Science.gov

Sample records for motor control circuit

  1. Control Circuit For Two Stepping Motors

    NASA Technical Reports Server (NTRS)

    Ratliff, Roger; Rehmann, Kenneth; Backus, Charles

    1990-01-01

    Control circuit operates two independent stepping motors, one at a time. Provides following operating features: After selected motor stepped to chosen position, power turned off to reduce dissipation; Includes two up/down counters that remember at which one of eight steps each motor set. For selected motor, step indicated by illumination of one of eight light-emitting diodes (LED's) in ring; Selected motor advanced one step at time or repeatedly at rate controlled; Motor current - 30 mA at 90 degree positions, 60 mA at 45 degree positions - indicated by high or low intensity of LED that serves as motor-current monitor; Power-on reset feature provides trouble-free starts; To maintain synchronism between control circuit and motors, stepping of counters inhibited when motor power turned off.

  2. Motor power control circuit for ac induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1983-01-01

    A motor power control of the type which functions by controlling the power factor wherein one of the parameters of power factor current on time is determined by the on time of a triac through which current is supplied to the motor. By means of a positive feedback circuit, a wider range of control is effected.

  3. Integrated-Circuit Controller For Brushless dc Motor

    NASA Technical Reports Server (NTRS)

    Le, Dong Tuan

    1994-01-01

    Generic circuit performs commutation-logic and power-switching functions for control of brushless dc motor. Controller includes commutation-logic and associated control circuitry, power supply, and inverters containing power transistors. Major advantages of controller are size, weight, and power consumption can be made less than other brushless-dc-motor controllers.

  4. Fluid logic control circuit operates nutator actuator motor

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Fluid logic control circuit operates a pneumatic nutator actuator motor. It has no moving parts and consists of connected fluid interaction devices. The operation of this circuit demonstrates the ability of fluid interaction devices to operate in a complex combination of series and parallel logic sequence.

  5. Induction motor control system with voltage controlled oscillator circuit

    NASA Technical Reports Server (NTRS)

    Nola, F. J.; Currie, J. R.; Reid, H., Jr. (Inventor)

    1973-01-01

    A voltage controlled oscillator circuit is reported in which there are employed first and second differential amplifiers. The first differential amplifier, being employed as an integrator, develops equal and opposite slopes proportional to an input voltage, and the second differential amplifier functions as a comparator to detect equal amplitude positive and negative selected limits and provides switching signals which gate a transistor switch. The integrating differential amplifier is switched between charging and discharging modes to provide an output of the first differential amplifier which upon the application of wave shaping provides a substantially sinusoidal output signal. A two phased version with a second integrator provides a second 90 deg phase shifted output for induction motor control.

  6. Solid state circuit controls direction, speed, and braking of dc motor

    NASA Technical Reports Server (NTRS)

    Hanna, M. F.

    1966-01-01

    Full-wave bridge rectifier circuit controls the direction, speed, and braking of a dc motor. Gating in the circuit of Silicon Controlled Rectifiers /SCRS/ controls output polarity and braking is provided by an SCR that is gated to short circuit the reverse voltage generated by reversal of motor rotation.

  7. Four quadrant control circuit for a brushless three-phase dc motor

    NASA Technical Reports Server (NTRS)

    Nola, Frank J. (Inventor)

    1987-01-01

    A control circuit is provided for a brushless three-phase dc motor which affords four quadrant control from a single command. The control circuit probes acceleration of the motor in both clockwise and counterclockwise directions and braking and generation in both clockwise and counterclockwise directions. In addition to turning on individual transistors of the transistor pairs connected to the phase windings of the motor for 120 deg periods while the other transistor of that pair is off, the control circuit also provides, in a future mode of operation, turning the two transistors of each pair on and off alternately at a phase modulation frequency during such a 120 deg period. A feedback signal is derived which is proportional to the motor current and which has a polarity consistent with the command signal, such that negative feedback results.

  8. The role of spinal GABAergic circuits in the control of phrenic nerve motor output

    PubMed Central

    Ghali, Michael G. Z.; Rogers, Robert F.

    2015-01-01

    While supraspinal mechanisms underlying respiratory pattern formation are well characterized, the contribution of spinal circuitry to the same remains poorly understood. In this study, we tested the hypothesis that intraspinal GABAergic circuits are involved in shaping phrenic motor output. To this end, we performed bilateral phrenic nerve recordings in anesthetized adult rats and observed neurogram changes in response to knocking down expression of both isoforms (65 and 67 kDa) of glutamate decarboxylase (GAD65/67) using microinjections of anti-GAD65/67 short-interference RNA (siRNA) in the phrenic nucleus. The number of GAD65/67-positive cells was drastically reduced on the side of siRNA microinjections, especially in the lateral aspects of Rexed's laminae VII and IX in the ventral horn of cervical segment C4, but not contralateral to microinjections. We hypothesize that intraspinal GABAergic control of phrenic output is primarily phasic, but also plays an important role in tonic regulation of phrenic discharge. Also, we identified respiration-modulated GABAergic interneurons (both inspiratory and expiratory) located slightly dorsal to the phrenic nucleus. Our data provide the first direct evidence for the existence of intraspinal GABAergic circuits contributing to the formation of phrenic output. The physiological role of local intraspinal inhibition, independent of descending direct bulbospinal control, is discussed. PMID:25833937

  9. Power control for ac motor

    NASA Technical Reports Server (NTRS)

    Dabney, R. W. (Inventor)

    1984-01-01

    A motor controller employing a triac through which power is supplied to a motor is described. The open circuit voltage appearing across the triac controls the operation of a timing circuit. This timing circuit triggers on the triac at a time following turn off which varies inversely as a function of the amplitude of the open circuit voltage of the triac.

  10. Speed control for synchronous motors

    NASA Technical Reports Server (NTRS)

    Packard, H.; Schott, J.

    1981-01-01

    Feedback circuit controls fluctuations in speed of synchronous ac motor. Voltage proportional to phase angle is developed by phase detector, rectified, amplified, compared to threshold, and reapplied positively or negatively to motor excitation circuit. Speed control reduces wow and flutter of audio turntables and tape recorders, and enhances hunting in gyroscope motors.

  11. Identification of a spinal circuit for light touch and fine motor control

    PubMed Central

    Bourane, Steeve; Grossmann, Katja S.; Britz, Olivier; Dalet, Antoine; Del Barrio, Marta Garcia; Stam, Floor J.; Garcia-Campmany, Lidia; Koch, Stephanie; Goulding, Martyn

    2015-01-01

    Sensory circuits in the dorsal spinal cord integrate and transmit multiple cutaneous sensory modalities including the sense of light touch. Here we identify a population of excitatory interneurons (INs) in the dorsal horn that are important for transmitting innocuous light touch sensation. These neurons express the ROR alpha (RORα) nuclear orphan receptor and are selectively innervated by cutaneous low threshold mechanoreceptors (LTMs). Targeted removal of RORα INs in the dorsal spinal cord leads a marked reduction in behavioral responsiveness to light touch without affecting responses to noxious and itch stimuli. RORα IN-deficient mice also display a selective deficit in corrective foot movements. This phenotype, together with our demonstration that the RORα INs are innervated by corticospinal and vestibulospinal projection neurons, argues that the RORα INs direct corrective reflex movements by integrating touch information with descending motor commands from the cortex and cerebellum. PMID:25635458

  12. Circuits for grasping: spinal dI3 interneurons mediate cutaneous control of motor behavior.

    PubMed

    Bui, Tuan V; Akay, Turgay; Loubani, Osama; Hnasko, Thomas S; Jessell, Thomas M; Brownstone, Robert M

    2013-04-10

    Accurate motor performance depends on the integration in spinal microcircuits of sensory feedback information. Hand grasp is a skilled motor behavior known to require cutaneous sensory feedback, but spinal microcircuits that process and relay this feedback to the motor system have not been defined. We sought to define classes of spinal interneurons involved in the cutaneous control of hand grasp in mice and to show that dI3 interneurons, a class of dorsal spinal interneurons marked by the expression of Isl1, convey input from low threshold cutaneous afferents to motoneurons. Mice in which the output of dI3 interneurons has been inactivated exhibit deficits in motor tasks that rely on cutaneous afferent input. Most strikingly, the ability to maintain grip strength in response to increasing load is lost following genetic silencing of dI3 interneuron output. Thus, spinal microcircuits that integrate cutaneous feedback crucial for paw grip rely on the intermediary role of dI3 interneurons. PMID:23583114

  13. Plasticity in the brainstem vagal circuits controlling gastric motor function triggered by corticotropin releasing factor.

    PubMed

    Browning, Kirsteen N; Babic, Tanja; Toti, Luca; Holmes, Gregory M; Coleman, F Holly; Travagli, R Alberto

    2014-10-15

    Stress impairs gastric emptying, reduces stomach compliance and induces early satiety via vagal actions. We have shown recently that the ability of the anti-stress neuropeptide oxytocin (OXT) to modulate vagal brainstem circuits undergoes short-term plasticity via alterations in cAMP levels subsequent to vagal afferent fibre-dependent activation of metabotropic glutamate receptors. The aim of the present study was to test the hypothesis that the OXT-induced gastric response undergoes plastic changes in the presence of the prototypical stress hormone, corticotropin releasing factor (CRF). Whole cell patch clamp recordings showed that CRF increased inhibitory GABAergic synaptic transmission to identified corpus-projecting dorsal motor nucleus of the vagus (DMV) neurones. In naive brainstem slices, OXT perfusion had no effect on inhibitory synaptic transmission; following exposure to CRF (and recovery from its actions), however, re-application of OXT inhibited GABAergic transmission in the majority of neurones tested. This uncovering of the OXT response was antagonized by pretreatment with protein kinase A or adenylate cyclase inhibitors, H89 and di-deoxyadenosine, respectively, indicating a cAMP-mediated mechanism. In naive animals, OXT microinjection in the dorsal vagal complex induced a NO-mediated corpus relaxation. Following CRF pretreatment, however, microinjection of OXT attenuated or, at times reversed, the gastric relaxation which was insensitive to l-NAME but was antagonized by pretreatment with a VIP antagonist. Immunohistochemical analyses of vagal motoneurones showed an increased number of oxytocin receptors present on GABAergic terminals of CRF-treated or stressed vs. naive rats. These results indicate that CRF alters vagal inhibitory circuits that uncover the ability of OXT to modulate GABAergic currents and modifies the gastric corpus motility response to OXT. PMID:25128570

  14. Contribution of hand motor circuits to counting.

    PubMed

    Andres, Michael; Seron, Xavier; Olivier, Etienne

    2007-04-01

    The finding that number processing activates a cortical network partly overlapping that recruited for hand movements has renewed interest in the relationship between number and finger representations. Further evidence about a possible link between fingers and numbers comes from developmental studies showing that finger movements play a crucial role in learning counting. However, increased activity in hand motor circuits during counting may unveil unspecific processes, such as shifting attention, reciting number names, or matching items with a number name. To address this issue, we used transcranial magnetic stimulation to measure changes in corticospinal (CS) excitability during a counting task performed silently and using either numbers or letters of the alphabet to enumerate items. We found an increased CS excitability of hand muscles during the counting task, irrespective of the use of numbers or letters, whereas it was unchanged in arm and foot muscles. Control tasks allowed us to rule out a possible influence of attention allocation or covert speech on CS excitability increase of hand muscles during counting. The present results support a specific involvement of hand motor circuits in counting because no CS changes were found in arm and foot muscles during the same task. However, the contribution of hand motor areas is not exclusively related to number processing because an increase in CS excitability was also found when letters were used to enumerate items. This finding suggests that hand motor circuits are involved whenever items have to be put in correspondence with the elements of any ordered series. PMID:17381248

  15. Motor control for a brushless DC motor

    NASA Technical Reports Server (NTRS)

    Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)

    1985-01-01

    This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.

  16. Motor Controller

    NASA Technical Reports Server (NTRS)

    1988-01-01

    M.H. Marks Enterprises' Power Factor Controller (PFC) matches voltage with motor's actual need. Plugged into a motor, PFC continuously determines motor load by sensing shifts between voltage and current flow. When it senses a light load, it cuts voltage to the minimum needed. It offers potential energy savings ranging from eight percent up to 65 percent depending on the application. Myles Marks started out with the notion of writing an article for Popular Electronics magazine at the same time offering to furnish kits to readers interested in assembling PFC's. Within two weeks from publication he had orders for 500 kits and orders are still coming three years later.

  17. Torque control for electric motors

    NASA Technical Reports Server (NTRS)

    Bernard, C. A.

    1980-01-01

    Method for adjusting electric-motor torque output to accomodate various loads utilizes phase-lock loop to control relay connected to starting circuit. As load is imposed, motor slows down, and phase lock is lost. Phase-lock signal triggers relay to power starting coil and generate additional torque. Once phase lock is recoverd, relay restores starting circuit to its normal operating mode.

  18. Motor Controllers

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Kollmorgen Corporation's Mermaid II two person submersible is propeller-driven by a system of five DC brushless motors with new electronic controllers that originated in work performed in a NASA/DOE project managed by Lewis Research Center. A key feature of the system is electric commutation rather than mechanical commutation for converting AC current to DC.

  19. Closed-Loop Motor-Speed Control

    NASA Technical Reports Server (NTRS)

    Smith, Matthew A.; Delcher, Ray C.; Huston, Steven W.

    1989-01-01

    Electronic motor-speed control circuit designed to operate in electrically noisy environment. Includes optoelectronic pick-up device, placed inside motor housing to provide speed feedback signal. Automatically maintains speed motor at commanded value. Measures speed of motor in terms of frequency of pulses of infrared light chopped by fan blades of motor. Difference between measured and commanded speeds serves as control signal for external amplifier driving motor. Major advantage of circuit is low cost.

  20. Equivalent Circuit Modeling of Hysteresis Motors

    SciTech Connect

    Nitao, J J; Scharlemann, E T; Kirkendall, B A

    2009-08-31

    We performed a literature review and found that many equivalent circuit models of hysteresis motors in use today are incorrect. The model by Miyairi and Kataoka (1965) is the correct one. We extended the model by transforming it to quadrature coordinates, amenable to circuit or digital simulation. 'Hunting' is an oscillatory phenomenon often observed in hysteresis motors. While several works have attempted to model the phenomenon with some partial success, we present a new complete model that predicts hunting from first principles.

  1. Circuit increases capability of hysteresis synchronous motor

    NASA Technical Reports Server (NTRS)

    Markowitz, I. N.

    1967-01-01

    Frequency and phase detector circuit enables a hysteresis synchronous motor to drive a load of given torque value at a precise speed determined by a stable reference. This technique permits driving larger torque loads with smaller motors and lower power drain.

  2. Circuit Regulates Speed Of dc Motor

    NASA Technical Reports Server (NTRS)

    Weaver, Charles; Padden, Robin; Brown, Floyd A., Jr.

    1990-01-01

    Driving circuit regulates speed of small dc permanent-magnet motor in tape recorder. Two nested feedback loops maintain speed within 1 percent of constant value. Inner loop provides coarse regulation, while outer loop removes most of variation in speed that remains in the presence of regulation by the inner loop. Compares speed of motor with commanded speed and adjusts current supplied to motor accordingly.

  3. Gross motor control

    MedlinePlus

    Gross motor control is the ability to make large, general movements (such as waving an arm or lifting a ... Gross motor control is a milestone in the development of an infant. Infants develop gross motor control before they ...

  4. Circuit For Control Of Electromechanical Prosthetic Hand

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr.

    1995-01-01

    Proposed circuit for control of electromechanical prosthetic hand derives electrical control signals from shoulder movements. Updated, electronic version of prosthesis, that includes two hooklike fingers actuated via cables from shoulder harness. Circuit built around favored shoulder harness, provides more dexterous movement, without incurring complexity of computer-controlled "bionic" or hydraulically actuated devices. Additional harness and potentiometer connected to similar control circuit mounted on other shoulder. Used to control stepping motor rotating hand about prosthetic wrist to one of number of angles consistent with number of digital outputs. Finger-control signals developed by circuit connected to first shoulder harness transmitted to prosthetic hand via sliprings at prosthetic wrist joint.

  5. 46 CFR 169.684 - Overcurrent protection for motors and motor branch circuits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Overcurrent protection for motors and motor branch... motors and motor branch circuits. (a) Except as provided in paragraph (d) of this section, each motor... motor that is responsive to motor current or to both motor current and temperature may be used. (b)...

  6. 46 CFR 169.684 - Overcurrent protection for motors and motor branch circuits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Overcurrent protection for motors and motor branch... motors and motor branch circuits. (a) Except as provided in paragraph (d) of this section, each motor... motor that is responsive to motor current or to both motor current and temperature may be used. (b)...

  7. 46 CFR 169.684 - Overcurrent protection for motors and motor branch circuits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Overcurrent protection for motors and motor branch... motors and motor branch circuits. (a) Except as provided in paragraph (d) of this section, each motor... motor that is responsive to motor current or to both motor current and temperature may be used. (b)...

  8. 46 CFR 169.684 - Overcurrent protection for motors and motor branch circuits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Overcurrent protection for motors and motor branch... motors and motor branch circuits. (a) Except as provided in paragraph (d) of this section, each motor... motor that is responsive to motor current or to both motor current and temperature may be used. (b)...

  9. 46 CFR 169.684 - Overcurrent protection for motors and motor branch circuits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Overcurrent protection for motors and motor branch... motors and motor branch circuits. (a) Except as provided in paragraph (d) of this section, each motor... motor that is responsive to motor current or to both motor current and temperature may be used. (b)...

  10. Method and apparatus for controlling multiple motors

    DOEpatents

    Jones, Rollin G.; Kortegaard, Bert L.; Jones, David F.

    1987-01-01

    A method and apparatus are provided for simultaneously controlling a plurality of stepper motors. Addressing circuitry generates address data for each motor in a periodic address sequence. Memory circuits respond to the address data for each motor by accessing a corresponding memory location containing a first operational data set functionally related to a direction for moving the motor, speed data, and rate of speed change. First logic circuits respond to the first data set to generate a motor step command. Second logic circuits respond to the command from the first logic circuits to generate a third data set for replacing the first data set in memory with a current operational motor status, which becomes the first data set when the motor is next addressed.

  11. ELECTRONIC PHASE CONTROL CIRCUIT

    DOEpatents

    Salisbury, J.D.; Klein, W.W.; Hansen, C.F.

    1959-04-21

    An electronic circuit is described for controlling the phase of radio frequency energy applied to a multicavity linear accelerator. In one application of the circuit two cavities are excited from a single radio frequency source, with one cavity directly coupled to the source and the other cavity coupled through a delay line of special construction. A phase detector provides a bipolar d-c output signal proportional to the difference in phase between the voltage in the two cavities. This d-c signal controls a bias supply which provides a d-c output for varying the capacitnce of voltage sensitive capacitors in the delay line. The over-all operation of the circuit is completely electronic, overcoming the time response limitations of the electromechanical control systems, and the relative phase relationship of the radio frequency voltages in the two caviiies is continuously controlled to effect particle acceleration.

  12. Motor control of fly feeding.

    PubMed

    McKellar, Claire E

    2016-06-01

    Following considerable progress on the molecular and cellular basis of taste perception in fly sensory neurons, the time is now ripe to explore how taste information, integrated with hunger and satiety, undergo a sensorimotor transformation to lead to the motor actions of feeding behavior. I examine what is known of feeding circuitry in adult flies from more than 250 years of work in larger flies and from newer work in Drosophila. I review the anatomy of the proboscis, its muscles and their functions (where known), its motor neurons, interneurons known to receive taste inputs, interneurons that diverge from taste circuitry to provide information to other circuits, interneurons from other circuits that converge on feeding circuits, proprioceptors that influence the motor control of feeding, and sites of integration of hunger and satiety on feeding circuits. In spite of the several neuron types now known, a connected pathway from taste inputs to feeding motor outputs has yet to be found. We are on the threshold of an era where these individual components will be assembled into circuits, revealing how nervous system architecture leads to the control of behavior. PMID:27309215

  13. Inrush Current Control Circuit

    NASA Technical Reports Server (NTRS)

    Cole, Steven W. (Inventor)

    2002-01-01

    An inrush current control circuit having an input terminal connected to a DC power supply and an output terminal connected to a load capacitor limits the inrush current that charges up the load capacitor during power up of a system. When the DC power supply applies a DC voltage to the input terminal, the inrush current control circuit produces a voltage ramp at the load capacitor instead of an abrupt DC voltage. The voltage ramp results in a constant low level current to charge up the load capacitor, greatly reducing the current drain on the DC power supply.

  14. Three phase AC motor controller

    DOEpatents

    Vuckovich, Michael; Wright, Maynard K.; Burkett, John P.

    1984-03-20

    A motor controller for a three phase AC motor (10) which is adapted to operate bidirectionally from signals received either from a computer (30) or a manual control (32). The controller is comprised of digital logic circuit means which implement a forward and reverse command signal channel (27, 29) for the application of power through the forward and reverse power switching relays (16, 18, 20, 22). The digital logic elements are cross coupled to prevent activation of both channels simultaneously and each includes a plugging circuit (65, 67) for stopping the motor upon the removal of control signal applied to one of the two channels (27, 29) for a direction of rotation desired. Each plugging circuit (65, 67) includes a one-shot pulse signal generator (88, 102) which outputs a single pulse signal of predetermined pulsewidth which is adapted to inhibit further operation of the application of power in the channel which is being activated and to apply a reversal command signal to the other channel which provides a reversed phase application of power to the motor for a period defined by the pulse-width output of the one-shot signal generator to plug the motor (10) which will then be inoperative until another rotational command signal is applied to either of the two channels.

  15. Precision stop control for motors

    NASA Technical Reports Server (NTRS)

    Howard, David E. (Inventor); Montenegro, Justino (Inventor)

    2000-01-01

    An improved stop control system and method are provided for a motor having a drive mechanism in which the motor is coupled to a motor controller that controls the speed and position of the drive mechanism using a first signal indicative of a commanded position of the drive mechanism, a second signal indicative of the actual speed of the drive mechanism and a third signal indicative of the actual position of the drive mechanism. The improved system/method uses a first circuit that receives the first and third signal and generates an error signal indicative of a difference therebetween. A second circuit receives the error signal and compares same with a threshold position error. The result of this comparison is used to selectively supply the second signal (i.e., speed) to the motor controller at least whenever the error signal is less than the threshold position error so that the motor controller can use the second signal in conjunction with the third signal to stop the motor.

  16. Fine motor control

    MedlinePlus

    ... figure out the child's developmental age. Children develop fine motor skills over time, by practicing and being taught. To have fine motor control, children need: Awareness and planning Coordination ...

  17. Demodulation circuit for AC motor current spectral analysis

    DOEpatents

    Hendrix, Donald E.; Smith, Stephen F.

    1990-12-18

    A motor current analysis method for the remote, noninvasive inspection of electric motor-operated systems. Synchronous amplitude demodulation and phase demodulation circuits are used singly and in combination along with a frequency analyzer to produce improved spectral analysis of load-induced frequencies present in the electric current flowing in a motor-driven system.

  18. Compensated gain control circuit for buck regulator command charge circuit

    DOEpatents

    Barrett, David M.

    1996-01-01

    A buck regulator command charge circuit includes a compensated-gain control signal for compensating for changes in the component values in order to achieve optimal voltage regulation. The compensated-gain control circuit includes an automatic-gain control circuit for generating a variable-gain control signal. The automatic-gain control circuit is formed of a precision rectifier circuit, a filter network, an error amplifier, and an integrator circuit.

