Science.gov

Sample records for motor skills matter

  1. White Matter Microstructure Changes Induced by Motor Skill Learning Utilizing a Body Machine Interface

    PubMed Central

    Wang, Xue; Casadio, Maura; Weber, Kenneth A.; Mussa-Ivaldi, Ferdinando A.; Parrish, Todd B.

    2014-01-01

    The purpose of this study is to identify white matter microstructure changes following bilateral upper extremity motor skill training to increase our understanding of learning-induced structural plasticity and enhance clinical strategies in physical rehabilitation. Eleven healthy subjects performed two visuo-spatial motor training tasks over 9 sessions (2–3 sessions per week). Subjects controlled a cursor with bilateral simultaneous movements of the shoulders and upper arms using a body machine interface. Before the start and within 2 days of the completion of training, whole brain diffusion tensor MR imaging data were acquired. Motor training increased fractional anisotropy (FA) values in the posterior and anterior limbs of the internal capsule, the corona radiata, and the body of the corpus callosum by 4.19% on average indicating white matter microstructure changes induced by activity-dependent modulation of axon number, axon diameter, or myelin thickness. These changes may underlie the functional reorganization associated with motor skill learning. PMID:24220038

  2. Motor Skill Learning Induces Changes in White Matter Microstructure and Myelination

    PubMed Central

    Sampaio-Baptista, Cassandra; Khrapitchev, Alexandre A.; Foxley, Sean; Schlagheck, Theresa; Scholz, Jan; Jbabdi, Saad; DeLuca, Gabriele C.; Miller, Karla L.; Taylor, Amy; Thomas, Nagheme; Kleim, Jeffrey; Sibson, Nicola R.; Bannerman, David

    2013-01-01

    Learning a novel motor skill is associated with well characterized structural and functional plasticity in the rodent motor cortex. Furthermore, neuroimaging studies of visuomotor learning in humans have suggested that structural plasticity can occur in white matter (WM), but the biological basis for such changes is unclear. We assessed the influence of motor skill learning on WM structure within sensorimotor cortex using both diffusion MRI fractional anisotropy (FA) and quantitative immunohistochemistry. Seventy-two adult (male) rats were randomly assigned to one of three conditions (skilled reaching, unskilled reaching, and caged control). After 11 d of training, postmortem diffusion MRI revealed significantly higher FA in the skilled reaching group compared with the control groups, specifically in the WM subjacent to the sensorimotor cortex contralateral to the trained limb. In addition, within the skilled reaching group, FA across widespread regions of WM in the contralateral hemisphere correlated significantly with learning rate. Immunohistological analysis conducted on a subset of 24 animals (eight per group) revealed significantly increased myelin staining in the WM underlying motor cortex in the hemisphere contralateral (but not ipsilateral) to the trained limb for the skilled learning group versus the control groups. Within the trained hemisphere (but not the untrained hemisphere), myelin staining density correlated significantly with learning rate. Our results suggest that learning a novel motor skill induces structural change in task-relevant WM pathways and that these changes may in part reflect learning-related increases in myelination. PMID:24336716

  3. Motor skill learning induces changes in white matter microstructure and myelination.

    PubMed

    Sampaio-Baptista, Cassandra; Khrapitchev, Alexandre A; Foxley, Sean; Schlagheck, Theresa; Scholz, Jan; Jbabdi, Saad; DeLuca, Gabriele C; Miller, Karla L; Taylor, Amy; Thomas, Nagheme; Kleim, Jeffrey; Sibson, Nicola R; Bannerman, David; Johansen-Berg, Heidi

    2013-12-11

    Learning a novel motor skill is associated with well characterized structural and functional plasticity in the rodent motor cortex. Furthermore, neuroimaging studies of visuomotor learning in humans have suggested that structural plasticity can occur in white matter (WM), but the biological basis for such changes is unclear. We assessed the influence of motor skill learning on WM structure within sensorimotor cortex using both diffusion MRI fractional anisotropy (FA) and quantitative immunohistochemistry. Seventy-two adult (male) rats were randomly assigned to one of three conditions (skilled reaching, unskilled reaching, and caged control). After 11 d of training, postmortem diffusion MRI revealed significantly higher FA in the skilled reaching group compared with the control groups, specifically in the WM subjacent to the sensorimotor cortex contralateral to the trained limb. In addition, within the skilled reaching group, FA across widespread regions of WM in the contralateral hemisphere correlated significantly with learning rate. Immunohistological analysis conducted on a subset of 24 animals (eight per group) revealed significantly increased myelin staining in the WM underlying motor cortex in the hemisphere contralateral (but not ipsilateral) to the trained limb for the skilled learning group versus the control groups. Within the trained hemisphere (but not the untrained hemisphere), myelin staining density correlated significantly with learning rate. Our results suggest that learning a novel motor skill induces structural change in task-relevant WM pathways and that these changes may in part reflect learning-related increases in myelination. PMID:24336716

  4. Motor skill learning is associated with diffusion characteristics of white matter in individuals with chronic stroke

    PubMed Central

    Borich, Michael R.; Brown, Katlyn E.; Boyd, Lara A.

    2013-01-01

    Background and Purpose Imaging advances allow investigation of white matter following stroke; a growing body of literature has shown links between diffusion-based measures of white matter microstructure and motor function. However, the relationship between these measures and motor skill learning has not been considered in individuals with stroke. The aim of this study was to investigate the relationships between post-training white matter microstructural status, as indexed by diffusion tensor imaging (DTI) within the ipsilesional posterior limb of the internal capsule (PLIC) and learning of a novel motor task in individuals with chronic stroke. Methods Thirteen participants with chronic stroke and nine healthy controls practiced a visuomotor pursuit task across five sessions. Change in motor behavior associated with learning was indexed by comparing baseline performance with a delayed retention test. Fractional anisotropy (FA) indexed at the retention test was the primary DTI-derived outcome measure. Results In individuals with chronic stroke, we discovered an association between post-training ipsilesional PLIC FA and the magnitude of change associated with motor learning; hierarchical multiple linear regression analyses revealed that the combination of age, time post stroke and ipsilesional PLIC FA post-training was associated with motor learning related change (R2=0.649, p=0.02). Baseline motor performance was not related to post-training ipsilesional PLIC FA. Discussion and Conclusions Diffusion characteristics of post-training ipsilesional PLIC were linked to magnitude of change in skilled motor behavior. These results imply that the microstructural properties of regional white matter indexed by diffusion behavior may be an important factor to consider when determining potential response to rehabilitation in persons with stroke. Video Abstract available (See Video, Supplemental Digital Content 1.) for more insights from the authors. PMID:23934017

  5. A Matter of Balance: Motor Control is Related to Children's Spatial and Proportional Reasoning Skills.

    PubMed

    Frick, Andrea; Möhring, Wenke

    2015-01-01

    Recent research has shown close links between spatial and mathematical thinking and between spatial abilities and motor skills. However, longitudinal research examining the relations between motor, spatial, and mathematical skills is rare, and the nature of these relations remains unclear. The present study thus investigated the relation between children's motor control and their spatial and proportional reasoning. We measured 6-year-olds' spatial scaling (i.e., the ability to reason about different-sized spaces), their mental transformation skills, and their ability to balance on one leg as an index for motor control. One year later (N = 126), we tested the same children's understanding of proportions. We also assessed several control variables (verbal IQ and socio-economic status) as well as inhibitory control, visuo-spatial and verbal working memory. Stepwise hierarchical regressions showed that, after accounting for effects of control variables, children's balance skills significantly increased the explained variance in their spatial performance and proportional reasoning. Our results suggest specific relations between balance skills and spatial as well as proportional reasoning skills that cannot be explained by general differences in executive functioning or intelligence. PMID:26793157

  6. Motor skill acquisition.

    PubMed

    Higgins, S

    1991-02-01

    The purpose of this article is to provide a framework for understanding motor skill and the process by which it is acquired. A selective historical overview is presented to demonstrate how the study of movement is a necessary preliminary to the study of motor skill learning. The phenomenon of skill is explored as an inherent feature of goal-directed organisms whose effective functioning depends on achieving a degree of competence in solving problems that are encountered in the everyday world. The relationship between problems and solutions is discussed. Movement is examined as a problem-solving tool and as the means by which the individual expresses skill. Factors that influence the individual's level of skill are fully explored, along with the implications for functional behavior. The creative use of resources in problem solving is thoroughly examined, and tasks are discussed in terms of the demands imposed on the individual. PMID:1989008

