species to Study Territorial Behaviour

    ERIC Educational Resources Information Center

    Abante, Maria E.

    2005-01-01

    The colourful, vigorous territorial display behaviour of the Siamese fighting fish, "Betta splendens", has great appeal for both pet enthusiasts and animal behaviourists. Their beauty, longevity, easy maintenance and rearing make them a popular pet and an ideal science laboratory specimen. This investigation utilises "B. splendens" to test for the…

  9. Amyloplasts as possible statoliths in gravitropic protonemata of the moss Ceratodon purpureus

    NASA Technical Reports Server (NTRS)

    Walker, L. M.; Sack, F. D.

    1990-01-01

    The kinetics of gravitropism and of amyloplast sedimentation were studied in dark-grown protonemata of the moss Ceratodon purpureus (Hedw.) Brid. The protonemata grew straight up at a rate of 20-25 micromoles h-1 in nutrient-supplemented agar. After they were oriented to the horizontal, upward curvature was first detected after 1-1.5 h and reached 84 degrees by 24 h. The tip cells exhibited an amyloplast zonation, with a tip cluster of non-sedimenting amyloplasts, an amyloplast-free zone, and a zone with pronounced amyloplast sedimentation. This latter zone appears specialized more for lateral than for axial sedimentation since amyloplasts sediment to the lower wall in horizontal protonemata but do not fall to the basal wall in vertical protonemata. Amyloplast sedimentation started within 15 min of gravistimulation; this is within the 12-17-min presentation time. The data support the hypothesis that some amyloplasts function as statoliths in these cells.

  10. Responses of photosynthetic properties and chloroplast ultrastructure of two moss crusts from a desert biological soil crust to supplementary UV-B radiation

    NASA Astrophysics Data System (ADS)

    Hui, Rong; Li, Xinrong; Zhao, Yang; Pan, Yanxia

    2016-04-01

    Our understanding of plant responses to supplementary ultraviolet-B (UV-B) radiation due to stratospheric ozone depletion has improved over recent decades. However, research on biological soil crusts (BSCs) is scarce and it remains controversial. Laboratory studies were conducted to investigate the influence of UV-B radiation on the Bryum argenteum and Didymodon vinealis isolated from BSCs, which are both dominant species in moss crusts found within patches of shrubs and herbs in the Tengger Desert of northern China. The aim of the current work was to evaluate whether supplementary UV-B radiation affected photosynthetic properties and chloroplast ultrastructure of two moss crusts and whether response differences were observed between the crusts. Four levels of UV-B radiation of 2.75 (control), 3.08, 3.25, and 3.41 W m-2 was achieved using fluorescence tube systems for 10 days, simulating 0, 6, 9, and 12% of stratospheric ozone at the latitude of Shapotou, respectively. We measured photosynthetic apparatus as assessed by chlorophyll a fluorescence parameters, photosynthetic pigment contents, and observations of chloroplast ultrastructure. Additionally, soluble proteins and UV-B absorbing compounds were simultaneously investigated. The results of this study showed that chlorophyll a fluorescence parameters (i.e., the maximal quantum yield of PSII photochemistry, the effective quantum yield of PSII photochemistry, and photochemical quenching coefficient), photosynthetic pigment contents, soluble protein contents, total flavonoid contents and the ultrastructure were negatively influenced by elevated UV-B radiation and the degree of detrimental effects significantly increased with the intensity of UV-B radiation. Moreover, results demonstrated that the negative effects on photosynthesis and chloroplast ultrastructure were more serious in B. argenteum than that in D. vinealis. These results may not only provide a potential mechanism for supplemental UV-B effects on

  11. Wood anatomy of the neotropical Sapotaceae. XXIII, Gayella

    Treesearch

    B.F. Kukachka

    1981-01-01

    Gayella splendens (A. DC.) Aubr., the sole member of this genus, is a tall shrub, endemic to Chile. Baehni and Eyma place G. splendens in Pouteria but Aubréville recognizes Gayella as distinct. Anatomically, the alliance of Gayella is not with Pouteria but with Pradosia and particularly with lactescens and ptychandra.

  12. Trends in spatial patterns of heavy metal deposition on national park service lands along the Red Dog Mine haul road, Alaska, 2001–2006

    PubMed Central

    Ver Hoef, Jay M.; Berryman, Shanti D.; Mines, Anaka; Geiser, Linda H.; Hasselbach, Linda M.; Shiel, Alyssa E.