  19. Compensated gain control circuit for buck regulator command charge circuit

    DOEpatents

    Barrett, D.M.

    1996-11-05

    A buck regulator command charge circuit includes a compensated-gain control signal for compensating for changes in the component values in order to achieve optimal voltage regulation. The compensated-gain control circuit includes an automatic-gain control circuit for generating a variable-gain control signal. The automatic-gain control circuit is formed of a precision rectifier circuit, a filter network, an error amplifier, and an integrator circuit. 5 figs.

  20. Dual-circuit segmented rail phased induction motor

    DOEpatents

    Marder, Barry M.; Cowan, Jr., Maynard

    2002-01-01

    An improved linear motor utilizes two circuits, rather that one circuit and an opposed plate, to gain efficiency. The powered circuit is a flat conductive coil. The opposed segmented rail circuit is either a plurality of similar conductive coils that are shorted, or a plurality of ladders formed of opposed conductive bars connected by a plurality of spaced conductors. In each embodiment, the conductors are preferably cables formed from a plurality of intertwined insulated wires to carry current evenly.

  1. Stepping motor controller

    DOEpatents

    Bourret, S.C.; Swansen, J.E.

    1982-07-02

    A stepping motor is microprocessor controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

  2. Stepping motor controller

    DOEpatents

    Bourret, Steven C.; Swansen, James E.

    1984-01-01

    A stepping motor is microprocessingly controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

  3. Controller for a High-Power, Brushless dc Motor

    NASA Technical Reports Server (NTRS)

    Fleming, David J.; Makdad, Terence A.

    1987-01-01

    Driving and braking torques controllable. Control circuit operates 7-kW, 45-lb-ft (61-N-m), three-phase, brushless dc motor in both motor and generator modes. In motor modes, energy from power source is pulse-width modulated to motor through modified "H-bridge" circuit, in generator mode, energy from motor is pulse-width modulated into bank of load resistors to provide variable braking torques. Circuit provides high-resolution torque control in both directions over wide range of speeds and torques. Tested successfully at bus voltages up to 200 Vdc and currents up to 45 A.

  4. Electronic control circuits: A compilation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A compilation of technical R and D information on circuits and modular subassemblies is presented as a part of a technology utilization program. Fundamental design principles and applications are given. Electronic control circuits discussed include: anti-noise circuit; ground protection device for bioinstrumentation; temperature compensation for operational amplifiers; hybrid gatling capacitor; automatic signal range control; integrated clock-switching control; and precision voltage tolerance detector.

  5. Cortical Motor Circuits after Piano Training in Adulthood: Neurophysiologic Evidence.

    PubMed

    Houdayer, Elise; Cursi, Marco; Nuara, Arturo; Zanini, Sonia; Gatti, Roberto; Comi, Giancarlo; Leocani, Letizia

    2016-01-01

    The neuronal mechanisms involved in brain plasticity after skilled motor learning are not completely understood. We aimed to study the short-term effects of keyboard training in music-naive subjects on the motor/premotor cortex activity and interhemispheric interactions, using electroencephalography and transcranial magnetic stimulation (TMS). Twelve subjects (experimental group) underwent, before and after a two week-piano training: (1) hand-motor function tests: Jamar, grip and nine-hole peg tests; (2) electroencephalography, evaluating the mu rhythm task-related desynchronization (TRD) during keyboard performance; and (3) TMS, targeting bilateral abductor pollicis brevis (APB) and abductor digiti minimi (ADM), to obtain duration and area of ipsilateral silent period (ISP) during simultaneous tonic contraction of APB and ADM. Data were compared with 13 controls who underwent twice these measurements, in a two-week interval, without undergoing piano training. Every subject in the experimental group improved keyboard performance and left-hand nine-hole peg test scores. Pre-training, ISP durations were asymmetrical, left being longer than right. Post-training, right ISPAPB increased, leading to symmetrical ISPAPB. Mu TRD during motor performance became more focal and had a lesser amplitude than in pre-training, due to decreased activity over ventral premotor cortices. No such changes were evidenced in controls. We demonstrated that a 10-day piano-training was associated with balanced interhemispheric interactions both at rest and during motor activation. Piano training, in a short timeframe, may reshape local and inter-hemispheric motor cortical circuits. PMID:27309353

  6. Cortical Motor Circuits after Piano Training in Adulthood: Neurophysiologic Evidence

    PubMed Central

    Nuara, Arturo; Zanini, Sonia; Gatti, Roberto; Comi, Giancarlo; Leocani, Letizia

    2016-01-01

    The neuronal mechanisms involved in brain plasticity after skilled motor learning are not completely understood. We aimed to study the short-term effects of keyboard training in music-naive subjects on the motor/premotor cortex activity and interhemispheric interactions, using electroencephalography and transcranial magnetic stimulation (TMS). Twelve subjects (experimental group) underwent, before and after a two week-piano training: (1) hand-motor function tests: Jamar, grip and nine-hole peg tests; (2) electroencephalography, evaluating the mu rhythm task-related desynchronization (TRD) during keyboard performance; and (3) TMS, targeting bilateral abductor pollicis brevis (APB) and abductor digiti minimi (ADM), to obtain duration and area of ipsilateral silent period (ISP) during simultaneous tonic contraction of APB and ADM. Data were compared with 13 controls who underwent twice these measurements, in a two-week interval, without undergoing piano training. Every subject in the experimental group improved keyboard performance and left-hand nine-hole peg test scores. Pre-training, ISP durations were asymmetrical, left being longer than right. Post-training, right ISPAPB increased, leading to symmetrical ISPAPB. Mu TRD during motor performance became more focal and had a lesser amplitude than in pre-training, due to decreased activity over ventral premotor cortices. No such changes were evidenced in controls. We demonstrated that a 10-day piano-training was associated with balanced interhemispheric interactions both at rest and during motor activation. Piano training, in a short timeframe, may reshape local and inter-hemispheric motor cortical circuits. PMID:27309353

  7. 2. ELEVATOR DRIVE, CABLE MOTOR, CIRCUIT BOX, Hot Springs ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. ELEVATOR DRIVE, CABLE MOTOR, CIRCUIT BOX, - Hot Springs National Park, Bathhouse Row, Fordyce Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  8. Induction motor control

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Electromechanical actuators developed to date have commonly utilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilizes induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  9. Induction motor control

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Electromechanical actuators developed to date have commonly ultilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilized induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high-frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high-frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  10. Induction motor control

    NASA Astrophysics Data System (ADS)

    Hansen, Irving G.

    Electromechanical actuators developed to date have commonly ultilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilized induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high-frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high-frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  11. Optically controllable molecular logic circuits

    NASA Astrophysics Data System (ADS)

    Nishimura, Takahiro; Fujii, Ryo; Ogura, Yusuke; Tanida, Jun

    2015-07-01

    Molecular logic circuits represent a promising technology for observation and manipulation of biological systems at the molecular level. However, the implementation of molecular logic circuits for temporal and programmable operation remains challenging. In this paper, we demonstrate an optically controllable logic circuit that uses fluorescence resonance energy transfer (FRET) for signaling. The FRET-based signaling process is modulated by both molecular and optical inputs. Based on the distance dependence of FRET, the FRET pathways required to execute molecular logic operations are formed on a DNA nanostructure as a circuit based on its molecular inputs. In addition, the FRET pathways on the DNA nanostructure are controlled optically, using photoswitching fluorescent molecules to instruct the execution of the desired operation and the related timings. The behavior of the circuit can thus be controlled using external optical signals. As an example, a molecular logic circuit capable of executing two different logic operations was studied. The circuit contains functional DNAs and a DNA scaffold to construct two FRET routes for executing Input 1 AND Input 2 and Input 1 AND NOT Input 3 operations on molecular inputs. The circuit produced the correct outputs with all possible combinations of the inputs by following the light signals. Moreover, the operation execution timings were controlled based on light irradiation and the circuit responded to time-dependent inputs. The experimental results demonstrate that the circuit changes the output for the required operations following the input of temporal light signals.

  12. Optically controllable molecular logic circuits

    SciTech Connect

    Nishimura, Takahiro Fujii, Ryo; Ogura, Yusuke; Tanida, Jun

    2015-07-06

    Molecular logic circuits represent a promising technology for observation and manipulation of biological systems at the molecular level. However, the implementation of molecular logic circuits for temporal and programmable operation remains challenging. In this paper, we demonstrate an optically controllable logic circuit that uses fluorescence resonance energy transfer (FRET) for signaling. The FRET-based signaling process is modulated by both molecular and optical inputs. Based on the distance dependence of FRET, the FRET pathways required to execute molecular logic operations are formed on a DNA nanostructure as a circuit based on its molecular inputs. In addition, the FRET pathways on the DNA nanostructure are controlled optically, using photoswitching fluorescent molecules to instruct the execution of the desired operation and the related timings. The behavior of the circuit can thus be controlled using external optical signals. As an example, a molecular logic circuit capable of executing two different logic operations was studied. The circuit contains functional DNAs and a DNA scaffold to construct two FRET routes for executing Input 1 AND Input 2 and Input 1 AND NOT Input 3 operations on molecular inputs. The circuit produced the correct outputs with all possible combinations of the inputs by following the light signals. Moreover, the operation execution timings were controlled based on light irradiation and the circuit responded to time-dependent inputs. The experimental results demonstrate that the circuit changes the output for the required operations following the input of temporal light signals.

  13. Power-Conserving Stepping-Motor Drive Circuits

    NASA Technical Reports Server (NTRS)

    Nola, Frank J.; Howard, David E.

    1994-01-01

    Two improved drive circuits for sinusoidally commutated stepping motor include feedback loops reducing unnecessary consumption of power by reducing drive-current amplitude, I, when motor operates under light load. Basic design strategy attempts to supply only little more current than minimum needed to overcome friction in lightly loaded condition. In this sinusoidally commutated two-phase stepping motor, magnetic field generated by drive currents in phase-A and phase-B stator windings urges rotor toward commanded angle x.

  14. 18. Station Service Control and Motor Control Center #2, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Station Service Control and Motor Control Center #2, view to the northeast. Note the circuit breaker switch on cart in left corner of photograph. This switch is part of the motor control center which has been temporarily removed from the slot marked with a tag that is visible at lower left end of control center. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  15. Pulsed thyristor trigger control circuit

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1984-01-01

    A trigger control circuit is provided for producing firing pulses for the thyristor of a thyristor control system such as a power factor controller. The control circuit overcomes thyristor triggering problems involved with the current lag associated with controlling inductive loads and utilizes a phase difference signal, already present in the power factor controller, in deriving a signal for inhibiting generation of a firing pulse until no load current is flowing from the preceding half cycle and thereby ensuring that the thyristor is triggered on during each half cycle.

  16. Efficient Power Amplifier for Motor Control

    NASA Technical Reports Server (NTRS)

    Brown, R. J.

    1986-01-01

    Pulse-width-modulated amplifier supplies high current as efficiently as low current needed for starting and running motor. Key to efficiency of motor-control amplifier is V-channel metal-oxide/semiconductor transistor Q1. Device has low saturation resistance. However, has large gate input capacitance and small margin between its turn-on voltage and maximum allowable gate-to-source voltage. Circuits for output stages overcome limitations of VMOS device.

  17. Electric vehicle motors and controllers

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.

    1981-01-01

    Improved and advanced components being developed include electronically commutated permanent magnet motors of both drum and disk configuration, an unconventional brush commutated motor, and ac induction motors and various controllers. Test results on developmental motors, controllers, and combinations thereof indicate that efficiencies of 90% and higher for individual components, and 80% to 90% for motor/controller combinations can be obtained at rated power. The simplicity of the developmental motors and the potential for ultimately low cost electronics indicate that one or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors.

  18. ac bidirectional motor controller

    NASA Technical Reports Server (NTRS)

    Schreiner, K.

    1988-01-01

    Test data are presented and the design of a high-efficiency motor/generator controller at NASA-Lewis for use with the Space Station power system testbed is described. The bidirectional motor driver is a 20 kHz to variable frequency three-phase ac converter that operates from the high-frequency ac bus being designed for the Space Station. A zero-voltage-switching pulse-density-modulation technique is used in the converter to shape the low-frequency output waveform.

  19. DC motor proportional control system for orthotic devices

    NASA Technical Reports Server (NTRS)

    Blaise, H. T.; Allen, J. R.

    1972-01-01

    Multi-channel proportional control system for operation of dc motors for use with externally-powered orthotic arm braces is described. Components of circuitry and principles of operation are described. Schematic diagram of control circuit is provided.

  20. 49 CFR 236.731 - Controller, circuit.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Controller, circuit. A device for opening and closing electric circuits. ... 49 Transportation 4 2014-10-01 2014-10-01 false Controller, circuit. 236.731 Section 236.731 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD...

  1. 49 CFR 236.731 - Controller, circuit.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Controller, circuit. A device for opening and closing electric circuits. ... 49 Transportation 4 2013-10-01 2013-10-01 false Controller, circuit. 236.731 Section 236.731 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD...

  2. 49 CFR 236.731 - Controller, circuit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Controller, circuit. A device for opening and closing electric circuits. ... 49 Transportation 4 2010-10-01 2010-10-01 false Controller, circuit. 236.731 Section 236.731 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD...

  3. 49 CFR 236.731 - Controller, circuit.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Controller, circuit. A device for opening and closing electric circuits. ... 49 Transportation 4 2011-10-01 2011-10-01 false Controller, circuit. 236.731 Section 236.731 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD...

  4. 49 CFR 236.731 - Controller, circuit.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Controller, circuit. A device for opening and closing electric circuits. ... 49 Transportation 4 2012-10-01 2012-10-01 false Controller, circuit. 236.731 Section 236.731 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD...

  5. Human Spinal Motor Control.

    PubMed

    Nielsen, Jens Bo

    2016-07-01

    Human studies in the past three decades have provided us with an emerging understanding of how cortical and spinal networks collaborate to ensure the vast repertoire of human behaviors. Humans have direct cortical connections to spinal motoneurons, which bypass spinal interneurons and exert a direct (willful) muscle control with the aid of a context-dependent integration of somatosensory and visual information at cortical level. However, spinal networks also play an important role. Sensory feedback through spinal circuitries is integrated with central motor commands and contributes importantly to the muscle activity underlying voluntary movements. Regulation of spinal interneurons is used to switch between motor states such as locomotion (reciprocal innervation) and stance (coactivation pattern). Cortical regulation of presynaptic inhibition of sensory afferents may focus the central motor command by opening or closing sensory feedback pathways. In the future, human studies of spinal motor control, in close collaboration with animal studies on the molecular biology of the spinal cord, will continue to document the neural basis for human behavior. PMID:27023730

  6. PHOTOSENSITIVE RELAY CONTROL CIRCUIT

    DOEpatents

    Martin, C.F.

    1958-01-14

    adapted for the measurement of the time required for an oscillating member to pass through a preselected number of oscillations, after being damped to a certain maximum amplitude of oscillation. A mirror is attached to the moving member and directs light successively to a photocell which is part of a trigger unit and to first and second photocells which are part of a starter unit, as the member swings to its maximum amplitude. The starter and trigger units comprise thyratrons and relays so interconnected that the trigger circuit, although generating a counter pulse, does not register a count in the counter when the light traverses both photocells of the starter unit. When the amplitude of oscillation of the member decreases to where the second photocell is not transversed, the triggei pulse is received by the counter. The counter taen operates to register the desired number of oscillations and initiates and terminates a timer for measuring the time irterval for the preselected number of oscillations.

  7. Feedback control during voluntary motor actions.

    PubMed

    Scott, Stephen H; Cluff, Tyler; Lowrey, Catherine R; Takei, Tomohiko

    2015-08-01

    Humans possess an impressive ability to generate goal-oriented motor actions to move and interact with the environment. The planning and initiation of these body movements is supported by highly distributed cortical and subcortical circuits. Recent studies, inspired by advanced control theory, highlight similar sophistication when we make online corrections to counter small disturbances of the limb or altered visual feedback. Such goal-directed feedback is likely generated by the same neural circuits associated with motor planning and initiation. These common neural substrates afford a highly responsive system to maintain goal-directed control and rapidly select new motor actions as required to deftly move and interact in a complex world. PMID:25827274

  8. Power factor control system for ac induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1981-01-01

    A power control circuit for an induction motor is disclosed in which a servo loop is used to control power input by controlling the power factor of motor operation. The power factor is measured by summing the voltage and current derived square wave signals.

  9. Competition with Primary Sensory Afferents Drives Remodeling of Corticospinal Axons in Mature Spinal Motor Circuits

    PubMed Central

    Jiang, Yu-Qiu; Zaaimi, Boubker

    2016-01-01

    Injury to the mature motor system drives significant spontaneous axonal sprouting instead of axon regeneration. Knowing the circuit-level determinants of axonal sprouting is important for repairing motor circuits after injury to achieve functional rehabilitation. Competitive interactions are known to shape corticospinal tract axon outgrowth and withdrawal during development. Whether and how competition contributes to reorganization of mature spinal motor circuits is unclear. To study this question, we examined plastic changes in corticospinal axons in response to two complementary proprioceptive afferent manipulations: (1) enhancing proprioceptive afferents activity by electrical stimulation; or (2) diminishing their input by dorsal rootlet rhizotomy. Experiments were conducted in adult rats. Electrical stimulation produced proprioceptive afferent sprouting that was accompanied by significant corticospinal axon withdrawal and a decrease in corticospinal connections on cholinergic interneurons in the medial intermediate zone and C boutons on motoneurons. In contrast, dorsal rootlet rhizotomy led to a significant increase in corticospinal connections, including those on cholinergic interneurons; C bouton density increased correspondingly. Motor cortex-evoked muscle potentials showed parallel changes to those of corticospinal axons, suggesting that reciprocal corticospinal axon changes are functional. Using the two complementary models, we showed that competitive interactions between proprioceptive and corticospinal axons are an important determinant in the organization of mature corticospinal axons and spinal motor circuits. The activity- and synaptic space-dependent properties of the competition enables prediction of the remodeling of spared corticospinal connection and spinal motor circuits after injury and informs the target-specific control of corticospinal connections to promote functional recovery. SIGNIFICANCE STATEMENT Neuroplasticity is limited in maturity

  10. Heritability of motor control and motor learning

    PubMed Central

    Missitzi, Julia; Gentner, Reinhard; Misitzi, Angelica; Geladas, Nickos; Politis, Panagiotis; Klissouras, Vassilis; Classen, Joseph

    2013-01-01

    Abstract The aim of this study was to elucidate the relative contribution of genes and environment on individual differences in motor control and acquisition of a force control task, in view of recent association studies showing that several candidate polymorphisms may have an effect on them. Forty‐four healthy female twins performed brisk isometric abductions with their right thumb. Force was recorded by a transducer and fed back to the subject on a computer screen. The task was to place the tracing of the peak force in a force window defined between 30% and 40% of the subject's maximum force, as determined beforehand. The initial level of proficiency was defined as the number of attempts reaching the force window criterion within the first 100 trials. The difference between the number of successful trials within the last and the first 100 trials was taken as a measure of motor learning. For motor control, defined by the initial level of proficiency, the intrapair differences in monozygotic (MZ) and dizygotic (DZ) twins were 6.8 ± 7.8 and 13.8 ± 8.4, and the intrapair correlations 0.77 and 0.39, respectively. Heritability was estimated at 0.68. Likewise for motor learning intrapair differences in the increment of the number of successful trials in MZ and DZ twins were 5.4 ± 5.2 and 12.8 ± 7, and the intrapair correlations 0.58 and 0.19. Heritability reached 0.70. The present findings suggest that heredity accounts for a major part of existing differences in motor control and motor learning, but uncertainty remains which gene polymorphisms may be responsible. PMID:24744865

  11. CONTROL AND FAULT DETECTOR CIRCUIT

    DOEpatents

    Winningstad, C.N.

    1958-04-01

    A power control and fault detectcr circuit for a radiofrequency system is described. The operation of the circuit controls the power output of a radio- frequency power supply to automatically start the flow of energizing power to the radio-frequency power supply and to gradually increase the power to a predetermined level which is below the point where destruction occurs upon the happening of a fault. If the radio-frequency power supply output fails to increase during such period, the control does not further increase the power. On the other hand, if the output of the radio-frequency power supply properly increases, then the control continues to increase the power to a maximum value. After the maximumn value of radio-frequency output has been achieved. the control is responsive to a ''fault,'' such as a short circuit in the radio-frequency system being driven, so that the flow of power is interrupted for an interval before the cycle is repeated.

  12. Control system for an induction motor with energy recovery

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1983-01-01

    A control circuit for an induction motor powered system is disclosed in which a power factor controlled servo loop is used to control, via the phase angle of firing of a triac, the power input to the motor, as a function of load placed on the motor by machinery of the powered system. Then, upon application of torque by this machinery to the motor, which tends to overspeed the motor, the firing angle of the triac is automatically set to a fixed, and relatively short, firing angle.

  13. Circuit Mechanisms Underlying Motor Memory Formation in the Cerebellum

    PubMed Central

    Lee, Ka Hung; Mathews, Paul J.; Reeves, Alexander M.B.; Choe, Katrina Y.; Jami, Shekib A.; Serrano, Raul E.; Otis, Thomas S.

    2015-01-01

    SUMMARY The cerebellum stores associative motor memories essential for properly timed movement; however, the mechanisms by which these memories form and are acted upon remain unclear. To determine how cerebellar activity relates to movement and motor learning, we used optogenetics to manipulate spontaneously firing Purkinje neurons (PNs) in mouse simplex lobe. Using high-speed videography and motion tracking, we found that altering PN activity produced rapid forelimb movement. PN inhibition drove movements time-locked to stimulus onset, whereas PN excitation drove delayed movements time-locked to stimulus offset. Pairing either PN inhibition or excitation with sensory stimuli triggered the formation of robust, associative motor memories; however, PN excitation led to learned movements whose timing more closely matched training intervals. These findings implicate inhibition of PNs as a teaching signal, consistent with a model whereby learning leads first to reductions in PN firing that subsequently instruct circuit changes in the cerebellar nucleus. PMID:25843404

  14. Control system for a wound-rotor motor

    DOEpatents

    Ellis, James N.

    1983-01-01

    A load switching circuit for switching two or more transformer taps under load carrying conditions includes first and second parallel connected bridge rectifier circuits which control the selective connection of a direct current load to taps of a transformer. The first bridge circuit is normally conducting so that the load is connected to a first tap through the first bridge circuit. To transfer the load to the second tap, a switch is operable to connect the second bridge circuit to a second tap, and when the second bridge circuit begins to conduct, the first bridge circuit ceases conduction because the potential at the second tap is higher than the potential at the first tap, and the load is thus connected to the second tap through the second bridge circuit. The load switching circuit is applicable in a motor speed controller for a wound-rotor motor for effecting tap switching as a function of motor speed while providing a stepless motor speed control characteristic.

