Science.gov

Sample records for motor conduction velocity

  1. Axonal conduction velocity and force of single human motor units.

    PubMed

    Dengler, R; Stein, R B; Thomas, C K

    1988-02-01

    Tungsten microelectrodes of the type used for microneurography have been used to record motor units selectively from the first dorsal interosseous and abductor pollicis brevis muscles of normal subjects and patients who had had complete sections of the ulnar or median nerve. After determining the recruitment threshold and the twitch tension (spike-triggered averaging) of a single unit, its nerve was stimulated at the wrist and the elbow using surface electrodes. By adjusting the position of the surface electrode and the stimulus intensity and by using computerized subtraction of responses just above and below threshold for a given unit, the same motor unit could often be identified in response to stimulation at both sites and its conduction velocity determined. The twitch tension and recruitment threshold of the motor units were closely correlated with the conduction velocity of the motor axons in normal subjects. Preliminary data from patients suggests that this method should be applicable to patients with a number of neuromuscular disorders. PMID:3343989

  2. Somatosensory evoked potentials (SSEPs); sensory nerve conduction velocity (SNCV) and motor nerve conduction velocity (MNCV) in chronic renal failure.

    PubMed

    Makkar, R K; Kochar, D K

    1994-01-01

    Somatosensory evoked potentials, sensory and motor nerve conduction velocity were studied in 25 patients of chronic renal failure and the results were compared with 15 healthy persons. The values more than +/- 3 S.D. were considered abnormal. SNCV was reduced in 11/25 patients; average reduction being 18 m/s (highly significant, p < 0.001); MNCV was reduced in 11/25 patients, average reduction being 20 m/s (highly significant, p < 0.001). Both SNCV and MNCV in same person were reduced in 6/25 patients. In SSEP N9, N13 and N20 were delayed in almost all the patients (highly significant, p < 0.001). Amplitude of N20 and N13 were reduced in 1 and 4 patients respectively but amplitude of N9 was normal. Out of different IPLS, Ebw-N9 was delayed in 5/25 patients (p < 0.9, insignificant); N9-N13 was delayed in 8/25 patients (p < 0.001, highly significant); N13-N20 was delayed in 1/25 patients (p < 0.01, significant). The evidence of these neurophysiological abnormalities collectively suggest the presence of central-peripheral axonopathy in this disease. PMID:7956880

  3. Motor nerve conduction velocity (MCV) and lead content in sciatic nerve of lead-exposed rats

    SciTech Connect

    Maehara, N.; Uchino, E.; Terayama, K.; Ohno, H.; Yamamura, K.

    1986-07-01

    There have been many pathological and electrophysiological studies of peripheral nerves in inorganic lead intoxication. Peripheral nerve conduction velocity (NCV) has been used as an objective measure of the effects of lead on the peripheral nerve function and has been examined with blood lead content. There have been few reports on the changes in NCV related to lead content in the peripheral nerve tissue under lead poisoning. In the present study, the authors have examined motor nerve conduction velocity (MCV) of the tail by a non-invasive method and lead content of the peripheral nerve in lead-exposed rats. Furthermore, they have attempted to assess the relationship between these two parameters.

  4. Motor nerve conduction velocity is affected in segmental vitiligo lesional limbs.

    PubMed

    Zhou, Jun; Zhong, Zhenyu; Li, Jian; Fu, Wenwen

    2016-06-01

    To evaluate the effects of segmental vitiligo (SV) on nerve conduction velocity (NCV) in different nerves, we compared the patient's lesional side of their body to the contralateral normal side. The 106 participants were selected from outpatients visiting the dermatological clinics of Huashan Hospital, Fudan University, from November 2011 to March 2014. NCVs were measured on the limbs and the face, including both motor and sensory nerves. The parameters for NCVs included motor nerve conduction velocity (MCV) and its distal conduction latency, sensory nerve conduction velocity, sensory nerve action potentials amplitude, and compound muscle action potential amplitude. MCV on the limbs was compromised by SV state, which was significantly slower on the lesional side of the body compared with the normal contralateral side (P = 0.006). Furthermore, SV at the stable stage significantly impaired MCV compared with the SV at progressive stage. There was no significant difference in the other parameters of NCV between lesional and normal sides of the body. Compound muscle action potentials in the face did not differ between lesional and healthy sides. Motor nerves in the limbs were compromised by SV, particularly when the disease was at the stable stage. PMID:26916936

  5. Motor unit action potential conduction velocity estimated from surface electromyographic signals using image processing techniques.

    PubMed

    Soares, Fabiano Araujo; Carvalho, João Luiz Azevedo; Miosso, Cristiano Jacques; de Andrade, Marcelino Monteiro; da Rocha, Adson Ferreira

    2015-01-01

    In surface electromyography (surface EMG, or S-EMG), conduction velocity (CV) refers to the velocity at which the motor unit action potentials (MUAPs) propagate along the muscle fibers, during contractions. The CV is related to the type and diameter of the muscle fibers, ion concentration, pH, and firing rate of the motor units (MUs). The CV can be used in the evaluation of contractile properties of MUs, and of muscle fatigue. The most popular methods for CV estimation are those based on maximum likelihood estimation (MLE). This work proposes an algorithm for estimating CV from S-EMG signals, using digital image processing techniques. The proposed approach is demonstrated and evaluated, using both simulated and experimentally-acquired multichannel S-EMG signals. We show that the proposed algorithm is as precise and accurate as the MLE method in typical conditions of noise and CV. The proposed method is not susceptible to errors associated with MUAP propagation direction or inadequate initialization parameters, which are common with the MLE algorithm. Image processing -based approaches may be useful in S-EMG analysis to extract different physiological parameters from multichannel S-EMG signals. Other new methods based on image processing could also be developed to help solving other tasks in EMG analysis, such as estimation of the CV for individual MUs, localization and tracking of innervation zones, and study of MU recruitment strategies. PMID:26384112

  6. Motor and sensory ulnar nerve conduction velocities: effect of elbow position.

    PubMed

    Harding, C; Halar, E

    1983-05-01

    Ulnar motor and sensory nerve conduction velocities (NCV) were studied bilaterally in 20 able-bodied subjects for below elbow (BE) and across elbow (AE) segments to assess the effect of 4 different elbow positions on NCV (0 degrees, 45 degrees, 90 degrees, and 135 degrees). Although constant skin stimulation marker points were used, the AE segment length became progressively longer with increased elbow flexion. At 0 degrees flexion the AE segment motor NCV was found to be slower, and at 45 degrees it was found faster than the BE NCV. At each subsequent elbow flexion position (90 degrees and 135 degrees) there was an erroneous increase in motor and sensory NCV for the AE segments (p less than 0.01). This increase in AE NCV with elbow flexion was mostly due to stretching of skin over the flexed elbow. The nerve itself was observed in 4 cadaver specimens to slide distally with respect to the above elbow skin marker. Since 45 degrees elbow flexion was the position of least variation in motor NCV for AE and BE segments, this degree of elbow flexion appears to be optimum. From these measurements and from literature review neither short AE segment length (less than 10 cm) nor long AE segment length (greater than 15 cm) is optimum for measurement of AE NCV in the assessment of compressive neuropathy at the elbow. Short segments are subject to increased NCV variation while long segments may not detect pathological slowing of NCV only occurring over a short portion of the nerve. PMID:6847360

  7. Nerve conduction velocity

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003927.htm Nerve conduction velocity To use the sharing features on this page, please enable JavaScript. Nerve conduction velocity (NCV) is a test to see how ...

  8. Pycnogenol efficiency on glycaemia, motor nerve conduction velocity and markers of oxidative stress in mild type diabetes in rats.

    PubMed

    Jankyova, S; Kucera, P; Goldenberg, Z; Yaghi, D; Navarova, J; Kyselova, Z; Stolc, S; Klimas, J; Racanska, E; Matyas, S

    2009-08-01

    The aim of this study was to describe the effects of Pycnogenol at various doses on preprandial and postprandial glucose levels, the levels of thiobarbituric acid reactive substances (TBARs) and N-acetyl-beta-d-glucosaminidase (NAGA) and on motor nerve conduction velocity (MNCV) in streptozotocin (STZ)-induced diabetic rats. Pycnogenol treatment (10, 20, 50 mg/kg body weight (b.w.)/day) lasted for 8 weeks after induction of diabetes. Pycnogenol significantly decreased elevated levels of preprandial glycaemia in treated animals at all doses. At doses of 10 mg/kg b.w./day and 20 mg/kg b.w./day it significantly decreased elevated levels of postprandial glycaemia compared with diabetic non-treated animals. Pycnogenol failed to induce a significant decrease of postprandial glycaemia at a dose of 50 mg/kg b.w./day. Pycnogenol improved significantly the impaired MNCV at doses of 10 and 20 mg/kg b.w./day compared with non-treated animals. The levels of TBARs were elevated in diabetic rats. The levels of NAGA increased gradually despite the treatment. Pycnogenol failed to affect the increased levels of TBARs and NAGA. Pycnogenollowered the elevated levels of glycaemia and reduced the decline in motor nerve conduction velocity in STZ-induced diabetic rats. The effect of Pycnogenol on postprandial glycaemic levels and MNCV was not dose-dependent. PMID:19165752

  9. Effects of lead acetate on guinea pig - cochear microphonics, action potential, and motor nerve conduction velocity

    SciTech Connect

    Yamamura, K.; Maehara, N.; Terayama, K.; Ueno, N.; Kohyama, A.; Sawada, Y.; Kishi, R.

    1987-04-01

    Segmental demyelination and axonal degeneration of motor nerves induced by lead exposure is well known in man, and animals. The effect of lead acetate exposure to man may involve the cranial nerves, since vertigo and sensory neuronal deafness have been reported among lead workers. However, there are few reports concerning the dose-effects of lead acetate both to the peripheral nerve and the cranial VII nerve with measurement of blood lead concentration. The authors investigated the effects of lead acetate to the cochlea and the VIII nerve using CM (cochlear microphonics) and AP (action potential) of the guinea pigs. The effects of lead acetate to the sciatic nerve were measured by MCV of the sciatic nerve with measurement of blood lead concentration.

  10. Nerve conduction velocity

    MedlinePlus

    Nerve conduction velocity (NCV) is a test to see how fast electrical signals move through a nerve. ... normal body temperature. Being too cold slows nerve conduction. Tell your doctor if you have a cardiac ...

  11. Longitudinal changes of nerve conduction velocity, distal motor latency, compound motor action potential duration, and skin temperature during prolonged exposure to cold in a climate chamber.

    PubMed

    Maetzler, Walter; Klenk, Jochen; Becker, Clemens; Zscheile, Julia; Gabor, Kai-Steffen; Lindemann, Ulrich

    2012-09-01

    Changes of nerve conduction velocity (NCV), distal motor latency (DML), compound motor action potential (CMAP) duration, and skin temperature with regard to cold have been investigated by use of ice packs or cold water baths, but not after cooling of environmental temperature which has higher ecological validity. The aim of this study was to investigate these parameters during cooled room temperature. NCV, DML, and CMAP duration of the common fibular nerve, and skin temperature were measured in 20 healthy young females during exposure to 15°C room temperature, coming from 25°C room. We found that NCV decreased and DML increased linearly during 45 min observation time, in contrast to CMAP duration and skin temperature which changes followed an exponential curve. To the best of our knowledge, this is the first study investigating changes of these parameters during exposure to environmental cold. The results may pilot some new hypotheses and studies on physiological and pathological changes of the peripheral nervous system and skin to environmental cold, e.g., in elderly with peripheral neuropathies. PMID:22510085

  12. Early co-administration of vitamin E acetate and methylcobalamin improves thermal hyperalgesia and motor nerve conduction velocity following sciatic nerve crush injury in rats.

    PubMed

    Morani, Aashish S; Bodhankar, Subhash L

    2010-01-01

    Our previous studies have shown that early administration of vitamin E acetate (50 mg/kg, ip (VEA)) and methylcobalamin (500 microg/kg, ip (MCA)) for 30 days improved conduction velocity and neuropathic pain behavior. Here, we evaluated the effect of early co-administration of VEA and MCA (MVE) on thermal hyperlagesia (TH) and motor nerve conduction velocity (MNCV) in rats with sciatic nerve crush injury (SNCI). Fifteen days post-surgery, a reduction in paw withdrawal latency (PWL) was observed in untreated (UNTR) rats. However, latency improved in MVE-treated animals, comparable to the placebo. On day 15, a decrease in MNCV was observed in the UNTR group of animals, and this effect was not observed for the MVE and placebo groups of animals. The results of this study indicate that early exposure to MVE attenuates the progression of TH and improves MNCV in rats with SNCI. PMID:20508297

  13. Gallic acid and exercise training improve motor function, nerve conduction velocity but not pain sense reflex after experimental sciatic nerve crush in male rats

    PubMed Central

    Hajimoradi, Maryam; Fazilati, Mohammad; Gharib-Naseri, Mohammad Kazem; Sarkaki, Alireza

    2015-01-01

    Objective: The aim of present study was to evaluate the effects of oral administration of gallic acid (GA) for 21 days alone and in combination with exercise on nerve conduction velocity and sensory and motor functions in rats with sciatic nerve crush. Materials and Methods: Seventy adult male Wistar rats (250-300 g) were divided randomly into 7 groups with 10 in each: 1) Control (Cont), 2) Crushed + Vehicle (Cr +Veh), 3-5) Crushed + gallic acid (Cr+GA) (50, 100, and 200 mg/kg/2 mL, orally), 6) Crushed + exercise (Cr+Exe), and 7) Crushed + exercise + effective dose of gallic acid (Cr+Exe +GA200) for 21 days. In order to establish an animal model of sciatic nerve crush, equivalent to 7 kg of force pressed on 2-3 mm of sciatic nerve for 30 s, three times with 30 s intervals. Pain sense reflex in hot plate, motor coordination in rotarod, and sciatic nerve conduction velocity (SNCV) in all groups were tested. Data were analyzed using one-way ANOVA followed by Tukey’s post hoc test and p<0.05 has assigned as the significant difference. Results: Pain threshold was increased significantly in untreated crushed rats while motor function and SNCV were decreased in all groups with nerve crush (p<0.05, p<0.01, p<0.001 vs. control). Pain reflex latency was not changed in treated groups. Motor coordination and SNCV were improved in groups Cr+GA200 and Cr+Exe + GA200 (p<0.05, p<0.01 vs. Cr+Veh). Conclusion: GA, dose-dependently, may have therapeutic potential to improve the peripheral nerve degeneration, which is most likely related, at least in part, to its antioxidant and therapeutic properties. PMID:26445710

  14. Effects of adenosine and adenosine A2A receptor agonist on motor nerve conduction velocity and nerve blood flow in experimental diabetic neuropathy.

    PubMed

    Kumar, Sokindra; Arun, K H S; Kaul, Chaman L; Sharma, Shyam S

    2005-01-01

    This study examined the effects of chronic administration of adenosine and CGS 21680 hydrochloride (adenosine A(2A) receptor agonist) on motor nerve conduction velocity (MNCV), nerve blood flow (NBF) and histology of sciatic nerve in animal model of diabetic neuropathy. Adenosinergic agents were administered for 2 weeks after 6 weeks of streptozotocin-induced (50 mg/kg i.p.) diabetes in male Sprague-Dawley rats. Significant reduction in sciatic MNCV and NBF were observed after 8 weeks in diabetic animals in comparison with control (non diabetic) rats. Adenosine (10 mg/kg, i.p.) significantly improved sciatic MNCV and NBF in diabetic rats. The protective effect of adenosine on MNCV and NBF was completely reversed by theophylline (50 mg/kg, i.p.), a non-selective adenosine receptor antagonist, suggesting that the adenosine effect was mediated via adenosinergic receptors. CGS 21680 (0.1 mg/kg, i.p.) significantly improved NBF; however, MNCV was not significantly improved in diabetic rats. At a dose of 1 mg/kg, neither MNCV nor NBF was improved by CGS 21680 in diabetic rats. ZM 241385 (adenosine A(2A) receptor antagonist) prevented the effect of CGS 21680 (0.1 mg/kg, i.p.). Histological changes observed in sciatic nerve were partially improved by the adenosinergic agents in diabetic rats. Results of the present study, suggest the potential of adenosinergic agents in the therapy of diabetic neuropathy. PMID:15829161

  15. Nerve conduction velocity in hypertensive patients.

    PubMed

    Halar, E M; Stewart, D T; Venkatesh, B; Chrissian, S A

    1978-01-01

    Due to conflicting reports in the literature regarding nerve conduction velocities (NCVs) in hypertensives, peroneal and sural NCVs and facial nerve conduction latencies were studied in 30 hypertensives and in 30 controls. An improved technique of NCV measurement was used. Twenty-one of the hypertensives were retested after five weeks, and five of them were tested for motor and sensory NCVs of the median nerve during a short period of partial occlusion of blood flow in the arm. No changes were found that could be related to blood pressure, duration of hypertension, eyeground changes, or partial restriction of blood flow. PMID:619818

  16. Effect of high-frequency repetitive transcranial magnetic stimulation on motor cortical excitability and sensory nerve conduction velocity in subacute-stage incomplete spinal cord injury patients

    PubMed Central

    Cha, Hyun Gyu; Ji, Sang-Goo; Kim, Myoung-Kwon

    2016-01-01

    [Purpose] The aim of the present study was to determine whether repetitive transcranial magnetic stimulation can improve sensory recovery of the lower extremities in subacute-stage spinal cord injury patients. [Subjects and Methods] This study was conducted on 20 subjects with diagnosed paraplegia due to spinal cord injury. These 20 subjects were allocated to an experimental group of 10 subjects that underwent active repetitive transcranial magnetic stimulation or to a control group of 10 subjects that underwent sham repetitive transcranial magnetic stimulation. The SCI patients in the experimental group underwent active repetitive transcranial magnetic stimulation and conventional rehabilitation therapy, whereas the spinal cord injury patients in the control group underwent sham repetitive transcranial magnetic stimulation and conventional rehabilitation therapy. Participants in both groups received therapy five days per week for six-weeks. Latency, amplitude, and sensory nerve conduction velocity were assessed before and after the six week therapy period. [Results] A significant intergroup difference was observed for posttreatment velocity gains, but no significant intergroup difference was observed for amplitude or latency. [Conclusion] repetitive transcranial magnetic stimulation may be improve sensory recovery of the lower extremities in subacute-stage spinal cord injury patients. PMID:27512251

  17. Effect of high-frequency repetitive transcranial magnetic stimulation on motor cortical excitability and sensory nerve conduction velocity in subacute-stage incomplete spinal cord injury patients.

    PubMed

    Cha, Hyun Gyu; Ji, Sang-Goo; Kim, Myoung-Kwon

    2016-07-01

    [Purpose] The aim of the present study was to determine whether repetitive transcranial magnetic stimulation can improve sensory recovery of the lower extremities in subacute-stage spinal cord injury patients. [Subjects and Methods] This study was conducted on 20 subjects with diagnosed paraplegia due to spinal cord injury. These 20 subjects were allocated to an experimental group of 10 subjects that underwent active repetitive transcranial magnetic stimulation or to a control group of 10 subjects that underwent sham repetitive transcranial magnetic stimulation. The SCI patients in the experimental group underwent active repetitive transcranial magnetic stimulation and conventional rehabilitation therapy, whereas the spinal cord injury patients in the control group underwent sham repetitive transcranial magnetic stimulation and conventional rehabilitation therapy. Participants in both groups received therapy five days per week for six-weeks. Latency, amplitude, and sensory nerve conduction velocity were assessed before and after the six week therapy period. [Results] A significant intergroup difference was observed for posttreatment velocity gains, but no significant intergroup difference was observed for amplitude or latency. [Conclusion] repetitive transcranial magnetic stimulation may be improve sensory recovery of the lower extremities in subacute-stage spinal cord injury patients. PMID:27512251

  18. Aldose reductase inhibition improves nerve conduction velocity in diabetic patients.

    PubMed

    Judzewitsch, R G; Jaspan, J B; Polonsky, K S; Weinberg, C R; Halter, J B; Halar, E; Pfeifer, M A; Vukadinovic, C; Bernstein, L; Schneider, M; Liang, K Y; Gabbay, K H; Rubenstein, A H; Porte, D

    1983-01-20

    To assess the potential role of polyol-pathway activity in diabetic neuropathy, we measured the effects of sorbinil--a potent inhibitor of the key polyol-pathway enzyme aldose reductase--on nerve conduction velocity in 39 stable diabetics in a randomized, double-blind, cross-over trial. During nine weeks of treatment with sorbinil (250 mg per day), nerve conduction velocity was greater than during a nine-week placebo period for all three nerves tested: the peroneal motor nerve (mean increase [+/- S.E.M.], 0.70 +/- 0.24 m per second, P less than 0.008), the median motor nerve (mean increase, 0.66 +/- 0.27, P less than 0.005), and the median sensory nerve (mean increase, 1.16 +/- 0.50, P less than 0.035). Conduction velocity for all three nerves declined significantly within three weeks after cessation of the drug. These effects of sorbinil were not related to glycemic control, which was constant during the study. Although the effect of sorbinil in improving nerve conduction velocity in diabetics was small, the findings suggest that polyol-pathway activity contributes to slowed nerve conduction in diabetics. The clinical applicability of these observations remains to be determined, but they encourage further exploration of this approach to the treatment or prevention of diabetic neuropathy. PMID:6401351

  19. Nerve conduction velocity measurements: improved accuracy using superimposed response waves.

    PubMed

    Halar, E M; Venkatesh, B

    1976-10-01

    A new procedure of serial motor nerve conduction velocity (NCV) measurements with the use of "superimposed response waves" technique (or double stimulus technique) was performed on 29 normal subjects. Six peripheral nerves were tested once a week for four to six weeks. A total of 760 NCV measurements were thus obtained to try to assess the magnitude of error in serial NCV testings. With the double stimulus technique employed, a significant reduction in variations of serial NCV measurements was found. The overall standard deviation of four to six consecutive NCV measurements in the 34 subjects was 1.3 meters per second with a coefficient of variation of 2.4%. These findings obtained with the double stimulus technique have proven to be approximately three times more accurate than results obtained by investigators who studied nerve conduction velocity measurement variation with single stimulus standard NCV testing techniques. PMID:184754

  20. 21 CFR 882.1550 - Nerve conduction velocity measurement device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nerve conduction velocity measurement device. 882... conduction velocity measurement device. (a) Identification. A nerve conduction velocity measurement device is a device which measures nerve conduction time by applying a stimulus, usually to a...

  1. 21 CFR 882.1550 - Nerve conduction velocity measurement device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nerve conduction velocity measurement device. 882... conduction velocity measurement device. (a) Identification. A nerve conduction velocity measurement device is a device which measures nerve conduction time by applying a stimulus, usually to a...

  2. 21 CFR 882.1550 - Nerve conduction velocity measurement device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nerve conduction velocity measurement device. 882... conduction velocity measurement device. (a) Identification. A nerve conduction velocity measurement device is a device which measures nerve conduction time by applying a stimulus, usually to a...

  3. 21 CFR 882.1550 - Nerve conduction velocity measurement device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nerve conduction velocity measurement device. 882... conduction velocity measurement device. (a) Identification. A nerve conduction velocity measurement device is a device which measures nerve conduction time by applying a stimulus, usually to a...

  4. 21 CFR 882.1550 - Nerve conduction velocity measurement device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nerve conduction velocity measurement device. 882... conduction velocity measurement device. (a) Identification. A nerve conduction velocity measurement device is a device which measures nerve conduction time by applying a stimulus, usually to a...

  5. Axon diameters and conduction velocities in the macaque pyramidal tract

    PubMed Central

    Firmin, L.; Field, P.; Maier, M. A.; Kraskov, A.; Kirkwood, P. A.; Nakajima, K.; Lemon, R. N.

    2014-01-01

    Small axons far outnumber larger fibers in the corticospinal tract, but the function of these small axons remains poorly understood. This is because they are difficult to identify, and therefore their physiology remains obscure. To assess the extent of the mismatch between anatomic and physiological measures, we compared conduction time and velocity in a large number of macaque corticospinal neurons with the distribution of axon diameters at the level of the medullary pyramid, using both light and electron microscopy. At the electron microscopic level, a total of 4,172 axons were sampled from 2 adult male macaque monkeys. We confirmed that there were virtually no unmyelinated fibers in the pyramidal tract. About 14% of pyramidal tract axons had a diameter smaller than 0.50 μm (including myelin sheath), most of these remaining undetected using light microscopy, and 52% were smaller than 1 μm. In the electrophysiological study, we determined the distribution of antidromic latencies of pyramidal tract neurons, recorded in primary motor cortex, ventral premotor cortex, and supplementary motor area and identified by pyramidal tract stimulation (799 pyramidal tract neurons, 7 adult awake macaques) or orthodromically from corticospinal axons recorded at the mid-cervical spinal level (192 axons, 5 adult anesthetized macaques). The distribution of antidromic and orthodromic latencies of corticospinal neurons was strongly biased toward those with large, fast-conducting axons. Axons smaller than 3 μm and with a conduction velocity below 18 m/s were grossly underrepresented in our electrophysiological recordings, and those below 1 μm (6 m/s) were probably not represented at all. The identity, location, and function of the majority of corticospinal neurons with small, slowly conducting axons remains unknown. PMID:24872533

  6. The non-linear relationship between nerve conduction velocity and skin temperature.

    PubMed Central

    Todnem, K; Knudsen, G; Riise, T; Nyland, H; Aarli, J A

    1989-01-01

    Median motor and sensory nerves were examined in 20 healthy subjects. Superficial stimulating and recording electrodes were used, and the nerves were examined at natural skin temperature, after cooling and after heating of the arm. The conduction velocity for the fastest and slow conducting sensory fibres (temperature range 17-37 degrees C), and for the fastest conducting motor fibres (temperature range 19-38 degrees C) increased non-linearly with increase in skin temperature. Similarly, distal motor latencies increased non-linearly with decrease in skin temperature. The effect of temperature was most pronounced in the low temperature range, and change in conduction velocity per degree centigrade was reduced toward higher skin temperature. Sensory nerve response duration increased linearly with decline in skin temperature. Sensory and motor amplitude did not show any significant relation to skin temperature. PMID:2738592

  7. Adaptive H∞ nonlinear velocity tracking using RBFNN for linear DC brushless motor

    NASA Astrophysics Data System (ADS)

    Tsai, Ching-Chih; Chan, Cheng-Kain; Li, Yi Yu

    2012-01-01

    This article presents an adaptive H ∞ nonlinear velocity control for a linear DC brushless motor. A simplified model of this motor with friction is briefly recalled. The friction dynamics is described by the Lu Gre model and the online tuning radial basis function neural network (RBFNN) is used to parameterise the nonlinear friction function and un-modelled errors. An adaptive nonlinear H ∞ control method is then proposed to achieve velocity tracking, by assuming that the upper bounds of the ripple force, the changeable load and the nonlinear friction can be learned by the RBFNN. The closed-loop system is proven to be uniformly bounded using the Lyapunov stability theory. The feasibility and the efficacy of the proposed control are exemplified by conducting two velocity tracking experiments.

  8. Changes in the axonal conduction velocity of pyramidal tract neurons in the aged cat.

    PubMed

    Xi, M C; Liu, R H; Engelhardt, J K; Morales, F R; Chase, M H

    1999-01-01

    The present study was undertaken to determine whether age-dependent changes in axonal conduction velocity occur in pyramidal tract neurons. A total of 260 and 254 pyramidal tract neurons were recorded extracellularly in the motor cortex of adult control and aged cats, respectively. These cells were activated antidromically by electrical stimulation of the medullary pyramidal tract. Fast- and slow-conducting neurons were identified according to their axonal conduction velocity in both control and aged cats. While 51% of pyramidal tract neurons recorded in the control cats were fast conducting (conduction velocity greater than 20 m/s), only 26% of pyramidal tract neurons in the aged cats were fast conducting. There was a 43% decrease in the median conduction velocity for the entire population of pyramidal tract neurons in aged cats when compared with that of pyramidal tract neurons in the control cats (P < 0.001, Mann-Whitney U-test). A linear relationship between the spike duration of pyramidal tract neurons and their antidromic latency was present in both control and aged cats. However, the regression slope was significantly reduced in aged cats. This reduction was due to the appearance of a group of pyramidal tract neurons with relatively shorter spike durations but slower axonal conduction velocities in the aged cat. Sample intracellular data confirmed the above results. These observations form the basis for the following conclusions: (i) there is a decrease in median conduction velocity of pyramidal tract neurons in aged cats; (ii) the reduction in the axonal conduction velocity of pyramidal tract neurons in aged cats is due, in part, to fibers that previously belonged to the fast-conducting group and now conduct at slower velocity. PMID:10392844

  9. A point mutation in the microtubule binding region of the Ncd motor protein reduces motor velocity.

    PubMed Central

    Moore, J D; Song, H; Endow, S A

    1996-01-01

    Non-claret disjunctional (Ncd) is a kinesin-related microtubule motor protein in Drosophila that functions in meiotic spindle assembly in oocytes and spindle pole maintenance in early embryos. The partial loss-of-function mutant ncdD retains mitotic, but not meiotic, function. The predicted NcdD mutant protein contains a V556-->F mutation in the putative microtubule binding region of the Ncd motor domain. Here we report an analysis of the properties of recombinant Ncd and NcdD proteins. A GST-NcdD fusion protein translocated microtubules approximately 10-fold more slowly than the corresponding wild-type protein in gliding assays. The maximum microtubule-stimulated ATPase activity of an NcdD motor domain protein was reduced approximately 3-fold and an approximately 3-fold greater concentration of microtubules was required for half-maximal stimulation of ATPase activity, compared with the corresponding wild-type protein. The Km for ATP and basal rate of ATP turnover were, in contrast, similar for the NcdD mutant and wild-type Ncd motor domain proteins. Pelleting assays demonstrated that the binding of the mutant NcdD motor protein to microtubules was reduced in the absence of nucleotide, relative to wild-type. The reduced velocity of NcdD translocation on microtubules is therefore correlated with reductions in microtubule-stimulated ATPase activity and affinity of the mutant motor for microtubules. The characteristics of the NcdD motor explain its meiotic loss of function, and are consistent with partial motor activity of Ncd being sufficient for its mitotic, but not its meiotic, role. Images PMID:8670831

  10. SPECIES SPECIFICITY OF GIANT NERVE FIBER CONDUCTION VELOCITY IN OLIGOCHAETES

    EPA Science Inventory

    Giant nerve fiber conduction velocities were studied using noninvasive electrophysiological recording techniques in adults from 12 species of oligochaetes, representing five different families. Two separate and stereotyped all-or-none response patterns to tactile stimulation (cor...

  11. Peroneal nerve conduction velocity: the importance of temperature correction.

    PubMed

    Halar, E M; DeLisa, J A; Brozovich, F V

    1981-09-01

    The relationship between skin surface temperature, near nerve temperature and nerve conduction velocity (NCV) of the peroneal nerve was studied in normal and diabetic subjects to determine a peroneal NCV-treatment correction factor and to investigate whether temperature correction of NCV reduces its variability. Twenty normal subjects (age 21 to 72 years, mean 44, SD 17) were tested for peroneal NCV, skin and near nerve temperatures bilaterally at ambient temperature (mean 26.6C). Tests were repeated after cooling the lower extremity to a skin temperature of 26C, and at skin temperatures of 28 and 29C as the legs were allowed to gradually warm. An additional 20 normal and 20 diabetic subjects were tested weekly at ambient temperature for peroneal NCV and skin temperature, measured at 15cm above the lateral malleolus. The results showed a linear relationship between skin temperature, near nerve temperature and peroneal NCV (p less than 0.001). Peroneal NCV was altered 2.0 meters per second per degree (C) change in skin and near nerve temperature (p less than 0.001). When using our formula, peroneal motor NCV corrected = 2.0 [32 - skin temp(C)] + NCV (m/sec), for correction of peroneal NCV to a standard skin temperature of 32C, it was found that temperature corrected NCV were less variable (p less than 0.05) than noncorrected NCV in the same diabetic subjects. These results indicate that temperature corrected NCV should be calculated routinely during clinical NCV examinations of patients with peripheral neuropathies. PMID:7283685

  12. Bifurcation of Velocity Distributions in Cooperative Transport of Filaments by Fast and Slow Motors

    PubMed Central

    Li, Xin; Lipowsky, Reinhard; Kierfeld, Jan

    2013-01-01

    Several intracellular processes are governed by two different species of molecular motors, fast and slow ones, that both move in the same direction along the filaments but with different velocities. The transport of filaments arising from the cooperative action of these motors has been recently studied by three in vitro experiments, in which the filament velocity was measured for varying fraction of the fast motors adsorbed onto substrate surfaces in a gliding assay. As the fast motor fraction was increased, two experiments found a smooth change whereas the third one observed an abrupt increase of the filament velocity. Here, we show that all of these experimental results reflect the competition between fast and slow motors and can be understood in terms of an underlying saddle-node bifurcation. The comparison between theory and experiment leads to predictions for the detachment forces of the two motor species. Our theoretical study shows the existence of three different motility regimes: 1), fast transport with a single velocity; 2), slow transport with a single velocity; and 3), bistable transport, where the filament velocity stochastically switches between fast and slow transport. We determine the parameter regions for these regimes in terms of motility diagrams as a function of the surface fraction of fast motors and microscopic single-motor parameters. An abrupt increase of the filament velocity for an increasing fraction of fast motors is associated with the occurrence of bistable transport. PMID:23442917

  13. Fixed Velocity Characteristics for an Electrical Vehicle with the New High-Efficiency Motor

    NASA Astrophysics Data System (ADS)

    Kousaka, Takuji; Matsumoto, Yukihiro; Harada, Taisuke; Abe, Minoru

    Since d-c compound motor have wide industrial applications, theoretical and experimental research in such systems are assumed to be special importance. In previous work, we studied a new d-c compound motor which is suitable for the electronic vehicle and bicycle. This paper provides the fixed velocity characteristics for an electrical vehicle with the new high-efficiency motor. Experimental results show that the electric vehicle with new compund motor is more effective than the conventional one.

  14. Multifocal motor neuropathy with conduction block: a study of 24 patients.

    PubMed Central

    Bouche, P; Moulonguet, A; Younes-Chennoufi, A B; Adams, D; Baumann, N; Meininger, V; Léger, J M; Said, G

    1995-01-01

    Twenty four patients with pure motor neuropathy are reported. The chronic motor involvement associated with fasciculations and cramps, mainly in the arms, led, in most patients, to an initial diagnosis of motor neuron disease. In some patients (nine of 24), there was no appreciable muscle atrophy. Tendon reflexes were often absent or weak. The finding of persistent multifocal conduction block confined to motor nerve fibres raises questions about the nature and the importance of this syndrome. Segmental reduction of motor conduction velocity occurred at the site of the block, but significant slowing of motor nerve conduction was not found outside this site. The response to intravenous IVIg treatment seems to be correlated with the absence of amyotrophy. Patients with little or no amyotrophy had an initial and sustained response to IVIg, and did not develop amyotrophy during the follow up study. They could be considered to have a variant of chronic inflammatory demyelinating polyneuropathy. Patients with pronounced amyotrophy independent of the disease duration did not respond as well to IVIg treatment, suggesting the existence of a distinct entity. Among the patients treated about two thirds who had an initial good response to IVIg had high or significant antiganglioside GM1 (anti-GM1) antibody titres, but there was no correlation between the high titres before treatment and long lasting response to IVIg treatment. Images PMID:7608707

  15. Robust transport by multiple motors with nonlinear force-velocity relations and stochastic load sharing

    NASA Astrophysics Data System (ADS)

    Kunwar, Ambarish; Mogilner, Alexander

    2010-03-01

    Transport by processive molecular motors plays an important role in many cell biological phenomena. In many cases, motors work together to transport cargos in the cell, so it is important to understand the mechanics of the multiple motors. Based on earlier modeling efforts, here we study effects of nonlinear force-velocity relations and stochastic load sharing on multiple motor transport. We find that when two or three motors transport the cargo, then the nonlinear and stochastic effects compensate so that the mechanical properties of the transport are robust. Similarly, the transport is insensitive to compliance of the cargo-motor links. Furthermore, the rate of movement against moderate loads is not improved by increasing the small number of motors. When the motor number is greater than 4, correlations between the motors become negligible, and the earlier analytical mean-field theory of the multiple motor transport holds. We predict that the effective diffusion of the cargo driven by the multiple motors under load increases by an order of magnitude compared to that for the single motor. Finally, our simulations predict that the stochastic effects are responsible for a significant dispersion of velocities generated by the 'tug-of-war' of the multiple opposing motors.

  16. Robust transport by multiple motors with nonlinear force–velocity relations and stochastic load sharing

    PubMed Central

    Kunwar, Ambarish; Mogilner, Alexander

    2010-01-01

    Transport by processive molecular motors plays an important role in many cell biological phenomena. In many cases, motors work together to transport cargos in the cell, so it is important to understand the mechanics of the multiple motors. Based on earlier modeling efforts, here we study effects of nonlinear force–velocity relations and stochastic load sharing on multiple motor transport. We find that when two or three motors transport the cargo, then the nonlinear and stochastic effects compensate so that the mechanical properties of the transport are robust. Similarly, the transport is insensitive to compliance of the cargo-motor links. Furthermore, the rate of movement against moderate loads is not improved by increasing the small number of motors. When the motor number is greater than 4, correlations between the motors become negligible, and the earlier analytical mean-field theory of the multiple motor transport holds. We predict that the effective diffusion of the cargo driven by the multiple motors under load increases by an order of magnitude compared to that for the single motor. Finally, our simulations predict that the stochastic effects are responsible for a significant dispersion of velocities generated by the ‘tug-of-war’ of the multiple opposing motors. PMID:20147778

  17. Scaling law of velocity and conductivity in EK turbulence

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Yang, Fang; Wang, Guiren

    2014-11-01

    In microfluidics, when electrokinetic (EK) flow is applied with sufficiently high electric Rayleigh number (Rae) , turbulence can be achieved, and there can even be an universal equilibrium range of conductivity field. In this flow, a new scaling law region of velocity and conductivity structures where the energy cascade is dominated by electric body force (EBF) can be found. This is similar to the Bolgiano-Obukhov scaling law (BO59) in Rayleigh-Bénard (RB) convection. By both directly analyzing Navier-Stokes (N-S) equation and dimensional analysis, the scaling exponent of the second order moment of velocity structure function is 2/5, while that of conductivity structures is 4/5. Compared to the buoyancy in RB convection which decreases with decreasing length scale, EBF actually increases with decreasing spatial scales. This leads to two different microscales depending on the strength of EBF. The scaling law of velocity fluctuation is verified experimentally in a micro-EK turbulent flow. Although due to the restriction of geometry of our microchannel, the bandwidth of the EBF dominant subrange is narrow. By adjusting Rae and other parameters, a wider EBF dominant subrange is predicable. The work was supported by NSF under Grant No. CAREER CBET-0954977 and MRI CBET-1040227, respectively.

  18. Comparison of umbo velocity in air- and bone-conduction.

    PubMed

    Röösli, Christof; Chhan, David; Halpin, Christopher; Rosowski, John J

    2012-08-01

    This study investigates the ossicular motion produced by bone-conducted (BC) sound in live human ears. Laser Doppler vibrometry was used to measure air conduction (AC)- and BC-induced umbo velocity (V(U)) in both ears of 10 subjects, 20 ears total. Sound pressure in the ear canal (P(EC)) was measured simultaneously. For air conduction, V(U) at standard hearing threshold level was calculated. For BC, ΔV was defined as the difference between V(U) and the tympanic ring velocity (an estimate of the skull velocity measured in the ear canal). ΔV and P(EC) at BC standard hearing threshold were calculated. ΔV at standard BC threshold was significantly smaller than V(U) at standard AC threshold between 500 Hz and 2000 Hz. Ear canal pressure at BC threshold tended to be smaller than for AC below 3000 Hz (with significant differences at 1000 Hz and 2000 Hz). Our results are most consistent with inertia of the ossicles and cochlear fluid driving BC hearing below 500 Hz, but with other mechanisms playing a significant role at higher frequencies. Sound radiated into the external ear canal might contribute to BC hearing at 3000 Hz and above. PMID:22609771

  19. Effects of IDPN-induced axonal swellings on conduction in motor nerve fibers.

    PubMed

    Stanley, E F; Griffin, J W; Fahnestock, K E

    1985-07-01

    Paranodal demyelination produces a reduction of conduction velocity and conduction block. The relative proportions of these changes appear to vary among different demyelinating disorders. In this study we have examined the effects on conduction of paranodal demyelination produced by giant axonal swellings. The axonal swellings were induced in rats by administration of beta, beta'-iminodipropionitrile (IDPN). In this experimental model synchronous axonal swellings occur in the proximal region of virtually every alpha-motorneuron without evidence of segmental demyelination or fiber loss. Conduction across the motor neuron was evaluated by two methods: a monosynaptic reflex pathway and intracellular recording from single motor neurons. Increases in the delay across the central region of the monosynaptic reflex pathway began between 2 and 4 days after toxin administration. Intracellular studies confirmed that the slowing occurred across the proximal regions of the motor axons; more distal regions of the motor axons were unaffected. The substantial reduction in conduction velocity over the swollen segment occurs with only moderate evidence of conduction block, as assayed by a reduction in the H-reflex/M-response amplitude ratio. Parallel morphological studies showed that in the enlarged fibers the myelin terminal loops maintained contact with the axon but were displaced from the paranodal region into the internode. The appearance of this "passive" paranodal demyelination correlated closely with the increase in conduction delay. We suggest that the contact maintained by the displaced myelin terminal loops with the axolemma allows saltatory conduction to continue, and explains the paucity of conduction block in this model despite the prominent conduction slowing. PMID:2993531

  20. Velocity Fluctuations in Kinesin-1 Gliding Motility Assays Originate in Motor Attachment Geometry Variations.

    PubMed

    Palacci, Henri; Idan, Ofer; Armstrong, Megan J; Agarwal, Ashutosh; Nitta, Takahiro; Hess, Henry

    2016-08-01

    Motor proteins such as myosin and kinesin play a major role in cellular cargo transport, muscle contraction, cell division, and engineered nanodevices. Quantifying the collective behavior of coupled motors is critical to our understanding of these systems. An excellent model system is the gliding motility assay, where hundreds of surface-adhered motors propel one cytoskeletal filament such as an actin filament or a microtubule. The filament motion can be observed using fluorescence microscopy, revealing fluctuations in gliding velocity. These velocity fluctuations have been previously quantified by a motional diffusion coefficient, which Sekimoto and Tawada explained as arising from the addition and removal of motors from the linear array of motors propelling the filament as it advances, assuming that different motors are not equally efficient in their force generation. A computational model of kinesin head diffusion and binding to the microtubule allowed us to quantify the heterogeneity of motor efficiency arising from the combination of anharmonic tail stiffness and varying attachment geometries assuming random motor locations on the surface and an absence of coordination between motors. Knowledge of the heterogeneity allows the calculation of the proportionality constant between the motional diffusion coefficient and the motor density. The calculated value (0.3) is within a standard error of our measurements of the motional diffusion coefficient on surfaces with varying motor densities calibrated by landing rate experiments. This allowed us to quantify the loss in efficiency of coupled molecular motors arising from heterogeneity in the attachment geometry. PMID:27414063

  1. Scaling properties of conduction velocity in heterogeneous excitable media

    NASA Astrophysics Data System (ADS)

    Shajahan, T. K.; Borek, Bartłomiej; Shrier, Alvin; Glass, Leon

    2011-10-01

    Waves of excitation through excitable media, such as cardiac tissue, can propagate as plane waves or break up to form reentrant spiral waves. In diseased hearts reentrant waves can be associated with fatal cardiac arrhythmias. In this paper we investigate the conditions that lead to wave break, reentry, and propagation failure in mathematical models of heterogeneous excitable media. Two types of heterogeneities are considered: sinks are regions in space in which the voltage is fixed at its rest value, and breaks are nonconducting regions with no-flux boundary conditions. We find that randomly distributed heterogeneities in the medium have a decremental effect on the velocity, and above a critical density of such heterogeneities the conduction fails. Using numerical and analytical methods we derive the general relationship among the conduction velocity, density of heterogeneities, diffusion coefficient, and the rise time of the excitation in both two and three dimensions. This work helps us understand the factors leading to reduced propagation velocity and the formation of spiral waves in heterogeneous excitable media.

  2. Motor coupling through lipid membranes enhances transport velocities for ensembles of myosin Va

    PubMed Central

    Nelson, Shane R.; Trybus, Kathleen M.; Warshaw, David M.

    2014-01-01

    Myosin Va is an actin-based molecular motor responsible for transport and positioning of a wide array of intracellular cargoes. Although myosin Va motors have been well characterized at the single-molecule level, physiological transport is carried out by ensembles of motors. Studies that explore the behavior of ensembles of molecular motors have used nonphysiological cargoes such as DNA linkers or glass beads, which do not reproduce one key aspect of vesicular systems—the fluid intermotor coupling of biological lipid membranes. Using a system of defined synthetic lipid vesicles (100- to 650-nm diameter) composed of either 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) (fluid at room temperature) or 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) (gel at room temperature) with a range of surface densities of myosin Va motors (32–125 motors per μm2), we demonstrate that the velocity of vesicle transport by ensembles of myosin Va is sensitive to properties of the cargo. Gel-state DPPC vesicles bound with multiple motors travel at velocities equal to or less than vesicles with a single myosin Va (∼450 nm/s), whereas surprisingly, ensembles of myosin Va are able to transport fluid-state DOPC vesicles at velocities significantly faster (>700 nm/s) than a single motor. To explain these data, we developed a Monte Carlo simulation that suggests that these reductions in velocity can be attributed to two distinct mechanisms of intermotor interference (i.e., load-dependent modulation of stepping kinetics and binding-site exclusion), whereas faster transport velocities are consistent with a model wherein the normal stepping behavior of the myosin is supplemented by the preferential detachment of the trailing motor from the actin track. PMID:25201964

  3. A velocity command stepper motor for CSI application

    NASA Technical Reports Server (NTRS)

    Sulla, Jeffrey L.; Juang, Jer-Nan; Horta, Lucas G.

    1991-01-01

    The application of linear force actuators for vibration suppression of flexible structures has received much attention in recent years. A linear force actuator consists of a movable mass that is restrained such that its motion is linear. By application of a force to the mass, an equal and opposite reaction force can be applied to a structure. The use of an industrial linear stepper motor as a reaction mass actuator is described. With the linear stepper motor mounted on a simple test beam and the NASA Mini-Mast, output feedback of acceleration or displacement are used to augment the structural damping of the test articles. Significant increases in damping were obtained for both the test beam and the Mini-Mast.

  4. System and method for determining velocity of electrically conductive fluid

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A. (Inventor); Korman, Valentin (Inventor); Markusic, Thomas E. (Inventor); Stanojev, Boris Johann (Inventor)

    2008-01-01

    A flowing electrically-conductive fluid is controlled between an upstream and downstream location thereof to insure that a convection timescale of the flowing fluid is less than a thermal diffusion timescale of the flowing fluid. First and second nodes of a current-carrying circuit are coupled to the fluid at the upstream location. A current pulse is applied to the current-carrying circuit so that the current pulse travels through the flowing fluid to thereby generate a thermal feature therein at the upstream location. The thermal feature is convected to the downstream location where it is monitored to detect a peak associated with the thermal feature so-convected. The velocity of the fluid flow is determined using a time-of-flight analysis.

  5. Acute Motor Axonal Neuropathy (Aman) With Motor Conduction Blocks In Childhood; Case Report

    PubMed Central

    Yildirim, Serhan; Adviye, Rahşan; Gül, Hakan Levent; Türk Börü, Ülkü

    2016-01-01

    Objective Acute motor axonal neuropathy (AMAN), characterized with decreased compound muscle action potentials (CMAP) and absence of demyelinating findings in electrophysiological studies, is a subtype of Guillain-Barre Syndrome (GBS). A 4 yr-old male patient presented with ascending weakness, dysarthria and dysphagia to İstanbul Dr. Lütfi Kırdar Kartal Training and Research Hospital Neurology outpatient for three days to in 2012. Dysphonia, restricted eye movements, flaccid tetraplegia and areflexia were found in neurological examination. There were motor conduction blocks in all peripheral nerves in electrophysiological studies.According to these findings the patient was diagnosed as Acute Inflammatory Demyelinating Polyradiculoneuropathy (AIDP). Reduction of CMAP amplitudes in posterior tibial nerve, absence of CMAPs in median, ulnar and peroneal nerves and loss of motor conduction blocks were found in following electrophysiological studies. According to these findings, patient was diagnosed as AMAN. Motor conduction blocks may appear in early stage of AMAN and they disappear in later examinations. That’s why electrophysiological studies must be repeated in patients with GBS. PMID:27057191

  6. Acute Motor Axonal Neuropathy (Aman) With Motor Conduction Blocks In Childhood; Case Report.

    PubMed

    Yildirim, Serhan; Adviye, Rahşan; Gül, Hakan Levent; Türk Börü, Ülkü

    2016-01-01

    Objective Acute motor axonal neuropathy (AMAN), characterized with decreased compound muscle action potentials (CMAP) and absence of demyelinating findings in electrophysiological studies, is a subtype of Guillain-Barre Syndrome (GBS). A 4 yr-old male patient presented with ascending weakness, dysarthria and dysphagia to İstanbul Dr. Lütfi Kırdar Kartal Training and Research Hospital Neurology outpatient for three days to in 2012. Dysphonia, restricted eye movements, flaccid tetraplegia and areflexia were found in neurological examination. There were motor conduction blocks in all peripheral nerves in electrophysiological studies.According to these findings the patient was diagnosed as Acute Inflammatory Demyelinating Polyradiculoneuropathy (AIDP). Reduction of CMAP amplitudes in posterior tibial nerve, absence of CMAPs in median, ulnar and peroneal nerves and loss of motor conduction blocks were found in following electrophysiological studies. According to these findings, patient was diagnosed as AMAN. Motor conduction blocks may appear in early stage of AMAN and they disappear in later examinations. That's why electrophysiological studies must be repeated in patients with GBS. PMID:27057191

  7. Conduction velocity along muscle fibers in situ in Duchenne muscular dystrophy.

    PubMed

    Cruz Martinez, A; Lopez Terradas, J M

    1990-07-01

    The muscle fibers of the biceps brachii muscle were stimulated distally with low voltage by means of two monopolar needles in 14 boys with Duchenne muscular dystrophy (DD). The electric activity was recorded proximally by means of a SFEMG electrode. The mean conduction velocity of 508 muscle fibers in situ (MFCV) calculated with this method shows that MFCV in DD patients (2.38 +/- .94 m/sec) is significantly slower than in 20 control children of the same age (3.24 +/- .53 m/sec). The distribution frequency of MFCV in all fibers tested in healthy children shows a Gaussian distribution (mode = 3.2 m/sec). In DD patients the distribution frequency is bimodal with spikes at 1.2 and 2.4 m/sec. Significant decrease in minimum propagation velocity and increased SD values were other striking results in patients with DD. Slowing and large variation in MFCV were significantly correlated with some findings in a coaxial needle electromyogram, such as long polyphasics and motor unit potentials followed by satellites. Satellites might arise from atrophic muscle fibers with slow conduction velocity. The results of MFCV were supported by the pathologic findings in DD subjects. The reported method for MFCV in situ is reliable and easy to apply in children, has merit for testing the size and function of muscle fiber, and helps to explain some electropathologic features in DD patients. PMID:2164370

  8. Physical activity: its influence on nerve conduction velocity.

    PubMed

    Halar, E M; Hammond, M C; Dirks, S

    1985-09-01

    In a group of 40 healthy subjects, distal and proximal latencies of the median, tibial, and peroneal motor, and sural sensory nerves and their respective skin surface temperatures (Tsk) were measured before and after walking or bicycling. The baseline tests were performed 30 minutes after resting in a constant room temperature of 24C. The ambulation or bicycling task was continued for 30 minutes at a constant rate. Postactivity tests were performed within 30 minutes and between 45 to 60 minutes after termination of activity. Another test was done 75 to 90 minutes after bicycle exercise. After walking, there was a significant increase in Tsk in all lower extremity nerves tested (p less than 0.01). The increases were accompanied by faster distal and proximal latencies in both testing periods (p less than 0.01). Median nerve Tsk, distal and proximal latencies did not differ significantly from baseline values initially, but 45 minutes after walking Tsk was elevated and proximal latency had become faster (p less than 0.01). Following bicycling, lower extremity Tsk was significantly reduced over tibial, peroneal, and sural nerves by the third testing period (p less than 0.01) but only sural latencies were significantly prolonged (p less than 0.05) by this time. In the upper extremities median Tsk was significantly elevated and distal latency had become significantly faster 45 minutes after bicycling. Our data suggest that activity significantly influences nerve conduction latency results due to tissue temperature alteration. In addition, 30 minutes of rest after activity may not be sufficient time for the lower extremity temperatures to become stable. PMID:4038026

  9. 49 CFR 242.111 - Prior safety conduct as motor vehicle operator.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Prior safety conduct as motor vehicle operator... CONDUCTORS Program and Eligibility Requirements § 242.111 Prior safety conduct as motor vehicle operator. (a... prior conduct as a motor vehicle operator. (c) A railroad shall initially certify a person as...

  10. Determinants of myocardial conduction velocity: implications for arrhythmogenesis

    PubMed Central

    King, James H.; Huang, Christopher L.-H.; Fraser, James A.

    2013-01-01

    Slowed myocardial conduction velocity (θ) is associated with an increased risk of re-entrant excitation, predisposing to cardiac arrhythmia. θ is determined by the ion channel and physical properties of cardiac myocytes and by their interconnections. Thus, θ is closely related to the maximum rate of action potential (AP) depolarization [(dV/dt)max], as determined by the fast Na+ current (INa); the axial resistance (ra) to local circuit current flow between cells; their membrane capacitances (cm); and to the geometrical relationship between successive myocytes within cardiac tissue. These determinants are altered by a wide range of pathophysiological conditions. Firstly, INa is reduced by the impaired Na+ channel function that arises clinically during heart failure, ischemia, tachycardia, and following treatment with class I antiarrhythmic drugs. Such reductions also arise as a consequence of mutations in SCN5A such as those occurring in Lenègre disease, Brugada syndrome (BrS), sick sinus syndrome, and atrial fibrillation (AF). Secondly, ra, may be increased due to gap junction decoupling following ischemia, ventricular hypertrophy, and heart failure, or as a result of mutations in CJA5 found in idiopathic AF and atrial standstill. Finally, either ra or cm could potentially be altered by fibrotic change through the resultant decoupling of myocyte–myocyte connections and coupling of myocytes with fibroblasts. Such changes are observed in myocardial infarction and cardiomyopathy or following mutations in MHC403 and SCN5A resulting in hypertrophic cardiomyopathy (HCM) or Lenègre disease, respectively. This review defines and quantifies the determinants of θ and summarizes experimental evidence that links changes in these determinants with reduced myocardial θ and arrhythmogenesis. It thereby identifies the diverse pathophysiological conditions in which abnormal θ may contribute to arrhythmia. PMID:23825462

  11. Neurotransmissional, structural, and conduction velocity changes in cerebral ganglions of Lumbricus terrestris on exposure to acrylamide.

    PubMed

    Subaraja, Mamangam; Vanisree, A J

    2016-09-01

    Acrylamide (ACR), an environmental toxin though being investigated for decades, remains an enigma with respect to its mechanism/site of actions. We aim to explicate the changes in cerebral ganglions and giant fibers along with the behavior of worms on ACR intoxication (3.5-17.5 mg/mL of medium/7 days). Neurotransmitter analysis revealed increased levels of excitatory glutamate and inhibitory gamma amino butyrate with reduced levels of dopamine, serotonin, melatonin, and epinephrine (p < 0.001). Scanning electron microscopy showed architectural changes in cerebral ganglions at 3.5 mg/mL/ACR. The learning behavior as evidenced by Pavlovian and maze tests was also altered well at 3.5 mg/mL of ACR. Electrophysiological assessment showed a reduction in conduction velocity of the medial and lateral giant nerve fibers. We speculate that the observed dose/time-dependent changes in neurotransmission, neurosecretion, and conduction velocity on ACR intoxication at 17.5 mg/ml, possibly, could be due to its effect on nerve fibers governing motor functions. The bioaccumulation factor in the range of 0.38-0.99 mg/g of ACR causes a detrimental impact on giant fibers affecting behavior of worm. The observations made using the simple invertebrate model implicate that the cerebral ganglionic variations in the worms may be useful to appreciate the pathology of the neurological diseases which involve motor neuron dysfunction, esp where the availability of brain samples from the victims are scarce. PMID:27215980

  12. A new heat propagation velocity prevails over Brownian particle velocities in determining the thermal conductivities of nanofluids

    PubMed Central

    2011-01-01

    An alternative insight is presented concerning heat propagation velocity scales in predicting the effective thermal conductivities of nanofluids. The widely applied Brownian particle velocities in published literature are often found too slow to describe the relatively higher nanofluid conductivities. In contrast, the present model proposes a faster heat transfer velocity at the same order as the speed of sound, rooted in a modified kinetic principle. In addition, this model accounts for both nanoparticle heat dissipation as well as coagulation effects. This novel model of effective thermal conductivities of nanofluids agrees well with an extended range of experimental data. PMID:21711892

  13. Ensemble velocity of non-processive molecular motors with multiple chemical states

    PubMed Central

    Vilfan, Andrej

    2014-01-01

    We study the ensemble velocity of non-processive motor proteins, described with multiple chemical states. In particular, we discuss the velocity as a function of ATP concentration. Even a simple model which neglects the strain dependence of transition rates, reverse transition rates and nonlinearities in the elasticity can show interesting functional dependencies, which deviate significantly from the frequently assumed Michaelis–Menten form. We discuss how the order of events in the duty cycle can be inferred from the measured dependence. The model also predicts the possibility of velocity reversal at a certain ATP concentration if the duty cycle contains several conformational changes of opposite directionalities. PMID:25485083

  14. On the relationship between joint angular velocity and motor cortical discharge during reaching.

    PubMed

    Reina, G A; Moran, D W; Schwartz, A B

    2001-06-01

    Single-unit activity in area M1 was recorded in awake, behaving monkeys during a three-dimensional (3D) reaching task performed in a virtual reality environment. This study compares motor cortical discharge rate to both the hand's velocity and the arm's joint angular velocities. Hand velocity is considered a parameter of extrinsic space because it is measured in the Cartesian coordinate system of the monkey's workspace. Joint angular velocity is considered a parameter of intrinsic space because it is measured relative to adjacent arm/body segments. In the initial analysis, velocity was measured as the difference in hand position or joint posture between the beginning and ending of the reach. Cortical discharge rate was taken as the mean activity between these two times. This discharge rate was compared through a regression analysis to either an extrinsic-coordinate model based on the three components of hand velocity or to an intrinsic-coordinate model based on seven joint angular velocities. The model showed that velocities about four degrees-of-freedom (elbow flexion/extension, shoulder flexion/extension, shoulder internal/external rotation, and shoulder adduction/abduction) were those best represented in the sampled population of recorded activity. Patterns of activity recorded across the cortical population at each point in time throughout the task were used in a second analysis to predict the temporal profiles of joint angular velocity and hand velocity. The population of cortical units from area M1 matched the hand velocity and three of the four major joint angular velocities. However, shoulder adduction/abduction could not be predicted even though individual cells showed good correlation to movement on this axis. This was also the only major degree-of-freedom not well correlated to hand velocity, suggesting that the other apparent relations between joint angular velocity and neuronal activity may be due to intrinsic-extrinsic correlations inherent in

  15. A Study on High Thermal Conductive Insulation for Claw Teeth Motors

    NASA Astrophysics Data System (ADS)

    Yoshitake, Yuichiro; Obata, Koji; Enomoto, Yuji; Okabe, Yoshiaki

    To increase the power density of motors in a wide range of fields from home appliance to power industry, we proposed two new high thermal conductive insulation systems for the motors. They were a glass cross insulation system and a resin coated insulation system without forced cooling devices such as a cooling fan. Their thermal and insulation characteristics were measured and analyzed, and optimum thermal conductive structures for claw teeth motors were discussed through robust design and thermal network analysis. Experiment on prototype motors with the highest thermal conductive epoxy resin (5 W/mK) and the proposed systems, revealed that the temperature rise of motor coils was decreased; their temperature reached 73 % of that of the motor coils with standard insulation and normal resin (0.6 W/mK). Furthermore, partial discharge inception voltage (PDIV) and breakdown voltage (BDV) were measured, and we verified that resin coated insulation motors could withstand as high a voltage as normal insulation motors.

  16. Ulnar nerve motor conduction to the first dorsal interosseous muscle.

    PubMed

    Prahlow, Nathan D; Buschbacher, Ralph M

    2006-01-01

    The ulnar motor study to the abductor digiti minimi (ADM) is commonly performed, but does not test the terminal deep palmar branch of the ulnar nerve. Although damage to the ulnar nerve most often occurs at the elbow, the damage may occur elsewhere along the course of the nerve, including damage to the deep palmar branch. Ulnar conduction studies of the deep branch have been performed with recording from the first dorsal interosseous (FDI) muscle. These studies have used differing methodologies and were mostly limited by small sample size. The aim of this study was to develop a normative database for ulnar nerve conduction to the FDI. A new method of recording from the FDI was developed for this study. It utilizes recording with the active electrode over the dorsal first web space, with the reference electrode placed at the fifth metacarpophalangeal joint. This technique reliably yields negative takeoff measurements. An additional comparison was made between ulnar motor latency with recording at the ADM and with recording at the FDI. For this study, 199 subjects with no risk factors for neuropathy were tested. The latency, amplitude, area, and duration were recorded. The upper limit of normal (ULN) was defined as the 97th percentile of observed values. The lower limit of normal (LLN) was defined as the 3rd percentile of observed values. For the FDI, mean latency was 3.8 +/- 0.5 ms, with a ULN of 4.7 ms for males, 4.4 ms for females, and 4.6 ms for all subjects. Mean amplitude was 15.8 +/- 4.9 mV, with a LLN of 5.1 for all subjects. Side-to-side differences in latency to the FDI, from dominant to nondominant hands, was -0.1 +/- 0.4 ms, with a ULN of 0.8 ms. For the amplitude, up to a 52% decrease from side to side was normal. For the same-limb comparison of the FDI and ADM, the mean latency difference was 0.6 +/- 0.4 ms, with a ULN increase of 1.3 ms for latency to the ADM versus the FDI. PMID:17206927

  17. The relationship between motor recovery and gait velocity during dual tasks in patients with chronic stroke.

    PubMed

    Lee, Kyoung Bo; Kim, Jang Hwan; Lee, Kang Sung

    2015-04-01

    [Purpose] The aims of this study were to identify the relationship between motor recovery and gait velocity during dual tasks in patients with chronic stroke and determine automatic gait ability following stroke. [Subjects and Methods] Thirty-three outpatients and twelve healthy subjects participated in a cross-sectional assessment. Community ambulation was assessed using a self-administered questionnaire. Outcome measures included the Motricity index, Berg Balance Scale, and gait speed under three conditions (self-paced ambulation for 10 m, ambulation while performing dual cognitive tasks, and ambulation while performing dual manual tasks). Gait automaticity was calculated. [Results] No significant differences were observed for muscle strength or balance between the limited community ambulation and the community ambulation groups. However, a significant difference in gait velocity was observed between the groups under the three conditions. In particular, a significant difference was detected only in the limited community ambulation group depending on the level of motor function recovery during cognitive and manual dual task ambulation. Additionally, we revealed that the community ambulation group had a lower level of gait automaticity compared with that in the normal group. [Conclusion] Our results show the influence of motor recovery on the change in gait velocity depending on the task if a patient is limitedly ambulatory. We revealed that community ambulators did not have a sufficient level of gait automaticity. PMID:25995582

  18. The relationship between motor recovery and gait velocity during dual tasks in patients with chronic stroke

    PubMed Central

    Lee, Kyoung Bo; Kim, Jang Hwan; Lee, Kang Sung

    2015-01-01

    [Purpose] The aims of this study were to identify the relationship between motor recovery and gait velocity during dual tasks in patients with chronic stroke and determine automatic gait ability following stroke. [Subjects and Methods] Thirty-three outpatients and twelve healthy subjects participated in a cross-sectional assessment. Community ambulation was assessed using a self-administered questionnaire. Outcome measures included the Motricity index, Berg Balance Scale, and gait speed under three conditions (self-paced ambulation for 10 m, ambulation while performing dual cognitive tasks, and ambulation while performing dual manual tasks). Gait automaticity was calculated. [Results] No significant differences were observed for muscle strength or balance between the limited community ambulation and the community ambulation groups. However, a significant difference in gait velocity was observed between the groups under the three conditions. In particular, a significant difference was detected only in the limited community ambulation group depending on the level of motor function recovery during cognitive and manual dual task ambulation. Additionally, we revealed that the community ambulation group had a lower level of gait automaticity compared with that in the normal group. [Conclusion] Our results show the influence of motor recovery on the change in gait velocity depending on the task if a patient is limitedly ambulatory. We revealed that community ambulators did not have a sufficient level of gait automaticity. PMID:25995582

  19. Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Phil; Simeral, John D.; Hochberg, Leigh R.; Donoghue, John P.; Black, Michael J.

