Science.gov

Sample records for motoneuron synaptic plasticity

  1. Synaptic Control of Motoneuronal Excitability

    PubMed Central

    Rekling, Jens C.; Funk, Gregory D.; Bayliss, Douglas A.; Dong, Xiao-Wei; Feldman, Jack L.

    2016-01-01

    Movement, the fundamental component of behavior and the principal extrinsic action of the brain, is produced when skeletal muscles contract and relax in response to patterns of action potentials generated by motoneurons. The processes that determine the firing behavior of motoneurons are therefore important in understanding the transformation of neural activity to motor behavior. Here, we review recent studies on the control of motoneuronal excitability, focusing on synaptic and cellular properties. We first present a background description of motoneurons: their development, anatomical organization, and membrane properties, both passive and active. We then describe the general anatomical organization of synaptic input to motoneurons, followed by a description of the major transmitter systems that affect motoneuronal excitability, including ligands, receptor distribution, pre- and postsynaptic actions, signal transduction, and functional role. Glutamate is the main excitatory, and GABA and glycine are the main inhibitory transmitters acting through ionotropic receptors. These amino acids signal the principal motor commands from peripheral, spinal, and supraspinal structures. Amines, such as serotonin and norepinephrine, and neuropeptides, as well as the glutamate and GABA acting at metabotropic receptors, modulate motoneuronal excitability through pre- and postsynaptic actions. Acting principally via second messenger systems, their actions converge on common effectors, e.g., leak K+ current, cationic inward current, hyperpolarization-activated inward current, Ca2+ channels, or presynaptic release processes. Together, these numerous inputs mediate and modify incoming motor commands, ultimately generating the coordinated firing patterns that underlie muscle contractions during motor behavior. PMID:10747207

  2. Delaying the onset of treadmill exercise following peripheral nerve injury has different effects on axon regeneration and motoneuron synaptic plasticity

    PubMed Central

    Brandt, Jaclyn; Evans, Jonathan T.; Mildenhall, Taylor; Mulligan, Amanda; Konieczny, Aimee; Rose, Samuel J.

    2015-01-01

    Transection of a peripheral nerve results in withdrawal of synapses from motoneurons. Some of the withdrawn synapses are restored spontaneously, but those containing the vesicular glutamate transporter 1 (VGLUT1), and arising mainly from primary afferent neurons, are withdrawn permanently. If animals are exercised immediately after nerve injury, regeneration of the damaged axons is enhanced and no withdrawal of synapses from injured motoneurons can be detected. We investigated whether delaying the onset of exercise until after synapse withdrawal had occurred would yield similar results. In Lewis rats, the right sciatic nerve was cut and repaired. Reinnervation of the soleus muscle was monitored until a direct muscle (M) response was observed to stimulation of the tibial nerve. At that time, rats began 2 wk of daily treadmill exercise using an interval training protocol. Both M responses and electrically-evoked H reflexes were monitored weekly for an additional seven wk. Contacts made by structures containing VGLUT1 or glutamic acid decarboxylase (GAD67) with motoneurons were studied from confocal images of retrogradely labeled cells. Timing of full muscle reinnervation was similar in both delayed and immediately exercised rats. H reflex amplitude in delayed exercised rats was only half that found in immediately exercised animals. Unlike immediately exercised animals, motoneuron contacts containing VGLUT1 in delayed exercised rats were reduced significantly, relative to intact rats. The therapeutic window for application of exercise as a treatment to promote restoration of synaptic inputs onto motoneurons following peripheral nerve injury is different from that for promoting axon regeneration in the periphery. PMID:25632080

  3. Delaying the onset of treadmill exercise following peripheral nerve injury has different effects on axon regeneration and motoneuron synaptic plasticity.

    PubMed

    Brandt, Jaclyn; Evans, Jonathan T; Mildenhall, Taylor; Mulligan, Amanda; Konieczny, Aimee; Rose, Samuel J; English, Arthur W

    2015-04-01

    Transection of a peripheral nerve results in withdrawal of synapses from motoneurons. Some of the withdrawn synapses are restored spontaneously, but those containing the vesicular glutamate transporter 1 (VGLUT1), and arising mainly from primary afferent neurons, are withdrawn permanently. If animals are exercised immediately after nerve injury, regeneration of the damaged axons is enhanced and no withdrawal of synapses from injured motoneurons can be detected. We investigated whether delaying the onset of exercise until after synapse withdrawal had occurred would yield similar results. In Lewis rats, the right sciatic nerve was cut and repaired. Reinnervation of the soleus muscle was monitored until a direct muscle (M) response was observed to stimulation of the tibial nerve. At that time, rats began 2 wk of daily treadmill exercise using an interval training protocol. Both M responses and electrically-evoked H reflexes were monitored weekly for an additional seven wk. Contacts made by structures containing VGLUT1 or glutamic acid decarboxylase (GAD67) with motoneurons were studied from confocal images of retrogradely labeled cells. Timing of full muscle reinnervation was similar in both delayed and immediately exercised rats. H reflex amplitude in delayed exercised rats was only half that found in immediately exercised animals. Unlike immediately exercised animals, motoneuron contacts containing VGLUT1 in delayed exercised rats were reduced significantly, relative to intact rats. The therapeutic window for application of exercise as a treatment to promote restoration of synaptic inputs onto motoneurons following peripheral nerve injury is different from that for promoting axon regeneration in the periphery. PMID:25632080

  4. Synaptic plasticity and phosphorylation

    PubMed Central

    Lee, Hey-Kyoung

    2009-01-01

    A number of neuronal functions, including synaptic plasticity, depend on proper regulation of synaptic proteins, many of which can be rapidly regulated by phosphorylation. Neuronal activity controls the function of these synaptic proteins by exquisitely regulating the balance of various protein kinase and protein phosphatase activity. Recent understanding of synaptic plasticity mechanisms underscores important roles that these synaptic phosphoproteins play in regulating both pre- and post-synaptic functions. This review will focus on key postsynaptic phosphoproteins that have been implicated to play a role in synaptic plasticity. PMID:16904750

  5. Astrocytes: Orchestrating synaptic plasticity?

    PubMed

    De Pittà, M; Brunel, N; Volterra, A

    2016-05-26

    Synaptic plasticity is the capacity of a preexisting connection between two neurons to change in strength as a function of neural activity. Because synaptic plasticity is the major candidate mechanism for learning and memory, the elucidation of its constituting mechanisms is of crucial importance in many aspects of normal and pathological brain function. In particular, a prominent aspect that remains debated is how the plasticity mechanisms, that encompass a broad spectrum of temporal and spatial scales, come to play together in a concerted fashion. Here we review and discuss evidence that pinpoints to a possible non-neuronal, glial candidate for such orchestration: the regulation of synaptic plasticity by astrocytes. PMID:25862587

  6. Voltage-dependent amplification of synaptic inputs in respiratory motoneurones.

    PubMed

    Enríquez Denton, M; Wienecke, J; Zhang, M; Hultborn, H; Kirkwood, P A

    2012-07-01

    The role of persistent inward currents (PICs) in cat respiratory motoneurones (phrenic inspiratory and thoracic expiratory) was investigated by studying the voltage-dependent amplification of central respiratory drive potentials (CRDPs), recorded intracellularly, with action potentials blocked with the local anaesthetic derivative, QX-314. Decerebrate unanaesthetized or barbiturate-anaesthetized preparations were used. In expiratory motoneurones, plateau potentials were observed in the decerebrates, but not under anaesthesia. For phrenic motoneurones, no plateau potentials were observed in either state (except in one motoneurone after the abolition of the respiratory drive by means of a medullary lesion), but all motoneurones showed voltage-dependent amplification of the CRDPs, over a wide range of membrane potentials, too wide to result mainly from PIC activation. The measurements of the amplification were restricted to the phase of excitation, thus excluding the inhibitory phase. Amplification was found to be greatest for the smallest CRDPs in the lowest resistance motoneurones and was reduced or abolished following intracellular injection of the NMDA channel blocker, MK-801. Plateau potentials were readily evoked in non-phrenic cervical motoneurones in the same (decerebrate) preparations. We conclude that the voltage-dependent amplification of synaptic excitation in phrenic motoneurones is mainly the result of NMDA channel modulation rather than the activation of Ca2+ channel mediated PICs, despite phrenic motoneurones being strongly immunohistochemically labelled for CaV1.3 channels. The differential PIC activation in different motoneurones, all of which are CaV1.3 positive, leads us to postulate that the descending modulation of PICs is more selective than has hitherto been believed. PMID:22495582

  7. Simulated recruitment of medial rectus motoneurons by abducens internuclear neurons: synaptic specificity vs. intrinsic motoneuron properties.

    PubMed

    Dean, P

    1997-09-01

    Ocular motoneuron firing rate is linearly related to conjugate eye position with slope K above recruitment threshold theta. Within the population of ocular motoneurons K increases as theta increases. These differences in firing rate between motoneurons might be determined either by the intrinsic properties of the motoneurons, or by differences in synaptic input to them, or by a combination of the two. This question was investigated by simulating the input signal to medial rectus motoneurons (MR-MNs) from internuclear neurons of the abducens nucleus (INNs). INNs were represented as input nodes in a two-layer neural net, each with weighted connections to every output node representing an MR-MN. Individual simulated MR-MNs were assigned parameters corresponding to an intrinsic current threshold I(R) and an intrinsic frequency-current (f-I) slope gamma. Their firing rates were calculated from these parameters, together with the effective synaptic current produced by their synaptically weighted INN inputs, with the use of assumptions employed in computer simulations of spinal motoneuron pools. The experimentally observed firing rates of MR-MNs served as training data for the net. The following two training conditions were used: 1) synaptic weights were fixed and the intrinsic parameters of the MR-MNs were allowed to vary, corresponding to the situation in which each MR-MN receives a common synaptic drive and 2) intrinsic MR-MN properties were fixed and synaptic weights were allowed to vary. In each case, the varying quantities were trained with a form of gradient descent error reduction. The simulations revealed the following three problems with the common-drive model: 1) the recruitment of INNs produced nonlinear responses in MR-MNs with low thetas; 2) the range of I(R)s required to reproduce the observed range of theta were generally larger than those measured experimentally for cat ocular motoneurons; and 3) the intrinsic f-I slope gamma increased with I

  8. Epsin 1 Promotes Synaptic Growth by Enhancing BMP Signal Levels in Motoneuron Nuclei

    PubMed Central

    Chastain, Lerin R.; Royer, Suzanne M.; Bao, Hong; Reist, Noreen E.; Zhang, Bing

    2013-01-01

    Bone morphogenetic protein (BMP) retrograde signaling is crucial for neuronal development and synaptic plasticity. However, how the BMP effector phospho-Mother against decapentaplegic (pMad) is processed following receptor activation remains poorly understood. Here we show that Drosophila Epsin1/Liquid facets (Lqf) positively regulates synaptic growth through post-endocytotic processing of pMad signaling complex. Lqf and the BMP receptor Wishful thinking (Wit) interact genetically and biochemically. lqf loss of function (LOF) reduces bouton number whereas overexpression of lqf stimulates bouton growth. Lqf-stimulated synaptic overgrowth is suppressed by genetic reduction of wit. Further, synaptic pMad fails to accumulate inside the motoneuron nuclei in lqf mutants and lqf suppresses synaptic overgrowth in spinster (spin) mutants with enhanced BMP signaling by reducing accumulation of nuclear pMad. Interestingly, lqf mutations reduce nuclear pMad levels without causing an apparent blockage of axonal transport itself. Finally, overexpression of Lqf significantly increases the number of multivesicular bodies (MVBs) in the synapse whereas lqf LOF reduces MVB formation, indicating that Lqf may function in signaling endosome recycling or maturation. Based on these observations, we propose that Lqf plays a novel endosomal role to ensure efficient retrograde transport of BMP signaling endosomes into motoneuron nuclei. PMID:23840387

  9. Emerging Roles of Filopodia and Dendritic Spines in Motoneuron Plasticity during Development and Disease

    PubMed Central

    Kanjhan, Refik; Noakes, Peter G.; Bellingham, Mark C.

    2016-01-01

    Motoneurons develop extensive dendritic trees for receiving excitatory and inhibitory synaptic inputs to perform a variety of complex motor tasks. At birth, the somatodendritic domains of mouse hypoglossal and lumbar motoneurons have dense filopodia and spines. Consistent with Vaughn's synaptotropic hypothesis, we propose a developmental unified-hybrid model implicating filopodia in motoneuron spinogenesis/synaptogenesis and dendritic growth and branching critical for circuit formation and synaptic plasticity at embryonic/prenatal/neonatal period. Filopodia density decreases and spine density initially increases until postnatal day 15 (P15) and then decreases by P30. Spine distribution shifts towards the distal dendrites, and spines become shorter (stubby), coinciding with decreases in frequency and increases in amplitude of excitatory postsynaptic currents with maturation. In transgenic mice, either overexpressing the mutated human Cu/Zn-superoxide dismutase (hSOD1G93A) gene or deficient in GABAergic/glycinergic synaptic transmission (gephyrin, GAD-67, or VGAT gene knockout), hypoglossal motoneurons develop excitatory glutamatergic synaptic hyperactivity. Functional synaptic hyperactivity is associated with increased dendritic growth, branching, and increased spine and filopodia density, involving actin-based cytoskeletal and structural remodelling. Energy-dependent ionic pumps that maintain intracellular sodium/calcium homeostasis are chronically challenged by activity and selectively overwhelmed by hyperactivity which eventually causes sustained membrane depolarization leading to excitotoxicity, activating microglia to phagocytose degenerating neurons under neuropathological conditions. PMID:26843990

  10. Circadian Regulation of Synaptic Plasticity.

    PubMed

    Frank, Marcos G

    2016-01-01

    Circadian rhythms refer to oscillations in biological processes with a period of approximately 24 h. In addition to the sleep/wake cycle, there are circadian rhythms in metabolism, body temperature, hormone output, organ function and gene expression. There is also evidence of circadian rhythms in synaptic plasticity, in some cases driven by a master central clock and in other cases by peripheral clocks. In this article, I review the evidence for circadian influences on synaptic plasticity. I also discuss ways to disentangle the effects of brain state and rhythms on synaptic plasticity. PMID:27420105

  11. Synaptic Plasticity and Translation Initiation

    ERIC Educational Resources Information Center

    Klann, Eric; Antion, Marcia D.; Banko, Jessica L.; Hou, Lingfei

    2004-01-01

    It is widely accepted that protein synthesis, including local protein synthesis at synapses, is required for several forms of synaptic plasticity. Local protein synthesis enables synapses to control synaptic strength independent of the cell body via rapid protein production from pre-existing mRNA. Therefore, regulation of translation initiation is…

  12. MAGUKs, Synaptic Development, and Synaptic Plasticity

    PubMed Central

    Zheng, Chan-Ying; Seabold, Gail K.; Horak, Martin; Petralia, Ronald S.

    2011-01-01

    MAGUKs are proteins that act as key scaffolds in surface complexes containing receptors, adhesion proteins, and various signaling molecules. These complexes evolved prior to the appearance of multicellular animals and play key roles in cell-cell intercommunication. A major example of this is the neuronal synapse, which contains several presynaptic and postsynaptic MAGUKs including PSD-95, SAP102, SAP97, PSD-93, CASK, and MAGIs. Here, they play roles in both synaptic development and in later synaptic plasticity events. During development, MAGUKs help to organize the postsynaptic density via associations with other scaffolding proteins, such as Shank, and the actin cytoskeleton. They affect the clustering of glutamate receptors and other receptors, and these associations change with development. MAGUKs are involved in long-term potentiation and depression (e.g., via their phosphorylation by kinases and phosphorylation of other proteins associated with MAGUKs). Importantly, synapse development and function are dependent on the kind of MAGUK present. For example, SAP102 shows high mobility and is present in early synaptic development. Later, much of SAP102 is replaced by PSD-95, a more stable synaptic MAGUK; this is associated with changes in glutamate receptor types that are characteristic of synaptic maturation. PMID:21498811

  13. Synaptic control of hindlimb motoneurones during three forms of the fictive scratch reflex in the turtle.

    PubMed Central

    Robertson, G A; Stein, P S

    1988-01-01

    1. The turtle spinal cord produces three forms of the fictive scratch reflex in response to tactile stimulation of sites on the body surface. Common to all three forms is the rhythmic alternation of activity between hip protractor and hip retractor motoneurones. Hip protractor motoneurone activity is monitored via nerves innervating the hip protractor muscle puboischiofemoralis internus pars anteroventralis (VP-HP). Hip retractor activity is monitored via nerves innervating several monoarticular hip retractor muscles, one hip adductor muscle, and several biarticular hip retractor-knee flexor muscles (HR-KF). Each form is characterized by the timing of activity of motoneurones innervating femorotibialis (FT-KE), a monoarticular knee extensor muscle, within this alternating cycle (Robertson, Mortin, Keifer & Stein, 1985). In the present study, intracellular recordings revealed a corresponding regulation of synaptic drive to knee extensor motoneurones with respect to the synaptic drive to the motoneurones innervating antagonist muscles of the hip. These patterns of synaptic activation give rise to the distinct motor pattern underlying each form of the scratch reflex. 2. VP-HP, HR-KF and FT-KE motoneurones all exhibited phasic depolarizing and hyperpolarizing changes in membrane voltage during the production of the rhythmic motor patterns underlying each stratch form. Membrane depolarization is caused by synaptic excitation (EPSPs) and gives rise to motoneurone discharge. Hyperpolarization is primarily the result of postsynaptic inhibition (IPSPs) mediated by an increased conductance of chloride ions (Cl-) and ensures motor pool quiescence during antagonist activation. 3. VP-HP motoneurones depolarized during activation of the VP-HP motor pool and hyperpolarized during activation of the HR-KF motor pool. HR-KF motoneurones depolarized during activation of the HR-KF motor pool and hyperpolarized during activation of the VP-HP motor pool. In many cases, the amplitude of

  14. Treadmill training induced lumbar motoneuron dendritic plasticity and behavior recovery in adult rats after a thoracic contusive spinal cord injury.

    PubMed

    Wang, Hongxing; Liu, Nai-Kui; Zhang, Yi Ping; Deng, Lingxiao; Lu, Qing-Bo; Shields, Christopher B; Walker, Melissa J; Li, Jianan; Xu, Xiao-Ming

    2015-09-01

    Spinal cord injury (SCI) is devastating, causing sensorimotor impairments and paralysis. Persisting functional limitations on physical activity negatively affect overall health in individuals with SCI. Physical training may improve motor function by affecting cellular and molecular responses of motor pathways in the central nervous system (CNS) after SCI. Although motoneurons form the final common path for motor output from the CNS, little is known concerning the effect of exercise training on spared motoneurons below the level of injury. Here we examined the effect of treadmill training on morphological, trophic, and synaptic changes in the lumbar motoneuron pool and on behavior recovery after a moderate contusive SCI inflicted at the 9th thoracic vertebral level (T9) using an Infinite Horizon (IH, 200 kDyne) impactor. We found that treadmill training significantly improved locomotor function, assessed by Basso-Beattie-Bresnahan (BBB) locomotor rating scale, and reduced foot drops, assessed by grid walking performance, as compared with non-training. Additionally, treadmill training significantly increased the total neurite length per lumbar motoneuron innervating the soleus and tibialis anterior muscles of the hindlimbs as compared to non-training. Moreover, treadmill training significantly increased the expression of a neurotrophin brain-derived neurotrophic factor (BDNF) in the lumbar motoneurons as compared to non-training. Finally, treadmill training significantly increased synaptic density, identified by synaptophysin immunoreactivity, in the lumbar motoneuron pool as compared to non-training. However, the density of serotonergic terminals in the same regions did not show a significant difference between treadmill training and non-training. Thus, our study provides a biological basis for exercise training as an effective medical practice to improve recovery after SCI. Such an effect may be mediated by synaptic plasticity, and neurotrophic modification in the

  15. Aging of motoneurons and synaptic processes in the cat.

    PubMed

    Chase, M H; Morales, F R; Boxer, P A; Fung, S J

    1985-11-01

    The aging of spinal cord alpha motoneurons was explored in old cats with intracellular recording techniques to determine the basic membrane properties of these neurons and their monosynaptic response following activation of group Ia afferent fibers. The conduction velocity of the motoneurons' axons decreased in old animals (14 to 15 years of age) compared with adult controls (1 to 3 years of age). The input resistance of the motoneurons increased in the old cats; no change occurred in the resting membrane potential or spike amplitude. There was a reduction in the delay between the initial segment and the somadendritic components of the antidromic spike. The half-width duration of the monosynaptic EPSP in the old cats increased, but its amplitude did not change. These data indicate that a host of different membrane properties of spinal cord motoneurons and their Ia-monosynaptic input are affected by the aging process. Analysis of the results suggests that the degradation of neuronal processes occurs in all motoneurons rather than preferentially affecting a specific population of motoneurons. PMID:2996926

  16. Synaptic Connectivity between Renshaw Cells and Motoneurons in the Recurrent Inhibitory Circuit of the Spinal Cord

    PubMed Central

    Moore, Niall J.; Bhumbra, Gardave S.; Foster, Joshua D.

    2015-01-01

    Renshaw cells represent a fundamental component of one of the first discovered neuronal circuits, but their function in motor control has not been established. They are the only central neurons that receive collateral projections from motor outputs, yet the efficacy of the excitatory synapses from single and converging motoneurons remains unknown. Here we present the results of dual whole-cell recordings from identified, synaptically connected Renshaw cell-motoneuron pairs in the mouse lumbar spinal cord. The responses from single Renshaw cells demonstrate that motoneuron synapses elicit large excitatory conductances with few or no failures. We show that the strong excitatory input from motoneurons results from a high probability of neurotransmitter release onto multiple postsynaptic contacts. Dual current-clamp recordings confirm that single motoneuron inputs were sufficient to depolarize the Renshaw cell beyond threshold for firing. Reciprocal connectivity was observed in approximately one-third of the paired recordings tested. Ventral root stimulation was used to evoke currents from Renshaw cells or motoneurons to characterize responses of single neurons to the activation of their corresponding presynaptic cell populations. Excitatory or inhibitory synaptic inputs in the recurrent inhibitory loop induced substantial effects on the excitability of respective postsynaptic cells. Quantal analysis estimates showed a large number of converging inputs from presynaptic motoneuron and Renshaw cell populations. The combination of considerable synaptic efficacy and extensive connectivity within the recurrent circuitry indicates a role of Renshaw cells in modulating motor outputs that may be considerably more important than has been previously supposed. SIGNIFICANCE STATEMENT We have recently shown that Renshaw cells mediate powerful shunt inhibition on motoneuron excitability. Here we complete a quantitative description of the recurrent circuit using recordings of

  17. Cannabinoid agonists rearrange synaptic vesicles at excitatory synapses and depress motoneuron activity in vivo.

    PubMed

    García-Morales, Victoria; Montero, Fernando; Moreno-López, Bernardo

    2015-05-01

    Impairment of motor skills is one of the most common acute adverse effects of cannabis. Related studies have focused mainly on psychomotor alterations, and little is known about the direct impact of cannabinoids (CBs) on motoneuron physiology. As key modulators of synaptic function, CBs regulate multiple neuronal functions and behaviors. Presynaptic CB1 mediates synaptic strength depression by inhibiting neurotransmitter release, via a poorly understood mechanism. The present study examined the effect of CB agonists on excitatory synaptic inputs incoming to hypoglossal motoneurons (HMNs) in vitro and in vivo. The endocannabinoid anandamide (AEA) and the synthetic CB agonist WIN 55,212-2 rapidly and reversibly induced short-term depression (STD) of glutamatergic synapses on motoneurons by a presynaptic mechanism. Presynaptic effects were fully reversed by the CB1-selective antagonist AM281. Electrophysiological and electron microscopy analysis showed that WIN 55,212-2 reduced the number of synaptic vesicles (SVs) docked to active zones in excitatory boutons. Given that AM281 fully abolished depolarization-induced depression of excitation, motoneurons can be feasible sources of CBs, which in turn act as retrograde messengers regulating synaptic function. Finally, microiontophoretic application of the CB agonist O-2545 reversibly depressed, presumably via CB1, glutamatergic inspiratory-related activity of HMNs in vivo. Therefore, evidence support that CBs, via presynaptic CB1, induce excitatory STD by reducing the readily releasable pool of SVs at excitatory synapses, then attenuating motoneuron activity. These outcomes contribute a possible mechanistic basis for cannabis-associated motor performance disturbances such as ataxia, dysarthria and dyscoordination. PMID:25595101

  18. Membrane-derived phospholipids control synaptic neurotransmission and plasticity.

    PubMed

    García-Morales, Victoria; Montero, Fernando; González-Forero, David; Rodríguez-Bey, Guillermo; Gómez-Pérez, Laura; Medialdea-Wandossell, María Jesús; Domínguez-Vías, Germán; García-Verdugo, José Manuel; Moreno-López, Bernardo

    2015-05-01

    Synaptic communication is a dynamic process that is key to the regulation of neuronal excitability and information processing in the brain. To date, however, the molecular signals controlling synaptic dynamics have been poorly understood. Membrane-derived bioactive phospholipids are potential candidates to control short-term tuning of synaptic signaling, a plastic event essential for information processing at both the cellular and neuronal network levels in the brain. Here, we showed that phospholipids affect excitatory and inhibitory neurotransmission by different degrees, loci, and mechanisms of action. Signaling triggered by lysophosphatidic acid (LPA) evoked rapid and reversible depression of excitatory and inhibitory postsynaptic currents. At excitatory synapses, LPA-induced depression depended on LPA1/Gαi/o-protein/phospholipase C/myosin light chain kinase cascade at the presynaptic site. LPA increased myosin light chain phosphorylation, which is known to trigger actomyosin contraction, and reduced the number of synaptic vesicles docked to active zones in excitatory boutons. At inhibitory synapses, postsynaptic LPA signaling led to dephosphorylation, and internalization of the GABAAγ2 subunit through the LPA1/Gα12/13-protein/RhoA/Rho kinase/calcineurin pathway. However, LPA-induced depression of GABAergic transmission was correlated with an endocytosis-independent reduction of GABAA receptors, possibly by GABAAγ2 dephosphorylation and subsequent increased lateral diffusion. Furthermore, endogenous LPA signaling, mainly via LPA1, mediated activity-dependent inhibitory depression in a model of experimental synaptic plasticity. Finally, LPA signaling, most likely restraining the excitatory drive incoming to motoneurons, regulated performance of motor output commands, a basic brain processing task. We propose that lysophospholipids serve as potential local messengers that tune synaptic strength to precedent activity of the neuron. PMID:25996636

  19. Distinct and developmentally regulated activity-dependent plasticity at descending glutamatergic synapses on flexor and extensor motoneurons

    PubMed Central

    Lenschow, Constanze; Cazalets, Jean-René; Bertrand, Sandrine S.

    2016-01-01

    Activity-dependent synaptic plasticity (ADSP) is paramount to synaptic processing and maturation. However, identifying the ADSP capabilities of the numerous synapses converging onto spinal motoneurons (MNs) remain elusive. Using spinal cord slices from mice at two developmental stages, 1–4 and 8–12 postnatal days (P1–P4; P8–P12), we found that high-frequency stimulation of presumed reticulospinal neuron axons in the ventrolateral funiculus (VLF) induced either an NMDA receptor-dependent-long-term depression (LTD), a short-term depression (STD) or no synaptic modulation in limb MNs. Our study shows that P1–P4 cervical MNs expressed the same plasticity profiles as P8–P12 lumbar MNs rather than P1–P4 lumbar MNs indicating that ADSP expression at VLF-MN synapses is linked to the rostrocaudal development of spinal motor circuitry. Interestingly, we observed that the ADSP expressed at VLF-MN was related to the functional flexor or extensor MN subtype. Moreover, heterosynaptic plasticity was triggered in MNs by VLF axon tetanisation at neighbouring synapses not directly involved in the plasticity induction. ADSP at VLF-MN synapses specify differential integrative synaptic processing by flexor and extensor MNs and could contribute to the maturation of spinal motor circuits and developmental acquisition of weight-bearing locomotion. PMID:27329279

  20. Network response synchronization enhanced by synaptic plasticity

    NASA Astrophysics Data System (ADS)

    Lobov, S.; Simonov, A.; Kastalskiy, I.; Kazantsev, V.

    2016-02-01

    Synchronization of neural network response on spatially localized periodic stimulation was studied. The network consisted of synaptically coupled spiking neurons with spike-timing-dependent synaptic plasticity (STDP). Network connectivity was defined by time evolving matrix of synaptic weights. We found that the steady-state spatial pattern of the weights could be rearranged due to locally applied external periodic stimulation. A method for visualization of synaptic weights as vector field was introduced to monitor the evolving connectivity matrix. We demonstrated that changes in the vector field and associated weight rearrangements underlay an enhancement of synchronization range.

  1. Loss of the Coffin-Lowry syndrome-associated gene RSK2 alters ERK activity, synaptic function and axonal transport in Drosophila motoneurons

    PubMed Central

    Beck, Katherina; Ehmann, Nadine; Andlauer, Till F. M.; Ljaschenko, Dmitrij; Strecker, Katrin; Fischer, Matthias; Kittel, Robert J.; Raabe, Thomas

    2015-01-01

    ABSTRACT Plastic changes in synaptic properties are considered as fundamental for adaptive behaviors. Extracellular-signal-regulated kinase (ERK)-mediated signaling has been implicated in regulation of synaptic plasticity. Ribosomal S6 kinase 2 (RSK2) acts as a regulator and downstream effector of ERK. In the brain, RSK2 is predominantly expressed in regions required for learning and memory. Loss-of-function mutations in human RSK2 cause Coffin-Lowry syndrome, which is characterized by severe mental retardation and low IQ scores in affected males. Knockout of RSK2 in mice or the RSK ortholog in Drosophila results in a variety of learning and memory defects. However, overall brain structure in these animals is not affected, leaving open the question of the pathophysiological consequences. Using the fly neuromuscular system as a model for excitatory glutamatergic synapses, we show that removal of RSK function causes distinct defects in motoneurons and at the neuromuscular junction. Based on histochemical and electrophysiological analyses, we conclude that RSK is required for normal synaptic morphology and function. Furthermore, loss of RSK function interferes with ERK signaling at different levels. Elevated ERK activity was evident in the somata of motoneurons, whereas decreased ERK activity was observed in axons and the presynapse. In addition, we uncovered a novel function of RSK in anterograde axonal transport. Our results emphasize the importance of fine-tuning ERK activity in neuronal processes underlying higher brain functions. In this context, RSK acts as a modulator of ERK signaling. PMID:26398944

  2. Loss of the Coffin-Lowry syndrome-associated gene RSK2 alters ERK activity, synaptic function and axonal transport in Drosophila motoneurons.

    PubMed

    Beck, Katherina; Ehmann, Nadine; Andlauer, Till F M; Ljaschenko, Dmitrij; Strecker, Katrin; Fischer, Matthias; Kittel, Robert J; Raabe, Thomas

    2015-11-01

    Plastic changes in synaptic properties are considered as fundamental for adaptive behaviors. Extracellular-signal-regulated kinase (ERK)-mediated signaling has been implicated in regulation of synaptic plasticity. Ribosomal S6 kinase 2 (RSK2) acts as a regulator and downstream effector of ERK. In the brain, RSK2 is predominantly expressed in regions required for learning and memory. Loss-of-function mutations in human RSK2 cause Coffin-Lowry syndrome, which is characterized by severe mental retardation and low IQ scores in affected males. Knockout of RSK2 in mice or the RSK ortholog in Drosophila results in a variety of learning and memory defects. However, overall brain structure in these animals is not affected, leaving open the question of the pathophysiological consequences. Using the fly neuromuscular system as a model for excitatory glutamatergic synapses, we show that removal of RSK function causes distinct defects in motoneurons and at the neuromuscular junction. Based on histochemical and electrophysiological analyses, we conclude that RSK is required for normal synaptic morphology and function. Furthermore, loss of RSK function interferes with ERK signaling at different levels. Elevated ERK activity was evident in the somata of motoneurons, whereas decreased ERK activity was observed in axons and the presynapse. In addition, we uncovered a novel function of RSK in anterograde axonal transport. Our results emphasize the importance of fine-tuning ERK activity in neuronal processes underlying higher brain functions. In this context, RSK acts as a modulator of ERK signaling. PMID:26398944

  3. Balance and stability of synaptic structures during synaptic plasticity.

    PubMed

    Meyer, Daniel; Bonhoeffer, Tobias; Scheuss, Volker

    2014-04-16

    Subsynaptic structures such as bouton, active zone, postsynaptic density (PSD) and dendritic spine, are highly correlated in their dimensions and also correlate with synapse strength. Why this is so and how such correlations are maintained during synaptic plasticity remains poorly understood. We induced spine enlargement by two-photon glutamate uncaging and examined the relationship between spine, PSD, and bouton size by two-photon time-lapse imaging and electron microscopy. In enlarged spines the PSD-associated protein Homer1c increased rapidly, whereas the PSD protein PSD-95 increased with a delay and only in cases of persistent spine enlargement. In the case of nonpersistent spine enlargement, the PSD proteins remained unchanged or returned to their original level. The ultrastructure at persistently enlarged spines displayed matching dimensions of spine, PSD, and bouton, indicating their correlated enlargement. This supports a model in which balancing of synaptic structures is a hallmark for the stabilization of structural modifications during synaptic plasticity. PMID:24742464

  4. Synaptic action of R beta neurons on phrenic motoneurons studied with spike-triggered averaging.

    PubMed

    Lipski, J; Kubin, L; Jodkowski, J

    1983-12-12

    The functional role of dorsal medullary inspiratory neurons with excitatory input from lung stretch receptors (R beta neurons) is a matter of controversy. The present study, performed on chloralose-anesthetized and paralyzed cats, ventilated mainly with a phrenic-controlled servorespirator, deals with the spinal projection of these neurons, a property which suggests their involvement in the efferent part of the medullary respiratory complex. Out of 37 inspiratory neurons which could be excited antidromically following microstimulation within the contralateral C6 phrenic nucleus (latency 2.0 ms +/- 0.4, S.D.), 17 were classified by the 'no-inflation' test as R beta. Intracellular recording of synaptic potentials from phrenic motoneurons using the 'spike-triggered averaging' technique were made. In 10 phrenic motoneurons, the averaging revealed individual EPSPs (peak amplitude 150 +/- 110 microV, rise time 0.5 +/- 0.2 ms) time-locked to action potentials of 5 out of 7 R beta neurons tested. Cross-correlation of the R beta neurons firing with the activity of C5 and C6 phrenic rootlets indicated a divergence of excitatory action within the phrenic nucleus. For comparison, in 3 phrenic motoneurons individual EPSPs were recorded when the activity of 3 R alpha cells was used to trigger the averaging. It is concluded that at least some R beta neurons, similarly to R alpha neurons, project to the contralateral phrenic nucleus and can make monosynaptic excitatory connections with phrenic motoneurons. The finding that individual EPSPs were similar when averaging was triggered by the activity of either R beta or R alpha neurons provides new evidence for our earlier hypothesis that bulbospinal inspiratory neurons of the solitary tract nucleus may be subdivided into two categories only on a quantitative basis. PMID:6661613

  5. Synaptic Vesicle Proteins and Active Zone Plasticity

    PubMed Central

    Kittel, Robert J.; Heckmann, Manfred

    2016-01-01

    Neurotransmitter is released from synaptic vesicles at the highly specialized presynaptic active zone (AZ). The complex molecular architecture of AZs mediates the speed, precision and plasticity of synaptic transmission. Importantly, structural and functional properties of AZs vary significantly, even for a given connection. Thus, there appear to be distinct AZ states, which fundamentally influence neuronal communication by controlling the positioning and release of synaptic vesicles. Vice versa, recent evidence has revealed that synaptic vesicle components also modulate organizational states of the AZ. The protein-rich cytomatrix at the active zone (CAZ) provides a structural platform for molecular interactions guiding vesicle exocytosis. Studies in Drosophila have now demonstrated that the vesicle proteins Synaptotagmin-1 (Syt1) and Rab3 also regulate glutamate release by shaping differentiation of the CAZ ultrastructure. We review these unexpected findings and discuss mechanistic interpretations of the reciprocal relationship between synaptic vesicles and AZ states, which has heretofore received little attention. PMID:27148040

  6. Fast Learning with Weak Synaptic Plasticity.

    PubMed

    Yger, Pierre; Stimberg, Marcel; Brette, Romain

    2015-09-30

    New sensory stimuli can be learned with a single or a few presentations. Similarly, the responses of cortical neurons to a stimulus have been shown to increase reliably after just a few repetitions. Long-term memory is thought to be mediated by synaptic plasticity, but in vitro experiments in cortical cells typically show very small changes in synaptic strength after a pair of presynaptic and postsynaptic spikes. Thus, it is traditionally thought that fast learning requires stronger synaptic changes, possibly because of neuromodulation. Here we show theoretically that weak synaptic plasticity can, in fact, support fast learning, because of the large number of synapses N onto a cortical neuron. In the fluctuation-driven regime characteristic of cortical neurons in vivo, the size of membrane potential fluctuations grows only as √N, whereas a single output spike leads to potentiation of a number of synapses proportional to N. Therefore, the relative effect of a single spike on synaptic potentiation grows as √N. This leverage effect requires precise spike timing. Thus, the large number of synapses onto cortical neurons allows fast learning with very small synaptic changes. Significance statement: Long-term memory is thought to rely on the strengthening of coactive synapses. This physiological mechanism is generally considered to be very gradual, and yet new sensory stimuli can be learned with just a few presentations. Here we show theoretically that this apparent paradox can be solved when there is a tight balance between excitatory and inhibitory input. In this case, small synaptic modifications applied to the many synapses onto a given neuron disrupt that balance and produce a large effect even for modifications induced by a single stimulus. This effect makes fast learning possible with small synaptic changes and reconciles physiological and behavioral observations. PMID:26424883

  7. Post-synaptic conductance increase associated with presynaptic inhibition in cat lumbar motoneurones.

    PubMed Central

    Carlen, P L; Werman, R; Yaari, Y

    1980-01-01

    1. Motoneurones were examined in which low-intensity p.b.s.t conditioning volleys caused a 5% or greater decrease of gastrocnemius monosynaptic e.p.s.p.s without evidence of long-lasting i.p.s.p.s on superimposed single sweeps. 2. Short constant current pulses were injected into these cells and in twenty-two of twenty-three cases the voltage decay was faster when preceded by the same p.b.s.t. conditioning stimuli which caused a decrease in the Ia e.p.s.p. 3. Comparing these decays to short pulse decays generated in a simple analogue neurone model suggested that after conditioning stimuli a tonic conductance increase had occurred which was located electrotonically remote from the soma in some cases or more diffusely in other cases. 4. Long-lasting i.p.s.p.s were brought out by averaging the baseline following conditioning stimuli in ten of fifteen cases, also suggesting a post-synaptic conductance increase. 5. Averaging the voltage response to long saturating constant current pulses showed a decreased motoneurone input resistance in three of eight cases. 6. The semilogarithmic decay of four of eleven conditioned e.p.s.p.s was more rapid than controls. 7. Although short pulse voltage decay analysis revealed consistent evidence for increased post-synaptic conductance following conditioning stimuli, it was not possible to decide if the location and extent of this conductance increase were sufficient to rule out presynaptic inhibition. PMID:7359439

  8. Diacylglycerol Kinases in the Coordination of Synaptic Plasticity

    PubMed Central

    Lee, Dongwon; Kim, Eunjoon; Tanaka-Yamamoto, Keiko

    2016-01-01

    Synaptic plasticity is activity-dependent modification of the efficacy of synaptic transmission. Although, detailed mechanisms underlying synaptic plasticity are diverse and vary at different types of synapses, diacylglycerol (DAG)-associated signaling has been considered as an important regulator of many forms of synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD). Recent evidences indicate that DAG kinases (DGKs), which phosphorylate DAG to phosphatidic acid to terminate DAG signaling, are important regulators of LTP and LTD, as supported by the results from mice lacking specific DGK isoforms. This review will summarize these studies and discuss how specific DGK isoforms distinctly regulate different forms of synaptic plasticity at pre- and postsynaptic sites. In addition, we propose a general role of DGKs as coordinators of synaptic plasticity that make local synaptic environments more permissive for synaptic plasticity by regulating DAG concentration and interacting with other synaptic proteins.

  9. Synaptic plasticity with discrete state synapses

    NASA Astrophysics Data System (ADS)

    Abarbanel, Henry D. I.; Talathi, Sachin S.; Gibb, Leif; Rabinovich, M. I.

    2005-09-01

    Experimental observations on synaptic plasticity at individual glutamatergic synapses from the CA3 Shaffer collateral pathway onto CA1 pyramidal cells in the hippocampus suggest that the transitions in synaptic strength occur among discrete levels at individual synapses [C. C. H. Petersen , Proc. Natl. Acad. Sci. USA 85, 4732 (1998); O’Connor, Wittenberg, and Wang, D. H. O’Connor , Proc. Natl. Acad. Sci. USA (to be published); J. M. Montgomery and D. V. Madison, Trends Neurosci. 27, 744 (2004)]. This happens for both long term potentiation (LTP) and long term depression (LTD) induction protocols. O’Connor, Wittenberg, and Wang have argued that three states would account for their observations on individual synapses in the CA3-CA1 pathway. We develop a quantitative model of this three-state system with transitions among the states determined by a competition between kinases and phosphatases shown by D. H. O’Connor , to be determinant of LTP and LTD, respectively. Specific predictions for various plasticity protocols are given by coupling this description of discrete synaptic α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor ligand gated ion channel conductance changes to a model of postsynaptic membrane potential and associated intracellular calcium fluxes to yield the transition rates among the states. We then present various LTP and LTD induction protocols to the model system and report the resulting whole cell changes in AMPA conductance. We also examine the effect of our discrete state synaptic plasticity model on the synchronization of realistic oscillating neurons. We show that one-to-one synchronization is enhanced by the plasticity we discuss here and the presynaptic and postsynaptic oscillations are in phase. Synaptic strength saturates naturally in this model and does not require artificial upper or lower cutoffs, in contrast to earlier models of plasticity.

  10. Selective Requirement for Maintenance of Synaptic Contacts onto Motoneurons by Target-Derived trkB Receptors

    PubMed Central

    2016-01-01

    Synaptic contacts onto motoneurons were studied in mice in which the gene for the trkB neurotrophin receptor was knocked out selectively in a subset of spinal motoneurons. The extent of contacts by structures immunoreactive for either of two different vesicular glutamate transporters (VGLUT1 and VGLUT2), the vesicular GABA transporter, or glutamic acid decarboxylase 67 (GAD67) with the somata of motoneurons, was studied in wild type and trkB knockout cells in tamoxifen treated male and female SLICK-trkB−/− mice. Selective knockout of the trkB gene resulted in a marked reduction in contacts made by VGLUT2- and GAD67-immunoreactive structures in both sexes and a significant reduction in contacts containing only glycine in male mice. No reduction was found for glycinergic contacts in female mice or for VGLUT1 immunoreactive contacts in either sex. Signaling through postsynaptic trkB receptors is considered to be an essential part of a cellular mechanism for maintaining the contacts of some, but not all, synaptic contacts onto motoneurons. PMID:27433358

  11. Theoretical models of synaptic short term plasticity

    PubMed Central

    Hennig, Matthias H.

    2013-01-01

    Short term plasticity is a highly abundant form of rapid, activity-dependent modulation of synaptic efficacy. A shared set of mechanisms can cause both depression and enhancement of the postsynaptic response at different synapses, with important consequences for information processing. Mathematical models have been extensively used to study the mechanisms and roles of short term plasticity. This review provides an overview of existing models and their biological basis, and of their main properties. Special attention will be given to slow processes such as calcium channel inactivation and the effect of activation of presynaptic autoreceptors. PMID:23626536

  12. The developmental stages of synaptic plasticity

    PubMed Central

    Lohmann, Christian; Kessels, Helmut W

    2014-01-01

    Abstract The brain is programmed to drive behaviour by precisely wiring the appropriate neuronal circuits. Wiring and rewiring of neuronal circuits largely depends on the orchestrated changes in the strengths of synaptic contacts. Here, we review how the rules of synaptic plasticity change during development of the brain, from birth to independence. We focus on the changes that occur at the postsynaptic side of excitatory glutamatergic synapses in the rodent hippocampus and neocortex. First we summarize the current data on the structure of synapses and the developmental expression patterns of the key molecular players of synaptic plasticity, N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, as well as pivotal kinases (Ca2+/calmodulin-dependent protein kinase II, protein kinase A, protein kinase C) and phosphatases (PP1, PP2A, PP2B). In the second part we relate these findings to important characteristics of the emerging network. We argue that the concerted and gradual shifts in the usage of plasticity molecules comply with the changing need for (re)wiring neuronal circuits. PMID:24144877

  13. Morphological plasticity of astroglia: Understanding synaptic microenvironment

    PubMed Central

    2015-01-01

    Memory formation in the brain is thought to rely on the remodeling of synaptic connections which eventually results in neural network rewiring. This remodeling is likely to involve ultrathin astroglial protrusions which often occur in the immediate vicinity of excitatory synapses. The phenomenology, cellular mechanisms, and causal relationships of such astroglial restructuring remain, however, poorly understood. This is in large part because monitoring and probing of the underpinning molecular machinery on the scale of nanoscopic astroglial compartments remains a challenge. Here we briefly summarize the current knowledge regarding the cellular organisation of astroglia in the synaptic microenvironment and discuss molecular mechanisms potentially involved in use‐dependent astroglial morphogenesis. We also discuss recent observations concerning morphological astroglial plasticity, the respective monitoring methods, and some of the newly emerging techniques that might help with conceptual advances in the area. GLIA 2015;63:2133–2151 PMID:25782611

  14. Population synaptic potentials evoked in lumbar motoneurons following stimulation of the nucleus reticularis gigantocellularis during carbachol-induced atonia.

    PubMed

    Yamuy, J; Jiménez, I; Morales, F; Rudomin, P; Chase, M

    1994-03-14

    The effect of electrical stimulation of the medullary nucleus reticularis gigantocellularis (NRGc) on lumbar spinal cord motoneurons was studied in the decerebrate cat using sucrose-gap recordings from ventral roots. The NRGc was stimulated ipsi- and contralaterally before and during atonia elicited by the microinjection of carbachol into the pontine reticular formation. Prior to carbachol administration, the NRGc-induced response recorded from the sucrose-gap consisted of two consecutive excitatory population synaptic potentials followed by a long-lasting, small amplitude inhibitory population synaptic potential. Following carbachol injection, the same NRGc stimulus evoked a distinct, large amplitude inhibitory population synaptic potential, whereas the excitatory population synaptic potentials decreased in amplitude. In addition, after carbachol administration, the amplitude of the monosynaptic excitatory population synaptic potential, which was evoked by stimulation of group Ia afferents in hindlimb nerves, was reduced by 18 to 43%. When evoked at the peak of the NRGc-induced inhibitory response, this potential was further decreased in amplitude. Systemic strychnine administration (0.07-0.1 mg/kg, i.v.) blocked the NRGc-induced inhibitory population synaptic potential and promoted an increase in the amplitude of the excitatory population synaptic potentials induced by stimulation of the NRGc and group Ia afferents. These data indicate that during the state of carbachol-induced atonia, the NRGc effects on ipsi- and contralateral spinal cord motoneurons are predominantly inhibitory and that glycine is likely to be involved in this inhibitory process. These results support the hypothesis that the nucleus reticularis gigantocellularis is part of the system responsible for state-dependent somatomotor inhibition that occurs during active sleep. PMID:8205484

  15. Computational Neuroscience: Modeling the Systems Biology of Synaptic Plasticity

    PubMed Central

    Kotaleski, Jeanette Hellgren; Blackwell, Kim T.

    2016-01-01

    Preface Synaptic plasticity is a mechanism proposed to underlie learning and memory. The complexity of the interactions between ion channels, enzymes, and genes involved in synaptic plasticity impedes a deep understanding of this phenomenon. Computer modeling is an approach to investigate the information processing that is performed by signaling pathways underlying synaptic plasticity. In the past few years, new software developments that blend computational neuroscience techniques with systems biology techniques have allowed large-scale, quantitative modeling of synaptic plasticity in neurons. We highlight significant advancements produced by these modeling efforts and introduce promising approaches that utilize advancements in live cell imaging. PMID:20300102

  16. Soft-bound Synaptic Plasticity Increases Storage Capacity

    PubMed Central

    van Rossum, Mark C. W.; Shippi, Maria; Barrett, Adam B.

    2012-01-01

    Accurate models of synaptic plasticity are essential to understand the adaptive properties of the nervous system and for realistic models of learning and memory. Experiments have shown that synaptic plasticity depends not only on pre- and post-synaptic activity patterns, but also on the strength of the connection itself. Namely, weaker synapses are more easily strengthened than already strong ones. This so called soft-bound plasticity automatically constrains the synaptic strengths. It is known that this has important consequences for the dynamics of plasticity and the synaptic weight distribution, but its impact on information storage is unknown. In this modeling study we introduce an information theoretic framework to analyse memory storage in an online learning setting. We show that soft-bound plasticity increases a variety of performance criteria by about 18% over hard-bound plasticity, and likely maximizes the storage capacity of synapses. PMID:23284281

  17. Roles for short-term synaptic plasticity in behavior.

    PubMed

    Fortune, Eric S; Rose, Gary J

    2002-01-01

    Short-term synaptic plasticity is phylogenetically widespread in ascending sensory systems of vertebrate brains. Such plasticity is found at all levels of sensory processing, including in sensory cortices. The functional roles of this apparently ubiquitous short-term synaptic plasticity, however, are not well understood. Data obtained in midbrain electrosensory neurons of Eigenmannia suggest that this plasticity has at least two roles in sensory processing; enhancing low-pass temporal filtering and generating phase shifts used in processing moving sensory images. Short-term synaptic plasticity may serve similar roles in other sensory modalities, including vision. PMID:14692501

  18. Calcineurin mediates homeostatic synaptic plasticity by regulating retinoic acid synthesis

    PubMed Central

    Arendt, Kristin L.; Zhang, Zhenjie; Ganesan, Subhashree; Hintze, Maik; Shin, Maggie M.; Tang, Yitai; Cho, Ahryon; Graef, Isabella A.; Chen, Lu

    2015-01-01

    Homeostatic synaptic plasticity is a form of non-Hebbian plasticity that maintains stability of the network and fidelity for information processing in response to prolonged perturbation of network and synaptic activity. Prolonged blockade of synaptic activity decreases resting Ca2+ levels in neurons, thereby inducing retinoic acid (RA) synthesis and RA-dependent homeostatic synaptic plasticity; however, the signal transduction pathway that links reduced Ca2+-levels to RA synthesis remains unknown. Here we identify the Ca2+-dependent protein phosphatase calcineurin (CaN) as a key regulator for RA synthesis and homeostatic synaptic plasticity. Prolonged inhibition of CaN activity promotes RA synthesis in neurons, and leads to increased excitatory and decreased inhibitory synaptic transmission. These effects of CaN inhibitors on synaptic transmission are blocked by pharmacological inhibitors of RA synthesis or acute genetic deletion of the RA receptor RARα. Thus, CaN, acting upstream of RA, plays a critical role in gating RA signaling pathway in response to synaptic activity. Moreover, activity blockade-induced homeostatic synaptic plasticity is absent in CaN knockout neurons, demonstrating the essential role of CaN in RA-dependent homeostatic synaptic plasticity. Interestingly, in GluA1 S831A and S845A knockin mice, CaN inhibitor- and RA-induced regulation of synaptic transmission is intact, suggesting that phosphorylation of GluA1 C-terminal serine residues S831 and S845 is not required for CaN inhibitor- or RA-induced homeostatic synaptic plasticity. Thus, our study uncovers an unforeseen role of CaN in postsynaptic signaling, and defines CaN as the Ca2+-sensing signaling molecule that mediates RA-dependent homeostatic synaptic plasticity. PMID:26443861

  19. Calcineurin mediates homeostatic synaptic plasticity by regulating retinoic acid synthesis.

    PubMed

    Arendt, Kristin L; Zhang, Zhenjie; Ganesan, Subhashree; Hintze, Maik; Shin, Maggie M; Tang, Yitai; Cho, Ahryon; Graef, Isabella A; Chen, Lu

    2015-10-20

    Homeostatic synaptic plasticity is a form of non-Hebbian plasticity that maintains stability of the network and fidelity for information processing in response to prolonged perturbation of network and synaptic activity. Prolonged blockade of synaptic activity decreases resting Ca(2+) levels in neurons, thereby inducing retinoic acid (RA) synthesis and RA-dependent homeostatic synaptic plasticity; however, the signal transduction pathway that links reduced Ca(2+)-levels to RA synthesis remains unknown. Here we identify the Ca(2+)-dependent protein phosphatase calcineurin (CaN) as a key regulator for RA synthesis and homeostatic synaptic plasticity. Prolonged inhibition of CaN activity promotes RA synthesis in neurons, and leads to increased excitatory and decreased inhibitory synaptic transmission. These effects of CaN inhibitors on synaptic transmission are blocked by pharmacological inhibitors of RA synthesis or acute genetic deletion of the RA receptor RARα. Thus, CaN, acting upstream of RA, plays a critical role in gating RA signaling pathway in response to synaptic activity. Moreover, activity blockade-induced homeostatic synaptic plasticity is absent in CaN knockout neurons, demonstrating the essential role of CaN in RA-dependent homeostatic synaptic plasticity. Interestingly, in GluA1 S831A and S845A knockin mice, CaN inhibitor- and RA-induced regulation of synaptic transmission is intact, suggesting that phosphorylation of GluA1 C-terminal serine residues S831 and S845 is not required for CaN inhibitor- or RA-induced homeostatic synaptic plasticity. Thus, our study uncovers an unforeseen role of CaN in postsynaptic signaling, and defines CaN as the Ca(2+)-sensing signaling molecule that mediates RA-dependent homeostatic synaptic plasticity. PMID:26443861

  20. Role of MicroRNA in Governing Synaptic Plasticity

    PubMed Central

    2016-01-01

    Although synaptic plasticity in neural circuits is orchestrated by an ocean of genes, molecules, and proteins, the underlying mechanisms remain poorly understood. Recently, it is well acknowledged that miRNA exerts widespread regulation over the translation and degradation of target gene in nervous system. Increasing evidence suggests that quite a few specific miRNAs play important roles in various respects of synaptic plasticity including synaptogenesis, synaptic morphology alteration, and synaptic function modification. More importantly, the miRNA-mediated regulation of synaptic plasticity is not only responsible for synapse development and function but also involved in the pathophysiology of plasticity-related diseases. A review is made here on the function of miRNAs in governing synaptic plasticity, emphasizing the emerging regulatory role of individual miRNAs in synaptic morphological and functional plasticity, as well as their implications in neurological disorders. Understanding of the way in which miRNAs contribute to synaptic plasticity provides rational clues in establishing the novel therapeutic strategy for plasticity-related diseases. PMID:27034846

  1. Transient ECM protease activity promotes synaptic plasticity.

    PubMed

    Magnowska, Marta; Gorkiewicz, Tomasz; Suska, Anna; Wawrzyniak, Marcin; Rutkowska-Wlodarczyk, Izabela; Kaczmarek, Leszek; Wlodarczyk, Jakub

    2016-01-01

    Activity-dependent proteolysis at a synapse has been recognized as a pivotal factor in controlling dynamic changes in dendritic spine shape and function; however, excessive proteolytic activity is detrimental to the cells. The exact mechanism of control of these seemingly contradictory outcomes of protease activity remains unknown. Here, we reveal that dendritic spine maturation is strictly controlled by the proteolytic activity, and its inhibition by the endogenous inhibitor (Tissue inhibitor of matrix metalloproteinases-1 - TIMP-1). Excessive proteolytic activity impairs long-term potentiation of the synaptic efficacy (LTP), and this impairment could be rescued by inhibition of protease activity. Moreover LTP is altered persistently when the ability of TIMP-1 to inhibit protease activity is abrogated, further demonstrating the role of such inhibition in the promotion of synaptic plasticity under well-defined conditions. We also show that dendritic spine maturation involves an intermediate formation of elongated spines, followed by their conversion into mushroom shape. The formation of mushroom-shaped spines is accompanied by increase in AMPA/NMDA ratio of glutamate receptors. Altogether, our results identify inhibition of protease activity as a critical regulatory mechanism for dendritic spines maturation. PMID:27282248

  2. Transient ECM protease activity promotes synaptic plasticity

    PubMed Central

    Magnowska, Marta; Gorkiewicz, Tomasz; Suska, Anna; Wawrzyniak, Marcin; Rutkowska-Wlodarczyk, Izabela; Kaczmarek, Leszek; Wlodarczyk, Jakub

    2016-01-01

    Activity-dependent proteolysis at a synapse has been recognized as a pivotal factor in controlling dynamic changes in dendritic spine shape and function; however, excessive proteolytic activity is detrimental to the cells. The exact mechanism of control of these seemingly contradictory outcomes of protease activity remains unknown. Here, we reveal that dendritic spine maturation is strictly controlled by the proteolytic activity, and its inhibition by the endogenous inhibitor (Tissue inhibitor of matrix metalloproteinases-1 – TIMP-1). Excessive proteolytic activity impairs long-term potentiation of the synaptic efficacy (LTP), and this impairment could be rescued by inhibition of protease activity. Moreover LTP is altered persistently when the ability of TIMP-1 to inhibit protease activity is abrogated, further demonstrating the role of such inhibition in the promotion of synaptic plasticity under well-defined conditions. We also show that dendritic spine maturation involves an intermediate formation of elongated spines, followed by their conversion into mushroom shape. The formation of mushroom-shaped spines is accompanied by increase in AMPA/NMDA ratio of glutamate receptors. Altogether, our results identify inhibition of protease activity as a critical regulatory mechanism for dendritic spines maturation. PMID:27282248

  3. Rapid, Transient Synaptic Plasticity in Addiction

    PubMed Central

    Kupchik, Yonatan M.; Kalivas, Peter W.

    2013-01-01

    Chronic use of addictive drugs produces enduring neuroadaptations in the corticostriatal glutamatergic brain circuitry. The nucleus accumbens (NAc), which integrates cortical information and regulates goal-directed behavior, undergoes long-term morphological and electrophysiological changes that may underlie the increased susceptibility for relapse in drug-experienced individuals even after long periods of withdrawal. Additionally, it has recently been shown that exposure to cues associated with drug use elicits rapid and transient morphological and electrophysiological changes in glutamatergic synapses in the NAc. This review highlights these dynamic drug-induced changes in this pathway that are specific to a drug seeking neuropathology, as well as how these changes impair normal information processing and thereby contribute to the uncontrollable motivation to relapse. Future directions for relapse prevention and pharmacotherapeutic targeting of the rapid, transient synaptic plasticity in relapse are discussed. PMID:23639436

  4. Molecular mechanisms underlying neuronal synaptic plasticity: systems biology meets computational neuroscience in the wilds of synaptic plasticity

    PubMed Central

    Blackwell, KT; Jedrzejewska-Szmek, J

    2013-01-01

    Interactions among signaling pathways that are activated by transmembrane receptors produce complex networks and emergent dynamical behaviors that are implicated in synaptic plasticity. Temporal dynamics and spatial aspects are critical determinants of cell responses such as synaptic plasticity, though the mapping between spatio-temporal activity pattern and direction of synaptic plasticity is not completely understood. Computational modeling of neuronal signaling pathways has significantly contributed to understanding signaling pathways underlying synaptic plasticity. Spatial models of signaling pathways in hippocampal neurons have revealed mechanisms underlying the spatial distribution of ERK activation in hippocampal neurons. Other spatial models have demonstrated that the major role of anchoring proteins in striatal and hippocampal synaptic plasticity is to place molecules near their activators. Simulations of yet other models have revealed that the spatial distribution of synaptic plasticity may differ for potentiation versus depression. In general, the most significant advances have been made by interactive modeling and experiments; thus, an interdisciplinary approach should be applied to investigate critical issues in neuronal signaling pathways. These issues include identifying which transmembrane receptors are key for activating ERK in neurons, and the crucial targets of kinases which produce long lasting synaptic plasticity. Though the number of computer programs for computationally efficient simulation of large reaction-diffusion networks is increasing, parameter estimation and sensitivity analysis in these spatial model remains more difficult than in single compartment models. Advances in live cell imaging coupled with further software development will continue to accelerate the development of spatial models of synaptic plasticity. PMID:24019266

  5. The transformation of synaptic to system plasticity in motor output from the sacral cord of the adult mouse.

    PubMed

    Jiang, Mingchen C; Elbasiouny, Sherif M; Collins, William F; Heckman, C J

    2015-09-01

    Synaptic plasticity is fundamental in shaping the output of neural networks. The transformation of synaptic plasticity at the cellular level into plasticity at the system level involves multiple factors, including behavior of local networks of interneurons. Here we investigate the synaptic to system transformation for plasticity in motor output in an in vitro preparation of the adult mouse spinal cord. System plasticity was assessed from compound action potentials (APs) in spinal ventral roots, which were generated simultaneously by the axons of many motoneurons (MNs). Synaptic plasticity was assessed from intracellular recordings of MNs. A computer model of the MN pool was used to identify the middle steps in the transformation from synaptic to system behavior. Two input systems that converge on the same MN pool were studied: one sensory and one descending. The two synaptic input systems generated very different motor outputs, with sensory stimulation consistently evoking short-term depression (STD) whereas descending stimulation had bimodal plasticity: STD at low frequencies but short-term facilitation (STF) at high frequencies. Intracellular and pharmacological studies revealed contributions from monosynaptic excitation and stimulus time-locked inhibition but also considerable asynchronous excitation sustained from local network activity. The computer simulations showed that STD in the monosynaptic excitatory input was the primary driver of the system STD in the sensory input whereas network excitation underlies the bimodal plasticity in the descending system. These results provide insight on the roles of plasticity in the monosynaptic and polysynaptic inputs converging on the same MN pool to overall motor plasticity. PMID:26203107

  6. Sleep and synaptic plasticity in the developing and adult brain.

    PubMed

    Frank, Marcos G

    2015-01-01

    Sleep is hypothesized to play an integral role in brain plasticity. This has traditionally been investigated using behavioral assays. In the last 10-15 years, studies combining sleep measurements with in vitro and in vivo models of synaptic plasticity have provided exciting new insights into how sleep alters synaptic strength. In addition, new theories have been proposed that integrate older ideas about sleep function and recent discoveries in the field of synaptic plasticity. There remain, however, important challenges and unanswered questions. For example, sleep does not appear to have a single effect on synaptic strength. An unbiased review of the literature indicates that the effects of sleep vary widely depending on ontogenetic stage, the type of waking experience (or stimulation protocols) that precede sleep and the type of neuronal synapse under examination. In this review, I discuss these key findings in the context of current theories that posit different roles for sleep in synaptic plasticity. PMID:24671703

  7. Regulation of AMPA Receptor Trafficking and Synaptic Plasticity

    PubMed Central

    Anggono, Victor; Huganir, Richard L.

    2012-01-01

    AMPA receptors (AMPARs) mediate the majority of fast excitatory synaptic transmission in the brain. Dynamic changes in neuronal synaptic efficacy, termed synaptic plasticity, are thought to underlie information coding and storage in learning and memory. One major mechanism that regulates synaptic strength involves the tightly regulated trafficking of AMPARs into and out of synapses. The life cycle of AMPARs from their biosynthesis, membrane trafficking and synaptic targeting to their degradation are controlled by a series of orchestrated interactions with numerous intracellular regulatory proteins. Here we review recent progress made towards the understanding the regulation of AMPAR trafficking, focusing on the roles of several key intracellular AMPAR interacting proteins. PMID:22217700

  8. Synaptic plasticity in inhibitory neurons of the auditory brainstem

    PubMed Central

    Bender, Kevin J.; Trussell, Laurence O.

    2011-01-01

    There is a growing appreciation of synaptic plasticity in the early levels of auditory processing, and particularly of its role in inhibitory circuits. Synaptic strength in auditory brainstem and midbrain is sensitive to standard protocols for induction of long-term depression, potentiation, and spike-timing-dependent plasticity. Differential forms of plasticity are operative at synapses onto inhibitory versus excitatory neurons within a circuit, and together these could serve to tune circuits involved in sound localization or multisensory integration. Such activity-dependent control of synaptic function in inhibitory neurons may also be expressed after hearing loss and could underlie persistent neuronal activity in patients with tinnitus. PMID:21185317

  9. Plasticity of synaptic connections in sensory-motor pathways of the adult locust flight system.

    PubMed

    Wolf, H; Büschges, A

    1997-09-01

    We investigated possible roles of retrograde signals and competitive interactions in the lesion-induced reorganization of synaptic contacts in the locust CNS. Neuronal plasticity is elicited in the adult flight system by removal of afferents from the tegula, a mechanoreceptor organ at the base of the wing. We severed one hindwing organ and studied the resulting rearrangement of synaptic contacts between flight interneurons and afferent neurons from the remaining three tegulae (2 forewing, 1 hindwing). This was done by electric stimulation of afferents and intracellular recording from interneurons (and occasionally motoneurons). Two to three weeks after unilateral tegula lesion, connections between tegula afferents and flight interneurons were altered in the following way. 1) Axons from the forewing tegula on the operated side had established new synaptic contacts with metathoracic elevator interneurons. In addition, the amplitude of compound excitatory postsynaptic potentials elicited by electric stimulation was increased, indicating that a larger number of afferents connected to any given interneuron. 2) On the side contralateral to the lesion, connectivity between axons from the forewing tegula and elevator interneurons was decreased. 3) The efficacy of the (remaining) hindwing afferents appeared to be increased with regard to both synaptic transmission to interneurons and impact on flight motor pattern. 4) Flight motoneurons, which are normally restricted to the ipsilateral hemiganglion, sprouted across the ganglion midline after unilateral tegula removal and apparently established new synaptic contacts with tegula afferents on that side. The changes on the operated side are interpreted as occupation of synaptic space vacated on the interneurons by the severed hindwing afferents. On the contralateral side, the changes in synaptic contact must be elicited by retrograde signals from bilaterally arborizing flight interneurons, because tegula projections remain

  10. Pannexin 1 regulates bidirectional hippocampal synaptic plasticity in adult mice

    PubMed Central

    Ardiles, Alvaro O.; Flores-Muñoz, Carolina; Toro-Ayala, Gabriela; Cárdenas, Ana M.; Palacios, Adrian G.; Muñoz, Pablo; Fuenzalida, Marco; Sáez, Juan C.; Martínez, Agustín D.

    2014-01-01

    The threshold for bidirectional modification of synaptic plasticity is known to be controlled by several factors, including the balance between protein phosphorylation and dephosphorylation, postsynaptic free Ca2+ concentration and NMDA receptor (NMDAR) composition of GluN2 subunits. Pannexin 1 (Panx1), a member of the integral membrane protein family, has been shown to form non-selective channels and to regulate the induction of synaptic plasticity as well as hippocampal-dependent learning. Although Panx1 channels have been suggested to play a role in excitatory long-term potentiation (LTP), it remains unknown whether these channels also modulate long-term depression (LTD) or the balance between both types of synaptic plasticity. To study how Panx1 contributes to excitatory synaptic efficacy, we examined the age-dependent effects of eliminating or blocking Panx1 channels on excitatory synaptic plasticity within the CA1 region of the mouse hippocampus. By using different protocols to induce bidirectional synaptic plasticity, Panx1 channel blockade or lack of Panx1 were found to enhance LTP, whereas both conditions precluded the induction of LTD in adults, but not in young animals. These findings suggest that Panx1 channels restrain the sliding threshold for the induction of synaptic plasticity and underlying brain mechanisms of learning and memory. PMID:25360084

  11. BCL-xL regulates synaptic plasticity.

    PubMed

    Jonas, Elizabeth

    2006-08-01

    Mitochondria are the predominant organelle within many presynaptic terminals. During times of high synaptic activity, they affect intracellular calcium homeostasis and provide the energy needed for synaptic vesicle recycling and for the continued operation of membrane ion pumps. Recent discoveries have altered our ideas about the role of mitochondria in the synapse. Mitochondrial localization, morphology, and docking at synaptic sites may indeed alter the kinetics of transmitter release and calcium homeostasis in the presynaptic terminal. In addition, the mitochondrial ion channel BCL-xL, known as a protector against programmed cell death, regulates mitochondrial membrane conductance and bioenergetics in the synapse and can thereby alter synaptic transmitter release and the recycling of pools of synaptic vesicles. BCL-xL, therefore, not only affects the life and death of the cell soma, but its actions in the synapse may underlie the regulation of basic synaptic processes that subtend learning, memory and synaptic development. PMID:16960143

  12. Long-term Synaptic Plasticity: Circuit Perturbation and Stabilization

    PubMed Central

    Jung, Sung-Cherl; Eun, Su-Yong

    2014-01-01

    At central synapses, activity-dependent synaptic plasticity has a crucial role in information processing, storage, learning, and memory under both physiological and pathological conditions. One widely accepted model of learning mechanism and information processing in the brain is Hebbian Plasticity: long-term potentiation (LTP) and long-term depression (LTD). LTP and LTD are respectively activity-dependent enhancement and reduction in the efficacy of the synapses, which are rapid and synapse-specific processes. A number of recent studies have a strong focal point on the critical importance of another distinct form of synaptic plasticity, non-Hebbian plasticity. Non-Hebbian plasticity dynamically adjusts synaptic strength to maintain stability. This process may be very slow and occur cell-widely. By putting them all together, this mini review defines an important conceptual difference between Hebbian and non-Hebbian plasticity. PMID:25598658

  13. The Ubiquitin-Proteasome Pathway and Synaptic Plasticity

    ERIC Educational Resources Information Center

    Hegde, Ashok N.

    2010-01-01

    Proteolysis by the ubiquitin-proteasome pathway (UPP) has emerged as a new molecular mechanism that controls wide-ranging functions in the nervous system, including fine-tuning of synaptic connections during development and synaptic plasticity in the adult organism. In the UPP, attachment of a small protein, ubiquitin, tags the substrates for…

  14. Mapping homeostatic synaptic plasticity using cable properties of dendrites.

    PubMed

    Queenan, B N; Lee, K J; Tan, H; Huganir, R L; Vicini, S; Pak, D T S

    2016-02-19

    When chronically silenced, cortical and hippocampal neurons homeostatically upregulate excitatory synaptic function. However, the subcellular position of such changes on the dendritic tree is not clear. We exploited the cable-filtering properties of dendrites to derive a parameter, the dendritic filtering index (DFI), to map the spatial distribution of synaptic currents. Our analysis indicates that young rat cortical neurons globally scale AMPA receptor-mediated currents, while mature hippocampal neurons do not, revealing distinct homeostatic strategies between brain regions and developmental stages. The DFI presents a useful tool for mapping the dendritic origin of synaptic currents and the location of synaptic plasticity changes. PMID:26701298

  15. Berberine chloride improved synaptic plasticity in STZ induced diabetic rats.

    PubMed

    Moghaddam, Hamid Kalalian; Baluchnejadmojarad, Tourandokht; Roghani, Mehrdad; Goshadrou, Fatemeh; Ronaghi, Abdolaziz

    2013-09-01

    Previous studies indicated that diabetes affects synaptic transmission in the hippocampus, leading to impairments of synaptic plasticity and defects in learning and memory. Although berberine treatment ameliorates memory impairment and improves synaptic plasticity in streptozotocin (STZ) induced diabetic rats, it is not clear if the effects are pre- or post-synaptic or both. The aim of this study was to evaluate the effects of berberine chloride on short-term plasticity in inhibitory interneurons in the dentate gyrus of STZ-induced diabetic rats. Experimental groups included: The control, control berberine treated (100 mg/kg), diabetic and diabetic berberine treated (50,100 mg/kg/day for 12 weeks) groups. The paired pulse paradigm was used to stimulate the perforant pathway and field excitatory post-synaptic potentials (fEPSP) were recorded in dentate gyrus (DG). In comparison with control, paired pulse facilitation in the diabetic group was significantly increased (P < 0.01) and this effect prevented by chronic berberine treatment (50,100 mg/kg). However, there were no differences between responses of the control berberine 100 mg/kg treated and diabetes berberine treated (50 and 100 mg/kg) groups as compared to the control group. The present results suggest that the pre-synaptic component of synaptic plasticity in the dentate gyrus is affected under diabetic conditions and that berberine prevents this effect. PMID:23640014

  16. Cerebellar Synaptic Plasticity and the Credit Assignment Problem.

    PubMed

    Jörntell, Henrik

    2016-04-01

    The mechanism by which a learnt synaptic weight change can contribute to learning or adaptation of brain function is a type of credit assignment problem, which is a key issue for many parts of the brain. In the cerebellum, detailed knowledge not only of the local circuitry connectivity but also of the topography of different sources of afferent/external information makes this problem particularly tractable. In addition, multiple forms of synaptic plasticity and their general rules of induction have been identified. In this review, we will discuss the possible roles of synaptic and cellular plasticity at specific locations in contributing to behavioral changes. Focus will be on the parts of the cerebellum that are devoted to limb control, which constitute a large proportion of the cortex and where the knowledge of the external connectivity is particularly well known. From this perspective, a number of sites of synaptic plasticity appear to primarily have the function of balancing the overall level of activity in the cerebellar circuitry, whereas the locations at which synaptic plasticity leads to functional changes in terms of limb control are more limited. Specifically, the postsynaptic forms of long-term potentiation (LTP) and long-term depression (LTD) at the parallel fiber synapses made on interneurons and Purkinje cells, respectively, are the types of plasticity that mediate the widest associative capacity and the tightest link between the synaptic change and the external functions that are to be controlled. PMID:25417189

  17. Evolving Synaptic Plasticity with an Evolutionary Cellular Development Model

    PubMed Central

    Yerushalmi, Uri; Teicher, Mina

    2008-01-01

    Since synaptic plasticity is regarded as a potential mechanism for memory formation and learning, there is growing interest in the study of its underlying mechanisms. Recently several evolutionary models of cellular development have been presented, but none have been shown to be able to evolve a range of biological synaptic plasticity regimes. In this paper we present a biologically plausible evolutionary cellular development model and test its ability to evolve different biological synaptic plasticity regimes. The core of the model is a genomic and proteomic regulation network which controls cells and their neurites in a 2D environment. The model has previously been shown to successfully evolve behaving organisms, enable gene related phenomena, and produce biological neural mechanisms such as temporal representations. Several experiments are described in which the model evolves different synaptic plasticity regimes using a direct fitness function. Other experiments examine the ability of the model to evolve simple plasticity regimes in a task -based fitness function environment. These results suggest that such evolutionary cellular development models have the potential to be used as a research tool for investigating the evolutionary aspects of synaptic plasticity and at the same time can serve as the basis for novel artificial computational systems. PMID:19002249

  18. AMPARs and Synaptic Plasticity: The Last 25 Years

    PubMed Central

    Huganir, Richard L.; Nicoll, Roger A.

    2014-01-01

    The study of synaptic plasticity and specifically LTP and LTD is one of the most active areas of research in neuroscience. In the last 25 years we have come a long way in our understanding of the mechanisms underlying synaptic plasticity. In 1988, AMPA and NMDA receptors were not even molecularly identified and we only had a simple model of the minimal requirements for the induction of plasticity. It is now clear that the modulation of the AMPA receptor function and membrane trafficking is critical for many forms of synaptic plasticity and a large number of proteins have been identified that regulate this complex process. Here we review the progress over the last two and a half decades and discuss the future challenges in the field. PMID:24183021

  19. Modulation of Synaptic Plasticity by Glutamatergic Gliotransmission: A Modeling Study

    PubMed Central

    De Pittà, Maurizio; Brunel, Nicolas

    2016-01-01

    Glutamatergic gliotransmission, that is, the release of glutamate from perisynaptic astrocyte processes in an activity-dependent manner, has emerged as a potentially crucial signaling pathway for regulation of synaptic plasticity, yet its modes of expression and function in vivo remain unclear. Here, we focus on two experimentally well-identified gliotransmitter pathways, (i) modulations of synaptic release and (ii) postsynaptic slow inward currents mediated by glutamate released from astrocytes, and investigate their possible functional relevance on synaptic plasticity in a biophysical model of an astrocyte-regulated synapse. Our model predicts that both pathways could profoundly affect both short- and long-term plasticity. In particular, activity-dependent glutamate release from astrocytes could dramatically change spike-timing-dependent plasticity, turning potentiation into depression (and vice versa) for the same induction protocol. PMID:27195153

  20. [Motor Proteins of Microtubules and Mechanisms of Synaptic Plasticity].

    PubMed

    Vasilyeva, N A; Pivovarov, A S

    2016-01-01

    Motor proteins of microtubules, kinesin and dynein superfamily proteins play an important role in the intracellular transport. Inside a neuron they are involved in the transport of organelles, proteins and mRNAs along the axons and dendrites to the nerve terminals and back to the cell bodies. Disturbance of axonal transport may affect neurotransmitter release and short-term presynaptic plasticity. Disturbance of dendritic transport, in particular the recycling of synaptic receptors, affects postsynaptic plasticity. The review attempts to trace the connections between the motor proteins of microtubules and mechanisms of synaptic plasticity from the perspective of their involvement in the intracellular transport of proteins and organelles, which play role in the mechanisms of synaptic plasticity. PMID:27538280

  1. Glutamatergic synaptic plasticity in the mesocorticolimbic system in addiction

    PubMed Central

    van Huijstee, Aile N.; Mansvelder, Huibert D.

    2015-01-01

    Addictive drugs remodel the brain’s reward circuitry, the mesocorticolimbic dopamine (DA) system, by inducing widespread adaptations of glutamatergic synapses. This drug-induced synaptic plasticity is thought to contribute to both the development and the persistence of addiction. This review highlights the synaptic modifications that are induced by in vivo exposure to addictive drugs and describes how these drug-induced synaptic changes may contribute to the different components of addictive behavior, such as compulsive drug use despite negative consequences and relapse. Initially, exposure to an addictive drug induces synaptic changes in the ventral tegmental area (VTA). This drug-induced synaptic potentiation in the VTA subsequently triggers synaptic changes in downstream areas of the mesocorticolimbic system, such as the nucleus accumbens (NAc) and the prefrontal cortex (PFC), with further drug exposure. These glutamatergic synaptic alterations are then thought to mediate many of the behavioral symptoms that characterize addiction. The later stages of glutamatergic synaptic plasticity in the NAc and in particular in the PFC play a role in maintaining addiction and drive relapse to drug-taking induced by drug-associated cues. Remodeling of PFC glutamatergic circuits can persist into adulthood, causing a lasting vulnerability to relapse. We will discuss how these neurobiological changes produced by drugs of abuse may provide novel targets for potential treatment strategies for addiction. PMID:25653591

  2. Dopamine and synaptic plasticity in the neostriatum

    PubMed Central

    ARBUTHNOTT, G. W.; INGHAM, C. A.; WICKENS, J. R.