    2017-01-01

    Spatial patterns of Zn, Pb and Cd deposition in Cape Krusenstern National Monument (CAKR), Alaska, adjacent to the Red Dog Mine haul road, were characterized in 2001 and 2006 using Hylocomium moss tissue as a biomonitor. Elevated concentrations of Cd, Pb, and Zn in moss tissue decreased logarithmically away from the haul road and the marine port. The metals concentrations in the two years were compared using Bayesian posterior predictions on a new sampling grid to which both data sets were fit. Posterior predictions were simulated 200 times both on a coarse grid of 2,357 points and by distance-based strata including subsets of these points. Compared to 2001, Zn and Pb concentrations in 2006 were 31 to 54% lower in the 3 sampling strata closest to the haul road (0–100, 100–2000 and 2000–4000 m). Pb decreased by 40% in the stratum 4,000–5,000 m from the haul road. Cd decreased significantly by 38% immediately adjacent to the road (0–100m), had an 89% probability of a small decrease 100–2000 m from the road, and showed moderate probabilities (56–71%) for increase at greater distances. There was no significant change over time (with probabilities all ≤ 85%) for any of the 3 elements in more distant reference areas (40–60 km). As in 2001, elemental concentrations in 2006 were higher on the north side of the road. Reductions in deposition have followed a large investment in infrastructure to control fugitive dust escapement at the mine and port sites, operational controls, and road dust mitigation. Fugitive dust escapement, while much reduced, is still resulting in elevated concentrations of Zn, Pb and Cd out to 5,000 m from the haul road. Zn and Pb levels were slightly above arctic baseline values in southern CAKR reference areas. PMID:28542369

  13. The influence of spruce on acidity and nutrient content in soils of Northern Taiga dwarf shrub-green moss spruce forests

    NASA Astrophysics Data System (ADS)

    Orlova, M. A.; Lukina, N. V.; Smirnov, V. E.; Artemkina, N. A.

    2016-11-01

    Presently, among the works considering the influence of forest trees on soil properties, the idea that spruce ( Picea abies) promotes the acidification of soils predominates. The aim of this work is to assess the effects of spruce trees of different ages and Kraft classes on the acidity and content of available nutrient compounds in the soils under boreal dwarf shrub-green moss spruce forests by the example of forest soils in the Kola Peninsula. The soils are typical iron-illuvial podzols (Albic Rustic Podzols (Arenic)). Three probable ways of developing soils under spruce forests with the moss-dwarf shrub ground cover are considered. The soils under windfall-soil complexes of flat mesodepressions present the initial status. The acidity of organic soil horizons from the initial stage of mesodepression overgrowth to the formation of adult trees changed nonlinearly: the soil acidity reached its maximum under the 30-40-year-old trees and decreased under the trees older than 100 years. The contents of nitrogen and available nutrients increased. The acidity of the mineral soil horizons under the trees at the ages of 110-135 and 190-220 years was comparable, but higher than that under the 30-40-year-old trees. The differences in the strength and trends of the trees' effect on the soils are explained by the age of spruce trees and their belonging to different Kraft classes.

  14. Mercury methylation in Sphagnum moss mats and its association with sulfate-reducing bacteria in an acidic Adirondack forest lake wetland.

    PubMed

    Yu, Ri-Qing; Adatto, Isaac; Montesdeoca, Mario R; Driscoll, Charles T; Hines, Mark E; Barkay, Tamar

    2010-12-01

    Processes leading to the bioaccumulation of methylmercury (MeHg) in northern wetlands are largely unknown. We have studied various ecological niches within a remote, acidic forested lake ecosystem in the southwestern Adirondacks, NY, to discover that mats comprised of Sphagnum moss were a hot spot for mercury (Hg) and MeHg accumulation (190.5 and 18.6 ng g⁻¹ dw, respectively). Furthermore, significantly higher potential methylation rates were measured in Sphagnum mats as compared with other sites within Sunday Lake's ecosystem. Although MPN estimates showed a low biomass of sulfate-reducing bacteria (SRB), 2.8 × 10⁴ cells mL⁻¹ in mat samples, evidence consisting of (1) a twofold stimulation of potential methylation by the addition of sulfate, (2) a significant decrease in Hg methylation in the presence of the sulfate reduction inhibitor molybdate, and (3) presence of dsrAB-like genes in mat DNA extracts, suggested that SRB were involved in Hg methylation. Sequencing of dsrB genes indicated that novel SRB, incomplete oxidizers including Desulfobulbus spp. and Desulfovibrio spp., and syntrophs dominated the sulfate-reducing guild in the Sphagnum moss mat. Sphagnum, a bryophyte dominating boreal peatlands, and its associated microbial communities appear to play an important role in the production and accumulation of MeHg in high-latitude ecosystems. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  15. Microtubule distribution in gravitropic protonemata of the moss Ceratodon

    NASA Technical Reports Server (NTRS)

    Schwuchow, J.; Sack, F. D.; Hartmann, E.