  7. A Matter of Balance: Motor Control is Related to Children’s Spatial and Proportional Reasoning Skills

    PubMed Central

    Frick, Andrea; Möhring, Wenke

    2016-01-01

    Recent research has shown close links between spatial and mathematical thinking and between spatial abilities and motor skills. However, longitudinal research examining the relations between motor, spatial, and mathematical skills is rare, and the nature of these relations remains unclear. The present study thus investigated the relation between children’s motor control and their spatial and proportional reasoning. We measured 6-year-olds’ spatial scaling (i.e., the ability to reason about different-sized spaces), their mental transformation skills, and their ability to balance on one leg as an index for motor control. One year later (N = 126), we tested the same children’s understanding of proportions. We also assessed several control variables (verbal IQ and socio-economic status) as well as inhibitory control, visuo-spatial and verbal working memory. Stepwise hierarchical regressions showed that, after accounting for effects of control variables, children’s balance skills significantly increased the explained variance in their spatial performance and proportional reasoning. Our results suggest specific relations between balance skills and spatial as well as proportional reasoning skills that cannot be explained by general differences in executive functioning or intelligence. PMID:26793157

  8. Retention of Motor Skills: Review.

    ERIC Educational Resources Information Center

    Schendel, J. D.; And Others

    A summary of an extensive literature survey deals with the variables known or suspected to affect the retention of learned motor behaviors over lengthy no-practice intervals. Emphasis was given to research conducted by or for the military. The variables that may affect the retention of motor skills were dichotomized into task variables and…

  9. Motor skill learning requires active central myelination.

    PubMed

    McKenzie, Ian A; Ohayon, David; Li, Huiliang; de Faria, Joana Paes; Emery, Ben; Tohyama, Koujiro; Richardson, William D

    2014-10-17

    Myelin-forming oligodendrocytes (OLs) are formed continuously in the healthy adult brain. In this work, we study the function of these late-forming cells and the myelin they produce. Learning a new motor skill (such as juggling) alters the structure of the brain's white matter, which contains many OLs, suggesting that late-born OLs might contribute to motor learning. Consistent with this idea, we show that production of newly formed OLs is briefly accelerated in mice that learn a new skill (running on a "complex wheel" with irregularly spaced rungs). By genetically manipulating the transcription factor myelin regulatory factor in OL precursors, we blocked production of new OLs during adulthood without affecting preexisting OLs or myelin. This prevented the mice from mastering the complex wheel. Thus, generation of new OLs and myelin is important for learning motor skills. PMID:25324381

  10. Stages of motor skill learning.

    PubMed

    Luft, Andreas R; Buitrago, Manuel M

    2005-12-01

    Successful learning of a motor skill requires repetitive training. Once the skill is mastered, it can be remembered for a long period of time. The durable memory makes motor skill learning an interesting paradigm for the study of learning and memory mechanisms. To gain better understanding, one scientific approach is to dissect the process into stages and to study these as well as their interactions. This article covers the growing evidence that motor skill learning advances through stages, in which different storage mechanisms predominate. The acquisition phase is characterized by fast (within session) and slow learning (between sessions). For a short period following the initial training sessions, the skill is labile to interference by other skills and by protein synthesis inhibition, indicating that consolidation processes occur during rest periods between training sessions. During training as well as rest periods, activation in different brain regions changes dynamically. Evidence for stages in motor skill learning is provided by experiments using behavioral, electrophysiological, functional imaging, and cellular/molecular methods. PMID:16385137

  11. Improving Motor Skills through Listening

    ERIC Educational Resources Information Center

    Wang, Lin

    2004-01-01

    In this article, the author discusses how to improve a child's motor skills through listening by using three simple steps--recording the auditory model, determining when to use the auditory model, and considering where to use the auditory model. She points out the importance of using a demonstration technique that helps learners understand the…

  12. An Operational Model of Motor Skill Diagnosis.

    ERIC Educational Resources Information Center

    Pinheiro, Victor E. D.; Simon, Herbert A.

    1992-01-01

    The ability to diagnose motor skills is important for physical educators. The paper discusses processes critical in motor skill diagnosis, proposing an operational model of motor skill development diagnosis for teacher educators and practitioners. The model provides a foundation upon which to build instructional strategies for developing…

  13. Early Childhood Motor Skills Information Packet.

    ERIC Educational Resources Information Center

    Juelsgaard, Cheri

    This activity book is designed to assist teachers in enhancing preschool children's motor skills, physical development, and social skills, and to build young children's self-esteem. The activities are designed for both disabled and nondisabled children. The first section of the book suggests specific activities in 13 categories of motor skills:…

  14. On the Problem of Motor Skill Development

    ERIC Educational Resources Information Center

    Clark, Jane E.

    2007-01-01

    As a way to address the serious obesity epidemic in the United States, many physical education classes have become fitness centers designed to raise heart rates and burn calories. An unintended consequence of this emphasis on fitness, however, is the lack of attention to motor skill development. Motor skills do not develop miraculously from one…

  15. Motor skill depends on knowledge of facts

    PubMed Central

    Stanley, Jason; Krakauer, John W.

    2013-01-01

    Those in 20th century philosophy, psychology, and neuroscience who have discussed the nature of skilled action have, for the most part, accepted the view that being skilled at an activity is independent of knowing facts about that activity, i.e., that skill is independent of knowledge of facts. In this paper we question this view of motor skill. We begin by situating the notion of skill in historical and philosophical context. We use the discussion to explain and motivate the view that motor skill depends upon knowledge of facts. This conclusion seemingly contradicts well-known results in cognitive science. It is natural, on the face of it, to take the case of H.M., the seminal case in cognitive neuroscience that led to the discovery of different memory systems, as providing powerful evidence for the independence of knowledge and skill acquisition. After all, H.M. seems to show that motor learning is retained even when previous knowledge about the activity has been lost. Improvements in skill generally require increased precision of selected actions, which we call motor acuity. Motor acuity may indeed not require propositional knowledge and has direct parallels with perceptual acuity. We argue, however, that reflection on the specifics of H.M.'s case, as well as other research on the nature of skill, indicates that learning to become skilled at a motor task, for example tennis, depends also on knowledge-based selection of the right actions. Thus skilled activity requires both acuity and knowledge, with both increasing with practice. The moral of our discussion ranges beyond debates about motor skill; we argue that it undermines any attempt to draw a distinction between practical and theoretical activities. While we will reject the independence of skill and knowledge, our discussion leaves open several different possible relations between knowledge and skill. Deciding between them is a task to be resolved by future research. PMID:24009571

  16. Detection and Prevalence of Motor Skill Disorders

    ERIC Educational Resources Information Center

    Nikolic, Snezana J.; Ilic-Stosovic, Danijela D.

    2009-01-01

    The main goal of this research was to establish the prevalence, form of manifestation, level and kind of motor skill disorders in three area of motor development functioning: neuromaturation, coordination and balance. The sample included 1165 children, between 6.5 and 11 years of age. The protocol was constructed and contained tests for the…

  17. Activities to Develop Your Students' Motor Skills.

    ERIC Educational Resources Information Center

    Eastman, Mary Kay; Safran, Joan S.