    2000-01-01

    After the unilateral destruction of the dopamine input to the neostriatum there are enduring changes in rat behaviour. These have been ascribed to the loss of dopamine and the animals are often referred to as ‘hemiparkinsonian’. In the denervated neostriatum, we have shown that not only are the tyrosine hydroxylase positive boutons missing, but also the medium sized densely spiny output cells have fewer spines. Spines usually have asymmetric synapses on their heads. In a recent stereological study we were able to show that there is a loss of approximately 20% of asymmetric synapses in the lesioned neostriatum by 1 mo after the lesion. Current experiments are trying to establish the specificity of this loss. So far we have evidence suggesting that there is no obvious preferential loss of synapses from either D1 or D2 receptor immunostained dendrites in the neostriatum with damaged dopamine innervation. These experiments suggest that dopamine is somehow necessary for the maintenance of corticostriatal synapses in the neostriatum. In a different series of experiments slices of cortex and neostriatum were maintained in vitro in such a way as to preserve at least some of the corticostriatal connections. In this preparation we have been able to show that cortical stimulation results in robust excitatory postsynaptic potentials (EPSPs) recorded from inside striatal neurons. Using stimulation protocols derived from the experiments on hippocampal synaptic plasticity we have shown that the usual consequence of trains of high frequency stimulation of the cortex is the depression of the size of EPSPs in the striatal cell. In agreement with similar experiments by others, the effect seems to be influenced by NMDA receptors since the unblocking of these receptors with low Mg++ concentrations in the perfusate uncovers a potentiation of the EPSPs after trains of stimulation. Dopamine applied in the perfusion fluid round the slices has no effect but pulsatile application of

  3. Synaptic adhesion molecule IgSF11 regulates synaptic transmission and plasticity

    PubMed Central

    Shin, Hyewon; van Riesen, Christoph; Whitcomb, Daniel; Warburton, Julia M.; Jo, Jihoon; Kim, Doyoun; Kim, Sun Gyun; Um, Seung Min; Kwon, Seok-kyu; Kim, Myoung-Hwan; Roh, Junyeop Daniel; Woo, Jooyeon; Jun, Heejung; Lee, Dongmin; Mah, Won; Kim, Hyun; Kaang, Bong-Kiun; Cho, Kwangwook; Rhee, Jeong-Seop; Choquet, Daniel; Kim, Eunjoon

    2016-01-01

    Summary Synaptic adhesion molecules regulate synapse development and plasticity through mechanisms including trans-synaptic adhesion and recruitment of diverse synaptic proteins. We report here that the immunoglobulin superfamily member 11 (IgSF11), a homophilic adhesion molecule preferentially expressed in the brain, is a novel and dual-binding partner of the postsynaptic scaffolding protein PSD-95 and AMPAR glutamate receptors (AMPARs). IgSF11 requires PSD-95 binding for its excitatory synaptic localization. In addition, IgSF11 stabilizes synaptic AMPARs, as shown by IgSF11 knockdown-induced suppression of AMPAR-mediated synaptic transmission and increased surface mobility of AMPARs, measured by high-throughput, single-molecule tracking. IgSF11 deletion in mice leads to suppression of AMPAR-mediated synaptic transmission in the dentate gyrus and long-term potentiation in the CA1 region of the hippocampus. IgSF11 does not regulate the functional characteristics of AMPARs, including desensitization, deactivation, or recovery. These results suggest that IgSF11 regulates excitatory synaptic transmission and plasticity through its tripartite interactions with PSD-95 and AMPARs. PMID:26595655

  4. Synaptic plasticity in the pathophysiology and treatment of bipolar disorder.

    PubMed

    Du, Jing; Machado-Vieira, Rodrigo; Khairova, Rushaniya

    2011-01-01

    Emerging evidence suggests that synaptic plasticity is intimately involved in the pathophysiology and treatment of bipolar disorder (BPD). Under certain conditions, over-strengthened and/or weakened synapses at different circuits in the brain could disturb brain functions in parallel, causing manic-like or depressive-like behaviors in animal models. In this chapter, we summarize the regulation of synaptic plasticity by medications, psychological conditions, hormones, and neurotrophic factors, and their correlation with mood-associated animal behaviors. We conclude that increased serotonin, norepinephrine, dopamine, brain-derived neurotrophic factor (BDNF), acute corticosterone, and antidepressant treatments lead to enhanced synaptic strength in the hippocampus and also correlate with antidepressant-like behaviors. In contrast, inhibiting monoaminergic signaling, long-term stress, and pathophysiological concentrations of cytokines weakens glutamatergic synaptic strength in the hippocampus and is associated with depressive-like symptoms. PMID:25236555

  5. Hebbian Wiring Plasticity Generates Efficient Network Structures for Robust Inference with Synaptic Weight Plasticity

    PubMed Central

    Hiratani, Naoki; Fukai, Tomoki

    2016-01-01

    In the adult mammalian cortex, a small fraction of spines are created and eliminated every day, and the resultant synaptic connection structure is highly nonrandom, even in local circuits. However, it remains unknown whether a particular synaptic connection structure is functionally advantageous in local circuits, and why creation and elimination of synaptic connections is necessary in addition to rich synaptic weight plasticity. To answer these questions, we studied an inference task model through theoretical and numerical analyses. We demonstrate that a robustly beneficial network structure naturally emerges by combining Hebbian-type synaptic weight plasticity and wiring plasticity. Especially in a sparsely connected network, wiring plasticity achieves reliable computation by enabling efficient information transmission. Furthermore, the proposed rule reproduces experimental observed correlation between spine dynamics and task performance. PMID:27303271

  6. Location-dependent synaptic plasticity rules by dendritic spine cooperativity

    PubMed Central

    Weber, Jens P.; Andrásfalvy, Bertalan K.; Polito, Marina; Magó, Ádám; Ujfalussy, Balázs B.; Makara, Judit K.

    2016-01-01

    Nonlinear interactions between coactive synapses enable neurons to discriminate between spatiotemporal patterns of inputs. Using patterned postsynaptic stimulation by two-photon glutamate uncaging, here we investigate the sensitivity of synaptic Ca2+ signalling and long-term plasticity in individual spines to coincident activity of nearby synapses. We find a proximodistally increasing gradient of nonlinear NMDA receptor (NMDAR)-mediated amplification of spine Ca2+ signals by a few neighbouring coactive synapses along individual perisomatic dendrites. This synaptic cooperativity does not require dendritic spikes, but is correlated with dendritic Na+ spike propagation strength. Furthermore, we show that repetitive synchronous subthreshold activation of small spine clusters produces input specific, NMDAR-dependent cooperative long-term potentiation at distal but not proximal dendritic locations. The sensitive synaptic cooperativity at distal dendritic compartments shown here may promote the formation of functional synaptic clusters, which in turn can facilitate active dendritic processing and storage of information encoded in spatiotemporal synaptic activity patterns. PMID:27098773

  7. Location-dependent synaptic plasticity rules by dendritic spine cooperativity.

    PubMed

    Weber, Jens P; Andrásfalvy, Bertalan K; Polito, Marina; Magó, Ádám; Ujfalussy, Balázs B; Makara, Judit K

    2016-01-01

    Nonlinear interactions between coactive synapses enable neurons to discriminate between spatiotemporal patterns of inputs. Using patterned postsynaptic stimulation by two-photon glutamate uncaging, here we investigate the sensitivity of synaptic Ca(2+) signalling and long-term plasticity in individual spines to coincident activity of nearby synapses. We find a proximodistally increasing gradient of nonlinear NMDA receptor (NMDAR)-mediated amplification of spine Ca(2+) signals by a few neighbouring coactive synapses along individual perisomatic dendrites. This synaptic cooperativity does not require dendritic spikes, but is correlated with dendritic Na(+) spike propagation strength. Furthermore, we show that repetitive synchronous subthreshold activation of small spine clusters produces input specific, NMDAR-dependent cooperative long-term potentiation at distal but not proximal dendritic locations. The sensitive synaptic cooperativity at distal dendritic compartments shown here may promote the formation of functional synaptic clusters, which in turn can facilitate active dendritic processing and storage of information encoded in spatiotemporal synaptic activity patterns. PMID:27098773

  8. Diffusion dynamics of synaptic molecules during inhibitory postsynaptic plasticity

    PubMed Central

    Petrini, Enrica Maria; Barberis, Andrea

    2014-01-01

    The plasticity of inhibitory transmission is expected to play a key role in the modulation of neuronal excitability and network function. Over the last two decades, the investigation of the determinants of inhibitory synaptic plasticity has allowed distinguishing presynaptic and postsynaptic mechanisms. While there has been a remarkable progress in the characterization of presynaptically-expressed plasticity of inhibition, the postsynaptic mechanisms of inhibitory long-term synaptic plasticity only begin to be unraveled. At postsynaptic level, the expression of inhibitory synaptic plasticity involves the rearrangement of the postsynaptic molecular components of the GABAergic synapse, including GABAA receptors, scaffold proteins and structural molecules. This implies a dynamic modulation of receptor intracellular trafficking and receptor surface lateral diffusion, along with regulation of the availability and distribution of scaffold proteins. This Review will focus on the mechanisms of the multifaceted molecular reorganization of the inhibitory synapse during postsynaptic plasticity, with special emphasis on the key role of protein dynamics to ensure prompt and reliable activity-dependent adjustments of synaptic strength. PMID:25294987

  9. Circuit reactivation dynamically regulates synaptic plasticity in neocortex

    NASA Astrophysics Data System (ADS)

    Kruskal, Peter B.; Li, Lucy; Maclean, Jason N.

    2013-10-01

    Circuit reactivations involve a stereotyped sequence of neuronal firing and have been behaviourally linked to memory consolidation. Here we use multiphoton imaging and patch-clamp recording, and observe sparse and stereotyped circuit reactivations that correspond to UP states within active neurons. To evaluate the effect of the circuit on synaptic plasticity, we trigger a single spike-timing-dependent plasticity (STDP) pairing once per circuit reactivation. The pairings reliably fall within a particular epoch of the circuit sequence and result in long-term potentiation. During reactivation, the amplitude of plasticity significantly correlates with the preceding 20-25 ms of membrane depolarization rather than the depolarization at the time of pairing. This circuit-dependent plasticity provides a natural constraint on synaptic potentiation, regulating the inherent instability of STDP in an assembly phase-sequence model. Subthreshold voltage during endogenous circuit reactivations provides a critical informative context for plasticity and facilitates the stable consolidation of a spatiotemporal sequence.

  10. Synaptic plasticity functions in an organic electrochemical transistor

    NASA Astrophysics Data System (ADS)

    Gkoupidenis, Paschalis; Schaefer, Nathan; Strakosas, Xenofon; Fairfield, Jessamyn A.; Malliaras, George G.

    2015-12-01

    Synaptic plasticity functions play a crucial role in the transmission of neural signals in the brain. Short-term plasticity is required for the transmission, encoding, and filtering of the neural signal, whereas long-term plasticity establishes more permanent changes in neural microcircuitry and thus underlies memory and learning. The realization of bioinspired circuits that can actually mimic signal processing in the brain demands the reproduction of both short- and long-term aspects of synaptic plasticity in a single device. Here, we demonstrate the implementation of neuromorphic functions similar to biological memory, such as short- to long-term memory transition, in non-volatile organic electrochemical transistors (OECTs). Depending on the training of the OECT, the device displays either short- or long-term plasticity, therefore, exhibiting non von Neumann characteristics with merged processing and storing functionalities. These results are a first step towards the implementation of organic-based neuromorphic circuits.

  11. Reduction of common synaptic drive to ankle dorsiflexor motoneurons during walking in patients with spinal cord lesion.

    PubMed

    Hansen, N L; Conway, B A; Halliday, D M; Hansen, S; Pyndt, H S; Biering-Sørensen, F; Nielsen, J B

    2005-08-01

    It is possible to obtain information about the synaptic drive to motoneurons during walking by analyzing motor-unit coupling in the time and frequency domains. The purpose of the present study was to compare motor-unit coupling during walking in healthy subjects and patients with incomplete spinal cord lesion to obtain evidence of differences in the motoneuronal drive that result from the lesion. Such information is of importance for development of new strategies for gait restoration. Twenty patients with incomplete spinal cord lesion (SCL) participated in the study. Control experiments were performed in 11 healthy subjects. In all healthy subjects, short-term synchronization was evident in the discharge of tibialis anterior (TA) motor units during the swing phase of treadmill walking. This was identified from the presence of a narrow central peak in cumulant densities constructed from paired EMG recordings and from the presence of significant coherence between these signals in the 10- to 20-Hz band. Such indicators of short-term synchrony were either absent or very small in the patient group. The relationship between the amount of short-term synchrony and the magnitude of the 10- to 20-Hz coherence in the patients is discussed in relation to gait ability. It is suggested that supraspinal drive to the spinal cord is responsible for short-term synchrony and coherence in the 10- to 20-Hz frequency band during walking in healthy subjects. Absence or reduction of these features may serve as physiological markers of impaired supraspinal control of gait in SCL patients. Such markers could have diagnostic and prognostic value in relation to the recovery of locomotion in patients with central motor lesions. PMID:15800077

  12. Synaptic plasticity in the auditory system: a review.

    PubMed

    Friauf, Eckhard; Fischer, Alexander U; Fuhr, Martin F

    2015-07-01

    Synaptic transmission via chemical synapses is dynamic, i.e., the strength of postsynaptic responses may change considerably in response to repeated synaptic activation. Synaptic strength is increased during facilitation, augmentation and potentiation, whereas a decrease in synaptic strength is characteristic for depression and attenuation. This review attempts to discuss the literature on short-term and long-term synaptic plasticity in the auditory brainstem of mammals and birds. One hallmark of the auditory system, particularly the inner ear and lower brainstem stations, is information transfer through neurons that fire action potentials at very high frequency, thereby activating synapses >500 times per second. Some auditory synapses display morphological specializations of the presynaptic terminals, e.g., calyceal extensions, whereas other auditory synapses do not. The review focuses on short-term depression and short-term facilitation, i.e., plastic changes with durations in the millisecond range. Other types of short-term synaptic plasticity, e.g., posttetanic potentiation and depolarization-induced suppression of excitation, will be discussed much more briefly. The same holds true for subtypes of long-term plasticity, like prolonged depolarizations and spike-time-dependent plasticity. We also address forms of plasticity in the auditory brainstem that do not comprise synaptic plasticity in a strict sense, namely short-term suppression, paired tone facilitation, short-term adaptation, synaptic adaptation and neural adaptation. Finally, we perform a meta-analysis of 61 studies in which short-term depression (STD) in the auditory system is opposed to short-term depression at non-auditory synapses in order to compare high-frequency neurons with those that fire action potentials at a lower rate. This meta-analysis reveals considerably less STD in most auditory synapses than in non-auditory ones, enabling reliable, failure-free synaptic transmission even at

  13. AMPA receptor regulation during synaptic plasticity in hippocampus and neocortex

    PubMed Central

    Lee, Hey-Kyoung; Kirkwood, Alfredo

    2011-01-01

    Discovery of long-term potentiation (LTP) in the dentate gyrus of the rabbit hippocampus by Bliss and Lømo opened up a whole new field to study activity-dependent long-term synaptic modifications in the brain. Since then hippocampal synapses have been a key model system to study the mechanisms of different forms of synaptic plasticity. At least for the postsynaptic forms of LTP and long-term depression (LTD), regulation of AMPA receptors (AMPARs) has emerged as a key mechanism. While many of the synaptic plasticity mechanisms uncovered in at the hippocampal synapses apply to synapses across diverse brain regions, there are differences in the mechanisms that often reveal the specific functional requirements of the brain area under study. Here we will review AMPAR regulation underlying synaptic plasticity in hippocampus and neocortex. The main focus of this review will be placed on postsynaptic forms of synaptic plasticity that impinge on the regulation of AMPARs using hippocampal CA1 and primary sensory cortices as examples. And through the comparison, we will highlight the key similarities and functional differences between the two synapses. PMID:21856433

  14. Nanoconnectomic upper bound on the variability of synaptic plasticity

    PubMed Central

    Bartol, Thomas M; Bromer, Cailey; Kinney, Justin; Chirillo, Michael A; Bourne, Jennifer N; Harris, Kristen M; Sejnowski, Terrence J

    2015-01-01

    Information in a computer is quantified by the number of bits that can be stored and recovered. An important question about the brain is how much information can be stored at a synapse through synaptic plasticity, which depends on the history of probabilistic synaptic activity. The strong correlation between size and efficacy of a synapse allowed us to estimate the variability of synaptic plasticity. In an EM reconstruction of hippocampal neuropil we found single axons making two or more synaptic contacts onto the same dendrites, having shared histories of presynaptic and postsynaptic activity. The spine heads and neck diameters, but not neck lengths, of these pairs were nearly identical in size. We found that there is a minimum of 26 distinguishable synaptic strengths, corresponding to storing 4.7 bits of information at each synapse. Because of stochastic variability of synaptic activation the observed precision requires averaging activity over several minutes. DOI: http://dx.doi.org/10.7554/eLife.10778.001 PMID:26618907

  15. Cell-specific synaptic plasticity induced by network oscillations

    PubMed Central

    Zarnadze, Shota; Bäuerle, Peter; Santos-Torres, Julio; Böhm, Claudia; Schmitz, Dietmar; Geiger, Jörg RP

    2016-01-01

    Gamma rhythms are known to contribute to the process of memory encoding. However, little is known about the underlying mechanisms at the molecular, cellular and network levels. Using local field potential recording in awake behaving mice and concomitant field potential and whole-cell recordings in slice preparations we found that gamma rhythms lead to activity-dependent modification of hippocampal networks, including alterations in sharp wave-ripple complexes. Network plasticity, expressed as long-lasting increases in sharp wave-associated synaptic currents, exhibits enhanced excitatory synaptic strength in pyramidal cells that is induced postsynaptically and depends on metabotropic glutamate receptor-5 activation. In sharp contrast, alteration of inhibitory synaptic strength is independent of postsynaptic activation and less pronounced. Further, we found a cell type-specific, directionally biased synaptic plasticity of two major types of GABAergic cells, parvalbumin- and cholecystokinin-expressing interneurons. Thus, we propose that gamma frequency oscillations represent a network state that introduces long-lasting synaptic plasticity in a cell-specific manner. DOI: http://dx.doi.org/10.7554/eLife.14912.001 PMID:27218453

  16. Cell-specific synaptic plasticity induced by network oscillations.

    PubMed

    Zarnadze, Shota; Bäuerle, Peter; Santos-Torres, Julio; Böhm, Claudia; Schmitz, Dietmar; Geiger, Jörg Rp; Dugladze, Tamar; Gloveli, Tengis

    2016-01-01

    Gamma rhythms are known to contribute to the process of memory encoding. However, little is known about the underlying mechanisms at the molecular, cellular and network levels. Using local field potential recording in awake behaving mice and concomitant field potential and whole-cell recordings in slice preparations we found that gamma rhythms lead to activity-dependent modification of hippocampal networks, including alterations in sharp wave-ripple complexes. Network plasticity, expressed as long-lasting increases in sharp wave-associated synaptic currents, exhibits enhanced excitatory synaptic strength in pyramidal cells that is induced postsynaptically and depends on metabotropic glutamate receptor-5 activation. In sharp contrast, alteration of inhibitory synaptic strength is independent of postsynaptic activation and less pronounced. Further, we found a cell type-specific, directionally biased synaptic plasticity of two major types of GABAergic cells, parvalbumin- and cholecystokinin-expressing interneurons. Thus, we propose that gamma frequency oscillations represent a network state that introduces long-lasting synaptic plasticity in a cell-specific manner. PMID:27218453

  17. Energy Efficient Sparse Connectivity from Imbalanced Synaptic Plasticity Rules

    PubMed Central

    Sacramento, João; Wichert, Andreas; van Rossum, Mark C. W.

    2015-01-01

    It is believed that energy efficiency is an important constraint in brain evolution. As synaptic transmission dominates energy consumption, energy can be saved by ensuring that only a few synapses are active. It is therefore likely that the formation of sparse codes and sparse connectivity are fundamental objectives of synaptic plasticity. In this work we study how sparse connectivity can result from a synaptic learning rule of excitatory synapses. Information is maximised when potentiation and depression are balanced according to the mean presynaptic activity level and the resulting fraction of zero-weight synapses is around 50%. However, an imbalance towards depression increases the fraction of zero-weight synapses without significantly affecting performance. We show that imbalanced plasticity corresponds to imposing a regularising constraint on the L 1-norm of the synaptic weight vector, a procedure that is well-known to induce sparseness. Imbalanced plasticity is biophysically plausible and leads to more efficient synaptic configurations than a previously suggested approach that prunes synapses after learning. Our framework gives a novel interpretation to the high fraction of silent synapses found in brain regions like the cerebellum. PMID:26046817

  18. Reactive Oxygen Species: Physiological and Physiopathological Effects on Synaptic Plasticity

    PubMed Central

    Beckhauser, Thiago Fernando; Francis-Oliveira, José; De Pasquale, Roberto

    2016-01-01

    In the mammalian central nervous system, reactive oxygen species (ROS) generation is counterbalanced by antioxidant defenses. When large amounts of ROS accumulate, antioxidant mechanisms become overwhelmed and oxidative cellular stress may occur. Therefore, ROS are typically characterized as toxic molecules, oxidizing membrane lipids, changing the conformation of proteins, damaging nucleic acids, and causing deficits in synaptic plasticity. High ROS concentrations are associated with a decline in cognitive functions, as observed in some neurodegenerative disorders and age-dependent decay of neuroplasticity. Nevertheless, controlled ROS production provides the optimal redox state for the activation of transductional pathways involved in synaptic changes. Since ROS may regulate neuronal activity and elicit negative effects at the same time, the distinction between beneficial and deleterious consequences is unclear. In this regard, this review assesses current research and describes the main sources of ROS in neurons, specifying their involvement in synaptic plasticity and distinguishing between physiological and pathological processes implicated. PMID:27625575

  19. Transferrin Receptor Controls AMPA Receptor Trafficking Efficiency and Synaptic Plasticity

    PubMed Central

    Liu, Ke; Lei, Run; Li, Qiong; Wang, Xin-Xin; Wu, Qian; An, Peng; Zhang, Jianchao; Zhu, Minyan; Xu, Zhiheng; Hong, Yang; Wang, Fudi; Shen, Ying; Li, Hongchang; Li, Huashun

    2016-01-01

    Transferrin receptor (TFR) is an important iron transporter regulating iron homeostasis and has long been used as a marker for clathrin mediated endocytosis. However, little is known about its additional function other than iron transport in the development of central nervous system (CNS). Here we demonstrate that TFR functions as a regulator to control AMPA receptor trafficking efficiency and synaptic plasticity. The conditional knockout (KO) of TFR in neural progenitor cells causes mice to develop progressive epileptic seizure, and dramatically reduces basal synaptic transmission and long-term potentiation (LTP). We further demonstrate that TFR KO remarkably reduces the binding efficiency of GluR2 to AP2 and subsequently decreases AMPA receptor endocytosis and recycling. Thus, our study reveals that TFR functions as a novel regulator to control AMPA trafficking efficiency and synaptic plasticity. PMID:26880306

  20. Synaptic plasticity in animal models of early Alzheimer's disease.

    PubMed Central

    Rowan, Michael J; Klyubin, Igor; Cullen, William K; Anwyl, Roger

    2003-01-01

    Amyloid beta-protein (Abeta) is believed to be a primary cause of Alzheimer's disease (AD). Recent research has examined the potential importance of soluble species of Abeta in synaptic dysfunction, long before fibrillary Abeta is deposited and neurodegenerative changes occur. Hippocampal excitatory synaptic transmission and plasticity are disrupted in transgenic mice overexpressing human amyloid precursor protein with early onset familial AD mutations, and in rats after exogenous application of synthetic Abeta both in vitro and in vivo. Recently, naturally produced soluble Abeta was shown to block the persistence of long-term potentiation (LTP) in the intact hippocampus. Sub-nanomolar concentrations of oligomeric Abeta were sufficient to inhibit late LTP, pointing to a possible reason for the sensitivity of hippocampus-dependent memory to impairment in the early preclinical stages of AD. Having identified the active species of Abeta that can play havoc with synaptic plasticity, it is hoped that new ways of targeting early AD can be developed. PMID:12740129

  1. Reactive Oxygen Species: Physiological and Physiopathological Effects on Synaptic Plasticity.

    PubMed

    Beckhauser, Thiago Fernando; Francis-Oliveira, José; De Pasquale, Roberto

    2016-01-01

    In the mammalian central nervous system, reactive oxygen species (ROS) generation is counterbalanced by antioxidant defenses. When large amounts of ROS accumulate, antioxidant mechanisms become overwhelmed and oxidative cellular stress may occur. Therefore, ROS are typically characterized as toxic molecules, oxidizing membrane lipids, changing the conformation of proteins, damaging nucleic acids, and causing deficits in synaptic plasticity. High ROS concentrations are associated with a decline in cognitive functions, as observed in some neurodegenerative disorders and age-dependent decay of neuroplasticity. Nevertheless, controlled ROS production provides the optimal redox state for the activation of transductional pathways involved in synaptic changes. Since ROS may regulate neuronal activity and elicit negative effects at the same time, the distinction between beneficial and deleterious consequences is unclear. In this regard, this review assesses current research and describes the main sources of ROS in neurons, specifying their involvement in synaptic plasticity and distinguishing between physiological and pathological processes implicated. PMID:27625575

  2. Isoform Specificity of Protein Kinase Cs in Synaptic Plasticity

    ERIC Educational Resources Information Center

    Sossin, Wayne S.

    2007-01-01

    Protein kinase Cs (PKCs) are implicated in many forms of synaptic plasticity. However, the specific isoform(s) of PKC that underlie(s) these events are often not known. We have used "Aplysia" as a model system in order to investigate the isoform specificity of PKC actions due to the presence of fewer isoforms and a large number of documented…

  3. Progesterone Regulation of Synaptic Transmission and Plasticity in Rodent Hippocampus

    ERIC Educational Resources Information Center

    Foy, Michael R.; Akopian, Garnik; Thompson, Richard F.

    2008-01-01

    Ovarian hormones influence memory formation by eliciting changes in neural activity. The effects of various concentrations of progesterone (P4) on synaptic transmission and plasticity associated with long-term potentiation (LTP) and long-term depression (LTD) were studied using in vitro hippocampal slices. Extracellular studies show that the…

  4. proBDNF negatively regulates neuronal remodeling, synaptic transmission, and synaptic plasticity in hippocampus.

    PubMed

    Yang, Jianmin; Harte-Hargrove, Lauren C; Siao, Chia-Jen; Marinic, Tina; Clarke, Roshelle; Ma, Qian; Jing, Deqiang; Lafrancois, John J; Bath, Kevin G; Mark, Willie; Ballon, Douglas; Lee, Francis S; Scharfman, Helen E; Hempstead, Barbara L

    2014-05-01

    Experience-dependent plasticity shapes postnatal development of neural circuits, but the mechanisms that refine dendritic arbors, remodel spines, and impair synaptic activity are poorly understood. Mature brain-derived neurotrophic factor (BDNF) modulates neuronal morphology and synaptic plasticity, including long-term potentiation (LTP) via TrkB activation. BDNF is initially translated as proBDNF, which binds p75(NTR). In vitro, recombinant proBDNF modulates neuronal structure and alters hippocampal long-term plasticity, but the actions of endogenously expressed proBDNF are unclear. Therefore, we generated a cleavage-resistant probdnf knockin mouse. Our results demonstrate that proBDNF negatively regulates hippocampal dendritic complexity and spine density through p75(NTR). Hippocampal slices from probdnf mice exhibit depressed synaptic transmission, impaired LTP, and enhanced long-term depression (LTD) in area CA1. These results suggest that proBDNF acts in vivo as a biologically active factor that regulates hippocampal structure, synaptic transmission, and plasticity, effects that are distinct from those of mature BDNF. PMID:24746813

  5. Different dynamin blockers interfere with distinct phases of synaptic endocytosis during stimulation in motoneurones

    PubMed Central

    Linares-Clemente, Pedro; Rozas, José L; Mircheski, Josif; García-Junco-Clemente, Pablo; Martínez-López, José A; Nieto-González, José L; Vázquez, M Eugenio; Pintado, C Oscar; Fernández-Chacón, Rafael

    2015-01-01

    Key points Neurotransmitter release requires a tight coupling between synaptic vesicle exocytosis and endocytosis with dynamin being a key protein in that process. We used imaging techniques to examine the time course of endocytosis at mouse motor nerve terminals expressing synaptopHluorin, a genetically encoded reporter of the synaptic vesicle cycle. We separated two sequential phases of endocytosis taking place during the stimulation train: early and late endocytosis. Freshly released synaptic vesicle proteins are preferentially retrieved during the early phase, which is very sensitive to dynasore, an inhibitor of dynamin GTPase activity. Synaptic vesicle proteins pre-existing at the plasma membrane before the stimulation are preferentially retrieved during the late phase, which is very sensitive to myristyl trimethyl ammonium bromide (MitMAB), an inhibitor of the dynamin–phospholipid interaction. Abstract Synaptic endocytosis is essential at nerve terminals to maintain neurotransmitter release by exocytosis. Here, at the neuromuscular junction of synaptopHluorin (spH) transgenic mice, we have used imaging to study exo- and endocytosis occurring simultaneously during nerve stimulation. We observed two endocytosis components, which occur sequentially during stimulation. The early component of endocytosis apparently internalizes spH molecules freshly exocytosed. This component was sensitive to dynasore, a blocker of dynamin 1 GTPase activity. In contrast, this early component was resistant to myristyl trimethyl ammonium bromide (MiTMAB), a competitive agent that blocks dynamin binding to phospholipid membranes. The late component of endocytosis is likely to internalize spH molecules that pre-exist at the plasma membrane before stimulation starts. This component was blocked by MiTMAB, perhaps by impairing the binding of dynamin or other key endocytic proteins to phospholipid membranes. Our study suggests the co-existence of two sequential synaptic endocytosis

  6. Synaptic interactions of retrogradely labeled hypoglossal motoneurons with substance P-like immunoreactive nerve terminals in the cat: a dual-labeling electron microscopic study.

    PubMed

    Gatti, P J; Coleman, W C; Shirahata, M; Johnson, T A; Massari, V J

    1996-07-01

    This study has investigated the synaptic interactions between hypoglossal motoneurons and substance P (SP)-immunoreactive terminals. Cholera toxin B conjugated to horseradish peroxidase was injected into the tip of the tongue on the right side of six ketamine-anesthetized cats. Two to five days later, the animals were killed. Cells containing HRP were labeled with a histochemical reaction utilizing tetramethylbenzidine (TMB) as the chromogen. TMB forms crystalline reaction products that are very distinct at the electron microscopic level. The tissues were then processed for immunocytochemistry using an antiserum against SP. The chromogen used in this case, diaminobenzidine, yields amorphous reaction products. At the light microscopic level, labeled cells were observed primarily ipsilaterally in both intermediate and ventrolateral subdivisions of the hypoglossal nucleus. The majority of these labeled cells were seen at the level of obex. At the electron microscopic level, both asymmetric and symmetric synapses were observed. SP-immunoreactive nerve terminals formed asymmetric synapses with labeled dendrites and symmetric synapses with labeled perikarya. SP-labeled terminals also synapsed on unlabeled dendrites and somata. These are the first ultrastructural studies demonstrating synaptic interactions between hypoglossal motoneurons and SP terminals. These studies demonstrate that hypoglossal motoneurons that innervate intrinsic tongue muscles are modulated by SP and that SP may play a role in the control of fine movements of the tongue. PMID:8836682

  7. From synaptic plasticity to spatial maps and sequence learning.

    PubMed

    Mehta, Mayank R

    2015-06-01

    The entorhinal-hippocampal circuit is crucial for several forms of learning and memory, especially sequence learning, including spatial navigation. The challenge is to understand the underlying mechanisms. Pioneering discoveries of spatial selectivity in this circuit, i.e. place cells and grid cells, provided a major step forward in tackling this challenge. Considerable research has also shown that sequence learning relies on synaptic plasticity, especially the Hebbian or the NMDAR-dependent synaptic plasticity. This raises several questions: Are spatial maps plastic? If so, what is the contribution of Hebbian plasticity to spatial map plasticity? How does the spatial map plasticity contribute to sequence learning? A combination of computational and experimental studies has shown that NMDAR-mediated plasticity and theta rhythm can have specific effects on the formation and experiential modification of spatial maps to facilitate predictive coding. Advances in transgenic techniques have provided further support for these mechanisms. Although many exciting challenges remain, these findings have brought us closer to solving the puzzle of how the hippocampal system contributes to spatial memory, and point to a way forward. PMID:25929239

  8. Emerging Link between Alzheimer's Disease and Homeostatic Synaptic Plasticity

    PubMed Central

    Jang, Sung-Soo; Chung, Hee Jung

    2016-01-01

    Alzheimer's disease (AD) is an irreversible brain disorder characterized by progressive cognitive decline and neurodegeneration of brain regions that are crucial for learning and memory. Although intracellular neurofibrillary tangles and extracellular senile plaques, composed of insoluble amyloid-β (Aβ) peptides, have been the hallmarks of postmortem AD brains, memory impairment in early AD correlates better with pathological accumulation of soluble Aβ oligomers and persistent weakening of excitatory synaptic strength, which is demonstrated by inhibition of long-term potentiation, enhancement of long-term depression, and loss of synapses. However, current, approved interventions aiming to reduce Aβ levels have failed to retard disease progression; this has led to a pressing need to identify and target alternative pathogenic mechanisms of AD. Recently, it has been suggested that the disruption of Hebbian synaptic plasticity in AD is due to aberrant metaplasticity, which is a form of homeostatic plasticity that tunes the magnitude and direction of future synaptic plasticity based on previous neuronal or synaptic activity. This review examines emerging evidence for aberrant metaplasticity in AD. Putative mechanisms underlying aberrant metaplasticity in AD will also be discussed. We hope this review inspires future studies to test the extent to which these mechanisms contribute to the etiology of AD and offer therapeutic targets. PMID:27019755

  9. Spontaneous Activity Drives Local Synaptic Plasticity In Vivo.

    PubMed

    Winnubst, Johan; Cheyne, Juliette E; Niculescu, Dragos; Lohmann, Christian

    2015-07-15

    Spontaneous activity fine-tunes neuronal connections in the developing brain. To explore the underlying synaptic plasticity mechanisms, we monitored naturally occurring changes in spontaneous activity at individual synapses with whole-cell patch-clamp recordings and simultaneous calcium imaging in the mouse visual cortex in vivo. Analyzing activity changes across large populations of synapses revealed a simple and efficient local plasticity rule: synapses that exhibit low synchronicity with nearby neighbors (<12 μm) become depressed in their transmission frequency. Asynchronous electrical stimulation of individual synapses in hippocampal slices showed that this is due to a decrease in synaptic transmission efficiency. Accordingly, experimentally increasing local synchronicity, by stimulating synapses in response to spontaneous activity at neighboring synapses, stabilized synaptic transmission. Finally, blockade of the high-affinity proBDNF receptor p75(NTR) prevented the depression of asynchronously stimulated synapses. Thus, spontaneous activity drives local synaptic plasticity at individual synapses in an "out-of-sync, lose-your-link" fashion through proBDNF/p75(NTR) signaling to refine neuronal connectivity. VIDEO ABSTRACT. PMID:26182421

  10. Sleep and protein synthesis-dependent synaptic plasticity: impacts of sleep loss and stress

    PubMed Central

    Grønli, Janne; Soulé, Jonathan; Bramham, Clive R.

    2014-01-01

    Sleep has been ascribed a critical role in cognitive functioning. Several lines of evidence implicate sleep in the consolidation of synaptic plasticity and long-term memory. Stress disrupts sleep while impairing synaptic plasticity and cognitive performance. Here, we discuss evidence linking sleep to mechanisms of protein synthesis-dependent synaptic plasticity and synaptic scaling. We then consider how disruption of sleep by acute and chronic stress may impair these mechanisms and degrade sleep function. PMID:24478645

  11. Translational regulatory mechanisms in persistent forms of synaptic plasticity.

    PubMed

    Kelleher, Raymond J; Govindarajan, Arvind; Tonegawa, Susumu

    2004-09-30

    Memory and synaptic plasticity exhibit distinct temporal phases, with long-lasting forms distinguished by their dependence on macromolecular synthesis. Prevailing models for the molecular mechanisms underlying long-lasting synaptic plasticity have largely focused on transcriptional regulation. However, a growing body of evidence now supports a crucial role for neuronal activity-dependent mRNA translation, which may occur in dendrites for a subset of neuronal mRNAs. Recent work has begun to define the signaling mechanisms coupling synaptic activation to the protein synthesis machinery. The ERK and mTOR signaling pathways have been shown to regulate the activity of the general translational machinery, while the translation of particular classes of mRNAs is additionally controlled by gene-specific mechanisms. Rapid enhancement of the synthesis of a diverse array of neuronal proteins through such mechanisms provides the components necessary for persistent forms of LTP and LTD. These findings have important implications for the synapse specificity and associativity of protein synthesis-dependent changes in synaptic strength. PMID:15450160

  12. Calcium Channels and Short-term Synaptic Plasticity*

    PubMed Central

    Catterall, William A.; Leal, Karina; Nanou, Evanthia

    2013-01-01

    Voltage-gated Ca2+ channels in presynaptic nerve terminals initiate neurotransmitter release in response to depolarization by action potentials from the nerve axon. The strength of synaptic transmission is dependent on the third to fourth power of Ca2+ entry, placing the Ca2+ channels in a unique position for regulation of synaptic strength. Short-term synaptic plasticity regulates the strength of neurotransmission through facilitation and depression on the millisecond time scale and plays a key role in encoding information in the nervous system. CaV2.1 channels are the major source of Ca2+ entry for neurotransmission in the central nervous system. They are tightly regulated by Ca2+, calmodulin, and related Ca2+ sensor proteins, which cause facilitation and inactivation of channel activity. Emerging evidence reviewed here points to this mode of regulation of CaV2.1 channels as a major contributor to short-term synaptic plasticity of neurotransmission and its diversity among synapses. PMID:23400776

  13. Short-term synaptic plasticity and heterogeneity in neural systems

    NASA Astrophysics Data System (ADS)

    Mejias, J. F.; Kappen, H. J.; Longtin, A.; Torres, J. J.

    2013-01-01

    We review some recent results on neural dynamics and information processing which arise when considering several biophysical factors of interest, in particular, short-term synaptic plasticity and neural heterogeneity. The inclusion of short-term synaptic plasticity leads to enhanced long-term memory capacities, a higher robustness of memory to noise, and irregularity in the duration of the so-called up cortical states. On the other hand, considering some level of neural heterogeneity in neuron models allows neural systems to optimize information transmission in rate coding and temporal coding, two strategies commonly used by neurons to codify information in many brain areas. In all these studies, analytical approximations can be made to explain the underlying dynamics of these neural systems.

  14. Synaptic Plasticity and Neurological Disorders in Neurotropic Viral Infections

    PubMed Central

    Atluri, Venkata Subba Rao; Hidalgo, Melissa; Samikkannu, Thangavel; Kurapati, Kesava Rao Venkata; Nair, Madhavan

    2015-01-01

    Based on the type of cells or tissues they tend to harbor or attack, many of the viruses are characterized. But, in case of neurotropic viruses, it is not possible to classify them based on their tropism because many of them are not primarily neurotropic. While rabies and poliovirus are considered as strictly neurotropic, other neurotropic viruses involve nervous tissue only secondarily. Since the AIDS pandemic, the interest in neurotropic viral infections has become essential for all clinical neurologists. Although these neurotropic viruses are able to be harbored in or infect the nervous system, not all the neurotropic viruses have been reported to cause disrupted synaptic plasticity and impaired cognitive functions. In this review, we have discussed the neurotropic viruses, which play a major role in altered synaptic plasticity and neurological disorders. PMID:26649202

  15. A Model of Bidirectional Synaptic Plasticity: From Signaling Network to Channel Conductance

    ERIC Educational Resources Information Center

    Castellani, Gastone C.; Quinlan, Elizabeth M.; Bersani, Ferdinando; Cooper, Leon N.; Shouval, Harel Z.

    2005-01-01

    In many regions of the brain, including the mammalian cortex, the strength of synaptic transmission can be bidirectionally regulated by cortical activity (synaptic plasticity). One line of evidence indicates that long-term synaptic potentiation (LTP) and long-term synaptic depression (LTD), correlate with the phosphorylation/dephosphorylation of…

  16. Convergent evidence for abnormal striatal synaptic plasticity in dystonia

    PubMed Central

    Peterson, David A.; Sejnowski, Terrence J.; Poizner, Howard

    2010-01-01

    Dystonia is a functionally disabling movement disorder characterized by abnormal movements and postures. Although substantial recent progress has been made in identifying genetic factors, the pathophysiology of the disease remains a mystery. A provocative suggestion gaining broader acceptance is that some aspect of neural plasticity may be abnormal. There is also evidence that, at least in some forms of dystonia, sensorimotor “use” may be a contributing factor. Most empirical evidence of abnormal plasticity in dystonia comes from measures of sensorimotor cortical organization and physiology. However, the basal ganglia also play a critical role in sensorimotor function. Furthermore, the basal ganglia are prominently implicated in traditional models of dystonia, are the primary targets of stereotactic neurosurgical interventions, and provide a neural substrate for sensorimotor learning influenced by neuromodulators. Our working hypothesis is that abnormal plasticity in the basal ganglia is a critical link between the etiology and pathophysiology of dystonia. In this review we set up the background for this hypothesis by integrating a large body of disparate indirect evidence that dystonia may involve abnormalities in synaptic plasticity in the striatum. After reviewing evidence implicating the striatum in dystonia, we focus on the influence of two neuromodulatory systems: dopamine and acetylcholine. For both of these neuromodulators, we first describe the evidence for abnormalities in dystonia and then the means by which it may influence striatal synaptic plasticity. Collectively, the evidence suggests that many different forms of dystonia may involve abnormal plasticity in the striatum. An improved understanding of these altered plastic processes would help inform our understanding of the pathophysiology of dystonia, and, given the role of the striatum in sensorimotor learning, provide a principled basis for designing therapies aimed at the dynamic processes

  17. Fragile X Syndrome: Keys to the Molecular Genetics of Synaptic Plasticity

    ERIC Educational Resources Information Center

    Lombroso, Paul J.; Ogren, Marilee P.

    2008-01-01

    Fragile X syndrome, the most common form of inherited mental retardation is discussed. The relationship between specific impairments in synaptic plasticity and Fragile X syndrome is investigated as it strengthens synaptic contacts between neurons.

  18. A Nonlinear Cable Framework for Bidirectional Synaptic Plasticity

    PubMed Central

    Iannella, Nicolangelo; Launey, Thomas; Abbott, Derek; Tanaka, Shigeru

    2014-01-01

    Finding the rules underlying how axons of cortical neurons form neural circuits and modify their corresponding synaptic strength is the still subject of intense research. Experiments have shown that internal calcium concentration, and both the precise timing and temporal order of pre and postsynaptic action potentials, are important constituents governing whether the strength of a synapse located on the dendrite is increased or decreased. In particular, previous investigations focusing on spike timing-dependent plasticity (STDP) have typically observed an asymmetric temporal window governing changes in synaptic efficacy. Such a temporal window emphasizes that if a presynaptic spike, arriving at the synaptic terminal, precedes the generation of a postsynaptic action potential, then the synapse is potentiated; however if the temporal order is reversed, then depression occurs. Furthermore, recent experimental studies have now demonstrated that the temporal window also depends on the dendritic location of the synapse. Specifically, it was shown that in distal regions of the apical dendrite, the magnitude of potentiation was smaller and the window for depression was broader, when compared to observations from the proximal region of the dendrite. To date, the underlying mechanism(s) for such a distance-dependent effect is (are) currently unknown. Here, using the ionic cable theory framework in conjunction with the standard calcium based plasticity model, we show for the first time that such distance-dependent inhomogeneities in the temporal learning window for STDP can be largely explained by both the spatial and active properties of the dendrite. PMID:25148478

  19. Information processing and synaptic plasticity at hippocampal mossy fiber terminals

    PubMed Central

    Evstratova, Alesya; Tóth, Katalin

    2014-01-01

    Granule cells of the dentate gyrus receive cortical information and they transform and transmit this code to the CA3 area via their axons, the mossy fibers (MFs). Structural and functional complexity of this network has been extensively studied at various organizational levels. This review is focused on the anatomical and physiological properties of the MF system. We will discuss the mechanism by which dentate granule cells process signals from single action potentials (APs), short bursts and longer stimuli. Various parameters of synaptic interactions at different target cells such as quantal transmission, short- and long-term plasticity (LTP) will be summarized. Different types of synaptic contacts formed by MFs have unique sets of rules for information processing during different rates of granule cell activity. We will investigate the complex interactions between key determinants of information transfer between the dentate gyrus and the CA3 area of the hippocampus. PMID:24550783

  20. Synaptic AMPA receptor composition in development, plasticity and disease.

    PubMed

    Henley, Jeremy M; Wilkinson, Kevin A

    2016-06-01

    AMPA receptors (AMPARs) are assemblies of four core subunits, GluA1-4, that mediate most fast excitatory neurotransmission. The component subunits determine the functional properties of AMPARs, and the prevailing view is that the subunit composition also determines AMPAR trafficking, which is dynamically regulated during development, synaptic plasticity and in response to neuronal stress in disease. Recently, the subunit dependence of AMPAR trafficking has been questioned, leading to a reappraisal of this field. In this Review, we discuss what is known, uncertain, conjectured and unknown about the roles of the individual subunits, and how they affect AMPAR assembly, trafficking and function under both normal and pathological conditions. PMID:27080385

  1. Protein palmitoylation in neuronal development and synaptic plasticity.

    PubMed

    Fukata, Yuko; Fukata, Masaki

    2010-03-01

    Protein palmitoylation, a classical and common lipid modification, regulates diverse aspects of neuronal protein trafficking and function. The reversible nature of palmitoylation provides a potential general mechanism for protein shuttling between intracellular compartments. The recent discovery of palmitoylating enzymes--a large DHHC (Asp-His-His-Cys) protein family--and the development of new proteomic and imaging methods have accelerated palmitoylation analysis. It is becoming clear that individual DHHC enzymes generate and maintain the specialized compartmentalization of substrates in polarized neurons. Here, we discuss the regulatory mechanisms for dynamic protein palmitoylation and the emerging roles of protein palmitoylation in various aspects of pathophysiology, including neuronal development and synaptic plasticity. PMID:20168314

  2. Synaptic plasticity in health and disease: introduction and overview

    PubMed Central

    Bliss, T. V. P.; Collingridge, G. L.; Morris, R. G. M.

    2014-01-01

    We summarize the reviews and research papers submitted by speakers at a discussion meeting on Synaptic Plasticity in Health and Disease held at the Royal Society, London on 2–3 December 2013, and a subsequent satellite meeting convened at the Royal Society/Kavli Centre at Chicheley Hall on 4–5 December 2013. Together, these contributions give an overview of current research and controversies in a vibrant branch of neuroscience with important implications for the understanding of many forms of learning and memory, and a wide spectrum of neurological and cognitive disorders. PMID:24298133

  3. MPTP-meditated hippocampal dopamine deprivation modulates synaptic transmission and activity-dependent synaptic plasticity

    SciTech Connect

    Zhu Guoqi; Chen Ying; Huang Yuying; Li Qinglin; Behnisch, Thomas

    2011-08-01

    Parkinson's disease (PD)-like symptoms including learning deficits are inducible by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Therefore, it is possible that MPTP may disturb hippocampal memory processing by modulation of dopamine (DA)- and activity-dependent synaptic plasticity. We demonstrate here that intraperitoneal (i.p.) MPTP injection reduces the number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra (SN) within 7 days. Subsequently, the TH expression level in SN and hippocampus and the amount of DA and its metabolite DOPAC in striatum and hippocampus decrease. DA depletion does not alter basal synaptic transmission and changes pair-pulse facilitation (PPF) of field excitatory postsynaptic potentials (fEPSPs) only at the 30 ms inter-pulse interval. In addition, the induction of long-term potentiation (LTP) is impaired whereas the duration of long-term depression (LTD) becomes prolonged. Since both LTP and LTD depend critically on activation of NMDA and DA receptors, we also tested the effect of DA depletion on NMDA receptor-mediated synaptic transmission. Seven days after MPTP injection, the NMDA receptor-mediated fEPSPs are decreased by about 23%. Blocking the NMDA receptor-mediated fEPSP does not mimic the MPTP-LTP. Only co-application of D1/D5 and NMDA receptor antagonists during tetanization resembled the time course of fEPSP potentiation as observed 7 days after i.p. MPTP injection. Together, our data demonstrate that MPTP-induced degeneration of DA neurons and the subsequent hippocampal DA depletion alter NMDA receptor-mediated synaptic transmission and activity-dependent synaptic plasticity. - Highlights: > I.p. MPTP-injection mediates death of dopaminergic neurons. > I.p. MPTP-injection depletes DA and DOPAC in striatum and hippocampus. > I.p. MPTP-injection does not alter basal synaptic transmission. > Reduction of LTP and enhancement of LTD after i.p. MPTP-injection. > Attenuation of NMDA-receptors mediated f

  4. Endocannabinoid Signaling and Long-term Synaptic Plasticity

    PubMed Central

    Heifets, Boris D.; Castillo, Pablo E.

    2015-01-01

    Endocannabinoids (eCBs) are key activity-dependent signals regulating synaptic transmission throughout the CNS. Accordingly, eCBs are involved in neural functions ranging from feeding homeostasis to cognition. There is great interest in understanding how exogenous (e.g. cannabis) and endogenous cannabinoids affect behavior. As behavioral adaptations are widely considered to rely on changes in synaptic strength, the prevalence of eCB-mediated long term depression (eCB-LTD) at synapses throughout the brain merits close attention. The induction and expression of eCB-LTD, while remarkably similar at various synapses, is controlled by an array of regulatory influences which we are just beginning to uncover. This complexity endows eCB-LTD with important computational properties, such as coincidence detection and input specificity, critical for higher CNS functions like learning and memory. In this article, we review the major molecular and cellular mechanisms underlying eCB-LTD, as well as the potential physiological relevance of this widespread form of synaptic plasticity. PMID:19575681

  5. Synaptic competition in structural plasticity and cognitive function

    PubMed Central

    Ramiro-Cortés, Yazmín; Hobbiss, Anna F.; Israely, Inbal

    2014-01-01

    Connections between neurons can undergo long-lasting changes in synaptic strength correlating with changes in structure. These events require the synthesis of new proteins, the availability of which can lead to cooperative and competitive interactions between synapses for the expression of plasticity. These processes can occur over limited spatial distances and temporal periods, defining dendritic regions over which activity may be integrated and could lead to the physical rewiring of synapses into functional groups. Such clustering of inputs may increase the computational power of neurons by allowing information to be combined in a greater than additive manner. The availability of new proteins may be a key modulatory step towards activity-dependent, long-term growth or elimination of spines necessary for remodelling of connections. Thus, the aberrant growth or shrinkage of dendritic spines could occur if protein levels are misregulated. Indeed, such perturbations can be seen in several mental retardation disorders, wherein either too much or too little protein translation exists, matching an observed increase or decrease in spine density, respectively. Cellular events which alter protein availability could relieve a constraint on synaptic competition and disturb synaptic clustering mechanisms. These changes may be detrimental to modifications in neural circuitry following activity. PMID:24298158

  6. Interneuron- and GABAA receptor-specific inhibitory synaptic plasticity in cerebellar Purkinje cells

    NASA Astrophysics Data System (ADS)

    He, Qionger; Duguid, Ian; Clark, Beverley; Panzanelli, Patrizia; Patel, Bijal; Thomas, Philip; Fritschy, Jean-Marc; Smart, Trevor G.

    2015-07-01

    Inhibitory synaptic plasticity is important for shaping both neuronal excitability and network activity. Here we investigate the input and GABAA receptor subunit specificity of inhibitory synaptic plasticity by studying cerebellar interneuron-Purkinje cell (PC) synapses. Depolarizing PCs initiated a long-lasting increase in GABA-mediated synaptic currents. By stimulating individual interneurons, this plasticity was observed at somatodendritic basket cell synapses, but not at distal dendritic stellate cell synapses. Basket cell synapses predominantly express β2-subunit-containing GABAA receptors; deletion of the β2-subunit ablates this plasticity, demonstrating its reliance on GABAA receptor subunit composition. The increase in synaptic currents is dependent upon an increase in newly synthesized cell surface synaptic GABAA receptors and is abolished by preventing CaMKII phosphorylation of GABAA receptors. Our results reveal a novel GABAA receptor subunit- and input-specific form of inhibitory synaptic plasticity that regulates the temporal firing pattern of the principal output cells of the cerebellum.

  7. Emerging links between homeostatic synaptic plasticity and neurological disease

    PubMed Central

    Wondolowski, Joyce; Dickman, Dion

    2013-01-01

    Homeostatic signaling systems are ubiquitous forms of biological regulation, having been studied for hundreds of years in the context of diverse physiological processes including body temperature and osmotic balance. However, only recently has this concept been brought to the study of excitatory and inhibitory electrical activity that the nervous system uses to establish and maintain stable communication. Synapses are a primary target of neuronal regulation with a variety of studies over the past 15 years demonstrating that these cellular junctions are under bidirectional homeostatic control. Recent work from an array of diverse systems and approaches has revealed exciting new links between homeostatic synaptic plasticity and a variety of seemingly disparate neurological and psychiatric diseases. These include autism spectrum disorders, intellectual disabilities, schizophrenia, and Fragile X Syndrome. Although the molecular mechanisms through which defective homeostatic signaling may lead to disease pathogenesis remain unclear, rapid progress is likely to be made in the coming years using a powerful combination of genetic, imaging, electrophysiological, and next generation sequencing approaches. Importantly, understanding homeostatic synaptic plasticity at a cellular and molecular level may lead to developments in new therapeutic innovations to treat these diseases. In this review we will examine recent studies that demonstrate homeostatic control of postsynaptic protein translation, retrograde signaling, and presynaptic function that may contribute to the etiology of complex neurological and psychiatric diseases. PMID:24312013

  8. Ras and Rap Signaling in Synaptic Plasticity and Mental Disorders

    PubMed Central

    Stornetta, Ruth L.; Zhu, J. Julius

    2011-01-01

    The Ras family GTPases (Ras, Rap1, and Rap2) and their downstream mitogen-activated protein kinases (ERK, JNK, and p38MAPK) and PI3K signaling cascades control various physiological processes. In neuronal cells, recent studies have shown that these parallel cascades signal distinct forms of AMPA-sensitive glutamate receptor trafficking during experience-dependent synaptic plasticity and adaptive behavior. Interestingly, both hypo- and hyper-activation of Ras/Rap signaling impair the capacity of synaptic plasticity, underscoring the importance of a “happy-medium” dynamic regulation of the signaling. Moreover, accumulating reports have linked various genetic defects that either up- or down-regulate Ras/Rap signaling with a number of mental disorders associated with learning disability (e.g., Alzheimer’s disease, Angelman syndrome, autism, cardio-facio-cutaneous syndrome, Coffin-Lowry syndrome, Costello syndrome, Cowden and Bannayan-Riley-Ruvalcaba syndromes, fragile X syndrome, neurofibromatosis type 1, Noonan syndrome, schizophrenia, tuberous sclerosis, and X-linked mental retardation), highlighting the necessity of happy-medium dynamic regulation of Ras/Rap signaling in learning behavior. Thus, the recent advances in understanding of neuronal Ras/Rap signaling provide a useful guide for developing novel treatments for mental diseases. PMID:20431046

  9. Synaptic plasticity enables adaptive self-tuning critical networks.

    PubMed

    Stepp, Nigel; Plenz, Dietmar; Srinivasa, Narayan

    2015-01-01

    During rest, the mammalian cortex displays spontaneous neural activity. Spiking of single neurons during rest has been described as irregular and asynchronous. In contrast, recent in vivo and in vitro population measures of spontaneous activity, using the LFP, EEG, MEG or fMRI suggest that the default state of the cortex is critical, manifested by spontaneous, scale-invariant, cascades of activity known as neuronal avalanches. Criticality keeps a network poised for optimal information processing, but this view seems to be difficult to reconcile with apparently irregular single neuron spiking. Here, we simulate a 10,000 neuron, deterministic, plastic network of spiking neurons. We show that a combination of short- and long-term synaptic plasticity enables these networks to exhibit criticality in the face of intrinsic, i.e. self-sustained, asynchronous spiking. Brief external perturbations lead to adaptive, long-term modification of intrinsic network connectivity through long-term excitatory plasticity, whereas long-term inhibitory plasticity enables rapid self-tuning of the network back to a critical state. The critical state is characterized by a branching parameter oscillating around unity, a critical exponent close to -3/2 and a long tail distribution of a self-similarity parameter between 0.5 and 1. PMID:25590427

  10. Synaptic Plasticity Enables Adaptive Self-Tuning Critical Networks

    PubMed Central

    Stepp, Nigel; Plenz, Dietmar; Srinivasa, Narayan

    2015-01-01

    During rest, the mammalian cortex displays spontaneous neural activity. Spiking of single neurons during rest has been described as irregular and asynchronous. In contrast, recent in vivo and in vitro population measures of spontaneous activity, using the LFP, EEG, MEG or fMRI suggest that the default state of the cortex is critical, manifested by spontaneous, scale-invariant, cascades of activity known as neuronal avalanches. Criticality keeps a network poised for optimal information processing, but this view seems to be difficult to reconcile with apparently irregular single neuron spiking. Here, we simulate a 10,000 neuron, deterministic, plastic network of spiking neurons. We show that a combination of short- and long-term synaptic plasticity enables these networks to exhibit criticality in the face of intrinsic, i.e. self-sustained, asynchronous spiking. Brief external perturbations lead to adaptive, long-term modification of intrinsic network connectivity through long-term excitatory plasticity, whereas long-term inhibitory plasticity enables rapid self-tuning of the network back to a critical state. The critical state is characterized by a branching parameter oscillating around unity, a critical exponent close to -3/2 and a long tail distribution of a self-similarity parameter between 0.5 and 1. PMID:25590427

  11. The Role of Short Term Synaptic Plasticity in Temporal Coding of Neuronal Networks

    ERIC Educational Resources Information Center

    Chandrasekaran, Lakshmi

    2008-01-01

    Short term synaptic plasticity is a phenomenon which is commonly found in the central nervous system. It could contribute to functions of signal processing namely, temporal integration and coincidence detection by modulating the input synaptic strength. This dissertation has two parts. First, we study the effects of short term synaptic plasticity…

  12. Mammalian Vestibular Macular Synaptic Plasticity: Results from SLS-2 Spaceflight

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.D.

    1994-01-01

    The effects of exposure to microgravity were studied in rat utricular maculas collected inflight (IF, day 13), post-flight on day of orbiter landing (day 14, R+O) and after 14 days (R+ML). Controls were collected at corresponding times. The objectives were 1) to learn whether hair cell ribbon synapses counts would be higher in tissues collected in space than in tissues collected postflight during or after readaptation to Earth's gravity; and 2) to compare results with those of SLS-1. Maculas were fixed by immersion, micro-dissected, dehydrated and prepared for ultrastructural study by usual methods. Synapses were counted in 100 serial sections 150 nm thick and were located to specific hair cells in montages of every 7th section. Counts were analyzed for statistical significance using analysis of variance. Results in maculas of IF dissected rats, one 13 day control (IFC), and one R + 0 rat have been analyzed. Study of an R+ML macula is nearly completed. For type I cells, IF mean is 2.3 +/-1.6; IFC mean is 1.6 +/-1.0; R+O mean is 2.3 +/- 1.6. For type II cells, IF mean is 11.4 +/- 17.1; IFC mean is 5.5 +/-3.5; R+O mean is 10.1 +/- 7.4. The difference between IF and IFC means for type I cells is statistically significant (p less than 0.0464). For type It cells, IF compared to IFC means, p less than 0.0003; and for IFC to R+O means, p less than 0.0139. Shifts toward spheres (p less than 0.0001) and pairs (p less than 0.0139) were significant in type II cells of IF rats. The results are largely replicating findings from SLS-1 and indicate that spaceflight affects synaptic number, form and distribution, particularly in type II hair cells. The increases in synaptic number and in sphere-like ribbons are interpreted to improve synaptic efficacy, to help return afferent discharges to a more normal state. Findings indicate that a great capacity for synaptic plasticity exists in mammalian gravity sensors, and that this plasticity is more dominant in the local circuitry. The

  13. Histone Deacetylase Inhibition Facilitates Massed Pattern-Induced Synaptic Plasticity and Memory

    ERIC Educational Resources Information Center

    Pandey, Kiran; Sharma, Kaushik P.; Sharma, Shiv K.

    2015-01-01

    Massed training is less effective for long-term memory formation than the spaced training. The role of acetylation in synaptic plasticity and memory is now well established. However, the role of this important protein modification in synaptic plasticity induced by massed pattern of stimulation or memory induced by massed training is not well…

  14. Reelin Supplementation Enhances Cognitive Ability, Synaptic Plasticity, and Dendritic Spine Density

    ERIC Educational Resources Information Center

    Rogers, Justin T.; Rusiana, Ian; Trotter, Justin; Zhao, Lisa; Donaldson, Erika; Pak, Daniel T.S.; Babus, Lenard W.; Peters, Melinda; Banko, Jessica L.; Chavis, Pascale; Rebeck, G. William; Hoe, Hyang-Sook; Weeber, Edwin J.

    2011-01-01

    Apolipoprotein receptors belong to an evolutionarily conserved surface receptor family that has intimate roles in the modulation of synaptic plasticity and is necessary for proper hippocampal-dependent memory formation. The known lipoprotein receptor ligand Reelin is important for normal synaptic plasticity, dendritic morphology, and cognitive…

  15. Spike timing analysis in neural networks with unsupervised synaptic plasticity

    NASA Astrophysics Data System (ADS)

    Mizusaki, B. E. P.; Agnes, E. J.; Brunnet, L. G.; Erichsen, R., Jr.

    2013-01-01

    The synaptic plasticity rules that sculpt a neural network architecture are key elements to understand cortical processing, as they may explain the emergence of stable, functional activity, while avoiding runaway excitation. For an associative memory framework, they should be built in a way as to enable the network to reproduce a robust spatio-temporal trajectory in response to an external stimulus. Still, how these rules may be implemented in recurrent networks and the way they relate to their capacity of pattern recognition remains unclear. We studied the effects of three phenomenological unsupervised rules in sparsely connected recurrent networks for associative memory: spike-timing-dependent-plasticity, short-term-plasticity and an homeostatic scaling. The system stability is monitored during the learning process of the network, as the mean firing rate converges to a value determined by the homeostatic scaling. Afterwards, it is possible to measure the recovery efficiency of the activity following each initial stimulus. This is evaluated by a measure of the correlation between spike fire timings, and we analysed the full memory separation capacity and limitations of this system.

  16. Endocannabinoid System and Synaptic Plasticity: Implications for Emotional Responses

    PubMed Central

    Viveros, María-Paz; Marco, Eva-María; Llorente, Ricardo; López-Gallardo, Meritxell

    2007-01-01

    The endocannabinoid system has been involved in the regulation of anxiety, and proposed as an inhibitory modulator of neuronal, behavioral and adrenocortical responses to stressful stimuli. Brain regions such as the amygdala, hippocampus and cortex, which are directly involved in the regulation of emotional behavior, contain high densities of cannabinoid CB1 receptors. Mutant mice lacking CB1 receptors show anxiogenic and depressive-like behaviors as well as an altered hypothalamus pituitary adrenal axis activity, whereas enhancement of endocannabinoid signaling produces anxiolytic and antidepressant-like effects. Genetic and pharmacological approaches also support an involvement of endocannabinoids in extinction of aversive memories. Thus, the endocannabinoid system appears to play a pivotal role in the regulation of emotional states. Endocannabinoids have emerged as mediators of short- and long-term synaptic plasticity in diverse brain structures. Despite the fact that most of the studies on this field have been performed using in vitro models, endocannabinoid-mediated plasticity might be considered as a plausible candidate underlying some of the diverse physiological functions of the endogenous cannabinoid system, including developmental, affective and cognitive processes. In this paper, we will focus on the functional relevance of endocannabinoid-mediated plasticity within the framework of emotional responses. Alterations of the endocannabinoid system may constitute an important factor in the aetiology of certain neuropsychiatric disorders, and, in turn, enhancers of endocannabinoid signaling could represent a potential therapeutical tool in the treatment of both anxiety and depressive symptoms. PMID:17641734

  17. Role of phosphodiesterase 5 in synaptic plasticity and memory

    PubMed Central

    Puzzo, Daniela; Sapienza, Salvatore; Arancio, Ottavio; Palmeri, Agostino

    2008-01-01

    Phosphodiesterases (PDEs) are enzymes that break down the phosphodiesteric bond of the cyclic nucleotides, cAMP and cGMP, second messengers that regulate many biological processes. PDEs participate in the regulation of signal transduction by means of a fine regulation of cyclic nucleotides so that the response to cell stimuli is both specific and activates the correct third messengers. Several PDE inhibitors have been developed and used as therapeutic agents because they increase cyclic nucleotide levels by blocking the PDE function. In particular, sildenafil, an inhibitor of PDE5, has been mainly used in the treatment of erectile dysfunction but is now also utilized against pulmonary hypertension. This review examines the physiological role of PDE5 in synaptic plasticity and memory and the use of PDE5 inhibitors as possible therapeutic agents against disorders of the central nervous system (CNS). PMID:18728748

  18. Circadian Mechanisms Underlying Reward-Related Neurophysiology and Synaptic Plasticity

    PubMed Central

    Parekh, Puja K.; McClung, Colleen A.

    2016-01-01

    Evidence from clinical and preclinical research provides an undeniable link between disruptions in the circadian clock and the development of psychiatric diseases, including mood and substance abuse disorders. The molecular clock, which controls daily patterns of physiological and behavioral activity in living organisms, when desynchronized, may exacerbate or precipitate symptoms of psychiatric illness. One of the outstanding questions remaining in this field is that of cause and effect in the relationship between circadian rhythm disruption and psychiatric disease. Focus has recently turned to uncovering the role of circadian proteins beyond the maintenance of homeostatic systems and outside of the suprachiasmatic nucleus (SCN), the master pacemaker region of the brain. In this regard, several groups, including our own, have sought to understand how circadian proteins regulate mechanisms of synaptic plasticity and neurotransmitter signaling in mesocorticolimbic brain regions, which are known to be critically involved in reward processing and mood. This regulation can come in the form of direct transcriptional control of genes central to mood and reward, including those associated with dopaminergic activity in the midbrain. It can also be seen at the circuit level through indirect connections of mesocorticolimbic regions with the SCN. Circadian misalignment paradigms as well as genetic models of circadian disruption have helped to elucidate some of the complex interactions between these systems and neural activity influencing behavior. In this review, we explore findings that link circadian protein function with synaptic adaptations underlying plasticity as it may contribute to the development of mood disorders and addiction. In light of recent advances in technology and sophisticated methods for molecular and circuit-level interrogation, we propose future directions aimed at teasing apart mechanisms through which the circadian system modulates mood and reward

  19. Circadian Mechanisms Underlying Reward-Related Neurophysiology and Synaptic Plasticity.

    PubMed

    Parekh, Puja K; McClung, Colleen A

    2015-01-01

    Evidence from clinical and preclinical research provides an undeniable link between disruptions in the circadian clock and the development of psychiatric diseases, including mood and substance abuse disorders. The molecular clock, which controls daily patterns of physiological and behavioral activity in living organisms, when desynchronized, may exacerbate or precipitate symptoms of psychiatric illness. One of the outstanding questions remaining in this field is that of cause and effect in the relationship between circadian rhythm disruption and psychiatric disease. Focus has recently turned to uncovering the role of circadian proteins beyond the maintenance of homeostatic systems and outside of the suprachiasmatic nucleus (SCN), the master pacemaker region of the brain. In this regard, several groups, including our own, have sought to understand how circadian proteins regulate mechanisms of synaptic plasticity and neurotransmitter signaling in mesocorticolimbic brain regions, which are known to be critically involved in reward processing and mood. This regulation can come in the form of direct transcriptional control of genes central to mood and reward, including those associated with dopaminergic activity in the midbrain. It can also be seen at the circuit level through indirect connections of mesocorticolimbic regions with the SCN. Circadian misalignment paradigms as well as genetic models of circadian disruption have helped to elucidate some of the complex interactions between these systems and neural activity influencing behavior. In this review, we explore findings that link circadian protein function with synaptic adaptations underlying plasticity as it may contribute to the development of mood disorders and addiction. In light of recent advances in technology and sophisticated methods for molecular and circuit-level interrogation, we propose future directions aimed at teasing apart mechanisms through which the circadian system modulates mood and reward

  20. Theta-specific susceptibility in a model of adaptive synaptic plasticity

    PubMed Central

    Albers, Christian; Schmiedt, Joscha T.; Pawelzik, Klaus R.

    2013-01-01

    Learning and memory formation are processes which are still not fully understood. It is widely believed that synaptic plasticity is the most important neural substrate for both. However, it has been observed that large-scale theta band oscillations in the mammalian brain are beneficial for learning, and it is not clear if and how this is linked to synaptic plasticity. Also, the underlying dynamics of synaptic plasticity itself have not been completely uncovered yet, especially for non-linear interactions between multiple spikes. Here, we present a new and simple dynamical model of synaptic plasticity. It incorporates novel contributions to synaptic plasticity including adaptation processes. We test its ability to reproduce non-linear effects on four different data sets of complex spike patterns, and show that the model can be tuned to reproduce the observed synaptic changes in great detail. When subjected to periodically varying firing rates, already linear pair based spike timing dependent plasticity (STDP) predicts a specific susceptibility of synaptic plasticity to pre- and postsynaptic firing rate oscillations in the theta-band. Our model retains this band-pass property, while for high firing rates in the non-linear regime it modifies the specific phase relation required for depression and potentiation. For realistic parameters, maximal synaptic potentiation occurs when the postsynaptic is trailing the presynaptic activity slightly. Anti-phase oscillations tend to depress it. Our results are well in line with experimental findings, providing a straightforward and mechanistic explanation for the importance of theta oscillations for learning. PMID:24312047

  1. Phase Transition in Postsynaptic Densities Underlies Formation of Synaptic Complexes and Synaptic Plasticity.

    PubMed

    Zeng, Menglong; Shang, Yuan; Araki, Yoichi; Guo, Tingfeng; Huganir, Richard L; Zhang, Mingjie

    2016-08-25

    Postsynaptic densities (PSDs) are membrane semi-enclosed, submicron protein-enriched cellular compartments beneath postsynaptic membranes, which constantly exchange their components with bulk aqueous cytoplasm in synaptic spines. Formation and activity-dependent modulation of PSDs is considered as one of the most basic molecular events governing synaptic plasticity in the nervous system. In this study, we discover that SynGAP, one of the most abundant PSD proteins and a Ras/Rap GTPase activator, forms a homo-trimer and binds to multiple copies of PSD-95. Binding of SynGAP to PSD-95 induces phase separation of the complex, forming highly concentrated liquid-like droplets reminiscent of the PSD. The multivalent nature of the SynGAP/PSD-95 complex is critical for the phase separation to occur and for proper activity-dependent SynGAP dispersions from the PSD. In addition to revealing a dynamic anchoring mechanism of SynGAP at the PSD, our results also suggest a model for phase-transition-mediated formation of PSD. PMID:27565345

  2. Spike-timing-dependent synaptic plasticity and synaptic democracy in dendrites.

    PubMed

    Gidon, Albert; Segev, Idan

    2009-06-01

    We explored in a computational study the effect of dendrites on excitatory synapses undergoing spike-timing-dependent plasticity (STDP), using both cylindrical dendritic models and reconstructed dendritic trees. We show that even if the initial strength, g(peak), of distal synapses is augmented in a location independent manner, the efficacy of distal synapses diminishes following STDP and proximal synapses would eventually dominate. Indeed, proximal synapses always win over distal synapses following linear STDP rule, independent of the initial synaptic strength distribution in the dendritic tree. This effect is more pronounced as the dendritic cable length increases but it does not depend on the dendritic branching structure. Adding a small multiplicative component to the linear STDP rule, whereby already strong synapses tend to be less potentiated than depressed (and vice versa for weak synapses) did partially "save" distal synapses from "dying out." Another successful strategy for balancing the efficacy of distal and proximal synapses following STDP is to increase the upper bound for the synaptic conductance (g(max)) with distance from the soma. We conclude by discussing an experiment for assessing which of these possible strategies might actually operate in dendrites. PMID:19357339

  3. Sleep recalibrates homeostatic and associative synaptic plasticity in the human cortex

    PubMed Central

    Kuhn, Marion; Wolf, Elias; Maier, Jonathan G.; Mainberger, Florian; Feige, Bernd; Schmid, Hanna; Bürklin, Jan; Maywald, Sarah; Mall, Volker; Jung, Nikolai H.; Reis, Janine; Spiegelhalder, Kai; Klöppel, Stefan; Sterr, Annette; Eckert, Anne; Riemann, Dieter; Normann, Claus; Nissen, Christoph

    2016-01-01

    Sleep is ubiquitous in animals and humans, but its function remains to be further determined. The synaptic homeostasis hypothesis of sleep–wake regulation proposes a homeostatic increase in net synaptic strength and cortical excitability along with decreased inducibility of associative synaptic long-term potentiation (LTP) due to saturation after sleep deprivation. Here we use electrophysiological, behavioural and molecular indices to non-invasively study net synaptic strength and LTP-like plasticity in humans after sleep and sleep deprivation. We demonstrate indices of increased net synaptic strength (TMS intensity to elicit a predefined amplitude of motor-evoked potential and EEG theta activity) and decreased LTP-like plasticity (paired associative stimulation induced change in motor-evoked potential and memory formation) after sleep deprivation. Changes in plasma BDNF are identified as a potential mechanism. Our study indicates that sleep recalibrates homeostatic and associative synaptic plasticity, believed to be the neural basis for adaptive behaviour, in humans. PMID:27551934

  4. Sleep recalibrates homeostatic and associative synaptic plasticity in the human cortex.

    PubMed

    Kuhn, Marion; Wolf, Elias; Maier, Jonathan G; Mainberger, Florian; Feige, Bernd; Schmid, Hanna; Bürklin, Jan; Maywald, Sarah; Mall, Volker; Jung, Nikolai H; Reis, Janine; Spiegelhalder, Kai; Klöppel, Stefan; Sterr, Annette; Eckert, Anne; Riemann, Dieter; Normann, Claus; Nissen, Christoph

    2016-01-01

    Sleep is ubiquitous in animals and humans, but its function remains to be further determined. The synaptic homeostasis hypothesis of sleep-wake regulation proposes a homeostatic increase in net synaptic strength and cortical excitability along with decreased inducibility of associative synaptic long-term potentiation (LTP) due to saturation after sleep deprivation. Here we use electrophysiological, behavioural and molecular indices to non-invasively study net synaptic strength and LTP-like plasticity in humans after sleep and sleep deprivation. We demonstrate indices of increased net synaptic strength (TMS intensity to elicit a predefined amplitude of motor-evoked potential and EEG theta activity) and decreased LTP-like plasticity (paired associative stimulation induced change in motor-evoked potential and memory formation) after sleep deprivation. Changes in plasma BDNF are identified as a potential mechanism. Our study indicates that sleep recalibrates homeostatic and associative synaptic plasticity, believed to be the neural basis for adaptive behaviour, in humans. PMID:27551934

  5. Neural control of phrenic motoneuron discharge

    PubMed Central

    Lee, Kun-Ze; Fuller, David D.

    2011-01-01

    Phrenic motoneurons (PMNs) provide a synaptic relay between bulbospinal respiratory pathways and the diaphragm muscle. PMNs also receive propriospinal inputs, although the functional role of these interneuronal projections has not been established. Here we review the literature regarding PMN discharge patterns during breathing and the potential mechanisms that underlie PMN recruitment. Anatomical and neurophysiological studies indicate that PMNs form a heterogeneous pool, with respiratory-related PMN discharge and recruitment patterns likely determined by a balance between intrinsic MN properties and extrinsic synaptic inputs. We also review the limited literature regarding PMN bursting during respiratory plasticity. Differential recruitment or rate modulation of PMN subtypes may underlie phrenic motor plasticity following neural injury and/or respiratory stimulation; however this possibility remains relatively unexplored. PMID:21376841

  6. Fructose consumption reduces hippocampal synaptic plasticity underlying cognitive performance.

    PubMed

    Cisternas, Pedro; Salazar, Paulina; Serrano, Felipe G; Montecinos-Oliva, Carla; Arredondo, Sebastián B; Varela-Nallar, Lorena; Barja, Salesa; Vio, Carlos P; Gomez-Pinilla, Fernando; Inestrosa, Nibaldo C

    2015-11-01

    Metabolic syndrome (MetS) is a global epidemic, which involves a spectrum of metabolic disorders comprising diabetes and obesity. The impact of MetS on the brain is becoming to be a concern, however, the poor understanding of mechanisms involved has limited the development of therapeutic strategies. We induced a MetS-like condition by exposing mice to fructose feeding for 7weeks. There was a dramatic deterioration in the capacity of the hippocampus to sustain synaptic plasticity in the forms of long-term potentiation (LTP) and long-term depression (LTD). Mice exposed to fructose showed a reduction in the number of contact zones and the size of postsynaptic densities (PSDs) in the hippocampus, as well as a decrease in hippocampal neurogenesis. There was an increase in lipid peroxidation likely associated with a deficiency in plasma membrane excitability. Consistent with an overall hippocampal dysfunction, there was a subsequent decrease in hippocampal dependent learning and memory performance, i.e., spatial learning and episodic memory. Most of the pathological sequel of MetS in the brain was reversed three month after discontinue fructose feeding. These results are novel to show that MetS triggers a cascade of molecular events, which disrupt hippocampal functional plasticity, and specific aspects of learning and memory function. The overall information raises concerns about the risk imposed by excessive fructose consumption on the pathology of neurological disorders. PMID:26300486

  7. ADAR-mediated RNA editing suppresses sleep by acting as a brake on glutamatergic synaptic plasticity

    PubMed Central

    Robinson, J. E.; Paluch, J.; Dickman, D. K.; Joiner, W. J.

    2016-01-01

    It has been postulated that synaptic potentiation during waking is offset by a homoeostatic reduction in net synaptic strength during sleep. However, molecular mechanisms to support such a process are lacking. Here we demonstrate that deficiencies in the RNA-editing gene Adar increase sleep due to synaptic dysfunction in glutamatergic neurons in Drosophila. Specifically, the vesicular glutamate transporter is upregulated, leading to over-activation of NMDA receptors, and the reserve pool of glutamatergic synaptic vesicles is selectively expanded in Adar mutants. Collectively these changes lead to sustained neurotransmitter release under conditions that would otherwise result in synaptic depression. We propose that a shift in the balance from synaptic depression towards synaptic potentiation in sleep-promoting neurons underlies the increased sleep pressure of Adar-deficient animals. Our findings provide a plausible molecular mechanism linking sleep and synaptic plasticity. PMID:26813350

  8. Matrix Metalloproteinase-9 as a Novel Player in Synaptic Plasticity and Schizophrenia

    PubMed Central

    Lepeta, Katarzyna; Kaczmarek, Leszek

    2015-01-01

    Recent findings implicate alterations in glutamate signaling, leading to aberrant synaptic plasticity, in schizophrenia. Matrix metalloproteinase-9 (MMP-9) has been shown to regulate glutamate receptors, be regulated by glutamate at excitatory synapses, and modulate physiological and morphological synaptic plasticity. By means of functional gene polymorphism, gene responsiveness to antipsychotics and blood plasma levels MMP-9 has recently been implicated in schizophrenia. This commentary critically reviews these findings based on the hypothesis that MMP-9 contributes to pathological synaptic plasticity in schizophrenia. PMID:25837304

  9. The origin of glutamatergic synaptic inputs controls synaptic plasticity and its modulation by alcohol in mice nucleus accumbens.