    2008-12-01

    Computer-mediated connections between human motor cortical neurons and assistive devices promise to improve or restore lost function in people with paralysis. Recently, a pilot clinical study of an intracortical neural interface system demonstrated that a tetraplegic human was able to obtain continuous two-dimensional control of a computer cursor using neural activity recorded from his motor cortex. This control, however, was not sufficiently accurate for reliable use in many common computer control tasks. Here, we studied several central design choices for such a system including the kinematic representation for cursor movement, the decoding method that translates neuronal ensemble spiking activity into a control signal and the cursor control task used during training for optimizing the parameters of the decoding method. In two tetraplegic participants, we found that controlling a cursor's velocity resulted in more accurate closed-loop control than controlling its position directly and that cursor velocity control was achieved more rapidly than position control. Control quality was further improved over conventional linear filters by using a probabilistic method, the Kalman filter, to decode human motor cortical activity. Performance assessment based on standard metrics used for the evaluation of a wide range of pointing devices demonstrated significantly improved cursor control with velocity rather than position decoding. Disclosure. JPD is the Chief Scientific Officer and a director of Cyberkinetics Neurotechnology Systems (CYKN); he holds stock and receives compensation. JDS has been a consultant for CYKN. LRH receives clinical trial support from CYKN.

  20. Discrete Step Sizes of Molecular Motors Lead to Bimodal Non-Gaussian Velocity Distributions under Force.

    PubMed

    Vu, Huong T; Chakrabarti, Shaon; Hinczewski, Michael; Thirumalai, D

    2016-08-12

    Fluctuations in the physical properties of biological machines are inextricably linked to their functions. Distributions of run lengths and velocities of processive molecular motors, like kinesin-1, are accessible through single-molecule techniques, but rigorous theoretical models for these probabilities are lacking. Here, we derive exact analytic results for a kinetic model to predict the resistive force (F)-dependent velocity [P(v)] and run length [P(n)] distribution functions of generic finitely processive molecular motors. Our theory quantitatively explains the zero force kinesin-1 data for both P(n) and P(v) using the detachment rate as the only parameter. In addition, we predict the F dependence of these quantities. At nonzero F, P(v) is non-Gaussian and is bimodal with peaks at positive and negative values of v, which is due to the discrete step size of kinesin-1. Although the predictions are based on analyses of kinesin-1 data, our results are general and should hold for any processive motor, which walks on a track by taking discrete steps. PMID:27564000

  1. Discrete Step Sizes of Molecular Motors Lead to Bimodal Non-Gaussian Velocity Distributions under Force

    NASA Astrophysics Data System (ADS)

    Vu, Huong T.; Chakrabarti, Shaon; Hinczewski, Michael; Thirumalai, D.

    2016-08-01

    Fluctuations in the physical properties of biological machines are inextricably linked to their functions. Distributions of run lengths and velocities of processive molecular motors, like kinesin-1, are accessible through single-molecule techniques, but rigorous theoretical models for these probabilities are lacking. Here, we derive exact analytic results for a kinetic model to predict the resistive force (F )-dependent velocity [P (v )] and run length [P (n )] distribution functions of generic finitely processive molecular motors. Our theory quantitatively explains the zero force kinesin-1 data for both P (n ) and P (v ) using the detachment rate as the only parameter. In addition, we predict the F dependence of these quantities. At nonzero F , P (v ) is non-Gaussian and is bimodal with peaks at positive and negative values of v , which is due to the discrete step size of kinesin-1. Although the predictions are based on analyses of kinesin-1 data, our results are general and should hold for any processive motor, which walks on a track by taking discrete steps.

  2. History dependence of human muscle-fiber conduction velocity during voluntary isometric contractions

    PubMed Central

    Lateva, Zoia C.

    2011-01-01

    The conduction velocity (CV) of a muscle fiber is affected by the fiber's discharge history going back ∼1 s. We investigated this dependence by measuring CV fluctuations during voluntary isometric contractions of the human brachioradialis muscle. We recorded electromyogram (EMG) signals simultaneously from multiple intramuscular electrodes, identified potentials belonging to the same motor unit using EMG decomposition, and estimated the CV of each discharge from the interpotential interval. In 12 of 14 subjects, CV increased by ∼10% during the first second after recruitment and then fluctuated by about ±2% in a way that mirrored the fluctuations in the instantaneous firing rate. The CV profile could be precisely described in terms of the discharge history by a simple mathematical model. In the other two subjects, and one subject retested after cooling the arm, the CV fluctuations were inversely correlated with instantaneous firing rate. In all subjects, CV was additionally affected by very short interdischarge intervals (<25 ms): it was increased in doublets at recruitment, but decreased in doublets during continuous firing and after short interdischarge intervals in doubly innervated fibers. CV also exhibited a slow trend of about −0.05%/s that did not depend on the immediate discharge history. We suggest that measurements of CV fluctuations during voluntary contractions, or during stimulation protocols that involve longer and more complex stimulation patterns than are currently being used, may provide a sensitive approach for estimating the dynamic characteristics of ion channels in the human muscle-fiber membrane. PMID:21565985

  3. History dependence of human muscle-fiber conduction velocity during voluntary isometric contractions.

    PubMed

    McGill, Kevin C; Lateva, Zoia C

    2011-09-01

    The conduction velocity (CV) of a muscle fiber is affected by the fiber's discharge history going back ∼1 s. We investigated this dependence by measuring CV fluctuations during voluntary isometric contractions of the human brachioradialis muscle. We recorded electromyogram (EMG) signals simultaneously from multiple intramuscular electrodes, identified potentials belonging to the same motor unit using EMG decomposition, and estimated the CV of each discharge from the interpotential interval. In 12 of 14 subjects, CV increased by ∼10% during the first second after recruitment and then fluctuated by about ±2% in a way that mirrored the fluctuations in the instantaneous firing rate. The CV profile could be precisely described in terms of the discharge history by a simple mathematical model. In the other two subjects, and one subject retested after cooling the arm, the CV fluctuations were inversely correlated with instantaneous firing rate. In all subjects, CV was additionally affected by very short interdischarge intervals (<25 ms): it was increased in doublets at recruitment, but decreased in doublets during continuous firing and after short interdischarge intervals in doubly innervated fibers. CV also exhibited a slow trend of about -0.05%/s that did not depend on the immediate discharge history. We suggest that measurements of CV fluctuations during voluntary contractions, or during stimulation protocols that involve longer and more complex stimulation patterns than are currently being used, may provide a sensitive approach for estimating the dynamic characteristics of ion channels in the human muscle-fiber membrane. PMID:21565985

  4. AC motor controller with 180 degree conductive switches

    NASA Technical Reports Server (NTRS)

    Oximberg, Carol A. (Inventor)

    1995-01-01

    An ac motor controller is operated by a modified time-switching scheme where the switches of the inverter are on for electrical-phase-and-rotation intervals of 180.degree. as opposed to the conventional 120.degree.. The motor is provided with three-phase drive windings, a power inverter for power supplied from a dc power source consisting of six switches, and a motor controller which controls the current controlled switches in voltage-fed mode. During full power, each switch is gated continuously for three successive intervals of 60.degree. and modulated for only one of said intervals. Thus, during each 60.degree. interval, the two switches with like signs are on continuously and the switch with the opposite sign is modulated.

  5. Muscle fiber conduction velocity in the diagnosis of sporadic hypokalemic periodic paralysis.

    PubMed

    Brouwer, O F; Zwarts, M J; Links, T P; Wintzen, A R

    1992-01-01

    A 6-year-old girl presented with episodes of profound muscle weakness since the age of 2 years. On the basis of decreased ictal serum potassium level and lack of metabolic disorder, primary hypokalemic periodic paralysis (HPP) was diagnosed. Both parents and 3 sibs were unaffected clinically. In all of them asymptomatic heterozygosity was very unlikely by the finding of normal muscle fiber conduction velocities, whereas in the patient interictal muscle fiber conduction velocity was lowered. Determination of muscle fiber conduction velocity can be helpful in documenting sporadic occurrence of HPP. PMID:1324813

  6. Automatic versus Voluntary Motor Imitation: Effect of Visual Context and Stimulus Velocity

    PubMed Central

    Bisio, Ambra; Stucchi, Natale; Jacono, Marco; Fadiga, Luciano; Pozzo, Thierry

    2010-01-01

    Automatic imitation is the tendency to reproduce observed actions involutarily. Though this topic has been widely treated, at present little is known about the automatic imitation of the kinematic features of an observed movement. The present study was designed to understand if the kinematics of a previously seen stimulus primes the executed action, and if this effect is sensitive to the kinds of stimuli presented. We proposed a simple imitation paradigm in which a dot or a human demonstrator moved in front of the participant who was instructed either to reach the final position of the stimulus or to imitate its motion with his or her right arm. Participants' movements were automatically contaminated by stimulus velocity when it moved according to biological laws, suggesting that automatic imitation was kinematic dependent. Despite that the performance, in term of reproduced velocity, improved in a context of voluntary imitation, subjects did not replicate the observed motions exactly. These effects were not affected by the kind of stimuli used, i.e., motor responses were influenced in the same manner after dot or human observation. These findings support the existence of low-level sensory-motor matching mechanisms that work on movement planning and represent the basis for higher levels of social interaction. PMID:20976006

  7. An empirical relationship between thermal conductivity and elastic wave velocities in sandstone

    NASA Astrophysics Data System (ADS)

    Zamora, Maria; Vo-Thanh, Dung; Bienfait, Gerard; Poirier, Jean P.

    1993-08-01

    Measurements in three samples of very clean quartz sandstone in the porosity range 4-16 percent, under dry and 100 percent water-saturated conditions, show that P- and S-wave velocities are linearly correlated with thermal conductivity. The experimental results agree with the theoretical relation between seismic velocities (predicted by the Kuster and Toksoz model (1974)) and thermal conductivity (predicted by weighted geometric mean).

  8. Effects of Bed Rest on Conduction Velocity of the Triceps Surae Stretch Reflex and Postural Control

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Wood, S. J.; Cerisano, J. M.; Kofman, I. S.; Fisher, E. A.; Esteves, J. T.; Taylor, L. C.; DeDios, Y. E.; Harm, D. L.

    2011-01-01

    Despite rigorous exercise and nutritional management during space missions, astronauts returning from microgravity exhibit neuromuscular deficits and a significant loss in muscle mass in the postural muscles of the lower leg. Similar changes in the postural muscles occur in subjects participating in long-duration bed rest studies. These adaptive muscle changes manifest as a reduction in reflex conduction velocity during head-down bed rest. Because the stretch reflex encompasses both the peripheral (muscle spindle and nerve axon) and central (spinal synapse) components involved in adaptation to calf muscle unloading, it may be used to provide feedback on the general condition of neuromuscular function, and might be used to evaluate the effectiveness of countermeasures aimed at preserving muscle mass and function during periods of unloading. Stretch reflexes were measured on 18 control subjects who spent 60 to 90 days in continuous 6 deg head-down bed rest. Using a motorized system capable of rotating the foot around the ankle joint (dorsiflexion) through an angle of 10 degrees at a peak velocity of about 250 deg/sec, a stretch reflex was recorded from the subject's left triceps surae muscle group. Using surface electromyography, about 300 reflex responses were obtained and ensemble-averaged on 3 separate days before bed rest, 3 to 4 times in bed, and 3 times after bed rest. The averaged responses for each test day were examined for reflex latency and conduction velocity (CV) across gender. Computerized posturography was also conducted on these same subjects before and after bed rest as part of the standard measures. Peak-to-peak sway was measured during Sensory Organization Tests (SOTs) to evaluate changes in the ability to effectively use or suppress visual, vestibular, and proprioceptive information for postural control. Although no gender differences were found, a significant increase in reflex latency and a significant decrease in CV were observed during the bed

  9. Preliminary Study on the Lesion Location and Prognosis of Cubital Tunnel Syndrome by Motor Nerve Conduction Studies

    PubMed Central

    Liu, Zhu; Jia, Zhi-Rong; Wang, Ting-Ting; Shi, Xin; Liang, Wei

    2015-01-01

    Background: To study lesions’ location and prognosis of cubital tunnel syndrome (CubTS) by routine motor nerve conduction studies (MNCSs) and short-segment nerve conduction studies (SSNCSs, inching test). Methods: Thirty healthy subjects were included and 60 ulnar nerves were studied by inching studies for normal values. Sixty-six patients who diagnosed CubTS clinically were performed bilaterally by routine MNCSs and SSNCSs. Follow-up for 1-year, the information of brief complaints, clinical symptoms, and physical examination were collected. Results: Sixty-six patients were included, 88 of nerves was abnormal by MNCS, while 105 was abnormal by the inching studies. Medial epicondyle to 2 cm above medial epicondyle is the most common segment to be detected abnormally (59.09%), P < 0.01. Twenty-two patients were followed-up, 17 patients’ symptoms were improved. Most of the patients were treated with drugs and modification of bad habits. Conclusions: (1) SSNCSs can detect lesions of compressive neuropathy in CubTS more precisely than the routine motor conduction studies. (2) SSNCSs can diagnose CubTS more sensitively than routine motor conduction studies. (3) In this study, we found that medial epicondyle to 2 cm above the medial epicondyle is the most vulnerable place that the ulnar nerve compressed. (4) The patients had a better prognosis who were abnormal in motor nerve conduction time only, but not amplitude in compressed lesions than those who were abnormal both in velocity and amplitude. Our study suggests that SSNCSs is a practical method in detecting ulnar nerve compressed neuropathy, and sensitive in diagnosing CubTS. The compound muscle action potentials by SSNCSs may predict prognosis of CubTS. PMID:25947398

  10. Microfabricated multi-electrode device for detecting oligodendrocyte-regulated changes in axonal conduction velocity.

    PubMed

    Sakai, Koji; Shimba, Kenta; Kotani, Kiyoshi; Jimbo, Yasuhiko

    2015-08-01

    Myelin disorders cause cognitive dysfunction, but little is known about how abnormal myelin sheath affects neural activities at the network level. One reason for the lack is a technical difficulty in simultaneous monitoring of changes in both the axonal conduction and network activity. Then, we aimed to develop a culture device to detect myelination dependent changes in axonal conduction velocity in a neuronal network. The photolithographically fabricated device has microtunnels for guiding axons. Two microelectrodes and an oligodendrocyte (OL) culture compartment are set at each microtunnel. This configuration allows us to monitor changes in conduction velocity of axons wrapped by OLs. Neurons and OLs dissected from rat cortical tissues were cultured in the culture device. An immunocytochemical study indicated axonal growth and maturation of OL at 42 days in vitro (DIV), suggesting that neuron-OL co-culture was maintained in microtunnels. Propagating action potentials of individual axons were detected from spontaneous neural activities with a spike sorting method and their conduction velocities were examined. Conduction velocity without seeding OLs was 0.31 m/s, which was consistent with that of previous reports with unmyelinated axons. Although no apparent myelin sheath was observed in OL culture compartments, conduction delay with seeding OLs was approximately half as long as that without seeding OLs at 45 DIV. These results suggest that the culture device enables us to detect the OL-regulated changes in axonal conduction in the neuronal network. PMID:26737935

  11. Portable conduction velocity experiments using earthworms for the college and high school neuroscience teaching laboratory.

    PubMed

    Shannon, Kyle M; Gage, Gregory J; Jankovic, Aleksandra; Wilson, W Jeffrey; Marzullo, Timothy C

    2014-03-01

    The earthworm is ideal for studying action potential conduction velocity in a classroom setting, as its simple linear anatomy allows easy axon length measurements and the worm's sparse coding allows single action potentials to be easily identified. The earthworm has two giant fiber systems (lateral and medial) with different conduction velocities that can be easily measured by manipulating electrode placement and the tactile stimulus. Here, we present a portable and robust experimental setup that allows students to perform conduction velocity measurements within a 30-min to 1-h laboratory session. Our improvement over this well-known preparation is the combination of behaviorally relevant tactile stimuli (avoiding electrical stimulation) with the invention of minimal, low-cost, and portable equipment. We tested these experiments during workshops in both a high school and college classroom environment and found positive learning outcomes when we compared pre- and posttests taken by the students. PMID:24585472

  12. Consideration of Conductive Motor Winding Materials at Room and Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    de Groh, Henry C., III

    2015-01-01

    A brief history of conductive motor winding materials is presented, comparing various metal motor winding materials and their properties in terms of conductivity, density and cost. The proposed use of carbon nanotubes (CNTs) and composites incorporating CNTs is explored as a potential way to improve motor winding conductivity, density, and reduce motor size which are important to electric aircraft technology. The conductivity of pure Cu, a CNT yarn, and a dilute Cu-CNT composite was measured at room temperature and at several temperatures up to 340 C. The conductivity of the Cu-CNT composite was about 3 percent lower than pure copper's at all temperatures measured. The conductivity of the CNT yarn was about 200 times lower than copper's, however, the yarn's conductivity dropped less with increasing temperature compared to Cu. It is believed that the low conductivity of the yarn is due primarily to high interfacial resistances and the presence of CNTs with low, semiconductor like electrical properties (s-CNT). It is believed the conductivity of the CNT-Cu composite could be improved by not using s-CNT, and instead using only CNTs with high, metallic like electrical properties (m-CNT); and by increasing the vol% m-CNTs.

  13. Influence of flow velocity on motor behavior of sea cucumber Apostichopus japonicus.

    PubMed

    Pan, Yang; Zhang, Libin; Lin, Chenggang; Sun, Jiamin; Kan, Rentao; Yang, Hongsheng

    2015-05-15

    The influence of flow velocity on the motor behavior of the sea cucumber, Apostichopus japonicus was investigated in the laboratory. Cameras were used to record sea cucumber movements and behavior analysis software was used to measure the distance traveled, time spent, upstream or downstream of the start position and the speed of movements. In general, the mean velocity of A. japonicus was below 0.7mms(-1). The maximum velocity recorded for all the sea cucumbers tested was for a large individual (89.25±17.11g), at a flow rate of 4.6±0.5cms(-1). Medium sized (19.68±5.53g) and large individuals moved significantly faster than small individuals (2.65±1.24g) at the same flow rate. A. japonicus moved significantly faster when there was a moderate current (4.6±0.5cms(-1) and 14.7±0.3cms(-1)), compared with the fast flow rate (29.3±3.7cms(-1)) and when there was no flow (0cms(-1)). Sea cucumbers did not show positive rheotaxis in general, but did move in a downstream direction at faster current speeds. Large, medium and small sized individuals moved downstream at the fastest current speed tested, 29.3±3.7cms(-1). When there was no water flow, sea cucumbers tended to move in an irregular pattern. The movement patterns show that the sea cucumber, A. japonicus can move across the direction of flow, and can move both upstream and downstream along the direction of flow. PMID:25727024

  14. Knee Muscle Strength at Varying Angular Velocities and Associations with Gross Motor Function in Ambulatory Children with Cerebral Palsy

    ERIC Educational Resources Information Center

    Hong, Wei-Hsien; Chen, Hseih-Ching; Shen, I-Hsuan; Chen, Chung-Yao; Chen, Chia-Ling; Chung, Chia-Ying

    2012-01-01

    The aim of this study was to evaluate the relationships of muscle strength at different angular velocities and gross motor functions in ambulatory children with cerebral palsy (CP). This study included 33 ambulatory children with spastic CP aged 6-15 years and 15 children with normal development. Children with CP were categorized into level I (n =…

  15. Effect of magnesium on nerve conduction velocity during regular dialysis treatment

    PubMed Central

    Fleming, Laura W.; Lenman, J. A. R.; Stewart, W. K.

    1972-01-01

    Serial nerve conduction velocities in the peroneal and ulnar nerves have been measured in 10 patients on regular dialysis treatment over a three year period. Each patient alternated between phases on dialysis with magnesium-containing dialysate (1·5-1·7 m-equiv/l.) and phases on `magnesium-free' dialysate (0·2 m-equiv/l.). Plasma magnesium concentrations were high both pre- and post-dialysis during magnesium-containing dialysis, and normal to low on magnesium-free dialysis. All patients had defects in nerve conduction, mainly asymptomatic. Increases in nerve conduction velocity coincided with magnesium-free dialysis, and decreases occurred when the patients reverted to magnesium-containing dialysate. The significance of the correlation by the sign test was P<0·0005. It is concluded that extracellular magnesium levels can influence the rate of nerve conduction in vivo. PMID:4338446

  16. Comparisons of computed and measured three-dimensional velocity fields in a motored two-stroke engine

    SciTech Connect

    Amsden, A.A.; O'Rourke, P.J.; Butler, T.D. ); Meintjes, K.; Fansler, T.D. )

    1991-01-01

    Computer simulations are compared with measurements of the three-dimensional, unsteady scavenging flows of a motored two-stroke engine. Laser Doppler velocimetry measurements were made on a modified Suzuki DT-85 ported engine. Calculations were performed using KIVA-3, a computer program that efficiently solves the intake and exhaust port flows along with those in the cylinder. Measured and computed cylinder pressures and velocities are compared. Pressures agree well over the cycle as do the velocities at the intake ports. In-cylinder velocities differ in detail, but the tumbling motion in the cylinder is well replicated in vertical plane passing through the cylinder axis. 20 refs., 7 figs., 3 tabs.

  17. Portable Conduction Velocity Experiments Using Earthworms for the College and High School Neuroscience Teaching Laboratory

    ERIC Educational Resources Information Center

    Shannon, Kyle M.; Gage, Gregory J.; Jankovic, Aleksandra; Wilson, W. Jeffrey; Marzullo, Timothy C.

    2014-01-01

    The earthworm is ideal for studying action potential conduction velocity in a classroom setting, as its simple linear anatomy allows easy axon length measurements and the worm's sparse coding allows single action potentials to be easily identified. The earthworm has two giant fiber systems (lateral and medial) with different conduction…

  18. Comparison of Nerve Excitability Testing, Nerve Conduction Velocity, and Behavioral Observations for Acrylamide Induced Peripheral Neuropathy

    EPA Science Inventory

    Nerve excitability (NE) testing is a sensitive method to test for peripheral neurotoxicity in humans,and may be more sensitive than compound nerve action potential (CNAP) or nerve conduction velocity (NCV).We used acrylamide to compare the NE and CNAP/NCV methods. Behavioral test...

  19. Confirmation of Correlation between Brain Nerve Conduction Velocity and Intelligence Level in Normal Adults

    ERIC Educational Resources Information Center

    Reed, T. Edward; Vernon, Philip A.; Johnson, Andrew M.

    2004-01-01

    In 1992, Reed and Jensen ["Intelligence" 16 (1992) 259-272] reported a positive correlation (0.26; "p"= 0.002; 0.37 after correcting for restricted intelligence range) between a brain nerve conduction velocity (NCV) and intelligence level in 147 normal male students. In the first follow-up of their study, we report on a study using similar NCV…

  20. Godunov Method for Calculating Flows of a one-Velocity Viscous Heat-Conducting Medium

    NASA Astrophysics Data System (ADS)

    Surov, V. S.

    2015-05-01

    For a hyperbolic model of a one-velocity viscous heat-conducting mixture, a modifi ed Godunov method with approximate Riemann solvers is developed. Using this method, we studied wave processes in frothing and bubble media. It is shown that the fl ow picture is signifi cantly infl uenced by heat transfer processes, which are manifested to a greater extent for bubble liquids.

  1. Optical determination of impulse conduction velocity during development of embryonic chick cervical vagus nerve bundles.

    PubMed Central

    Sakai, T; Komuro, H; Katoh, Y; Sasaki, H; Momose-Sato, Y; Kamino, K

    1991-01-01

    1. Employing an optical method for multiple-site simultaneous recording of electrical activity, we have determined the conduction velocity in cervical vagus nerve bundles isolated from 5- to 21-day-old chick embryos, and investigated its developmental changes. 2. The preparations were stained with a voltage-sensitive merocyanine-rhodanine dye (NK2761), and action potential- (impulse-) related optical signals were elicited by brief stimuli applied to the end of the vagus nerve bundle with a suction electrode. Optical signals were recorded simultaneously from many contiguous regions using a 12 x 12-element photodiode array. 3. The optical signals spread with small delay from the site of stimulation. From the relationship between the delay and distance from the current-applying electrode, conduction velocities were estimated in each tested preparation: the conduction velocity was very small and increased monotonically from about 0.1 m s-1 at 5 days embryonic age to about 0.4 m s-1 by hatching. The increase in the conduction velocity was closely related to a developmental increase in the diameter of the vagus nerve bundle. 4. In addition, we have examined the spread of electrotonic potentials. The space constant was very small (200-450 microns) and increased as development proceeded. 5. Compound optical action signals having two distinct components were also recorded. They often appeared to be concentrated in the preparations from 8- to 12-day-old embryos. The conduction velocity of the second component was slower than that of the first. We suggest that appearance of the second component reflects degeneration of a subset of axons resulting from 'neural cell death' during the development of the vagus nerve. Images Fig. 1 Fig. 14 (cont.) Fig. 14 PMID:1895241

  2. Knee muscle strength at varying angular velocities and associations with gross motor function in ambulatory children with cerebral palsy.

    PubMed

    Hong, Wei-Hsien; Chen, Hseih-Ching; Shen, I-Hsuan; Chen, Chung-Yao; Chen, Chia-Ling; Chung, Chia-Ying

    2012-01-01

    The aim of this study was to evaluate the relationships of muscle strength at different angular velocities and gross motor functions in ambulatory children with cerebral palsy (CP). This study included 33 ambulatory children with spastic CP aged 6-15 years and 15 children with normal development. Children with CP were categorized into level I (n=17) or level II (n=16) according to Gross Motor Function Classification System (GMFCS) levels. All children underwent curl-up test and isokinetic tests of the knee extensor and flexor muscle. Children with CP underwent the gross motor function assessments, including the Gross Motor Function Measure (GMFM-66) and the gross motor subtests of Bruininks-Oseretsky Test of Motor Proficiency (BOTMP). The hamstring-quadriceps ratio (HQ ratio) was calculated as 100%×(isokinetic peak torque of hamstring (knee flexor)/isokinetic peak torque of quadriceps (knee extensor)). Children with GMFCS level II had lower BOTMP and GMFM-66 scores, curl-up scores, HQ ratio, and knee muscle strength, especially knee flexor, compared to those with GMFCS level I. The regression analysis showed that knee flexor torques at 60 and 90°/s are mainly related to balance (r(2)=0.167, p=0.011) and strength (r(2)=0.243, p=0.002) while knee flexor torques at 120°/s mainly contribute to running speed and agility (r(2)=0.372, p<0.001). These findings suggest that children with CP had knee strength deficits, especially knee flexor. Postural muscle (knee flexor) strength dominated gross motor function than antigravity muscle strength (knee extensor). The knee flexor strength at different angular velocities was associated with various gross motor tasks. The HQ ratio may be used as a potential biomarker to probe the therapeutic effectiveness for muscle strengthening in these children. These data may allow clinician for formulating effective muscle strengthening strategies for these children. PMID:22853889

  3. Techniques for automated local activation time annotation and conduction velocity estimation in cardiac mapping

    PubMed Central

    Cantwell, C.D.; Roney, C.H.; Ng, F.S.; Siggers, J.H.; Sherwin, S.J.; Peters, N.S.

    2015-01-01

    Measurements of cardiac conduction velocity provide valuable functional and structural insight into the initiation and perpetuation of cardiac arrhythmias, in both a clinical and laboratory context. The interpretation of activation wavefronts and their propagation can identify mechanistic properties of a broad range of electrophysiological pathologies. However, the sparsity, distribution and uncertainty of recorded data make accurate conduction velocity calculation difficult. A wide range of mathematical approaches have been proposed for addressing this challenge, often targeted towards specific data modalities, species or recording environments. Many of these algorithms require identification of activation times from electrogram recordings which themselves may have complex morphology or low signal-to-noise ratio. This paper surveys algorithms designed for identifying local activation times and computing conduction direction and speed. Their suitability for use in different recording contexts and applications is assessed. PMID:25978869

  4. Techniques for automated local activation time annotation and conduction velocity estimation in cardiac mapping.

    PubMed

    Cantwell, C D; Roney, C H; Ng, F S; Siggers, J H; Sherwin, S J; Peters, N S

    2015-10-01

    Measurements of cardiac conduction velocity provide valuable functional and structural insight into the initiation and perpetuation of cardiac arrhythmias, in both a clinical and laboratory context. The interpretation of activation wavefronts and their propagation can identify mechanistic properties of a broad range of electrophysiological pathologies. However, the sparsity, distribution and uncertainty of recorded data make accurate conduction velocity calculation difficult. A wide range of mathematical approaches have been proposed for addressing this challenge, often targeted towards specific data modalities, species or recording environments. Many of these algorithms require identification of activation times from electrogram recordings which themselves may have complex morphology or low signal-to-noise ratio. This paper surveys algorithms designed for identifying local activation times and computing conduction direction and speed. Their suitability for use in different recording contexts and applications is assessed. PMID:25978869

  5. Linking motor-related brain potentials and velocity profiles in multi-joint arm reaching movements.

    PubMed

    Amengual, Julià L; Marco-Pallarés, Josep; Grau, Carles; Münte, Thomas F; Rodríguez-Fornells, Antoni

    2014-01-01

    The study of the movement related brain potentials (MRPBs) needs accurate technical approaches to disentangle the specific patterns of bran activity during the preparation and execution of movements. During the last forty years, synchronizing the electromyographic activation (EMG) of the muscle with electrophysiological recordings (EEG) has been commonly ussed for these purposes. However, new clinical approaches in the study of motor diseases and rehabilitation suggest the demand of new paradigms that might go further into the study of the brain activity associated with the kinematics of movements. As a response to this call, we have used a 3-D hand-tracking system with the aim to record continuously the position of an ultrasonic sender attached to the hand during the performance of multi-joint self-paced movements. We synchronized time-series of position and velocity of the sender with the EEG recordings, obtaining specific patterns of brain activity as a function of the fluctuations of the kinematics during natural movement performance. Additionally, the distribution of the brain activity during the preparation and execution phases of movements was similar that reported previously using the EMG, suggesting the validity of our technique. We claim that this paradigm could be usable in patients because of its simplicity and the potential knowledge that can be extracted from clinical protocols. PMID:24808853

  6. Potassium currents and conductance. Comparison between motor and sensory myelinated fibers.

    PubMed Central

    Palti, Y; Moran, N; Stämpfli, R

    1980-01-01

    The potassium conductance system of sensory and motor fibers from the frog Rana esculenta were studied and compared by means of the voltage clamp. The potassium ion accumulation was first estimated from the currents and reversal potentials within the framework of both a three-compartment model and diffusion-in-an-unstirred-layer model. The potassium conductance parameters were then computed using the measured currents and corrected ionic driving forces. It was found that the potassium accumulation is faster and more pronounced in sensory fibers, the voltage dependency of the potassium conductance is steeper in sensory fibers, the maximal potassium conductance, corrected for accumulation, is approximately 1.1 S/cm2 in sensory and 0.55 S/cm2 in motor fibers, and that the conductance time constants, tau n, are smaller in sensory than in motor fibers. These differences, which increase progressively with depolarization, are not detectable for depolarization of 50 mV or smaller. The interpretation of these findings in terms of different types of potassium channels as well as their implications with regard to the differences between the excitability phenomena in motor and sensory fibers are discussed. PMID:6973371

  7. Quantum beats in conductance oscillations in graphene-based asymmetric double velocity wells and electrostatic wells

    SciTech Connect

    Liu, Lei; Li, Yu-Xian; Zhang, Ying-Tao; Liu, Jian-Jun

    2014-01-14

    The transport properties in graphene-based asymmetric double velocity well (Fermi velocity inside the well less than that outside the well) and electrostatic well structures are investigated using the transfer matrix method. The results show that quantum beats occur in the oscillations of the conductance for asymmetric double velocity wells. The beating effect can also be found in asymmetric double electrostatic wells, but only if the widths of the two wells are different. The beat frequency for the asymmetric double well is exactly equal to the frequency difference between the oscillation rates in two isolated single wells with the same structures as the individual wells in the double well structure. A qualitative interpretation is proposed based on the fact that the resonant levels depend upon the sizes of the quantum wells. The beating behavior can provide a new way to identify the symmetry of double well structures.

  8. Synthesis of a correcting filter with phase stabilization of the angular velocity of a synchronous motor by the feedback system method

    NASA Technical Reports Server (NTRS)

    Kazlauskas, K. A.; Kurlavichus, A. I.

    1973-01-01

    The operating characteristics of a synchronous electric motor are discussed. A system of phase stabilization of the instantaneous angular velocity of rotation of a synchronous-reaction motor is diagrammed. A mathematical model is developed to show the parameters which affect the operation of the motor. The selection of a correcting filter to use with the motor in order to reduce the reaction of the system to interference is explained.

  9. Motor, Emotional, and Cognitive Empathy in Children and Adolescents with Autism Spectrum Disorder and Conduct Disorder

    ERIC Educational Resources Information Center

    Bons, Danielle; van den Broek, Egon; Scheepers, Floor; Herpers, Pierre; Rommelse, Nanda; Buitelaaar, Jan K.

    2013-01-01

    It is unclear which aspects of empathy are shared and which are uniquely affected in autism spectrum disorder (ASD) and conduct disorder (CD) as are the neurobiological correlates of these empathy impairments. The aim of this systematic review is to describe the overlap and specificity of motor, emotional, and cognitive aspects of empathy in…

  10. 49 CFR 242.111 - Prior safety conduct as motor vehicle operator.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Prior safety conduct as motor vehicle operator. 242.111 Section 242.111 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION QUALIFICATION AND CERTIFICATION OF CONDUCTORS Program and Eligibility Requirements §...

  11. A comparison of nerve conduction velocities and current perception thresholds as correlates of clinical severity of diabetic sensory neuropathy.

    PubMed Central

    Rendell, M S; Katims, J J; Richter, R; Rowland, F

    1989-01-01

    Nerve conduction velocities (NCVs) are the standard measurements used to confirm the presence or absence of diabetic neuropathy. NCVs were contrasted with the newer technique of measurement of alternating current perception thresholds (CPTs) in assessing the quantitative level of correlation with severity of diabetic sensory neuropathy. A very detailed, scored neurological history (symptoms) and physical examination, emphasising sensory assessment, was conducted on 71 individuals with diabetic neuropathy of varying degrees of severity. Sensory and motor NCVs and CPTs at 5, 250, and 2000 Hz of the upper and lower extremities were determined for these individuals. In addition, vibration thresholds (VTs) were measured as a third modality. Twenty eight individuals underwent repeated evaluations at 2, 6, 10 and 12 months after the initial procedures. Using the results of 169 complete evaluations, correlations were determined between physical scores (PS) and symptoms scores (SS) and NCVs. NCV correlations with the SS were weaker than with the PS. The strongest of the correlations were found between the PS and motor NCVs of the median nerve (rho = 0.29) and the tibial nerve (rho = 0.38). Normal NCVs were present in the face of very significant historical and physical abnormality. Correlations of the SS and PS with both VTs and CPTs were higher than with the NCVs. CPTs proved the more effective as predictors of both symptomatic and physical impairment. NCVs appear to lack the resolving power necessary to evaluate subtle differences in clinical state of diabetic sensory neuropathy. The supplementary use of current perception testing may improve the quantitative assessment of this condition. PMID:2738593

  12. Structure, sound velocity, and thermal conductivity of the perovskite NdGaO3

    NASA Astrophysics Data System (ADS)

    Krivchikov, A. I.; Gorodilov, B. Ya.; Kolobov, I. G.; Érenburg, A. I.; Savitskiĭ, D. I.; Ubizskiĭ, S. B.; Syvorotka, I. M.; Vasilechko, L. O.

    2000-05-01

    X-ray (300 K) and ultrasonic (77-270 K) studies and measurements of the thermal conductivity (30-300 K) are carried out on single-crystal samples of NdGaO3 in different crystallographic directions. The values of the lattice parameters of NdGaO3 are refined. The sound velocities in the principal crystallographic directions are measured, and the elastic constants and Debye temperature are calculated. The observed anisotropy of the thermal conductivity is described in the framework of a gaskinetic model and is linked to the anisotropy of the interaction parameters of the acoustical and optical phonons.

  13. [Physiological approach to peripheral neuropathy. Conventional nerve conduction studies and magnetic motor root stimulation].

    PubMed

    Ugawa, Yoshikazu

    2004-11-01

    In this communication, I first show some points we should mind in the conventional peripheral nerve conduction studies and later present clinical usefulness of motor root stimulation for peripheral neuropathy. CONVENTIONAL NERVE CONDUCTION STUDIES (NCS): The most important point revealed by the conventional NCSs is whether neuropathy is due to axonal degeneration or demyelinating process. Precise clinical examination with this neurophysiological information leads us to a diagnosis and treatment. Poor clinical examination makes these findings useless. Long standing axonal degeneration sometimes induces secondary demyelination at the most distal part of involved nerves. On the other hand, severe segmental demyelination often provokes secondary axonal degeneration at distal parts to the site of demyelination. These secondary changes show the same abnormal neurophysiological findings as those of the primary involvement. We should be careful of this possibility when interpreting the results of NCS. NCS of sensory nerves is not good at revealing demyelinating process. Mild temporal dispersion of potentials often reduces an amplitude of SNAP or loss of responses, which usually suggests axonal degeneration, because of short duration of sensory nerve potentials. MOTOR ROOT STIMULATION IN PERIPHERAL NEUROPATHY: Magnetic stimulation with a coil placed over the spine activates motor roots and evokes EMG responses from upper and lower limb muscles. The site of activation with this method was determined to be where the motor roots exit from the spinal canal (intervertebral foramina) (J Neurol Neurosurg Psychiatry 52 (9): 1025-1032, 1989) because induced currents are very dense at such a foramen made by electric resistant bones. In several kinds of peripheral neuropathy, this method has been used to detect a lesion at a proximal part of the peripheral nerves which can not be detected by the conventional NCSs. I present a few cases in whom motor root stimulation had a clinical

  14. Postoperative improvement in DASH score, clinical findings, and nerve conduction velocity in patients with cubital tunnel syndrome

    PubMed Central

    Ido, Yoshikazu; Uchiyama, Shigeharu; Nakamura, Koichi; Itsubo, Toshiro; Hayashi, Masanori; Hata, Yukihiko; Imaeda, Toshihiko; Kato, Hiroyuki

    2016-01-01

    We investigated a recovery pattern in subjective and objective measures among 52 patients with cubital tunnel syndrome after anterior subcutaneous transposition of the ulnar nerve. Disabilities of the Arm, Shoulder and Hand (DASH) score (primary outcome), numbness score, grip and pinch strength, Semmes-Weinstein (SW) score, static 2-point discrimination (2PD) score, and motor conduction velocity (MCV) stage were examined preoperatively and 1, 3, 6, 12, and ≥24 months postoperatively. Statistical analyses were conducted to evaluate how each variable improved after surgery. A linear mixed-effects model was used for continuous variables (DASH score, numbness, grip and pinch strength), and a proportional odds model was used for categorical variables (SW and 2PD tests and MCV stages). DASH score significantly improved by 6 months. Significant recovery in numbness and SW test scores occurred at 1 month. Grip and pinch strength, 2PD test scores, and MCV stage improved by 3 months. DASH scores and numbness recovered regardless of age, sex, or disease severity. It was still unclear if both subjective and objective measures improved beyond 1-year postoperatively. These data are helpful for predicting postoperative recovery patterns and tend to be most important for patients prior to surgery. PMID:27263860

  15. An Electromagnetic Gauge Technique for Measuring Shocked Particle Velocity in Electrically Conductive Samples

    NASA Astrophysics Data System (ADS)

    Cheng, David; Yoshinaka, Akio

    2014-11-01

    Electromagnetic velocity (EMV) gauges are a class of film gauges which permit the direct in-situ measurement of shocked material flow velocity. The active sensing element, typically a metallic foil, requires exposure to a known external magnetic field in order to produce motional electromotive force (emf). Due to signal distortion caused by mutual inductance between sample and EMV gauge, this technique is typically limited to shock waves in non-conductive materials. In conductive samples, motional emf generated in the EMV gauge has to be extracted from the measured signal which results from the combined effects of both motional emf and voltage changes from induced currents. An electromagnetic technique is presented which analytically models the dynamics of induced current between a copper disk moving as a rigid body with constant 1D translational velocity toward an EMV gauge, where both disk and gauge are exposed to a uniform external static magnetic field. The disk is modelled as a magnetic dipole loop where its Foucault current is evaluated from the characteristics of the fields, whereas the EMV gauge is modelled as a circuit loop immersed in the field of the magnetic dipole loop, the intensity of which is calculated as a function of space and, implicitly, time. Equations of mutual induction are derived and the current induced in the EMV gauge loop is solved, allowing discrimination of the motional emf. Numerical analysis is provided for the step response of the induced EMV gauge current with respect to the Foucault current in the moving copper sample.

  16. An Electromagnetic Gauge Technique for Measuring Shocked Particle Velocity in Electrically Conductive Samples

    NASA Astrophysics Data System (ADS)

    Cheng, David; Yoshinaka, Akio

    2014-10-01

    Electromagnetic velocity (EMV) gauges are a class of film gauges which permit the direct in-situ measurement of shocked material flow velocity. The active sensing element, typically a metallic foil, requires exposure to a known external magnetic field in order to produce motional electromotive force (emf). Due to signal distortion caused by mutual inductance between sample and EMV gauge, this technique is typically limited to shock waves in non-conductive materials. In conductive samples, motional emf generated in the EMV gauge has to be extracted from the measured signal which results from the combined effects of both motional emf and voltage changes from induced currents. An electromagnetic technique is presented which analytically models the dynamics of induced current between a copper disk moving as a rigid body with constant 1D translational velocity toward an EMV gauge, where both disk and gauge are exposed to a uniform external static magnetic field. The disk is modelled as a magnetic dipole loop where its Foucault current is evaluated from the characteristics of the fields, whereas the EMV gauge is modelled as a circuit loop immersed in the field of the magnetic dipole loop, the intensity of which is calculated as a function of space and, implicitly, time. Equations of mutual induction are derived and the current induced in the EMV gauge loop is solved, allowing discrimination of the motional emf. Numerical analysis is provided for the step response of the induced EMV gauge current with respect to the Foucault current in the moving copper sample.

  17. Thermal conduction by dark matter with velocity and momentum-dependent cross-sections

    SciTech Connect

    Vincent, Aaron C.; Scott, Pat E-mail: patscott@physics.mcgill.ca

    2014-04-01

    We use the formalism of Gould and Raffelt [1] to compute the dimensionless thermal conduction coefficients for scattering of dark matter particles with standard model nucleons via cross-sections that depend on the relative velocity or momentum exchanged between particles. Motivated by models invoked to reconcile various recent results in direct detection, we explicitly compute the conduction coefficients α and κ for cross-sections that go as v{sub rel}{sup 2}, v{sub rel}{sup 4}, v{sub rel}{sup −2}, q{sup 2}, q{sup 4} and q{sup −2}, where v{sub rel} is the relative DM-nucleus velocity and q is the momentum transferred in the collision. We find that a v{sub rel}{sup −2} dependence can significantly enhance energy transport from the inner solar core to the outer core. The same can true for any q-dependent coupling, if the dark matter mass lies within some specific range for each coupling. This effect can complement direct searches for dark matter; combining these results with state-of-the-art solar simulations should greatly increase sensitivity to certain DM models. It also seems possible that the so-called Solar Abundance Problem could be resolved by enhanced energy transport in the solar core due to such velocity- or momentum-dependent scatterings.

  18. PIC Simulations of the Effect of Velocity Space Instabilities on Electron Viscosity and Thermal Conduction

    NASA Astrophysics Data System (ADS)

    Riquelme, Mario A.; Quataert, Eliot; Verscharen, Daniel

    2016-06-01

    In low-collisionality plasmas, velocity-space instabilities are a key mechanism providing an effective collisionality for the plasma. We use particle-in-cell (PIC) simulations to study the interplay between electron- and ion-scale velocity-space instabilities and their effect on electron pressure anisotropy, viscous heating, and thermal conduction. The adiabatic invariance of the magnetic moment in low-collisionality plasmas leads to pressure anisotropy, {{Δ }}{p}j\\equiv {p}\\perp ,j-{p}\\parallel ,j\\gt 0, if the magnetic field {\\boldsymbol{B}} is amplified ({p}\\perp ,j and {p}\\parallel ,j denote the pressure of species j (electron, ion) perpendicular and parallel to {\\boldsymbol{B}}). If the resulting anisotropy is large enough, it can in turn trigger small-scale plasma instabilities. Our PIC simulations explore the nonlinear regime of the mirror, IC, and electron whistler instabilities, through continuous amplification of the magnetic field | {\\boldsymbol{B}}| by an imposed shear in the plasma. In the regime 1≲ {β }j≲ 20 ({β }j\\equiv 8π {p}j/| {\\boldsymbol{B}}{| }2), the saturated electron pressure anisotropy, {{Δ }}{p}{{e}}/{p}\\parallel ,{{e}}, is determined mainly by the (electron-lengthscale) whistler marginal stability condition, with a modest factor of ∼1.5–2 decrease due to the trapping of electrons into ion-lengthscale mirrors. We explicitly calculate the mean free path of the electrons and ions along the mean magnetic field and provide a simple physical prescription for the mean free path and thermal conductivity in low-collisionality β j ≳ 1 plasmas. Our results imply that velocity-space instabilities likely decrease the thermal conductivity of plasma in the outer parts of massive, hot, galaxy clusters. We also discuss the implications of our results for electron heating and thermal conduction in low-collisionality accretion flows onto black holes, including Sgr A* in the Galactic Center.

  19. Electrical conductivity during incipient melting in the oceanic low-velocity zone.

    PubMed

    Sifré, David; Gardés, Emmanuel; Massuyeau, Malcolm; Hashim, Leila; Hier-Majumder, Saswata; Gaillard, Fabrice

    2014-05-01

    The low-viscosity layer in the upper mantle, the asthenosphere, is a requirement for plate tectonics. The seismic low velocities and the high electrical conductivities of the asthenosphere are attributed either to subsolidus, water-related defects in olivine minerals or to a few volume per cent of partial melt, but these two interpretations have two shortcomings. First, the amount of water stored in olivine is not expected to be higher than 50 parts per million owing to partitioning with other mantle phases (including pargasite amphibole at moderate temperatures) and partial melting at high temperatures. Second, elevated melt volume fractions are impeded by the temperatures prevailing in the asthenosphere, which are too low, and by the melt mobility, which is high and can lead to gravitational segregation. Here we determine the electrical conductivity of carbon-dioxide-rich and water-rich melts, typically produced at the onset of mantle melting. Electrical conductivity increases modestly with moderate amounts of water and carbon dioxide, but it increases drastically once the carbon dioxide content exceeds six weight per cent in the melt. Incipient melts, long-expected to prevail in the asthenosphere, can therefore produce high electrical conductivities there. Taking into account variable degrees of depletion of the mantle in water and carbon dioxide, and their effect on the petrology of incipient melting, we calculated conductivity profiles across the asthenosphere for various tectonic plate ages. Several electrical discontinuities are predicted and match geophysical observations in a consistent petrological and geochemical framework. In moderately aged plates (more than five million years old), incipient melts probably trigger both the seismic low velocities and the high electrical conductivities in the upper part of the asthenosphere, whereas in young plates, where seamount volcanism occurs, a higher degree of melting is expected. PMID:24784219

  20. The electrical conductivity during incipient melting in the oceanic low velocity zone

    PubMed Central

    Sifré, David; Gardés, Emmanuel; Massuyeau, Malcolm; Hashim, Leila; Hier-Majumder, Saswata; Gaillard, Fabrice

    2014-01-01

    A low viscosity layer in the upper mantle, the Asthenosphere, is a requirement for plate tectonics1. The seismic low velocities and the high electrical conductivities of the Asthenosphere are attributed either to sub-solidus water-related defects in olivine minerals2-4 or to a few volume percents of partial melt5-8 but these two interpretations have shortcomings: (1) The amount of H2O stored in olivine is not expected to be higher than 50 ppm due to partitioning with other mantle phases9, including pargasite amphibole at moderate temperatures10, and partial melting at high temperatures9; (2) elevated melt volume fractions are impeded by the too cold temperatures prevailing in the Asthenosphere and by the high melt mobility that can lead to gravitational segregation11,12. Here we determined the electrical conductivity of CO2-H2O-rich melts, typically produced at the onset of mantle melting. Electrical conductivity modestly increases with moderate amounts of H2O and CO2 but it dramatically increases as CO2 content exceeds 6 wt% in the melt. Incipient melts, long-expected to prevail in the asthenosphere10,13-15, can therefore trigger its high electrical conductivities. Considering depleted and enriched mantle abundances in H2O and CO2 and their effect on the petrology of incipient melting, we calculated conductivity profiles across the Asthenosphere for various plate ages. Several electrical discontinuities are predicted and match geophysical observations in a consistent petrological and geochemical framework. In moderately aged plates (>5Ma), incipient melts most likely trigger both the seismic low velocities and the high electrical conductivities in the upper part of the asthenosphere, whereas for young plates4, where seamount volcanism occurs6, higher degree of melting is expected. PMID:24784219

  1. Noninvasive peroneal sensory and motor nerve conduction recordings in the rabbit distal hindlimb: feasibility, variability and neuropathy measure.

    PubMed

    Hotson, John R

    2014-01-01

    The peroneal nerve anatomy of the rabbit distal hindlimb is similar to humans, but reports of distal peroneal nerve conduction studies were not identified with a literature search. Distal sensorimotor recordings may be useful for studying rabbit models of length-dependent peripheral neuropathy. Surface electrodes were adhered to the dorsal rabbit foot overlying the extensor digitorum brevis muscle and the superficial peroneal nerve. The deep and superficial peroneal nerves were stimulated above the ankle and the common peroneal nerve was stimulated at the knee. The nerve conduction studies were repeated twice with a one-week intertest interval to determine measurement variability. Intravenous vincristine was used to produce a peripheral neuropathy. Repeat recordings measured the response to vincristine. A compound muscle action potential and a sensory nerve action potential were evoked in all rabbits. The compound muscle action potential mean amplitude was 0.29 mV (SD ± 0.12) and the fibula head to ankle mean motor conduction velocity was 46.5 m/s (SD ± 2.9). The sensory nerve action potential mean amplitude was 22.8 μV (SD ± 2.8) and the distal sensory conduction velocity was 38.8 m/s (SD ± 2.2). Sensorimotor latencies and velocities were least variable between two test sessions (coefficient of variation  =  2.6-5.9%), sensory potential amplitudes were intermediate (coefficient of variation  =  11.1%) and compound potential amplitudes were the most variable (coefficient of variation  = 19.3%). Vincristine abolished compound muscle action potentials and reduced sensory nerve action potential amplitudes by 42-57% while having little effect on velocity. Rabbit distal hindlimb nerve conduction studies are feasible with surface recordings and stimulation. The evoked distal sensory potentials have amplitudes, configurations and recording techniques that are similar to humans and may be valuable for measuring large sensory fiber function in chronic

  2. Comparison of Ear-Canal Reflectance and Umbo Velocity in Patients with Conductive Hearing Loss

    NASA Astrophysics Data System (ADS)

    Merchant, Gabrielle R.; Nakajima, Hideko H.; Pisano, Dominic V.; Röösli, Christof; Hamade, Mohamad A.; Mafoud, Lorice; Halpin, Christopher F.; Merchant, Saumil N.; Rosowski, John J.

    2011-11-01

    Patients who present at hearing clinics with a conductive hearing loss (CHL) in the presence of an intact, healthy tympanic membrane create a unique challenge for otologists. While patient counseling, treatment options, and outcome vary with differing middle-ear pathologies, a non-invasive diagnostic that can differentiate between these pathologies does not currently exist. We evaluated the clinical utility and diagnostic accuracy of two non-invasive measures of middle-ear mechanics: ear-canal reflectance (ECR) and umbo velocity (VU).

  3. Displacement of plasma protein and conduction velocity in rats under action of acceleration forces and hypokinesia

    NASA Technical Reports Server (NTRS)

    Baranski, S.; Edelwejn, Z.; Wojtkowiak, M.

    1980-01-01

    The permeability of capillary vessels was investigated in order to determine if acceleration alone or following prolonged hypokinesia would induce changes in the vascular wall leading to the penetration by l-albumins and/or proteins with larger molecules. In rats undergoing action of +5 Gz accelerations, no increase in vascular permeability, as tested with the use of (Cr-5k)-globulin, was demostrated. In rats immobilized for 4 weeks before centrifugation, rather weak migration of (Cr-51)-globulin from the vessels was observed. Immobilization resulted also in lowering of conduction velocity in the sciatic nerve.

  4. IDENTIFYING HYDRAULICALLY CONDUCTIVE FRACTURES WITH A SLOW-VELOCITY BOREHOLE FLOWMETER.

    USGS Publications Warehouse

    Hess, Alfred E.

    1986-01-01

    The U. S. Geological Survey used a recently developed heat-pulse flowmeter to measure very slow borehole axial water velocities in granitic rock at a site near Lac du Bonnet, Manitoba, Canada. The flowmeter was used with other geophysical measurements to locate and identify hydraulically conducting fractures contributing to the very slow vertical water flow in the two boreholes selected for study. The heat-pulse flowmeter has a flow-measuring range in water of 0. 06-6m/min, and can resolve velocity differences as slow as 0. 01 m/min. This is an order of magnitude slower than the stall speed of spinner flowmeters. The flowmeter is 1. 16 m long and 44 mm in diameter. It was calibrated in columns of 76 and 152 mm diameter, to correspond to the boreholes studied. The heat-pulse flowmeter system is evaluated, and problems peculiar to the measurement of very slow axial water velocities in boreholes are discussed.

  5. Prediction of rocks thermal conductivity from elastic wave velocities, mineralogy and microstructure

    NASA Astrophysics Data System (ADS)

    Pimienta, Lucas; Sarout, Joel; Esteban, Lionel; Piane, Claudio Delle

    2014-05-01

    While knowledge on Thermal Conductivity (TC) of rocks is of interest in many fields, determining this property remains challenging. In this paper, a modelling approach for TC prediction from Elastic Wave Velocity (EWV) measurements is reported. To this end, a new effective TC model for a typical sedimentary rock is introduced that explicitly accounts for the presence of pores, pressure-sensitive microcracks (or grain contacts) and formation fluids. A model of effective elasticity is also devised for this same rock that links its microstructural characteristics to the velocity of elastic waves. The two models are based on the same effective medium approach and involve the same microstructural parameters. A workflow based on this explicit modelling approach is devised that allows for the prediction of the TC of a reservoir rock using (i) the elastic waves velocities, (ii) the dominant mineral content and (iii) the bulk porosity. This workflow is validated using experimental data reported in the literature for dry and water-saturated Fontainebleau and Berea sandstones. The datasets include measurements of TC and EWV as a function of effective pressure. In addition, it is shown that the dependence of TC on the rock microstructure is formally and practically similar to that of EWV. It is also demonstrated that the accuracy of TC predictions from EWV increases with effective pressure (burial depth). The underlying assumptions and limitations of the present approach together with the effect of burial are discussed.

  6. Evaluation of Central and Peripheral Fatigue in the Quadriceps Using Fractal Dimension and Conduction Velocity in Young Females

    PubMed Central

    Beretta-Piccoli, Matteo; D’Antona, Giuseppe; Barbero, Marco; Fisher, Beth; Dieli-Conwright, Christina M.; Clijsen, Ron; Cescon, Corrado

    2015-01-01

    Purpose Over the past decade, linear and non-linear surface electromyography descriptors for central and peripheral components of fatigue have been developed. In the current study, we tested fractal dimension (FD) and conduction velocity (CV) as myoelectric descriptors of central and peripheral fatigue, respectively. To this aim, we analyzed FD and CV slopes during sustained fatiguing contractions of the quadriceps femoris in healthy humans. Methods A total of 29 recreationally active women (mean age±standard deviation: 24±4 years) and two female elite athletes (one power athlete, age 24 and one endurance athlete, age 30 years) performed two knee extensions: (1) at 20% maximal voluntary contraction (MVC) for 30 s, and (2) at 60% MVC held until exhaustion. Surface EMG signals were detected from the vastus lateralis and vastus medialis using bidimensional arrays. Results Central and peripheral fatigue were described as decreases in FD and CV, respectively. A positive correlation between FD and CV (R=0.51, p<0.01) was found during the sustained 60% MVC, probably as a result of simultaneous motor unit synchronization and a decrease in muscle fiber CV during the fatiguing task. Conclusions Central and peripheral fatigue can be described as changes in FD and CV, at least in young, healthy women. The significant correlation between FD and CV observed at 60% MVC suggests that a mutual interaction between central and peripheral fatigue can arise during submaximal isometric contractions. PMID:25880369

  7. Harmonic force spectroscopy reveals a force-velocity curve from a single human beta cardiac myosin motor

    NASA Astrophysics Data System (ADS)

    Sung, Jongmin; Nag, Suman; Vestergaard, Christian; Mortensen, Kim; Flyvbjerg, Henrik; Spudich, James

    2014-03-01

    A muscle contracts rapidly under low load, but slowly under high load. Its molecular mechanisms remain to be elucidated, however. During contraction, myosins in thick filaments interact with actin in thin filaments in the sarcomere, cycling between a strongly bound (force producing) state and a weakly bound (relaxed) state. Huxley et al. have previously proposed that the transition from the strong to the weak interaction can be modulated by a load. We use a new method we call ``harmonic force spectroscopy'' to extract a load-velocity curve from a single human beta cardiac myosin II motor. With a dual-beam optical trap, we hold an actin dumbbell over a myosin molecule anchored to the microscope stage that oscillates sinusoidally. Upon binding, the motor experiences an oscillatory load with a mean that is directed forward or backward, depending on binding location We find that the bound time at saturating [ATP] is exponentially correlated with the mean load, which is explained by Arrhenius transition theory. With a stroke size measurement, we obtained a load-velocity curve from a single myosin. We compare the curves for wild-type motors with mutants that cause hypertrophic cardiomyopathies, to understand the effects on the contractile cycle

  8. Effects of colistin on the sensory nerve conduction velocity and F-wave in mice.

    PubMed

    Dai, Chongshan; Tang, Shusheng; Li, Jichang; Wang, Jiping; Xiao, Xilong

    2014-12-01

    The aim of this study was to examine the changes of sensory nerve conduction velocity (SNCV) and F-wave for colistin-induced peripheral neurotoxicity using a mouse model. Mice were administered with colistin 5, 7.5 and 15 mg/kg/day via a 3-min. intravenous infusion. The sensory nerve conduction velocity (SNCV) and F-wave were measured using the bipolar recording electrodes. The SNCV and F-wave latency changed in a dose- and time-dependent manner. The significant increase of F-wave latency and significant decrease of SNCV appeared on day 3 (p < 0.05 and 0.01, respectively) in the 15 mg/kg/day group, and they were markedly changed on day 7 in the 7.5 mg/kg/day (p < 0.01 and 0.05, respectively) and 15 mg/kg/day groups (both p < 0.01). In addition, F-wave latency also significantly increased on day 7 in the 5 mg/kg/day group (p < 0.05) without any clinical signs. These results indicate that SNCV and F-wave latency were more sensitive in colistin-induced neurotoxicity in mice, which highlights the early monitoring tool of polymyxins neurotoxicity in the clinic. PMID:24861773

  9. Muscle-fiber conduction velocity during concentric and eccentric actions on a flywheel exercise device.

    PubMed

    Pozzo, Marco; Alkner, Björn; Norrbrand, Lena; Farina, Dario; Tesch, Per A

    2006-08-01

    A gravity-independent flywheel exercise device (FWED) has been proven effective as a countermeasure to loss of strength and muscle atrophy induced by simulated microgravity. This study assessed muscle-fiber conduction velocity (CV) and surface EMG instantaneous mean power spectral frequency (iMNF) during brief bouts of fatiguing concentric (CON) and eccentric (ECC) exercise on a FWED in order to identify electromyographic (EMG) variables that can be used to provide objective indications of muscle status when exercising with a FWED. Multichannel surface EMG signals were recorded from vastus lateralis and medialis muscles of nine men during: (1) isometric, 60-s action at 50% of maximum voluntary action (MVC); (2) two isometric, linearly increasing force ramps (0-100% MVC); and (3) dynamic CON/ECC coupled actions on the FWED. Muscle-fiber CV and iMNF were computed over time during the three tasks. During ramps, CV, but not iMNF, increased with force (P < 0.001). Conduction velocity and iMNF decreased with the same normalized rate of change in constant-force actions. During CON/ECC actions, the normalized rate of change over time was larger for CV than iMNF (P < 0.05). These results suggest that, during fatiguing, dynamic, variable-force tasks, changes in CV cannot be indirectly inferred by EMG spectral analysis. This underlines the importance of measuring both CV and spectral variables for muscle assessment in dynamic tasks. PMID:16688721

  10. Cat hindlimb motoneurons during locomotion. I. Destination, axonal conduction velocity, and recruitment threshold.

    PubMed

    Hoffer, J A; Loeb, G E; Marks, W B; O'Donovan, M J; Pratt, C A; Sugano, N

    1987-02-01

    Fine flexible wire microelectrodes chronically implanted in the fifth lumbar ventral root (L5 VR) of 17 cats rendered stable records of the natural discharge patterns of 164 individual axons during locomotion on a treadmill. Fifty-one out of 164 axons were identified as motoneurons projecting to the anterior thigh muscle group. For these axons, the centrifugal propagation of action potentials was demonstrated by the technique of spike-triggered averaging using signals recorded from cuff electrodes implanted around the femoral nerve. The axonal conduction velocity was measured from the femoral nerve cuff records. For 43/51 motoneurons, the corresponding target muscle was identified by spike-triggered averaging of signals recorded from bipolar EMG electrodes implanted in each of the anterior thigh muscles: vastus intermedius, medialis and lateralis, sartorius anterior and medialis, and rectus femoris. For 32/51 motoneurons, the recruitment threshold during locomotion was determined from the mean value of the rectified digitally smoothed EMG of the target muscle measured at the time when the motoneuron fired its first spike for each step. The recruitment threshold of every motoneuron was relatively constant for a given speed of walking, but for some units there were small systematic variations as a function of treadmill speed (range: 0.1-1.3 m/s). Recruitment thresholds were standardized with respect to the mean value of peak EMG activity of the target muscle during 16 s of walking at 0.5 m/s. For 28/51 motoneurons recorded in nine cats, recruitment thresholds (range: 3-93% of peak target muscle EMG) were linearly correlated (r = 0.51, P less than 0.02) to axonal conduction velocities (range: 57-117 m/s). In addition, for seven recorded pairs of motoneurons that projected to the same muscle in the same cat, the recruitment thresholds were ordered by relative conduction velocities. Taken together, these results are consistent with the notion that, in normal cat

  11. Ultrafast Optical Measurements of Thermal Conductivity and Sound Velocity of Amorphous SiC

    NASA Astrophysics Data System (ADS)

    Hondongwa, Donald; Olasov, Lauren; Daly, Brian; King, Sean; Bielefeld, Jeff

    2011-03-01

    We present ultrafast optical measurements of longitudinal sound velocity and thermal transport in hydrogenated amorphous carbon (a-SiC:H) films. The films were grown on Si wafers by PECVD using combinations of methylsilanes and H2 and He diluent gases. The films were well characterized and found to have densities (1.0 -- 2.5 g cm-3) and dielectric constants (2.8 -- 7.2) that spanned a wide range of values. Prior to their measurement, the a-SiC:H films were coated with 40-70 nm of polycrystalline Al. The pump-probe measurements were performed at room temperature using a modelocked Ti:sapphire laser. Transient reflectivity changes that are associated with very high frequency sound waves (picosecond ultrasonics) and the cooling rate of the SiC sample (Time Domain Thermorerflectance (TDTR)) were measured. We extract values for the thermal conductivity and sound velocity of the SiC films, and analyze the results in terms of rigidity percolation effects within the SiC layers. This work was supported by NSF award DMR-0906753.