    1986-01-01

    Instructions and illustrations support this discussion of learning activities designed to remediate deficiences and build skills in balance and/or motor skills for mildly handicapped students who may not have access to physical therapy or adaptive physical education. Appropriate for both regular and special classes, activities include arm…

  18. Sleep quality influences subsequent motor skill acquisition.

    PubMed

    Appleman, Erica R; Albouy, Genevieve; Doyon, Julien; Cronin-Golomb, Alice; King, Bradley R

    2016-06-01

    While the influence of sleep on motor memory consolidation has been extensively investigated, its relation to initial skill acquisition is less well understood. The purpose of the present study was to investigate the influence of sleep quality and quantity on subsequent motor skill acquisition in young adults without sleep disorders. Fifty-five healthy adults (mean age = 23.8 years; 34 women) wore actigraph wristbands for 4 nights, which provided data on sleep patterns before the experiment, and then returned to the laboratory to engage in a motor sequence learning task (explicit 5-item finger sequence tapping task). Indicators of sleep quality and quantity were then regressed on a measure of motor skill acquisition (Gains Within Training, GWT). Wake After Sleep Onset (WASO; i.e., the total amount of time the participants spent awake after falling asleep) was significantly and negatively related to GWT. This effect was not because of general arousal level, which was measured immediately before the motor task. Conversely, there was no relationship between GWT and sleep duration or self-reported sleep quality. These results indicate that sleep quality, as assessed by WASO and objectively measured with actigraphy before the motor task, significantly impacts motor skill acquisition in young healthy adults without sleep disorders. (PsycINFO Database Record PMID:26881313

  19. Motor Skill Acquisition Promotes Human Brain Myelin Plasticity.

    PubMed

    Lakhani, Bimal; Borich, Michael R; Jackson, Jacob N; Wadden, Katie P; Peters, Sue; Villamayor, Anica; MacKay, Alex L; Vavasour, Irene M; Rauscher, Alexander; Boyd, Lara A

    2016-01-01

    Experience-dependent structural changes are widely evident in gray matter. Using diffusion weighted imaging (DWI), the neuroplastic effect of motor training on white matter in the brain has been demonstrated. However, in humans it is not known whether specific features of white matter relate to motor skill acquisition or if these structural changes are associated to functional network connectivity. Myelin can be objectively quantified in vivo and used to index specific experience-dependent change. In the current study, seventeen healthy young adults completed ten sessions of visuomotor skill training (10,000 total movements) using the right arm. Multicomponent relaxation imaging was performed before and after training. Significant increases in myelin water fraction, a quantitative measure of myelin, were observed in task dependent brain regions (left intraparietal sulcus [IPS] and left parieto-occipital sulcus). In addition, the rate of motor skill acquisition and overall change in myelin water fraction in the left IPS were negatively related, suggesting that a slower rate of learning resulted in greater neuroplastic change. This study provides the first evidence for experience-dependent changes in myelin that are associated with changes in skilled movements in healthy young adults. PMID:27293906

  20. Motor Skill Acquisition Promotes Human Brain Myelin Plasticity

    PubMed Central

    Lakhani, Bimal; Borich, Michael R.; Jackson, Jacob N.; Wadden, Katie P.; Peters, Sue; Villamayor, Anica; MacKay, Alex L.; Vavasour, Irene M.; Rauscher, Alexander; Boyd, Lara A.

    2016-01-01

    Experience-dependent structural changes are widely evident in gray matter. Using diffusion weighted imaging (DWI), the neuroplastic effect of motor training on white matter in the brain has been demonstrated. However, in humans it is not known whether specific features of white matter relate to motor skill acquisition or if these structural changes are associated to functional network connectivity. Myelin can be objectively quantified in vivo and used to index specific experience-dependent change. In the current study, seventeen healthy young adults completed ten sessions of visuomotor skill training (10,000 total movements) using the right arm. Multicomponent relaxation imaging was performed before and after training. Significant increases in myelin water fraction, a quantitative measure of myelin, were observed in task dependent brain regions (left intraparietal sulcus [IPS] and left parieto-occipital sulcus). In addition, the rate of motor skill acquisition and overall change in myelin water fraction in the left IPS were negatively related, suggesting that a slower rate of learning resulted in greater neuroplastic change. This study provides the first evidence for experience-dependent changes in myelin that are associated with changes in skilled movements in healthy young adults. PMID:27293906

  1. Brainstem White Matter Predicts Individual Differences in Manual Motor Difficulties and Symptom Severity in Autism

    ERIC Educational Resources Information Center

    Travers, Brittany G.; Bigler, Erin D.; Tromp, Do P. M.; Adluru, Nagesh; Destiche, Dan; Samsin, Danica; Froehlich, Alyson; Prigge, Molly D. B.; Duffield, Tyler C.; Lange, Nicholas; Alexander, Andrew L.; Lainhart, Janet E.

    2015-01-01

    Mounting evidence suggests that poorer motor skills may be related to more severe autism symptoms. This study investigated if atypical white matter microstructure in the brain mediated the relationship between motor skills and ASD symptom severity. Sixty-seven males with ASD and 42 males with typical development (5-33 years old) completed a…

  2. The Relationship between Fine-Motor Play and Fine-Motor Skill

    ERIC Educational Resources Information Center

    Marr, Deborah; Cermak, Sharon; Cohn, Ellen S.; Henderson, Anne

    2004-01-01

    This study examined the relationship between free-play choices and fine-motor skill in 4-year-old children attending Head Start. Children with poor fine-motor skill were matched for age and gender with children in the same classroom that exhibited good fine-motor skill. Each pair was observed during free-play sessions to examine the degree of…

  3. Female choice for male motor skills

    PubMed Central

    Barske, Julia; Schlinger, Barney A.; Wikelski, Martin; Fusani, Leonida

    2011-01-01

    Sexual selection was proposed by Darwin to explain the evolution of male sexual traits such as ornaments and elaborate courtship displays. Empirical and theoretical studies have traditionally focused on ornaments; the reasons for the evolution of elaborate, acrobatic courtship displays remain unclear. We addressed the hypothesis that females choose males on the basis of subtle differences in display performance, indicating motor skills that facilitate survival. Male golden-collared manakins (Manacus vitellinus) perform elaborate, acrobatic courtship displays. We used high-speed cameras to record the displays of wild males and analysed them in relation to male reproductive success. Females preferred males that performed specific display moves at greater speed, with differences of tens of milliseconds strongly impacting female preference. In additional males, we recorded telemetrically the heart rate during courtship using miniature transmitters and found that courtship is associated with profoundly elevated heart rates, revealing a large metabolic investment. Our study provides evidence that females choose their mates on the basis of subtle differences in motor performance during courtship. We propose that elaborate, acrobatic courtship dances evolve because they reflect motor skills and cardiovascular function of males. PMID:21508030

  4. The Gross Motor Skills of Children with Mild Learning Disabilities

    ERIC Educational Resources Information Center

    Nonis, Karen P.; Jernice, Tan Sing Yee

    2014-01-01

    Many international studies have examined the gross motor skills of children studying in special schools while local studies of such nature are limited. This study investigated the gross motor skills of children with Mild Learning Disabilities (MLD; n = 14, M age = 8.93 years, SD = 0.33) with the Test of Gross Motor Development-2 (TGMD-2, Ulrich,…

  5. Motor Development and Skill Analysis. Connections to Elementary Physical Education.

    ERIC Educational Resources Information Center

    Mielke, Dan; Morrison, Craig

    1985-01-01

    Drawing upon stages of motor development and elements of biomechanics, the authors used anatomical planes as a frame of reference to determine movement patterns and assess readiness to perform movement skills. The combination of determining readiness and analyzing skill enables the teacher to plan proper motor skill activities. (MT)

  6. The Effects of Basketball Basic Skills Training on Gross Motor Skills Development of Female Children

    ERIC Educational Resources Information Center

    Bayazit, Betul

    2015-01-01

    The purpose of this study was to investigate the effects of basketball basic skills training on gross motor skills development of female children in Turkey. For that purpose, 40 female children took part in the study voluntarily. Basketball basic skills test was used to improve the gross motor skills of the female children in the study. Also,…

  7. Microstructural Status of Ipsilesional and Contralesional Corticospinal Tract Correlates with Motor Skill in Chronic Stroke Patients

    PubMed Central

    Schaechter, Judith D.; Fricker, Zachary P.; Perdue, Katherine L.; Helmer, Karl G.; Vangel, Mark G.; Greve, Douglas N.; Makris, Nikos

    2009-01-01

    Greater loss in structural integrity of the ipsilesional corticospinal tract (CST) is associated with poorer motor outcome in hemiparetic stroke patients. Animal models of stroke have demonstrated that structural remodeling of white matter in the ipsilesional and contralesional hemispheres is associated with improved motor recovery. Accordingly, motor recovery in stroke patients may relate to the relative strength of CST degeneration and remodeling. This study examined the relationship between microstructural status of brain white matter tracts, indexed by the fractional anisotropy (FA) metric derived from diffusion tensor imaging (DTI) data, and motor skill of the stroke-affected hand in chronic stroke patients. Voxelwise analysis revealed that motor skill significantly and positively correlated with FA of the ipsilesional and contralesional CST in the patients. Additional voxelwise analyses showed that patients with poorer motor skill had reduced FA of bilateral CST compared to normal control subjects whereas patients with better motor skill had elevated FA of bilateral CST compared to controls. These findings were confirmed using a DTI-tractography method applied to the CST in both hemispheres. The results of this study suggest that the level of motor skill recovery achieved in hemiparetic stroke patients relates to microstructural status of the CST in both the ipsilesional and contralesional hemispheres, which may reflect the net effect of degeneration and remodeling of bilateral CST. PMID:19370766

  8. Young Athletes: A Special Olympics Motor Skill Development Program

    ERIC Educational Resources Information Center

    Favazza, Paddy C.; Siperstein, Gary N.