    PubMed

    Ji, Xincai; Saha, Sucharita; Martin, Gilles E

    2015-01-01

    It is widely accepted that long-lasting changes of synaptic strength in the nucleus accumbens (NAc), a brain region involved in drug reward, mediate acute and chronic effects of alcohol. However, our understanding of the mechanisms underlying the effects of alcohol on synaptic plasticity is limited by the fact that the NAc receives glutamatergic inputs from distinct brain regions (e.g., the prefrontal cortex (PFCx), the amygdala and the hippocampus), each region providing different information (e.g., spatial, emotional and cognitive). Combining whole-cell patch-clamp recordings and the optogenetic technique, we examined synaptic plasticity, and its regulation by alcohol, at cortical, hippocampal and amygdala inputs in fresh slices of mouse tissue. We showed that the origin of synaptic inputs determines the basic properties of glutamatergic synaptic transmission, the expression of spike-timing dependent long-term depression (tLTD) and long-term potentiation (LTP) and long-term potentiation (tLTP) and their regulation by alcohol. While we observed both tLTP and tLTD at amygadala and hippocampal synapses, we showed that cortical inputs only undergo tLTD. Functionally, we provide evidence that acute Ethyl Alcohol (EtOH) has little effects on higher order information coming from the PFCx, while severely impacting the ability of emotional and contextual information to induce long-lasting changes of synaptic strength. PMID:26257641

  10. Phasic Dopamine Modifies Sensory-Driven Output of Striatal Neurons through Synaptic Plasticity.

    PubMed

    Wieland, Sebastian; Schindler, Sebastian; Huber, Cathrin; Köhr, Georg; Oswald, Manfred J; Kelsch, Wolfgang

    2015-07-01

    Animals are facing a complex sensory world in which only few stimuli are relevant to guide behavior. Value has to be assigned to relevant stimuli such as odors to select them over concurring information. Phasic dopamine is involved in the value assignment to stimuli in the ventral striatum. The underlying cellular mechanisms are incompletely understood. In striatal projection neurons of the ventral striatum in adult mice, we therefore examined the features and dynamics of phasic dopamine-induced synaptic plasticity and how this plasticity may modify the striatal output. Phasic dopamine is predicted to tag inputs that occur in temporal proximity. Indeed, we observed D1 receptor-dependent synaptic potentiation only when odor-like bursts and optogenetically evoked phasic dopamine release were paired within a time window of <1 s. Compatible with predictions of dynamic value assignment, the synaptic potentiation persisted after the phasic dopamine signal had ceased, but gradually reversed when odor-like bursts continued to be presented. The synaptic plasticity depended on the sensory input rate and was input specific. Importantly, synaptic plasticity amplified the firing response to a given olfactory input as the dendritic integration and the firing threshold remained unchanged during synaptic potentiation. Thus, phasic dopamine-induced synaptic plasticity can change information transfer through dynamic increases of the output of striatal projection neurons to specific sensory inputs. This plasticity may provide a neural substrate for dynamic value assignment in the striatum. PMID:26156995

  11. Studying synaptic plasticity in the human brain and opportunities for drug discovery.

    PubMed

    Nathan, Pradeep J; Cobb, Stuart R; Lu, Bai; Bullmore, Edward T; Davies, Ceri H

    2011-10-01

    Synaptic plasticity is the ability of synaptic connections between neurons to be strengthened or weakened; a process that is central to the information processing within the brain and which plays a particularly important role in enabling higher cognitive processes [1,2]. Its role in disease is becoming increasingly clear across a wide spectrum of CNS disorders. Thus, for example, dysfunctional synaptic plasticity has been reported in neurodegenerative disorders such as Alzheimer's Disease (AD) as well as in schizophrenia and in a range of disorders associated with learning disabilities [3]. Moreover, maladaptive plasticity processes in response to specific external challenges are believed to underlie disorders such as addiction and post-traumatic stress disorder (PTSD). The molecular basis of normal and disease plasticity is rapidly being unravelled such that synaptic plasticity now provides a unique platform from which to launch the hunt for highly innovative drugs to treat CNS disease by either, firstly, rectifying identifiable abnormalities in these processes, or secondly, utilizing these processes as a vehicle to rectify, or bypass, other mechanisms underlying disease. In this respect, recent advances have been made in studying synaptic plasticity in humans at the molecular through to clinical level and these approaches now provide a real opportunity to test synaptic plasticity as a treatment paradigm for a wide variety of CNS disorders. PMID:21737346

  12. Spike-timing-dependent BDNF secretion and synaptic plasticity.

    PubMed

    Lu, Hui; Park, Hyungju; Poo, Mu-Ming

    2014-01-01

    In acute hippocampal slices, we found that the presence of extracellular brain-derived neurotrophic factor (BDNF) is essential for the induction of spike-timing-dependent long-term potentiation (tLTP). To determine whether BDNF could be secreted from postsynaptic dendrites in a spike-timing-dependent manner, we used a reduced system of dissociated hippocampal neurons in culture. Repetitive pairing of iontophoretically applied glutamate pulses at the dendrite with neuronal spikes could induce persistent alterations of glutamate-induced responses at the same dendritic site in a manner that mimics spike-timing-dependent plasticity (STDP)-the glutamate-induced responses were potentiated and depressed when the glutamate pulses were applied 20 ms before and after neuronal spiking, respectively. By monitoring changes in the green fluorescent protein (GFP) fluorescence at the dendrite of hippocampal neurons expressing GFP-tagged BDNF, we found that pairing of iontophoretic glutamate pulses with neuronal spiking resulted in BDNF secretion from the dendrite at the iontophoretic site only when the glutamate pulses were applied within a time window of approximately 40 ms prior to neuronal spiking, consistent with the timing requirement of synaptic potentiation via STDP. Thus, BDNF is required for tLTP and BDNF secretion could be triggered in a spike-timing-dependent manner from the postsynaptic dendrite. PMID:24298135

  13. The Formation of Multi-synaptic Connections by the Interaction of Synaptic and Structural Plasticity and Their Functional Consequences

    PubMed Central

    Fauth, Michael; Wörgötter, Florentin; Tetzlaff, Christian

    2015-01-01

    Cortical connectivity emerges from the permanent interaction between neuronal activity and synaptic as well as structural plasticity. An important experimentally observed feature of this connectivity is the distribution of the number of synapses from one neuron to another, which has been measured in several cortical layers. All of these distributions are bimodal with one peak at zero and a second one at a small number (3–8) of synapses. In this study, using a probabilistic model of structural plasticity, which depends on the synaptic weights, we explore how these distributions can emerge and which functional consequences they have. We find that bimodal distributions arise generically from the interaction of structural plasticity with synaptic plasticity rules that fulfill the following biological realistic constraints: First, the synaptic weights have to grow with the postsynaptic activity. Second, this growth curve and/or the input-output relation of the postsynaptic neuron have to change sub-linearly (negative curvature). As most neurons show such input-output-relations, these constraints can be fulfilled by many biological reasonable systems. Given such a system, we show that the different activities, which can explain the layer-specific distributions, correspond to experimentally observed activities. Considering these activities as working point of the system and varying the pre- or postsynaptic stimulation reveals a hysteresis in the number of synapses. As a consequence of this, the connectivity between two neurons can be controlled by activity but is also safeguarded against overly fast changes. These results indicate that the complex dynamics between activity and plasticity will, already between a pair of neurons, induce a variety of possible stable synaptic distributions, which could support memory mechanisms. PMID:25590330

  14. Short-Term Synaptic Plasticity at Interneuronal Synapses Could Sculpt Rhythmic Motor Patterns.

    PubMed

    Jia, Yan; Parker, David

    2016-01-01

    The output of a neuronal network depends on the organization and functional properties of its component cells and synapses. While the characterization of synaptic properties has lagged cellular analyses, a potentially important aspect in rhythmically active networks is how network synapses affect, and are in turn affected by, network activity. This could lead to a potential circular interaction where short-term activity-dependent synaptic plasticity is both influenced by and influences the network output. The analysis of synaptic plasticity in the lamprey locomotor network was extended here to characterize the short-term plasticity of connections between network interneurons and to try and address its potential network role. Paired recordings from identified interneurons in quiescent networks showed synapse-specific synaptic properties and plasticity that supported the presence of two hemisegmental groups that could influence bursting: depression in an excitatory interneuron group, and facilitation in an inhibitory feedback circuit. The influence of activity-dependent synaptic plasticity on network activity was investigated experimentally by changing Ringer Ca(2+) levels, and in a simple computer model. A potential caveat of the experimental analyses was that changes in Ringer Ca(2+) (and compensatory adjustments in Mg(2+) in some cases) could alter several other cellular and synaptic properties. Several of these properties were tested, and while there was some variability, these were not usually significantly affected by the Ringer changes. The experimental analyses suggested that depression of excitatory inputs had the strongest influence on the patterning of network activity. The simulation supported a role for this effect, and also suggested that the inhibitory facilitating group could modulate the influence of the excitatory synaptic depression. Short-term activity-dependent synaptic plasticity has not generally been considered in spinal cord models. These

  15. Short-Term Synaptic Plasticity at Interneuronal Synapses Could Sculpt Rhythmic Motor Patterns

    PubMed Central

    Jia, Yan; Parker, David

    2016-01-01

    The output of a neuronal network depends on the organization and functional properties of its component cells and synapses. While the characterization of synaptic properties has lagged cellular analyses, a potentially important aspect in rhythmically active networks is how network synapses affect, and are in turn affected by, network activity. This could lead to a potential circular interaction where short-term activity-dependent synaptic plasticity is both influenced by and influences the network output. The analysis of synaptic plasticity in the lamprey locomotor network was extended here to characterize the short-term plasticity of connections between network interneurons and to try and address its potential network role. Paired recordings from identified interneurons in quiescent networks showed synapse-specific synaptic properties and plasticity that supported the presence of two hemisegmental groups that could influence bursting: depression in an excitatory interneuron group, and facilitation in an inhibitory feedback circuit. The influence of activity-dependent synaptic plasticity on network activity was investigated experimentally by changing Ringer Ca2+ levels, and in a simple computer model. A potential caveat of the experimental analyses was that changes in Ringer Ca2+ (and compensatory adjustments in Mg2+ in some cases) could alter several other cellular and synaptic properties. Several of these properties were tested, and while there was some variability, these were not usually significantly affected by the Ringer changes. The experimental analyses suggested that depression of excitatory inputs had the strongest influence on the patterning of network activity. The simulation supported a role for this effect, and also suggested that the inhibitory facilitating group could modulate the influence of the excitatory synaptic depression. Short-term activity-dependent synaptic plasticity has not generally been considered in spinal cord models. These results

  16. Modulation of synaptic plasticity by the coactivation of spatially distinct synaptic inputs in rat hippocampal CA1 apical dendrites.

    PubMed

    Kondo, Masashi; Kitajima, Tatsuo; Fujii, Satoshi; Tsukada, Minoru; Aihara, Takeshi

    2013-08-14

    The phenomenon whereby the relative timing between presynaptic and postsynaptic spiking determines the direction and extent of synaptic changes in a critical temporal window is known as spike timing-dependent synaptic plasticity (STDP). We have previously reported that STDP profiles can be classified into two types depending on their layer-specific location along CA1 pyramidal neuron dendrites in the rat hippocampus, suggesting that there are differences in information processing between the proximal dendrite (PD) and distal dendrite (DD). However, how the different types of information processing interact at different dendritic locations remains unclear. To investigate how the temporal information of inputs to PD influences information processing at DD, PD stimulation was applied while the STDP protocol was simultaneously applied at DDs of CA1 pyramidal neurons. Synaptic plasticity induced by the STDP protocol at DDs was enhanced or depressed depending on the timing of the back-propagating action potentials (bAPs) and the excitatory and inhibitory postsynaptic potentials elicited by PD stimulation. These results suggested that bAPs function as carriers of temporal information of PD inputs to DD. Next, the influence of DD on PD was investigated using the same protocol. Synaptic plasticity at PD was modulated only if the pairing stimuli were applied to elicit coincidental timing of bAP and the excitatory postsynaptic potential. Such coding modulations could provide the basis for a novel learning rule and may be important factors in the integration of spatiotemporal input information in neural networks in the brain. PMID:23711890

  17. Reelin supplementation recovers synaptic plasticity and cognitive deficits in a mouse model for Angelman syndrome

    PubMed Central

    Hethorn, Whitney R; Ciarlone, Stephanie L; Filonova, Irina; Rogers, Justin T; Aguirre, Daniela; Ramirez, Raquel A; Grieco, Joseph C; Peters, Melinda M; Gulick, Danielle; Anderson, Anne E; L Banko, Jessica; Lussier, April L; Weeber, Edwin J

    2015-01-01

    The Reelin signaling pathway is implicated in processes controlling synaptic plasticity and hippocampus-dependent learning and memory. A single direct in vivo application of Reelin enhances long-term potentiation, increases dendritic spine density and improves associative and spatial learning and memory. Angelman syndrome (AS) is a neurological disorder that presents with an overall defect in synaptic function, including decreased long-term potentiation, reduced dendritic spine density, and deficits in learning and memory, making it an attractive model in which to examine the ability of Reelin to recover synaptic function and cognitive deficits. In this study, we investigated the effects of Reelin administration on synaptic plasticity and cognitive function in a mouse model of AS and demonstrated that bilateral, intraventricular injections of Reelin recover synaptic function and corresponding hippocampus-dependent associative and spatial learning and memory. Additionally, we describe alteration of the Reelin profile in tissue from both the AS mouse and post-mortem human brain. PMID:25864922

  18. GABAergic synaptic plasticity during a developmentally-regulated sleep-like state in C. elegans

    PubMed Central

    Dabbish, Nooreen S.; Raizen, David M.

    2011-01-01

    Approximately one fourth of the neurons in C. elegans adults are born during larval development, indicating tremendous plasticity in larval nervous system structure. Larval development shows cyclical expression of sleep-like quiescent behavior during lethargus periods, which occur at larval stage transitions. We studied plasticity at the neuromuscular junction during lethargus using the acetylcholinesterase inhibitor aldicarb. The rate of animal contraction when exposed to aldicarb is controlled by the balance between excitatory cholinergic and inhibitory GABAergic input on the muscle. During lethargus, there is an accelerated rate of contraction on aldicarb. Mutant analysis and optogenetic studies reveal that GABAergic synaptic transmission is reduced during lethargus. Worms in lethargus show partial resistance to GABA-A receptor agonists, indicating that post-synaptic mechanisms contribute to lethargus-dependent plasticity. Using genetic manipulations that separate the quiescent state from the developmental stage, we show that the synaptic plasticity is dependent on developmental time and not on behavioral state of the animal. We propose that the synaptic plasticity regulated by a developmental clock in C. elegans is analogous to synaptic plasticity regulated by the circadian clock in other species. PMID:22049436

  19. Activity-dependent synaptic plasticity modulates the critical phase of brain development.

    PubMed

    Chaudhury, Sraboni; Sharma, Vikram; Kumar, Vivek; Nag, Tapas C; Wadhwa, Shashi

    2016-04-01

    Plasticity or neuronal plasticity is a unique and adaptive feature of nervous system which allows neurons to reorganize their interactions in response to an intrinsic or extrinsic stimulation and shapes the formation and maintenance of a functional neuronal circuit. Synaptic plasticity is the most important form of neural plasticity and plays critical role during the development allowing the formation of precise neural connectivity via the process of pruning. In the sensory systems-auditory and visual, this process is heavily dependent on the external cues perceived during the development. Environmental enrichment paradigms in an activity-dependent manner result in early maturation of the synapses and more efficient trans-synaptic signaling or communication flow. This has been extensively observed in the avian auditory system. On the other hand, stimuli results in negative effect can cause alterations in the synaptic connectivity and strength resulting in various developmental brain disorders including autism, fragile X syndrome and rett syndrome. In this review we discuss the role of different forms of activity (spontaneous or environmental) during the development of the nervous system in modifying synaptic plasticity necessary for shaping the adult brain. Also, we try to explore various factors (molecular, genetic and epigenetic) involved in altering the synaptic plasticity in positive and negative way. PMID:26515724

  20. Plasticity of Hippocampal Excitatory-Inhibitory Balance: Missing the Synaptic Control in the Epileptic Brain.

    PubMed

    Bonansco, Christian; Fuenzalida, Marco

    2016-01-01

    Synaptic plasticity is the capacity generated by experience to modify the neural function and, thereby, adapt our behaviour. Long-term plasticity of glutamatergic and GABAergic transmission occurs in a concerted manner, finely adjusting the excitatory-inhibitory (E/I) balance. Imbalances of E/I function are related to several neurological diseases including epilepsy. Several evidences have demonstrated that astrocytes are able to control the synaptic plasticity, with astrocytes being active partners in synaptic physiology and E/I balance. Here, we revise molecular evidences showing the epileptic stage as an abnormal form of long-term brain plasticity and propose the possible participation of astrocytes to the abnormal increase of glutamatergic and decrease of GABAergic neurotransmission in epileptic networks. PMID:27006834

  1. Mitochondrial Ca2+ uptake is essential for synaptic plasticity in pain

    PubMed Central

    Kim, Hee Young; Lee, Kwan Yeop; Lu, Ying; Wang, Jigong; Cui, Lian; Kim, Sang Jeong; Chung, Jin Mo; Chung, Kyungsoon

    2011-01-01

    The increase of cytosolic free Ca2+ ([Ca2+]C) due to NMDA receptor activation is a key step for spinal cord synaptic plasticity by altering cellular signal transduction pathways. We focus on this plasticity as a cause of persistent pain. To provide a mechanism for these classic findings, we report that [Ca2+]C does not trigger synaptic plasticity directly but must first enter into mitochondria. Interfering with mitochondrial Ca2+ uptake during a [Ca2+]C increase blocks induction of behavioral hyperalgesia and accompanying downstream cell signaling, with reduction of spinal long term potentiation (LTP). Furthermore, reducing the accompanying mitochondrial superoxide levels lessens hyperalgesia and LTP induction. These results indicate that [Ca2+]C requires downstream mitochondrial Ca2+ uptake with consequent production of reactive oxygen species (ROS) for synaptic plasticity underlying chronic pain. These results suggest modifying mitochondrial Ca2+ uptake and thus ROS as a type of chronic pain therapy that should also have broader biologic significance. PMID:21900577

  2. Plasticity of Hippocampal Excitatory-Inhibitory Balance: Missing the Synaptic Control in the Epileptic Brain

    PubMed Central

    Bonansco, Christian; Fuenzalida, Marco

    2016-01-01

    Synaptic plasticity is the capacity generated by experience to modify the neural function and, thereby, adapt our behaviour. Long-term plasticity of glutamatergic and GABAergic transmission occurs in a concerted manner, finely adjusting the excitatory-inhibitory (E/I) balance. Imbalances of E/I function are related to several neurological diseases including epilepsy. Several evidences have demonstrated that astrocytes are able to control the synaptic plasticity, with astrocytes being active partners in synaptic physiology and E/I balance. Here, we revise molecular evidences showing the epileptic stage as an abnormal form of long-term brain plasticity and propose the possible participation of astrocytes to the abnormal increase of glutamatergic and decrease of GABAergic neurotransmission in epileptic networks. PMID:27006834

  3. Translational Control in Synaptic Plasticity and Cognitive Dysfunction

    PubMed Central

    Buffington, Shelly A.; Huang, Wei; Costa-Mattioli, Mauro

    2016-01-01

    Activity-dependent changes in the strength of synaptic connections are fundamental to the formation and maintenance of memory. The mechanisms underlying persistent changes in synaptic strength in the hippocampus, specifically long-term potentiation and depression, depend on new protein synthesis. Such changes are thought to be orchestrated by engaging the signaling pathways that regulate mRNA translation in neurons. In this review, we discuss the key regulatory pathways that govern translational control in response to synaptic activity and the mRNA populations that are specifically targeted by these pathways. The critical contribution of regulatory control over new protein synthesis to proper cognitive function is underscored by human disorders associated with either silencing or mutation of genes encoding proteins that directly regulate translation. In light of these clinical implications, we also consider the therapeutic potential of targeting dysregulated translational control to treat cognitive disorders of synaptic dysfunction. PMID:25032491

  4. Learning and Memory, Part II: Molecular Mechanisms of Synaptic Plasticity

    ERIC Educational Resources Information Center

    Lombroso, Paul; Ogren, Marilee

    2009-01-01

    The molecular events that are responsible for strengthening synaptic connections and how these are linked to memory and learning are discussed. The laboratory preparations that allow the investigation of these events are also described.

  5. Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks.

    PubMed

    Zenke, Friedemann; Agnes, Everton J; Gerstner, Wulfram

    2015-01-01

    Synaptic plasticity, the putative basis of learning and memory formation, manifests in various forms and across different timescales. Here we show that the interaction of Hebbian homosynaptic plasticity with rapid non-Hebbian heterosynaptic plasticity is, when complemented with slower homeostatic changes and consolidation, sufficient for assembly formation and memory recall in a spiking recurrent network model of excitatory and inhibitory neurons. In the model, assemblies were formed during repeated sensory stimulation and characterized by strong recurrent excitatory connections. Even days after formation, and despite ongoing network activity and synaptic plasticity, memories could be recalled through selective delay activity following the brief stimulation of a subset of assembly neurons. Blocking any component of plasticity prevented stable functioning as a memory network. Our modelling results suggest that the diversity of plasticity phenomena in the brain is orchestrated towards achieving common functional goals. PMID:25897632

  6. Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks

    PubMed Central

    Zenke, Friedemann; Agnes, Everton J.; Gerstner, Wulfram

    2015-01-01

    Synaptic plasticity, the putative basis of learning and memory formation, manifests in various forms and across different timescales. Here we show that the interaction of Hebbian homosynaptic plasticity with rapid non-Hebbian heterosynaptic plasticity is, when complemented with slower homeostatic changes and consolidation, sufficient for assembly formation and memory recall in a spiking recurrent network model of excitatory and inhibitory neurons. In the model, assemblies were formed during repeated sensory stimulation and characterized by strong recurrent excitatory connections. Even days after formation, and despite ongoing network activity and synaptic plasticity, memories could be recalled through selective delay activity following the brief stimulation of a subset of assembly neurons. Blocking any component of plasticity prevented stable functioning as a memory network. Our modelling results suggest that the diversity of plasticity phenomena in the brain is orchestrated towards achieving common functional goals. PMID:25897632

  7. Spike train auto-structure impacts post-synaptic firing and timing-based plasticity.

    PubMed

    Scheller, Bertram; Castellano, Marta; Vicente, Raul; Pipa, Gordon

    2011-01-01

    Cortical neurons are typically driven by several thousand synapses. The precise spatiotemporal pattern formed by these inputs can modulate the response of a post-synaptic cell. In this work, we explore how the temporal structure of pre-synaptic inhibitory and excitatory inputs impact the post-synaptic firing of a conductance-based integrate and fire neuron. Both the excitatory and inhibitory input was modeled by renewal gamma processes with varying shape factors for modeling regular and temporally random Poisson activity. We demonstrate that the temporal structure of mutually independent inputs affects the post-synaptic firing, while the strength of the effect depends on the firing rates of both the excitatory and inhibitory inputs. In a second step, we explore the effect of temporal structure of mutually independent inputs on a simple version of Hebbian learning, i.e., hard bound spike-timing-dependent plasticity. We explore both the equilibrium weight distribution and the speed of the transient weight dynamics for different mutually independent gamma processes. We find that both the equilibrium distribution of the synaptic weights and the speed of synaptic changes are modulated by the temporal structure of the input. Finally, we highlight that the sensitivity of both the post-synaptic firing as well as the spike-timing-dependent plasticity on the auto-structure of the input of a neuron could be used to modulate the learning rate of synaptic modification. PMID:22203800

  8. Spike Train Auto-Structure Impacts Post-Synaptic Firing and Timing-Based Plasticity

    PubMed Central

    Scheller, Bertram; Castellano, Marta; Vicente, Raul; Pipa, Gordon

    2011-01-01

    Cortical neurons are typically driven by several thousand synapses. The precise spatiotemporal pattern formed by these inputs can modulate the response of a post-synaptic cell. In this work, we explore how the temporal structure of pre-synaptic inhibitory and excitatory inputs impact the post-synaptic firing of a conductance-based integrate and fire neuron. Both the excitatory and inhibitory input was modeled by renewal gamma processes with varying shape factors for modeling regular and temporally random Poisson activity. We demonstrate that the temporal structure of mutually independent inputs affects the post-synaptic firing, while the strength of the effect depends on the firing rates of both the excitatory and inhibitory inputs. In a second step, we explore the effect of temporal structure of mutually independent inputs on a simple version of Hebbian learning, i.e., hard bound spike-timing-dependent plasticity. We explore both the equilibrium weight distribution and the speed of the transient weight dynamics for different mutually independent gamma processes. We find that both the equilibrium distribution of the synaptic weights and the speed of synaptic changes are modulated by the temporal structure of the input. Finally, we highlight that the sensitivity of both the post-synaptic firing as well as the spike-timing-dependent plasticity on the auto-structure of the input of a neuron could be used to modulate the learning rate of synaptic modification. PMID:22203800

  9. Ubiquitin ligase TRIM3 controls hippocampal plasticity and learning by regulating synaptic γ-actin levels

    PubMed Central

    Schreiber, Joerg; Végh, Marlene J.; Dawitz, Julia; Kroon, Tim; Loos, Maarten; Labonté, Dorthe; Li, Ka Wan; Van Nierop, Pim; Van Diepen, Michiel T.; De Zeeuw, Chris I.; Kneussel, Matthias; Meredith, Rhiannon M.; Smit, August B.

    2015-01-01

    Synaptic plasticity requires remodeling of the actin cytoskeleton. Although two actin isoforms, β- and γ-actin, are expressed in dendritic spines, the specific contribution of γ-actin in the expression of synaptic plasticity is unknown. We show that synaptic γ-actin levels are regulated by the E3 ubiquitin ligase TRIM3. TRIM3 protein and Actg1 transcript are colocalized in messenger ribonucleoprotein granules responsible for the dendritic targeting of messenger RNAs. TRIM3 polyubiquitylates γ-actin, most likely cotranslationally at synaptic sites. Trim3−/− mice consequently have increased levels of γ-actin at hippocampal synapses, resulting in higher spine densities, increased long-term potentiation, and enhanced short-term contextual fear memory consolidation. Interestingly, hippocampal deletion of Actg1 caused an increase in long-term fear memory. Collectively, our findings suggest that temporal control of γ-actin levels by TRIM3 is required to regulate the timing of hippocampal plasticity. We propose a model in which TRIM3 regulates synaptic γ-actin turnover and actin filament stability and thus forms a transient inhibitory constraint on the expression of hippocampal synaptic plasticity. PMID:26527743

  10. SIRT1 is essential for normal cognitive function and synaptic plasticity

    PubMed Central

    Michán, Shaday; Li, Ying; Chou, Maggie Meng-Hsiu; Parrella, Edoardo; Ge, Huanying; Long, Jeffrey M.; Allard, Joanne S.; Lewis, Kaitlyn; Miller, Marshall; Xu, Wei; Mervis, Ronald F.; Chen, Jing; Guerin, Karen I.; Smith, Lois E. H.; McBurney, Michael W.; Sinclair, David A.; Baudry, Michel; de Cabo, Rafael; Longo, Valter D.

    2010-01-01

    Conservation of normal cognitive functions relies on the proper performance of the nervous system at the cellular and molecular level. The mammalian NAD+-dependent deacetylase, SIRT1, impacts different processes potentially involved in the maintenance of brain integrity such as chromatin remodeling, DNA repair, cell survival and neurogenesis. Here we show that SIRT1 is expressed in neurons of the hippocampus, a key structure in learning and memory. Using a combination of behavioral and electrophysiological paradigms we analyzed the effects of SIRT1 deficiency and overexpression on mouse learning and memory as well as on synaptic plasticity. We demonstrated that the absence of SIRT1 impaired cognitive abilities, including immediate memory, classical conditioning and spatial learning. In addition, we found that the cognitive deficits in SIRT1 knockout mice were associated with defects in synaptic plasticity without alterations in basal synaptic transmission or NMDA receptor function. Brains of SIRT1-KO mice exhibited normal morphology and dendritic spine structure but display a decrease in dendritic branching, branch length and complexity of neuronal dendritic arbors. Also, a decrease in ERK1/2 phosphorylation and altered expression of hippocampal genes involved in synaptic function, lipid metabolism and myelination were detected in SIRT1-KO mice. In contrast, mice with high levels of SIRT1 expression in brain exhibited regular synaptic plasticity and memory. We conclude that SIRT1 is indispensable for normal learning, memory and synaptic plasticity in mice. PMID:20660252

  11. A neuromorphic implementation of multiple spike-timing synaptic plasticity rules for large-scale neural networks

    PubMed Central

    Wang, Runchun M.; Hamilton, Tara J.; Tapson, Jonathan C.; van Schaik, André

    2015-01-01

    We present a neuromorphic implementation of multiple synaptic plasticity learning rules, which include both Spike Timing Dependent Plasticity (STDP) and Spike Timing Dependent Delay Plasticity (STDDP). We present a fully digital implementation as well as a mixed-signal implementation, both of which use a novel dynamic-assignment time-multiplexing approach and support up to 226 (64M) synaptic plasticity elements. Rather than implementing dedicated synapses for particular types of synaptic plasticity, we implemented a more generic synaptic plasticity adaptor array that is separate from the neurons in the neural network. Each adaptor performs synaptic plasticity according to the arrival times of the pre- and post-synaptic spikes assigned to it, and sends out a weighted or delayed pre-synaptic spike to the post-synaptic neuron in the neural network. This strategy provides great flexibility for building complex large-scale neural networks, as a neural network can be configured for multiple synaptic plasticity rules without changing its structure. We validate the proposed neuromorphic implementations with measurement results and illustrate that the circuits are capable of performing both STDP and STDDP. We argue that it is practical to scale the work presented here up to 236 (64G) synaptic adaptors on a current high-end FPGA platform. PMID:26041985

  12. Toward a microscopic model of bidirectional synaptic plasticity.

    PubMed

    Castellani, Gastone C; Bazzani, Armando; Cooper, Leon N

    2009-08-18

    as fluorescence measurements and electrophysiological recordings at multiple scales, from molecules to neurons. A further consequence is that the bistable regime occurs only within certain parametric windows, which may simulate a "history-dependent threshold". This effect might be related to the Bienenstock-Cooper-Munro theory of synaptic plasticity. PMID:19666550

  13. Identification of Functional Synaptic Plasticity from Spiking Activities Using Nonlinear Dynamical Modeling

    PubMed Central

    Song, Dong; Chan, Rosa H. M.; Robinson, Brian S.; Marmarelis, Vasilis Z.; Opris, Ioan; Hampson, Robert E.; Deadwyler, Sam A.; Berger, Theodore W.

    2014-01-01

    This paper presents a systems identification approach for studying the long-term synaptic plasticity using natural spiking activities. This approach consists of three modeling steps. First, a multi-input, single-output (MISO), nonlinear dynamical spiking neuron model is formulated to estimate and represent the synaptic strength in means of functional connectivity between input and output neurons. Second, this MISO model is extended to a nonstationary form to track the time-varying properties of the synaptic strength. Finally, a Volterra modeling method is used to extract the synaptic learning rule, e.g., spike-timing-dependent plasticity, for the explanation of the input-output nonstationarity as the consequence of the past input-output spiking patterns. This framework is developed to study the underlying mechanisms of learning and memory formation in behaving animals, and may serve as the computational basis for building the next-generation adaptive cortical prostheses. PMID:25280984

  14. Correlated Synaptic Inputs Drive Dendritic Calcium Amplification and Cooperative Plasticity during Clustered Synapse Development.

    PubMed

    Lee, Kevin F H; Soares, Cary; Thivierge, Jean-Philippe; Béïque, Jean-Claude

    2016-02-17

    The mechanisms that instruct the assembly of fine-scale features of synaptic connectivity in neural circuits are only beginning to be understood. Using whole-cell electrophysiology, two-photon calcium imaging, and glutamate uncaging in hippocampal slices, we discovered a functional coupling between NMDA receptor activation and ryanodine-sensitive intracellular calcium release that dominates the spatiotemporal dynamics of activity-dependent calcium signals during synaptogenesis. This developmentally regulated calcium amplification mechanism was tuned to detect and bind spatially clustered and temporally correlated synaptic inputs and enacted a local cooperative plasticity rule between coactive neighboring synapses. Consistent with the hypothesis that synapse maturation is spatially regulated, we observed clustering of synaptic weights in developing dendritic arbors. These results reveal developmental features of NMDA receptor-dependent calcium dynamics and local plasticity rules that are suited to spatially guide synaptic connectivity patterns in emerging neural networks. PMID:26853305

  15. Dopamine Regulates Aversive Contextual Learning and Associated In Vivo Synaptic Plasticity in the Hippocampus.

    PubMed

    Broussard, John I; Yang, Kechun; Levine, Amber T; Tsetsenis, Theodoros; Jenson, Daniel; Cao, Fei; Garcia, Isabella; Arenkiel, Benjamin R; Zhou, Fu-Ming; De Biasi, Mariella; Dani, John A

    2016-03-01

    Dopamine release during reward-driven behaviors influences synaptic plasticity. However, dopamine innervation and release in the hippocampus and its role during aversive behaviors are controversial. Here, we show that in vivo hippocampal synaptic plasticity in the CA3-CA1 circuit underlies contextual learning during inhibitory avoidance (IA) training. Immunohistochemistry and molecular techniques verified sparse dopaminergic innervation of the hippocampus from the midbrain. The long-term synaptic potentiation (LTP) underlying the learning of IA was assessed with a D1-like dopamine receptor agonist or antagonist in ex vivo hippocampal slices and in vivo in freely moving mice. Inhibition of D1-like dopamine receptors impaired memory of the IA task and prevented the training-induced enhancement of both ex vivo and in vivo LTP induction. The results indicate that dopamine-receptor signaling during an aversive contextual task regulates aversive memory retention and regulates associated synaptic mechanisms in the hippocampus that likely underlie learning. PMID:26904943

  16. A novel synaptic plasticity rule explains homeostasis of neuromuscular transmission

    PubMed Central

    Ouanounou, Gilles; Baux, Gérard; Bal, Thierry

    2016-01-01

    Excitability differs among muscle fibers and undergoes continuous changes during development and growth, yet the neuromuscular synapse maintains a remarkable fidelity of execution. Here we show in two evolutionarily distant vertebrates (Xenopus laevis cell culture and mouse nerve-muscle ex-vivo) that the skeletal muscle cell constantly senses, through two identified calcium signals, synaptic events and their efficacy in eliciting spikes. These sensors trigger retrograde signal(s) that control presynaptic neurotransmitter release, resulting in synaptic potentiation or depression. In the absence of spikes, synaptic events trigger potentiation. Once the synapse is sufficiently strong to initiate spiking, the occurrence of these spikes activates a negative retrograde feedback. These opposing signals dynamically balance the synapse in order to continuously adjust neurotransmitter release to a level matching current muscle cell excitability. DOI: http://dx.doi.org/10.7554/eLife.12190.001 PMID:27138195

  17. GABAergic synaptic plasticity during a developmentally regulated sleep-like state in C. elegans.

    PubMed

    Dabbish, Nooreen S; Raizen, David M

    2011-11-01

    Approximately one-fourth of the neurons in Caenorhabditis elegans adults are born during larval development, indicating tremendous plasticity in larval nervous system structure. Larval development shows cyclical expression of sleep-like quiescent behavior during lethargus periods, which occur at larval stage transitions. We studied plasticity at the neuromuscular junction during lethargus using the acetylcholinesterase inhibitor aldicarb. The rate of animal contraction when exposed to aldicarb is controlled by the balance between excitatory cholinergic and inhibitory GABAergic input on the muscle. During lethargus, there is an accelerated rate of contraction on aldicarb. Mutant analysis and optogenetic studies reveal that GABAergic synaptic transmission is reduced during lethargus. Worms in lethargus show partial resistance to GABA(A) receptor agonists, indicating that postsynaptic mechanisms contribute to lethargus-dependent plasticity. Using genetic manipulations that separate the quiescent state from the developmental stage, we show that the synaptic plasticity is dependent on developmental time and not on the behavioral state of the animal. We propose that the synaptic plasticity regulated by a developmental clock in C. elegans is analogous to synaptic plasticity regulated by the circadian clock in other species. PMID:22049436

  18. Synaptic plasticity, neural circuits, and the emerging role of altered short-term information processing in schizophrenia

    PubMed Central

    Crabtree, Gregg W.; Gogos, Joseph A.

    2014-01-01

    Synaptic plasticity alters the strength of information flow between presynaptic and postsynaptic neurons and thus modifies the likelihood that action potentials in a presynaptic neuron will lead to an action potential in a postsynaptic neuron. As such, synaptic plasticity and pathological changes in synaptic plasticity impact the synaptic computation which controls the information flow through the neural microcircuits responsible for the complex information processing necessary to drive adaptive behaviors. As current theories of neuropsychiatric disease suggest that distinct dysfunctions in neural circuit performance may critically underlie the unique symptoms of these diseases, pathological alterations in synaptic plasticity mechanisms may be fundamental to the disease process. Here we consider mechanisms of both short-term and long-term plasticity of synaptic transmission and their possible roles in information processing by neural microcircuits in both health and disease. As paradigms of neuropsychiatric diseases with strongly implicated risk genes, we discuss the findings in schizophrenia and autism and consider the alterations in synaptic plasticity and network function observed in both human studies and genetic mouse models of these diseases. Together these studies have begun to point toward a likely dominant role of short-term synaptic plasticity alterations in schizophrenia while dysfunction in autism spectrum disorders (ASDs) may be due to a combination of both short-term and long-term synaptic plasticity alterations. PMID:25505409

  19. Estrogen Promotes Learning Related Plasticity by Modifying the Synaptic Cytoskeleton

    PubMed Central

    Kramár, Enikö A.; Babayan, Alex H.; M.Gall, Christine; Lynch, Gary

    2015-01-01

    Estrogen's acute, facilitatory effects on glutamatergic transmission and long-term potentiation (LTP) provide a potential explanation for the steroid's considerable influence on behavior. Recent work has identified mechanisms underlying these synaptic actions. Brief infusion of 17β-estradiol (E2) into adult male rat hippocampal slices triggers actin polymerization within dendritic spines via a signaling cascade beginning with the GTPase RhoA and ending with inactivation of the filament severing protein cofilin. Blocking this sequence, or actin polymerization itself, eliminates E2's effects on synaptic physiology. Notably, the theta burst stimulation used to induce LTP activates the same signaling pathway as E2 plus events that stabilize the reorganization of the sub-synaptic cytoskeleton. These observations suggest that E2 elicits a partial form of LTP, resulting in an increase of fast EPSP's and a reduction in the threshold for lasting synaptic changes. While E2's effects on the cytoskeleton could be direct, results described here indicate that the hormone activates synaptic TrkB receptors for Brain Derived Neurotrophic Factor, a releasable neurotrophin that stimulates the RhoA to cofilin pathway. It is therefore possible that E2 acts via transactivation of neighboring receptors to modify the composition and structure of excitatory contacts. Finally, there is the question of whether a loss of acute synaptic actions contributes to the memory problems associated with estrogen depletion. Initial tests found that ovariectomy in middle-aged rats disrupts RhoA signaling, actin polymerization, and LTP consolidation. Acute applications of E2 reversed these defects, a result consistent with the idea that disturbances to actin management are one cause of behavioral effects that emerge with reductions in steroid levels. PMID:23103216

  20. Impairments of Synaptic Plasticity in Aged Animals and in Animal Models of Alzheimer's Disease

    PubMed Central

    Balietti, Marta; Tamagnini, Francesco; Fattoretti, Patrizia; Burattini, Costanza; Casoli, Tiziana; Platano, Daniela; Lattanzio, Fabrizia

    2012-01-01

    Abstract Aging is associated with a gradual decline in cognitive functions, and more dramatic cognitive impairments occur in patients affected by Alzheimer's disease (AD). Electrophysiological and molecular studies performed in aged animals and in animal models of AD have shown that cognitive decline is associated with significant modifications in synaptic plasticity (i.e., activity-dependent changes in synaptic strength) and have elucidated some of the cellular mechanisms underlying this process. Morphological studies have revealed a correlation between the quality of memory performance and the extent of structural changes of synaptic contacts occurring during memory consolidation. We briefly review recent experimental evidence here. PMID:22533439

  1. Restoration of synaptic plasticity in the host striatum: can transplants make it?

    PubMed

    Rylander, Daniella

    2013-12-18

    Intrastriatal transplantation of dopamine (DA) neurons can restore DA levels in the striatum and improve parkinsonian deficits in experimental studies. However, the mechanisms underlying these effects are poorly understood. Corticostriatal synaptic plasticity represents an important cellular mechanism for information storage and behavioural learning in the brain. This mechanism is defective in Parkinson's disease (PD). Indeed, the lack of endogenous DA innervation to the striatum causes morphological and functional rearrangements that are associated with altered synaptic plasticity in the corticostriatal pathway. In turn, malfunctioning synaptic plasticity is associated with motor deficits that resemble features of PD. It is yet unknown whether or not transplanted dopaminergic neurons can restore these striatal deficits in PD. Could this be the mechanism underlying the therapeutic effects of transplants? Recent studies have begun to shed light on this matter using different approaches. PMID:24152765

  2. Conformational signaling required for synaptic plasticity by the NMDA receptor complex.

    PubMed

    Aow, Jonathan; Dore, Kim; Malinow, Roberto

    2015-11-24

    The NMDA receptor (NMDAR) is known to transmit important information by conducting calcium ions. However, some recent studies suggest that activation of NMDARs can trigger synaptic plasticity in the absence of ion flow. Does ligand binding transmit information to signaling molecules that mediate synaptic plasticity? Using Förster resonance energy transfer (FRET) imaging of fluorescently tagged proteins expressed in neurons, conformational signaling is identified within the NMDAR complex that is essential for downstream actions. Ligand binding transiently reduces FRET between the NMDAR cytoplasmic domain (cd) and the associated protein phosphatase 1 (PP1), requiring NMDARcd movement, and persistently reduces FRET between the NMDARcd and calcium/calmodulin-dependent protein kinase II (CaMKII), a process requiring PP1 activity. These studies directly monitor agonist-driven conformational signaling at the NMDAR complex required for synaptic plasticity. PMID:26553983

  3. Factors Influencing Short-term Synaptic Plasticity in the Avian Cochlear Nucleus Magnocellularis

    PubMed Central

    Sanchez, Jason Tait; Quinones, Karla; Otto-Meyer, Sebastian

    2015-01-01

    Defined as reduced neural responses during high rates of activity, synaptic depression is a form of short-term plasticity important for the temporal filtering of sound. In the avian cochlear nucleus magnocellularis (NM), an auditory brainstem structure, mechanisms regulating short-term synaptic depression include pre-, post-, and extrasynaptic factors. Using varied paired-pulse stimulus intervals, we found that the time course of synaptic depression lasts up to four seconds at late-developing NM synapses. Synaptic depression was largely reliant on exogenous Ca2+-dependent probability of presynaptic neurotransmitter release, and to a lesser extent, on the desensitization of postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor (AMPA-R). Interestingly, although extrasynaptic glutamate clearance did not play a significant role in regulating synaptic depression, blocking glutamate clearance at early-developing synapses altered synaptic dynamics, changing responses from depression to facilitation. These results suggest a developmental shift in the relative reliance on pre-, post-, and extrasynaptic factors in regulating short-term synaptic plasticity in NM. PMID:26527054

  4. Lovastatin improves impaired synaptic plasticity and phasic alertness in patients with neurofibromatosis type 1

    PubMed Central

    2013-01-01

    Background Neurofibromatosis type 1 (NF1) is one of the most common genetic disorders causing learning disabilities by mutations in the neurofibromin gene, an important inhibitor of the RAS pathway. In a mouse model of NF1, a loss of function mutation of the neurofibromin gene resulted in increased gamma aminobutyric acid (GABA)-mediated inhibition which led to decreased synaptic plasticity and deficits in attentional performance. Most importantly, these defictis were normalized by lovastatin. This placebo-controlled, double blind, randomized study aimed to investigate synaptic plasticity and cognition in humans with NF1 and tried to answer the question whether potential deficits may be rescued by lovastatin. Methods In NF1 patients (n = 11; 19–44 years) and healthy controls (HC; n = 11; 19–31 years) paired pulse transcranial magnetic stimulation (TMS) was used to study intracortical inhibition (paired pulse) and synaptic plasticity (paired associative stimulation). On behavioural level the Test of Attentional Performance (TAP) was used. To study the effect of 200 mg lovastatin for 4 days on all these parameters, a placebo-controlled, double blind, randomized trial was performed. Results In patients with NF1, lovastatin revealed significant decrease of intracortical inhibition, significant increase of synaptic plasticity as well as significant increase of phasic alertness. Compared to HC, patients with NF1 exposed increased intracortical inhibition, impaired synaptic plasticity and deficits in phasic alertness. Conclusions This study demonstrates, for the first time, a link between a pathological RAS pathway activity, intracortical inhibition and impaired synaptic plasticity and its rescue by lovastatin in humans. Our findings revealed mechanisms of attention disorders in humans with NF1 and support the idea of a potential clinical benefit of lovastatin as a therapeutic option. PMID:24088225

  5. Learning structure of sensory inputs with synaptic plasticity leads to interference

    PubMed Central

    Chrol-Cannon, Joseph; Jin, Yaochu

    2015-01-01

    Synaptic plasticity is often explored as a form of unsupervised adaptation in cortical microcircuits to learn the structure of complex sensory inputs and thereby improve performance of classification and prediction. The question of whether the specific structure of the input patterns is encoded in the structure of neural networks has been largely neglected. Existing studies that have analyzed input-specific structural adaptation have used simplified, synthetic inputs in contrast to complex and noisy patterns found in real-world sensory data. In this work, input-specific structural changes are analyzed for three empirically derived models of plasticity applied to three temporal sensory classification tasks that include complex, real-world visual and auditory data. Two forms of spike-timing dependent plasticity (STDP) and the Bienenstock-Cooper-Munro (BCM) plasticity rule are used to adapt the recurrent network structure during the training process before performance is tested on the pattern recognition tasks. It is shown that synaptic adaptation is highly sensitive to specific classes of input pattern. However, plasticity does not improve the performance on sensory pattern recognition tasks, partly due to synaptic interference between consecutively presented input samples. The changes in synaptic strength produced by one stimulus are reversed by the presentation of another, thus largely preventing input-specific synaptic changes from being retained in the structure of the network. To solve the problem of interference, we suggest that models of plasticity be extended to restrict neural activity and synaptic modification to a subset of the neural circuit, which is increasingly found to be the case in experimental neuroscience. PMID:26300769

  6. The requirement of BDNF for hippocampal synaptic plasticity is experience-dependent.

    PubMed

    Aarse, Janna; Herlitze, Stefan; Manahan-Vaughan, Denise

    2016-06-01

    Brain-derived neurotrophic factor (BDNF) supports neuronal survival, growth, and differentiation and has been implicated in forms of hippocampus-dependent learning. In vitro, a specific role in hippocampal synaptic plasticity has been described, although not all experience-dependent forms of synaptic plasticity critically depend on BDNF. Synaptic plasticity is likely to enable long-term synaptic information storage and memory, and the induction of persistent (>24 h) forms, such as long-term potentiation (LTP) and long-term depression (LTD) is tightly associated with learning specific aspects of a spatial representation. Whether BDNF is required for persistent (>24 h) forms of LTP and LTD, and how it contributes to synaptic plasticity in the freely behaving rodent has never been explored. We examined LTP, LTD, and related forms of learning in the CA1 region of freely dependent mice that have a partial knockdown of BDNF (BDNF(+/-) ). We show that whereas early-LTD (<90min) requires BDNF, short-term depression (<45 min) does not. Furthermore, BDNF is required for LTP that is induced by mild, but not strong short afferent stimulation protocols. Object-place learning triggers LTD in the CA1 region of mice. We observed that object-place memory was impaired and the object-place exploration failed to induce LTD in BDNF(+/-) mice. Furthermore, spatial reference memory, that is believed to be enabled by LTP, was also impaired. Taken together, these data indicate that BDNF is required for specific, but not all, forms of hippocampal-dependent information storage and memory. Thus, very robust forms of synaptic plasticity may circumvent the need for BDNF, rather it may play a specific role in the optimization of weaker forms of plasticity. The finding that both learning-facilitated LTD and spatial reference memory are both impaired in BDNF(+/-) mice, suggests moreover, that it is critically required for the physiological encoding of hippocampus-dependent memory. © 2015 The

  7. PSD-95 regulates synaptic transmission and plasticity in rat cerebral cortex

    PubMed Central

    Béïque, Jean-Claude; Andrade, Rodrigo

    2003-01-01

    PSD-95 is one of the most abundant proteins found in the postsynaptic density of excitatory synapses. However, the precise functional role played by PSD-95 in regulating synaptic transmission and plasticity remains undefined. To address this issue, we have overexpressed PSD-95 in cortical pyramidal neurons in organotypic brain slices using particle-mediated gene transfer and assessed the consequences on synaptic transmission and plasticity. The AMPA receptor/NMDA receptor (AMPAR/NMDAR) ratio of evoked EPSCs recorded at +40 mV was greater in PSD-95-transfected pyramidal neurons than in controls. This difference could not be accounted for by a change in rectification of AMPAR-mediated synaptic currents since the current-voltage curves obtained in controls and in PSD-95-transfected neurons were indistinguishable. However, the amplitude of AMPAR-mediated evoked EPSCs was larger in PSD-95-transfected neurons compared to matched controls. Paired-pulse ratio analysis suggested that overexpression of PSD-95 did not alter presynaptic release probability. Transfection of PSD-95 was further accompanied by an increase in the frequency, but not amplitude, of AMPAR-mediated mEPSCs. Together, these results indicate that transfection of PSD-95 increased AMPAR-mediated synaptic transmission. Furthermore, they suggest that this phenomenon reflects an increased number of synapses expressing AMPARs rather than an increased number or function of these receptors at individual synapses. We tested the consequences of these changes on synaptic plasticity and found that PSD-95 transfection greatly enhanced the probability of observing long-term depression. These results thus identify a physiological role for PSD-95 and demonstrate that this protein can play a decisive role in controlling synaptic strength and activity-dependent synaptic plasticity. PMID:12563010

  8. Astroglial calcium signaling displays short-term plasticity and adjusts synaptic efficacy

    PubMed Central

    Sibille, Jérémie; Zapata, Jonathan; Teillon, Jérémie; Rouach, Nathalie

    2015-01-01

    Astrocytes are dynamic signaling brain elements able to sense neuronal inputs and to respond by complex calcium signals, which are thought to represent their excitability. Such signaling has been proposed to modulate, or not, neuronal activities ranging from basal synaptic transmission to epileptiform discharges. However, whether calcium signaling in astrocytes exhibits activity-dependent changes and acutely modulates short-term synaptic plasticity is currently unclear. We here show, using dual recordings of astroglial calcium signals and synaptic transmission, that calcium signaling in astrocytes displays, concomitantly to excitatory synapses, short-term plasticity in response to prolonged repetitive and tetanic stimulations of Schaffer collaterals. We also found that acute inhibition of calcium signaling in astrocytes by intracellular calcium chelation rapidly potentiates excitatory synaptic transmission and short-term plasticity of Shaffer collateral CA1 synapses, i.e., paired-pulse facilitation and responses to tetanic and prolonged repetitive stimulation. These data reveal that calcium signaling of astrocytes is plastic and down-regulates basal transmission and short-term plasticity of hippocampal CA1 glutamatergic synapses. PMID:26074766

  9. A spaceflight study of synaptic plasticity in adult rat vestibular maculas

    NASA Technical Reports Server (NTRS)

    Ross, M. D.

    1994-01-01

    Behavioral signs of vestibular perturbation in altered gravity have not been well correlated with structural modifications in neurovestibular centers. This ultrastructural research investigated synaptic plasticity in hair cells of adult rat utricular maculas exposed to microgravity for nine days on a space shuttle. The hypothesis was that synaptic plasticity would be more evident in type II hair cells because they are part of a distributed modifying macular circuitry. All rats were shared with other investigators and were subjected to treatments unrelated to this experiment. Maculas were obtained from flight and control rats after shuttle return (R + 0) and nine days post-flight (R + 9). R + 9 rats had chromodacryorrhea, a sign of acute stress. Tissues were prepared for ultrastructural study by conventional methods. Ribbon synapses were counted in fifty serial sections from medial utricular macular regions of three rats of each flight and control group. Counts in fifty additional consecutive sections from one sample in each group established method reliability. All synapses were photographed and located to specific cells on mosaics of entire sections. Pooled data were analyzed statistically. Flown rats showed abnormal posture and movement at R + 0. They had statistically significant increases in total ribbon synapses and in sphere-like ribbons in both kinds of hair cells; in type II cells, pairs of synapses nearly doubled and clusters of 3 to 6 synapses increased twelve-fold. At R + 9, behavioral signs were normal. However, synapse counts remained high in both kinds of hair cells of flight maculas and were elevated in control type II cells. Only counts in type I cells showed statistically significant differences at R + 9. High synaptic counts at R + 9 may have resulted from stress due to experimental treatments. The results nevertheless demonstrate that adult maculas retain the potential for synaptic plasticity. Type II cells exhibited more synaptic plasticity, but

  10. Functional diversity on synaptic plasticity mediated by endocannabinoids

    PubMed Central

    Cachope, Roger

    2012-01-01

    Endocannabinoids (eCBs) act as modulators of synaptic transmission through activation of a number of receptors, including, but not limited to, cannabinoid receptor 1 (CB1). eCBs share CB1 receptors as a common target with Δ9-tetrahydrocannabinol (THC), the main psychoactive ingredient in marijuana. Although THC has been used for recreational and medicinal purposes for thousands of years, little was known about its effects at the cellular level or on neuronal circuits. Identification of CB1 receptors and the subsequent development of its specific ligands has therefore enhanced our ability to study and bring together a substantial amount of knowledge regarding how marijuana and eCBs modify interneuronal communication. To date, the eCB system, composed of cannabinoid receptors, ligands and the relevant enzymes, is recognized as the best-described retrograde signalling system in the brain. Its impact on synaptic transmission is widespread and more diverse than initially thought. The aim of this review is to succinctly present the most common forms of eCB-mediated modulation of synaptic transmission, while also illustrating the multiplicity of effects resulting from specializations of this signalling system at the circuital level. PMID:23108543

  11. Wnts in adult brain: from synaptic plasticity to cognitive deficiencies

    PubMed Central

    Oliva, Carolina A.; Vargas, Jessica Y.; Inestrosa, Nibaldo C.

    2013-01-01

    During development of the central nervous system the Wnt signaling pathway has been implicated in a wide spectrum of physiological processes, including neuronal connectivity and synapse formation. Wnt proteins and components of the Wnt pathway are expressed in the brain since early development to the adult life, however, little is known about its role in mature synapses. Here, we review evidences indicating that Wnt proteins participate in the remodeling of pre- and post-synaptic regions, thus modulating synaptic function. We include the most recent data in the literature showing that Wnts are constantly released in the brain to maintain the basal neural activity. Also, we review the evidences that involve components of the Wnt pathway in the development of neurological and mental disorders, including a special emphasis on in vivo studies that relate behavioral abnormalities to deficiencies in Wnt signaling. Finally, we include the evidences that support a neuroprotective role of Wnt proteins in Alzheimer’s disease. We postulate that deregulation in Wnt signaling might have a fundamental role in the origin of neurological diseases, by altering the synaptic function at stages where the phenotype is not yet established but when the cognitive decline starts. PMID:24348327

  12. The Chemokine MIP-1α/CCL3 impairs mouse hippocampal synaptic transmission, plasticity and memory

    PubMed Central

    Marciniak, Elodie; Faivre, Emilie; Dutar, Patrick; Alves Pires, Claire; Demeyer, Dominique; Caillierez, Raphaëlle; Laloux, Charlotte; Buée, Luc; Blum, David; Humez, Sandrine

    2015-01-01

    Chemokines are signaling molecules playing an important role in immune regulations. They are also thought to regulate brain development, neurogenesis and neuroendocrine functions. While chemokine upsurge has been associated with conditions characterized with cognitive impairments, their ability to modulate synaptic plasticity remains ill-defined. In the present study, we specifically evaluated the effects of MIP1-α/CCL3 towards hippocampal synaptic transmission, plasticity and spatial memory. We found that CCL3 (50 ng/ml) significantly reduced basal synaptic transmission at the Schaffer collateral-CA1 synapse without affecting NMDAR-mediated field potentials. This effect was ascribed to post-synaptic regulations, as CCL3 did not impact paired-pulse facilitation. While CCL3 did not modulate long-term depression (LTD), it significantly impaired long-term potentiation (LTP), an effect abolished by Maraviroc, a CCR5 specific antagonist. In addition, sub-chronic intracerebroventricular (icv) injections of CCL3 also impair LTP. In accordance with these electrophysiological findings, we demonstrated that the icv injection of CCL3 in mouse significantly impaired spatial memory abilities and long-term memory measured using the two-step Y-maze and passive avoidance tasks. These effects of CCL3 on memory were inhibited by Maraviroc. Altogether, these data suggest that the chemokine CCL3 is an hippocampal neuromodulator able to regulate synaptic plasticity mechanisms involved in learning and memory functions. PMID:26511387

  13. A role for synaptic plasticity in the adolescent development of executive function

    PubMed Central

    Selemon, L D

    2013-01-01

    Adolescent brain maturation is characterized by the emergence of executive function mediated by the prefrontal cortex, e.g., goal planning, inhibition of impulsive behavior and set shifting. Synaptic pruning of excitatory contacts is the signature morphologic event of late brain maturation during adolescence. Mounting evidence suggests that glutamate receptor-mediated synaptic plasticity, in particular long term depression (LTD), is important for elimination of synaptic contacts in brain development. This review examines the possibility (1) that LTD mechanisms are enhanced in the prefrontal cortex during adolescence due to ongoing synaptic pruning in this late developing cortex and (2) that enhanced synaptic plasticity in the prefrontal cortex represents a key molecular substrate underlying the critical period for maturation of executive function. Molecular sites of interaction between environmental factors, such as alcohol and stress, and glutamate receptor mediated plasticity are considered. The accentuated negative impact of these factors during adolescence may be due in part to interference with LTD mechanisms that refine prefrontal cortical circuitry and when disrupted derail normal maturation of executive function. Diminished prefrontal cortical control over risk-taking behavior could further exacerbate negative outcomes associated with these behaviors, as for example addiction and depression. Greater insight into the neurobiology of the adolescent brain is needed to fully understand the molecular basis for heightened vulnerability during adolescence to the injurious effects of substance abuse and stress. PMID:23462989

  14. Learning of Precise Spike Times with Homeostatic Membrane Potential Dependent Synaptic Plasticity

    PubMed Central

    Albers, Christian; Westkott, Maren; Pawelzik, Klaus

    2016-01-01

    Precise spatio-temporal patterns of neuronal action potentials underly e.g. sensory representations and control of muscle activities. However, it is not known how the synaptic efficacies in the neuronal networks of the brain adapt such that they can reliably generate spikes at specific points in time. Existing activity-dependent plasticity rules like Spike-Timing-Dependent Plasticity are agnostic to the goal of learning spike times. On the other hand, the existing formal and supervised learning algorithms perform a temporally precise comparison of projected activity with the target, but there is no known biologically plausible implementation of this comparison. Here, we propose a simple and local unsupervised synaptic plasticity mechanism that is derived from the requirement of a balanced membrane potential. Since the relevant signal for synaptic change is the postsynaptic voltage rather than spike times, we call the plasticity rule Membrane Potential Dependent Plasticity (MPDP). Combining our plasticity mechanism with spike after-hyperpolarization causes a sensitivity of synaptic change to pre- and postsynaptic spike times which can reproduce Hebbian spike timing dependent plasticity for inhibitory synapses as was found in experiments. In addition, the sensitivity of MPDP to the time course of the voltage when generating a spike allows MPDP to distinguish between weak (spurious) and strong (teacher) spikes, which therefore provides a neuronal basis for the comparison of actual and target activity. For spatio-temporal input spike patterns our conceptually simple plasticity rule achieves a surprisingly high storage capacity for spike associations. The sensitivity of the MPDP to the subthreshold membrane potential during training allows robust memory retrieval after learning even in the presence of activity corrupted by noise. We propose that MPDP represents a biophysically plausible mechanism to learn temporal target activity patterns. PMID:26900845

  15. Computational quest for understanding the role of astrocyte signaling in synaptic transmission and plasticity

    PubMed Central

    De Pittà, Maurizio; Volman, Vladislav; Berry, Hugues; Parpura, Vladimir; Volterra, Andrea; Ben-Jacob, Eshel

    2012-01-01

    The complexity of the signaling network that underlies astrocyte-synapse interactions may seem discouraging when tackled from a theoretical perspective. Computational modeling is challenged by the fact that many details remain hitherto unknown and conventional approaches to describe synaptic function are unsuitable to explain experimental observations when astrocytic signaling is taken into account. Supported by experimental evidence is the possibility that astrocytes perform genuine information processing by means of their calcium signaling and are players in the physiological setting of the basal tone of synaptic transmission. Here we consider the plausibility of this scenario from a theoretical perspective, focusing on the modulation of synaptic release probability by the astrocyte and its implications on synaptic plasticity. The analysis of the signaling pathways underlying such modulation refines our notion of tripartite synapse and has profound implications on our understanding of brain function. PMID:23267326

  16. HDAC4 governs a transcriptional program essential for synaptic plasticity and memory.

    PubMed

    Sando, Richard; Gounko, Natalia; Pieraut, Simon; Liao, Lujian; Yates, John; Maximov, Anton

    2012-11-01

    Neuronal activity influences genes involved in circuit development and information processing. However, the molecular basis of this process remains poorly understood. We found that HDAC4, a histone deacetylase that shuttles between the nucleus and cytoplasm, controls a transcriptional program essential for synaptic plasticity and memory. The nuclear import of HDAC4 and its association with chromatin is negatively regulated by NMDA receptors. In the nucleus, HDAC4 represses genes encoding constituents of central synapses, thereby affecting synaptic architecture and strength. Furthermore, we show that a truncated form of HDAC4 encoded by an allele associated with mental retardation is a gain-of-function nuclear repressor that abolishes transcription and synaptic transmission despite the loss of the deacetylase domain. Accordingly, mice carrying a mutant that mimics this allele exhibit deficits in neurotransmission, spatial learning, and memory. These studies elucidate a mechanism of experience-dependent plasticity and define the biological role of HDAC4 in the brain. PMID:23141539

  17. Functional recovery after cervical spinal cord injury: Role of neurotrophin and glutamatergic signaling in phrenic motoneurons.

    PubMed

    Gill, Luther C; Gransee, Heather M; Sieck, Gary C; Mantilla, Carlos B

    2016-06-01

    Cervical spinal cord injury (SCI) interrupts descending neural drive to phrenic motoneurons causing diaphragm muscle (DIAm) paralysis. Recent studies using a well-established model of SCI, unilateral spinal hemisection of the C2 segment of the cervical spinal cord (SH), provide novel information regarding the molecular and cellular mechanisms of functional recovery after SCI. Over time post-SH, gradual recovery of rhythmic ipsilateral DIAm activity occurs. Recovery of ipsilateral DIAm electromyogram (EMG) activity following SH is enhanced by increasing brain-derived neurotrophic factor (BDNF) in the region of the phrenic motoneuron pool. Delivery of exogenous BDNF either via intrathecal infusion or via mesenchymal stem cells engineered to release BDNF similarly enhance recovery. Conversely, recovery after SH is blunted by quenching endogenous BDNF with the fusion-protein TrkB-Fc in the region of the phrenic motoneuron pool or by selective inhibition of TrkB kinase activity using a chemical-genetic approach in TrkB(F616A) mice. Furthermore, the importance of BDNF signaling via TrkB receptors at phrenic motoneurons is highlighted by the blunting of recovery by siRNA-mediated downregulation of TrkB receptor expression in phrenic motoneurons and by the enhancement of recovery evident following virally-induced increases in TrkB expression specifically in phrenic motoneurons. BDNF/TrkB signaling regulates synaptic plasticity in various neuronal systems, including glutamatergic pathways. Glutamatergic neurotransmission constitutes the main inspiratory-related, excitatory drive to motoneurons, and following SH, spontaneous neuroplasticity is associated with increased expression of ionotropic N-methyl-d-aspartate (NMDA) receptors in phrenic motoneurons. Evidence for the role of BDNF/TrkB and glutamatergic signaling in recovery of DIAm activity following cervical SCI is reviewed. PMID:26506253

  18. Somato-dendritic Synaptic Plasticity and Error-backpropagation in Active Dendrites.

    PubMed

    Schiess, Mathieu; Urbanczik, Robert; Senn, Walter

    2016-02-01

    In the last decade dendrites of cortical neurons have been shown to nonlinearly combine synaptic inputs by evoking local dendritic spikes. It has been suggested that these nonlinearities raise the computational power of a single neuron, making it comparable to a 2-layer network of point neurons. But how these nonlinearities can be incorporated into the synaptic plasticity to optimally support learning remains unclear. We present a theoretically derived synaptic plasticity rule for supervised and reinforcement learning that depends on the timing of the presynaptic, the dendritic and the postsynaptic spikes. For supervised learning, the rule can be seen as a biological version of the classical error-backpropagation algorithm applied to the dendritic case. When modulated by a delayed reward signal, the same plasticity is shown to maximize the expected reward in reinforcement learning for various coding scenarios. Our framework makes specific experimental predictions and highlights the unique advantage of active dendrites for implementing powerful synaptic plasticity rules that have access to downstream information via backpropagation of action potentials. PMID:26841235

  19. SRC Inhibition Reduces NR2B Surface Expression and Synaptic Plasticity in the Amygdala

    ERIC Educational Resources Information Center

    Sinai, Laleh; Duffy, Steven; Roder, John C.

    2010-01-01

    The Src protein tyrosine kinase plays a central role in the regulation of N-methyl-d-aspartate receptor (NMDAR) activity by regulating NMDAR subunit 2B (NR2B) surface expression. In the amygdala, NMDA-dependent synaptic plasticity resulting from convergent somatosensory and auditory inputs contributes to emotional memory; however, the role of Src…

  20. Long-Term Exercise Is Needed to Enhance Synaptic Plasticity in the Hippocampus

    ERIC Educational Resources Information Center

    Patten, Anna R.; Sickmann, Helle; Hryciw, Brett N.; Kucharsky, Tessa; Parton, Roberta; Kernick, Aimee; Christie, Brian R.

    2013-01-01

    Exercise can have many benefits for the body, but it also benefits the brain by increasing neurogenesis, synaptic plasticity, and performance on learning and memory tasks. The period of exercise needed to realize the structural and functional benefits for the brain have not been well delineated, and previous studies have used periods of exercise…

  1. Dopamine and norepinephrine receptors participate in methylphenidate enhancement of in vivo hippocampal synaptic plasticity.

    PubMed

    Jenson, Daniel; Yang, Kechun; Acevedo-Rodriguez, Alexandra; Levine, Amber; Broussard, John I; Tang, Jianrong; Dani, John A

    2015-03-01

    Attention-deficit hyperactive disorder (ADHD) is the most commonly studied and diagnosed psychiatric disorder in children. Methylphenidate (MPH, e.g., Ritalin) has been used to treat ADHD for over 50 years. It is the most commonly prescribed treatment for ADHD, and in the past decade it was the drug most commonly prescribed to teenagers. In addition, MPH has become one of the most widely abused drugs on college campuses. In this study, we examined the effects of MPH on hippocampal synaptic plasticity, which serves as a measurable quantification of memory mechanisms. Field potentials were recorded with permanently implanted electrodes in freely-moving mice to quantify MPH modulation of perforant path synaptic transmission onto granule cells of the dentate gyrus. Our hypothesis was that MPH affects hippocampal synaptic plasticity underlying learning because MPH boosts catecholamine signaling by blocking the dopamine and norepinephrine transporters (DAT and NET respectively). In vitro hippocampal slice experiments indicated MPH enhances perforant path plasticity, and this MPH enhancement arose from action via D1-type dopamine receptors and β-type adrenergic receptors. Similarly, MPH boosted in vivo initiation of long-term potentiation (LTP). While there was an effect via both dopamine and adrenergic receptors in vivo, LTP induction was more dependent on the MPH-induced action via D1-type dopamine receptors. Under biologically reasonable experimental conditions, MPH enhances hippocampal synaptic plasticity via catecholamine receptors. PMID:25445492

  2. Somato-dendritic Synaptic Plasticity and Error-backpropagation in Active Dendrites

    PubMed Central

    Schiess, Mathieu; Urbanczik, Robert; Senn, Walter

    2016-01-01

    In the last decade dendrites of cortical neurons have been shown to nonlinearly combine synaptic inputs by evoking local dendritic spikes. It has been suggested that these nonlinearities raise the computational power of a single neuron, making it comparable to a 2-layer network of point neurons. But how these nonlinearities can be incorporated into the synaptic plasticity to optimally support learning remains unclear. We present a theoretically derived synaptic plasticity rule for supervised and reinforcement learning that depends on the timing of the presynaptic, the dendritic and the postsynaptic spikes. For supervised learning, the rule can be seen as a biological version of the classical error-backpropagation algorithm applied to the dendritic case. When modulated by a delayed reward signal, the same plasticity is shown to maximize the expected reward in reinforcement learning for various coding scenarios. Our framework makes specific experimental predictions and highlights the unique advantage of active dendrites for implementing powerful synaptic plasticity rules that have access to downstream information via backpropagation of action potentials. PMID:26841235

  3. Dysregulated expression of neuregulin-1 by cortical pyramidal neurons disrupts synaptic plasticity.

    PubMed

    Agarwal, Amit; Zhang, Mingyue; Trembak-Duff, Irina; Unterbarnscheidt, Tilmann; Radyushkin, Konstantin; Dibaj, Payam; Martins de Souza, Daniel; Boretius, Susann; Brzózka, Magdalena M; Steffens, Heinz; Berning, Sebastian; Teng, Zenghui; Gummert, Maike N; Tantra, Martesa; Guest, Peter C; Willig, Katrin I; Frahm, Jens; Hell, Stefan W; Bahn, Sabine; Rossner, Moritz J; Nave, Klaus-Armin; Ehrenreich, Hannelore; Zhang, Weiqi; Schwab, Markus H

    2014-08-21

    Neuregulin-1 (NRG1) gene variants are associated with increased genetic risk for schizophrenia. It is unclear whether risk haplotypes cause elevated or decreased expression of NRG1 in the brains of schizophrenia patients, given that both findings have been reported from autopsy studies. To study NRG1 functions in vivo, we generated mouse mutants with reduced and elevated NRG1 levels and analyzed the impact on cortical functions. Loss of NRG1 from cortical projection neurons resulted in increased inhibitory neurotransmission, reduced synaptic plasticity, and hypoactivity. Neuronal overexpression of cysteine-rich domain (CRD)-NRG1, the major brain isoform, caused unbalanced excitatory-inhibitory neurotransmission, reduced synaptic plasticity, abnormal spine growth, altered steady-state levels of synaptic plasticity-related proteins, and impaired sensorimotor gating. We conclude that an "optimal" level of NRG1 signaling balances excitatory and inhibitory neurotransmission in the cortex. Our data provide a potential pathomechanism for impaired synaptic plasticity and suggest that human NRG1 risk haplotypes exert a gain-of-function effect. PMID:25131210

  4. Anticholinergic drugs rescue synaptic plasticity in DYT1 dystonia: role of M1 muscarinic receptors

    PubMed Central

    Maltese, M.; Martella, G.; Madeo, G.; Fagiolo, I.; Tassone, A.; Ponterio, G.; Sciamanna, G.; Burbaud, P.; Conn, P.J.; Bonsi, P.; Pisani, A.

    2014-01-01

    Background Broad spectrum muscarinic receptor antagonists have represented the first available treatment for different movement disorders such as dystonia. However, the specificity of these drugs and their mechanism of action is not entirely clear. Methods We performed a systematic analysis of the effects of anticholinergic drugs on short- and long-term plasticity recorded from striatal medium spiny neurons from DYT1 dystonia knock-in (Tor1a+/Δgag) mice heterozygous for ΔE-torsinA and their controls (Tor1a+/+ mice). Results Antagonists were chosen that had previously been proposed to be selective for muscarinic receptor subtypes and included pirenzepine, trihexyphenydil, biperiden, orphenadrine, and a novel selective M1 antagonist, VU0255035. Tor1a+/Δgag mice exhibited a significant impairment of corticostriatal synaptic plasticity. Anticholinergics had no significant effects on intrinsic membrane properties and on short-term plasticity of striatal neurons. However, they exhibited a differential ability to restore the corticostriatal plasticity deficits. A complete rescue of both long-term depression (LTD) and synaptic depotentiation (SD) was obtained by applying the M1-preferring antagonists pirenzepine and trihexyphenidyl as well as VU0255035. Conversely, the non-selective antagonists orphenadrine produced only a partial rescue of synaptic plasticity, whereas biperiden and ethopropazine failed to restore plasticity. The selectivity for M1 receptors was further demonstrated by their ability to counteract the M1-dependent potentiation of NMDA current recorded from striatal neurons. Conclusions Our study demonstrate that selective M1 muscarinic receptor antagonism offsets synaptic plasticity deficits in the striatum of mice with the DYT1 dystonia mutation, providing a potential mechanistic rationale for the development of improved antimuscarinic therapies for this movement disorder. PMID:25195914

  5. The Synaptic Proteome during Development and Plasticity of the Mouse Visual Cortex*

    PubMed Central

    Dahlhaus, Martijn; Wan Li, Ka; van der Schors, Roel C.; Saiepour, M. Hadi; van Nierop, Pim; Heimel, J. Alexander; Hermans, Josephine M.; Loos, Maarten; Smit, August B.; Levelt, Christiaan N.

    2011-01-01

    During brain development, the neocortex shows periods of enhanced plasticity, which enables the acquisition of knowledge and skills that we use and build on in adult life. Key to persistent modifications of neuronal connectivity and plasticity of the neocortex are molecular changes occurring at the synapse. Here we used isobaric tag for relative and absolute quantification to measure levels of 467 synaptic proteins in a well-established model of plasticity in the mouse visual cortex and the regulation of its critical period. We found that inducing visual cortex plasticity by monocular deprivation during the critical period increased levels of kinases and proteins regulating the actin-cytoskeleton and endocytosis. Upon closure of the critical period with age, proteins associated with transmitter vesicle release and the tubulin- and septin-cytoskeletons increased, whereas actin-regulators decreased in line with augmented synapse stability and efficacy. Maintaining the visual cortex in a plastic state by dark rearing mice into adulthood only partially prevented these changes and increased levels of G-proteins and protein kinase A subunits. This suggests that in contrast to the general belief, dark rearing does not simply delay cortical development but may activate signaling pathways that specifically maintain or increase the plasticity potential of the visual cortex. Altogether, this study identified many novel candidate plasticity proteins and signaling pathways that mediate synaptic plasticity during critical developmental periods or restrict it in adulthood. PMID:21398567

  6. Region-specific restoration of striatal synaptic plasticity by dopamine grafts in experimental parkinsonism.

    PubMed

    Rylander, Daniella; Bagetta, Vincenza; Pendolino, Valentina; Zianni, Elisa; Grealish, Shane; Gardoni, Fabrizio; Di Luca, Monica; Calabresi, Paolo; Cenci, M Angela; Picconi, Barbara

    2013-11-12

    Intrastriatal transplantation of dopaminergic neurons can restore striatal dopamine levels and improve parkinsonian deficits, but the mechanisms underlying these effects are poorly understood. Here, we show that transplants of dopamine neurons partially restore activity-dependent synaptic plasticity in the host striatal neurons. We evaluated synaptic plasticity in regions distal or proximal to the transplant (i.e., dorsolateral and ventrolateral striatum) and compared the effects of dopamine- and serotonin-enriched grafts using a rat model of Parkinson disease. Naïve rats showed comparable intrinsic membrane properties in the two subregions but distinct patterns of long-term synaptic plasticity. The ventrolateral striatum showed long-term potentiation using the same protocol that elicited long-term depression in the dorsolateral striatum. The long-term potentiation was linked to higher expression of postsynaptic AMPA and N2B NMDA subunits (GluN2B) and was dependent on the activation of GluN2A and GluN2B subunits and the D1 dopamine receptor. In both regions, the synaptic plasticity was abolished after a severe dopamine depletion and could not be restored by grafted serotonergic neurons. Solely, dopamine-enriched grafts could restore the long-term potentiation and partially restore motor deficits in the rats. The restoration could only be seen close to the graft, in the ventrolateral striatum where the graft-derived reinnervation was denser, compared with the distal dorsolateral region. These data provide proof of concept that dopamine-enriched transplants are able to functionally integrate into the host brain and restore deficits in striatal synaptic plasticity after experimental parkinsonism. The region-specific restoration might impose limitations in symptomatic improvement following neural transplantation. PMID:24170862

  7. Associative Hebbian Synaptic Plasticity in Primate Visual Cortex

    PubMed Central

    Huang, Shiyong; Rozas, Carlos; Treviño, Mario; Contreras, Jessica; Yang, Sunggu; Song, Lihua; Yoshioka, Takashi; Lee, Hey-Kyoung

    2014-01-01

    In primates, the functional connectivity of adult primary visual cortex is susceptible to be modified by sensory training during perceptual learning. It is widely held that this type of neural plasticity might involve mechanisms like long-term potentiation (LTP) and long-term depression (LTD). NMDAR-dependent forms of LTP and LTD are particularly attractive because in rodents they can be induced in a Hebbian manner by near coincidental presynaptic and postsynaptic firing, in a paradigm termed spike timing-dependent plasticity (STDP). These fundamental properties of LTP and LTD, Hebbian induction and NMDAR dependence, have not been examined in primate cortex. Here we demonstrate these properties in the primary visual cortex of the rhesus macaque (Macaca mulatta), and also show that, like in rodents, STDP is gated by neuromodulators. These findings indicate that the cellular principles governing cortical plasticity are conserved across mammalian species, further validating the use of rodents as a model system. PMID:24872561

  8. Stable learning of functional maps in self-organizing spiking neural networks with continuous synaptic plasticity

    PubMed Central

    Srinivasa, Narayan; Jiang, Qin

    2013-01-01

    This study describes a spiking model that self-organizes for stable formation and maintenance of orientation and ocular dominance maps in the visual cortex (V1). This self-organization process simulates three development phases: an early experience-independent phase, a late experience-independent phase and a subsequent refinement phase during which experience acts to shape the map properties. The ocular dominance maps that emerge accommodate the two sets of monocular inputs that arise from the lateral geniculate nucleus (LGN) to layer 4 of V1. The orientation selectivity maps that emerge feature well-developed iso-orientation domains and fractures. During the last two phases of development the orientation preferences at some locations appear to rotate continuously through ±180° along circular paths and referred to as pinwheel-like patterns but without any corresponding point discontinuities in the orientation gradient maps. The formation of these functional maps is driven by balanced excitatory and inhibitory currents that are established via synaptic plasticity based on spike timing for both excitatory and inhibitory synapses. The stability and maintenance of the formed maps with continuous synaptic plasticity is enabled by homeostasis caused by inhibitory plasticity. However, a prolonged exposure to repeated stimuli does alter the formed maps over time due to plasticity. The results from this study suggest that continuous synaptic plasticity in both excitatory neurons and interneurons could play a critical role in the formation, stability, and maintenance of functional maps in the cortex. PMID:23450808

  9. Linking Cholinergic Interneurons, Synaptic Plasticity, and Behavior during the Extinction of a Cocaine-Context Association.

    PubMed

    Lee, Junuk; Finkelstein, Joel; Choi, Jung Yoon; Witten, Ilana B

    2016-06-01

    Despite the fact that cholinergic interneurons are a key cell type within the nucleus accumbens, a relationship between synaptic plasticity and the in vivo activity of cholinergic interneurons remains to be established. Here, we identify a three-way link between the activity of cholinergic interneurons, synaptic plasticity, and learning in mice undergoing the extinction of a cocaine-context association. We found that activity of cholinergic interneurons regulates extinction learning for a cocaine-context association and generates a sustained reduction in glutamatergic presynaptic strength onto medium spiny neurons. Interestingly, activation of cholinergic interneurons does not support reinforcement learning or plasticity by itself, suggesting that these neurons have a modulatory rather than a reinforcing function. PMID:27210555

  10. Group I Metabotropic Glutamate Receptor-Mediated Gene Transcription and Implications for Synaptic Plasticity and Diseases

    PubMed Central

    Wang, Hansen; Zhuo, Min

    2012-01-01

    Stimulation of group I metabotropic glutamate receptors (mGluRs) initiates a wide variety of signaling pathways. Group I mGluR activation can regulate gene expression at both translational and transcriptional levels, and induces translation or transcription-dependent synaptic plastic changes in neurons. The group I mGluR-mediated translation-dependent neural plasticity has been well reviewed. In this review, we will highlight group I mGluR-induced gene transcription and its role in synaptic plasticity. The signaling pathways (PKA, CaMKs, and MAPKs) which have been shown to link group I mGluRs to gene transcription, the relevant transcription factors (CREB and NF-κB), and target proteins (FMRP and ARC) will be documented. The significance and future direction for characterizing group I mGluR-mediated gene transcription in fragile X syndrome, schizophrenia, drug addiction, and other neurological disorders will also be discussed. PMID:23125836

  11. Short-Term Synaptic Plasticity Regulation in Solution-Gated Indium-Gallium-Zinc-Oxide Electric-Double-Layer Transistors.