  12. The electrical conductivity during incipient melting in the oceanic low velocity zone

    NASA Astrophysics Data System (ADS)

    Gaillard, Fabrice; Sifre, David; Gardes, Emmanuel; Massuyeau, Malcolm; Hashim, Leila; Hier Majumder, Saswata

    2014-05-01

    A low viscosity layer at the Lithosphere-Asthenosphere Boundary (LAB) is certainly a requirement for plate tectonics but the nature of the rocks presents in this boundary remains controversial. The seismic low velocities and the high electrical conductivities of the LAB are attributed either to sub-solidus water-related defects in olivine minerals or to a few volume percents of partial melt but these two interpretations have shortcomings: (1) The amount of H2O stored in olivine is not expected to be high enough due to several mineralogical processes that have been sometimes ignored; (2) elevated melt volume fractions are impeded by the too cold temperatures prevailing in the LAB and by the high melt mobility that can lead to gravitational segregation. All this has in fact been partly settled 30 years ago, when a petrological LAB has been defined as a region of the upper mantle impregnated by incipient melts; that is small amounts of melt caused by small amount of CO2 and H2O. We show here that incipient melting is a melting regime that is allowed in the entire P-T-fO2 region of the LVZ. The top of the oceanic LVZ (LAB) is then best explained by a melt freezing layer due to a decarbonation reaction, whereas the bottom of the LVZ matches the depth at which redox melting defines the lower boundary of stability of incipient melts. Based on new laboratory measurements, we show here that incipient melts must be the cause of the high electrical conductivities in the oceanic LVZ. Considering relevant mantle abundances of H2O and CO2 and their effect on the petrology of incipient melting, we calculated conductivity profiles across the LAB for various ages. Several electrical discontinuities are predicted and match geophysical observations in a consistent petrological and geochemical framework. We conclude that incipient melts prevail in the LAB, what else?

  13. A conduction block in sciatic nerves can be detected by magnetic motor root stimulation.

    PubMed

    Matsumoto, Hideyuki; Konoma, Yuko; Fujii, Kengo; Hanajima, Ritsuko; Terao, Yasuo; Ugawa, Yoshikazu

    2013-08-15

    Useful diagnostic techniques for the acute phase of sciatic nerve palsy, an entrapment neuropathy, are not well established. The aim of this paper is to demonstrate the diagnostic utility of magnetic sacral motor root stimulation for sciatic nerve palsy. We analyzed the peripheral nerves innervating the abductor hallucis muscle using both electrical stimulations at the ankle and knee and magnetic stimulations at the neuro-foramina and conus medullaris levels in a patient with sciatic nerve palsy at the level of the piriformis muscle due to gluteal compression related to alcohol consumption. On the fourth day after onset, magnetic sacral motor root stimulation using a MATS coil (the MATS coil stimulation method) clearly revealed a conduction block between the knee and the sacral neuro-foramina. Two weeks after onset, needle electromyography supported the existence of the focal lesion. The MATS coil stimulation method clearly revealed a conduction block in the sciatic nerve and is therefore a useful diagnostic tool for the abnormal neurophysiological findings associated with sciatic nerve palsy even at the acute phase. PMID:23809191

  14. Fluid Distribution in Synthetic Wet Halite Rocks : Inference from Measured Elastic Wave Velocity and Electrical Conductivity

    NASA Astrophysics Data System (ADS)

    Watanabe, T.; Kitano, M.

    2011-12-01

    Intercrystalline fluid can significantly affect rheological and transport properties of rocks. Its influences are strongly dependent on its distribution. The dihedral angle between solid and liquid phases has been widely accepted as a key parameter that controls solid-liquid textures. The liquid phase is not expected to be interconnected if the dihedral angle is larger than 60 degree. However, observations contradictory to dihedral angle values have been reported. Watanabe (2010) suggested the coexistence of grain boundary fluid with a positive dihedral angle. For good understanding of fluid distribution, it is thus critical to study the nature of grain boundary fluid. We have developed a high pressure and temperature apparatus for study of intercrystalline fluid distribution. It was specially designed for measurements of elastic wave velocities and electrical conductivity. The apparatus mainly consists of a conventional cold-seal vessel with an external heater. The pressure medium is silicon oil of the viscosity of 0.1 Pa s. The pressure and temperature can be controlled from 0 to 200 MPa and from 20 to 200 C, respectively. Dimensions of a sample are 9 mm in diameter, and 15 mm in length. Halite-water system is used as an analog for crustal rocks. The dihedral angle has been studied systematically at various pressure and temperature conditions [Lewis and Holness, 1996]. The dihedral angle is larger than 60 degree at lower pressure and temperature. It decreases to be smaller than 60 degree with increasing pressure and temperature. A sample is prepared by cold-pressing and annealing of wet NaCl powder. Optical examination has shown that synthesized samples are microstructurally homogeneous. Grains are polygonal and equidimensional with a mean diameter of 100 micrometer. Grain boundaries vary from straight to bowed and 120 degree triple junctions are common. Gas and fluid bearing inclusions are visible on the grain boundaries. There are spherical inclusions or

  15. Low-Cost Timer to Measure the Terminal Velocity of a Magnet Falling through a Conducting Pipe

    ERIC Educational Resources Information Center

    Pathare, Shirish R.; Huli, Saurabhee; Lahane, Rohan; Sawant, Sumedh

    2014-01-01

    Dropping a magnet into a conductive pipe (made up of copper or brass or aluminum) is a very popular demonstration in many physics classrooms and laboratories. In this paper we present an inexpensive timer that can be used to measure the terminal velocity of the magnet falling through a conducting pipe. The timer assembly consists of Hall effect…

  16. MICROBIAL TRANSPORT THROUGH POROUS MEDIA; THE EFFECTS OF HYDRAULIC CONDUCTIVITY AND INJECTION VELOCITY. (R825513C019)

    EPA Science Inventory

    The effects of hydraulic conductivity and injection velocity on microbial transport through porous media were investigated. Glass chromatography columns were packed separately with clean quartz sand of two diameters (0.368mm or 0.24O mm) and two hydraulic conductivities (1.37&...

  17. Exercise and DHA prevent the negative effects of hypoxia on EEG and nerve conduction velocity.

    PubMed

    Erken, Haydar Ali; Erken, Gülten; Colak, Rıdvan; Genç, Osman

    2013-12-01

    It is known that hypoxia has a negative effect on nervous system functions, but exercise and DHA (docosahexaenoic acid) have positive effect. In this study, it was investigated whether exercise and/or DHA can prevent the effects of hypoxia on EEG and nerve conduction velocity (NCV). 35 adult Wistar albino male rats were divided into five groups (n=7): control (C), hypoxia (H), hypoxia and exercise (HE), hypoxia and DHA (HD), and hypoxia and exercise and DHA (HED) groups. During the 28-day hypoxia exposure, the HE and HED groups of rats were exercised (0% incline, 30 m/min speed, 20 min/day, 5 days a week). In addition, DHA (36 mg/kg/day) was given by oral gavage to rats in the HD and HED groups. While EEG records were taken before and after the experimental period, NCV records were taken after the experimental period from anesthetized rats. Data were analyzed by paired t-test, one-way ANOVA, and post hoc Tukey test. In this study, it was shown that exposure to hypoxia decreased theta activity and NCV, but exercise and DHA reduced the delta activity, while theta, alpha, beta activities, and NCV were increased. These results have shown that the effects of hypoxia exposure on EEG and NCV can be prevented by exercise and/or DHA. PMID:24377343

  18. Severe COPD Alters Muscle Fiber Conduction Velocity During Knee Extensors Fatiguing Contraction.

    PubMed

    Boccia, Gennaro; Coratella, Giuseppe; Dardanello, Davide; Rinaldo, Nicoletta; Lanza, Massimo; Schena, Federico; Rainoldi, Alberto

    2016-10-01

    The aim of this study was to assess the changes in muscle fiber conduction velocity (CV), as a sign of fatigue during knee extensor contraction in patients with chronic obstructive pulmonary disease (COPD) as compared with healthy controls. Eleven male patients (5 with severe and 6 with moderate COPD; age 67 ± 5 years) and 11 age-matched healthy male controls (age 65 ± 4 years) volunteered for the study. CV was obtained by multichannel surface electromyography (EMG) from the vastus lateralis (VL) and medialis (VM) of the quadriceps muscle during isometric, 30-second duration knee extension at 70% of maximal voluntary contraction. The decline in CV in both the VL and VM was steeper in the severe COPD patients than in healthy controls (for VL: severe COPD vs. controls -0.45 ± 0.07%/s; p < 0.001, and for VM: severe COPD vs. controls -0.54 ± 0.09%/s, p < 0.001). No difference in CV decline was found between the moderate COPD patients and the healthy controls. These findings suggest that severe COPD may impair muscle functions, leading to greater muscular fatigue, as expressed by CV changes. The results may be due to a greater involvement of anaerobic metabolism and a shift towards fatigable type II fibers in the muscle composition of the severe COPD patients. PMID:27007486

  19. Brain Activity During a Motor Learning Task: An fMRI and Skin Conductance Study

    PubMed Central

    MacIntosh, Bradley J.; Mraz, Richard; McIlroy, William E.; Graham, Simon J.

    2016-01-01

    Measuring electrodermal activity (EDA) during fMRI is an effective means of studying the influence of task-related arousal, inferred from autonomic nervous system activity, on brain activation patterns. The goals of this study were: (1) to measure reliable EDA from healthy individuals during fMRI involving an effortful unilateral motor task, (2) to explore how EDA recordings can be used to augment fMRI data analysis. In addition to conventional hemodynamic modeling, skin conductance time series data were used as model waveforms to generate activation images from fMRI data. Activations from the EDA model produced significantly different brain regions from those obtained with a standard hemodynamic model, primarily in the insula and cingulate cortices. Onsets of the EDA changes were synchronous with the hemodynamic model, but EDA data showed additional transient features, such as a decrease in amplitude with time, and helped to provide behavioral evidence suggesting task difficulty decreased with movement repetition. Univariate statistics also confirmed that several brain regions showed early versus late session effects. Partial least squares (PLS) multivariate analysis of EDA and fMRI data provided complimentary, additional insight on how the motor network varied over the course of a single fMRI session. Brain regions identified in this manner included the insula, cingulate gyrus, pre- and postcentral gyri, putamen and parietal cortices. These results suggest that recording EDA during motor fMRI experiments provides complementary information that can be used to improve the fMRI analysis, particularly when behavioral or task effects are difficult to model a priori. PMID:17318835

  20. The starting transient of solid propellant rocket motors with high internal gas velocities. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Peretz, A.; Caveny, L. H.; Kuo, K. K.; Summerfield, M.

    1973-01-01

    A comprehensive analytical model which considers time and space development of the flow field in solid propellant rocket motors with high volumetric loading density is described. The gas dynamics in the motor chamber is governed by a set of hyperbolic partial differential equations, that are coupled with the ignition and flame spreading events, and with the axial variation of mass addition. The flame spreading rate is calculated by successive heating-to-ignition along the propellant surface. Experimental diagnostic studies have been performed with a rectangular window motor (50 cm grain length, 5 cm burning perimeter and 1 cm hydraulic port diameter), using a controllable head-end gaseous igniter. Tests were conducted with AP composite propellant at port-to-throat area ratios of 2.0, 1.5, 1.2, and 1.06, and head-end pressures from 35 to 70 atm. Calculated pressure transients and flame spreading rates are in very good agreement with those measured in the experimental system.

  1. Conduction Velocity of the Uterine Contraction in Serial Magnetomyogram (MMG) Data: Event Based Simulation and Validation

    PubMed Central

    Preissl, Hubert; Lowery, Curtis L.; Eswaran, Hari; Govindan, Rathinaswamy B.

    2012-01-01

    We propose a novel approach to calculate the conduction velocity (CV) of the uterine contraction bursts in magnetomyogram (MMG) signals measured using a multichannel SQUID array. For this purpose, we partition the sensor coordinates into four different quadrants and identify the contractile bursts using a previously proposed Hilbert-wavelet transform approach. If contractile burst is identified in more than one quadrant, we calculate the center of gravity (CoG) in each quadrant for each time point as the sum of the product of the sensor coordinates with the Hilbert amplitude of the MMG signals normalized by the sum of the Hilbert amplitude of the signals over all sensors. Following this we compute the delay between the CoGs of all (six) possible quadrant pairs combinations. As a first step, we validate this approach by simulating a stochastic model based on independent second-order autoregressive processes (AR2) and we divide them into 30 second disjoint windows and insert burst activity at specific time instances in preselected sensors. Also we introduce a lag of 5 ± 1 seconds between different quadrants. Using our approach we calculate the CoG of the signals in a quadrant. To this end, we compute the delay between CoGs obtained from different quadrants and show that our approach is able to reliably capture the delay incorporated in the model. We apply the proposed approach to 19 serial MMG data obtained from two subjects and show an increase in the CV as the subjects approached labor. PMID:22255713

  2. Unchanged muscle fiber conduction velocity relates to mild acidosis during exhaustive bicycling.

    PubMed

    Schmitz, J P J; van Dijk, J P; Hilbers, P A J; Nicolay, K; Jeneson, J A L; Stegeman, D F

    2012-05-01

    Muscle fiber conduction velocity (MFCV) has often been shown to decrease during standardized fatiguing isometric contractions. However, several studies have indicated that the MFCV may remain constant during fatiguing dynamic exercise. It was investigated if these observations can be related to the absence of a large decrease in pH and if MFCV can be considered as a good indicator of acidosis, also during dynamic bicycle exercise. High-density surface electromyography (HDsEMG) was combined with read-outs of muscle energetics recorded by in vivo (31)P magnetic resonance spectroscopy (MRS). Measurements were performed during serial exhausting bouts of bicycle exercise at three different workloads. The HDsEMG recordings revealed a small and incoherent variation of MFCV during all high-intensity exercise bouts. (31)P MRS spectra revealed a moderate decrease in pH at the end of exercise (~0.3 units down to 6.8) and a rapid ancillary drop to pH 6.5 during recovery 30 s post-exercise. This additional degree of acidification caused a significant decrease in MFCV during cycling immediately after the rest period. From the data a significant correlation between MFCV and [H(+)] ([H(+)] = 10(-pH)) was calculated (p < 0.001, Pearson's R = -0.87). Our results confirmed the previous observations of MFCV remaining constant during fatiguing dynamic exercise. A constant MFCV is in line with a low degree of acidification, considering the presence of a correlation between pH and MFCV after further increasing acidification. PMID:21861110

  3. Conduction velocity of the uterine contraction in serial magnetomyogram (MMG) data: event based simulation and validation.

    PubMed

    Furdea, Adrian; Preissl, Hubert; Lowery, Curtis L; Eswaran, Hari; Govindan, Rathinaswamy B

    2011-01-01

    We propose a novel approach to calculate the conduction velocity (CV) of the uterine contraction bursts in magnetomyogram (MMG) signals measured using a multichannel SQUID array. For this purpose, we partition the sensor coordinates into four different quadrants and identify the contractile bursts using a previously proposed Hilbert-wavelet transform approach. If contractile burst is identified in more than one quadrant, we calculate the center of gravity (CoG) in each quadrant for each time point as the sum of the product of the sensor coordinates with the Hilbert amplitude of the MMG signals normalized by the sum of the Hilbert amplitude of the signals over all sensors. Following this we compute the delay between the CoGs of all (six) possible quadrant pairs combinations. As a first step, we validate this approach by simulating a stochastic model based on independent second-order autoregressive processes (AR2) and we divide them into 30 second disjoint windows and insert burst activity at specific time instances in preselected sensors. Also we introduce a lag of 5 ± 1 seconds between different quadrants. Using our approach we calculate the CoG of the signals in a quadrant. To this end, we compute the delay between CoGs obtained from different quadrants and show that our approach is able to reliably capture the delay incorporated in the model. We apply the proposed approach to 19 serial MMG data obtained from two subjects and show an increase in the CV as the subjects approached labor. PMID:22255713

  4. Low-Cost Timer to Measure the Terminal Velocity of a Magnet Falling Through a Conducting Pipe

    NASA Astrophysics Data System (ADS)

    Pathare, Shirish R.; Huli, Saurabhee; Lahane, Rohan; Sawant, Sumedh

    2014-03-01

    Dropping a magnet into a conductive pipe (made up of copper or brass or aluminum) is a very popular demonstration in many physics classrooms and laboratories. In this paper we present an inexpensive timer that can be used to measure the terminal velocity of the magnet falling through a conducting pipe. The timer assembly consists of Hall effect switches connected to a digital stopwatch. The timer assembly was then used to observe the variation in the terminal velocity of the falling magnet with respect to the thickness of the copper pipes.

  5. Electrophysiological aspects of sensory conduction velocity in healthy adults. 1. Conduction velocity from digit to palm, from palm to wrist, and across the elbow, as a function of age.

    PubMed Central

    Cruz Martínez, A; Barrio, M; Pérez Conde, M C; Gutiérrez, A M

    1978-01-01

    The sensory conduction velocity from digit to palm and from palm to wrist was determined in median (digit 3) and ulnar (digit 5) nerves in 47 healthy subjects with age range from 21 to 77 years. The decrement of the sensory conduction as a function of age was more marked in the palm to wrist than in the digit to palm segment. Sensory conduction velocity of the ulnar nerve across the elbow was also studied. Irregularities in the shape of the sensory evoked potential recorded above the cubital sulcus were found in 12.76% of cases, especially in subjects over 50 years of age. These results suggest that aging causes decrement in sensory conduction and changes in the shape of the evoked potentials, especially at points where the nerves are more frequently compressed. Images PMID:731254

  6. Velocity measurement inside a motored internal combustion engine using three-component laser Doppler anemometry

    NASA Astrophysics Data System (ADS)

    Chan, V. S. S.; Turner, J. T.

    2000-10-01

    A three-component laser Doppler anemometry (LDA) system has been employed to investigate the structure of the flow inside the cylinder of a motored internal combustion engine. This model engine was reasonably representative of a typical, single cylinder, spark ignition engine although it did not permit firing. It was equipped with overhead valve gear and optical access was provided in the top and side walls of the cylinder. A principal objective was to study the influence of the inlet port design on the flow within the cylinder during the induction and compression strokes of the engine. Here, it can be noted that results obtained in an unfired engine are believed to be representative of the flow behaviour before combustion occurs in a fired engine (see P.O. Witze, Measurements of the spatial distribution and engine speed dependence of turbulent air motion in an i.c. engine, SAE Paper No. 770220, 1977; Witze, Sandia Laboratory Energy Report, SAND 79-8685, Sandia Laboratories, USA, 1979). Experimental data presented for an inclined inlet port configuration reveal the complex three-dimensional nature of the flow inside the model engine cylinder. Not surprisingly, the results also show that the inclined inlet port created flow conditions more favourable to mixing in the cylinder. Specifically, the inclined inlet flow was found to generate a region with a relatively high shear and strong recirculation zones in the cylinder. Inclining the inlet port also produced a more nearly homogeneous flow structure at top dead centre during the compression stroke. The paper identifies the special difficulties encountered in making the LDA measurements. The experimental findings are examined and the problems that arise in presenting time-varying three-dimensional data of this type are discussed. Finally, the future potential of this experimental approach is explored.

  7. Influence of Pore-Fluid Pressure on Elastic Wave Velocity and Electrical Conductivity in Water-Saturated Rocks

    NASA Astrophysics Data System (ADS)

    Higuchi, A.; Watanabe, T.

    2013-12-01

    Pore-fluid pressure in seismogenic zones can play a key role in the occurrence of earthquakes (e.g., Sibson, 2009). Its evaluation via geophysical observations can lead to a good understanding of seismic activities. The evaluation requires a thorough understanding of the influence of the pore-fluid pressure on geophysical observables like seismic velocity and electrical conductivity. We have studied the influence of pore-fluid pressure on elastic wave velocity and electrical conductivity in water-saturated rocks. Fine grained (100-500μm) biotite granite (Aji, Kagawa pref., Japan) was used as rock samples. The density is 2.658-2.668 g/cm3, and the porosity 0.68-0.87%. The sample is composed of 52.8% plagioclase, 36.0% Quartz, 3.0% K-feldspar, 8.2% biotite. SEM images show that a lot of grain boundaries are open. Few intracrystalline cracks were observed. Following the method proposed by David and Zimmerman (2012), the distribution function of crack aspect ratio was evaluated from the pressure dependence of compressional and shear wave velocities in a dry sample. Cylindrical sample has dimensions of 25 mm in diameter and 30 mm in length, and saturated with 0.01 mol/l KCl aqueous solution. Compressional and shear wave velocities were measured with the pulse transmission technique (PZT transducers, f=2 MHz), and electrical conductivity the two-electrode method (Ag-AgCl electrodes, f=1 Hz-100 kHz). Simultaneous measurements of velocities and conductivity were made using a 200 MPa hydrostatic pressure vessel, in which confining and pore-fluid pressures can be separately controlled. The pore-fluid is electrically insulated from the metal work of the pressure vessel by using a newly designed plastic device (Watanabe and Higuchi, 2013). The confining pressure was progressively increased up to 25 MPa, while the pore-fluid pressure was kept at 0.1 MPa. It took five days or longer for the electrical conductivity to become stationary after increasing the confining pressure

  8. 49 CFR 240.111 - Individual's duty to furnish data on prior safety conduct as motor vehicle operator.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Individual's duty to furnish data on prior safety conduct as motor vehicle operator. 240.111 Section 240.111 Transportation Other Regulations Relating to... CERTIFICATION OF LOCOMOTIVE ENGINEERS Component Elements of the Certification Process § 240.111...

  9. Central Motor Conduction Studies and Diagnostic Magnetic Resonance Imaging in Children with Severe Primary and Secondary Dystonia

    ERIC Educational Resources Information Center

    McClelland, Verity; Mills, Kerry; Siddiqui, Ata; Selway, Richard; Lin, Jean-Pierre

    2011-01-01

    Aim: Dystonia in childhood has many causes. Imaging may suggest corticospinal tract dysfunction with or without coexistent basal ganglia damage. There are very few published neurophysiological studies on children with dystonia; one previous study has focused on primary dystonia. We investigated central motor conduction in 62 children (34 males, 28…

  10. Magnetic motor evoked potentials in ponies.

    PubMed

    Mayhew, I G; Washbourne, J R

    1996-01-01

    Magnetic stimulation of motor pathways was used to effect motor unit action potential recordings from forelimb and hindlimb muscles in unanesthetized ponies. Motor pathway conduction velocities to the forelimb and hindlimb were determined to be 53.8 +/- 9.6 m/s-1 and 63.4 +/- 8.3 m/s-1, respectively. This noninvasive technique will enable more precise evaluation of motor deficits in clinical patients than is possible with the neurological examination. PMID:8884720

  11. Motor function and perception in children with neuropsychiatric and conduct problems: results from a population based twin study

    PubMed Central

    2014-01-01

    Background Children with early symptomatic psychiatric disorders such as Attention-Deficit/Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD) have been found to have high rates of motor and/or perception difficulties. However, there have been few large-scale studies reporting on the association between Conduct Disorder (CD) and motor/perception functions. The aim of the present study was to investigate how motor function and perception relate to measures of ADHD, ASD, and CD. Methods Parents of 16,994 Swedish twins (ages nine and twelve years) were interviewed using the Autism-Tics, ADHD and other Comorbidities inventory (A-TAC), which has been validated as a screening instrument for early onset child psychiatric disorders and symptoms. Associations between categorical variables of scoring above previously validated cut-off values for diagnosing ADHD, ASD, and CD on the one hand and motor and/or perception problems on the other hand were analysed using cross-tabulations, and the Fisher exact test. Associations between the continuous scores for ADHD, ASD, CD, and the subdomains Concentration/Attention, Impulsiveness/Activity, Flexibility, Social Interaction and Language, and the categorical factors age and gender, on the one hand, and the dependent dichotomic variables Motor control and Perception problems, on the other hand, were analysed using binary logistic regression in general estimated equation models. Results Male gender was associated with increased risk of Motor control and/or Perception problems. Children scoring above the cut-off for ADHD, ASD, and/or CD, but not those who were ‘CD positive’ but ‘ADHD/ASD negative’, had more Motor control and/or Perception problems, compared with children who were screen-negative for all three diagnoses. In the multivariable model, CD and Impulsiveness/Activity had no positive associations with Motor control and/or Perception problems. Conclusions CD symptoms or problems with Impulsiveness

  12. Receptive field size, chemical and thermal responses, and fiber conduction velocity of rat chorda tympani geniculate ganglion neurons.

    PubMed

    Yokota, Yusuke; Bradley, Robert M

    2016-06-01

    Afferent chorda tympani (CT) fibers innervating taste and somatosensory receptors in fungiform papillae have neuron cell bodies in the geniculate ganglion (GG). The GG/CT fibers branch in the tongue to innervate taste buds in several fungiform papillae. To investigate receptive field characteristics of GG/CT neurons, we recorded extracellular responses from GG cells to application of chemical and thermal stimuli. Receptive field size was mapped by electrical stimulation of individual fungiform papillae. Response latency to electrical stimulation was used to determine fiber conduction velocity. Responses of GG neurons to lingual application of stimuli representing four taste qualities, and water at 4°C, were used to classify neuron response properties. Neurons classified as SALT, responding only to NaCl and NH4Cl, had a mean receptive field size of six papillae. Neurons classified as OTHER responded to salts and other chemical stimuli and had smaller mean receptive fields of four papillae. Neurons that responded to salts and cold stimuli, classified as SALT/THERMAL, and neurons responding to salts, other chemical stimuli and cold, classified as OTHER/THERMAL, had mean receptive field sizes of six and five papillae, respectively. Neurons responding only to cold stimuli, categorized as THERMAL, had receptive fields of one to two papillae located at the tongue tip. Based on conduction velocity most of the neurons were classified as C fibers. Neurons with large receptive fields had higher conduction velocities than neurons with small receptive fields. These results demonstrate that GG neurons can be distinguished by receptive field size, response properties and afferent fiber conduction velocity derived from convergent input of multiple taste organs. PMID:27030734

  13. The Effect of the Silicone Ring Tourniquet and Standard Pneumatic Tourniquet on the Motor Nerve Conduction, Pain and Grip Strength in Healthy Volunteers

    PubMed Central

    Drosos, Georgios I.; Kiziridis, Georgios; Aggelopoulou, Cristina; Galiatsatos, Dimitrios; Anastassopoulos, George; Ververidis, Athanasios; Kazakos, Konstantinos

    2016-01-01

    Background: The pneumatic tourniquet (PT) is routinely used in upper and lower limb operations by most orthopaedic surgeons. The silicone ring tourniquet (SRT) was introduced in clinical practice over the last decade. Clinical as well as comparative studies have been published in volunteers concerning its safety and efficacy. The aim of this study was to investigate the postoperative effect of the silicone ring tourniquet (SRT), primarily on the motor nerve conduction, and secondarily on the pain and grip strength, in comparison to the effect of the pneumatic tourniquet (PT) in healthy volunteers. Methods: Both tourniquets were applied in the forearm of the dominant arm in 20 healthy volunteers and were kept on for 10 minutes. Pain was measured using the visual analogue scale and grip strength was measured with a hand dynamometer. We evaluated the following parameters of median nerve conduction: motor conduction velocity (MCV), latency (LAT) and amplitude (AMP). Results: Pain score at the time of tourniquet application was higher in SRT group but the alteration in pain scores in PT group was higher, with statistical significance (P<0.05). The grip strength was reduced by the application of both tourniquets; however there was a significantly higher reduction in the SRT group (P<0.05). The conduction impairment of the median nerve was worse in the PT group than in the SRT one, according to the changes in MCV (P<0.05). Conclusion: Median nerve conduction was affected more after PT application as compared to the SRT. Nevertheless, the reduction of grip strength was higher after the SRT application. PMID:26894213

  14. The physiological effect of anti-GM1 antibodies on saltatory conduction and transmembrane currents in single motor axons.

    PubMed

    Hirota, N; Kaji, R; Bostock, H; Shindo, K; Kawasaki, T; Mizutani, K; Oka, N; Kohara, N; Saida, T; Kimura, J

    1997-12-01

    Anti-ganglioside (anti-GM1) antibodies have been implicated in the pathogenesis of Guillain-Barré syndrome, multifocal motor neuropathy and motor neuron diseases. It has been held that they may interfere with saltatory conduction by blocking sodium channels. We tested this hypothesis by analysing action potentials from 140 single nerve fibres in 22 rat ventral roots using external longitudinal current measurement. High-titre anti-GM1 sera from Guillain-Barré syndrome or multifocal motor neuropathy patients, or anti-GM1 rabbit sera were applied to the rat ventral root, where saltatory conduction in single motor fibres was serially observed for 4-12 h (mean 8.2 h). For control experiments, we also tested anti-galactocerebroside (anti-GalC) sera, which causes acute demyelinative conduction block, and tetrodotoxin (TTX), a sodium channel blocker. Conduction block was found in 82% of the fibres treated with anti-GalC sera and 100% treated with TTX, but only in 2% (one out of 44) treated with the patients' sera and 5% (two out of 38) treated with rabbit anti-GM1 sera. All the nodes blocked by anti-GM1 sera revealed intense passive outward membrane current, in the internode just beyond the last active node. This pattern of current flow was similar to that in fibres blocked by demyelination with anti-GalC sera, and quite different from that seen in fibres blocked by reducing sodium currents with TTX. Our findings suggest that anti-GM1 sera neither mediate conduction block nor block sodium channels on their own. We conclude that physiological action of the antibody alone is insufficient to explain clinically observed conduction block in human diseases. PMID:9448571

  15. Motor nerve inexcitability in Guillain-Barré syndrome. The spectrum of distal conduction block and axonal degeneration.

    PubMed

    Triggs, W J; Cros, D; Gominak, S C; Zuniga, G; Beric, A; Shahani, B T; Ropper, A H; Roongta, S M

    1992-10-01

    We studied 34 patients with the Guillain-Barré syndrome (GBS) to clarify the clinical significance of inexcitable motor nerves and of low amplitude compound muscle action potentials (CMAPs). The patients were subdivided into two groups. Group 1 included eight patients who had electrically inexcitable motor nerves within 2 wks of the first symptom. (Two patients without extensive conduction studies had only one inexcitable motor nerve.) The outcome in this group at 1 yr varied from complete recovery (five patients) to severe motor sequelae (three patients). Group 2 included 26 patients who had two electrophysiological assessments, and in whom the serial changes in CMAP amplitudes were analysed and correlated to outcome. Fourteen of these 26 sets of serial studies were performed within 1 mth. Twelve of 26 patients in Group 2 showed decrease in the amplitude of CMAPs between serial studies; only six of these had a good outcome at 1 yr. Nine of 26 patients showed increase in CMAP amplitude between serial studies, of these eight had a good clinical outcome. Low-amplitude CMAPs or inexcitable motor nerves in the initial stages of GBS are due to distal pathology of the motor axons, either distal conduction block or axonal degeneration. The nature of these changes cannot be predicted by the results of the initial electrophysiological evaluation, including the presence or absence of active denervation. However, improvement of CMAP amplitude on sequential studies suggests a good outcome at 1 yr. We believe that, in the absence of a biological marker for GBS, individualization of an 'axonal variant' of the syndrome is not warranted at the present time. PMID:1422789

  16. Modeling and inversion of elastic wave velocities and electrical conductivity in clastic formations with structural and dispersed shales

    NASA Astrophysics Data System (ADS)

    Aquino-López, A.; Mousatov, A.; Markov, M.; Kazatchenko, E.

    2015-05-01

    This paper presents a new approach for simulating P- and S-wave velocities, and electrical conductivity in shaly-sand rocks and determining the shale spatial distribution (dispersed and/or structural shales). In this approach, we used the effective medium method and hierarchical model for clastic formations. We treat shaly-sand formations as porous natural-composite materials containing: solid grains (such as quartz, feldspars and structural shale) and pores completely filled with a mixture of hydrocarbon, water and dispersed shale. For calculating the effective elastic properties and electrical conductivity of this composite, we have applied the multi-component self-consistent effective media approximation (EMA) method. We simulate the elastic velocities and electrical conductivity for clastic formations in two steps. Firstly, we calculate the effective properties of mixture (combination of water, hydrocarbon and dispersed shale) filling the pores. Then we find the effective elastic and electrical conductivity properties of formation constituted of solid grains (quartz and structural shale) and pores with the effective properties determined in the previous step. We considered that all components are represented by ellipsoids. The aspect ratios (shapes) of grains and pores; are defined as a porosity function obtained for the model of clean sand formations. Modeling results have demonstrated that the shapes of both shale components (dispersed and structural) weakly affect the effective elastic velocities and electrical conductivity of shaly-sand formation and can be approximated by flatted ellipsoids. The model proposed has been used to determine the volumes of dispersed and structural shales for two sets of published experimental data obtained from the cores. For determining the shale distribution, we have performed the joint inversion of the following physical properties: P-, S-wave velocities, total porosity, and total shale volume. Additionally, we have

  17. Demographics, Velocity Distributions, and Impact Type as Predictors of AIS 4+ Head Injuries in Motor Vehicle Crashes

    PubMed Central

    Yoganandan, Narayan; Fitzharris, Michael; Pintar, Frank A.; Stemper, Brian D.; Rinaldi, James; Maiman, Dennis J.; Fildes, Brian N.

    2011-01-01

    The objective of the study was to determine differences between the United States-based NASS and CIREN and Australia-based ANCIS databases in occupant-, crash-, and vehicle-related parameters for AIS 4+ head injuries in motor vehicle crashes. Logistic regression analysis was performed to examine roles of the change in velocity (DV), crash type (frontal, far-side, nearside, rear impact), seatbelt use, and occupant position, gender, age, stature, and body mass in cranial traumas. Belted and unbelted non-ejected occupant (age >16 years) data from 1997–2006 were used for the NASS and CIREN datasets, and 2000–2010 for ANCIS. Vehicle model year, and occupant position and demographics including body mass index (BMI) data were obtained. Injuries were coded using AIS 1990–1998 update. Similarities were apparent across all databases: mean demographics were close to the mid-size anthropometry, mean BMI was in the normal to overweight range, and representations of extreme variations were uncommon. Side impacts contributed to over one-half of the ensemble, implying susceptibility to head trauma in this mode. Odds of sustaining head injury increased by 4% per unit increase in DV (OR: 1.04, 95% CI: 1.03–1.04, p<0.001; adjusted for other variables); one-half for belted compared to unbelted occupants (OR: 0.48, 95% CI: 0.37–0.61, p<0.001); nearside, then far-side had significantly higher odds than frontal, and no difference by gender or position (front-left, front-right). Similar crash- and occupant-related outcomes from the two continents indicate a worldwide need to revise the translation acceleration-based head injury criterion to include the angular component in an appropriate format for improved injury assessment and mitigation. PMID:22105402

  18. Demographics, Velocity Distributions, and Impact Type as Predictors of AIS 4+ Head Injuries in Motor Vehicle Crashes.

    PubMed

    Yoganandan, Narayan; Fitzharris, Michael; Pintar, Frank A; Stemper, Brian D; Rinaldi, James; Maiman, Dennis J; Fildes, Brian N

    2011-01-01

    The objective of the study was to determine differences between the United States-based NASS and CIREN and Australia-based ANCIS databases in occupant-, crash-, and vehicle-related parameters for AIS 4+ head injuries in motor vehicle crashes. Logistic regression analysis was performed to examine roles of the change in velocity (DV), crash type (frontal, far-side, nearside, rear impact), seatbelt use, and occupant position, gender, age, stature, and body mass in cranial traumas. Belted and unbelted non-ejected occupant (age >16 years) data from 1997-2006 were used for the NASS and CIREN datasets, and 2000-2010 for ANCIS. Vehicle model year, and occupant position and demographics including body mass index (BMI) data were obtained. Injuries were coded using AIS 1990-1998 update. Similarities were apparent across all databases: mean demographics were close to the mid-size anthropometry, mean BMI was in the normal to overweight range, and representations of extreme variations were uncommon. Side impacts contributed to over one-half of the ensemble, implying susceptibility to head trauma in this mode. Odds of sustaining head injury increased by 4% per unit increase in DV (OR: 1.04, 95% CI: 1.03-1.04, p<0.001; adjusted for other variables); one-half for belted compared to unbelted occupants (OR: 0.48, 95% CI: 0.37-0.61, p<0.001); nearside, then far-side had significantly higher odds than frontal, and no difference by gender or position (front-left, front-right). Similar crash- and occupant-related outcomes from the two continents indicate a worldwide need to revise the translation acceleration-based head injury criterion to include the angular component in an appropriate format for improved injury assessment and mitigation. PMID:22105402

  19. Focal axonal swellings and associated ultrastructural changes attenuate conduction velocity in central nervous system axons: a computer modeling study.

    PubMed

    Kolaric, Katarina V; Thomson, Gemma; Edgar, Julia M; Brown, Angus M

    2013-08-01

    The constancy of action potential conduction in the central nervous system (CNS) relies on uniform axon diameter coupled with fidelity of the overlying myelin providing high-resistance, low capacitance insulation. Whereas the effects of demyelination on conduction have been extensively studied/modeled, equivalent studies on the repercussions for conduction of axon swelling, a common early pathological feature of (potentially reversible) axonal injury, are lacking. The recent description of experimentally acquired morphological and electrical properties of small CNS axons and oligodendrocytes prompted us to incorporate these data into a computer model, with the aim of simulating the effects of focal axon swelling on action potential conduction. A single swelling on an otherwise intact axon, as occurs in optic nerve axons of Cnp1 null mice caused a small decrease in conduction velocity. The presence of single swellings on multiple contiguous internodal regions (INR), as likely occurs in advanced disease, caused qualitatively similar results, except the dimensions of the swellings required to produce equivalent attenuation of conduction were significantly decreased. Our simulations of the consequences of metabolic insult to axons, namely, the appearance of multiple swollen regions, accompanied by perturbation of overlying myelin and increased axolemmal permeability, contained within a single INR, revealed that conduction block occurred when the dimensions of the simulated swellings were within the limits of those measured experimentally, suggesting that multiple swellings on a single axon could contribute to axonal dysfunction, and that increased axolemmal permeability is the decisive factor that promotes conduction block. PMID:24303138

  20. Focal axonal swellings and associated ultrastructural changes attenuate conduction velocity in central nervous system axons: a computer modeling study

    PubMed Central

    Kolaric, Katarina V; Thomson, Gemma; Edgar, Julia M; Brown, Angus M

    2013-01-01

    The constancy of action potential conduction in the central nervous system (CNS) relies on uniform axon diameter coupled with fidelity of the overlying myelin providing high-resistance, low capacitance insulation. Whereas the effects of demyelination on conduction have been extensively studied/modeled, equivalent studies on the repercussions for conduction of axon swelling, a common early pathological feature of (potentially reversible) axonal injury, are lacking. The recent description of experimentally acquired morphological and electrical properties of small CNS axons and oligodendrocytes prompted us to incorporate these data into a computer model, with the aim of simulating the effects of focal axon swelling on action potential conduction. A single swelling on an otherwise intact axon, as occurs in optic nerve axons of Cnp1 null mice caused a small decrease in conduction velocity. The presence of single swellings on multiple contiguous internodal regions (INR), as likely occurs in advanced disease, caused qualitatively similar results, except the dimensions of the swellings required to produce equivalent attenuation of conduction were significantly decreased. Our simulations of the consequences of metabolic insult to axons, namely, the appearance of multiple swollen regions, accompanied by perturbation of overlying myelin and increased axolemmal permeability, contained within a single INR, revealed that conduction block occurred when the dimensions of the simulated swellings were within the limits of those measured experimentally, suggesting that multiple swellings on a single axon could contribute to axonal dysfunction, and that increased axolemmal permeability is the decisive factor that promotes conduction block. PMID:24303138

  1. Reduced endplate currents underlie motor unit dysfunction in canine motor neuron disease.

    PubMed

    Rich, Mark M; Waldeck, Robert F; Cork, Linda C; Balice-Gordon, Rita J; Fyffe, Robert E W; Wang, Xueyong; Cope, Timothy C; Pinter, Martin J

    2002-12-01

    Hereditary canine spinal muscular atrophy (HCSMA) is an autosomal dominant degenerative disorder of motor neurons. In homozygous animals, motor units produce decreased force output and fail during repetitive activity. Previous studies suggest that decreased efficacy of neuromuscular transmission underlies these abnormalities. To examine this, we recorded muscle fiber endplate currents (EPCs) and found reduced amplitudes and increased failures during nerve stimulation in homozygotes compared with wild-type controls. Comparison of EPC amplitudes with muscle fiber current thresholds indicate that many EPCs from homozygotes fall below threshold for activating muscle fibers but can be raised above threshold following potentiation. To determine whether axonal abnormalities might play a role in causing motor unit dysfunction, we examined the postnatal maturation of axonal conduction velocity in relation to the appearance of tetanic failure. We also examined intracellularly labeled motor neurons for evidence of axonal neurofilament accumulations, which are found in many instances of motor neuron disease including HCSMA. Despite the appearance of tetanic failure between 90 and 120 days, average motor axon conduction velocity increased with age in homozygotes and achieved adult levels. Normal correlations between motor neuron properties (including conduction velocity) and motor unit properties were also observed. Labeled proximal motor axons of several motor neurons that supplied failing motor units exhibited little or no evidence of axonal swellings. We conclude that decreased release of transmitter from motor terminals underlies motor unit dysfunction in HCSMA and that the mechanisms determining the maturation of axonal conduction velocity and the pattern of correlation between motor neuron and motor unit properties do not contribute to the appearance or evolution of motor unit dysfunction. PMID:12466447

  2. Bral1: its role in diffusion barrier formation and conduction velocity in the CNS.

    PubMed

    Bekku, Yoko; Vargová, Lýdia; Goto, Yoshinobu; Vorísek, Ivan; Dmytrenko, Lesia; Narasaki, Masahiro; Ohtsuka, Aiji; Fässler, Reinhard; Ninomiya, Yoshifumi; Syková, Eva; Oohashi, Toshitaka

    2010-02-24

    At the nodes of Ranvier, excitable axon membranes are exposed directly to the extracellular fluid. Cations are accumulated and depleted in the local extracellular nodal region during action potential propagation, but the impact of the extranodal micromilieu on signal propagation still remains unclear. Brain-specific hyaluronan-binding link protein, Bral1, colocalizes and forms complexes with negatively charged extracellular matrix (ECM) proteins, such as versican V2 and brevican, at the nodes of Ranvier in the myelinated white matter. The link protein family, including Bral1, appears to be the linchpin of these hyaluronan-bound ECM complexes. Here we report that the hyaluronan-associated ECM no longer shows a nodal pattern and that CNS nerve conduction is markedly decreased in Bral1-deficient mice even though there were no differences between wild-type and mutant mice in the clustering or transition of ion channels at the nodes or in the tissue morphology around the nodes of Ranvier. However, changes in the extracellular space diffusion parameters, measured by the real-time iontophoretic method and diffusion-weighted magnetic resonance imaging (MRI), suggest a reduction in the diffusion hindrances in the white matter of mutant mice. These findings provide a better understanding of the mechanisms underlying the accumulation of cations due to diffusion barriers around the nodes during saltatory conduction, which further implies the importance of the Bral1-based extramilieu for neuronal conductivity. PMID:20181608

  3. Acceleration of conduction velocity linked to clustering of nodal components precedes myelination

    PubMed Central

    Freeman, Sean A.; Desmazières, Anne; Simonnet, Jean; Gatta, Marie; Pfeiffer, Friederike; Aigrot, Marie Stéphane; Rappeneau, Quentin; Guerreiro, Serge; Michel, Patrick Pierre; Yanagawa, Yuchio; Barbin, Gilles; Brophy, Peter J.; Fricker, Desdemona; Lubetzki, Catherine; Sol-Foulon, Nathalie

    2015-01-01

    High-density accumulation of voltage-gated sodium (Nav) channels at nodes of Ranvier ensures rapid saltatory conduction along myelinated axons. To gain insight into mechanisms of node assembly in the CNS, we focused on early steps of nodal protein clustering. We show in hippocampal cultures that prenodes (i.e., clusters of Nav channels colocalizing with the scaffold protein ankyrinG and nodal cell adhesion molecules) are detected before myelin deposition along axons. These clusters can be induced on purified neurons by addition of oligodendroglial-secreted factor(s), whereas ankyrinG silencing prevents their formation. The Nav isoforms Nav1.1, Nav1.2, and Nav1.6 are detected at prenodes, with Nav1.6 progressively replacing Nav1.2 over time in hippocampal neurons cultured with oligodendrocytes and astrocytes. However, the oligodendrocyte-secreted factor(s) can induce the clustering of Nav1.1 and Nav1.2 but not of Nav1.6 on purified neurons. We observed that prenodes are restricted to GABAergic neurons, whereas clustering of nodal proteins only occurs concomitantly with myelin ensheathment on pyramidal neurons, implying separate mechanisms of assembly among different neuronal subpopulations. To address the functional significance of these early clusters, we used single-axon electrophysiological recordings in vitro and showed that prenode formation is sufficient to accelerate the speed of axonal conduction before myelination. Finally, we provide evidence that prenodal clusters are also detected in vivo before myelination, further strengthening their physiological relevance. PMID:25561543

  4. Acceleration of conduction velocity linked to clustering of nodal components precedes myelination.

    PubMed

    Freeman, Sean A; Desmazières, Anne; Simonnet, Jean; Gatta, Marie; Pfeiffer, Friederike; Aigrot, Marie Stéphane; Rappeneau, Quentin; Guerreiro, Serge; Michel, Patrick Pierre; Yanagawa, Yuchio; Barbin, Gilles; Brophy, Peter J; Fricker, Desdemona; Lubetzki, Catherine; Sol-Foulon, Nathalie

    2015-01-20

    High-density accumulation of voltage-gated sodium (Nav) channels at nodes of Ranvier ensures rapid saltatory conduction along myelinated axons. To gain insight into mechanisms of node assembly in the CNS, we focused on early steps of nodal protein clustering. We show in hippocampal cultures that prenodes (i.e., clusters of Nav channels colocalizing with the scaffold protein ankyrinG and nodal cell adhesion molecules) are detected before myelin deposition along axons. These clusters can be induced on purified neurons by addition of oligodendroglial-secreted factor(s), whereas ankyrinG silencing prevents their formation. The Nav isoforms Nav1.1, Nav1.2, and Nav1.6 are detected at prenodes, with Nav1.6 progressively replacing Nav1.2 over time in hippocampal neurons cultured with oligodendrocytes and astrocytes. However, the oligodendrocyte-secreted factor(s) can induce the clustering of Nav1.1 and Nav1.2 but not of Nav1.6 on purified neurons. We observed that prenodes are restricted to GABAergic neurons, whereas clustering of nodal proteins only occurs concomitantly with myelin ensheathment on pyramidal neurons, implying separate mechanisms of assembly among different neuronal subpopulations. To address the functional significance of these early clusters, we used single-axon electrophysiological recordings in vitro and showed that prenode formation is sufficient to accelerate the speed of axonal conduction before myelination. Finally, we provide evidence that prenodal clusters are also detected in vivo before myelination, further strengthening their physiological relevance. PMID:25561543

  5. Factors controlling the variances of seismic velocity, density, thermal conductivity and heat production of cores from the KTB Pilot Hole

    NASA Astrophysics Data System (ADS)

    Huenges, Ernst

    This paper presents a statistical analysis of about 50000 petrophysical data measured on core samples from the Continental Deep Drilling Project (KTB) of the Federal Republic of Germany. The scattering of the data must be taken into consideration using empirical relationships between pairs of parameters, e.g., sound velocity, density, heat production and thermal conductivity. Such covariances of parameters were calculated and used to find the principle components by applying factor analysis. The reduction of parameters by factor analysis may help other scientists to concentrate on the essential parameters to be measured. About 50% of the variance of all data can be explained by one background variable, the so-called “lithology factor”. The variables that load a factor are either highly correlated or anticorrelated. The lithology factor combines gamma spectroscopy data, density and the mineral contents of quartz, amphibole, garnet and white mica. Seismic velocities and porosity data, however, were less well related to the lithology factor. Therefore, the KTB data indicate that correlation between seismic velocity and one of the lithology factor loading variables is unlikely. The lithology factor distinguishes 3 major “rock types”: metabasites, gneisses and an intermediate type. The variance of the petrophysical parameters within the rock types, plotted in crossplots, show the level of validity of commonly used relationships among these parameters. Measurements under ambient and simulated in-situ conditions are included to enable discussion of chemical, mineralogical and microstructural characteristics of the rocks.

  6. Dynamic weakening of fault gouge affected by thermal conductivity of host specimen: implications for the high-velocity weakening mechanisms

    NASA Astrophysics Data System (ADS)

    Yao, Lu; Ma, Shengli; Shimamoto, Toshihiko; Niemeijer, André

    2015-04-01

    Since many high-velocity weakening mechanisms are thermal in origin, we study the effects of thermal conductivity of host specimen on fault gouge friction behavior at seismic slip rates. By using host specimens made of brass, stainless steel, Ti-Al-V alloy and gabbro with thermal conductivities of 123, 15, 5.8 and 3.25 W/m/K, respectively, the experiments in this study produce completely different temperature conditions within the same gouge under the same slip rates and normal stresses. Fault gouges used in the experiments are a natural illite- and quartz-rich gouge from Longmenshan fault zone and pure periclase (MgO) nanopowder. High-velocity weakening of gouges were more pronounced with decreasing thermal conductivity of the specimens. Particularly, almost no dynamic weakening was observed in the tests performed with brass host specimens, while tests with specimens of gabbro and Ti-Al-V alloy exhibits quite similar dramatic weakening behaviors. Such differences in gouge frictional behavior cannot be explained by original flash heating model, since asperity contacts within the slip zone and experimental conditions are still same, even though host specimens are different. Microstructure observations under scanning and transmission electron microscopes reveal that slip zone materials tend to change from individual ultrafine nanograins to larger sintered grains or aggregates, with decreasing thermal conductivities of host specimens. Calculated temperature together with observed microstructure indicate that bulk temperature rise may be also play an important role in fault weakening, as predicted by a recent theoretical analysis of the role of flash heating within the gouge zone [Proctor et al., 2014]. Current results demonstrate the importance of frictional heating in causing the dynamic weakening of gouge, and the powder lubrication hypothesis is not consistent with our experimental data.

  7. Performance of a combined three-hole conductivity probe for void fraction and velocity measurement in air-water flows

    NASA Astrophysics Data System (ADS)

    Borges, João Eduardo; Pereira, Nuno H. C.; Matos, Jorge; Frizell, Kathleen H.

    2010-01-01

    The development of a three-hole pressure probe with back-flushing combined with a conductivity probe, used for measuring simultaneously the magnitude and direction of the velocity vector in complex air-water flows, is described in this paper. The air-water flows envisaged in the current work are typically those occurring around the rotors of impulse hydraulic turbines (like the Pelton and Cross-Flow turbines), where the flow direction is not known prior to the data acquisition. The calibration of both the conductivity and three-hole pressure components of the combined probe in a rig built for the purpose, where the probe was placed in a position similar to that adopted for the flow measurements, will be reported. After concluding the calibration procedure, the probe was utilized in the outside region of a Cross-Flow turbine rotor. The experimental results obtained in the present study illustrate the satisfactory performance of the combined probe, and are encouraging toward its use for characterizing the velocity field of other complex air-water flows.

  8. Responses in muscle afferent fibres of slow conduction velocity to contractions and ischaemia in the cat.

    PubMed Central

    Mense, S; Stahnke, M

    1983-01-01

    The aim of the study was to find out to what extent muscle receptors with slowly conducting afferent fibres (group III and IV) are activated by muscular contractions of moderate force, and what kind of muscle afferents could mediate the pain of ischaemic exercise. In chloralose-anaesthetized cats, the impulse activity of single afferent units from the triceps surae muscle was recorded from dorsal root filaments during muscular contractions with intact blood supply and after occlusion of the muscle artery. Two types of responses were observed to contractions without muscular ischaemia. One was characterized by sudden onset and a graded response amplitude to contractions of increasing force. In most cases stretching the muscle was also an effective stimulus. Units showing this response behaviour were labelled c.s.m (contraction-sensitive with mechanical mechanism of activation). The other response type had a more delayed onset and often outlasted the exercise period; because of the unknown mechanism of activation, units of this kind were labelled c.s.x. The proportion of c.s.m receptors was significantly higher amongst group III than amongst group IV units. During ischaemic contractions of comparable force the c.s.m and c.s.x receptors exhibited an unchanged or a decreased response amplitude. Under these conditions another receptor type (N, for nociceptive) was activated which did not respond to contractions with intact blood supply. Vigorous activations during ischaemic work were only observed in group IV receptors. The majority of the 131 group III and IV units tested did not respond to contractions at all. These contraction-insensitive (c.i.) endings probably comprised different receptor populations (nociceptors, thermoreceptors, low-threshold mechanoreceptors). It is concluded that the various central nervous effects of muscular exercise without ischaemia which are known to be due to raised activity in thin muscle afferents (e.g. cardiopulmonary adjustments

  9. Discovery of gradient pattern in dominant frequency maps during fibrillation: implication of rotor drift and epicardial conduction velocity changes.

    PubMed

    Joel, Suresh E; Hsia, Peng-Wie

    2005-10-01

    Dominant frequency (DF) maps for mapping epicardial activations of ventricular fibrillation (VF) have been studied mainly using fast Fourier transform (FFT). Small and discrete DF domains exhibited in these DF maps have undermined the hypothesis of mother rotor for VF maintenance. We applied continuous Fourier transform (CFT) to generate high-precision DF maps and studied characteristics of these high-precision DF maps. Optical epicardial activations were recorded in isolated rabbit hearts (n=10). Continuous Fourier transform of 1-second segments was performed in VF (n=188) and ventricular tachycardia (n=189) at 0.1 Hz precisions. Banded gradient patterns of gradual change in DF values were observed in 136 of 188 VF segments, but not in ventricular tachycardia. These gradients were not observed when FFT was used. Gradients were observed along the conduction path of reentrant-like waves with decreasing DF values along the path. Spectra in the gradients did not exhibit bimodal spectra as is usually observed in traditional DF domain boundaries. Time-space plots revealed clear association between gradient pattern and epicardial conduction velocity changes. Prior simulation studies predicted a gradient in activation rate during rotor drift. This gradient pattern has been observed for the first time experimentally by only using CFT, but not FFT. High-precision DF videos indicated the existence of gradient movement from one spatial location to another, smoothly instead of randomly disappearing from one location and appearing in another. The discovery of associated pseudoconduction velocity changes, and gradient patterns might suggest that dominant rotor (mother rotor) drifting plays a maintenance role only detectable by CFT and not FFT. PMID:16226093

  10. A Position- and Velocity-Sensorless Control for Synchronous Reluctance Motor with Disturbance Observer Using High Frequency Voltages and Currents

    NASA Astrophysics Data System (ADS)

    Tamaoki, Masakazu; Tomita, Mutuwo; Chen, Zhiqian; Doki, Shinji; Okuma, Shigeru

    Synchronous reluctance motors (SynRMs) are characterized by their sturdiness, and several sensorless control methods of SynRMs have been proposed. In their methods, flux is estimated and the rotor position is estimated from the flux. The induced voltages for flux estimation are small at low speed. In this paper, new position estimation method is proposed using the disturbance observer based on high frequency currents. Simulation results show that the proposed system is very useful.

  11. [Electrophysiologic analysis of the lumbosacral radiculopathy using nerve root conduction velocity (NRCV) and cauda equina action potentials (CEAP)].

    PubMed

    Kamitani, K; Baba, H; Shimada, T; Chiba, H

    1993-07-01

    Nerve root conduction velocity (NRCV) and cauda equina action potential (CEAP) have been measured to assess the severity of lumbosacral radiculopathy, the level-specific diagnosis of the symptomatic roots, and to predict the outcome. This study included 71 patients (40 males, 31 females, average age of 54 years at the time of surgery) who underwent decompressive surgery for lumbar radiculopathy. The NRCV and CEAP were directly measured during the operation. The NRCV decreased significantly with progression of radicular symptoms. The NRCV showed a marked reduction in the nerve roots of the patients with a two years or longer history of radicular symptoms; or those with compression of the nerve roots on the imaging examinations; or nerve roots that were considered to have been subjected to persistent compression over a prolonged period with severe inflammation and adhesions. Multivariative analyses suggested that the NRCV correlated closely to the postoperative neurologic recovery, and the outcome of the lumbosacral radiculopathy could be predicted to some extent by measurements of NRCV. The level-specific diagnosis of the radiculopathy could be determined when the CEAP showed a more than 30% left-right potentials difference. PMID:8409633

  12. Coupled Brownian motors: Anomalous hysteresis and zero-bias negative conductance

    NASA Astrophysics Data System (ADS)

    Reimann, P.; Kawai, R.; Van den Broeck, C.; Hänggi, P.

    1999-03-01

    We introduce a model of interacting Brownian particles in a symmetric, periodic potential that undergoes a noise-induced non-equilibrium phase transition. The associated spontaneous symmetry breaking entails a ratchet-like transport mechanism. In response to an external force we identify several novel features; among the most prominent being a zero-bias negative conductance and a prima facie counterintuitive, anomalous hysteresis.

  13. 49 CFR 240.115 - Criteria for consideration of prior safety conduct as a motor vehicle operator.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... conviction for, or completed state action to cancel, revoke, suspend, or deny a motor vehicle drivers license... substance; (2) A conviction for, or completed state action to cancel, revoke, suspend, or deny a motor... as a motor vehicle operator. 240.115 Section 240.115 Transportation Other Regulations Relating...

  14. 49 CFR 240.115 - Criteria for consideration of prior safety conduct as a motor vehicle operator.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... conviction for, or completed state action to cancel, revoke, suspend, or deny a motor vehicle drivers license... substance; (2) A conviction for, or completed state action to cancel, revoke, suspend, or deny a motor... as a motor vehicle operator. 240.115 Section 240.115 Transportation Other Regulations Relating...

  15. Relationship between the velocity of illusory hand movement and strength of MEG signals in human primary motor cortex and left angular gyrus.

    PubMed

    Casini, Laurence; Roll, Jean-Pierre; Romaiguère, Patricia

    2008-03-01

    We studied the relationship between the velocity of movement illusion and the activity level of primary motor area (M1) and of the left angular gyrus (AG) in humans. To induce illusory movement perception, we applied co-vibration at different frequencies on tendons of antagonistic muscle groups. Since it is well established that the velocity of illusory movement is related to the difference in vibration frequency applied to two antagonistic muscles, we compared magnetoencephalography (MEG) signals recorded in two conditions of co-vibration: in the "fast illusion" condition a frequency difference of 80 Hz was applied on the tendons of the right wrist extensor and flexor muscle groups, whereas in the "slow illusion" condition a frequency difference of 40 Hz was applied on the same muscle groups. The dipole strength, reflecting the activity level of structures, was measured over M1 and the left AG in two different time-periods: 0-400 and 400-800 ms in each condition. Our results showed that the activity level of the AG was similar in both conditions whatever the time-period, whereas the activity level of M1 was higher in the "fast illusion" condition compared to the "slow illusion" condition from 400 ms after the vibration onset only. The data suggest that the two structures differently contributed to the perception of illusory movements. Our hypothesis is that M1 would be involved in the coding of cinematic parameters of the illusory movement but not the AG. PMID:18317743

  16. Glycemic control and nerve conduction abnormalities in non-insulin-dependent diabetic subjects.

    PubMed

    Graf, R J; Halter, J B; Pfeifer, M A; Halar, E; Brozovich, F; Porte, D

    1981-03-01

    The influence of therapy of hyperglycemia on the progression of diabetic neuropathy is unclear. We studied variables of glycemia and motor and sensory nerve conduction velocity in a group of 18 non-insulin-dependent diabetic subjects before and after institution of diabetes therapy. Diabetes therapy significantly reduced variables of glycemia after 1, 3, 6, and 12 months. Conduction velocity of the median motor nerve was improved from baseline at each time tested during treatment. In addition, peroneal and tibial motor nerve conduction velocities improved in patients whose levels of hyperglycemia were lowered. Moreover, extent of improvement of conduction velocity of some motor nerves was related to the degree of reduction of hyperglycemia. Sensory nerve conduction velocity was not altered by diabetes therapy. These findings support the hypothesis of a metabolic component to diabetic neuropathy and suggest that optimal glycemic control may be beneficial to patients with this disorder. PMID:7013592

  17. The relation between gas density and velocity power spectra in galaxy clusters: High-resolution hydrodynamic simulations and the role of conduction

    NASA Astrophysics Data System (ADS)

    Gaspari, M.; Churazov, E.; Nagai, D.; Lau, E. T.; Zhuravleva, I.

    2014-09-01

    Exploring the power spectrum of fluctuations and velocities in the intracluster medium (ICM) can help us to probe the gas physics of galaxy clusters. Using high-resolution 3D plasma simulations, we study the statistics of the velocity field and its intimate relation with the ICM thermodynamic perturbations. The normalization of the ICM spectrum (related to density, entropy, or pressure fluctuations) is linearly tied to the level of large-scale motions, which excite both gravity and sound waves due to stratification. For a low 3D Mach number M ~ 0.25, gravity waves mainly drive entropy perturbations, which are traced by preferentially tangential turbulence. For M> 0.5, sound waves start to significantly contribute and pass the leading role to compressive pressure fluctuations, which are associated with isotropic (or slightly radial) turbulence. Density and temperature fluctuations are then characterized by the dominant process: isobaric (low M), adiabatic (high M), or isothermal (strong conduction). Most clusters reside in the intermediate regime, showing a mixture of gravity and sound waves, hence drifting toward isotropic velocities. Remarkably, regardless of the regime, the variance of density perturbations is comparable to the 1D Mach number, M1D ~ δρ/ρ. This linear relation allows us to easily convert between gas motions and ICM perturbations (δρ/ρ< 1), which can be exploited by the available Chandra, XMM data and by the forthcoming Astro-H mission. At intermediate and small scales (10-100 kpc), the turbulent velocities develop a tight Kolmogorov cascade. The thermodynamic perturbations (which can be generally described by log-normal distributions) act as effective tracers of the velocity field, in broad agreement with the Kolmogorov-Obukhov-Corrsin advection theory. The cluster radial gradients and compressive features induce a flattening in the cascade of the perturbations. Thermal conduction, on the other hand, acts to damp the thermodynamic

  18. Neuro-fuzzy estimation of passive robotic joint safe velocity with embedded sensors of conductive silicone rubber

    NASA Astrophysics Data System (ADS)

    Al-Shammari, Eiman Tamah; Petković, Dalibor; Danesh, Amir Seyed; Shamshirband, Shahaboddin; Issa, Mirna; Zentner, Lena

    2016-05-01

    Robotic operations need to be safe for unpredictable contacts. Joints with passive compliance with springs can be used for soft robotic contacts. However the joints cannot measure external collision forces. In this investigation was developed one passive compliant joint which have soft contacts with external objects and measurement capabilities. To ensure it, conductive silicone rubber was used as material for modeling of the compliant segments of the robotic joint. These compliant segments represent embedded sensors. The conductive silicone rubber is electrically conductive by deformations. The main task was to obtain elastic absorbers for the external collision forces. These absorbers can be used for measurement in the same time. In other words, the joint has an internal measurement system. Adaptive neuro fuzzy inference system (ANFIS) was used to estimate the safety level of the robotic joint by head injury criteria (HIC).

  19. The Connexin40A96S mutation from a patient with atrial fibrillation causes decreased atrial conduction velocities and sustained episodes of induced atrial fibrillation in mice.

    PubMed

    Lübkemeier, Indra; Andrié, René; Lickfett, Lars; Bosen, Felicitas; Stöckigt, Florian; Dobrowolski, Radoslaw; Draffehn, Astrid M; Fregeac, Julien; Schultze, Joachim L; Bukauskas, Feliksas F; Schrickel, Jan Wilko; Willecke, Klaus

    2013-12-01

    Atrial fibrillation (AF) is the most common type of cardiac arrhythmia and a major cause of stroke. In the mammalian heart the gap junction proteins connexin40 (Cx40) and connexin43 (Cx43) are strongly expressed in the atrial myocardium mediating effective propagation of electrical impulses. Different heterozygous mutations in the coding region for Cx40 were identified in patients with AF. We have generated transgenic Cx40A96S mice harboring one of these mutations, the loss-of-function Cx40A96S mutation, as a model for atrial fibrillation. Cx40A96S mice were characterized by immunochemical and electrophysiological analyses. Significantly reduced atrial conduction velocities and strongly prolonged episodes of atrial fibrillation were found after induction in Cx40A96S mice. Analyses of the gating properties of Cx40A96S channels in cultured HeLa cells also revealed significantly lower junctional conductance and enhanced sensitivity voltage gating of Cx40A96S in comparison to Cx40 wild-type gap junctions. This is caused by reduced open probabilities of Cx40A96S gap junction channels, while single channel conductance remained the same. Similar to the corresponding patient, heterozygous Cx40A96S mice revealed normal expression levels and localization of the Cx40 protein. We conclude that heterozygous Cx40A96S mice exhibit prolonged episodes of induced atrial fibrillation and severely reduced atrial conduction velocities similar to the corresponding human patient. PMID:24060583

  20. TMEM43 Mutation p.S358L Alters Intercalated Disc Protein Expression and Reduces Conduction Velocity in Arrhythmogenic Right Ventricular Cardiomyopathy

    PubMed Central

    Siragam, Vinayakumar; Cui, Xuezhi; Masse, Stephane; Ackerley, Cameron; Aafaqi, Shabana; Strandberg, Linn; Tropak, Michael; Fridman, Michael D.; Nanthakumar, Kumaraswamy; Liu, Jun; Sun, Yu; Su, Bin; Wang, Caroline; Liu, Xiaoru; Yan, Yuqing; Mendlowitz, Ariel; Hamilton, Robert M.