    2013-01-01

    While motor skills develop naturally among most typically developing preschoolers, young children with disabilities often experience deficits in this area. Therefore, it is important that children with disabilities are provided with "direct and intentional instruction" for motor skill development during the preschool years. One program…

  9. A System of Movement and Motor Skill Challenges for Children

    ERIC Educational Resources Information Center

    Hill, Grant M.; Turner, Bud

    2012-01-01

    Given increasing childhood inactivity and obesity, and minimal time for quality physical education in elementary and secondary schools, it is essential that children are motivated and held accountable for independent motor and movement skill practice. The Movement and Motor Skill Challenge System provides a comprehensive set of stimulating,…

  10. Motor Skills of Toddlers with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Lloyd, Meghann; MacDonald, Megan; Lord, Catherine

    2013-01-01

    With increased interest in the early diagnosis and treatment of children with autism spectrum disorders (ASD), more attention has been called to the motor skills of very young children with ASD. This study describes the gross and fine motor skills of a cross-sectional group of 162 children with ASD between the ages of 12 and 36 months, as well as…

  11. Helping Preschoolers Prepare for Writing: Developing Fine Motor Skills

    ERIC Educational Resources Information Center

    Huffman, J. Michelle; Fortenberry, Callie

    2011-01-01

    Early childhood is the most intensive period for the development of physical skills. Writing progress depends largely on the development of fine motor skills involving small muscle movements of the hand. Young children need to participate in a variety of developmentally appropriate activities intentionally designed to promote fine motor control.…

  12. Measuring Motor Skill Learning--A Practical Application

    ERIC Educational Resources Information Center

    Kovacs, Christopher R.

    2008-01-01

    The assessment of fundamental motor skills in early learners is critical to the overall well-being and physical development of the students within the physical education setting. Olrich (2002) has suggested that any physical education program must be designed to assess both measures of physical fitness and fundamental motor skills in all students.…

  13. Skeletal maturation, fundamental motor skills and motor coordination in children 7-10 years.

    PubMed

    Freitas, Duarte L; Lausen, Berthold; Maia, José António; Lefevre, Johan; Gouveia, Élvio Rúbio; Thomis, Martine; Antunes, António Manuel; Claessens, Albrecht L; Beunen, Gaston; Malina, Robert M

    2015-01-01

    Relationships between skeletal maturation and fundamental motor skills and gross motor coordination were evaluated in 429 children (213 boys and 216 girls) 7-10 years. Skeletal age was assessed (Tanner-Whitehouse 2 method), and stature, body mass, motor coordination (Körperkoordinations Test für Kinder, KTK) and fundamental motor skills (Test of Gross Motor Development, TGMD-2) were measured. Relationships among chronological age, skeletal age (expressed as the standardised residual of skeletal age on chronological age) and body size and fundamental motor skills and motor coordination were analysed with hierarchical multiple regression. Standardised residual of skeletal age on chronological age interacting with stature and body mass explained a maximum of 7.0% of the variance in fundamental motor skills and motor coordination over that attributed to body size per se. Standardised residual of skeletal age on chronological age alone accounted for a maximum of 9.0% of variance in fundamental motor skills, and motor coordination over that attributed to body size per se and interactions between standardised residual of skeletal age on chronological age and body size. In conclusion, skeletal age alone or interacting with body size has a negligible influence on fundamental motor skills and motor coordination in children 7-10 years. PMID:25649360

  14. Fine and gross motor skills: The effects on skill-focused dual-tasks.

    PubMed

    Raisbeck, Louisa D; Diekfuss, Jed A

    2015-10-01

    Dual-task methodology often directs participants' attention towards a gross motor skill involved in the execution of a skill, but researchers have not investigated the comparative effects of attention on fine motor skill tasks. Furthermore, there is limited information about participants' subjective perception of workload with respect to task performance. To examine this, the current study administered the NASA-Task Load Index following a simulated shooting dual-task. The task required participants to stand 15 feet from a projector screen which depicted virtual targets and fire a modified Glock 17 handgun equipped with an infrared laser. Participants performed the primary shooting task alone (control), or were also instructed to focus their attention on a gross motor skill relevant to task execution (gross skill-focused) and a fine motor skill relevant to task execution (fine skill-focused). Results revealed that workload was significantly greater during the fine skill-focused task for both skill levels, but performance was only affected for the lesser-skilled participants. Shooting performance for the lesser-skilled participants was greater during the gross skill-focused condition compared to the fine skill-focused condition. Correlational analyses also demonstrated a significant negative relationship between shooting performance and workload during the gross skill-focused task for the higher-skilled participants. A discussion of the relationship between skill type, workload, skill level, and performance in dual-task paradigms is presented. PMID:26296039

  15. The relationship of motor skills and adaptive behavior skills in young children with autism spectrum disorders

    PubMed Central

    MacDonald, Megan; Lord, Catherine; Ulrich, Dale

    2015-01-01

    Objective To determine the relationship of motor skills and the core behaviors of young children with autism, social affective skills and repetitive behaviors, as indicated through the calibrated autism severity scores. Design The univariate GLM tested the relationship of gross and fine motor skills measured by the gross motor scale and the fine motor scale of the MSEL with autism symptomology as measured by calibrated autism severity scores. Setting Majority of the data collected took place in an autism clinic. Participants A cohort of 159 young children with ASD (n=110), PDD-NOS (n=26) and non-ASD (developmental delay, n=23) between the ages of 12–33 months were recruited from early intervention studies and clinical referrals. Children with non-ASD (developmental delay) were included in this study to provide a range of scores indicted through calibrated autism severity. Interventions Not applicable. Main Outcome Measures The primary outcome measures in this study were calibrated autism severity scores. Results Fine motor skills and gross motor skills significantly predicted calibrated autism severity (p < 0.01). Children with weaker motor skills displayed higher levels of calibrated autism severity. Conclusions The fine and gross motor skills are significantly related to autism symptomology. There is more to focus on and new avenues to explore in the realm of discovering how to implement early intervention and rehabilitation for young children with autism and motor skills need to be a part of the discussion. PMID:25774214

  16. Poor motor skills: a risk marker for bully victimization.

    PubMed

    Bejerot, Susanne; Plenty, Stephanie; Humble, Alice; Humble, Mats B

    2013-01-01

    Children who are clumsy are often bullied. Nevertheless, motor skills have been overlooked in research on bullying victimization. A total of 2,730 Swedish adults (83% females) responded to retrospective questions on bullying, their talents in physical education (i.e., coordination and balls skills) and school academics. Poor talents were used as indicators of poor gross motor skills and poor academic skills. A subset of participants also provided information on educational level in adulthood, childhood obesity, belonging to an ethic minority in school and socioeconomic status relative to schoolmates. A total of 29.4% of adults reported being bullied in school, and 18.4% reported having below average gross motor skills. Of those with below average motor skills, 48.6% were bullied in school. Below average motor skills in childhood were associated with an increased risk (OR 3.01 [95% CI: 1.97-4.60]) of being bullied, even after adjusting for the influence of lower socioeconomic status, poor academic performance, being overweight, and being a bully. Higher odds for bully victimization were also associated with lower socioeconomic status (OR 2.29 [95% CI: 1.45-3.63]), being overweight (OR 1.71 [95% CI: 1.18-2.47]) and being a bully (OR 2.18 [95% CI: 1.53-3.11]). The findings indicate that poor gross motor skills constitute a robust risk-marker for vulnerability for bully victimization. PMID:23784933