    PubMed

    Wan, Chang Jin; Liu, Yang Hui; Zhu, Li Qiang; Feng, Ping; Shi, Yi; Wan, Qing

    2016-04-20

    In the biological nervous system, synaptic plasticity regulation is based on the modulation of ionic fluxes, and such regulation was regarded as the fundamental mechanism underlying memory and learning. Inspired by such biological strategies, indium-gallium-zinc-oxide (IGZO) electric-double-layer (EDL) transistors gated by aqueous solutions were proposed for synaptic behavior emulations. Short-term synaptic plasticity, such as paired-pulse facilitation, high-pass filtering, and orientation tuning, was experimentally emulated in these EDL transistors. Most importantly, we found that such short-term synaptic plasticity can be effectively regulated by alcohol (ethyl alcohol) and salt (potassium chloride) additives. Our results suggest that solution gated oxide-based EDL transistors could act as the platforms for short-term synaptic plasticity emulation. PMID:27007748

  12. Bidirectional Synaptic Structural Plasticity after Chronic Cocaine Administration Occurs through Rap1 Small GTPase Signaling.

    PubMed

    Cahill, Michael E; Bagot, Rosemary C; Gancarz, Amy M; Walker, Deena M; Sun, HaoSheng; Wang, Zi-Jun; Heller, Elizabeth A; Feng, Jian; Kennedy, Pamela J; Koo, Ja Wook; Cates, Hannah M; Neve, Rachael L; Shen, Li; Dietz, David M; Nestler, Eric J

    2016-02-01

    Dendritic spines are the sites of most excitatory synapses in the CNS, and opposing alterations in the synaptic structure of medium spiny neurons (MSNs) of the nucleus accumbens (NAc), a primary brain reward region, are seen at early versus late time points after cocaine administration. Here we investigate the time-dependent molecular and biochemical processes that regulate this bidirectional synaptic structural plasticity of NAc MSNs and associated changes in cocaine reward in response to chronic cocaine exposure. Our findings reveal key roles for the bidirectional synaptic expression of the Rap1b small GTPase and an associated local synaptic protein translation network in this process. The transcriptional mechanisms and pathway-specific inputs to NAc that regulate Rap1b expression are also characterized. Collectively, these findings provide a precise mechanism by which nuclear to synaptic interactions induce "metaplasticity" in NAc MSNs, and we reveal the specific effects of this plasticity on reward behavior in a brain circuit-specific manner. PMID:26844834

  13. Long-Term Synaptic Plasticity in Rat Barrel Cortex.

    PubMed

    Han, Yong; Huang, Ming-De; Sun, Man-Li; Duan, Shumin; Yu, Yan-Qin

    2015-09-01

    Rats generate sweeping whisker movements in order to explore their environments and identify objects. In somatosensory pathways, neuronal activity is modulated by the frequency of whisker vibration. However, the potential role of rhythmic neuronal activity in the cerebral processing of sensory signals and its mechanism remain unclear. Here, we showed that rhythmic vibrissal stimulation with short duration in anesthetized rats resulted in an increase or decrease in the amplitude of somatosensory-evoked potentials (SEPs) in the contralateral barrel cortex. The plastic change of the SEPs was frequency dependent and long lasting. The long-lasting enhancement of the vibrissa-to-cortex evoked response was side- but not barrel-specific. Local application of dl-2-amino-5-phosphonopentanoic acid into the barrel cortex revealed that this vibrissa-to-cortex long-term plasticity in adult rats was N-methyl-d-aspartate receptor-dependent. Most interestingly, whisker trimming through postnatal day (P)1-7 but not P29-35 impaired the long-term plasticity induced by 100 Hz vibrissal stimulation. The short period of rhythmic vibrissal stimulation did not induce long-lasting plasticity of field potentials in the thalamus. In conclusion, our results suggest that natural rhythmic whisker activity modifies sensory information processing in cerebral cortex, providing further insight into sensory perception. PMID:24735674

  14. Pregnenolone sulfate as a modulator of synaptic plasticity

    PubMed Central

    Smith, Conor C.; Gibbs, Terrell T.

    2015-01-01

    Rationale The neurosteroid pregnenolone sulfate (PregS) acts as a cognitive enhancer and modulator of neurotransmission, yet aligning its pharmacological and physiological effects with reliable measurements of endogenous local concentrations and pharmacological and therapeutic targets has remained elusive for over 20 years. Objectives New basic and clinical research concerning neurosteroid modulation of the central nervous system (CNS) function has emerged over the past 5 years, including important data involving pregnenolone and various neurosteroid precursors of PregS that point to a need for a critical status update. Results Highly specific actions of PregS affecting excitatory N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic transmission and the pharmacological effects of PregS on various receptors and ion channels are discussed. The discovery of a high potency (nanomolar) signal transduction pathway for PregS-induced NMDAR trafficking to the cell surface via a Ca2+- and G protein-coupled receptor (GPCR)-dependent mechanism and a potent (EC50 ~2 pM) direct enhancement of intracellular Ca2+ levels is discussed in terms of its agonist effects on long-term potentiation (LTP) and memory. Lastly, preclinical and clinical studies assessing the promnestic effects of PregS and pregnenolone toward cognitive dysfunction in schizophrenia, and altered serum levels in epilepsy and alcohol dependence, are reviewed. Conclusions PregS is present in human and rodent brain at physiologically relevant concentrations and meets most of the criteria for an endogenous neurotransmitter/neuromodulator. PregS likely plays a significant role in modulation of glutamatergic excitatory synaptic transmission underlying learning and memory, yet the molecular target(s) for its action awaits identification. PMID:24997854

  15. AMPA receptor trafficking and the mechanisms underlying synaptic plasticity and cognitive aging.

    PubMed

    Henley, Jeremy M; Wilkinson, Kevin A

    2013-03-01

    Even in healthy individuals there is an inexorable agerelated decline in cognitive function. This is due, in large part, to reduced synaptic plasticity caused by changes in the molecular composition of the postsynaptic membrane. AMPA receptors (AMPARs) are glutamate-gated cation channels that mediate the overwhelming majority of fast excitatory transmission in the brain. Changes in AMPAR number and/or function are a core feature of synaptic plasticity and age-related cognitive decline, AMPARs are highly dynamic proteins that are subject to highly controlled trafficking, recycling, and/or degradation and replacement. This active regulation of AMPAR synthesis, targeting, synaptic dwell time, and degradation is fundamentally important for memory formation and storage. Further, aberrant AMPAR trafficking and consequent detrimental changes in synapses are strongly implicated in many brain diseases, which represent a vast social and economic burden. The purpose of this article is to provide an overview of the molecular and cellular AMPA receptor trafficking events that control synaptic responsiveness and plasticity, and highlight what is known currently known about how these processes change with age and disease. PMID:23576886

  16. Neurexin-1 regulates sleep and synaptic plasticity in Drosophila melanogaster.

    PubMed

    Larkin, Aoife; Chen, Ming-Yu; Kirszenblat, Leonie; Reinhard, Judith; van Swinderen, Bruno; Claudianos, Charles

    2015-10-01

    Neurexins are cell adhesion molecules that are important for synaptic plasticity and homeostasis, although links to sleep have not yet been investigated. We examined the effects of neurexin-1 perturbation on sleep in Drosophila, showing that neurexin-1 nulls displayed fragmented sleep and altered circadian rhythm. Conversely, the over-expression of neurexin-1 could increase and consolidate night-time sleep. This was not solely due to developmental effects as it could be induced acutely in adulthood, and was coupled with evidence of synaptic growth. The timing of over-expression could differentially impact sleep patterns, with specific night-time effects. These results show that neurexin-1 was dynamically involved in synaptic plasticity and sleep in Drosophila. Neurexin-1 and a number of its binding partners have been repeatedly associated with mental health disorders, including autism spectrum disorders, schizophrenia and Tourette syndrome, all of which are also linked to altered sleep patterns. How and when plasticity-related proteins such as neurexin-1 function during sleep can provide vital information on the interaction between synaptic homeostasis and sleep, paving the way for more informed treatments of human disorders. PMID:26201245

  17. The roles of protein expression in synaptic plasticity and memory consolidation

    PubMed Central

    Rosenberg, Tali; Gal-Ben-Ari, Shunit; Dieterich, Daniela C.; Kreutz, Michael R.; Ziv, Noam E.; Gundelfinger, Eckart D.; Rosenblum, Kobi

    2014-01-01

    The amount and availability of proteins are regulated by their synthesis, degradation, and transport. These processes can specifically, locally, and temporally regulate a protein or a population of proteins, thus affecting numerous biological processes in health and disease states. Accordingly, malfunction in the processes of protein turnover and localization underlies different neuronal diseases. However, as early as a century ago, it was recognized that there is a specific need for normal macromolecular synthesis in a specific fragment of the learning process, memory consolidation, which takes place minutes to hours following acquisition. Memory consolidation is the process by which fragile short-term memory is converted into stable long-term memory. It is accepted today that synaptic plasticity is a cellular mechanism of learning and memory processes. Interestingly, similar molecular mechanisms subserve both memory and synaptic plasticity consolidation. In this review, we survey the current view on the connection between memory consolidation processes and proteostasis, i.e., maintaining the protein contents at the neuron and the synapse. In addition, we describe the technical obstacles and possible new methods to determine neuronal proteostasis of synaptic function and better explain the process of memory and synaptic plasticity consolidation. PMID:25429258

  18. Activity-Dependent Synaptic Plasticity of a Chalcogenide Electronic Synapse for Neuromorphic Systems

    NASA Astrophysics Data System (ADS)

    Li, Yi; Zhong, Yingpeng; Zhang, Jinjian; Xu, Lei; Wang, Qing; Sun, Huajun; Tong, Hao; Cheng, Xiaoming; Miao, Xiangshui

    2014-05-01

    Nanoscale inorganic electronic synapses or synaptic devices, which are capable of emulating the functions of biological synapses of brain neuronal systems, are regarded as the basic building blocks for beyond-Von Neumann computing architecture, combining information storage and processing. Here, we demonstrate a Ag/AgInSbTe/Ag structure for chalcogenide memristor-based electronic synapses. The memristive characteristics with reproducible gradual resistance tuning are utilised to mimic the activity-dependent synaptic plasticity that serves as the basis of memory and learning. Bidirectional long-term Hebbian plasticity modulation is implemented by the coactivity of pre- and postsynaptic spikes, and the sign and degree are affected by assorted factors including the temporal difference, spike rate and voltage. Moreover, synaptic saturation is observed to be an adjustment of Hebbian rules to stabilise the growth of synaptic weights. Our results may contribute to the development of highly functional plastic electronic synapses and the further construction of next-generation parallel neuromorphic computing architecture.

  19. Tau pathology induces loss of GABAergic interneurons leading to altered synaptic plasticity and behavioral impairments

    PubMed Central

    2013-01-01

    Background Tau is a microtubule stabilizing protein and is mainly expressed in neurons. Tau aggregation into oligomers and tangles is considered an important pathological event in tauopathies, such as frontotemporal dementia (FTD) and Alzheimer’s disease (AD). Tauopathies are also associated with deficits in synaptic plasticity such as long-term potentiation (LTP), but the specific role of tau in the manifestation of these deficiencies is not well-understood. We examined long lasting forms of synaptic plasticity in JNPL3 (BL6) mice expressing mutant tau that is identified in some inherited FTDs. Results We found that aged (>12 months) JNPL3 (BL6) mice exhibit enhanced hippocampal late-phase (L-LTP), while young JNPL3 (BL6) mice (age 6 months) displayed normal L-LTP. This enhanced L-LTP in aged JNPL3 (BL6) mice was rescued with the GABAAR agonist, zolpidem, suggesting a loss of GABAergic function. Indeed, we found that mutant mice displayed a reduction in hippocampal GABAergic interneurons. Finally, we also found that expression of mutant tau led to severe sensorimotor-gating and hippocampus-dependent memory deficits in the aged JNPL3 (BL6) mice. Conclusions We show for the first time that hippocampal GABAergic function is impaired by pathological tau protein, leading to altered synaptic plasticity and severe memory deficits. Increased understanding of the molecular mechanisms underlying the synaptic failure in AD and FTD is critical to identifying targets for therapies to restore cognitive deficiencies associated with tauopathies. PMID:24252661

  20. Short-term environmental enrichment enhances synaptic plasticity in hippocampal slices from aged rats.

    PubMed

    Stein, Liana R; O'Dell, Kazuko A; Funatsu, Michiyo; Zorumski, Charles F; Izumi, Yukitoshi

    2016-08-01

    Age-associated changes in cognition are mirrored by impairments in cellular models of memory and learning, such as long-term potentiation (LTP) and long-term depression (LTD). In young rodents, environmental enrichment (EE) can enhance memory, alter LTP and LTD, as well as reverse cognitive deficits induced by aging. Whether short-term EE can benefit cognition and synaptic plasticity in aged rodents is unclear. Here, we tested if short-term EE could overcome age-associated impairments in induction of LTP and LTD. LTP and LTD could not be induced in the CA1 region of hippocampal slices in control, aged rats using standard stimuli that are highly effective in young rats. However, exposure of aged littermates to EE for three weeks enabled successful induction of LTP and LTD. EE-facilitated LTP was dependent upon N-methyl-d-aspartate receptors (NMDARs). These alterations in synaptic plasticity occurred with elevated levels of phosphorylated cAMP response element-binding protein and vascular endothelial growth factor, but in the absence of changes in several other synaptic and cellular markers. Importantly, our study suggests that even a relatively short period of EE is sufficient to alter synaptic plasticity and molecular markers linked to cognitive function in aged animals. PMID:27208617

  1. Activity-Dependent Synaptic Plasticity of a Chalcogenide Electronic Synapse for Neuromorphic Systems

    PubMed Central

    Li, Yi; Zhong, Yingpeng; Zhang, Jinjian; Xu, Lei; Wang, Qing; Sun, Huajun; Tong, Hao; Cheng, Xiaoming; Miao, Xiangshui

    2014-01-01

    Nanoscale inorganic electronic synapses or synaptic devices, which are capable of emulating the functions of biological synapses of brain neuronal systems, are regarded as the basic building blocks for beyond-Von Neumann computing architecture, combining information storage and processing. Here, we demonstrate a Ag/AgInSbTe/Ag structure for chalcogenide memristor-based electronic synapses. The memristive characteristics with reproducible gradual resistance tuning are utilised to mimic the activity-dependent synaptic plasticity that serves as the basis of memory and learning. Bidirectional long-term Hebbian plasticity modulation is implemented by the coactivity of pre- and postsynaptic spikes, and the sign and degree are affected by assorted factors including the temporal difference, spike rate and voltage. Moreover, synaptic saturation is observed to be an adjustment of Hebbian rules to stabilise the growth of synaptic weights. Our results may contribute to the development of highly functional plastic electronic synapses and the further construction of next-generation parallel neuromorphic computing architecture. PMID:24809396

  2. Activity-dependent synaptic plasticity of a chalcogenide electronic synapse for neuromorphic systems.

    PubMed

    Li, Yi; Zhong, Yingpeng; Zhang, Jinjian; Xu, Lei; Wang, Qing; Sun, Huajun; Tong, Hao; Cheng, Xiaoming; Miao, Xiangshui

    2014-01-01

    Nanoscale inorganic electronic synapses or synaptic devices, which are capable of emulating the functions of biological synapses of brain neuronal systems, are regarded as the basic building blocks for beyond-Von Neumann computing architecture, combining information storage and processing. Here, we demonstrate a Ag/AgInSbTe/Ag structure for chalcogenide memristor-based electronic synapses. The memristive characteristics with reproducible gradual resistance tuning are utilised to mimic the activity-dependent synaptic plasticity that serves as the basis of memory and learning. Bidirectional long-term Hebbian plasticity modulation is implemented by the coactivity of pre- and postsynaptic spikes, and the sign and degree are affected by assorted factors including the temporal difference, spike rate and voltage. Moreover, synaptic saturation is observed to be an adjustment of Hebbian rules to stabilise the growth of synaptic weights. Our results may contribute to the development of highly functional plastic electronic synapses and the further construction of next-generation parallel neuromorphic computing architecture. PMID:24809396

  3. AMPA receptor trafficking and the mechanisms underlying synaptic plasticity and cognitive aging

    PubMed Central

    Henley, Jeremy M.; Wilkinson, Kevin A.

    2013-01-01

    Even in healthy individuals there is an inexorable agerelated decline in cognitive function. This is due, in large part, to reduced synaptic plasticity caused by changes in the molecular composition of the postsynaptic membrane. AMPA receptors (AMPARs) are glutamate-gated cation channels that mediate the overwhelming majority of fast excitatory transmission in the brain. Changes in AMPAR number and/or function are a core feature of synaptic plasticity and age-related cognitive decline, AMPARs are highly dynamic proteins that are subject to highly controlled trafficking, recycling, and/or degradation and replacement. This active regulation of AMPAR synthesis, targeting, synaptic dwell time, and degradation is fundamentally important for memory formation and storage. Further, aberrant AMPAR trafficking and consequent detrimental changes in synapses are strongly implicated in many brain diseases, which represent a vast social and economic burden. The purpose of this article is to provide an overview of the molecular and cellular AMPA receptor trafficking events that control synaptic responsiveness and plasticity, and highlight what is known currently known about how these processes change with age and disease. PMID:23576886

  4. Effects of pre-natal alcohol exposure on hippocampal synaptic plasticity: Sex, age and methodological considerations.

    PubMed

    Fontaine, Christine J; Patten, Anna R; Sickmann, Helle M; Helfer, Jennifer L; Christie, Brian R

    2016-05-01

    The consumption of alcohol during gestation is detrimental to the developing central nervous system (CNS). The severity of structural and functional brain alterations associated with alcohol intake depends on many factors including the timing and duration of alcohol consumption. The hippocampal formation, a brain region implicated in learning and memory, is highly susceptible to the effects of developmental alcohol exposure. Some of the observed effects of alcohol on learning and memory may be due to changes at the synaptic level, as this teratogen has been repeatedly shown to interfere with hippocampal synaptic plasticity. At the molecular level alcohol interferes with receptor proteins and can disrupt hormones that are important for neuronal signaling and synaptic plasticity. In this review we examine the consequences of prenatal and early postnatal alcohol exposure on hippocampal synaptic plasticity and highlight the numerous factors that can modulate the effects of alcohol. We also discuss some potential mechanisms responsible for these changes as well as emerging therapeutic avenues that are beginning to be explored. PMID:26906760

  5. Lavandula angustifolia extract improves deteriorated synaptic plasticity in an animal model of Alzheimer’s disease

    PubMed Central

    Soheili, Masoud; Tavirani, Mostafa Rezaei; Salami, Mahmoud

    2015-01-01

    Objective(s): Neurodegenerative Alzheimer’s disease (AD) is associated with profound deficits in synaptic transmission and synaptic plasticity. Long-term potentiation (LTP), an experimental form of synaptic plasticity, is intensively examined in hippocampus. In this study we evaluated the effect of aqueous extract of lavender (Lavandula angustifolia) on induction of LTP in the CA1 area of hippocampus. In response to stimulation of the Schaffer collaterals the baseline or tetanized field extracellular postsynaptic potentials (fEPSPs) were recorded in the CA1 area. Materials and Methods: The electrophysiological recordings were carried out in four groups of rats; two control groups including the vehicle (CON) and lavender (CE) treated rats and two Alzheimeric groups including the vehicle (ALZ) and lavender (AE) treated animals. Results: The extract inefficiently affected the baseline responses in the four testing groups. While the fEPSPs displayed a considerable LTP in the CON animals, no potentiation was evident in the tetanized responses in the ALZ rats. The herbal medicine effectively restored LTP in the AE group and further potentiated fEPSPs in the CE group. Conclusion: The positive effect of the lavender extract on the plasticity of synaptic transmission supports its previously reported behavioral effects on improvement of impaired spatial memory in the Alzheimeric animals. PMID:26949505

  6. Synaptic plasticity can produce and enhance direction selectivity.

    PubMed

    Carver, Sean; Roth, Eatai; Cowan, Noah J; Fortune, Eric S

    2008-02-01

    The discrimination of the direction of movement of sensory images is critical to the control of many animal behaviors. We propose a parsimonious model of motion processing that generates direction selective responses using short-term synaptic depression and can reproduce salient features of direction selectivity found in a population of neurons in the midbrain of the weakly electric fish Eigenmannia virescens. The model achieves direction selectivity with an elementary Reichardt motion detector: information from spatially separated receptive fields converges onto a neuron via dynamically different pathways. In the model, these differences arise from convergence of information through distinct synapses that either exhibit or do not exhibit short-term synaptic depression--short-term depression produces phase-advances relative to nondepressing synapses. Short-term depression is modeled using two state-variables, a fast process with a time constant on the order of tens to hundreds of milliseconds, and a slow process with a time constant on the order of seconds to tens of seconds. These processes correspond to naturally occurring time constants observed at synapses that exhibit short-term depression. Inclusion of the fast process is sufficient for the generation of temporal disparities that are necessary for direction selectivity in the elementary Reichardt circuit. The addition of the slow process can enhance direction selectivity over time for stimuli that are sustained for periods of seconds or more. Transient (i.e., short-duration) stimuli do not evoke the slow process and therefore do not elicit enhanced direction selectivity. The addition of a sustained global, synchronous oscillation in the gamma frequency range can, however, drive the slow process and enhance direction selectivity to transient stimuli. This enhancement effect does not, however, occur for all combinations of model parameters. The ratio of depressing and nondepressing synapses determines the

  7. Rapid neural circuit switching mediated by synaptic plasticity during neural morphallactic regeneration.

    PubMed

    Lybrand, Zane R; Zoran, Mark J

    2012-09-01

    The aquatic oligochaete, Lumbriculus variegatus (Lumbriculidae), undergoes a rapid regenerative transformation of its neural circuits following body fragmentation. This type of nervous system plasticity, called neural morphallaxis, involves the remodeling of the giant fiber pathways that mediate rapid head and tail withdrawal behaviors. Extra- and intracellular electrophysiological recordings demonstrated that changes in cellular properties and synaptic connections underlie neurobehavioral plasticity during morphallaxis. Sensory-to-giant interneuron connections, undetectable prior to body injury, emerged within hours of segment amputation. The appearance of functional synaptic transmission was followed by interneuron activation, coupling of giant fiber spiking to motor outputs and overt segmental shortening. The onset of morphallactic plasticity varied along the body axis and emerged more rapidly in segments closer to regions of sensory field overlap between the two giant fiber pathways. The medial and lateral giant fibers were simultaneously activated during a transient phase of network remodeling. Thus, synaptic plasticity at sensory-to-giant interneuron connections mediates escape circuit morphallaxis in this regenerating annelid worm. PMID:22021133

  8. MicroRNA miR124 is required for the expression of homeostatic synaptic plasticity

    PubMed Central

    Hou, Qingming; Ruan, Hongyu; Gilbert, James; Wang, Guan; Ma, Qi; Yao, Wei-Dong; Man, Heng-Ye

    2015-01-01

    Homeostatic synaptic plasticity is a compensatory response to alterations in neuronal activity. Chronic deprivation of neuronal activity results in an increase in synaptic AMPA receptors (AMPARs) and postsynaptic currents. The biogenesis of GluA2-lacking, calcium-permeable AMPARs (CP-AMPARs) plays a crucial role in the homeostatic response; however, the mechanisms leading to CP-AMPAR formation remain unclear. Here we show that the microRNA, miR124, is required for the generation of CP-AMPARs and homeostatic plasticity. miR124 suppresses GluA2 expression via targeting its 3′-UTR, leading to the formation of CP-AMPARs. Blockade of miR124 function abolishes the homeostatic response, whereas miR124 overexpression leads to earlier induction of homeostatic plasticity. miR124 transcription is controlled by an inhibitory transcription factor EVI1, acting by association with the deacetylase HDAC1. Our data support a cellular cascade in which inactivity relieves EVI1/HDAC-mediated inhibition of miR124 gene transcription, resulting in enhanced miR124 expression, formation of CP-AMPARs and subsequent induction of homeostatic synaptic plasticity. PMID:26620774

  9. Inhibition of DNA Methylation Impairs Synaptic Plasticity during an Early Time Window in Rats

    PubMed Central

    Díaz, Paula; Ardiles, Álvaro O.

    2016-01-01

    Although the importance of DNA methylation-dependent gene expression to neuronal plasticity is well established, the dynamics of methylation and demethylation during the induction and expression of synaptic plasticity have not been explored. Here, we combined electrophysiological, pharmacological, molecular, and immunohistochemical approaches to examine the contribution of DNA methylation and the phosphorylation of Methyl-CpG-binding protein 2 (MeCP2) to synaptic plasticity. We found that, at twenty minutes after theta burst stimulation (TBS), the DNA methylation inhibitor 5-aza-2-deoxycytidine (5AZA) impaired hippocampal long-term potentiation (LTP). Surprisingly, after two hours of TBS, when LTP had become a transcription-dependent process, 5AZA treatment had no effect. By comparing these results to those in naive slices, we found that, at two hours after TBS, an intergenic region of the RLN gene was hypomethylated and that the phosphorylation of residue S80 of MeCP2 was decreased, while the phosphorylation of residue S421 was increased. As expected, 5AZA affected only the methylation of the RLN gene and exerted no effect on MeCP2 phosphorylation patterns. In summary, our data suggest that tetanic stimulation induces critical changes in synaptic plasticity that affects both DNA methylation and the phosphorylation of MeCP2. These data also suggest that early alterations in DNA methylation are sufficient to impair the full expression of LTP. PMID:27493805

  10. Temporal profiles of synaptic plasticity-related signals in adult mouse hippocampus with methotrexate treatment.

    PubMed

    Yang, Miyoung; Kim, Juhwan; Kim, Sung-Ho; Kim, Joong-Sun; Shin, Taekyun; Moon, Changjong

    2012-07-25

    Methotrexate, which is used to treat many malignancies and autoimmune diseases, affects brain functions including hippocampal-dependent memory function. However, the precise mechanisms underlying methotrexate-induced hippocampal dysfunction are poorly understood. To evaluate temporal changes in synaptic plasticity-related signals, the expression and activity of N-methyl-D-aspartic acid receptor 1, calcium/calmodulin-dependent protein kinase II, extracellular signal-regulated kinase 1/2, cAMP responsive element-binding protein, glutamate receptor 1, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor were examined in the hippocampi of adult C57BL/6 mice after methotrexate (40 mg/kg) intraperitoneal injection. Western blot analysis showed biphasic changes in synaptic plasticity-related signals in adult hippocampi following methotrexate treatment. N-methyl-D-aspartic acid receptor 1, calcium/calmodulin-dependent protein kinase II, and glutamate receptor 1 were acutely activated during the early phase (1 day post-injection), while extracellular signal-regulated kinase 1/2 and cAMP responsive element-binding protein activation showed biphasic increases during the early (1 day post-injection) and late phases (7-14 days post-injection). Brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor expression increased significantly during the late phase (7-14 days post-injection). Therefore, methotrexate treatment affects synaptic plasticity-related signals in the adult mouse hippocampus, suggesting that changes in synaptic plasticity-related signals may be associated with neuronal survival and plasticity-related cellular remodeling. PMID:25657706

  11. Possible Contributions of a Novel Form of Synaptic Plasticity in "Aplysia" to Reward, Memory, and Their Dysfunctions in Mammalian Brain

    ERIC Educational Resources Information Center

    Hawkins, Robert D.

    2013-01-01

    Recent studies in "Aplysia" have identified a new variation of synaptic plasticity in which modulatory transmitters enhance spontaneous release of glutamate, which then acts on postsynaptic receptors to recruit mechanisms of intermediate- and long-term plasticity. In this review I suggest the hypothesis that similar plasticity occurs in…

  12. Excitement and synchronization of small-world neuronal networks with short-term synaptic plasticity.

    PubMed

    Han, Fang; Wiercigroch, Marian; Fang, Jian-An; Wang, Zhijie

    2011-10-01

    Excitement and synchronization of electrically and chemically coupled Newman-Watts (NW) small-world neuronal networks with a short-term synaptic plasticity described by a modified Oja learning rule are investigated. For each type of neuronal network, the variation properties of synaptic weights are examined first. Then the effects of the learning rate, the coupling strength and the shortcut-adding probability on excitement and synchronization of the neuronal network are studied. It is shown that the synaptic learning suppresses the over-excitement, helps synchronization for the electrically coupled network but impairs synchronization for the chemically coupled one. Both the introduction of shortcuts and the increase of the coupling strength improve synchronization and they are helpful in increasing the excitement for the chemically coupled network, but have little effect on the excitement of the electrically coupled one. PMID:21956933

  13. Effect of acute fentanyl treatment on synaptic plasticity in the hippocampal CA1 region in rats

    PubMed Central

    Tian, Hai; Xu, Yueming; Liu, Fucun; Wang, Guowei; Hu, Sanjue

    2015-01-01

    Postoperative cognitive dysfunction (POCD), mainly characterized by short-term decline of learning and memory, occurs after operations under anesthesia. However, the underlying mechanisms are poorly understood. The μ-opioid receptors (MOR) are highly expressed in interneurons of hippocampus, and is believed to be critical for the dysfunction of synaptic plasticity between hippocampal neurons. Therefore, we investigated the effect of fentanyl, a strong agonist of MOR and often used for anesthesia and analgesia in clinical settings, on hippocampal synaptic plasticity in the Schaffer-collateral CA1 pathway during acute exposure and washout in vitro. Our results revealed that acute fentanyl exposure (0.01, 0.1, 1 μM) dose-dependently increased the field excitatory postsynaptic potentials (fEPSPs), which was prevented by pre-administration of picrotoxin (50 μM) or MOR antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Phe-Thr-NH2 (CTOP, 10 μM). While fentanyl exposure-increased fEPSPs amplitude was prevented by picrotoxin [an inhibitor of γ-aminobutyric acid receptor (GABAR)] treatment or fentanyl washout, pretreatment of picrotoxin failed to prevent the fentanyl-impaired long-term potentiation (LTP) of synaptic strength as well as the fentanyl-enhanced long-term depression (LTD). These results demonstrated that fentanyl acute exposure and washout increases hippocampal excitability in the Schaffer-collateral CA1 pathway, depending on disinhibiting interneurons after MOR activation. In addition, fentanyl acute exposure and washout modulated synaptic plasticity, but the inhibitory activation was not critical. Elucidating the detailed mechanisms for synaptic dysfunction after fentanyl exposure and washout may provide insights into POCD generation after fentanyl anesthesia. PMID:26578961

  14. The flavonoid baicalein rescues synaptic plasticity and memory deficits in a mouse model of Alzheimer's disease.

    PubMed

    Gu, Xun-Hu; Xu, Li-Jun; Liu, Zhi-Qiang; Wei, Bo; Yang, Yuan-Jian; Xu, Guo-Gang; Yin, Xiao-Ping; Wang, Wei

    2016-09-15

    Increasing evidence suggests that disruptions of synaptic functions correlate with the severity of cognitive deficit in Alzheimer's disease (AD). Our previous study demonstrated that baicalein enhances long-term potentiation (LTP) in acute rat hippocampal slices and improves hippocampus-dependent contextual fear conditioning in rats. Given that baicalein possess various biological activities, especially its effects on synaptic plasticity and cognitive function, we examined the effect of baicalein on synaptic function both in vitro and in vivo in AD model. The effect of baicalein on Aβ42 oligomer impaired LTP was investigated by electrophysiological methods. Baicalein was administered orally via drinking water to the APP/PS1 mice and sex- and age-matched wild-type mice. Treatment started at 5 months of age and mice were assessed for cognition and AD-like pathology at 7-month-old. Cognition was analyzed by Morris water maze test, fear conditioning test, and novel object recognition test. Changes in hippocampal 12/15 Lipoxygenase (12/15LO) and glycogen synthase kinase 3β (GSK3β) activity, Aβ production, tau phosphorylation, synaptic plasticity, and dendritic spine density were evaluated. Baicalein prevented Aβ-induced impairments in hippocampal LTP through activation of serine threonine Kinase (Akt) phosphorylation. Long-term oral administration of baicalein inhibited 12/15LO and GSK3β activity, reduced β-secretase enzyme (BACE1), decreased the concentration of total Aβ, and prevented phosphorylation of tau in APP/PS1 mice. Meanwhile, baicalein restored spine number, synaptic plasticity, and memory deficits. Our results strengthen the potential of the flavonoid baicalein as a novel and promising oral bioactive therapeutic agent that prevents memory deficits in AD. PMID:27233830

  15. SUMOylation and phosphorylation of GluK2 regulate kainate receptor trafficking and synaptic plasticity

    PubMed Central

    Chamberlain, Sophie E L; González-González, Inmaculada M; Wilkinson, Kevin A; Konopacki, Filip A; Kantamneni, Sriharsha; Henley, Jeremy M; Mellor, Jack R

    2012-01-01

    Summary Phosphorylation or SUMOylation of the kainate receptor (KAR) subunit GluK2 have both individually been shown to regulate KAR surface expression. However, it is unknown if phosphorylation and SUMOylation of GluK2 are important for activity-dependent KAR synaptic plasticity. Here, we show that PKC-mediated phosphorylation of GluK2 at serine 868 promotes GluK2 SUMOylation at lysine 886 and that both these events are necessary for the internalization of GluK2 containing KARs that occurs during long-term depression of KAR-mediated synaptic transmission at rat hippocampal mossy fiber synapses. Conversely, phosphorylation of GluK2 at serine 868 in the absence of SUMOylation leads to an increase in KAR surface expression by facilitating receptor recycling between endosomal compartments and the plasma membrane. Thus, we describe a role for the dynamic control of synaptic SUMOylation in the regulation of KAR synaptic transmission and plasticity. PMID:22522402

  16. Effects of testosterone on synaptic plasticity mediated by androgen receptors in male SAMP8 mice.

    PubMed

    Jia, Jian-Xin; Cui, Cheng-Li; Yan, Xu-Sheng; Zhang, Bai-Feng; Song, Wei; Huo, Dong-Sheng; Wang, He; Yang, Zhan-Jun

    2016-01-01

    Synaptic changes are closely associated with cognitive deficits. In addition, testosterone (T) is known to exert regulative effects on synaptic plasticity. T may improve cognitive deficits in Alzheimer's disease (AD) patients, but the underlying mechanisms of androgenic action on cognitive performance remain unclear. The aim of this study was thus to examine the protective mechanism attributed to T on cognitive performance in an AD senescence, accelerated mouse prone 8 (SAMP8) animal model. Using Golgi staining to quantify the dendritic spine density in hippocampal CA1 region, molecular biomarkers of synapse function were analyzed using immunohistochemistry and western blot. T significantly increased the dendritic spine density in hippocampal CA1 region, while flutamide (F) inhibited these T-mediated effects. Immunohistochemistry and western blot analysis showed that the expression levels of brain derived neurotrophic factor (BDNF), postsynaptic density 95 (PSD-95), and p-cyclic-AMP response element binding protein (CREB)/CREB levels were significantly elevated in the T group, but F reduced the T-induced effects in these biomarkers to control levels. There were no significant differences in the expression levels of PSD-95, BDNF, and p-CREB/CREB between C and F. These findings indicate that the effects of T on improvement in synaptic plasticity were mediated via androgen receptor (AR). It is conceivable that new treatments targeted toward preventing synaptic pathology in AD may involve the use of androgen-acting drugs. PMID:27599230

  17. Localization of Presynaptic Plasticity Mechanisms Enables Functional Independence of Synaptic and Ectopic Transmission in the Cerebellum

    PubMed Central

    Dobson, Katharine L.; Bellamy, Tomas C.

    2015-01-01

    In the cerebellar molecular layer parallel fibre terminals release glutamate from both the active zone and from extrasynaptic “ectopic” sites. Ectopic release mediates transmission to the Bergmann glia that ensheathe the synapse, activating Ca2+-permeable AMPA receptors and glutamate transporters. Parallel fibre terminals exhibit several forms of presynaptic plasticity, including cAMP-dependent long-term potentiation and endocannabinoid-dependent long-term depression, but it is not known whether these presynaptic forms of long-term plasticity also influence ectopic transmission to Bergmann glia. Stimulation of parallel fibre inputs at 16 Hz evoked LTP of synaptic transmission, but LTD of ectopic transmission. Pharmacological activation of adenylyl cyclase by forskolin caused LTP at Purkinje neurons, but only transient potentiation at Bergmann glia, reinforcing the concept that ectopic sites lack the capacity to express sustained cAMP-dependent potentiation. Activation of mGluR1 caused depression of synaptic transmission via retrograde endocannabinoid signalling but had no significant effect at ectopic sites. In contrast, activation of NMDA receptors suppressed both synaptic and ectopic transmission. The results suggest that the signalling mechanisms for presynaptic LTP and retrograde depression by endocannabinoids are restricted to the active zone at parallel fibre synapses, allowing independent modulation of synaptic transmission to Purkinje neurons and ectopic transmission to Bergmann glia. PMID:26171253

  18. Acute and Chronic Effects of Ethanol on Learning-Related Synaptic Plasticity

    PubMed Central

    Zorumski, Charles F.; Mennerick, Steven; Izumi, Yukitoshi

    2014-01-01

    Alcoholism is associated with acute and long-term cognitive dysfunction including memory impairment, resulting in substantial disability and cost to society. Thus, understanding how ethanol impairs cognition is essential for developing treatment strategies to dampen its adverse impact. Memory processing is thought to involve persistent, use-dependent changes in synaptic transmission, and ethanol alters the activity of multiple signaling molecules involved in synaptic processing, including modulation of the glutamate and gamma-aminobutyric acid (GABA) transmitter systems that mediate most fast excitatory and inhibitory transmission in the brain. Effects on glutamate and GABA receptors contribute to ethanol-induced changes in long-term potentiation (LTP) and long-term depression (LTD), forms of synaptic plasticity thought to underlie memory acquisition. In this paper, we review the effects of ethanol on learning-related forms of synaptic plasticity with emphasis on changes observed in the hippocampus, a brain region that is critical for encoding contextual and episodic memories. We also include studies in other brain regions as they pertain to altered cognitive and mental function. Comparison of effects in the hippocampus to other brain regions is instructive for understanding the complexities of ethanol’s acute and long-term pharmacological consequences. PMID:24447472

  19. Gene expression parallels synaptic excitability and plasticity changes in Alzheimer’s disease

    PubMed Central

    Saura, Carlos A.; Parra-Damas, Arnaldo; Enriquez-Barreto, Lilian

    2015-01-01

    Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by abnormal accumulation of β-amyloid and tau and synapse dysfunction in memory-related neural circuits. Pathological and functional changes in the medial temporal lobe, a region essential for explicit memory encoding, contribute to cognitive decline in AD. Surprisingly, functional imaging studies show increased activity of the hippocampus and associated cortical regions during memory tasks in presymptomatic and early AD stages, whereas brain activity declines as the disease progresses. These findings suggest an emerging scenario where early pathogenic events might increase neuronal excitability leading to enhanced brain activity before clinical manifestations of the disease, a stage that is followed by decreased brain activity as neurodegeneration progresses. The mechanisms linking pathology with synaptic excitability and plasticity changes leading to memory loss in AD remain largely unclear. Recent studies suggest that increased brain activity parallels enhanced expression of genes involved in synaptic transmission and plasticity in preclinical stages, whereas expression of synaptic and activity-dependent genes are reduced by the onset of pathological and cognitive symptoms. Here, we review recent evidences indicating a relationship between transcriptional deregulation of synaptic genes and neuronal activity and memory loss in AD and mouse models. These findings provide the basis for potential clinical applications of memory-related transcriptional programs and their regulatory mechanisms as novel biomarkers and therapeutic targets to restore brain function in AD and other cognitive disorders. PMID:26379494

  20. Coordinated activation of distinct Ca(2+) sources and metabotropic glutamate receptors encodes Hebbian synaptic plasticity.

    PubMed

    Tigaret, Cezar M; Olivo, Valeria; Sadowski, Josef H L P; Ashby, Michael C; Mellor, Jack R

    2016-01-01

    At glutamatergic synapses, induction of associative synaptic plasticity requires time-correlated presynaptic and postsynaptic spikes to activate postsynaptic NMDA receptors (NMDARs). The magnitudes of the ensuing Ca2+ transients within dendritic spines are thought to determine the amplitude and direction of synaptic change. In contrast, we show that at mature hippocampal Schaffer collateral synapses the magnitudes of Ca2+ transients during plasticity induction do not match this rule. Indeed, LTP induced by time-correlated pre- and postsynaptic spikes instead requires the sequential activation of NMDARs followed by voltage-sensitive Ca2+ channels within dendritic spines. Furthermore, LTP requires inhibition of SK channels by mGluR1, which removes a negative feedback loop that constitutively regulates NMDARs. Therefore, rather than being controlled simply by the magnitude of the postsynaptic calcium rise, LTP induction requires the coordinated activation of distinct sources of Ca2+ and mGluR1-dependent facilitation of NMDAR function. PMID:26758963

  1. P2Y Receptors in Synaptic Transmission and Plasticity: Therapeutic Potential in Cognitive Dysfunction

    PubMed Central

    Guzman, Segundo J.; Gerevich, Zoltan

    2016-01-01

    ATP released from neurons and astrocytes during neuronal activity or under pathophysiological circumstances is able to influence information flow in neuronal circuits by activation of ionotropic P2X and metabotropic P2Y receptors and subsequent modulation of cellular excitability, synaptic strength, and plasticity. In the present paper we review cellular and network effects of P2Y receptors in the brain. We show that P2Y receptors inhibit the release of neurotransmitters, modulate voltage- and ligand-gated ion channels, and differentially influence the induction of synaptic plasticity in the prefrontal cortex, hippocampus, and cerebellum. The findings discussed here may explain how P2Y1 receptor activation during brain injury, hypoxia, inflammation, schizophrenia, or Alzheimer's disease leads to an impairment of cognitive processes. Hence, it is suggested that the blockade of P2Y1 receptors may have therapeutic potential against cognitive disturbances in these states. PMID:27069691

  2. Thrombin regulation of synaptic transmission and plasticity: implications for health and disease

    PubMed Central

    Ben Shimon, Marina; Lenz, Maximilian; Ikenberg, Benno; Becker, Denise; Shavit Stein, Efrat; Chapman, Joab; Tanne, David; Pick, Chaim G.; Blatt, Ilan; Neufeld, Miri; Vlachos, Andreas; Maggio, Nicola

    2015-01-01

    Thrombin, a serine protease involved in the blood coagulation cascade has been shown to affect neural function following blood-brain barrier breakdown. However, several lines of evidence exist that thrombin is also expressed in the brain under physiological conditions, suggesting an involvement of thrombin in the regulation of normal brain functions. Here, we review ours’ as well as others’ recent work on the role of thrombin in synaptic transmission and plasticity through direct or indirect activation of Protease-Activated Receptor-1 (PAR1). These studies propose a novel role of thrombin in synaptic plasticity, both in physiology as well as in neurological diseases associated with increased brain thrombin/PAR1 levels. PMID:25954157

  3. Coordinated activation of distinct Ca2+ sources and metabotropic glutamate receptors encodes Hebbian synaptic plasticity

    PubMed Central

    Tigaret, Cezar M.; Olivo, Valeria; Sadowski, Josef H.L.P.; Ashby, Michael C.; Mellor, Jack R.

    2016-01-01

    At glutamatergic synapses, induction of associative synaptic plasticity requires time-correlated presynaptic and postsynaptic spikes to activate postsynaptic NMDA receptors (NMDARs). The magnitudes of the ensuing Ca2+ transients within dendritic spines are thought to determine the amplitude and direction of synaptic change. In contrast, we show that at mature hippocampal Schaffer collateral synapses the magnitudes of Ca2+ transients during plasticity induction do not match this rule. Indeed, LTP induced by time-correlated pre- and postsynaptic spikes instead requires the sequential activation of NMDARs followed by voltage-sensitive Ca2+ channels within dendritic spines. Furthermore, LTP requires inhibition of SK channels by mGluR1, which removes a negative feedback loop that constitutively regulates NMDARs. Therefore, rather than being controlled simply by the magnitude of the postsynaptic calcium rise, LTP induction requires the coordinated activation of distinct sources of Ca2+ and mGluR1-dependent facilitation of NMDAR function. PMID:26758963

  4. Long-term depression and other synaptic plasticity in the cerebellum

    PubMed Central

    HIRANO, Tomoo

    2013-01-01

    Cerebellar long-term depression (LTD) is a type of synaptic plasticity and has been considered as a critical cellular mechanism for motor learning. LTD occurs at excitatory synapses between parallel fibers and a Purkinje cell in the cerebellar cortex, and is expressed as reduced responsiveness to transmitter glutamate. Molecular induction mechanism of LTD has been intensively studied using culture and slice preparations, which has revealed critical roles of Ca2+, protein kinase C and endocytosis of AMPA-type glutamate receptors. Involvement of a large number of additional molecules has also been demonstrated, and their interactions relevant to LTD mechanisms have been studied. In vivo experiments including those on mutant mice, have reported good correlation of LTD and motor learning. However, motor learning could occur with impaired LTD. A possibility that cerebellar synaptic plasticity other than LTD compensates for the defective LTD has been proposed. PMID:23666089

  5. Sleep and the Price of Plasticity: From Synaptic and Cellular Homeostasis to Memory Consolidation and Integration

    PubMed Central

    Tononi, Giulio; Cirelli, Chiara

    2014-01-01

    Summary Sleep is universal, tightly regulated, and its loss impairs cognition. But why does the brain need to disconnect from the environment for hours every day? The synaptic homeostasis hypothesis (SHY) proposes that sleep is the price the brain pays for plasticity. During a waking episode, learning statistical regularities about the current environment requires strengthening connections throughout the brain. This increases cellular needs for energy and supplies, decreases signal-to-noise ratios, and saturates learning. During sleep, spontaneous activity renormalizes net synaptic strength and restores cellular homeostasis. Activity-dependent down-selection of synapses can also explain the benefits of sleep on memory acquisition, consolidation, and integration. This happens through the off-line, comprehensive sampling of statistical regularities incorporated in neuronal circuits over a lifetime. This review considers the rationale and evidence for SHY and points to open issues related to sleep and plasticity. PMID:24411729

  6. An objective function for Hebbian self-limiting synaptic plasticity rules

    NASA Astrophysics Data System (ADS)

    Gros, Claudius; Eckmann, Samuel; Echeveste, Rodrigo

    Objective functions, formulated in terms of information theoretical measures with respect to the input and output probability distributions, provide a useful framework for the formulation of guiding principles for information processing systems, such as neural networks. In the present work, a guiding principle for neural plasticity is formulated in terms of an objective function expressed as the Fisher information with respect to an operator that we denote as the synaptic flux. By minimization of this objective function, we obtain Hebbian self-limiting synaptic plasticity rules, avoiding unbounded weight growth. Furthermore, we show how the rules are selective to directions of maximal negative excess kurtosis, making them suitable for independent component analysis. As an application, the non-linear bars problem is studied, in which each neuron is presented with a non-linear superposition of horizontal and vertical bars. We show that, under the here presented rules, the neurons are able to find the independent components of the input.

  7. EPO induces changes in synaptic transmission and plasticity in the dentate gyrus of rats.

    PubMed

    Almaguer-Melian, William; Mercerón-Martínez, Daymara; Delgado-Ocaña, Susana; Pavón-Fuentes, Nancy; Ledón, Nuris; Bergado, Jorge A

    2016-06-01

    Erythropoietin has shown wide physiological effects on the central nervous system in animal models of disease, and in healthy animals. We have recently shown that systemic EPO administration 15 min, but not 5 h, after daily training in a water maze is able to induce the recovery of spatial memory in fimbria-fornix chronic-lesioned animals, suggesting that acute EPO triggers mechanisms which can modulate the active neural plasticity mechanism involved in spatial memory acquisition in lesioned animals. Additionally, this EPO effect is accompanied by the up-regulation of plasticity-related early genes. More remarkably, this time-dependent effects on learning recovery could signify that EPO in nerve system modulate specific living-cellular processes. In the present article, we focus on the question if EPO could modulate the induction of long-term synaptic plasticity like LTP and LTD, which presumably could support our previous published data. Our results show that acute EPO peripheral administration 15 min before the induction of synaptic plasticity is able to increase the magnitude of the LTP (more prominent in PSA than fEPSP-Slope) to facilitate the induction of LTD, and to protect LTP from depotentiation. These findings showing that EPO modulates in vivo synaptic plasticity sustain the assumption that EPO can act not only as a neuroprotective substance, but is also able to modulate transient neural plasticity mechanisms and therefore to promote the recovery of nerve function after an established chronic brain lesion. According to these results, EPO could be use as a molecular tool for neurorestaurative treatments. Synapse 70:240-252, 2016. © 2016 Wiley Periodicals, Inc. PMID:26860222

  8. Low-frequency transcranial magnetic stimulation is beneficial for enhancing synaptic plasticity in the aging brain

    PubMed Central

    Zhang, Zhan-chi; Luan, Feng; Xie, Chun-yan; Geng, Dan-dan; Wang, Yan-yong; Ma, Jun

    2015-01-01

    In the aging brain, cognitive function gradually declines and causes a progressive reduction in the structural and functional plasticity of the hippocampus. Transcranial magnetic stimulation is an emerging and novel neurological and psychiatric tool used to investigate the neurobiology of cognitive function. Recent studies have demonstrated that low-frequency transcranial magnetic stimulation (≤1 Hz) ameliorates synaptic plasticity and spatial cognitive deficits in learning-impaired mice. However, the mechanisms by which this treatment improves these deficits during normal aging are still unknown. Therefore, the current study investigated the effects of transcranial magnetic stimulation on the brain-derived neurotrophic factor signal pathway, synaptic protein markers, and spatial memory behavior in the hippocampus of normal aged mice. The study also investigated the downstream regulator, Fyn kinase, and the downstream effectors, synaptophysin and growth-associated protein 43 (both synaptic markers), to determine the possible mechanisms by which transcranial magnetic stimulation regulates cognitive capacity. Transcranial magnetic stimulation with low intensity (110% average resting motor threshold intensity, 1 Hz) increased mRNA and protein levels of brain-derived neurotrophic factor, tropomyosin receptor kinase B, and Fyn in the hippocampus of aged mice. The treatment also upregulated the mRNA and protein expression of synaptophysin and growth-associated protein 43 in the hippocampus of these mice. In conclusion, brain-derived neurotrophic factor signaling may play an important role in sustaining and regulating structural synaptic plasticity induced by transcranial magnetic stimulation in the hippocampus of aging mice, and Fyn may be critical during this regulation. These responses may change the structural plasticity of the aging hippocampus, thereby improving cognitive function. PMID:26199608

  9. Role of Dopamine Neurons in Reward and Aversion: A Synaptic Plasticity Perspective.

    PubMed

    Pignatelli, Marco; Bonci, Antonello

    2015-06-01

    The brain is wired to predict future outcomes. Experience-dependent plasticity at excitatory synapses within dopamine neurons of the ventral tegmental area, a key region for a broad range of motivated behaviors, is thought to be a fundamental cellular mechanism that enables adaptation to a dynamic environment. Thus, depending on the circumstances, dopamine neurons are capable of processing both positive and negative reinforcement learning strategies. In this review, we will discuss how changes in synaptic plasticity of dopamine neurons may affect dopamine release, as well as behavioral adaptations to different environmental conditions falling at opposite ends of a saliency spectrum ranging from reward to aversion. PMID:26050034

  10. Cdk5 Modulates Long-Term Synaptic Plasticity and Motor Learning in Dorsolateral Striatum

    PubMed Central

    Hernandez, Adan; Tan, Chunfeng; Mettlach, Gabriel; Pozo, Karine; Plattner, Florian; Bibb, James A.

    2016-01-01

    The striatum controls multiple cognitive aspects including motivation, reward perception, decision-making and motor planning. In particular, the dorsolateral striatum contributes to motor learning. Here we define an approach for investigating synaptic plasticity in mouse dorsolateral cortico-striatal circuitry and interrogate the relative contributions of neurotransmitter receptors and intracellular signaling components. Consistent with previous studies, we show that long-term potentiation (LTP) in cortico-striatal circuitry is facilitated by dopamine, and requires activation of D1-dopamine receptors, as well as NMDA receptors (NMDAR) and their calcium-dependent downstream effectors, including CaMKII. Moreover, we assessed the contribution of the protein kinase Cdk5, a key neuronal signaling molecule, in cortico-striatal LTP. Pharmacological Cdk5 inhibition, brain-wide Cdk5 conditional knockout, or viral-mediated dorsolateral striatal-specific loss of Cdk5 all impaired dopamine-facilitated LTP or D1-dopamine receptor-facilitated LTP. Selective loss of Cdk5 in dorsolateral striatum increased locomotor activity and attenuated motor learning. Taken together, we report an approach for studying synaptic plasticity in mouse dorsolateral striatum and critically implicate D1-dopamine receptor, NMDAR, Cdk5, and CaMKII in cortico-striatal plasticity. Furthermore, we associate striatal plasticity deficits with effects upon behaviors mediated by this circuitry. This approach should prove useful for the study of the molecular basis of plasticity in the dorsolateral striatum. PMID:27443506

  11. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice.

    PubMed

    Villeda, Saul A; Plambeck, Kristopher E; Middeldorp, Jinte; Castellano, Joseph M; Mosher, Kira I; Luo, Jian; Smith, Lucas K; Bieri, Gregor; Lin, Karin; Berdnik, Daniela; Wabl, Rafael; Udeochu, Joe; Wheatley, Elizabeth G; Zou, Bende; Simmons, Danielle A; Xie, Xinmin S; Longo, Frank M; Wyss-Coray, Tony

    2014-06-01

    As human lifespan increases, a greater fraction of the population is suffering from age-related cognitive impairments, making it important to elucidate a means to combat the effects of aging. Here we report that exposure of an aged animal to young blood can counteract and reverse pre-existing effects of brain aging at the molecular, structural, functional and cognitive level. Genome-wide microarray analysis of heterochronic parabionts--in which circulatory systems of young and aged animals are connected--identified synaptic plasticity-related transcriptional changes in the hippocampus of aged mice. Dendritic spine density of mature neurons increased and synaptic plasticity improved in the hippocampus of aged heterochronic parabionts. At the cognitive level, systemic administration of young blood plasma into aged mice improved age-related cognitive impairments in both contextual fear conditioning and spatial learning and memory. Structural and cognitive enhancements elicited by exposure to young blood are mediated, in part, by activation of the cyclic AMP response element binding protein (Creb) in the aged hippocampus. Our data indicate that exposure of aged mice to young blood late in life is capable of rejuvenating synaptic plasticity and improving cognitive function. PMID:24793238

  12. Reactive Oxygen Species in the Regulation of Synaptic Plasticity and Memory

    PubMed Central

    Klann, Eric

    2011-01-01

    Abstract The brain is a metabolically active organ exhibiting high oxygen consumption and robust production of reactive oxygen species (ROS). The large amounts of ROS are kept in check by an elaborate network of antioxidants, which sometimes fail and lead to neuronal oxidative stress. Thus, ROS are typically categorized as neurotoxic molecules and typically exert their detrimental effects via oxidation of essential macromolecules such as enzymes and cytoskeletal proteins. Most importantly, excessive ROS are associated with decreased performance in cognitive function. However, at physiological concentrations, ROS are involved in functional changes necessary for synaptic plasticity and hence, for normal cognitive function. The fine line of role reversal of ROS from good molecules to bad molecules is far from being fully understood. This review focuses on identifying the multiple sources of ROS in the mammalian nervous system and on presenting evidence for the critical and essential role of ROS in synaptic plasticity and memory. The review also shows that the inability to restrain either age- or pathology-related increases in ROS levels leads to opposite, detrimental effects that are involved in impairments in synaptic plasticity and memory function. Antioxid. Redox Signal. 14, 2013–2054. PMID:20649473

  13. Disrupted-in-schizophrenia 1 regulates transport of ITPR1 mRNA for synaptic plasticity.

    PubMed

    Tsuboi, Daisuke; Kuroda, Keisuke; Tanaka, Motoki; Namba, Takashi; Iizuka, Yukihiko; Taya, Shinichiro; Shinoda, Tomoyasu; Hikita, Takao; Muraoka, Shinsuke; Iizuka, Michiro; Nimura, Ai; Mizoguchi, Akira; Shiina, Nobuyuki; Sokabe, Masahiro; Okano, Hideyuki; Mikoshiba, Katsuhiko; Kaibuchi, Kozo

    2015-05-01

    Disrupted-in-schizophrenia 1 (DISC1) is a susceptibility gene for major psychiatric disorders, including schizophrenia. DISC1 has been implicated in neurodevelopment in relation to scaffolding signal complexes. Here we used proteomic analysis to screen for DISC1 interactors and identified several RNA-binding proteins, such as hematopoietic zinc finger (HZF), that act as components of RNA-transporting granules. HZF participates in the mRNA localization of inositol-1,4,5-trisphosphate receptor type 1 (ITPR1), which plays a key role in synaptic plasticity. DISC1 colocalizes with HZF and ITPR1 mRNA in hippocampal dendrites and directly associates with neuronal mRNAs, including ITPR1 mRNA. The binding potential of DISC1 for ITPR1 mRNA is facilitated by HZF. Studies of Disc1-knockout mice have revealed that DISC1 regulates the dendritic transport of Itpr1 mRNA by directly interacting with its mRNA. The DISC1-mediated mRNA regulation is involved in synaptic plasticity. We show that DISC1 binds ITPR1 mRNA with HZF, thereby regulating its dendritic transport for synaptic plasticity. PMID:25821909

  14. Skipped-Stimulus Approach Reveals That Short-Term Plasticity Dominates Synaptic Strength during Ongoing Activity

    PubMed Central

    Yang, Hua

    2015-01-01

    All synapses show activity-dependent changes in strength, which affect the fidelity of postsynaptic spiking. This is particularly important at auditory nerve synapses, where the presence and timing of spikes carry information about a sound's structure, which must be passed along for proper processing. However, it is not clear how synaptic plasticity influences spiking during ongoing activity. Under these conditions, conventional analyses erroneously suggest that synaptic plasticity has no influence on EPSC amplitude or spiking. Therefore, we developed new approaches to study how ongoing activity influences synaptic strength, using voltage- and current-clamp recordings from bushy cells in brain slices from mouse anteroventral cochlear nucleus. We applied identical trains of stimuli, except for one skipped stimulus, and found that EPSC amplitude was affected for 60 ms following a skipped stimulus. We further showed that the initial probability of release, calcium-dependent mechanisms of recovery, and desensitization all play a role even during ongoing activity. Current-clamp experiments indicated that these processes had a significant effect on postsynaptic spiking, as did the refractory period to a smaller extent. Thus short-term plasticity has real, important functional consequences. PMID:26019343

  15. Bidirectional synaptic plasticity in the dentate gyrus of the awake freely behaving mouse

    PubMed Central

    Koranda, Jessica L.; Masino, Susan A.; Blaise, J. Harry

    2008-01-01

    There is significant interest in in vivo synaptic plasticity in mice due to the many relevant genetic mutants now available. Nevertheless, use of in vivo models remains limited. To date long-term potentiation (LTP) has been studied infrequently, and long-term depression (LTD) has not been characterized in the mouse in vivo. Herein we describe protocols and improved methodologies we developed to record hippocampal synaptic plasticity reliably from the dentate gyrus of the awake freely behaving mouse. Seven days prior to recording, we implanted microelectrodes encapsulated within a lightweight, low-profile headstage assembly. On the day of recording, we induced either LTP or LTD in the awake freely behaving animal and monitored subsequent changes in population spike amplitude for at least 24 hrs. Using this protocol we attained 80% success in inducing and maintaining either LTP or LTD. Recording from a chronic implant using this improved methodology is best suited to reveal naturally occurring brain activity, and avoids both acute effects of local electrode insertion and drifts in neuronal excitability associated with anesthesia. Ultimately a reliable freely behaving mouse model of bidirectional synaptic plasticity is invaluable for full characterization of genetic models of disease states and manipulations of the mechanisms implicated in learning and memory. PMID:17875326

  16. Effects of Myoga on Memory and Synaptic Plasticity by Regulating Nerve Growth Factor-Mediated Signaling.

    PubMed

    Kim, Hyo Geun; Lim, Soonmin; Hong, Jongki; Kim, Ae-Jung; Oh, Myung Sook

    2016-02-01

    The flower bud of Zingiber mioga Roscoe, known as 'myoga' or Japanese ginger, has a pungent aroma and is commonly consumed as a spice, with pickles, or as a health supplement in Eastern Asia. Here, we evaluated the activity of myoga in the brain, focusing especially on nerve growth factor (NGF), which is believed to mediate synaptic plasticity, supporting learning and memory. In a rat primary hippocampal astrocyte culture system, treatment with myoga extract for 24 h significantly stimulated the production of NGF. In mice administered myoga extract for 14 days, 200 and 400 mg/kg/day treatment resulted in increased NGF levels in the hippocampus. Myoga extract treatment also regulated the phosphorylation of extracellular signal-regulated kinases and cAMP response element-binding protein in the mouse hippocampus, leading to increased synaptic plasticity. In addition, it significantly increased novel object recognition time and spontaneous alternation, indicating improvement in learning and memory. These results suggest that myoga helps regulate NGF and synaptic plasticity, increasing memory ability. PMID:26563629

  17. Short-term synaptic plasticity contributes to the temporal filtering of electrosensory information.

    PubMed

    Fortune, E S; Rose, G J

    2000-09-15

    Short-term synaptic depression and facilitation often are elicited by different temporal patterns of activity. Short-term plasticity may contribute, therefore, to temporal filtering by impeding synaptic transmission for some temporal patterns of activity and facilitating transmission for other patterns. We examined this hypothesis by investigating whether short-term plasticity contributes to the temporal filtering properties of midbrain electrosensory neurons. Postsynaptic potentials were recorded in response to sensory stimuli and to direct stimulation of afferents, in vivo. Stimulating afferents with pairs of pulses at a rate of 20 pairs/sec ["tetanus (20 Hz)"] induced PSP depression. This PSP depression was similar to that observed for electrosensory stimuli of the same temporal frequency. Analysis of PSPs elicited by a pair of pulses that preceded versus followed the tetanus revealed that PSP depression was caused by synaptic depression, not by a loss of facilitation. Behavioral studies indicate that fish can detect slow changes in signal amplitude (slow AM) in backgrounds of fast fluctuations. Correspondingly, midbrain neurons respond well to slow AM even in the presence of fast AM. In many neurons, facilitation enhanced responses to trains (8-10 pulses; 100 Hz) that represented activity patterns elicited by slow AM, despite induction of synaptic depression by a tetanus (20 Hz). The interplay between synaptic depression and facilitation, therefore, can act as a filter of temporal information. Some neurons that showed little facilitation nonetheless responded to low temporal-frequency information after induction of depression by fast information; this likely results from the convergence of inputs with different temporal filtering properties. PMID:10995860

  18. Interactions between behaviorally relevant rhythms and synaptic plasticity alter coding in the piriform cortex

    PubMed Central

    Urban, Nathaniel N.

    2012-01-01

    Understanding how neural and behavioral timescales interact to influence cortical activity and stimulus coding is an important issue in sensory neuroscience. In air-breathing animals, voluntary changes in respiratory frequency alter the temporal patterning olfactory input. In the olfactory bulb, these behavioral timescales are reflected in the temporal properties of mitral/tufted (M/T) cell spike trains. As the odor information contained in these spike trains is relayed from the bulb to the cortex, interactions between presynaptic spike timing and short-term synaptic plasticity dictate how stimulus features are represented in cortical spike trains. Here we demonstrate how the timescales associated with respiratory frequency, spike timing and short-term synaptic plasticity interact to shape cortical responses. Specifically, we quantified the timescales of short-term synaptic facilitation and depression at excitatory synapses between bulbar M/T cells and cortical neurons in slices of mouse olfactory cortex. We then used these results to generate simulated M/T population synaptic currents that were injected into real cortical neurons. M/T population inputs were modulated at frequencies consistent with passive respiration or active sniffing. We show how the differential recruitment of short-term plasticity at breathing versus sniffing frequencies alters cortical spike responses. For inputs at sniffing frequencies, cortical neurons linearly encoded increases in presynaptic firing rates with increased phase locked, firing rates. In contrast, at passive breathing frequencies, cortical responses saturated with changes in presynaptic rate. Our results suggest that changes in respiratory behavior can gate the transfer of stimulus information between the olfactory bulb and cortex. PMID:22553016

  19. Spike Timing-Dependent Plasticity as the Origin of the Formation of Clustered Synaptic Efficacy Engrams

    PubMed Central

    Iannella, Nicolangelo Libero; Launey, Thomas; Tanaka, Shigeru

    2010-01-01

    Synapse location, dendritic active properties and synaptic plasticity are all known to play some role in shaping the different input streams impinging onto a neuron. It remains unclear however, how the magnitude and spatial distribution of synaptic efficacies emerge from this interplay. Here, we investigate this interplay using a biophysically detailed neuron model of a reconstructed layer 2/3 pyramidal cell and spike timing-dependent plasticity (STDP). Specifically, we focus on the issue of how the efficacy of synapses contributed by different input streams are spatially represented in dendrites after STDP learning. We construct a simple feed forward network where a detailed model neuron receives synaptic inputs independently from multiple yet equally sized groups of afferent fibers with correlated activity, mimicking the spike activity from different neuronal populations encoding, for example, different sensory modalities. Interestingly, ensuing STDP learning, we observe that for all afferent groups, STDP leads to synaptic efficacies arranged into spatially segregated clusters effectively partitioning the dendritic tree. These segregated clusters possess a characteristic global organization in space, where they form a tessellation in which each group dominates mutually exclusive regions of the dendrite. Put simply, the dendritic imprint from different input streams left after STDP learning effectively forms what we term a “dendritic efficacy mosaic.” Furthermore, we show how variations of the inputs and STDP rule affect such an organization. Our model suggests that STDP may be an important mechanism for creating a clustered plasticity engram, which shapes how different input streams are spatially represented in dendrite. PMID:20725522

  20. Rate and Pulse Based Plasticity Governed by Local Synaptic State Variables

    PubMed Central

    Mayr, Christian G.; Partzsch, Johannes

    2010-01-01

    Classically, action-potential-based learning paradigms such as the Bienenstock–Cooper–Munroe (BCM) rule for pulse rates or spike timing-dependent plasticity for pulse pairings have been experimentally demonstrated to evoke long-lasting synaptic weight changes (i.e., plasticity). However, several recent experiments have shown that plasticity also depends on the local dynamics at the synapse, such as membrane voltage, Calcium time course and level, or dendritic spikes. In this paper, we introduce a formulation of the BCM rule which is based on the instantaneous postsynaptic membrane potential as well as the transmission profile of the presynaptic spike. While this rule incorporates only simple local voltage- and current dynamics and is thus neither directly rate nor timing based, it can replicate a range of experiments, such as various rate and spike pairing protocols, combinations of the two, as well as voltage-dependent plasticity. A detailed comparison of current plasticity models with respect to this range of experiments also demonstrates the efficacy of the new plasticity rule. All experiments can be replicated with a limited set of parameters, avoiding the overfitting problem of more involved plasticity rules. PMID:21423519

  1. Adaptive and phase selective spike timing dependent plasticity in synaptically coupled neuronal oscillators.

    PubMed

    Kazantsev, Victor; Tyukin, Ivan

    2012-01-01

    We consider and analyze the influence of spike-timing dependent plasticity (STDP) on homeostatic states in synaptically coupled neuronal oscillators. In contrast to conventional models of STDP in which spike-timing affects weights of synaptic connections, we consider a model of STDP in which the time lags between pre- and/or post-synaptic spikes change internal state of pre- and/or post-synaptic neurons respectively. The analysis reveals that STDP processes of this type, modeled by a single ordinary differential equation, may ensure efficient, yet coarse, phase-locking of spikes in the system to a given reference phase. Precision of the phase locking, i.e. the amplitude of relative phase deviations from the reference, depends on the values of natural frequencies of oscillators and, additionally, on parameters of the STDP law. These deviations can be optimized by appropriate tuning of gains (i.e. sensitivity to spike-timing mismatches) of the STDP mechanism. However, as we demonstrate, such deviations can not be made arbitrarily small neither by mere tuning of STDP gains nor by adjusting synaptic weights. Thus if accurate phase-locking in the system is required then an additional tuning mechanism is generally needed. We found that adding a very simple adaptation dynamics in the form of slow fluctuations of the base line in the STDP mechanism enables accurate phase tuning in the system with arbitrary high precision. Adaptation operating at a slow time scale may be associated with extracellular matter such as matrix and glia. Thus the findings may suggest a possible role of the latter in regulating synaptic transmission in neuronal circuits. PMID:22412830

  2. Adaptive and Phase Selective Spike Timing Dependent Plasticity in Synaptically Coupled Neuronal Oscillators

    PubMed Central

    Kazantsev, Victor; Tyukin, Ivan

    2012-01-01

    We consider and analyze the influence of spike-timing dependent plasticity (STDP) on homeostatic states in synaptically coupled neuronal oscillators. In contrast to conventional models of STDP in which spike-timing affects weights of synaptic connections, we consider a model of STDP in which the time lags between pre- and/or post-synaptic spikes change internal state of pre- and/or post-synaptic neurons respectively. The analysis reveals that STDP processes of this type, modeled by a single ordinary differential equation, may ensure efficient, yet coarse, phase-locking of spikes in the system to a given reference phase. Precision of the phase locking, i.e. the amplitude of relative phase deviations from the reference, depends on the values of natural frequencies of oscillators and, additionally, on parameters of the STDP law. These deviations can be optimized by appropriate tuning of gains (i.e. sensitivity to spike-timing mismatches) of the STDP mechanism. However, as we demonstrate, such deviations can not be made arbitrarily small neither by mere tuning of STDP gains nor by adjusting synaptic weights. Thus if accurate phase-locking in the system is required then an additional tuning mechanism is generally needed. We found that adding a very simple adaptation dynamics in the form of slow fluctuations of the base line in the STDP mechanism enables accurate phase tuning in the system with arbitrary high precision. Adaptation operating at a slow time scale may be associated with extracellular matter such as matrix and glia. Thus the findings may suggest a possible role of the latter in regulating synaptic transmission in neuronal circuits. PMID:22412830

  3. A Role for Calcium-Permeable AMPA Receptors in Synaptic Plasticity and Learning

    PubMed Central

    Gray, Erin E.; Abdipranoto, Andrea; Thangthaeng, Nopporn; Jacobs, Nate; Saab, Faysal; Tonegawa, Susumu; Heinemann, Stephen F.; O'Dell, Thomas J.; Fanselow, Michael S.; Vissel, Bryce

    2010-01-01

    A central concept in the field of learning and memory is that NMDARs are essential for synaptic plasticity and memory formation. Surprisingly then, multiple studies have found that behavioral experience can reduce or eliminate the contribution of these receptors to learning. The cellular mechanisms that mediate learning in the absence of NMDAR activation are currently unknown. To address this issue, we examined the contribution of Ca2+-permeable AMPARs to learning and plasticity in the hippocampus. Mutant mice were engineered with a conditional genetic deletion of GluR2 in the CA1 region of the hippocampus (GluR2-cKO mice). Electrophysiology experiments in these animals revealed a novel form of long-term potentiation (LTP) that was independent of NMDARs and mediated by GluR2-lacking Ca2+-permeable AMPARs. Behavioral analyses found that GluR2-cKO mice were impaired on multiple hippocampus-dependent learning tasks that required NMDAR activation. This suggests that AMPAR-mediated LTP interferes with NMDAR-dependent plasticity. In contrast, NMDAR-independent learning was normal in knockout mice and required the activation of Ca2+-permeable AMPARs. These results suggest that GluR2-lacking AMPARs play a functional and previously unidentified role in learning; they appear to mediate changes in synaptic strength that occur after plasticity has been established by NMDARs. PMID:20927382

  4. Nogo Receptor Signaling Restricts Adult Neural Plasticity by Limiting Synaptic AMPA Receptor Delivery

    PubMed Central

    Jitsuki, Susumu; Nakajima, Waki; Takemoto, Kiwamu; Sano, Akane; Tada, Hirobumi; Takahashi-Jitsuki, Aoi; Takahashi, Takuya

    2016-01-01

    Experience-dependent plasticity is limited in the adult brain, and its molecular and cellular mechanisms are poorly understood. Removal of the myelin-inhibiting signaling protein, Nogo receptor (NgR1), restores adult neural plasticity. Here we found that, in NgR1-deficient mice, whisker experience-driven synaptic α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) insertion in the barrel cortex, which is normally complete by 2 weeks after birth, lasts into adulthood. In vivo live imaging by two-photon microscopy revealed more AMPAR on the surface of spines in the adult barrel cortex of NgR1-deficient than on those of wild-type (WT) mice. Furthermore, we observed that whisker stimulation produced new spines in the adult barrel cortex of mutant but not WT mice, and that the newly synthesized spines contained surface AMPAR. These results suggest that Nogo signaling limits plasticity by restricting synaptic AMPAR delivery in coordination with anatomical plasticity. PMID:26472557

  5. NgR1: A Tunable Sensor Regulating Memory Formation, Synaptic, and Dendritic Plasticity.

    PubMed

    Karlsson, Tobias E; Smedfors, Gabriella; Brodin, Alvin T S; Åberg, Elin; Mattsson, Anna; Högbeck, Isabelle; Wellfelt, Katrin; Josephson, Anna; Brené, Stefan; Olson, Lars

    2016-04-01

    Nogo receptor 1 (NgR1) is expressed in forebrain neurons and mediates nerve growth inhibition in response to Nogo and other ligands. Neuronal activity downregulates NgR1 and the inability to downregulate NgR1 impairs long-term memory. We investigated behavior in a serial behavioral paradigm in mice that overexpress or lack NgR1, finding impaired locomotor behavior and recognition memory in mice lacking NgR1 and impaired sequential spatial learning in NgR1 overexpressing mice. We also investigated a role for NgR1 in drug-mediated sensitization and found that repeated cocaine exposure caused stronger locomotor responses but limited development of stereotypies in NgR1 overexpressing mice. This suggests that NgR1-regulated synaptic plasticity is needed to develop stereotypies. Ex vivo magnetic resonance imaging and diffusion tensor imaging analyses of NgR1 overexpressing brains did not reveal any major alterations. NgR1 overexpression resulted in significantly reduced density of mature spines and dendritic complexity. NgR1 overexpression also altered cocaine-induced effects on spine plasticity. Our results show that NgR1 is a negative regulator of both structural synaptic plasticity and dendritic complexity in a brain region-specific manner, and highlight anterior cingulate cortex as a key area for memory-related plasticity. PMID:26838771

  6. NgR1: A Tunable Sensor Regulating Memory Formation, Synaptic, and Dendritic Plasticity

    PubMed Central

    Karlsson, Tobias E.; Smedfors, Gabriella; Brodin, Alvin T. S.; Åberg, Elin; Mattsson, Anna; Högbeck, Isabelle; Wellfelt, Katrin; Josephson, Anna; Brené, Stefan; Olson, Lars

    2016-01-01

    Nogo receptor 1 (NgR1) is expressed in forebrain neurons and mediates nerve growth inhibition in response to Nogo and other ligands. Neuronal activity downregulates NgR1 and the inability to downregulate NgR1 impairs long-term memory. We investigated behavior in a serial behavioral paradigm in mice that overexpress or lack NgR1, finding impaired locomotor behavior and recognition memory in mice lacking NgR1 and impaired sequential spatial learning in NgR1 overexpressing mice. We also investigated a role for NgR1 in drug-mediated sensitization and found that repeated cocaine exposure caused stronger locomotor responses but limited development of stereotypies in NgR1 overexpressing mice. This suggests that NgR1-regulated synaptic plasticity is needed to develop stereotypies. Ex vivo magnetic resonance imaging and diffusion tensor imaging analyses of NgR1 overexpressing brains did not reveal any major alterations. NgR1 overexpression resulted in significantly reduced density of mature spines and dendritic complexity. NgR1 overexpression also altered cocaine-induced effects on spine plasticity. Our results show that NgR1 is a negative regulator of both structural synaptic plasticity and dendritic complexity in a brain region-specific manner, and highlight anterior cingulate cortex as a key area for memory-related plasticity. PMID:26838771

  7. PLPP/CIN regulates bidirectional synaptic plasticity via GluN2A interaction with postsynaptic proteins

    PubMed Central

    Kim, Ji-Eun; Kim, Yeon-Joo; Lee, Duk-Shin; Kim, Ji Yang; Ko, Ah-Reum; Hyun, Hye-Won; Kim, Min Ju; Kang, Tae-Cheon

    2016-01-01

    Dendritic spines are dynamic structures whose efficacies and morphologies are modulated by activity-dependent synaptic plasticity. The actin cytoskeleton plays an important role in stabilization and structural modification of spines. However, the regulatory mechanism by which it alters the plasticity threshold remains elusive. Here, we demonstrate the role of pyridoxal-5′-phosphate phosphatase/chronophin (PLPP/CIN), one of the cofilin-mediated F-actin regulators, in modulating synaptic plasticity in vivo. PLPP/CIN transgenic (Tg) mice had immature spines with small heads, while PLPP/CIN knockout (KO) mice had gigantic spines. Furthermore, PLPP/CIN Tg mice exhibited enhanced synaptic plasticity, but KO mice showed abnormal synaptic plasticity. The PLPP/CIN-induced alterations in synaptic plasticity were consistent with the acquisition and the recall capacity of spatial learning. PLPP/CIN also enhanced N-methyl-D-aspartate receptor (GluN) functionality by regulating the coupling of GluN2A with interacting proteins, particularly postsynaptic density-95 (PSD95). Therefore, these results suggest that PLPP/CIN may be an important factor for regulating the plasticity threshold. PMID:27212638

  8. Fine-tuning synaptic plasticity by modulation of Ca(V)2.1 channels with Ca2+ sensor proteins.

    PubMed

    Leal, Karina; Mochida, Sumiko; Scheuer, Todd; Catterall, William A

    2012-10-16

    Modulation of P/Q-type Ca(2+) currents through presynaptic voltage-gated calcium channels (Ca(V)2.1) by binding of Ca(2+)/calmodulin contributes to short-term synaptic plasticity. Ca(2+)-binding protein-1 (CaBP1) and Visinin-like protein-2 (VILIP-2) are neurospecific calmodulin-like Ca(2+) sensor proteins that differentially modulate Ca(V)2.1 channels, but how they contribute to short-term synaptic plasticity is unknown. Here, we show that activity-dependent modulation of presynaptic Ca(V)2.1 channels by CaBP1 and VILIP-2 has opposing effects on short-term synaptic plasticity in superior cervical ganglion neurons. Expression of CaBP1, which blocks Ca(2+)-dependent facilitation of P/Q-type Ca(2+) current, markedly reduced facilitation of synaptic transmission. VILIP-2, which blocks Ca(2+)-dependent inactivation of P/Q-type Ca(2+) current, reduced synaptic depression and increased facilitation under conditions of high release probability. These results demonstrate that activity-dependent regulation of presynaptic Ca(V)2.1 channels by differentially expressed Ca(2+) sensor proteins can fine-tune synaptic responses to trains of action potentials and thereby contribute to the diversity of short-term synaptic plasticity. PMID:23027954

  9. Proteostasis and RNA Binding Proteins in Synaptic Plasticity and in the Pathogenesis of Neuropsychiatric Disorders

    PubMed Central

    Klein, Matthew E.; Monday, Hannah; Jordan, Bryen A.