    1990-01-01

    Tip cells of dark-grown protonemata of the moss Ceratodon purpureus are negatively gravitropic (grow upward). They possess a unique longitudinal zonation: (1) a tip group of amylochloroplasts in the apical dome, (2) a plastid-free zone, (3) a zone of significant plastid sedimentation, and (4) a zone of mostly non-sedimenting plastids. Immunofluorescence of vertical cells showed microtubules distributed throughout the cytoplasm in a mostly axial orientation extending through all zones. Optical sectioning revealed a close spatial association between microtubules and plastids. A majority (two thirds) of protonemata gravistimulated for > 20 min had a higher density of microtubules near the lower flank compared to the upper flank in the plastid-free zone. This apparent enrichment of microtubules occurred just proximal to sedimented plastids and near the part of the tip that presumably elongates more to produce curvature. Fewer than 5% of gravistimulated protonemata had an enrichment in microtubules near the upper flank, whereas 14% of vertical protonemata were enriched near one of the side walls. Oryzalin and amiprophos-methyl (APM) disrupted microtubules, gravitropism, and normal tip growth and zonation, but did not prevent plastid sedimentation. We hypothesize that a microtubule redistribution plays a role in gravitropism in this protonema. This appears to be the first report of an effect of gravity on microtubule distribution in plants.

  16. Clay Mineralogy, Authigenic Smectite Concentration, and Fault Weakening of the San Gregorio Fault; Moss Beach, California

    NASA Astrophysics Data System (ADS)

    Mazzoni, S.; Moore, J.; Bish, D. L.

    2002-12-01

    The apparently weak nature of the San Andreas fault system poses a fundamental geophysical question. The San Gregorio fault at Moss Beach, CA is an active splay of the right-lateral San Andreas fault zone and has a total offset of about 150 km. At Moss Beach, the San Gregorio fault offsets Pliocene sedimentary rocks and consists of a clay-rich gouge zone, eastern sandstone block, and western mudstone block. In the presence of fluids, smectite clays can swell and become very weak to shearing. We studied a profile of samples across the fault zone and wall rocks to determine if there is a concentration of smectite in the gouge zone and propose a possible formation mechanism. Samples were analyzed using standard quantitative X-ray diffraction methods and software recently developed at Los Alamos National Lab. XRD results show a high smectite/illite (weak clay/strong clay) ratio in the gouge (S/I ratio=2-4), lower in the mudstone (S/I ratio=2), and very low in the sandstone (S/I ratio=1). The variability of smectite/illite ratio in the gouge zone may be evidence of preferential alteration where developed shear planes undergo progressive smectite enrichment. The amount of illite layers in illite/smectites is 5-30%, indicating little illitization; therefore, these fault rocks have not undergone significant diagenesis above 100 degrees C and illite present must be largely detrital. Bulk mineralogy shows significant anti-correlation of smectite with feldspar, especially in the gouge, suggesting authigenic smectite generation from feldspar. Under scanning-electron microscope inspection, smectites have fibrous, grain coating growth fabrics, also suggesting smectite authigenesis. If in situ production of smectite via chemical alteration is possible in active faults, it could have significant implications for self-generated weakening of faults above the smectite-to-illite transition (<150 degrees C, or 5-7km).

  17. Comparison of Tillandsia usneoides (Spanish moss) water and leachate dynamics between urban and pristine barrier island maritime oak forests

    NASA Astrophysics Data System (ADS)

    Van Stan, J. T.; Stubbins, A.; Reichard, J. S.; Wright, K.; Jenkins, R. B.

    2013-12-01

    Epiphyte coverage on forest canopies can drastically alter the volume and chemical composition of rainwater reaching soils. Along subtropical and tropical coastlines Tillandisa usneoides L. (Spanish moss), in particular, can envelop urban and natural tree crowns. Several cities actively manage their 'moss' covered forest to enhance aesthetics in the most active tourist areas (e.g., Savannah GA, St. Augustine FL, Charleston SC). Since T. usneoides survives through atmospheric water and solute exchange from specialized trichomes (scales), we hypothesized that T. usneoides water storage dynamics and leachate chemistry may be altered by exposure to this active urban atmosphere. 30 samples of T. usneoides from managed forests around the tourist center of Savannah, Georgia, USA were collected to compare with 30 samples from the pristine maritime live oak (Quercus virginiana Mill.) forests of a nearby undeveloped barrier island (St. Catherines Island, Georgia, USA). Maximum water storage capacities were determined via submersion (for all 60 samples) along with dissolved ion (DI) and organic matter (DOM) concentrations (for 15 samples each) after simulated throughfall generation using milliQ ultrapurified water. Further, DOM quality was evaluated (for 15 samples each) using absorbance and fluorescence spectroscopy (EEMS). Results show significant alterations to water storage dynamics, DI, DOM, and DOM quality metrics under urban atmospheric conditions, suggesting modified C and water cycling in urban forest canopies that may, in turn, influence intrasystem nutrient cycles in urban catchment soils or streams via runoff.