    2014-01-01

    Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a myocardial disease characterized by fibro-fatty replacement of myocardium in the right ventricular free wall and frequently results in life-threatening ventricular arrhythmias and sudden cardiac death. A heterozygous missense mutation in the transmembrane protein 43 (TMEM43) gene, p.S358L, has been genetically identified to cause autosomal dominant ARVC type 5 in a founder population from the island of Newfoundland, Canada. Little is known about the function of the TMEM43 protein or how it leads to the pathogenesis of ARVC. We sought to determine the distribution of TMEM43 and the effect of the p.S358L mutation on the expression and distribution of various intercalated (IC) disc proteins as well as functional effects on IC disc gap junction dye transfer and conduction velocity in cell culture. Through Western blot analysis, transmission electron microscopy (TEM), immunofluorescence (IF), and electrophysiological analysis, our results showed that the stable expression of p.S358L mutation in the HL-1 cardiac cell line resulted in decreased Zonula Occludens (ZO-1) expression and the loss of ZO-1 localization to cell-cell junctions. Junctional Plakoglobin (JUP) and α-catenin proteins were redistributed to the cytoplasm with decreased localization to cell-cell junctions. Connexin-43 (Cx43) phosphorylation was altered, and there was reduced gap junction dye transfer and conduction velocity in mutant TMEM43-transfected cells. These observations suggest that expression of the p.S358L mutant of TMEM43 found in ARVC type 5 may affect localization of proteins involved in conduction, alter gap junction function and reduce conduction velocity in cardiac tissue. PMID:25343256

  1. Effect of injection velocity and particle concentration on transport of nanoscale zero-valent iron and hydraulic conductivity in saturated porous media.

    PubMed

    Strutz, Tessa J; Hornbruch, Götz; Dahmke, Andreas; Köber, Ralf

    2016-08-01

    Successful groundwater remediation by injecting nanoscale zero-valent iron (NZVI) particles requires efficient particle transportation and distribution in the subsurface. This study focused on the influence of injection velocity and particle concentration on the spatial NZVI particle distribution, the deposition processes and on quantifying the induced decrease in hydraulic conductivity (K) as a result of particle retention by lab tests and numerical simulations. Horizontal column tests of 2m length were performed with initial Darcy injection velocities (q0) of 0.5, 1.5, and 4.1m/h and elemental iron input concentrations (Fe(0)in) of 0.6, 10, and 17g/L. Concentrations of Fe(0) in the sand were determined by magnetic susceptibility scans, which provide detailed Fe(0) distribution profiles along the column. NZVI particles were transported farther at higher injection velocity and higher input concentrations. K decreased by one order of magnitude during injection in all experiments, with a stronger decrease after reaching Fe(0) concentrations of about 14-18g/kg(sand). To simulate the observed nanoparticle transport behavior the existing finite-element code OGS has been successfully extended and parameterized for the investigated experiments using blocking, ripening, and straining as governing deposition processes. Considering parameter relationships deduced from single simulations for each experiment (e.g. deposition rate constants as a function of flow velocity) one mean parameter set has been generated reproducing the observations in an adequate way for most cases of the investigated realistic injection conditions. An assessment of the deposition processes related to clogging effects showed that the percentage of retention due to straining and ripening increased during experimental run time resulting in an ongoing reduction of K. Clogging is mainly evoked by straining which dominates particle deposition at higher flow velocities, while blocking and ripening play a

  2. Effect of injection velocity and particle concentration on transport of nanoscale zero-valent iron and hydraulic conductivity in saturated porous media

    NASA Astrophysics Data System (ADS)

    Strutz, Tessa J.; Hornbruch, Götz; Dahmke, Andreas; Köber, Ralf

    2016-08-01

    Successful groundwater remediation by injecting nanoscale zero-valent iron (NZVI) particles requires efficient particle transportation and distribution in the subsurface. This study focused on the influence of injection velocity and particle concentration on the spatial NZVI particle distribution, the deposition processes and on quantifying the induced decrease in hydraulic conductivity (K) as a result of particle retention by lab tests and numerical simulations. Horizontal column tests of 2 m length were performed with initial Darcy injection velocities (q0) of 0.5, 1.5, and 4.1 m/h and elemental iron input concentrations (Fe0in) of 0.6, 10, and 17 g/L. Concentrations of Fe0 in the sand were determined by magnetic susceptibility scans, which provide detailed Fe0 distribution profiles along the column. NZVI particles were transported farther at higher injection velocity and higher input concentrations. K decreased by one order of magnitude during injection in all experiments, with a stronger decrease after reaching Fe0 concentrations of about 14-18 g/kg(sand). To simulate the observed nanoparticle transport behavior the existing finite-element code OGS has been successfully extended and parameterized for the investigated experiments using blocking, ripening, and straining as governing deposition processes. Considering parameter relationships deduced from single simulations for each experiment (e.g. deposition rate constants as a function of flow velocity) one mean parameter set has been generated reproducing the observations in an adequate way for most cases of the investigated realistic injection conditions. An assessment of the deposition processes related to clogging effects showed that the percentage of retention due to straining and ripening increased during experimental run time resulting in an ongoing reduction of K. Clogging is mainly evoked by straining which dominates particle deposition at higher flow velocities, while blocking and ripening play a

  3. Nerve conduction abnormalities in untreated maturity-onset diabetes: relation to levels of fasting plasma glucose and glycosylated hemoglobin.

    PubMed

    Graf, R J; Halter, J B; Halar, E; Porte, D

    1979-03-01

    The role of metabolic abnormalities in the development of diabetic neuropathy is controversial. To investigate the influence of hyperglycemia on nerve conduction, we studied 20 untreated maturity-onset diabetic patients and 23 normal control subjects of similar age. Nerve conduction velocity of motor (median, peroneal, and tibial) and sensory (median and sural) nerves in diabetic patients was significantly slowed and H-reflex latency time prolonged. Levels of fasting plasma glucose in diabetic subjects were correlated with slowed motor conduction velocity of the median, peroneal, and tibial nerves but not with sensory nerve conduction velocities. Levels of glycosylated hemoglobin, an index of long-term glycemia, were correlated with slowing of peroneal motor conduction velocity in diabetic patients. These associations could not be explained by patient age or duration of diabetes. These findings suggest that the degree of hyperglycemia of untreated maturity-onset diabetes contributes to the motor nerve conduction abnormalities in this disease. PMID:426398

  4. Conduct overall test operations and evaluate two Doppler systems to detect, track and measure velocities in aircraft wake vortices

    NASA Technical Reports Server (NTRS)

    Wilson, D. J.; Krause, M. C.; Craven, C. E.; Edwards, B. B.; Coffey, E. W.; Huang, C. C.; Jetton, J. L.; Morrison, L. K.

    1974-01-01

    A program plan for system evaluation of the two-dimensional Scanning Laser Doppler System (SLDS) is presented. In order to meet system evaluation and optimization objectives the following tests were conducted: (1) noise tests; (2) wind tests; (3) blower flowfield tests; (4) single unit (1-D) flyby tests; and (5) dual unit (2-D) flyby tests. Test results are reported. The final phase of the program included logistics preparation, equipment interface checkouts, and data processing. It is concluded that the SLDS is capable of accurately tracking aircraft wake vortices from small or large aircraft, and in any type of weather.

  5. A Study of Cortical Excitability, Central Motor Conduction, and Cortical Inhibition Using Single Pulse Transcranial Magnetic Stimulation in Patients with Early Frontotemporal and Alzheimer's Dementia

    PubMed Central

    Chandra, Sadanandavalli Retnaswami; Issac, Thomas Gregor; Nagaraju, B. C.; Philip, Mariamma

    2016-01-01

    Introduction: Degenerative cortical dementias affect several million people worldwide. Early diagnosis and categorization are essential for initiating appropriate pharmacological and nonpharmacological treatment so that deterioration can be postponed, and disability adjusted life years can be saved both for the patient and for the caregiver. Therefore, an early, simple, noninvasive biomarker will serve as a boon. Patients and Methods: Patients who satisfied probable Alzheimer's disease (AD) or frontotemporal dementia (FTD) using international consensus criteria for FTD and National Institute of Neurological Disorders and Stroke-AD and Related Disorders Association criteria for AD were evaluated using single pulse transcranial magnetic stimulation with figure of eight coil and motor evoked potential from right first dorsal interossei. Resting threshold (MT), central motor conduction time (CMCT), and silent period (SP) were evaluated. Results: Resting MT and SP are reduced in patients with Alzheimer's disease whereas CMCT is prolonged in patients with FTD and SP is in the lower limit of normal in both conditions. Conclusion: The patterns of central motor conduction and MT are distinctly different in patients with early Alzheimer's disease (AD) and FTD. PMID:27011398

  6. The Expanded Bead Size of Corneal C-Nerve Fibers Visualized by Corneal Confocal Microscopy Is Associated with Slow Conduction Velocity of the Peripheral Nerves in Patients with Type 2 Diabetes Mellitus.

    PubMed

    Ishibashi, Fukashi; Kojima, Rie; Taniguchi, Miki; Kosaka, Aiko; Uetake, Harumi; Tavakoli, Mitra

    2016-01-01

    This study aims to establish the corneal nerve fiber (CNF) morphological alterations in a large cohort of type 2 diabetic patients and to investigate the association between the bead size, a novel parameter representing composite of accumulated mitochondria, glycogen particles, and vesicles in CNF, and the neurophysiological dysfunctions of the peripheral nerves. 162 type 2 diabetic patients and 45 healthy control subjects were studied in detail with a battery of clinical and neurological examinations and corneal confocal microscopy. Compared with controls, patients had abnormal CNF parameters. In particular the patients had reduced density and length of CNF and beading frequency and increased bead size. Alterations in CNF parameters were significant even in patients without neuropathy. The HbA1c levels were tightly associated with the bead size, which was inversely related to the motor and sensory nerve conduction velocity (NCV) and to the distal latency period of the median nerve positively. The CNF density and length positively correlated with the NCV and amplitude. The hyperglycemia-induced expansion of beads in CNF might be a predictor of slow NCV in peripheral nerves in type 2 diabetic patients. PMID:27563679

  7. The Expanded Bead Size of Corneal C-Nerve Fibers Visualized by Corneal Confocal Microscopy Is Associated with Slow Conduction Velocity of the Peripheral Nerves in Patients with Type 2 Diabetes Mellitus

    PubMed Central

    2016-01-01

    This study aims to establish the corneal nerve fiber (CNF) morphological alterations in a large cohort of type 2 diabetic patients and to investigate the association between the bead size, a novel parameter representing composite of accumulated mitochondria, glycogen particles, and vesicles in CNF, and the neurophysiological dysfunctions of the peripheral nerves. 162 type 2 diabetic patients and 45 healthy control subjects were studied in detail with a battery of clinical and neurological examinations and corneal confocal microscopy. Compared with controls, patients had abnormal CNF parameters. In particular the patients had reduced density and length of CNF and beading frequency and increased bead size. Alterations in CNF parameters were significant even in patients without neuropathy. The HbA1c levels were tightly associated with the bead size, which was inversely related to the motor and sensory nerve conduction velocity (NCV) and to the distal latency period of the median nerve positively. The CNF density and length positively correlated with the NCV and amplitude. The hyperglycemia-induced expansion of beads in CNF might be a predictor of slow NCV in peripheral nerves in type 2 diabetic patients. PMID:27563679

  8. Motor unit remodelling in Duchenne muscular dystrophy. Electrophysiological assessment.

    PubMed

    Cruz Martínez, A; López-Terradas, J M

    1992-01-01

    Conventional EMG, motor and sensory conduction velocities, averaging analysis of MUPs, SFEMG, and muscle fiber conduction velocity in situ were performed in 14 boys with Duchenne muscular dystrophy (DD) aged 5 to 11 years. MUPs parameters study showed a striking increment of long duration MUPs followed by satellites and increase of polyphasic potentials of variable duration. The main findings in SFEMG examination were increment in fiber density of the motor unit, large MISI and presence of complex potentials of long duration in all patients. Muscle fiber conduction velocity in situ was significantly slower than in controls, with significant decrease in minimum conduction and increased variability (large SD) in propagation velocity values. Low conduction velocity of muscle fibers, long duration of polyphasics and MUPs followed by satellites, and large MISI were significantly related. These findings support the hypotheses which have suggested that the motor unit remodelling in DD is mainly myogenic. The abnormalities in muscle fiber conduction velocity in situ reflect an increased diameter variation of muscle fibers consistent with splitting fibers, small groups of regenerating and necrotic fibers, and fiber diameter variation found in histological studies. Thus, increased variability in fiber diameter may be the cause of complex and long duration MUPs in DD. PMID:1526215

  9. Pore Velocity Estimation Uncertainties

    NASA Astrophysics Data System (ADS)

    Devary, J. L.; Doctor, P. G.

    1982-08-01

    Geostatistical data analysis techniques were used to stochastically model the spatial variability of groundwater pore velocity in a potential waste repository site. Kriging algorithms were applied to Hanford Reservation data to estimate hydraulic conductivities, hydraulic head gradients, and pore velocities. A first-order Taylor series expansion for pore velocity was used to statistically combine hydraulic conductivity, hydraulic head gradient, and effective porosity surfaces and uncertainties to characterize the pore velocity uncertainty. Use of these techniques permits the estimation of pore velocity uncertainties when pore velocity measurements do not exist. Large pore velocity estimation uncertainties were found to be located in the region where the hydraulic head gradient relative uncertainty was maximal.

  10. Modulatory effects of oligodendrocytes on the conduction velocity of action potentials along axons in the alveus of the rat hippocampal CA1 region.

    PubMed

    Yamazaki, Yoshihiko; Hozumi, Yasukazu; Kaneko, Kenya; Sugihara, Toshimichi; Fujii, Satoshi; Goto, Kaoru; Kato, Hiroshi

    2007-11-01

    Like neurons and astrocytes, oligodendrocytes have a variety of neurotransmitter receptors and ion channels. However, except for facilitating the rapid conduction of action potentials by forming myelin and buffering extracellular K(+), little is known about the direct involvement of oligodendrocytes in neuronal activities. To investigate their physiological roles, we focused on oligodendrocytes in the alveus of the rat hippocampal CA1 region. These cells were found to respond to exogenously applied glutamate by depolarization through N-methyl-D-aspartate (NMDA) receptors and non-NMDA receptors. Electrical stimulation of the border between the alveus and stratum oriens evoked inward currents through several routes involving glutamate receptors and inward rectifier K(+) channels. Moreover, electrical stimulation resembling in vivo activity evoked long-lasting depolarization. To examine the modulatory effects of oligodendrocytes on neuronal activities, we performed dual, whole-cell recording on CA1 pyramidal neurons and oligodendrocytes. Direct depolarization of oligodendrocytes shortened the latencies of action potentials evoked by antidromic stimulation. These results indicate that oligodendrocytes increase the conduction velocity of action potentials by a mechanism additional to saltatory conduction, and that they have active roles in information processing in the brain. PMID:18634564

  11. Comparison of the duration and power spectral changes of monopolar and bipolar M waves caused by alterations in muscle fibre conduction velocity.

    PubMed

    Rodriguez-Falces, Javier; Navallas, Javier; Malanda, Armando; Rodriguez-Martin, Olivia

    2014-08-01

    The muscle compound action potential (M wave) recorded under monopolar configuration reflects both the propagation of the action potentials along the muscle fibres and their extinction at the tendon. M waves recorded under a bipolar configuration contain less cross talk and noise than monopolar M waves, but they do not contain the entire informative content of the propagating potential. The objective of this study was to compare the effect of changes in muscle fibre conduction velocity (MFCV) on monopolar and bipolar M waves and how this effect depends on the distance between the recording electrodes and tendon. The study was based on a simulation approach and on an experimental investigation of the characteristics of surface M waves evoked in the vastus lateralis during 4-s step-wise isometric contractions in knee extension at 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90% MVC. The peak-to-peak duration (Durpp) and median frequency (Fmedian) of the M waves were calculated. For monopolar M waves, changes in Durpp and Fmedian produced by MFCV depended on the distance from the electrode to the tendon, whereas, for bipolar M waves, changes in Durpp and Fmedian were largely independent of the electrode-to-tendon distance. When the distance between the detection point and tendon lay between approximately 15 and 40mm, changes in Durpp of bipolar M waves were more pronounced than those of distal monopolar M waves but less marked than those of proximal monopolar M waves, and the opposite occurred for Fmedian. Since, for bipolar M waves, changes in duration and power spectral features produced by alterations in MFCV are not influenced by the electrode-to-tendon distance, the bipolar electrode configuration is a preferable choice over monopolar arrangements to estimate changes in conduction velocity. PMID:24774228

  12. Experimental determination of electrical conductivity during deformation of melt-bearing olivine aggregates: Implications for electrical anisotropy in the oceanic low velocity zone

    NASA Astrophysics Data System (ADS)

    Caricchi, Luca; Gaillard, Fabrice; Mecklenburgh, Julian; Le Trong, Emmanuel

    2011-02-01

    A novel experimental setup was used to measure in-situ variations of electrical conductivity (EC) during deformation in torsion (simple shear) at 300 MPa confining pressure and temperatures between 873 and 1473 K. This setup is designed to test if deformation of partially molten systems can produce electrical anisotropy. The motivation for this study comes from the observation that the Lithosphere-Asthenosphere Boundary (LAB) at mid-ocean ridges and in particular at the East Pacific Rise is strongly electrically anisotropic. In an initial set of calibration experiments, the variation of EC with temperature (873-1473 K) was determined for Carrara marble, Åheim dunite and basalt-bearing olivine aggregates. EC was then monitored during deformation experiments at 1473 K and measured in the frequency range between 6 MHz and 1 Hz. The electrical response of the different materials tested as a function of frequency, changes significantly depending on the presence, absence, proportion and distribution of melt contained in the specimen. Melt-free samples show a single conduction mechanism whereas melt-bearing samples display two conduction mechanisms linked in series, reflecting the contribution of isolated and connected melt. Impedance was measured along the sample radius, in a direction parallel to the shear gradient inherent in torsion experiments. During the tests, increasing values of the impedance measured suggest that the long range melt connectivity decreases radially, and melt drains from low to high shear stress regions. The conductivity, calculated from impedance measurements, is low and comparable to values measured along mid-ocean ridges. We suggest that electrical anisotropy of the LAB reflects an alternation of melt-enriched and melt-depleted channels elongated in the spreading direction possibly induced by spreading velocity gradients along the ridge. This implies that the observed electrical anisotropy reveals larger scale processes than strain

  13. Conduction aphasia, sensory-motor integration, and phonological short-term memory - an aggregate analysis of lesion and fMRI data.

    PubMed

    Buchsbaum, Bradley R; Baldo, Juliana; Okada, Kayoko; Berman, Karen F; Dronkers, Nina; D'Esposito, Mark; Hickok, Gregory

    2011-12-01

    Conduction aphasia is a language disorder characterized by frequent speech errors, impaired verbatim repetition, a deficit in phonological short-term memory, and naming difficulties in the presence of otherwise fluent and grammatical speech output. While traditional models of conduction aphasia have typically implicated white matter pathways, recent advances in lesions reconstruction methodology applied to groups of patients have implicated left temporoparietal zones. Parallel work using functional magnetic resonance imaging (fMRI) has pinpointed a region in the posterior most portion of the left planum temporale, area Spt, which is critical for phonological working memory. Here we show that the region of maximal lesion overlap in a sample of 14 patients with conduction aphasia perfectly circumscribes area Spt, as defined in an aggregate fMRI analysis of 105 subjects performing a phonological working memory task. We provide a review of the evidence supporting the idea that Spt is an interface site for the integration of sensory and vocal tract-related motor representations of complex sound sequences, such as speech and music and show how the symptoms of conduction aphasia can be explained by damage to this system. PMID:21256582

  14. Reduction of Common-Mode Conducted Noise Emissions in PWM Inverter-fed AC Motor Drive Systems using Optimized Passive EMI Filter

    NASA Astrophysics Data System (ADS)

    Jettanasen, C.; Ngaopitakkul, A.

    2010-10-01

    Conducted electromagnetic interference (EMI) generated by PWM inverter-fed induction motor drive systems, which are currently widely used in many industrial and/or avionic applications, causes severe parasitic current problems, especially at high frequencies (HF). These restrict power electronic drive's evolution. In order to reduce or minimize these EMI problems, several techniques can be applied. In this paper, insertion of an optimized passive EMI filter is proposed. This filter is optimized by taking into account real impedances of each part of a considered AC motor drive system contrarily to commercial EMI filters designed by considering internal impedance of disturbance source and load, equal to 50Ω. Employing the latter EMI filter would make EMI minimization less effective. The proposed EMI filter optimization is mainly dedicated to minimize common mode (CM) currents due to its most dominant effects in this kind of system. The efficiency of the proposed optimization method using two-port network approach is deduced by comparing the minimized CM current spectra to an applied normative level (ex. DO-160D in aeronautics).

  15. Preliminary results of thermal conductivity and elastic wave velocity measurements of various rock samples collected from outcrops in hanging wall of the Alpine Fault

    NASA Astrophysics Data System (ADS)

    Lin, W.; Tadai, O.; Shigematsu, N.; Nishikawa, O.; Mori, H.; Townend, J.; Capova, L.; Saito, S.; Kinoshita, M.

    2015-12-01

    The Alpine Fault is a mature active fault zone likely to rupture in the near future and DFDP aims to measure physical and chemical conditions within the fault. DFDP-2B borehole was drilled into hanging wall of the Alpine Fault. Downhole temperature measurements carried out in DFDP-2B borehole showed that the geothermal gradient in the hanging wall of the fault is very high, likely reaching to 130-150 °C/km (Sutherland et al., 2015 AGU Fall Meeting). To explain this abnormal feature, the determination of thermal properties of all the rock types in the hanging wall of the Alpine Fault is essential. To measure thermal properties and elastic wave velocities, we collected six typical rock block samples from outcrops in Stony creek and Gaunt creek. These include ultramylonite, mylonite, muscovite schist, garnet amphibolite, protomylonite and schist, which are representative of the hanging wall of the Alpine Fault. Their wet bulk densities are 2.7 - 2.8 g/cm3, and porosities are 1.4 - 3.0%. We prepared a pair of 4 cm cube specimens of each rock type with one flat plane parallel to the foliation. First, we measured thermal conductivity by the transient plane heat source (hot disc) method in a bulk mode, i.e. to deal with the rock as an isotropic material. However, several samples have clearly visible foliation and are likely to be anisotropic. Thus, the data measured in bulk mode provided an average value of the rocks in the range of approximately 2.4 - 3.2 W/mK. The next step will be to measure thermal conductivity in an anisotropic mode. We also measured P wave velocity (Vp) using the same samples, but in two directions, i.e. parallel and perpendicular to the foliation, respectively. Our preliminary results suggested that Vp is anisotropic in all the six rocks. Generally, Vp parallel to foliation is higher than that in the perpendicular direction. Vp in the parallel direction ranged in 5.5 - 6.0 km/s, whereas in the perpendicular direction it was 4.4 - 5.5 km/s. We

  16. Regulation of conduction time along axons.

    PubMed

    Seidl, A H

    2014-09-12

    Timely delivery of information is essential for proper functioning of the nervous system. Precise regulation of nerve conduction velocity is needed for correct exertion of motor skills, sensory integration and cognitive functions. In vertebrates, the rapid transmission of signals along nerve fibers is made possible by the myelination of axons and the resulting saltatory conduction in between nodes of Ranvier. Myelin is a specialization of glia cells and is provided by oligodendrocytes in the central nervous system. Myelination not only maximizes conduction velocity, but also provides a means to systematically regulate conduction times in the nervous system. Systematic regulation of conduction velocity along axons, and thus systematic regulation of conduction time in between neural areas, is a common occurrence in the nervous system. To date, little is understood about the mechanism that underlies systematic conduction velocity regulation and conduction time synchrony. Node assembly, internode distance (node spacing) and axon diameter - all parameters determining the speed of signal propagation along axons - are controlled by myelinating glia. Therefore, an interaction between glial cells and neurons has been suggested. This review summarizes examples of neural systems in which conduction velocity is regulated by anatomical variations along axons. While functional implications in these systems are not always clear, recent studies on the auditory system of birds and mammals present examples of conduction velocity regulation in systems with high temporal precision and a defined biological function. Together these findings suggest an active process that shapes the interaction between axons and myelinating glia to control conduction velocity along axons. Future studies involving these systems may provide further insight into how specific conduction times in the brain are established and maintained in development. Throughout the text, conduction velocity is used for the

  17. Motor neuron abiotrophy in a saluki.

    PubMed

    Kent, M; Knowles, K; Glass, E; deLahunta, A; Braund, K; Alroy, J

    1999-01-01

    A nine-week-old saluki puppy was presented to Tufts University School of Veterinary Medicine for progressive, generalized weakness and bilateral forelimb deformities. Examination suggested a diffuse neuromuscular lesion. Cerebrospinal fluid (CSF) analysis showed normal nucleated cell count and protein level; however, many macrophages had vacuolated cytoplasm. Electromyography (EMG) recordings suggested denervation in paraspinal and appendicular muscles. Tibial motor nerve conduction velocity was normal, but direct evoked muscle potential had reduced amplitude. Histopathology revealed diffuse, symmetrical, degenerative motor neuronopathy of the ventral horn of the spinal cord with associated lesions in nerves and muscles. Histopathology was consistent with an abiotrophy that was likely inherited. PMID:10493421

  18. Position-and Velocity- Sensorless Control of Cylindrical Brushless DC Motors Driven by Sinusoidal Current at Low Speed Using Eddy Current

    NASA Astrophysics Data System (ADS)

    Takashima, Hiroshi; Tomita, Mutuwo; Chen, Zhiqian; Satoh, Mitsuhiko; Doki, Shinji; Okuma, Shigeru

    This paper proposes to paste non-magnetic materials on the rotor surface of a cylindrical brushless DC motor and to use the model including the extended e.m.f. for sensorless control. In the proposed method, the inductance changes depending on the rotor position because of eddy currents, which flow on the non-magnetic material at high frequency. The rotor position can be estimated at standstill and at low speeds. The simulation results show that the proposed method is very useful.

  19. Experiments with a DC Motor

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2010-01-01

    Experiments with an electric motor provide good opportunity to demonstrate some basic laws of electricity and magnetism. The aim of the experiments with a low-power dc motor is to show how the motor approaches its steady rotation and how its torque, mechanical power and efficiency depend on the rotation velocity. The tight relationship between the…

  20. Spontaneous temporal changes and variability of peripheral nerve conduction analyzed using a random effects model.

    PubMed

    Krøigård, Thomas; Gaist, David; Otto, Marit; Højlund, Dorthe; Selmar, Peter E; Sindrup, Søren H

    2014-08-01

    The reproducibility of variables commonly included in studies of peripheral nerve conduction in healthy individuals has not previously been analyzed using a random effects regression model. We examined the temporal changes and variability of standard nerve conduction measures in the leg. Peroneal nerve distal motor latency, motor conduction velocity, and compound motor action potential amplitude; sural nerve sensory action potential amplitude and sensory conduction velocity; and tibial nerve minimal F-wave latency were examined in 51 healthy subjects, aged 40 to 67 years. They were reexamined after 2 and 26 weeks. There was no change in the variables except for a minor decrease in sural nerve sensory action potential amplitude and a minor increase in tibial nerve minimal F-wave latency. Reproducibility was best for peroneal nerve distal motor latency and motor conduction velocity, sural nerve sensory conduction velocity, and tibial nerve minimal F-wave latency. Between-subject variability was greater than within-subject variability. Sample sizes ranging from 21 to 128 would be required to show changes twice the magnitude of the spontaneous changes observed in this study. Nerve conduction studies have a high reproducibility, and variables are mainly unaltered during 6 months. This study provides a solid basis for the planning of future clinical trials assessing changes in nerve conduction. PMID:25083853

  1. A new instrumentation for particle velocity and velocity related measurements under water

    NASA Astrophysics Data System (ADS)

    Zhu, Weijia

    This dissertation investigates the capability of a new instrument for small particle velocity measurement and velocity related signal analysis in an underwater environment. This research started from the laser beam quality test, which was performed in air. It was conducted mainly by means of an optical fiber sensor combined with a computer controlled stepping motor as well as two other methods, edge detection and needle-tip scattering. The stepping motor offers a constant velocity to the fiber sensor, so that the beam separation can be accurately measured by using the constant velocity value and the transit time determined by the cross correlation function of two digital signals. Meanwhile, information of the beam intensity profile, the parallelism of the two beams and the in-air beam widths can also be obtained in the test. By using the calibrated beam separation of the ribbon pair in the beam quality test, particle velocity measurements are carried out based on the relation between velocity, displacement and time in a 500-liter open water tank. The time delay for a particle crossing over the two ribbons in sequence is obtained by computing the cross correlation of the two signals. In fact, the time delay is actually a statistical mean value of many particles that cross over the ribbons in a short time. So is the measured velocity. The third part of this research is the practical study on pulse shape analysis based on the data sets of the velocity measurement. Several computer programs are developed to explore the pulse height distribution in a data set, to study the pulse degeneration, the relationship between the pulse width and the velocity, and the in-water beam width information. Some important reference materials are displayed in the appendices such as the fundamentals of the cross correlation and auto correlation, three main MATLAB programs developed for this research, the theoretical analysis of particle diffraction.

  2. Sensory and motor neuropathy in a Border Collie.

    PubMed

    Harkin, Kenneth R; Cash, Walter C; Shelton, G Diane

    2005-10-15

    A 5-month-old female Border Collie was evaluated because of progressive hind limb ataxia. The predominant clinical findings suggested a sensory neuropathy. Sensory nerve conduction velocity was absent in the tibial, common peroneal, and radial nerves and was decreased in the ulnar nerve; motor nerve conduction velocity was decreased in the tibial, common peroneal, and ulnar nerves. Histologic examination of nerve biopsy specimens revealed considerable nerve fiber depletion; some tissue sections had myelin ovoids, foamy macrophages, and axonal degeneration in remaining fibers. Marked depletion of most myelinated fibers within the peroneal nerve (a mixed sensory and motor nerve) supported the electrodiagnostic findings indicative of sensorimotor neuropathy. Progressive deterioration in motor function occurred over the following 19 months until the dog was euthanatized. A hereditary link was not established, but a littermate was similarly affected. The hereditary characteristic of this disease requires further investigation. PMID:16266014

  3. Nerve conduction and electromyography studies.

    PubMed

    Kane, N M; Oware, A

    2012-07-01

    Nerve conduction studies (NCS) and electromyography (EMG), often shortened to 'EMGs', are a useful adjunct to clinical examination of the peripheral nervous system and striated skeletal muscle. NCS provide an efficient and rapid method of quantifying nerve conduction velocity (CV) and the amplitude of both sensory nerve action potentials (SNAPs) and compound motor action potentials (cMAPs). The CV reflects speed of propagation of action potentials, by saltatory conduction, along large myelinated axons in a peripheral nerve. The amplitude of SNAPs is in part determined by the number of axons in a sensory nerve, whilst amplitude of cMAPs reflects integrated function of the motor axons, neuromuscular junction and striated muscle. Repetitive nerve stimulation (RNS) can identify defects of neuromuscular junction (NMJ) transmission, pre- or post-synaptic. Needle EMG examination can detect myopathic changes in muscle and signs of denervation. Combinations of these procedures can establish if motor and/or sensory nerve cell bodies or peripheral nerves are damaged (e.g. motor neuronopathy, sensory ganglionopathy or neuropathy), and also indicate if the primary target is the axon or the myelin sheath (i.e. axonal or demyelinating neuropathies). The distribution of nerve damage can be determined as either generalised, multifocal (mononeuropathy multiplex) or focal. The latter often due to compression at the common entrapment sites (such as the carpal tunnel, Guyon's canal, cubital tunnel, radial groove, fibular head and tarsal tunnel, to name but a few of the reported hundred or so 'entrapment neuropathies'). PMID:22614870

  4. Computer method for the analysis of evoked motor unit potentials. 2. Duchenne, limb-girdle, facioscapulohumeral and myotonic muscular dystrophies.

    PubMed Central

    Ballantyne, J P; Hansen, S

    1975-01-01

    Single motor unit potentials recorded from surface electrodes over the extensor digitorum brevis muscle and evoked by stimulation of the anterior tibial nerve at the ankle were obtained by a computer subtraction method. Their latencies, durations, amplitudes, and areas were measured in control subjects and patients with Duchenne, limb-girdle, facioscapulohumeral, and myotonic muscular dystrophy. Lateral popliteal motor nerve conduction velocities were also recorded. In the muscular dystrophies there was a significant increase in both the latencies and durations of motor unit potentials, the latter in notable contrast with the findings of conventional needle electromyography. Fastest motor conduction velocities were significantly reduced in the limb-girdle, facioscapulohumeral, and myotonic muscular dystrophy patients, while the shortest distal motor latencies were significantly prolonged in these patients and those with Duchenne muscular dystrophy. The results support the presence of a definitive neurogenic influence in the muscular dystrophies. PMID:1151411

  5. Summary of a study to determine low-velocity impact damage and residual tension strength for a thick graphite/epoxy motor case

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.

    1990-01-01

    Impacters of various shapes and masses were dropped from various heights onto 36 mm (1.4 in.) thick graphite/epoxy cylinders, which represented filament wound cases (FWC) for the booster motors of the Space Shuttle. Insert solid propellant was cast into some of the cylinders. The cylinders were impacted numerous times around the circumference and then cut into 51 mm (2.0 in.) wide tension specimens, each containing an impact site. Four indenters were used: a sharp corner, two hemispheres, and a bolt-like rod. The diameters of the hemispheres were 12.7 mm mm (0.5 in.) and 25.4 mm (1.0 in.), and the diameter of the rod was 6.3 mm (0.25 in.). Impacts with the rod were simulated by pressing the rod against the face of specimens. For the hemispheres, the damage initiated beneath the surface at a critical contact pressure and was not visible on the surface until an even larger pressure was exceeded. The damage consisted of matrix cracking and broken fiber. The rod an corner made visible surface damage in all tests. For the hemispheres, the tension strength was reduced considerably before the damage was visible on the surface, 30 percent for the 25.4 mm (1.0 in.) diameter hemisphere and 10 percent for the 12.7 mm (0.5 in.) diameter hemisphere. Analytical methods were used to predict the damage and residual tension strength. A factor of safety to account for nonvisible damage was determined.

  6. Wind motor applications for transportation

    SciTech Connect

    Lysenko, G.P.; Grigoriev, B.V.; Karpin, K.B.

    1996-12-31

    Motion equation for a vehicle equipped with a wind motor allows, taking into account the drag coefficients, to determine the optimal wind drag velocity in the wind motor`s plane, and hence, obtain all the necessary data for the wind wheel blades geometrical parameters definition. This optimal drag velocity significantly differs from the flow drag velocity which determines the maximum wind motor power. Solution of the motion equation with low drag coefficients indicates that the vehicle speed against the wind may be twice as the wind speed. One of possible transportation wind motor applications is its use on various ships. A ship with such a wind motor may be substantially easier to steer, and if certain devices are available, may proceed in autonomous control mode. Besides, it is capable of moving within narrow fairways. The cruise speed of a sailing boat and wind-motored ship were compared provided that the wind velocity direction changes along a harmonic law with regard to the motion direction. Mean dimensionless speed of the wind-motored ship appears to be by 20--25% higher than that of a sailing boat. There was analyzed a possibility of using the wind motors on planet rovers in Mars or Venus atmospheric conditions. A Mars rover power and motor system has been assessed for the power level of 3 kW.

  7. Pulsewidth modulated speed control of brushless dc motors

    NASA Astrophysics Data System (ADS)

    Askinas, A. A.

    1984-09-01

    Until recently, few alternatives existed for the use of hydraulic and pneumatic actuators in primary flight control applications. With the advent of the samarium-cobalt permanent magnet brushless DC motor, consideration must now be given to the utilization of an electromechanical actuator in missiles which require significant maneuvering capability and hence, greater torques. This thesis investigates the theory and techniques of pulse width modulator speed control of brushless DC motors. After describing basic pulse width modulation (PWM) concepts, two constant velocity control schemes are presented: current feedback and a limit cycle scheme. By calculating the motor form factor (a figure of merit for power losses in the switching transistors which comprise the PWM network), the relative worth of each scheme is then evaluated. An in depth study is conducted of the limit cycle approach, with an emphasis on the power loss reductions obtained through the reduction of the velocity limit settings.

  8. Lateral spike conduction velocity in the visual cortex affects spatial range of synchronization and receptive field size without visual experience: a learning model with spiking neurons.

    PubMed

    Saam, M; Eckhorn, R

    2000-07-01

    Classical receptive fields (cRF) increase in size from the retina to higher visual centers. The present work shows how temporal properties, in particular lateral spike velocity and spike input correlation, can affect cRF size and position without visual experience. We demonstrate how these properties are related to the spatial range of cortical synchronization if Hebbian learning dominates early development. For this, a largely reduced model of two successive levels of the visual cortex is developed (e.g., areas V1 and V2). It consists of retinotopic networks of spiking neurons with constant spike velocity in lateral connections. Feedforward connections between level 1 and 2 are additive and determine cRF size and shape, while lateral connections within level 1 are modulatory and affect the cortical range of synchronization. Input during development is mimicked by spike trains with spatially homogeneous properties and a confined temporal correlation width. During learning, the homogeneous lateral coupling shrinks to limited coupling structures defining synchronization and related association fields (AF). The size of level-1 synchronization fields determines the lateral coupling range of developing level-1-to-2 connections and, thus, the size of level-2 cRFs, even if the feedforward connections have distance-independent delays. AFs and cRFs increase with spike velocity in the lateral network and temporal correlation width of the input. Our results suggest that AF size of V1 and cRF size of V2 neurons are confined during learning by the temporal width of input correlations and the spike velocity in lateral connections without the need of visual experience. During learning from visual experience, a similar influence of AF size on the cRF size may be operative at successive levels of processing, including other parts of the visual system. PMID:10933233

  9. Multifocal motor neuropathy.

    PubMed

    Muley, Suraj Ashok; Parry, Gareth J

    2012-09-01

    Multifocal motor neuropathy (MMN) was first described in 1988 as a purely motor neuropathy affecting multiple motor nerves. The diagnosis was based entirely on demonstrating electrophysiological evidence of a conduction block (CB) that selectively affected motor axons, with sparing of sensory axons even through the site of motor CB. Subsequently, a similar disorder was reported but with absence of demonstrable CB on routine nerve conduction studies and there is still some debate as to whether MMN without CB is related to MMN. MMN is thought to be an inflammatory neuropathy related to an immune attack on motor nerves. The conventional hypothesis is that the primary pathology is segmental demyelination, but recent research raises the possibility of a primary axonopathy. Anti-GM1 antibodies can be found in some patients but it is unclear whether these antibodies are pathogenic. Intravenous immunoglobulin is the mainstay of treatment but other immunosuppressive treatments can also be effective. PMID:22743043

  10. Motor sequence learning and motor adaptation in primary cervical dystonia.

    PubMed

    Katschnig-Winter, Petra; Schwingenschuh, Petra; Davare, Marco; Sadnicka, Anna; Schmidt, Reinhold; Rothwell, John C; Bhatia, Kailash P; Edwards, Mark J

    2014-06-01

    Motor sequence learning and motor adaptation rely on overlapping circuits predominantly involving the basal ganglia and cerebellum. Given the importance of these brain regions to the pathophysiology of primary dystonia, and the previous finding of abnormal motor sequence learning in DYT1 gene carriers, we explored motor sequence learning and motor adaptation in patients with primary cervical dystonia. We recruited 12 patients with cervical dystonia and 11 healthy controls matched for age. Subjects used a joystick to move a cursor from a central starting point to radial targets as fast and accurately as possible. Using this device, we recorded baseline motor performance, motor sequence learning and a visuomotor adaptation task. Patients with cervical dystonia had a significantly higher peak velocity than controls. Baseline performance with random target presentation was otherwise normal. Patients and controls had similar levels of motor sequence learning and motor adaptation. Our patients had significantly higher peak velocity compared to controls, with similar movement times, implying a different performance strategy. The preservation of motor sequence learning in cervical dystonia patients contrasts with the previously observed deficit seen in patients with DYT1 gene mutations, supporting the hypothesis of differing pathophysiology in different forms of primary dystonia. Normal motor adaptation is an interesting finding. With our paradigm we did not find evidence that the previously documented cerebellar abnormalities in cervical dystonia have a behavioral correlate, and thus could be compensatory or reflect "contamination" rather than being directly pathological. PMID:24411324

  11. Flow-Velocity, Water-Temperature and Conductivity Data Collected in Shark River Slough, Everglades National Park, During 1999-2000 and 2000-2001 Wet Seasons

    USGS Publications Warehouse

    Riscassi, Ami L.; Schaffranek, R.W.

    2002-01-01

    A project within the U. S. Geological Survey Place- Based Studies Program is focused on investigation of ?Forcing Effects on Flow Structure in Vegetated Wetlands of the Everglades.? Data-collection efforts conducted within this project at three locations in Shark River Slough, Everglades National Park, during the 1999-2000 and 2000-2001 wet seasons are described in this report. Techniques for collecting and processing the data and summaries of daily mean flowvelocity, water-temperature, and conductivity data are presented. The quality-checked and edited data have been compiled and stored on the USGS South Florida Information Access website.

  12. Hybrid Rocket Motor Test

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Stennis Space Center conducts a test on a hybrid rocket motor fed by a liquid oxygen turbopump. The test occurred at the E-1 test facility. The test was believed to be the first of its kind in the world.

  13. Multimotor Driven Cargos: From Single Motor under Load to the Role of Motor-Motor Coupling.

    PubMed

    Peker, Itay; Granek, Rony

    2016-07-01

    Motor proteins constitute an essential part of the cellular machinery. They have been the subject of intensive studies in the past two decades. Yet, when several motors simultaneously carry a single cargo, the effect of motor-motor coupling, such as mutual stalling and jamming, remains unclear. We commence by constructing a general model for single motor motion, which is a product of a derived load-dependent expression and a phenomenological motor specific function. Forming the latter according to recent single molecule measurements for a given load, the model correctly predicts the motor full step-size distribution for all other measured loads. We then use our proposed model to predict transport properties of multimotor complexes, with particular attention to 1-dimensional constructs with variable flexibility, motor density, and number of motors: (i) a chain of motors connected by springs, a recently studied construction of a pair, and (ii) an array of motors all connected by identical springs to a stiff rod, which is essentially a mirror image of standard gliding motility assays. In both systems, and for any number of carrying motors, we find that, while low flexibility results in a strongly damped velocity, increased flexibility renders an almost single motor velocity. Comparing our model based simulations to recent gliding assays we find remarkable qualitative agreement. We also demonstrate consistency with other multimotor motility assays. In all cases, the characteristic spring constant, that controls the crossover behavior between high and low velocity regimes, is found to be the stalling force divided by the mean step size. We conjecture that this characteristic spring constant can serve as a tool for engineering multimotor complexes. PMID:27044876

  14. Intercostal nerve conduction study in man.

    PubMed Central

    Pradhan, S; Taly, A

    1989-01-01

    A new surface technique for the conduction study of the lower intercostal nerves has been developed and applied to 30 normal subjects. The problem of the short available nerve segment of the intercostal nerves and the bizzare compound motor action potential (CMAP) of inconsistent latency while recording over the intercostal muscles, is overcome by applying recording electrodes over the rectus abdominis muscle and stimulating the nerves at two points at a fair distance away. With the use of multiple recording sites over the rectus abdominis, the motor points for different intercostal nerves were delineated. CMAP of reproducible latencies and waveforms with sharp take-off points were obtained. Conduction velocity of the intercostal nerves could be determined. PMID:2526200

  15. Conduction Aphasia, Sensory-Motor Integration, and Phonological Short-Term Memory--An Aggregate Analysis of Lesion and fMRI Data

    ERIC Educational Resources Information Center

    Buchsbaum, Bradley R.; Baldo, Juliana; Okada, Kayoko; Berman, Karen F.; Dronkers, Nina; D'Esposito, Mark; Hickok, Gregory

    2011-01-01

    Conduction aphasia is a language disorder characterized by frequent speech errors, impaired verbatim repetition, a deficit in phonological short-term memory, and naming difficulties in the presence of otherwise fluent and grammatical speech output. While traditional models of conduction aphasia have typically implicated white matter pathways,…

  16. The induction motor

    NASA Astrophysics Data System (ADS)

    Redinz, José Arnaldo

    2015-09-01

    We obtain analytical expressions for the torques and angular speed of an induction motor with a simple geometry, resembling the geometry of the first induction motor investigated by Arago in 1824. The rotor is a conducting disc rotating between the magnetic poles of two off-axis solenoids, displaced in space by 90^\\circ from each other. We apply our results to discuss a theory for the ubiquitous electromechanical watt-hour meter. For comparison of the theoretical result for the angular speed with measurements, we propose a simple experiment in which an induction motor with an aluminum disc rotor is constructed.

  17. Changes in corticospinal facilitation of lower limb spinal motor neurons after spinal cord lesions.

    PubMed Central

    Brouwer, B; Bugaresti, J; Ashby, P

    1992-01-01

    The projections from the cortex to the motor neurons of lower limb muscles were examined in 33 normal subjects and 16 patients with incomplete spinal cord lesions. Corticospinal neurons were excited by transcranial magnetic stimulation and the effects on single spinal motor neurons determined from peristimulus time histograms (PSTHs) of single tibialis anterior (TA) and soleus (SOL) motor units. In normal subjects magnetic stimulation produced a short latency facilitation of TA motor units but had little or no effect on SOL motor units. In the patients with spinal cord lesions magnetic stimulation also produced facilitation of TA but not SOL motor units; however, the mean latency of the TA facilitation was significantly longer (by about 14 ms) in the patient group. The F wave latencies were normal in all patients tested, suggesting that central rather than peripheral conduction was slowed. The duration of the period of increased firing probability (in TA motor units) was also significantly longer in the patients with spinal cord lesions. These changes may reflect the slowing of conduction and dispersal of conduction velocities in the corticospinal pathways as a consequence of the spinal cord lesion. No significant correlations were found between the delay of the TA facilitation and the clinical deficits in this group of patients. Images PMID:1312579

  18. Locomotion of chemically powered autonomous nanowire motors

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Li, Longqiu; Li, Tianlong; Zhang, Guangyu; Sun, Qian

    2015-08-01

    Physical insights on the hydrodynamics and locomotion of self-propelled nanowire motor under nonequilibrium steady state are investigated using finite element method in accordance with hybrid molecular dynamics/multiparticle collision dynamics and rigid body dynamics. Nanowire motor is discretized into finite segments, and forces of solvent molecule acting on the motor are assumed to be the sum of forces acting on all segments of the motor. We show that the locomotion of nanowire motor is mainly determined by the imbalance forces acting on the catalytic and noncatalytic segments. The average velocity along the axis increases significantly as a function of time prior to reaching equilibrium. The length of nanowire motor shows negligible effect on the velocity of the motor. Preliminary experimental results are provided to validate the current model.

  19. Comparison of short-term effects of insulin and essential fatty acids on the slowed nerve conduction of streptozotocin diabetes in rats.

    PubMed

    Julu, P O; Mutamba, A

    1991-11-01

    Early effects of insulin and essential fatty acids on nerve conduction were studied. Insulin-dependent diabetes was induced in rats using streptozocin (65 mg/kg, i.p.); control rats were treated with buffer. Five weeks later, diabetic rats were divided into 5 groups. Two groups were given oral essential fatty acids (75% linoleic and 9% gamma-linolenic acids) for a further 3 and 5 days, respectively. Two other groups received subcutaneous insulin for a further 3 or 5 days. A group of diabetic rats were left without further treatment. Motor nerve conduction velocity was measured terminally in all rats by stimulating the sciatic nerve and recording EMGs in the gastrocnemius muscle under urethane anaesthesia. Sensory nerve conduction velocity was measured by stimulating and recording from the saphenous nerve trunk. Diabetic rats had significantly slowed motor and sensory nerve conduction velocities after 5 weeks (16.7%, P less than 0.001). Three days treatment with either insulin or fatty acids corrected the slowed motor nerve conduction velocity to a normal level. Conduction velocity in myelinated sensory nerves was still 10% slower in diabetic rats treated with insulin for 3 days (P less than 0.01). It was above the control level by 11% in diabetic rats treated with fatty acids for the same period (P less than 0.01). Conduction velocities in both sensory and motor nerves were normal in diabetic rats treated with either insulin or fatty acids for 5 days. It was concluded that both insulin and essential fatty acids had early effects on nerve conduction in diabetic rats. The speed of their actions, and the magnitudes of responses were different in sensory and motor nerves. PMID:1663993

  20. Segmented rail linear induction motor

    DOEpatents

    Cowan, Jr., Maynard; Marder, Barry M.

    1996-01-01

    A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces.

  1. Segmented rail linear induction motor

    DOEpatents

    Cowan, M. Jr.; Marder, B.M.

    1996-09-03

    A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces. 6 figs.

  2. Motor Starters

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The power factor controller (PFC) was invented by a NASA engineer. It matches voltage with a motor's actual need by sensing shifts in the relationship between voltage and current flow. With the device, power can be trimmed as much as 65%. Intellinet adopted this technology and designed "soft start" and "load-responsive" control modes to start engines gradually and recycle voltage without reducing motor speed. Other features are lower motor heat and faster fault identification.

  3. Motor syndromes.

    PubMed

    Corea, Francesco; Micheli, Sara

    2012-01-01

    Motor disturbances alone or associated with other focal deficits are the most common symptoms suggesting a neurovascular event. An appropriate clinical assessment of these signs and symptoms may help physicians to better diagnose and to both better treat and predict outcome. In this paper the main clinical features of motor deficit are described together with other motor-related events such as ataxia and movement disturbances. PMID:22377850

  4. State observer for synchronous motors

    DOEpatents

    Lang, Jeffrey H.

    1994-03-22

    A state observer driven by measurements of phase voltages and currents for estimating the angular orientation of a rotor of a synchronous motor such as a variable reluctance motor (VRM). Phase voltages and currents are detected and serve as inputs to a state observer. The state observer includes a mathematical model of the electromechanical operation of the synchronous motor. The characteristics of the state observer are selected so that the observer estimates converge to the actual rotor angular orientation and velocity, winding phase flux linkages or currents.

  5. Transport of Beads by Several Kinesin Motors

    PubMed Central

    Beeg, Janina; Klumpp, Stefan; Dimova, Rumiana; Gracià, Rubèn Serral; Unger, Eberhard; Lipowsky, Reinhard

    2008-01-01

    The movements of beads pulled by several kinesin-1 (conventional kinesin) motors are studied both theoretically and experimentally. While the velocity is approximately independent of the number of motors pulling the beads, the walking distance or run-length is strongly increased when more motors are involved. Run-length distributions are measured for a wide range of motor concentrations and matched to theoretically calculated distributions using only two global fit parameters. In this way, the maximal number of motors pulling the beads is estimated to vary between two and seven motors for total kinesin concentrations between 0.1 and 2.5 μg/ml or between 0.27 and 6.7 nM. In the same concentration regime, the average number of pulling motors is found to lie between 1.1 and 3.2 motors. PMID:17872957

  6. Transport of beads by several kinesin motors.

    PubMed

    Beeg, Janina; Klumpp, Stefan; Dimova, Rumiana; Gracià, Rubèn Serral; Unger, Eberhard; Lipowsky, Reinhard

    2008-01-15

    The movements of beads pulled by several kinesin-1 (conventional kinesin) motors are studied both theoretically and experimentally. While the velocity is approximately independent of the number of motors pulling the beads, the walking distance or run-length is strongly increased when more motors are involved. Run-length distributions are measured for a wide range of motor concentrations and matched to theoretically calculated distributions using only two global fit parameters. In this way, the maximal number of motors pulling the beads is estimated to vary between two and seven motors for total kinesin concentrations between 0.1 and 2.5 microg/ml or between 0.27 and 6.7 nM. In the same concentration regime, the average number of pulling motors is found to lie between 1.1 and 3.2 motors. PMID:17872957

  7. Hall effect encoding of brushless dc motors

    NASA Technical Reports Server (NTRS)

    Berard, C. A.; Furia, T. J.; Goldberg, E. A.; Greene, R. C.

    1970-01-01

    Encoding mechanism integral to the motor and using the permanent magnets embedded in the rotor eliminates the need for external devices to encode information relating the position and velocity of the rotating member.

  8. Retention of Motor Skills: Review.

    ERIC Educational Resources Information Center

    Schendel, J. D.; And Others

    A summary of an extensive literature survey deals with the variables known or suspected to affect the retention of learned motor behaviors over lengthy no-practice intervals. Emphasis was given to research conducted by or for the military. The variables that may affect the retention of motor skills were dichotomized into task variables and…

  9. Molecular motors

    NASA Astrophysics Data System (ADS)

    Allemand, Jean François Desbiolles, Pierre

    2015-10-01

    How do we move? More precisely, what are the molecular mechanisms that can explain that our muscles, made of very small components can move at a osopic scale? To answer these questions we must introduce molecular motors. Those motors are proteins, or small protein assemblies that, in our cells, transform chemical energy into mechanical work. Then, like we could do for a oscopic motor, used in a car or in a fan, we are going to study the basic behavior of these molecular machines, present what are their energy sources, calculate their power, their yield. If molecular motors are crucial for our oscopic movements, we are going to see that they are also essential to cellular transport and that considering the activity of some enzymes as molecular motors bring some interesting new insights on their activity.

  10. Optimal working frequency of ultrasonic motors.

    PubMed

    Shi, Weijia; Zhao, Hui; Ma, Jie; Yao, Yu

    2016-08-01

    In this work, the existence of the optimal working frequency for ultrasonic motors (USMs) is theoretically and experimentally verified for the first time, at which working point the power dissipation of the motors arrives at its minimum value. The mathematical model of the mechanical quality factor is initially deduced to evaluate the loss level, because it shows an opposite tendency with losses. The derivative of the mechanical quality factor can be subsequently arrived at with the aid of the phenomenon model of the phase of the admittance. The theoretical derivation infers that the maximum value of the mechanical quality factor exists almost around the average value of the frequency of maximum conductance and the frequency of maximum resistance. Then the input power of the USM is measured under the constant velocity condition, which is supposed to counteract the loss; that is, the loss can be therefore evaluated experimentally. Measurements infer that the power dissipation of the motor reaches the minimum value around the calculated optimal working frequency. In other word, it is proven that the USM maintains an optimal working frequency from the loss reduction view point. PMID:27125560

  11. Motor imagery facilitates force field learning.

    PubMed

    Anwar, Muhammad Nabeel; Tomi, Naoki; Ito, Koji

    2011-06-13

    Humans have the ability to produce an internal reproduction of a specific motor action without any overt motor output. Recent findings show that the processes underlying motor imagery are similar to those active during motor execution and both share common neural substrates. This suggests that the imagery of motor movements might play an important role in acquiring new motor skills. In this study we used haptic robot in conjunction with motor imagery technique to improve learning in a robot-based adaptation task. Two groups of subjects performed reaching movements with or without motor imagery in a velocity-dependent and position-dependent mixed force field. The groups performed movements with motor imagery produced higher after effects and decreased muscle co-contraction with respect to no-motor imagery group. These results showed a positive influence of motor imagery on acquiring new motor skill and suggest that motor learning can be facilitated by mental practice and could be used to increase the rate of adaptation. PMID:21555118

  12. Prediction of Pseudo relative velocity response spectra at Yucca Mountain for underground nuclear explosions conducted in the Pahute Mesa testing area at the Nevada testing site; Yucca Mountain Site Characterization Project

    SciTech Connect

    Phillips, J.S.

    1991-12-01

    The Yucca Mountain Site Characterization Project (YMP), managed by the Office of Geologic Disposal of the Office of Civilian Radioactive Waste Management of the US Department of Energy, is examining the feasibility of siting a repository for commercial, high-level nuclear wastes at Yucca Mountain on and adjacent to the Nevada Test Site (NTS). This work, intended to extend our understanding of the ground motion at Yucca Mountain resulting from testing of nuclear weapons on the NTS, was funded by the Yucca Mountain project and the Military Applications Weapons Test Program. This report summarizes one aspect of the weapons test seismic investigations conducted in FY88. Pseudo relative velocity response spectra (PSRV) have been calculated for a large body of surface ground motions generated by underground nuclear explosions. These spectra have been analyzed and fit using multiple linear regression techniques to develop a credible prediction technique for surface PSRVs. In addition, a technique for estimating downhole PSRVs at specific stations is included. A data summary, data analysis, prediction development, prediction evaluation, software summary and FORTRAN listing of the prediction technique are included in this report.

  13. Motor Controller

    NASA Technical Reports Server (NTRS)

    1988-01-01

    M.H. Marks Enterprises' Power Factor Controller (PFC) matches voltage with motor's actual need. Plugged into a motor, PFC continuously determines motor load by sensing shifts between voltage and current flow. When it senses a light load, it cuts voltage to the minimum needed. It offers potential energy savings ranging from eight percent up to 65 percent depending on the application. Myles Marks started out with the notion of writing an article for Popular Electronics magazine at the same time offering to furnish kits to readers interested in assembling PFC's. Within two weeks from publication he had orders for 500 kits and orders are still coming three years later.

  14. Stepper motor

    NASA Technical Reports Server (NTRS)

    Dekramer, Cornelis

    1994-01-01

    The purpose of this document is to describe the more commonly used permanent magnet stepper motors for spaceflight. It will discuss the mechanical and electrical aspects of the devices, their torque behavior, those parameters which need to be controlled and measured, and test methods to be employed. It will also discuss torque margins, compare these to the existing margin requirements, and determine the applicability of these requirements. Finally it will attempt to generate a set of requirements which will be used in any stepper motor procurement and will fully characterize the stepper motor behavior in a consistent and repeatable fashion.

  15. Chaotic motors

    NASA Astrophysics Data System (ADS)

    Laroche, C.; Labbé, R.; Pétrélis, F.; Fauve, S.

    2012-02-01

    We show that electric motors and dynamos can be used to illustrate most elementary instabilities or bifurcations discussed in courses on nonlinear oscillators and dynamical systems. These examples are easier to understand and display a richer behavior than the ones commonly used from mechanics, electronics, hydrodynamics, lasers, chemical reactions, and population dynamics. In particular, an electric motor driven by a dynamo can display stationary, Hopf, and codimension-two bifurcations by tuning the driving speed of the dynamo and the electric current in the stator of the electric motor. When the dynamo is driven at constant torque instead of constant rotation rate, chaotic reversals of the generated current and of the angular rotation of the motor are observed. Simple deterministic models are presented which capture the observed dynamical regimes.

  16. Molecular Motors: Power Strokes Outperform Brownian Ratchets.

    PubMed

    Wagoner, Jason A; Dill, Ken A

    2016-07-01

    Molecular motors convert chemical energy (typically from ATP hydrolysis) to directed motion and mechanical work. Their actions are often described in terms of "Power Stroke" (PS) and "Brownian Ratchet" (BR) mechanisms. Here, we use a transition-state model and stochastic thermodynamics to describe a range of mechanisms ranging from PS to BR. We incorporate this model into Hill's diagrammatic method to develop a comprehensive model of motor processivity that is simple but sufficiently general to capture the full range of behavior observed for molecular motors. We demonstrate that, under all conditions, PS motors are faster, more powerful, and more efficient at constant velocity than BR motors. We show that these differences are very large for simple motors but become inconsequential for complex motors with additional kinetic barrier steps. PMID:27136319

  17. Force generation by cellular motors.

    PubMed

    Wanka, Friedrich; Van Zoelen, Everardus J J

    2003-01-01

    Cell motility processes in non-muscle cells depend on the activity of motor proteins that bind to either microtubules or actin filaments. From presently available data it must be concluded that the driving force is generated by transient interaction of the respective motors with microtubules or actin filaments which then activates the binding and hydrolysis of ATP. This reaction results in an abrupt discharge of the motor molecule, the direction of which is determined by the spatial orientation of its binding to the helical and polar vehicle. The latter is thereby propelled in its length direction and simultaneously undergoes an axial rotation, while the expelled motor exerts an oppositely directed current in the surrounding fluid, comparable to jet propulsion. Force production, propulsion velocities and energy requirements known from in vitro studies comply with those derived from the theory. The theory opens new ways for the understanding of cellular activities such as particle transport, mitosis and morphodynamics. PMID:14668925

  18. Advanced Motors

    SciTech Connect

    Knoth, Edward A; Chelluri, Bhanumathi; Schumaker, Edward J

    2012-12-14

    vProject Summary Transportation energy usage is predicted to increase substantially by 2020. Hybrid vehicles and fuel cell powered vehicles are destined to become more prominent as fuel prices rise with the demand. Hybrid and fuel cell vehicle platforms are both dependent on high performance electric motors. Electric motors for transportation duty will require sizeable low-speed torque to accelerate the vehicle. As motor speed increases, the torque requirement decreases which results in a nearly constant power motor output. Interior permanent magnet synchronous motors (IPMSM) are well suited for this duty. , , These rotor geometries are configured in straight lines and semi circular arc shapes. These designs are of limited configurations because of the lack of availability of permanent magnets of any other shapes at present. We propose to fabricate rotors via a novel processing approach where we start with magnet powders and compact them into a net shape rotor in a single step. Using this approach, widely different rotor designs can be implemented for efficiency. The current limitation on magnet shape and thickness will be eliminated. This is accomplished by co-filling magnet and soft iron powders at specified locations in intricate shapes using specially designed dies and automatic powder filling station. The process fundamentals for accomplishing occurred under a previous Applied Technology Program titled, Motors and Generators for the 21st Century. New efficient motor designs that are not currently possible (or cost prohibitive) can be accomplished by this approach. Such an approach to motor fabrication opens up a new dimension in motor design. Feasibility Results We were able to optimize a IPMSM rotor to take advantage of the powder co-filling and DMC compaction processing methods. The minimum low speed torque requirement of 5 N-m can be met through an optimized design with magnet material having a Br capability of 0.2 T. This level of magnetic performance can

  19. Motor Planning.

    PubMed

    Wong, Aaron L; Haith, Adrian M; Krakauer, John W

    2015-08-01

    Motor planning colloquially refers to any process related to the preparation of a movement that occurs during the reaction time prior to movement onset. However, this broad definition encompasses processes that are not strictly motor-related, such as decision-making about the identity of task-relevant stimuli in the environment. Furthermore, the assumption that all motor-planning processes require processing time, and can therefore be studied behaviorally by measuring changes in the reaction time, needs to be reexamined. In this review, we take a critical look at the processes leading from perception to action and suggest a definition of motor planning that encompasses only those processes necessary for a movement to be executed-that is, processes that are strictly movement related. These processes resolve the ambiguity inherent in an abstract goal by defining a specific movement to achieve it. We propose that the majority of processes that meet this definition can be completed nearly instantaneously, which means that motor planning itself in fact consumes only a small fraction of the reaction time. PMID:24981338

  20. Recovery of nerve conduction after a pneumatic tourniquet: observations on the hind-limb of the baboon1

    PubMed Central

    Fowler, T. J.; Danta, G.; Gilliatt, R. W.