  15. Reorganization of Intact Descending Motor Circuits to Replace Lost Connections After Injury.

    PubMed

    Fink, Kathren L; Cafferty, William B J

    2016-04-01

    Neurons have a limited capacity to regenerate in the adult central nervous system (CNS). The inability of damaged axons to re-establish original circuits results in permanent functional impairment after spinal cord injury (SCI). Despite abortive regeneration of axotomized CNS neurons, limited spontaneous recovery of motor function emerges after partial SCI in humans and experimental rodent models of SCI. It is hypothesized that this spontaneous functional recovery is the result of the reorganization of descending motor pathways spared by the injury, suggesting that plasticity of intact circuits is a potent alternative conduit to enhance functional recovery after SCI. In support of this hypothesis, several studies have shown that after unilateral corticospinal tract (CST) lesion (unilateral pyramidotomy), the intact CST functionally sprouts into the denervated side of the spinal cord. Furthermore, pharmacologic and genetic methods that enhance the intrinsic growth capacity of adult neurons or block extracellular growth inhibitors are effective at significantly enhancing intact CST reorganization and recovery of motor function. Owing to its importance in controlling fine motor behavior in primates, the CST is the most widely studied descending motor pathway; however, additional studies in rodents have shown that plasticity within other spared descending motor pathways, including the rubrospinal tract, raphespinal tract, and reticulospinal tract, can also result in restoration of function after incomplete SCI. Identifying the molecular mechanisms that drive plasticity within intact circuits is crucial in developing novel, potent, and specific therapeutics to restore function after SCI. In this review we discuss the evidence supporting a focus on exploring the capacity of intact motor circuits to functionally repair the damaged CNS after SCI. PMID:26846379

  16. 49 CFR 234.203 - Control circuits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Control circuits. 234.203 Section 234.203... EMERGENCY NOTIFICATION SYSTEMS Maintenance, Inspection, and Testing Maintenance Standards § 234.203 Control circuits. All control circuits that affect the safe operation of a highway-rail grade crossing...

  17. 49 CFR 234.203 - Control circuits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Control circuits. 234.203 Section 234.203... EMERGENCY NOTIFICATION SYSTEMS Maintenance, Inspection, and Testing Maintenance Standards § 234.203 Control circuits. All control circuits that affect the safe operation of a highway-rail grade crossing...

  18. 49 CFR 234.203 - Control circuits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Control circuits. 234.203 Section 234.203... EMERGENCY NOTIFICATION SYSTEMS Maintenance, Inspection, and Testing Maintenance Standards § 234.203 Control circuits. All control circuits that affect the safe operation of a highway-rail grade crossing...

  19. 49 CFR 234.203 - Control circuits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Control circuits. 234.203 Section 234.203 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION..., Inspection, and Testing Maintenance Standards § 234.203 Control circuits. All control circuits that...

  20. 49 CFR 236.721 - Circuit, control.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Circuit, control. 236.721 Section 236.721..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.721 Circuit, control. An electrical circuit between a source of electric energy and a device which it operates....

  1. 49 CFR 236.721 - Circuit, control.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Circuit, control. 236.721 Section 236.721..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.721 Circuit, control. An electrical circuit between a source of electric energy and a device which it operates....

  2. 49 CFR 234.203 - Control circuits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Control circuits. 234.203 Section 234.203 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION..., Inspection, and Testing Maintenance Standards § 234.203 Control circuits. All control circuits that...

  3. 49 CFR 236.721 - Circuit, control.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Circuit, control. An electrical circuit between a source of electric energy and a device which it operates. ... 49 Transportation 4 2012-10-01 2012-10-01 false Circuit, control. 236.721 Section 236.721 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD...

  4. 49 CFR 236.721 - Circuit, control.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Circuit, control. An electrical circuit between a source of electric energy and a device which it operates. ... 49 Transportation 4 2014-10-01 2014-10-01 false Circuit, control. 236.721 Section 236.721 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD...

  5. 49 CFR 236.721 - Circuit, control.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Circuit, control. An electrical circuit between a source of electric energy and a device which it operates. ... 49 Transportation 4 2013-10-01 2013-10-01 false Circuit, control. 236.721 Section 236.721 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD...

  6. Remote control for motor vehicle

    NASA Technical Reports Server (NTRS)

    Johnson, Dale R. (Inventor); Ciciora, John A. (Inventor)

    1984-01-01

    A remote controller is disclosed for controlling the throttle, brake and steering mechanism of a conventional motor vehicle, with the remote controller being particularly advantageous for use by severely handicapped individuals. The controller includes a remote manipulator which controls a plurality of actuators through interfacing electronics. The remote manipulator is a two-axis joystick which controls a pair of linear actuators and a rotary actuator, with the actuators being powered by electric motors to effect throttle, brake and steering control of a motor vehicle adapted to include the controller. The controller enables the driver to control the adapted vehicle from anywhere in the vehicle with one hand with minimal control force and range of motion. In addition, even though a conventional vehicle is adapted for use with the remote controller, the vehicle may still be operated in the normal manner.

  7. Spatial organization of cortical and spinal neurons controlling motor behavior

    PubMed Central

    Levine, Ariel J; Lewallen, Kathryn A; Pfaff, Samuel L

    2013-01-01

    A major task of the central nervous system (CNS) is to control behavioral actions, which necessitates a precise regulation of muscle activity. The final components of the circuitry controlling muscles are the motorneurons, which settle into pools in the ventral horn of the spinal cord in positions that mirror the musculature organization within the body. This ‘musculotopic’ motor-map then becomes the internal CNS reference for the neuronal circuits that control motor commands. This review describes recent progress in defining the neuroanatomical organization of the higher-order motor circuits in the cortex and spinal cord, and our current understanding of the integrative features that contribute to complex motor behaviors. We highlight emerging evidence that cortical and spinal motor command centers are loosely organized with respect to the musculotopic spatial-map, but these centers also incorporate organizational features that associate with the function of different muscle groups during commonly enacted behaviors. PMID:22841417

  8. Computational approaches to motor control

    PubMed Central

    Flash, Tamar; Sejnowski, Terrence J

    2010-01-01

    New concepts and computational models that integrate behavioral and neurophysiological observations have addressed several of the most fundamental long-standing problems in motor control. These problems include the selection of particular trajectories among the large number of possibilities, the solution of inverse kinematics and dynamics problems, motor adaptation and the learning of sequential behaviors. PMID:11741014

  9. Overvoltage control circuit for a reserve battery

    SciTech Connect

    Eppley, W.J.; Pertuch, W.T.; Tierney, B.C.

    1989-09-26

    This patent describes a selectively activatable reserve battery overvoltage control circuit. It comprises: a current limiting resistor; a thermal-lag circuit interrupter connected in series with the resistor; and circuit means connecting the series connection of the resistor and the interrupter across the reserve battery.

  10. The Periaqueductal Gray Orchestrates Sensory and Motor Circuits at Multiple Levels of the Neuraxis

    PubMed Central

    Koutsikou, Stella; Watson, Thomas C.; Crook, Jonathan J.; Leith, J. Lianne; Lawrenson, Charlotte L.; Lumb, Bridget M.

    2015-01-01

    The periaqueductal gray (PAG) coordinates behaviors essential to survival, including striking changes in movement and posture (e.g., escape behaviors in response to noxious stimuli vs freezing in response to fear-evoking stimuli). However, the neural circuits underlying the expression of these behaviors remain poorly understood. We demonstrate in vivo in rats that activation of the ventrolateral PAG (vlPAG) affects motor systems at multiple levels of the neuraxis through the following: (1) differential control of spinal neurons that forward sensory information to the cerebellum via spino-olivo-cerebellar pathways (nociceptive signals are reduced while proprioceptive signals are enhanced); (2) alterations in cerebellar nuclear output as revealed by changes in expression of Fos-like immunoreactivity; and (3) regulation of spinal reflex circuits, as shown by an increase in α-motoneuron excitability. The capacity to coordinate sensory and motor functions is demonstrated in awake, behaving rats, in which natural activation of the vlPAG in fear-conditioned animals reduced transmission in spino-olivo-cerebellar pathways during periods of freezing that were associated with increased muscle tone and thus motor outflow. The increase in spinal motor reflex excitability and reduction in transmission of ascending sensory signals via spino-olivo-cerebellar pathways occurred simultaneously. We suggest that the interactions revealed in the present study between the vlPAG and sensorimotor circuits could form the neural substrate for survival behaviors associated with vlPAG activation. SIGNIFICANCE STATEMENT Neural circuits that coordinate survival behaviors remain poorly understood. We demonstrate in rats that the periaqueductal gray (PAG) affects motor systems at the following multiple levels of the neuraxis: (1) through altering transmission in spino-olivary pathways that forward sensory signals to the cerebellum, reducing and enhancing transmission of nociceptive and

  11. A universal computer control system for motors

    NASA Technical Reports Server (NTRS)

    Szakaly, Zoltan F. (Inventor)

    1991-01-01

    A control system for a multi-motor system such as a space telerobot, having a remote computational node and a local computational node interconnected with one another by a high speed data link is described. A Universal Computer Control System (UCCS) for the telerobot is located at each node. Each node is provided with a multibus computer system which is characterized by a plurality of processors with all processors being connected to a common bus, and including at least one command processor. The command processor communicates over the bus with a plurality of joint controller cards. A plurality of direct current torque motors, of the type used in telerobot joints and telerobot hand-held controllers, are connected to the controller cards and responds to digital control signals from the command processor. Essential motor operating parameters are sensed by analog sensing circuits and the sensed analog signals are converted to digital signals for storage at the controller cards where such signals can be read during an address read/write cycle of the command processing processor.

  12. Comparison of Alternative Equivalent Circuits of Induction Motor with Real Machine Data

    NASA Astrophysics Data System (ADS)

    Bradna, J.; Bauer, J.; Fligl, S.; Hlinovsky, V.

    The algorithms based on separated control of the motor flux and torque is used in order to gain the maximum performance from the induction machine. To push the efficiency and dynamics limits of the IM to its limits mostly FOC or DTC control strategies are used. Both are based on the knowledge of the hardly measurable variable-machine flux. To obtain the information about inner machine flux models based on the machine equivalent circuit are mostly used. Therefore the accuracy of the equivalent circuits has direct influence on the accuracy of the machine control. To reduce the complexity of the mathematical model the resistances and inductances are concentrated to one component and three phase winding is assumed to be symmetrical. In order to design control strategy for the induction motor, system equations and equivalent circuit must be established at first. This paper examines and compares some of the issues of adequate machine modeling and attempts to provide a firmer basis for selection of an appropriate model and to confirm or disprove the equivalence of different approaches. The results of the IM model run up are then compared to the results obtained from the measurements on the real machine and the equivalency is discussed.

  13. A centre for accommodative vergence motor control

    NASA Technical Reports Server (NTRS)

    Wilson, D.

    1973-01-01

    Latencies in accommodation, accommodative-vergence, and pupil-diameter responses to changing accommodation stimuli, as well as latencies in pupil response to light-intensity changes were measured. From the information obtained, a block diagram has been derived that uses the least number of blocks for representing the accommodation, accommodative-vergence, and pupil systems. The signal transmission delays over the various circuits of the model have been determined and compared to known experimental physiological-delay data. The results suggest the existence of a motor center that controls the accommodative vergence and is completely independent of the accommodation system.

  14. Variable current speed controller for eddy current motors

    DOEpatents

    Gerth, H.L.; Bailey, J.M.; Casstevens, J.M.; Dixon, J.H.; Griffith, B.O.; Igou, R.E.

    1982-03-12

    A speed control system for eddy current motors is provided in which the current to the motor from a constant frequency power source is varied by comparing the actual motor speed signal with a setpoint speed signal to control the motor speed according to the selected setpoint speed. A three-phase variable voltage autotransformer is provided for controlling the voltage from a three-phase power supply. A corresponding plurality of current control resistors is provided in series with each phase of the autotransformer output connected to inputs of a three-phase motor. Each resistor is connected in parallel with a set of normally closed contacts of plurality of relays which are operated by control logic. A logic circuit compares the selected speed with the actual motor speed obtained from a digital tachometer monitoring the motor spindle speed and operated the relays to add or substract resistance equally in each phase of the motor input to vary the motor current to control the motor at the selected speed.

  15. 49 CFR 236.5 - Design of control circuits on closed circuit principle.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Design of control circuits on closed circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.5 Design of control circuits on closed circuit principle. All control circuits the functioning of which affects safety of train...

  16. Minimum Principles in Motor Control.

    PubMed

    Engelbrecht, Sascha E.

    2001-06-01

    Minimum (or minimal) principles are mathematical laws that were first used in physics: Hamilton's principle and Fermat's principle of least time are two famous example. In the past decade, a number of motor control theories have been proposed that are formally of the same kind as the minimum principles of physics, and some of these have been quite successful at predicting motor performance in a variety of tasks. The present paper provides a comprehensive review of this work. Particular attention is given to the relation between minimum theories in motor control and those used in other disciplines. Other issues around which the review is organized include: (1) the relation between minimum principles and structural models of motor planning and motor control, (2) the empirically-driven development of minimum principles and the danger of circular theorizing, and (3) the design of critical tests for minimum theories. Some perspectives for future research are discussed in the concluding section of the paper. Copyright 2001 Academic Press. PMID:11401453

  17. Mapping Genetically Controlled Neural Circuits of Social Behavior and Visuo-Motor Integration by a Preliminary Examination of Atypical Deletions with Williams Syndrome

    PubMed Central

    Hoeft, Fumiko; Dai, Li; Haas, Brian W.; Sheau, Kristen; Mimura, Masaru; Mills, Debra; Galaburda, Albert; Bellugi, Ursula

    2014-01-01

    In this study of eight rare atypical deletion cases with Williams-Beuren syndrome (WS; also known as 7q11.23 deletion syndrome) consisting of three different patterns of deletions, compared to typical WS and typically developing (TD) individuals, we show preliminary evidence of dissociable genetic contributions to brain structure and human cognition. Univariate and multivariate pattern classification results of morphometric brain patterns complemented by behavior implicate a possible role for the chromosomal region that includes: 1) GTF2I/GTF2IRD1 in visuo-spatial/motor integration, intraparietal as well as overall gray matter structures, 2) the region spanning ABHD11 through RFC2 including LIMK1, in social cognition, in particular approachability, as well as orbitofrontal, amygdala and fusiform anatomy, and 3) the regions including STX1A, and/or CYLN2 in overall white matter structure. This knowledge contributes to our understanding of the role of genetics on human brain structure, cognition and pathophysiology of altered cognition in WS. The current study builds on ongoing research designed to characterize the impact of multiple genes, gene-gene interactions and changes in gene expression on the human brain. PMID:25105779

  18. Improving Control of Two Motor Controllers

    NASA Technical Reports Server (NTRS)

    Toland, Ronald W.

    2004-01-01

    A computer program controls motors that drive translation stages in a metrology system that consists of a pair of two-axis cathetometers. This program is specific to Compumotor Gemini (or equivalent) motors and the Compumotor 6K-series (or equivalent) motor controller. Relative to the software supplied with the controller, this program affords more capabilities and is easier to use. Written as a Virtual Instrument in the LabVIEW software system, the program presents an imitation control panel that the user can manipulate by use of a keyboard and mouse. There are three modes of operation: command, movement, and joystick. In command mode, single commands are sent to the controller for troubleshooting. In movement mode, distance, speed, and/or acceleration commands are sent to the controller. Position readouts from the motors and from position encoders on the translation stages are displayed in marked fields. At any time, the position readouts can be recorded in a file named by the user. In joystick mode, the program yields control of the motors to a joystick. The program sends commands to, and receives data from, the controller via a serial cable connection, using the serial-communication portion of the software supplied with the controller.

  19. Electronic switches and control circuits: A compilation

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The innovations in this updated series of compilations dealing with electronic technology represents a carefully selected collection of items on electronic switches and control circuits. Most of the items are based on well-known circuit design concepts that have been simplified or refined to meet NASA's demanding requirement for reliability, simplicity, fail-safe characteristics, and the capability of withstanding environmental extremes.

  20. Hyperactivation of B-type motor neurons results in aberrant synchrony of the C. elegans motor circuit

    PubMed Central

    Qi, Yingchuan B.; Po, Michelle D.; Mac, Patrick; Kawano, Taizo; Jorgensen, Erik M.; Zhen, Mei; Jin, Yishi

    2013-01-01

    Excitatory acetylcholine motor neurons drive C. elegans locomotion. Coordinating the activation states of the backward-driving A and forward-driving B class motor neurons is critical for generating sinusoidal and directional locomotion. Here, we show by in vivo calcium imaging that expression of a hyperactive, somatodendritic ionotropic acetylcholine receptor ACR-2(gf) in A and B class motor neurons induces aberrant synchronous activity in both ventral- and dorsal-innervating B and A class motor neurons. Expression of ACR-2(gf) in either ventral- or dorsal-innervating B neurons is sufficient for triggering the aberrant synchrony that results in arrhythmic convulsions. Silencing of AVB, the pre-motor interneurons that innervate B motor neurons suppresses ACR-2(gf)-dependent convulsion; activating AVB by channelrhodopsin induces the onset of convulsion. These results support that the activity state of B motor neurons plays an instructive role for the coordination of motor circuit. PMID:23516296

  1. Hardware Evolution of Analog Speed Controllers for a DC Motor

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; Ferguson, Michael I.

    2003-01-01

    Evolvable hardware provides the capability to evolve analog circuits to produce amplifier and filter functions. Conventional analog controller designs employ these same functions. Analog controllers for the control of the shaft speed of a DC motor are evolved on an evolvable hardware platform utilizing a Field Programmable Transistor Array (FPTA). The performance of these evolved controllers is compared to that of a conventional proportional-integral (PI) controller.

  2. A programmable heater control circuit for spacecraft

    NASA Technical Reports Server (NTRS)

    Nguyen, D. D.; Owen, J. W.; Smith, D. A.; Lewter, W. J.

    1994-01-01

    Spacecraft thermal control is accomplished for many components through use of multilayer insulation systems, electrical heaters, and radiator systems. The heaters are commanded to maintain component temperatures within design specifications. The programmable heater control circuit (PHCC) was designed to obtain an effective and efficient means of spacecraft thermal control. The hybrid circuit provides use of control instrumentation as temperature data, available to the spacecraft central data system, reprogramming capability of the local microprocessor during the spacecraft's mission, and the elimination of significant spacecraft wiring. The hybrid integrated circuit has a temperature sensing and conditioning circuit, a microprocessor, and a heater power and control circuit. The device is miniature and housed in a volume which allows physical integration with the component to be controlled. Applications might include alternate battery-powered logic-circuit configurations. A prototype unit with appropriate physical and functional interfaces was procured for testing. The physical functionality and the feasibility of fabrication of the hybrid integrated circuit were successfully verified. The remaining work to develop a flight-qualified device includes fabrication and testing of a Mil-certified part. An option for completing the PHCC flight qualification testing is to enter into a joint venture with industry.

  3. Ketamine-Induced Oscillations in the Motor Circuit of the Rat Basal Ganglia

    PubMed Central

    Alegre, Manuel; Pérez-Alcázar, Marta; Iriarte, Jorge; Artieda, Julio

    2011-01-01

    Oscillatory activity can be widely recorded in the cortex and basal ganglia. This activity may play a role not only in the physiology of movement, perception and cognition, but also in the pathophysiology of psychiatric and neurological diseases like schizophrenia or Parkinson's disease. Ketamine administration has been shown to cause an increase in gamma activity in cortical and subcortical structures, and an increase in 150 Hz oscillations in the nucleus accumbens in healthy rats, together with hyperlocomotion. We recorded local field potentials from motor cortex, caudate-putamen (CPU), substantia nigra pars reticulata (SNr) and subthalamic nucleus (STN) in 20 awake rats before and after the administration of ketamine at three different subanesthetic doses (10, 25 and 50 mg/Kg), and saline as control condition. Motor behavior was semiautomatically quantified by custom-made software specifically developed for this setting. Ketamine induced coherent oscillations in low gamma (50 Hz), high gamma (80 Hz) and high frequency (HFO, 150 Hz) bands, with different behavior in the four structures studied. While oscillatory activity at these three peaks was widespread across all structures, interactions showed a different pattern for each frequency band. Imaginary coherence at 150 Hz was maximum between motor cortex and the different basal ganglia nuclei, while low gamma coherence connected motor cortex with CPU and high gamma coherence was more constrained to the basal ganglia nuclei. Power at three bands correlated with the motor activity of the animal, but only coherence values in the HFO and high gamma range correlated with movement. Interactions in the low gamma band did not show a direct relationship to movement. These results suggest that the motor effects of ketamine administration may be primarily mediated by the induction of coherent widespread high-frequency activity in the motor circuit of the basal ganglia, together with a frequency-specific pattern of

  4. Magnetic Circuit Model of PM Motor-Generator to Predict Radial Forces

    NASA Technical Reports Server (NTRS)

    McLallin, Kerry (Technical Monitor); Kascak, Peter E.; Dever, Timothy P.; Jansen, Ralph H.

    2004-01-01

    A magnetic circuit model is developed for a PM motor for flywheel applications. A sample motor is designed and modeled. Motor configuration and selection of materials is discussed, and the choice of winding configuration is described. A magnetic circuit model is described, which includes the stator back iron, rotor yoke, permanent magnets, air gaps and the stator teeth. Iterative solution of this model yields flux linkages, back EMF, torque, power, and radial force at the rotor caused by eccentricity. Calculated radial forces are then used to determine motor negative stiffness.

  5. Electrochemically controlled charging circuit for storage batteries

    DOEpatents

    Onstott, E.I.

    1980-06-24

    An electrochemically controlled charging circuit for charging storage batteries is disclosed. The embodiments disclosed utilize dc amplification of battery control current to minimize total energy expended for charging storage batteries to a preset voltage level. The circuits allow for selection of Zener diodes having a wide range of reference voltage levels. Also, the preset voltage level to which the storage batteries are charged can be varied over a wide range.

  6. Control Circuit For Reed-Solomon Encoder

    NASA Technical Reports Server (NTRS)

    Ross, Douglas

    1992-01-01

    Control circuit designed for use with commercially available AHA4610 Reed-Solomon encoder. Needed to select depth of interleaving and to synchronize input and output blocks of data and parity bits with suitable clock signals. Circuit provides synchronizing and control signals for Reed-Solomon encoder. Encoder can operate with asynchronous input and output data streams at rates up to 80 Mb/s. Interleaving depth selectable, and accommodation to input data rate automatic.

  7. Motor Controller System For Large Dynamic Range of Motor Operation

    NASA Technical Reports Server (NTRS)

    Howard, David E. (Inventor); Alhorn, Dean C. (Inventor); Smith, Dennis A. (Inventor); Dutton, Kenneth R. (Inventor); Paulson, Mitchell Scott (Inventor)

    2006-01-01

    A motor controller system uses a rotary sensor with a plurality of signal conditioning units, coupled to the rotary sensor. Each of these units, which is associated with a particular range of motor output shaft rotation rates, generate a feedback signal indicative of the position of the motor s output shaft. A controller (i) converts a selected motor output shaft rotation rate to a corresponding incremental amount of rotational movement for a selected fixed time period, (ii) selects, at periodic completions of the selected fixed time period, the feedback signal from one of the signal conditioning units for which the particular range of motor output shaft rotation rates associated therewith encompasses the selected motor output shaft rotation rate, and (iii) generates a motor drive signal based on a difference between the incremental amount of rotational movement and the feedback signal from the selected one of the signal conditioning Units.