  17. Managing Personal Matters. Life Skills. Teacher Edition.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This teacher's guide is designed for use in presenting a six-unit course in managing personal matters that is part of a life skills series intended to help students become more self-sufficient in their personal and professional lives. The course's six instructional units cover these topics: personal records; risk management; health, life, and…

  18. Motor-Skill Learning Is Dependent on Astrocytic Activity

    PubMed Central

    Padmashri, Ragunathan; Suresh, Anand; Boska, Michael D.; Dunaevsky, Anna

    2015-01-01

    Motor-skill learning induces changes in synaptic structure and function in the primary motor cortex through the involvement of a long-term potentiation- (LTP-) like mechanism. Although there is evidence that calcium-dependent release of gliotransmitters by astrocytes plays an important role in synaptic transmission and plasticity, the role of astrocytes in motor-skill learning is not known. To test the hypothesis that astrocytic activity is necessary for motor-skill learning, we perturbed astrocytic function using pharmacological and genetic approaches. We find that perturbation of astrocytes either by selectively attenuating IP3R2 mediated astrocyte Ca2+ signaling or using an astrocyte specific metabolic inhibitor fluorocitrate (FC) results in impaired motor-skill learning of a forelimb reaching-task in mice. Moreover, the learning impairment caused by blocking astrocytic activity using FC was rescued by administration of the gliotransmitter D-serine. The learning impairments are likely caused by impaired LTP as FC blocked LTP in slices and prevented motor-skill training-induced increases in synaptic AMPA-type glutamate receptor in vivo. These results support the conclusion that normal astrocytic Ca2+ signaling during a reaching task is necessary for motor-skill learning. PMID:26346977

  19. Transfer of motor and perceptual skills from basketball to darts

    PubMed Central

    Rienhoff, Rebecca; Hopwood, Melissa J.; Fischer, Lennart; Strauss, Bernd; Baker, Joseph; Schorer, Jörg

    2013-01-01

    The quiet eye is a perceptual skill associated with expertise and superior performance; however, little is known about the transfer of quiet eye across domains. We attempted to replicate previous skill-based differences in quiet eye and investigated whether transfer of motor and perceptual skills occurs between similar tasks. Throwing accuracy and quiet eye duration for skilled and less-skilled basketball players were examined in basketball free throw shooting and the transfer task of dart throwing. Skilled basketball players showed significantly higher throwing accuracy and longer quiet eye duration in the basketball free throw task compared to their less-skilled counterparts. Further, skilled basketball players showed positive transfer from basketball to dart throwing in accuracy but not in quiet eye duration. Our results raise interesting questions regarding the measurement of transfer between skills. PMID:24062703

  20. Initiating a Developmental Motor Skills Program for Identified Primary Students.

    ERIC Educational Resources Information Center

    Harville, Valerie Terrill

    A physical education specialist at an elementary school in one of the fastest growing sections of the country developed and implemented a developmental motor skills program for primary school students. The program focused on: (1) developing a method of referring students for testing; (2) providing a specialized motor diagnostic test; (3) improving…

  1. Assessing Gross Motor Skills of Kosovar Preschool Children

    ERIC Educational Resources Information Center

    Shala, Merita

    2009-01-01

    In the light of the new developments in preschool education in Kosovo, this study attempts to carry out an assessment of the development of gross motor skills of preschool children attending institutional education. The emphasis is on creating a set of tests to measure the motor attainments of these children by conducting assessments of the…

  2. Teaching Motor Skills to Individuals with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Todd, Teri

    2012-01-01

    Autism Spectrum Disorders (ASDs) are commonly characterized by deficits in the social and communication domains. However, up to 80 percent of this population also have poor motor skills. Individuals with an ASD experience difficulties in motor planning, imitation, and postural stability. A better understanding of these deficits and of strategies…

  3. Delayed Motor Skill Acquisition in Kindergarten Children with Language Impairment

    ERIC Educational Resources Information Center

    Adi-Japha, Esther; Strulovich-Schwartz, Orli; Julius, Mona

    2011-01-01

    The acquisition and consolidation of a new grapho-motor symbol into long-term memory was studied in 5-year-old children with language impairment (LI) and peers matched for age and visual-motor integration skills. The children practiced the production of a new symbol and were tested 24 h and two weeks post-practice day. Differences in performance…

  4. Effects of Practical Life Materials on Kindergartners' Fine Motor Skills.

    ERIC Educational Resources Information Center

    Rule, Audrey C.; Stewart, Roger A.

    2002-01-01

    A pretest-posttest control group design was used to measure the effect of practical life materials (e.g., tweezers, tongs, spoons) on kindergarten children's fine motor skill development. Experimental and control group teachers reported equal amounts of fine motor activity in their classrooms; however, significant interaction effects were found…

  5. Collaborative Teaching of Motor Skills for Preschoolers with Developmental Delays

    ERIC Educational Resources Information Center

    Murata, Nathan M.; Tan, Carol A.

    2009-01-01

    The purpose of this paper is to describe collaborative teaching between preschool teachers, adapted physical educators, physical therapists, and occupational therapists of motor skills for preschoolers with developmental delays. The motor domain is typically taught by the classroom teacher who may have little to no knowledge of how to initiate a…

  6. Poor Motor Skills: A Risk Marker for Bully Victimization

    PubMed Central

    Bejerot, Susanne; Plenty, Stephanie; Humble, Alice; Humble, Mats B

    2013-01-01

    Children who are clumsy are often bullied. Nevertheless, motor skills have been overlooked in research on bullying victimization. A total of 2,730 Swedish adults (83% females) responded to retrospective questions on bullying, their talents in physical education (i.e., coordination and balls skills) and school academics. Poor talents were used as indicators of poor gross motor skills and poor academic skills. A subset of participants also provided information on educational level in adulthood, childhood obesity, belonging to an ethic minority in school and socioeconomic status relative to schoolmates. A total of 29.4% of adults reported being bullied in school, and 18.4% reported having below average gross motor skills. Of those with below average motor skills, 48.6% were bullied in school. Below average motor skills in childhood were associated with an increased risk (OR 3.01 [95% CI: 1.97–4.60]) of being bullied, even after adjusting for the influence of lower socioeconomic status, poor academic performance, being overweight, and being a bully. Higher odds for bully victimization were also associated with lower socioeconomic status (OR 2.29 [95% CI: 1.45–3.63]), being overweight (OR 1.71 [95% CI: 1.18–2.47]) and being a bully (OR 2.18 [95% CI: 1.53–3.11]). The findings indicate that poor gross motor skills constitute a robust risk-marker for vulnerability for bully victimization. Aggr. Behav. 39:453–461, 2013. © 2013 The Authors. Aggressive Behavior Published by Wiley-Blackwell PMID:23784933

  7. Reduced motor cortex activity during movement preparation following a period of motor skill practice.

    PubMed

    Wright, David J; Holmes, Paul; Di Russo, Francesco; Loporto, Michela; Smith, Dave

    2012-01-01

    Experts in a skill produce movement-related cortical potentials (MRCPs) of smaller amplitude and later onset than novices. This may indicate that, following long-term training, experts require less effort to plan motor skill performance. However, no longitudinal evidence exists to support this claim. To address this, EEG was used to study the effect of motor skill training on cortical activity related to motor planning. Ten non-musicians took part in a 5-week training study learning to play guitar. At week 1, the MRCP was recorded from motor areas whilst participants played the G Major scale. Following a period of practice of the scale, the MRCP was recorded again at week 5. Results showed that the amplitude of the later pre-movement components were smaller at week 5 compared to week 1. This may indicate that, following training, less activity at motor cortex sites is involved in motor skill preparation. This supports claims for a more efficient motor preparation following motor skill training. PMID:23251647

  8. Dopamine Promotes Motor Cortex Plasticity and Motor Skill Learning via PLC Activation

    PubMed Central

    Rioult-Pedotti, Mengia-Seraina; Pekanovic, Ana; Atiemo, Clement Osei; Marshall, John; Luft, Andreas Rüdiger