    2016-01-01

    Decades of research have demonstrated that rapid alterations in protein abundance are required for synaptic plasticity, a cellular correlate for learning and memory. Control of protein abundance, known as proteostasis, is achieved across a complex neuronal morphology that includes a tortuous axon as well as an extensive dendritic arbor supporting thousands of individual synaptic compartments. To regulate the spatiotemporal synthesis of proteins, neurons must efficiently coordinate the transport and metabolism of mRNAs. Among multiple levels of regulation, transacting RNA binding proteins (RBPs) control proteostasis by binding to mRNAs and mediating their transport and translation in response to synaptic activity. In addition to synthesis, protein degradation must be carefully balanced for optimal proteostasis, as deviations resulting in excess or insufficient abundance of key synaptic factors produce pathologies. As such, mutations in components of the proteasomal or translational machinery, including RBPs, have been linked to the pathogenesis of neurological disorders such as Fragile X Syndrome (FXS), Fragile X Tremor Ataxia Syndrome (FXTAS), and Autism Spectrum Disorders (ASD). In this review, we summarize recent scientific findings, highlight ongoing questions, and link basic molecular mechanisms to the pathogenesis of common neuropsychiatric disorders. PMID:26904297

  10. Previous ethanol experience enhances synaptic plasticity of NMDA receptors in the ventral tegmental area.

    PubMed

    Bernier, Brian E; Whitaker, Leslie R; Morikawa, Hitoshi

    2011-04-01

    Alcohol addiction (alcoholism) is one of the most prevalent substance abuse disorders worldwide. Addiction is thought to arise, in part, from a maladaptive learning process in which enduring memories of drug experiences are formed. However, alcohol (ethanol) generally interferes with synaptic plasticity mechanisms in the CNS and thus impairs various types of learning and memory. Therefore, it is unclear how powerful memories associated with alcohol experience are formed during the development of alcoholism. Here, using brain slice electrophysiology in mice, we show that repeated in vivo ethanol exposure (2 g/kg, i.p., three times daily for 7 d) causes increased susceptibility to the induction of long-term potentiation (LTP) of NMDA receptor (NMDAR)-mediated transmission in mesolimbic dopamine neurons, a form of synaptic plasticity that may drive the learning of stimuli associated with rewards, including drugs of abuse. Enhancement of NMDAR plasticity results from an increase in the potency of inositol 1,4,5-trisphosphate (IP(3)) in producing facilitation of action potential-evoked Ca(2+) signals, which is critical for LTP induction. This increase in IP(3) effect, which lasts for a week but not a month after ethanol withdrawal, occurs through a protein kinase A (PKA)-dependent mechanism. Corticotropin-releasing factor, a stress-related neuropeptide implicated in alcoholism and other addictions, further amplifies the PKA-mediated increase in IP(3) effect in ethanol-treated mice. Finally, we found that ethanol-treated mice display enhanced place conditioning induced by the psychostimulant cocaine. These data suggest that repeated ethanol experience may promote the formation of drug-associated memories by enhancing synaptic plasticity of NMDARs in dopamine neurons. PMID:21471355

  11. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice

    PubMed Central

    Villeda, Saul A; Plambeck, Kristopher E; Middeldorp, Jinte; Castellano, Joseph M; Mosher, Kira I; Luo, Jian; Smith, Lucas K; Bieri, Gregor; Lin, Karin; Berdnik, Daniela; Wabl, Rafael; Udeochu, Joe; Wheatley, Elizabeth G; Zou, Bende; Simmons, Danielle A; Xie, Xinmin S; Longo, Frank M; Wyss-Coray, Tony

    2014-01-01

    As human lifespan increases, a greater fraction of the population is suffering from age-related cognitive impairments, making it important to elucidate a means to combat the effects of aging1,2. Here we report that exposure of an aged animal to young blood can counteract and reverse pre-existing effects of brain aging at the molecular, structural, functional and cognitive level. Genome-wide microarray analysis of heterochronic parabionts—in which circulatory systems of young and aged animals are connected—identified synaptic plasticity–related transcriptional changes in the hippocampus of aged mice. Dendritic spine density of mature neurons increased and synaptic plasticity improved in the hippocampus of aged heterochronic parabionts. At the cognitive level, systemic administration of young blood plasma into aged mice improved age-related cognitive impairments in both contextual fear conditioning and spatial learning and memory. Structural and cognitive enhancements elicited by exposure to young blood are mediated, in part, by activation of the cyclic AMP response element binding protein (Creb) in the aged hippocampus. Our data indicate that exposure of aged mice to young blood late in life is capable of rejuvenating synaptic plasticity and improving cognitive function. PMID:24793238

  12. Mind Bomb-2 Regulates Hippocampus-dependent Memory Formation and Synaptic Plasticity

    PubMed Central

    Kim, Somi; Kim, TaeHyun; Lee, Hye-Ryeon; Kong, Young-Yun

    2015-01-01

    Notch signaling is a key regulator of neuronal fate during embryonic development, but its function in the adult brain is still largely unknown. Mind bomb-2 (Mib2) is an essential positive regulator of the Notch pathway, which acts in the Notch signal-sending cells. Therefore, genetic deletion of Mib2 in the mouse brain might help understand Notch signaling-mediated cell-cell interactions between neurons and their physiological function. Here we show that deletion of Mib2 in the mouse brain results in impaired hippocampal spatial memory and contextual fear memory. Accordingly, we found impaired hippocampal synaptic plasticity in Mib2 knock-out (KO) mice; however, basal synaptic transmission did not change at the Schaffer collateral-CA1 synapses. Using western blot analysis, we found that the level of cleaved Notch1 was lower in Mib2 KO mice than in wild type (WT) littermates after mild foot shock. Taken together, these data suggest that Mib2 plays a critical role in synaptic plasticity and spatial memory through the Notch signaling pathway. PMID:26557018

  13. UBE3A Regulates Synaptic Plasticity and Learning and Memory by Controlling SK2 Channel Endocytosis.

    PubMed

    Sun, Jiandong; Zhu, Guoqi; Liu, Yan; Standley, Steve; Ji, Angela; Tunuguntla, Rashmi; Wang, Yubin; Claus, Chad; Luo, Yun; Baudry, Michel; Bi, Xiaoning

    2015-07-21

    Gated solely by activity-induced changes in intracellular calcium, small-conductance potassium channels (SKs) are critical for a variety of functions in the CNS, from learning and memory to rhythmic activity and sleep. While there is a wealth of information on SK2 gating, kinetics, and Ca(2+) sensitivity, little is known regarding the regulation of SK2 subcellular localization. We report here that synaptic SK2 levels are regulated by the E3 ubiquitin ligase UBE3A, whose deficiency results in Angelman syndrome and overexpression in increased risk of autistic spectrum disorder. UBE3A directly ubiquitinates SK2 in the C-terminal domain, which facilitates endocytosis. In UBE3A-deficient mice, increased postsynaptic SK2 levels result in decreased NMDA receptor activation, thereby impairing hippocampal long-term synaptic plasticity. Impairments in both synaptic plasticity and fear conditioning memory in UBE3A-deficient mice are significantly ameliorated by blocking SK2. These results elucidate a mechanism by which UBE3A directly influences cognitive function. PMID:26166566

  14. Miglustat Reverts the Impairment of Synaptic Plasticity in a Mouse Model of NPC Disease

    PubMed Central

    D'Arcangelo, G.; Grossi, D.; Racaniello, M.; Cardinale, A.; Zaratti, A.; Rufini, S.; Cutarelli, A.; Tancredi, V.; Merlo, D.; Frank, C.

    2016-01-01

    Niemann-Pick type C disease is an autosomal recessive storage disorder, characterized by abnormal sequestration of unesterified cholesterol within the late endolysosomal compartment of cells and accumulation of gangliosides and other sphingolipids. Progressive neurological deterioration and insurgence of symptoms like ataxia, seizure, and cognitive decline until severe dementia are pathognomonic features of the disease. Here, we studied synaptic plasticity phenomena and evaluated ERKs activation in the hippocampus of BALB/c NPC1−/− mice, a well described animal model of the disease. Our results demonstrated an impairment of both induction and maintenance of long term synaptic potentiation in NPC1−/− mouse slices, associated with the lack of ERKs phosphorylation. We then investigated the effects of Miglustat, a recent approved drug for the treatment of NPCD. We found that in vivo Miglustat administration in NPC1−/− mice was able to rescue synaptic plasticity deficits, to restore ERKs activation and to counteract hyperexcitability. Overall, these data indicate that Miglustat may be effective for treating the neurological deficits associated with NPCD, such as seizures and dementia. PMID:26885401

  15. A light-stimulated synaptic transistor with synaptic plasticity and memory functions based on InGaZnOx-Al2O3 thin film structure

    NASA Astrophysics Data System (ADS)

    Li, H. K.; Chen, T. P.; Liu, P.; Hu, S. G.; Liu, Y.; Zhang, Q.; Lee, P. S.

    2016-06-01

    In this work, a synaptic transistor based on the indium gallium zinc oxide (IGZO)-aluminum oxide (Al2O3) thin film structure, which uses ultraviolet (UV) light pulses as the pre-synaptic stimulus, has been demonstrated. The synaptic transistor exhibits the behavior of synaptic plasticity like the paired-pulse facilitation. In addition, it also shows the brain's memory behaviors including the transition from short-term memory to long-term memory and the Ebbinghaus forgetting curve. The synapse-like behavior and memory behaviors of the transistor are due to the trapping and detrapping processes of the holes, which are generated by the UV pulses, at the IGZO/Al2O3 interface and/or in the Al2O3 layer.

  16. Exposure to low-dose rotenone precipitates synaptic plasticity alterations in PINK1 heterozygous knockout mice.

    PubMed

    Martella, G; Madeo, G; Maltese, M; Vanni, V; Puglisi, F; Ferraro, E; Schirinzi, T; Valente, E M; Bonanni, L; Shen, J; Mandolesi, G; Mercuri, N B; Bonsi, P; Pisani, A

    2016-07-01

    Heterozygous mutations in the PINK1 gene are considered a susceptibility factor to develop early-onset Parkinson's disease (PD), as supported by dopamine hypometabolism in asymptomatic mutation carriers and subtle alterations of dopamine-dependent striatal synaptic plasticity in heterozygous PINK1 knockout (PINK1(+/-)) mice. The aim of the present study was to investigate whether exposure to low-dose rotenone of heterozygous PINK1(+/-) mice, compared to their wild-type PINK1(+/+) littermates, could impact on dopamine-dependent striatal synaptic plasticity, in the absence of apparent structural alterations. Mice were exposed to a range of concentrations of rotenone (0.01-1mg/kg). Chronic treatment with concentrations of rotenone up to 0.8mg/kg did not cause manifest neuronal loss or changes in ATP levels both in the striatum or substantia nigra of PINK1(+/-) and PINK1(+/+) mice. Moreover, rotenone (up to 0.8mg/kg) treatment did not induce mislocalization of the mitochondrial membrane protein Tom20 and release of cytochrome c in PINK1(+/-) striata. Accordingly, basic electrophysiological properties of nigral dopaminergic and striatal medium spiny neurons (MSNs) were normal. Despite the lack of gross alterations in neuronal viability in chronically-treated PINK1(+/-), a complete loss of both long-term depression (LTD) and long-term potentiation (LTP) was recorded in MSNs from PINK1(+/-) mice treated with a low rotenone (0.1mg/kg) concentration. Even lower concentrations (0.01mg/kg) blocked LTP induction in heterozygous PINK1(+/-) MSNs compared to PINK1(+/+) mice. Of interest, chronic pretreatment with the antioxidants alpha-tocopherol and Trolox, a water-soluble analog of vitamin E and powerful antioxidant, rescued synaptic plasticity impairment, confirming that, at the doses we utilized, rotenone did not induce irreversible alterations. In this model, chronic exposure to low-doses of rotenone was not sufficient to alter mitochondrial integrity and ATP production, but

  17. Neuroligin 1 regulates spines and synaptic plasticity via LIMK1/cofilin-mediated actin reorganization.

    PubMed

    Liu, An; Zhou, Zikai; Dang, Rui; Zhu, Yuehua; Qi, Junxia; He, Guiqin; Leung, Celeste; Pak, Daniel; Jia, Zhengping; Xie, Wei

    2016-02-15

    Neuroligin (NLG) 1 is important for synapse development and function, but the underlying mechanisms remain unclear. It is known that at least some aspects of NLG1 function are independent of the presynaptic neurexin, suggesting that the C-terminal domain (CTD) of NLG1 may be sufficient for synaptic regulation. In addition, NLG1 is subjected to activity-dependent proteolytic cleavage, generating a cytosolic CTD fragment, but the significance of this process remains unknown. In this study, we show that the CTD of NLG1 is sufficient to (a) enhance spine and synapse number, (b) modulate synaptic plasticity, and (c) exert these effects via its interaction with spine-associated Rap guanosine triphosphatase-activating protein and subsequent activation of LIM-domain protein kinase 1/cofilin-mediated actin reorganization. Our results provide a novel postsynaptic mechanism by which NLG1 regulates synapse development and function. PMID:26880202

  18. IκB Kinase Regulates Social Defeat Stress-Induced Synaptic and Behavioral Plasticity

    PubMed Central

    Christoffel, Daniel J.; Golden, Sam A.; Dumitriu, Dani; Robison, Alfred J.; Janssen, William G.; Ahn, H. Francisca; Krishnan, Vaishnav; Reyes, Cindy M.; Han, Ming-Hu; Ables, Jessica L.; Eisch, Amelia J.; Dietz, David M.; Ferguson, Deveroux; Neve, Rachael L.; Greengard, Paul; Kim, Yong; Morrison, John H.; Russo, Scott J.

    2011-01-01

    The neurobiological underpinnings of mood and anxiety disorders have been linked to the nucleus accumbens (NAc), a region important in processing the rewarding and emotional salience of stimuli. Using chronic social defeat stress, an animal model of mood and anxiety disorders, we investigated whether alterations in synaptic plasticity are responsible for the long-lasting behavioral symptoms induced by this form of stress. We hypothesized that chronic social defeat stress alters synaptic strength or connectivity of medium spiny neurons (MSNs) in the NAc to induce social avoidance. To test this, we analyzed the synaptic profile of MSNs via confocal imaging of Lucifer-yellow-filled cells, ultrastructural analysis of the postsynaptic density, and electrophysiological recordings of miniature EPSCs (mEPSCs) in mice after social defeat. We found that NAc MSNs have more stubby spine structures with smaller postsynaptic densities and an increase in the frequency of mEPSCs after social defeat. In parallel to these structural changes, we observed significant increases in IκB kinase (IKK) in the NAc after social defeat, a molecular pathway that has been shown to regulate neuronal morphology. Indeed, we find using viral-mediated gene transfer of dominant-negative and constitutively active IKK mutants that activation of IKK signaling pathways during social defeat is both necessary and sufficient to induce synaptic alterations and behavioral effects of the stress. These studies establish a causal role for IKK in regulating stress-induced adaptive plasticity and may present a novel target for drug development in the treatment of mood and anxiety disorders in humans. PMID:21209217

  19. Exocytosis of gliotransmitters from cortical astrocytes: implications for synaptic plasticity and aging.

    PubMed

    Lalo, Ulyana; Rasooli-Nejad, Seyed; Pankratov, Yuriy

    2014-10-01

    Maintaining brain function during aging is very important for mental and physical health. Recent studies showed a crucial importance of communication between two major types of brain cells: neurons transmitting electrical signals, and glial cells, which maintain the well-being and function of neurons. Still, the study of age-related changes in neuron-glia signalling is far from complete. We have shown previously that cortical astrocytes are capable of releasing ATP by a quantal soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) complex-dependent mechanism. Release of ATP from cortical astrocytes can be activated via various pathways, including direct UV-uncaging of intracellular Ca²⁺ or G-protein-coupled receptors. Importantly, release of both ATP and glutamate from neocortical astrocytes was not observed in brain slices of dominant-negative SNARE (dnSNARE) mice, expressing dnSNARE domain selectively in astrocytes. We also discovered that astrocyte-driven ATP can cause significant attenuation of synaptic inhibition in the pyramidal neurons via Ca²⁺-interaction between the neuronal ATP and γ-aminobutyric acid (GABA) receptors. Furthermore, we showed that astrocyte-derived ATP can facilitate the induction of long-term potentiation of synaptic plasticity in the neocortex. Our recent data have shown that an age-related decrease in the astroglial Ca²⁺ signalling can cause a substantial decrease in the exocytosis of gliotransmitters, in particular ATP. Age-related impairment of ATP release from cortical astrocytes can cause a decrease in the extent of astroglial modulation of synaptic transmission in the neocortex and can therefore contribute to the age-related impairment of synaptic plasticity and cognitive decline. Combined, our results strongly support the physiological relevance of glial exocytosis for glia-neuron communications and brain function. PMID:25233403

  20. The Neuroplastin adhesion molecules: key regulators of neuronal plasticity and synaptic function.

    PubMed

    Beesley, Philip W; Herrera-Molina, Rodrigo; Smalla, Karl-Heinz; Seidenbecher, Constanze

    2014-11-01

    The Neuroplastins Np65 and Np55 are neuronal and synapse-enriched immunoglobulin superfamily molecules that play important roles in a number of key neuronal and synaptic functions including, for Np65, cell adhesion. In this review we focus on the physiological roles of the Neuroplastins in promoting neurite outgrowth, regulating the structure and function of both inhibitory and excitatory synapses in brain, and in neuronal and synaptic plasticity. We discuss the underlying molecular and cellular mechanisms by which the Neuroplastins exert their physiological effects and how these are dependent upon the structural features of Np65 and Np55, which enable them to bind to a diverse range of protein partners. In turn this enables the Neuroplastins to interact with a number of key neuronal signalling cascades. These include: binding to and activation of the fibroblast growth factor receptor; Np65 trans-homophilic binding leading to activation of p38 MAPK and internalization of glutamate (GluR1) receptor subunits; acting as accessory proteins for monocarboxylate transporters, thus affecting neuronal energy supply, and binding to GABAA α1, 2 and 5 subunits, thus regulating the composition and localization of GABAA receptors. An emerging theme is the role of the Neuroplastins in regulating the trafficking and subcellular localization of specific binding partners. We also discuss the involvement of Neuroplastins in a number of pathophysiological conditions, including ischaemia, schizophrenia and breast cancer and the role of a single nucleotide polymorphism in the human Neuroplastin (NPTN) gene locus in impairment of cortical development and cognitive functions. Neuroplastins are neuronal cell adhesion molecules, which induce neurite outgrowth and play important roles in synaptic maturation and plasticity. This review summarizes the functional implications of Neuroplastins for correct synaptic membrane protein localization, neuronal energy supply, expression of LTP and LTD

  1. Self-assembly and plasticity of synaptic domains through a reaction-diffusion mechanism

    NASA Astrophysics Data System (ADS)

    Haselwandter, Christoph A.; Kardar, Mehran; Triller, Antoine; da Silveira, Rava Azeredo

    2015-09-01

    Signal transmission across chemical synapses relies crucially on neurotransmitter receptor molecules, concentrated in postsynaptic membrane domains along with scaffold and other postsynaptic molecules. The strength of the transmitted signal depends on the number of receptor molecules in postsynaptic domains, and activity-induced variation in the receptor number is one of the mechanisms of postsynaptic plasticity. Recent experiments have demonstrated that the reaction and diffusion properties of receptors and scaffolds at the membrane, alone, yield spontaneous formation of receptor-scaffold domains of the stable characteristic size observed in neurons. On the basis of these experiments we develop a model describing synaptic receptor domains in terms of the underlying reaction-diffusion processes. Our model predicts that the spontaneous formation of receptor-scaffold domains of the stable characteristic size observed in experiments depends on a few key reactions between receptors and scaffolds. Furthermore, our model suggests novel mechanisms for the alignment of pre- and postsynaptic domains and for short-term postsynaptic plasticity in receptor number. We predict that synaptic receptor domains localize in membrane regions with an increased receptor diffusion coefficient or a decreased scaffold diffusion coefficient. Similarly, we find that activity-dependent increases or decreases in receptor or scaffold diffusion yield a transient increase in the number of receptor molecules concentrated in postsynaptic domains. Thus, the proposed reaction-diffusion model puts forth a coherent set of biophysical mechanisms for the formation, stability, and plasticity of molecular domains on the postsynaptic membrane.

  2. PRG-1 Regulates Synaptic Plasticity via Intracellular PP2A/β1-Integrin Signaling.

    PubMed

    Liu, Xingfeng; Huai, Jisen; Endle, Heiko; Schlüter, Leslie; Fan, Wei; Li, Yunbo; Richers, Sebastian; Yurugi, Hajime; Rajalingam, Krishnaraj; Ji, Haichao; Cheng, Hong; Rister, Benjamin; Horta, Guilherme; Baumgart, Jan; Berger, Hendrik; Laube, Gregor; Schmitt, Ulrich; Schmeisser, Michael J; Boeckers, Tobias M; Tenzer, Stefan; Vlachos, Andreas; Deller, Thomas; Nitsch, Robert; Vogt, Johannes

    2016-08-01

    Alterations in dendritic spine numbers are linked to deficits in learning and memory. While we previously revealed that postsynaptic plasticity-related gene 1 (PRG-1) controls lysophosphatidic acid (LPA) signaling at glutamatergic synapses via presynaptic LPA receptors, we now show that PRG-1 also affects spine density and synaptic plasticity in a cell-autonomous fashion via protein phosphatase 2A (PP2A)/β1-integrin activation. PRG-1 deficiency reduces spine numbers and β1-integrin activation, alters long-term potentiation (LTP), and impairs spatial memory. The intracellular PRG-1 C terminus interacts in an LPA-dependent fashion with PP2A, thus modulating its phosphatase activity at the postsynaptic density. This results in recruitment of adhesome components src, paxillin, and talin to lipid rafts and ultimately in activation of β1-integrins. Consistent with these findings, activation of PP2A with FTY720 rescues defects in spine density and LTP of PRG-1-deficient animals. These results disclose a mechanism by which bioactive lipid signaling via PRG-1 could affect synaptic plasticity and memory formation. PMID:27453502

  3. CPEB4 Knockout Mice Exhibit Normal Hippocampus-Related Synaptic Plasticity and Memory

    PubMed Central

    Chou, Hsin-Jung; Liu, Ta-Jen; Lee, Ping-Tao; Huang, Wen-Hsuan; Tsou, Yueh-Liang; Huang, Yi-Shuian

    2013-01-01

    Regulated RNA translation is critical to provide proteins needed to maintain persistent modification of synaptic strength, which underlies the molecular basis of long-term memory (LTM). Cytoplasmic polyadenylation element-binding proteins (CPEBs) are sequence-specific RNA-binding proteins and regulate translation in various tissues. All four CPEBs in vertebrates are expressed in the brain, including the hippocampal neurons, suggesting their potential roles in translation-dependent plasticity and memory. Although CPEB1 and CPEB3 have been shown to control specific kinds of hippocampus-related LTM, the role of CPEB2 and CPEB4 in learning and memory remains elusive. Thus, we generated CPEB4 knockout (KO) mice and analyzed them using several behavioral tests. No difference was found in the anxiety level, motor coordination, hippocampus-dependent learning and memory between the KO mice and their wild-type (WT) littermates. Electrophysiological recordings of multiple forms of synaptic plasticity in the Schaffer collateral pathway-CA1 neurons also showed normal responses in the KO hippocampal slices. Morphological analyses revealed that the CPEB4-lacking pyramidal neurons possessed slightly elongated dendritic spines. Unlike its related family members, CPEB1 and CPEB3, CPEB4 seems to be dispensable for hippocampus-dependent plasticity, learning and memory. PMID:24386439

  4. Role of Immediate-Early Genes in Synaptic Plasticity and Neuronal Ensembles Underlying the Memory Trace

    PubMed Central

    Minatohara, Keiichiro; Akiyoshi, Mika; Okuno, Hiroyuki

    2016-01-01

    In the brain, neuronal gene expression is dynamically changed in response to neuronal activity. In particular, the expression of immediate-early genes (IEGs) such as egr-1, c-fos, and Arc is rapidly and selectively upregulated in subsets of neurons in specific brain regions associated with learning and memory formation. IEG expression has therefore been widely used as a molecular marker for neuronal populations that undergo plastic changes underlying formation of long-term memory. In recent years, optogenetic and pharmacogenetic studies of neurons expressing c-fos or Arc have revealed that, during learning, IEG-positive neurons encode and store information that is required for memory recall, suggesting that they may be involved in formation of the memory trace. However, despite accumulating evidence for the role of IEGs in synaptic plasticity, the molecular and cellular mechanisms associated with this process remain unclear. In this review, we first summarize recent literature concerning the role of IEG-expressing neuronal ensembles in organizing the memory trace. We then focus on the physiological significance of IEGs, especially Arc, in synaptic plasticity, and describe our hypotheses about the importance of Arc expression in various types of input-specific circuit reorganization. Finally, we offer perspectives on Arc function that would unveil the role of IEG-expressing neurons in the formation of memory traces in the hippocampus and other brain areas. PMID:26778955

  5. The Role of Agrin in Synaptic Development, Plasticity and Signaling in the Central Nervous System

    PubMed Central

    Daniels, Mathew P.

    2012-01-01

    Development of the neuromuscular junction (NMJ) requires secretion of specific isoforms of the proteoglycan agrin by motor neurons. Secreted agrin is widely expressed in the basal lamina of various tissues, whereas a transmembrane form is highly expressed in the brain. Expression in the brain is greatest during the period of synaptogenesis, but remains high in regions of the adult brain that show extensive synaptic plasticity. The well-established role of agrin in NMJ development and its presence in the brain elicited investigations of its possible role in synaptogenesis in the brain. Initial studies on the embryonic brain and neuronal cultures of agrin-null mice did not reveal any defects in synaptogenesis. However, subsequent studies in culture demonstrated inhibition of synaptogenesis by agrin antisense oligonucleotides or agrin siRNA. More recently, a substantial loss of excitatory synapses was found in the brains of transgenic adult mice that lacked agrin expression everywhere but in motor neurons. The mechanisms by which agrin influences synapse formation, maintenance and plasticity may include enhancement of excitatory synaptic signaling, activation of the “muscle-specific” receptor tyrosine kinase (MuSK) and positive regulation of dendritic filopodia. In this article I will review the evidence that agrin regulates synapse development, plasticity and signaling in the brain and discuss the evidence for the proposed mechanisms. PMID:22414531

  6. Magnetic nanotherapeutics for dysregulated synaptic plasticity during neuroAIDS and drug abuse.

    PubMed

    Sagar, Vidya; Atluri, Venkata Subba Rao; Pilakka-Kanthikeel, Sudheesh; Nair, Madhavan

    2016-01-01

    The human immunodeficiency virus (HIV) is a neurotropic virus. It induces neurotoxicity and subsequent brain pathologies in different brain cells. Addiction to recreational drugs remarkably affects the initiation of HIV infections and expedites the progression of acquired immunodeficiency syndrome (AIDS) associated neuropathogenesis. Symptoms of HIV-associated neurocognitive disorders (HAND) are noticed in many AIDS patients. At least 50 % of HIV diagnosed cases show one or other kind of neuropathological signs or symptoms during different stages of disease progression. In the same line, mild to severe neurological alterations are seen in at least 80 % autopsies of AIDS patients. Neurological illnesses weaken the connections between neurons causing significant altercations in synaptic plasticity. Synaptic plasticity alterations during HIV infection and recreational drug abuse are mediated by complex cellular phenomena involving changes in gene expression and subsequent loss of dendritic and spine morphology and physiology. New treatment strategies with ability to deliver drugs across blood-brain barrier (BBB) are being intensively investigated. In this context, magnetic nanoparticles (MNPs) based nanoformulations have shown significant potential for target specificity, drug delivery, drug release, and bioavailability of desired amount of drugs in non-invasive brain targeting. MNPs-based potential therapies to promote neuronal plasticity during HIV infection and recreational drug abuse are being developed. PMID:27216740

  7. Depletion of the AMPAR reserve pool impairs synaptic plasticity in a model of hepatic encephalopathy.

    PubMed

    Schroeter, Annett; Wen, Shuping; Mölders, Andrea; Erlenhardt, Nadine; Stein, Valentin; Klöcker, Nikolaj

    2015-09-01

    Hepatic encephalopathy (HE) is the most common neuropsychiatric complication of acute or chronic liver failure. Clinical symptoms include cognitive and intellectual dysfunction as well as impaired motor activity and coordination. There is general consensus that increased levels of ammonia play a central role in the pathogenesis of HE. However, it is still elusive how cognitive performance including the ability to learn and memorize information is affected by ammonia at molecular levels. In the present study, we have employed a neuroglial co-culture model, which preserves neuroglial interplay but allows for cell-type specific molecular and functional analyses, to investigate glutamatergic neurotransmission under conditions of high ammonia. Chronic exposure to ammonia significantly reduced neuronal mRNA and protein expression of AMPA-subtype glutamate receptors (AMPARs), which mediate most fast excitatory neurotransmission in the brain. Surprisingly, neurons were able to fully maintain basal glutamatergic neurotransmission as recorded by AMPAR-mediated miniature excitatory postsynaptic currents (mEPSCs) even when >50% of total AMPARs were lost. However, long-lasting, activity-dependent changes in the efficacy of synaptic communication, which model the capability of the brain to learn and store information, were severely constrained. Whereas synaptic efficacy could still be depressed, an increase in synaptic strength was abolished. We conclude that neurons retain basal glutamatergic transmission at the expense of the extrasynaptic population of AMPARs, which is revealed when the extrasynaptic reserve pool is recruited in vain for synaptic potentiation. Our findings thus offer a molecular model, which might not only explain impaired synaptic plasticity in HE but also in other neurological diseases accompanied by a decrease in extrasynaptic AMPAR expression. PMID:26363416

  8. Nonconserved Ca2+/Calmodulin Binding Sites in Munc13s Differentially Control Synaptic Short-Term Plasticity

    PubMed Central

    Lipstein, Noa; Schaks, Sabine; Dimova, Kalina; Kalkhof, Stefan; Ihling, Christian; Kölbel, Knut; Ashery, Uri; Rhee, JeongSeop; Brose, Nils

    2012-01-01

    Munc13s are presynaptic proteins that mediate synaptic vesicle priming and thereby control the size of the readily releasable pool of vesicles. During high synaptic activity, Munc13-1 and its closely related homolog, ubMunc13-2, bind Ca2+/calmodulin, resulting in enhanced priming activity and in changes of short-term synaptic plasticity characteristics. Here, we studied whether bMunc13-2 and Munc13-3, two remote isoforms of Munc13-1 with a neuronal subtype-specific expression pattern, mediate synaptic vesicle priming and regulate short-term synaptic plasticity in a Ca2+/calmodulin-dependent manner. We identified a single functional Ca2+/calmodulin binding site in these isoforms and provide structural evidence that all Munc13s employ a common mode of interaction with calmodulin despite the lack of sequence homology between their Ca2+/calmodulin binding sites. Electrophysiological analysis showed that, during high-frequency activity, Ca2+/calmodulin binding positively regulates the priming activity of bMunc13-2 and Munc13-3, resulting in an increase in the size of the readily releasable pool of vesicles and subsequently in strong short-term synaptic enhancement of neurotransmission. We conclude that Ca2+/calmodulin-dependent regulation of priming activity is structurally and functionally conserved in all Munc13 proteins, and that the composition of Munc13 isoforms in a neuron differentially controls its short-term synaptic plasticity characteristics. PMID:22966208

  9. Nitric oxide signaling is recruited as a compensatory mechanism for sustaining synaptic plasticity in Alzheimer's disease mice.

    PubMed

    Chakroborty, Shreaya; Kim, Joyce; Schneider, Corinne; West, Anthony R; Stutzmann, Grace E

    2015-04-29

    Synaptic plasticity deficits are increasingly recognized as causing the memory impairments which define Alzheimer's disease (AD). In AD mouse models, evidence of abnormal synaptic function is present before the onset of cognitive deficits, and presents as increased synaptic depression revealed only when synaptic homeostasis is challenged, such as with suppression of ryanodine receptor (RyR)-evoked calcium signaling. Otherwise, at early disease stages, the synaptic physiology phenotype appears normal. This suggests compensatory mechanisms are recruited to maintain a functionally normal net output of the hippocampal circuit. A candidate calcium-regulated synaptic modulator is nitric oxide (NO), which acts presynaptically to boost vesicle release and glutamatergic transmission. Here we tested whether there is a feedforward cycle between the increased RyR calcium release seen in presymptomatic AD mice and aberrant NO signaling which augments synaptic plasticity. Using a combination of electrophysiological approaches, two-photon calcium imaging, and protein biochemistry in hippocampal tissue from presymptomatic 3xTg-AD and NonTg mice, we show that blocking NO synthesis results in markedly augmented synaptic depression mediated through presynaptic mechanisms in 3xTg-AD mice. Additionally, blocking NO reduces the augmented synaptically evoked dendritic calcium release mediated by enhanced RyR calcium release. This is accompanied by increased nNOS levels in the AD mice and is reversed upon normalization of RyR-evoked calcium release with chronic dantrolene treatment. Thus, recruitment of NO is serving a compensatory role to boost synaptic transmission and plasticity during early AD stages. However, NO's dual role in neuroprotection and neurodegeneration may convert to maladaptive functions as the disease progresses. PMID:25926464

  10. Involvement of ryanodine receptors in neurotrophin-induced hippocampal synaptic plasticity and spatial memory formation.

    PubMed

    Adasme, Tatiana; Haeger, Paola; Paula-Lima, Andrea C; Espinoza, Italo; Casas-Alarcón, M Mercedes; Carrasco, M Angélica; Hidalgo, Cecilia

    2011-02-15

    Ryanodine receptors (RyR) amplify activity-dependent calcium influx via calcium-induced calcium release. Calcium signals trigger postsynaptic pathways in hippocampal neurons that underlie synaptic plasticity, learning, and memory. Recent evidence supports a role of the RyR2 and RyR3 isoforms in these processes. Along with calcium signals, brain-derived neurotrophic factor (BDNF) is a key signaling molecule for hippocampal synaptic plasticity and spatial memory. Upon binding to specific TrkB receptors, BDNF initiates complex signaling pathways that modify synaptic structure and function. Here, we show that BDNF-induced remodeling of hippocampal dendritic spines required functional RyR. Additionally, incubation with BDNF enhanced the expression of RyR2, RyR3, and PKMζ, an atypical protein kinase C isoform with key roles in hippocampal memory consolidation. Consistent with their increased RyR protein content, BDNF-treated neurons generated larger RyR-mediated calcium signals than controls. Selective inhibition of RyR-mediated calcium release with inhibitory ryanodine concentrations prevented the PKMζ, RyR2, and RyR3 protein content enhancement induced by BDNF. Intrahippocampal injection of BDNF or training rats in a spatial memory task enhanced PKMζ, RyR2, RyR3, and BDNF hippocampal protein content, while injection of ryanodine at concentrations that stimulate RyR-mediated calcium release improved spatial memory learning and enhanced memory consolidation. We propose that RyR-generated calcium signals are key features of the complex neuronal plasticity processes induced by BDNF, which include increased expression of RyR2, RyR3, and PKMζ and the spine remodeling required for spatial memory formation. PMID:21282625

  11. Nucleolar Integrity Is Required for the Maintenance of Long-Term Synaptic Plasticity

    PubMed Central

    Allen, Kim D.; Gourov, Andrei V.; Harte, Christopher; Gao, Peng; Lee, Clarice; Sylvain, Darlene; Splett, Joshua M.; Oxberry, William C.; van de Nes, Paula S.; Troy-Regier, Matthew J.; Wolk, Jason; Alarcon, Juan M.; Hernández, A. Iván

    2014-01-01

    Long-term memory (LTM) formation requires new protein synthesis and new gene expression. Based on our work in Aplysia, we hypothesized that the rRNA genes, stimulation-dependent targets of the enzyme Poly(ADP-ribose) polymerase-1 (PARP-1), are primary effectors of the activity-dependent changes in synaptic function that maintain synaptic plasticity and memory. Using electrophysiology, immunohistochemistry, pharmacology and molecular biology techniques, we show here, for the first time, that the maintenance of forskolin-induced late-phase long-term potentiation (L-LTP) in mouse hippocampal slices requires nucleolar integrity and the expression of new rRNAs. The activity-dependent upregulation of rRNA, as well as L-LTP expression, are poly(ADP-ribosyl)ation (PAR) dependent and accompanied by an increase in nuclear PARP-1 and Poly(ADP) ribose molecules (pADPr) after forskolin stimulation. The upregulation of PARP-1 and pADPr is regulated by Protein kinase A (PKA) and extracellular signal-regulated kinase (ERK)—two kinases strongly associated with long-term plasticity and learning and memory. Selective inhibition of RNA Polymerase I (Pol I), responsible for the synthesis of precursor rRNA, results in the segmentation of nucleoli, the exclusion of PARP-1 from functional nucleolar compartments and disrupted L-LTP maintenance. Taken as a whole, these results suggest that new rRNAs (28S, 18S, and 5.8S ribosomal components)—hence, new ribosomes and nucleoli integrity—are required for the maintenance of long-term synaptic plasticity. This provides a mechanistic link between stimulation-dependent gene expression and the new protein synthesis known to be required for memory consolidation. PMID:25089620

  12. Unsupervised discrimination of patterns in spiking neural networks with excitatory and inhibitory synaptic plasticity

    PubMed Central

    Srinivasa, Narayan; Cho, Youngkwan

    2014-01-01

    A spiking neural network model is described for learning to discriminate among spatial patterns in an unsupervised manner. The network anatomy consists of source neurons that are activated by external inputs, a reservoir that resembles a generic cortical layer with an excitatory-inhibitory (EI) network and a sink layer of neurons for readout. Synaptic plasticity in the form of STDP is imposed on all the excitatory and inhibitory synapses at all times. While long-term excitatory STDP enables sparse and efficient learning of the salient features in inputs, inhibitory STDP enables this learning to be stable by establishing a balance between excitatory and inhibitory currents at each neuron in the network. The synaptic weights between source and reservoir neurons form a basis set for the input patterns. The neural trajectories generated in the reservoir due to input stimulation and lateral connections between reservoir neurons can be readout by the sink layer neurons. This activity is used for adaptation of synapses between reservoir and sink layer neurons. A new measure called the discriminability index (DI) is introduced to compute if the network can discriminate between old patterns already presented in an initial training session. The DI is also used to compute if the network adapts to new patterns without losing its ability to discriminate among old patterns. The final outcome is that the network is able to correctly discriminate between all patterns—both old and new. This result holds as long as inhibitory synapses employ STDP to continuously enable current balance in the network. The results suggest a possible direction for future investigation into how spiking neural networks could address the stability-plasticity question despite having continuous synaptic plasticity. PMID:25566045

  13. Orexin A induces bidirectional modulation of synaptic plasticity: Inhibiting long-term potentiation and preventing depotentiation.

    PubMed

    Lu, Guan-Ling; Lee, Chia-Hsu; Chiou, Lih-Chu

    2016-08-01

    The orexin system consists of two peptides, orexin A and B and two receptors, OX1R and OX2R. It is implicated in learning and memory regulation while controversy remains on its role in modulating hippocampal synaptic plasticity in vivo and in vitro. Here, we investigated effects of orexin A on two forms of synaptic plasticity, long-term potentiation (LTP) and depotentiation of field excitatory postsynaptic potentials (fEPSPs), at the Schaffer Collateral-CA1 synapse of mouse hippocampal slices. Orexin A (≧30 nM) attenuated LTP induced by theta burst stimulation (TBS) in a manner antagonized by an OX1R (SB-334867), but not OX2R (EMPA), antagonist. Conversely, at 1 pM, co-application of orexin A prevented the induction of depotentiation induced by low frequency stimulation (LFS), i.e. restoring LTP. This re-potentiation effect of sub-nanomolar orexin A occurred at LFS of 1 Hz, but not 2 Hz, and with LTP induced by either TBS or tetanic stimulation. It was significantly antagonized by SB-334867, EMPA and TCS-1102, selective OX1R, OX2R and dual OXR antagonists, respectively, and prevented by D609, SQ22536 and H89, inhibitors of phospholipase C (PLC), adenylyl cyclase (AC) and protein kinase A (PKA), respectively. LFS-induced depotentiation was antagonized by blockers of NMDA, A1-adenosine and type 1/5 metabotropic glutamate (mGlu1/5) receptors, respectively. However, orexin A (1 pM) did not affect chemical-induced depotentiation by agonists of these receptors. These results suggest that orexin A bidirectionally modulates hippocampal CA1 synaptic plasticity, inhibiting LTP via OX1Rs at moderate concentrations while inducing re-potentiation via OX1Rs and OX2Rs, possibly through PLC and AC-PKA signaling at sub-nanomolar concentrations. PMID:26965217

  14. Proteasome Modulates Positive and Negative Translational Regulators in Long-Term Synaptic Plasticity

    PubMed Central

    Dong, Chenghai; Bach, Svitlana V.; Haynes, Kathryn A.

    2014-01-01

    Proteolysis by the ubiquitin-proteasome pathway appears to have a complex role in synaptic plasticity, but its various functions remain to be elucidated. Using late phase long-term potentiation (L-LTP) in the hippocampus of the mouse as a model for long-term synaptic plasticity, we previously showed that inhibition of the proteasome enhances induction but blocks maintenance of L-LTP. In this study, we investigated the possible mechanisms by which proteasome inhibition has opposite effects on L-LTP induction and maintenance. Our results show that inhibiting phosphatidyl inositol-3 kinase or blocking the interaction between eukaryotic initiation factors 4E (eIF4E) and 4G (eIF4G) reduces the enhancement of L-LTP induction brought about by proteasome inhibition suggesting interplay between proteolysis and the signaling pathway mediated by mammalian target of rapamycin (mTOR). Also, proteasome inhibition leads to accumulation of translational activators in the mTOR pathway such as eIF4E and eukaryotic elongation factor 1A (eEF1A) early during L-LTP causing increased induction. Furthermore, inhibition of the proteasome causes a buildup of translational repressors, such as polyadenylate-binding protein interacting protein 2 (Paip2) and eukaryotic initiation factor 4E-binding protein 2 (4E-BP2), during late stages of L-LTP contributing to the blockade of L-LTP maintenance. Thus, the proteasome plays a critical role in regulating protein synthesis during L-LTP by tightly controlling translation. Our results provide novel mechanistic insights into the interplay between protein degradation and protein synthesis in long-term synaptic plasticity. PMID:24573276

  15. MAGI-1 modulates AMPA receptor synaptic localization and behavioral plasticity in response to prior experience.

    PubMed

    Emtage, Lesley; Chang, Howard; Tiver, Rebecca; Rongo, Christopher

    2009-01-01

    It is well established that the efficacy of synaptic connections can be rapidly modified by neural activity, yet how the environment and prior experience modulate such synaptic and behavioral plasticity is only beginning to be understood. Here we show in C. elegans that the broadly conserved scaffolding molecule MAGI-1 is required for the plasticity observed in a glutamatergic circuit. This mechanosensory circuit mediates reversals in locomotion in response to touch stimulation, and the AMPA-type receptor (AMPAR) subunits GLR-1 and GLR-2, which are required for reversal behavior, are localized to ventral cord synapses in this circuit. We find that animals modulate GLR-1 and GLR-2 localization in response to prior mechanosensory stimulation; a specific isoform of MAGI-1 (MAGI-1L) is critical for this modulation. We show that MAGI-1L interacts with AMPARs through the intracellular domain of the GLR-2 subunit, which is required for the modulation of AMPAR synaptic localization by mechanical stimulation. In addition, mutations that prevent the ubiquitination of GLR-1 prevent the decrease in AMPAR localization observed in previously stimulated magi-1 mutants. Finally, we find that previously-stimulated animals later habituate to subsequent mechanostimulation more rapidly compared to animals initially reared without mechanical stimulation; MAGI-1L, GLR-1, and GLR-2 are required for this change in habituation kinetics. Our findings demonstrate that prior experience can cause long-term alterations in both behavioral plasticity and AMPAR localization at synapses in an intact animal, and indicate a new, direct role for MAGI/S-SCAM proteins in modulating AMPAR localization and function in the wake of variable sensory experience. PMID:19242552

  16. Involvement of ryanodine receptors in neurotrophin-induced hippocampal synaptic plasticity and spatial memory formation

    PubMed Central

    Adasme, Tatiana; Haeger, Paola; Paula-Lima, Andrea C.; Espinoza, Italo; Casas-Alarcón, M. Mercedes; Carrasco, M. Angélica; Hidalgo, Cecilia

    2011-01-01

    Ryanodine receptors (RyR) amplify activity-dependent calcium influx via calcium-induced calcium release. Calcium signals trigger postsynaptic pathways in hippocampal neurons that underlie synaptic plasticity, learning, and memory. Recent evidence supports a role of the RyR2 and RyR3 isoforms in these processes. Along with calcium signals, brain-derived neurotrophic factor (BDNF) is a key signaling molecule for hippocampal synaptic plasticity and spatial memory. Upon binding to specific TrkB receptors, BDNF initiates complex signaling pathways that modify synaptic structure and function. Here, we show that BDNF-induced remodeling of hippocampal dendritic spines required functional RyR. Additionally, incubation with BDNF enhanced the expression of RyR2, RyR3, and PKMζ, an atypical protein kinase C isoform with key roles in hippocampal memory consolidation. Consistent with their increased RyR protein content, BDNF-treated neurons generated larger RyR-mediated calcium signals than controls. Selective inhibition of RyR-mediated calcium release with inhibitory ryanodine concentrations prevented the PKMζ, RyR2, and RyR3 protein content enhancement induced by BDNF. Intrahippocampal injection of BDNF or training rats in a spatial memory task enhanced PKMζ, RyR2, RyR3, and BDNF hippocampal protein content, while injection of ryanodine at concentrations that stimulate RyR-mediated calcium release improved spatial memory learning and enhanced memory consolidation. We propose that RyR-generated calcium signals are key features of the complex neuronal plasticity processes induced by BDNF, which include increased expression of RyR2, RyR3, and PKMζ and the spine remodeling required for spatial memory formation. PMID:21282625

  17. Fingolimod (FTY720) improves hippocampal synaptic plasticity and memory deficit in rats following focal cerebral ischemia.

    PubMed

    Nazari, Maryam; Keshavarz, Somaye; Rafati, Ali; Namavar, Mohammad Reza; Haghani, Masoud

    2016-06-01

    Fingolimod (FTY720) is a known sphingosine-1-phosphate (S1P) receptor agonist. Several studies have shown the therapeutic efficacy of FTY720 in neurodegenerative disorders. However, the neuroprotective mechanisms in brain ischemia have not been adequately studied. Therefore, the present study aimed to investigate the effects of FTY720 on the impairment of learning and memory and hippocampal synaptic plasticity induced by middle cerebral artery occlusion (MCAO) in ischemic brain injury. Twenty eight male rats were randomly divided into four groups of control (n=7), sham (n=8), ischemic-reperfusion+vehicle (I/R+V; n=7), and I/R+FTY720 (n=6). After 1h of the occlusion of artery, the filament was gently withdrawn to allow reperfusion for the next 7 days. The animals first received a dose of FTY720 (0.5mg/Kg) or its vehicle (intra-peritoneal) twenty-four hours before surgery in I/R+FTY720 and I/R+V groups, respectively. The administration of FTY720 or its vehicle continued every other day. The passive avoidance test and field potential recording were used for evaluation of learning, memory and synaptic plasticity. The brain infarct volume was measured by triphenyltetrazolim hydrochloride (TTC) staining. MCAO caused infarct damage in the rat's brain tissue. The administration of FTY720 significantly reduced the size of the lesion, improved the memory impairment of MCAO rats, and increased the STL time. In addition, the field potential recording demonstrated a marked reduction in induction of long-term potentiation of MCAO animals. However, administration of FTY720 recovers the magnitude of the LTP without any effects on presynaptic plasticity and neurotransmitter release probability. The results of this study demonstrated that MCAO in rats impairs the retention of passive avoidance tasks and multiple injection of FTY720 improved the memory performance after MCAO by LTP induction via post-synaptic mechanisms. PMID:27066884

  18. Parasagittal zones in the cerebellar cortex differ in excitability, information processing, and synaptic plasticity.

    PubMed

    Ebner, Timothy J; Wang, Xinming; Gao, Wangcai; Cramer, Samuel W; Chen, Gang

    2012-06-01

    At the molecular and circuitry levels, the cerebellum exhibits a striking parasagittal zonation as exemplified by the spatial distribution of molecules expressed on Purkinje cells and the topography of the afferent and efferent projections. The physiology and function of the zonation is less clear. Activity-dependent optical imaging has proven a useful tool to examine the physiological properties of the parasagittal zonation in the intact animal. Recent findings show that zebrin II-positive and zebrin II-negative zones differ markedly in their responses to parallel fiber inputs. These findings suggest that cerebellar cortical excitability, information processing, and synaptic plasticity depend on the intrinsic properties of different parasagittal zones. PMID:22249913

  19. The role of AMPA receptors in postsynaptic mechanisms of synaptic plasticity

    PubMed Central

    Chater, Thomas E.; Goda, Yukiko

    2014-01-01

    In the mammalian central nervous system, excitatory glutamatergic synapses harness neurotransmission that is mediated by ion flow through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). AMPARs, which are enriched in the postsynaptic membrane on dendritic spines, are highly dynamic, and shuttle in and out of synapses in an activity-dependent manner. Changes in their number, subunit composition, phosphorylation state, and accessory proteins can all regulate AMPARs and thus modify synaptic strength and support cellular forms of learning. Furthermore, dysregulation of AMPAR plasticity has been implicated in various pathological states and has important consequences for mental health. Here we focus on the mechanisms that control AMPAR plasticity, drawing particularly from the extensive studies on hippocampal synapses, and highlight recent advances in the field along with considerations for future directions. PMID:25505875

  20. Synaptic Plasticity, a Prominent Contributor to the Anxiety in Fragile X Syndrome

    PubMed Central

    Yang, Tao; Zhao, Huan; Lu, Changbo; Li, Xiaoyu; Xie, Yingli; Fu, Hao; Xu, Hui

    2016-01-01

    Fragile X syndrome (FXS) is an inheritable neuropsychological disease caused by expansion of the CGG trinucleotide repeat affecting the fmr1 gene on X chromosome, resulting in silence of the fmr1 gene and failed expression of FMRP. Patients with FXS suffer from cognitive impairment, sensory integration deficits, learning disability, anxiety, autistic traits, and so forth. Specifically, the morbidity of anxiety in FXS individuals remains high from childhood to adulthood. By and large, it is common that the change of brain plasticity plays a key role in the progression of disease. But for now, most studies excessively emphasized the one-sided factor on the change of synaptic plasticity participating in the generation of anxiety during the development of FXS. Here we proposed an integrated concept to acquire better recognition about the details of this process. PMID:27239350

  1. Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration.

    PubMed

    Saura, Carlos A; Choi, Se-Young; Beglopoulos, Vassilios; Malkani, Seema; Zhang, Dawei; Shankaranarayana Rao, B S; Chattarji, Sumantra; Kelleher, Raymond J; Kandel, Eric R; Duff, Karen; Kirkwood, Alfredo; Shen, Jie

    2004-04-01

    Mutations in presenilins are the major cause of familial Alzheimer's disease, but the pathogenic mechanism by which presenilin mutations cause memory loss and neurodegeneration remains unclear. Here we demonstrate that conditional double knockout mice lacking both presenilins in the postnatal forebrain exhibit impairments in hippocampal memory and synaptic plasticity. These deficits are associated with specific reductions in NMDA receptor-mediated responses and synaptic levels of NMDA receptors and alphaCaMKII. Furthermore, loss of presenilins causes reduced expression of CBP and CREB/CBP target genes, such as c-fos and BDNF. With increasing age, mutant mice develop striking neurodegeneration of the cerebral cortex and worsening impairments of memory and synaptic function. Neurodegeneration is accompanied by increased levels of the Cdk5 activator p25 and hyperphosphorylated tau. These results define essential roles and molecular targets of presenilins in synaptic plasticity, learning and memory, and neuronal survival in the adult cerebral cortex. PMID:15066262

  2. Cocaine- and morphine-induced synaptic plasticity in the nucleus accumbens.

    PubMed

    Alcantara, Adriana A; Lim, Helen Y; Floyd, Christopher E; Garces, Juanita; Mendenhall, John M; Lyons, Chelsea L; Berlanga, Monica L

    2011-04-01

    The critical brain areas and molecular mechanisms involved in drug abuse and dependence have been extensively studied. Drug-induced persistent behaviors such as sensitization, tolerance, or relapse, however, far outlast any previously reported mechanisms. A challenge in the field of addiction, therefore, has been to identify drug-induced changes in brain circuitry that may subserve long-lasting changes in behavior. This study examined behavioral changes and electron microscopic evidence of altered synaptic connectivity within the nucleus accumbens (NAc) following repeated administration of cocaine or morphine. The unbiased quantitative stereological physical disector method was used to estimate the number of synapses per neuron. Increases in the synapse-to-neuron ratio were found in the NAc shell of cocaine-treated (49.1%) and morphine-treated (55.1%) rats and in the NAc core of cocaine-treated animals (49.1%). This study provides direct ultrastructural evidence of drug-induced synaptic plasticity and identifies synaptic remodeling as a potential neural substrate underlying drug-induced behavioral sensitization. PMID:20730804

  3. In Sickness and in Health: Perineuronal Nets and Synaptic Plasticity in Psychiatric Disorders

    PubMed Central

    Pantazopoulos, Harry; Berretta, Sabina

    2016-01-01

    Rapidly emerging evidence implicates perineuronal nets (PNNs) and extracellular matrix (ECM) molecules that compose or interact with PNNs, in the pathophysiology of several psychiatric disorders. Studies on schizophrenia, autism spectrum disorders, mood disorders, Alzheimer's disease, and epilepsy point to the involvement of ECM molecules such as chondroitin sulfate proteoglycans, Reelin, and matrix metalloproteases, as well as their cell surface receptors. In many of these disorders, PNN abnormalities have also been reported. In the context of the “quadripartite” synapse concept, that is, the functional unit composed of the pre- and postsynaptic terminals, glial processes, and ECM, and of the role that PNNs and ECM molecules play in regulating synaptic functions and plasticity, these findings resonate with one of the most well-replicated aspects of the pathology of psychiatric disorders, that is, synaptic abnormalities. Here we review the evidence for PNN/ECM-related pathology in these disorders, with particular emphasis on schizophrenia, and discuss the hypothesis that such pathology may significantly contribute to synaptic dysfunction. PMID:26839720

  4. The RNA-centred view of the synapse: non-coding RNAs and synaptic plasticity

    PubMed Central

    Smalheiser, Neil R.

    2014-01-01

    If mRNAs were the only RNAs made by a neuron, there would be a simple mapping of mRNAs to proteins. However, microRNAs and other non-coding RNAs (ncRNAs; endo-siRNAs, piRNAs, BC1, BC200, antisense and long ncRNAs, repeat-related transcripts, etc.) regulate mRNAs via effects on protein translation as well as transcriptional and epigenetic mechanisms. Not only are genes ON or OFF, but their ability to be translated can be turned ON or OFF at the level of synapses, supporting an enormous increase in information capacity. Here, I review evidence that ncRNAs are expressed pervasively within dendrites in mammalian brain; that some are activity-dependent and highly enriched near synapses; and that synaptic ncRNAs participate in plasticity responses including learning and memory. Ultimately, ncRNAs can be viewed as the post-it notes of the neuron. They have no literal meaning of their own, but derive their functions from where (and to what) they are stuck. This may explain, in part, why ncRNAs differ so dramatically from protein-coding genes, both in terms of the usual indicators of functionality and in terms of evolutionary constraints. ncRNAs do not appear to be direct mediators of synaptic transmission in the manner of neurotransmitters or receptors, yet they orchestrate synaptic plasticity—and may drive species-specific changes in cognition. PMID:25135965

  5. In Sickness and in Health: Perineuronal Nets and Synaptic Plasticity in Psychiatric Disorders.

    PubMed

    Pantazopoulos, Harry; Berretta, Sabina

    2016-01-01

    Rapidly emerging evidence implicates perineuronal nets (PNNs) and extracellular matrix (ECM) molecules that compose or interact with PNNs, in the pathophysiology of several psychiatric disorders. Studies on schizophrenia, autism spectrum disorders, mood disorders, Alzheimer's disease, and epilepsy point to the involvement of ECM molecules such as chondroitin sulfate proteoglycans, Reelin, and matrix metalloproteases, as well as their cell surface receptors. In many of these disorders, PNN abnormalities have also been reported. In the context of the "quadripartite" synapse concept, that is, the functional unit composed of the pre- and postsynaptic terminals, glial processes, and ECM, and of the role that PNNs and ECM molecules play in regulating synaptic functions and plasticity, these findings resonate with one of the most well-replicated aspects of the pathology of psychiatric disorders, that is, synaptic abnormalities. Here we review the evidence for PNN/ECM-related pathology in these disorders, with particular emphasis on schizophrenia, and discuss the hypothesis that such pathology may significantly contribute to synaptic dysfunction. PMID:26839720

  6. Amyloid-β1-42 Disrupts Synaptic Plasticity by Altering Glutamate Recycling at the Synapse.

    PubMed

    Varga, Edina; Juhász, Gábor; Bozsó, Zsolt; Penke, Botond; Fülöp, Lívia; Szegedi, Viktor

    2015-01-01

    Alzheimer's disease (AD) is the most prevalent form of neurodegenerative disorders characterized by neuritic plaques containing amyloid-β peptide (Aβ) and neurofibrillary tangles. Evidence has been reported that Aβ(1-42) plays an essential pathogenic role in decreased spine density, impairment of synaptic plasticity, and neuronal loss with disruption of memory-related synapse function, all associated with AD. Experimentally, Aβ(1-42) oligomers perturb hippocampal long-term potentiation (LTP), an electrophysiological correlate of learning and memory. Aβ was also reported to perturb synaptic glutamate (Glu)-recycling by inhibiting excitatory-amino-acid-transporters. Elevated level of extracellular Glu leads to activation of perisynaptic receptors, including NR2B subunit containing NMDARs. These receptors were shown to induce impaired LTP and enhanced long-term depression and proapoptotic pathways, all central features of AD. In the present study, we investigated the role of Glu-recycling on Aβ(1-42)-induced LTP deficit in the CA1. We found that Aβ-induced LTP damage, which was mimicked by the Glu-reuptake inhibitor TBOA, could be rescued by blocking the NR2B subunit of NMDA receptors. Furthermore, decreasing the level of extracellular Glu using a Glu scavenger also restores TBOA or Aβ induces LTP damage. Overall, these results suggest that reducing ambient Glu in the brain can be protective against Aβ-induced synaptic disruption. PMID:25547631

  7. Vortioxetine disinhibits pyramidal cell function and enhances synaptic plasticity in the rat hippocampus

    PubMed Central

    Zhang, Hong; Leiser, Steven C; Xiao, Yixin; Lu, Dunguo; Yang, Charles R; Plath, Niels; Sanchez, Connie

    2014-01-01

    Vortioxetine, a novel antidepressant with multimodal action, is a serotonin (5-HT)3, 5-HT7 and 5-HT1D receptor antagonist, a 5-HT1B receptor partial agonist, a 5-HT1A receptor agonist and a 5-HT transporter (SERT) inhibitor. Vortioxetine has been shown to improve cognitive performance in several preclinical rat models and in patients with major depressive disorder. Here we investigated the mechanistic basis for these effects by studying the effect of vortioxetine on synaptic transmission, long-term potentiation (LTP), a cellular correlate of learning and memory, and theta oscillations in the rat hippocampus and frontal cortex. Vortioxetine was found to prevent the 5-HT-induced increase in inhibitory post-synaptic potentials recorded from CA1 pyramidal cells, most likely by 5-HT3 receptor antagonism. Vortioxetine also enhanced LTP in the CA1 region of the hippocampus. Finally, vortioxetine increased fronto-cortical theta power during active wake in whole animal electroencephalographic recordings. In comparison, the selective SERT inhibitor escitalopram showed no effect on any of these measures. Taken together, our results indicate that vortioxetine can increase pyramidal cell output, which leads to enhanced synaptic plasticity in the hippocampus. Given the central role of the hippocampus in cognition, these findings may provide a cellular correlate to the observed preclinical and clinical cognition-enhancing effects of vortioxetine. PMID:25122043

  8. Vortioxetine disinhibits pyramidal cell function and enhances synaptic plasticity in the rat hippocampus.

    PubMed

    Dale, Elena; Zhang, Hong; Leiser, Steven C; Xiao, Yixin; Lu, Dunguo; Yang, Charles R; Plath, Niels; Sanchez, Connie

    2014-10-01

    Vortioxetine, a novel antidepressant with multimodal action, is a serotonin (5-HT)3, 5-HT7 and 5-HT1D receptor antagonist, a 5-HT1B receptor partial agonist, a 5-HT1A receptor agonist and a 5-HT transporter (SERT) inhibitor. Vortioxetine has been shown to improve cognitive performance in several preclinical rat models and in patients with major depressive disorder. Here we investigated the mechanistic basis for these effects by studying the effect of vortioxetine on synaptic transmission, long-term potentiation (LTP), a cellular correlate of learning and memory, and theta oscillations in the rat hippocampus and frontal cortex. Vortioxetine was found to prevent the 5-HT-induced increase in inhibitory post-synaptic potentials recorded from CA1 pyramidal cells, most likely by 5-HT3 receptor antagonism. Vortioxetine also enhanced LTP in the CA1 region of the hippocampus. Finally, vortioxetine increased fronto-cortical theta power during active wake in whole animal electroencephalographic recordings. In comparison, the selective SERT inhibitor escitalopram showed no effect on any of these measures. Taken together, our results indicate that vortioxetine can increase pyramidal cell output, which leads to enhanced synaptic plasticity in the hippocampus. Given the central role of the hippocampus in cognition, these findings may provide a cellular correlate to the observed preclinical and clinical cognition-enhancing effects of vortioxetine. PMID:25122043

  9. Ribbon Synaptic Plasticity in Gravity Sensors of Rats Flown on Neurolab

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.; Varelas, Joseph

    2003-01-01

    Previous spaceflight experiments (Space Life Sciences-1 and -2 (SLS-1 and SLS-2)) first demonstrated the extraordinary ability of gravity sensor hair cells to change the number, kind, and distribution of connections (synapses) they make to other cells while in weightlessness. The number of synapses in hair cells in one part of the inner ear (the utricle) was markedly elevated on flight day 13 (FD13) of SLS-2. Unanswered questions, however, were whether these increases in synapses occur rapidly and whether they remain stable in weightlessness. The answers have implications for long-duration human space travel. If gravity sensors can adapt quickly, crews may be able to move easily between different gravity levels, since the sensors will adapt rapidly to weightlessness on the spacecraft and then back to Earth's gravity when the mission ends. This ability to adapt is also important for recovery from balance disorders. To further our understanding of this adaptive potential (a property called neuronal synaptic plasticity), the present Neurolab research was undertaken. Our experiment examined whether: (a) increases in synapses would remain stable throughout the flight, (b) changes in the number of synapses were uniform across different portions of the gravity sensors (the utricle and saccule), and (c) synaptic changes were similar for the different types of hair cells (Type I and Type II). Utricular and saccular maculae (the gravity-sensing portions of the inner ear) were collected in flight from rats on FD2 and FD14. Samples were also collected from control rats on the ground. Tissues were prepared for ultrastructural study. Hair cells and their ribbon synapses were examined in a transmission electron microscope. Synapses were counted in all hair cells in 50 consecutive sections that crossed the striolar zone. Results indicate that utricular hair cell synapses initially increased significantly in number in both types of hair cells by FD2. Counts declined by FD14, but

  10. Local plasticity of dendritic excitability can be autonomous of synaptic plasticity and regulated by activity-based phosphorylation of Kv4.2.

    PubMed

    Labno, Anna; Warrier, Ajithkumar; Wang, Sheng; Zhang, Xiang

    2014-01-01

    While plasticity is typically associated with persistent modifications of synaptic strengths, recent studies indicated that modulations of dendritic excitability may form the other part of the engram and dynamically affect computational processing and output of neuronal circuits. However it remains unknown whether modulation of dendritic excitability is controlled by synaptic changes or whether it can be distinct from them. Here we report the first observation of the induction of a persistent plastic decrease in dendritic excitability decoupled from synaptic stimulation, which is localized and purely activity-based. In rats this local plasticity decrease is conferred by CamKII mediated phosphorylation of A-type potassium channels upon interaction of a back propagating action potential (bAP) with dendritic depolarization. PMID:24404150

  11. Control of synaptic plasticity and memory via suppression of poly(A)-binding protein.

    PubMed

    Khoutorsky, Arkady; Yanagiya, Akiko; Gkogkas, Christos G; Fabian, Marc R; Prager-Khoutorsky, Masha; Cao, Ruifeng; Gamache, Karine; Bouthiette, Frederic; Parsyan, Armen; Sorge, Robert E; Mogil, Jeffrey S; Nader, Karim; Lacaille, Jean-Claude; Sonenberg, Nahum

    2013-04-24

    Control of protein synthesis is critical for synaptic plasticity and memory formation. However, the molecular mechanisms linking neuronal activity to activation of mRNA translation are not fully understood. Here, we report that the translational repressor poly(A)-binding protein (PABP)-interacting protein 2A (PAIP2A), an inhibitor of PABP, is rapidly proteolyzed by calpains in stimulated neurons and following training for contextual memory. Paip2a knockout mice exhibit a lowered threshold for the induction of sustained long-term potentiation and an enhancement of long-term memory after weak training. Translation of CaMKIIα mRNA is enhanced in Paip2a⁻/⁻ slices upon tetanic stimulation and in the hippocampus of Paip2a⁻/⁻ mice following contextual fear learning. We demonstrate that activity-dependent degradation of PAIP2A relieves translational inhibition of memory-related genes through PABP reactivation and conclude that PAIP2A is a pivotal translational regulator of synaptic plasticity and memory. PMID:23622065

  12. Synaptic Plasticity In Mammalian Gravity Sensors: Preliminary Results From SLS-2

    NASA Technical Reports Server (NTRS)

    Ross, M. D.; Hargens, Alan R. (Technical Monitor)

    1996-01-01

    Sensory conflict is the prevalent theoretical explanation for space adaptation syndrome. This ultrastructural study tests the hypothesis that peripheral gravity sensors (maculae) play a role. Results were obtained from the medial part of utricular maculae of adult rats exposed to microgravity for 14 days, and from controls. Means and statistical significance of synapse counts were calculated using SUPERANOVA(Trademark) and Scheffe's procedure for post-hoc comparisons. Preliminary findings are from 2 sets of 100 serial sections for each dataset. Synapses were doubled numerically in type II hair cells of utricular maculae collected on day 13 inflight compared to controls (11.4 +/- 7.1 vs. 5.3 +/- 3.8; p < 0.0001). Flight mean synaptic number declined rapidly postflight and became comparable to means of controls. Synapses also increased numerically in type I cells inflight (2.4 +/- 1.6 vs. 1.7 +/- 1.0; p < 0.0341). Postflight there were no significant differences in counts. Results concerning shifts in ribbon type and distribution are also largely replicating previous findings from flight studies. Results indicate that mammalian maculae are adaptive endorgans that retain the property of synaptic plasticity into the adult stage. Macular plasticity has clinical implications for balance disorders of peripheral origin.

  13. The nitric oxide-cyclic GMP pathway and synaptic plasticity in the rat superior cervical ganglion.

    PubMed Central

    Southam, E.; Charles, S. L.; Garthwaite, J.

    1996-01-01

    1. We have investigated the possibility that nitric oxide (NO) and soluble guanylyl cyclase, an enzyme that synthesizes guanosine 3':5'-cyclic monophosphate (cyclic GMP) in response to NO, contributes to plasticity of synaptic transmission in the rat isolated superior cervical ganglion (SCG). 2. Exposure of ganglia to the NO donor, nitroprusside, caused a concentration-dependent accumulation of cyclic GMP which was augmented in the presence of the phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine. The compound, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a selective inhibitor of soluble guanylyl cyclase, completely blocked this cyclic GMP response. 3. As assessed by extracellular recording, nitroprusside (100 microM) and another NO donor, S-nitrosoglutathione (30 microM) increased the efficacy of ganglionic synaptic transmission in response to electrical stimulation of the preganglionic nerve, an effect that was reversible and which could be replicated by the cyclic GMP analogue, 8-bromo-cyclic GMP. Ganglionic depolarizations resulting from stimulation of nicotinic receptors with carbachol were not increased by nitroprusside. The potentiating actions of the NO donors on synaptic transmission, but not that of 8-bromo-cyclic GMP, were inhibited by ODQ. 4. Brief tetanic stimulation of the preganglionic nerve resulted in a long-term potentiation (LTP) of synaptic transmission that was unaffected by ODQ, either in the absence or presence of the NO synthase inhibitor, NG-nitro-L-arginine (L-NOARG, 100 microM). A lack of influence of L-NOARG was confirmed in intracellular recordings of LTP of the excitatory postsynaptic potential. Furthermore, under conditions where tetanically-induced LTP was saturated, nitroprusside was still able to potentiate synaptic transmission, as judged from extracellular recording. 5. We conclude that NO is capable of potentiating ganglionic neurotransmission and this effect is mediated through the stimulation of soluble guanylyl

  14. Repetitive transcranial magnetic stimulation (rTMS) influences spatial cognition and modulates hippocampal structural synaptic plasticity in aging mice.

    PubMed

    Ma, Jun; Zhang, Zhanchi; Kang, Lin; Geng, Dandan; Wang, Yanyong; Wang, Mingwei; Cui, Huixian

    2014-10-01

    Normal aging is characteristic with the gradual decline in cognitive function associated with the progressive reduction of structural and functional plasticity in the hippocampus. Repetitive transcranial magnetic stimulation (rTMS) has developed into a novel neurological and psychiatric tool that can be used to investigate the neurobiology of cognitive function. Recent studies have demonstrated that low-frequency rTMS (≤1Hz) affects synaptic plasticity in rats with vascular dementia (VaD), and it ameliorates the spatial cognitive ability in mice with Aβ1-42-mediated memory deficits, but there are little concerns about the effects of rTMS on normal aging related cognition and synaptic plasticity changes. Thus, the current study investigated the effects of rTMS on spatial memory behavior, neuron and synapse morphology in the hippocampus, and synaptic protein markers and brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) in normal aging mice, to illustrate the mechanisms of rTMS in regulating cognitive capacity. Relative to adult animals, aging caused hippocampal-dependent cognitive impairment, simultaneously inhibited the activation of the BDNF-TrkB signaling pathway, reduced the transcription and expression of synaptic protein markers: synaptophysin (SYN), growth associated protein 43 (GAP43) and post-synaptic density protein 95 (PSD95), as well as decreased synapse density and PSD (post-synaptic density) thickness. Interestingly, rTMS with low intensity (110% average resting motor threshold intensity, 1Hz, LIMS) triggered the activation of BDNF and TrkB, upregulated the level of synaptic protein markers, and increased synapse density and thickened PSD, and further reversed the spatial cognition dysfunction in aging mice. Conversely, high-intensity magnetic stimulation (150% average resting motor threshold intensity, 1Hz, HIMS) appeared to be detrimental, inducing thinning of PSDs, disordered synaptic structure, and a large number of

  15. Estradiol rapidly modulates synaptic plasticity of hippocampal neurons: Involvement of kinase networks.

    PubMed

    Hasegawa, Yoshitaka; Hojo, Yasushi; Kojima, Hiroki; Ikeda, Muneki; Hotta, Keisuke; Sato, Rei; Ooishi, Yuuki; Yoshiya, Miyuki; Chung, Bon-Chu; Yamazaki, Takeshi; Kawato, Suguru

    2015-09-24

    Estradiol (E2) is locally synthesized within the hippocampus in addition to the gonads. Rapid modulation of hippocampal synaptic plasticity by E2 is essential for synaptic regulation. Molecular mechanisms of modulation through synaptic estrogen receptor (ER) and its downstream signaling, however, have been still unknown. We investigated induction of LTP by the presence of E2 upon weak theta burst stimulation (weak-TBS) in CA1 region of adult male hippocampus. Since only weak-TBS did not induce full-LTP, weak-TBS was sub-threshold stimulation. We observed LTP induction by the presence of E2, after incubation of hippocampal slices with 10nM E2 for 30 min, upon weak-TBS. This E2-induced LTP was blocked by ICI, an ER antagonist. This E2-LTP induction was inhibited by blocking Erk MAPK, PKA, PKC, PI3K, NR2B and CaMKII, individually, suggesting that Erk MAPK, PKA, PKC, PI3K and CaMKII may be involved in downstream signaling for activation of NMDA receptors. Interestingly, dihydrotestosterone suppressed the E2-LTP. We also investigated rapid changes of dendritic spines (=postsynapses) in response to E2, using hippocampal slices from adult male rats. We found 1nM E2 increased the density of spines by approximately 1.3-fold within 2h by imaging Lucifer Yellow-injected CA1 pyramidal neurons. The E2-induced spine increase was blocked by ICI. The increase in spines was suppressed by blocking PI3K, Erk MAPK, p38 MAPK, PKA, PKC, LIMK, CaMKII or calcineurin, individually. On the other hand, blocking JNK did not inhibit the E2-induced spine increase. Taken together, these results suggest that E2 rapidly induced LTP and also increased the spine density through kinase networks that are driven by synaptic ER. This article is part of a Special Issue entitled SI: Brain and Memory. PMID:25595055

  16. Impaired hippocampal synaptic plasticity and NR2A/2B expression ratio in remifentanil withdrawal rats.

    PubMed

    Wang, Yi-Yi; Liu, Shichang; Zhang, Nan; Yang, Jing; Zhang, Yinguo

    2016-03-01

    Remifentanil is a kind of synthetic opioid which has gained wide clinical acceptance by anesthesiologists. In this study, we attempted to test whether withdrawal effects on learning mechanisms can be triggered by repeated low-dose remifentanil treatment. Male Sprague-Dawley (SD) rats were subjected to remifentanil (50μg/kgs.c.) twice per day at 12h intervals for 15 days. When the animals of remifentanil group were withdrawn from remifentanil at 10h after the last injection, changes in open field test, Morris water maze test (MWM) and synaptic efficacy were examined in each group. We demonstrated that repeated exposure to 50μg/kg remifentanil produced enhanced locomotor activity indicating that a remifentanil addiction animal model in rats was established. MWM results showed that exposure to remifentanil had no influence on the spatial cognition. After withdrawal of remifentanil rats showed impaired spatial cognition. In electrophysiology test, remifentanil group rats showed a trend for a rightward shift of input/output relationship and significant deficits in maintenance of STP and LTP. Immunohistochemistry results demonstrated increased NR2A/NR2B ratio that should be included depression of LTP. In the whole-cell patch-clamp recording, after elimination from remifentanil incubation, mEPSC frequency was down regulated in hippocampal CA1 neurons, indicating that basal synaptic transmission were affected by remifentanil withdrawal. Taken together, the current findings demonstrate that the remifentanil withdrawn rats exhibit obvious impairment of hippocampus-dependent memory and synaptic plasticity. Increased hippocampal NR2A/NR2B expression ratio and the changes of basal synaptic transmission may participate in the impairment of LTP. PMID:26777139

  17. Synaptic plasticity in area CA1 of rat hippocampal slices following intraventricular application of albumin.

    PubMed

    Salar, Seda; Lapilover, Ezequiel; Müller, Julia; Hollnagel, Jan-Oliver; Lippmann, Kristina; Friedman, Alon; Heinemann, Uwe

    2016-07-01

    Epileptogenesis following insults to the brain may be triggered by a dysfunctional blood-brain barrier (BBB) associated with albumin extravasation and activation of astrocytes. Using ex vivo recordings from the BBB-disrupted hippocampus after neocortical photothrombotic stroke, we previously demonstrated abnormal activity-dependent accumulation of extracellular potassium with facilitated generation of seizure like events and spreading depolarizations. Similar changes could be observed after intracerebroventricular (icv) application of albumin. We hypothesized that alterations in extracellular potassium and glutamate homeostasis might lead to alterations in synaptic interactions. We therefore assessed the effects of icv albumin on homo- and heterosynaptic plasticity in hippocampal CA1, 24h after a single injection or 7days after continuous infusion of icv albumin. We demonstrate alterations in both homo- and heterosynaptic plasticity compared to control conditions in ex vivo slice studies. Albumin-treated tissue reveals (1) reduced long-term depression following low-frequency stimulation; (2) increased long-term potentiation of population spikes in response to 20Hz stimulation; (3) potentiated responses to Schaffer collateral stimulation following high-frequency stimulation of the direct cortical input and low-frequency stimulation of alveus and finally, (4) TGFβ receptor II (TGFβR-II) involvement in albumin-induced homosynaptic plasticity changes. We conclude that albumin-induced network hyperexcitability is associated with abnormal homo- and heterosynaptic plasticity that could partly be reversed by interference with TGFβR-II-mediated signaling and therefore it might be an important factor in the process of epileptogenesis. PMID:26972679

  18. ERK Pathway Activation Bidirectionally Affects Visual Recognition Memory and Synaptic Plasticity in the Perirhinal Cortex

    PubMed Central

    Silingardi, Davide; Angelucci, Andrea; De Pasquale, Roberto; Borsotti, Marco; Squitieri, Giovanni; Brambilla, Riccardo; Putignano, Elena; Pizzorusso, Tommaso; Berardi, Nicoletta

    2011-01-01

    ERK 1,2 pathway mediates experience-dependent gene transcription in neurons and several studies have identified its pivotal role in experience-dependent synaptic plasticity and in forms of long term memory involving hippocampus, amygdala, or striatum. The perirhinal cortex (PRHC) plays an essential role in familiarity-based object recognition memory. It is still unknown whether ERK activation in PRHC is necessary for recognition memory consolidation. Most important, it is unknown whether by modulating the gain of the ERK pathway it is possible to bidirectionally affect visual recognition memory and PRHC synaptic plasticity. We have first pharmacologically blocked ERK activation in the PRHC of adult mice and found that this was sufficient to impair long term recognition memory in a familiarity-based task, the object recognition task (ORT). We have then tested performance in the ORT in Ras-GRF1 knock-out (KO) mice, which exhibit a reduced activation of ERK by neuronal activity, and in ERK1 KO mice, which have an increased activation of ERK2 and exhibit enhanced striatal plasticity and striatal mediated memory. We found that Ras-GRF1 KO mice have normal short term memory but display a long term memory deficit; memory reconsolidation is also impaired. On the contrary, ERK1 KO mice exhibit a better performance than WT mice at 72 h retention interval, suggesting a longer lasting recognition memory. In parallel with behavioral data, LTD was strongly reduced and LTP was significantly smaller in PRHC slices from Ras-GRF1 KO than in WT mice while enhanced LTP and LTD were found in PRHC slices from ERK1 KO mice. PMID:22232579

  19. Depression biased non-Hebbian spike-timing-dependent synaptic plasticity in the rat subiculum.

    PubMed

    Pandey, Anurag; Sikdar, Sujit Kumar

    2014-08-15

    The subiculum is a structure that forms a bridge between the hippocampus and the entorhinal cortex (EC), and plays a major role in the memory consolidation process. Here, we demonstrate spike-timing-dependent plasticity (STDP) at the proximal excitatory inputs on the subicular pyramidal neurons of juvenile rat. Causal (positive) pairing of a single EPSP with a single back-propagating action potential (bAP) after a time interval of 10 ms (+10 ms) failed to induce plasticity. However, increasing the number of bAPs in a burst to three, at two different frequencies of 50 Hz (bAP burst) and 150 Hz, induced long-term depression (LTD) after a time interval of +10 ms in both the regular-firing (RF), and the weak burst firing (WBF) neurons. The LTD amplitude decreased with increasing time interval between the EPSP and the bAP burst. Reversing the order of the pairing of the EPSP and the bAP burst induced LTP at a time interval of -10 ms. This finding is in contrast with reports at other synapses, wherein pre- before postsynaptic (causal) pairing induced LTP and vice versa. Our results reaffirm the earlier observations that the relative timing of the pre- and postsynaptic activities can lead to multiple types of plasticity profiles. The induction of timing-dependent LTD (t-LTD) was dependent on postsynaptic calcium change via NMDA receptors in the WBF neurons, while it was independent of postsynaptic calcium change, but required active L-type calcium channels in the RF neurons. Thus the mechanism of synaptic plasticity may vary within a hippocampal subfield depending on the postsynaptic neuron involved. This study also reports a novel mechanism of LTD induction, where L-type calcium channels are involved in a presynaptically induced synaptic plasticity. The findings may have strong implications in the memory consolidation process owing to the central role of the subiculum and LTD in this process. PMID:24907304

  20. Depression biased non-Hebbian spike-timing-dependent synaptic plasticity in the rat subiculum

    PubMed Central

    Pandey, Anurag; Sikdar, Sujit Kumar

    2014-01-01

    The subiculum is a structure that forms a bridge between the hippocampus and the entorhinal cortex (EC), and plays a major role in the memory consolidation process. Here, we demonstrate spike-timing-dependent plasticity (STDP) at the proximal excitatory inputs on the subicular pyramidal neurons of juvenile rat. Causal (positive) pairing of a single EPSP with a single back-propagating action potential (bAP) after a time interval of 10 ms (+10 ms) failed to induce plasticity. However, increasing the number of bAPs in a burst to three, at two different frequencies of 50 Hz (bAP burst) and 150 Hz, induced long-term depression (LTD) after a time interval of +10 ms in both the regular-firing (RF), and the weak burst firing (WBF) neurons. The LTD amplitude decreased with increasing time interval between the EPSP and the bAP burst. Reversing the order of the pairing of the EPSP and the bAP burst induced LTP at a time interval of −10 ms. This finding is in contrast with reports at other synapses, wherein pre- before postsynaptic (causal) pairing induced LTP and vice versa. Our results reaffirm the earlier observations that the relative timing of the pre- and postsynaptic activities can lead to multiple types of plasticity profiles. The induction of timing-dependent LTD (t-LTD) was dependent on postsynaptic calcium change via NMDA receptors in the WBF neurons, while it was independent of postsynaptic calcium change, but required active L-type calcium channels in the RF neurons. Thus the mechanism of synaptic plasticity may vary within a hippocampal subfield depending on the postsynaptic neuron involved. This study also reports a novel mechanism of LTD induction, where L-type calcium channels are involved in a presynaptically induced synaptic plasticity. The findings may have strong implications in the memory consolidation process owing to the central role of the subiculum and LTD in this process. PMID:24907304

  1. Compartmentalized PDE4A5 Signaling Impairs Hippocampal Synaptic Plasticity and Long-Term Memory

    PubMed Central

    Park, Alan J.; Tolentino, Rosa E.; Bruinenberg, Vibeke M.; Tudor, Jennifer C.; Lee, Yool; Hansen, Rolf T.; Guercio, Leonardo A.; Linton, Edward; Neves-Zaph, Susana R.; Meerlo, Peter; Baillie, George S.; Houslay, Miles D.