  8. Control Method for Deceleration without Over-Voltage of the Permanent Magnet Synchronous Motor

    NASA Astrophysics Data System (ADS)

    Notohara, Yasuo; Endo, Tsunehiro

    In case of decelerating a permanent magnet motor, an over-voltage occurs on the inverter DC voltage due to the regenerative energy of the motor. In order to reduce the over-voltage, a brake circuit is usually applied to the DC circuit. In this paper a reduction technique of the over-voltage without the brake circuit is described. We proposed the method for controlling the motor d-axis current optimally according to the motor q-axis current to reduce the over-voltage. This method is applied to the salient-pole machine. As a result over-voltage reduction is achieved on a certain condition.

  9. Ultra-Compact Motor Controller

    NASA Technical Reports Server (NTRS)

    Townsend, William T.; Crowell, Adam; Hauptman, Traveler; Pratt, Gill Andrews

    2012-01-01

    This invention is an electronically commutated brushless motor controller that incorporates Hall-array sensing in a small, 42-gram package that provides 4096 absolute counts per motor revolution position sensing. The unit is the size of a miniature hockey puck, and is a 44-pin male connector that provides many I/O channels, including CANbus, RS-232 communications, general-purpose analog and digital I/O (GPIO), analog and digital Hall inputs, DC power input (18-90 VDC, 0-l0 A), three-phase motor outputs, and a strain gauge amplifier. This controller replaces air cooling with conduction cooling via a high-thermal-conductivity epoxy casting. A secondary advantage of the relatively good heat conductivity that comes with ultra-small size is that temperature differences within the controller become smaller, so that it is easier to measure the hottest temperature in the controller with fewer temperature sensors, or even one temperature sensor. Another size-sensitive design feature is in the approach to electrical noise immunity. At a very small size, where conduction paths are much shorter than in conventional designs, the ground becomes essentially isopotential, and so certain (space-consuming) electrical noise control components become unnecessary, which helps make small size possible. One winding-current sensor, applied to all of the windings in fast sequence, is smaller and wastes less power than the two or more sensors conventionally used to sense and control winding currents. An unexpected benefit of using only one current sensor is that it actually improves the precision of current control by using the "same" sensors to read each of the three phases. Folding the encoder directly into the controller electronics eliminates a great deal of redundant electronics, packaging, connectors, and hook-up wiring. The reduction of wires and connectors subtracts substantial bulk and eliminates their role in behaving as EMI (electro-magnetic interference) antennas. A shared

  10. Analog circuit for controlling acoustic transducer arrays

    DOEpatents

    Drumheller, Douglas S.

    1991-01-01

    A simplified ananlog circuit is presented for controlling electromechanical transducer pairs in an acoustic telemetry system. The analog circuit of this invention comprises a single electrical resistor which replaces all of the digital components in a known digital circuit. In accordance with this invention, a first transducer in a transducer pair of array is driven in series with the resistor. The voltage drop across this resistor is then amplified and used to drive the second transducer. The voltage drop across the resistor is proportional and in phase with the current to the transducer. This current is approximately 90 degrees out of phase with the driving voltage to the transducer. This phase shift replaces the digital delay required by the digital control circuit of the prior art.

  11. Motor Control: The Heart of Kinesiology

    ERIC Educational Resources Information Center

    Latash, Mark L.

    2008-01-01

    This brief review presents the subjective view of the author on the history of motor control and its current state among the subdisciplines of kinesiology. It summarizes the current controversies and challenges in motor control and emphasizes the necessity for an adequate set of notions that would make motor control (and kinesiology) a science.…

  12. Low-cost, fast-response drive circuit for electromagnetic torque motors

    NASA Technical Reports Server (NTRS)

    Zeller, J. R.

    1968-01-01

    Fast-response coil drive circuit, for electromagnetic torque motors, reduces the inductive coil time constant with a minimum of circuit sophistication. The low-cost modulator servoamplifier is used with a compatible preamplifier stage which provides the servo-loop function of summing, adjustable gain and compensation.

  13. A Flight Sensory-Motor to Olfactory Processing Circuit in the Moth Manduca sexta

    PubMed Central

    Bradley, Samual P.; Chapman, Phillip D.; Lizbinski, Kristyn M.; Daly, Kevin C.; Dacks, Andrew M.

    2016-01-01

    Neural circuits projecting information from motor to sensory pathways are common across sensory domains. These circuits typically modify sensory function as a result of motor pattern activation; this is particularly so in cases where the resultant behavior affects the sensory experience or its processing. However, such circuits have not been observed projecting to an olfactory pathway in any species despite well characterized active sampling behaviors that produce reafferent mechanical stimuli, such as sniffing in mammals and wing beating in the moth Manduca sexta. In this study we characterize a circuit that connects a flight sensory-motor center to an olfactory center in Manduca. This circuit consists of a single pair of histamine immunoreactive (HA-ir) neurons that project from the mesothoracic ganglion to innervate a subset of ventral antennal lobe (AL) glomeruli. Furthermore, within the AL we show that the M. sexta histamine B receptor (MsHisClB) is exclusively expressed by a subset of GABAergic and peptidergic LNs, which broadly project to all olfactory glomeruli. Finally, the HA-ir cell pair is present in fifth stage instar larvae; however, the absence of MsHisClB-ir in the larval antennal center indicates that the circuit is incomplete prior to metamorphosis and importantly prior to the expression of flight behavior. Although the functional consequences of this circuit remain unknown, these results provide the first detailed description of a circuit that interconnects an olfactory system with motor centers driving flight behaviors including odor-guided flight. PMID:26909026

  14. Personal Computer Based Controller For Switched Reluctance Motor Drives

    NASA Astrophysics Data System (ADS)

    Mang, X.; Krishnan, R.; Adkar, S.; Chandramouli, G.

    1987-10-01

    Th9, switched reluctance motor (SRM) has recently gained considerable attention in the variable speed drive market. Two important factors that have contributed to this are, the simplicity of construction and the possibility of developing low cost con-trollers with minimum number of switching devices in the drive circuits. This is mainly due to the state-of-art of the present digital circuits technology and the low cost of switching devices. The control of this motor drive is under research. Optimized performance of the SRM motor drive is very dependent on the integration of the controller, converter and the motor. This research on system integration involves considerable changes in the control algorithms and their implementation. A Personal computer (PC) based controller is very appropriate for this purpose. Accordingly, the present paper is concerned with the design of a PC based controller for a SRM. The PC allows for real-time microprocessor control with the possibility of on-line system parameter modifications. Software reconfiguration of this controller is easier than a hardware based controller. User friendliness is a natural consequence of such a system. Considering the low cost of PCs, this controller will offer an excellent cost-effective means of studying the control strategies for the SRM drive intop greater detail than in the past.

  15. Nongrounded Common-Mode Equivalent Circuit for Brushless DC Motor Driven by PWM Inverter

    NASA Astrophysics Data System (ADS)

    Maetani, Tatsuo; Isomura, Yoshinori; Watanabe, Akihiko; Iimori, Kenichi; Morimoto, Shigeo

    This paper describes nongrounded common-mode equivalent circuit for a motor driven by a voltage-source PWM inverter. When the capacitance of the rotor was small, the phenomenon that polarity of the common mode voltage and shaft voltage reversed was observed. In order to model this phenomenon, the bridge type equivalent circuit is proposed. It is verified with the calculation and experiment that shaft voltage values and polarity are accurately calculated with the proposed equivalent circuit.

  16. Motorized control for mirror mount apparatus

    DOEpatents

    Cutburth, Ronald W.

    1989-01-01

    A motorized control and automatic braking system for adjusting mirror mount apparatus is disclosed. The motor control includes a planetary gear arrangement to provide improved pitch adjustment capability while permitting a small packaged design. The motor control for mirror mount adjustment is suitable for laser beam propagation applications. The brake is a system of constant contact, floating detents which engage the planetary gear at selected between-teeth increments to stop rotation instantaneously when the drive motor stops.

  17. TRIAC/SCR proportional control circuit

    DOEpatents

    Hughes, Wallace J.

    1999-01-01

    A power controller device which uses a voltage-to-frequency converter in conjunction with a zero crossing detector to linearly and proportionally control AC power being supplied to a load. The output of the voltage-to frequency converter controls the "reset" input of a R-S flip flop, while an "0" crossing detector controls the "set" input. The output of the flip flop triggers a monostable multivibrator controlling the SCR or TRIAC firing circuit connected to the load. Logic gates prevent the direct triggering of the multivibrator in the rare instance where the "reset" and "set" inputs of the flip flop are in coincidence. The control circuit can be supplemented with a control loop, providing compensation for line voltage variations.

  18. TRIAC/SCR proportional control circuit

    DOEpatents

    Hughes, W.J.

    1999-04-06

    A power controller device is disclosed which uses a voltage-to-frequency converter in conjunction with a zero crossing detector to linearly and proportionally control AC power being supplied to a load. The output of the voltage-to frequency converter controls the ``reset`` input of a R-S flip flop, while an ``0`` crossing detector controls the ``set`` input. The output of the flip flop triggers a monostable multivibrator controlling the SCR or TRIAC firing circuit connected to the load. Logic gates prevent the direct triggering of the multivibrator in the rare instance where the ``reset`` and ``set`` inputs of the flip flop are in coincidence. The control circuit can be supplemented with a control loop, providing compensation for line voltage variations. 9 figs.

  19. Motor Circuit Anatomy in Children with Autism Spectrum Disorder With or Without Attention Deficit Hyperactivity Disorder.

    PubMed

    Mahajan, Rajneesh; Dirlikov, Benjamin; Crocetti, Deana; Mostofsky, Stewart H

    2016-01-01

    This study examined the morphology of frontal-parietal regions relevant to motor functions in children with autism spectrum disorder (ASD) with or without attention deficit hyperactivity disorder (ADHD). We also explored its associations with autism severity and motor skills, and the impact of comorbid ADHD on these associations. Participants included 126 school-age children: 30 had ASD only, 33 had ASD with ADHD, and 63 were typically developing. High resolution 3T MPRAGE images were acquired to examine the cortical morphology (gray matter volume, GMV, surface area, SA, and cortical thickness, CT) in three regions of interest (ROI): precentral gyrus (M1), postcentral gyrus (S1), and inferior parietal cortex (IPC). Children with ASD showed abnormal increases in GMV and SA in all three ROIs: (a) increased GMV in S1 bilaterally and in right M1 was specific to children with ASD without ADHD; (b) all children with ASD (with or without ADHD) showed increases in the left IPC SA. Furthermore, on measures of motor function, impaired praxis was associated with increased GMV in right S1 in the ASD group with ADHD. Children with ASD with ADHD showed a positive relationship between bilateral S1 GMV and manual dexterity, whereas children with ASD without ADHD showed a negative relationship. Our findings suggest that (a) ASD is associated with abnormal morphology of cortical circuits crucial to motor control and learning; (b) anomalous overgrowth of these regions, particularly S1, may contribute to impaired motor skill development, and (c) functional and morphological differences are apparent between children with ASD with or without ADHD. PMID:25962921

  20. Computer-controlled warmup circuit

    NASA Technical Reports Server (NTRS)

    Daeges, J. J.

    1980-01-01

    Filament of high-power radio transmitter is brought to operating temperature automatically. Pushbotton reduces operator's role to one-step command and is compatible with various forms of computer control. Filiament shutdown is initiated by "down" command from operator, failure of cooling systems, or power failure for more than few seconds.

  1. Modeling and simulation of control system for 3-phase variable-reluctance stepper motor

    NASA Astrophysics Data System (ADS)

    Liu, Lihua; Li, Hong

    2010-12-01

    In this paper, firstly, we establish the mode of the VR stepper motor on open-loop system of the stepper motor. Secondly, we control the exciting model, realize simulation of the circuit of unipolar driver and chop constant current control. Finally, we analyze the simulation results. And the results shows that these control methods can be applied to the actual motion of the system, which can improve the characteristics of the motion system of the stepper motor.

  2. 49 CFR 236.205 - Signal control circuits; requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Signal control circuits; requirements. 236.205... Block Signal Systems Standards § 236.205 Signal control circuits; requirements. The circuits shall be so... fouling point derail equipped with switch circuit controller is not in derailing position, (d) When...

  3. FUZZY LOGIC CONTROL OF AC INDUCTION MOTORS

    EPA Science Inventory

    The paper discusses the fuzzy logic control (FLC) of electric motors, being investigated under the sponsorship of the U.S. EPA to reduce energy consumption when motors are operated at less than rated speeds and loads. lectric motors use 60% of the electrical energy generated in t...

  4. A Stem Cell Model of the Motor Circuit Uncouples Motor Neuron Death from Hyperexcitability Induced by SMN Deficiency.

    PubMed

    Simon, Christian M; Janas, Anna M; Lotti, Francesco; Tapia, Juan Carlos; Pellizzoni, Livio; Mentis, George Z

    2016-08-01

    In spinal muscular atrophy, a neurodegenerative disease caused by ubiquitous deficiency in the survival motor neuron (SMN) protein, sensory-motor synaptic dysfunction and increased excitability precede motor neuron (MN) loss. Whether central synaptic dysfunction and MN hyperexcitability are cell-autonomous events or they contribute to MN death is unknown. We addressed these issues using a stem-cell-based model of the motor circuit consisting of MNs and both excitatory and inhibitory interneurons (INs) in which SMN protein levels are selectively depleted. We show that SMN deficiency induces selective MN death through cell-autonomous mechanisms, while hyperexcitability is a non-cell-autonomous response of MNs to defects in pre-motor INs, leading to loss of glutamatergic synapses and reduced excitation. Findings from our in vitro model suggest that dysfunction and loss of MNs result from differential effects of SMN deficiency in distinct neurons of the motor circuit and that hyperexcitability does not trigger MN death. PMID:27452470

  5. Theoretical analysis of a YBCO squirrel-cage type induction motor based on an equivalent circuit

    NASA Astrophysics Data System (ADS)

    Morita, G.; Nakamura, T.; Muta, I.

    2006-06-01

    A HTS induction motor, with a HTS squirrel-cage rotor, is analysed using an electrical equivalent circuit. The squirrel-cage winding in the rotor consists of rotor bars and end rings, and both are considered to be made of YBCO film conductors. A wide range of electric field versus current density in YBCO film is formulated based on the Weibull function, and analysed as a non-linear resistance in the equivalent circuit. It is shown that starting and accelerating torques of the HTS induction motor are improved drastically compared to those of a conventional induction motor. Furthermore, large synchronous torque can also be realized by trapping the magnetic flux in the rotor circuit because of the persistent current mode.

  6. Packaging Of Control Circuits In A Robot Arm

    NASA Technical Reports Server (NTRS)

    Kast, William

    1994-01-01

    Packaging system houses and connects control circuitry mounted on circuit boards within shoulder, upper section, and lower section of seven-degree-of-freedom robot arm. Has modular design that incorporates surface-mount technology, multilayer circuit boards, large-scale integrated circuits, and multi-layer flat cables between sections for compactness. Three sections of robot arm contain circuit modules in form of stardardized circuit boards. Each module contains two printed-circuit cards, one of each face.

  7. Distributed Motor Controller (DMC) for Operation in Extreme Environments

    NASA Technical Reports Server (NTRS)

    McKinney, Colin M.; Yager, Jeremy A.; Mojarradi, Mohammad M.; Some, Rafi; Sirota, Allen; Kopf, Ted; Stern, Ryan; Hunter, Don

    2012-01-01

    This paper presents an extreme environment capable Distributed Motor Controller (DMC) module suitable for operation with a distributed architecture of future spacecraft systems. This motor controller is designed to be a bus-based electronics module capable of operating a single Brushless DC motor in extreme space environments: temperature (-120 C to +85 C required, -180 C to +100 C stretch goal); radiation (>;20K required, >;100KRad stretch goal); >;360 cycles of operation. Achieving this objective will result in a scalable modular configuration for motor control with enhanced reliability that will greatly lower cost during the design, fabrication and ATLO phases of future missions. Within the heart of the DMC lies a pair of cold-capable Application Specific Integrated Circuits (ASICs) and a Field Programmable Gate Array (FPGA) that enable its miniaturization and operation in extreme environments. The ASICs are fabricated in the IBM 0.5 micron Silicon Germanium (SiGe) BiCMOS process and are comprised of Analog circuitry to provide telemetry information, sensor interface, and health and status of DMC. The FPGA contains logic to provide motor control, status monitoring and spacecraft interface. The testing and characterization of these ASICs have yielded excellent functionality in cold temperatures (-135 C). The DMC module has demonstrated successful operation of a motor at temperature.

  8. A new nonlinear magnetic circuit model for dynamic analysis of interior permanent magnet synchronous motor

    NASA Astrophysics Data System (ADS)

    Nakamura, Kenji; Saito, Kenichi; Watanabe, Tadaaki; Ichinokura, Osamu

    2005-04-01

    Interior permanent magnet synchronous motors (IPMSMs) have high efficiency and torque, since the motors can utilize reluctance torque in addition to magnet torque. The IPMSMs are widely used for electric household appliances and electric bicycles and vehicles. A quantitative analysis method of dynamic characteristics of the IPMSMs, however, has not been clarified fully. For optimum design, investigation of dynamic characteristics considering magnetic nonlinearity is needed. This paper presents a new nonlinear magnetic circuit model of an IPMSM, and suggests a dynamic analysis method using the proposed magnetic circuit model.

  9. Electric Circuit Model Suitable for Common Mode Current Paths Distributing in the Motor Drive System

    NASA Astrophysics Data System (ADS)

    Mutoh, Nobuyoshi; Ogata, Mitsukatsu; Harashima, Fumio

    Experimental date are used to analyze conducted EMI noises which are produced in a motor drive system with power converters comprised of a converter and an inverter. The processes are investigated in which common mode noises (voltages and currents) are strongly influenced by voltage fluctuations occurring due to switching operations. It is found that the common mode currents are resonance currents which appear in series resonance circuits distributed in the motor drive system. The circuits have various kinds of resonance frequencies related to voltage fluctuations produced by switching operations and micro-surge voltages generated at the terminal of machines such as an ac rector or a motor. Thus, parameters of the distributed series resonance circuits are estimated using the transient waveforms obtained by separating the common mode current into waves analyzed by the FFT method. It is proved through simulations and experiments that the proposed circuit models closely represent actual electric circuits for common mode current paths distributed in the motor drive system.

  10. Motor neurons in the escape response circuit of white shrimp (Litopenaeus setiferus)

    PubMed Central

    2015-01-01

    Many decapod crustaceans perform escape tailflips with a neural circuit involving giant interneurons, a specialized fast flexor motor giant (MoG) neuron, populations of larger, less specialized fast flexor motor neurons, and fast extensor motor neurons. These escape-related neurons are well described in crayfish (Reptantia), but not in more basal decapod groups. To clarify the evolution of the escape circuit, I examined the fast flexor and fast extensor motor neurons of white shrimp (Litopenaeus setiferus; Dendrobranchiata) using backfilling. In crayfish, the MoGs in each abdominal ganglion are a bilateral pair of separate neurons. In L. setiferus, the MoGs have massive, possibly syncytial, cell bodies and fused axons. The non-MoG fast flexor motor neurons and fast extensor motor neurons are generally found in similar locations to where they are found in crayfish, but the number of motor neurons in both the flexor and extensor pools is smaller than in crayfish. The loss of fusion in the MoGs and increased number of fast motor neurons in reptantian decapods may be correlated with an increased reliance on non-giant mediated tailflipping. PMID:26244117

  11. 49 CFR 236.5 - Design of control circuits on closed circuit principle.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Design of control circuits on closed circuit principle. 236.5 Section 236.5 Transportation Other Regulations Relating to Transportation (Continued..., AND APPLIANCES Rules and Instructions: All Systems General § 236.5 Design of control circuits...

  12. Advanced dc motor controller for battery-powered electric vehicles

    NASA Technical Reports Server (NTRS)

    Belsterling, C. A.

    1981-01-01

    A motor generation set is connected to run from the dc source and generate a voltage in the traction motor armature circuit that normally opposes the source voltage. The functional feasibility of the concept is demonstrated with tests on a Proof of Principle System. An analog computer simulation is developed, validated with the results of the tests, applied to predict the performance of a full scale Functional Model dc Controller. The results indicate high efficiencies over wide operating ranges and exceptional recovery of regenerated energy. The new machine integrates both motor and generator on a single two bearing shaft. The control strategy produces a controlled bidirectional plus or minus 48 volts dc output from the generator permitting full control of a 96 volt dc traction motor from a 48 volt battery, was designed to control a 20 hp traction motor. The controller weighs 63.5 kg (140 lb.) and has a peak efficiency of 90% in random driving modes and 96% during the SAE J 227a/D driving cycle.

  13. Controlling a Four-Quadrant Brushless Three-Phase dc Motor

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1986-01-01

    Control circuit commutates windings of brushless, three-phase, permanent-magnet motor operating from power supply. With single analog command voltage, controller makes motor accelerate, drive steadily, or brake regeneratively, in clockwise or counterclockwise direction. Controller well suited for use with energy-storage flywheels, actuators for aircraft-control surfaces, cranes, industrial robots, and other electromechanical systems requiring bidirectional control or sudden stopping and reversal.

  14. Controller for computer control of brushless dc motors. [automobile engines

    NASA Technical Reports Server (NTRS)

    Hieda, L. S. (Inventor)

    1981-01-01

    A motor speed and torque controller for brushless d.c. motors provides an unusually smooth torque control arrangement. The controller provides a means for controlling a current waveform in each winding of a brushless dc motor by synchronization of an excitation pulse train from a programmable oscillator. Sensing of torque for synchronization is provided by a light beam chopper mounted on the motor rotor shaft. Speed and duty cycle are independently controlled by controlling the frequency and pulse width output of the programmable oscillator. A means is also provided so that current transitions from one motor winding to another is effected without abrupt changes in output torque.

  15. System and method for monitoring and controlling stator winding temperature in a de-energized AC motor

    DOEpatents

    Lu, Bin; Luebke, Charles John; Habetler, Thomas G.; Zhang, Pinjia; Becker, Scott K.

    2011-12-27

    A system and method for measuring and controlling stator winding temperature in an AC motor while idling is disclosed. The system includes a circuit having an input connectable to an AC source and an output connectable to an input terminal of a multi-phase AC motor. The circuit further includes a plurality of switching devices to control current flow and terminal voltages in the multi-phase AC motor and a controller connected to the circuit. The controller is configured to activate the plurality of switching devices to create a DC signal in an output of the motor control device corresponding to an input to the multi-phase AC motor, determine or estimate a stator winding resistance of the multi-phase AC motor based on the DC signal, and estimate a stator temperature from the stator winding resistance. Temperature can then be controlled and regulated by DC injection into the stator windings.

  16. Precision electronic speed controller for an alternating-current motor

    DOEpatents

    Bolie, V.W.

    A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. The motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The speed error signal is generated by a novel vernier-logic circuit which is drift-free and highly sensitive to small speed changes. The phase error is also computed by digital logic, with adjustable sensitivity around a 0 mid-scale value. The drift error signal, generated by long-term counting of the phase error, is used to compensate for any slow changes in the average friction drag on the motor. An auxillary drift-byte status sensor prevents any disruptive overflow or underflow of the drift-error counter. An adjustable clocked-delay unit is inserted between the controller and the source of the reference pulse train to permit phase alignment of the rotor to any desired offset angle. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of read-only memories, and a pair of digital-to-analog converters.