    2015-01-01

    Dopaminergic neurons in the ventral tegmental area, the major midbrain nucleus projecting to the motor cortex, play a key role in motor skill learning and motor cortex synaptic plasticity. Dopamine D1 and D2 receptor antagonists exert parallel effects in the motor system: they impair motor skill learning and reduce long-term potentiation. Traditionally, D1 and D2 receptor modulate adenylyl cyclase activity and cyclic adenosine monophosphate accumulation in opposite directions via different G-proteins and bidirectionally modulate protein kinase A (PKA), leading to distinct physiological and behavioral effects. Here we show that D1 and D2 receptor activity influences motor skill acquisition and long term synaptic potentiation via phospholipase C (PLC) activation in rat primary motor cortex. Learning a new forelimb reaching task is severely impaired in the presence of PLC, but not PKA-inhibitor. Similarly, long term potentiation in motor cortex, a mechanism involved in motor skill learning, is reduced when PLC is inhibited but remains unaffected by the PKA inhibitor. Skill learning deficits and reduced synaptic plasticity caused by dopamine antagonists are prevented by co-administration of a PLC agonist. These results provide evidence for a role of intracellular PLC signaling in motor skill learning and associated cortical synaptic plasticity, challenging the traditional view of bidirectional modulation of PKA by D1 and D2 receptors. These findings reveal a novel and important action of dopamine in motor cortex that might be a future target for selective therapeutic interventions to support learning and recovery of movement resulting from injury and disease. PMID:25938462

  9. Motor skill acquisition strategies for rehabilitation of low back pain.

    PubMed

    Stevans, J; Hall, K G

    1998-09-01

    Evidence supporting the early use of exercise for the treatment of low back pain continues to grow. We must keep in mind, however, that motor skill learning and exercise are not synonymous. If rehabilitation goals are limited to the improvement of physical parameters (ie., strength, flexibility, endurance), the opportunity to help patients improve the performance of functional activities will be missed. The motor learning literature suggests several strategies for facilitating the acquisition of a motor skill: transfer-appropriate processing, the contextual interference effect, and repetitive self-evaluation. These techniques will cognitively challenge patients, helping them gain skills more quickly and retain them longer. By incorporating these methods into the rehabilitation program, patients will better transfer what they have learned from the rehabilitation environment to their everyday functional activities. PMID:9742473

  10. Fine Motor Activities Program to Promote Fine Motor Skills in a Case Study of Down's Syndrome.

    PubMed

    Lersilp, Suchitporn; Putthinoi, Supawadee; Panyo, Kewalin

    2016-01-01

    Children with Down's syndrome have developmental delays, particularly regarding cognitive and motor development. Fine motor skill problems are related to motor development. They have impact on occupational performances in school-age children with Down's syndrome because they relate to participation in school activities, such as grasping, writing, and carrying out self-care duties. This study aimed to develop a fine motor activities program and to examine the efficiency of the program that promoted fine motor skills in a case study of Down's syndrome. The case study subject was an 8 -year-old male called Kai, who had Down's syndrome. He was a first grader in a regular school that provided classrooms for students with special needs. This study used the fine motor activities program with assessment tools, which included 3 subtests of the Bruininks-Oseretsky Test of Motor Proficiency, second edition (BOT-2) that applied to Upper-limb coordination, Fine motor precision and Manual dexterity; as well as the In-hand Manipulation Checklist, and Jamar Hand Dynamometer Grip Test. The fine motor activities program was implemented separately and consisted of 3 sessions of 45 activities per week for 5 weeks, with each session taking 45 minutes. The results showed obvious improvement of fine motor skills, including bilateral hand coordination, hand prehension, manual dexterity, in-hand manipulation, and hand muscle strength. This positive result was an example of a fine motor intervention program designed and developed for therapists and related service providers in choosing activities that enhance fine motor skills in children with Down's syndrome. PMID:27357876

  11. Psychometric Properties of the Teacher-Reported Motor Skills Rating Scale

    ERIC Educational Resources Information Center

    Kim, Helyn; Murrah, William M.; Cameron, Claire E.; Brock, Laura L.; Cottone, Elizabeth A.; Grissmer, David

    2015-01-01

    Children's early motor competence is associated with social development and academic achievement. However, few studies have examined teacher reports of children's motor skills. This study evaluated the psychometric properties of the Motor Skills Rating Scale (MSRS), a 19-item measure of children's teacher-reported motor skills in the classroom.…

  12. Using Questions To Facilitate Motor Skill Acquisition.

    ERIC Educational Resources Information Center

    Knight, G. William; And Others

    1997-01-01

    Describes a dental teaching strategy that promotes acquisition of psychomotor skills through use of metacognition and problem-solving. In five steps, questions are asked to guide the learner through a sequence of discriminations leading to recognition of problems and solutions. Clearly defined criteria in a sequence reflecting procedure are…

  13. Relations among motor, social, and cognitive skills in pre-kindergarten children with developmental disabilities.

    PubMed

    Kim, Helyn; Carlson, Abby G; Curby, Timothy W; Winsler, Adam

    2016-01-01

    Despite the comorbidity between motor difficulties and certain disabilities, limited research has examined links between early motor, cognitive, and social skills in preschool-aged children with developmental disabilities. The present study examined the relative contributions of gross motor and fine motor skills to the prediction of improvements in children's cognitive and social skills among 2,027 pre-kindergarten children with developmental disabilities, including specific learning disorder, speech/language impairment, intellectual disability, and autism spectrum disorder. Results indicated that for pre-kindergarten children with developmental disabilities, fine motor skills, but not gross motor skills, were predictive of improvements in cognitive and social skills, even after controlling for demographic information and initial skill levels. Moreover, depending on the type of developmental disability, the pattern of prediction of gross motor and fine motor skills to improvements in children's cognitive and social skills differed. Implications are discussed. PMID:26852279

  14. Laterality and Motor Skills in Four-Year-Olds.

    ERIC Educational Resources Information Center

    Tan, Lesley E.

    1985-01-01

    Compared four-year-old left-handed children and children lacking definite hand preference with right-handers on motor skills. Found no differences between left-handers and right-handers of either sex, but the children lacking hand preference had lower scores. Possible sex differences and implications for the education of children lacking…

  15. Recreational Activities and Motor Skills of Children in Kindergarten

    ERIC Educational Resources Information Center

    Temple, Viviene A.; Crane, Jeff R.; Brown, Amy; Williams, Buffy-Lynne; Bell, Rick I.

    2016-01-01

    Background: Developmental theorists suggest that physical activity during early childhood promotes fundamental motor skill (FMS) proficiency; and that differences in FMS proficiency are largely related to children's experiences. Aim: To examine associations between participation in different types of recreation/leisure and FMS proficiency of boys…

  16. Language-Motor Skill Acquisition and Shorthand Theory Presentation.

    ERIC Educational Resources Information Center

    Clippinger, Dorinda A.

    1979-01-01

    Focusing on the ST-ART shorthand theory presentation method, this article discusses the following principles of language-motor skill acquisition: mental practice, symbol-sound association, verbal mediation, recitation and articulation, hierarchy of habits, overlearning, learner anxiety, sense modality, guided practice, kinesthetic imagery, visual…

  17. Improving Fine Motor Skills in Young Children: An Intervention Study

    ERIC Educational Resources Information Center

    Brown, Carol G.

    2010-01-01

    The aim of this study was to evaluate the effect of the Primary Movement programme on the fine motor skills of children in an early years setting in an area of high social disadvantage. Primary Movement is a programme which can be used as an early intervention technique to help children inhibit persistent primary reflexes that have been shown to…

  18. Protein Synthesis Inhibition Blocks Consolidation of an Acrobatic Motor Skill

    ERIC Educational Resources Information Center

    Kaelin-Lang, Alain; Dichgans, Johannes; Schulz, Jorg B.; Luft, Andreas R.; Buitrago, Manuel M.