    1972-01-01

    A small pneumatic cuff inflated around the knee was used to produce tourniquet paralysis in baboons. A cuff pressure of 1,000 mm Hg maintained for one to three hours produced paralysis of distal muscles lasting up to three months. Nerve conduction studies showed that most of the motor fibres to the abductor hallucis muscle were blocked at the level of the cuff and that they conducted impulses normally in their distal parts. There was a significant correlation between the duration of compression and that of the subsequent conduction block. When tested two to three weeks after the tourniquet, the amplitude of the response of m. abductor hallucis to nerve stimulation distal to the cuff was usually slightly reduced compared with the precompression figure. This was assumed to mean that a small proportion of the motor fibres had undergone Wallerian degeneration as a result of compression. Maximal motor conduction velocity was reduced in recovering nerves. It was also reduced when a cuff pressure of 500 mm Hg was used, which was insufficient to produce persistent conduction block. In such cases a reduced velocity without evidence of block could be demonstrated 24 hours after compression. Ascending nerve action potentials were recorded from the sciatic nerve in the thigh, with stimulation at the ankle. Before compression the fastest afferent fibres had a significantly higher velocity than the fastest motor fibres in the same nerve trunk. Results after compression suggested that the high-velocity afferent fibres had a susceptibililty to the procedure similar to that of the fastest motor fibres. PMID:4628467

  1. The Relationship between Nerve Conduction Study and Clinical Grading of Carpal Tunnel Syndrome

    PubMed Central

    Cheluvaiah, Janardhan D.; Agadi, Jagadish B.; Nagaraj, Karthik

    2016-01-01

    Introduction Carpal Tunnel Syndrome (CTS) is the most common nerve entrapment. Subjective sensory symptoms are common place in patients with CTS, but sometimes they are not supported by objective findings in the neurological examination. Electrodiagnostic (EDx) studies are a valid and reliable means of confirming the diagnosis. The amplitudes along with the conduction velocities of the sensory nerve action potential and motor nerve action potential reflect the functional state of axons, and are useful parameters and complement the clinical grading in the assessment of severity of CTS. Aim To conduct median nerve sensory and motor conduction studies on patients with carpal tunnel syndrome and correlate the relationship between nerve conduction study parameters and the clinical severity grading. Materials and Methods Based on clinical assessment, the study patients were divided into 03 groups with mild CTS, moderate CTS and severe CTS respectively as per Mackinnson’s classification. Median and ulnar nerve conduction studies were performed on bilateral upper limbs of 50 patients with symptoms of CTS and 50 age and sex matched healthy control subjects. The relationship between the clinical severity grade and various nerve conduction study parameters were correlated. Results In this prospective case control study, 50 patients with symptoms consistent with CTS and 50 age and sex matched healthy control subjects were examined over a 10 month period. A total of 30 patients had unilateral CTS (right upper limb in 19 and left upper limb in 11) and 20 patients had bilateral CTS. Female to male ratio was 3.54 to 1. Age ranged from 25 to 81 years. The mean age at presentation was 49.68±11.7 years. Tingling paresthesias of hand and first three fingers were the most frequent symptoms 48 (98%). Tinel’s and Phalen’s sign were positive in 36 (72%) and 44 (88%) patients respectively. The mean duration of symptoms at presentation was 52.68±99.81 weeks. 16 patients (32%) had

  2. 48 CFR 945.570-8 - Reporting motor vehicle data.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Reporting motor vehicle... Reporting motor vehicle data. (a) Contractors conducting motor vehicle operations shall forward annually (on or before December 1) to the contracting officer their plan for acquisition of motor vehicles for...

  3. Motor-operated gearbox efficiency

    SciTech Connect

    DeWall, K.G.; Watkins, J.C.; Bramwell, D.; Weidenhamer, G.H.

    1996-12-01

    Researchers at the Idaho National Engineering Laboratory recently conducted tests investigating the operating efficiency of the power train (gearbox) in motor-operators typically used in nuclear power plants to power motor-operated valves. Actual efficiency ratios were determined from in-line measurements of electric motor torque (input to the operator gearbox) and valve stem torque (output from the gearbox) while the operators were subjected to gradually increasing loads until the electric motor stalled. The testing included parametric studies under reduced voltage and elevated temperature conditions. As part of the analysis of the results, the authors compared efficiency values determined from testing to the values published by the operator manufacturer and typically used by the industry in calculations for estimating motor-operator capabilities. The operators they tested under load ran at efficiencies lower than the running efficiency (typically 50%) published by the operator manufacturer.

  4. Motor-operator gearbox efficiency

    SciTech Connect

    DeWall, K.G.; Watkins, J.C.; Bramwell, D.

    1996-06-01

    Researchers at the Idaho National Engineering Laboratory recently conducted tests investigating the operating efficiency of the power train (gearbox) in motor-operators typically used in nuclear power plants to power motor-operated valves. Actual efficiency ratios were determined from in-line measurements of electric motor torque (input to the operator gearbox) and valve stem torque (output from the gearbox) while the operators were subjected to gradually increasing loads until the electric motor stalled. The testing included parametric studies under reduced voltage and elevated temperature conditions. As part of the analysis of the results, we compared efficiency values determined from testing to the values published by the operator manufacturer and typically used by the industry in calculations for estimating motor-operator capabilities. The operators we tested under load ran at efficiencies lower than the running efficiency (typically 50%) published by the operator manufacturer.

  5. Analysis of HB Type Vernier Motor

    NASA Astrophysics Data System (ADS)

    Suda, Hiroshi; Matsushima, Yoshitaro; Xu, Li; Anazawa, Yoshihisa

    Direct drive motors are used as actuators in numerous applications in which they must rotate at low speeds with high torque and low torque ripple. Recently, various types of vernier motor have been developed. The HB type vernier motor is one of them. The structure of rotor is the same as HB type stepping motor. Our model of HB type vernier motor has a winding as field system in the rotor, but stator has three-phase windings. Relationship between S, R and P is S ± P/2=R/2, where S, R and P are the numbers of stator and rotor slots and the number of poles. The rotor of the vernier motor moves at a sub-multiple of the angular velocity of the stator mmf. The multiplying factor is P/R. As a result of analysis, the voltage equation on the γ-δ axis of HB type vernier motor is equal to general synchronous machine. The tests were performed on the trial motor. The calculated pull-out torque agreed well with the measured values. Our model of HB type vernier motor is equivalent with the PM type vernier motor which has permanent magnets in the rotor. The result of this analysis is useful for the design of both types of vernier motor.

  6. Failure analysis of solid rocket apogee motors

    NASA Technical Reports Server (NTRS)

    Martin, P. J.

    1972-01-01

    The analysis followed five selected motors through initial design, development, test, qualification, manufacture, and final flight reports. An audit was conducted at the manufacturing plants to complement the literature search with firsthand observations of the current philosophies and practices that affect reliability of the motors. A second literature search emphasized acquisition of spacecraft and satellite data bearing on solid motor reliability. It was concluded that present practices at the plants yield highly reliable flight hardware. Reliability can be further improved by new developments of aft-end bonding and initiator/igniter nondestructive test methods, a safe/arm device, and an insulation formulation. Minimum diagnostic instrumentation is recommended for all motor flights. Surplus motors should be used in margin testing. Criteria should be established for pressure and zone curing. The motor contractor should be represented at launch. New design analyses should be made of stretched motors and spacecraft/motor pairs.

  7. Delineating cooperative responses of processive motors in living cells

    PubMed Central

    Efremov, Artem K.; Radhakrishnan, Anand; Tsao, David S.; Bookwalter, Carol S.; Trybus, Kathleen M.; Diehl, Michael R.

    2014-01-01

    Characterizing the collective functions of cytoskeletal motors is critical to understanding mechanisms that regulate the internal organization of eukaryotic cells as well as the roles various transport defects play in human diseases. Though in vitro assays using synthetic motor complexes have generated important insights, dissecting collective motor functions within living cells still remains challenging. Here, we show that the protein heterodimerization switches FKBP-rapalog-FRB can be harnessed in engineered COS-7 cells to compare the collective responses of kinesin-1 and myosinVa motors to changes in motor number and cargo size. The dependence of cargo velocities, travel distances, and position noise on these parameters suggests that multiple myosinVa motors can cooperate more productively than collections of kinesins in COS-7 cells. In contrast to observations with kinesin-1 motors, the velocities and run lengths of peroxisomes driven by multiple myosinVa motors are found to increase with increasing motor density, but are relatively insensitive to the higher loads associated with transporting large peroxisomes in the viscoelastic environment of the COS-7 cell cytoplasm. Moreover, these distinctions appear to be derived from the different sensitivities of kinesin-1 and myosinVa velocities and detachment rates to forces at the single-motor level. The collective behaviors of certain processive motors, like myosinVa, may therefore be more readily tunable and have more substantial roles in intracellular transport regulatory mechanisms compared with those of other cytoskeletal motors. PMID:24402168

  8. Motor Controllers

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Kollmorgen Corporation's Mermaid II two person submersible is propeller-driven by a system of five DC brushless motors with new electronic controllers that originated in work performed in a NASA/DOE project managed by Lewis Research Center. A key feature of the system is electric commutation rather than mechanical commutation for converting AC current to DC.

  9. Therma motor

    DOEpatents

    Kandarian, R.

    The disclosure is directed to a thermal motor utilizing two tapered prestressed parallel adjacent cylinders lengthwise disposed about one third in a coolant. Heat is applied to contacting portions of the cylinders outside the coolant to cause them to deform and turn. Heat sources such as industrial waste heat, geothermal hot water, solar radiation, etc. can be used.

  10. Motor Neuron Diseases

    MedlinePlus

    ... Enhancing Diversity Find People About NINDS NINDS Motor Neuron Diseases Information Page Condensed from Motor Neuron Diseases ... and Information Publicaciones en Español What are Motor Neuron Diseases? The motor neuron diseases (MNDs) are a ...

  11. Motor Neuron Diseases

    MedlinePlus

    ... called upper motor neurons ) are transmitted to nerve cells in the brain stem and spinal cord (called lower motor neurons ) and from them to particular muscles. Upper motor neurons direct the lower motor neurons ...

  12. Center of pressure velocity reflects body acceleration rather than body velocity during quiet standing.

    PubMed

    Masani, Kei; Vette, Albert H; Abe, Masaki O; Nakazawa, Kimitaka

    2014-03-01

    The purpose of this study was to test the hypothesis that the center of pressure (COP) velocity reflects the center of mass (COM) acceleration due to a large derivative gain in the neural control system during quiet standing. Twenty-seven young (27.2±4.5 years) and twenty-three elderly (66.2±5.0 years) subjects participated in this study. Each subject was requested to stand quietly on a force plate for five trials, each 90 s long. The COP and COM displacements, the COP and COM velocities, and the COM acceleration were acquired via a force plate and a laser displacement sensor. The amount of fluctuation of each variable was quantified using the root mean square. Following the experimental study, a simulation study was executed to investigate the experimental findings. The experimental results revealed that the COP velocity was correlated with the COM velocity, but more highly correlated with the COM acceleration. The equation of motion of the inverted pendulum model, however, accounts only for the correlation between the COP and COM velocities. These experimental results can be meaningfully explained by the simulation study, which indicated that the neural motor command presumably contains a significant portion that is proportional to body velocity. In conclusion, the COP velocity fluctuation reflects the COM acceleration fluctuation rather than the COM velocity fluctuation, implying that the neural motor command controlling quiet standing posture contains a significant portion that is proportional to body velocity. PMID:24444652

  13. Ignition transient calculations in the Space Shuttle solid rocket motor

    NASA Astrophysics Data System (ADS)

    Jenkins, Rhonald M.; Foster, Winfred A., Jr.

    1993-07-01

    The work presented is part of an effort to develop a multidimensional ignition transient model for large solid propellant rocket motors. On the Space Shuttle, the ignition transient in the slot is induced when the igniter, itself a small rocket motor, is fired into the head-end portion of the main rocket motor. The computational results presented in this paper consider two different igniter configurations. The first configuration is a simulated Space Shuttle RSRM igniter which has one central nozzle that is parallel to the centerline of the motor. The second igniter configuration has a nozzle which is canted at an angle of 45 deg from the centerline of the motor. This paper presents a computational fluid dynamic (CFD) analyses of certain flow field characteristics inside the solid propellant star grain slot of the Space Shuttle during the ignition transient period of operation for each igniter configuration. The majority of studies made to date regarding ignition transient performance in solid rocket motors have concluded that the key parameter to be determined is the heat transfer rate to the propellant surface and hence the heat transfer coefficient between the gas and the propellant. In this paper the heat transfer coefficients, pressure and velocity distributions are calculated in the star slot. In order to validate the computational method and to attempt to establish a correlation between the flow field characteristics and the heat transfer rates a series of cold flow experimental investigations were conducted. The results of these experiments show excellent qualitative and quantitative agreement with the pressure and velocity distributions obtained from the CFD analysis. The CFD analysis utilized a classical pipe flow type correlation for the heat transfer rates. The experimental results provide an excellent qualitative comparison with regard to spatial distribution of the heat transfer rates as a function of nozzle configuration and igniter pressure. The

  14. Ignition Transient Calculations in the Space Shuttle Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Jenkins, Rhonald M.; Foster, Winfred A., Jr.

    1993-01-01

    The work presented is part of an effort to develop a multidimensional ignition transient model for large solid propellant rocket motors. On the Space Shuttle, the ignition transient in the slot is induced when the igniter, itself a small rocket motor, is fired into the head-end portion of the main rocket motor. The computational results presented in this paper consider two different igniter configurations. The first configuration is a simulated Space Shuttle RSRM igniter which has one central nozzle that is parallel to the centerline of the motor. The second igniter configuration has a nozzle which is canted at an angle of 45 deg from the centerline of the motor. This paper presents a computational fluid dynamic (CFD) analyses of certain flow field characteristics inside the solid propellant star grain slot of the Space Shuttle during the ignition transient period of operation for each igniter configuration. The majority of studies made to date regarding ignition transient performance in solid rocket motors have concluded that the key parameter to be determined is the heat transfer rate to the propellant surface and hence the heat transfer coefficient between the gas and the propellant. In this paper the heat transfer coefficients, pressure and velocity distributions are calculated in the star slot. In order to validate the computational method and to attempt to establish a correlation between the flow field characteristics and the heat transfer rates a series of cold flow experimental investigations were conducted. The results of these experiments show excellent qualitative and quantitative agreement with the pressure and velocity distributions obtained from the CFD analysis. The CFD analysis utilized a classical pipe flow type correlation for the heat transfer rates. The experimental results provide an excellent qualitative comparison with regard to spatial distribution of the heat transfer rates as a function of nozzle configuration and igniter pressure. The

  15. Reduced evoked motor and sensory potential amplitudes in obstructive sleep apnea patients.

    PubMed

    Mihalj, Mario; Lušić, Linda; Đogaš, Zoran

    2016-06-01

    It is unknown to what extent chronic intermittent hypoxaemia in obstructive sleep apnea causes damage to the motor and sensory peripheral nerves. It was hypothesized that patients with obstructive sleep apnea would have bilaterally significantly impaired amplitudes of both motor and sensory peripheral nerve-evoked potentials of both lower and upper limbs. An observational study was conducted on 43 patients with obstructive sleep apnea confirmed by the whole-night polysomnography, and 40 controls to assess the relationship between obstructive sleep apnea and peripheral neuropathy. All obstructive sleep apnea subjects underwent standardized electroneurographic testing, with full assessment of amplitudes of evoked compound muscle action potentials, sensory neural action potentials, motor and sensory nerve conduction velocities, and distal motor and sensory latencies of the median, ulnar, peroneal and sural nerves, bilaterally. All nerve measurements were compared with reference values, as well as between the untreated patients with obstructive sleep apnea and control subjects. Averaged compound muscle action potential and sensory nerve action potential amplitudes were significantly reduced in the nerves of both upper and lower limbs in patients with obstructive sleep apnea compared with controls (P < 0.001). These results confirmed that patients with obstructive sleep apnea had significantly lower amplitudes of evoked action potentials of both motor and sensory peripheral nerves. Clinical/subclinical axonal damage exists in patients with obstructive sleep apnea to a greater extent than previously thought. PMID:26749257

  16. Correlations among autonomic, sensory, and motor neural function tests in untreated non-insulin-dependent diabetic individuals.

    PubMed

    Pfeifer, M A; Weinberg, C R; Cook, D L; Reenan, A; Halar, E; Halter, J B; LaCava, E C; Porte, D

    1985-01-01

    A well-defined group of untreated non-insulin-dependent (NIDD) subjects were evaluated to determine whether involvement of neural function measurements is generalized and symmetrical and to compare the autonomic, sensory, and motor neural measurements. After age adjustment, the sensory and motor neural function measurements were significantly slower in the diabetic group than in normal subjects (P less than 0.01). Similarly, the autonomic nervous system function measurements were also abnormal in the NIDD group (P less than 0.01). Further analysis revealed that each of the specific measurements--median motor nerve conduction velocity (NCV,P less than 0.005), peroneal motor NCV (P less than 0.005), median sensory NCV (P less than 0.005), dark-adapted pupil size after muscarinic blockade (P less than 0.02), pupillary latency time (P less than 0.02), and RR-variation after beta adrenergic blockade (P less than 0.001)--was significantly less by analysis of covariance after age adjustment in the NIDD group than in normal subjects. Thus, there was evidence of motor and sensory neural impairment in the upper and lower extremities as well as evidence of impairment of the reflex arcs involving the parasympathetic nerves to the heart and eye and the sympathetic nerves to the iris. Further analysis revealed that right and left NCV were correlated (P less than 0.01), as were the median motor and median sensory NCV (P less than 0.01), the median motor and peroneal motor NCV (P less than 0.001), and the peroneal motor and median sensory NCV (P less than 0.001). Thus, there was evidence of symmetrical upper and lower limb, as well as motor and sensory proportional involvement of large nerve fiber NCV in this group of NIDD subjects.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:4075943

  17. Motor units in cross-reinnervated fast and slow twitch muscle of the cat.

    PubMed Central

    Bagust, J; Lewis, D M; Westerman, R A

    1981-01-01

    1. Isometric contractile properties of motor units were measured in cross-reinnervated fast (flexor digitorum longus) and slow (soleus) twitch muscles of the cat. All but one cross was at least 95% pure. 2. There was a reduction in the number of motor units in all muscles, but totals remained about equal in cross-reinnervated soleus and flexor digitorum longus. 3. Motor unit tensions (mean and maximum values) were higher in cross-reinnervated soleus than in cross-reinnervated flexor digitorum longus, reversing the differences between normal muscles. This was due to increases in muscle mass and in the tension developed per unit cross-sectional area. There were motor unit tensions larger and smaller than those seen in normal muscle, but the range was comparable with that seen in self-reinnervated muscle. 4. The changes in twitch time to peak of whole muscle following cross-reinnervations resulted from a change over the whole range of motor units. The conversion of soleus was less complete than that of flexor digitorum longus, and the time to peak of its fastest motor unit was twice as long as any seen in normal flexor digitorum longus. 5. In neither of the cross-reinnervated muscles were the fast contracting motor units larger than the slow contracting ones, and in cross-reinnervated soleus they were smaller. 6. Axonal conduction velocity was correlated with motor unit tension in both muscles and with twitch time to peak in cross-reinnervated flexor digitorum longus, but in all cases less clearly than in normal muscles. 7. The ratio of twitch to tetanic tension increased with increasing twitch time to peak, as in normal muscles. PMID:7277217

  18. Median and ulnar nerve conduction determinations in the Erb's point--axilla segment in normal subjects.

    PubMed Central

    Ginzburg, M; Lee, M; Ginzburg, J; Alba, A

    1978-01-01

    Twenty-one median and 22 ulnar nerves were tested in 12 patients for motor nerve conduction velocity (MNCV) and motor nerve conduction time (MNCT) in the segments from Erb's point (N) to axilla (A) bilaterally. It was found that on this segment for both nerves, MNCV values equal to or smaller than 51 m/s or conduction times equal to or longer than 4 ms are to be considered abnormal. For comparative studies and for checking the normality of the tested nerves in their entire length, the more distally located segments in the same nerve were also tested. For diagnostic purposes, the differences between right and left MNCV or MNCT values determined in the same person on N-A segments of homologous nerves were analysed. Motor nerve conduction velocity or MNCT determinations on the N-A nerve segment are expected to replace MNCV determinations on the longer N-AE (AE=100 mm above elbow) nerve segment, which is now in use, for diagnosis of the thoracic outlet syndrome. Images PMID:660207

  19. Mechanism of Cooperative Behavior in Systems of Slow and Fast Molecular Motors

    PubMed Central

    Larson, Adam G.; Landahl, Eric C.; Rice, Sarah E.

    2009-01-01

    Summary Two recent theoretical advances have described cargo transport by multiple identical motors and by multiple oppositely directed, but otherwise identical motors [1, 2]. Here we combine a similar theoretical approach with a simple experiment to describe the behavior of a system comprised of slow and fast molecular motors having the same directionality. We observed the movement of microtubules by mixtures of slow and fast kinesin motors attached to a glass coverslip in a classic sliding filament assay. The motors are identical, except that the slow ones contain five point mutations that collectively reduce their velocity ∼15-fold without compromising maximal ATPase activity. Our results indicate that a small fraction of fast motors are able to accelerate the dissociation of slow motors from microtubules. Because of this, a sharp, highly cooperative transition occurs from slow to fast microtubule movement as the relative number of fast motors in the assay is increased. Microtubules move at half-maximal velocity when only 15% of the motors in the assay are fast. Our model indicates that this behavior depends primarily on the relative motor velocities and the asymmetry between their forward and backward dissociation forces. It weakly depends on the number of motors and their processivity. We predict that movement of cargoes bound to two types of motors having very different velocities will be dominated by one or the other motor. Therefore, cargoes can potentially undergo abrupt changes in movement in response to regulatory mechanisms acting on only a small fraction of motors. PMID:19506764

  20. Cooperative cargo transport by several molecular motors

    PubMed Central

    Klumpp, Stefan; Lipowsky, Reinhard

    2005-01-01

    The transport of cargo particles that are pulled by several molecular motors in a cooperative manner is studied theoretically in this article. The transport properties depend primarily on the maximal number N of motor molecules that may pull simultaneously on the cargo particle. Because each motor must unbind from the filament after a finite number of steps but can also rebind to it again, the actual number of pulling motors is not constant but varies with time between zero and N. An increase in the maximal number N leads to a strong increase of the average walking distance (or run length) of the cargo particle. If the cargo is pulled by up to N kinesin motors, for example, the walking distance is estimated to be 5N–1/N micrometers, which implies that seven or eight kinesin molecules are sufficient to attain an average walking distance in the centimeter range. If the cargo particle is pulled against an external load force, this force is shared between the motors, which provides a nontrivial motor–motor coupling and a generic mechanism for nonlinear force–velocity relationships. With increasing load force, the probability distribution of the instantaneous velocity is shifted toward smaller values, becomes broader, and develops several peaks. Our theory is consistent with available experimental data and makes quantitative predictions that are accessible to systematic in vitro experiments. PMID:16287974

  1. Origin of the Low Velocity Zone

    NASA Astrophysics Data System (ADS)

    Stixrude, L. P.; Lithgow-Bertelloni, C. R.

    2014-12-01

    The origin of the low velocity zone is still not well understood, although the mechanisms responsible have important implications for the thermal evolution of the Earth and the origin of plate tectonics. The null hypothesis (a geotherm consisting of an adiabat and a conductive thermal boundary layer, and free of melt, water, and attenuation) accounts for many properties of the low velocity zone, including the depth at which the minimum velocity occurs and its variation with age, but the value of the minimum velocity is greater than that seen by seismology (the velocity deficit). Attenuation, as found in global seismic attenuation tomography, can explain much of the velocity deficit, but still leaves two features of the boundaries of the low velocity zone unexplained: an apparently abrupt upper boundary to the low velocity (G discontinuity, sometimes also associated with the "lithosphere-asthenosphere boundary"), and a high gradient zone beneath in which velocity increases with depth very rapidly. Here we show that by adding to the null hypothesis attenuation as recently measured experimentally, the entire velocity deficit is explained. Moreover, the upper boundary of the low velocity zone is remarkably abrupt, although possibly less sharp than receiver function analyses indicate. The high gradient zone is explained by variations in the entropy with depth, i.e. cooling with increasing depth at depths beneath the low velocity zone, a property of the geotherm that is expected on the basis of mantle convection simulations.

  2. Gross motor control

    MedlinePlus

    Gross motor control is the ability to make large, general movements (such as waving an arm or lifting a ... Gross motor control is a milestone in the development of an infant. Infants develop gross motor control before they ...

  3. Multifocal Motor Neuropathy

    MedlinePlus

    ... Diversity Find People About NINDS NINDS Multifocal Motor Neuropathy Information Page Table of Contents (click to jump ... done? Clinical Trials Organizations What is Multifocal Motor Neuropathy? Multifocal motor neuropathy is a progressive muscle disorder ...

  4. Human spinal cord injury: motor unit properties and behaviour.

    PubMed

    Thomas, C K; Bakels, R; Klein, C S; Zijdewind, I

    2014-01-01

    Spinal cord injury (SCI) results in widespread variation in muscle function. Review of motor unit data shows that changes in the amount and balance of excitatory and inhibitory inputs after SCI alter management of motoneurons. Not only are units recruited up to higher than usual relative forces when SCI leaves few units under voluntary control, the force contribution from recruitment increases due to elevation of twitch/tetanic force ratios. Force gradation and precision are also coarser with reduced unit numbers. Maximal unit firing rates are low in hand muscles, limiting voluntary strength, but are low, normal or high in limb muscles. Unit firing rates during spasms can exceed voluntary rates, emphasizing that deficits in descending drive limit force production. SCI also changes muscle properties. Motor unit weakness and fatigability seem universal across muscles and species, increasing the muscle weakness that arises from paralysis of units, motoneuron death and sensory impairment. Motor axon conduction velocity decreases after human SCI. Muscle contractile speed is also reduced, which lowers the stimulation frequencies needed to grade force when paralysed muscles are activated with patterned electrical stimulation. This slowing does not necessarily occur in hind limb muscles after cord transection in cats and rats. The nature, duration and level of SCI underlie some of these species differences, as do variations in muscle function, daily usage, tract control and fibre-type composition. Exploring this diversity is important to promote recovery of the hand, bowel, bladder and locomotor function most wanted by people with SCI. PMID:23901835

  5. A Preliminary Investigation on the Destruction of Solid-Propellant Rocket Motors by Impact from Small Particles

    NASA Technical Reports Server (NTRS)

    Carter, David J., Jr.

    1960-01-01

    An investigation was conducted to determine whether solid-propellant rocket motors could be ignited and destroyed by small-particle impacts at particle velocities up to a approximately 10,940 feet per second. Spheres ranging from 1/16 to 7/32 inch in diameter were fired into simulated rocket motors containing T-22 propellant over a range of ambient pressures from sea level to 0.12 inch of mercury absolute. Simulated cases of stainless steel, aluminum alloy, and laminated Fiberglas varied in thickness from 1/50 to 1/8 inch. Within the scope of this investigation, it was found that ignition and explosive destruction of simulated steel-case rocket motors could result from impacts by steel spheres at the lowest attainable pressure.

  6. Geostatistical Modeling of Pore Velocity

    SciTech Connect

    Devary, J.L.; Doctor, P.G.

    1981-06-01

    A significant part of evaluating a geologic formation as a nuclear waste repository involves the modeling of contaminant transport in the surrounding media in the event the repository is breached. The commonly used contaminant transport models are deterministic. However, the spatial variability of hydrologic field parameters introduces uncertainties into contaminant transport predictions. This paper discusses the application of geostatistical techniques to the modeling of spatially varying hydrologic field parameters required as input to contaminant transport analyses. Kriging estimation techniques were applied to Hanford Reservation field data to calculate hydraulic conductivity and the ground-water potential gradients. These quantities were statistically combined to estimate the groundwater pore velocity and to characterize the pore velocity estimation error. Combining geostatistical modeling techniques with product error propagation techniques results in an effective stochastic characterization of groundwater pore velocity, a hydrologic parameter required for contaminant transport analyses.

  7. Motor control for a brushless DC motor

    NASA Technical Reports Server (NTRS)

    Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)

    1985-01-01

    This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.

  8. Filament overwrapped motor case technology

    NASA Astrophysics Data System (ADS)

    Compton, Joel P.

    1993-11-01

    Atlantic Research Corporation (ARC) joined with the French Societe Europeenne de Propulsion (SEP) to develop and deliver to the U.S. Navy a small quantity of composite filament wound rocket motors to demonstrate a manufacturing technique that was being applied at the two companies. It was perceived that the manufacturing technique could produce motors that would be light in weight, inexpensive to produce, and that had a good chance of meeting insensitive munitions (IM) requirements that were being formulated by the Navy in the early 1980s. Under subcontract to ARC, SEP designed, tested, and delivered 2.75-inch rocket motors to the U.S. Navy for IM tests that were conducted in 1989 at China Lake, California. The program was one of the first to be founded by Nunn Amendment money. The Government-to-Government program was sponsored by the Naval Air Systems Command and was monitored by the Naval Surface Warfare Center, Indian Head (NSWC-IH), Maryland. The motor propellant that was employed was a new, extruded composite formulation that was under development at the Naval Surface Warfare Center. The following paper describes the highlights of the program and gives the results of structural and ballistic static tests and insensitive munitions tests that were conducted on demonstration motors.

  9. Cordycepin Decreases Compound Action Potential Conduction of Frog Sciatic Nerve In Vitro Involving Ca (2+) -Dependent Mechanisms.

    PubMed

    Yao, Li-Hua; Yu, Hui-Min; Xiong, Qiu-Ping; Sun, Wei; Xu, Yan-Liang; Meng, Wei; Li, Yu-Ping; Liu, Xin-Ping; Yuan, Chun-Hua

    2015-01-01

    Cordycepin has been widely used in oriental countries to maintain health and improve physical performance. Compound nerve action potential (CNAP), which is critical in signal conduction in the peripheral nervous system, is necessary to regulate physical performance, including motor system physiological and pathological processes. Therefore, regulatory effects of cordycepin on CNAP conduction should be elucidated. In this study, the conduction ability of CNAP in isolated frog sciatic nerves was investigated. Results revealed that cordycepin significantly decreased CNAP amplitude and conductive velocity in a reversible and concentration-dependent manner. At 50 mg/L cordycepin, CNAP amplitude and conductive velocity decreased by 62.18 ± 8.06% and 57.34% ± 6.14% compared with the control amplitude and conductive velocity, respectively. However, the depressive action of cordycepin on amplitude and conductive velocity was not observed in Ca(2+)-free medium or in the presence of Ca(2+) channel blockers (CdCl2/LaCl3). Pretreatment with L-type Ca(2+) channel antagonist (nifedipine/deltiazem) also blocked cordycepin-induced responses; by contrast, T-type and P-type Ca(2+) channel antagonists (Ni(2+)) failed to block such responses. Therefore, cordycepin decreased the conduction ability of CNAP in isolated frog sciatic nerves via L-type Ca(2+) channel-dependent mechanism. PMID:26078886

  10. Second messenger-mediated adjustment of bacterial swimming velocity.

    PubMed

    Boehm, Alex; Kaiser, Matthias; Li, Hui; Spangler, Christian; Kasper, Christoph Alexander; Ackermann, Martin; Kaever, Volkhard; Sourjik, Victor; Roth, Volker; Jenal, Urs

    2010-04-01

    Bacteria swim by means of rotating flagella that are powered by ion influx through membrane-spanning motor complexes. Escherichia coli and related species harness a chemosensory and signal transduction machinery that governs the direction of flagellar rotation and allows them to navigate in chemical gradients. Here, we show that Escherichia coli can also fine-tune its swimming speed with the help of a molecular brake (YcgR) that, upon binding of the nucleotide second messenger cyclic di-GMP, interacts with the motor protein MotA to curb flagellar motor output. Swimming velocity is controlled by the synergistic action of at least five signaling proteins that adjust the cellular concentration of cyclic di-GMP. Activation of this network and the resulting deceleration coincide with nutrient depletion and might represent an adaptation to starvation. These experiments demonstrate that bacteria can modulate flagellar motor output and thus swimming velocity in response to environmental cues. PMID:20303158

  11. High-speed electrical motor evaluation

    SciTech Connect

    Not Available

    1989-02-03

    Under this task, MTI conducted a general review of state-of-the-art high-speed motors. The purpose of this review was to assess the operating parameters, limitations and performance of existing motor designs, and to establish commercial sources for a motor compatible with the requirements of the Brayton-cycle system. After the motor requirements were established, a list of motor types, manufacturers and designs capable of achieving the requisite performance was compiled. This list was based on an in-house evaluation of designs. Following the establishment of these options, a technical evaluation of the designs selected was conducted. In parallel with their evaluations, MTI focused on the establishment of commercial sources.

  12. Dust particle velocity measurement

    NASA Technical Reports Server (NTRS)

    Thielman, L. O.

    1976-01-01

    A laser Doppler velocimeter was used to measure the velocity distributions for particles entering a vacuum chamber from the atmosphere through calibrated leaks. The relative number of particles per velocity interval was obtained for particulates of three size distributions and two densities passing through six different leak geometries. The velocity range 15 to 320 meters per second was investigated. Peak particle velocities were found to occur in the 15 to 150 meters per second range depending upon type of particle and leak geometry. A small fraction of the particles were found to have velocities in the 150 to 320 meters per second range.

  13. Dry deposition velocities

    SciTech Connect

    Sehmel, G.A.

    1984-03-01

    Dry deposition velocities are very difficult to predict accurately. In this article, reported values of dry deposition velocities are summarized. This summary includes values from the literature on field measurements of gas and particle dry deposition velocities, and the uncertainties inherent in extrapolating field results to predict dry deposition velocities are discussed. A new method is described for predicting dry deposition velocity using a least-squares correlation of surface mass transfer resistances evaluated in wind tunnel experiments. 14 references, 4 figures, 1 table.

  14. Note: A helical velocity selector for continuous molecular beams

    SciTech Connect

    Szewc, Carola; Collier, James D.; Ulbricht, Hendrik

    2010-10-15

    We report on a modern realization of the classic helical velocity selector for gas phase particle beams. The device operates stably under high vacuum conditions at rotational frequencies limited only by commercial dc motor capabilities. Tuning the rotational frequency allows selective scanning over a broad velocity band. The width of the selected velocity distributions at full-width-half-maximum is as narrow as a few percent of the selected mean velocity and independent of the rotational speed of the selector. The selector generates low vibrational noise amplitudes comparable to mechanically damped state-of-the-art turbo-molecular pumps and is therefore compatible with vibration sensitive experiments like molecule interferometry.

  15. Collective Dynamics of Elastically Coupled Myosin V Motors*

    PubMed Central

    Lu, Hailong; Efremov, Artem K.; Bookwalter, Carol S.; Krementsova, Elena B.; Driver, Jonathan W.; Trybus, Kathleen M.; Diehl, Michael R.

    2012-01-01

    Characterization of the collective behaviors of different classes of processive motor proteins has become increasingly important to understand various intracellular trafficking and transport processes. This work examines the dynamics of structurally-defined motor complexes containing two myosin Va (myoVa) motors that are linked together via a molecular scaffold formed from a single duplex of DNA. Dynamic changes in the filament-bound configuration of these complexes due to motor binding, stepping, and detachment were monitored by tracking the positions of different color quantum dots that report the position of one head of each myoVa motor on actin. As in studies of multiple kinesins, the run lengths produced by two myosins are only slightly larger than those of single motor molecules. This suggests that internal strain within the complexes, due to asynchronous motor stepping and the resultant stretching of motor linkages, yields net negative cooperative behaviors. In contrast to multiple kinesins, multiple myosin complexes move with appreciably lower velocities than a single-myosin molecule. Although similar trends are predicted by a discrete state stochastic model of collective motor dynamics, these analyses also suggest that multiple myosin velocities and run lengths depend on both the compliance and the effective size of their cargo. Moreover, it is proposed that this unique collective behavior occurs because the large step size and relatively small stalling force of myoVa leads to a high sensitivity of motor stepping rates to strain. PMID:22718762

  16. Experimental study for ablation rate of solid rocket motor internal insulation

    NASA Astrophysics Data System (ADS)

    He, Guoqiang; Chen, Jinghui; Ji, Chengwu; Kuang, Yueng; Wu, Zhonghua

    1993-08-01

    A test motor for screening and evaluating candidate insulation materials was designed and a technique for determining the average ablation rate of internal insulation materials was developed on the basis of many experiments. In subscale motor tests, material samples are placed inside this motor and internal pressure, velocity and angle of gases scouring are adjusted to approximate the full-scale motor conditions. Factors of insulation ablative rate, combustion gases pressure, gases velocity, angle of gases scouring, bonding seam and typical defects (craze, debonding, blowhole, inclusion), have been studied experimentally. The results are in agreement with measuring results of the full-scale motor.

  17. Experimental study for ablation rate of solid rocket motor internal insulation

    NASA Astrophysics Data System (ADS)

    He, Guoqiang; Chen, Jinghui; Ji, Chengwu; Kuang, Yueng; Wu, Zhonghua

    1993-08-01

    A test motor for selecting and evaluating candidate insulation materials was designed and a technique for determining their average ablation rate was developed. In subscale motor tests, the material samples were placed inside this motor, and the internal pressure, velocity, and angle of gas scouring were adjusted to approximate the full-scale motor conditions. Factors of insulation ablation rate, combustion gas pressure, gas velocity, angle of gas scouring, and bonding seam and typical defects (craze, debonding, blowhole, inclusion) were studied experimentally. The results are in agreement with the measured results from a full scale motor.

  18. Course 3: Modelling Motor Protein Systems

    NASA Astrophysics Data System (ADS)

    Duke, T.

    Contents 1 Making a move: Principles of energy transduction 1.1 Motor proteins and Carnot engines 1.2 Simple Brownian ratchet 1.3 Polymerization ratchet 1.4 Isothermal ratchets 1.5 Motor proteins as isothermal ratchets 1.6 Design principles for effective motors 2 Pulling together: Mechano-chemical model of actomyosin 2.1 Swinging lever-arm model 2.2 Mechano-chemical coupling 2.3 Equivalent isothermal ratchet 2.4 Many motors working together 2.5 Designed to work 2.6 Force-velocity relation 2.7 Dynamical instability and biochemical synchronization 2.8 Transient response ofmuscle 3 Motors at work: Collective properties of motor proteins 3.1 Dynamical instabilities 3.2 Bidirectional movement 3.3 Critical behaviour 3.4 Oscillations 3.5 Dynamic buckling instability 3.6 Undulation of flagella 4 Sense and sensitivity: Mechano-sensation in hearing 4.1 System performance 4.2 Mechano-sensors: Hair bundles 4.3 Active amplification 4.4 Self-tuned criticality 4.5 Motor-driven oscillations 4.6 Channel compliance and relaxation oscillations 4.7 Channel-driven oscillations 4.8 Hearing at the noise limit

  19. Results of a 24-inch Hybrid Motor Performance Uncertainty Analysis

    NASA Technical Reports Server (NTRS)

    Sims, Joseph D.; Coleman, Hugh W.

    1998-01-01

    The subscale (11 and 24-inch) hybrid motors at the Marshall Space Flight Center (MSFC) have been used as versatile and cost effective testbeds for developing new technology. Comparisons between motor configuration, ignition systems, feed systems, fuel formulations, and nozzle materials have been carried out without detailed consideration as to haw "good" the motor performance data were. For the 250,000 lb/thrust motor developed by the Hybrid Propulsion Demonstration Program consortium, this shortcoming is particularly risky because motor performance will likely be used as put of a set of downselect criteria to choose between competing ignition and feed systems under development. This analysis directly addresses that shortcoming by applying uncertainty analysis techniques to the experimental determination of the characteristic velocity, theoretical characteristic velocity, and characteristic velocity efficiency for a 24-inch motor firing. With the adoption of fuel-lined headends, flow restriction, and aft mixing chambers, state of the an 24-inch hybrid motors have become very efficient However, impossibly high combustion efficiencies (some computed as high as 108%) have been measured in some tests with 11-inch motors. This analysis has given new insight into explaining how these efficiencies were measured to be so high, and into which experimental measurements contribute the most to the overall uncertainty.

  20. Numerical study of the unsteady flow in a simulated solid rocket motor

    NASA Astrophysics Data System (ADS)

    Smith, T. M.; Roach, R. L.; Flandro, G. A.

    1993-01-01

    Recently conducted experiments by Brown et al. and analysis by Flandro have demonstrated that the acoustically driven flow in a cold flow solid rocket simulator varies greatly from the simple plane wave model. The magnitude of the axial velocity component near the wall is almost double the centerline magnitude and the phase shift is nearly zero. Interaction of the acoustic signal with the vorticity field in the mean flow accounts for this strange behavior. This work reports the progress on the development of a procedure to capture the delicate unsteady acoustic/vorticity transport phenomena in acoustically excited solid rocket motors. The numerical scheme is based on the Beam and Warming approximate factorization scheme that solves the unsteady compressible Navier-Stokes equations as applied to the flows in solid rocket motors.

  1. Angular velocity discrimination

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.

    1990-01-01

    Three experiments designed to investigate the ability of naive observers to discriminate rotational velocities of two simultaneously viewed objects are described. Rotations are constrained to occur about the x and y axes, resulting in linear two-dimensional image trajectories. The results indicate that observers can discriminate angular velocities with a competence near that for linear velocities. However, perceived angular rate is influenced by structural aspects of the stimuli.

  2. About measuring velocity dispersions

    NASA Astrophysics Data System (ADS)

    Fellhauer, M.

    A lot of our knowledge about the dynamics and total masses of pressure dominated stellar systems relies on measuring the internal velocity disper- sion of the system. We assume virial equilibrium and that we are able to measure only the bound stars of the system without any contamination. This article shows how likely it is to measure the correct velocity dispersion in reality. It will show that as long as we have small samples of velocity mea- surements the distribution of possible outcomes can be very large and as soon as we have a source of error the velocity dispersion can wrong by several standard deviations especially in large samples.

  3. Magnetic-motor-root stimulation: review.

    PubMed

    Matsumoto, Hideyuki; Hanajima, Ritsuko; Terao, Yasuo; Ugawa, Yoshikazu

    2013-06-01

    Magnetic stimulation can activate the human central and peripheral nervous systems non-invasively and virtually painlessly. Magnetic stimulation over the spinal enlargements can activate spinal nerves at the neuroforamina (magnetic-neuroforamina stimulation). This stimulation method provides us with information related to the latency of compound-muscle action potential (CMAP), which is usually interpreted as peripheral motor-conduction time (PMCT). However, this stimulation method has faced several problems in clinical applications. One is that supramaximal CMAPs were unobtainable. Another is that magnetic stimulation did not usually activate the spinal nerves in the spinal canal, i.e., the cauda equina, which prevented an evaluation of its conduction. For these reasons, magnetic-neuroforamina stimulation was rarely used to evaluate the conduction of peripheral nerves. It was mainly used to evaluate the conduction of the corticospinal tract using the parameter of central motor-conduction time (CMCT), which was calculated by subtracting PMCT from the latency of motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) over the primary motor cortex. Recently, supramaximal stimulation has been achieved in magnetic-neuroforamina stimulation, and this has contributed to the measurement of both CMAP size and latency. The achievement of supramaximal stimulation is ascribed to the increase in magnetic-stimulator output and a novel coil, the magnetic augmented translumbosacral stimulation (MATS) coil. The most proximal part of the cauda equina can be reliably activated using the MATS coil (magnetic-conus stimulation), thus contributing to the measurement of cauda equina conduction time (CECT) and cortico-conus motor-conduction time (CCCT). These recent developments in magnetic-motor-root stimulation enable us to more precisely evaluate the conduction of the proximal part of peripheral nerves and that of the corticospinal tract for lower-limb muscles

  4. Effect of low frequency transcutaneous magnetic stimulation on sensory and motor transmission.

    PubMed

    Leung, Albert; Shukla, Shivshil; Lee, Jacquelyn; Metzger-Smith, Valerie; He, Yifan; Chen, Jeffrey; Golshan, Shahrokh

    2015-09-01

    Peripheral nerve injury diminishes fast conducting large myelinated afferent fibers transmission but enhances smaller pain transmitting fibers firing. This aberrant afferent neuronal behavior contributes to development of chronic post-traumatic peripheral neuropathic pain (PTP-NP). Non-invasive dynamic magnetic flux stimulation has been implicated in treating PTP-NP, a condition currently not adequately addressed by other therapies including transcutaneous electrical nerve stimulation (TENS). The current study assessed the effect of low frequency transcutaneous magnetic stimulation (LFTMS) on peripheral sensory thresholds, nerve conduction properties, and TENS induced fast afferent slowing effect as measured by motor and sensory conduction studies in the ulnar nerve. Results indicated sham LFTMS with TENS (Sham + TENS) significantly (P = 0.02 and 0.007, respectively) reduces sensory conduction velocity (CV) and increases sensory onset latency (OL), and motor peak latency (PL) whereas, real LFTMS with TENS (Real + TENS) reverses effects of TENS on sensory CV and OL, and significantly (P = 0.036) increases the sensory PL. LFTMS alone significantly (P < 0.05) elevates sensory PL and onset-to-peak latency. LFTMS appears to reverse TENS slowing effect on fast conducting fibers and casts a selective peripheral modulatory effect on slow conducting pain afferent fibers. PMID:25989482

  5. A rotary-shear low to high-velocity friction apparatus in Beijing to study rock friction at plate to seismic slip rates

    NASA Astrophysics Data System (ADS)

    Ma, Shengli; Shimamoto, Toshihiko; Yao, Lu; Togo, Tetsuhiro; Kitajima, Hiroko

    2014-10-01

    This paper reviews 19 apparatuses having high-velocity capabilities, describes a rotary-shear low to high-velocity friction apparatus installed at Institute of Geology, China Earthquake Administration, and reports results from velocity-jump tests on Pingxi fault gouge to illustrate technical problems in conducting velocity-stepping tests at high velocities. The apparatus is capable of producing plate to seismic velocities (44 mm/a to 2.1 m/s for specimens of 40 mm in diameter), using a 22 kW servomotor with a gear/belt system having three velocity ranges. A speed range can be changed by 103 or 106 by using five electromagnetic clutches without stopping the motor. Two cam clutches allow fivefold velocity steps, and the motor speed can be increased from zero to 1,500 rpm in 0.1-0.2 s by changing the controlling voltage. A unique feature of the apparatus is a large specimen chamber where different specimen assemblies can be installed easily. In addition to a standard specimen assembly for friction experiments, two pressure vessels were made for pore pressures to 70 MPa; one at room temperature and the other at temperatures to 500 °C. Velocity step tests are needed to see if the framework of rate-and-state friction is applicable or not at high velocities. We report results from velocity jump tests from 1.4 mm/s to 1.4 m/s on yellowish gouge from a Pingxi fault zone, located at the northeastern part of the Longmenshan fault system that caused the 2008 Wenchuan earthquake. An instantaneous increase in friction followed by dramatic slip weakening was observed for the yellowish gouge with smooth sliding surfaces of host rock, but no instantaneous response was recognized for the same gouge with roughened sliding surfaces. Instantaneous and transient frictional properties upon velocity steps cannot be separated easily at high velocities, and technical improvements for velocity step tests are suggested.

  6. A rotary-shear low to high-velocity friction apparatus in Beijing to study rock friction at plate to seismic slip rates

    NASA Astrophysics Data System (ADS)

    Ma, Shengli; Shimamoto, Toshihiko; Yao, Lu; Togo, Tetsuhiro; Kitajima, Hiroko

    2014-09-01

    This paper reviews 19 apparatuses having high-velocity capabilities, describes a rotary-shear low to high-velocity friction apparatus installed at Institute of Geology, China Earthquake Administration, and reports results from velocity-jump tests on Pingxi fault gouge to illustrate technical problems in conducting velocity-stepping tests at high velocities. The apparatus is capable of producing plate to seismic velocities (44 mm/a to 2.1 m/s for specimens of 40 mm in diameter), using a 22 kW servomotor with a gear/belt system having three velocity ranges. A speed range can be changed by 103 or 106 by using five electromagnetic clutches without stopping the motor. Two cam clutches allow fivefold velocity steps, and the motor speed can be increased from zero to 1,500 rpm in 0.1-0.2 s by changing the controlling voltage. A unique feature of the apparatus is a large specimen chamber where different specimen assemblies can be installed easily. In addition to a standard specimen assembly for friction experiments, two pressure vessels were made for pore pressures to 70 MPa; one at room temperature and the other at temperatures to 500 °C. Velocity step tests are needed to see if the framework of rate-and-state friction is applicable or not at high velocities. We report results from velocity jump tests from 1.4 mm/s to 1.4 m/s on yellowish gouge from a Pingxi fault zone, located at the northeastern part of the Longmenshan fault system that caused the 2008 Wenchuan earthquake. An instantaneous increase in friction followed by dramatic slip weakening was observed for the yellowish gouge with smooth sliding surfaces of host rock, but no instantaneous response was recognized for the same gouge with roughened sliding surfaces. Instantaneous and transient frictional properties upon velocity steps cannot be separated easily at high velocities, and technical improvements for velocity step tests are suggested.

  7. Directed flux motor

    NASA Technical Reports Server (NTRS)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2011-01-01

    A directed flux motor described utilizes the directed magnetic flux of at least one magnet through ferrous material to drive different planetary gear sets to achieve capabilities in six actuated shafts that are grouped three to a side of the motor. The flux motor also utilizes an interwoven magnet configuration which reduces the overall size of the motor. The motor allows for simple changes to modify the torque to speed ratio of the gearing contained within the motor as well as simple configurations for any number of output shafts up to six. The changes allow for improved manufacturability and reliability within the design.

  8. Diffusive Promotion by Velocity Gradient of Cytoplasmic Streaming (CPS) in Nitella Internodal Cells.

    PubMed

    Kikuchi, Kenji; Mochizuki, Osamu

    2015-01-01

    Cytoplasmic streaming (CPS) is well known to assist the movement of nutrients, organelles and genetic material by transporting all of the cytoplasmic contents of a cell. CPS is generated by motility organelles that are driven by motor proteins near a membrane surface, where the CPS has been found to have a flat velocity profile in the flow field according to the sliding theory. There is a consistent mixing of contents inside the cell by CPS if the velocity gradient profile is flattened, which is not assisted by advection diffusion but is only supported by Brownian diffusion. Although the precise flow structure of the cytoplasm has an important role for cellular metabolism, the hydrodynamic mechanism of its convection has not been clarified. We conducted an experiment to visualise the flow of cytoplasm in Nitella cells by injecting tracer fluorescent nanoparticles and using a flow visualisation system in order to understand how the flow profile affects their metabolic system. We determined that the velocity field in the cytosol has an obvious velocity gradient, not a flattened gradient, which suggests that the gradient assists cytosolic mixing by Taylor-Aris dispersion more than by Brownian diffusion. PMID:26694322

  9. Diffusive Promotion by Velocity Gradient of Cytoplasmic Streaming (CPS) in Nitella Internodal Cells

    PubMed Central

    Kikuchi, Kenji; Mochizuki, Osamu

    2015-01-01

    Cytoplasmic streaming (CPS) is well known to assist the movement of nutrients, organelles and genetic material by transporting all of the cytoplasmic contents of a cell. CPS is generated by motility organelles that are driven by motor proteins near a membrane surface, where the CPS has been found to have a flat velocity profile in the flow field according to the sliding theory. There is a consistent mixing of contents inside the cell by CPS if the velocity gradient profile is flattened, which is not assisted by advection diffusion but is only supported by Brownian diffusion. Although the precise flow structure of the cytoplasm has an important role for cellular metabolism, the hydrodynamic mechanism of its convection has not been clarified. We conducted an experiment to visualise the flow of cytoplasm in Nitella cells by injecting tracer fluorescent nanoparticles and using a flow visualisation system in order to understand how the flow profile affects their metabolic system. We determined that the velocity field in the cytosol has an obvious velocity gradient, not a flattened gradient, which suggests that the gradient assists cytosolic mixing by Taylor–Aris dispersion more than by Brownian diffusion. PMID:26694322

  10. Optimisation of the mean boat velocity in rowing.

    PubMed

    Rauter, G; Baumgartner, L; Denoth, J; Riener, R; Wolf, P

    2012-01-01

    In rowing, motor learning may be facilitated by augmented feedback that displays the ratio between actual mean boat velocity and maximal achievable mean boat velocity. To provide this ratio, the aim of this work was to develop and evaluate an algorithm calculating an individual maximal mean boat velocity. The algorithm optimised the horizontal oar movement under constraints such as the individual range of the horizontal oar displacement, individual timing of catch and release and an individual power-angle relation. Immersion and turning of the oar were simplified, and the seat movement of a professional rower was implemented. The feasibility of the algorithm, and of the associated ratio between actual boat velocity and optimised boat velocity, was confirmed by a study on four subjects: as expected, advanced rowing skills resulted in higher ratios, and the maximal mean boat velocity depended on the range of the horizontal oar displacement. PMID:21491254

  11. Reliable Diameter Control of Carbon Nanotube Nanobundles Using Withdrawal Velocity.

    PubMed

    Shin, Jung Hwal; Kim, Kanghyun; An, Taechang; Choi, WooSeok; Lim, Geunbae

    2016-12-01

    Carbon nanotube (CNT) nanobundles are widely used in nanoscale imaging, fabrication, and electrochemical and biological sensing. The diameter of CNT nanobundles should be controlled precisely, because it is an important factor in determining electrode performance. Here, we fabricated CNT nanobundles on tungsten tips using dielectrophoresis (DEP) force and controlled their diameters by varying the withdrawal velocity of the tungsten tips. Withdrawal velocity pulling away from the liquid-air interface could be an important, reliable parameter to control the diameter of CNT nanobundles. The withdrawal velocity was controlled automatically and precisely with a one-dimensional motorized stage. The effect of the withdrawal velocity on the diameter of CNT nanobundles was analyzed theoretically and compared with the experimental results. Based on the attachment efficiency, the withdrawal velocity is inversely proportional to the diameter of the CNT nanobundles; this has been demonstrated experimentally. Control of the withdrawal velocity will play an important role in fabricating CNT nanobundles using DEP phenomena. PMID:27581602

  12. Ice crystal terminal velocities.

    NASA Technical Reports Server (NTRS)

    Heymsfield, A.

    1972-01-01

    Terminal velocities of different ice crystal forms were calculated, using the most recent ice crystal drag coefficients, aspect ratios, and densities. The equations derived were primarily for use in calculating precipitation rates by sampling particles with an aircraft in cirrus clouds, and determining particle size in cirrus clouds by Doppler radar. However, the equations are sufficiently general for determining particle terminal velocity at any altitude, and almost any crystal type. Two sets of equations were derived. The 'general' equations provide a good estimate of terminal velocities at any altitude. The 'specific' equations are a set of equations for ice crystal terminal velocities at 1000 mb. The calculations are in good agreement with terminal velocity measurements. The results from the present study were also compared to prior calculations by others and seem to give more reasonable results, particularly at higher altitudes.

  13. Stepwise shockwave velocity determinator

    NASA Technical Reports Server (NTRS)

    Roth, Timothy E.; Beeson, Harold

    1992-01-01

    To provide an uncomplicated and inexpensive method for measuring the far-field velocity of a surface shockwave produced by an explosion, a stepwise shockwave velocity determinator (SSVD) was developed. The velocity determinator is constructed of readily available materials and works on the principle of breaking discrete sensors composed of aluminum foil contacts. The discrete sensors have an average breaking threshold of approximately 7 kPa. An incremental output step of 250 mV is created with each foil contact breakage and is logged by analog-to-digital instrumentation. Velocity data obtained from the SSVD is within approximately 11 percent of the calculated surface shockwave velocity of a muzzle blast from a 30.06 rifle.

  14. Cold-Flow Study of Low Frequency Pressure Instability in Hybrid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Jenkins, Rhonald M.

    1997-01-01

    Past experience with hybrid rockets has shown that certain motor operating conditions are conducive to the formation of low frequency pressure oscillations, or flow instabilities, within the motor. Both past and present work in the hybrid propulsion community acknowledges deficiencies in the understanding of such behavior, though it seems probable that the answer lies in an interaction between the flow dynamics and the combustion heat release. Knowledge of the fundamental flow dynamics is essential to the basic understanding of the overall stability problem. A first step in this direction was a study conducted at NASA Marshall Space Flight Center (MSFC), centered around a laboratory-scale two dimensional water flow model of a hybrid rocket motor. Principal objectives included: (1) visualization of flow and measurement of flow velocity distributions: (2) assessment of the importance of shear layer instabilities in driving motor pressure oscillations; (3) determination of the interactions between flow induced shear layers with the mainstream flow, the secondary (wall) throughflow, and solid boundaries; (4) investigation of the interactions between wall flow oscillations and the mainstream flow pressure distribution.

  15. Fine motor control

    MedlinePlus

    ... figure out the child's developmental age. Children develop fine motor skills over time, by practicing and being taught. To have fine motor control, children need: Awareness and planning Coordination ...

  16. Chronic motor tic disorder

    MedlinePlus

    Chronic vocal tic disorder; Tic - chronic motor tic disorder ... Chronic motor tic disorder is more common than Tourette syndrome . Chronic tics may be forms of Tourette syndrome. Tics usually start ...

  17. James Webb Space Telescope Deployment Brushless DC Motor Characteristics Analysis

    NASA Technical Reports Server (NTRS)

    Tran, Ahn N.

    2016-01-01

    A DC motor's performance is usually characterized by a series of tests, which are conducted by pass/fail criteria. In most cases, these tests are adequate to address the performance characteristics under environmental and loading effects with some uncertainties and decent power/torque margins. However, if the motor performance requirement is very stringent, a better understanding of the motor characteristics is required. The purpose of this paper is to establish a standard way to extract the torque components of the brushless motor and gear box characteristics of a high gear ratio geared motor from the composite geared motor testing and motor parameter measurement. These torque components include motor magnetic detent torque, Coulomb torque, viscous torque, windage torque, and gear tooth sliding torque. The Aerospace Corp bearing torque model and MPB torque models are used to predict the Coulomb torque of the motor rotor bearings and to model the viscous components. Gear tooth sliding friction torque is derived from the dynamo geared motor test data. With these torque data, the geared motor mechanical efficiency can be estimated and provide the overall performance of the geared motor versus several motor operating parameters such as speed, temperature, applied current, and transmitted power.

  18. Smart motor technology

    NASA Technical Reports Server (NTRS)

    Packard, D.; Schmitt, D.

    1984-01-01

    Current spacecraft design relies upon microprocessor control; however, motors usually require extensive additional electronic circuitry to interface with these microprocessor controls. An improved control technique that allows a smart brushless motor to connect directly to a microprocessor control system is described. An actuator with smart motors receives a spacecraft command directly and responds in a closed loop control mode. In fact, two or more smart motors can be controlled for synchronous operation.

  19. Energy-efficient electric motors study

    NASA Astrophysics Data System (ADS)

    1981-03-01

    A survey conducted of purchasers of integral horsepower polyphase motors measured current knowledge of and awareness of energy efficient motors, decision making criteria, information sources, purchase and usage patterns, and related factors. The data obtained were used for the electric motor market penetration analysis. Additionally, a telephone survey was made. The study also provides analyses of distribution channels, commercialization constraints, and the impacts of government programs and rising energy prices. Study findings, conclusions, and recommendations are presented. Sample questionnaires and copies of letters to respondents are presented in appendices as well as descriptions of the methods used.

  20. FAME Radial Velocity Survey

    NASA Astrophysics Data System (ADS)

    Salim, S.; Gould, A.

    2000-12-01

    Full-Sky Astrometric Mapping Explorer (FAME) belongs to a new generation of astrometry satellites and will probe the surrounding space some 20 times deeper than its predecessor Hipparcos. As a result we will acquire precise knowledge of 5 out of 6 components of phase-space for millions of stars. The remaining coordinate, radial velocity, will remain unknown. In this study, we look at how the knowledge of radial velocity affects the determination of the structure of the Galaxy, and its gravitational potential. We therefore propose a radial velocity survey of FAME stars, and discuss its feasibility and technical requirements.

  1. Tubulin Acetylation Alone Does Not Affect Kinesin-1 Velocity and Run Length In Vitro

    PubMed Central

    Walter, Wilhelm J.; Beránek, Václav; Fischermeier, Elisabeth; Diez, Stefan

    2012-01-01

    Kinesin-1 plays a major role in anterograde transport of intracellular cargo along microtubules. Currently, there is an ongoing debate of whether α-tubulin K40 acetylation directly enhances the velocity of kinesin-1 and its affinity to the microtubule track. We compared motor motility on microtubules reconstituted from acetylated and deacetylated tubulin. For both, single- and multi-motor in vitro motility assays, we demonstrate that tubulin acetylation alone does not affect kinesin-1 velocity and run length. PMID:22870307

  2. Optimizing rotary processes in synthetic molecular motors

    PubMed Central

    Geertsema, Edzard M.; van der Molen, Sense Jan; Martens, Marco; Feringa, Ben L.

    2009-01-01

    We deal with the issue of quantifying and optimizing the rotation dynamics of synthetic molecular motors. For this purpose, the continuous four-stage rotation behavior of a typical light-activated molecular motor was measured in detail. All reaction constants were determined empirically. Next, we developed a Markov model that describes the full motor dynamics mathematically. We derived expressions for a set of characteristic quantities, i.e., the average rate of quarter rotations or “velocity,” V, the spread in the average number of quarter rotations, D, and the dimensionless Péclet number, Pe = V/D. Furthermore, we determined the rate of full, four-step rotations (Ωeff), from which we derived another dimensionless quantity, the “rotational excess,” r.e. This quantity, defined as the relative difference between total forward (Ω+) and backward (Ω−) full rotations, is a good measure of the unidirectionality of the rotation process. Our model provides a pragmatic tool to optimize motor performance. We demonstrate this by calculating V, D, Pe, Ωeff, and r.e. for different rates of thermal versus photochemical energy input. We find that for a given light intensity, an optimal temperature range exists in which the motor exhibits excellent efficiency and unidirectional behavior, above or below which motor performance decreases. PMID:19805100

  3. Optimizing rotary processes in synthetic molecular motors.

    PubMed

    Geertsema, Edzard M; van der Molen, Sense Jan; Martens, Marco; Feringa, Ben L

    2009-10-01

    We deal with the issue of quantifying and optimizing the rotation dynamics of synthetic molecular motors. For this purpose, the continuous four-stage rotation behavior of a typical light-activated molecular motor was measured in detail. All reaction constants were determined empirically. Next, we developed a Markov model that describes the full motor dynamics mathematically. We derived expressions for a set of characteristic quantities, i.e., the average rate of quarter rotations or "velocity," V, the spread in the average number of quarter rotations, D, and the dimensionless Péclet number, Pe = V/D. Furthermore, we determined the rate of full, four-step rotations (Omega(eff)), from which we derived another dimensionless quantity, the "rotational excess," r.e. This quantity, defined as the relative difference between total forward (Omega(+)) and backward (Omega(-)) full rotations, is a good measure of the unidirectionality of the rotation process. Our model provides a pragmatic tool to optimize motor performance. We demonstrate this by calculating V, D, Pe, Omega(eff), and r.e. for different rates of thermal versus photochemical energy input. We find that for a given light intensity, an optimal temperature range exists in which the motor exhibits excellent efficiency and unidirectional behavior, above or below which motor performance decreases. PMID:19805100

  4. Investigation of Slipstream Velocity

    NASA Technical Reports Server (NTRS)

    Crowley, J W , Jr

    1925-01-01

    These experiments were made at the request of the Bureau of Aeronautics, Navy Department, to investigate the velocity of the air in the slipstream in horizontal and climbing flight to determine the form of expression giving the slipstream velocity in terms of the airspeed of the airplane. The method used consisted in flying the airplane both on a level course and in climb at full throttle and measuring the slipstream velocity at seven points in the slipstream for the whole speed range of the airplane in both conditions. In general the results show that for both condition, horizontal and climbing flights, the slipstream velocity v subscript 3 and airspeed v can be represented by straight lines and consequently the equations are of the form: v subscript s = mv+b where m and b are constant. (author)

  5. High Velocity Gas Gun

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A video tape related to orbital debris research is presented. The video tape covers the process of loading a High Velocity Gas Gun and firing it into a mounted metal plate. The process is then repeated in slow motion.

  6. Velocity of Sound

    ERIC Educational Resources Information Center

    Gillespie, A.

    1975-01-01

    Describes a method for the determination of the velocity of sound using a dual oscilloscope on which is displayed the sinusoidal input into a loudspeaker and the signal picked up by a microphone. (GS)

  7. Mean velocity and moments of turbulent velocity fluctuations in the wake of a model ship propulsor

    NASA Astrophysics Data System (ADS)

    Pêgo, J. P.; Lienhart, H.; Durst, F.

    2007-08-01

    Pod drives are modern outboard ship propulsion systems with a motor encapsulated in a watertight pod, whose shaft is connected directly to one or two propellers. The whole unit hangs from the stern of the ship and rotates azimuthally, thus providing thrust and steering without the need of a rudder. Force/momentum and phase-resolved laser Doppler anemometry (LDA) measurements were performed for in line co-rotating and contra-rotating propellers pod drive models. The measurements permitted to characterize these ship propulsion systems in terms of their hydrodynamic characteristics. The torque delivered to the propellers and the thrust of the system were measured for different operation conditions of the propellers. These measurements lead to the hydrodynamic optimization of the ship propulsion system. The parameters under focus revealed the influence of distance between propeller planes, propeller frequency of rotation ratio and type of propellers (co- or contra-rotating) on the overall efficiency of the system. Two of the ship propulsion systems under consideration were chosen, based on their hydrodynamic characteristics, for a detailed study of the swirling wake flow by means of laser Doppler anemometry. A two-component laser Doppler system was employed for the velocity measurements. A light barrier mounted on the axle of the rear propeller motor supplied a TTL signal to mark the beginning of each period, thus providing angle information for the LDA measurements. Measurements were conducted for four axial positions in the slipstream of the pod drive models. The results show that the wake of contra-rotating propeller is more homogeneous than when they co-rotate. In agreement with the results of the force/momentum measurements and with hypotheses put forward in the literature (see e.g. Poehls in Entwurfsgrundlagen für Schraubenpropeller, 1984; Schneekluth in Hydromechanik zum Schiffsentwurf, 1988; Breslin and Andersen in Hydrodynamics of ship propellers, 1996

  8. Field comparison of the point velocity probe with other groundwater velocity measurement methods

    NASA Astrophysics Data System (ADS)

    Labaky, W.; Devlin, J. F.; Gillham, R. W.