  18. A novel growth-promoting microbe, Methylobacterium funariae sp. nov., isolated from the leaf surface of a common moss.

    PubMed

    Schauer, S; Kutschera, U

    2011-04-01

    Land plants (embryophytes) evolved in the presence of prokaryotic microbes. As a result, numerous mutually beneficial associations (symbioses) developed that can be analyzed using a variety of methods. Here we describe the isolation and characterization of a new pink-pigmented facultatively methylotrophic symbiotic bacterium of the genus Methylobacterium (laboratory strain F3.2) that was isolated from the gametophytic phylloids of the common cord moss Funaria hygrometrica Hedw. Plantlets were collected in the field and analyzed in the laboratory. Colonies of methylobacteria were obtained by the agar-impression-method. Based on its unique phenotype (the bacterial cells are characterized by fimbriae-like appendages), a comparative 16S rRNA gene (DNA) sequence analysis, and an average DNA-DNA hybridization value of 8,4 %, compared with its most closely related sister taxon, this isolate is described as a new species, Methylobacterium funariae sp. nov. (type strain F3.2). This new epiphytic bacterium inhabits the leaf surface of "primitive" land plants such as mosses and interacts with its host organism via the secretion of phytohormones (cytokinines, auxins). These external signals are perceived by the plant cells that divide and grow more rapidly than in the absence of their prokaryotic phytosymbionts. We suggest that M. funariae sp. nov. uses methanol emitted from the stomatal pores as principal carbon source for cell metabolism. However, our novel data indicate that, in this unique symbiotic plant-microbe interaction, the uptake of amino acids leached from the surface of the epidermal cells of the green host organism may be of importance as microbial carbon- and nitrogen-source.

  19. Recovery of gravitropism after basipetal centrifugation in protonemata of the moss Ceratodon purpureus

    NASA Technical Reports Server (NTRS)

    Walker, L. M.; Sack, F. D.

    1991-01-01

    Apical cells of 5-day-old dark-grown protonemata of the moss Ceratodon purpureus (Hedw.) Brid. are negatively gravitropic and appear to utilize amyloplasts as statoliths. These cells exhibit a characteristic plastid zonation (five zones) with one zone (No. 3) specialized for the lateral sedimentation of amyloplasts. Basipetal centrifugation displaces all amyloplasts in the apical cell to the end wall. In basipetally centrifuged protonemata observed using infrared videomicroscopy, tip extension occurred with or without amyloplasts present in the apical dome. The initial return of upward curvature was always correlated with the return and sedimentation of amyloplasts in zone 3. Subsequent vigorous upward curvature was correlated with distinct amyloplast zonation and further sedimentation in zone 3. Initial downward ("wrong way") curvature, which often preceded upward curvature, correlated with the presence of amyloplasts in the apical dome (zone 1). These data support the hypotheses that nonsedimenting amyloplasts in zone 1 are necessary for initial downward curvature and that amyloplast sedimentation in zone 3 is necessary for upward curvature.

  20. Red light-induced suppression of gravitropism in moss protonemata

    NASA Astrophysics Data System (ADS)

    Kern, V. D.; Sack, F. D.

    1999-01-01

    Moss protonemata are among the few cell types known that both sense and respond to gravity and light. Apical cells of Ceratodon protonemata grow by oriented tip growth which is negatively gravitropic in the dark or positively phototropic in unilateral red light. Phototropism is phytochrome-mediated. To determine whether any gravitropism persists during irradiation, cultures were turned at various angles with respect to gravity and illuminated so that the light and gravity vectors acted either in the same or in different directions. Red light for 24h (≥140nmol m-2s-1) caused the protonemata to be oriented directly towards the light. Similarly, protonemata grew directly towards the light regardless of light position with respect to gravity indicating that all growth is oriented strictly by phototropism, not gravitropism. At light intensities ≤100nmol m-2s-1, no phototropism occurs and the mean protonemal tip angle remains above the horizontal, which is the criterion for negative gravitropism. But those protonemata are not as uniformly upright as they would be in the dark indicating that low intensity red light permits gravitropism but also modulates the response. Protonemata of the aphototropic mutant ptr1 that lacks a functional Pfr chromophore, exhibit gravitropism regardless of red light intensity. This indicates that red light acts via Pfr to modulate gravitropism at low intensities and to suppress gravitropism at intensities ≥140nmol m-2s-1.