    2004-01-01

    To investigate whether motor skill learning depends on de novo protein synthesis, adult rats were trained in an acrobatic locomotor task (accelerating rotarod) for 7 d. Animals were systemically injected with cycloheximide (CHX, 0.5 mg/kg, i.p.) 1 h before sessions 1 and 2 or sessions 2 and 3. Control rats received vehicle injections before…

  19. Toy Story: Illustrating Gender Differences in a Motor Skills Task

    ERIC Educational Resources Information Center

    Knight, Jennifer L.; Hebl, Michelle R.; Mendoza, Miriam

    2004-01-01

    To challenge students' stereotypes about gendered performance on motor skills tasks, we developed a classroom active learning demonstration. Four 3-person, same-gender teams received either a Barbie(r) doll or a Transformer(r), and team members dressed the Barbie or manipulated the Transformer from a tank to a robot as quickly as possible, with…

  20. Sleep-Dependent Learning and Motor-Skill Complexity

    ERIC Educational Resources Information Center

    Kuriyama, Kenichi; Stickgold, Robert; Walker, Matthew P.

    2004-01-01

    Learning of a procedural motor-skill task is known to progress through a series of unique memory stages. Performance initially improves during training, and continues to improve, without further rehearsal, across subsequent periods of sleep. Here, we investigate how this delayed sleep-dependent learning is affected when the task characteristics…

  1. Social Rewards Enhance Offline Improvements in Motor Skill

    PubMed Central

    Sugawara, Sho K.; Tanaka, Satoshi; Okazaki, Shuntaro; Watanabe, Katsumi; Sadato, Norihiro

    2012-01-01

    Motor skill memory is first encoded online in a fragile form during practice and then converted into a stable form by offline consolidation, which is the behavioral stage critical for successful learning. Praise, a social reward, is thought to boost motor skill learning by increasing motivation, which leads to increased practice. However, the effect of praise on consolidation is unknown. Here, we tested the hypothesis that praise following motor training directly facilitates skill consolidation. Forty-eight healthy participants were trained on a sequential finger-tapping task. Immediately after training, participants were divided into three groups according to whether they received praise for their own training performance, praise for another participant's performance, or no praise. Participants who received praise for their own performance showed a significantly higher rate of offline improvement relative to other participants when performing a surprise recall test of the learned sequence. On the other hand, the average performance of the novel sequence and randomly-ordered tapping did not differ between the three experimental groups. These results are the first to indicate that praise-related improvements in motor skill memory are not due to a feedback-incentive mechanism, but instead involve direct effects on the offline consolidation process. PMID:23144855

  2. Preliminary Validation of the Motor Skills Rating Scale

    ERIC Educational Resources Information Center

    Cameron, Claire E.; Chen, Wei-Bing; Blodgett, Julia; Cottone, Elizabeth A.; Mashburn, Andrew J.; Brock, Laura L.; Grissmer, David

    2012-01-01

    This study examined psychometric properties of the Motor Skills Rating Scale (MSRS), a questionnaire designed for classroom teachers of children in early elementary school. Items were developed with the guidance of two occupational therapists, and factor structure was examined with an exploratory factor analysis (EFA). The resulting model showed…

  3. Interference effects between manual and oral motor skills.

    PubMed

    Gagné, Marie-Hélène; Cohen, Henri

    2016-03-01

    Consolidation of a motor skill is characterized by spontaneous improvement in performance between practice sessions. These offline gains can be eliminated if another skill is introduced soon afterward-a phenomenon called retroactive interference. Interference effects have been found in studies using two similar tasks involving the same motor effectors in a manual mode. The present study aimed to determine the extent to which differences in motor production mode modulate interference in skill learning. Healthy participants were assigned to one of three conditions and trained on a finger opposition sequence (FOS) learning task. All subjects were tested 24 h later on the original FOS learning task. Control subjects who were not exposed to a secondary learning task exhibited the expected offline gains after 24 h. Subjects who immediately learned a secondary task after the FOS training, either in the same manual mode (French Sign Language) or in an oral mode (CVC syllables), did not show any offline gains. Interestingly, the amount of interference was equivalent in the manual and oral learning conditions. The results reveal that interference effects in motor skill learning can occur when different effectors are involved in the primary and secondary tasks. The sequence processing abilities of the basal ganglia appear to play a major role in these interference effects. PMID:26661336

  4. Interrater Objectivity for Field-Based Fundamental Motor Skill Assessment

    ERIC Educational Resources Information Center

    Barnett, Lisa; van Beurden, Eric; Morgan, Philip J.; Lincoln, Doug; Zask, Avigdor; Beard, John

    2009-01-01

    An important aspect in studies concerning fundamental motor skills (FMS) proficiency is interrater objectivity (or interrater reliability), defined as the consistency or agreement in scores obtained from two or more raters. In a training setting, interrater objectivity is commonly determined as the relative number of times raters agree with an…

  5. Motor Skill Learning, Retention, and Control Deficits in Parkinson's Disease

    PubMed Central

    Pendt, Lisa Katharina; Reuter, Iris; Müller, Hermann

    2011-01-01

    Parkinson's disease, which affects the basal ganglia, is known to lead to various impairments of motor control. Since the basal ganglia have also been shown to be involved in learning processes, motor learning has frequently been investigated in this group of patients. However, results are still inconsistent, mainly due to skill levels and time scales of testing. To bridge across the time scale problem, the present study examined de novo skill learning over a long series of practice sessions that comprised early and late learning stages as well as retention. 19 non-demented, medicated, mild to moderate patients with Parkinson's disease and 19 healthy age and gender matched participants practiced a novel throwing task over five days in a virtual environment where timing of release was a critical element. Six patients and seven control participants came to an additional long-term retention testing after seven to nine months. Changes in task performance were analyzed by a method that differentiates between three components of motor learning prominent in different stages of learning: Tolerance, Noise and Covariation. In addition, kinematic analysis related the influence of skill levels as affected by the specific motor control deficits in Parkinson patients to the process of learning. As a result, patients showed similar learning in early and late stages compared to the control subjects. Differences occurred in short-term retention tests; patients' performance constantly decreased after breaks arising from poorer release timing. However, patients were able to overcome the initial timing problems within the course of each practice session and could further improve their throwing performance. Thus, results demonstrate the intact ability to learn a novel motor skill in non-demented, medicated patients with Parkinson's disease and indicate confounding effects of motor control deficits on retention performance. PMID:21760898

  6. Perceiving Affordances for Different Motor Skills

    PubMed Central

    Cole, Whitney G.; Chan, Gladys L. Y.; Vereijken, Beatrix; Adolph, Karen E.

    2013-01-01

    We examined several factors that affect people’s ability to perceive possibilities for action. In Experiment 1, 24 participants crossed expanses of various sizes in three conditions: leaping, a familiar, launching action system; arm-swinging on monkey bars, an unpracticed skill that uses the arms rather than the legs; and crawling on hands and knees, a disused skill that involves all four limbs. Before and after performing each action, participants gave verbal judgments about the largest gap they could cross. Participants scaled initial judgments to their actual abilities in all three conditions. But they considerably underestimated their abilities for leaping, a launching action, and for arm-swinging when it was performed as a launching action; judgments about crawling, a non-launching action, and arm-swinging when it was performed as a non-launching action were more accurate. Thus, launching actions appear to produce a deficit in perceiving affordances that is not ameliorated by familiarity with the action. However, after performing the actions, participants partially corrected for the deficiency and more accurately judged their abilities for launching actions—suggesting that even brief action experience facilitates the perception of affordances. In Experiment 2, we confirmed that the deficit was due to the launching nature of the leaping and arm-swinging actions in Experiment 1. We asked an additional 12 participants to cross expanses using two non-launching actions using the legs (stepping across an expanse) and the arms (reaching across an expanse). Participants were highly accurate when judging affordances for these actions, supporting launching as the cause of the underestimation reported in Experiment 1. PMID:23411672

  7. Practice Schedule and the Learning of Motor Skills in Children and Adults: Teaching Implications

    ERIC Educational Resources Information Center

    Zipp, Genevieve Pinto; Gentile, A. M.