    2016-01-01

    Alterations in cAMP signaling are thought to contribute to neurocognitive and neuropsychiatric disorders. Members of the cAMP-specific phosphodiesterase 4 (PDE4) family, which contains >25 different isoforms, play a key role in determining spatial cAMP degradation so as to orchestrate compartmentalized cAMP signaling in cells. Each isoform binds to a different set of protein complexes through its unique N-terminal domain, thereby leading to targeted degradation of cAMP in specific intracellular compartments. However, the functional role of specific compartmentalized PDE4 isoforms has not been examined in vivo. Here, we show that increasing protein levels of the PDE4A5 isoform in mouse hippocampal excitatory neurons impairs a long-lasting form of hippocampal synaptic plasticity and attenuates hippocampus-dependent long-term memories without affecting anxiety. In contrast, viral expression of a truncated version of PDE4A5, which lacks the unique N-terminal targeting domain, does not affect long-term memory. Further, overexpression of the PDE4A1 isoform, which targets a different subset of signalosomes, leaves memory undisturbed. Fluorescence resonance energy transfer sensor-based cAMP measurements reveal that the full-length PDE4A5, in contrast to the truncated form, hampers forskolin-mediated increases in neuronal cAMP levels. Our study indicates that the unique N-terminal localization domain of PDE4A5 is essential for the targeting of specific cAMP-dependent signaling underlying synaptic plasticity and memory. The development of compounds to disrupt the compartmentalization of individual PDE4 isoforms by targeting their unique N-terminal domains may provide a fruitful approach to prevent cognitive deficits in neuropsychiatric and neurocognitive disorders that are associated with alterations in cAMP signaling. SIGNIFICANCE STATEMENT Neurons exhibit localized signaling processes that enable biochemical cascades to be activated selectively in specific subcellular

  2. High-fat diet induces hepatic insulin resistance and impairment of synaptic plasticity.

    PubMed

    Liu, Zhigang; Patil, Ishan Y; Jiang, Tianyi; Sancheti, Harsh; Walsh, John P; Stiles, Bangyan L; Yin, Fei; Cadenas, Enrique

    2015-01-01

    High-fat diet (HFD)-induced obesity is associated with insulin resistance, which may affect brain synaptic plasticity through impairment of insulin-sensitive processes underlying neuronal survival, learning, and memory. The experimental model consisted of 3 month-old C57BL/6J mice fed either a normal chow diet (control group) or a HFD (60% of calorie from fat; HFD group) for 12 weeks. This model was characterized as a function of time in terms of body weight, fasting blood glucose and insulin levels, HOMA-IR values, and plasma triglycerides. IRS-1/Akt pathway was assessed in primary hepatocytes and brain homogenates. The effect of HFD in brain was assessed by electrophysiology, input/output responses and long-term potentiation. HFD-fed mice exhibited a significant increase in body weight, higher fasting glucose- and insulin levels in plasma, lower glucose tolerance, and higher HOMA-IR values. In liver, HFD elicited (a) a significant decrease of insulin receptor substrate (IRS-1) phosphorylation on Tyr608 and increase of Ser307 phosphorylation, indicative of IRS-1 inactivation; (b) these changes were accompanied by inflammatory responses in terms of increases in the expression of NFκB and iNOS and activation of the MAP kinases p38 and JNK; (c) primary hepatocytes from mice fed a HFD showed decreased cellular oxygen consumption rates (indicative of mitochondrial functional impairment); this can be ascribed partly to a decreased expression of PGC1α and mitochondrial biogenesis. In brain, HFD feeding elicited (a) an inactivation of the IRS-1 and, consequentially, (b) a decreased expression and plasma membrane localization of the insulin-sensitive neuronal glucose transporters GLUT3/GLUT4; (c) a suppression of the ERK/CREB pathway, and (d) a substantial decrease in long-term potentiation in the CA1 region of hippocampus (indicative of impaired synaptic plasticity). It may be surmised that 12 weeks fed with HFD induce a systemic insulin resistance that impacts

  3. Layer-specific cholinergic control of human and mouse cortical synaptic plasticity.

    PubMed

    Verhoog, Matthijs B; Obermayer, Joshua; Kortleven, Christian A; Wilbers, René; Wester, Jordi; Baayen, Johannes C; De Kock, Christiaan P J; Meredith, Rhiannon M; Mansvelder, Huibert D

    2016-01-01

    Individual cortical layers have distinct roles in information processing. All layers receive cholinergic inputs from the basal forebrain (BF), which is crucial for cognition. Acetylcholinergic receptors are differentially distributed across cortical layers, and recent evidence suggests that different populations of BF cholinergic neurons may target specific prefrontal cortical (PFC) layers, raising the question of whether cholinergic control of the PFC is layer dependent. Here we address this issue and reveal dendritic mechanisms by which endogenous cholinergic modulation of synaptic plasticity is opposite in superficial and deep layers of both mouse and human neocortex. Our results show that in different cortical layers, spike timing-dependent plasticity is oppositely regulated by the activation of nicotinic acetylcholine receptors (nAChRs) either located on dendrites of principal neurons or on GABAergic interneurons. Thus, layer-specific nAChR expression allows functional layer-specific control of cortical processing and plasticity by the BF cholinergic system, which is evolutionarily conserved from mice to humans. PMID:27604129

  4. No effect of genetic deletion of contactin-associated protein (CASPR) on axonal orientation and synaptic plasticity.

    PubMed

    Pillai, Anilkumar M; Garcia-Fresco, German P; Sousa, Aurea D; Dupree, Jeffrey L; Philpot, Benjamin D; Bhat, Manzoor A

    2007-08-15

    Myelinated axons are endowed with a specialized domain structure that is essential for saltatory action potential conduction. The paranodal domain contains the axoglial junctions and displays a unique ultrastructure that resembles the invertebrate septate junctions (SJs). Biochemical characterizations of the paranodal axoglial SJs have identified several molecular components that include Caspr and contactin (Cont) on the axonal side and neurofascin 155 kDa (NF155) isoform on the glial side. All these proteins are essential for the formation of the axoglial SJs. Based on the interactions between Caspr and Cont and their colocalization in the CA1 synaptic areas, it was proposed that the synaptic function of Cont requires Caspr. Here we have extended the phenotypic analysis of CASPR mutants to address further the role of Caspr at the axoglial SJs and also in axonal orientation and synaptic plasticity. We report that, in CASPR mutants, the smooth endoplasmic reticulum (SER) forms elongated membranous complexes that accumulate at the nodal/paranodal region and stretch into the juxtaparanodal region, a defect that is consistent with the paranodal disorganization. We show that the cerebellar microorganization is unaffected in CASPR mutants. We also demonstrate that Caspr function is not essential for normal CA1 synaptic transmission and plasticity. Taken together with previous findings, our results highlight that the Caspr/Cont complex is essential for the formation of axoglial SJs, whereas Cont may regulate axonal orientation and synaptic plasticity independent of its association with Caspr. PMID:17549747

  5. Taurine content in different brain structures during ageing: effect on hippocampal synaptic plasticity.

    PubMed

    Suárez, Luz M; Muñoz, María-Dolores; Martín Del Río, Rafael; Solís, José M

    2016-05-01

    A reduction in taurine content accompanies the ageing process in many tissues. In fact, the decline of brain taurine levels has been associated with cognitive deficits whereas chronic administration of taurine seems to ameliorate age-related deficits such as memory acquisition and retention. In the present study, using rats of three age groups (young, adult and aged) we determined whether the content of taurine and other amino acids (glutamate, serine, glutamine, glycine, alanine and GABA) was altered during ageing in different brain areas (cerebellum, cortex and hippocampus) as well non-brain tissues (heart, kidney, liver and plasma). Moreover, using hippocampal slices we tested whether ageing affects synaptic function and plasticity. These parameters were also determined in aged rats fed with either taurine-devoid or taurine-supplemented diets. With age, we found heterogeneous changes in amino acid content depending on the amino acid type and the tissue. In the case of taurine, its content was reduced in the cerebellum of adult and aged rats, but it remained unchanged in the hippocampus, cortex, heart and liver. The synaptic response amplitude decreased in aged rats, although the late phase of long-term synaptic potentiation (late-LTP), a taurine-dependent process, was not altered. Our study highlights the stability of taurine content in the hippocampus during ageing regardless of whether taurine was present in the diet, which is consistent with the lack of changes detected in late-LTP. These results indicate that the beneficial effects of taurine supplementation might be independent of the replenishment of taurine stores. PMID:26803657

  6. Hippocampal dysregulation of synaptic plasticity-associated proteins with age-related cognitive decline

    PubMed Central

    VanGuilder, Heather D.; Farley, Julie A.; Yan, Han; Van Kirk, Colleen A.; Mitschelen, Matthew; Sonntag, William E.; Freeman, Willard M.

    2011-01-01

    Age-related cognitive decline occurs without frank neurodegeneration and is the most common cause of memory impairment in aging individuals. With increasing longevity, cognitive deficits, especially in hippocampus-dependent memory processes, are increasing in prevalence. Nevertheless, the neurobiological basis of age-related cognitive decline remains unknown. While concerted efforts have led to the identification of neurobiological changes with aging, few age-related alterations have been definitively correlated to behavioral measures of cognitive decline. In this work, adult (12 Months) and aged (28 months) rats were categorized by Morris water maze performance as Adult cognitively Intact, Aged cognitively Intact or Aged cognitively Impaired, and protein expression was examined in hippocampal synaptosome preparations. Previously described differences in synaptic expression of neurotransmission-associated proteins (Dnm1, Hpca, Stx1, Syn1, Syn2, Syp, SNAP25, VAMP2 and 14-3-3 eta, gamma, and zeta) were confirmed between Adult and Aged rats, with no further dysregulation associated with cognitive impairment. Proteins related to synaptic structural stability (MAP2, drebrin, Nogo-A) and activity-dependent signaling (PSD-95, 14-3-3θ, CaMKIIα) were up- and down-regulated, respectively, with cognitive impairment but were not altered with increasing age. Localization of MAP2, PSD-95, and CaMKIIα demonstrated protein expression alterations throughout the hippocampus. The altered expression of activity- and structural stability-associated proteins suggests that impaired synaptic plasticity is a distinct phenomenon that occurs with age-related cognitive decline, and demonstrates that cognitive decline is not simply an exacerbation of the aging phenotype. PMID:21440628

  7. Impaired synaptic plasticity in the prefrontal cortex of mice with developmentally decreased number of interneurons.

    PubMed

    Konstantoudaki, X; Chalkiadaki, K; Tivodar, S; Karagogeos, D; Sidiropoulou, K

    2016-05-13

    Interneurons are inhibitory neurons, which protect neural tissue from excessive excitation. They are interconnected with glutamatergic pyramidal neurons in the cerebral cortex and regulate their function. Particularly in the prefrontal cortex (PFC), interneurons have been strongly implicated in regulating pathological states which display deficits in the PFC. The aim of this study is to investigate the adaptations in the adult glutamatergic system, when defects in interneuron development do not allow adequate numbers of interneurons to reach the cerebral cortex. To this end, we used a mouse model that displays ∼50% fewer cortical interneurons due to the Rac1 protein loss from Nkx2.1/Cre expressing cells (Rac1 conditional knockout (cKO) mice), to examine how the developmental loss of interneurons may affect basal synaptic transmission, synaptic plasticity and neuronal morphology in the adult PFC. Despite the decrease in the number of interneurons, basal synaptic transmission, as examined by recording field excitatory postsynaptic potentials (fEPSPs) from layer II networks, is not altered in the PFC of Rac1 cKO mice. However, there is decreased paired-pulse ratio (PPR) and decreased long-term potentiation (LTP), in response to tetanic stimulation, in the layer II PFC synapses of Rac1 cKO mice. Furthermore, expression of N-methyl-d-aspartate (NMDA) subunits is decreased and dendritic morphology is altered, changes that could underlie the decrease in LTP in the Rac1 cKO mice. Finally, we find that treating Rac1 cKO mice with diazepam in early postnatal life can reverse changes in dendritic morphology observed in non-treated Rac1 cKO mice. Therefore, our data show that disruption in GABAergic inhibition alters glutamatergic function in the adult PFC, an effect that could be reversed by enhancement of GABAergic function during an early postnatal period. PMID:26926965

  8. Distinct kinetics of synaptic structural plasticity, memory formation, and memory decay in massed and spaced learning

    PubMed Central

    Aziz, Wajeeha; Wang, Wen; Kesaf, Sebnem; Mohamed, Alsayed Abdelhamid; Fukazawa, Yugo; Shigemoto, Ryuichi

    2014-01-01

    Long-lasting memories are formed when the stimulus is temporally distributed (spacing effect). However, the synaptic mechanisms underlying this robust phenomenon and the precise time course of the synaptic modifications that occur during learning remain unclear. Here we examined the adaptation of horizontal optokinetic response in mice that underwent 1 h of massed and spaced training at varying intervals. Despite similar acquisition by all training protocols, 1 h of spacing produced the highest memory retention at 24 h, which lasted for 1 mo. The distinct kinetics of memory are strongly correlated with the reduction of floccular parallel fiber–Purkinje cell synapses but not with AMPA receptor (AMPAR) number and synapse size. After the spaced training, we observed 25%, 23%, and 12% reduction in AMPAR density, synapse size, and synapse number, respectively. Four hours after the spaced training, half of the synapses and Purkinje cell spines had been eliminated, whereas AMPAR density and synapse size were recovered in remaining synapses. Surprisingly, massed training also produced long-term memory and halving of synapses; however, this occurred slowly over days, and the memory lasted for only 1 wk. This distinct kinetics of structural plasticity may serve as a basis for unique temporal profiles in the formation and decay of memory with or without intervals. PMID:24367076

  9. Tenuigenin treatment improves behavioral Y-maze learning by enhancing synaptic plasticity in mice.

    PubMed

    Huang, Jun-ni; Wang, Chun-yang; Wang, Xiu-li; Wu, Bo-zhi; Gu, Xing-yang; Liu, Wen-xiao; Gong, Liang-wei; Xiao, Peng; Li, Chu-hua

    2013-06-01

    Polygala tenuifolia root has been used to improve memory and cognitive function in Traditional Chinese Medicine for more than 2000 years. Since tenuigenin (TEN) is one of the most utilized P. tenuifolia root extracts, it is surprising there is no evidence for the effects of TEN on learning and memory so far. In the present study, we investigated the effects of TEN on learning and memory with Y-maze test in mice. We found that oral administration of 4mg/kg TEN significantly improved learning and memory in Y-maze task. Treatment with 4mg/kg TEN markedly reduced the acetylcholinesterase (AChE) activity and malondialdehyde (MDA) level, and increased superoxide dismutase (SOD) activity in hippocampus. In the electrophysiological test of hippocampal brain slice, 2μg/ml TEN perfusion substantially enhanced field excitatory postsynaptic potential (fEPSP) amplitude both in basic synaptic transmission and after high frequency stimulation (HFS) in Schaffer to CA1 pathway (Scha-CA1). These results indicate that TEN enhancing learning and memory may result from inhibiting AChE activity, improving antioxidation and enhancing synaptic plasticity in mice. Therefore, TEN shows promise as a potential nootropic product in improving learning and memory. PMID:23499702

  10. Self healing of open circuit faults: With active re-configurability and mimicry of synaptic plasticity

    NASA Astrophysics Data System (ADS)

    Yaswant, Vaddi; Kumar, Amit; Sambandan, Sanjiv

    2016-07-01

    We discuss the self-repair of open faults in circuits using electrically conductive particles dispersed in an insulating fluid. The repair is triggered by the electric field developed across the open circuit in a current carrying interconnect and results in the formation of a bridge of particles across the gap. We illustrate and model the dynamics of the resistance of the self-healed route, Rb, in low field conditions. Furthermore, active control of Rb and active re-wiring are also demonstrated. Considering Rb to be akin to weights between nodes, the formation and re-wiring of routes and the control of Rb mimic synaptic plasticity in biological systems and open interesting possibilities for computing.

  11. Alternative functions of core cell cycle regulators in neuronal migration, neuronal maturation, and synaptic plasticity

    PubMed Central

    Frank, Christopher L.; Tsai, Li-Huei

    2009-01-01

    Recent studies have demonstrated that boundaries separating a cycling cell from a post-mitotic neuron are not as concrete as expected. Novel and unique physiological functions in neurons have been ascribed for proteins fundamentally required for cell cycle progression and control. These “core” cell cycle regulators serve diverse post-mitotic functions that span various developmental stages of a neuron, including neuronal migration, axonal elongation, axon pruning, dendrite morphogenesis, and synaptic maturation and plasticity. In this review, we detail the non-proliferative post-mitotic roles that these cell cycle proteins have recently been reported to play, the significance of their expression in neurons, mechanistic insight when available, and future prospects. PMID:19447088

  12. Deficit in long-term synaptic plasticity is rescued by a computationally predicted stimulus protocol.

    PubMed

    Liu, Rong-Yu; Zhang, Yili; Baxter, Douglas A; Smolen, Paul; Cleary, Leonard J; Byrne, John H

    2013-04-17

    Mutations in the gene encoding CREB-binding protein (CBP) cause deficits in long-term plasticity, learning, and memory. Here, long-term synaptic facilitation (LTF) at Aplysia sensorimotor synapses in cell culture was used as a model system to investigate methods for overcoming deficits in LTF produced by a CBP knockdown. Injecting CBP-siRNA into individual sensory neurons reduced CBP levels and impaired LTF produced by a standard protocol of five 5-min pulses of serotonin (5-HT) delivered at 20 min interstimulus intervals. A computational model, which simulated molecular processes underlying LTF induction, predicted a rescue protocol of five pulses of 5-HT at non-uniform interstimulus intervals that overcame the consequences of reduced CBP and restored LTF. These results suggest that complementary empirical and computational studies can identify methods for ameliorating impairments of learning attributable to molecular lesions. PMID:23595752

  13. Synaptic plasticity in the anterior cingulate cortex in acute and chronic pain.

    PubMed

    Bliss, Tim V P; Collingridge, Graham L; Kaang, Bong-Kiun; Zhuo, Min

    2016-08-01

    The anterior cingulate cortex (ACC) is activated in both acute and chronic pain. In this Review, we discuss increasing evidence from rodent studies that ACC activation contributes to chronic pain states and describe several forms of synaptic plasticity that may underlie this effect. In particular, one form of long-term potentiation (LTP) in the ACC, which is triggered by the activation of NMDA receptors and expressed by an increase in AMPA-receptor function, sustains the affective component of the pain state. Another form of LTP in the ACC, which is triggered by the activation of kainate receptors and expressed by an increase in glutamate release, may contribute to pain-related anxiety. PMID:27307118

  14. Muscarinic M1 receptors modulate endotoxemia-induced loss of synaptic plasticity.

    PubMed

    Zivkovic, Aleksandar R; Sedlaczek, Oliver; von Haken, Rebecca; Schmidt, Karsten; Brenner, Thorsten; Weigand, Markus A; Bading, Hilmar; Bengtson, C Peter; Hofer, Stefan

    2015-01-01

    Septic encephalopathy is associated with rapid deterioration of cortical functions. Using magnetic resonance imaging (MRI) we detected functional abnormalities in the hippocampal formation of patients with septic delirium. Hippocampal dysfunction was further investigated in an animal model for sepsis using lipopolysaccharide (LPS) injections to induce endotoxemia in rats, followed by electrophysiological recordings in brain slices. Endotoxemia induced a deficit in long term potentiation which was completely reversed by apamin, a blocker of small conductance calcium-activated potassium (SK) channels, and partly restored by treatment with physostigmine (eserine), an acetylcholinesterase inhibitor, or TBPB, a selective M1 muscarinic acetylcholine receptor agonist. These results suggest a novel role for SK channels in the etiology of endotoxemia and explain why boosting cholinergic function restores deficits in synaptic plasticity. Drugs which enhance cholinergic or M1 activity in the brain may prove beneficial in treatment of septic delirium in the intensive care unit. PMID:26531194

  15. Reversing excitatory GABAAR signaling restores synaptic plasticity and memory in a mouse model of Down syndrome.

    PubMed

    Deidda, Gabriele; Parrini, Martina; Naskar, Shovan; Bozarth, Ignacio F; Contestabile, Andrea; Cancedda, Laura

    2015-04-01

    Down syndrome (DS) is the most frequent genetic cause of intellectual disability, and altered GABAergic transmission through Cl(-)-permeable GABAA receptors (GABAARs) contributes considerably to learning and memory deficits in DS mouse models. However, the efficacy of GABAergic transmission has never been directly assessed in DS. Here GABAAR signaling was found to be excitatory rather than inhibitory, and the reversal potential for GABAAR-driven Cl(-) currents (ECl) was shifted toward more positive potentials in the hippocampi of adult DS mice. Accordingly, hippocampal expression of the cation Cl(-) cotransporter NKCC1 was increased in both trisomic mice and individuals with DS. Notably, NKCC1 inhibition by the FDA-approved drug bumetanide restored ECl, synaptic plasticity and hippocampus-dependent memory in adult DS mice. Our findings demonstrate that GABA is excitatory in adult DS mice and identify a new therapeutic approach for the potential rescue of cognitive disabilities in individuals with DS. PMID:25774849

  16. AMPA receptor synaptic plasticity induced by psychostimulants: the past, present, and therapeutic future

    PubMed Central

    Bowers, M. Scott; Chen, Billy T.; Bonci, Antonello

    2010-01-01

    Experience-dependent plasticity at excitatory synapses of the mesocorticolimbic system is a fundamental brain mechanism that enables adaptation to an ever-changing environment. These synaptic responses are critical for the planning and execution of adaptive behaviors that maximize survival. The mesocorticolimbic system mediates procurement of positive reinforcers such as food and sex; however, drugs of abuse re-sculpt this crucial circuitry to promote compulsive drug-seeking behavior. This review will discuss the long-term changes in glutamatergic neurotransmission that occur within the mesolimbic system following cocaine exposure. In addition, we will examine how these long-lasting neuroadaptations may drive the pathology of psychostimulant addiction. Finally, we review clinical trials that highlight antagonists at excitatory AMPA receptors as promising targets against cocaine abuse. PMID:20624588

  17. NF-κB Regulates Spatial Memory Formation and Synaptic Plasticity through Protein Kinase A/CREB Signaling

    PubMed Central

    Kaltschmidt, Barbara; Ndiaye, Delphine; Korte, Martin; Pothion, Stéphanie; Arbibe, Laurence; Prüllage, Maria; Pfeiffer, Julia; Lindecke, Antje; Staiger, Volker; Israël, Alain; Kaltschmidt, Christian; Mémet, Sylvie

    2006-01-01

    Synaptic activity-dependent de novo gene transcription is crucial for long-lasting neuronal plasticity and long-term memory. In a forebrain neuronal conditional NF-κB-deficient mouse model, we demonstrate here that the transcription factor NF-κB regulates spatial memory formation, synaptic transmission, and plasticity. Gene profiling experiments and analysis of regulatory regions identified the α catalytic subunit of protein kinase A (PKA), an essential memory regulator, as a new NF-κB target gene. Consequently, NF-κB inhibition led to a decrease in forskolin-induced CREB phosphorylation. Collectively, these results disclose a novel hierarchical transcriptional network involving NF-κB, PKA, and CREB that leads to concerted nuclear transduction of synaptic signals in neurons, accounting for the critical function of NF-κB in learning and memory. PMID:16581769

  18. The Roles of MAPK Cascades in Synaptic Plasticity and Memory in "Aplysia": Facilitatory Effects and Inhibitory Constraints

    ERIC Educational Resources Information Center

    Sharma, Shiv K.; Carew, Thomas J.

    2004-01-01

    Synaptic plasticity is thought to contribute to memory formation. Serotonin-induced facilitation of sensory-motor (SN-MN) synapses in "Aplysia" is an extensively studied cellular analog of memory for sensitization. Serotonin, a modulatory neurotransmitter, is released in the CNS during sensitization training, and induces three temporally and…

  19. Two Mutations Preventing PDZ-Protein Interactions of GluR1 Have Opposite Effects on Synaptic Plasticity

    ERIC Educational Resources Information Center

    Boehm, Jannic; Ehrlich, Ingrid; Hsieh, Helen; Malinow, Roberto

    2006-01-01

    The regulated trafficking of GluR1 contributes significantly to synaptic plasticity, but studies addressing the function of the GluR1 C-terminal PDZ-ligand domain in this process have produced conflicting results. Here, we resolve this conflict by showing that apparently similar C-terminal mutations of the GluR1 PDZ-ligand domain result in…

  20. Different Compartments of Apical CA1 Dendrites Have Different Plasticity Thresholds for Expressing Synaptic Tagging and Capture

    ERIC Educational Resources Information Center

    Sajikumar, Sreedharan; Korte, Martin

    2011-01-01

    The consolidation process from short- to long-term memory depends on the type of stimulation received from a specific neuronal network and on the cooperativity and associativity between different synaptic inputs converging onto a specific neuron. We show here that the plasticity thresholds for inducing LTP are different in proximal and distal…

  1. CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity

    PubMed Central

    Justin, T. Rogers; Josh, M. Morganti; Adam, D. Bachstetter; Charles, E. Hudson; Melinda, M. Peters; Bethany, A. Grimmig; Edwin, J. Weeber; Paula, C. Bickford; Gemma, Carmelina

    2011-01-01

    The protective/neurotoxic role of fractalkine (CX3CL1) and its receptor CX3C chemokine receptor 1 (CX3CR1) signaling in neurodegenerative disease is an intricate and highly debated research topic and it is becoming even more complicated as new studies reveal discordant results. It appears that the CX3CL1/CX3CR1 axis plays a direct role in neurodegeneration and/or neuroprotection depending upon the CNS insult. However, all the above studies focused on the role of CX3CL1/CX3CR1 signaling in pathological conditions, ignoring the relevance of CX3CL1/CX3CR1 signaling under physiological conditions. No approach to date has been taken to decipher the significance of defects in CX3CL1/CX3CR1 signaling in physiological condition. In the present study we used CX3CR1−/−, CX3CR1+/− and wild-type mice to investigate the physiological role of CX3CR1 receptor in cognition and synaptic plasticity. Our results demonstrated for the first time that mice lacking CX3CR1 receptor show contextual fear conditioning and Morris water maze deficits. CX3CR1 deficiency also affects motor learning. Importantly, mice lacking the receptor have a significant impairment in long term potentiation (LTP). Infusion with IL-1β receptor antagonist significantly reversed the deficit in cognitive function and impairment in LTP. Our results reveal that under physiological conditions, disruption in CX3CL1 signaling will lead to impairment in cognitive function and synaptic plasticity via increased action of IL-1β. PMID:22072675

  2. The Role of Astrocytic Aquaporin-4 in Synaptic Plasticity and Learning and Memory.

    PubMed

    Szu, Jenny I; Binder, Devin K

    2016-01-01

    Aquaporin-4 (AQP4) is the predominant water channel expressed by astrocytes in the central nervous system (CNS). AQP4 is widely expressed throughout the brain, especially at the blood-brain barrier where AQP4 is highly polarized to astrocytic foot processes in contact with blood vessels. The bidirectional water transport function of AQP4 suggests its role in cerebral water balance in the CNS. The regulation of AQP4 has been extensively investigated in various neuropathological conditions such as cerebral edema, epilepsy, and ischemia, however, the functional role of AQP4 in synaptic plasticity, learning, and memory is only beginning to be elucidated. In this review, we explore the current literature on AQP4 and its influence on long term potentiation (LTP) and long term depression (LTD) in the hippocampus as well as the potential relationship between AQP4 and in learning and memory. We begin by discussing recent in vitro and in vivo studies using AQP4-null and wild-type mice, in particular, the impairment of LTP and LTD observed in the hippocampus. Early evidence using AQP4-null mice have suggested that impaired LTP and LTD is brain-derived neurotrophic factor dependent. Others have indicated a possible link between defective LTP and the downregulation of glutamate transporter-1 which is rescued by chronic treatment of β-lactam antibiotic ceftriaxone. Furthermore, behavioral studies may shed some light into the functional role of AQP4 in learning and memory. AQP4-null mice performances utilizing Morris water maze, object placement tests, and contextual fear conditioning proposed a specific role of AQP4 in memory consolidation. All together, these studies highlight the potential influence AQP4 may have on long term synaptic plasticity and memory. PMID:26941623

  3. Vitamin C reverses lead-induced deficits in hippocampal synaptic plasticity in rats.

    PubMed

    Karamian, Ruhollah; Komaki, Alireza; Salehi, Iraj; Tahmasebi, Lida; Komaki, Hamidreza; Shahidi, Siamak; Sarihi, Abdolrahman

    2015-07-01

    Lead (Pb) is a neurotoxic metal that is widely distributed in the environment. In experimental animals, chronic exposure to this neurotoxicant resulted in impaired synaptic plasticity and cognitive function. In this study, we examined the protective effects of vitamin C (ascorbic acid) against Pb exposure-induced impairment of long-term potentiation (LTP). Forty-four adult male Wistar rats were divided into six groups and subjected to the following treatments for three months: (1) vehicle (distilled water); (2) Pb; (3) ascorbic acid; (4) Pb+ascorbic acid; (5) Pb (two months) followed by ascorbic acid; and (6) ascorbic acid (one month) followed by Pb. After treatment, the population spike (PS) amplitude and slope of excitatory postsynaptic potentials (EPSP) were measured in the dentate gyrus(DG) of rats in vivo. Following these measurements, blood samples were collected for the following biochemical assays: malondialdehyde (MDA), total antioxidant capacity (TAC), and total oxidant status (TOS). There was a significant increase in plasma MDA and TOS in the Pb-intoxicated group compared to the control group. There was a significant increase in TAC levels in the ascorbic acid group. Our results also show that Pb exposure caused a decrease in the EPSP slope and PS amplitude when compared with the control group, whereas vitamin C increased these parameters. Co-administration of Pb with vitamin C inhibited the effects of Pb. These findings suggested that Pb exposure caused impairment in LTP, that may have been mediated through oxidative damage. Vitamin C ameliorated the Pb-induced impairment of synaptic plasticity in the DG via antioxidant activity. PMID:26004788

  4. Tunable Low Energy, Compact and High Performance Neuromorphic Circuit for Spike-Based Synaptic Plasticity

    PubMed Central

    Rahimi Azghadi, Mostafa; Iannella, Nicolangelo; Al-Sarawi, Said; Abbott, Derek

    2014-01-01

    Cortical circuits in the brain have long been recognised for their information processing capabilities and have been studied both experimentally and theoretically via spiking neural networks. Neuromorphic engineers are primarily concerned with translating the computational capabilities of biological cortical circuits, using the Spiking Neural Network (SNN) paradigm, into in silico applications that can mimic the behaviour and capabilities of real biological circuits/systems. These capabilities include low power consumption, compactness, and relevant dynamics. In this paper, we propose a new accelerated-time circuit that has several advantages over its previous neuromorphic counterparts in terms of compactness, power consumption, and capability to mimic the outcomes of biological experiments. The presented circuit simulation results demonstrate that, in comparing the new circuit to previous published synaptic plasticity circuits, reduced silicon area and lower energy consumption for processing each spike is achieved. In addition, it can be tuned in order to closely mimic the outcomes of various spike timing- and rate-based synaptic plasticity experiments. The proposed circuit is also investigated and compared to other designs in terms of tolerance to mismatch and process variation. Monte Carlo simulation results show that the proposed design is much more stable than its previous counterparts in terms of vulnerability to transistor mismatch, which is a significant challenge in analog neuromorphic design. All these features make the proposed design an ideal circuit for use in large scale SNNs, which aim at implementing neuromorphic systems with an inherent capability that can adapt to a continuously changing environment, thus leading to systems with significant learning and computational abilities. PMID:24551089

  5. The Role of Astrocytic Aquaporin-4 in Synaptic Plasticity and Learning and Memory

    PubMed Central

    Szu, Jenny I.; Binder, Devin K.

    2016-01-01

    Aquaporin-4 (AQP4) is the predominant water channel expressed by astrocytes in the central nervous system (CNS). AQP4 is widely expressed throughout the brain, especially at the blood-brain barrier where AQP4 is highly polarized to astrocytic foot processes in contact with blood vessels. The bidirectional water transport function of AQP4 suggests its role in cerebral water balance in the CNS. The regulation of AQP4 has been extensively investigated in various neuropathological conditions such as cerebral edema, epilepsy, and ischemia, however, the functional role of AQP4 in synaptic plasticity, learning, and memory is only beginning to be elucidated. In this review, we explore the current literature on AQP4 and its influence on long term potentiation (LTP) and long term depression (LTD) in the hippocampus as well as the potential relationship between AQP4 and in learning and memory. We begin by discussing recent in vitro and in vivo studies using AQP4-null and wild-type mice, in particular, the impairment of LTP and LTD observed in the hippocampus. Early evidence using AQP4-null mice have suggested that impaired LTP and LTD is brain-derived neurotrophic factor dependent. Others have indicated a possible link between defective LTP and the downregulation of glutamate transporter-1 which is rescued by chronic treatment of β-lactam antibiotic ceftriaxone. Furthermore, behavioral studies may shed some light into the functional role of AQP4 in learning and memory. AQP4-null mice performances utilizing Morris water maze, object placement tests, and contextual fear conditioning proposed a specific role of AQP4 in memory consolidation. All together, these studies highlight the potential influence AQP4 may have on long term synaptic plasticity and memory. PMID:26941623

  6. Effects of dihydrotestosterone on synaptic plasticity of the hippocampus in mild cognitive impairment male SAMP8 mice

    PubMed Central

    Pan, Wensen; Han, Shuo; Kang, Lin; Li, Sha; Du, Juan; Cui, Huixian

    2016-01-01

    The current study focused on how dihydrotestosterone (DHT) regulates synaptic plasticity in the hippocampus of mild cognitive impairment male senescence-accelerated mouse prone 8 (SAMP8) mice. Five-month-old SAMP8 mice were divided into the control, castrated and castrated-DHT groups, in which the mice were castrated and treated with physiological doses of DHT for a period of 2 months. To determine the regulatory mechanisms of DHT in the cognitive capacity, the effects of DHT on the morphology of the synapse and the expression of synaptic marker proteins in the hippocampus were investigated using immunohistochemistry, qPCR and western blot analysis. The results showed that the expression of cAMP-response element binding protein (CREB), postsynaptic density protein 95 (PSD95), synaptophysin (SYN) and developmentally regulated brain protein (Drebrin) was reduced in the castrated group compared to the control group. However, DHT promoted the expression of CREB, PSD95, SYN and Drebrin in the hippocampus of the castrated-DHT group. Thus, androgen depletion impaired the synaptic plasticity in the hippocampus of SAMP8 and accelerated the development of Alzheimer's disease (AD)-like neuropathology, suggesting that a similar mechanism may underlie the increased risk for AD in men with low testosterone. In addition, DHT regulated synaptic plasticity in the hippocampus of mild cognitive impairment (MCI) SAMP8 mice and delayed the progression of disease to Alzheimer's dementia. In conclusion, androgen-based hormone therapy is a potentially useful strategy for preventing the progression of MCI in aging men. Androgens enhance synaptic markers (SYN, PSD95, and Drebrin), activate CREB, modulate the fundamental biology of synaptic structure, and lead to the structural changes of plasticity in the hippocampus, all of which result in improved cognitive function. PMID:27588067

  7. Early and selective loss of neuromuscular synapse subtypes with low sprouting competence in motoneuron diseases.

    PubMed

    Frey, D; Schneider, C; Xu, L; Borg, J; Spooren, W; Caroni, P

    2000-04-01

    The addition or loss of synapses in response to changes in activity, disease, or aging is a major aspect of nervous system plasticity in the adult. The mechanisms that affect the turnover and maintenance of synapses in the adult are poorly understood and are difficult to investigate in the brain. Here, we exploited a unique anatomical arrangement in the neuromuscular system to determine whether subtypes of synapses can differ in anatomical plasticity and vulnerability. In three genetic mouse models of motoneuron disease of diverse origin and severity, we observed a gradual and selective loss of synaptic connections that begun long before the onset of clinical deficits and correlated with the timing of disease progression. A subgroup of fast-type (fast-fatiguable) neuromuscular synapses was highly vulnerable and was lost very early on. In contrast, slow-type synapses resisted up to the terminal phase of the disease. Muscle-specific differences were also evident. Similar selective losses were detected in aged mice. These selective vulnerability properties of synapses coincided with hitherto unrecognized major differences in stimulus-induced anatomical plasticity that could also be revealed in healthy mice. Using paralysis and/or growth-associated protein 43 overexpression to induce synaptic sprouting, we found that slow-type, disease-resistant synapses were particularly plastic. In contrast, fast-type synapses with the highest vulnerability failed to exhibit any stimulus-induced change. The results reveal pronounced subtype specificity in the anatomical plasticity and susceptibility to loss of neuromuscular synapses and suggest that degenerative motoneuron diseases involve a common early pathway of selective and progressive synaptic weakening also associated with aging. PMID:10729333

  8. Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location.

    PubMed

    Graupner, Michael; Brunel, Nicolas

    2012-03-01

    Multiple stimulation protocols have been found to be effective in changing synaptic efficacy by inducing long-term potentiation or depression. In many of those protocols, increases in postsynaptic calcium concentration have been shown to play a crucial role. However, it is still unclear whether and how the dynamics of the postsynaptic calcium alone determine the outcome of synaptic plasticity. Here, we propose a calcium-based model of a synapse in which potentiation and depression are activated above calcium thresholds. We show that this model gives rise to a large diversity of spike timing-dependent plasticity curves, most of which have been observed experimentally in different systems. It accounts quantitatively for plasticity outcomes evoked by protocols involving patterns with variable spike timing and firing rate in hippocampus and neocortex. Furthermore, it allows us to predict that differences in plasticity outcomes in different studies are due to differences in parameters defining the calcium dynamics. The model provides a mechanistic understanding of how various stimulation protocols provoke specific synaptic changes through the dynamics of calcium concentration and thresholds implementing in simplified fashion protein signaling cascades, leading to long-term potentiation and long-term depression. The combination of biophysical realism and analytical tractability makes it the ideal candidate to study plasticity at the synapse, neuron, and network levels. PMID:22357758

  9. Calcium-channel number critically influences synaptic strength and plasticity at the active zone

    PubMed Central

    Sheng, Jiansong; He, Liming; Zheng, Hongwei; Xue, Lei; Luo, Fujun; Shin, Wonchul; Sun, Tao; Kuner, Thomas; Yue, David T; Wu, Ling-Gang

    2016-01-01

    How synaptic-vesicle release is controlled at the basic release structure, the active zone, is poorly understood. By performing cell-attached current and capacitance recordings predominantly at single active zones in rat calyces, we found that single active zones contained 5-218 (mean, 42) calcium channels and 1–10 (mean, 5) readily releasable vesicles (RRVs) and released 0–5 vesicles during a 2-ms depolarization. Large variation in the number of calcium channels caused wide variation in release strength (measured during a 2-ms depolarization) by regulating the RRV release probability (PRRV) and the RRV number. Consequently, an action potential opened ~1–35 (mean, ~7) channels, resulting in different release probabilities at different active zones. As the number of calcium-channels determined PRRV, it critically influenced whether subsequent release would be facilitated or depressed. Regulating calcium channel density at active zones may thus be a major mechanism to yield synapses with different release properties and plasticity. These findings may explain large differences reported at synapses regarding release strength (release of 0, 1 or multiple vesicles), PRRV, short-term plasticity, calcium transients and the requisite calcium-channel number for triggering release. PMID:22683682

  10. Ternary Synaptic Plasticity Arising from Memdiode Behavior of TiOx Single Nanowire

    NASA Astrophysics Data System (ADS)

    Hong, Deshun; Chen, Yuansha; Sun, Jirong; Shen, Baogen; Group 3 of Magnetism Laboratory, Beijing National Laboratory for Condensed Matter Physics Team

    Electric field-induced resistive switching (RS) effect has been widely explored as a novel nonvolatile memory over the past few years. Recently, the RS behavior with continuous transition has received considerable attention for its promising prospect in neuromorphic simulation. Here, the switching characteristics of a planar-structured TiOx single nanowire device were systematically investigated. It exhibited a strong electrical history-dependent rectifying behavior that was defined as a ''memdiode''. We further demonstrated that a ternary synaptic plasticity could be realized in such a TiOx nanowire device, characterized by the resistance and photocurrent responses. For a given state of the memdiode, a conjugated memristive characteristic and a distinct photocurrent can be simulaneously obtained, resulting in a synchronous implementation of various Hebbian plasticities with the same temporal order of spikes. These intriguing properties of TiOx memdiode provide a feasible way toward the designing of multifunctional electronic synapses as well as programmable artificial neural network This work has been partially supported by the National Basic Research of China (2013CB921700), the ``Strategic Priority Research Program (B)'' of the Chinese Academy of Sciences (XDB07030200) and the National Natural Science Foundation of China (11374339).

  11. Fasting induces a form of autonomic synaptic plasticity that prevents hypoglycemia.

    PubMed

    Wang, Manqi; Wang, Qian; Whim, Matthew D

    2016-05-24

    During fasting, activation of the counter-regulatory response (CRR) prevents hypoglycemia. A major effector arm is the autonomic nervous system that controls epinephrine release from adrenal chromaffin cells and, consequently, hepatic glucose production. However, whether modulation of autonomic function determines the relative strength of the CRR, and thus the ability to withstand food deprivation and maintain euglycemia, is not known. Here we show that fasting leads to altered transmission at the preganglionic → chromaffin cell synapse. The dominant effect is a presynaptic, long-lasting increase in synaptic strength. Using genetic and pharmacological approaches we show this plasticity requires neuropeptide Y, an adrenal cotransmitter and the activation of adrenal Y5 receptors. Loss of neuropeptide Y prevents a fasting-induced increase in epinephrine release and results in hypoglycemia in vivo. These findings connect plasticity within the sympathetic nervous system to a physiological output and indicate the strength of the final synapse in this descending pathway plays a decisive role in maintaining euglycemia. PMID:27092009

  12. Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice.

    PubMed

    Kitada, Tohru; Pisani, Antonio; Porter, Douglas R; Yamaguchi, Hiroo; Tscherter, Anne; Martella, Giuseppina; Bonsi, Paola; Zhang, Chen; Pothos, Emmanuel N; Shen, Jie

    2007-07-01

    Parkinson's disease (PD) is characterized by the selective vulnerability of the nigrostriatal dopaminergic circuit. Recently, loss-of-function mutations in the PTEN-induced kinase 1 (PINK1) gene have been linked to early-onset PD. How PINK1 deficiency causes dopaminergic dysfunction and degeneration in PD patients is unknown. Here, we investigate the physiological role of PINK1 in the nigrostriatal dopaminergic circuit through the generation and multidisciplinary analysis of PINK1(-/-) mutant mice. We found that numbers of dopaminergic neurons and levels of striatal dopamine (DA) and DA receptors are unchanged in PINK1(-/-) mice. Amperometric recordings, however, revealed decreases in evoked DA release in striatal slices and reductions in the quantal size and release frequency of catecholamine in dissociated chromaffin cells. Intracellular recordings of striatal medium spiny neurons, the major dopaminergic target, showed specific impairments of corticostriatal long-term potentiation and long-term depression in PINK1(-/-) mice. Consistent with a decrease in evoked DA release, these striatal plasticity impairments could be rescued by either DA receptor agonists or agents that increase DA release, such as amphetamine or l-dopa. These results reveal a critical role for PINK1 in DA release and striatal synaptic plasticity in the nigrostriatal circuit and suggest that altered dopaminergic physiology may be a pathogenic precursor to nigrostriatal degeneration. PMID:17563363

  13. Visual recognition memory, manifest as long-term habituation, requires synaptic plasticity in V1

    PubMed Central

    Cooke, Sam F.; Komorowski, Robert W.; Kaplan, Eitan S.; Gavornik, Jeffrey P.; Bear, Mark F.

    2015-01-01

    Familiarity with stimuli that bring neither reward nor punishment, manifested through behavioural habituation, enables organisms to detect novelty and devote cognition to important elements of the environment. Here we describe in mice a form of long-term behavioural habituation to visual grating stimuli that is selective for stimulus orientation. Orientation-selective habituation (OSH) can be observed both in exploratory behaviour in an open arena, and in a stereotyped motor response to visual stimuli in head-restrained mice. We show that the latter behavioural response, termed a vidget, requires V1. Parallel electrophysiological recordings in V1 reveal that plasticity, in the form of stimulus-selective response potentiation (SRP), occurs in layer 4 of V1 as OSH develops. Local manipulations of V1 that prevent and reverse electrophysiological modifications likewise prevent and reverse memory demonstrated behaviourally. These findings suggest that a form of long-term visual recognition memory is stored via synaptic plasticity in primary sensory cortex. PMID:25599221

  14. The hnRNP and cytoskeletal protein raver1 contributes to synaptic plasticity.

    PubMed

    Lahmann, Ines; Fabienke, Manuela; Henneberg, Berenike; Pabst, Oliver; Vauti, Franz; Minge, Daniel; Illenberger, Susanne; Jockusch, Brigitte M; Korte, Martin; Arnold, Hans-Henning

    2008-03-10

    Raver1 is an hnRNP protein that interacts with the ubiquitous splicing regulator PTB and binds to cytoskeletal components like alpha-actinin and vinculin/metavinculin. Cell culture experiments suggested that raver1 functions as corepressor in PTB-regulated splicing reactions and may thereby increase proteome complexity. To determine the role of raver1 in vivo, we inactivated the gene by targeted disruption in the mouse. Here we report that raver1-deficient mice develop regularly to adulthood and show no obvious anatomical or behavioral defects. In keeping with this notion, cells from raver1-null mice were indistinguishable from wild type cells and displayed normal growth, motility, and cytoskeletal architecture in culture. Moreover, alternative splicing of exons, including the model exon 3 of alpha-tropomyosin, was not markedly changed in mutant mice, suggesting that the role of raver1 for PTB-mediated exon repression is not absolutely required to generate splice variants during mouse development. Interestingly however, loss of raver1 caused significantly reduced plasticity of synapses on acute hippocampal slices, as elicited by electrophysiological measurements of markedly lower LTP and LTD in mutant neurons. Our results provide evidence that raver1 may play an important role for the regulation of neuronal synaptic plasticity, possibly by controlling especially the late LTP via posttranscriptional mechanisms. PMID:18061163

  15. The Role of GluK4 in Synaptic Plasticity and Affective Behavior in Mice

    NASA Astrophysics Data System (ADS)

    Catches, Justin Samuel

    Kainate receptors (KARs) are glutamate-gated ion channels that signal through both ionotropic and metabotropic pathways (Contractor et al., 2011). Combinations of five KAR subunits (GluK1-5) form tetrameric receptors with GluK1, GluK2, and GluK3 able to form functional homomeric channels. The high-affinity subunits, GluK4 and GluK5, do not form homomeric channels but modify the properties of heteromeric receptors. Expression of the GluK4 receptor subunit in the forebrain is restricted to the CA3 region of the hippocampus and dentate gyrus regions where KARs modulate synaptic plasticity. In this study, ablation of Grik4, which encodes GluK4, in mice reduced KAR synaptic currents and altered activation properties of postsynaptic receptors but left two forms of presynaptic short-term plasticity intact. Disruption of both Grik4 and Grik5 caused complete loss of the postsynaptic ionotropic KAR current and impaired presynaptic frequency facilitation. Additionally, KAR surface expression was altered at pre- and postsynaptic sites at the MF synapse. Despite the loss of ionotropic signaling, KAR-mediated inhibition of the slow afterhyperpolarization current, which is dependent on metabotropic signaling, was intact in CA3 neurons. Long-term potentiation at the MF-CA3 synapse was reduced, likely through a loss of KAR modulation of excitability of the presynaptic MF axons. Genetic variants in the human GRIK4 gene alter the susceptibility for affective disorders (Bloss and Hunter, 2010). We found that ablation of Grik4 in mice resulted in reduced anxiety and an antidepressant-like phenotype. In the elevated zero-maze, a test for anxiety and risk taking behavior, and in two anxiogenic tests, marble-burying and novelty-induced suppression of feeding, anxiety-like behavior was consistently reduced in knockout animals. In the forced swim, a test of learned helplessness used to determine depression-like behavior, knockout mice demonstrated significantly less immobility suggesting

  16. Plasticity-Driven Self-Organization under Topological Constraints Accounts for Non-random Features of Cortical Synaptic Wiring

    PubMed Central

    Miner, Daniel; Triesch, Jochen

    2016-01-01

    Understanding the structure and dynamics of cortical connectivity is vital to understanding cortical function. Experimental data strongly suggest that local recurrent connectivity in the cortex is significantly non-random, exhibiting, for example, above-chance bidirectionality and an overrepresentation of certain triangular motifs. Additional evidence suggests a significant distance dependency to connectivity over a local scale of a few hundred microns, and particular patterns of synaptic turnover dynamics, including a heavy-tailed distribution of synaptic efficacies, a power law distribution of synaptic lifetimes, and a tendency for stronger synapses to be more stable over time. Understanding how many of these non-random features simultaneously arise would provide valuable insights into the development and function of the cortex. While previous work has modeled some of the individual features of local cortical wiring, there is no model that begins to comprehensively account for all of them. We present a spiking network model of a rodent Layer 5 cortical slice which, via the interactions of a few simple biologically motivated intrinsic, synaptic, and structural plasticity mechanisms, qualitatively reproduces these non-random effects when combined with simple topological constraints. Our model suggests that mechanisms of self-organization arising from a small number of plasticity rules provide a parsimonious explanation for numerous experimentally observed non-random features of recurrent cortical wiring. Interestingly, similar mechanisms have been shown to endow recurrent networks with powerful learning abilities, suggesting that these mechanism are central to understanding both structure and function of cortical synaptic wiring. PMID:26866369

  17. Plasticity-Driven Self-Organization under Topological Constraints Accounts for Non-random Features of Cortical Synaptic Wiring.

    PubMed

    Miner, Daniel; Triesch, Jochen

    2016-02-01

    Understanding the structure and dynamics of cortical connectivity is vital to understanding cortical function. Experimental data strongly suggest that local recurrent connectivity in the cortex is significantly non-random, exhibiting, for example, above-chance bidirectionality and an overrepresentation of certain triangular motifs. Additional evidence suggests a significant distance dependency to connectivity over a local scale of a few hundred microns, and particular patterns of synaptic turnover dynamics, including a heavy-tailed distribution of synaptic efficacies, a power law distribution of synaptic lifetimes, and a tendency for stronger synapses to be more stable over time. Understanding how many of these non-random features simultaneously arise would provide valuable insights into the development and function of the cortex. While previous work has modeled some of the individual features of local cortical wiring, there is no model that begins to comprehensively account for all of them. We present a spiking network model of a rodent Layer 5 cortical slice which, via the interactions of a few simple biologically motivated intrinsic, synaptic, and structural plasticity mechanisms, qualitatively reproduces these non-random effects when combined with simple topological constraints. Our model suggests that mechanisms of self-organization arising from a small number of plasticity rules provide a parsimonious explanation for numerous experimentally observed non-random features of recurrent cortical wiring. Interestingly, similar mechanisms have been shown to endow recurrent networks with powerful learning abilities, suggesting that these mechanism are central to understanding both structure and function of cortical synaptic wiring. PMID:26866369

  18. Central pupillary light reflex circuits in the cat: II. Morphology, ultrastructure, and inputs of preganglionic motoneurons.

    PubMed

    Sun, Wensi; May, Paul J

    2014-12-15

    Preganglionic motoneurons supplying the ciliary ganglion control lens accommodation and pupil diameter. In cats, these motoneurons make up the preganglionic Edinger-Westphal population, which lies rostral, dorsal, and ventral to the oculomotor nucleus. A recent cat study suggested that caudal motoneurons control the lens and rostral motoneurons control the pupil. This led us to examine the morphology, ultrastructure, and pretectal inputs of these populations. Preganglionic motoneurons retrogradely labeled by introducing tracer into the cat ciliary ganglion generally fell into two morphologic categories. Fusiform neurons were located rostrally, in the anteromedian nucleus and between the oculomotor nuclei. Multipolar neurons were found caudally, dorsal and ventral to the oculomotor nucleus. The dendrites of preganglionic motoneurons within the anteromedian nucleus crossed the midline, providing a possible basis for consensual responses. Ultrastructurally, several different classes of synaptic profiles contact preganglionic motoneurons, suggesting that their activity may be modified by a variety of inputs. Furthermore, there were differences in the synaptic populations contacting the rostral vs. caudal populations, supporting the contention that these populations display functional differences. Anterogradely labeled pretectal terminals were observed in close association with labeled preganglionic motoneurons, particularly in the rostral population. Ultrastructural analysis revealed that these terminals, packed with clear, spherical vesicles, made asymmetric synaptic contacts onto motoneurons in the rostral population, indicating that these cells serve the pupillary light reflex. Thus, the preganglionic motoneurons found in the cat display morphologic, ultrastructural, and connectional differences suggesting that this rostral preganglionic population is specialized for pupil control, whereas more caudal elements control the lens. PMID:24706263

  19. Central Pupillary Light Reflex Circuits in the Cat: II. Morphology, Ultrastructure and Inputs of Preganglionic Motoneurons

    PubMed Central

    Sun, Wensi; May, Paul J.

    2014-01-01

    Preganglionic motoneurons supplying the ciliary ganglion control lens accommodation and pupil diameter. In cats, these motoneurons make up the preganglionic Edinger-Westphal population, which lies rostral, dorsal and ventral to the oculomotor nucleus. A recent cat study suggested that caudal motoneurons control the lens and rostral motoneurons control the pupil. This led us to examine the morphology, ultrastructure and pretectal inputs of these populations. Preganglionic motoneurons retrogradely labeled by introducing tracer into the cat ciliary ganglion generally fell into two morphologic categories. Fusiform neurons were located rostrally, in the anteromedian nucleus and between the oculomotor nuclei. Multipolar neurons were found caudally, dorsal and ventral to the oculomotor nucleus. The dendrites of preganglionic motoneurons within the anteromedian nucleus crossed the midline, providing a possible basis for consensual responses. Ultrastructurally, several different classes of synaptic profiles contact preganglionic motoneurons, suggesting their activity may be modified by a variety of inputs. Furthermore, there were differences between the synaptic populations contacting the rostral and caudal populations, supporting the contention that these populations display functional differences. Anterogradely labeled pretectal terminals were observed in close association with labeled preganglionic motoneurons, particularly in the rostral population. Ultrastructural analysis revealed that these terminals, packed with clear, spherical vesicles, made asymmetric synaptic contacts onto motoneurons in the rostral population indicating these cells serve the pupillary light reflex. Thus, the preganglionic motoneurons found in the cat display morphologic, ultrastructural and connectional differences suggesting that this rostral preganglionic population is specialized for pupil control, while more caudal elements control the lens. PMID:24706263

  20. GluN2B subunit-containing NMDA receptor antagonists prevent Abeta-mediated synaptic plasticity disruption in vivo.

    PubMed

    Hu, Neng-Wei; Klyubin, Igor; Anwyl, Roger; Anwy, Roger; Rowan, Michael J

    2009-12-01

    Currently, treatment with the relatively low-affinity NMDA receptor antagonist memantine provides limited benefit in Alzheimer's disease (AD). One probable dose-limiting factor in the use of memantine is the inhibition of NMDA receptor-dependent synaptic plasticity mechanisms believed to underlie certain forms of memory. Moreover, amyloid-beta protein (Abeta) oligomers that are implicated in causing the cognitive deficits of AD potently inhibit this form of plasticity. Here we examined if subtype-preferring NMDA receptor antagonists could preferentially protect against the inhibition of NMDA receptor-dependent plasticity of excitatory synaptic transmission by Abeta in the hippocampus in vivo. Using doses that did not affect control plasticity, antagonists selective for NMDA receptors containing GluN2B but not other GluN2 subunits prevented Abeta(1-42) -mediated inhibition of plasticity. Evidence that the proinflammatory cytokine TNFalpha mediates this deleterious action of Ass was provided by the ability of TNFalpha antagonists to prevent Abeta(1-42) inhibition of plasticity and the abrogation of a similar disruptive effect of TNFalpha using a GluN2B-selective antagonist. Moreover, at nearby synapses that were resistant to the inhibitory effect of TNFalpha, Abeta(1-42) did not significantly affect plasticity. These findings suggest that preferentially targeting GluN2B subunit-containing NMDARs may provide an effective means of preventing cognitive deficits in early Alzheimer's disease. PMID:19918059

  1. Merging advanced technologies with classical methods to uncover dendritic spine dynamics: A hot spot of synaptic plasticity.

    PubMed

    Maiti, Panchanan; Manna, Jayeeta; McDonald, Michael P

    2015-07-01

    The structure of dendritic spines determines synaptic efficacy, a plastic process that mediates information processing in the vertebrate nervous system. Aberrant spine morphology, including alterations in shape, size, and number, are common in different brain diseases. Because of this, accurate and unbiased characterization of dendritic spine structure is vital to our ability to explore and understand their involvement in neuronal development, synaptic plasticity, and synaptic failure in neurological diseases. Investigators have attempted to elucidate the precise structure and function of dendritic spines for more than a hundred years, but their fundamental role in synaptic plasticity and neurological diseases remains elusive. Limitations and ambiguities in imaging techniques have exacerbated the challenges of acquiring accurate information about spines and spine features. However, recent advancements in molecular biology, protein engineering, immuno-labeling techniques, and the use of super-resolution nano-microscopy along with powerful image analysis software have provided a better understanding of dendritic spine architecture. Here we describe the pros and cons of the classical staining techniques used to study spine morphology, and the alteration of dendritic spines in various neuropathological conditions. Finally, we highlight recent advances in super-resolved nanoscale microscopy, and their potentials and pitfalls when used to explore dendritic spine dynamics. PMID:25728560

  2. Neutralization of Nogo-A Enhances Synaptic Plasticity in the Rodent Motor Cortex and Improves Motor Learning in Vivo

    PubMed Central

    Weinmann, Oliver; Kellner, Yves; Yu, Xinzhu; Vicente, Raul; Gullo, Miriam; Kasper, Hansjörg; Lussi, Karin; Ristic, Zorica; Luft, Andreas R.; Rioult-Pedotti, Mengia; Zuo, Yi; Zagrebelsky, Marta; Schwab, Martin E.

    2014-01-01

    The membrane protein Nogo-A is known as an inhibitor of axonal outgrowth and regeneration in the CNS. However, its physiological functions in the normal adult CNS remain incompletely understood. Here, we investigated the role of Nogo-A in cortical synaptic plasticity and motor learning in the uninjured adult rodent motor cortex. Nogo-A and its receptor NgR1 are present at cortical synapses. Acute treatment of slices with function-blocking antibodies (Abs) against Nogo-A or against NgR1 increased long-term potentiation (LTP) induced by stimulation of layer 2/3 horizontal fibers. Furthermore, anti-Nogo-A Ab treatment increased LTP saturation levels, whereas long-term depression remained unchanged, thus leading to an enlarged synaptic modification range. In vivo, intrathecal application of Nogo-A-blocking Abs resulted in a higher dendritic spine density at cortical pyramidal neurons due to an increase in spine formation as revealed by in vivo two-photon microscopy. To investigate whether these changes in synaptic plasticity correlate with motor learning, we trained rats to learn a skilled forelimb-reaching task while receiving anti-Nogo-A Abs. Learning of this cortically controlled precision movement was improved upon anti-Nogo-A Ab treatment. Our results identify Nogo-A as an influential molecular modulator of synaptic plasticity and as a regulator for learning of skilled movements in the motor cortex. PMID:24966370

  3. Synaptic plasticity in myenteric neurons of the guinea-pig distal colon: presynaptic mechanisms of inflammation-induced synaptic facilitation

    PubMed Central

    Krauter, Eric M; Linden, David R; Sharkey, Keith A; Mawe, Gary M

    2007-01-01

    The purpose of this study was to investigate the pre- and postsynaptic mechanisms that contribute to synaptic facilitation in the myenteric plexus of the trinitrobenzene sulphonic acid-inflamed guinea-pig distal colon. Intracellular recordings of evoked fast excitatory postsynaptic potentials (fEPSPs) in myenteric S neurons were evaluated, and the density of synaptic terminals was morphometrically analysed by transmission electron microscopy. In inflamed tissue, fEPSPs were reduced to control levels by the protein kinase A (PKA) inhibitor, H89, but H89 did not affect the fEPSPs in control tissue. This PKA activation in inflamed tissue did not appear to involve 5-HT4 receptors because the antagonist/inverse agonist, GR 125487, caused comparable decreases of fEPSPs in both tissues. Inhibition of BK channels with iberiotoxin did not alter the fEPSPs in inflamed tissue, but increased the fEPSPs in control tissue to the amplitude detected in inflamed tissue. During trains of stimuli, run-down of EPSPs was less extensive in inflamed tissue and there was a significant increase in the paired pulse ratio. Depolarizations in response to exogenous neurotransmitters were not altered in inflamed tissue. These inflammation-induced changes were not accompanied by alterations in the pharmacological profile of EPSPs, and no changes in synaptic density were detected by electron microscopy. Collectively, these data indicate that synaptic facilitation in the inflamed myenteric plexus involves a presynaptic increase in PKA activity, possibly involving an inhibition of BK channels, and an increase in the readily releasable pool of synaptic vesicles. PMID:17363386

  4. Role of Synaptic Structural Plasticity in Impairments of Spatial Learning and Memory Induced by Developmental Lead Exposure in Wistar Rats

    PubMed Central

    Han, Xiaojie; Hu, Xiaoxia; Gu, Huaiyu; Chen, Yilin; Wei, Qing; Hu, Qiansheng

    2014-01-01

    Lead (Pb) is found to impair cognitive function. Synaptic structural plasticity is considered to be the physiological basis of synaptic functional plasticity and has been recently found to play important roles in learning and memory. To study the effect of Pb on spatial learning and memory at different developmental stages, and its relationship with alterations of synaptic structural plasticity, postnatal rats were randomly divided into three groups: Control; Pre-weaning Pb (Parents were exposed to 2 mM PbCl2 3 weeks before mating until weaning of pups); Post-weaning Pb (Weaned pups were exposed to 2 mM PbCl2 for 9 weeks). The spatial learning and memory of rats was measured by Morris water maze (MWM) on PND 85–90. Rat pups in Pre-weaning Pb and Post-weaning Pb groups performed significantly worse than those in Control group (p<0.05). However, there was no significant difference in the performance of MWM between the two Pb-exposure groups. Before MWM (PND 84), the number of neurons and synapses significantly decreased in Pre-weaning Pb group, but not in Post-weaning Pb group. After MWM (PND 91), the number of synapses in Pre-weaning Pb group increased significantly, but it was still less than that of Control group (p<0.05); the number of synapses in Post-weaning Pb group was also less than that of Control group (p<0.05), although the number of synapses has no differences between Post-weaning Pb and Control groups before MWM. In both Pre-weaning Pb and Post-weaning Pb groups, synaptic structural parameters such as thickness of postsynaptic density (PSD), length of synaptic active zone and synaptic curvature increased significantly while width of synaptic cleft decreased significantly compared to Control group (p<0.05). Our data demonstrated that both early and late developmental Pb exposure impaired spatial learning and memory as well as synaptic structural plasticity in Wistar rats. PMID:25536363

  5. Intracellular mGluR5 can mediate synaptic plasticity in the hippocampus.

    PubMed

    Purgert, Carolyn A; Izumi, Yukitoshi; Jong, Yuh-Jiin I; Kumar, Vikas; Zorumski, Charles F; O'Malley, Karen L

    2014-03-26

    Metabotropic glutamate receptor 5 (mGluR5) is widely expressed throughout the CNS and participates in regulating neuronal function and synaptic transmission. Recent work in the striatum led to the groundbreaking discovery that intracellular mGluR5 activation drives unique signaling pathways, including upregulation of ERK1/2, Elk-1 (Jong et al., 2009) and Arc (Kumar et al., 2012). To determine whether mGluR5 signals from intracellular membranes of other cell types, such as excitatory pyramidal neurons in the hippocampus, we used dissociated rat CA1 hippocampal cultures and slice preparations to localize and characterize endogenous receptors. As in the striatum, CA1 neurons exhibited an abundance of mGluR5 both on the cell surface and intracellular membranes, including the endoplasmic reticulum and the nucleus where it colocalized with the sodium-dependent excitatory amino acid transporter, EAAT3. Inhibition of EAAT3 or sodium-free buffer conditions prevented accumulations of radiolabeled agonist. Using a pharmacological approach to isolate different pools of mGluR5, both intracellular and cell surface receptors induced oscillatory Ca(2+) responses in dissociated CA1 neurons; however, only intracellular mGluR5 activation triggered sustained high amplitude Ca(2+) rises in dendrites. Consistent with the notion that mGluR5 can signal from intracellular membranes, uncaging glutamate on a CA1 dendrite led to a local Ca(2+) rise, even in the presence of ionotropic and cell surface metabotropic receptor inhibitors. Finally, activation of intracellular mGluR5 alone mediated both electrically induced and chemically induced long-term depression, but not long-term potentiation, in acute hippocampal slices. These data suggest a physiologically relevant and important role for intracellular mGluR5 in hippocampal synaptic plasticity. PMID:24672004

  6. Functional improvement after motor training is correlated with synaptic plasticity in rat thalamus.

    PubMed

    Ding, Yuchuan; Li, Jie; Lai, Qin; Azam, Salman; Rafols, José A; Diaz, Fernando G

    2002-12-01

    The goals of this study were to determine whether functional outcome after motor training in rats was linked to synaptic plasticity in thalamus, and whether the Rota-rod apparatus, widely used to test motor function, could be used as an easy and quantitative motor skill training procedure. Adult female Sprague-Dawley rats (n = 39) were evaluated under three training conditions: 1. Movement requiring balance and coordination skills on Rota-rod; 2. simple exercise on treadmill; 3. nontrained controls. Motor function was evaluated by a series of motor tests (foot fault placing, parallel bar crossing, rope and ladder climbing) before and 14 or 28 days after training procedure. Synaptic strength in brain was assessed by synaptophysin immunocytochemistry. After 14 days of training, Rota-rod-trained animals significantly (p < 0.01) improved motor performance, compared to treadmill and nontrained animals. Animals with up to 28 days of simple exercises on the treadmill did not show a significantly improved performance on most motor tasks, except for an improvement in foot fault placing. Intensive synaptophysin immunoreactivity was present in the right but not the left mediodorsal and ventromedial nuclei of thalamus in Rota-rod-trained rats at 14 and 28 days, and in treadmill-trained rats at 28 days. The data suggested that functional outcome is effectively improved by motor skill training rather than by simple exercises, and this may be related, at least partially, to uniquely lateralized synaptogenesis in the thalamus. Both Rota-rod and treadmill could be quantitatively used in rats for motor training of different complexity. PMID:12500709

  7. Hippocampal synaptic plasticity: role in spatial learning or the automatic recording of attended experience?

    PubMed Central

    Morris, R G; Frey, U

    1997-01-01

    Allocentric spatial learning can sometimes occur in one trial. The incorporation of information into a spatial representation may, therefore, obey a one-trial correlational learning rule rather than a multi-trial error-correcting rule. It has been suggested that physiological implementation of such a rule could be mediated by N-methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation (LTP) in the hippocampus, as its induction obeys a correlational type of synaptic learning rule. Support for this idea came originally from the finding that intracerebral infusion of the NMDA antagonist AP5 impairs spatial learning, but studies summarized in the first part of this paper have called it into question. First, rats previously given experience of spatial learning in a watermaze can learn a new spatial reference memory task at a normal rate despite an appreciable NMDA receptor blockade. Second, the classical phenomenon of 'blocking' occurs in spatial learning. The latter finding implies that spatial learning can also be sensitive to an animal's expectations about reward and so depend on more than the detection of simple spatial correlations. In this paper a new hypothesis is proposed about the function of hippocampal LTP. This hypothesis retains the idea that LTP subserves rapid one-trial memory, but abandons the notion that it serves any specific role in the geometric aspects of spatial learning. It is suggested that LTP participates in the automatic recording of attended experience': a subsystem of episodic memory in which events are temporarily remembered in association with the contexts in which they occur. An automatic correlational form of synaptic plasticity is ideally suited to the online registration of context event associations. In support, it is reported that the ability of rats to remember the most recent place they have visited in a familiar environment is exquisitely sensitive to AP5 in a delay-dependent manner. Moreover, new studies of the lasting

  8. Acute stress and hippocampal output: exploring dorsal CA1 and subicular synaptic plasticity simultaneously in anesthetized rats

    PubMed Central

    MacDougall, Matthew J; Howland, John G

    2013-01-01

    The Cornu Ammonis-1 (CA1) subfield and subiculum (SUB) serve as major output structures of the hippocampal formation. Exploring forms of synaptic plasticity simultaneously within these two output regions may improve understanding of the dynamics of hippocampal circuitry and information transfer between hippocampal and cortical brain regions. Using a novel dual-channel electrophysiological preparation in urethane-anesthetized adult male Sprague-Dawley rats in vivo, we examined the effects of acute restraint stress (30 min) on short- and long-term forms of synaptic plasticity in both CA1 and SUB by stimulating the CA3 region. Paired-pulse facilitation was disrupted in SUB but not CA1 in the dual-channel experiments following exposure to acute stress. Disruptions in CA1 PPF were evident in subsequent single-channel experiments with a more anterior recording site. Acute stress disrupted long-term potentiation induced by high-frequency stimulation (10 bursts of 20 pulses at 200 Hz) in both CA1 and SUB. Low-frequency stimulation (900 pulses at 1 Hz) did not alter CA1 plasticity while a late-developing potentiation was evident in SUB that was disrupted following exposure to acute stress. These findings highlight differences in the sensitivity to acute stress for distinct forms of synaptic plasticity within synapses in hippocampal output regions. The findings are discussed in relation to normal and aberrant forms of hippocampal-cortical information processing. PMID:24303119

  9. Proteolytic regulation of synaptic plasticity in the mouse primary visual cortex: analysis of matrix metalloproteinase 9 deficient mice

    PubMed Central

    Kelly, Emily A.; Russo, Amanda S.; Jackson, Cory D.; Lamantia, Cassandra E.; Majewska, Ania K.

    2015-01-01

    The extracellular matrix (ECM) is known to play important roles in regulating neuronal recovery from injury. The ECM can also impact physiological synaptic plasticity, although this process is less well understood. To understand the impact of the ECM on synaptic function and remodeling in vivo, we examined ECM composition and proteolysis in a well-established model of experience-dependent plasticity in the visual cortex. We describe a rapid change in ECM protein composition during Ocular Dominance Plasticity (ODP) in adolescent mice, and a loss of ECM remodeling in mice that lack the extracellular protease, matrix metalloproteinase-9 (MMP9). Loss of MMP9 also attenuated functional ODP following monocular deprivation (MD) and reduced excitatory synapse density and spine density in sensory cortex. While we observed no change in the morphology of existing dendritic spines, spine dynamics were altered, and MMP9 knock-out (KO) mice showed increased turnover of dendritic spines over a period of 2 days. We also analyzed the effects of MMP9 loss on microglia, as these cells are involved in extracellular remodeling and have been recently shown to be important for synaptic plasticity. MMP9 KO mice exhibited very limited changes in microglial morphology. Ultrastructural analysis, however, showed that the extracellular space surrounding microglia was increased, with concomitant increases in microglial inclusions, suggesting possible changes in microglial function in the absence of MMP9. Taken together, our results show that MMP9 contributes to ECM degradation, synaptic dynamics and sensory-evoked plasticity in the mouse visual cortex. PMID:26441540

  10. A new genetic model of activity-induced Ras signaling dependent pre-synaptic plasticity in Drosophila

    PubMed Central

    Freeman, Amanda; Bowers, Mallory; Mortimer, Alysia Vrailas; Timmerman, Christina; Roux, Stephanie; Ramaswami, Mani; Sanyal, Subhabrata

    2010-01-01

    Techniques to induce activity-dependent neuronal plasticity in vivo allow the underlying signaling pathways to be studied in their biological context. Here, we demonstrate activity-induced plasticity at neuromuscular synapses of Drosophila double mutant for comatose (an NSF mutant) and Kum (a SERCA mutant), and present an analysis of the underlying signaling pathways. comt; Kum (CK) double mutants exhibit increased locomotor activity under normal culture conditions, concomitant with a larger neuromuscular junction synapse and stably elevated evoked transmitter release. The observed enhancements of synaptic size and transmitter release in CK mutants are completely abrogated by: a) reduced activity of motor neurons; b) attenuation of the Ras/ERK signaling cascade; or c) inhibition of the transcription factors Fos and CREB. all of which restrict synaptic properties to near wild type levels. Together, these results document neural activity-dependent plasticity of motor synapses in CK animals that requires Ras/ERK signaling and normal transcriptional activity of Fos and CREB. Further, novel in vivo reporters of neuronal Ras activation and Fos transcription also confirm increased signaling through a Ras/AP-1 pathway in motor neurons of CK animals, consistent with results from our genetic experiments. Thus, this study: a) provides a robust system in which to study activity-induced synaptic plasticity in vivo; b) establishes a causal link between neural activity, Ras signaling, transcriptional regulation and pre-synaptic plasticity in glutamatergic motor neurons of Drosophila larvae; and c) presents novel, genetically encoded reporters for Ras and AP-1 dependent signaling pathways in Drosophila. PMID:20193670

  11. Hypocretinergic control of spinal cord motoneurons.

    PubMed

    Yamuy, Jack; Fung, Simon J; Xi, Mingchu; Chase, Michael H

    2004-06-01

    Hypocretinergic (orexinergic) neurons in the lateral hypothalamus project to motor columns in the lumbar spinal cord. Consequently, we sought to determine whether the hypocretinergic system modulates the electrical activity of motoneurons. Using in vivo intracellular recording techniques, we examined the response of spinal motoneurons in the cat to electrical stimulation of the lateral hypothalamus. In addition, we examined the membrane potential response to orthodromic stimulation and intracellular current injection before and after both hypothalamic stimulation and the juxtacellular application of hypocretin-1. It was found that (1) hypothalamic stimulation produced a complex sequence of depolarizing- hyperpolarizing potentials in spinal motoneurons; (2) the depolarizing potentials decreased in amplitude after the application of SB-334867, a hypocretin type 1 receptor antagonist; (3) the EPSP induced by dorsal root stimulation was not affected by the application of SB-334867; (4) subthreshold stimulation of dorsal roots and intracellular depolarizing current steps produced spike potentials when applied in concert to stimulation of the hypothalamus or after the local application of hypocretin-1; (5) the juxtacellular application of hypocretin-1 induced motoneuron depolarization and, frequently, high-frequency discharge; (6) hypocretin-1 produced a significant decrease in rheobase (36%), membrane time constant (16.4%), and the equalizing time constant (23.3%); (7) in a small number of motoneurons, hypocretin-1 produced an increase in the synaptic noise; and (8) the input resistance was not affected after hypocretin-1. The juxtacellular application of vehicle (saline) and denatured hypocretin-1 did not produce changes in the preceding electrophysiological properties. We conclude that hypothalamic hypocretinergic neurons are capable of modulating the activity of lumbar motoneurons through presynaptic and postsynaptic mechanisms. The lack of hypocretin

  12. Magnetic stimulation modulates structural synaptic plasticity and regulates BDNF-TrkB signal pathway in cultured hippocampal neurons.