    2009-04-01

    Field testing of a new tool for measuring groundwater velocities at the centimeter scale, the point velocity probe (PVP), was undertaken at Canadian Forces Base, Borden, Ontario, Canada. The measurements were performed in a sheet pile-bounded alleyway in which bulk flow rate and direction could be controlled. PVP velocities were compared with those estimated from bulk flow, a Geoflo® instrument, borehole dilution, colloidal borescope measurements, and a forced gradient tracer test. In addition, the velocity profiles were compared with vertical variations in hydraulic conductivity (K) measured by permeameter testing of core samples and in situ high-resolution slug tests. There was qualitative agreement between the trends in velocity and K among all the various methods. The PVP and Geoflo® meter tests returned average velocity magnitudes of 30.2 ± 7.7 to 34.7 ± 13.1 cm/d (depending on prior knowledge of flow direction in PVP tests) and 36.5 ± 10.6, respectively, which were near the estimated bulk velocity (20 cm/d). The other direct velocity measurement techniques yielded velocity estimates 5 to 12 times the bulk velocity. Best results with the PVP instrument were obtained by jetting the instrument into place, though this method may have introduced a slight positive bias to the measured velocities. The individual estimates of point velocity direction varied, but the average of the point velocity directions agreed quite well with the expected bulk flow direction. It was concluded that the PVP method is a viable technique for use in the field, where high-resolution velocity data are required.

  9. Solid propellant motor

    NASA Technical Reports Server (NTRS)

    Shafer, J. I.; Marsh, H. E., Jr. (Inventor)

    1978-01-01

    A case bonded end burning solid propellant rocket motor is described. A propellant with sufficiently low modulus to avoid chamber buckling on cooling from cure and sufficiently high elongation to sustain the stresses induced without cracking is used. The propellant is zone cured within the motor case at high pressures equal to or approaching the pressure at which the motor will operate during combustion. A solid propellant motor with a burning time long enough that its spacecraft would be limited to a maximum acceleration of less than 1 g is provided by one version of the case bonded end burning solid propellant motor of the invention.

  10. Motor/generator

    DOEpatents

    Hickam, Christopher Dale

    2008-05-13

    A motor/generator is provided for connecting between a transmission input shaft and an output shaft of a prime mover. The motor/generator may include a motor/generator housing, a stator mounted to the motor/generator housing, a rotor mounted at least partially within the motor/generator housing and rotatable about a rotor rotation axis, and a transmission-shaft coupler drivingly coupled to the rotor. The transmission-shaft coupler may include a clamp, which may include a base attached to the rotor and a plurality of adjustable jaws.

  11. Motor vehicle safety during pregnancy

    PubMed Central

    Vladutiu, Catherine J.; Weiss, Harold B.

    2013-01-01

    Motor vehicle crashes during pregnancy are the leading cause of traumatic fetal mortality and serious maternal injury morbidity and mortality in the United States, injuring approximately 92,500 pregnant women each year. Little is known about the circumstances surrounding these crash events and the maternal characteristics that may increase women’s vulnerability to crash-related injuries during pregnancy. Even less is known about the effects of crashes on fetal outcomes. Crash simulation studies using female anthropomorphic test devices and computational models have been conducted to better understand the mechanisms of maternal and fetal injuries and death resulting from motor vehicle crashes. In addition, several case reports describing maternal and fetal outcomes following crashes have been published in the literature. Only a few population-based studies have explored the association between motor vehicle crashes and adverse maternal and/or fetal outcomes and even fewer have examined the effectiveness of seat belts and/or airbags in reducing the risk of these outcomes. This paper reviews what is presently known about motor vehicle crashes during pregnancy, their effects on maternal and fetal outcomes, and the role of vehicle safety devices and other safety approaches in mitigating the occurrence and severity of maternal crashes and subsequent injuries. In addition, this paper suggests interventions targeted towards the prevention of crashes during pregnancy. PMID:23710161

  12. Blue Origin Conducts Pad Escape Test

    NASA Video Gallery

    Blue Origin conducted a successful pad escape test Oct. 19 at the company's West Texas launch site, firing its pusher escape motor and launching a full-scale suborbital crew capsule from a simulate...

  13. Patterns of orofacial movement velocity across variations in speech rate.

    PubMed

    McClean, M D

    2000-02-01

    To understand the clinical aspects of speech rate control, a clearer picture is needed of how orofacial structures are coordinated across variations in speech rate. To address this problem, patterns of orofacial tangential velocity or speed were analyzed in a group of 9 normal speakers as they produced the utterance "a bad daba" at fast, normal, and slow speech rates. An electromagnetic system was used to record the movements of the upper lip, lower lip, jaw, and tongue. Measures of the magnitude of peak tangential velocities were obtained across the four structures. Orofacial velocities consistently decreased at slow rates relative to normal rates, whereas at fast rates increased and decreased velocities were observed in an equivalent number of cases. Significant correlations frequently were obtained across speech rate between lip, tongue, and jaw velocities. Upper and lower lip velocities showed consistent positive correlations with one another, whereas marked intersubject differences were observed in the sign of jaw-related correlations. Repeated testing on 3 subjects indicated a high degree of consistency within subjects in the overall patterns of mean velocity for the different structures. Results are discussed in relation to possible motor control differences underlying fast and slow speech, neural coupling of muscle systems, and jaw-related individual differences in speech motor coordination. PMID:10668663

  14. Motor degradation prediction methods

    SciTech Connect

    Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.

    1996-12-01

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor`s duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures.

  15. Motorized support jack

    DOEpatents

    Haney, Steven J.; Herron, Donald Joe

    2001-01-01

    A compact, vacuum compatible motorized jack for supporting heavy loads and adjusting their positions is provided. The motorized jack includes: (a) a housing having a base; (b) a first roller device that provides a first slidable surface and that is secured to the base; (c) a second roller device that provides a second slidable surface and that has an upper surface; (d) a wedge that is slidably positioned between the first roller device and the second roller device so that the wedge is in contact with the first slidable surface and the second slidable surface; (e) a motor; and (d) a drive mechanism that connects the motor and the wedge to cause the motor to controllably move the wedge forwards or backwards. Individual motorized jacks can support and lift of an object at an angle. Two or more motorized jacks can provide tip, tilt and vertical position adjustment capabilities.

  16. Motorized support jack

    DOEpatents

    Haney, Steven J.; Herron, Donald Joe

    2003-05-13

    A compact, vacuum compatible motorized jack for supporting heavy loads and adjusting their positions is provided. The motorized jack includes: (a) a housing having a base; (b) a first roller device that provides a first slidable surface and that is secured to the base; (c) a second roller device that provides a second slidable surface and that has an upper surface; (d) a wedge that is slidably positioned between the first roller device and the second roller device so that the wedge is in contact with the first slidable surface and the second slidable surface; (e) a motor; and (d) a drive mechanism that connects the motor and the wedge to cause the motor to controllably move the wedge forwards or backwards. Individual motorized jacks can support and lift of an object at an angle. Two or more motorized jacks can provide tip, tilt and vertical position adjustment capabilities.

  17. The node of Ranvier in multifocal motor neuropathy.

    PubMed

    Franssen, Hessel

    2014-07-01

    Multifocal motor neuropathy affects myelinated motor axons in limb nerves at multifocal sites. It is characterized by weakness and muscle atrophy, motor conduction block, and antibodies against ganglioside GM1 which is expressed on the axolemma of nodes of Ranvier and perinodal Schwann cells. Treatment by regular IVIg courses results in temporary improvement but cannot prevent slowly progressing weakness due to axonal degeneration. This review discusses possible mechanisms of conduction block and the reasons why motor axons are selectively affected in this disorder. PMID:24801202

  18. Electrical Conductivity.

    ERIC Educational Resources Information Center

    Allen, Philip B.

    1979-01-01

    Examines Drude's classical (1900) theory of electrical conduction, details the objections to and successes of the 1900 theory, and investigates the Quantum (1928) theory of conduction, reviewing its successes and limitations. (BT)

  19. Investigation of fluctuations in angular velocity in magnetic memory devices

    NASA Technical Reports Server (NTRS)

    Meshkis, Y. A.; Potsyus, Z. Y.

    1973-01-01

    The fluctuations in the angular velocity of individual assemblies of a precision mechanical system were analyzed. The system was composed of an electric motor and a magnetic drum which were connected by a flexible coupling. A dynamic model was constructed which took into account the absence of torsion in the rigid shafts of the electric motor drive rotor and the magnetic drum. The motion was described by Lagrange differential equations of the second kind. Curves are developed to show the nature of amplitude fluctuation of the magnetic drum angular velocity at a specific excitation frequency. Additional curves show the amplitudes of fluctuation of the magnetic drum angular velocity compared to the quantity of damping at specific frequencies.

  20. Velocity Based Modulus Calculations

    NASA Astrophysics Data System (ADS)

    Dickson, W. C.

    2007-12-01

    A new set of equations are derived for the modulus of elasticity E and the bulk modulus K which are dependent only upon the seismic wave propagation velocities Vp, Vs and the density ρ. The three elastic moduli, E (Young's modulus), the shear modulus μ (Lamé's second parameter) and the bulk modulus K are found to be simple functions of the density and wave propagation velocities within the material. The shear and elastic moduli are found to equal the density of the material multiplied by the square of their respective wave propagation-velocities. The bulk modulus may be calculated from the elastic modulus using Poisson's ratio. These equations and resultant values are consistent with published literature and values in both magnitude and dimension (N/m2) and are applicable to the solid, liquid and gaseous phases. A 3D modulus of elasticity model for the Parkfield segment of the San Andreas Fault is presented using data from the wavespeed model of Thurber et al. [2006]. A sharp modulus gradient is observed across the fault at seismic depths, confirming that "variation in material properties play a key role in fault segmentation and deformation style" [Eberhart-Phillips et al., 1993] [EPM93]. The three elastic moduli E, μ and K may now be calculated directly from seismic pressure and shear wave propagation velocities. These velocities may be determined using conventional seismic reflection, refraction or transmission data and techniques. These velocities may be used in turn to estimate the density. This allows velocity based modulus calculations to be used as a tool for geophysical analysis, modeling, engineering and prospecting.

  1. Summary of electric vehicle dc motor-controller tests

    SciTech Connect

    McBrien, E F; Tryon, H B

    1982-09-01

    Available performance data for production motors are usually of marginal value to the electric vehicle designer. To provide at least a partial remedy to this situation, tests of typical dc propulsion motors and controllers were conducted as part of the DOE Electric Vehicle Program. The objectives of this program were to evaluate the differences in the performance of dc motors when operating with chopper-type controllers and when operating on direct current; and to gain an understanding of the interactions between the motor and the controller which cause these differences. Toward this end, motor-controller tests performed by the NASA Lewis Research Center provided some of the first published data that quantified motor efficiency variations for both ripple-free (straight dc) and chopper modes of operation. Test and analysis work at the University of Pittsburgh explored motor-controller relationships in greater depth. And to provide additional data, 3E Vehicles tested two small motors, both on a dynamometer and in a vehicle, and the Eaton Corporation tested larger motors, using sophisticated instrumentation and digital processing techniques. All the motors tested were direct-current types. Of the separately excited types, seven were series wound and two were shunt wound. One self-excited permanent magnet type was also tested. Four of the series wound motors used brush shifting to obtain good commutation. In almost all cases, controller limitations constrained the test envelope so that the full capability of the motors could not be explored.

  2. Nerve conduction studies in upper extremities: skin temperature corrections.

    PubMed

    Halar, E M; DeLisa, J A; Soine, T L

    1983-09-01

    The relationship of skin to near nerve (NN) temperature and to nerve conduction velocity (NCV) and distal latency (DL) was studied in 34 normal adult subjects before and after cooling both upper extremities. Median and ulnar motor and sensory NCV, DL, and NN temperature were determined at ambient temperature (mean X skin temp = 33 C) and after cooling, at approximately 26, 28, and 30 C of forearm skin temperature. Skin temperatures on the volar side of the forearm, wrist, palm, and fingers and NN temperature at the forearm, midpalm, and thenar or hypothenar eminence were compared with respective NCV and DL. Results showed a significant linear correlation between skin temperature and NN temperature at corresponding sites (r2 range, 0.4-0.84; p less than 0.005). Furthermore, both skin and NN temperatures correlated significantly with respective NCV and DL. Midline wrist skin temperature showed the best correlation to NCV and DL. Median motor and sensory NCV were altered 1.5 and 1.4m/sec/C degree and their DL 0.2 msec/C degree of wrist skin temperature change, respectively. Ulnar motor and sensory NCV were changed 2.1 and 1.6m/sec/C degree respectively, and 0.2 msec/C degree wrist temperature for motor and sensory DL. Average ambient skin temperature at the wrist (33 C) was used as a standard skin temperature in the temperature correction formula: NCV or DL(temp corrected) = CF(Tst degree - Tm degree) + obtained NCV or DL, where Tst = 33 C for wrist, Tm = the measured skin temperature, and CF = correction factor of tested nerve. Use of temperature correction formula for NCV and DL is suggested in patients with changed wrist skin temperature outside 29.6-36.4C temperature range. PMID:6615178

  3. Development of Ulta-Efficient Electric Motors

    SciTech Connect

    Shoykhet, B.; Schiferl, R.; Duckworth, R.; Rey, C.M.; Schwenterly, S.W.; Gouge, M.J.

    2008-05-01

    . Between the HTS field winding and the physical air gap is a series of concentric cylinders that act as vacuum insulation space walls as well as conducting paths for induced currents to flow in order to shield the HTS winding and the rotor cold space from time dependent fields. These time dependent fields may be caused by rotor hunting, during a change in motor load, or by non-fundamental component voltages and currents applied by the inverter. These motors are variable speed controlled by the inverter. Common large motor utility and industrial applications are pump and fan drives that are best suited by a variable speed motor. Inverter control of the HTS motor eliminates the need to design the rotor for line starting, which would dump a large amount of heat into the rotor that would then heavily tax the cryogenic cooling system. The field winding is fed by a brushless exciter that provides DC current to the HTS rotor winding. The stator winding is air or water cooled. Technical and commercial hurdles to industrial HTS motor product introduction and customer acceptance include (1) the high cost of HTS wire and the cryogenic cooling system components, (2) customer concerns about reliability of HTS motors, and (3) the ability to attain the loss reduction potential of large HTS motors. Reliance Electric has demonstrated a number of HTS based electric motors up to a 1000 hp, variable speed synchronous motor with an HTS field winding in the year 2000. In 2001 this motor was tested to 1600 hp with a sinusoidal (constant frequency) supply. Figure 1-2 shows the HTS motor on the dynamometer test stand in the Reliance Electric test lab. The extensive test program of the 1000 hp motor successfully demonstrated the technical feasibility of large HTS motors and the basic technologies involved, however the test results did indicate the need for design refinements. In addition, test results served to identify other more fundamental critical technology issues, and revealed the need to

  4. Mechanism of cooperative behaviour in systems of slow and fast molecular motors.

    PubMed

    Larson, Adam G; Landahl, Eric C; Rice, Sarah E

    2009-06-28

    Two recent theoretical advances have described cargo transport by multiple identical motors and by multiple oppositely directed, but otherwise identical motors [M. J. Muller, S. Klumpp and R. Lipowsky, Proc. Natl. Acad. Sci. U. S. A., 2008, 105(12), 4609-4614; S. Klumpp and R. Lipowsky, Proc. Natl. Acad. Sci. U. S. A., 2005, 102(48), 17284-17289]. Here, we combine a similar theoretical approach with a simple experiment to describe the behaviour of a system comprised of slow and fast molecular motors having the same directionality. We observed the movement of microtubules by mixtures of slow and fast kinesin motors attached to a glass coverslip in a classic sliding filament assay. The motors are identical, except that the slow ones contain five point mutations that collectively reduce their velocity approximately 15-fold without compromising maximal ATPase activity. Our results indicate that a small fraction of fast motors are able to accelerate the dissociation of slow motors from microtubules. Because of this, a sharp, highly cooperative transition occurs from slow to fast microtubule movement as the relative number of fast motors in the assay is increased. Microtubules move at half-maximal velocity when only 15% of the motors in the assay are fast. Our model indicates that this behaviour depends primarily on the relative motor velocities and the asymmetry between their forward and backward dissociation forces. It weakly depends on the number of motors and their processivity. We predict that movement of cargoes bound to two types of motors having very different velocities will be dominated by one or the other motor. Therefore, cargoes can potentially undergo abrupt changes in movement in response to regulatory mechanisms acting on only a small fraction of motors. PMID:19506764

  5. Dynamics of single-motor molecules: the thermal ratchet model.

    PubMed Central

    Córdova, N J; Ermentrout, B; Oster, G F

    1992-01-01

    We present a model for single-motor molecules--myosin, dynein, or kinesin--that is powered either by thermal fluctuations or by conformational change. In the thermally driven model, the cross-bridge fluctuates about its equilibrium position against an elastic restoring force. The attachment and detachment of the cross-bridge are determined by modeling the electrostatic attraction between the cross-bridge and the fiber binding sites, so that binding depends on the strain in the cross-bridge and its velocity with respect to the fiber. The model correctly predicts the empirical force-velocity characteristics for populations of motor molecules. For a single motor, the apparent cross-bridge step size per ATP hydrolysis depends nonlinearly on the load. When the elastic energy driving the cross-bridge is generated by a conformational change, the velocity and duty cycle are much larger than is observed experimentally for myosin. Images PMID:1530889

  6. Ultra-Compact Motor Controller

    NASA Technical Reports Server (NTRS)

    Townsend, William T.; Crowell, Adam; Hauptman, Traveler; Pratt, Gill Andrews

    2012-01-01

    This invention is an electronically commutated brushless motor controller that incorporates Hall-array sensing in a small, 42-gram package that provides 4096 absolute counts per motor revolution position sensing. The unit is the size of a miniature hockey puck, and is a 44-pin male connector that provides many I/O channels, including CANbus, RS-232 communications, general-purpose analog and digital I/O (GPIO), analog and digital Hall inputs, DC power input (18-90 VDC, 0-l0 A), three-phase motor outputs, and a strain gauge amplifier. This controller replaces air cooling with conduction cooling via a high-thermal-conductivity epoxy casting. A secondary advantage of the relatively good heat conductivity that comes with ultra-small size is that temperature differences within the controller become smaller, so that it is easier to measure the hottest temperature in the controller with fewer temperature sensors, or even one temperature sensor. Another size-sensitive design feature is in the approach to electrical noise immunity. At a very small size, where conduction paths are much shorter than in conventional designs, the ground becomes essentially isopotential, and so certain (space-consuming) electrical noise control components become unnecessary, which helps make small size possible. One winding-current sensor, applied to all of the windings in fast sequence, is smaller and wastes less power than the two or more sensors conventionally used to sense and control winding currents. An unexpected benefit of using only one current sensor is that it actually improves the precision of current control by using the "same" sensors to read each of the three phases. Folding the encoder directly into the controller electronics eliminates a great deal of redundant electronics, packaging, connectors, and hook-up wiring. The reduction of wires and connectors subtracts substantial bulk and eliminates their role in behaving as EMI (electro-magnetic interference) antennas. A shared

  7. Quantitative velocity modulation spectroscopy.

    PubMed

    Hodges, James N; McCall, Benjamin J

    2016-05-14

    Velocity Modulation Spectroscopy (VMS) is arguably the most important development in the 20th century for spectroscopic study of molecular ions. For decades, interpretation of VMS lineshapes has presented challenges due to the intrinsic covariance of fit parameters including velocity modulation amplitude, linewidth, and intensity. This limitation has stifled the growth of this technique into the quantitative realm. In this work, we show that subtle changes in the lineshape can be used to help address this complexity. This allows for determination of the linewidth, intensity relative to other transitions, velocity modulation amplitude, and electric field strength in the positive column of a glow discharge. Additionally, we explain the large homogeneous component of the linewidth that has been previously described. Using this component, the ion mobility can be determined. PMID:27179476

  8. Fluidic angular velocity sensor

    NASA Technical Reports Server (NTRS)

    Berdahl, C. M. (Inventor)

    1986-01-01

    A fluidic sensor providing a differential pressure signal proportional to the angular velocity of a rotary input is described. In one embodiment the sensor includes a fluid pump having an impeller coupled to a rotary input. A housing forming a constricting fluid flow chamber is connected to the fluid input of the pump. The housing is provided with a fluid flow restrictive input to the flow chamber and a port communicating with the interior of the flow chamber. The differential pressure signal measured across the flow restrictive input is relatively noise free and proportional to the square of the angular velocity of the impeller. In an alternative embodiment, the flow chamber has a generally cylindrical configuration and plates having flow restrictive apertures are disposed within the chamber downstream from the housing port. In this embodiment, the differential pressure signal is found to be approximately linear with the angular velocity of the impeller.

  9. Quantitative velocity modulation spectroscopy

    NASA Astrophysics Data System (ADS)

    Hodges, James N.; McCall, Benjamin J.

    2016-05-01

    Velocity Modulation Spectroscopy (VMS) is arguably the most important development in the 20th century for spectroscopic study of molecular ions. For decades, interpretation of VMS lineshapes has presented challenges due to the intrinsic covariance of fit parameters including velocity modulation amplitude, linewidth, and intensity. This limitation has stifled the growth of this technique into the quantitative realm. In this work, we show that subtle changes in the lineshape can be used to help address this complexity. This allows for determination of the linewidth, intensity relative to other transitions, velocity modulation amplitude, and electric field strength in the positive column of a glow discharge. Additionally, we explain the large homogeneous component of the linewidth that has been previously described. Using this component, the ion mobility can be determined.

  10. Motor imagery based brain-computer interfaces: An emerging technology to rehabilitate motor deficits.

    PubMed

    Alonso-Valerdi, Luz Maria; Salido-Ruiz, Ricardo Antonio; Ramirez-Mendoza, Ricardo A

    2015-12-01

    When the sensory-motor integration system is malfunctioning provokes a wide variety of neurological disorders, which in many cases cannot be treated with conventional medication, or via existing therapeutic technology. A brain-computer interface (BCI) is a tool that permits to reintegrate the sensory-motor loop, accessing directly to brain information. A potential, promising and quite investigated application of BCI has been in the motor rehabilitation field. It is well-known that motor deficits are the major disability wherewith the worldwide population lives. Therefore, this paper aims to specify the foundation of motor rehabilitation BCIs, as well as to review the recent research conducted so far (specifically, from 2007 to date), in order to evaluate the suitability and reliability of this technology. Although BCI for post-stroke rehabilitation is still in its infancy, the tendency is towards the development of implantable devices that encompass a BCI module plus a stimulation system. PMID:26382749

  11. Transport of organelles by elastically coupled motor proteins.

    PubMed

    Bhat, Deepak; Gopalakrishnan, Manoj

    2016-07-01

    Motor-driven intracellular transport is a complex phenomenon where multiple motor proteins simultaneously attached on to a cargo engage in pulling activity, often leading to tug-of-war, displaying bidirectional motion. However, most mathematical and computational models ignore the details of the motor-cargo interaction. A few studies have focused on more realistic models of cargo transport by including elastic motor-cargo coupling, but either restrict the number of motors and/or use purely phenomenological forms for force-dependent hopping rates. Here, we study a generic model in which N motors are elastically coupled to a cargo, which itself is subjected to thermal noise in the cytoplasm and to an additional external applied force. The motor-hopping rates are chosen to satisfy detailed balance with respect to the energy of elastic stretching. With these assumptions, an (N + 1) -variable master equation is constructed for dynamics of the motor-cargo complex. By expanding the hopping rates to linear order in fluctuations in motor positions, we obtain a linear Fokker-Planck equation. The deterministic equations governing the average quantities are separated out and explicit analytical expressions are obtained for the mean velocity and diffusion coefficient of the cargo. We also study the statistical features of the force experienced by an individual motor and quantitatively characterize the load-sharing among the cargo-bound motors. The mean cargo velocity and the effective diffusion coefficient are found to be decreasing functions of the stiffness. While the increase in the number of motors N does not increase the velocity substantially, it decreases the effective diffusion coefficient which falls as 1/N asymptotically. We further show that the cargo-bound motors share the force exerted on the cargo equally only in the limit of vanishing elastic stiffness; as stiffness is increased, deviations from equal load sharing are observed. Numerical simulations agree with

  12. MSE velocity survey

    NASA Astrophysics Data System (ADS)

    Schimd, C.; Courtois, H.; Koda, J.

    2015-12-01

    A huge velocity survey based on the Maunakea Spectroscopic Explorer facility (MSE) is proposed, aiming at investigating the structure and dynamics of the cosmic web over 3π steradians up to ˜1 Gpc and at unprecedented spatial resolution, its relationship with the galaxy formation process, and the bias between galaxies and dark matter during the last three billions years. The cross-correlation of velocity and density fields will further allow the probe any deviation from General Relativity by measuring the the linear-growth rate of cosmic structures at precision competitive with high-redshift spectroscopic redshift surveys.

  13. DVL Angular Velocity Recorder

    NASA Technical Reports Server (NTRS)

    Liebe, Wolfgang

    1944-01-01

    In many studies, especially of nonstationary flight motion, it is necessary to determine the angular velocities at which the airplane rotates about its various axes. The three-component recorder is designed to serve this purpose. If the angular velocity for one flight attitude is known, other important quantities can be derived from its time rate of change, such as the angular acceleration by differentiations, or - by integration - the angles of position of the airplane - that is, the angles formed by the airplane axes with the axis direction presented at the instant of the beginning of the motion that is to be investigated.

  14. Velocity pump reaction turbine

    DOEpatents

    House, P.A.

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  15. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1984-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  16. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1982-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  17. Piezoelectric Motors and Transformers

    NASA Astrophysics Data System (ADS)

    Uchino, K.

    Piezoelectric ceramics forms a new field between electronic and structural ceramics [1-4]. Application fields are classified into three categories: positioners, motors, and vibration suppressors. From the market research result for 80 Japanese component industries in 1992, tiny motors in the range of 5-8 mm are required in large numbers for office and portable equipment; the conventional electromagnetic (EM) motors are rather difficult to produce in this size with sufficient energy efficiency, while Silicon MEMS actuators are too small to be used in practice. Piezoelectric ultrasonic motors whose efficiency is insensitive to size are superior in the millimeter motor area. The manufacturing precision of optical instruments such as lasers and cameras, and the positioning accuracy for fabricating semiconductor chips are of the order of 0.1μm which is much smaller than the backlash of the EM motors. Vibration suppression in space structures and military vehicles also require compact but mighty piezoelectric actuators.

  18. Parametric electric motor study

    SciTech Connect

    Adams, D.; Stahura, D.

    1995-04-30

    Technology for the axial gap motor was developed by DOE with an investment of approximately $15 million. This development effort is for motor technologies of high power density and high efficiency. Such motors that are also small and light-weight are not available on the commercial market because high-power motors have typically been used in large industrial applications where small size and light weight are not requirements. AC Delco has been developing motors since 1918 and is interested in leveraging its research and development dollars to produce an array of motor systems for vehicles and to develop a future line of propulsion products. The DOE focus of the study was applied to machining applications. The most attractive feature of this motor is the axial air gap, which may make possible the removal of the motor`s stationary component from a total enclosure of the remainder of the machine if the power characteristics are adequate. The objectives of this project were to evaluate alternative electric drive systems for machine tools and automotive electric drive systems and to select a best machine type for each of those applications. A major challenge of this project was to produce a small, light-weight, highly efficient motor at a cost-effective price. The project developed machine and machine drive systems and design criteria for the range of applications. The final results included the creation of a baseline for developing electric vehicle powertrain system designs, conventional vehicle engine support system designs, and advanced machine tool configurations. In addition, an axial gap permanent magnet motor was built and tested, and gave, said one engineer involved, a sterling performance. This effort will commercialize advanced motor technology and extend knowledge and design capability in the most efficient electric machine design known today.

  19. Effects of baclofen on motor units paralysed by chronic cervical spinal cord injury

    PubMed Central

    Häger-Ross, Charlotte K.; Klein, Cliff S.

    2010-01-01

    Baclofen, a gamma-aminobutyric acid receptorB agonist, is used to reduce symptoms of spasticity (hyperreflexia, increases in muscle tone, involuntary muscle activity), but the long-term effects of sustained baclofen use on skeletal muscle properties are unclear. The aim of our study was to evaluate whether baclofen use and paralysis due to cervical spinal cord injury change the contractile properties of human thenar motor units more than paralysis alone. Evoked electromyographic activity and force were recorded in response to intraneural stimulation of single motor axons to thenar motor units. Data from three groups of motor units were compared: 23 paralysed units from spinal cord injured subjects who take baclofen and have done so for a median of 7 years, 25 paralysed units from spinal cord injured subjects who do not take baclofen (median: 10 years) and 45 units from uninjured control subjects. Paralysed motor unit properties were independent of injury duration and level. With paralysis and baclofen, the median motor unit tetanic forces were significantly weaker, twitch half-relaxation times longer and half maximal forces reached at lower frequencies than for units from uninjured subjects. The median values for these same parameters after paralysis alone were comparable to control data. Axon conduction velocities differed across groups and were slowest for paralysed units from subjects who were not taking baclofen and fastest for units from the uninjured. Greater motor unit weakness with long-term baclofen use and paralysis will make the whole muscle weaker and more fatigable. Significantly more paralysed motor units need to be excited during patterned electrical stimulation to produce any given force over time. The short-term benefits of baclofen on spasticity (e.g. management of muscle spasms that may otherwise hinder movement or social interactions) therefore have to be considered in relation to its possible long-term effects on muscle rehabilitation

  20. Ratchet models of molecular motors

    NASA Astrophysics Data System (ADS)

    Jaster, Nicole

    2003-09-01

    Transport processes in and of cells are of major importance for the survival of the organism. Muscles have to be able to contract, chromosomes have to be moved to opposing ends of the cell during mitosis, and organelles, which are compartments enclosed by membranes, have to be transported along molecular tracks. Molecular motors are proteins whose main task is moving other molecules.For that purpose they transform the chemical energy released in the hydrolysis of ATP into mechanical work. The motors of the cytoskeleton belong to the three super families myosin, kinesin and dynein. Their tracks are filaments of the cytoskeleton, namely actin and the microtubuli. Here, we examine stochastic models which are used for describing the movements of these linear molecular motors. The scale of the movements comprises the regime of single steps of a motor protein up to the directed walk along a filament. A single step bridges around 10 nm, depending on the protein, and takes about 10 ms, if there is enough ATP available. Our models comprise M states or conformations the motor can attain during its movement along a one-dimensional track. At K locations along the track transitions between the states are possible. The velocity of the protein depending on the transition rates between the single states can be determined analytically. We calculate this velocity for systems of up to four states and locations and are able to derive a number of rules which are helpful in estimating the behaviour of an arbitrary given system. Beyond that we have a look at decoupled subsystems, i.e., one or a couple of states which have no connection to the remaining system. With a certain probability a motor undergoes a cycle of conformational changes, with another probability an independent other cycle. Active elements in real transport processes by molecular motors will not be limited to the transitions between the states. In distorted networks or starting from the discrete Master equation of the

  1. Hybrid vehicle motor alignment

    DOEpatents

    Levin, Michael Benjamin

    2001-07-03

    A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

  2. Cryogenic Electric Motor Tested

    NASA Technical Reports Server (NTRS)

    Brown, Gerald V.

    2004-01-01

    Technology for pollution-free "electric flight" is being evaluated in a number of NASA Glenn Research Center programs. One approach is to drive propulsive fans or propellers with electric motors powered by fuel cells running on hydrogen. For large transport aircraft, conventional electric motors are far too heavy to be feasible. However, since hydrogen fuel would almost surely be carried as liquid, a propulsive electric motor could be cooled to near liquid hydrogen temperature (-423 F) by using the fuel for cooling before it goes to the fuel cells. Motor windings could be either superconducting or high purity normal copper or aluminum. The electrical resistance of pure metals can drop to 1/100th or less of their room-temperature resistance at liquid hydrogen temperature. In either case, super or normal, much higher current density is possible in motor windings. This leads to more compact motors that are projected to produce 20 hp/lb or more in large sizes, in comparison to on the order of 2 hp/lb for large conventional motors. High power density is the major goal. To support cryogenic motor development, we have designed and built in-house a small motor (7-in. outside diameter) for operation in liquid nitrogen.

  3. Asynchronous Torque Characteristics of VR Type Vernier Motor

    NASA Astrophysics Data System (ADS)

    Suda, Hiroshi; Matsushima, Yoshitaro; Xu, Li; Anazawa, Yoshihisa

    Recently, various types of vernier motor are developed. The VR type vernier motor is a kind of three-phase reluctance motor, and its stator has slots and distributed three-phase windings. The rotor is slotted iron core without windings. Relationship between S, R and P is S = R±2, where S and R are the numbers of stator and rotor slots per pair of poles, and the number of poles P is two. The rotor of the vernier motor moves at a sub-multiple of the angular velocity of the stator mmf. The multiplying factor is P/R. Authors had reported that the VR type vernier motors are analyzed as a three-phase reluctance motor, and have obtained the voltage equations on the γ-δ axis and expression of the torque.However, the asynchronous characteristics of the vernier motor are not clear yet. In this paper, the asynchronous characteristics of the vernier motors are analyzed with the symmetric components transformation and the commutator transformation. The voltage equations on the symmetrical co-ordinates and asynchronous and synchronous torque expression at steady state condition are obtained. The tests were performed on the trial motor. The calculated asynchronous torque has agreed well with the measured values.

  4. Magnetically Guided Propulsion of Osmotic Motors

    NASA Astrophysics Data System (ADS)

    Vidal, Glenn; Rinaldi, Carlos; Córdova-Figueroa, Ubaldo

    2010-11-01

    Propulsion of artificial nano- and micro-scale objects induced by chemical reactions is one of the most exciting challenges in colloidal physics. Recent experiments have shown that directed motion of catalytic motors is hindered by their rotary Brownian motion, preventing its potential to be fully realized. The present work investigates the magnetically guided propulsion of a colloidal particle--the osmotic motor-- immersed in a dispersion of colloidal `bath' particles subject to an unidirectional magnetic field using Brownian dynamics simulation. The osmotic motor is propelled by a chemical reaction that consumes bath particles over a portion of its surface. The non-equilibrium microstructure of bath particles induced by the surface reaction creates an `osmotic pressure' imbalance on the motor's surface causing it to move to regions of lower bath particle concentration. The strength of the magnetic field is controlled by the Langevin parameter, which physically measures the relative importance of magnetic to Brownian torques, and dictates the directionality of the osmotic motor. The translational self-diffusivity is measured for different reaction speeds, particle sizes, bath particle concentrations, and magnetic dipole orientations. Finally, a theory to determine the long-time self-diffusivity and time-averaged particle velocity is developed and compared to the simulation results.

  5. Modeling Terminal Velocity

    ERIC Educational Resources Information Center

    Brand, Neal; Quintanilla, John A.

    2013-01-01

    Using a simultaneously falling softball as a stopwatch, the terminal velocity of a whiffle ball can be obtained to surprisingly high accuracy with only common household equipment. This classroom activity engages students in an apparently daunting task that nevertheless is tractable, using a simple model and mathematical techniques at their…

  6. Superconductor-Magnet Bearings With Inherent Stability and Velocity-Independent Drag Torque

    NASA Technical Reports Server (NTRS)

    Lee, Eun-Jeong; Ma, Ki Bui; Wilson, Thomas L.; Chu, Wei-Kan

    1999-01-01

    A hybrid superconductor magnet bearing system has been developed based on passive magnetic levitation and the flux pinning effect of high-temperature superconductivity. The rationale lies in the unique capability of a high-temperature superconductor (HTS) to enhance system stability passively without power consumption. Characterization experiments have been conducted to understand its dynamic behavior and to estimate the required motor torque for its driving system design. These experiments show that the hybrid HTS-magnet bearing system has a periodic oscillation of drag torque due mainly to the nonuniform magnetic field density of permanent magnets. Furthermore, such a system also suffers from a small superimposed periodic oscillation introduced by the use of multiple HTS disks rather than a uniform annulus of HTS material. The magnitude of drag torque is velocity independent and very small. These results make this bearing system appealing for high-speed application. Finally, design guidelines for superconducting bearing systems are suggested based on these experimental results.

  7. Myocardial Tissue Doppler Velocity in Child Growth

    PubMed Central

    Choi, Sun-Ha; Kim, Nam Kyun; Jung, Jo Won; Choi, Jae Young

    2016-01-01

    Background In adults, tissue Doppler imaging (TDI) is a recommended component of routine echocardiography. However, TDI velocities are less accepted in pediatrics, due to their strong variability and age dependence in children. This study examines the distribution of myocardial tissue Doppler velocities in healthy children to assess the effect of age with cardiac growth on the various echocardiographic measurements. Methods Total 144 healthy children were enrolled in this study. They were recruited from the pediatric outpatient clinic for routine well-child visits. The statistical relationships between age and TDI values were analyzed. Also, the statistical relationships between body surface area (BSA) and TDI values, left ventricle end-diastolic dimension (LVEDD) and TDI values were analyzed. Also, we conducted multivariate analysis of cardiac growth parameters such as, age, BSA, LVEDD and TDI velocity data. Results All of the age, BSA, and LVEDD had positive correlations with deceleration time (DT), pressure half-time (PHT), peak early diastolic myocardial velocity, peak systolic myocardial velocity, and had negative correlations with peak late diastolic velocity (A) and the ratio of trans-mitral inflow velocity to early diastolic velocity of mitral annulus (E/E'). In the multivariate analysis, all of the age, BSA, and LVEDD had positive correlations with DT, PHT, and negative correlations with A and E/E'. Conclusion The cardiac growth parameters related alterations of E/E' may suggest that diastolic myocardial velocities are cardiac growth dependent, and diastolic function has positive correlation with cardiac growth in pediatric group. This cardiac growth related myocardial functional variation would be important for assessment of cardiac involvement either in healthy and sick child. PMID:27081443

  8. Decreased spinal synaptic inputs to phrenic motor neurons elicit localized inactivity-induced phrenic motor facilitation

    PubMed Central

    Streeter, K.A.; Baker-Herman, T.L.

    2014-01-01

    Phrenic motor neurons receive rhythmic synaptic inputs throughout life. Since even brief disruption in phrenic neural activity is detrimental to life, on-going neural activity may play a key role in shaping phrenic motor output. To test the hypothesis that spinal mechanisms sense and respond to reduced phrenic activity, anesthetized, ventilated rats received micro-injections of procaine in the C2 ventrolateral funiculus (VLF) to transiently (~30 min) block axon conduction in bulbospinal axons from medullary respiratory neurons that innervate one phrenic motor pool; during procaine injections, contralateral phrenic neural activity was maintained. Once axon conduction resumed, a prolonged increase in phrenic burst amplitude was observed in the ipsilateral phrenic nerve, demonstrating inactivity-induced phrenic motor facilitation (iPMF). Inhibition of tumor necrosis factor alpha (TNFα) and atypical PKC (aPKC) activity in spinal segments containing the phrenic motor nucleus impaired ipsilateral iPMF, suggesting a key role for spinal TNFα and aPKC in iPMF following unilateral axon conduction block. A small phrenic burst amplitude facilitation was also observed contralateral to axon conduction block, indicating crossed spinal phrenic motor facilitation (csPMF). csPMF was independent of spinal TNFα and aPKC. Ipsilateral iPMF and csPMF following unilateral withdrawal of phrenic synaptic inputs were associated with proportional increases in phrenic responses to chemoreceptor stimulation (hypercapnia), suggesting iPMF and csPMF increase phrenic dynamic range. These data suggest that local, spinal mechanisms sense and respond to reduced synaptic inputs to phrenic motor neurons. We hypothesize that iPMF and csPMF may represent compensatory mechanisms that assure adequate motor output is maintained in a physiological system in which prolonged inactivity ends life. PMID:24681155

  9. Decreased spinal synaptic inputs to phrenic motor neurons elicit localized inactivity-induced phrenic motor facilitation.

    PubMed

    Streeter, K A; Baker-Herman, T L

    2014-06-01

    Phrenic motor neurons receive rhythmic synaptic inputs throughout life. Since even brief disruption in phrenic neural activity is detrimental to life, on-going neural activity may play a key role in shaping phrenic motor output. To test the hypothesis that spinal mechanisms sense and respond to reduced phrenic activity, anesthetized, ventilated rats received micro-injections of procaine in the C2 ventrolateral funiculus (VLF) to transiently (~30min) block axon conduction in bulbospinal axons from medullary respiratory neurons that innervate one phrenic motor pool; during procaine injections, contralateral phrenic neural activity was maintained. Once axon conduction resumed, a prolonged increase in phrenic burst amplitude was observed in the ipsilateral phrenic nerve, demonstrating inactivity-induced phrenic motor facilitation (iPMF). Inhibition of tumor necrosis factor alpha (TNFα) and atypical PKC (aPKC) activity in spinal segments containing the phrenic motor nucleus impaired ipsilateral iPMF, suggesting a key role for spinal TNFα and aPKC in iPMF following unilateral axon conduction block. A small phrenic burst amplitude facilitation was also observed contralateral to axon conduction block, indicating crossed spinal phrenic motor facilitation (csPMF). csPMF was independent of spinal TNFα and aPKC. Ipsilateral iPMF and csPMF following unilateral withdrawal of phrenic synaptic inputs were associated with proportional increases in phrenic responses to chemoreceptor stimulation (hypercapnia), suggesting iPMF and csPMF increase phrenic dynamic range. These data suggest that local, spinal mechanisms sense and respond to reduced synaptic inputs to phrenic motor neurons. We hypothesize that iPMF and csPMF may represent compensatory mechanisms that assure adequate motor output is maintained in a physiological system in which prolonged inactivity ends life. PMID:24681155

  10. Mathematical Description of an Asynchronous Motor with the Indirect Control of the Output Mechanical Variables

    NASA Astrophysics Data System (ADS)

    Glazachev, A. V.; Dementyev, Yu. N.; Negodin, K. N.; Umursakova, A. D.

    2016-02-01

    The article gives the mathematical description of an asynchronous motor with the indirect control of the output mechanical variables of an asynchronous motor in the electric drive. To determine the electromagnetic torque and angular velocity of the asynchronous motor in the electric drive the mathematical description is used in which the values are determined by the readings of the motor and easily measured values by means of known in practice devices. The proposed in the article the mathematical description for the indirect measuring the electromagnetic torque and angular velocity of the asynchronous motor in the electric drive does not contain the integral components that introduce the great error into the value of the controlled electromagnetic torque and angular velocity.

  11. Design Theory of a Variable Characteristic Motor Using Compound Magnetomotive Forces

    NASA Astrophysics Data System (ADS)

    Kato, Takashi; Akatsu, Kan; Shigeta, Tomoaki; Nakano, Masaki; Tsukamoto, Masahiro; Arimitsu, Minoru

    The permanent magnet synchronous motor offers the possibility of obtaining higher efficiency in a smaller motor size. However, it is difficult to vary the range of high motor efficiency because of its constant magnetomotive force (MMF) level. This paper proposes a variable characteristic motor that embodies a new concept of the compound magnetomotive forces (CMMF) motor. The motor uses a special magnet arrangement that has the MMF of components with different number of pole pairs. The application of compound current control to this motor makes it possible to vary the motor speed and torque (N-T) characteristics. This paper describes the derivation of the theoretical equations for this CMMF motor. It also presents the results of FEA and experiments conducted with the prototype motor to demonstrate the validity of the CMMF concept.

  12. The influence of motor expertise on the brain activity of motor task performance: A meta-analysis of functional magnetic resonance imaging studies.

    PubMed

    Yang, Jie

    2015-06-01

    Previous research has investigated the influence of long-term motor training on the brain activity of motor processes, but the findings are inconsistent. To clarify how acquiring motor expertise induces cortical reorganization during motor task performance, the current study conducted a quantitative meta-analysis on 26 functional magnetic resonance imaging (fMRI) studies that investigate motor task performance in people with long-term motor training experience (e.g., athletes, musicians, and dancers) and control participants. Meta-analysis of the brain activation in motor experts and novices showed similar effects in the bilateral frontal and parietal regions. The meta-analysis on the contrast between motor experts and novices indicated that experts showed stronger effects in the left inferior parietal lobule (BA 40) than did novices in motor execution and prediction tasks. In motor observation tasks, experts showed stronger effects in the left inferior frontal gyrus (BA 9) and left precentral gyrus (BA 6) than novices. On the contrary, novices had stronger effects in the right motor areas and basal ganglia as compared with motor experts. These results indicate that motor experts have effect increases in brain areas involved in action planning and action comprehension, and suggest that intensive motor training might elaborate the motor representation related to the task performance. PMID:25450866

  13. Heritability of motor control and motor learning

    PubMed Central

    Missitzi, Julia; Gentner, Reinhard; Misitzi, Angelica; Geladas, Nickos; Politis, Panagiotis; Klissouras, Vassilis; Classen, Joseph

    2013-01-01

    Abstract The aim of this study was to elucidate the relative contribution of genes and environment on individual differences in motor control and acquisition of a force control task, in view of recent association studies showing that several candidate polymorphisms may have an effect on them. Forty‐four healthy female twins performed brisk isometric abductions with their right thumb. Force was recorded by a transducer and fed back to the subject on a computer screen. The task was to place the tracing of the peak force in a force window defined between 30% and 40% of the subject's maximum force, as determined beforehand. The initial level of proficiency was defined as the number of attempts reaching the force window criterion within the first 100 trials. The difference between the number of successful trials within the last and the first 100 trials was taken as a measure of motor learning. For motor control, defined by the initial level of proficiency, the intrapair differences in monozygotic (MZ) and dizygotic (DZ) twins were 6.8 ± 7.8 and 13.8 ± 8.4, and the intrapair correlations 0.77 and 0.39, respectively. Heritability was estimated at 0.68. Likewise for motor learning intrapair differences in the increment of the number of successful trials in MZ and DZ twins were 5.4 ± 5.2 and 12.8 ± 7, and the intrapair correlations 0.58 and 0.19. Heritability reached 0.70. The present findings suggest that heredity accounts for a major part of existing differences in motor control and motor learning, but uncertainty remains which gene polymorphisms may be responsible. PMID:24744865

  14. Assessing Gross Motor Skills of Kosovar Preschool Children

    ERIC Educational Resources Information Center

    Shala, Merita

    2009-01-01

    In the light of the new developments in preschool education in Kosovo, this study attempts to carry out an assessment of the development of gross motor skills of preschool children attending institutional education. The emphasis is on creating a set of tests to measure the motor attainments of these children by conducting assessments of the…

  15. Development of a small high-thrust tractor rocket motor

    SciTech Connect

    Carr, C.E.; Oberlander, W.F.

    1986-01-01

    This paper summarizes the parachute extraction tractor rocket motor design and test efforts conducted during the Sandia ASW/SOW development program. The prime contractor was Sandia National Laboratories, Albuquerque, New Mexico; the tractor rocket motor subcontractor was Morton Thiokol, Inc., Elkton, Maryland.

  16. A COMPUTATIONAL MODEL OF MOTOR NEURON DEGENERATION

    PubMed Central

    Le Masson, Gwendal; Przedborski, Serge; Abbott, L.F.

    2014-01-01

    SUMMARY To explore the link between bioenergetics and motor neuron degeneration, we used a computational model in which detailed morphology and ion conductance are paired with intracellular ATP production and consumption. We found that reduced ATP availability increases the metabolic cost of a single action potential and disrupts K+/Na+ homeostasis, resulting in a chronic depolarization. The magnitude of the ATP shortage at which this ionic instability occurs depends on the morphology and intrinsic conductance characteristic of the neuron. If ATP shortage is confined to the distal part of the axon, the ensuing local ionic instability eventually spreads to the whole neuron and involves fasciculation-like spiking events. A shortage of ATP also causes a rise in intracellular calcium. Our modeling work supports the notion that mitochondrial dysfunction can account for salient features of the paralytic disorder amyotrophic lateral sclerosis, including motor neuron hyperexcitability, fasciculation, and differential vulnerability of motor neuron subpopulations. PMID:25088365

  17. Motor Vehicle Safety

    MedlinePlus

    ... from motor vehicle crashes. Trying to prevent these crashes is one part of motor vehicle safety. Here are some things you can do to be safer on the road: Make sure your vehicle is safe and in working order Use car seats for children Wear your seat belt Don' ...

  18. Stepping motor controller

    DOEpatents

    Bourret, S.C.; Swansen, J.E.

    1982-07-02

    A stepping motor is microprocessor controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

  19. Stepping motor controller

    DOEpatents

    Bourret, Steven C.; Swansen, James E.

    1984-01-01

    A stepping motor is microprocessingly controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

  20. Hybrid Rocket Motor Test

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A 10,000-pound thrust hybrid rocket motor is tested at Stennis Space Center's E-1 test facility. A hybrid rocket motor is a cross between a solid rocket and a liquid-fueled engine. It uses environmentally safe solid fuel and liquid oxygen.

  1. A Sensory-Motor Control Model of Animal Flight Explains Why Bats Fly Differently in Light Versus Dark

    PubMed Central

    Bar, Nadav S.; Skogestad, Sigurd; Marçal, Jose M.; Ulanovsky, Nachum; Yovel, Yossi

    2015-01-01

    Animal flight requires fine motor control. However, it is unknown how flying animals rapidly transform noisy sensory information into adequate motor commands. Here we developed a sensorimotor control model that explains vertebrate flight guidance with high fidelity. This simple model accurately reconstructed complex trajectories of bats flying in the dark. The model implies that in order to apply appropriate motor commands, bats have to estimate not only the angle-to-target, as was previously assumed, but also the angular velocity (“proportional-derivative” controller). Next, we conducted experiments in which bats flew in light conditions. When using vision, bats altered their movements, reducing the flight curvature. This change was explained by the model via reduction in sensory noise under vision versus pure echolocation. These results imply a surprising link between sensory noise and movement dynamics. We propose that this sensory-motor link is fundamental to motion control in rapidly moving animals under different sensory conditions, on land, sea, or air. PMID:25629809

  2. A sensory-motor control model of animal flight explains why bats fly differently in light versus dark.

    PubMed

    Bar, Nadav S; Skogestad, Sigurd; Marçal, Jose M; Ulanovsky, Nachum; Yovel, Yossi

    2015-01-01

    Animal flight requires fine motor control. However, it is unknown how flying animals rapidly transform noisy sensory information into adequate motor commands. Here we developed a sensorimotor control model that explains vertebrate flight guidance with high fidelity. This simple model accurately reconstructed complex trajectories of bats flying in the dark. The model implies that in order to apply appropriate motor commands, bats have to estimate not only the angle-to-target, as was previously assumed, but also the angular velocity ("proportional-derivative" controller). Next, we conducted experiments in which bats flew in light conditions. When using vision, bats altered their movements, reducing the flight curvature. This change was explained by the model via reduction in sensory noise under vision versus pure echolocation. These results imply a surprising link between sensory noise and movement dynamics. We propose that this sensory-motor link is fundamental to motion control in rapidly moving animals under different sensory conditions, on land, sea, or air. PMID:25629809

  3. A novel form of distal hereditary motor neuronopathy maps to chromosome 9p21.1-p12.

    PubMed

    Christodoulou, K; Zamba, E; Tsingis, M; Mubaidin, A; Horani, K; Abu-Sheik, S; El-Khateeb, M; Kyriacou, K; Kyriakides, T; Al-Qudah, A K; Middleton, L

    2000-12-01

    Distal hereditary motor neuronopathies (dHMNs) form a heterogeneous group of rare disorders characterized by distal weakness and wasting in the limbs with no significant sensory involvement. Harding has classified dHMNs into seven categories based on clinical and genetic criteria. We report a novel form of autosomal recessive dHMN in 7 consanguineous families located in the Jerash region of Jordan. Onset of the disease is between 6 and 10 years of age and is characterized by weakness and atrophy of the lower limbs associated with pyramidal features. Within 2 years, symptoms progress to the upper limbs. Neurophysiological studies typically show normal conduction velocities, reduced compound motor action potential amplitudes, normal sensory nerve action potentials, and chronic neurogenic changes on needle electromyography. No significant abnormalities are seen on sural nerve biopsy. We call this novel form of dHMN Jerash hereditary motor neuronopathy. We studied the families at the molecular genetic level and mapped the Jerash hereditary motor neuronopathy gene to an approximately 0.54-cM region on chromosome 9p21.1-p12, flanked by microsatellite polymorphic marker loci D9S1845 and D9S1791. A maximum LOD score of 19.80 at theta = 0.001 was obtained between the disease and locus D9S1878. PMID:11117544

  4. Brownian motors in the low-energy approximation: Classification and properties

    SciTech Connect

    Rozenbaum, V. M.

    2010-04-15

    We classify Brownian motors based on the expansion of their velocity in terms of the reciprocal friction coefficient. The two main classes of motors (with dichotomic fluctuations in homogeneous force and periodic potential energy) are characterized by different analytical dependences of their mean velocity on the spatial and temporal asymmetry coefficients and by different adiabatic limits. The competition between the spatial and temporal asymmetries gives rise to stopping points. The transition through these points can be achieved by varying the asymmetry coefficients, temperature, and other motor parameters, which can be used, for example, for nanoparticle segregation. The proposed classification separates out a new type of motors based on synchronous fluctuations in symmetric potential and applied homogeneous force. As an example of this type of motors, we consider a near-surface motor whose two-dimensional motion (parallel and perpendicular to the substrate plane) results from fluctuations in external force inclined to the surface.

  5. Conduct disorder

    MedlinePlus

    Disruptive behavior - child; Impulse control problem - child ... Conduct disorder has been linked to: Child abuse Drug or alcohol abuse in the parents Family conflicts Genetic defects Poverty The diagnosis is more common among boys. It is ...

  6. Electrical Conductivity.

    ERIC Educational Resources Information Center

    Hershey, David R.; Sand, Susan

    1993-01-01

    Explains how electrical conductivity (EC) can be used to measure ion concentration in solutions. Describes instrumentation for the measurement, temperature dependence and EC, and the EC of common substances. (PR)

  7. Organizing motor imageries.

    PubMed

    Hanakawa, Takashi

    2016-03-01

    Over the last few decades, motor imagery has attracted the attention of researchers as a prototypical example of 'embodied cognition' and also as a basis for neuro-rehabilitation and brain-machine interfaces. The current definition of motor imagery is widely accepted, but it is important to note that various abilities rather than a single cognitive entity are dealt with under a single term. Here, motor imagery has been characterized based on four factors: (1) motor control, (2) explicitness, (3) sensory modalities, and (4) agency. Sorting out these factors characterizing motor imagery may explain some discrepancies and variability in the findings from previous studies and will help to optimize a study design in accordance with the purpose of each study in the future. PMID:26602980

  8. Induction motor control

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Electromechanical actuators developed to date have commonly utilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilizes induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  9. Induction motor control

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Electromechanical actuators developed to date have commonly ultilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilized induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high-frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high-frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  10. Induction motor control

    NASA Astrophysics Data System (ADS)

    Hansen, Irving G.

    Electromechanical actuators developed to date have commonly ultilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilized induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high-frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high-frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  11. Do conservative solutes migrate at average pore-water velocity?

    PubMed

    Rovey, Charles W; Niemann, William L

    2005-01-01

    According to common understanding, the advective velocity of a conservative solute equals the average linear pore-water velocity. Yet direct monitoring indicates that the two velocities may be different in heterogeneous media. For example, at the Camp Dodge, Iowa, site the advective velocity of discrete Cl- plumes was less than one tenth of the average pore-water velocity calculated from Darcy's law using the measured hydraulic gradient, effective porosity, and hydraulic conductivity (K) from large-scale three-dimensional (3D) techniques, e.g., pumping tests. Possibly, this difference reflects the influence of different pore systems, if the K relevant to transient solute flux is influenced more by lower-K heterogeneity than a steady or quasi-steady water flux. To test this idea, tracer tests were conducted under controlled laboratory conditions. Under one-dimensional flow conditions, the advective velocity of discrete conservative solutes equaled the average pore-water velocity determined from volumetric flow rates and Darcy's law. In a larger 3D flow system, however, the same solutes migrated at approximately 65% of the average pore-water velocity. These results, coupled with direct observation of dye tracers and their velocities as they migrated through both homogeneous and heterogeneous sections of the same model, demonstrate that heterogeneity can slow the advective velocity of discrete solute plumes relative to the average pore-water velocity within heterogeneous 3D flow sytems. PMID:15726924

  12. Pistachio supplementation attenuates motor and cognition impairments induced by cisplatin or vincristine in rats

    PubMed Central

    Golchin, Leila; Shabani, Mohammad; Harandi, Shaahin; Razavinasab, Moazamehosadat

    2015-01-01

    Background: A large number of natural products and dietary components have been evaluated as potential chemoprotective agents. In the present investigation we report the effects of treatment with the dietary antioxidant, pistachio, on cisplatin- or vincristine-induced neurotoxicity in male Wistar rats. Materials and Methods: Dietary pistachio (10%) was assessed for its neuroprotective effects through the alteration in performance of hippocampus- and cerebellum-related behaviors following chronic cisplatin (5 mg/kg) or vincristine (0.2 mg/kg) treatment in male rats. We also evaluated the effects of cisplatin, vincristine, and pistachio administration on nociception. Six behavioral tasks were used: open field, rotarod, grasping, Morris water maze (MWM), hot plate, and motor nerve conductive velocity (MNCV). Results: We showed that the exposure of adolescent rats to cisplatin or vincristine resulted in a significant decrease in explorative behaviors and memory retention. Pistachio consumption somewhat improved memory and motor abilities in cisplatin- or vincristine-treated rats, while pistachio alone did not show any significant changes in these abilities compared to saline. Cisplatin and vincristine increased the latency of response to nociception, and pistachio did not reverse this effect. Conclusion: We conclude that pistachio in the diet following anticancer drugs such as cisplatin and vincristine might have a protective effect against anticancer drug-induced disruptions in motor and cognitive function. However, further studies are needed to elucidate the exact mechanisms of this protective effect of pistachio. PMID:26015918

  13. Age-dependent changes in the midsized neurofilament subunit in sensory-motor systems of the cat brainstem: an immunocytochemical study.

    PubMed

    Zhang, J H; Sampogna, S; Morales, F R; Chase, M H

    2000-05-01

    This study documents age-related changes in the immunoreactivity of the medium-molecular weight subunit of neurofilaments in sensory and motor neurons in the brainstem of the cat. In old age, there was a clear decrease in immunoreactivity in the following brainstem sensory and motor nuclei: sensory trigeminal, gracile, cuneate, and facial motor. Only a few neuronal perikarya and dendrites were labeled in these nuclei in old cats; moreover, when present, the labeling was weak. In contrast, in adult cats, these nuclei contained intensely stained neuronal perikarya and dendrites. In other sensory and motor nuclei of the brainstem, there was an obvious age-related increase in the immunoreactivity of the medium-molecular weight subunit of neurofilaments in the perikarya. Despite different patterns of age-related alterations in immunoreactivity within perikarya and dendrites in distinct brainstem regions, most sensory and motor axons in old cats were smaller than those in adult cats. A decrease in the medium-molecular weight neurofilament subunit in the dendrites may be the basis for the dendritic atrophy that has been shown to occur in sensory nuclei in old animals. The decrease in axonal size is likely to be one of the causes of the decrease in axonal conduction velocity, in these neurons, that was reported in our previous studies. PMID:10819310

  14. Nervous propagation along 'central' motor pathways in intact man: characteristics of motor responses to 'bifocal' and 'unifocal' spine and scalp non-invasive stimulation.

    PubMed

    Rossini, P M; Marciani, M G; Caramia, M; Roma, V; Zarola, F

    1985-10-01

    In 23 healthy adult volunteers motor action potentials (MAPs) were elicited in upper and lower limb muscles during stimulation of appropriate sites at spinal and scalp level, through skin electrodes. 'Bifocal' stimulation of scalp and spine motor tracts was performed with 2 plaques (3.5 cm2 each), delivering single pulses of 440-940 mA, less than 50 microseconds in duration, which elicited high voltage (up to 10 mV) MAPs in arm and leg muscles. 'Unifocal' stimulation of scalp was carried out through a cathode consisting in a belt or in a series of rectangular interconnected plaques secured around the head, 1-2 cm rostral to the nasion-inion plane, and in a circular anode placed on the appropriate scalp site. MAPs with similar amplitude-latency characteristics were recorded with both 'bifocal' and 'unifocal' stimulating methods. However, the 'unifocal' stimulation necessitated 5-10 times less current than the 'bifocal' one. The 'unifocal' device using the interconnected plaques (6-12 in number) provided the most tolerable stimuli with the lowest amount of current (60-106 mA, rectangular pulses of 100-150 microseconds). Conduction times and velocities of motor pathways in various 'central' and 'peripheral' districts were calculated. Voluntary contraction of target muscles remarkably enhanced MAP amplitudes during scalp, but not during spine stimulation. A nerve action potential was recorded from ulnar nerve during scalp stimulation. MAPs in hand muscles to scalp stimulation were obliterated by the simultaneous activation of the peripheral fibres innervating the target muscle, because of collision between ortho- and antidromically propagated motor impulses. Anodal stimuli showed liminal values significantly lower than the cathodal ones. Mapping studies have been carried out with 'unifocal' scalp stimulation by using different types of anode and of stimulus parameters. PMID:2411506

  15. A Neural Circuit for Angular Velocity Computation

    PubMed Central

    Snider, Samuel B.; Yuste, Rafael; Packer, Adam M.

    2010-01-01

    In one of the most remarkable feats of motor control in the animal world, some Diptera, such as the housefly, can accurately execute corrective flight maneuvers in tens of milliseconds. These reflexive movements are achieved by the halteres, gyroscopic force sensors, in conjunction with rapidly tunable wing steering muscles. Specifically, the mechanosensory campaniform sensilla located at the base of the halteres transduce and transform rotation-induced gyroscopic forces into information about the angular velocity of the fly's body. But how exactly does the fly's neural architecture generate the angular velocity from the lateral strain forces on the left and right halteres? To explore potential algorithms, we built a neuromechanical model of the rotation detection circuit. We propose a neurobiologically plausible method by which the fly could accurately separate and measure the three-dimensional components of an imposed angular velocity. Our model assumes a single sign-inverting synapse and formally resembles some models of directional selectivity by the retina. Using multidimensional error analysis, we demonstrate the robustness of our model under a variety of input conditions. Our analysis reveals the maximum information available to the fly given its physical architecture and the mathematics governing the rotation-induced forces at the haltere's end knob. PMID:21228902

  16. A neural circuit for angular velocity computation.

    PubMed

    Snider, Samuel B; Yuste, Rafael; Packer, Adam M

    2010-01-01

    In one of the most remarkable feats of motor control in the animal world, some Diptera, such as the housefly, can accurately execute corrective flight maneuvers in tens of milliseconds. These reflexive movements are achieved by the halteres, gyroscopic force sensors, in conjunction with rapidly tunable wing steering muscles. Specifically, the mechanosensory campaniform sensilla located at the base of the halteres transduce and transform rotation-induced gyroscopic forces into information about the angular velocity of the fly's body. But how exactly does the fly's neural architecture generate the angular velocity from the lateral strain forces on the left and right halteres? To explore potential algorithms, we built a neuromechanical model of the rotation detection circuit. We propose a neurobiologically plausible method by which the fly could accurately separate and measure the three-dimensional components of an imposed angular velocity. Our model assumes a single sign-inverting synapse and formally resembles some models of directional selectivity by the retina. Using multidimensional error analysis, we demonstrate the robustness of our model under a variety of input conditions. Our analysis reveals the maximum information available to the fly given its physical architecture and the mathematics governing the rotation-induced forces at the haltere's end knob. PMID:21228902

  17. Design, Synthesis, and Monitoring of Light-Activated Motorized Nanomachines

    NASA Astrophysics Data System (ADS)

    Chiang, Pinn-Tsong

    Our group has developed a family of single molecules termed nanocars, which are aimed at performing controllable motion on surfaces. In this work, a series of light-activated motorized nanomachines incorporated with a MHz frequency light-activated unidirectional rotary motor were designed and synthesized. We hope the light-activated motor can serve as the powering unit for the nanomachines, and perform controllable translational motion on surfaces or in solution. A series of motorized nanovehicles intended for scanning tunneling microscopy (STM) imaging were designed and synthesized. A p-carborane-wheeled motorized nanocar was synthesized and monitored by STM. Single-molecule imaging was accomplished on a Cu(111) surface. However, further manipulations did lead to motor induced lateral motion. We attributed this result to the strong molecule-surface interactions between the p-carborane-wheeled nanocar and the Cu(111) surface and possible energy transfer between the rotary motor and the Cu(111) surface. To fine-tune the molecule-surface interactions, an adamantane-wheeled motorized nanocar and a three-wheel nanoroadster were designed and synthesized. In addition, the STM substrates will be varied and different combinations of molecule-surface interactions will be studied. As a complimentary imaging method to STM, single-molecule fluorescence microscopy (SMFM) also provides single-molecule level resolution. Unlike STM experiment requires ultra-high vacuum and conductive substrate, SMFM experiment is conducted at ambient conditions and uses non-conductive substrate. This imaging method allows us to study another category of molecule-surface interactions. We plan to design a fluorescent motorized nanocar that is suitable for SMFM studies. However, both the motor and fluorophore are photochemically active molecules. In proximity, some undesired energy transfer or interference could occur. A cyanine 5- (cy5-) tagged motorized nanocar incorporated with the MHz motor was

  18. Computer aided design of multi-phase switched reluctance motor

    NASA Astrophysics Data System (ADS)

    Sheth, N. K.; Rajagopal, K. R.