  17. Dual-Channel Circuit Mapping Reveals Sensorimotor Convergence in the Primary Motor Cortex

    PubMed Central

    Lin, John Y.; Guo, Caiying

    2015-01-01

    Cortical cells integrate synaptic input from multiple sources, but how these different inputs are distributed across individual neurons is largely unknown. Differences in input might account for diverse responses in neighboring neurons during behavior. We present a strategy for comparing the strengths of multiple types of input onto the same neuron. We developed methods for independent dual-channel photostimulation of synaptic inputs using ChR2 together with ReaChR, a red-shifted channelrhodopsin. We used dual-channel photostimulation to probe convergence of sensory information in the mouse primary motor cortex. Input from somatosensory cortex and thalamus converges in individual neurons. Similarly, inputs from distinct somatotopic regions of the somatosensory cortex are integrated at the level of single motor cortex neurons. We next developed a ReaChR transgenic mouse under the control of both Flp- and Cre-recombinases that is an effective tool for circuit mapping. Our approach to dual-channel photostimulation enables quantitative comparison of the strengths of multiple pathways across all length scales of the brain. PMID:25762684

  18. Motor Control Research Requires Nonlinear Dynamics

    ERIC Educational Resources Information Center

    Guastello, Stephen J.

    2006-01-01

    The author comments on the original article "The Cinderella of psychology: The neglect of motor control in the science of mental life and behavior," by D. A. Rosenbaum. Rosenbaum draws attention to the study of motor control and evaluates seven possible explanations for why the topic has been relatively neglected. The point of this comment is that…

  19. Advanced dc-Traction-Motor Control System

    NASA Technical Reports Server (NTRS)

    Vittone, O.

    1985-01-01

    Motor-control concept for battery-powered vehicles includes stateof-the-art power-transistor switching and separate excitation of motor windings in traction and regenerative braking. Switching transistors and other components of power-conditioning subsystem operate under control of computer that coordinates traction, braking, and protective functions.

  20. Motor power factor controller with a reduced voltage starter

    NASA Technical Reports Server (NTRS)

    Nola, Frank J. (Inventor)

    1983-01-01

    A power factor type motor controller in which the conventional power factor constant voltage command signal is replaced during a starting interval with a graduated control voltage. The present invention adds to the three-phase system of pending application Ser. No. 199,765, filed Oct. 23, 1980, means for modifying the operation of the system for a motor start-up interval of 5 to 30 seconds. The modification is that of providing via ramp generator 174 an initial ramp-like signal which replaces a constant power factor signal supplied by potentiometer 70. The ramp-like signal is applied to terminal 40 where it is summed with an operating power factor signal from phase detectors 32, 34, and 36 to thereby obtain a control signal for ultimately controlling SCR devices 12, 14, and 16 to effect a gradual turn-on of motor 10. The significant difference of the present invention over prior art is that the SCR devices are turned on at an advancing rate with time responsive to the combination signal described rather than simply a function of a ramp-like signal alone. The added signal, the operating power factor signal, enables the production of a control signal which effectively eliminates a prior problem with many motor starting circuits, which is that of accompanying motor instabilities.

  1. Fuzzy control of small servo motors

    NASA Technical Reports Server (NTRS)

    Maor, Ron; Jani, Yashvant

    1993-01-01

    To explore the benefits of fuzzy logic and understand the differences between the classical control methods and fuzzy control methods, the Togai InfraLogic applications engineering staff developed and implemented a motor control system for small servo motors. The motor assembly for testing the fuzzy and conventional controllers consist of servo motor RA13M and an encoder with a range of 4096 counts. An interface card was designed and fabricated to interface the motor assembly and encoder to an IBM PC. The fuzzy logic based motor controller was developed using the TILShell and Fuzzy C Development System on an IBM PC. A Proportional-Derivative (PD) type conventional controller was also developed and implemented in the IBM PC to compare the performance with the fuzzy controller. Test cases were defined to include step inputs of 90 and 180 degrees rotation, sine and square wave profiles in 5 to 20 hertz frequency range, as well as ramp inputs. In this paper we describe our approach to develop a fuzzy as well as PH controller, provide details of hardware set-up and test cases, and discuss the performance results. In comparison, the fuzzy logic based controller handles the non-linearities of the motor assembly very well and provides excellent control over a broad range of parameters. Fuzzy technology, as indicated by our results, possesses inherent adaptive features.

  2. 49 CFR 236.342 - Switch circuit controller.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Switch circuit controller. 236.342 Section 236.342 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Instructions § 236.342 Switch circuit controller. Switch circuit controller connected at the point to...

  3. Ultra-Compact Motor Controller

    NASA Technical Reports Server (NTRS)

    Townsend, William T.; Cromwell, Adam; Hauptman, Traveler; Pratt, Gill Andrews

    2012-01-01

    This invention is an electronically commutated brushless motor contro ller that incorporates Hall-array sensing in a small, 42-gram packag e that provides 4096 absolute counts per motor revolution position s ensing. The unit is the size of a miniature hockey puck, and is a 44 -pin male connector that provides many I/O channels, including CANbus , RS-232 communications, general-purpose analog and digital I/O (GPI O), analog and digital Hall inputs, DC power input (18-90 VDC, 0-l0 A), three-phase motor outputs, and a strain gauge amplifier.

  4. Cholinergic systems are essential for late-stage maturation and refinement of motor cortical circuits.

    PubMed

    Ramanathan, Dhakshin S; Conner, James M; Anilkumar, Arjun A; Tuszynski, Mark H

    2015-03-01

    Previous studies reported that early postnatal cholinergic lesions severely perturb early cortical development, impairing neuronal cortical migration and the formation of cortical dendrites and synapses. These severe effects of early postnatal cholinergic lesions preclude our ability to understand the contribution of cholinergic systems to the later-stage maturation of topographic cortical representations. To study cholinergic mechanisms contributing to the later maturation of motor cortical circuits, we first characterized the temporal course of cortical motor map development and maturation in rats. In this study, we focused our attention on the maturation of cortical motor representations after postnatal day 25 (PND 25), a time after neuronal migration has been accomplished and cortical volume has reached adult size. We found significant maturation of cortical motor representations after this time, including both an expansion of forelimb representations in motor cortex and a shift from proximal to distal forelimb representations to an extent unexplainable by simple volume enlargement of the neocortex. Specific cholinergic lesions placed at PND 24 impaired enlargement of distal forelimb representations in particular and markedly reduced the ability to learn skilled motor tasks as adults. These results identify a novel and essential role for cholinergic systems in the late refinement and maturation of cortical circuits. Dysfunctions in this system may constitute a mechanism of late-onset neurodevelopmental disorders such as Rett syndrome and schizophrenia. PMID:25505106

  5. Cholinergic systems are essential for late-stage maturation and refinement of motor cortical circuits

    PubMed Central

    Ramanathan, Dhakshin S.; Conner, James M.; Anilkumar, Arjun A.

    2014-01-01

    Previous studies reported that early postnatal cholinergic lesions severely perturb early cortical development, impairing neuronal cortical migration and the formation of cortical dendrites and synapses. These severe effects of early postnatal cholinergic lesions preclude our ability to understand the contribution of cholinergic systems to the later-stage maturation of topographic cortical representations. To study cholinergic mechanisms contributing to the later maturation of motor cortical circuits, we first characterized the temporal course of cortical motor map development and maturation in rats. In this study, we focused our attention on the maturation of cortical motor representations after postnatal day 25 (PND 25), a time after neuronal migration has been accomplished and cortical volume has reached adult size. We found significant maturation of cortical motor representations after this time, including both an expansion of forelimb representations in motor cortex and a shift from proximal to distal forelimb representations to an extent unexplainable by simple volume enlargement of the neocortex. Specific cholinergic lesions placed at PND 24 impaired enlargement of distal forelimb representations in particular and markedly reduced the ability to learn skilled motor tasks as adults. These results identify a novel and essential role for cholinergic systems in the late refinement and maturation of cortical circuits. Dysfunctions in this system may constitute a mechanism of late-onset neurodevelopmental disorders such as Rett syndrome and schizophrenia. PMID:25505106

  6. Oscillation control system for electric motor drive

    DOEpatents

    Slicker, J.M.; Sereshteh, A.

    1988-08-30

    A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify the torque commands applied to the motor. 5 figs.

  7. Computerized Torque Control for Large dc Motors

    NASA Technical Reports Server (NTRS)

    Willett, Richard M.; Carroll, Michael J.; Geiger, Ronald V.

    1987-01-01

    Speed and torque ranges in generator mode extended. System of shunt resistors, electronic switches, and pulse-width modulation controls torque exerted by large, three-phase, electronically commutated dc motor. Particularly useful for motor operating in generator mode because it extends operating range to low torque and high speed.

  8. Oscillation control system for electric motor drive

    DOEpatents

    Slicker, James M.; Sereshteh, Ahmad

    1988-01-01

    A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify thetorque commands applied to the motor.

  9. Dynamic phases in control and information processing biological circuits

    NASA Astrophysics Data System (ADS)

    Vaikuntanathan, Suriyanarayanan

    2015-03-01

    Recent work using the mathematical framework of large deviation theory has shown that fluctuations about the steady state can have a particularly rich structure even in extremely simple non-equilibrium systems [Phys. Rev. E. 89, 062108, 2014]. In certain instances the fluctuations can encode the presence of a dynamical phase with properties distinct from those of the steady state of the system. The transition between these two regimes is akin to a first order thermodynamic phase transition. Specifically, it implies an extreme sensitivity of the system to changes in certain sets of parameters. I will show that such dynamical phase transitions can serve as a general organizing principle to understand biological circuits that are involved in information processing and control. I will focus on two specific examples: adaptation control in E. coli chemotaxis and ultra sensitive response of the E. coli flagella motor, to illustrate these calculations. This work also elucidates the role played by energy dissipation in ensuring control and suggests general guidelines for the construction of robust non equilibrium circuits that perform various specified functions.

  10. A COMPUTATIONAL NEUROANATOMY FOR MOTOR CONTROL

    PubMed Central

    Shadmehr, Reza; Krakauer, John W.

    2008-01-01

    The study of patients to infer normal brain function has a long tradition in neurology and psychology. More recently, the motor system has been subject to quantitative and computational characterization. The purpose of this review is to argue that the lesion approach and theoretical motor control can mutually inform each other. Specifically, one may identify distinct motor control processes from computational models and map them onto specific deficits in patients. Here we review some of the impairments in motor control, motor learning and higher-order motor control in patients with lesions of the corticospinal tract, the cerebellum, parietal cortex, the basal ganglia, and the medial temporal lobe. We attempt to explain some of these impairments in terms of computational ideas such as state estimation, optimization, prediction, cost, and reward. We suggest that a function of the cerebellum is system identification: to built internal models that predict sensory outcome of motor commands and correct motor commands through internal feedback. A function of the parietal cortex is state estimation: to integrate the predicted proprioceptive and visual outcomes with sensory feedback to form a belief about how the commands affected the states of the body and the environment. A function of basal ganglia is related to optimal control: learning costs and rewards associated with sensory states and estimating the “cost-to-go” during execution of a motor task. Finally, functions of the primary and the premotor cortices are related to implementing the optimal control policy by transforming beliefs about proprioceptive and visual states, respectively, into motor commands. PMID:18251019

  11. The peptidergic control circuit for sighing.

    PubMed

    Li, Peng; Janczewski, Wiktor A; Yackle, Kevin; Kam, Kaiwen; Pagliardini, Silvia; Krasnow, Mark A; Feldman, Jack L

    2016-02-18

    Sighs are long, deep breaths expressing sadness, relief or exhaustion. Sighs also occur spontaneously every few minutes to reinflate alveoli, and sighing increases under hypoxia, stress, and certain psychiatric conditions. Here we use molecular, genetic, and pharmacologic approaches to identify a peptidergic sigh control circuit in murine brain. Small neural subpopulations in a key breathing control centre, the retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG), express bombesin-like neuropeptide genes neuromedin B (Nmb) or gastrin-releasing peptide (Grp). These project to the preBötzinger Complex (preBötC), the respiratory rhythm generator, which expresses NMB and GRP receptors in overlapping subsets of ~200 neurons. Introducing either neuropeptide into preBötC or onto preBötC slices, induced sighing or in vitro sigh activity, whereas elimination or inhibition of either receptor reduced basal sighing, and inhibition of both abolished it. Ablating receptor-expressing neurons eliminated basal and hypoxia-induced sighing, but left breathing otherwise intact initially. We propose that these overlapping peptidergic pathways comprise the core of a sigh control circuit that integrates physiological and perhaps emotional input to transform normal breaths into sighs. PMID:26855425

  12. The peptidergic control circuit for sighing

    PubMed Central

    Kam, Kaiwen; Pagliardini, Silvia; Krasnow, Mark A.; Feldman, Jack L.

    2016-01-01

    Sighs are long, deep breaths expressing sadness, relief, or exhaustion. Sighs also occur spontaneously every few minutes to reinflate alveoli, and sighing increases under hypoxia, stress, and certain psychiatric conditions. Here we use molecular, genetic, and pharmacologic approaches to identify a peptidergic sigh control circuit in murine brain. Small neural subpopulations in a key breathing control center (RTN/pFRG) express bombesin-like neuropeptide genes neuromedin B (Nmb) or gastrin releasing peptide (Grp). These project to the preBötzinger Complex (preBötC), the respiratory rhythm generator, which expresses NMB and GRP receptors in overlapping subsets of ~200 neurons. Introducing either neuropeptide into preBötC, or onto preBötC slices, induced sighing, whereas elimination or inhibition of either receptor reduced basal sighing and inhibition of both abolished it. Ablating receptor-expressing neurons eliminated basal and hypoxia-induced sighing, but left breathing otherwise intact initially. We propose these overlapping peptidergic pathways comprise the core of a sigh control circuit that integrates physiological and perhaps emotional input to transform normal breaths into sighs. PMID:26855425

  13. 49 CFR 236.732 - Controller, circuit; switch.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... § 236.732 Controller, circuit; switch. A device for opening and closing electric circuits, operated by a... 49 Transportation 4 2014-10-01 2014-10-01 false Controller, circuit; switch. 236.732 Section 236.732 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL...

  14. 49 CFR 236.732 - Controller, circuit; switch.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... § 236.732 Controller, circuit; switch. A device for opening and closing electric circuits, operated by a... 49 Transportation 4 2013-10-01 2013-10-01 false Controller, circuit; switch. 236.732 Section 236.732 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL...

  15. 49 CFR 236.732 - Controller, circuit; switch.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... § 236.732 Controller, circuit; switch. A device for opening and closing electric circuits, operated by a... 49 Transportation 4 2010-10-01 2010-10-01 false Controller, circuit; switch. 236.732 Section 236.732 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL...

  16. 49 CFR 236.732 - Controller, circuit; switch.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... § 236.732 Controller, circuit; switch. A device for opening and closing electric circuits, operated by a... 49 Transportation 4 2011-10-01 2011-10-01 false Controller, circuit; switch. 236.732 Section 236.732 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL...

  17. Timing control by redundant inhibitory neuronal circuits

    SciTech Connect

    Tristan, I. Rulkov, N. F.; Huerta, R.; Rabinovich, M.

    2014-03-15

    Rhythms and timing control of sequential activity in the brain is fundamental to cognition and behavior. Although experimental and theoretical studies support the understanding that neuronal circuits are intrinsically capable of generating different time intervals, the dynamical origin of the phenomenon of functionally dependent timing control is still unclear. Here, we consider a new mechanism that is related to the multi-neuronal cooperative dynamics in inhibitory brain motifs consisting of a few clusters. It is shown that redundancy and diversity of neurons within each cluster enhances the sensitivity of the timing control with the level of neuronal excitation of the whole network. The generality of the mechanism is shown to work on two different neuronal models: a conductance-based model and a map-based model.

  18. Timing control by redundant inhibitory neuronal circuits

    NASA Astrophysics Data System (ADS)

    Tristan, I.; Rulkov, N. F.; Huerta, R.; Rabinovich, M.

    2014-03-01

    Rhythms and timing control of sequential activity in the brain is fundamental to cognition and behavior. Although experimental and theoretical studies support the understanding that neuronal circuits are intrinsically capable of generating different time intervals, the dynamical origin of the phenomenon of functionally dependent timing control is still unclear. Here, we consider a new mechanism that is related to the multi-neuronal cooperative dynamics in inhibitory brain motifs consisting of a few clusters. It is shown that redundancy and diversity of neurons within each cluster enhances the sensitivity of the timing control with the level of neuronal excitation of the whole network. The generality of the mechanism is shown to work on two different neuronal models: a conductance-based model and a map-based model.

  19. Automatic gain control circuit handles wide input range

    NASA Technical Reports Server (NTRS)

    Black, S. H.

    1966-01-01

    Automatic gain control circuit for a radio receiver handles a wide range of input signal levels without overloading the output stage. The transistorized circuit maintains a relatively constant output by varying attenuation of the input signal.

  20. Four quadrant control of induction motors

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1991-01-01

    Induction motors are the nation's workhorse, being the motor of choice in most applications due to their simple rugged construction. It has been estimated that 14 to 27 percent of the country's total electricity use could be saved with adjustable speed drives. Until now, induction motors have not been suited well for variable speed or servo-drives, due to the inherent complexity, size, and inefficiency of their variable speed controls. Work at NASA Lewis Research Center on field oriented control of induction motors using pulse population modulation method holds the promise for the desired drive electronics. The system allows for a variable voltage to frequency ratio which enables the user to operate the motor at maximum efficiency, while having independent control of both the speed and torque of an induction motor in all four quadrants of the speed torque map. Multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of machine. The pulse population technique, results to date, and projections for implementation of this existing new motor control technology are discussed.

  1. Optogenetic Control of Cells and Circuits

    PubMed Central

    Miesenböck, Gero

    2013-01-01

    The absorption of light by bound or diffusible chromophores causes conformational rearrangements in natural and artificial photoreceptor proteins. These rearrangements are coupled to the opening or closing of ion transport pathways, the association or dissociation of binding partners, the enhancement or suppression of catalytic activity, or the transcription or repression of genetic information. Illumination of cells, tissues, or organisms engineered genetically to express photoreceptor proteins can thus be used to perturb biochemical and electrical signaling with exquisite cellular and molecular specificity. First demonstrated in 2002, this principle of optogenetic control has had a profound impact on neuroscience, where it provides a direct and stringent means of probing the organization of neural circuits and of identifying the neural substrates of behavior. The impact of optogenetic control is also beginning to be felt in other areas of cell and organismal biology. PMID:21819234

  2. Computer-Controlled, Motorized Positioning System

    NASA Technical Reports Server (NTRS)

    Vargas-Aburto, Carlos; Liff, Dale R.

    1994-01-01

    Computer-controlled, motorized positioning system developed for use in robotic manipulation of samples in custom-built secondary-ion mass spectrometry (SIMS) system. Positions sample repeatably and accurately, even during analysis in three linear orthogonal coordinates and one angular coordinate under manual local control, or microprocessor-based local control or remote control by computer via general-purpose interface bus (GPIB).

  3. Multiple neuropeptides in cholinergic motor neurons of Aplysia: evidence for modulation intrinsic to the motor circuit

    SciTech Connect

    Cropper, E.C.; Lloyd, P.E.; Reed, W.; Tenenbaum, R.; Kupfermann, I.; Weiss, K.R.

    1987-05-01

    Changes in Aplysia biting responses during food arousal are partially mediated by the serotonergic metacerebral cells (MCCs). The MCCs potentiate contractions of a muscle utilized in biting, the accessory radula closer (ARCM), when contractions are elicited by stimulation of either of the two cholinergic motor neurons B15 or B16 that innervate the muscle. The authors have now shown that ARCM contractions may also be potentiated by peptide cotransmitters in the ARCM motor neurons. They found that motor neuron B15 contains small cardioactive peptides A and B (SCP/sub A/ and SCP/sub B/) i.e., whole B15 neurons were bioactive on the SCP-sensitive Helix heart, as were reverse-phase HPLC fractions of B15 neurons that eluted like synthetic SCP/sub A/ and SCP/sub B/. Furthermore, (/sup 35/S)methionine-labeled B15 peptides precisely coeluted with synthetic SCP/sub A/ and SCP/sub B/. SCP/sub B/-like immunoreactivity was associated with dense-core vesicles in the soma of B15 and in neuritic varicosities and terminals in the ARCM. B16 motor neurons did not contain SCP/sub A/ or SCP/sub B/ but contained an unidentified bioactive peptide. RP-HPLC of (/sup 35/S)methionine-labeled B16s resulted in one major peak of radioactivity that did not coelute with either SCP and which, when subject to Edman degradation, yielded (/sup 35/S)methionine in positions where there is no methionine in the SCPs. Exogenously applied B16 peptide potentiated ARCM contractions elicited by stimulation of B15 or B16 neurons. Thus, in this system there appear to be two types of modulation; one type arises from the MCCs and is extrinsic to the motor system, whereas the second type arises from the motor neurons themselves and hence is intrinsic.

  4. Torque calculation of the asynchronous motor in short-circuit test

    SciTech Connect

    Demski, W.; Szymanski, G.

    1998-09-01

    The paper presents the application of the calculation method of electromagnetic torque for asynchronous motor in short-circuit test. The {rvec A}, {rvec A}-V formulation with a complex notation for time harmonic systems in the finite difference method is used to solve the nonlinear three dimensional problem. The volume Maxwell stress tensor is used for force and torque calculation. The numerical results are compared with measurement.

  5. Cholinergic Circuit Control of Postnatal Neurogenesis

    PubMed Central

    Asrican, Brent; Paez-Gonzalez, Patricia; Erb, Joshua; Kuo, Chay T.

    2016-01-01

    New neuron addition via continued neurogenesis in the postnatal/adult mammalian brain presents a distinct form of nervous system plasticity. During embryonic development, precise temporal and spatial patterns of neurogenesis are necessary to create the nervous system architecture. Similar between embryonic and postnatal stages, neurogenic proliferation is regulated by neural stem cell (NSC)-intrinsic mechanisms layered upon cues from their local microenvironmental niche. Following developmental assembly, it remains relatively unclear what may be the key driving forces that sustain continued production of neurons in the postnatal/adult brain. Recent experimental evidence suggests that patterned activity from specific neural circuits can also directly govern postnatal/adult neurogenesis. Here, we review experimental findings that revealed cholinergic modulation, and how patterns of neuronal activity and acetylcholine release may differentially or synergistically activate downstream signaling in NSCs. Higher-order excitatory and inhibitory inputs regulating cholinergic neuron firing, and their implications in neurogenesis control are also considered. PMID:27468423

  6. Widespread Monoaminergic Dysregulation of Both Motor and Non-Motor Circuits in Parkinsonism and Dyskinesia.

    PubMed

    Engeln, Michel; De Deurwaerdère, Philippe; Li, Qin; Bezard, Erwan; Fernagut, Pierre-Olivier

    2015-09-01

    Beyond dopamine (DA) loss, Parkinson's disease is associated with many other monoamine alterations. While some monoaminergic systems benefit from l-3,4-dihydroxyphenylalanine (l-Dopa) treatment, others seem to be further altered, contributing to dyskinesia and nonmotor symptoms. Surprisingly, the different contributions of parkinsonism and l-Dopa treatment on monoaminergic changes remain largely unknown. Here, both the consequences of vehicle or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) exposure and the subsequent effects of acute or chronic l-Dopa treatment were evaluated in macaques. Monoamine levels were measured in the putamen, the motor and prefrontal cortices, the hippocampus, and the amygdala using postmortem high-pressure liquid chromatography. In normal monkeys, l-Dopa treatment increased DA in the prefrontal cortex and hippocampus, but decreased serotonin levels in motor domains. Chronic l-Dopa treatment elevated monoamine levels in the prefrontal cortex, hippocampus, and amygdala in both normal and MPTP-treated monkeys. A substantial increase in DA levels in these regions, paralleled by a decrease in serotonin concentrations were related with dyskinesia severity, demonstrating that major changes in monoamine release also occur in nonmotor regions. Such monoaminergic dysregulation in limbic domains may also directly contribute to the expression of motor complications, such as dyskinesia, by impairing integrative processes upstream from motor execution. PMID:24770706

  7. FUZZY LOGIC CONTROL OF ELECTRIC MOTORS AND MOTOR DRIVES: FEASIBILITY STUDY

    EPA Science Inventory

    The report gives results of a study (part 1) of fuzzy logic motor control (FLMC). The study included: 1) reviews of existing applications of fuzzy logic, of motor operation, and of motor control; 2) a description of motor control schemes that can utilize FLMC; 3) selection of a m...