    PubMed

    Ma, Jun; Zhang, Zhanchi; Su, Yuhong; Kang, Lin; Geng, Dandan; Wang, Yanyong; Luan, Feng; Wang, Mingwei; Cui, Huixian

    2013-01-01

    Repetitive transcranial magnetic stimulation (rTMS) is a neuropsychiatric tool that can be used to investigate the neurobiology of learning and cognitive function. Few studies have examined the effects of low frequency (⩽1Hz) magnetic stimulation (MS) on structural synaptic plasticity of neurons in vitro, thus, the current study examined its effects on hippocampal neuron and synapse morphology, as well as synaptic protein markers and signaling pathways. Similarly, both intensities of low frequency magnetic stimulation (1Hz) activated brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB) pathways, including the pathways for mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) and for phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt). Specifically, low intensity magnetic stimulation (LIMS, 1.14Tesla, 1Hz) promoted more extensive dendritic and axonal arborization, as well as increasing synapses density, thickening PSD (post synaptic density) and upregulation of synaptophysin (SYN), growth associated protein 43 (GAP43) and post synaptic density 95 (PSD95). Conversely, high intensity magnetic stimulation (HIMS, 1.55Tesla, 1Hz) appeared to be detrimental, reducing dendritic and axonal arborization and causing apparent structural damage, including thinning of PSD, less synapses and disordered synaptic structure, as well as upregulation of GAP43 and PSD95, possibly for their ability to mitigate dysfunction. In conclusion, we infers that low frequency magnetic stimulation participates in regulating structural synaptic plasticity of hippocampal neurons via the activation of BDNF-TrkB signaling pathways. PMID:23201339

  13. The effects of L-arginine on spatial memory and synaptic plasticity impairments induced by lipopolysaccharide

    PubMed Central

    Anaeigoudari, Akbar; Shafei, Mohammad Naser; Soukhtanloo, Mohammad; Sadeghnia, Hamid Reza; Reisi, Parham; Nosratabadi, Reza; Behradnia, Sepehr; Hosseini, Mahmoud

    2015-01-01

    Background: An important role of nitric oxide (NO) in neuroinflammation has been suggested. It is also suggested that NO has a critical role in learning and memory. Neuro-inflammation induced by lipopolysaccharide (LPS) has been reported that deteriorates learning and memory. The effect of L-arginine (LA) as a precursor of NO on LPS-induced spatial learning and memory and neuronal plasticity impairment was evaluated. Materials and Methods: The animals were grouped into: (1) Control, (2) LPS, (3) LA-LPS, and (4) LA. The rats received intraperitoneally LPS (1 mg/kg) 2 h before experiments and LA (200 mg/kg) 30 min before LPS. The animals were examined in Morris water maze (MWM). Long-term potentiation (LTP) from CA1 area of the hippocampus was also assessed by 100 Hz stimulation in the ipsilateral Schaffer collateral pathway. Results: In MWM, time latency and traveled path were higher in LPS group than the control group (P < 0.001) whereas in LA-LPS group they were shorter than LPS group (P < 0.001). The amplitude and slope of field excitatory postsynaptic potential (fEPSP) decreased in LPS group compared to control group (P < 0.05 and P < 0.01) whereas, there was not any significant difference in these parameters between LPS and LA-LPS groups. Conclusion: Administration of LPS impaired spatial memory and synaptic plasticity. Although LA ameliorated deleterious effects of LPS on learning of spatial tasks, it could not restore LPS-induced LTP impairment. PMID:26601090

  14. Impairment of bidirectional synaptic plasticity in the striatum of a mouse model of DYT1 dystonia: role of endogenous acetylcholine

    PubMed Central

    Martella, Giuseppina; Tassone, Annalisa; Sciamanna, Giuseppe; Platania, Paola; Cuomo, Dario; Viscomi, Maria Teresa; Bonsi, Paola; Cacci, Emanuele; Biagioni, Stefano; Usiello, Alessandro; Bernardi, Giorgio; Sharma, Nutan

    2009-01-01

    DYT1 dystonia is a severe form of inherited dystonia, characterized by involuntary twisting movements and abnormal postures. It is linked to a deletion in the dyt1 gene, resulting in a mutated form of the protein torsinA. The penetrance for dystonia is incomplete, but both clinically affected and non-manifesting carriers of the DYT1 mutation exhibit impaired motor learning and evidence of altered motor plasticity. Here, we characterized striatal glutamatergic synaptic plasticity in transgenic mice expressing either the normal human torsinA or its mutant form, in comparison to non-transgenic (NT) control mice. Medium spiny neurons recorded from both NT and normal human torsinA mice exhibited normal long-term depression (LTD), whereas in mutant human torsinA littermates LTD could not be elicited. In addition, although long-term potentiation (LTP) could be induced in all the mice, it was greater in magnitude in mutant human torsinA mice. Low-frequency stimulation (LFS) can revert potentiated synapses to resting levels, a phenomenon termed synaptic depotentiation. LFS induced synaptic depotentiation (SD) both in NT and normal human torsinA mice, but not in mutant human torsinA mice. Since anti-cholinergic drugs are an effective medical therapeutic option for the treatment of human dystonia, we reasoned that an excess in endogenous acetylcholine could underlie the synaptic plasticity impairment. Indeed, both LTD and SD were rescued in mutant human torsinA mice either by lowering endogenous acetylcholine levels or by antagonizing muscarinic M1 receptors. The presence of an enhanced acetylcholine tone was confirmed by the observation that acetylcholinesterase activity was significantly increased in the striatum of mutant human torsinA mice, as compared with both normal human torsinA and NT littermates. Moreover, we found similar alterations of synaptic plasticity in muscarinic M2/M4 receptor knockout mice, in which an increased striatal acetylcholine level has been

  15. Impairment of bidirectional synaptic plasticity in the striatum of a mouse model of DYT1 dystonia: role of endogenous acetylcholine.

    PubMed

    Martella, Giuseppina; Tassone, Annalisa; Sciamanna, Giuseppe; Platania, Paola; Cuomo, Dario; Viscomi, Maria Teresa; Bonsi, Paola; Cacci, Emanuele; Biagioni, Stefano; Usiello, Alessandro; Bernardi, Giorgio; Sharma, Nutan; Standaert, David G; Pisani, Antonio

    2009-09-01

    DYT1 dystonia is a severe form of inherited dystonia, characterized by involuntary twisting movements and abnormal postures. It is linked to a deletion in the dyt1 gene, resulting in a mutated form of the protein torsinA. The penetrance for dystonia is incomplete, but both clinically affected and non-manifesting carriers of the DYT1 mutation exhibit impaired motor learning and evidence of altered motor plasticity. Here, we characterized striatal glutamatergic synaptic plasticity in transgenic mice expressing either the normal human torsinA or its mutant form, in comparison to non-transgenic (NT) control mice. Medium spiny neurons recorded from both NT and normal human torsinA mice exhibited normal long-term depression (LTD), whereas in mutant human torsinA littermates LTD could not be elicited. In addition, although long-term potentiation (LTP) could be induced in all the mice, it was greater in magnitude in mutant human torsinA mice. Low-frequency stimulation (LFS) can revert potentiated synapses to resting levels, a phenomenon termed synaptic depotentiation. LFS induced synaptic depotentiation (SD) both in NT and normal human torsinA mice, but not in mutant human torsinA mice. Since anti-cholinergic drugs are an effective medical therapeutic option for the treatment of human dystonia, we reasoned that an excess in endogenous acetylcholine could underlie the synaptic plasticity impairment. Indeed, both LTD and SD were rescued in mutant human torsinA mice either by lowering endogenous acetylcholine levels or by antagonizing muscarinic M1 receptors. The presence of an enhanced acetylcholine tone was confirmed by the observation that acetylcholinesterase activity was significantly increased in the striatum of mutant human torsinA mice, as compared with both normal human torsinA and NT littermates. Moreover, we found similar alterations of synaptic plasticity in muscarinic M2/M4 receptor knockout mice, in which an increased striatal acetylcholine level has been

  16. Two Protein N-Acetylgalactosaminyl Transferases Regulate Synaptic Plasticity by Activity-Dependent Regulation of Integrin Signaling

    PubMed Central

    Dani, Neil; Zhu, He

    2014-01-01

    Using a Drosophila whole-genome transgenic RNAi screen for glycogenes regulating synapse function, we have identified two protein α-N-acetylgalactosaminyltransferases (pgant3 and pgant35A) that regulate synaptic O-linked glycosylation (GalNAcα1-O-S/T). Loss of either pgant alone elevates presynaptic/postsynaptic molecular assembly and evoked neurotransmission strength, but synapses appear restored to normal in double mutants. Likewise, activity-dependent facilitation, augmentation, and posttetanic potentiation are all suppressively impaired in pgant mutants. In non-neuronal contexts, pgant function regulates integrin signaling, and we show here that the synaptic Position Specific 2 (αPS2) integrin receptor and transmembrane tenascin ligand are both suppressively downregulated in pgant mutants. Channelrhodopsin-driven activity rapidly (<1 min) drives integrin signaling in wild-type synapses but is suppressively abolished in pgant mutants. Optogenetic stimulation in pgant mutants alters presynaptic vesicle trafficking and postsynaptic pocket size during the perturbed integrin signaling underlying synaptic plasticity defects. Critically, acute blockade of integrin signaling acts synergistically with pgant mutants to eliminate all activity-dependent synaptic plasticity. PMID:25253852

  17. Synapse-specific stabilization of plasticity processes: the synaptic tagging and capture hypothesis revisited 10 years later.

    PubMed

    Barco, Angel; Lopez de Armentia, Mikel; Alarcon, Juan M

    2008-01-01

    A decade ago, the synaptic tagging hypothesis was proposed to explain how newly synthesized plasticity products can be specifically targeted to active synapses. A growing number of studies have validated the seminal findings that gave rise to this model, as well as contributed to unveil and expand the range of mechanisms underlying late-associativity and neuronal computation. Here, we will review what it was learnt during this past decade regarding the cellular and molecular mechanisms underlying synaptic tagging and synaptic capture. The accumulated experimental evidence has widened the theoretical framework set by the synaptic tagging and capture (STC) model and introduced concepts that were originally considered part of alternative models for explaining synapse-specific long-term potentiation (LTP). As a result, we believe that the STC model, now improved and expanded with these new ideas and concepts, still represents the most compelling hypothesis to explain late-associativity in synapse-specific plasticity processes. We will also discuss the impact of this model in our view of the integrative capability of neurons and associative learning. PMID:18281094

  18. Basic roles of key molecules connected with NMDAR signaling pathway on regulating learning and memory and synaptic plasticity.

    PubMed

    Wang, Hui; Peng, Rui-Yun

    2016-01-01

    With key roles in essential brain functions ranging from the long-term potentiation (LTP) to synaptic plasticity, the N-methyl-D-aspartic acid receptor (NMDAR) can be considered as one of the fundamental glutamate receptors in the central nervous system. The role of NMDA R was first identified in synaptic plasticity and has been extensively studied. Some molecules, such as Ca(2+), postsynaptic density 95 (PSD-95), calcium/calmodulin-dependent protein kinase II (CaMK II), protein kinase A (PKA), mitogen-activated protein kinase (MAPK) and cyclic adenosine monophosphate (cAMP) responsive element binding protein (CREB), are of special importance in learning and memory. This review mainly focused on the new research of key molecules connected with learning and memory, which played important roles in the NMDAR signaling pathway. PMID:27583167

  19. Short-term synaptic plasticity across topographic maps in the electrosensory system.

    PubMed

    Mileva, G R; Kozak, I J; Lewis, J E

    2016-03-24

    The early pathways underlying the active electric sense of the weakly electric fish Apteronotus leptorhynchus involve three parallel processing streams. An array of tuberous electroreceptors distributed over the skin provides inputs to the electrosensory lateral line lobe (ELL), forming the basis for three topographic maps: LS (lateral segment), CLS (centrolateral segment), and CMS (centromedial segment). In addition, each map receives topographically preserved inputs from a direct feedback pathway. How this feedback contributes to the distinct spatiotemporal filtering properties of ELL pyramidal neurons across maps is not clear. We used an in vitro approach to characterize short-term plasticity (STP) in the direct feedback synapses onto pyramidal neurons in each map. Our findings indicated that the dynamics of STP varied across maps in a manner that was consistent with the temporal filtering properties of pyramidal neurons in vivo. Using a modeling approach, we found that the STP of direct feedback synapses in CMS was best described by a simple facilitation-depression model. On the other hand, STP in LS was best described by synaptic facilitation with a use-dependent recovery rate. These results suggest that differential regulation of overlapping STP processes in feedback pathways can contribute to the functional specialization of topographic sensory maps. PMID:26791523

  20. p38 MAPK Inhibition Improves Synaptic Plasticity and Memory in Angiotensin II-dependent Hypertensive Mice.

    PubMed

    Dai, Hai-Long; Hu, Wei-Yuan; Jiang, Li-Hong; Li, Le; Gaung, Xue-Feng; Xiao, Zhi-Cheng

    2016-01-01

    The pathogenesis of hypertension-related cognitive impairment has not been sufficiently clarified, new molecular targets are needed. p38 MAPK pathway plays an important role in hypertensive target organ damage. Activated p38 MAPK was seen in AD brain tissue. In this study, we found that long-term potentiation (LTP) of hippocampal CA1 was decreased, the density of the dendritic spines on the CA1 pyramidal cells was reduced, the p-p38 protein expression in hippocampus was elevated, and cognitive function was impaired in angiotensin II-dependent hypertensive C57BL/6 mice. In vivo, using a p38 heterozygous knockdown mice (p38(KI/+)) model, we showed that knockdown of p38 MAPK in hippocampus leads to the improvement of cognitive function and hippocampal synaptic plasticity in angiotensin II-dependent p38(KI/+) hypertensive mice. In vitro, LTP was improved in hippocampal slices from C57BL/6 hypertensive mice by treatment with p38MAPK inhibitor SKF86002. Our data demonstrated that p38 MAPK may be a potential therapeutic target for hypertension-related cognitive dysfunction. PMID:27283322

  1. Molecular determinants of magnesium-dependent synaptic plasticity at electrical synapses formed by connexin36

    NASA Astrophysics Data System (ADS)

    Palacios-Prado, Nicolás; Chapuis, Sandrine; Panjkovich, Alejandro; Fregeac, Julien; Nagy, James I.; Bukauskas, Feliksas F.

    2014-08-01

    Neuronal gap junction (GJ) channels composed of connexin36 (Cx36) play an important role in neuronal synchronization and network dynamics. Here we show that Cx36-containing electrical synapses between inhibitory neurons of the thalamic reticular nucleus are bidirectionally modulated by changes in intracellular free magnesium concentration ([Mg2+]i). Chimeragenesis demonstrates that the first extracellular loop of Cx36 contains a Mg2+-sensitive domain, and site-directed mutagenesis shows that the pore-lining residue D47 is critical in determining high Mg2+-sensitivity. Single-channel analysis of Mg2+-sensitive chimeras and mutants reveals that [Mg2+]i controls the strength of electrical coupling mostly via gating mechanisms. In addition, asymmetric transjunctional [Mg2+]i induces strong instantaneous rectification, providing a novel mechanism for electrical rectification in homotypic Cx36 GJs. We suggest that Mg2+-dependent synaptic plasticity of Cx36-containing electrical synapses could underlie neuronal circuit reconfiguration via changes in brain energy metabolism that affects neuronal levels of intracellular ATP and [Mg2+]i.

  2. p38 MAPK Inhibition Improves Synaptic Plasticity and Memory in Angiotensin II-dependent Hypertensive Mice

    PubMed Central

    Dai, Hai-long; Hu, Wei-yuan; Jiang, Li-hong; Li, Le; Gaung, Xue-feng; Xiao, Zhi-cheng

    2016-01-01

    The pathogenesis of hypertension-related cognitive impairment has not been sufficiently clarified, new molecular targets are needed. p38 MAPK pathway plays an important role in hypertensive target organ damage. Activated p38 MAPK was seen in AD brain tissue. In this study, we found that long-term potentiation (LTP) of hippocampal CA1 was decreased, the density of the dendritic spines on the CA1 pyramidal cells was reduced, the p-p38 protein expression in hippocampus was elevated, and cognitive function was impaired in angiotensin II-dependent hypertensive C57BL/6 mice. In vivo, using a p38 heterozygous knockdown mice (p38KI/+) model, we showed that knockdown of p38 MAPK in hippocampus leads to the improvement of cognitive function and hippocampal synaptic plasticity in angiotensin II-dependent p38KI/+ hypertensive mice. In vitro, LTP was improved in hippocampal slices from C57BL/6 hypertensive mice by treatment with p38MAPK inhibitor SKF86002. Our data demonstrated that p38 MAPK may be a potential therapeutic target for hypertension-related cognitive dysfunction. PMID:27283322

  3. Maternal care differentially affects neuronal excitability and synaptic plasticity in the dorsal and ventral hippocampus.

    PubMed

    Nguyen, Huy-Binh; Bagot, Rosemary C; Diorio, Josie; Wong, Tak Pan; Meaney, Michael J

    2015-06-01

    Variations in early life maternal care modulate hippocampal development to program distinct emotional-cognitive phenotypes that persist into adulthood. Adult rat offspring that received low compared with high levels of maternal licking and grooming (low LG offspring) in early postnatal life show reduced long term potentiation (LTP) and impaired hippocampal-dependent memory, suggesting a 'detrimental' maternal effect on neural development. However, these studies focused uniquely on the dorsal hippocampus. Emerging evidence suggests a distinct role of the ventral hippocampus in mediating aggression, anxiety, and fear-memory formation, which are enhanced in low LG offspring. We report that variations in maternal care in the rat associate with opposing effects on hippocampal function in the dorsal and ventral hippocampus. Reduced pup licking associated with suppressed LTP formation in the dorsal hippocampus, but enhanced ventral hippocampal LTP. Ventral hippocampal neurons in low LG offspring fired action potentials at lower threshold voltages that were of larger amplitude and faster rise rate in comparison with those in high LG offspring. Furthermore, recordings of excitatory postsynaptic potential-to-spike coupling (E-S coupling) revealed an increase in excitability of ventral hippocampal CA1 neurons in low LG offspring. These effects do not associate with changes in miniature excitatory postsynaptic currents or paired-pulse facilitation, suggesting a specific effect of maternal care on intrinsic excitability. These findings suggest region-specific influences of maternal care in shaping neural development and synaptic plasticity. PMID:25598429

  4. Dopamine-dependent synaptic plasticity in an amygdala inhibitory circuit controls fear memory expression.

    PubMed

    Lee, Joo Han; Kim, Joung-Hun

    2016-01-01

    Of the numerous events that occur in daily life, we readily remember salient information, but do not retain most less-salient events for a prolonged period. Although some of the episodes contain putatively emotional aspects, the information with lower saliency is rarely stored in neural circuits via an unknown mechanism. We provided substantial evidence indicating that synaptic plasticity in the dorsal ITC of amygdala allows for selective storage of salient emotional experiences, while it deters less-salient experience from entering long-term memory. After activation of D4R or weak fear conditioning, STDP stimulation induces LTD in the LA-ITC synapses. This form of LTD is dependent upon presynaptic D4R, and is likely to result from enhancement of GABA release. Both optogenetic abrogation of LTD and ablation of D4R at the dorsal ITC in vivo lead to heightened and over-generalized fear responses. Finally, we demonstrated that LTD was impaired at the dorsal ITC of PTSD model mice, which suggests that maladaptation of GABAergic signaling and the resultant LTD impairment contribute to the endophenotypes of PTSD. PMID:26674344

  5. Maternal Care Differentially Affects Neuronal Excitability and Synaptic Plasticity in the Dorsal and Ventral Hippocampus

    PubMed Central

    Nguyen, Huy-Binh; Bagot, Rosemary C; Diorio, Josie; Wong, Tak Pan; Meaney, Michael J

    2015-01-01

    Variations in early life maternal care modulate hippocampal development to program distinct emotional–cognitive phenotypes that persist into adulthood. Adult rat offspring that received low compared with high levels of maternal licking and grooming (low LG offspring) in early postnatal life show reduced long term potentiation (LTP) and impaired hippocampal-dependent memory, suggesting a ‘detrimental' maternal effect on neural development. However, these studies focused uniquely on the dorsal hippocampus. Emerging evidence suggests a distinct role of the ventral hippocampus in mediating aggression, anxiety, and fear-memory formation, which are enhanced in low LG offspring. We report that variations in maternal care in the rat associate with opposing effects on hippocampal function in the dorsal and ventral hippocampus. Reduced pup licking associated with suppressed LTP formation in the dorsal hippocampus, but enhanced ventral hippocampal LTP. Ventral hippocampal neurons in low LG offspring fired action potentials at lower threshold voltages that were of larger amplitude and faster rise rate in comparison with those in high LG offspring. Furthermore, recordings of excitatory postsynaptic potential-to-spike coupling (E-S coupling) revealed an increase in excitability of ventral hippocampal CA1 neurons in low LG offspring. These effects do not associate with changes in miniature excitatory postsynaptic currents or paired-pulse facilitation, suggesting a specific effect of maternal care on intrinsic excitability. These findings suggest region-specific influences of maternal care in shaping neural development and synaptic plasticity. PMID:25598429

  6. Synaptic plasticity in the acoustic startle pathway: the neuronal basis for short-term habituation?

    PubMed

    Weber, Maruschka; Schnitzler, Hans-Ulrich; Schmid, Susanne

    2002-10-01

    The aim of the present study was to analyse the cellular mechanism underlying short-term habituation of the acoustic startle response (ASR). We explored distinct synapses of the neuronal startle pathway in rat brain slices by patch-clamp recordings of giant neurons in the caudal pontine reticular formation. Presynaptic stimulation of auditory afferents by repeated bursts at 0.1 and 1 Hz led to an exponential decay of EPSC magnitudes. This homosynaptic depression (HSD) was reversible and repeatedly inducible after recovery. Many parameters of HSD in vitro match those of ASR habituation in vivo. The mechanisms underlying HSD are distinct from classical short-term plasticity: paired-pulse as well as paired-burst stimulation revealed a facilitation of the second EPSC, occurring in a much smaller time window up to interstimulus intervals of 200 ms. Pharmacological experiments demonstrated that HSD could be completely blocked by the group II and III metabotropic glutamate receptor antagonist MPPG. Similar results were obtained by CPPG, another group II and III antagonist. In contrast, HSD was not affected by the group I and II antagonist MCPG. We conclude that we found a form of synaptic depression in synapses within the primary startle pathway which correlates in many respects with short-term habituation of the ASR and which is presumably mediated by group III metabotropic glutamate receptors. PMID:12405993

  7. Orofacial Neuropathic Pain Leads to a Hyporesponsive Barrel Cortex with Enhanced Structural Synaptic Plasticity

    PubMed Central

    Thibault, Karine; Rivière, Sébastien; Lenkei, Zsolt

    2016-01-01

    Chronic pain is a long-lasting debilitating condition that is particularly difficult to treat due to the lack of identified underlying mechanisms. Although several key contributing processes have been described at the level of the spinal cord, very few studies have investigated the supraspinal mechanisms underlying chronic pain. Using a combination of approaches (cortical intrinsic imaging, immunohistochemical and behavioural analysis), our study aimed to decipher the nature of functional and structural changes in a mouse model of orofacial neuropathic pain, focusing on cortical areas involved in various pain components. Our results show that chronic neuropathic orofacial pain is associated with decreased haemodynamic responsiveness to whisker stimulation in the barrel field cortex. This reduced functional activation is likely due to the increased basal neuronal activity (measured indirectly using cFos and phospho-ERK immunoreactivity) observed in several cortical areas, including the contralateral barrel field, motor and cingulate cortices. In the same animals, immunohistochemical analysis of markers for active pre- or postsynaptic elements (Piccolo and phospho-Cofilin, respectively) revealed an increased immunofluorescence in deep cortical layers of the contralateral barrel field, motor and cingulate cortices. These results suggest that long-lasting orofacial neuropathic pain is associated with exacerbated neuronal activity and synaptic plasticity at the cortical level. PMID:27548330

  8. Short-term plasticity and modulation of synaptic transmission at mammalian inhibitory cholinergic olivocochlear synapses

    PubMed Central

    Katz, Eleonora; Elgoyhen, Ana Belén

    2014-01-01

    The organ of Corti, the mammalian sensory epithelium of the inner ear, has two types of mechanoreceptor cells, inner hair cells (IHCs) and outer hair cells (OHCs). In this sensory epithelium, vibrations produced by sound waves are transformed into electrical signals. When depolarized by incoming sounds, IHCs release glutamate and activate auditory nerve fibers innervating them and OHCs, by virtue of their electromotile property, increase the amplification and fine tuning of sound signals. The medial olivocochlear (MOC) system, an efferent feedback system, inhibits OHC activity and thereby reduces the sensitivity and sharp tuning of cochlear afferent fibers. During neonatal development, IHCs fire Ca2+ action potentials which evoke glutamate release promoting activity in the immature auditory system in the absence of sensory stimuli. During this period, MOC fibers also innervate IHCs and are thought to modulate their firing rate. Both the MOC-OHC and the MOC-IHC synapses are cholinergic, fast and inhibitory and mediated by the α9α10 nicotinic cholinergic receptor (nAChR) coupled to the activation of calcium-activated potassium channels that hyperpolarize the hair cells. In this review we discuss the biophysical, functional and molecular data which demonstrate that at the synapses between MOC efferent fibers and cochlear hair cells, modulation of transmitter release as well as short term synaptic plasticity mechanisms, operating both at the presynaptic terminal and at the postsynaptic hair-cell, determine the efficacy of these synapses and shape the hair cell response pattern. PMID:25520631

  9. Branch-specific dendritic Ca2+ spikes cause persistent synaptic plasticity

    PubMed Central

    Cichon, Joseph; Gan, Wen-Biao

    2015-01-01

    The brain has an extraordinary capacity for memory storage, but how it stores new information without disrupting previously acquired memories remains unknown. Here we show that different motor learning tasks induce dendritic Ca2+ spikes on different apical tuft branches of individual layer V pyramidal neurons in the mouse motor cortex. These task-related, branch-specific Ca2+ spikes cause long-lasting potentiation of postsynaptic dendritic spines active at the time of spike generation. When somatostatin-expressing interneurons are inactivated, different motor tasks frequently induce Ca2+ spikes on the same branches. On those branches, spines potentiated during one task are depotentiated when they are active seconds before Ca2+ spikes induced by another task. Concomitantly, increased neuronal activity and performance improvement after learning one task are disrupted when another task is learned. These findings indicate that dendritic-branch-specific generation of Ca2+ spikes is crucial for establishing long-lasting synaptic plasticity, thereby facilitating information storage associated with different learning experiences. PMID:25822789

  10. Molecular Determinants of Magnesium-Dependent Synaptic Plasticity at Electrical Synapses Formed by Connexin36

    PubMed Central

    Palacios-Prado, Nicolás; Chapuis, Sandrine; Panjkovich, Alejandro; Fregeac, Julien; Nagy, James I.; Bukauskas, Feliksas F.

    2014-01-01

    Neuronal gap junction (GJ) channels composed of connexin36 (Cx36) play an important role in neuronal synchronization and network dynamics. Here we show that Cx36-containing electrical synapses between inhibitory neurons of the thalamic reticular nucleus are bi-directionally modulated by changes in intracellular free magnesium concentration ([Mg2+]i). Chimeragenesis demonstrates that the first extracellular loop of Cx36 contains a Mg2+-sensitive domain, and site-directed mutagenesis shows that the pore-lining residue D47 is critical in determining high Mg2+-sensitivity. Single channel analysis of Mg2+-sensitive chimeras and mutants reveals that [Mg2+]i controls the strength of electrical coupling mostly via gating mechanisms. In addition, asymmetric transjunctional [Mg2+]i induces strong instantaneous rectification, providing a novel mechanism for electrical rectification in homotypic Cx36 GJs. We suggest that Mg2+-dependent synaptic plasticity of Cx36-containing electrical synapses could underlie neuronal circuit reconfiguration via changes in brain energy metabolism that affects neuronal levels of intracellular ATP and [Mg2+]i. PMID:25135336

  11. Orofacial Neuropathic Pain Leads to a Hyporesponsive Barrel Cortex with Enhanced Structural Synaptic Plasticity.

    PubMed

    Thibault, Karine; Rivière, Sébastien; Lenkei, Zsolt; Férézou, Isabelle; Pezet, Sophie

    2016-01-01

    Chronic pain is a long-lasting debilitating condition that is particularly difficult to treat due to the lack of identified underlying mechanisms. Although several key contributing processes have been described at the level of the spinal cord, very few studies have investigated the supraspinal mechanisms underlying chronic pain. Using a combination of approaches (cortical intrinsic imaging, immunohistochemical and behavioural analysis), our study aimed to decipher the nature of functional and structural changes in a mouse model of orofacial neuropathic pain, focusing on cortical areas involved in various pain components. Our results show that chronic neuropathic orofacial pain is associated with decreased haemodynamic responsiveness to whisker stimulation in the barrel field cortex. This reduced functional activation is likely due to the increased basal neuronal activity (measured indirectly using cFos and phospho-ERK immunoreactivity) observed in several cortical areas, including the contralateral barrel field, motor and cingulate cortices. In the same animals, immunohistochemical analysis of markers for active pre- or postsynaptic elements (Piccolo and phospho-Cofilin, respectively) revealed an increased immunofluorescence in deep cortical layers of the contralateral barrel field, motor and cingulate cortices. These results suggest that long-lasting orofacial neuropathic pain is associated with exacerbated neuronal activity and synaptic plasticity at the cortical level. PMID:27548330

  12. Therapeutic hypothermia protects against ischemia-induced impairment of synaptic plasticity following juvenile cardiac arrest in sex-dependent manner.

    PubMed

    Dietz, R M; Deng, G; Orfila, J E; Hui, X; Traystman, R J; Herson, P S

    2016-06-14

    Pediatric cardiac arrest (CA) often leads to poor neurologic outcomes, including deficits in learning and memory. The only approved treatment for CA is therapeutic hypothermia, although its utility in the pediatric population remains unclear. This study analyzed the effect of mild therapeutic hypothermia after CA in juvenile mice on hippocampal neuronal injury and the cellular model of learning and memory, termed long-term potentiation (LTP). Juvenile mice were subjected to cardiac arrest and cardiopulmonary resuscitation (CA/CPR) followed by normothermia (37°C) and hypothermia (30°C, 32°C). Histological injury of hippocampal CA1 neurons was performed 3days after resuscitation using hematoxylin and eosin (H&E) staining. Field excitatory post-synaptic potentials (fEPSPs) were recorded from acute hippocampal slices 7days after CA/CPR to determine LTP. Synaptic function was impaired 7days after CA/CPR. Mice exposed to hypothermia showed equivalent neuroprotection, but exhibited sexually dimorphic protection against ischemia-induced impairment of LTP. Hypothermia (32°C) protects synaptic plasticity more effectively in females, with males requiring a deeper level of hypothermia (30°C) for equivalent protection. In conclusion, male and female juvenile mice exhibit equivalent neuronal injury following CA/CPR and hypothermia protects both males and females. We made the surprising finding that juvenile mice have a sexually dimorphic response to mild therapeutic hypothermia protection of synaptic function, where males may need a deeper level of hypothermia for equivalent synaptic protection. PMID:27033251

  13. Susceptibility for homeostatic plasticity is down-regulated in parallel with maturation of the rat hippocampal synaptic circuitry

    PubMed Central

    Huupponen, J; Molchanova, S M; Taira, T; Lauri, S E

    2007-01-01

    Homeostatic regulation, i.e. the ability of neurons and neuronal networks to adjust their output in response to chronic alterations in electrical activity is a prerequisite for the pronounced functional plasticity in the developing brain. Cellular mechanisms of homeostatic plasticity have mainly been studied in cultured preparations. To understand the developmental time frame and properties of homeostatic plasticity under more physiological conditions, we have here compared the effects of activity deprivation on synaptic transmission in acutely isolated and cultured hippocampal slices at different stages of development. We find that transmission at both glutamatergic and GABAergic synapses is strongly and rapidly (15 h) regulated in the opposite directions in response to inactivity during narrow, separated time windows early in development. Following this critical period of synaptic development, induction of the homeostatic response requires longer periods (40 h) of inactivity. At glutamatergic synapses, activity blockade led to an increase in the amplitude and frequency of mEPSCs, and the threshold for induction of this response was increased during development. In contrast, homeostatic regulation at GABAergic synapses was expressed in a qualitatively distinct manner at different developmental stages. Immature neurons responded rapidly to inactivity by regulating mIPSC frequency, while longer activity blockade led to a decrease in the mIPSC amplitude independent of the neuronal maturation. The susceptibility of immature networks to homeostatic regulation may serve as a safety mechanism against rapid runaway destability during the time of intense remodelling of the synaptic circuitry. PMID:17347263

  14. Susceptibility for homeostatic plasticity is down-regulated in parallel with maturation of the rat hippocampal synaptic circuitry.

    PubMed

    Huupponen, J; Molchanova, S M; Taira, T; Lauri, S E

    2007-06-01

    Homeostatic regulation, i.e. the ability of neurons and neuronal networks to adjust their output in response to chronic alterations in electrical activity is a prerequisite for the pronounced functional plasticity in the developing brain. Cellular mechanisms of homeostatic plasticity have mainly been studied in cultured preparations. To understand the developmental time frame and properties of homeostatic plasticity under more physiological conditions, we have here compared the effects of activity deprivation on synaptic transmission in acutely isolated and cultured hippocampal slices at different stages of development. We find that transmission at both glutamatergic and GABAergic synapses is strongly and rapidly (15 h) regulated in the opposite directions in response to inactivity during narrow, separated time windows early in development. Following this critical period of synaptic development, induction of the homeostatic response requires longer periods (40 h) of inactivity. At glutamatergic synapses, activity blockade led to an increase in the amplitude and frequency of mEPSCs, and the threshold for induction of this response was increased during development. In contrast, homeostatic regulation at GABAergic synapses was expressed in a qualitatively distinct manner at different developmental stages. Immature neurons responded rapidly to inactivity by regulating mIPSC frequency, while longer activity blockade led to a decrease in the mIPSC amplitude independent of the neuronal maturation. The susceptibility of immature networks to homeostatic regulation may serve as a safety mechanism against rapid runaway destability during the time of intense remodelling of the synaptic circuitry. PMID:17347263

  15. A Postsynaptic AMPK→p21-Activated Kinase Pathway Drives Fasting-Induced Synaptic Plasticity in AgRP Neurons.

    PubMed

    Kong, Dong; Dagon, Yossi; Campbell, John N; Guo, Yikun; Yang, Zongfang; Yi, Xinchi; Aryal, Pratik; Wellenstein, Kerry; Kahn, Barbara B; Sabatini, Bernardo L; Lowell, Bradford B

    2016-07-01

    AMP-activated protein kinase (AMPK) plays an important role in regulating food intake. The downstream AMPK substrates and neurobiological mechanisms responsible for this, however, are ill defined. Agouti-related peptide (AgRP)-expressing neurons in the arcuate nucleus regulate hunger. Their firing increases with fasting, and once engaged they cause feeding. AgRP neuron activity is regulated by state-dependent synaptic plasticity: fasting increases dendritic spines and excitatory synaptic activity; feeding does the opposite. The signaling mechanisms underlying this, however, are also unknown. Using neuron-specific approaches to measure and manipulate kinase activity specifically within AgRP neurons, we establish that fasting increases AMPK activity in AgRP neurons, that increased AMPK activity in AgRP neurons is both necessary and sufficient for fasting-induced spinogenesis and excitatory synaptic activity, and that the AMPK phosphorylation target mediating this plasticity is p21-activated kinase. This provides a signaling and neurobiological basis for both AMPK regulation of energy balance and AgRP neuron state-dependent plasticity. PMID:27321921

  16. The Sphingolipid Receptor S1PR2 Is a Receptor for Nogo-A Repressing Synaptic Plasticity

    PubMed Central

    Arzt, Michael E.; Weinmann, Oliver; Obermair, Franz J.; Pernet, Vincent; Zagrebelsky, Marta; Delekate, Andrea; Iobbi, Cristina; Zemmar, Ajmal; Ristic, Zorica; Gullo, Miriam; Spies, Peter; Dodd, Dana; Gygax, Daniel; Korte, Martin; Schwab, Martin E.

    2014-01-01

    Nogo-A is a membrane protein of the central nervous system (CNS) restricting neurite growth and synaptic plasticity via two extracellular domains: Nogo-66 and Nogo-A-Δ20. Receptors transducing Nogo-A-Δ20 signaling remained elusive so far. Here we identify the G protein-coupled receptor (GPCR) sphingosine 1-phosphate receptor 2 (S1PR2) as a Nogo-A-Δ20-specific receptor. Nogo-A-Δ20 binds S1PR2 on sites distinct from the pocket of the sphingolipid sphingosine 1-phosphate (S1P) and signals via the G protein G13, the Rho GEF LARG, and RhoA. Deleting or blocking S1PR2 counteracts Nogo-A-Δ20- and myelin-mediated inhibition of neurite outgrowth and cell spreading. Blockade of S1PR2 strongly enhances long-term potentiation (LTP) in the hippocampus of wild-type but not Nogo-A−/− mice, indicating a repressor function of the Nogo-A/S1PR2 axis in synaptic plasticity. A similar increase in LTP was also observed in the motor cortex after S1PR2 blockade. We propose a novel signaling model in which a GPCR functions as a receptor for two structurally unrelated ligands, a membrane protein and a sphingolipid. Elucidating Nogo-A/S1PR2 signaling platforms will provide new insights into regulation of synaptic plasticity. PMID:24453941

  17. Syncrip/hnRNP Q influences synaptic transmission and regulates BMP signaling at the Drosophila neuromuscular synapse

    PubMed Central

    Halstead, James M.; Lin, Yong Qi; Durraine, Lita; Hamilton, Russell S.; Ball, Graeme; Neely, Greg G.; Bellen, Hugo J.; Davis, Ilan

    2014-01-01

    ABSTRACT Synaptic plasticity involves the modulation of synaptic connections in response to neuronal activity via multiple pathways. One mechanism modulates synaptic transmission by retrograde signals from the post-synapse that influence the probability of vesicle release in the pre-synapse. Despite its importance, very few factors required for the expression of retrograde signals, and proper synaptic transmission, have been identified. Here, we identify the conserved RNA binding protein Syncrip as a new factor that modulates the efficiency of vesicle release from the motoneuron and is required for correct synapse structure. We show that syncrip is required genetically and its protein product is detected only in the muscle and not in the motoneuron itself. This unexpected non-autonomy is at least partly explained by the fact that Syncrip modulates retrograde BMP signals from the muscle back to the motoneuron. We show that Syncrip influences the levels of the Bone Morphogenic Protein ligand Glass Bottom Boat from the post-synapse and regulates the pre-synapse. Our results highlight the RNA-binding protein Syncrip as a novel regulator of synaptic output. Given its known role in regulating translation, we propose that Syncrip is important for maintaining a balance between the strength of presynaptic vesicle release and postsynaptic translation. PMID:25171887

  18. The First Alcohol Drink Triggers mTORC1-Dependent Synaptic Plasticity in Nucleus Accumbens Dopamine D1 Receptor Neurons.

    PubMed

    Beckley, Jacob T; Laguesse, Sophie; Phamluong, Khanhky; Morisot, Nadege; Wegner, Scott A; Ron, Dorit

    2016-01-20

    Early binge-like alcohol drinking may promote the development of hazardous intake. However, the enduring cellular alterations following the first experience with alcohol consumption are not fully understood. We found that the first binge-drinking alcohol session produced enduring enhancement of excitatory synaptic transmission onto dopamine D1 receptor-expressing neurons (D1+ neurons) in the nucleus accumbens (NAc) shell but not the core in mice, which required D1 receptors (D1Rs) and mechanistic target of rapamycin complex 1 (mTORC1). Furthermore, inhibition of mTORC1 activity during the first alcohol drinking session reduced alcohol consumption and preference of a subsequent drinking session. mTORC1 is critically involved in RNA-to-protein translation, and we found that the first alcohol session rapidly activated mTORC1 in NAc shell D1+ neurons and increased synaptic expression of the AMPAR subunit GluA1 and the scaffolding protein Homer. Finally, D1R stimulation alone was sufficient to activate mTORC1 in the NAc to promote mTORC1-dependent translation of the synaptic proteins GluA1 and Homer. Together, our results indicate that the first alcohol drinking session induces synaptic plasticity in NAc D1+ neurons via enhanced mTORC1-dependent translation of proteins involved in excitatory synaptic transmission that in turn drives the reinforcement learning associated with the first alcohol experience. Thus, the alcohol-dependent D1R/mTORC1-mediated increase in synaptic function in the NAc may reflect a neural imprint of alcohol's reinforcing properties, which could promote subsequent alcohol intake. Significance statement: Consuming alcohol for the first time is a learning event that drives further drinking. Here, we identified a mechanism that may underlie the reinforcing learning associated with the initial alcohol experience. We show that the first alcohol experience induces a persistent enhancement of excitatory synaptic transmission on NAc shell D1+ neurons

  19. The First Alcohol Drink Triggers mTORC1-Dependent Synaptic Plasticity in Nucleus Accumbens Dopamine D1 Receptor Neurons

    PubMed Central

    Beckley, Jacob T.; Laguesse, Sophie; Phamluong, Khanhky; Morisot, Nadege; Wegner, Scott A.

    2016-01-01

    Early binge-like alcohol drinking may promote the development of hazardous intake. However, the enduring cellular alterations following the first experience with alcohol consumption are not fully understood. We found that the first binge-drinking alcohol session produced enduring enhancement of excitatory synaptic transmission onto dopamine D1 receptor-expressing neurons (D1+ neurons) in the nucleus accumbens (NAc) shell but not the core in mice, which required D1 receptors (D1Rs) and mechanistic target of rapamycin complex 1 (mTORC1). Furthermore, inhibition of mTORC1 activity during the first alcohol drinking session reduced alcohol consumption and preference of a subsequent drinking session. mTORC1 is critically involved in RNA-to-protein translation, and we found that the first alcohol session rapidly activated mTORC1 in NAc shell D1+ neurons and increased synaptic expression of the AMPAR subunit GluA1 and the scaffolding protein Homer. Finally, D1R stimulation alone was sufficient to activate mTORC1 in the NAc to promote mTORC1-dependent translation of the synaptic proteins GluA1 and Homer. Together, our results indicate that the first alcohol drinking session induces synaptic plasticity in NAc D1+ neurons via enhanced mTORC1-dependent translation of proteins involved in excitatory synaptic transmission that in turn drives the reinforcement learning associated with the first alcohol experience. Thus, the alcohol-dependent D1R/mTORC1-mediated increase in synaptic function in the NAc may reflect a neural imprint of alcohol's reinforcing properties, which could promote subsequent alcohol intake. SIGNIFICANCE STATEMENT Consuming alcohol for the first time is a learning event that drives further drinking. Here, we identified a mechanism that may underlie the reinforcing learning associated with the initial alcohol experience. We show that the first alcohol experience induces a persistent enhancement of excitatory synaptic transmission on NAc shell D1+ neurons

  20. Mitogen-Activated Protein Kinase Phosphatase-2 Deletion Impairs Synaptic Plasticity and Hippocampal-Dependent Memory

    PubMed Central

    Abdul Rahman, Nor Zaihana; Greenwood, Sam M.; Brett, Ros R.; Tossell, Kyoko; Ungless, Mark A.; Plevin, Robin

    2016-01-01

    roles for a specific MKP, MKP-2, in the immune system and cancer. In the present study, we focus on MKP-2 to determine its role in neuronal function. Using transgenic mice where the Dusp4 gene encoding MKP-2 has been knocked out, we use a number of techniques to reveal that MKP-2 deletion increases spontaneous neurotransmitter release, impairs the induction of synaptic plasticity, and induces deficits in hippocampal-dependent memory. These findings provide a new insight into role that MKP-2 plays in regulation hippocampal function and that this may be independent of MAPK signaling. PMID:26911683

  1. The interactive role of CB(1) and GABA(B) receptors in hippocampal synaptic plasticity in rats.

    PubMed

    Nazari, Masoumeh; Komaki, Alireza; Karamian, Ruhollah; Shahidi, Siamak; Sarihi, Abdolrahman; Asadbegi, Masoumeh

    2016-01-01

    Long-term potentiation (LTP) of synaptic transmission is a cellular process underlying learning and memory. Cannabinoids are known to be powerful modulators of this kind of synaptic plasticity. Changes in GABAergic inhibition have also been shown to affect synaptic plasticity in the hippocampus. GABA receptor type B (GABAB) and cannabinoid receptor type 1 (CB1) exhibit overlapping anatomical localization in some brain areas including the hippocampus. CB1 and GABAB are also localized to the same cells and share a common signaling pathway in some brain areas. In this study, we examined the hippocampal effects of co-administrating AM251 and CGP55845, which are CB1 and GABAB antagonists, respectively, on LTP induction in the dentate gyrus (DG) of rats. LTP in the hippocampal area was induced by high-frequency stimulation (HFS) of the perforant path. Our results showed that HFS coupled with administration of the CB1 antagonist increased both the population spike (PS) amplitude and field excitatory post-synaptic potential (fEPSP). Conversely, the GABAB antagonist decreased these parameters along with decreased LTP induction. We also demonstrated that the co-administration of CB1 and GABAB antagonists had different effects on the PS amplitude and fEPSP slope. It is likely that GABAB receptor antagonists modulate cannabinoid outputs that cause a decrease in synaptic plastisity, while in the simultaneous consumption of two antagonists, CB1 antagonists can alter the release of GABA which in turn results in enhancement of LTP induction. These findings suggest that there are functional interactions between the CB1 and GABAB receptor in the hippocampus. PMID:26611204

  2. Impaired ILK Function Is Associated with Deficits in Hippocampal Based Memory and Synaptic Plasticity in a FASD Rat Model.

    PubMed

    Bhattacharya, D; Dunaway, E P; Bhattacharya, S; Bloemer, J; Buabeid, M; Escobar, M; Suppiramaniam, V; Dhanasekaran, M

    2015-01-01

    Fetal Alcohol Spectrum Disorder (FASD) is an umbrella term that encompasses a wide range of anatomical and behavioral problems in children who are exposed to alcohol during the prenatal period. There is no effective treatment for FASD, because of lack of complete characterization of the cellular and molecular mechanisms underlying this condition. Alcohol has been previously characterized to affect integrins and growth factor signaling receptors. Integrin Linked Kinase (ILK) is an effector of integrin and growth-factor signaling which regulates various signaling processes. In FASD, a downstream effector of ILK, Glycogen Synthase Kinase 3β (GSK3β) remains highly active (reduced Ser9 phosphorylation). GSK3β has been known to modulate glutamate receptor trafficking and channel properties. Therefore, we hypothesize that the cognitive deficits accompanying FASD are associated with impairments in the ILK signaling pathway. Pregnant Sprague Dawley rats consumed a "moderate" amount of alcohol throughout gestation, or a calorie-equivalent sucrose solution. Contextual fear conditioning was used to evaluate memory performance in 32-33-day-old pups. Synaptic plasticity was assessed in the Schaffer Collateral pathway, and hippocampal protein lysates were used to evaluate ILK signaling. Alcohol exposed pups showed impaired contextual fear conditioning, as compared to control pups. This reduced memory performance was consistent with decrease in LTP as compared to controls. Hippocampal ILK activity and GSK3β Ser21/9 phosphorylation were significantly lower in alcohol-exposed pups than controls. Increased synaptic expression of GluR2 AMPA receptors was observed with immunoprecipitation of post-synaptic density protein 95 (PSD95). Furthermore, immunoprecipitation of ILK revealed a decreased interaction with GluR2. The ILK pathway appears to play a significant role in memory and synaptic plasticity impairments in FASD rats. These impairments appear to be mediated by reduced GSK3

  3. Impaired ILK Function Is Associated with Deficits in Hippocampal Based Memory and Synaptic Plasticity in a FASD Rat Model

    PubMed Central

    Bhattacharya, D.; Dunaway, E. P.; Bhattacharya, S.; Bloemer, J.; Buabeid, M.; Escobar, M.

    2015-01-01

    Fetal Alcohol Spectrum Disorder (FASD) is an umbrella term that encompasses a wide range of anatomical and behavioral problems in children who are exposed to alcohol during the prenatal period. There is no effective treatment for FASD, because of lack of complete characterization of the cellular and molecular mechanisms underlying this condition. Alcohol has been previously characterized to affect integrins and growth factor signaling receptors. Integrin Linked Kinase (ILK) is an effector of integrin and growth-factor signaling which regulates various signaling processes. In FASD, a downstream effector of ILK, Glycogen Synthase Kinase 3β (GSK3β) remains highly active (reduced Ser9 phosphorylation). GSK3β has been known to modulate glutamate receptor trafficking and channel properties. Therefore, we hypothesize that the cognitive deficits accompanying FASD are associated with impairments in the ILK signaling pathway. Pregnant Sprague Dawley rats consumed a “moderate” amount of alcohol throughout gestation, or a calorie-equivalent sucrose solution. Contextual fear conditioning was used to evaluate memory performance in 32–33-day-old pups. Synaptic plasticity was assessed in the Schaffer Collateral pathway, and hippocampal protein lysates were used to evaluate ILK signaling. Alcohol exposed pups showed impaired contextual fear conditioning, as compared to control pups. This reduced memory performance was consistent with decrease in LTP as compared to controls. Hippocampal ILK activity and GSK3β Ser21/9 phosphorylation were significantly lower in alcohol-exposed pups than controls. Increased synaptic expression of GluR2 AMPA receptors was observed with immunoprecipitation of post-synaptic density protein 95 (PSD95). Furthermore, immunoprecipitation of ILK revealed a decreased interaction with GluR2. The ILK pathway appears to play a significant role in memory and synaptic plasticity impairments in FASD rats. These impairments appear to be mediated by reduced

  4. Hunger States Control the Directions of Synaptic Plasticity via Switching Cell Type-Specific Subunits of NMDA Receptors.

    PubMed

    Qi, Yong; Yang, Yunlei

    2015-09-23

    It remains largely unknown whether and how hunger states control activity-dependent synaptic plasticity, such as long-term potentiation (LTP) and long-term depression (LTD). We here report that both LTP and LTD of excitatory synaptic strength within the appetite control circuits residing in hypothalamic arcuate nucleus (ARC) behave in a manner of hunger states dependence and cell type specificity. For instance, we find that tetanic stimulation induces LTP at orexigenic agouti-related protein (AgRP) neurons in ad libitum fed mice, whereas it induces LTD in food-deprived mice. In an opposite direction, the same induction protocol induces LTD at anorexigenic pro-opiomelanocortin (POMC) neurons in fed mice but weak LTP in deprived mice. Mechanistically, we also find that food deprivation increases the expressions of NR2C/NR2D/NR3-containing NMDA receptors (NMDARs) at AgRP neurons that contribute to the inductions of LTD, whereas it decreases their expressions at POMC neurons. Collectively, our data reveal that hunger states control the directions of activity-dependent synaptic plasticity by switching NMDA receptor subpopulations in a cell type-specific manner, providing insights into NMDAR-mediated interactions between energy states and associative memory. Significance statement: Based on the experiments performed in this study, we demonstrate that activity-dependent synaptic plasticity is also under the control of energy states by regulating NMDAR subpopulations in a cell type-specific manner. We thus propose a reversible memory configuration constructed from energy states-dependent cell type-specific bidirectional conversions of LTP and LTD. Together with the distinct functional roles played by NMDAR signaling in the control of food intake and energy states, these findings reveal a new reciprocal interaction between energy states and associative memory, one that might serve as a target for therapeutic treatments of the energy-related memory disorders or vice versa

  5. Sharp-Wave Ripples Orchestrate the Induction of Synaptic Plasticity during Reactivation of Place Cell Firing Patterns in the Hippocampus

    PubMed Central

    Sadowski, Josef H.L.P.; Jones, Matthew W.; Mellor, Jack R.

    2016-01-01

    Summary Place cell firing patterns reactivated during hippocampal sharp-wave ripples (SWRs) in rest or sleep are thought to induce synaptic plasticity and thereby promote the consolidation of recently encoded information. However, the capacity of reactivated spike trains to induce plasticity has not been directly tested. Here, we show that reactivated place cell firing patterns simultaneously recorded from CA3 and CA1 of rat dorsal hippocampus are able to induce long-term potentiation (LTP) at synapses between CA3 and CA1 cells but only if accompanied by SWR-associated synaptic activity and resulting dendritic depolarization. In addition, we show that the precise timing of coincident CA3 and CA1 place cell spikes in relation to SWR onset is critical for the induction of LTP and predictive of plasticity generated by reactivation. Our findings confirm an important role for SWRs in triggering and tuning plasticity processes that underlie memory consolidation in the hippocampus during rest or sleep. PMID:26904941

  6. Time-dependent reversal of synaptic plasticity induced by physiological concentrations of oligomeric Aβ42: an early index of Alzheimer's disease.

    PubMed

    Koppensteiner, Peter; Trinchese, Fabrizio; Fà, Mauro; Puzzo, Daniela; Gulisano, Walter; Yan, Shijun; Poussin, Arthur; Liu, Shumin; Orozco, Ian; Dale, Elena; Teich, Andrew F; Palmeri, Agostino; Ninan, Ipe; Boehm, Stefan; Arancio, Ottavio

    2016-01-01

    The oligomeric amyloid-β (Aβ) peptide is thought to contribute to the subtle amnesic changes in Alzheimer's disease (AD) by causing synaptic dysfunction. Here, we examined the time course of synaptic changes in mouse hippocampal neurons following exposure to Aβ42 at picomolar concentrations, mimicking its physiological levels in the brain. We found opposite effects of the peptide with short exposures in the range of minutes enhancing synaptic plasticity, and longer exposures lasting several hours reducing it. The plasticity reduction was concomitant with an increase in the basal frequency of spontaneous neurotransmitter release, a higher basal number of functional presynaptic release sites, and a redistribution of synaptic proteins including the vesicle-associated proteins synapsin I, synaptophysin, and the post-synaptic glutamate receptor I. These synaptic alterations were mediated by cytoskeletal changes involving actin polymerization and p38 mitogen-activated protein kinase. These in vitro findings were confirmed in vivo with short hippocampal infusions of picomolar Aβ enhancing contextual memory and prolonged infusions impairing it. Our findings provide a model for initiation of synaptic dysfunction whereby exposure to physiologic levels of Aβ for a prolonged period of time causes microstructural changes at the synapse which result in increased transmitter release, failure of synaptic plasticity, and memory loss. PMID:27581852

  7. Time-dependent reversal of synaptic plasticity induced by physiological concentrations of oligomeric Aβ42: an early index of Alzheimer’s disease

    PubMed Central

    Koppensteiner, Peter; Trinchese, Fabrizio; Fà, Mauro; Puzzo, Daniela; Gulisano, Walter; Yan, Shijun; Poussin, Arthur; Liu, Shumin; Orozco, Ian; Dale, Elena; Teich, Andrew F.; Palmeri, Agostino; Ninan, Ipe; Boehm, Stefan; Arancio, Ottavio

    2016-01-01

    The oligomeric amyloid-β (Aβ) peptide is thought to contribute to the subtle amnesic changes in Alzheimer’s disease (AD) by causing synaptic dysfunction. Here, we examined the time course of synaptic changes in mouse hippocampal neurons following exposure to Aβ42 at picomolar concentrations, mimicking its physiological levels in the brain. We found opposite effects of the peptide with short exposures in the range of minutes enhancing synaptic plasticity, and longer exposures lasting several hours reducing it. The plasticity reduction was concomitant with an increase in the basal frequency of spontaneous neurotransmitter release, a higher basal number of functional presynaptic release sites, and a redistribution of synaptic proteins including the vesicle-associated proteins synapsin I, synaptophysin, and the post-synaptic glutamate receptor I. These synaptic alterations were mediated by cytoskeletal changes involving actin polymerization and p38 mitogen-activated protein kinase. These in vitro findings were confirmed in vivo with short hippocampal infusions of picomolar Aβ enhancing contextual memory and prolonged infusions impairing it. Our findings provide a model for initiation of synaptic dysfunction whereby exposure to physiologic levels of Aβ for a prolonged period of time causes microstructural changes at the synapse which result in increased transmitter release, failure of synaptic plasticity, and memory loss. PMID:27581852

  8. How voltage-gated calcium channels gate forms of homeostatic synaptic plasticity

    PubMed Central

    Frank, C. Andrew

    2014-01-01

    Throughout life, animals face a variety of challenges such as developmental growth, the presence of toxins, or changes in temperature. Neuronal circuits and synapses respond to challenges by executing an array of neuroplasticity paradigms. Some paradigms allow neurons to up- or downregulate activity outputs, while countervailing ones ensure that outputs remain within appropriate physiological ranges. A growing body of evidence suggests that homeostatic synaptic plasticity (HSP) is critical in the latter case. Voltage-gated calcium channels gate forms of HSP. Presynaptically, the aggregate data show that when synapse activity is weakened, homeostatic signaling systems can act to correct impairments, in part by increasing calcium influx through presynaptic CaV2-type channels. Increased calcium influx is often accompanied by parallel increases in the size of active zones and the size of the readily releasable pool of presynaptic vesicles. These changes coincide with homeostatic enhancements of neurotransmitter release. Postsynaptically, there is a great deal of evidence that reduced network activity and loss of calcium influx through CaV1-type calcium channels also results in adaptive homeostatic signaling. Some adaptations drive presynaptic enhancements of vesicle pool size and turnover rate via retrograde signaling, as well as de novo insertion of postsynaptic neurotransmitter receptors. Enhanced calcium influx through CaV1 after network activation or single cell stimulation can elicit the opposite response—homeostatic depression via removal of excitatory receptors. There exist intriguing links between HSP and calcium channelopathies—such as forms of epilepsy, migraine, ataxia, and myasthenia. The episodic nature of some of these disorders suggests alternating periods of stable and unstable function. Uncovering information about how calcium channels are regulated in the context of HSP could be relevant toward understanding these and other disorders. PMID

  9. Environmental enrichment rescues the effects of early life inflammation on markers of synaptic transmission and plasticity.

    PubMed

    Kentner, Amanda C; Khoury, Antoine; Lima Queiroz, Erika; MacRae, Molly

    2016-10-01

    Environmental enrichment (EE) has been successful at rescuing the brain from a variety of early-life psychogenic stressors. However, its ability to reverse the behavioral and neural alterations induced by a prenatal maternal infection model of schizophrenia is less clear. Moreover, the specific interactions between the components (i.e. social enhancement, novelty, physical activity) of EE that lead to its success as a supportive intervention have not been adequately identified. In the current study, standard housed female Sprague-Dawley rats were administered either the inflammatory endotoxin lipopolysaccharide (LPS; 100μg/kg) or pyrogen-free saline (equivolume) on gestational day 15. On postnatal day 50, offspring were randomized into one of three conditions: EE (group housed in a large multi-level cage with novel toys, tubes and ramps), Colony Nesting (CN; socially-housed in a larger style cage), or Standard Care (SC; pair-housed in standard cages). Six weeks later we scored social engagement and performance in the object-in-place task. Afterwards hippocampus and prefrontal cortex (n=7-9) were collected and evaluated for excitatory amino acid transporter (EAAT) 1-3, brain-derived neurotrophic factor (BDNF), and neurotrophic tyrosine kinase, receptor type 2 (TrkB) gene expression (normalized to GAPDH) using qPCR methods. Overall, we show that gestational inflammation downregulates genes critical to synaptic transmission and plasticity, which may underlie the pathogenesis of neurodevelopmental disorders such as schizophrenia and autism. Additionally, we observed disruptions in both social engagement and spatial discrimination. Importantly, behavioral and neurophysiological effects were rescued in an experience dependent manner. Given the evidence that schizophrenia and autism may be associated with infection during pregnancy, these data have compelling implications for the prevention and reversibility of the consequences that follow immune activation in early in

  10. A Threshold Neurotoxic Amphetamine Exposure Inhibits Parietal Cortex Expression of Synaptic Plasticity-Related Genes

    PubMed Central

    Bowyer, John F.; Pogge, Amy R.; Delongchamp, Robert R.; O'Callaghan, James P.; Patel, Kruti M.; Vrana, Kent E.; Freeman, Willard M.

    2007-01-01

    Compulsive drug abuse has been conceptualized as a behavioral state where behavioral stimuli override normal decision making. Clinical studies of methamphetamine users have detailed decision making changes and imaging studies have found altered metabolism and activation in the parietal cortex. To examine the molecular effects of amphetamine on the parietal cortex, gene expression responses to amphetamine challenge (7.5mg/kg) were examined in the parietal cortex of rats pretreated for nine days with either saline, non-neurotoxic AMPH, or neurotoxic AMPH dosing regimens. The neurotoxic AMPH exposure [3 doses of 7.5 mg/kg/day AMPH (6 hr between doses), for nine days] produced histological signs of neurotoxicity in the parietal cortex while a non-neurotoxic dosing regimen (2.0 mg/kg/day × 3) did not. Neurotoxic AMPH pretreatment resulted in significantly diminished AMPH challenge-induced mRNA increases of activity-regulated cytoskeletal protein (ARC), nerve growth-factor inducible protein A (NGFI-A), and nerve growth-factor inducible protein B (NGFI-B) in the parietal cortex while neither saline pretreatment nor non-neurotoxic AMPH pretreatment did. This effect was specific to these genes as tissue plasminogen activator (t-PA), neuropeptide Y (NPY) and c-jun expression in response to AMPH challenge was unaltered or enhanced by amphetamine pretreatements. In the striatum, there were no differences between saline, neurotoxic AMPH, and non-neurotoxic AMPH pretreatments on ARC, NGFI-A or NGFI-B expression elicited by the AMPH challenge. These data indicate that the responsiveness of synaptic plasticity related genes are sensitive to disruption specifically in the parietal cortex by threshold neurotoxic AMPH exposures. PMID:17049170

  11. Spatial cognition and sexually dimorphic synaptic plasticity balance impairment in rats with chronic prenatal ethanol exposure.

    PubMed

    An, Lei; Zhang, Tao

    2013-11-01

    Prenatal ethanol exposure can lead to long-lasting impairments in the ability of rats to process spatial information, as well as produce long-lasting deficits in long-term potentiation (LTP), a biological model of learning and memory processing. The present study aimed to examine the sexually dimorphic effects of chronic prenatal ethanol exposure (CPEE) on behavior cognition and synaptic plasticity balance (SPB), and tried to understand a possible mechanism by evaluating the alternation of SPB. The animal model was produced by ethanol exposure throughout gestational period with 4 g/kg bodyweight. Offspring of both male and female were selected and studied on postnatal days 36. Subsequently, the data showed that chronic ethanol exposure resulted in birth weight reduction, losing bodyweight gain, microcephaly and hippocampus weight retardation. In Morris water maze (MWM) test, escape latencies were significantly higher in CPEE-treated rats than that in control ones. They also spent much less time in the target quadrant compared to that of control animals in the probe phase. In addition, it was found that there was a more severe impairment in females than that in males after CPEE treatment. Electrophysiological studies showed that CPEE considerably inhibited hippocampal LTP and facilitated depotentiation in males, while significantly enhanced LTP and suppressed depotentiation in females. A novel index, developed by us, showed that the action of CPEE on SPB was more sensitive in females than that in males, suggesting that it might be an effective index to distinguish the difference of SPB impairment between males and females. PMID:24050890

  12. Impairment of adenylyl cyclase-mediated glutamatergic synaptic plasticity in the periaqueductal grey in a rat model of neuropathic pain

    PubMed Central

    Ho, Yu-Cheng; Cheng, Jen-Kun; Chiou, Lih-Chu

    2015-01-01

    Key points Long-lasting neuropathic pain has been attributed to elevated neuronal plasticity changes in spinal, peripheral and cortical levels. Here, we found that reduced neuronal plasticity in the ventrolateral periaqueductal grey (vlPAG), a midbrain region important for initiating descending pain inhibition, may also contribute to neuropathic pain. Forskolin- and isoproterenol (isoprenaline)-elicited EPSC potentiation was impaired in the vlPAG of a rat model of neuropathic pain induced by spinal nerve injury. Down-regulation of adenylyl cyclase–cAMP– PKA signalling, due to impaired adenylyl cyclase, but not phosphodiesterase, in glutamatergic terminals may contribute to the hypofunction of excitatory synaptic plasticity in the vlPAG of neuropathic rats and the subsequent descending pain inhibition, ultimately leading to long-lasting neuropathic pain. Our results suggest that drugs that activate adenylyl cyclase in the vlPAG have the potential for relieving neuropathic pain. Abstract Neuropathic pain has been attributed to nerve injury-induced elevation of peripheral neuronal discharges and spinal excitatory synaptic plasticity while little is known about the contribution of neuroplasticity changes in the brainstem. Here, we examined synaptic plasticity changes in the ventrolateral (vl) periaqueductal grey (PAG), a crucial midbrain region for initiating descending pain inhibition, in spinal nerve ligation (SNL)-induced neuropathic rats. In vlPAG slices of sham-operated rats, forskolin, an adenylyl cyclase (AC) activator, produced long-lasting enhancement of EPSCs. This is a presynaptic effect since forskolin decreased the paired-pulse ratio and failure rate of EPSCs, and increased the frequency, but not the amplitude, of miniature EPSCs. Forskolin-induced EPSC potentiation was mimicked by a β-adrenergic agonist (isoproterenol (isoprenaline)), and prevented by an AC inhibitor (SQ 22536) and a cAMP-dependent protein kinase (PKA) inhibitor (H89), but not by a

  13. Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot.

    PubMed

    Grinke, Eduard; Tetzlaff, Christian; Wörgötter, Florentin; Manoonpong, Poramate

    2015-01-01

    Walking animals, like insects, with little neural computing can effectively perform complex behaviors. For example, they can walk around their environment, escape from corners/deadlocks, and avoid or climb over obstacles. While performing all these behaviors, they can also adapt their movements to deal with an unknown situation. As a consequence, they successfully navigate through their complex environment. The versatile and adaptive abilities are the result of an integration of several ingredients embedded in their sensorimotor loop. Biological studies reveal that the ingredients include neural dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a many degrees-of-freedom (DOFs) walking robot is a challenging task. Thus, in this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural mechanisms with plasticity, exteroceptive sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent neural network consisting of two fully connected neurons. Online correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors) in the network to generate different turning angles with short-term memory for a walking robot. The turning information is transmitted as descending steering signals to the neural locomotion control which translates the signals into motor actions. As a result, the robot can walk around and adapt its turning angle for avoiding obstacles in different situations. The adaptation also enables the robot to effectively escape from sharp corners or deadlocks. Using backbone joint control embedded in the the locomotion control allows the robot to climb over small obstacles

  14. Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot

    PubMed Central

    Grinke, Eduard; Tetzlaff, Christian; Wörgötter, Florentin; Manoonpong, Poramate

    2015-01-01

    Walking animals, like insects, with little neural computing can effectively perform complex behaviors. For example, they can walk around their environment, escape from corners/deadlocks, and avoid or climb over obstacles. While performing all these behaviors, they can also adapt their movements to deal with an unknown situation. As a consequence, they successfully navigate through their complex environment. The versatile and adaptive abilities are the result of an integration of several ingredients embedded in their sensorimotor loop. Biological studies reveal that the ingredients include neural dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a many degrees-of-freedom (DOFs) walking robot is a challenging task. Thus, in this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural mechanisms with plasticity, exteroceptive sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent neural network consisting of two fully connected neurons. Online correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors) in the network to generate different turning angles with short-term memory for a walking robot. The turning information is transmitted as descending steering signals to the neural locomotion control which translates the signals into motor actions. As a result, the robot can walk around and adapt its turning angle for avoiding obstacles in different situations. The adaptation also enables the robot to effectively escape from sharp corners or deadlocks. Using backbone joint control embedded in the the locomotion control allows the robot to climb over small obstacles

  15. Inhibitory glycinergic neurotransmission in the mammalian auditory brainstem upon prolonged stimulation: short-term plasticity and synaptic reliability

    PubMed Central

    Kramer, Florian; Griesemer, Désirée; Bakker, Dennis; Brill, Sina; Franke, Jürgen; Frotscher, Erik; Friauf, Eckhard

    2014-01-01

    Short-term plasticity plays a key role in synaptic transmission and has been extensively investigated for excitatory synapses. Much less is known about inhibitory synapses. Here we analyze the performance of glycinergic connections between the medial nucleus of the trapezoid body (MNTB) and the lateral superior olive (LSO) in the auditory brainstem, where high spike rates as well as fast and precise neurotransmission are hallmarks. Analysis was performed in acute mouse slices shortly after hearing onset (postnatal day (P)11) and 8 days later (P19). Stimulation was done at 37°C with 1–400 Hz for 40 s. Moreover, in a novel approach named marathon experiments, a very prolonged stimulation protocol was employed, comprising 10 trials of 1-min challenge and 1-min recovery periods at 50 and 1 Hz, respectively, thus lasting up to 20 min and amounting to >30,000 stimulus pulses. IPSC peak amplitudes displayed short-term depression (STD) and synaptic attenuation in a frequency-dependent manner. No facilitation was observed. STD in the MNTB-LSO connections was less pronounced than reported in the upstream calyx of Held-MNTB connections. At P11, the STD level and the failure rate were slightly lower within the ms-to-s range than at P19. During prolonged stimulation periods lasting 40 s, P19 connections sustained virtually failure-free transmission up to frequencies of 100 Hz, whereas P11 connections did so only up to 50 Hz. In marathon experiments, P11 synapses recuperated reproducibly from synaptic attenuation during all recovery periods, demonstrating a robust synaptic machinery at hearing onset. At 26°C, transmission was severely impaired and comprised abnormally high amplitudes after minutes of silence, indicative of imprecisely regulated vesicle pools. Our study takes a fresh look at synaptic plasticity and stability by extending conventional stimulus periods in the ms-to-s range to minutes. It also provides a framework for future analyses of synaptic plasticity. PMID

  16. Cell Assembly Signatures Defined by Short-Term Synaptic Plasticity in Cortical Networks.

    PubMed

    Carrillo-Reid, Luis; Lopez-Huerta, Violeta G; Garcia-Munoz, Marianela; Theiss, Stephan; Arbuthnott, Gordon W

    2015-11-01

    The cell assembly (CA) hypothesis has been used as a conceptual framework to explain how groups of neurons form memories. CAs are defined as neuronal pools with synchronous, recurrent and sequential activity patterns. However, neuronal interactions and synaptic properties that define CAs signatures have been difficult to examine because identities and locations of assembly members are usually unknown. In order to study synaptic properties that define CAs, we used optical and electrophysiological approaches to record activity of identified neurons in mouse cortical cultures. Population analysis and graph theory techniques allowed us to find sequential patterns that represent repetitive transitions between network states. Whole cell pair recordings of neurons participating in repeated sequences demonstrated that synchrony is exhibited by groups of neurons with strong synaptic connectivity (concomitant firing) showing short-term synaptic depression (STD), whereas alternation (sequential firing) is seen in groups of neurons with weaker synaptic connections showing short-term synaptic facilitation (STF). Decreasing synaptic weights of a network promoted the generation of sequential activity patterns, whereas increasing synaptic weights restricted state transitions. Thus in simple cortical networks of real neurons, basic signatures of CAs, the properties that underlie perception and memory in Hebb's original description, are already present. PMID:26173906

  17. The Plastic Glial-Synaptic Dynamics within the Neuropil: A Self-Organizing System Composed of Polyelectrolytes in Phase Transition

    PubMed Central

    Fernandes de Lima, Vera Maura; Pereira, Alfredo

    2016-01-01

    Several explanations have been proposed to account for the mechanisms of neuroglial interactions involved in neural plasticity. We review experimental results addressing plastic nonlinear interactions between glial membranes and synaptic terminals. These results indicate the necessity of elaborating on a model based on the dynamics of hydroionic waves within the neuropil. These waves have been detected in a small scale experimental model of the central nervous system, the in vitro retina. We suggest that the brain, as the heart and kidney, is a system for which the state of water is functional. The use of nonlinear thermodynamics supports experiments at convenient biological spatiotemporal scales, while an understanding of the properties of ions and their interactions with water requires explanations based on quantum theories. In our approach, neural plasticity is seen as part of a larger process that encompasses higher brain functions; in this regard, hydroionic waves within the neuropil are considered to carry both physiological and cognitive functions. PMID:26949548

  18. Seizure-Induced Regulations of Amyloid-β, STEP61, and STEP61 Substrates Involved in Hippocampal Synaptic Plasticity

    PubMed Central

    Jang, Sung-Soo; Royston, Sara E.; Lee, Gunhee; Wang, Shuwei; Chung, Hee Jung

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline. Pathologic accumulation of soluble amyloid-β (Aβ) oligomers impairs synaptic plasticity and causes epileptic seizures, both of which contribute to cognitive dysfunction in AD. However, whether seizures could regulate Aβ-induced synaptic weakening remains unclear. Here we show that a single episode of electroconvulsive seizures (ECS) increased protein expression of membrane-associated STriatal-Enriched protein tyrosine Phosphatase (STEP61) and decreased tyrosine-phosphorylation of its substrates N-methyl D-aspartate receptor (NMDAR) subunit GluN2B and extracellular signal regulated kinase 1/2 (ERK1/2) in the rat hippocampus at 2 days following a single ECS. Interestingly, a significant decrease in ERK1/2 expression and an increase in APP and Aβ levels were observed at 3-4 days following a single ECS when STEP61 level returned to the baseline. Given that pathologic levels of Aβ increase STEP61 activity and STEP61-mediated dephosphorylation of GluN2B and ERK1/2 leads to NMDAR internalization and ERK1/2 inactivation, we propose that upregulation of STEP61 and downregulation of GluN2B and ERK1/2 phosphorylation mediate compensatory weakening of synaptic strength in response to acute enhancement of hippocampal network activity, whereas delayed decrease in ERK1/2 expression and increase in APP and Aβ expression may contribute to the maintenance of this synaptic weakening. PMID:27127657

  19. Acetylated Tau Obstructs KIBRA-Mediated Signaling in Synaptic Plasticity and Promotes Tauopathy-Related Memory Loss.

    PubMed

    Tracy, Tara E; Sohn, Peter Dongmin; Minami, S Sakura; Wang, Chao; Min, Sang-Won; Li, Yaqiao; Zhou, Yungui; Le, David; Lo, Iris; Ponnusamy, Ravikumar; Cong, Xin; Schilling, Birgit; Ellerby, Lisa M; Huganir, Richard L; Gan, Li

    2016-04-20

    Tau toxicity has been implicated in the emergence of synaptic dysfunction in Alzheimer's disease (AD), but the mechanism by which tau alters synapse physiology and leads to cognitive decline is unclear. Here we report abnormal acetylation of K274 and K281 on tau, identified in AD brains, promotes memory loss and disrupts synaptic plasticity by reducing postsynaptic KIdney/BRAin (KIBRA) protein, a memory-associated protein. Transgenic mice expressing human tau with lysine-to-glutamine mutations to mimic K274 and K281 acetylation (tauKQ) exhibit AD-related memory deficits and impaired hippocampal long-term potentiation (LTP). TauKQ reduces synaptic KIBRA levels and disrupts activity-induced postsynaptic actin remodeling and AMPA receptor insertion. The LTP deficit was rescued by promoting actin polymerization or by KIBRA expression. In AD patients with dementia, we found enhanced tau acetylation is linked to loss of KIBRA. These findings suggest a novel mechanism by which pathogenic tau causes synaptic dysfunction and cognitive decline in AD pathogenesis. PMID:27041503

  20. A combined optogenetic-knockdown strategy reveals a major role of tomosyn in mossy fiber synaptic plasticity

    PubMed Central

    Ben-Simon, Yoav; Rodenas-Ruano, Alma; Alviña, Karina; Lam, Alice D.; Stuenkel, Edward L.; Castillo, Pablo E.; Ashery, Uri

    2015-01-01

    Summary Neurotransmitter release probability (Pr) largely determines the dynamic properties of synapses. While much is known on the role of presynaptic proteins in transmitter release, their specific contribution to synaptic plasticity is unclear. One such protein, tomosyn, is believed to reduce Pr by interfering with the SNARE complex formation. Tomosyn is enriched at hippocampal mossy fiber-to-CA3 pyramidal cell synapses (MF-CA3), which characteristically exhibit low Pr, strong synaptic facilitation and pre-synaptic PKA-dependent LTP. To evaluate tomosyn's role in MF-CA3 function, we used a combined knockdown (KD)-optogenetic strategy whereby presynaptic neurons with reduced tomosyn levels were selectively activated by light. Using this approach in mouse hippocampal slices we found that facilitation, LTP, and PKA-induced potentiation were significantly impaired at tomosyn-deficient synapses. These findings not only indicate that tomosyn is a key regulator of MF-CA3 plasticity, but also highlight the power of a combined KD-optogenetic approach to determine the role of presynaptic proteins. PMID:26166572

  1. Cognitive impairment in Gdi1-deficient mice is associated with altered synaptic vesicle pools and short-term synaptic plasticity, and can be corrected by appropriate learning training

    PubMed Central

    Bianchi, Veronica; Farisello, Pasqualina; Baldelli, Pietro; Meskenaite, Virginia; Milanese, Marco; Vecellio, Matteo; Mühlemann, Sven; Lipp, Hans Peter; Bonanno, Giambattista; Benfenati, Fabio; Toniolo, Daniela; D'Adamo, Patrizia

    2009-01-01

    The GDI1 gene, responsible in human for X-linked non-specific mental retardation, encodes αGDI, a regulatory protein common to all GTPases of the Rab family. Its alteration, leading to membrane accumulation of different Rab GTPases, may affect multiple steps in neuronal intracellular traffic. Using electron microscopy and electrophysiology, we now report that lack of αGDI impairs several steps in synaptic vesicle (SV) biogenesis and recycling in the hippocampus. Alteration of the SV reserve pool (RP) and a 50% reduction in the total number of SV in adult synapses may be dependent on a defective endosomal-dependent recycling and may lead to the observed alterations in short-term plasticity. As predicted by the synaptic characteristics of the mutant mice, the short-term memory deficit, observed when using fear-conditioning protocols with short intervals between trials, disappeared when the Gdi1 mutants were allowed to have longer intervals between sessions. Likewise, previously observed deficits in radial maze learning could be corrected by providing less challenging pre-training. This implies that an intact RP of SVs is necessary for memory processing under challenging conditions in mice. The possibility to correct the learning deficit in mice may have clinical implication for future studies in human. PMID:18829665

  2. Effects of cytochalasin treatment on short-term synaptic plasticity at developing neuromuscular junctions in frogs.

    PubMed Central

    Wang, X H; Zheng, J Q; Poo, M M

    1996-01-01

    1. The role of actin microfilaments in synaptic transmission was tested by monitoring spontaneous and evoked transmitter release from developing neuromuscular synapses in Xenopus nerve-muscle cultures, using whole-cell recording of synaptic currents in the absence and presence of microfilament-disrupting agents cytochalasins B and D. 2. Treatment with cytochalasins resulted in disruption of microfilament networks in the growth cone and the presynaptic nerve terminal of spinal neurons in Xenopus nerve-muscle cultures, as revealed by rhodamine-phalloidin staining. 3. The same cytochalasin treatment did not significantly affect the spontaneous or evoked synaptic currents during low-frequency stimulation at 0.05 Hz in these Xenopus cultures. Synaptic depression induced by high-frequency (5 Hz) stimulation, however, was reduced by this treatment. Paired-pulse facilitation for short interpulse intervals was also increased by the treatment. 4. These results indicate that disruption of microfilaments alters short-term changes in transmitter release induced by repetitive activity, without affecting normal synaptic transmission at low frequency. 5. Our results support the notion that actin microfilaments impose a barrier for mobilization of synaptic vesicles from the reserve pool, but do not affect the exocytosis of immediately available synaptic vesicles at the active zone. Images Figure 1 PMID:9011610

  3. Alterations in synaptic plasticity coincide with deficits in spatial working memory in presymptomatic 3xTg-AD mice.

    PubMed

    Clark, Jason K; Furgerson, Matthew; Crystal, Jonathon D; Fechheimer, Marcus; Furukawa, Ruth; Wagner, John J

    2015-11-01

    Alzheimer's disease is a neurodegenerative condition believed to be initiated by production of amyloid-beta peptide, which leads to synaptic dysfunction and progressive memory loss. Using a mouse model of Alzheimer's disease (3xTg-AD), an 8-arm radial maze was employed to assess spatial working memory. Unexpectedly, the younger (3month old) 3xTg-AD mice were as impaired in the spatial working memory task as the older (8month old) 3xTg-AD mice when compared with age-matched NonTg control animals. Field potential recordings from the CA1 region of slices prepared from the ventral hippocampus were obtained to assess synaptic transmission and capability for synaptic plasticity. At 3months of age, the NMDA receptor-dependent component of LTP was reduced in 3xTg-AD mice. However, the magnitude of the non-NMDA receptor-dependent component of LTP was concomitantly increased, resulting in a similar amount of total LTP in 3xTg-AD and NonTg mice. At 8months of age, the NMDA receptor-dependent LTP was again reduced in 3xTg-AD mice, but now the non-NMDA receptor-dependent component was decreased as well, resulting in a significantly reduced total amount of LTP in 3xTg-AD compared with NonTg mice. Both 3 and 8month old 3xTg-AD mice exhibited reductions in paired-pulse facilitation and NMDA receptor-dependent LTP that coincided with the deficit in spatial working memory. The early presence of this cognitive impairment and the associated alterations in synaptic plasticity demonstrate that the onset of some behavioral and neurophysiological consequences can occur before the detectable presence of plaques and tangles in the 3xTg-AD mouse model of Alzheimer's disease. PMID:26385257

  4. Immune dysregulation and cognitive vulnerability in the aging brain: Interactions of microglia, IL-1β, BDNF and synaptic plasticity.