    2005-05-01

    In this paper, a comprehensive computer-aided design (CAD) procedure of multiphase switched reluctance motor (SRM) is presented. Better approach for calculation of the outer dimensions, phase inductance, flux linkage and losses, and also a different concept for calculating the average torque of the motor are incorporated in the CAD program. The average torque is calculated based on the most effective 15° (for 8/6 SRM) of the static torque profile of the motor. A sample design of a 5hp SRM is presented in detail and the design is validated by conducting a two-dimensional finite element analysis of the motor.

  19. Investigation of rocket motors 3 inch number 1 Mk 4

    NASA Astrophysics Data System (ADS)

    Barrington, L. M.

    1994-05-01

    In 1992, Aircraft Research and Development Unit (ARDU), RAAF, experienced two misfires with Rocket Motors, 3 in., No. 1, Mk 4, during a series of firings at Woomera. These motors were sampled from a batch manufactured in 1957, and subsequent to the misfires this batch was withdrawn from use. An alternate batch of motors manufactured in 1966 was available to ARDU. Tests were conducted on a number of these motors to advise on their suitability for use, and as a result, a further five years life was assigned with a recommendation to retest after that period.

  20. Large-Scale Hybrid Motor Testing. Chapter 10

    NASA Technical Reports Server (NTRS)

    Story, George

    2006-01-01

    Hybrid rocket motors can be successfully demonstrated at a small scale virtually anywhere. There have been many suitcase sized portable test stands assembled for demonstration of hybrids. They show the safety of hybrid rockets to the audiences. These small show motors and small laboratory scale motors can give comparative burn rate data for development of different fuel/oxidizer combinations, however questions that are always asked when hybrids are mentioned for large scale applications are - how do they scale and has it been shown in a large motor? To answer those questions, large scale motor testing is required to verify the hybrid motor at its true size. The necessity to conduct large-scale hybrid rocket motor tests to validate the burn rate from the small motors to application size has been documented in several place^'^^.^. Comparison of small scale hybrid data to that of larger scale data indicates that the fuel burn rate goes down with increasing port size, even with the same oxidizer flux. This trend holds for conventional hybrid motors with forward oxidizer injection and HTPB based fuels. While the reason this is occurring would make a great paper or study or thesis, it is not thoroughly understood at this time. Potential causes include the fact that since hybrid combustion is boundary layer driven, the larger port sizes reduce the interaction (radiation, mixing and heat transfer) from the core region of the port. This chapter focuses on some of the large, prototype sized testing of hybrid motors. The largest motors tested have been AMROC s 250K-lbf thrust motor at Edwards Air Force Base and the Hybrid Propulsion Demonstration Program s 250K-lbf thrust motor at Stennis Space Center. Numerous smaller tests were performed to support the burn rate, stability and scaling concepts that went into the development of those large motors.

  1. Development of PDC Bits for Downhole Motors

    SciTech Connect

    Karasawa, H.; Ohno, T.

    1995-01-01

    To develop polycrystalline hamond compact (PDC) bits of the full-face type which can be applied to downhole motor drilling, drilling tests for granite and two types of andesite were conducted using bits with 98.43 and 142.88 mm diameters. The bits successfully drilled these types of rock at rotary speeds from 300 to 400 rpm.

  2. Sensitivity to Auditory Velocity Contrast.

    PubMed

    Locke, Shannon M; Leung, Johahn; Carlile, Simon

    2016-01-01

    A natural auditory scene often contains sound moving at varying velocities. Using a velocity contrast paradigm, we compared sensitivity to velocity changes between continuous and discontinuous trajectories. Subjects compared the velocities of two stimulus intervals that moved along a single trajectory, with and without a 1 second inter stimulus interval (ISI). We found thresholds were threefold larger for velocity increases in the instantaneous velocity change condition, as compared to instantaneous velocity decreases or thresholds for the delayed velocity transition condition. This result cannot be explained by the current static "snapshot" model of auditory motion perception and suggest a continuous process where the percept of velocity is influenced by previous history of stimulation. PMID:27291488

  3. Sensitivity to Auditory Velocity Contrast

    PubMed Central

    Locke, Shannon M.; Leung, Johahn; Carlile, Simon

    2016-01-01

    A natural auditory scene often contains sound moving at varying velocities. Using a velocity contrast paradigm, we compared sensitivity to velocity changes between continuous and discontinuous trajectories. Subjects compared the velocities of two stimulus intervals that moved along a single trajectory, with and without a 1 second inter stimulus interval (ISI). We found thresholds were threefold larger for velocity increases in the instantaneous velocity change condition, as compared to instantaneous velocity decreases or thresholds for the delayed velocity transition condition. This result cannot be explained by the current static “snapshot” model of auditory motion perception and suggest a continuous process where the percept of velocity is influenced by previous history of stimulation. PMID:27291488

  4. Motor Priming in Neurorehabilitation

    PubMed Central

    Stoykov, Mary Ellen; Madhavan, Sangeetha

    2014-01-01

    Priming is a type of implicit learning wherein a stimulus prompts a change in behavior. Priming has been long studied in the field of psychology. More recently, rehabilitation researchers have studied motor priming as a possible way to facilitate motor learning. For example, priming of the motor cortex is associated with changes in neuroplasticity that are associated with improvements in motor performance. Of the numerous motor priming paradigms under investigation, only a few are practical for the current clinical environment, and the optimal priming modalities for specific clinical presentations are not known. Accordingly, developing an understanding of the various types of motor priming paradigms and their underlying neural mechanisms is an important step for therapists in neurorehabilitation. Most importantly, an understanding of the methods and their underlying mechanisms is essential for optimizing rehabilitation outcomes. The future of neurorehabilitation is likely to include these priming methods, which are delivered prior to or in conjunction with primary neurorehabilitation therapies. In this Special Interest article we discuss those priming paradigms that are supported by the greatest amount of evidence including: (i) stimulation-based priming, (ii) motor imagery and action observation, (iii) sensory priming, (iv) movement-based priming, and (v) pharmacological priming. PMID:25415551

  5. IEMDC - In-Line Electric Motor Driven Compressor

    SciTech Connect

    Michael J. Crowley

    2004-03-31

    This report covers the fifth quarter (01/01/04 to 03/31/04) of the In-Line Electric Motor Driven Compressor (IEMDC) project. Design efforts on the IEMDC continued with compressor efforts focused on performing aerodynamic analyses. These analyses were conducted using computational fluid dynamics. Compressor efforts also entailed developing mechanical designs of components through the use of solid models and working on project deliverables. Electric motor efforts focused on the design of the magnetic bearing system, motor pressure housing, and the motor-compressor interface. The mechanical evaluation of the main interface from both the perspective of the compressor manufacturer and electric motor manufacturer indicates that an acceptable design has been achieved. All mechanical and aerodynamic design efforts have resulted in considerable progress being made towards the completion of the compressor and electric motor design and towards the successful completion of the IEMDC unit.

  6. Flow and heat transfer model for a rotating cryogenic motor

    NASA Astrophysics Data System (ADS)

    Dykhuizen, R. C.; Baca, R. G.; Bickel, T. C.

    1993-08-01

    Development of a high-temperature, superconducting, synchronous motor for large applications (greater than 1000 HP) could offer significant electrical power savings for industrial users. Presently 60% of all electric power generated in the United States is converted by electric motors. A large part of this power is utilized by motors 1000 HP or larger. The use of high-temperature superconducting materials with critical temperatures above that of liquid nitrogen (77 K) in the field winding would reduce the losses in these motors significantly, and therefore, would have a definite impact on the electrical power usage in the U.S. These motors will be 1/3 to 1/2 the size of conventional motors of similar power and, thus, offer potential savings in materials and floor space. The cooling of the superconducting materials in the field windings of the rotor presents a unique application of cryogenic engineering. The rotational velocity results in significant radial pressure gradients that affect the flow distribution of the cryogen. The internal pressure fields can result in significant nonuniformities in the two-phase flow of the coolant. Due to the variable speed design, the flow distribution has the potential to change during operation. A multiphase-flow computer model of the cryogenic cooling is developed to calculate the boiling heat transfer and phase distribution of the nitrogen coolant in the motor. The model accounts for unequal phase velocities and nonuniform cooling requirements of the rotor. The unequal radial pressure gradients in the inlet and outlet headers result in a larger driving force for flow in the outer cooling channels. The effect of this must be accounted for in the design of the motor. Continuing improvements of the model will allow the investigation of the transient thermal issues associated with localized quenching of the superconducting components of the motor.

  7. Flow and heat transfer model for a rotating cryogenic motor

    SciTech Connect

    Dykhuizen, R.C.; Baca, R.G.; Bickel, T.C.

    1993-08-01

    Development of a high-temperature, superconducting, synchronous motor for large applications (>1000 HP) could offer significant electrical power savings for industrial users. Presently 60% of all electric power generated in the United States is converted by electric motors. A large part of two power is utilized by motors 1000 HP or larger. The use of high-temperature superconducting materials with critical temperatures above that of liquid nitrogen (77 K) in the field winding would reduce the losses in these motors significantly, and therefore, would have a definite impact on the electrical power usage in the US. These motors will be 1/3 to 1/2 the size of conventional motors of similar power and, thus, offer potential savings in materials and floor space. The cooling of the superconducting materials in the field windings of the rotor presents a unique application of cryogenic engineering. The rotational velocity results in significant radial pressure gradients that affect the flow distribution of the cryogen. The internal pressure fields can result in significant nonuniformities in the two-phase flow of the coolant. Due to the variable speed design, the flow distribution has the potential to change during operation. A multiphase-flow computer model of the cryogenic cooling is developed to calculate the boiling heat transfer and phase distribution of the nitrogen coolant in the motor. The model accounts for unequal phase velocities and nonuniform cooling requirements of the rotor. The unequal radial pressure gradients in the inlet and outlet headers result in a larger driving force for flow in the outer cooling channels. The effect of this must be accounted for in the design of the motor. Continuing improvements of the model will allow the investigation of the transient thermal issues associated with localized quenching of the superconducting components of the motor.

  8. Acoustic velocity meter systems

    USGS Publications Warehouse

    Laenen, Antonius

    1985-01-01

    Acoustic velocity meter (AVM) systems operate on the principles that the point-to-point upstream traveltime of an acoustic pulse is longer than the downstream traveltime and that this difference in traveltime can be accurately measured by electronic devices. An AVM system is capable of recording water velocity (and discharge) under a wide range of conditions, but some constraints apply: 1. Accuracy is reduced and performance is degraded if the acoustic path is not a continuous straight line. The path can be bent by reflection if it is too close to a stream boundary or by refraction if it passes through density gradients resulting from variations in either water temperature or salinity. For paths of less than 100 m, a temperature gradient of 0.1' per meter causes signal bending less than 0.6 meter at midchannel, and satisfactory velocity results can be obtained. Reflection from stream boundaries can cause signal cancellation if boundaries are too close to signal path. 2. Signal strength is attenuated by particles or bubbles that absorb, spread, or scatter sound. The concentration of particles or bubbles that can be tolerated is a function of the path length and frequency of the acoustic signal. 3. Changes in streamline orientation can affect system accuracy if the variability is random. 4. Errors relating to signal resolution are much larger for a single threshold detection scheme than for multiple threshold schemes. This report provides methods for computing the effect of various conditions on the accuracy of a record obtained from an AVM. The equipment must be adapted to the site. Field reconnaissance and preinstallation analysis to detect possible problems are critical for proper installation and operation of an AVM system.

  9. Dark Matter Velocity Spectroscopy.

    PubMed

    Speckhard, Eric G; Ng, Kenny C Y; Beacom, John F; Laha, Ranjan

    2016-01-22

    Dark matter decays or annihilations that produce linelike spectra may be smoking-gun signals. However, even such distinctive signatures can be mimicked by astrophysical or instrumental causes. We show that velocity spectroscopy-the measurement of energy shifts induced by relative motion of source and observer-can separate these three causes with minimal theoretical uncertainties. The principal obstacle has been energy resolution, but upcoming experiments will have the precision needed. As an example, we show that the imminent Astro-H mission can use Milky Way observations to separate possible causes of the 3.5-keV line. We discuss other applications. PMID:26849582

  10. Dark Matter Velocity Spectroscopy

    NASA Astrophysics Data System (ADS)

    Speckhard, Eric G.; Ng, Kenny C. Y.; Beacom, John F.; Laha, Ranjan

    2016-01-01

    Dark matter decays or annihilations that produce linelike spectra may be smoking-gun signals. However, even such distinctive signatures can be mimicked by astrophysical or instrumental causes. We show that velocity spectroscopy—the measurement of energy shifts induced by relative motion of source and observer—can separate these three causes with minimal theoretical uncertainties. The principal obstacle has been energy resolution, but upcoming experiments will have the precision needed. As an example, we show that the imminent Astro-H mission can use Milky Way observations to separate possible causes of the 3.5-keV line. We discuss other applications.

  11. Appropriate Conduct

    ERIC Educational Resources Information Center

    Di Lullo, Louis

    2004-01-01

    Many years ago when the author assumed the role of assistant principal for school climate, discipline, and attendance, he inherited many school policies and guidelines that were outdated, unfair, and without merit in the current school climate. Because the school conduct code had not been revised since the school opened in 1960, many of the…

  12. Conducting Meetings.

    ERIC Educational Resources Information Center

    United Tribes Educational Technical Center, Bismarck, ND.

    Written for anyone interested in what makes a meeting run smoothly (and what doesn't), the guide for conducting meetings is divided into the following sections: the chairperson (his/her responsibilities, preparing an agenda, organizing discussions); the meeting (quorums, discussions, points of order, and clarification); the motion (making the…

  13. System and method for motor parameter estimation

    SciTech Connect

    Luhrs, Bin; Yan, Ting

    2014-03-18

    A system and method for determining unknown values of certain motor parameters includes a motor input device connectable to an electric motor having associated therewith values for known motor parameters and an unknown value of at least one motor parameter. The motor input device includes a processing unit that receives a first input from the electric motor comprising values for the known motor parameters for the electric motor and receive a second input comprising motor data on a plurality of reference motors, including values for motor parameters corresponding to the known motor parameters of the electric motor and values for motor parameters corresponding to the at least one unknown motor parameter value of the electric motor. The processor determines the unknown value of the at least one motor parameter from the first input and the second input and determines a motor management strategy for the electric motor based thereon.

  14. Rotational flow in tapered slab rocket motors

    NASA Astrophysics Data System (ADS)

    Saad, Tony; Sams, Oliver C.; Majdalani, Joseph

    2006-10-01

    Internal flow modeling is a requisite for obtaining critical parameters in the design and fabrication of modern solid rocket motors. In this work, the analytical formulation of internal flows particular to motors with tapered sidewalls is pursued. The analysis employs the vorticity-streamfunction approach to treat this problem assuming steady, incompressible, inviscid, and nonreactive flow conditions. The resulting solution is rotational following the analyses presented by Culick for a cylindrical motor. In an extension to Culick's work, Clayton has recently managed to incorporate the effect of tapered walls. Here, an approach similar to that of Clayton is applied to a slab motor in which the chamber is modeled as a rectangular channel with tapered sidewalls. The solutions are shown to be reducible, at leading order, to Taylor's inviscid profile in a porous channel. The analysis also captures the generation of vorticity at the surface of the propellant and its transport along the streamlines. It is from the axial pressure gradient that the proper form of the vorticity is ascertained. Regular perturbations are then used to solve the vorticity equation that prescribes the mean flow motion. Subsequently, numerical simulations via a finite volume solver are carried out to gain further confidence in the analytical approximations. In illustrating the effects of the taper on flow conditions, comparisons of total pressure and velocity profiles in tapered and nontapered chambers are entertained. Finally, a comparison with the axisymmetric flow analog is presented.

  15. Generalised cognitive motor interference in multiple sclerosis.

    PubMed

    Learmonth, Y C; Pilutti, L A; Motl, R W

    2015-06-01

    Researchers have examined cognitive motor interference (CMI) for lower extremity function in MS, but have not examined this in the upper extremity. This study examined CMI for both lower and upper extremity motor tasks in persons with MS and without MS. Eighty-two persons walked on a GAITRite electronic walkway (velocity) and performed the nine-hole peg test (NHPT, seconds) without (single task) and with a cognitive challenge (dual task). The data were analysed with mixed-factor ANOVA and Pearson correlations. When comparing MS and controls, there were statistical significant and exceptionally large Task main effects on gait velocity (ηp(2)=.41; F1,60=55.78; p<.005) and NHPT performance (ηp(2)=.62; F1,60=127.8; p<.005). When considering disability status among those with MS, there were statistically significant and large Task main effects on velocity (ηp(2)=.38; F1,60=37.3; p<.005) and NHPT test (ηp(2)=.62; F1,60=95.7; p<.005). The dual task cost of walking and performing the NHPT were significantly correlated in the entire sample, those with MS and controls, and in those with MS who had mild, moderate, and severe disability (all |r|>.450). CMI occurs in both the lower and upper extremities, and is comparable between persons with and without MS and across MS disability level. PMID:25957651

  16. Slow Conduction in Cardiac Muscle

    PubMed Central

    Lieberman, Melvyn; Kootsey, J. Mailen; Johnson, Edward A.; Sawanobori, Tohru

    1973-01-01

    Mechanisms of slow conduction in cardiac muscle are categorized and the most likely identified. Propagating action potentials were obtained experimentally from a synthetically grown strand of cardiac muscle (around 50 μm by 30 mm) and theoretically from a one-dimensional cable model that incorporated varying axial resistance and membrane properties along its length. Action potentials propagated at about 0.3 m/s, but in some synthetic strands there were regions (approximately 100 μm in length) where the velocity decreased to 0.002 m/s. The electrophysiological behavior associated with this slow conduction was similar to that associated with slow conduction in naturally occurring cardiac muscle (notches, Wenckebach phenomena, and block). Theoretically, reasonable changes in specific membrane capacitance, membrane activity, and various changes in geometry were insufficient to account for the observed slow conduction velocities. Conduction velocities as low as 0.009 m/s, however, could be obtained by increasing the resistance (ri) of connections between the cells in the cable; velocities as low as 0.0005 m/s could be obtained by a further increase in ri made possible by a reduction in membrane activity by one-fourth, which in itself decreased conduction velocity by only a factor of 1/1.4. As a result of these findings, several of the mechanisms that have been postulated, previously, are shown to be incapable of accounting for delays such as those which occur in the synthetic strand as well as in the atrioventricular (VA) node. ImagesFIGURE 1FIGURE 2FIGURE 3FIGURE 4 PMID:4709519

  17. Piezoelectric Rotary Tube Motor

    NASA Technical Reports Server (NTRS)

    Fisher, Charles D.; Badescu, Mircea; Braun, David F.; Culhane, Robert

    2011-01-01

    A custom rotary SQUIGGLE(Registered TradeMark) motor has been developed that sets new benchmarks for small motor size, high position resolution, and high torque without gear reduction. Its capabilities cannot be achieved with conventional electromagnetic motors. It consists of piezoelectric plates mounted on a square flexible tube. The plates are actuated via voltage waveforms 90 out of phase at the resonant frequency of the device to create rotary motion. The motors were incorporated into a two-axis postioner that was designed for fiber-fed spectroscopy for ground-based and space-based projects. The positioner enables large-scale celestial object surveys to take place in a practical amount of time.

  18. Chronic motor tic disorder

    MedlinePlus

    Chronic motor tic disorder is more common than Tourette syndrome . Chronic tics may be forms of Tourette syndrome. Tics usually start at age 5 or 6 and get worse until age 12. They often improve during adulthood.

  19. Motor Vehicle Safety

    MedlinePlus

    ... these crashes is one part of motor vehicle safety. Here are some things you can do to ... speed or drive aggressively Don't drive impaired Safety also involves being aware of others. Share the ...

  20. MotorWeek

    ScienceCinema

    None

    2013-04-19

    In 2008, PBS's MotorWeek, television's original automotive magazine, visited Argonne's Transportation Technology R&D Center "to learn what it really takes to make clean power sources a viable reality."

  1. MotorWeek

    SciTech Connect

    2009-01-01

    In 2008, PBS's MotorWeek, television's original automotive magazine, visited Argonne's Transportation Technology R&D Center "to learn what it really takes to make clean power sources a viable reality."

  2. Booster separation motor

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The design, development, fabrication, testing, evaluation and flight qualification of the space shuttle booster separation motor is discussed. Delivery of flight hardware to support the research and development flights of the space shuttle is discussed.

  3. High Power Density Motors

    NASA Technical Reports Server (NTRS)

    Kascak, Daniel J.

    2004-01-01

    With the growing concerns of global warming, the need for pollution-free vehicles is ever increasing. Pollution-free flight is one of NASA's goals for the 21" Century. , One method of approaching that goal is hydrogen-fueled aircraft that use fuel cells or turbo- generators to develop electric power that can drive electric motors that turn the aircraft's propulsive fans or propellers. Hydrogen fuel would likely be carried as a liquid, stored in tanks at its boiling point of 20.5 K (-422.5 F). Conventional electric motors, however, are far too heavy (for a given horsepower) to use on aircraft. Fortunately the liquid hydrogen fuel can provide essentially free refrigeration that can be used to cool the windings of motors before the hydrogen is used for fuel. Either High Temperature Superconductors (HTS) or high purity metals such as copper or aluminum may be used in the motor windings. Superconductors have essentially zero electrical resistance to steady current. The electrical resistance of high purity aluminum or copper near liquid hydrogen temperature can be l/lOO* or less of the room temperature resistance. These conductors could provide higher motor efficiency than normal room-temperature motors achieve. But much more importantly, these conductors can carry ten to a hundred times more current than copper conductors do in normal motors operating at room temperature. This is a consequence of the low electrical resistance and of good heat transfer coefficients in boiling LH2. Thus the conductors can produce higher magnetic field strengths and consequently higher motor torque and power. Designs, analysis and actual cryogenic motor tests show that such cryogenic motors could produce three or more times as much power per unit weight as turbine engines can, whereas conventional motors produce only 1/5 as much power per weight as turbine engines. This summer work has been done with Litz wire to maximize the current density. The current is limited by the amount of heat it

  4. Report on Toyota Prius Motor Thermal Management

    SciTech Connect

    Hsu, J.S.

    2005-02-11

    In the current hybrid vehicle market, the Toyota Prius drive system is considered the leader in electrical, mechanical, and manufacturing innovations. It is a significant accomplishment that Toyota is able to manufacture and sell the vehicle for a profit. The Toyota Prius traction motor design approach for reducing manufacturing costs and the motor s torque capability have been studied and tested. The findings were presented in two previous Oak Ridge National Laboratory (ORNL) reports. The conclusions from this report reveal, through temperature rise tests, that the 2004 Toyota Prius (THSII) motor is applicable only for use in a hybrid automobile. It would be significantly undersized if used in a fuel cell vehicle application. The power rating of the Prius motor is limited by the permissible temperature rise of the motor winding (170 C) and the motor cooling oil (158 C). The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. They are approximately 15 kW with 105 C coolant and 21 kW with 35 C coolant. These continuous ratings are much lower than the 30 kW specified as a technical motor target of the U.S. Department of Energy FreedomCAR Program. All tests were conducted at about 24 C ambient temperature. The load angle of each torque adjustment was monitored to prevent a sudden stop of the motor if the peak torque were exceeded, as indicated by the load angle in the region greater than 90 electrical degrees. For peak power with 400 Nm torque at 1200 rpm, the permissible running time depends upon the initial winding temperature condition. The projected rate of winding temperature rise is approximately 2.1 C/sec. The cooling-oil temperature does not change much during short peak power operation. For light and medium load situations, the efficiency varies from 80% to above 90%, and the power factor varies from 70% to above 90%, depending on the load and speed. When the motor is loaded heavily near the

  5. Electrodeless conductivity.

    PubMed

    Light, T S; McHale, E J; Fletcher, K S

    1989-01-01

    Electrodeless conductivity is a technique for measuring the concentration of electrolytes in solution and utilizes a probe consisting of two toroids in close proximity, both of which are immersed in the solution. In special cases, the toroids may be mounted externally on insulated pipes carrying the solution. One toroid radiates an alternating electric field in the audiofrequency range and the other acts as a receiver to pick up the small current induced by the ions moving in a conducting loop of solution. Coatings which would foul contacting electrodes, such as suspensions, precipitates or oil, have little or no effect. Applications are chiefly to continuous measurement in the chemical processing industries, including pulp and paper, mining and heavy chemical production. The principles and practical details of the method are reviewed and cell-diameter, wall, and temperature effects are discussed. PMID:18964695

  6. Note: Cryogenic heat switch with stepper motor actuator.

    PubMed

    Melcher, B S; Timbie, P T

    2015-12-01

    A mechanical cryogenic heat switch has been developed using a commercially available stepper motor and control electronics. The motor requires 4 leads, each carrying a maximum, pulsed current of 0.5 A. With slight modifications of the stepper motor, the switch functions reliably in vacuum at temperatures between 300 K and 4 K. The switch generates a clamping force of 262 N at room temperature. At 4 K it achieves an "on state" thermal conductance of 5.04 mW/K and no conductance in the "off state." The switch is optimized for cycling an adiabatic demagnetization refrigerator. PMID:26724093

  7. Note: Cryogenic heat switch with stepper motor actuator

    SciTech Connect

    Melcher, B. S. Timbie, P. T.

    2015-12-15

    A mechanical cryogenic heat switch has been developed using a commercially available stepper motor and control electronics. The motor requires 4 leads, each carrying a maximum, pulsed current of 0.5 A. With slight modifications of the stepper motor, the switch functions reliably in vacuum at temperatures between 300 K and 4 K. The switch generates a clamping force of 262 N at room temperature. At 4 K it achieves an “on state” thermal conductance of 5.04 mW/K and no conductance in the “off state.” The switch is optimized for cycling an adiabatic demagnetization refrigerator.

  8. Note: Cryogenic heat switch with stepper motor actuator

    NASA Astrophysics Data System (ADS)

    Melcher, B. S.; Timbie, P. T.

    2015-12-01

    A mechanical cryogenic heat switch has been developed using a commercially available stepper motor and control electronics. The motor requires 4 leads, each carrying a maximum, pulsed current of 0.5 A. With slight modifications of the stepper motor, the switch functions reliably in vacuum at temperatures between 300 K and 4 K. The switch generates a clamping force of 262 N at room temperature. At 4 K it achieves an "on state" thermal conductance of 5.04 mW/K and no conductance in the "off state." The switch is optimized for cycling an adiabatic demagnetization refrigerator.

  9. Motor Energy Conservation Measures

    Energy Science and Technology Software Center (ESTSC)

    2010-12-31

    This software requires inputs of simple motor inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: High Efficiency Motor retrofit and Cogged V-belts retrofit. This tool calculates energy savings, demand reduction, cost savings, and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  10. Rocket Motor Microphone Investigation

    NASA Technical Reports Server (NTRS)

    Pilkey, Debbie; Herrera, Eric; Gee, Kent L.; Giraud, Jerom H.; Young, Devin J.

    2010-01-01

    At ATK's facility in Utah, large full-scale solid rocket motors are tested. The largest is a five-segment version of the reusable solid rocket motor, which is for use on the Ares I launch vehicle. As a continuous improvement project, ATK and BYU investigated the use of microphones on these static tests, the vibration and temperature to which the instruments are subjected, and in particular the use of vent tubes and the effects these vents have at low frequencies.

  11. Heat conduction

    SciTech Connect

    Lilley, D.G.

    1987-01-01

    Analytical and numerical methods, including both finite difference and finite element techniques, are presented with applications to heat conduction problems. Numerical and analytical methods are integrated throughout the text and a variety of complexities are thoroughly treated with many problems, solutions and computer programs. This book is presented as a fundamental course suitable for senior undergraduate and first year graduate students, with end-of-chapter problems and answers included. Sample case studies and suggested projects are included.

  12. Conduction apraxia.

    PubMed

    Ochipa, C; Rothi, L J; Heilman, K M

    1994-10-01

    A left hemisphere damaged patient with ideomotor apraxia is described, whose performance on pantomime to verbal command was superior to pantomime imitation. His reception of these same gestures (gesture naming) was spared. This syndrome has been named conduction apraxia. To account for this selective impaired performance on gesture imitation, a separation of the representations for gesture production and reception is proposed and a non-lexical gesture processing route for gesture imitation is suggested. PMID:7931387

  13. Synthetic RR Lyrae velocity curves

    SciTech Connect

    Liu, Tianxing Boston Univ., MA )

    1991-02-01

    An amplitude correlation between the pulsation velocity curves and visual light curves of ab-type RR Lyrae stars is derived from a large number of RR Lyrae that have high-precision radial-velocity and photometric data. Based on the determined AVp, AV ralation, a synthetic radial-velocity curve for a typical ab-type RR Lyrae star is constructed. This would be of particular use in determining the systemic velocities of RR Lyrae. 17 refs.

  14. Electric vehicle motors and controllers

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.

    1981-01-01

    Improved and advanced components being developed include electronically commutated permanent magnet motors of both drum and disk configuration, an unconventional brush commutated motor, and ac induction motors and various controllers. Test results on developmental motors, controllers, and combinations thereof indicate that efficiencies of 90% and higher for individual components, and 80% to 90% for motor/controller combinations can be obtained at rated power. The simplicity of the developmental motors and the potential for ultimately low cost electronics indicate that one or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors.

  15. The velocity distribution of cometary hydrogen - Evidence for high velocities?

    NASA Technical Reports Server (NTRS)

    Brown, Michael E.; Spinrad, Hyron

    1993-01-01

    The Hamilton Echelle spectrograph on the 3-m Shane telescope at Lick Observatory was used to obtain high-velocity and spatial resolution 2D spectra of H-alpha 6563-A emission in Comets Austin and Levy. The presence of the components expected from water dissociation and collisional thermalization in the inner coma is confirmed by the hydrogen velocity distribution. In Comet Austin, the potential high-velocity hydrogen includes velocities of up to about 40 km/s and is spatially symmetric with respect to the nucleus. In Comet Levy, the high-velocity hydrogen reaches velocities of up to 50 km/s and is situated exclusively on the sunward side of the nucleus. The two distinct signatures of high-velocity hydrogen imply two distinct sources.

  16. Motor-driven intracellular transport powers bacterial gliding motility.

    PubMed

    Sun, Mingzhai; Wartel, Morgane; Cascales, Eric; Shaevitz, Joshua W; Mignot, Tâm

    2011-05-01

    Protein-directed intracellular transport has not been observed in bacteria despite the existence of dynamic protein localization and a complex cytoskeleton. However, protein trafficking has clear potential uses for important cellular processes such as growth, development, chromosome segregation, and motility. Conflicting models have been proposed to explain Myxococcus xanthus motility on solid surfaces, some favoring secretion engines at the rear of cells and others evoking an unknown class of molecular motors distributed along the cell body. Through a combination of fluorescence imaging, force microscopy, and genetic manipulation, we show that membrane-bound cytoplasmic complexes consisting of motor and regulatory proteins are directionally transported down the axis of a cell at constant velocity. This intracellular motion is transmitted to the exterior of the cell and converted to traction forces on the substrate. Thus, this study demonstrates the existence of a conserved class of processive intracellular motors in bacteria and shows how these motors have been adapted to produce cell motility. PMID:21482768

  17. Characterization of a small moving-magnet electrodynamic linear motor

    NASA Astrophysics Data System (ADS)

    Liu, Jin; Garrett, Steven

    2005-10-01

    The mechanical and electrodynamic parameters of a small, potentially inexpensive, moving-magnet electrodynamic linear motor are determined experimentally. Employing the formalism introduced by Wakeland, these parameters are used to predict the electromechanical efficiency of the motor. The transduction coefficient, Bl, was observed to be a function of position. But as shown in the paper, the variation in Bl with position has a smaller effect on the driver's output power because Bl is largest around the equilibrium position, where the piston velocity is also largest. By mechanical colinear joining of the armatures of two such motors, an electrodynamic load (dynamometer) is created to measure the efficiency as a function of energy dissipated in the dynamometer. The measured efficiencies are shown to be in good agreement with the predictions if a position-averaged effective transduction coefficient is introduced. Based on these results, this linear motor is judged to be an attractive power source in small electrically driven thermoacoustic refrigerator applications.

  18. Position tracking control of a synchronous reluctance motor

    SciTech Connect

    Geoghan, A.J.; Carroll, J.J.

    1995-12-31

    The synchronous reluctance (SynR) motor is an attractive candidate for high-performance servo drive systems for various reasons. An integrator back-stepping technique is used to design a trajectory tracking control strategy for SynR motors driving inertial loads. A d-q model which describes the dynamical behavior of the SynR motor is introduced; based on this model, a voltage level controller is proposed which theoretically provides globally uniform asymptotically stable (GUAS) motor trajectory tracking given exact model knowledge and full state feedback (i.e., rotor position, velocity, and the per phase winding currents). The performance of the proposed voltage level controller is verified using computer simulation.

  19. Unitaxial constant velocity microactuator

    DOEpatents

    McIntyre, Timothy J.

    1994-01-01

    A uniaxial drive system or microactuator capable of operating in an ultra-high vacuum environment. The mechanism includes a flexible coupling having a bore therethrough, and two clamp/pusher assemblies mounted in axial ends of the coupling. The clamp/pusher assemblies are energized by voltage-operated piezoelectrics therewithin to operatively engage the shaft and coupling causing the shaft to move along its rotational axis through the bore. The microactuator is capable of repeatably positioning to sub-manometer accuracy while affording a scan range in excess of 5 centimeters. Moreover, the microactuator generates smooth, constant velocity motion profiles while producing a drive thrust of greater than 10 pounds. The system is remotely controlled and piezoelectrically driven, hence minimal thermal loading, vibrational excitation, or outgassing is introduced to the operating environment.

  20. Rationales for improving motor function.

    PubMed

    Hummelsheim, H

    1999-12-01

    New findings in basic neuroscience, and the growing knowledge regarding neuroplasticity and motor learning have exerted influence and have provided stimuli for motor rehabilitation research. Repeated motor practice has been identified as crucial for motor recovery. Further novel and scientifically based therapeutic approaches have been developed: constraint-induced movement therapy, electromyogram-initiated neuromuscular stimulation, motor imagery and music therapy are all discussed in the present review. PMID:10676751

  1. Phobos: Low Velocity Impacts

    NASA Astrophysics Data System (ADS)

    Smith, Heather; Lee, Pascal; Hamilton, Douglas

    2014-11-01

    Mars’s inner moon, Phobos, is located deep in the planet’s gravity well and orbits far below the planet’s synchronous orbit. Images of the surface of Phobos, in particular from Viking Orbiter 1, MGS, MRO, and MEX, reveal a rich collisional history, including fresh-looking impact craters and subdued older ones, very large impact structures (compared to the size of Phobos), such as Stickney, and much smaller ones.Sources of impactors colliding with Phobos include a priori: A) Impactors from outside the martian system (asteroids, comets, and fragments thereof); B) Impactors from Mars itself (ejecta from large impacts on Mars); and C) Impactors from Mars orbit, including impact ejecta launched from Deimos and ejecta launched from, and reintercepted by, Phobos. In addition to individual craters on Phobos, the networks of grooves on this moon have also been attributed in part or in whole to impactors from some of these sources, particularly B. We report the preliminary results of a systematic survey of the distribution, morphology, albedo, and color characteristics of fresh impact craters and associated ejecta deposits on Phobos. Considering that the different potential impactor sources listed above are expected to display distinct dominant compositions and different characteristic impact velocity regimes, we identify specific craters on Phobos that are more likely the result of low velocity impacts by impactors derived from Mars orbit than from any alternative sources. Our finding supports the hypothesis that the spectrally “Redder Unit” on Phobos may be a superficial veneer of accreted ejecta from Deimos, and that Phobos’s bulk might be distinct in composition from Deimos.

  2. Conductivity Probe

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Thermal and Electrical Conductivity Probe (TECP) for NASA's Phoenix Mars Lander took measurements in Martian soil and in the air.

    The needles on the end of the instrument were inserted into the Martian soil, allowing TECP to measure the propagation of both thermal and electrical energy. TECP also measured the humidity in the surrounding air.

    The needles on the probe are 15 millimeters (0.6 inch) long.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  3. Development of Erosive Burning Models for CFD Predictions of Solid Rocket Motor Internal Environments

    NASA Technical Reports Server (NTRS)

    Wang, Qun-Zhen

    2003-01-01

    Four erosive burning models, equations (11) to (14). are developed in this work by using a power law relationship to correlate (1) the erosive burning ratio and the local velocity gradient at propellant surfaces; (2) the erosive burning ratio and the velocity gradient divided by centerline velocity; (3) the erosive burning difference and the local velocity gradient at propellant surfaces; and (4) the erosive burning difference and the velocity gradient divided by centerline velocity. These models depend on the local velocity gradient at the propellant surface (or the velocity gradient divided by centerline velocity) only and, unlike other empirical models, are independent of the motor size. It was argued that, since the erosive burning is a local phenomenon occurring near the surface of the solid propellant, the erosive burning ratio should be independent of the bore diameter if it is correlated with some local flow parameters such as the velocity gradient at the propellant surface. This seems to be true considering the good results obtained by applying these models, which are developed from the small size 5 inch CP tandem motor testing, to CFD simulations of much bigger motors.

  4. Progress in the last 25 years and future perspectives in the low to high-velocity friction studies of faults; a time to shift from dry to wet experiments

    NASA Astrophysics Data System (ADS)

    Shimamoto, T.; Ma, S.; Yao, L.; Togo, T.

    2014-12-01

    High-velocity friction experiments in the last 25 years have contributed greatly to the understanding of the physical processes and mechanical properties of fault zones during seismic fault motion. But most experiments have been done at low normal stresses, under dry conditions, and at room temperature. A rationale for conducting experiments under controlled pore-pressure conditions is that specific fracture energy at a 100 MPa normal stress, extrapolated from the experimental results at low normal-stresses, is smaller than the fracture energy estimated for natural earthquakes by about one order of magnitude. Thus dry data are not consistent with earthquakes with respect to the specific fracture energy, and wet experiments may lead to a completely different framework of fault mechanics. We review nineteen existing friction apparatuses having high-velocity capabilities. Velocity regimes are conventionally classified into low velocity below 10-7 m/s, intermediate velocity between 10-7~10-4 m/s, and high velocity above 10-4 m/s. Then there are six high-velocity friction apparatuses, five intermediate to high-velocity apparatuses, and eight low to high-velocity apparatuses currently in use. Seven apparatuses can cover plate velocities on the order of 10-9 m/s to high velocities to allow studies of earthquake nucleation to dynamic rupture processes. Six apparatuses are equipped with pressure vessels and experiments with pore pressures are becoming possible. Use of Ti-Al alloy with a thermal conductivity almost as low as that of rock will open a way to expand the high-normal stress capability dramatically. We also report a rotary-shear low to high-velocity friction apparatus at IGCEA, capable of producing plate to seismic velocities (44 mm/yr to 2.1 m/s), and velocity jumps by 103 or 106 by using five electromagnetic clutches without stopping the motor. A unique feature of the apparatus is a large specimen chamber where different specimen assemblies can be installed

  5. Velocity and velocity bounds in static spherically symmetric metrics

    NASA Astrophysics Data System (ADS)

    Arraut, Ivan; Batic, Davide; Nowakowski, Marek

    2011-08-01

    We find simple expressions for velocity of massless particles with dependence on the distance, r, in Schwarzschild coordinates. For massive particles these expressions give an upper bound for the velocity. Our results apply to static spherically symmetric metrics. We use these results to calculate the velocity for different cases: Schwarzschild, Schwarzschild-de Sitter and Reissner-Nordström with and without the cosmological constant. We emphasize the differences between the behavior of the velocity in the different metrics and find that in cases with naked singularity there always exists a region where the massless particle moves with a velocity greater than the velocity of light in vacuum. In the case of Reissner-Nordström-de Sitter we completely characterize the velocity and the metric in an algebraic way. We contrast the case of classical naked singularities with naked singularities emerging from metric inspired by noncommutative geometry where the radial velocity never exceeds one. Furthermore, we solve the Einstein equations for a constant and polytropic density profile and calculate the radial velocity of a photon moving in spaces with interior metric. The polytropic case of radial velocity displays an unexpected variation bounded by a local minimum and maximum.

  6. A New Type of Motor: Pneumatic Step Motor

    PubMed Central

    Stoianovici, Dan; Patriciu, Alexandru; Petrisor, Doru; Mazilu, Dumitru; Kavoussi, Louis

    2011-01-01

    This paper presents a new type of pneumatic motor, a pneumatic step motor (PneuStep). Directional rotary motion of discrete displacement is achieved by sequentially pressurizing the three ports of the motor. Pulsed pressure waves are generated by a remote pneumatic distributor. The motor assembly includes a motor, gearhead, and incremental position encoder in a compact, central bore construction. A special electronic driver is used to control the new motor with electric stepper indexers and standard motion control cards. The motor accepts open-loop step operation as well as closed-loop control with position feedback from the enclosed sensor. A special control feature is implemented to adapt classic control algorithms to the new motor, and is experimentally validated. The speed performance of the motor degrades with the length of the pneumatic hoses between the distributor and motor. Experimental results are presented to reveal this behavior and set the expectation level. Nevertheless, the stepper achieves easily controllable precise motion unlike other pneumatic motors. The motor was designed to be compatible with magnetic resonance medical imaging equipment, for actuating an image-guided intervention robot, for medical applications. For this reason, the motors were entirely made of nonmagnetic and dielectric materials such as plastics, ceramics, and rubbers. Encoding was performed with fiber optics, so that the motors are electricity free, exclusively using pressure and light. PneuStep is readily applicable to other pneumatic or hydraulic precision-motion applications. PMID:21528106

  7. A New Type of Motor: Pneumatic Step Motor.

    PubMed

    Stoianovici, Dan; Patriciu, Alexandru; Petrisor, Doru; Mazilu, Dumitru; Kavoussi, Louis

    2007-02-01

    This paper presents a new type of pneumatic motor, a pneumatic step motor (PneuStep). Directional rotary motion of discrete displacement is achieved by sequentially pressurizing the three ports of the motor. Pulsed pressure waves are generated by a remote pneumatic distributor. The motor assembly includes a motor, gearhead, and incremental position encoder in a compact, central bore construction. A special electronic driver is used to control the new motor with electric stepper indexers and standard motion control cards. The motor accepts open-loop step operation as well as closed-loop control with position feedback from the enclosed sensor. A special control feature is implemented to adapt classic control algorithms to the new motor, and is experimentally validated. The speed performance of the motor degrades with the length of the pneumatic hoses between the distributor and motor. Experimental results are presented to reveal this behavior and set the expectation level. Nevertheless, the stepper achieves easily controllable precise motion unlike other pneumatic motors. The motor was designed to be compatible with magnetic resonance medical imaging equipment, for actuating an image-guided intervention robot, for medical applications. For this reason, the motors were entirely made of nonmagnetic and dielectric materials such as plastics, ceramics, and rubbers. Encoding was performed with fiber optics, so that the motors are electricity free, exclusively using pressure and light. PneuStep is readily applicable to other pneumatic or hydraulic precision-motion applications. PMID:21528106

  8. Trends in motor gasolines: 1942-1981

    SciTech Connect

    Shelton, E M; Whisman, M L; Woodward, P W

    1982-06-01

    Trends in motor gasolines for the years of 1942 through 1981 have been evaluated based upon data contained in surveys that have been prepared and published by the Bartlesville Energy Technology Center (BETC). These surveys have been published twice annually since 1935 describing the properties of motor gasolines from throughout the country. The surveys have been conducted in cooperation with the American Petroleum Institute (API) since 1948. Various companies from throughout the country obtain samples from retail outlets, analyze the samples by the American Society for Testing and Materials (ASTM) procedures, and report data to the Bartlesville center for compilation, tabulation, calculation, analysis and publication. A typical motor gasoline report covers 2400 samples from service stations throughout the country representing some 48 companies that manufacture and supply gasoline. The reports include trend charts, octane plots, and tables of test results from about a dozen different tests. From these data in 77 semiannual surveys, a summary report has thus been assembled that shows trends in motor gasolines throughout the entire era of winter 1942 to 1943 to the present. Trends of physical properties including octane numbers, antiknock ratings, distillation temperatures, Reid vapor pressure, sulfur and lead content are tabulated, plotted and discussed in the current report. Also included are trend effects of technological advances and the interactions of engine design, societal and political events and prices upon motor gasoline evolution during the 40 year period.

  9. A synthetic DNA motor that transports nanoparticles along carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cha, Tae-Gon; Pan, Jing; Chen, Haorong; Salgado, Janette; Li, Xiang; Mao, Chengde; Choi, Jong Hyun

    2014-01-01

    Intracellular protein motors have evolved to perform specific tasks critical to the function of cells such as intracellular trafficking and cell division. Kinesin and dynein motors, for example, transport cargoes in living cells by walking along microtubules powered by adenosine triphosphate hydrolysis. These motors can make discrete 8 nm centre-of-mass steps and can travel over 1 µm by changing their conformations during the course of adenosine triphosphate binding, hydrolysis and product release. Inspired by such biological machines, synthetic analogues have been developed including self-assembled DNA walkers that can make stepwise movements on RNA/DNA substrates or can function as programmable assembly lines. Here, we show that motors based on RNA-cleaving DNA enzymes can transport nanoparticle cargoes--CdS nanocrystals in this case--along single-walled carbon nanotubes. Our motors extract chemical energy from RNA molecules decorated on the nanotubes and use that energy to fuel autonomous, processive walking through a series of conformational changes along the one-dimensional track. The walking is controllable and adapts to changes in the local environment, which allows us to remotely direct `go' and `stop' actions. The translocation of individual motors can be visualized in real time using the visible fluorescence of the cargo nanoparticle and the near-infared emission of the carbon-nanotube track. We observed unidirectional movements of the molecular motors over 3 µm with a translocation velocity on the order of 1 nm min-1 under our experimental conditions.

  10. Nanoconfined catalytic Ångström-size motors

    SciTech Connect

    Colberg, Peter H. Kapral, Raymond

    2015-11-14

    Self-propelled chemically powered synthetic micron and nano-scale motors are being intensively studied because of the wide range of potential applications that exploit their directed motion. This paper considers even smaller Ångström-size synthetic motors. Such very small motors in bulk solution display effects arising from their self-propulsion. Recent experiments have shown that small-molecule catalysts and single enzyme molecules exhibit properties that have been attributed to their chemical activity. Molecular dynamics is used to investigate the properties of very small Ångström-size synthetic chemically powered sphere-dimer motors in a simple atomic-like solvent confined between walls separated by distances of tens of nanometers. Evidence for strong structural ordering of the motors between the walls, which reflects the finite size of solvent molecules and depends on solvent depletion forces, is provided. Dynamical properties, such as average motor velocity, orientational relaxation, and mean square displacement, are anisotropic and depend on the distance from the walls. This research provides information needed for potential applications that use molecular-scale motors in the complex confined geometries encountered in biology and the laboratory.

  11. Simulation of surface acoustic wave motor with spherical slider.

    PubMed

    Morita, T; Kurosawa, M K; Higuchi, T

    1999-01-01

    The operation of a surface acoustic wave (SAW) motor using spherical-shaped sliders was demonstrated by Kurosawa et al. (1994). It was necessary to modify the previous simulation models for usual ultrasonic motors because of this slider shape and the high frequency vibration. A conventional ultrasonic motor has a flat contact surface slider and a hundredth driving frequency; so, the tangential motion caused by the elasticity of the slider and stator with regard to the spherical slider of the SAW motor requires further investigation. In this paper, a dynamic simulation model for the SAW motor is proposed. From the simulation result, the mechanism of the SAW motor was clarified (i.e., levitation and contact conditions were repeated during the operation). The transient response of the motor speed was simulated. The relationships between frictional factor and time constant and vibration velocity of the stator and the slider speed were understood. The detailed research regarding the elastic deformation caused by preload would be helpful to construct an exact simulation model for the next work. PMID:18238497

  12. Control system for multi-motor friction drive of a large-scale optical telescope

    NASA Astrophysics Data System (ADS)

    Mao, Yao; Ma, Jia-Guang; Bao, Qi-liang; Yang, Song-hua

    2009-05-01

    In terms of large-scale optical telescope, the design of multi-motor friction drive is obviously advantageous than that of single motor direct drive on the expense for manufacture of motors. However, to keep the high accuracy of tracking of multi-motor friction drive in certain velocity and acceleration, synchronized control for multi-motor and compensation to the mechanical resonance are needed. After designing appropriate multi-motor drive and synchronized compensation device, we overcame the interference among running motors, restricted the velocity difference in smooth running to a smaller range, and set a good foundation for the design of correcting parameter. Besides, to expand the closed loop bandwidth of the system, the control loop model has been identified, and the compensator based on the identified model effectively improved the influence of the mechanical resonance. The experimental results showed that for multi-motor friction drive of the 1.2-m large-scale Alt-Azimuth optical telescope, the proposed approach obtained high accuracy when running at the max velocity of 3 deg/s.

  13. How Molecular Motors Are Arranged on a Cargo Is Important for Vesicular Transport

    PubMed Central

    Erickson, Robert P.; Jia, Zhiyuan; Gross, Steven P.; Yu, Clare C.

    2011-01-01

    The spatial organization of the cell depends upon intracellular trafficking of cargos hauled along microtubules and actin filaments by the molecular motor proteins kinesin, dynein, and myosin. Although much is known about how single motors function, there is significant evidence that cargos in vivo are carried by multiple motors. While some aspects of multiple motor function have received attention, how the cargo itself —and motor organization on the cargo—affects transport has not been considered. To address this, we have developed a three-dimensional Monte Carlo simulation of motors transporting a spherical cargo, subject to thermal fluctuations that produce both rotational and translational diffusion. We found that these fluctuations could exert a load on the motor(s), significantly decreasing the mean travel distance and velocity of large cargos, especially at large viscosities. In addition, the presence of the cargo could dramatically help the motor to bind productively to the microtubule: the relatively slow translational and rotational diffusion of moderately sized cargos gave the motors ample opportunity to bind to a microtubule before the motor/cargo ensemble diffuses out of range of that microtubule. For rapidly diffusing cargos, the probability of their binding to a microtubule was high if there were nearby microtubules that they could easily reach by translational diffusion. Our simulations found that one reason why motors may be approximately 100 nm long is to improve their ‘on’ rates when attached to comparably sized cargos. Finally, our results suggested that to efficiently regulate the number of active motors, motors should be clustered together rather than spread randomly over the surface of the cargo. While our simulation uses the specific parameters for kinesin, these effects result from generic properties of the motors, cargos, and filaments, so they should apply to other motors as well. PMID:21573204

  14. Synchronization of elastically coupled processive molecular motors and regulation of cargo transport

    NASA Astrophysics Data System (ADS)

    Kohler, Felix; Rohrbach, Alexander

    2015-01-01

    The collective work of motor proteins plays an important role in cellular transport processes. Since measuring intermotor coupling and hence a comparison to theoretical predictions is difficult, we introduce the synchronization as an alternative observable for motor cooperativity. This synchronization can be determined from the ratio of the mean times of motor resting and stepping. Results from a multistate Markov chain model and Brownian dynamics simulations, describing the elastically coupled motors, coincide well. Our model can explain the experimentally observed effect of strongly increased transport velocities and powers by the synchronization and coupling of myosin V and kinesin I.

  15. Evolution of peripheral nerve function in humans: novel insights from motor nerve excitability

    PubMed Central

    Farrar, Michelle A; Park, Susanna B; Lin, Cindy S-Y; Kiernan, Matthew C

    2013-01-01

    While substantial alterations in myelination and axonal growth have been described during maturation, their interactions with the configuration and activity of axonal membrane ion channels to achieve impulse conduction have not been fully elucidated. The present study utilized axonal excitability techniques to compare the changes in nerve function across healthy infants, children, adolescents and adults. Multiple excitability indices (stimulus–response curve, strength–duration time constant, threshold electrotonus, current–threshold relationship and recovery cycle) combined with conventional neurophysiological measures were investigated in 57 subjects (22 males, 35 females; age range 0.46–24 years), stimulating the median motor nerve at the wrist. Maturational changes in conduction velocity were paralleled by significant alterations in multiple excitability parameters, similarly reaching steady values in adolescence. Maturation was accompanied by reductions in threshold (P < 0.005) and rheobase (P= 0.001); depolarizing and hyperpolarizing electrotonus progressively reduced (P < 0.001), or ‘fanned-in’; resting current–threshold slope increased (P < 0.0001); accommodation to depolarizing currents prolonged (P < 0.0001); while greater threshold changes in refractoriness (P= 0.001) and subexcitability (P < 0.01) emerged. Taken together, the present findings suggest that passive membrane conductances and the activity of K+ conductances decrease with formation of the axo-glial junction and myelination. In turn, these functional alterations serve to enhance the efficiency and speed of impulse conduction concurrent with the acquisition of motor skills during childhood, and provide unique insight into the evolution of postnatal human peripheral nerve function. Significantly, these findings bring the dynamics of axonal development to the clinical domain and serve to further illuminate pathophysiological mechanisms that occur during development. PMID:23006483

  16. Interface Conductance Modal Analysis

    NASA Astrophysics Data System (ADS)

    Gordiz, Kiarash; Henry, Asegun

    2015-03-01

    Reliably and quantitatively calculating the conductance of phonons across an interface between two materials has been one of the major unresolved questions in thermal transport physics for the last century. Theories have been presented in this regard, but their predictive power is limited. A new formalism to extract the modal contributions to thermal interface conductance with full inclusion of temperature dependent anharmonicity and all of the atom level topography is presented. The results indicate that when two materials are joined a new set of vibrational modes are required to correctly describe the transport across the interface. The new set of vibrational modes is inconsistent with the physical picture described by phonon gas model (PGM), because some of the most important modes are localized and non-propagating and therefore do not have a well-defined velocity nor do they impinge on the interface. Among these new modes, certain classifications emerge, as most modes extend at least partially into the other material. Localized interfacial modes are also present and exhibit a high conductance contribution on a per mode basis by strongly coupling to other types of vibrational modes. We apply our formalism to different interfaces and present thermal interface conductance accumulation functions, two-dimensional cross-correlation matrices, and a quantitative determination of the contributions arising from inelastic effects. The provided new perspective on interface thermal transport can open new gates towards deeper understanding of phonon-phonon and electron-phonon interactions around interfaces.

  17. A locus for axonal motor-sensory neuropathy with deafness and mental retardation maps to Xq26-q27

    SciTech Connect

    Priest, J.M.; Nouri, N.; Keats, B.J.B.

    1994-09-01

    Twenty-two DNA markers spanning the X chromosome have been analyzed for linkage to the locus causing an unusual form of X-linked recessive hereditary motor and sensory neuropathy in a Pennsylvania family of Italian ancestry. This 3 generation family which was originally reported by Cowchock includes 7 affected males, 3 obligate carrier females, and 4 unaffected males. Males are severely affected at birth or within the first few years of life with areflexia, slowly progressive axonal atrophy, and absence of large myelinated fibers, and they all develop pes cavus and hammer toes. Five of the 7 affected males show associated deafness and 3 of these 5 individuals also presented with mental retardation or social developmental delay. Motor nerve conduction velocities in affected males are normal to mildly delayed and sensory conduction velocities are markedly abnormal. Heterozygous females are asymptomatic. Close linkage to the Xg blood group locus (Xp22) was previously excluded in this family while weak linkage of the disease gene to DXYS1 (Xq13-q21) was suggested. The current study excludes the short arm and the proximal long arm of the X chromosome. Haplotype analysis of markers on the long arm demonstrates that HPRT is a proximal flanking marker and that the disease gene is closely linked to the marker DXS984. Further microsatellite markers are being studied in order to refine the region of the distal long arm of the X chromosome containing the gene causing the motor-sensory neuropathy in this family. This is the first such gene assigned to the distal region of Xq.

  18. Motor considerations for turbomachinery

    SciTech Connect

    Halfpap, R.F.; Brotherhood, R. )

    1995-02-01

    Customers who use large rotating equipment realize motors can be subjected to hostile environmental conditions, nonstandard voltage levels and a variety of load requirements. The motor specifications they write reflect this change and have become far more detailed. Too often in the past, when large projects were being organized and highly technical equipment purchased, induction motors were thought of as standard pieces of equipment not requiring much in the way of specialized design. High-speed compressor applications are good examples of the need for specific compressor torque characteristics and starting requirements to allow for proper motor design. Not only different compressor designs, but adjustments in compressor valves and changes in gas process conditions, can produce a diversity of speed-torque curves. Therefore, it is not practical for a motor designer to be told to assume a standard compressor load torque during acceleration. An example of compressor speed-torque curves illustrates this point. The paper also presents the example of centrifugal pumps to further illustrate the need for properly matching driver torque and power requirements.

  19. Magnetostrictive direct drive motor

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1991-01-01

    Highly magnetostrictive materials such as Tb.3Dy.7Fe2, commercially known as TERFENOL-D, have been used to date in a variety of devices such as high power actuators and linear motors. The larger magnetostriction available in twinned single crystal TERFENOL-D, approx. 2000 ppm at moderate magnetic field strengths, makes possible a new generation of magnetomechanical devices. NASA researchers are studying the potential of this material as the basis for a direct microstepping rotary motor with torque densities on the order of industrial hydraulics and five times greater than that of the most efficient, high power electric motors. Such a motor would be a micro-radian stepper, capable of precision movements and self-braking in the power-off state. Innovative mechanical engineering techniques are juxtaposed on proper magnetic circuit design to reduce losses in structural flexures, inertias, thermal expansions, eddy currents, and magneto-mechanical coupling, thus optimizing motor performance and efficiency. Mathematical models are presented, including magnetic, structural, and both linear and nonlinear dynamic calculations and simulations. In addition, test results on prototypes are presented.

  20. Influence of mental practice and movement observation on motor memory, cognitive function and motor performance in the elderly

    PubMed Central

    Altermann, Caroline D. C.; Martins, Alexandre S.; Carpes, Felipe P.; Mello-Carpes, Pâmela B.

    2014-01-01

    Background With aging, it is important to maintain cognitive and motor functions to ensure autonomy and quality of life. During the acquisition of motor skills, it is necessary for the elderly to understand the purpose of the proposed activities. Physical and mental practice, as well as demonstrations, are strategies used to learn movements. Objectives To investigate the influence of mental practice and the observation of movement on motor memory and to understand the relationship between cognitive function and motor performance in the execution of a sequence of digital movements in the elderly. Method This was a cross-sectional study conducted with 45 young and 45 aged subjects. The instruments used were Mini-Mental State Examination (MMSE), Manual Preference Inventory and a Digital Motor Task (composed of a training of a sequence of movements, an interval and a test phase). The subjects were divided into three subgroups: control, mental practice and observation of movement. Results The elderly depend more strongly on mental practice for the acquisition of a motor memory. In comparing the performances of people in different age groups, we found that in the elderly, there was a negative correlation between the MMSE score and the execution time as well as the number of errors in the motor task. Conclusions For the elderly, mental practice can advantage motor performance. Also, there is a significant relationship between cognitive function, learning and the execution of new motor skills. PMID:24839046

  1. Motion of Euglena gracilis: Active fluctuations and velocity distribution

    NASA Astrophysics Data System (ADS)

    Romanczuk, P.; Romensky, M.; Scholz, D.; Lobaskin, V.; Schimansky-Geier, L.

    2015-07-01

    We study the velocity distribution of unicellular swimming algae Euglena gracilis using optical microscopy and active Brownian particle theory. To characterize a peculiar feature of the experimentally observed distribution at small velocities we use the concept of active fluctuations, which was recently proposed for the description of stochastically self-propelled particles [Romanczuk, P. and Schimansky-Geier, L., Phys. Rev. Lett. 106, 230601 (2011)]. In this concept, the fluctuating forces arise due to internal random performance of the propulsive motor. The fluctuating forces are directed in parallel to the heading direction, in which the propulsion acts. In the theory, we introduce the active motion via the depot model [Schweitzer, et al., Phys. Rev. Lett. 80(23), 5044 (1998)]. We demonstrate that the theoretical predictions based on the depot model with active fluctuations are consistent with the experimentally observed velocity distributions. In addition to the model with additive active noise, we obtain theoretical results for a constant propulsion with multiplicative noise.

  2. [A case of multifocal motor neuropathy with IgM lambda anti-GM1 antibody and IgM kappa paraprotein reacting exclusively with GM2].

    PubMed

    Arai, Motomi; Kusunoki, Susumu

    2009-01-01

    A 57-year-old previously healthy woman visited our clinic complaining of frequent muscle cramps and progressive weakness in the hands and fingers for 3 years. On examination, cranial nerves were unremarkable. There were moderate weakness and mild muscle wasting with fasciculation in the left thumb flexor and interossei on both sides. Tendon reflexes were hypoactive. There were no pathologic reflexes or sensory deficit. The cerebrospinal fluid was unremarkable. Nerve conduction studies demonstrated conduction block in the right ulnar nerve. Compound muscle action potential in the left median nerve was low-normal. Distal motor latencies, motor and sensory nerve conduction velocities were normal in all nerves tested. A diagnosis of multifocal motor neuropathy was made. Two courses of intravenous immunoglobulin infusion gave no beneficial effects. The patient had IgM kappa monoclonal gammopathy of undetermined significance. Her serum IgM reacted with GM2, GM1, and GA1 but not with GD1a, GD1b, GD3, GalNAc-GD1a, GT1b, GQ1b, galactocerebroside, or sulfated glucuronyl paragloboside. IgM kappa paraprotein reacted exclusively with GM2. Only IgM lambda bound to GM1 and GA1, suggesting the possibility that another paraprotein, though undetectable by immunoelectrohoresis, had a reactivity with GM1 and GA1. This case showed previously unreported antigenic specificity of paraproteins in cases of MMN. PMID:19348179

  3. Factors influencing perceived angular velocity

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.; Calderone, Jack B.

    1991-01-01

    Angular velocity perception is examined for rotations both in depth and in the image plane and the influence of several object properties on this motion parameter is explored. Two major object properties are considered, namely, texture density which determines the rate of edge transitions for rotations in depth, i.e., the number of texture elements that pass an object's boundary per unit of time, and object size which determines the tangential linear velocities and 2D image velocities of texture elements for a given angular velocity. Results of experiments show that edge-transition rate biased angular velocity estimates only when edges were highly salient. Element velocities had an impact on perceived angular velocity; this bias was associated with 2D image velocity rather than 3D tangential velocity. Despite these biases judgements were most strongly determined by the true angular velocity. Sensitivity to this higher order motion parameter appeared to be good for rotations both in depth (y-axis) and parallel to the line of sight (z-axis).

  4. Particle Velocity Measuring System

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Carl, James R. (Inventor)

    1998-01-01

    Method and apparatus are provided for determining the velocity of individual food particles within a liquid/solid food mixture that is cooked by an aseptic cooking method whereby the food mixture is heated as it flows through a flowline. At least one upstream and at least one downstream microwave transducer are provided to determine the minimum possible travel time of the fastest food particle through the flowline. In one embodiment, the upstream detector is not required. In another embodiment, a plurality of small dipole antenna markers are secured to a plurality of food particles to provide a plurality of signals as the markers pass the upstream and downstream transducers. The dipole antenna markers may also include a non-linear element to reradiate a harmonic frequency of a transmitter frequency. Upstream and downstream transducers include dipole antennas that are matched to the impedance of the food slurry and a signal transmission cable by various impedance matching means including unbalanced feed to the antennas.

  5. Velocity dependant splash behaviour

    NASA Astrophysics Data System (ADS)

    Hamlett, C. A. E.; Shirtcliffe, N. J.; McHale, G.; Ahn, S.; Doerr, S. H.; Bryant, R.; Newton, M. I.