  8. Multilevel modulation of a sensory motor circuit during C. elegans sleep and arousal

    PubMed Central

    Cho, Julie Y.; Sternberg, Paul W.

    2014-01-01

    Sleep is characterized by behavioral quiescence, homeostasis, increased arousal threshold, and rapid reversibility. Understanding how these properties are encoded by a neuronal circuit has been difficult, and no single molecular or neuronal pathway has been shown to be responsible for the regulation of sleep. Taking advantage of the well-mapped neuronal connections of Caenorhabditis elegans and the sleep-like states in this animal, we demonstrate the changed properties of both sensory neurons and downstream interneurons that mediate sleep and arousal. The ASH sensory neuron displays reduced sensitivity to stimuli in the sleep-like state, and the activity of the corresponding interneurons in ASH’s motor circuit becomes asynchronous. Restoration of interneuron synchrony is sufficient for arousal. The multilevel circuit depression revealed provides an elegant strategy to promote a robust decrease in arousal while allowing for rapid reversibility of the sleep state. PMID:24439380

  9. Stepper motor control that adjusts to motor loading

    NASA Technical Reports Server (NTRS)

    Howard, David E. (Inventor); Nola, Frank J. (Inventor)

    2000-01-01

    A system and method are provided for controlling a stepper motor having a rotor and a multi-phase stator. Sinusoidal command signals define a commanded position of the motor's rotor. An actual position of the rotor is sensed as a function of an electrical angle between the actual position and the commanded position. The actual position is defined by sinusoidal position signals. An adjustment signal is generated using the sinusoidal command signals and sinusoidal position signals. The adjustment signal is defined as a function of the cosine of the electrical angle. The adjustment signal is multiplied by each sinusoidal command signal to generate a corresponding set of excitation signals, each of which is applied to a corresponding phase of the multi-phase stator.

  10. THE EFFECTS OF BRAIN LATERALIZATION ON MOTOR CONTROL AND ADAPTATION

    PubMed Central

    Mutha, Pratik K.; Haaland, Kathleen Y.; Sainburg, Robert L.

    2012-01-01

    Lateralization of mechanisms mediating functions such as language and perception is widely accepted as a fundamental feature of neural organization. Recent research has revealed that a similar organization exists for the control of motor actions, in that each brain hemisphere contributes unique control mechanisms to the movements of each arm. We now review current research that addresses the nature of the control mechanisms that are lateralized to each hemisphere and how they impact motor adaptation and learning. In general, the studies reviewed here suggest an enhanced role for the left hemisphere during adaptation, and the learning of new sequences and skills. We suggest that this specialization emerges from a left hemisphere specialization for predictive control – the ability to effectively plan and coordinate motor actions, possibly by optimizing certain cost functions. In contrast, right hemisphere circuits appear to be important for updating ongoing actions and stopping at a goal position, through modulation of sensorimotor stabilization mechanisms such as reflexes. We also propose that each brain hemisphere contributes its mechanism to the control of both arms. We conclude by examining the potential advantages of such a lateralized control system. PMID:23237468

  11. Method and apparatus for large motor control

    DOEpatents

    Rose, Chris R.; Nelson, Ronald O.

    2003-08-12

    Apparatus and method for providing digital signal processing method for controlling the speed and phase of a motor involves inputting a reference signal having a frequency and relative phase indicative of a time based signal; modifying the reference signal to introduce a slew-rate limited portion of each cycle of the reference signal; inputting a feedback signal having a frequency and relative phase indicative of the operation of said motor; modifying the feedback signal to introduce a slew-rate limited portion of each cycle of the feedback signal; analyzing the modified reference signal and the modified feedback signal to determine the frequency of the modified reference signal and of the modified feedback signal and said relative phase between said modified reference signal and said modified feedback signal; and outputting control signals to the motor for adjusting said speed and phase of the motor based on the frequency determination and determination of the relative phase.

  12. Fast recovery, high voltage silicon diodes for AC motor controllers

    NASA Technical Reports Server (NTRS)

    Balodis, V.; Berman, A. H.; Gaugh, C.

    1982-01-01

    The fabrication and characterization of a high voltage, high current, fast recovery silicon diode for use in AC motor controllers, originally developed for NASA for use in avionics power supplies, is presented. The diode utilizes a positive bevel PIN mesa structure with glass passivation and has the following characteristics: peak inverse voltage - 1200 volts, forward voltage at 50 amperes - 1.5 volts, reverse recovery time of 200 nanoseconds. Characterization data for the diode, included in a table, show agreement with design concepts developed for power diodes. Circuit diagrams of the diode are also given.

  13. The neural optimal control hierarchy for motor control

    NASA Astrophysics Data System (ADS)

    DeWolf, T.; Eliasmith, C.

    2011-10-01

    Our empirical, neuroscientific understanding of biological motor systems has been rapidly growing in recent years. However, this understanding has not been systematically mapped to a quantitative characterization of motor control based in control theory. Here, we attempt to bridge this gap by describing the neural optimal control hierarchy (NOCH), which can serve as a foundation for biologically plausible models of neural motor control. The NOCH has been constructed by taking recent control theoretic models of motor control, analyzing the required processes, generating neurally plausible equivalent calculations and mapping them on to the neural structures that have been empirically identified to form the anatomical basis of motor control. We demonstrate the utility of the NOCH by constructing a simple model based on the identified principles and testing it in two ways. First, we perturb specific anatomical elements of the model and compare the resulting motor behavior with clinical data in which the corresponding area of the brain has been damaged. We show that damaging the assigned functions of the basal ganglia and cerebellum can cause the movement deficiencies seen in patients with Huntington's disease and cerebellar lesions. Second, we demonstrate that single spiking neuron data from our model's motor cortical areas explain major features of single-cell responses recorded from the same primate areas. We suggest that together these results show how NOCH-based models can be used to unify a broad range of data relevant to biological motor control in a quantitative, control theoretic framework.

  14. Open questions in computational motor control.

    PubMed

    Karniel, Amir

    2011-09-01

    Computational motor control covers all applications of quantitative tools for the study of the biological movement control system. This paper provides a review of this field in the form of a list of open questions. After an introduction in which we define computational motor control, we describe: a Turing-like test for motor intelligence; internal models, inverse model, forward model, feedback error learning and distal teacher; time representation, and adaptation to delay; intermittence control strategies; equilibrium hypotheses and threshold control; the spatiotemporal hierarchy of wide sense adaptation, i.e., feedback, learning, adaptation, and evolution; optimization based models for trajectory formation and optimal feedback control; motor memory, the past and the future; and conclude with the virtue of redundancy. Each section in this paper starts with a review of the relevant literature and a few more specific studies addressing the open question, and ends with speculations about the possible answer and its implications to motor neuroscience. This review is aimed at concisely covering the topic from the author's perspective with emphasis on learning mechanisms and the various structures and limitations of internal models. PMID:21960308

  15. High accuracy motor controller for positioning optical filters in the CLAES Spectrometer

    NASA Technical Reports Server (NTRS)

    Thatcher, John B.

    1989-01-01

    The Etalon Drive Motor (EDM), a precision etalon control system designed for accurate positioning of etalon filters in the IR spectrometer of the Cryogenic Limb Array Etalon Spectrometer (CLAES) experiment is described. The EDM includes a brushless dc torque motor, which has an infinite resolution for setting an etalon filter to any desired angle, a four-filter etalon wheel, and an electromechanical resolver for angle information. An 18-bit control loop provides high accuracy, resolution, and stability. Dynamic computer interaction allows the user to optimize the step response. A block diagram of the motor controller is presented along with a schematic of the digital/analog converter circuit.

  16. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... incorporated by reference; see 46 CFR 110.10-1), as appropriate, for the location where it is installed. In... (incorporated by reference; see 46 CFR 110.10-1) provides guidance on the differences between devices meeting... 46 Shipping 4 2011-10-01 2011-10-01 false Motor controllers and motor-control centers....

  17. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... incorporated by reference; see 46 CFR 110.10-1), as appropriate, for the location where it is installed. In... (incorporated by reference; see 46 CFR 110.10-1) provides guidance on the differences between devices meeting... 46 Shipping 4 2012-10-01 2012-10-01 false Motor controllers and motor-control centers....

  18. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... incorporated by reference; see 46 CFR 110.10-1), as appropriate, for the location where it is installed. In... (incorporated by reference; see 46 CFR 110.10-1) provides guidance on the differences between devices meeting... 46 Shipping 4 2013-10-01 2013-10-01 false Motor controllers and motor-control centers....

  19. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... incorporated by reference; see 46 CFR 110.10-1), as appropriate, for the location where it is installed. In... (incorporated by reference; see 46 CFR 110.10-1) provides guidance on the differences between devices meeting... 46 Shipping 4 2010-10-01 2010-10-01 false Motor controllers and motor-control centers....

  20. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... incorporated by reference; see 46 CFR 110.10-1), as appropriate, for the location where it is installed. In... (incorporated by reference; see 46 CFR 110.10-1) provides guidance on the differences between devices meeting... 46 Shipping 4 2014-10-01 2014-10-01 false Motor controllers and motor-control centers....

  1. Neural Control Adaptation to Motor Noise Manipulation.

    PubMed

    Hasson, Christopher J; Gelina, Olga; Woo, Garrett

    2016-01-01

    Antagonistic muscular co-activation can compensate for movement variability induced by motor noise at the expense of increased energetic costs. Greater antagonistic co-activation is commonly observed in older adults, which could be an adaptation to increased motor noise. The present study tested this hypothesis by manipulating motor noise in 12 young subjects while they practiced a goal-directed task using a myoelectric virtual arm, which was controlled by their biceps and triceps muscle activity. Motor noise was increased by increasing the coefficient of variation (CV) of the myoelectric signals. As hypothesized, subjects adapted by increasing antagonistic co-activation, and this was associated with reduced noise-induced performance decrements. A second hypothesis was that a virtual decrease in motor noise, achieved by smoothing the myoelectric signals, would have the opposite effect: co-activation would decrease and motor performance would improve. However, the results showed that a decrease in noise made performance worse instead of better, with no change in co-activation. Overall, these findings suggest that the nervous system adapts to virtual increases in motor noise by increasing antagonistic co-activation, and this preserves motor performance. Reducing noise may have failed to benefit performance due to characteristics of the filtering process itself, e.g., delays are introduced and muscle activity bursts are attenuated. The observed adaptations to increased noise may explain in part why older adults and many patient populations have greater antagonistic co-activation, which could represent an adaptation to increased motor noise, along with a desire for increased joint stability. PMID:26973487

  2. Neural Control Adaptation to Motor Noise Manipulation

    PubMed Central

    Hasson, Christopher J.; Gelina, Olga; Woo, Garrett

    2016-01-01

    Antagonistic muscular co-activation can compensate for movement variability induced by motor noise at the expense of increased energetic costs. Greater antagonistic co-activation is commonly observed in older adults, which could be an adaptation to increased motor noise. The present study tested this hypothesis by manipulating motor noise in 12 young subjects while they practiced a goal-directed task using a myoelectric virtual arm, which was controlled by their biceps and triceps muscle activity. Motor noise was increased by increasing the coefficient of variation (CV) of the myoelectric signals. As hypothesized, subjects adapted by increasing antagonistic co-activation, and this was associated with reduced noise-induced performance decrements. A second hypothesis was that a virtual decrease in motor noise, achieved by smoothing the myoelectric signals, would have the opposite effect: co-activation would decrease and motor performance would improve. However, the results showed that a decrease in noise made performance worse instead of better, with no change in co-activation. Overall, these findings suggest that the nervous system adapts to virtual increases in motor noise by increasing antagonistic co-activation, and this preserves motor performance. Reducing noise may have failed to benefit performance due to characteristics of the filtering process itself, e.g., delays are introduced and muscle activity bursts are attenuated. The observed adaptations to increased noise may explain in part why older adults and many patient populations have greater antagonistic co-activation, which could represent an adaptation to increased motor noise, along with a desire for increased joint stability. PMID:26973487

  3. Spinal metaplasticity in respiratory motor control

    PubMed Central

    Fields, Daryl P.; Mitchell, Gordon S.

    2015-01-01

    A hallmark feature of the neural system controlling breathing is its ability to exhibit plasticity. Less appreciated is the ability to exhibit metaplasticity, a change in the capacity to express plasticity (i.e., “plastic plasticity”). Recent advances in our understanding of cellular mechanisms giving rise to respiratory motor plasticity lay the groundwork for (ongoing) investigations of metaplasticity. This detailed understanding of respiratory metaplasticity will be essential as we harness metaplasticity to restore breathing capacity in clinical disorders that compromise breathing, such as cervical spinal injury, motor neuron disease and other neuromuscular diseases. In this brief review, we discuss key examples of metaplasticity in respiratory motor control, and our current understanding of mechanisms giving rise to spinal plasticity and metaplasticity in phrenic motor output; particularly after pre-conditioning with intermittent hypoxia. Progress in this area has led to the realization that similar mechanisms are operative in other spinal motor networks, including those governing limb movement. Further, these mechanisms can be harnessed to restore respiratory and non-respiratory motor function after spinal injury. PMID:25717292

  4. Test and inspection for process control of monolithic circuits

    NASA Technical Reports Server (NTRS)

    Spangenberg, E.

    1967-01-01

    Report details the test and inspection procedures for the mass production of high reliability integrated circuits. It covers configuration control, basic fundamentals of quality control, control charts, wafer process evaluation, general process evaluation, evaluation score system, and diffusion evaluation.

  5. Control of oscillations in a discharge circuit

    NASA Technical Reports Server (NTRS)

    Cheng, D. Y.

    1972-01-01

    Development of electric discharge circuit damping element which increases in resistance with current and time is described. Damping element is resistor made of tungsten wire which has large resistance-temperature coefficient. Specifications of tungsten resistor and incorporation into circuit are explained.

  6. Detail of motor control cabinet and field breakers. Control cabinet ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of motor control cabinet and field breakers. Control cabinet and breaker panel built by Cutler-Hammer - Wellton-Mohawk Irrigation System, Pumping Plant No. 3, South of Interstate 8, Wellton, Yuma County, AZ

  7. Deep networks for motor control functions.

    PubMed

    Berniker, Max; Kording, Konrad P

    2015-01-01

    The motor system generates time-varying commands to move our limbs and body. Conventional descriptions of motor control and learning rely on dynamical representations of our body's state (forward and inverse models), and control policies that must be integrated forward to generate feedforward time-varying commands; thus these are representations across space, but not time. Here we examine a new approach that directly represents both time-varying commands and the resulting state trajectories with a function; a representation across space and time. Since the output of this function includes time, it necessarily requires more parameters than a typical dynamical model. To avoid the problems of local minima these extra parameters introduce, we exploit recent advances in machine learning to build our function using a stacked autoencoder, or deep network. With initial and target states as inputs, this deep network can be trained to output an accurate temporal profile of the optimal command and state trajectory for a point-to-point reach of a non-linear limb model, even when influenced by varying force fields. In a manner that mirrors motor babble, the network can also teach itself to learn through trial and error. Lastly, we demonstrate how this network can learn to optimize a cost objective. This functional approach to motor control is a sharp departure from the standard dynamical approach, and may offer new insights into the neural implementation of motor control. PMID:25852530

  8. Deep networks for motor control functions

    PubMed Central

    Berniker, Max; Kording, Konrad P.

    2015-01-01

    The motor system generates time-varying commands to move our limbs and body. Conventional descriptions of motor control and learning rely on dynamical representations of our body's state (forward and inverse models), and control policies that must be integrated forward to generate feedforward time-varying commands; thus these are representations across space, but not time. Here we examine a new approach that directly represents both time-varying commands and the resulting state trajectories with a function; a representation across space and time. Since the output of this function includes time, it necessarily requires more parameters than a typical dynamical model. To avoid the problems of local minima these extra parameters introduce, we exploit recent advances in machine learning to build our function using a stacked autoencoder, or deep network. With initial and target states as inputs, this deep network can be trained to output an accurate temporal profile of the optimal command and state trajectory for a point-to-point reach of a non-linear limb model, even when influenced by varying force fields. In a manner that mirrors motor babble, the network can also teach itself to learn through trial and error. Lastly, we demonstrate how this network can learn to optimize a cost objective. This functional approach to motor control is a sharp departure from the standard dynamical approach, and may offer new insights into the neural implementation of motor control. PMID:25852530

  9. Summary of electric vehicle dc motor-controller tests

    NASA Technical Reports Server (NTRS)

    Mcbrien, E. F.; Tryon, H. B.

    1982-01-01

    The differences in the performance of dc motors are evaluated when operating with chopper type controllers, and when operating on direct current. The interactions between the motor and the controller which cause these differences are investigated. Motor-controlled tests provided some of the data the quantified motor efficiency variations for both ripple free and chopper modes of operation.

  10. Nature of Motor Control: Perspectives and Issues

    PubMed Central

    Turvey, M. T.; Fonseca, Sergio

    2013-01-01

    Four perspectives on motor control provide the framework for developing a comprehensive theory of motor control in biological systems. The four perspectives, of decreasing orthodoxy, are distinguished by their sources of inspiration: neuroanatomy, robotics, self-organization, and ecological realities. Twelve major issues that commonly constrain (either explicitly or implicitly) the understanding of the control and coordination of movement are identified and evaluated within the framework of the four perspectives. The issues are as follows: (1) Is control strictly neural? (2) Is there a divide between planning and execution? (3) Does control entail a frequently involved knowledgeable executive? (4) Do analytical internal models mediate control? (5) Is anticipation necessarily model dependent? (6) Are movements preassembled? (7) Are the participating components context independent? (8) Is force transmission strictly myotendinous? (9) Is afference a matter of local linear signaling? (10) Is neural noise an impediment? (11) Do standard variables (of mechanics and physiology) suffice? (12) Is the organization of control hierarchical? PMID:19227497

  11. Modulation of Cortical Inhibitory Circuits after Cathodal Transcranial Direct Current Stimulation over the Primary Motor Cortex

    PubMed Central

    Sasaki, Ryoki; Miyaguchi, Shota; Kotan, Shinichi; Kojima, Sho; Kirimoto, Hikari; Onishi, Hideaki

    2016-01-01

    Here, we aimed to evaluate whether cathodal transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) and primary somatosensory cortex (S1) can modulate cortical inhibitory circuits. Sixteen healthy subjects participated in this study. Cathodal tDCS was positioned over the left M1 (M1 cathodal) or left S1 (S1 cathodal) with an intensity of 1 mA for 10 min. Sham tDCS was applied for 10 min over the left M1 (sham). Motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) were recorded from the right abductor pollicis brevis (APB) muscle before the intervention (pre) and 10 and 30 min after the intervention (post 1 and post 2, respectively). Cortical inhibitory circuits were evaluated using short-interval intracortical inhibition (SICI) and short-latency afferent inhibition (SAI). M1 cathodal decreased single-pulse MEP amplitudes at post 1 and decreased SAI at post 1 and post 2; however, SICI did not exhibit any change. S1 cathodal and sham did not show any changes in MEP amplitudes at any of the three time points. These results demonstrated that cathodal tDCS over the M1 not only decreases the M1 excitability but also affects the cortical inhibitory circuits related to SAI. PMID:26869909

  12. Field oriented control of induction motors

    NASA Technical Reports Server (NTRS)

    Burrows, Linda M.; Zinger, Don S.; Roth, Mary Ellen

    1990-01-01

    Induction motors have always been known for their simple rugged construction, but until lately were not suitable for variable speed or servo drives due to the inherent complexity of the controls. With the advent of field oriented control (FOC), however, the induction motor has become an attractive option for these types of drive systems. An FOC system which utilizes the pulse population modulation method to synthesize the motor drive frequencies is examined. This system allows for a variable voltage to frequency ratio and enables the user to have independent control of both the speed and torque of an induction motor. A second generation of the control boards were developed and tested with the next point of focus being the minimization of the size and complexity of these controls. Many options were considered with the best approach being the use of a digital signal processor (DSP) due to its inherent ability to quickly evaluate control algorithms. The present test results of the system and the status of the optimization process using a DSP are discussed.

  13. Control system for bearingless motor-generator

    NASA Technical Reports Server (NTRS)

    Kascak, Peter E. (Inventor); Jansen, Ralph H. (Inventor); Dever, Timothy P. (Inventor)

    2010-01-01

    A control system for an electromagnetic rotary drive for bearingless motor-generators comprises a winding configuration comprising a plurality of individual pole pairs through which phase current flows, each phase current producing both a lateral force and a torque. A motor-generator comprises a stator, a rotor supported for movement relative to the stator, and a control system. The motor-generator comprises a winding configuration supported by the stator. The winding configuration comprises at least three pole pairs through which phase current flows resulting in three three-phase systems. Each phase system has a first rotor reference frame axis current that produces a levitating force with no average torque and a second rotor reference frame axis current that produces torque.

  14. Control System for Bearingless Motor-generator

    NASA Technical Reports Server (NTRS)

    Kascak, Peter E. (Inventor); Jansen, Ralph H. (Inventor); Dever, Timothy P. (Inventor)

    2008-01-01

    A control system for an electromagnetic rotary drive for bearingless motor-generators comprises a winding configuration comprising a plurality of individual pole pairs through which phase current flows, each phase current producing both a lateral force and a torque. A motor-generator comprises a stator, a rotor supported for movement relative to the stator, and a control system. The motor-generator comprises a winding configuration supported by the stator. The winding configuration comprises at least three pole pairs through which phase current flows resulting in three three-phase systems. Each phase system has a first rotor reference frame axis current that produces a levitating force with no average torque and a second rotor reference frame axis current that produces torque.