    PubMed

    Patterson, Susan L

    2015-09-01

    Older individuals often experience declines in cognitive function after events (e.g. infection, or injury) that trigger activation of the immune system. This occurs at least in part because aging sensitizes the response of microglia (the brain's resident immune cells) to signals triggered by an immune challenge. In the aging brain, microglia respond to these signals by producing more pro-inflammatory cytokines (e.g. interleukin-1beta or IL-1β) and producing them for longer than microglia in younger brains. This exaggerated inflammatory response can compromise processes critical for optimal cognitive functioning. Interleukin-1β is central to the inflammatory response and is a key mediator and modulator of an array of associated biological functions; thus its production and release is usually very tightly regulated. This review will focus on the impact of dysregulated production of IL-1β on hippocampus dependent-memory systems and associated synaptic plasticity processes. The neurotrophin brain-derived neurotrophic factor (BNDF) helps to protect neurons from damage caused by infection or injury, and it plays a critical role in many of the same memory and hippocampal plasticity processes compromised by dysregulated production of IL-1β. This suggests that an exaggerated brain inflammatory response, arising from aging and a secondary immune challenge, may erode the capacity to provide the BDNF needed for memory-related plasticity processes at hippocampal synapses. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'. PMID:25549562

  5. C-terminal Src Kinase Gates Homeostatic Synaptic Plasticity and Regulates Fasciclin II Expression at the Drosophila Neuromuscular Junction

    PubMed Central

    Spring, Ashlyn M.; Brusich, Douglas J.; Frank, C. Andrew

    2016-01-01

    Forms of homeostatic plasticity stabilize neuronal outputs and promote physiologically favorable synapse function. A well-studied homeostatic system operates at the Drosophila melanogaster larval neuromuscular junction (NMJ). At the NMJ, impairment of postsynaptic glutamate receptor activity is offset by a compensatory increase in presynaptic neurotransmitter release. We aim to elucidate how this process operates on a molecular level and is preserved throughout development. In this study, we identified a tyrosine kinase-driven signaling system that sustains homeostatic control of NMJ function. We identified C-terminal Src Kinase (Csk) as a potential regulator of synaptic homeostasis through an RNAi- and electrophysiology-based genetic screen. We found that Csk loss-of-function mutations impaired the sustained expression of homeostatic plasticity at the NMJ, without drastically altering synapse growth or baseline neurotransmission. Muscle-specific overexpression of Src Family Kinase (SFK) substrates that are negatively regulated by Csk also impaired NMJ homeostasis. Surprisingly, we found that transgenic Csk-YFP can support homeostatic plasticity at the NMJ when expressed either in the muscle or in the nerve. However, only muscle-expressed Csk-YFP was able to localize to NMJ structures. By immunostaining, we found that Csk mutant NMJs had dysregulated expression of the Neural Cell Adhesion Molecule homolog Fasciclin II (FasII). By immunoblotting, we found that levels of a specific isoform of FasII were decreased in homeostatically challenged GluRIIA mutant animals–but markedly increased in Csk mutant animals. Additionally, we found that postsynaptic overexpression of FasII from its endogenous locus was sufficient to impair synaptic homeostasis, and genetically reducing FasII levels in Csk mutants fully restored synaptic homeostasis. Based on these data, we propose that Csk and its SFK substrates impinge upon homeostatic control of NMJ function by regulating

  6. Modelling bidirectional modulations in synaptic plasticity: A biochemical pathway model to understand the emergence of long term potentiation (LTP) and long term depression (LTD).

    PubMed

    He, Yao; Kulasiri, Don; Samarasinghe, Sandhya

    2016-08-21

    Synaptic plasticity induces bidirectional modulations of the postsynaptic response following a synaptic transmission. The long term forms of synaptic plasticity, named long term potentiation (LTP) and long term depression (LTD), are critical for the antithetic functions of the memory system, memory formation and removal, respectively. A common Ca(2+) signalling upstream triggers both LTP and LTD, and the critical proteins and factors coordinating the LTP/LTD inductions are not well understood. We develop an integrated model based on the sub-models of the indispensable synaptic proteins in the emergence of synaptic plasticity to validate and understand their potential roles in the expression of synaptic plasticity. The model explains Ca(2+)/calmodulin (CaM) complex dependent coordination of LTP/LTD expressions by the interactions among the indispensable proteins using the experimentally estimated kinetic parameters. Analysis of the integrated model provides us with insights into the effective timescales of the key proteins and we conclude that the CaM pool size is critical for the coordination between LTP/LTD expressions. PMID:27185535

  7. Possible contributions of a novel form of synaptic plasticity in Aplysia to reward, memory, and their dysfunctions in mammalian brain

    PubMed Central

    Hawkins, Robert D.

    2013-01-01

    Recent studies in Aplysia have identified a new variation of synaptic plasticity in which modulatory transmitters enhance spontaneous release of glutamate, which then acts on postsynaptic receptors to recruit mechanisms of intermediate- and long-term plasticity. In this review I suggest the hypothesis that similar plasticity occurs in mammals, where it may contribute to reward, memory, and their dysfunctions in several psychiatric disorders. In Aplysia, spontaneous release is enhanced by activation of presynaptic serotonin receptors, but presynaptic D1 dopamine receptors or nicotinic acetylcholine receptors could play a similar role in mammals. Those receptors enhance spontaneous release of glutamate in hippocampus, entorhinal cortex, prefrontal cortex, ventral tegmental area, and nucleus accumbens. In all of those brain areas, glutamate can activate postsynaptic receptors to elevate Ca2+ and engage mechanisms of early-phase long-term potentiation (LTP), including AMPA receptor insertion, and of late-phase LTP, including protein synthesis and growth. Thus, presynaptic receptors and spontaneous release may contribute to postsynaptic mechanisms of plasticity in brain regions involved in reward and memory, and could play roles in disorders that affect plasticity in those regions, including addiction, Alzheimer’s disease, schizophrenia, and attention deficit hyperactivity disorder (ADHD). PMID:24049187

  8. Sleep deprivation during a specific 3-hour time window post-training impairs hippocampal synaptic plasticity and memory

    PubMed Central

    Prince, Toni-Moi; Wimmer, Mathieu; Choi, Jennifer; Havekes, Robbert; Aton, Sara; Abel, Ted

    2014-01-01

    Sleep deprivation disrupts hippocampal function and plasticity. In particular, long-term memory consolidation is impaired by sleep deprivation, suggesting that a specific critical period exists following learning during which sleep is necessary. To elucidate the impact of sleep deprivation on long-term memory consolidation and synaptic plasticity, long-term memory was assessed when mice were sleep deprived following training in the hippocampus-dependent object place recognition task. We found that 3 hours of sleep deprivation significantly impaired memory when deprivation began 1 hour after training. In contrast, 3 hours of deprivation beginning immediately post-training did not impair spatial memory. Furthermore, a 3-hour sleep deprivation beginning 1 hour after training impaired hippocampal long-term potentiation (LTP), whereas sleep deprivation immediately after training did not affect LTP. Together, our findings define a specific 3-hour critical period, extending from 1 to 4 hours after training, during which sleep deprivation impairs hippocampal function. PMID:24380868

  9. Rhes influences striatal cAMP/PKA-dependent signaling and synaptic plasticity in a gender-sensitive fashion.

    PubMed

    Ghiglieri, Veronica; Napolitano, Francesco; Pelosi, Barbara; Schepisi, Chiara; Migliarini, Sara; Di Maio, Anna; Pendolino, Valentina; Mancini, Maria; Sciamanna, Giuseppe; Vitucci, Daniela; Maddaloni, Giacomo; Giampà, Carmela; Errico, Francesco; Nisticò, Robert; Pasqualetti, Massimo; Picconi, Barbara; Usiello, Alessandro

    2015-01-01

    Mechanisms of gender-specific synaptic plasticity in the striatum, a brain region that controls motor, cognitive and psychiatric functions, remain unclear. Here we report that Rhes, a GTPase enriched in medium spiny neurons (MSNs) of striatum, alters the striatal cAMP/PKA signaling cascade in a gender-specific manner. While Rhes knockout (KO) male mice, compared to wild-type (WT) mice, had a significant basal increase of cAMP/PKA signaling pathway, the Rhes KO females exhibited a much stronger response of this pathway, selectively under the conditions of dopamine/adenosine-related drug challenge. Corticostriatal LTP defects are exclusively found in A2AR/D2R-expressing MSNs of KO females, compared to KO males, an effect that is abolished by PKA inhibitors but not by the removal of circulating estrogens. This suggests that the synaptic alterations found in KO females could be triggered by an aberrant A2AR/cAMP/PKA activity, but not due to estrogen-mediated effect. Consistent with increased cAMP signaling, D1R-mediated motor stimulation, haloperidol-induced catalepsy and caffeine-evoked hyper-activity are robustly enhanced in Rhes KO females compared to mutant males. Thus Rhes, a thyroid hormone-target gene, plays a relevant role in gender-specific synaptic and behavioral responses. PMID:26190541

  10. Rhes influences striatal cAMP/PKA-dependent signaling and synaptic plasticity in a gender-sensitive fashion

    PubMed Central

    Ghiglieri, Veronica; Napolitano, Francesco; Pelosi, Barbara; Schepisi, Chiara; Migliarini, Sara; Di Maio, Anna; Pendolino, Valentina; Mancini, Maria; Sciamanna, Giuseppe; Vitucci, Daniela; Maddaloni, Giacomo; Giampà, Carmela; Errico, Francesco; Nisticò, Robert; Pasqualetti, Massimo; Picconi, Barbara; Usiello, Alessandro

    2015-01-01

    Mechanisms of gender-specific synaptic plasticity in the striatum, a brain region that controls motor, cognitive and psychiatric functions, remain unclear. Here we report that Rhes, a GTPase enriched in medium spiny neurons (MSNs) of striatum, alters the striatal cAMP/PKA signaling cascade in a gender-specific manner. While Rhes knockout (KO) male mice, compared to wild-type (WT) mice, had a significant basal increase of cAMP/PKA signaling pathway, the Rhes KO females exhibited a much stronger response of this pathway, selectively under the conditions of dopamine/adenosine-related drug challenge. Corticostriatal LTP defects are exclusively found in A2AR/D2R-expressing MSNs of KO females, compared to KO males, an effect that is abolished by PKA inhibitors but not by the removal of circulating estrogens. This suggests that the synaptic alterations found in KO females could be triggered by an aberrant A2AR/cAMP/PKA activity, but not due to estrogen-mediated effect. Consistent with increased cAMP signaling, D1R-mediated motor stimulation, haloperidol-induced catalepsy and caffeine-evoked hyper-activity are robustly enhanced in Rhes KO females compared to mutant males. Thus Rhes, a thyroid hormone-target gene, plays a relevant role in gender-specific synaptic and behavioral responses. PMID:26190541

  11. Is a 4-Bit Synaptic Weight Resolution Enough? – Constraints on Enabling Spike-Timing Dependent Plasticity in Neuromorphic Hardware

    PubMed Central

    Pfeil, Thomas; Potjans, Tobias C.; Schrader, Sven; Potjans, Wiebke; Schemmel, Johannes; Diesmann, Markus; Meier, Karlheinz

    2012-01-01

    Large-scale neuromorphic hardware systems typically bear the trade-off between detail level and required chip resources. Especially when implementing spike-timing dependent plasticity, reduction in resources leads to limitations as compared to floating point precision. By design, a natural modification that saves resources would be reducing synaptic weight resolution. In this study, we give an estimate for the impact of synaptic weight discretization on different levels, ranging from random walks of individual weights to computer simulations of spiking neural networks. The FACETS wafer-scale hardware system offers a 4-bit resolution of synaptic weights, which is shown to be sufficient within the scope of our network benchmark. Our findings indicate that increasing the resolution may not even be useful in light of further restrictions of customized mixed-signal synapses. In addition, variations due to production imperfections are investigated and shown to be uncritical in the context of the presented study. Our results represent a general framework for setting up and configuring hardware-constrained synapses. We suggest how weight discretization could be considered for other backends dedicated to large-scale simulations. Thus, our proposition of a good hardware verification practice may rise synergy effects between hardware developers and neuroscientists. PMID:22822388

  12. Age-Dependent Glutamate Induction of Synaptic Plasticity in Cultured Hippocampal Neurons

    ERIC Educational Resources Information Center

    Ivenshitz, Miriam; Segal, Menahem; Sapoznik, Stav

    2006-01-01

    A common denominator for the induction of morphological and functional plasticity in cultured hippocampal neurons involves the activation of excitatory synapses. We now demonstrate massive morphological plasticity in mature cultured hippocampal neurons caused by a brief exposure to glutamate. This plasticity involves a slow, 70%-80% increase in…

  13. Spatiotemporal discrimination in neural networks with short-term synaptic plasticity

    NASA Astrophysics Data System (ADS)

    Shlaer, Benjamin; Miller, Paul

    2015-03-01

    Cells in recurrently connected neural networks exhibit bistability, which allows for stimulus information to persist in a circuit even after stimulus offset, i.e. short-term memory. However, such a system does not have enough hysteresis to encode temporal information about the stimuli. The biophysically described phenomenon of synaptic depression decreases synaptic transmission strengths due to increased presynaptic activity. This short-term reduction in synaptic strengths can destabilize attractor states in excitatory recurrent neural networks, causing the network to move along stimulus dependent dynamical trajectories. Such a network can successfully separate amplitudes and durations of stimuli from the number of successive stimuli. Stimulus number, duration and intensity encoding in randomly connected attractor networks with synaptic depression. Front. Comput. Neurosci. 7:59., and so provides a strong candidate network for the encoding of spatiotemporal information. Here we explicitly demonstrate the capability of a recurrent neural network with short-term synaptic depression to discriminate between the temporal sequences in which spatial stimuli are presented.

  14. Neto1 Is a Novel CUB-Domain NMDA Receptor–Interacting Protein Required for Synaptic Plasticity and Learning

    PubMed Central

    Szilard, Rachel K; Sertié, Andréa; Kanisek, Marijana; Clapcote, Steven J; Lipina, Tatiana; Kalia, Lorraine V; Joo, Daisy; McKerlie, Colin; Cortez, Miguel; Roder, John C; Salter, Michael W; McInnes, Roderick R

    2009-01-01

    The N-methyl-D-aspartate receptor (NMDAR), a major excitatory ligand-gated ion channel in the central nervous system (CNS), is a principal mediator of synaptic plasticity. Here we report that neuropilin tolloid-like 1 (Neto1), a complement C1r/C1s, Uegf, Bmp1 (CUB) domain-containing transmembrane protein, is a novel component of the NMDAR complex critical for maintaining the abundance of NR2A-containing NMDARs in the postsynaptic density. Neto1-null mice have depressed long-term potentiation (LTP) at Schaffer collateral-CA1 synapses, with the subunit dependency of LTP induction switching from the normal predominance of NR2A- to NR2B-NMDARs. NMDAR-dependent spatial learning and memory is depressed in Neto1-null mice, indicating that Neto1 regulates NMDA receptor-dependent synaptic plasticity and cognition. Remarkably, we also found that the deficits in LTP, learning, and memory in Neto1-null mice were rescued by the ampakine CX546 at doses without effect in wild-type. Together, our results establish the principle that auxiliary proteins are required for the normal abundance of NMDAR subunits at synapses, and demonstrate that an inherited learning defect can be rescued pharmacologically, a finding with therapeutic implications for humans. PMID:19243221

  15. p140Cap regulates memory and synaptic plasticity through Src-mediated and citron-N-mediated actin reorganization.

    PubMed

    Repetto, Daniele; Camera, Paola; Melani, Riccardo; Morello, Noemi; Russo, Isabella; Calcagno, Eleonora; Tomasoni, Romana; Bianchi, Federico; Berto, Gaia; Giustetto, Maurizio; Berardi, Nicoletta; Pizzorusso, Tommaso; Matteoli, Michela; Di Stefano, Paola; Missler, Markus; Turco, Emilia; Di Cunto, Ferdinando; Defilippi, Paola

    2014-01-22

    A major challenge in the neuroscience field is the identification of molecules and pathways that control synaptic plasticity and memory. Dendritic spines play a pivotal role in these processes, as the major sites of excitatory synapses in neuronal communication. Previous studies have shown that the scaffold protein p140Cap localizes into dendritic spines and that its knockdown negatively modulates spine shape in culture. However, so far, there is no information on its in vivo relevance. By using a knock-out mouse model, we here demonstrate that p140Cap is a key element for both learning and synaptic plasticity. Indeed, p140Cap(-/-) mice are impaired in object recognition test, as well as in LTP and in LTD measurements. The in vivo effects of p140Cap loss are presumably attenuated by noncell-autonomous events, since primary neurons obtained from p140Cap(-/-) mice show a strong reduction in number of mushroom spines and abnormal organization of synapse-associated F-actin. These phenotypes are most likely caused by a local reduction of the inhibitory control of RhoA and of cortactin toward the actin-depolymerizing factor cofilin. These events can be controlled by p140Cap through its capability to directly inhibit the activation of Src kinase and by its binding to the scaffold protein Citron-N. Altogether, our results provide new insight into how protein associated with dynamic microtubules may regulate spine actin organization through interaction with postsynaptic density components. PMID:24453341

  16. Steroid sulfatase inhibitor DU-14 protects spatial memory and synaptic plasticity from disruption by amyloid β protein in male rats.

    PubMed

    Yue, Xing-Hua; Tong, Jia-Qing; Wang, Zhao-Jun; Zhang, Jun; Liu, Xu; Liu, Xiao-Jie; Cai, Hong-Yan; Qi, Jin-Shun

    2016-07-01

    Alzheimer's disease (AD) is an age-related mental disorder characterized by progressive loss of memory and multiple cognitive impairments. The overproduction and aggregation of Amyloid β protein (Aβ) in the brain, especially in the hippocampus, are closely involved in the memory loss in the patients with AD. Accumulating evidence indicates that the Aβ-induced imbalance of dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS) in the brain plays an important role in the AD pathogenesis and progression. The level of DHEA is elevated, while DHEAS is dramatically decreased in the AD brain. The present study tried to restore the balance between DHEA and DHEAS by using a non-steroidal sulfatase inhibitor DU-14, which increases endogenous DHEAS through preventing DHEAS converted back into DHEA. We found that: (1) DU-14 effectively attenuated the Aβ1-42-induced cognitive deficits in spatial learning and memory of rats in Morris water maze test; (2) DU-14 prevented Aβ1-42-induced decrease in the cholinergic theta rhythm of hippocampal local field potential (LFP) in the CA1 region; (3) DU-14 protected hippocampal synaptic plasticity against Aβ1-42-induced suppression of long term potentiation (LTP). These results provide evidence for the neuroprotective action of DU-14 against neurotoxic Aβ, suggesting that up-regulation of endogenous DHEAS by DU-14 could be beneficial to the alleviation of Aβ-induced impairments in spatial memory and synaptic plasticity. PMID:27222435

  17. GABAB receptor-mediated, layer-specific synaptic plasticity reorganizes gamma-frequency neocortical response to stimulation.

    PubMed

    Ainsworth, Matthew; Lee, Shane; Kaiser, Marcus; Simonotto, Jennifer; Kopell, Nancy J; Whittington, Miles A

    2016-05-10

    Repeated presentations of sensory stimuli generate transient gamma-frequency (30-80 Hz) responses in neocortex that show plasticity in a task-dependent manner. Complex relationships between individual neuronal outputs and the mean, local field potential (population activity) accompany these changes, but little is known about the underlying mechanisms responsible. Here we show that transient stimulation of input layer 4 sufficient to generate gamma oscillations induced two different, lamina-specific plastic processes that correlated with lamina-specific changes in responses to further, repeated stimulation: Unit rates and recruitment showed overall enhancement in supragranular layers and suppression in infragranular layers associated with excitatory or inhibitory synaptic potentiation onto principal cells, respectively. Both synaptic processes were critically dependent on activation of GABAB receptors and, together, appeared to temporally segregate the cortical representation. These data suggest that adaptation to repetitive sensory input dramatically alters the spatiotemporal properties of the neocortical response in a manner that may both refine and minimize cortical output simultaneously. PMID:27118845

  18. GABAB receptor-mediated, layer-specific synaptic plasticity reorganizes gamma-frequency neocortical response to stimulation

    PubMed Central

    Ainsworth, Matthew; Lee, Shane; Kaiser, Marcus; Simonotto, Jennifer; Kopell, Nancy J.

    2016-01-01

    Repeated presentations of sensory stimuli generate transient gamma-frequency (30–80 Hz) responses in neocortex that show plasticity in a task-dependent manner. Complex relationships between individual neuronal outputs and the mean, local field potential (population activity) accompany these changes, but little is known about the underlying mechanisms responsible. Here we show that transient stimulation of input layer 4 sufficient to generate gamma oscillations induced two different, lamina-specific plastic processes that correlated with lamina-specific changes in responses to further, repeated stimulation: Unit rates and recruitment showed overall enhancement in supragranular layers and suppression in infragranular layers associated with excitatory or inhibitory synaptic potentiation onto principal cells, respectively. Both synaptic processes were critically dependent on activation of GABAB receptors and, together, appeared to temporally segregate the cortical representation. These data suggest that adaptation to repetitive sensory input dramatically alters the spatiotemporal properties of the neocortical response in a manner that may both refine and minimize cortical output simultaneously. PMID:27118845

  19. Short-term synaptic plasticity in the deterministic Tsodyks–Markram model leads to unpredictable network dynamics

    PubMed Central

    Cortes, Jesus M.; Desroches, Mathieu; Rodrigues, Serafim; Veltz, Romain; Muñoz, Miguel A.; Sejnowski, Terrence J.

    2013-01-01

    Short-term synaptic plasticity strongly affects the neural dynamics of cortical networks. The Tsodyks and Markram (TM) model for short-term synaptic plasticity accurately accounts for a wide range of physiological responses at different types of cortical synapses. Here, we report a route to chaotic behavior via a Shilnikov homoclinic bifurcation that dynamically organizes some of the responses in the TM model. In particular, the presence of such a homoclinic bifurcation strongly affects the shape of the trajectories in the phase space and induces highly irregular transient dynamics; indeed, in the vicinity of the Shilnikov homoclinic bifurcation, the number of population spikes and their precise timing are unpredictable and highly sensitive to the initial conditions. Such an irregular deterministic dynamics has its counterpart in stochastic/network versions of the TM model: The existence of the Shilnikov homoclinic bifurcation generates complex and irregular spiking patterns and—acting as a sort of springboard—facilitates transitions between the down-state and unstable periodic orbits. The interplay between the (deterministic) homoclinic bifurcation and stochastic effects may give rise to some of the complex dynamics observed in neural systems. PMID:24062464

  20. A novel form of synaptic plasticity in field CA3 of hippocampus requires GPER1 activation and BDNF release

    PubMed Central

    Briz, Victor; Liu, Yan; Zhu, Guoqi; Bi, Xiaoning

    2015-01-01

    Estrogen is an important modulator of hippocampal synaptic plasticity and memory consolidation through its rapid action on membrane-associated receptors. Here, we found that both estradiol and the G-protein–coupled estrogen receptor 1 (GPER1) specific agonist G1 rapidly induce brain-derived neurotrophic factor (BDNF) release, leading to transient stimulation of activity-regulated cytoskeleton-associated (Arc) protein translation and GluA1-containing AMPA receptor internalization in field CA3 of hippocampus. We also show that type-I metabotropic glutamate receptor (mGluR) activation does not induce Arc translation nor long-term depression (LTD) at the mossy fiber pathway, as opposed to its effects in CA1, and it only triggers LTD after GPER1 stimulation. Furthermore, this form of mGluR-dependent LTD is associated with ubiquitination and proteasome-mediated degradation of GluA1, and is prevented by proteasome inhibition. Overall, our study identifies a novel mechanism by which estrogen and BDNF regulate hippocampal synaptic plasticity in the adult brain. PMID:26391661

  1. Inactivation of BRD7 results in impaired cognitive behavior and reduced synaptic plasticity of the medial prefrontal cortex.

    PubMed

    Xu, Yang; Cao, Wenyu; Zhou, Ming; Li, Changqi; Luo, Yanwei; Wang, Heran; Zhao, Ran; Jiang, Shihe; Yang, Jing; Liu, Yukun; Wang, Xinye; Li, Xiayu; Xiong, Wei; Ma, Jian; Peng, Shuping; Zeng, Zhaoyang; Li, Xiaoling; Tan, Ming; Li, Guiyuan

    2015-06-01

    BRD7 is a bromodomain-containing protein (BCP), and recent evidence implicates the role of BCPs in the initiation and development of neurodevelopmental disorders. However, few studies have investigated the biological functions of BRD7 in the central nervous system. In our study, BRD7 was found to be widely expressed in various regions of the mouse brain, including the medial prefrontal cortex (mPFC), caudate putamen (CPu), hippocampus (Hip), midbrain (Mb), cerebellum (Cb), and mainly co-localized with neuron but not with glia. Using a BRD7 knockout mouse model and a battery of behavioral tests, we report that disruption of BRD7 results in impaired cognitive behavior leaving the emotional behavior unaffected. Moreover, a series of proteins involved in synaptic plasticity were decreased in the medial prefrontal cortex and there was a concomitant decrease in neuronal spine density and dendritic branching in the medial prefrontal cortex. However, no significant difference was found in the hippocampus compared to the wild-type mice. Thus, BRD7 might play a critical role in the regulation of synaptic plasticity and affect cognitive behavior. PMID:25721744

  2. Long-term plasticity determines the postsynaptic response to correlated afferents with multivesicular short-term synaptic depression

    PubMed Central

    Bird, Alex D.; Richardson, Magnus J. E.

    2014-01-01

    Synchrony in a presynaptic population leads to correlations in vesicle occupancy at the active sites for neurotransmitter release. The number of independent release sites per presynaptic neuron, a synaptic parameter recently shown to be modified during long-term plasticity, will modulate these correlations and therefore have a significant effect on the firing rate of the postsynaptic neuron. To understand how correlations from synaptic dynamics and from presynaptic synchrony shape the postsynaptic response, we study a model of multiple release site short-term plasticity and derive exact results for the crosscorrelation function of vesicle occupancy and neurotransmitter release, as well as the postsynaptic voltage variance. Using approximate forms for the postsynaptic firing rate in the limits of low and high correlations, we demonstrate that short-term depression leads to a maximum response for an intermediate number of presynaptic release sites, and that this leads to a tuning-curve response peaked at an optimal presynaptic synchrony set by the number of neurotransmitter release sites per presynaptic neuron. These effects arise because, above a certain level of correlation, activity in the presynaptic population is overly strong resulting in wastage of the pool of releasable neurotransmitter. As the nervous system operates under constraints of efficient metabolism it is likely that this phenomenon provides an activity-dependent constraint on network architecture. PMID:24523691

  3. RGS7/Gβ5/R7BP complex regulates synaptic plasticity and memory by modulating hippocampal GABABR-GIRK signaling

    PubMed Central

    Ostrovskaya, Olga; Xie, Keqiang; Masuho, Ikuo; Fajardo-Serrano, Ana; Lujan, Rafael; Wickman, Kevin; Martemyanov, Kirill A

    2014-01-01

    In the hippocampus, the inhibitory neurotransmitter GABA shapes the activity of the output pyramidal neurons and plays important role in cognition. Most of its inhibitory effects are mediated by signaling from GABAB receptor to the G protein-gated Inwardly-rectifying K+ (GIRK) channels. Here, we show that RGS7, in cooperation with its binding partner R7BP, regulates GABABR-GIRK signaling in hippocampal pyramidal neurons. Deletion of RGS7 in mice dramatically sensitizes GIRK responses to GABAB receptor stimulation and markedly slows channel deactivation kinetics. Enhanced activity of this signaling pathway leads to decreased neuronal excitability and selective disruption of inhibitory forms of synaptic plasticity. As a result, mice lacking RGS7 exhibit deficits in learning and memory. We further report that RGS7 is selectively modulated by its membrane anchoring subunit R7BP, which sets the dynamic range of GIRK responses. Together, these results demonstrate a novel role of RGS7 in hippocampal synaptic plasticity and memory formation. DOI: http://dx.doi.org/10.7554/eLife.02053.001 PMID:24755289

  4. Cognition and Synaptic-Plasticity Related Changes in Aged Rats Supplemented with 8- and 10-Carbon Medium Chain Triglycerides

    PubMed Central

    Wang, Dongmei; Mitchell, Ellen S.

    2016-01-01

    Brain glucose hypometabolism is a common feature of Alzheimer’s disease (AD). Previous studies have shown that cognition is improved by providing AD patients with an alternate energy source: ketones derived from either ketogenic diet or supplementation with medium chain triglycerides (MCT). Recently, data on the neuroprotective capacity of MCT-derived medium chain fatty acids (MCFA) suggest 8-carbon and 10-carbon MCFA may have cognition-enhancing properties which are not related to ketone production. We investigated the effect of 8 week treatment with MCT8, MCT10 or sunflower oil supplementation (5% by weight of chow diet) in 21 month old Wistar rats. Both MCT diets increased ketones plasma similarly compared to control diet, but MCT diets did not increase ketones in the brain. Treatment with MCT10, but not MCT8, significantly improved novel object recognition memory compared to control diet, while social recognition increased in both MCT groups. MCT8 and MCT10 diets decreased weight compared to control diet, where MCFA plasma levels were higher in MCT10 groups than in MCT8 groups. Both MCT diets increased IRS-1 (612) phosphorylation and decreased S6K phosphorylation (240/244) but only MCT10 increased Akt phosphorylation (473). MCT8 supplementation increased synaptophysin, but not PSD-95, in contrast MCT10 had no effect on either synaptic marker. Expression of Ube3a, which controls synaptic stability, was increased by both MCT diets. Cortex transcription via qPCR showed that immediate early genes related to synaptic plasticity (arc, plk3, junb, egr2, nr4a1) were downregulated by both MCT diets while MCT8 additionally down-regulated fosb and egr1 but upregulated grin1 and gba2. These results demonstrate that treatment of 8- and 10-carbon length MCTs in aged rats have slight differential effects on synaptic stability, protein synthesis and behavior that may be independent of brain ketone levels. PMID:27517611

  5. Cognition and Synaptic-Plasticity Related Changes in Aged Rats Supplemented with 8- and 10-Carbon Medium Chain Triglycerides.

    PubMed

    Wang, Dongmei; Mitchell, Ellen S

    2016-01-01

    Brain glucose hypometabolism is a common feature of Alzheimer's disease (AD). Previous studies have shown that cognition is improved by providing AD patients with an alternate energy source: ketones derived from either ketogenic diet or supplementation with medium chain triglycerides (MCT). Recently, data on the neuroprotective capacity of MCT-derived medium chain fatty acids (MCFA) suggest 8-carbon and 10-carbon MCFA may have cognition-enhancing properties which are not related to ketone production. We investigated the effect of 8 week treatment with MCT8, MCT10 or sunflower oil supplementation (5% by weight of chow diet) in 21 month old Wistar rats. Both MCT diets increased ketones plasma similarly compared to control diet, but MCT diets did not increase ketones in the brain. Treatment with MCT10, but not MCT8, significantly improved novel object recognition memory compared to control diet, while social recognition increased in both MCT groups. MCT8 and MCT10 diets decreased weight compared to control diet, where MCFA plasma levels were higher in MCT10 groups than in MCT8 groups. Both MCT diets increased IRS-1 (612) phosphorylation and decreased S6K phosphorylation (240/244) but only MCT10 increased Akt phosphorylation (473). MCT8 supplementation increased synaptophysin, but not PSD-95, in contrast MCT10 had no effect on either synaptic marker. Expression of Ube3a, which controls synaptic stability, was increased by both MCT diets. Cortex transcription via qPCR showed that immediate early genes related to synaptic plasticity (arc, plk3, junb, egr2, nr4a1) were downregulated by both MCT diets while MCT8 additionally down-regulated fosb and egr1 but upregulated grin1 and gba2. These results demonstrate that treatment of 8- and 10-carbon length MCTs in aged rats have slight differential effects on synaptic stability, protein synthesis and behavior that may be independent of brain ketone levels. PMID:27517611

  6. Chronic methamphetamine treatment reduces the expression of synaptic plasticity genes and changes their DNA methylation status in the mouse brain.

    PubMed

    Cheng, Min-Chih; Hsu, Shih-Hsin; Chen, Chia-Hsiang

    2015-12-10

    Methamphetamine (METH) is a highly addictive psychostimulant that may cause long-lasting synaptic dysfunction and abnormal gene expression. We aimed to explore the differential expression of synaptic plasticity genes in chronic METH-treated mouse brain. We used the RT(2) Profiler PCR Array and the real-time quantitative PCR to characterize differentially expressed synaptic plasticity genes in the frontal cortex and the hippocampus of chronic METH-treated mice compared with normal saline-treated mice. We further used pyrosequencing to assess DNA methylation changes in the CpG region of the five immediate early genes (IEGs) in chronic METH-treated mouse brain. We detected six downregulated genes in the frontal cortex and the hippocampus of chronic METH-treated mice, including five IEGs (Arc, Egr2, Fos, Klf10, and Nr4a1) and one neuronal receptor gene (Grm1), compared with normal saline-treated group, but only four genes (Arc, Egr2, Fos, and Nr4a1) were confirmed to be different. Furthermore, we found several CpG sites of the Arc and the Fos that had significant changes in DNA methylation status in the frontal cortex of chronic METH-treated mice, while the klf10 and the Nr4a1 that had significant changes in the hippocampus. Our results show that chronic administration of METH may lead to significant downregulation of the IEGs expression in both the frontal cortex and the hippocampus, which may partly account for the molecular mechanism of the action of METH. Furthermore, the changes in DNA methylation status of the IEGs in the brain indicate that an epigenetic mechanism-dependent transcriptional regulation may contribute to METH addiction, which warrants additional study. PMID:26496011

  7. Decreased synaptic plasticity in the medial prefrontal cortex underlies short-term memory deficits in 6-OHDA-lesioned rats.

    PubMed

    Matheus, Filipe C; Rial, Daniel; Real, Joana I; Lemos, Cristina; Ben, Juliana; Guaita, Gisele O; Pita, Inês R; Sequeira, Ana C; Pereira, Frederico C; Walz, Roger; Takahashi, Reinaldo N; Bertoglio, Leandro J; Da Cunha, Cláudio; Cunha, Rodrigo A; Prediger, Rui D

    2016-03-15

    Parkinson's disease (PD) is characterized by motor dysfunction associated with dopaminergic degeneration in the dorsolateral striatum (DLS). However, motor symptoms in PD are often preceded by short-term memory deficits, which have been argued to involve deregulation of medial prefrontal cortex (mPFC). We now used a 6-hydroxydopamine (6-OHDA) rat PD model to explore if alterations of synaptic plasticity in DLS and mPFC underlie short-term memory impairments in PD prodrome. The bilateral injection of 6-OHDA (20μg/hemisphere) in the DLS caused a marked loss of dopaminergic neurons in the substantia nigra (>80%) and decreased monoamine levels in the striatum and PFC, accompanied by motor deficits evaluated after 21 days in the open field and accelerated rotarod. A lower dose of 6-OHDA (10μg/hemisphere) only induced a partial degeneration (about 60%) of dopaminergic neurons in the substantia nigra with no gross motor impairments, thus mimicking an early premotor stage of PD. Notably, 6-OHDA (10μg)-lesioned rats displayed decreased monoamine levels in the PFC as well as short-term memory deficits evaluated in the novel object discrimination and in the modified Y-maze tasks; this was accompanied by a selective decrease in the amplitude of long-term potentiation in the mPFC, but not in DLS, without changes of synaptic transmission in either brain regions. These results indicate that the short-term memory dysfunction predating the motor alterations in the 6-OHDA model of PD is associated with selective changes of information processing in PFC circuits, typified by persistent changes of synaptic plasticity. PMID:26707254

  8. Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic plasticity.

    PubMed

    Kim, Sungho; Du, Chao; Sheridan, Patrick; Ma, Wen; Choi, ShinHyun; Lu, Wei D

    2015-03-11

    Memristors have been extensively studied for data storage and low-power computation applications. In this study, we show that memristors offer more than simple resistance change. Specifically, the dynamic evolutions of internal state variables allow an oxide-based memristor to exhibit Ca(2+)-like dynamics that natively encode timing information and regulate synaptic weights. Such a device can be modeled as a second-order memristor and allow the implementation of critical synaptic functions realistically using simple spike forms based solely on spike activity. PMID:25710872

  9. Age-dependent modulation of synaptic plasticity and insulin mimetic effect of lipoic acid on a mouse model of Alzheimer's disease.

    PubMed

    Sancheti, Harsh; Akopian, Garnik; Yin, Fei; Brinton, Roberta D; Walsh, John P; Cadenas, Enrique

    2013-01-01

    Alzheimer's disease is a progressive neurodegenerative disease that entails impairments of memory, thinking and behavior and culminates into brain atrophy. Impaired glucose uptake (accumulating into energy deficits) and synaptic plasticity have been shown to be affected in the early stages of Alzheimer's disease. This study examines the ability of lipoic acid to increase brain glucose uptake and lead to improvements in synaptic plasticity on a triple transgenic mouse model of Alzheimer's disease (3xTg-AD) that shows progression of pathology as a function of age; two age groups: 6 months (young) and 12 months (old) were used in this study. 3xTg-AD mice fed 0.23% w/v lipoic acid in drinking water for 4 weeks showed an insulin mimetic effect that consisted of increased brain glucose uptake, activation of the insulin receptor substrate and of the PI3K/Akt signaling pathway. Lipoic acid supplementation led to important changes in synaptic function as shown by increased input/output (I/O) and long term potentiation (LTP) (measured by electrophysiology). Lipoic acid was more effective in stimulating an insulin-like effect and reversing the impaired synaptic plasticity in the old mice, wherein the impairment of insulin signaling and synaptic plasticity was more pronounced than those in young mice. PMID:23875003

  10. Role of motor cortex NMDA receptors in learning-dependent synaptic plasticity of behaving mice

    PubMed Central

    Hasan, Mazahir T.; Hernández-González, Samuel; Dogbevia, Godwin; Treviño, Mario; Bertocchi, Ilaria; Gruart, Agnès; Delgado-García, José M.

    2013-01-01

    The primary motor cortex has an important role in the precise execution of learned motor responses. During motor learning, synaptic efficacy between sensory and primary motor cortical neurons is enhanced, possibly involving long-term potentiation and N-methyl-D-aspartate (NMDA)-specific glutamate receptor function. To investigate whether NMDA receptor in the primary motor cortex can act as a coincidence detector for activity-dependent changes in synaptic strength and associative learning, here we generate mice with deletion of the Grin1 gene, encoding the essential NMDA receptor subunit 1 (GluN1), specifically in the primary motor cortex. The loss of NMDA receptor function impairs primary motor cortex long-term potentiation in vivo. Importantly, it impairs the synaptic efficacy between the primary somatosensory and primary motor cortices and significantly reduces classically conditioned eyeblink responses. Furthermore, compared with wild-type littermates, mice lacking primary motor cortex show slower learning in Skinner-box tasks. Thus, primary motor cortex NMDA receptors are necessary for activity-dependent synaptic strengthening and associative learning. PMID:23978820

  11. Role of motor cortex NMDA receptors in learning-dependent synaptic plasticity of behaving mice.

    PubMed

    Hasan, Mazahir T; Hernández-González, Samuel; Dogbevia, Godwin; Treviño, Mario; Bertocchi, Ilaria; Gruart, Agnès; Delgado-García, José M

    2013-01-01

    The primary motor cortex has an important role in the precise execution of learned motor responses. During motor learning, synaptic efficacy between sensory and primary motor cortical neurons is enhanced, possibly involving long-term potentiation and N-methyl-D-aspartate (NMDA)-specific glutamate receptor function. To investigate whether NMDA receptor in the primary motor cortex can act as a coincidence detector for activity-dependent changes in synaptic strength and associative learning, here we generate mice with deletion of the Grin1 gene, encoding the essential NMDA receptor subunit 1 (GluN1), specifically in the primary motor cortex. The loss of NMDA receptor function impairs primary motor cortex long-term potentiation in vivo. Importantly, it impairs the synaptic efficacy between the primary somatosensory and primary motor cortices and significantly reduces classically conditioned eyeblink responses. Furthermore, compared with wild-type littermates, mice lacking NMDA receptors in the [corrected] primary motor cortex show slower learning in Skinner-box tasks. Thus, primary motor cortex NMDA receptors are necessary for activity-dependent synaptic strengthening and associative learning. PMID:23978820

  12. Netrin-1 improves spatial memory and synaptic plasticity impairment following global ischemia in the rat.

    PubMed

    Bayat, Mahnaz; Baluchnejadmojarad, Tourandokht; Roghani, Mehrdad; Goshadrou, Fatemeh; Ronaghi, Abdolaziz; Mehdizadeh, Mehdi

    2012-05-01

    Cerebral ischemia, which is the second and most common cause of mortality, affects millions of individuals worldwide. The present study was performed to investigate whether intrahippocampal administration of netrin-1 could improve spatial memory impairment in radial arm maze task and restore long-term potentiation (LTP) in 4-vessel occlusion model of global ischemia. The results showed that intrahippocampal infusion of nerin-1 24 h after ischemia (at both doses of 400 and 800 ng) significantly ameliorated spatial memory impairment and at a dose of 800 ng was capable to improve synaptic dysfunction as observed by recovery of population spike component of basal evoked potential and LTP through enhancement of excitability and normalization of paired pulse response. Taken together, the present study shows that netrin-1 dose-dependently ameliorates spatial memory impairment and improves synaptic dysfunction as observed by recovery of population spike component of basal evoked potential and LTP in rats with global ischemia. PMID:22459051

  13. Free D-aspartate regulates neuronal dendritic morphology, synaptic plasticity, gray matter volume and brain activity in mammals

    PubMed Central

    Errico, F; Nisticò, R; Di Giorgio, A; Squillace, M; Vitucci, D; Galbusera, A; Piccinin, S; Mango, D; Fazio, L; Middei, S; Trizio, S; Mercuri, N B; Teule, M A; Centonze, D; Gozzi, A; Blasi, G; Bertolino, A; Usiello, A

    2014-01-01

    D-aspartate (D-Asp) is an atypical amino acid, which is especially abundant in the developing mammalian brain, and can bind to and activate N-methyl-D-Aspartate receptors (NMDARs). In line with its pharmacological features, we find that mice chronically treated with D-Asp show enhanced NMDAR-mediated miniature excitatory postsynaptic currents and basal cerebral blood volume in fronto-hippocampal areas. In addition, we show that both chronic administration of D-Asp and deletion of the gene coding for the catabolic enzyme D-aspartate oxidase (DDO) trigger plastic modifications of neuronal cytoarchitecture in the prefrontal cortex and CA1 subfield of the hippocampus and promote a cytochalasin D-sensitive form of synaptic plasticity in adult mouse brains. To translate these findings in humans and consistent with the experiments using Ddo gene targeting in animals, we performed a hierarchical stepwise translational genetic approach. Specifically, we investigated the association of variation in the gene coding for DDO with complex human prefrontal phenotypes. We demonstrate that genetic variation predicting reduced expression of DDO in postmortem human prefrontal cortex is mapped on greater prefrontal gray matter and activity during working memory as measured with MRI. In conclusion our results identify novel NMDAR-dependent effects of D-Asp on plasticity and physiology in rodents, which also map to prefrontal phenotypes in humans. PMID:25072322

  14. In Vitro Studies of Neuronal Networks and Synaptic Plasticity in Invertebrates and in Mammals Using Multielectrode Arrays

    PubMed Central

    Tessadori, Jacopo; Ghirardi, Mirella

    2015-01-01

    Brain functions are strictly dependent on neural connections formed during development and modified during life. The cellular and molecular mechanisms underlying synaptogenesis and plastic changes involved in learning and memory have been analyzed in detail in simple animals such as invertebrates and in circuits of mammalian brains mainly by intracellular recordings of neuronal activity. In the last decades, the evolution of techniques such as microelectrode arrays (MEAs) that allow simultaneous, long-lasting, noninvasive, extracellular recordings from a large number of neurons has proven very useful to study long-term processes in neuronal networks in vivo and in vitro. In this work, we start off by briefly reviewing the microelectrode array technology and the optimization of the coupling between neurons and microtransducers to detect subthreshold synaptic signals. Then, we report MEA studies of circuit formation and activity in invertebrate models such as Lymnaea, Aplysia, and Helix. In the following sections, we analyze plasticity and connectivity in cultures of mammalian dissociated neurons, focusing on spontaneous activity and electrical stimulation. We conclude by discussing plasticity in closed-loop experiments. PMID:25866681

  15. Motor Training Promotes Both Synaptic and Intrinsic Plasticity of Layer II/III Pyramidal Neurons in the Primary Motor Cortex

    PubMed Central

    Kida, Hiroyuki; Tsuda, Yasumasa; Ito, Nana; Yamamoto, Yui; Owada, Yuji; Kamiya, Yoshinori; Mitsushima, Dai

    2016-01-01

    Motor skill training induces structural plasticity at dendritic spines in the primary motor cortex (M1). To further analyze both synaptic and intrinsic plasticity in the layer II/III area of M1, we subjected rats to a rotor rod test and then prepared acute brain slices. Motor skill consistently improved within 2 days of training. Voltage clamp analysis showed significantly higher α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-d-aspartate (AMPA/NMDA) ratios and miniature EPSC amplitudes in 1-day trained rats compared with untrained rats, suggesting increased postsynaptic AMPA receptors in the early phase of motor learning. Compared with untrained controls, 2-days trained rats showed significantly higher miniature EPSC amplitude and frequency. Paired-pulse analysis further demonstrated lower rates in 2-days trained rats, suggesting increased presynaptic glutamate release during the late phase of learning. One-day trained rats showed decreased miniature IPSC frequency and increased paired-pulse analysis of evoked IPSC, suggesting a transient decrease in presynaptic γ-aminobutyric acid (GABA) release. Moreover, current clamp analysis revealed lower resting membrane potential, higher spike threshold, and deeper afterhyperpolarization in 1-day trained rats—while 2-days trained rats showed higher membrane potential, suggesting dynamic changes in intrinsic properties. Our present results indicate dynamic changes in glutamatergic, GABAergic, and intrinsic plasticity in M1 layer II/III neurons after the motor training. PMID:27193420

  16. Synaptic NF-kappa B pathway in neuronal plasticity and memory.

    PubMed

    Salles, Angeles; Romano, Arturo; Freudenthal, Ramiro

    2014-01-01

    Several transcription factors are present at the synapse, and among these are the Rel-NF-kappa B pathway components. NF-kappa B is a constitutive transcription factor, with a strong presence in the brain of which a considerable part is located in the neuropiles. This localization of the transcription factor, plus evidence pointing to different functions, is what gave place to two general hypotheses for synaptic NF-kappa B: (a) The transcription factor plays a role in the synapse to nucleus communication, and it is retrogradely transported from polarized localizations to regulate gene expression; (b) The transcription factor modulates the synaptic function locally. Evidence indicates that both mechanisms can operate simultaneously; here we will present different possibilities of these hypotheses that are supported by an increasing amount of data. We pay special attention to the local role of the transcription factor at the synapse, and based in the described evidence from different animal models, we propose several processes in which the transcription factor may change the synaptic strength. PMID:24854662

  17. Differential splicing and glycosylation of Apoer2 alters synaptic plasticity and fear learning

    PubMed Central

    Wasser, Catherine R.; Masiulis, Irene; Durakoglugil, Murat S.; Lane-Donovan, Courtney; Xian, Xunde; Beffert, Uwe; Agarwala, Anandita; Hammer, Robert E.; Herz, Joachim

    2015-01-01

    Apoer2 is an essential receptor in the central nervous system that binds to the apolipoprotein ApoE. Various splice variants of Apoer2 are produced. We showed that Apoer2 lacking exon 16, which encodes the O-linked sugar (OLS) domain, altered the proteolytic processing and abundance of Apoer2 in cells and synapse number and function in mice. In cultured cells expressing this splice variant, extracellular cleavage of OLS-deficient Apoer2 was reduced, consequently preventing γ-secretase-dependent release of the intracellular domain of Apoer2. Mice expressing Apoer2 lacking the OLS domain had increased Apoer2 abundance in the brain, hippocampal spine density, and glutamate receptor abundance, but decreased synaptic efficacy. Mice expressing a form of Apoer2 lacking the OLS domain and containing an alternatively spliced cytoplasmic tail region that promotes glutamate receptor signaling showed enhanced hippocampal long-term potentiation (LTP), a phenomenon associated with learning and memory. However, these mice did not display enhanced spatial learning in the Morris water maze, and cued fear conditioning was reduced. Reducing the expression of the mutant Apoer2 allele so that the abundance of the protein was similar to that of Apoer2 in wild-type mice normalized spine density, hippocampal LTP, and cued fear learning. These findings demonstrated a role for ApoE receptors as regulators of synaptic glutamate receptor activity and established differential receptor glycosylation as a potential regulator of synaptic function and memory. PMID:25429077

  18. Hippocampal synaptic plasticity restoration and anti-apoptotic effect underlie berberine improvement of learning and memory in streptozotocin-diabetic rats.

    PubMed

    Kalalian-Moghaddam, Hamid; Baluchnejadmojarad, Tourandokht; Roghani, Mehrdad; Goshadrou, Fatemeh; Ronaghi, Abdolaziz

    2013-01-01

    Chronic diabetes mellitus initiates apoptosis and negatively affects synaptic plasticity in the hippocampus with ensuing impairments of learning and memory. Berberine, an isoquinoline alkaloid, exhibits anti-diabetic, antioxidant and nootropic effects. This study was conducted to evaluate the effect of berberine on hippocampal CA1 neuronal apoptosis, synaptic plasticity and learning and memory of streptozotocin (STZ)-diabetic rats. Long-term potentiation (LTP) in perforant path-dentate gyrus synapses was recorded for assessment of synaptic plasticity and field excitatory post-synaptic potential (fEPSP) slope and population spike (PS) amplitude. PS amplitude and fEPSP significantly decreased in diabetic group versus control, and chronic berberine treatment (100mg/kg/day, p.o.) restored PS amplitude and fEPSP and ameliorated learning and memory impairment and attenuated apoptosis of pyramidal neurons in the CA1 area, as determined by the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end-labeling method. In summary, chronic berberine treatment of STZ-diabetic rats significantly ameliorates learning and memory impairment and part of its beneficial effect could be attributed to improvement of synaptic dysfunction and anti-apoptotic property. PMID:23099256

  19. Environmental enrichment decreases GABAergic inhibition and improves cognitive abilities, synaptic plasticity, and visual functions in a mouse model of Down syndrome

    PubMed Central

    Begenisic, Tatjana; Spolidoro, Maria; Braschi, Chiara; Baroncelli, Laura; Milanese, Marco; Pietra, Gianluca; Fabbri, Maria E.; Bonanno, Giambattista; Cioni, Giovanni; Maffei, Lamberto; Sale, Alessandro

    2011-01-01

    Down syndrome (DS) is the most common genetic disorder associated with mental retardation. It has been repeatedly shown that Ts65Dn mice, the prime animal model for DS, have severe cognitive and neural plasticity defects due to excessive inhibition. We report that increasing sensory-motor stimulation in adulthood through environmental enrichment (EE) reduces brain inhibition levels and promotes recovery of spatial memory abilities, hippocampal synaptic plasticity, and visual functions in adult Ts65Dn mice. PMID:22207837

  20. AMPA Receptor Phosphorylation and Synaptic Colocalization on Motor Neurons Drive Maladaptive Plasticity below Complete Spinal Cord Injury1,2,3

    PubMed Central

    Stuck, Ellen D.; Irvine, Karen-Amanda; Bresnahan, Jacqueline C.

    2015-01-01

    Abstract Clinical spinal cord injury (SCI) is accompanied by comorbid peripheral injury in 47% of patients. Human and animal modeling data have shown that painful peripheral injuries undermine long-term recovery of locomotion through unknown mechanisms. Peripheral nociceptive stimuli induce maladaptive synaptic plasticity in dorsal horn sensory systems through AMPA receptor (AMPAR) phosphorylation and trafficking to synapses. Here we test whether ventral horn motor neurons in rats demonstrate similar experience-dependent maladaptive plasticity below a complete SCI in vivo. Quantitative biochemistry demonstrated that intermittent nociceptive stimulation (INS) rapidly and selectively increases AMPAR subunit GluA1 serine 831 phosphorylation and localization to synapses in the injured spinal cord, while reducing synaptic GluA2. These changes predict motor dysfunction in the absence of cell death signaling, suggesting an opportunity for therapeutic reversal. Automated confocal time-course analysis of lumbar ventral horn motor neurons confirmed a time-dependent increase in synaptic GluA1 with concurrent decrease in synaptic GluA2. Optical fractionation of neuronal plasma membranes revealed GluA2 removal from extrasynaptic sites on motor neurons early after INS followed by removal from synapses 2 h later. As GluA2-lacking AMPARs are canonical calcium-permeable AMPARs (CP-AMPARs), their stimulus- and time-dependent insertion provides a therapeutic target for limiting calcium-dependent dynamic maladaptive plasticity after SCI. Confirming this, a selective CP-AMPAR antagonist protected against INS-induced maladaptive spinal plasticity, restoring adaptive motor responses on a sensorimotor spinal training task. These findings highlight the critical involvement of AMPARs in experience-dependent spinal cord plasticity after injury and provide a pharmacologically targetable synaptic mechanism by which early postinjury experience shapes motor plasticity. PMID:26668821

  1. The antidepressant-like effect of alarin is related to TrkB-mTOR signaling and synaptic plasticity.

    PubMed

    Zhuang, Fuzhi; Li, Mei; Gao, Xin; Wang, Yun; Wang, Dongdong; Ma, Xing; Ma, Tengfei; Gu, Shuling

    2016-10-15

    Alarin is a newly derived neuropeptide from a splice variant of the galanin-like peptide gene. We previously showed that alarin has an antidepressant-like effect by increasing the activity of the extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) pathways, mediated by the tropomyosin-related kinase B receptor in the unpredictable chronic mild stress (UCMS) mouse model. Administration of rapamycin, a mammalian target of rapamycin (mTOR) inhibitor, prevents the rapid antidepressant-like effect induced by ketamine in animal models, indicating a vital role of mTOR in depression pathophysiology. mTOR is a target of the ERK and AKT pathways that regulates the initiation of protein translation via its downstream components: ribosomal protein S6 kinase (p70S6K) and eukaryotic initiation factor 4E binding protein 1 (4E-BP1). Therefore, we hypothesized that the antidepressant-like effects of alarin were achieved by activating ERK/AKT pathways, increasing the activity of mTOR and its downstream signaling components that contribute to protein synthesis required for synaptic plasticity. Our results suggest that intracerebroventricular administration of alarin significantly ameliorates depression-like behaviors in the UCMS mouse model. Furthermore, alarin restored UCMS-induced reductions of p70S6K and post-synaptic density 95 (PSD-95) mRNA levels, and of phospho-mTOR and phospho-4EBP1 in the prefrontal cortex, hippocampus, hypothalamus, and olfactory bulb. Additionally, alarin reversed the UCMS-induced downregulation of PSD-95 and synapsin I protein expression in these brain regions. Thus, the antidepressant-like effects of alarin may be mediated by restoring decreased activity of the mTOR signaling pathway and expression of synaptic proteins. Our findings help advance the understanding of depression pathophysiology. PMID:27374162

  2. Synaptic plasticity modulates autonomous transitions between waking and sleep states: Insights from a Morris-Lecar model

    NASA Astrophysics Data System (ADS)

    Ciszak, Marzena; Bellesi, Michele

    2011-12-01

    The transitions between waking and sleep states are characterized by considerable changes in neuronal firing. During waking, neurons fire tonically at irregular intervals and a desynchronized activity is observed at the electroencephalogram. This activity becomes synchronized with slow wave sleep onset when neurons start to oscillate between periods of firing (up-states) and periods of silence (down-states). Recently, it has been proposed that the connections between neurons undergo potentiation during waking, whereas they weaken during slow wave sleep. Here, we propose a dynamical model to describe basic features of the autonomous transitions between such states. We consider a network of coupled neurons in which the strength of the interactions is modulated by synaptic long term potentiation and depression, according to the spike time-dependent plasticity rule (STDP). The model shows that the enhancement of synaptic strength between neurons occurring in waking increases the propensity of the network to synchronize and, conversely, desynchronization appears when the strength of the connections become weaker. Both transitions appear spontaneously, but the transition from sleep to waking required a slight modification of the STDP rule with the introduction of a mechanism which becomes active during sleep and changes the proportion between potentiation and depression in accordance with biological data. At the neuron level, transitions from desynchronization to synchronization and vice versa can be described as a bifurcation between two different states, whose dynamical regime is modulated by synaptic strengths, thus suggesting that transition from a state to an another can be determined by quantitative differences between potentiation and depression.

  3. Subchronic glucocorticoid receptor inhibition rescues early episodic memory and synaptic plasticity deficits in a mouse model of Alzheimer's disease.

    PubMed

    Lanté, Fabien; Chafai, Magda; Raymond, Elisabeth Fabienne; Pereira, Ana Rita Salgueiro; Mouska, Xavier; Kootar, Scherazad; Barik, Jacques; Bethus, Ingrid; Marie, Hélène

    2015-06-01

    The early phase of Alzheimer's disease (AD) is characterized by hippocampus-dependent memory deficits and impaired synaptic plasticity. Increasing evidence suggests that stress and dysregulation of the hypothalamo-pituitary-adrenal (HPA) axis, marked by the elevated circulating glucocorticoids, are risk factors for AD onset. How these changes contribute to early hippocampal dysfunction remains unclear. Using an elaborated version of the object recognition task, we carefully monitored alterations in key components of episodic memory, the first type of memory altered in AD patients, in early symptomatic Tg2576 AD mice. We also combined biochemical and ex vivo electrophysiological analyses to reveal novel cellular and molecular dysregulations underpinning the onset of the pathology. We show that HPA axis, circadian rhythm, and feedback mechanisms, as well as episodic memory, are compromised in this early symptomatic phase, reminiscent of human AD pathology. The cognitive decline could be rescued by subchronic in vivo treatment with RU486, a glucocorticoid receptor antagonist. These observed phenotypes were paralleled by a specific enhancement of N-Methyl-D-aspartic acid receptor (NMDAR)-dependent LTD in CA1 pyramidal neurons, whereas LTP and metabotropic glutamate receptor-dependent LTD remain unchanged. NMDAR transmission was also enhanced. Finally, we show that, as for the behavioral deficit, RU486 treatment rescues this abnormal synaptic phenotype. These preclinical results define glucocorticoid signaling as a contributing factor to both episodic memory loss and early synaptic failure in this AD mouse model, and suggest that glucocorticoid receptor targeting strategies could be beneficial to delay AD onset. PMID:25622751

  4. Role of the vasopressin 1b receptor in rodent aggressive behavior and synaptic plasticity in hippocampal area CA2.

    PubMed

    Pagani, J H; Zhao, M; Cui, Z; Avram, S K Williams; Caruana, D A; Dudek, S M; Young, W S

    2015-04-01

    The vasopressin 1b receptor (Avpr1b) is critical for social memory and social aggression in rodents, yet little is known about its specific roles in these behaviors. Some clues to Avpr1b function can be gained from its profile of expression in the brain, which is largely limited to the pyramidal neurons of the CA2 region of the hippocampus, and from experiments showing that inactivation of the gene or antagonism of the receptor leads to a reduction in social aggression. Here we show that partial replacement of the Avpr1b through lentiviral delivery into the dorsal CA2 region restored the probability of socially motivated attack behavior in total Avpr1b knockout mice, without altering anxiety-like behaviors. To further explore the role of the Avpr1b in this hippocampal region, we examined the effects of Avpr1b agonists on pyramidal neurons in mouse and rat hippocampal slices. We found that selective Avpr1b agonists induced significant potentiation of excitatory synaptic responses in CA2, but not in CA1 or in slices from Avpr1b knockout mice. In a way that is mechanistically very similar to synaptic potentiation induced by oxytocin, Avpr1b agonist-induced potentiation of CA2 synapses relies on NMDA (N-methyl-D-aspartic acid) receptor activation, calcium and calcium/calmodulin-dependent protein kinase II activity, but not on cAMP-dependent protein kinase activity or presynaptic mechanisms. Our data indicate that the hippocampal CA2 is important for attacking in response to a male intruder and that the Avpr1b, likely through its role in regulating CA2 synaptic plasticity, is a necessary mediator. PMID:24863146

  5. Resolving TRPV1 and TNF-α Mediated Spinal Cord Synaptic Plasticity and Inflammatory Pain with Neuroprotectin D1

    PubMed Central

    Park, Chul-Kyu; Lü, Ning; Xu, Zhen-Zhong; Liu, Tong; Serhan, Charles N.; Ji, Ru-Rong

    2011-01-01

    Mechanisms of inflammatory pain are not fully understood. We investigated the role of TRPV1 and TNF-α, two critical mediators for inflammatory pain, in regulating spinal cord synaptic transmission. We found in mice lacking Trpv1 the frequency but not the amplitude of spontaneous EPSCs (sEPSCs) in lamina II neurons of spinal cord slices is reduced. Further, C-fiber-induced spinal long-term potentiation (LTP) in vivo is abolished in Trpv1 knockout mice. TNF-α also increases sEPSC frequency but not amplitude in spinal lamina IIo neurons, and this increase is abolished in Trpv1 knockout mice. Single-cell PCR analysis revealed that TNF-α-responding neurons in lamina IIo are exclusively excitatory (vGluT2+) neurons. Notably, neuroprotectin-1 (NPD1), an anti-inflammatory lipid mediator derived from omega-3 polyunsaturated fatty acid (docosahexaenoic acid) blocks TNF-α- and capsaicin-evoked sEPSC frequency increases but has no effect on basal synaptic transmission. Strikingly, NPD1 potently inhibits capsaicin-induced TRPV1 current (IC50=0.4 nM) in dissociated dorsal root ganglion neurons, and this IC50 is ≈ 500 times lower than that of AMG9810, a commonly used TRPV1 antagonist. NPD1 inhibition of TRPV1 is mediated by GPCRs, since the effects were blocked by pertussis toxin. In contrast, NPD1 had not effect on mustard oil-induced TRPA1 currents. Spinal injection of NPD1, at very low doses (0.1–10 ng), blocks spinal LTP and reduces TRPV1-dependent inflammatory pain, without affecting baseline pain. NPD1 also reduces TRPV1-independent but TNF-α-dependent pain hypersensitivity. Our findings demonstrate a novel role of NPD1 in regulating TRPV1/TNF-α-mediated spinal synaptic plasticity and identify NPD1 as a novel analgesic for treating inflammatory pain. PMID:22016541

  6. Danish dementia mice suggest that loss of function and not the amyloid cascade causes synaptic plasticity and memory deficits

    PubMed Central

    Tamayev, Robert; Matsuda, Shuji; Fà, Mauro; Arancio, Ottavio; D’Adamio, Luciano

    2010-01-01

    According to the prevailing “amyloid cascade hypothesis,” genetic dementias such as Alzheimer’s disease and familial Danish dementia (FDD) are caused by amyloid deposits that trigger tauopathy, neurodegeneration, and behavioral/cognitive alterations. To efficiently reproduce amyloid lesions, murine models of human dementias invariably use transgenic expression systems. However, recent FDD transgenic models showed that Danish amyloidosis does not cause memory defects, suggesting that other mechanisms cause Danish dementia. We studied an animal knock-in model of FDD (FDDKI/+) genetically congruous with human cases. FDDKI/+ mice present reduced Bri2 levels, impaired synaptic plasticity and severe hippocampal memory deficits. These animals show no cerebral lesions that are reputed characteristics of human dementia, such as tangles or amyloid plaques. Bri2+/− mice exhibit synaptic and memory deficits similar to FDDKI/+ mice, and memory loss of FDDKI/+ mice is prevented by expression of WT BRI2, indicating that Danish dementia is caused by loss of BRI2 function. Together, the data suggest that clinical dementia in Danish patients occurs via a loss of function mechanism and not as a result of amyloidosis and tauopathy. PMID:21098268

  7. Ouabain-induced cochlear nerve degeneration: synaptic loss and plasticity in a mouse model of auditory neuropathy.

    PubMed

    Yuan, Yasheng; Shi, Fuxin; Yin, Yanbo; Tong, Mingjie; Lang, Hainan; Polley, Daniel B; Liberman, M Charles; Edge, Albert S B

    2014-02-01

    Ouabain application to the round window can selectively destroy type-I spiral ganglion cells, producing an animal model of auditory neuropathy. To assess the long-term effects of this deafferentation on synaptic organization in the organ of Corti and cochlear nucleus, and to ask whether surviving cochlear neurons show any post-injury plasticity in the adult, we quantified the peripheral and central synapses of type-I neurons at posttreatment times ranging from 1 to 3 months. Measures of normal DPOAEs and greatly reduced auditory brainstem responses (ABRs) confirmed the neuropathy phenotype. Counts of presynaptic ribbons and postsynaptic glutamate receptor patches in the inner hair cell area decreased with post-exposure time, as did counts of cochlear nerve terminals in the cochlear nucleus. Although these counts provided no evidence of new synapse formation via branching from surviving neurons, the regular appearance of ectopic neurons in the inner hair cell area suggested that neurite extension is not uncommon. Correlations between pathophysiology and histopathology showed that ABR thresholds are very insensitive to even massive neural degeneration, whereas the amplitude of ABR wave 1 is a better metric of synaptic degeneration. PMID:24113829

  8. Synaptic plasticity and sensory-motor improvement following fibrin sealant dorsal root reimplantation and mononuclear cell therapy

    PubMed Central

    Benitez, Suzana U.; Barbizan, Roberta; Spejo, Aline B.; Ferreira, Rui S.; Barraviera, Benedito; Góes, Alfredo M.; de Oliveira, Alexandre L. R.

    2014-01-01

    Root lesions may affect both dorsal and ventral roots. However, due to the possibility of generating further inflammation and neuropathic pain, surgical procedures do not prioritize the repair of the afferent component. The loss of such sensorial input directly disturbs the spinal circuits thus affecting the functionality of the injuried limb. The present study evaluated the motor and sensory improvement following dorsal root reimplantation with fibrin sealant (FS) plus bone marrow mononuclear cells (MC) after dorsal rhizotomy. MC were used to enhance the repair process. We also analyzed changes in the glial response and synaptic circuits within the spinal cord. Female Lewis rats (6–8 weeks old) were divided in three groups: rhizotomy (RZ group), rhizotomy repaired with FS (RZ+FS group) and rhizotomy repaired with FS and MC (RZ+FS+MC group). The behavioral tests electronic von-Frey and Walking track test were carried out. For immunohistochemistry we used markers to detect different synapse profiles as well as glial reaction. The behavioral results showed a significant decrease in sensory and motor function after lesion. The reimplantation decreased glial reaction and improved synaptic plasticity of afferent inputs. Cell therapy further enhanced the rewiring process. In addition, both reimplanted groups presented twice as much motor control compared to the non-treated group. In conclusion, the reimplantation with FS and MC is efficient and may be considered an approach to improve sensory-motor recovery following dorsal rhizotomy. PMID:25249946

  9. Stability and bifurcation of the Tsodyks-Markram model about short-term synaptic plasticity with time delay

    NASA Astrophysics Data System (ADS)

    Wang, Qiubao

    2014-06-01

    Short-term synaptic plasticity in the Tsodyks-Markram model can lead to unpredictable and complicated network dynamics. In this paper, we present a new Tsodyks-Markram model with time delay as a parameter. The time delay plays a very important role for the dynamics of our model. We report on the existence of Hopf bifurcation in the model for fixed and varied release probability of available neurotransmitters. It is found that there are stability switches, and a supercritical or subcritical Hopf bifurcation occur when the delay passes through a sequence of critical values. We provide numerical results to illustrate our conclusion about stability and obtain the properties of Hopf bifurcation. Moreover, we find the large sensitivity to initial conditions in our model.

  10. Removal of S6K1 and S6K2 Leads to Divergent Alterations in Learning, Memory, and Synaptic Plasticity

    ERIC Educational Resources Information Center

    Antion, Marcia D.; Merhav, Maayan; Hoeffer, Charles A.; Reis, Gerald; Kozma, Sara C.; Thomas, George; Schuman Erin M.; Rosenblum, Kobi; Klann, Eric

    2008-01-01

    Protein synthesis is required for the expression of enduring memories and long-lasting synaptic plasticity. During cellular proliferation and growth, S6 kinases (S6Ks) are activated and coordinate the synthesis of de novo proteins. We hypothesized that protein synthesis mediated by S6Ks is critical for the manifestation of learning, memory, and…

  11. The NO-cGMP-PKG Signaling Pathway Regulates Synaptic Plasticity and Fear Memory Consolidation in the Lateral Amygdala via Activation of ERK/MAP Kinase

    ERIC Educational Resources Information Center

    Ota, Kristie T.; Pierre, Vicki J.; Ploski, Jonathan E.; Queen, Kaila; Schafe, Glenn E.

    2008-01-01

    Recent studies have shown that nitric oxide (NO) signaling plays a crucial role in memory consolidation of Pavlovian fear conditioning and in synaptic plasticity in the lateral amygdala (LA). In the present experiments, we examined the role of the cGMP-dependent protein kinase (PKG), a downstream effector of NO, in fear memory consolidation and…

  12. Neuronal Kmt2a/Mll1 histone methyltransferase is essential for prefrontal synaptic plasticity and working memory.

    PubMed

    Jakovcevski, Mira; Ruan, Hongyu; Shen, Erica Y; Dincer, Aslihan; Javidfar, Behnam; Ma, Qi; Peter, Cyril J; Cheung, Iris; Mitchell, Amanda C; Jiang, Yan; Lin, Cong L; Pothula, Venu; Stewart, A Francis; Ernst, Patricia; Yao, Wei-Dong; Akbarian, Schahram

    2015-04-01

    Neuronal histone H3-lysine 4 methylation landscapes are defined by sharp peaks at gene promoters and other cis-regulatory sequences, but molecular and cellular phenotypes after neuron-specific deletion of H3K4 methyl-regulators remain largely unexplored. We report that neuronal ablation of the H3K4-specific methyltransferase, Kmt2a/Mixed-lineage leukemia 1 (Mll1), in mouse postnatal forebrain and adult prefrontal cortex (PFC) is associated with increased anxiety and robust cognitive deficits without locomotor dysfunction. In contrast, only mild behavioral phenotypes were observed after ablation of the Mll1 ortholog Kmt2b/Mll2 in PFC. Impaired working memory after Kmt2a/Mll1 ablation in PFC neurons was associated with loss of training-induced transient waves of Arc immediate early gene expression critical for synaptic plasticity. Medial prefrontal layer V pyramidal neurons, a major output relay of the cortex, demonstrated severely impaired synaptic facilitation and temporal summation, two forms of short-term plasticity essential for working memory. Chromatin immunoprecipitation followed by deep sequencing in Mll1-deficient cortical neurons revealed downregulated expression and loss of the transcriptional mark, trimethyl-H3K4, at <50 loci, including the homeodomain transcription factor Meis2. Small RNA-mediated Meis2 knockdown in PFC was associated with working memory defects similar to those elicited by Mll1 deletion. Therefore, mature prefrontal neurons critically depend on maintenance of Mll1-regulated H3K4 methylation at a subset of genes with an essential role in cognition and emotion. PMID:25834037

  13. Calcium sensor regulation of the CaV2.1 Ca2+ channel contributes to short-term synaptic plasticity in hippocampal neurons.

    PubMed

    Nanou, Evanthia; Sullivan, Jane M; Scheuer, Todd; Catterall, William A

    2016-01-26

    Short-term synaptic plasticity is induced by calcium (Ca(2+)) accumulating in presynaptic nerve terminals during repetitive action potentials. Regulation of voltage-gated CaV2.1 Ca(2+) channels by Ca(2+) sensor proteins induces facilitation of Ca(2+) currents and synaptic facilitation in cultured neurons expressing exogenous CaV2.1 channels. However, it is unknown whether this mechanism contributes to facilitation in native synapses. We introduced the IM-AA mutation into the IQ-like motif (IM) of the Ca(2+) sensor binding site. This mutation does not alter voltage dependence or kinetics of CaV2.1 currents, or frequency or amplitude of spontaneous miniature excitatory postsynaptic currents (mEPSCs); however, synaptic facilitation is completely blocked in excitatory glutamatergic synapses in hippocampal autaptic cultures. In acutely prepared hippocampal slices, frequency and amplitude of mEPSCs and amplitudes of evoked EPSCs are unaltered. In contrast, short-term synaptic facilitation in response to paired stimuli is reduced by ∼ 50%. In the presence of EGTA-AM to prevent global increases in free Ca(2+), the IM-AA mutation completely blocks short-term synaptic facilitation, indicating that synaptic facilitation by brief, local increases in Ca(2+) is dependent upon regulation of CaV2.1 channels by Ca(2+) sensor proteins. In response to trains of action potentials, synaptic facilitation is reduced in IM-AA synapses in initial stimuli, consistent with results of paired-pulse experiments; however, synaptic depression is also delayed, resulting in sustained increases in amplitudes of later EPSCs during trains of 10 stimuli at 10-20 Hz. Evidently, regulation of CaV2.1 channels by CaS proteins is required for normal short-term plasticity and normal encoding of information in native hippocampal synapses. PMID:26755594

  14. Inhibition of motoneurons during the cutaneous silent period in the spinal cord of the turtle.

    PubMed

    Guzulaitis, Robertas; Hounsgaard, Jorn; Alaburda, Aidas

    2012-07-01

    The transient suppression of motor activity in the spinal cord after a cutaneous stimulus is termed the cutaneous silent period (CSP). It is not known if CSP is due to suppression of the premotor network or direct inhibition of motoneurons. This issue was examined by intracellular recordings from motoneurons in the isolated carapace-spinal cord preparation from adult turtles during rhythmic scratch-like reflex. Electrical stimulation of cutaneous nerves induced CSP-like suppression of motor nerve firing during rhythmic network activity. The stimulus that generated the CSP-like suppression of motor activity evokes a polysynaptic compound synaptic potential in motoneurons and suppressed their firing. This compound synaptic potential was hyperpolarizing near threshold for action potentials and was associated with a substantial increase in conductance during the CSP in the motor pool. These results show that direct postsynaptic inhibition of motoneurons contributes to the CSP. PMID:22580573

  15. Laser ablation of Drosophila embryonic motoneurons causes ectopic innervation of target muscle fibers

    NASA Technical Reports Server (NTRS)

    Chang, T. N.; Keshishian, H.

    1996-01-01

    We have tested the effects of neuromuscular denervation in Drosophila by laser-ablating the RP motoneurons in intact embryos before synaptogenesis. We examined the consequences of this ablation on local synaptic connectivity in both 1st and 3rd instar larvae. We find that the partial or complete loss of native innervation correlates with the appearance of alternate inputs from neighboring motor endings and axons. These collateral inputs are found at ectopic sites on the denervated target muscle fibers. The foreign motor endings are electrophysiologically functional and are observed on the denervated muscle fibers by the 1st instar larval stage. Our data are consistent with the existence of a local signal from the target environment, which is regulated by innervation and influences synaptic connectivity. Our results show that, despite the stereotypy of Drosophila neuromuscular connections, denervation can induce local changes in connectivity in wild-type Drosophila, suggesting that mechanisms of synaptic plasticity may also be involved in normal Drosophila neuromuscular development.

  16. ATM protein is located on presynaptic vesicles and its deficit leads to failures in synaptic plasticity.

    PubMed

    Vail, Graham; Cheng, Aifang; Han, Yu Ray; Zhao, Teng; Du, Shengwang; Loy, Michael M T; Herrup, Karl; Plummer, Mark R

    2016-07-01

    Ataxia telangiectasia is a multisystemic disorder that includes a devastating neurodegeneration phenotype. The ATM (ataxia-telangiectasia mutated) protein is well-known for its role in the DNA damage response, yet ATM is also found in association with cytoplasmic vesicular structures: endosomes and lysosomes, as well as neuronal synaptic vesicles. In keeping with this latter association, electrical stimulation of the Schaffer collateral pathway in hippocampal slices from ATM-deficient mice does not elicit normal long-term potentiation (LTP). The current study was undertaken to assess the nature of this deficit. Theta burst-induced LTP was reduced in Atm(-/-) animals, with the reduction most pronounced at burst stimuli that included 6 or greater trains. To assess whether the deficit was associated with a pre- or postsynaptic failure, we analyzed paired-pulse facilitation and found that it too was significantly reduced in Atm(-/-) mice. This indicates a deficit in presynaptic function. As further evidence that these synaptic effects of ATM deficiency were presynaptic, we used stochastic optical reconstruction microscopy. Three-dimensional reconstruction revealed that ATM is significantly more closely associated with Piccolo (a presynaptic marker) than with Homer1 (a postsynaptic marker). These results underline how, in addition to its nuclear functions, ATM plays an important functional role in the neuronal synapse where it participates in the regulation of presynaptic vesicle physiology. PMID:27075534

  17. Role of Spinophilin in Group I Metabotropic Glutamate Receptor Endocytosis, Signaling, and Synaptic Plasticity.

    PubMed

    Di Sebastiano, Andrea R; Fahim, Sandra; Dunn, Henry A; Walther, Cornelia; Ribeiro, Fabiola M; Cregan, Sean P; Angers, Stephane; Schmid, Susanne; Ferguson, Stephen S G

    2016-08-19

    Activation of Group I metabotropic glutamate receptors (mGluRs) activates signaling cascades, resulting in calcium release from intracellular stores, ERK1/2 activation, and long term changes in synaptic activity that are implicated in learning, memory, and neurodegenerative diseases. As such, elucidating the molecular mechanisms underlying Group I mGluR signaling is important for understanding physiological responses initiated by the activation of these receptors. In the current study, we identify the multifunctional scaffolding protein spinophilin as a novel Group I mGluR-interacting protein. We demonstrate that spinophilin interacts with the C-terminal tail and second intracellular loop of Group I mGluRs. Furthermore, we show that interaction of spinophilin with Group I mGluRs attenuates receptor endocytosis and phosphorylation of ERK1/2, an effect that is dependent upon the interaction of spinophilin with the C-terminal PDZ binding motif encoded by Group I mGluRs. Spinophilin knock-out results in enhanced mGluR5 endocytosis as well as increased ERK1/2, AKT, and Ca(2+) signaling in primary cortical neurons. In addition, the loss of spinophilin expression results in impaired mGluR5-stimulated LTD. Our results indicate that spinophilin plays an important role in regulating the activity of Group I mGluRs as well as their influence on synaptic activity. PMID:27358397

  18. Ovariectomy does not exacerbate the negative effects of sleep deprivation on synaptic plasticity in rats.

    PubMed

    Hajali, Vahid; Sheibani, Vahid; Mahani, Saeed E; Hajializadeh, Zahra; Shabani, Mohammad; Aliabadi, Hamzeh P; Saadati, Hakimeh; Esmaeilpour, Khadijeh

    2015-05-15

    In our previous work, we found that female rats showed more cognitive impairment than male rats following 72h sleep deprivation (SD). Here, we compared the intact female with ovariectomized (OVX) rats to assess the potential modulatory effects of endogenous female sex hormones against the 48h SD-induced cognitive and synaptic modulations. The multiple platform method was applied for SD induction and spatial performances were determined using Morris water maze (MWM) task. Early longterm potentiation (E-LTP) was evaluated in area CA1 of the hippocampus and PCR and western blotting assays were employed to assess hippocampal BDNF gene and protein expression. To reveal any influence of sleep loss on stress level, we also mea