    2012-04-01

    Extreme soil water repellency can occur in nature via condensation of volatile organic compounds released during wildfires and can lead to increased erosion rate. Such extreme water repellent soil can be classified as superhydrophobic and shares similar chemical and topographical features to specifically designed superhydrophobic surfaces. Previous studies using high speed videography to investigate single droplet impact behaviour on artificial superhydrophobic have revealed three distinct modes of splash behaviour (rebound, pinned and fragmentation) which are dependent on the impact velocity of the droplet. In our studies, using high-speed videography, we show that such splash behaviour can be replicated on fixed 'model' water repellent soils (hydrophobic glass beads/particles). We show that the type of splash behaviour is dependent on both the size and chemical nature of the fixed particles. The particle shape also influences the splash behaviour as shown by drop impact experiments on fixed sand samples. We have also studied soil samples, as collected from the field, which shows that the type of droplet splash behaviour can lead to enhanced soil particle transport.

  6. Metallic glass velocity sensor

    SciTech Connect

    Butler, J.L.; Butler, S.C.; Massa, D.P.; Cavanagh, G.H.

    1996-04-01

    A metallic glass accelerometer has been developed for use as an underwater sound velocity sensor. The device uses the metallic glass material Metglas 2605SC which has been processed to achieve a virgin coupling coefficient of 0.96. The mechanical to electrical conversion is based on the detection of the change in the inductance of the device as a result of bending motion. The detection method uses a carrier frequency signal which is amplitude modulated by the received signal. This scheme was originally described by Wun-Fogle, Savage and Clark [{open_quote}{open_quote}Sensitive wide frequency range magnetostrictive strain gauge,{close_quote}{close_quote} Sensors and Actuators, 1{underscore}2{underscore}, 323{endash}331 (1987)]. The bender is in the form of a three layered laminate with a closed magnetic path window frame structure. The theory of operation along with measured and calculated results are presented for a prototype element with approximate dimensions 1.5{times}1.0{times}0.1 inches. Calculated and measured results agree for a reduced effective coupling coefficient of 0.72 and operation with a carrier field intensity of 0.87 Oe and carrier frequency of 20 kHz. {copyright} {ital 1996 American Institute of Physics.}

  7. Hydrokinetic canal measurements: inflow velocity, wake flow velocity, and turbulence

    DOE Data Explorer

    Gunawan, Budi

    2014-06-11

    The dataset consist of acoustic Doppler current profiler (ADCP) velocity measurements in the wake of a 3-meter diameter vertical-axis hydrokinetic turbine deployed in Roza Canal, Yakima, WA, USA. A normalized hub-centerline wake velocity profile and two cross-section velocity contours, 10 meters and 20 meters downstream of the turbine, are presented. Mean velocities and turbulence data, measured using acoustic Doppler velocimeter (ADV) at 50 meters upstream of the turbine, are also presented. Canal dimensions and hydraulic properties, and turbine-related information are also included.

  8. Rehabilitative Training Promotes Rapid Motor Recovery but Delayed Motor Map Reorganization in a Rat Cortical Ischemic Infarct Model

    PubMed Central

    Nishibe, Mariko; Urban, Edward T.R.; Barbay, Scott; Nudo, Randolph J.

    2014-01-01

    Background In preclinical stroke models, improvement in motor performance is associated with reorganization of cortical motor maps. However, the temporal relationship between performance gains and map plasticity is not clear. Objective This study was designed to assess the effects of rehabilitative training on the temporal dynamics of behavioral and neurophysiological endpoints in a rat model of focal cortical infarct. Methods Eight days after an ischemic infarct in primary motor cortex, adult rats received either rehabilitative training or were allowed to recover spontaneously. Motor performance and movement quality of the paretic forelimb was assessed on a skilled reach task. Intracortical microstimulation mapping procedures were conducted to assess the topography of spared forelimb representations either at the end of training (post-lesion day 18) or at the end of a three week follow-up period (post-lesion day 38). Results Rats receiving rehabilitative training demonstrated more rapid improvement in motor performance and movement quality during the training period that persisted through the follow-up period. Motor maps in both groups were unusually small on post-lesion day 18. On post-lesion day 38, forelimb motor maps in the rehabilitative training group were significantly enlarged compared with the no-rehab group, and within the range of normal maps. Conclusions Post-infarct rehabilitative training rapidly improves motor performance and movement quality after an ischemic infarct in motor cortex. However, training-induced motor improvements are not reflected in spared motor maps until substantially later, suggesting that early motor training after stroke can help shape the evolving post-stroke neural network. PMID:25055836

  9. Micromachine Wedge Stepping Motor

    SciTech Connect

    Allen, J.J.; Schriner, H.K.

    1998-11-04

    A wedge stepping motor, which will index a mechanism, has been designed and fabricated in the surface rnicromachine SUMMiT process. This device has demonstrated the ability to index one gear tooth at a time with speeds up to 205 teeth/see. The wedge stepper motor has the following features, whi:h will be useful in a number of applications. o The ability to precisely position mechanical components. . Simple pulse signals can be used for operation. o Only 2 drive signals are requixed for operation. o Torque and precision capabilities increase with device size . The device to be indexed is restrained at all times by the wedge shaped tooth that is used for actuation. This paper will discuss the theory of operation and desi=m of the wedge stepping motor. The fabrication and testing of I he device will also be presented.

  10. Rocket motor aeroacoustics

    NASA Astrophysics Data System (ADS)

    Hegde, U. G.; Strahle, W. C.

    1983-10-01

    Vibration problems in solid propellant rocket motors are investigated. A class of interior flows modelled to simulate flow conditions inside rocket motor cavities is considered. Turbulence generated pressure fluctuations are shown to consist of two components - acoustic and hydrodynamics. The Bernoulli enthalpy theory of aeroacoustics is employed to extract acoustic pressure spectra from experimentally obtained turbulence data and acoustic impedance values at flow boundaries. The effects of turbulence intensities, sidewall acoustic impedance, axial mass blowing distribution, length to diameter ratio of the cavity and different mass flux on the acoustic pressure level are investigated. Typical pressure levels, under rocket motor conditions, are calculated using the A/B model of propellant response. Estimates of the hydrodynamic component of the pressure fluctuation are provided for the case of fully developed turbulent pipe flow terminated by a choked nozzle.

  11. Bent shaft motor

    DOEpatents

    Benavides, G.L.

    1998-05-05

    A nonelectromagnetic motor comprising a base, a bent shaft which is rotatable relative to the base wherein the bent shaft comprises a straight portion aligned with a main axis and an offset portion that is offset with respect to the main axis; and a drive means for driving the offset portion of the bent shaft along a generally circular path in a plane perpendicular to the main axis to rotate the bent shaft. The bent shaft and drive means for driving the bent shaft can be selected from piezoelectric, magnetostrictive, rheological and shape memory alloys. The drive means of the nonelectromagnetic motor can additionally comprise a shell which shell surrounds and houses the bent shaft and precesses or gyrates which in turn causes the bent drive shaft to rotate. The nonelectromagnetic motor does not rely on friction for the application of torque upon a rotor. 11 figs.

  12. Magnetostrictive direct drive motors

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1990-01-01

    Developing magnetostrictive direct drive research motors to power robot joints is discussed. These type motors are expected to produce extraordinary torque density, to be able to perform microradian incremental steps and to be self-braking and safe with the power off. Several types of motor designs have been attempted using magnetostrictive materials. One of the candidate approaches (the magnetostrictive roller drive) is described. The method in which the design will function is described as is the reason why this approach is inherently superior to the other approaches. Following this, the design will be modelled and its expected performance predicted. This particular candidate design is currently undergoing detailed engineering with prototype construction and testing scheduled for mid 1991.

  13. Bent shaft motor

    DOEpatents

    Benavides, Gilbert L.

    1998-01-01

    A nonelectromagnetic motor comprising a base, a bent shaft which is rotable relative to the base wherein the bent shaft comprises a straight portion aligned with a main axis and an offset portion that is offset with respect to the main axis; and a drive means for driving the offset portion of the bent shaft along a generally circular path in a plane perpendicular to the main axis to rotate the bent shaft. The bent shaft and drive means for driving the bent shaft can be selected from piezoelectric, magnetostrictive, rheological and shape memory alloys. The drive means of the nonelectromagnetic motor can additionally comprise a shell which shell surrounds and houses the bent shaft and precesses or gyrates which in turn causes the bent drive shaft to rotate. The nonelectromagnetic motor does not rely on friction for the application of torque upon a rotor.

  14. High velocity impact experiment (HVIE)

    SciTech Connect

    Toor, A.; Donich, T.; Carter, P.

    1998-02-01

    The HVIE space project was conceived as a way to measure the absolute EOS for approximately 10 materials at pressures up to {approximately}30 Mb with order-of-magnitude higher accuracy than obtainable in any comparable experiment conducted on earth. The experiment configuration is such that each of the 10 materials interacts with all of the others thereby producing one-hundred independent, simultaneous EOS experiments The materials will be selected to provide critical information to weapons designers, National Ignition Facility target designers and planetary and geophysical scientists. In addition, HVIE will provide important scientific information to other communities, including the Ballistic Missile Defense Organization and the lethality and vulnerability community. The basic HVIE concept is to place two probes in counter rotating, highly elliptical orbits and collide them at high velocity (20 km/s) at 100 km altitude above the earth. The low altitude of the experiment will provide quick debris strip-out of orbit due to atmospheric drag. The preliminary conceptual evaluation of the HVIE has found no show stoppers. The design has been very easy to keep within the lift capabilities of commonly available rides to low earth orbit including the space shuttle. The cost of approximately 69 million dollars for 100 EOS experiment that will yield the much needed high accuracy, absolute measurement data is a bargain!

  15. Post-impact behavior of composite solid rocket motor cases

    NASA Technical Reports Server (NTRS)

    Highsmith, Alton L.

    1992-01-01

    In recent years, composite materials have seen increasing use in advanced structural applications because of the significant weight savings they offer when compared to more traditional engineering materials. The higher cost of composites must be offset by the increased performance that results from reduced structural weight if these new materials are to be used effectively. At present, there is considerable interest in fabricating solid rocket motor cases out of composite materials, and capitalizing on the reduced structural weight to increase rocket performance. However, one of the difficulties that arises when composite materials are used is that composites can develop significant amounts of internal damage during low velocity impacts. Such low velocity impacts may be encountered in routine handling of a structural component like a rocket motor case. The ability to assess the reduction in structural integrity of composite motor cases that experience accidental impacts is essential if composite rocket motor cases are to be certified for manned flight. The study described herein was an initial investigation of damage development and reduction of tensile strength in an idealized composite subjected to low velocity impacts.

  16. The functional alterations associated with motor imagery training: a comparison between motor execution and motor imagery of sequential finger tapping

    NASA Astrophysics Data System (ADS)

    Zhang, Hang; Yao, Li; Long, Zhiying

    2011-03-01

    Motor imagery training, as an effective strategy, has been more and more applied to mental disorders rehabilitation and motor skill learning. Studies on the neural mechanism underlying motor imagery have suggested that such effectiveness may be related to the functional congruence between motor execution and motor imagery. However, as compared to the studies on motor imagery, the studies on motor imagery training are much fewer. The functional alterations associated with motor imagery training and the effectiveness of motor imagery training on motor performance improvement still needs further investigation. Using fMRI, we employed a sequential finger tapping paradigm to explore the functional alterations associated with motor imagery training in both motor execution and motor imagery task. We hypothesized through 14 consecutive days motor imagery training, the motor performance could be improved and the functional congruence between motor execution and motor imagery would be sustained form pre-training phase to post-training phase. Our results confirmed the effectiveness of motor imagery training in improving motor performance and demonstrated in both pre and post-training phases, motor imagery and motor execution consistently sustained the congruence in functional neuroanatomy, including SMA (supplementary motor cortex), PMA (premotor area); M1( primary motor cortex) and cerebellum. Moreover, for both execution and imagery tasks, a similar functional alteration was observed in fusiform through motor imagery training. These findings provided an insight into the effectiveness of motor imagery training and suggested its potential therapeutic value in motor rehabilitation.

  17. ac bidirectional motor controller

    NASA Technical Reports Server (NTRS)

    Schreiner, K.

    1988-01-01

    Test data are presented and the design of a high-efficiency motor/generator controller at NASA-Lewis for use with the Space Station power system testbed is described. The bidirectional motor driver is a 20 kHz to variable frequency three-phase ac converter that operates from the high-frequency ac bus being designed for the Space Station. A zero-voltage-switching pulse-density-modulation technique is used in the converter to shape the low-frequency output waveform.

  18. Motor current signature analysis method for diagnosing motor operated devices

    DOEpatents

    Haynes, Howard D.; Eissenberg, David M.

    1990-01-01

    A motor current noise signature analysis method and apparatus for remotely monitoring the operating characteristics of an electric motor-operated device such as a motor-operated valve. Frequency domain signal analysis techniques are applied to a conditioned motor current signal to distinctly identify various operating parameters of the motor driven device from the motor current signature. The signature may be recorded and compared with subsequent signatures to detect operating abnormalities and degradation of the device. This diagnostic method does not require special equipment to be installed on the motor-operated device, and the current sensing may be performed at remote control locations, e.g., where the motor-operated devices are used in accessible or hostile environments.

  19. Conducting a thermal conductivity survey

    NASA Technical Reports Server (NTRS)

    Allen, P. B.

    1985-01-01

    A physically transparent approximate theory of phonon decay rates is presented starting from a pair potential model of the interatomic forces in an insulator or semiconductor. The theory applies in the classical regime and relates the 3-phonon decay rate to the third derivative of the pair potential. Phonon dispersion relations do not need to be calculated, as sum rules relate all the needed quantities directly to the pair potential. The Brillouin zone averaged phonon lifetime turns out to involve a dimensionless measure of the anharmonicity multiplied by an effective density of states for 3-phonon decay. Results are given for rare gas and alkali halide crystals. For rare gases, the results are in good agreement with more elaborate perturbation calculations. Comparison to experimental data on phonon linewidths and thermal conductivity are made.

  20. Line drawing of anomaly discovered in redesigned shuttle motor nozzle

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Line drawing titled 'DM-9 Case-to-Nozzle Joint' shows anomaly discovered in redesigned shuttle motor nozzle. The second full-duration test firing of NASA's redesigned Space Shuttle solid rocket motor (SRM), designated DM-9, was conducted 12-23-87 at Morton Thiokol's Wasatch facility in Utah. A post-test examination of the motor has revealed an anomaly in one nozzle component. Material was discovered missing from the nozzle outer boot ring, a large carbon phenolic composite ring used to anchor one end of the flexible boot that allows the nozzle to move and 'steer' the vehicle. About one-third of the missing 160 degrees of missing ring material was found adjacent to the forward nozzle section inside the motor. This diagram shows the location of the nozzle joint on an assembled SRM, and points out the shaded location of the outer boot ring that circles the motor within the nozzle joint.

  1. Determination of failure limits for sterilizable solid rocket motor

    NASA Technical Reports Server (NTRS)

    Lambert, W. L.; Mastrolia, E. J.; Mcconnell, J. D.

    1974-01-01

    A structural evaluation to establish probable failure limits and a series of environmental tests involving temperature cycling, sustained acceleration, and vibration were conducted on an 18-inch diameter solid rocket motor. Despite the fact that thermal, acceleration and vibration loads representing a severe overtest of conventional environmental requirements were imposed on the sterilizable motor, no structural failure of the grain or flexible support system was detected. The following significant conclusions are considered justified. It is concluded that: (1) the flexible grain retention system, which permitted heat sterilization at 275 F on the test motor, can readily be adopted to meet the environmental requirements of an operational motor design, and (2) if further substantiation of structural integrity is desired, the motor used is considered acceptable for static firing.

  2. Axonal Velocity Distributions in Neural Field Equations

    PubMed Central

    Bojak, Ingo; Liley, David T. J.

    2010-01-01

    By modelling the average activity of large neuronal populations, continuum mean field models (MFMs) have become an increasingly important theoretical tool for understanding the emergent activity of cortical tissue. In order to be computationally tractable, long-range propagation of activity in MFMs is often approximated with partial differential equations (PDEs). However, PDE approximations in current use correspond to underlying axonal velocity distributions incompatible with experimental measurements. In order to rectify this deficiency, we here introduce novel propagation PDEs that give rise to smooth unimodal distributions of axonal conduction velocities. We also argue that velocities estimated from fibre diameters in slice and from latency measurements, respectively, relate quite differently to such distributions, a significant point for any phenomenological description. Our PDEs are then successfully fit to fibre diameter data from human corpus callosum and rat subcortical white matter. This allows for the first time to simulate long-range conduction in the mammalian brain with realistic, convenient PDEs. Furthermore, the obtained results suggest that the propagation of activity in rat and human differs significantly beyond mere scaling. The dynamical consequences of our new formulation are investigated in the context of a well known neural field model. On the basis of Turing instability analyses, we conclude that pattern formation is more easily initiated using our more realistic propagator. By increasing characteristic conduction velocities, a smooth transition can occur from self-sustaining bulk oscillations to travelling waves of various wavelengths, which may influence axonal growth during development. Our analytic results are also corroborated numerically using simulations on a large spatial grid. Thus we provide here a comprehensive analysis of empirically constrained activity propagation in the context of MFMs, which will allow more realistic studies

  3. Velocity correlations of galaxy clusters

    NASA Technical Reports Server (NTRS)

    Cen, Renyue; Bahcall, Neta A.; Gramann, Mirt

    1994-01-01

    We determine the velocity correlation function, pairwise peculiar velocity difference, and rms pairwise peculiar velocity dispersion of rich clusters of galaxies, as a function of pair separation, for three cosmological models: Omega = 1 and Omega = 0.3 cold dark matter (CDM), and Omega = 0.3 primeval baryonic isocurvature (PBI) models (all flat and Cosmic Background Explorer (COBE)-normalized). We find that close cluster pairs, with separation r is less than or equal to 10/h Mpc, exhibit strong attractive peculiar velocities in all models; the cluster pairwise velocities depend sensitively on the model. The mean pairwise attractive velocity of clusters on 5/h Mpc scale ranges from approximately 1700 km/s for Omega = 1 CDM to approximately 1000 km/s for PBI to approximately 700 km/s for Omega = 0.3 CDM. The small-scale pairwise velocities depend also on cluster mass: richer, more massive clusters exhibit stronger attractive velocities than less massive clusters. On large scales, from approximately 20 to 200/h Mpc, the cluster peculiar velocities are increasingly dominated by bulk and random motions; they are independent of cluster mass. The cluster velocity correlation function is negative on small scales for Omega = 1 and Omega = 0.3 CDM, indicating strong pairwise motion relative to bulk motion on small scales; PBI exhibits relatively larger bulk motions. The cluster velocity correlation function is positive on very large scales, from r approximately 10/h Mpc to r approximately 200/h Mpc, for all models. These positive correlations, which decrease monotonically with scale, indicate significant bulk motions of clusters up to approximately 200/h Mpc. The strong dependence of the cluster velocity functions on models, especially at small separations, makes them useful tools in constraining cosmological models when compared with observations.

  4. [A case of hereditary motor and sensory neuropathy with pyramidal tract sign, optic nerve atrophy and mental retardation].

    PubMed

    Adachi, T; Imaoka, K; Shirasawa, A; Yamaguchi, S; Kobayashi, S

    1998-12-01

    The patient was a 61-year-old man who suffered from gait disturbance since childhood. He also had mental retardation. Gait disturbance was slowly progressive. His mother, sister, brother and son of his sister suffered from gait disturbance. On neurological examination, he showed mental retardation, optic nerve atrophy and neural deafness. He also showed severe muscle atrophy and weakness of bilateral lower limbs associated with pes cavus. Muscle tonus of lower limbs and patellar tendon reflex were increased bilaterally. Achilles tendon reflex was absent. Babinski and Chaddock signs were positive. Superficial and deep sensations were almost normal. There were no cerebellar signs. Blood chemistry was normal. On nerve conduction studies, motor nerve conduction velocity of the upper limbs was normal and that of the posterior tibial nerve was decreased; right 36.0m/sec, left 29.7m/sec. Sensory nerve conduction velocity of the median nerve was slightly decreased; right 36.5m/sec, left 45.2m/sec and sural nerve did not respond to electric stimuli. On sural nerve biopsy, the density of myelinated fibers was severely decreased. Onion bulb formation was not observed. We classified this case as hereditary motor and sensory neuropathy (HMSN) type II based on nerve conduction studies and findings from sural nerve biopsy. HMSN with pyramidal tract sign has been classified as type V and HMSN with optic nerve atrophy as type VI. This case had characteristic symptoms as type V and VI. Histopathological findings of HMSN type V and VI have not been established yet. This case might provide an important clue for classification of HMSN. PMID:10349345

  5. Direct Measurement of Internal Flow Velocities in a Star-Slot Model

    NASA Technical Reports Server (NTRS)

    Foster, Winfred A., Jr.; Jenkins, Rhonald M.; Hengel, John E.; Smith, Andrew W.

    1997-01-01

    This paper presents the results of a cold flow experiment to make direct measurements of the velocity distribution in a model of a solid rocket motor star grain propellant slot. The experimental procedure utilizes a multi-component laser Doppler velocimeter (LDV) and an apparatus for seeding the flow with aluminum particles to determine the velocity components at various discrete locations within the star slot. The test article used in this investigation was a one-tenth scale, cold flow model based on the geometry of the Space Shuttle solid rocket motor head-end section. The results obtained for the direct measurements of velocity are compared to velocities calculated from measured pressure distributions to data obtained from oil smear experiments and flow visualization videos, and to heat transfer calorimeter data.

  6. 46 CFR 169.684 - Overcurrent protection for motors and motor branch circuits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Overcurrent protection for motors and motor branch... motors and motor branch circuits. (a) Except as provided in paragraph (d) of this section, each motor... motor that is responsive to motor current or to both motor current and temperature may be used. (b)...

  7. 46 CFR 169.684 - Overcurrent protection for motors and motor branch circuits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Overcurrent protection for motors and motor branch... motors and motor branch circuits. (a) Except as provided in paragraph (d) of this section, each motor... motor that is responsive to motor current or to both motor current and temperature may be used. (b)...

  8. 46 CFR 169.684 - Overcurrent protection for motors and motor branch circuits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Overcurrent protection for motors and motor branch... motors and motor branch circuits. (a) Except as provided in paragraph (d) of this section, each motor... motor that is responsive to motor current or to both motor current and temperature may be used. (b)...

  9. 46 CFR 169.684 - Overcurrent protection for motors and motor branch circuits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Overcurrent protection for motors and motor branch... motors and motor branch circuits. (a) Except as provided in paragraph (d) of this section, each motor... motor that is responsive to motor current or to both motor current and temperature may be used. (b)...

  10. 46 CFR 169.684 - Overcurrent protection for motors and motor branch circuits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Overcurrent protection for motors and motor branch... motors and motor branch circuits. (a) Except as provided in paragraph (d) of this section, each motor... motor that is responsive to motor current or to both motor current and temperature may be used. (b)...

  11. Velocity Dispersions Across Bulge Types

    SciTech Connect

    Fabricius, Maximilian; Bender, Ralf; Hopp, Ulrich; Saglia, Roberto; Drory, Niv; Fisher, David

    2010-06-08

    We present first results from a long-slit spectroscopic survey of bulge kinematics in local spiral galaxies. Our optical spectra were obtained at the Hobby-Eberly Telescope with the LRS spectrograph and have a velocity resolution of 45 km/s (sigma*), which allows us to resolve the velocity dispersions in the bulge regions of most objects in our sample. We find that the velocity dispersion profiles in morphological classical bulge galaxies are always centrally peaked while the velocity dispersion of morphologically disk-like bulges stays relatively flat towards the center--once strongly barred galaxies are discarded.

  12. Method for assessing motor insulation on operating motors

    DOEpatents

    Kueck, J.D.; Otaduy, P.J.

    1997-03-18

    A method for monitoring the condition of electrical-motor-driven devices is disclosed. The method is achieved by monitoring electrical variables associated with the functioning of an operating motor, applying these electrical variables to a three phase equivalent circuit and determining non-symmetrical faults in the operating motor based upon symmetrical components analysis techniques. 15 figs.

  13. Method for assessing motor insulation on operating motors

    DOEpatents

    Kueck, John D.; Otaduy, Pedro J.

    1997-01-01

    A method for monitoring the condition of electrical-motor-driven devices. The method is achieved by monitoring electrical variables associated with the functioning of an operating motor, applying these electrical variables to a three phase equivalent circuit and determining non-symmetrical faults in the operating motor based upon symmetrical components analysis techniques.

  14. Magnetically Coupled Adjustable Speed Motor Drives - Motor Tip Sheet #13

    SciTech Connect

    2008-07-01

    Alternating current electric motors rotate at a nearly constant speed that is determined by motor design and line frequency. Energy savings of 50% or more may be available when fixed speed systems are modified to allow the motor speed to match variable load requirements of a centrifugal fan or pump.

  15. Wave Measurements Using GPS Velocity Signals

    PubMed Central

    Doong, Dong-Jiing; Lee, Beng-Chun; Kao, Chia Chuen

    2011-01-01

    This study presents the idea of using GPS-output velocity signals to obtain wave measurement data. The application of the transformation from a velocity spectrum to a displacement spectrum in conjunction with the directional wave spectral theory are the core concepts in this study. Laboratory experiments were conducted to verify the accuracy of the inversed displacement of the surface of the sea. A GPS device was installed on a moored accelerometer buoy to verify the GPS-derived wave parameters. It was determined that loss or drifting of the GPS signal, as well as energy spikes occurring in the low frequency band led to erroneous measurements. Through the application of moving average skill and a process of frequency cut-off to the GPS output velocity, correlations between GPS-derived, and accelerometer buoy-measured significant wave heights and periods were both improved to 0.95. The GPS-derived one-dimensional and directional wave spectra were in agreement with the measurements. Despite the direction verification showing a 10° bias, this exercise still provided useful information with sufficient accuracy for a number of specific purposes. The results presented in this study indicate that using GPS output velocity is a reasonable alternative for the measurement of ocean waves. PMID:22346618

  16. Modeling the mechanochemistry of the ϕ29 DNA translocation motor

    NASA Astrophysics Data System (ADS)

    Perez-Carrasco, R.; Fiasconaro, A.; Falo, F.; Sancho, J. M.

    2013-03-01

    We present a study of the DNA translocation of the bacteriophage ϕ29 packaging molecular motor. From the available experimental information we present a model system based on a stochastic flashing potential, which reproduces the experimental observations such as detailed trajectories, steps and substeps, spatial correlation, and velocity. Moreover, the model allows the evaluation of the power and efficiency of this motor. We have found that the maximum power regime does not correspond with that of the maximum efficiency. This information can stimulate further experiments.

  17. PD control for robot manipulators actuated by switched reluctance motors

    NASA Astrophysics Data System (ADS)

    Hernández-Guzmán, Victor M.; Carrillo-Serrano, Roberto V.; Silva-Ortigoza, Ramón

    2013-03-01

    This article is concerned with position regulation in direct-drive n degrees of freedom rigid robots equipped only with revolute joints when actuated by switched reluctance motors. Our controller represents an extension to this case of a previous work in the literature which was proposed for a single-switched reluctance motor when moving a simple linear mechanical load. We show how to avoid a singularity present in such a previous controller. We also introduce some simplifications since the number of terms to be fedback is smaller. Further, a linear proportional inner electric current loop is included instead of a velocity dependent one.

  18. Electric motor model repair specifications

    SciTech Connect

    1995-08-01

    These model repair specifications list the minimum requirements for repair and overhaul of polyphase AC squireel cage induction motors. All power ranges, voltages, and speeds of squirrel cage motors are covered.

  19. The St. Louis Motor

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2011-01-01

    The St. Louis Motor, invented in 1909, is unique among physics apparatus for being named for a geographical place rather than a physicist. The sturdy little device (Fig. 1) has never been out of production. Any older school or physics department that has not done a catastrophic housecleaning in the last 20 years will certainly have a small flock…

  20. Human Spinal Motor Control.

    PubMed

    Nielsen, Jens Bo

    2016-07-01

    Human studies in the past three decades have provided us with an emerging understanding of how cortical and spinal networks collaborate to ensure the vast repertoire of human behaviors. Humans have direct cortical connections to spinal motoneurons, which bypass spinal interneurons and exert a direct (willful) muscle control with the aid of a context-dependent integration of somatosensory and visual information at cortical level. However, spinal networks also play an important role. Sensory feedback through spinal circuitries is integrated with central motor commands and contributes importantly to the muscle activity underlying voluntary movements. Regulation of spinal interneurons is used to switch between motor states such as locomotion (reciprocal innervation) and stance (coactivation pattern). Cortical regulation of presynaptic inhibition of sensory afferents may focus the central motor command by opening or closing sensory feedback pathways. In the future, human studies of spinal motor control, in close collaboration with animal studies on the molecular biology of the spinal cord, will continue to document the neural basis for human behavior. PMID:27023730

  1. Perceptual-Motor Dysfunction.

    ERIC Educational Resources Information Center

    Pyfer, Jean L.

    Discussed are theoretical and treatment aspects of perceptual motor dysfunction and rehabilitation in 4- to 12-year-old academically failing children involved in a 3-year investigation at the University of Kansas. The program is said to stress increasing the amount of stimulation received by sensory receptors of the vestibular, reflex, and haptic…

  2. Thiokol Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Graves, S. R.

    2000-01-01

    This paper presents viewgraphs on thiokol solid rocket motors. The topics include: 1) Communications; 2) Military and government intelligence; 3) Positioning satellites; 4) Remote sensing; 5) Space burial; 6) Science; 7) Space manufacturing; 8) Advertising; 9) Space rescue space debris management; 10) Space tourism; 11) Space settlements; 12) Hazardous waste disposal; 13) Extraterrestrial resources; 14) Fast package delivery; and 15) Space utilities.

  3. Reciprocating Linear Electric Motor

    NASA Technical Reports Server (NTRS)

    Goldowsky, M. P.

    1984-01-01

    Features include structural simplicity and good force/displacement characteristics. Reciprocating motor has simple, rugged construction, relatively low reciprocating weight, improved power delivery, and improved force control. Wear reduced by use of magnetic bearings. Intended to provide drivers for long-lived Stirling-cycle cryogenic refrigerators, concept has less exotic applications, such as fuel pumps.

  4. Molecular motors: Dynein's gearbox.

    PubMed

    Cross, R A

    2004-05-01

    A new optical trapping study shows that the stepsize of cytoplasmic dynein varies according to the applied force, suggesting that this motor can change gear. Complementary biochemical kinetic work on yeast dynein mutants hints at the allosteric mechanisms involved. PMID:15120091

  5. Solid rocket motors

    NASA Technical Reports Server (NTRS)

    Carpenter, Ronn L.

    1993-01-01

    Structural requirements, materials and, especially, processing are critical issues that will pace the introduction of new types of solid rocket motors. Designers must recognize and understand the drivers associated with each of the following considerations: (1) cost; (2) energy density; (3) long term storage with use on demand; (4) reliability; (5) safety of processing and handling; (6) operability; and (7) environmental acceptance.

  6. Sodium Velocity Maps on Mercury

    NASA Technical Reports Server (NTRS)

    Potter, A. E.; Killen, R. M.

    2011-01-01

    The objective of the current work was to measure two-dimensional maps of sodium velocities on the Mercury surface and examine the maps for evidence of sources or sinks of sodium on the surface. The McMath-Pierce Solar Telescope and the Stellar Spectrograph were used to measure Mercury spectra that were sampled at 7 milliAngstrom intervals. Observations were made each day during the period October 5-9, 2010. The dawn terminator was in view during that time. The velocity shift of the centroid of the Mercury emission line was measured relative to the solar sodium Fraunhofer line corrected for radial velocity of the Earth. The difference between the observed and calculated velocity shift was taken to be the velocity vector of the sodium relative to Earth. For each position of the spectrograph slit, a line of velocities across the planet was measured. Then, the spectrograph slit was stepped over the surface of Mercury at 1 arc second intervals. The position of Mercury was stabilized by an adaptive optics system. The collection of lines were assembled into an images of surface reflection, sodium emission intensities, and Earthward velocities over the surface of Mercury. The velocity map shows patches of higher velocity in the southern hemisphere, suggesting the existence of sodium sources there. The peak earthward velocity occurs in the equatorial region, and extends to the terminator. Since this was a dawn terminator, this might be an indication of dawn evaporation of sodium. Leblanc et al. (2008) have published a velocity map that is similar.

  7. Hybrid-fuel bacterial flagellar motors in Escherichia coli.

    PubMed

    Sowa, Yoshiyuki; Homma, Michio; Ishijima, Akihiko; Berry, Richard M

    2014-03-01

    The bacterial flagellar motor rotates driven by an electrochemical ion gradient across the cytoplasmic membrane, either H(+) or Na(+) ions. The motor consists of a rotor ∼50 nm in diameter surrounded by multiple torque-generating ion-conducting stator units. Stator units exchange spontaneously between the motor and a pool in the cytoplasmic membrane on a timescale of minutes, and their stability in the motor is dependent upon the ion gradient. We report a genetically engineered hybrid-fuel flagellar motor in Escherichia coli that contains both H(+)- and Na(+)-driven stator components and runs on both types of ion gradient. We controlled the number of each type of stator unit in the motor by protein expression levels and Na(+) concentration ([Na(+)]), using speed changes of single motors driving 1-μm polystyrene beads to determine stator unit numbers. De-energized motors changed from locked to freely rotating on a timescale similar to that of spontaneous stator unit exchange. Hybrid motor speed is simply the sum of speeds attributable to individual stator units of each type. With Na(+) and H(+) stator components expressed at high and medium levels, respectively, Na(+) stator units dominate at high [Na(+)] and are replaced by H(+) units when Na(+) is removed. Thus, competition between stator units for spaces in a motor and sensitivity of each type to its own ion gradient combine to allow hybrid motors to adapt to the prevailing ion gradient. We speculate that a similar process may occur in species that naturally express both H(+) and Na(+) stator components sharing a common rotor. PMID:24550452

  8. Time perception of visual motion is tuned by the motor representation of human actions

    PubMed Central

    Gavazzi, Gioele; Bisio, Ambra; Pozzo, Thierry

    2013-01-01

    Several studies have shown that the observation of a rapidly moving stimulus dilates our perception of time. However, this effect appears to be at odds with the fact that our interactions both with environment and with each other are temporally accurate. This work exploits this paradox to investigate whether the temporal accuracy of visual motion uses motor representations of actions. To this aim, the stimuli were a dot moving with kinematics belonging or not to the human motor repertoire and displayed at different velocities. Participants had to replicate its duration with two tasks differing in the underlying motor plan. Results show that independently of the task's motor plan, the temporal accuracy and precision depend on the correspondence between the stimulus' kinematics and the observer's motor competencies. Our data suggest that the temporal mechanism of visual motion exploits a temporal visuomotor representation tuned by the motor knowledge of human actions. PMID:23378903

  9. The design and experiment of a novel ultrasonic motor based on the combination of bending modes.

    PubMed

    Yan, Jipeng; Liu, Yingxiang; Liu, Junkao; Xu, Dongmei; Chen, Weishan

    2016-09-01

    This paper presents a new-type linear ultrasonic motor which takes advantage of the combination of two orthogonal bending vibration modes. The proposed ultrasonic motor consists of eight pieces of PZT ceramic plates and a metal beam that includes two cone-shaped horns and a cylindrical driving foot. The finite element analyses were finished to verify the working principle of the proposed motor. The mode shapes of the motor were obtained by modal analysis; the elliptical trajectories of nodes on the driving foot were obtained by time-domain analysis. Based on the analyses, a prototype of the proposed motor was fabricated and measured. The mechanical output characteristics were obtained by experiments. The maximal velocity of the proposed motor is 735mm/s and the maximal thrust is 1.1N. PMID:27400216

  10. Evidence for an electrostatic mechanism of force generation by the bacteriophage T4 DNA packaging motor

    NASA Astrophysics Data System (ADS)

    Migliori, Amy D.; Keller, Nicholas; Alam, Tanfis I.; Mahalingam, Marthandan; Rao, Venigalla B.; Arya, Gaurav; Smith, Douglas E.

    2014-06-01

    How viral packaging motors generate enormous forces to translocate DNA into viral capsids remains unknown. Recent structural studies of the bacteriophage T4 packaging motor have led to a proposed mechanism wherein the gp17 motor protein translocates DNA by transitioning between extended and compact states, orchestrated by electrostatic interactions between complimentarily charged residues across the interface between the N- and C-terminal subdomains. Here we show that site-directed alterations in these residues cause force dependent impairments of motor function including lower translocation velocity, lower stall force and higher frequency of pauses and slips. We further show that the measured impairments correlate with computed changes in free-energy differences between the two states. These findings support the proposed structural mechanism and further suggest an energy landscape model of motor activity that couples the free-energy profile of motor conformational states with that of the ATP hydrolysis cycle.

  11. Evidence of motor neuron involvement in chronic respiratory insufficiency.

    PubMed Central

    Valli, G; Barbieri, S; Sergi, P; Fayoumi, Z; Berardinelli, P

    1984-01-01

    Nineteen patients with chronic respiratory insufficiency, mean age 61.4 +/- 12.2, have been investigated with pulmonary function tests, clinical neurological examination and neurophysiological methods including motor and sensory conduction studies and needle electromyography. None of them had conditions known to affect the peripheral nervous system such as diabetes, alcoholism, or uraemia. The motor and sensory conduction studies showed only a reduced mean amplitude of the ulnar nerve SAP and of the compound muscle action potential of the APB and EDB muscles. The EMG was abnormal in 94.7% of the cases and showed an increased percentage of polyphasic potentials and a reduced recruitment pattern of motor units firing at high frequency. The data seem to support the hypothesis of an involvement of motor neurons in this condition although the evidence for a neuropathy is lacking. PMID:6094730

  12. Psychological performance in relation to central and peripheral nerve conduction in workers exposed to lead, zinc, and copper

    SciTech Connect

    Araki, S.; Yokoyama, K.; Aono, H.; Murata, K.

    1986-01-01

    Psychological performance was examined in relation to central and peripheral nerve conduction by means of the Wechsler Adult Intelligence Scale test, short-latency somatosensory-evoked potential (SSEP), and median nerve conduction velocity in 19 male gun-metal foundry workers exposed to lead, zinc, and copper. (Their blood lead concentrations--ie, 16-64 micrograms/dl with a mean of 42--and plasma zinc and copper concentrations were significantly higher than those of control subjects). In these workers, the score of picture completion (psychological performance) was significantly low; indicators of lead absorption, but no indicators of zinc and copper absorption, were significantly correlated with this score. The score of picture completion was significantly correlated with the N11-N13 latency of SSEP (conduction time in the spinobulbar region) in the workers; their N11-N13 latency, together with the N9 and N9-N11 latencies, was significantly prolonged and was significantly correlated with indicators of lead absorption. Furthermore, their maximal motor and sensory conduction velocities of the median nerve were significantly slowed. It is concluded that both psychological performance and central and peripheral nerve conduction may be impaired in lead-exposed workers with BPb's below approximately 60 micrograms/dl.

  13. Motor features in posterior cortical atrophy and their imaging correlates.

    PubMed

    Ryan, Natalie S; Shakespeare, Timothy J; Lehmann, Manja; Keihaninejad, Shiva; Nicholas, Jennifer M; Leung, Kelvin K; Fox, Nick C; Crutch, Sebastian J

    2014-12-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by impaired higher visual processing skills; however, motor features more commonly associated with corticobasal syndrome may also occur. We investigated the frequency and clinical characteristics of motor features in 44 PCA patients and, with 30 controls, conducted voxel-based morphometry, cortical thickness, and subcortical volumetric analyses of their magnetic resonance imaging. Prominent limb rigidity was used to define a PCA-motor subgroup. A total of 30% (13) had PCA-motor; all demonstrating asymmetrical left upper limb rigidity. Limb apraxia was more frequent and asymmetrical in PCA-motor, as was myoclonus. Tremor and alien limb phenomena only occurred in this subgroup. The subgroups did not differ in neuropsychological test performance or apolipoprotein E4 allele frequency. Greater asymmetry of atrophy occurred in PCA-motor, particularly involving right frontoparietal and peri-rolandic cortices, putamen, and thalamus. The 9 patients (including 4 PCA-motor) with pathology or cerebrospinal fluid all showed evidence of Alzheimer's disease. Our data suggest that PCA patients with motor features have greater atrophy of contralateral sensorimotor areas but are still likely to have underlying Alzheimer's disease. PMID:25086839

  14. Definition of Contravariant Velocity Components

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Mao; Kwak, Dochan (Technical Monitor)

    2002-01-01

    This is an old issue in computational fluid dynamics (CFD). What is the so-called contravariant velocity or contravariant velocity component? In the article, we review the basics of tensor analysis and give the contravariant velocity component a rigorous explanation. For a given coordinate system, there exist two uniquely determined sets of base vector systems - one is the covariant and another is the contravariant base vector system. The two base vector systems are reciprocal. The so-called contravariant velocity component is really the contravariant component of a velocity vector for a time-independent coordinate system, or the contravariant component of a relative velocity between fluid and coordinates, for a time-dependent coordinate system. The contravariant velocity components are not physical quantities of the velocity vector. Their magnitudes, dimensions, and associated directions are controlled by their corresponding covariant base vectors. Several 2-D (two-dimensional) linear examples and 2-D mass-conservation equation are used to illustrate the details of expressing a vector with respect to the covariant and contravariant base vector systems, respectively.

  15. Instantaneous Velocity Using Photogate Timers

    ERIC Educational Resources Information Center

    Wolbeck, John

    2010-01-01

    Photogate timers are commonly used in physics laboratories to determine the velocity of a passing object. In this application a card attached to a moving object breaks the beam of the photogate timer providing the time for the card to pass. The length L of the passing card can then be divided by this time to yield the average velocity (or speed)…

  16. Multi-Velocity Component LDV

    NASA Technical Reports Server (NTRS)

    Johnson, Dennis A. (Inventor)

    1996-01-01

    A laser doppler velocimeter uses frequency shifting of a laser beam to provide signal information for each velocity component. A composite electrical signal generated by a light detector is digitized and a processor produces a discrete Fourier transform based on the digitized electrical signal. The transform includes two peak frequencies corresponding to the two velocity components.

  17. Motor Education: Educational Development Programs.

    ERIC Educational Resources Information Center

    Tansley, A. E.

    This booklet presents educational programs and activities focusing on motor skills for 5- to 9-year-old children and older children with learning problems. The premise of the activities is that the acquisition of motor skills is essential to basic learning. The role of language as a mediator and controller of motor development is emphasized. The…

  18. Multiple stage miniature stepping motor

    DOEpatents

    Niven, William A.; Shikany, S. David; Shira, Michael L.

    1981-01-01

    A stepping motor comprising a plurality of stages which may be selectively activated to effect stepping movement of the motor, and which are mounted along a common rotor shaft to achieve considerable reduction in motor size and minimum diameter, whereby sequential activation of the stages results in successive rotor steps with direction being determined by the particular activating sequence followed.

  19. Motor Vehicle Theft. Special Report.

    ERIC Educational Resources Information Center

    Harlow, Caroline Wolf

    Thirteen years of data from the National Crime Survey were analyzed to examine the characteristics of motor vehicle theft, to identify trends during the past 13 years, and to determine who are most likely to be victims of motor vehicle theft. All motor vehicle thefts reported to the National Crime Survey from 1973 through 1985 were examined.…

  20. Speed control for synchronous motors

    NASA Technical Reports Server (NTRS)

    Packard, H.; Schott, J.

    1981-01-01

    Feedback circuit controls fluctuations in speed of synchronous ac motor. Voltage proportional to phase angle is developed by phase detector, rectified, amplified, compared to threshold, and reapplied positively or negatively to motor excitation circuit. Speed control reduces wow and flutter of audio turntables and tape recorders, and enhances hunting in gyroscope motors.

  1. Rheology of composite solid propellants during motor casting

    NASA Technical Reports Server (NTRS)

    Rogers, C. J.; Smith, P. L.; Klager, K.

    1978-01-01

    In a study conducted to evaluate flow parameters of uncured solid composite propellants during motor casting, two motors (1.8M-lb grain wt) were cast with a PBAN propellant exhibiting good flow characteristics in a 260-in. dia solid rocket motor. Attention is given to the effects of propellant compositional and processing variables on apparent viscosity as they pertain to rheological behavior and grain defect formation during casting. It is noted that optimized flow behavior is impaired with solid propellant loading. Non-Newtonian pseudoplastic flow is observed, which is dependent upon applied shear stress and the age of the uncured propellant.

  2. Horizontal Velocity Structure in Waterspouts.

    NASA Astrophysics Data System (ADS)

    Schwiesow, R. L.

    1981-04-01

    We have measured the spatial variation of a single horizontal component of the velocity in a number of waterspouts using an airborne infrared Doppler lidar. In 21 data sets, maximum velocities range from 4.2 to 33.6 m s1 and visible funnel diameters from 6.6 to 90 m. Data were taken at altitudes between 675 m, near cloud base, and 95 m above the surface. The sequences show time development of the velocity as a function of radius at a fixed altitude and the velocity structure at different altitudes and sequential times with a horizontal resolution of 0.75 m between data points. The variation in velocity structure between waterspouts is large, with some showing marked azimuthal asymmetry and mixing with the ambient flow, and others showing multiple concentric vortex shells.

  3. Treatment of multifocal motor neuropathy with intravenous immunoglobulin.

    PubMed

    Koski, Carol Lee

    2014-07-01

    Multifocal motor neuropathy (MMN) is a rare inflammatory, chronically progressive, unremitting disorder affecting the peripheral nervous system. Although the etiology of this condition is not known, high titers of IgM Ab to GM1 may serve as a biomarker for this disease. Clinical findings of motor weakness are associated with focal conduction blocks and with time, axonal destruction. Evidence supporting an immune etiology as well as the use of intravenous immunoglobulin to limit the disease progression is reviewed. PMID:24699885

  4. Omnidirectional Sensory and Motor Volumes in Electric Fish

    PubMed Central

    Snyder, James B; Nelson, Mark E; Burdick, Joel W; MacIver, Malcolm A

    2007-01-01

    Active sensing organisms, such as bats, dolphins, and weakly electric fish, generate a 3-D space for active sensation by emitting self-generated energy into the environment. For a weakly electric fish, we demonstrate that the electrosensory space for prey detection has an unusual, omnidirectional shape. We compare this sensory volume with the animal's motor volume—the volume swept out by the body over selected time intervals and over the time it takes to come to a stop from typical hunting velocities. We find that the motor volume has a similar omnidirectional shape, which can be attributed to the fish's backward-swimming capabilities and body dynamics. We assessed the electrosensory space for prey detection by analyzing simulated changes in spiking activity of primary electrosensory afferents during empirically measured and synthetic prey capture trials. The animal's motor volume was reconstructed from video recordings of body motion during prey capture behavior. Our results suggest that in weakly electric fish, there is a close connection between the shape of the sensory and motor volumes. We consider three general spatial relationships between 3-D sensory and motor volumes in active and passive-sensing animals, and we examine hypotheses about these relationships in the context of the volumes we quantify for weakly electric fish. We propose that the ratio of the sensory volume to the motor volume provides insight into behavioral control strategies across all animals. PMID:18001151

  5. TMT and Exoplanet Radial Velocity Surveys

    NASA Astrophysics Data System (ADS)

    Tanner, Angelle; Crossfield, Ian

    2014-07-01

    With echelle spectrometers on the verge of crossing over the 0.1 m/s radial velocity (RV) measurement precision threshold needed to detect habitable Earth mass planets around Sun-like stars, conducing such surveys on state-of-the-art telescopes is an imperative. RV exoplanets surveys conducted with the optical and infrared echelle spectrometers being built for the TMT have the potential to complete a census of the population of Earth-mass planets in our local stellar neighborhood. The detection of such systems will provide a valuable stellar sample for follow-up exoplanet studies which would characterize the atmospheres of these or additional planets found in these nearby solar systems. Here, we will further discuss the impact of the TMT on radial velocity exoplanet surveys.

  6. Motor Controller System For Large Dynamic Range of Motor Operation

    NASA Technical Reports Server (NTRS)

    Howard, David E. (Inventor); Alhorn, Dean C. (Inventor); Smith, Dennis A. (Inventor); Dutton, Kenneth R. (Inventor); Paulson, Mitchell Scott (Inventor)

    2006-01-01

    A motor controller system uses a rotary sensor with a plurality of signal conditioning units, coupled to the rotary sensor. Each of these units, which is associated with a particular range of motor output shaft rotation rates, generate a feedback signal indicative of the position of the motor s output shaft. A controller (i) converts a selected motor output shaft rotation rate to a corresponding incremental amount of rotational movement for a selected fixed time period, (ii) selects, at periodic completions of the selected fixed time period, the feedback signal from one of the signal conditioning units for which the particular range of motor output shaft rotation rates associated therewith encompasses the selected motor output shaft rotation rate, and (iii) generates a motor drive signal based on a difference between the incremental amount of rotational movement and the feedback signal from the selected one of the signal conditioning Units.

  7. Variation in motor output and motor performance in a centrally generated motor pattern

    PubMed Central

    Norris, Brian J.; Doloc-Mihu, Anca; Calabrese, Ronald L.

    2014-01-01

    Central pattern generators (CPGs) produce motor patterns that ultimately drive motor outputs. We studied how functional motor performance is achieved, specifically, whether the variation seen in motor patterns is reflected in motor performance and whether fictive motor patterns differ from those in vivo. We used the leech heartbeat system in which a bilaterally symmetrical CPG coordinates segmental heart motor neurons and two segmented heart tubes into two mutually exclusive coordination modes: rear-to-front peristaltic on one side and nearly synchronous on the other, with regular side-to-side switches. We assessed individual variability of the motor pattern and the beat pattern in vivo. To quantify the beat pattern we imaged intact adults. To quantify the phase relations between motor neurons and heart constrictions we recorded extracellularly from two heart motor neurons and movement from the corresponding heart segments in minimally dissected leeches. Variation in the motor pattern was reflected in motor performance only in the peristaltic mode, where larger intersegmental phase differences in the motor neurons resulted in larger phase differences between heart constrictions. Fictive motor patterns differed from those in vivo only in the synchronous mode, where intersegmental phase differences in vivo had a larger front-to-rear bias and were more constrained. Additionally, load-influenced constriction timing might explain the amplification of the phase differences between heart segments in the peristaltic mode and the higher variability in motor output due to body shape assumed in this soft-bodied animal. The motor pattern determines the beat pattern, peristaltic or synchronous, but heart mechanics influence the phase relations achieved. PMID:24717348

  8. Advanced Ultra-High Speed Motor for Drilling

    SciTech Connect

    Impact Technologies LLC; University of Texas at Arlington

    2007-03-31

    ,000 rpm for every 30.48 cm (12 inches) of power section. Operating conditions are 300 voltage AC at the motor leads. Power voltage losses in the cables/wirelines to the motor(s) are expected to be about 10% for 5000 feet carrying 2 amperes. Higher voltages and better insulators can lower these losses and carry more amperes. Cutting elements for such high tip velocities are currently not available, consequently these motors will not be built at this time. However, 7.62 cm (3 inch) OD, low speed, PMSM radial electric motors based on this project design are being built under a 2006 Oklahoma Center for the Advancement of Science and Technology 'proof of concept' grant.

  9. Motor technology for mining applications advances

    SciTech Connect

    Fiscor, S.

    2009-08-15

    AC motors are steadily replacing DC motors in mining and mineral processing equipment, requiring less maintenance. The permanent magnet rotor, or the synchronous motor, has enabled Blador to introduce a line of cooling tower motors. Synchronous motors are soon likely to take over from the induction motor. 1 photo.

  10. Motor planning modulates sensory-motor control of collision avoidance behavior in the bullfrog, Rana catesbeiana

    PubMed Central

    Nakagawa, Hideki; Nishida, Yuuya

    2012-01-01

    Summary In this study, we examined the collision avoidance behavior of the frog, Rana catesbeiana to an approaching object in the upper visual field. The angular velocity of the frog's escape turn showed a significant positive correlation with the turn angle (r2 = 0.5741, P<0.05). A similar mechanism of velocity control has been known in head movements of the owl and in human saccades. By analogy, this suggests that the frog planned its escape velocity in advance of executing the turn, to make the duration of the escape behavior relatively constant. For escape turns less than 60°, the positive correlation was very strong (r2 = 0.7097, P<0.05). Thus, the frog controlled the angular velocity of small escape turns very accurately and completed the behavior within a constant time. On the other hand, for escape turns greater than 60°, the same correlation was not significant (r2 = 0.065, P>0.05). Thus, the frog was not able to control the velocity of the large escape turns accurately and did not complete the behavior within a constant time. In the latter case, there was a small but significant positive correlation between the threshold angular size and the angular velocity (r2 = 0.1459, P<0.05). This suggests that the threshold is controlled to compensate for the insufficient escape velocity achieved during large turn angles, and could explain a significant negative correlation between the turn angle and the threshold angular size (r2 = 0.1145, P<0.05). Thus, it is likely that the threshold angular size is also controlled by the turn angle and is modulated by motor planning. PMID:23213389

  11. Differences in Membrane Properties in Simulated Cases of Demyelinating Neuropathies: Internodal Focal Demyelinations without Conduction Block

    PubMed Central

    Daskalova, M. S.; Alexandrov, A. S.

    2006-01-01

    The membrane properties (intracellular, extracellular, electrotonic potentials, strength-duration time constants, rheobasic currents and recovery cycles), which can now be measured in healthy subjects and patients with demyelinating neuropathies, are investigated in simulated cases of focal reduction (70%) of the myelin sheath in one, two and three successive internodal segments along the length of human motor fibres. The internodally focally demyelinated cases (termed as IFD1, IFD2 and IFD3, respectively) are simulated using our previous double cable model of the fibres. The results show that the intracellular potentials are with reduced amplitude and slowed conduction velocity in the vicinity of demyelinated segments, however the segmental conduction block is not achieved. The radial decline of the extracellular potential amplitudes slightly increases with the increase of the radial distance and demyelination. In contrast, the electrotonic potentials, strength-duration time constants and rheobases are normal. In the recovery cycles, the refractoriness, supernormality and less late subnormality are close to the normal, showing that the pathology is relatively minor. The obtained abnormalities in the potentials and excitability properties provide new information about the pathophysiology of the demyelinated human motor axons and can be observed in vivo in patients with acquired demyelinating neuropathies. PMID:19669452

  12. Big Savings from Smart Motors

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Chesebrough-Pond's operates 32 plants across the nation and in those plants are more than 10,000 electric motors. In an effort to cut down on waste of electrical power used by these motors, Chesebrough organized a Corporate Advanced Technology Group to devise ways of improving productivity and cut manufacturing costs. Chesebrough used NASA's Marshall Space Flight Center's Power Factor Controller technology as a departure point for development of their own computerized motor controller that enables motors to operate at maximum efficiency regardless of the motor's applications or operating condition.

  13. Multifocal motor neuropathy: correlation of nerve ultrasound, electrophysiological, and clinical findings.

    PubMed

    Kerasnoudis, Antonios; Pitarokoili, Kalliopi; Behrendt, Volker; Gold, Ralf; Yoon, Min-Suk

    2014-06-01

    We present nerve ultrasound findings in multifocal motor neuropathy (MMN) and examine their correlation with electrophysiology and functional disability. Eighty healthy controls and 12 MMN patients underwent clinical, sonographic, and electrophysiological evaluation a mean of 3.5 years (standard deviation [SD] ± 2.1) after disease onset. Nerve ultrasound revealed significantly higher cross-sectional area (CSA) values of the median (forearm, p < 0.001), ulnar (p < 0.001), and tibial nerve (ankle, p < 0.001) when compared with controls. Electroneurography documented signs of significantly lower values of the motor conduction velocity and compound muscle action potentials (cMAPs) in the upper arm nerves (median, ulnar, radial, p < 0.001). A significant correlation between sonographic and electrophysiological findings in the MMN group was found only between cMAP and CSA of the median nerve at the upper arm (r = 0.851, p < 0.001). Neither nerve sonography nor electrophysiology correlated with functional disability. MMN seems to show inhomogeneous CSA enlargement in various peripheral nerves, with weak correlation to electrophysiological findings. Neither nerve sonography nor electrophysiology correlated with functional disability. Multicentre, prospective studies are required to prove the applicability and diagnostic values of these findings. PMID:24862982

  14. Development of a miniature solid propellant rocket motor for use in plume simulation studies

    NASA Technical Reports Server (NTRS)

    Baran, W. J.

    1974-01-01

    A miniature solid propellant rocket motor has been developed to be used in a program to determine those parameters which must be duplicated in a cold gas flow to produce aerodynamic effects on an experimental model similar to those produced by hot, particle-laden exhaust plumes. Phenomena encountered during the testing of the miniature solid propellant motors included erosive propellant burning caused by high flow velocities parallel to the propellant surface, regressive propellant burning as a result of exposed propellant edges, the deposition of aluminum oxide on the nozzle surfaces sufficient to cause aerodynamic nozzle throat geometry changes, and thermal erosion of the nozzle throat at high chamber pressures. A series of tests was conducted to establish the stability of the rocket chamber pressure and the repeatibility of test conditions. Data are presented which define the tests selected to represent the final test matrix. Qualitative observations are also presented concerning the phenomena experienced based on the results of a large number or rocket tests not directly applicable to the final test matrix.

  15. Advanced electric motor technology flux mapping

    NASA Technical Reports Server (NTRS)

    Doane, George B., III; Campbell, Warren; Dean, Garvin

    1993-01-01

    Design of electric motors which fulfill the needs of Thrust Vector Control (TVC) actuators used in large rocket propelled launch vehicles is covered. To accomplish this end the methodology of design is laid out in some detail. In addition a point design of a motor to fulfill the requirements of a certain actuator specified by MSFC is accomplished and reported upon. In the course of this design great stress has been placed on ridding the actuator of internally generated heat. To conduct the heat out of the motor use is made of the unique properties of the in house MSFC designed driving electronics. This property is that as along as they are operated in a quasi-linear mode the electronics nullify the effects of armature inductance as far as the phase of the armature current versus the rotor position is concerned. Actually the additional inductance due to the extended end turns in this design is of benefit because in the shorted armature failure mode the armature current in the fault (caused by the rotor flux sweeping past the armature) is diminished at a given rotor speed when compared to a more conventional motor with lower inductance. The magnetic circuit is analyzed using electromagnetic finite element methods.

  16. Relationship between density and ultrasonic velocity in Brazilian tropical woods.

    PubMed

    de Oliveira, Fabiana Goia Rosa; Sales, Almir

    2006-12-01

    In this study, the effect of density on the velocity of an ultrasonic wave in wood is investigated. The aim of the present study was to analyze the influence of density on the longitudinal velocity of an ultrasonic wave, propagated in the longitudinal direction. Experiments were conducted on 5cm x 5cm x 5cm wood specimens selected from the following species: pinus caribea (Pinus caribea var. caribea), eucalyptus citriodora (Eucalyptus citriodora), eucalyptus grandis (Eucalyptus grandis), cupiúba (Goupia glabra) and jatobá (Hymenaea sp.). The relationship between density and velocity was analyzed in two different manners: between and within species. The results obtained between species indicated that ultrasonic velocity tends to increase with increasing density. The results obtained within species also showed an increasing trend in ultrasonic velocity as density increased, but the relationship was not as significant as it was for between species. PMID:16311030

  17. Random intermittent search and the tug-of-war model of motor-driven transport

    NASA Astrophysics Data System (ADS)

    Newby, Jay; Bressloff, Paul C.

    2010-04-01

    We formulate the 'tug-of-war' model of microtubule cargo transport by multiple molecular motors as an intermittent random search for a hidden target. A motor complex consisting of multiple molecular motors with opposing directional preference is modeled using a discrete Markov process. The motors randomly pull each other off of the microtubule so that the state of the motor complex is determined by the number of bound motors. The tug-of-war model prescribes the state transition rates and corresponding cargo velocities in terms of experimentally measured physical parameters. We add space to the resulting Chapman-Kolmogorov (CK) equation so that we can consider delivery of the cargo to a hidden target at an unknown location along the microtubule track. The target represents some subcellular compartment such as a synapse in a neuron's dendrites, and target delivery is modeled as a simple absorption process. Using a quasi-steady-state (QSS) reduction technique we calculate analytical approximations of the mean first passage time (MFPT) to find the target. We show that there exists an optimal adenosine triphosphate (ATP) concentration that minimizes the MFPT for two different cases: (i) the motor complex is composed of equal numbers of kinesin motors bound to two different microtubules (symmetric tug-of-war model) and (ii) the motor complex is composed of different numbers of kinesin and dynein motors bound to a single microtubule (asymmetric tug-of-war model).

  18. Finding of widespread viral and bacterial revolution dsDNA translocation motors distinct from rotation motors by channel chirality and size

    PubMed Central

    2014-01-01

    Background Double-stranded DNA translocation is ubiquitous in living systems. Cell mitosis, bacterial binary fission, DNA replication or repair, homologous recombination, Holliday junction resolution, viral genome packaging and cell entry all involve biomotor-driven dsDNA translocation. Previously, biomotors have been primarily classified into linear and rotational motors. We recently discovered a third class of dsDNA translocation motors in Phi29 utilizing revolution mechanism without rotation. Analogically, the Earth rotates around its own axis every 24 hours, but revolves around the Sun every 365 days. Results Single-channel DNA translocation conductance assay combined with structure inspections of motor channels on bacteriophages P22, SPP1, HK97, T7, T4, Phi29, and other dsDNA translocation motors such as bacterial FtsK and eukaryotic mimiviruses or vaccinia viruses showed that revolution motor is widespread. The force generation mechanism for revolution motors is elucidated. Revolution motors can be differentiated from rotation motors by their channel size and chirality. Crystal structure inspection revealed that revolution motors commonly exhibit channel diameters larger than 3 nm, while rotation motors that rotate around one of the two separated DNA strands feature a diameter smaller than 2 nm. Phi29 revolution motor translocated double- and tetra-stranded DNA that occupied 32% and 64% of the narrowest channel cross-section, respectively, evidencing that revolution motors exhibit channel diameters significantly wider than the dsDNA. Left-handed oriented channels found in revolution motors drive the right-handed dsDNA via anti-chiral interaction, while right-handed channels observed in rotation motors drive the right-handed dsDNA via parallel threads. Tethering both the motor and the dsDNA distal-end of the revolution motor does not block DNA packaging, indicating that no rotation is required for motors of dsDNA phages, while a small-angle left

  19. New GNSS velocity field and preliminary velocity model for Ecuador

    NASA Astrophysics Data System (ADS)

    Luna-Ludeña, Marco P.; Staller, Alejandra; Gaspar-Escribano, Jorge M.; Belén Benito, M.

    2016-04-01

    In this work, we present a new preliminary velocity model of Ecuador based on the GNSS data of the REGME network (continuous monitoring GNSS network). To date, there is no velocity model available for the country. The only existing model in the zone is the regional model VEMOS2009 for South America and Caribbean (Drewes and Heidbach, 2012). This model was developed from the SIRGAS station positions, the velocities of the SIRGAS-CON stations, and several geodynamics projects performed in the region. Just two continuous GNSS (cGNSS) stations of Ecuador were taking into account in the VEMOS2009 model. The first continuous station of the REGME network was established in 2008. At present, it is composed by 32 continuous GNSS stations, covering the country. All the stations provided data during at least two years. We processed the data of the 32 GNSS stations of REGME for the 2008-2014 period, as well as 20 IGS stations in order to link to the global reference frame IGb08 (ITRF2008). GPS data were processed using Bernese 5.0 software (Dach et al., 2007). We obtained and analyzed the GNSS coordinate time series of the 32 REGME stations and we calculated the GPS-derived horizontal velocity field of the country. Velocities in ITRF2008 were transformed into a South American fixed reference frame, using the Euler pole calculated from 8 cGNSS stations throughout this plate. Our velocity field is consistent with the tectonics of the country and contributes to a better understanding of it. From the horizontal velocity field, we determined a preliminary model using the kriging geostatistical technique. To check the results we use the cross-validation method. The differences between the observed and estimated values range from ± 5 mm. This is a new velocity model obtained from GNSS data for Ecuador.

  20. Prospective errors determine motor learning.

    PubMed

    Takiyama, Ken; Hirashima, Masaya; Nozaki, Daichi

    2015-01-01

    Diverse features of motor learning have been reported by numerous studies, but no single theoretical framework concurrently accounts for these features. Here, we propose a model for motor learning to explain these features in a unified way by extending a motor primitive framework. The model assumes that the recruitment pattern of motor primitives is determined by the predicted movement error of an upcoming movement (prospective error). To validate this idea, we perform a behavioural experiment to examine the model's novel prediction: after experiencing an environment in which the movement error is more easily predictable, subsequent motor learning should become faster. The experimental results support our prediction, suggesting that the prospective error might be encoded in the motor primitives. Furthermore, we demonstrate that this model has a strong explanatory power to reproduce a wide variety of motor-learning-related phenomena that have been separately explained by different computational models. PMID:25635628