  15. Prototype Motor Controllers Demonstrated for the James Webb Space Telescope Cryogenic Environment

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammond, Ahmad

    2004-01-01

    NASA is in the process of designing the James Webb Space Telescope. This telescope will investigate images of objects in deep space (stars, galaxies, etc.) by using light in the infrared region of the light spectrum. To make such observations, the telescope must have light sensors that operate at very cold temperatures, near absolute zero. To achieve this low-temperature tolerance, designers must place the light sensors behind a Sun shield that will prevent sunlight, and its heat, from reaching the sensors. In this cold region inside the telescope, electric motors and some motor controls must operate at temperatures near 40 K (40 degrees above absolute zero). These motors will be used to position light filters needed by the telescope. There are motors that operate at the low temperatures, but there is little technology for low-temperature motor-control electronics. The drawing shows how the motors and their controls are positioned behind the Sun shield. Simplified version of the layout of the motor and control electronics that are located, as dictated by mission requirements, in the cold zone of the James Webb Space Telescope. A Sun shield provides protection and isolation of these electronics from the heat of the rays of the sun. Room temperature compoenets (control computer, motor select command, motor phase drive, power supply, parallel to serial, and sun shield) as well as 40-kelvin components (motor select, serial to parallel, and motors) are shown. The Low Temperature Electronics Group at the NASA Glenn Research Center has been working to develop motor control electronics that will operate at a temperature of 40 K. The group conducted tests to determine which electronic components will operate at such very low temperatures. Then, components that were determined to operate successfully at the low temperatures were used to design low-temperature motor-controller circuits. A prototype motor controller circuit was built, evaluated, and demonstrated to operate at

  16. A Neuro-Inspired Spike-Based PID Motor Controller for Multi-Motor Robots with Low Cost FPGAs

    PubMed Central

    Jimenez-Fernandez, Angel; Jimenez-Moreno, Gabriel; Linares-Barranco, Alejandro; Dominguez-Morales, Manuel J.; Paz-Vicente, Rafael; Civit-Balcells, Anton

    2012-01-01

    In this paper we present a neuro-inspired spike-based close-loop controller written in VHDL and implemented for FPGAs. This controller has been focused on controlling a DC motor speed, but only using spikes for information representation, processing and DC motor driving. It could be applied to other motors with proper driver adaptation. This controller architecture represents one of the latest layers in a Spiking Neural Network (SNN), which implements a bridge between robotics actuators and spike-based processing layers and sensors. The presented control system fuses actuation and sensors information as spikes streams, processing these spikes in hard real-time, implementing a massively parallel information processing system, through specialized spike-based circuits. This spike-based close-loop controller has been implemented into an AER platform, designed in our labs, that allows direct control of DC motors: the AER-Robot. Experimental results evidence the viability of the implementation of spike-based controllers, and hardware synthesis denotes low hardware requirements that allow replicating this controller in a high number of parallel controllers working together to allow a real-time robot control. PMID:22666004

  17. A neuro-inspired spike-based PID motor controller for multi-motor robots with low cost FPGAs.

    PubMed

    Jimenez-Fernandez, Angel; Jimenez-Moreno, Gabriel; Linares-Barranco, Alejandro; Dominguez-Morales, Manuel J; Paz-Vicente, Rafael; Civit-Balcells, Anton

    2012-01-01

    In this paper we present a neuro-inspired spike-based close-loop controller written in VHDL and implemented for FPGAs. This controller has been focused on controlling a DC motor speed, but only using spikes for information representation, processing and DC motor driving. It could be applied to other motors with proper driver adaptation. This controller architecture represents one of the latest layers in a Spiking Neural Network (SNN), which implements a bridge between robotics actuators and spike-based processing layers and sensors. The presented control system fuses actuation and sensors information as spikes streams, processing these spikes in hard real-time, implementing a massively parallel information processing system, through specialized spike-based circuits. This spike-based close-loop controller has been implemented into an AER platform, designed in our labs, that allows direct control of DC motors: the AER-Robot. Experimental results evidence the viability of the implementation of spike-based controllers, and hardware synthesis denotes low hardware requirements that allow replicating this controller in a high number of parallel controllers working together to allow a real-time robot control. PMID:22666004

  18. Evaluation of Motor Control Using Haptic Device

    NASA Astrophysics Data System (ADS)

    Nuruki, Atsuo; Kawabata, Takuro; Shimozono, Tomoyuki; Yamada, Masafumi; Yunokuchi, Kazutomo

    When the kinesthesia and the touch act at the same time, such perception is called haptic perception. This sense has the key role in motor information on the force and position control. The haptic perception is important in the field where the evaluation of the motor control is needed. The purpose of this paper is to evaluate the motor control, perception of heaviness and distance in normal and fatigue conditions using psychophysical experiment. We used a haptic device in order to generate precise force and distance, but the precedent of the evaluation system with the haptic device has been few. Therefore, it is another purpose to examine whether the haptic device is useful as evaluation system for the motor control. The psychophysical quantity of force and distance was measured by two kinds of experiments. Eight healthy subjects participated in this study. The stimulation was presented by haptic device [PHANTOM Omni: SensAble Company]. The subjects compared between standard and test stimulation, and answered it had felt which stimulation was strong. In the result of the psychophysical quantity of force, just noticeable difference (JND) had a significant difference, and point of subjective equality (PSE) was not different between normal and muscle fatigue. On the other hand, in the result of the psychophysical quantity of distance, JND and PSE were not difference between normal and muscle fatigue. These results show that control of force was influenced, but control of distance was not influenced in muscle fatigue. Moreover, these results suggested that the haptic device is useful as the evaluation system for the motor control.

  19. Controlling Precision Stepper Motors in Flight Using (Almost) No Parts

    NASA Technical Reports Server (NTRS)

    Randall, David

    2010-01-01

    This concept allows control of high-performance stepper motors with minimal parts count and minimal flight software complexity. Although it uses a small number of common flight-qualified parts and simple control algorithms, it is capable enough to meet demanding system requirements. Its programmable nature makes it trivial to implement changes to control algorithms both during integration & test and in flight. Enhancements such as microstepping, half stepping, back-emf compensation, and jitter reduction can be tailored to the requirements of a large variety of stepper motor based applications including filter wheels, focus mechanisms, antenna tracking subsystems, pointing and mobility. The hardware design (using an H-bridge motor controller IC) was adapted from JPL's MER mission, still operating on Mars. This concept has been fully developed and incorporated into the MCS instrument on MRO, currently operating in Mars orbit. It has been incorporated into the filter wheel mechanism and linear stage (focus) mechanism for the AMT instrument. On MCS/MRO, two of these circuits control the elevation and azimuth of the MCS telescope/radiometer assembly, allowing the instrument to continuously monitor the limb of the Martian atmosphere. Implementation on MCS/MRO resulted in a 4:1 reduction in the volume and mass required for the motor driver electronics (100:25 square inches of PCB space), producing a very compact instrument. In fact, all of the electronics for the MCS instrument are packaged within the movable instrument structure. It also saved approximately 3 Watts of power. Most importantly, the design enabled MCS to meet very its stringent maximum allowable torque disturbance requirements.

  20. Finite element analysis of induction motors based on computing detailed equivalent circuit parameters

    SciTech Connect

    Zhou, P.; Gilmore, J.; Badics, Z.; Cendes, Z.J.

    1998-09-01

    A method for accurately predicting the steady-state performance of squirrel cage induction motors is presented. The approach is based on the use of complex two-dimensional finite element solutions to deduce per-phase equivalent circuit parameters for any operating condition. Core saturation and skin effect are directly considered in the field calculation. Corrections can be introduced to include three-dimensional effects such as end-winding and rotor skew. An application example is provided to demonstrate the effectiveness of the proposed approach.

  1. Electronic circuit provides automatic level control for liquid nitrogen traps

    NASA Technical Reports Server (NTRS)

    Turvy, R. R.

    1968-01-01

    Electronic circuit, based on the principle of increased thermistor resistance corresponding to decreases in temperature provides an automatic level control for liquid nitrogen cold traps. The electronically controlled apparatus is practically service-free, requiring only occasional reliability checks.

  2. Control circuit maintains unity power factor of reactive load

    NASA Technical Reports Server (NTRS)

    Kramer, M.; Martinage, L. H.

    1966-01-01

    Circuit including feedback control elements automatically corrects the power factor of a reactive load. It maintains power supply efficiency where negative load reactance changes and varies by providing corrective error signals to the control windings of a power supply transformer.

  3. Analysis of induction motors based on the numerical solution of the magnetic field and circuit equations

    NASA Astrophysics Data System (ADS)

    Arkkio, Antero

    1987-12-01

    A method for the analysis of induction motors based on the combined solution of the magnetic field equations and the circuit equations of the windings is presented. The equations are discretized by the finite element method. The magnetic field is assumed to be two-dimensional. The three-dimensional features, i.e., the skew of the rotor slots and the end-region fields, are taken into account within the two-dimensional formulation. The general time-dependence of the field and the motion of the rotor are modelled correctly in a step-by-step solution. The amount of computation is reduced significantly if the time-dependence is assumed to be sinusoidal and phasor quantities are used in the solution. The method is applied to the calculation of a cage rotor motor and of a solid rotor motor. The sinusoidal approximation gives good results in the computation of steady-state locked-rotor quantities, but it does not model the motion of the rotor properly. The step-by-step method is used for computing machine quantities in steady and transient states. The operation of the solid rotor motor supplied by a static frequency converter is simulated. The results obtained by the method agree well with the measured ones.

  4. Motor control theories and their applications.

    PubMed

    Latash, Mark L; Levin, Mindy F; Scholz, John P; Schöner, Gregor

    2010-01-01

    We describe several influential hypotheses in the field of motor control including the equilibrium-point (referent configuration) hypothesis, the uncontrolled manifold hypothesis, and the idea of synergies based on the principle of motor abundance. The equilibrium-point hypothesis is based on the idea of control with thresholds for activation of neuronal pools; it provides a framework for analysis of both voluntary and involuntary movements. In particular, control of a single muscle can be adequately described with changes in the threshold of motor unit recruitment during slow muscle stretch (threshold of the tonic stretch reflex). Unlike the ideas of internal models, the equilibrium-point hypothesis does not assume neural computations of mechanical variables. The uncontrolled manifold hypothesis is based on the dynamic system approach to movements; it offers a toolbox to analyze synergic changes within redundant sets of elements related to stabilization of potentially important performance variables. The referent configuration hypothesis and the principle of abundance can be naturally combined into a single coherent scheme of control of multi-element systems. A body of experimental data on healthy persons and patients with movement disorders are reviewed in support of the mentioned hypotheses. In particular, movement disorders associated with spasticity are considered as consequences of an impaired ability to shift threshold of the tonic stretch reflex within the whole normal range. Technical details and applications of the mentioned hypo-theses to studies of motor learning are described. We view the mentioned hypotheses as the most promising ones in the field of motor control, based on a solid physical and neurophysiological foundation. PMID:20944446

  5. Neuromodulation of lower limb motor control in restorative neurology

    PubMed Central

    Minassian, Karen; Hofstoetter, Ursula; Tansey, Keith; Mayr, Winfried

    2012-01-01

    One consequence of central nervous system injury or disease is the impairment of neural control of movement, resulting in spasticity and paralysis. To enhance recovery, restorative neurology procedures modify altered, yet preserved nervous system function. This review focuses on functional electrical stimulation (FES) and spinal cord stimulation (SCS) that utilize remaining capabilities of the distal apparatus of spinal cord, peripheral nerves and muscles in upper motor neuron dysfunctions. FES for the immediate generation of lower limb movement along with current rehabilitative techniques is reviewed. The potential of SCS for controlling spinal spasticity and enhancing lower limb function in multiple sclerosis and spinal cord injury is discussed. The necessity for precise electrode placement and appropriate stimulation parameter settings to achieve therapeutic specificity is elaborated. This will lead to our human work of epidural and transcutaneous stimulation targeting the lumbar spinal cord for enhancing motor functions in spinal cord injured people, supplemented by pertinent human research of other investigators. We conclude that the concept of restorative neurology recently received new appreciation by accumulated evidence for locomotor circuits residing in the human spinal cord. Technological and clinical advancements need to follow for a major impact on the functional recovery in individuals with severe damage to their motor system. PMID:22464657

  6. DC Motor control using motor-generator set with controlled generator field

    DOEpatents

    Belsterling, Charles A.; Stone, John

    1982-01-01

    A d.c. generator is connected in series opposed to the polarity of a d.c. power source supplying a d.c. drive motor. The generator is part of a motor-generator set, the motor of which is supplied from the power source connected to the motor. A generator field control means varies the field produced by at least one of the generator windings in order to change the effective voltage output. When the generator voltage is exactly equal to the d.c. voltage supply, no voltage is applied across the drive motor. As the field of the generator is reduced, the drive motor is supplied greater voltage until the full voltage of the d.c. power source is supplied when the generator has zero field applied. Additional voltage may be applied across the drive motor by reversing and increasing the reversed field on the generator. The drive motor may be reversed in direction from standstill by increasing the generator field so that a reverse voltage is applied across the d.c. motor.

  7. Sampling and Control Circuit Board for an Inertial Measurement Unit

    NASA Technical Reports Server (NTRS)

    Chelmins, David T (Inventor); Powis, Richard T., Jr. (Inventor); Sands, Obed (Inventor)

    2016-01-01

    A circuit board that serves as a control and sampling interface to an inertial measurement unit ("IMU") is provided. The circuit board is also configured to interface with a local oscillator and an external trigger pulse. The circuit board is further configured to receive the external trigger pulse from an external source that time aligns the local oscillator and initiates sampling of the inertial measurement device for data at precise time intervals based on pulses from the local oscillator. The sampled data may be synchronized by the circuit board with other sensors of a navigation system via the trigger pulse.

  8. Promoting Motor Cortical Plasticity with Acute Aerobic Exercise: A Role for Cerebellar Circuits

    PubMed Central

    Mang, Cameron S.; Brown, Katlyn E.; Neva, Jason L.; Snow, Nicholas J.; Campbell, Kristin L.; Boyd, Lara A.

    2016-01-01

    Acute aerobic exercise facilitated long-term potentiation-like plasticity in the human primary motor cortex (M1). Here, we investigated the effect of acute aerobic exercise on cerebellar circuits, and their potential contribution to altered M1 plasticity in healthy individuals (age: 24.8 ± 4.1 years). In Experiment   1, acute aerobic exercise reduced cerebellar inhibition (CBI) (n = 10, p = 0.01), elicited by dual-coil paired-pulse transcranial magnetic stimulation. In Experiment   2, we evaluated the facilitatory effects of aerobic exercise on responses to paired associative stimulation, delivered with a 25 ms (PAS25) or 21 ms (PAS21) interstimulus interval (n = 16 per group). Increased M1 excitability evoked by PAS25, but not PAS21, relies on trans-cerebellar sensory pathways. The magnitude of the aerobic exercise effect on PAS response was not significantly different between PAS protocols (interaction effect: p = 0.30); however, planned comparisons indicated that, relative to a period of rest, acute aerobic exercise enhanced the excitatory response to PAS25 (p = 0.02), but not PAS21 (p = 0.30). Thus, the results of these planned comparisons indirectly provide modest evidence that modulation of cerebellar circuits may contribute to exercise-induced increases in M1 plasticity. The findings have implications for developing aerobic exercise strategies to “prime” M1 plasticity for enhanced motor skill learning in applied settings. PMID:27127659

  9. A genuine layer 4 in motor cortex with prototypical synaptic circuit connectivity.

    PubMed

    Yamawaki, Naoki; Borges, Katharine; Suter, Benjamin A; Harris, Kenneth D; Shepherd, Gordon M G

    2014-01-01

    The motor cortex (M1) is classically considered an agranular area, lacking a distinct layer 4 (L4). Here, we tested the idea that M1, despite lacking a cytoarchitecturally visible L4, nevertheless possesses its equivalent in the form of excitatory neurons with input-output circuits like those of the L4 neurons in sensory areas. Consistent with this idea, we found that neurons located in a thin laminar zone at the L3/5A border in the forelimb area of mouse M1 have multiple L4-like synaptic connections: excitatory input from thalamus, largely unidirectional excitatory outputs to L2/3 pyramidal neurons, and relatively weak long-range corticocortical inputs and outputs. M1-L4 neurons were electrophysiologically diverse but morphologically uniform, with pyramidal-type dendritic arbors and locally ramifying axons, including branches extending into L2/3. Our findings therefore identify pyramidal neurons in M1 with the expected prototypical circuit properties of excitatory L4 neurons, and question the traditional assumption that motor cortex lacks this layer. PMID:25525751

  10. Circuit Controls Turn-On Current

    NASA Technical Reports Server (NTRS)

    Holmes, K. G.

    1972-01-01

    Single choke used in primary circuit with diode arrangement, maintaining dc current flow through choke and setting up a unidirectional magnetic field, limits turn-on current of transformer-rectifier power supply. Technique reduces number and weight of components and minimizes effect of initial inrush surge current on source.

  11. Cerebellum involvement in cortical sensorimotor circuits for the control of voluntary movements.

    PubMed

    Proville, Rémi D; Spolidoro, Maria; Guyon, Nicolas; Dugué, Guillaume P; Selimi, Fekrije; Isope, Philippe; Popa, Daniela; Léna, Clément

    2014-09-01

    Sensorimotor integration is crucial to perception and motor control. How and where this process takes place in the brain is still largely unknown. Here we analyze the cerebellar contribution to sensorimotor integration in the whisker system of mice. We identify an area in the cerebellum where cortical sensory and motor inputs converge at the cellular level. Optogenetic stimulation of this area affects thalamic and motor cortex activity, alters parameters of ongoing movements and thereby modifies qualitatively and quantitatively touch events against surrounding objects. These results shed light on the cerebellum as an active component of sensorimotor circuits and show the importance of sensorimotor cortico-cerebellar loops in the fine control of voluntary movements. PMID:25064850

  12. Field-Oriented Control Of Induction Motors

    NASA Technical Reports Server (NTRS)

    Burrows, Linda M.; Roth, Mary Ellen; Zinger, Don S.

    1993-01-01

    Field-oriented control system provides for feedback control of torque or speed or both. Developed for use with commercial three-phase, 400-Hz, 208-V, 5-hp motor. Systems include resonant power supply operating at 20 kHz. Pulse-population-modulation subsystem selects individual pulses of 20-kHz single-phase waveform as needed to synthesize three waveforms of appropriate lower frequency applied to three phase windings of motor. Electric actuation systems using technology currently being built to peak powers of 70 kW. Amplitude of voltage of effective machine-frequency waveform determined by momentary frequency of pulses, while machine frequency determined by rate of repetition of overall temporal pattern of pulses. System enables independent control of both voltage and frequency.

  13. Two distinct auditory-motor circuits for monitoring speech production as revealed by content-specific suppression of auditory cortex.

    PubMed

    Ylinen, Sari; Nora, Anni; Leminen, Alina; Hakala, Tero; Huotilainen, Minna; Shtyrov, Yury; Mäkelä, Jyrki P; Service, Elisabet

    2015-06-01

    Speech production, both overt and covert, down-regulates the activation of auditory cortex. This is thought to be due to forward prediction of the sensory consequences of speech, contributing to a feedback control mechanism for speech production. Critically, however, these regulatory effects should be specific to speech content to enable accurate speech monitoring. To determine the extent to which such forward prediction is content-specific, we recorded the brain's neuromagnetic responses to heard multisyllabic pseudowords during covert rehearsal in working memory, contrasted with a control task. The cortical auditory processing of target syllables was significantly suppressed during rehearsal compared with control, but only when they matched the rehearsed items. This critical specificity to speech content enables accurate speech monitoring by forward prediction, as proposed by current models of speech production. The one-to-one phonological motor-to-auditory mappings also appear to serve the maintenance of information in phonological working memory. Further findings of right-hemispheric suppression in the case of whole-item matches and left-hemispheric enhancement for last-syllable mismatches suggest that speech production is monitored by 2 auditory-motor circuits operating on different timescales: Finer grain in the left versus coarser grain in the right hemisphere. Taken together, our findings provide hemisphere-specific evidence of the interface between inner and heard speech. PMID:24414279

  14. Diamagnetically Levitating Three Phase Motor with Optical Feedback Control

    NASA Astrophysics Data System (ADS)

    Khanna, Shrey; Nhut Ho, Joe; Irwen, Jonathan; Chih Wang, Wei

    2010-11-01

    This article describes a feasibility study of creating a low friction, low maintenance power delivering motor using a diamagnetically stabilized levitating rotor. The planar rotor described in this article uses a triangular configuration of magnets that rotates due to nine electric coils evenly spaced around the rotor. The principle behind levitation of the rotor and the dynamic forces on it are described in detail. An optical encoder feedback system is designed and fabricated that controls the frequency of the levitating rotor. The current input to the coils is given through a driving circuit that amplifies a DC pulse signal generated by a control algorithm designed in LabVIEW. The driving circuit allows current to flow through one phase at a time, which produces a magnetic field strong enough to spin the rotor. Experiments suggest that the optical encoder feedback control system can do reference tracking on the levitating rotor. The designed control algorithm can drive the rotor to specified reference frequencies up to 1.3 Hz using the optical encoder measurements.

  15. 49 CFR 236.303 - Control circuits for signals, selection through circuit controller operated by switch points or...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-point frogs and derails shall be selected through circuit controller operated directly by switch points... switch, movable-point frog, and derail in the routes governed by such signal. Circuits shall be arranged... when each switch, movable-point frog, and derail in the route is in proper position....

  16. 49 CFR 236.303 - Control circuits for signals, selection through circuit controller operated by switch points or...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-point frogs and derails shall be selected through circuit controller operated directly by switch points... switch, movable-point frog, and derail in the routes governed by such signal. Circuits shall be arranged... when each switch, movable-point frog, and derail in the route is in proper position....

  17. 49 CFR 236.303 - Control circuits for signals, selection through circuit controller operated by switch points or...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-point frogs and derails shall be selected through circuit controller operated directly by switch points... switch, movable-point frog, and derail in the routes governed by such signal. Circuits shall be arranged... when each switch, movable-point frog, and derail in the route is in proper position....

  18. 49 CFR 236.303 - Control circuits for signals, selection through circuit controller operated by switch points or...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-point frogs and derails shall be selected through circuit controller operated directly by switch points... switch, movable-point frog, and derail in the routes governed by such signal. Circuits shall be arranged... when each switch, movable-point frog, and derail in the route is in proper position....

  19. 49 CFR 236.303 - Control circuits for signals, selection through circuit controller operated by switch points or...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-point frogs and derails shall be selected through circuit controller operated directly by switch points... switch, movable-point frog, and derail in the routes governed by such signal. Circuits shall be arranged... when each switch, movable-point frog, and derail in the route is in proper position....

  20. Power factor control system for AC induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1977-01-01

    A power factor control system for use with ac induction motors was designed which samples lines voltage and current through the motor and decreases power input to the motor proportional to the detected phase displacement between current and voltage. This system provides, less power to the motor, as it is less loaded.

  1. Control apparatus for internal combustion engine provided with permanent magnet type starting motor

    SciTech Connect

    Naito, S.; Hasegawa, T.

    1988-03-22

    An apparatus for controlling an internal combustion engine provided with a permanent magnet-type starting motor is described comprising: a magnet switch having a switch contact connected between a power source and the starting motor and coil means including series and shunt coils for actuating the contact, a first electric circuit for supplying an electric current from the power source to the starting motor through a key switch and the series coil, a second electric circuit connecting a junction between the key switch and the series coil to the shunt coil for supplying an electric current from the power source through the key switch to the shunt coil, and start controlling means for controlling a given operation of the engine when the starting motor is actuated to rotate for starting the engine. There are comparator means for comparing a voltage at the junction with a predetermined reference voltage thereby determining whether the starting motor is in a predetermined operating condition or not, and means for actuating the starting controlling means upon detecting that the motor is in the predetermined operating condition.

  2. Artificial Intelligent Controller for a DC Motor

    NASA Astrophysics Data System (ADS)

    Delavari, Hadi; Ranjbar Noiey, Abolzafl; Minagar, Sara

    The Speed and position control of DC motors is addressed in this paper. An optimal intelligent control scheme is proposed for the system. Preliminary a PID controller is designed using Genetic Algorithms (GA). The proposed controller is implemented by using optimal integral state feedback control with GA and Kalman filter. In the proposed scheme, performance depends on choosing weighting matrices Q and R in the cost function, and accordingly GA is used to find these proper weighting matrices. In order to reduce the control performance degradation due to system parameters variation, a Kalman filter is gained. The performance of the proposed technique (ISF) is compared with PID controller. Computer simulation validates the effectiveness of the proposed scheme even in presence of uncertainties.

  3. The Development of Oral Motor Control and Language

    ERIC Educational Resources Information Center

    Alcock, Katie

    2006-01-01

    Motor control has long been associated with language skill, in deficits, both acquired and developmental, and in typical development. Most evidence comes from limb praxis however; the link between oral motor control and speech and language has been neglected, despite the fact that most language users talk with their mouths. Oral motor control is…

  4. Modulation of inhibitory corticospinal circuits induced by a nocebo procedure in motor performance.

    PubMed

    Emadi Andani, Mehran; Tinazzi, Michele; Corsi, Nicole; Fiorio, Mirta

    2015-01-01

    As recently demonstrated, a placebo procedure in motor performance increases force production and changes the excitability of the corticospinal system, by enhancing the amplitude of the motor evoked potentials (MEP) and reducing the duration of the cortical silent period (CSP). However, it is not clear whether these neurophysiological changes are related to the behavioural outcome (increased force) or to a general effect of expectation. To clarify this, we investigated the nocebo effect, in which the induced expectation decreases force production. Two groups of healthy volunteers (experimental and control) performed a motor task by pressing a piston with the right index finger. To induce a nocebo effect in the experimental group, low frequency transcutaneous electrical nerve stimulation (TENS) was applied over the index finger with instructions of its detrimental effects on force. To condition the subjects, the visual feedback on their force level was surreptitiously reduced after TENS. Results showed that the experimental group reduced the force, felt weaker and expected a worse performance than the control group, who was not suggested about TENS. By applying transcranial magnetic stimulation over the primary motor cortex, we found that while MEP amplitude remained stable throughout the procedure in both groups, the CSP duration was shorter in the experimental group after the nocebo procedure. The CSP reduction resembled previous findings on the placebo effect, suggesting that expectation of change in performance diminishes the inhibitory activation of the primary motor cortex, independently of the behavioural outcome. PMID:25923533

  5. A neural command circuit for grooming movement control.

    PubMed

    Hampel, Stefanie; Franconville, Romain; Simpson, Julie H; Seeds, Andrew M

    2015-01-01

    Animals perform many stereotyped movements, but how nervous systems are organized for controlling specific movements remains unclear. Here we use anatomical, optogenetic, behavioral, and physiological techniques to identify a circuit in Drosophila melanogaster that can elicit stereotyped leg movements that groom the antennae. Mechanosensory chordotonal neurons detect displacements of the antennae and excite three different classes of functionally connected interneurons, which include two classes of brain interneurons and different parallel descending neurons. This multilayered circuit is organized such that neurons within each layer are sufficient to specifically elicit antennal grooming. However, we find differences in the durations of antennal grooming elicited by neurons in the different layers, suggesting that the circuit is organized to both command antennal grooming and control its duration. As similar features underlie stimulus-induced movements in other animals, we infer the possibility of a common circuit organization for movement control that can be dissected in Drosophila. PMID:26344548

  6. Balanced-Bridge Feedback Control Of Motor

    NASA Technical Reports Server (NTRS)

    Lurie, Boris J.

    1990-01-01

    Sensitivity to variations in electrical and mechanical characteristics reduced. Proposed control system for motor-driven rotary actuator includes three nested feedback loops which, when properly designed, decoupled from each other. Intended to increase accuracy of control by mitigating such degrading effects as vibrations and variations in electrical and mechanical characteristics of structure rotated. Lends itself to optimization of performance via independent optimization of each of three loops. Includes outer, actuator, and driver feedback loops, configured so that actuator is subsystem, and driver is subsystem of actuator.

  7. Efflux Pump Control Alters Synthetic Gene Circuit Function.

    PubMed

    Diao, Junchen; Charlebois, Daniel A; Nevozhay, Dmitry; Bódi, Zoltán; Pál, Csaba; Balázsi, Gábor

    2016-07-15

    Synthetic biology aims to design new biological systems for predefined purposes, such as the controlled secretion of biofuels, pharmaceuticals, or other chemicals. Synthetic gene circuits regulating an efflux pump from the ATP-binding cassette (ABC) protein family could achieve this. However, ABC efflux pumps can also drive out intracellular inducer molecules that control the gene circuits. This will introduce an implicit feedback that could alter gene circuit function in ways that are poorly understood. Here, we used two synthetic gene circuits inducible by tetracycline family molecules to regulate the expression of a yeast ABC pump (Pdr5p) that pumps out the inducer. Pdr5p altered the dose-responses of the original gene circuits substantially in Saccharomyces cerevisiae. While one aspect of the change could be attributed to the efflux pumping function of Pdr5p, another aspect remained unexplained. Quantitative modeling indicated that reduced regulator gene expression in addition to efflux pump function could fully explain the altered dose-responses. These predictions were validated experimentally. Overall, we highlight how efflux pumps can alter gene circuit dynamics and demonstrate the utility of mathematical modeling in understanding synthetic gene circuit function in new circumstances. PMID:27111147

  8. Control of DC Motor Using Different Control Strategies

    NASA Astrophysics Data System (ADS)

    Alasooly, Hedaya; Redha, Mohammed

    2010-06-01

    A simple model of a DC motor driving an inertial load has the angular rate of the load, ω, as the output and applied voltage, νapp, as the input. The ultimate goal of this paper is to control the angular rate by varying the applied voltage using different control strategies for comparison purpose. The comparision is made between the proptional controller, integral controller, propotional and integral controller, phase lag compensator, derivitive controller, lead integral compensator, lead lag compensator, PID controller and the the linear quadratic tracker design based on the optimal control theory.

  9. Active parallel redundancy for electronic integrator-type control circuits

    NASA Technical Reports Server (NTRS)

    Peterson, R. A.

    1971-01-01

    Circuit extends concept of redundant feedback control from type-0 to type-1 control systems. Inactive channels are slaves to the active channel, if latter fails, it is rejected and slave channel is activated. High reliability and elimination of single-component catastrophic failure are important in closed-loop control systems.

  10. Trade Electricity. Motors & Controls--Level 3. Standardized Curriculum.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Office of Occupational and Career Education.

    This curriculum guide consists of seven modules on motors and controls, one of the three divisions of the standardized trade electricity curriculum in high schools in New York City. The seven modules cover the following subjects: energy conservation wiring, direct current (DC) motor repair and rewinding, DC motor controls, alternating current (AC)…

  11. Enriched environment restricted to gestation accelerates the development of sensory and motor circuits in the rat pup.

    PubMed

    Cárdenas, Lorena; García-García, Fabio; Santiago-Roque, Isela; Martínez, Armando J; Coria-Ávila, Genaro A; Corona-Morales, Aleph A

    2015-04-01

    The effects of stimulating environments on the neural plasticity of the adult brain have been well explored; however, how an enriched environment (EE) affects the mother-fetus interaction is poorly understood. We hypothesized that an enriched environment restricted to pregnancy will succeed in accelerating the development of sensory and motor circuits in the offspring. Pregnant Wistar rats were maintained either under a standard condition - two animals per standard cage- or an enriched environment - eight subjects in larger cages with different physical configurations-. After birth, litters from both groups (n=16 per group) were cross-fostered with mothers that were simultaneously maintained under standard environment during pregnancy. Sensory and motor development were studied in the pups of both groups with a battery of reflex and physical tests. Auditory and gait reflexes appeared two days earlier in the offspring of EE rats as compared to control subjects (p<0.05). In addition, EE pups displayed a better performance in righting reflex, inclined board and geotaxis tests (p<0.05). Differences were found even three weeks after birth. We conclude that EE limited to the phase of pregnancy stimulates the development of pups inutero so that they are born with a higher grade of development. PMID:25578294

  12. Regulatory Circuits Controlling Vascular Cell Calcification

    PubMed Central

    Sallam, Tamer; Cheng, Henry; Demer, Linda L.; Tintut, Yin

    2013-01-01

    Vascular calcification is a common feature of chronic kidney disease, cardiovascular disease, and aging. Such abnormal calcium deposition occurs in medial and/or intimal layers of blood vessels as well as in cardiac valves. Once considered a passive and inconsequential finding, the presence of calcium deposits in the vasculature is widely accepted as a predictor of increased morbidity and mortality. Recognition of the importance of vascular calcification in health is driving research into mechanisms that govern its development, progression, and regression. Diverse, but highly interconnected factors, have been implicated, including disturbances in lipid metabolism, oxidative stress, inflammatory cytokines, and mineral and hormonal balances, which can lead to formation of osteoblast-like cells in the artery wall. A tight balance of procalcific and anticalcific regulators dictates the extent of disease. In this review, we focus on the main regulatory circuits modulating vascular cell calcification. PMID:23269436

  13. Magnetic field analysis of Lorentz motors using a novel segmented magnetic equivalent circuit method.

    PubMed

    Qian, Junbing; Chen, Xuedong; Chen, Han; Zeng, Lizhan; Li, Xiaoqing

    2013-01-01

    A simple and accurate method based on the magnetic equivalent circuit (MEC) model is proposed in this paper to predict magnetic flux density (MFD) distribution of the air-gap in a Lorentz motor (LM). In conventional MEC methods, the permanent magnet (PM) is treated as one common source and all branches of MEC are coupled together to become a MEC network. In our proposed method, every PM flux source is divided into three sub-sections (the outer, the middle and the inner). Thus, the MEC of LM is divided correspondingly into three independent sub-loops. As the size of the middle sub-MEC is small enough, it can be treated as an ideal MEC and solved accurately. Combining with decoupled analysis of outer and inner MECs, MFD distribution in the air-gap can be approximated by a quadratic curve, and the complex calculation of reluctances in MECs can be avoided. The segmented magnetic equivalent circuit (SMEC) method is used to analyze a LM, and its effectiveness is demonstrated by comparison with FEA, conventional MEC and experimental results. PMID:23358368

  14. Magnetic Field Analysis of Lorentz Motors Using a Novel Segmented Magnetic Equivalent Circuit Method

    PubMed Central

    Qian, Junbing; Chen, Xuedong; Chen, Han; Zeng, Lizhan; Li, Xiaoqing

    2013-01-01

    A simple and accurate method based on the magnetic equivalent circuit (MEC) model is proposed in this paper to predict magnetic flux density (MFD) distribution of the air-gap in a Lorentz motor (LM). In conventional MEC methods, the permanent magnet (PM) is treated as one common source and all branches of MEC are coupled together to become a MEC network. In our proposed method, every PM flux source is divided into three sub-sections (the outer, the middle and the inner). Thus, the MEC of LM is divided correspondingly into three independent sub-loops. As the size of the middle sub-MEC is small enough, it can be treated as an ideal MEC and solved accurately. Combining with decoupled analysis of outer and inner MECs, MFD distribution in the air-gap can be approximated by a quadratic curve, and the complex calculation of reluctances in MECs can be avoided. The segmented magnetic equivalent circuit (SMEC) method is used to analyze a LM, and its effectiveness is demonstrated by comparison with FEA, conventional MEC and experimental results. PMID:23358368

  15. Neural Control of Energy Balance: Translating Circuits to Therapies

    PubMed Central

    Gautron, Laurent; Elmquist, Joel K.; Williams, Kevin W.

    2015-01-01

    Recent insights into the neural circuits controlling energy balance and glucose homeostasis have rekindled the hope for development of novel treatments for obesity and diabetes. However, many therapies contribute relatively modest beneficial gains with accompanying side effects, and the mechanisms of action for other interventions remain undefined. This Review summarizes current knowledge linking the neural circuits regulating energy and glucose balance with current and potential pharmacotherapeutic and surgical interventions for the treatment of obesity and diabetes. PMID:25815991

  16. A model for reverberating circuits with controlled feedback

    NASA Astrophysics Data System (ADS)

    Rodrigues, Vanessa de Freitas; de Castro, Maria Clícia Stelling; Wedemann, Roseli Suzi; Cortez, Celia Martins

    2015-12-01

    We studied the behavior of a mathematic-computational model for a reverberating neuronal circuit with controlled feedback, verifying the output pattern of the circuit, by means simulations using a program in language C++. Using values obtained from surveying the literature from animal experiments, we observed that the model was able to reproduce the polissynaptic activity of a neuron group of a vigil rat, with looping time of three neurons of the order of magnitude of 102 ms.

  17. One hand clapping: lateralization of motor control

    PubMed Central

    Welniarz, Quentin; Dusart, Isabelle; Gallea, Cécile; Roze, Emmanuel

    2015-01-01

    Lateralization of motor control refers to the ability to produce pure unilateral or asymmetric movements. It is required for a variety of coordinated activities, including skilled bimanual tasks and locomotion. Here we discuss the neuroanatomical substrates and pathophysiological underpinnings of lateralized motor outputs. Significant breakthroughs have been made in the past few years by studying the two known conditions characterized by the inability to properly produce unilateral or asymmetric movements, namely human patients with congenital “mirror movements” and model rodents with a “hopping gait”. Whereas mirror movements are associated with altered interhemispheric connectivity and abnormal corticospinal projections, abnormal spinal cord interneurons trajectory is responsible for the “hopping gait”. Proper commissural axon guidance is a critical requirement for these mechanisms. Interestingly, the analysis of these two conditions reveals that the production of asymmetric movements involves similar anatomical and functional requirements but in two different structures: (i) lateralized activation of the brain or spinal cord through contralateral silencing by cross-midline inhibition; and (ii) unilateral transmission of this activation, resulting in lateralized motor output. PMID:26082690

  18. Laminar Analysis of Excitatory Local Circuits in Vibrissal Motor and Sensory Cortical Areas

    PubMed Central

    Hooks, B. M.; Hires, S. Andrew; Zhang, Ying-Xin; Huber, Daniel; Petreanu, Leopoldo; Svoboda, Karel; Shepherd, Gordon M. G.

    2011-01-01

    Rodents move their whiskers to locate and identify objects. Cortical areas involved in vibrissal somatosensation and sensorimotor integration include the vibrissal area of the primary motor cortex (vM1), primary somatosensory cortex (vS1; barrel cortex), and secondary somatosensory cortex (S2). We mapped local excitatory pathways in each area across all cortical layers using glutamate uncaging and laser scanning photostimulation. We analyzed these maps to derive laminar connectivity matrices describing the average strengths of pathways between individual neurons in different layers and between entire cortical layers. In vM1, the strongest projection was L2/3→L5. In vS1, strong projections were L2/3→L5 and L4→L3. L6 input and output were weak in both areas. In S2, L2/3→L5 exceeded the strength of the ascending L4→L3 projection, and local input to L6 was prominent. The most conserved pathways were L2/3→L5, and the most variable were L4→L2/3 and pathways involving L6. Local excitatory circuits in different cortical areas are organized around a prominent descending pathway from L2/3→L5, suggesting that sensory cortices are elaborations on a basic motor cortex-like plan. PMID:21245906

  19. Powerline Coupler for Windmill Motor/Generators

    NASA Technical Reports Server (NTRS)

    Nola, F.

    1985-01-01

    Efficiency at low windspeed increased by firing-angle control. Power coupled from wind-driven induction motor/generator to ac powerline with help from circuit. Circuit reduces power consumed by field windings thereby improving efficiency at low windspeeds. Circuit includes zerocrossing detector, ramp generator and comparator similar to those used to set firing angles for thyristors in power factor motor controllers.

  20. A voice coil motor based measuring force control system for tactile scanning profiler

    NASA Astrophysics Data System (ADS)

    Feng, Shengdong; Liu, Xiaojun; Chen, Liangzhou; Zhou, Liping; Lu, Wenlong

    2015-02-01

    In tactile scanning profiler, the measuring force would change in a wide range when it was used for profile measurement in a large range, which could possibly destroy the measured surface. To solve the problem, measuring force control system for tactile scanning profiler was needed. In the paper, a voice coil motor-based measuring force control system for tactile scanning profiler was designed. In the design, a low stiffness coefficient spring was used to provide contact force, while a voice coil motor (VCM) to balance the spring force so that the contact force could be kept for constant measuring force. A VCM was designed specially, and for active measuring force control, a precision current source circuit under the control of a DSP unit was designed to drive the VCM. The performance of voice coil motor based measuring force control system had been tested, and its good characteristics were verified.

  1. 49 CFR 236.402 - Signals controlled by track circuits and control operator.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Traffic Control Systems Standards § 236.402 Signals controlled by track circuits and control operator. The control circuits for home signal aspects with indications more favorable...

  2. 49 CFR 236.402 - Signals controlled by track circuits and control operator.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Traffic Control Systems Standards § 236.402 Signals controlled by track circuits and control operator. The control circuits for home signal aspects with indications more favorable...

  3. 49 CFR 236.402 - Signals controlled by track circuits and control operator.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Traffic Control Systems Standards § 236.402 Signals controlled by track circuits and control operator. The control circuits for home signal aspects with indications more favorable...

  4. 49 CFR 236.402 - Signals controlled by track circuits and control operator.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Traffic Control Systems Standards § 236.402 Signals controlled by track circuits and control operator. The control circuits for home signal aspects with indications more favorable...

  5. 49 CFR 236.402 - Signals controlled by track circuits and control operator.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Traffic Control Systems Standards § 236.402 Signals controlled by track circuits and control operator. The control circuits for home signal aspects with indications more favorable...

  6. Design of a Mode Conversion Ultrasonic Motor for Position Control

    NASA Technical Reports Server (NTRS)

    LeLetty, Ronan; Bouchilloux, Philippe; Claeyssen, Frank; Lhermet, Nicolas

    1996-01-01

    The many useful characteristics of ultrasonic motors, such as high holding torques, and high torque at low speeds, have made them the subject of increasing interest. In addition, several of their characteristics make them attractive for aerospace applications: they have a torque to weight ratio, and they require neither gearing mechanisms nor lubrication. Moreover, they create negligible magnetic fields, and conversely, they are not affected by external magnetic fields. Ultrasonic motors based on bolt-tightened structures offer simplicity and high stress capability. They use the inverse piezoelectric effect in the stator to produce vibrational energy, which is transferred to the rotor by friction. We designed a bolt-tightened ultrasonic motor using numerical modelling tools (finite element and electromechanical circuit analyses), creating an equivalent circuit model that takes into account the electromechanical energy conversion in the stator and the contact between the stator and the rotor. Analysis of the circuit gives insight into the behavior of the motor and allows its performance to be calculated. Two prototypes of the motor were built; their transient responses and other quantities, such as starting torque, were measured. In this paper, we discuss the numerical and the experimental results, and demonstrate the usefulness of numerical analysis in designing ultrasonic motors and estimating their performance.

  7. Summary of electric vehicle dc motor-controller tests

    SciTech Connect

    McBrien, E F; Tryon, H B

    1982-09-01

    Available performance data for production motors are usually of marginal value to the electric vehicle designer. To provide at least a partial remedy to this situation, tests of typical dc propulsion motors and controllers were conducted as part of the DOE Electric Vehicle Program. The objectives of this program were to evaluate the differences in the performance of dc motors when operating with chopper-type controllers and when operating on direct current; and to gain an understanding of the interactions between the motor and the controller which cause these differences. Toward this end, motor-controller tests performed by the NASA Lewis Research Center provided some of the first published data that quantified motor efficiency variations for both ripple-free (straight dc) and chopper modes of operation. Test and analysis work at the University of Pittsburgh explored motor-controller relationships in greater depth. And to provide additional data, 3E Vehicles tested two small motors, both on a dynamometer and in a vehicle, and the Eaton Corporation tested larger motors, using sophisticated instrumentation and digital processing techniques. All the motors tested were direct-current types. Of the separately excited types, seven were series wound and two were shunt wound. One self-excited permanent magnet type was also tested. Four of the series wound motors used brush shifting to obtain good commutation. In almost all cases, controller limitations constrained the test envelope so that the full capability of the motors could not be explored.

  8. Rapid Mechanically Controlled Rewiring of Neuronal Circuits.

    PubMed

    Magdesian, Margaret H; Lopez-Ayon, G Monserratt; Mori, Megumi; Boudreau, Dominic; Goulet-Hanssens, Alexis; Sanz, Ricardo; Miyahara, Yoichi; Barrett, Christopher J; Fournier, Alyson E; De Koninck, Yves; Grütter, Peter

    2016-01-20

    CNS injury may lead to permanent functional deficits because it is still not possible to regenerate axons over long distances and accurately reconnect them with an appropriate target. Using rat neurons, microtools, and nanotools, we show that new, functional neurites can be created and precisely positioned to directly (re)wire neuronal networks. We show that an adhesive contact made onto an axon or dendrite can be pulled to initiate a new neurite that can be mechanically guided to form new synapses at up to 0.8 mm distance in <1 h. Our findings challenge current understanding of the limits of neuronal growth and have direct implications for the development of new therapies and surgical techniques to achieve functional regeneration. Significance statement: Brain and spinal cord injury may lead to permanent disability and death because it is still not possible to regenerate neurons over long distances and accurately reconnect them with an appropriate target. Using microtools and nanotools we have developed a new method to rapidly initiate, elongate, and precisely connect new functional neuronal circuits over long distances. The extension rates achieved are ≥60 times faster than previously reported. Our findings have direct implications for the development of new therapies and surgical techniques to achieve functional regeneration after trauma and in neurodegenerative diseases. It also opens the door for the direct wiring of robust brain-machine interfaces as well as for investigations of fundamental aspects of neuronal signal processing and neuronal function. PMID:26791225

  9. Cortical feedback control of olfactory bulb circuits.

    PubMed

    Boyd, Alison M; Sturgill, James F; Poo, Cindy; Isaacson, Jeffry S

    2012-12-20

    Olfactory cortex pyramidal cells integrate sensory input from olfactory bulb mitral and tufted (M/T) cells and project axons back to the bulb. However, the impact of cortical feedback projections on olfactory bulb circuits is unclear. Here, we selectively express channelrhodopsin-2 in olfactory cortex pyramidal cells and show that cortical feedback projections excite diverse populations of bulb interneurons. Activation of cortical fibers directly excites GABAergic granule cells, which in turn inhibit M/T cells. However, we show that cortical inputs preferentially target short axon cells that drive feedforward inhibition of granule cells. In vivo, activation of olfactory cortex that only weakly affects spontaneous M/T cell firing strongly gates odor-evoked M/T cell responses: cortical activity suppresses odor-evoked excitation and enhances odor-evoked inhibition. Together, these results indicate that although cortical projections have diverse actions on olfactory bulb microcircuits, the net effect of cortical feedback on M/T cells is an amplification of odor-evoked inhibition. PMID:23259951

  10. Reducing Stepping-Motor Power Consumption

    NASA Technical Reports Server (NTRS)

    Williams, C. J.

    1985-01-01

    Direct-current stepping motors used in computer peripherals, process control, and precision remote-positioning equipment constantly dissipate power and create heat even when not moving. Circuit design energizes stepper motor only when pulses are present on control input.