    2010-01-01

    Understanding how motor skills are learned influences how one teaches effective motor skill attainment. Educators must ask, "Does repetitive practice of the same task make for better performance or does contextual variability (random practice) offer some benefit when learning motor skills?" Studies on the effects of Contextual Interference may…

  8. Development of Young Adults' Fine Motor Skills when Learning to Play Percussion Instruments

    ERIC Educational Resources Information Center

    Gzibovskis, Talis; Marnauza, Mara

    2012-01-01

    When playing percussion instruments, the main activity is done with the help of a motion or motor skills; to perform it, developed fine motor skills are necessary: the speed and precision of fingers, hands and palms. The aim of the research was to study and test the development of young adults' fine motor skills while learning to play percussion…

  9. Why Do Fine Motor Skills Predict Mathematics? Construct Validity of the Design Copying Task

    ERIC Educational Resources Information Center

    Murrah, William M.; Chen, Wei-Bing; Cameron, Claire E.

    2013-01-01

    Recent educational studies have found evidence that measures of fine motor skills are predictive of educational outcomes. However, the precise nature of fine motor skills has received little attention in these studies. With evidence mounting that fine motor skills are an important indicator of school readiness, investigating the nature of this…

  10. The effect of fine and grapho-motor skill demands on preschoolers' decoding skill.

    PubMed

    Suggate, Sebastian; Pufke, Eva; Stoeger, Heidrun

    2016-01-01

    Previous correlational research has found indications that fine motor skills (FMS) link to early reading development, but the work has not demonstrated causality. We manipulated 51 preschoolers' FMS while children learned to decode letters and nonsense words in a within-participants, randomized, and counterbalanced single-factor design with pre- and posttesting. In two conditions, children wrote with a pencil that had a conical shape fitted to the end filled with either steel (impaired writing condition) or polystyrene (normal writing condition). In a third control condition, children simply pointed at the letters with the light pencil as they learned to read the words (pointing condition). Results indicate that children learned the most decoding skills in the normal writing condition, followed by the pointing and impaired writing conditions. In addition, working memory, phonemic awareness, and grapho-motor skills were generally predictors of decoding skill development. The findings provide experimental evidence that having lower FMS is disadvantageous for reading development. PMID:26311397

  11. Application of signal detection theory to perceptual-motor skills.

    PubMed

    Jagacinski, R J; Isaac, P D; Burke, M W

    1977-09-01

    A signal-detection paradigm was utilized to examine subjects' sensitivity to situational and sensory-motor stimuli in predicting motor skill performance. College-level and professional basketball players attempted uncontested shots from assigned positions on the basketball court. Before each shot was released, both the shooter and a passive observer were required to predict whether it would be successful. Signal-detection analysis revealed no evidence for greater sensitivity of the shooter over the passive observer or an idealized statistical predictor using only floor position as a prediction cue. Both shooters and passive observers were too optimistic when strong penalties were imposed for incorrect predictions of success. PMID:23952878

  12. White Matter Microstructural Correlates of Superior Long-term Skill Gained Implicitly under Randomized Practice

    PubMed Central

    Song, Sunbin; Sharma, Nikhil; Buch, Ethan R.

    2012-01-01

    We value skills we have learned intentionally, but equally important are skills acquired incidentally without ability to describe how or what is learned, referred to as implicit. Randomized practice schedules are superior to grouped schedules for long-term skill gained intentionally, but its relevance for implicit learning is not known. In a parallel design, we studied healthy subjects who learned a motor sequence implicitly under randomized or grouped practice schedule and obtained diffusion-weighted images to identify white matter microstructural correlates of long-term skill. Randomized practice led to superior long-term skill compared with grouped practice. Whole-brain analyses relating interindividual variability in fractional anisotropy (FA) to long-term skill demonstrated that 1) skill in randomized learners correlated with FA within the corticostriatal tract connecting left sensorimotor cortex to posterior putamen, while 2) skill in grouped learners correlated with FA within the right forceps minor connecting homologous regions of the prefrontal cortex (PFC) and the corticostriatal tract connecting lateral PFC to anterior putamen. These results demonstrate first that randomized practice schedules improve long-term implicit skill more than grouped practice schedules and, second, that the superior skill acquired through randomized practice can be related to white matter microstructure in the sensorimotor corticostriatal network. PMID:21914632

  13. Reinforcement learning of motor skills with policy gradients.

    PubMed

    Peters, Jan; Schaal, Stefan

    2008-05-01

    Autonomous learning is one of the hallmarks of human and animal behavior, and understanding the principles of learning will be crucial in order to achieve true autonomy in advanced machines like humanoid robots. In this paper, we examine learning of complex motor skills with human-like limbs. While supervised learning can offer useful tools for bootstrapping behavior, e.g., by learning from demonstration, it is only reinforcement learning that offers a general approach to the final trial-and-error improvement that is needed by each individual acquiring a skill. Neither neurobiological nor machine learning studies have, so far, offered compelling results on how reinforcement learning can be scaled to the high-dimensional continuous state and action spaces of humans or humanoids. Here, we combine two recent research developments on learning motor control in order to achieve this scaling. First, we interpret the idea of modular motor control by means of motor primitives as a suitable way to generate parameterized control policies for reinforcement learning. Second, we combine motor primitives with the theory of stochastic policy gradient learning, which currently seems to be the only feasible framework for reinforcement learning for humanoids. We evaluate different policy gradient methods with a focus on their applicability to parameterized motor primitives. We compare these algorithms in the context of motor primitive learning, and show that our most modern algorithm, the Episodic Natural Actor-Critic outperforms previous algorithms by at least an order of magnitude. We demonstrate the efficiency of this reinforcement learning method in the application of learning to hit a baseball with an anthropomorphic robot arm. PMID:18482830

  14. Robot Guided 'Pen Skill' Training in Children with Motor Difficulties.

    PubMed

    Shire, Katy A; Hill, Liam J B; Snapp-Childs, Winona; Bingham, Geoffrey P; Kountouriotis, Georgios K; Barber, Sally; Mon-Williams, Mark

    2016-01-01

    Motor deficits are linked to a range of negative physical, social and academic consequences. Haptic robotic interventions, based on the principles of sensorimotor learning, have been shown previously to help children with motor problems learn new movements. We therefore examined whether the training benefits of a robotic system would generalise to a standardised test of 'pen-skills', assessed using objective kinematic measures [via the Clinical Kinematic Assessment Tool, CKAT]. A counterbalanced, cross-over design was used in a group of 51 children (37 male, aged 5-11 years) with manual control difficulties. Improved performance on a novel task using the robotic device could be attributed to the intervention but there was no evidence of generalisation to any of the CKAT tasks. The robotic system appears to have the potential to support motor learning, with the technology affording numerous advantages. However, the training regime may need to target particular manual skills (e.g. letter formation) in order to obtain clinically significant improvements in specific skills such as handwriting. PMID:26967993

  15. Coordination Motor Skills of Military Pilots Subjected to Survival Training.

    PubMed

    Tomczak, Andrzej

    2015-09-01

    Survival training of military pilots in the Polish Army gains significance because polish pilots have taken part in more and more military missions. Prolonged exercise of moderate intensity with restricted sleep or sleep deprivation is known to deteriorate performance. The aim of the study was thus to determine the effects of a strenuous 36-hour exercise with restricted sleep on selected motor coordination and psychomotor indices. Thirteen military pilots aged 30-56 years were examined twice: pretraining and posttraining. The following tests were applied: running motor adjustment (15-m sprint, 3 × 5-m shuttle run, 15-m slalom, and 15-m squat), divided attention, dynamic body balance, handgrip strength differentiation. Survival training resulted in significant decreases in maximum handgrip strength (from 672 to 630 N), corrected 50% max handgrip (from 427 to 367 N), error 50% max (from 26 to 17%), 15-m sprint (from 5.01 to 4.64 m·s), and 15-m squat (2.20 to 1.98 m·s). The training improvements took place in divided attention test (from 48.2 to 57.2%). The survival training applied to pilots only moderately affected some of their motor adjustment skills, the divided attention, and dynamic body balance remaining unaffected or even improved. Further studies aimed at designing a set of tests for coordination motor skills and of soldiers' capacity to fight for survival under conditions of isolation are needed. PMID:25719921

  16. Simulating a Skilled Typist: A Study of Skilled Cognitive Motor Performance.

    ERIC Educational Resources Information Center

    Rumelhart, David E.; Norman, Donald A.

    A project studied the problem of control of skilled motor movements by concentrating on typing. The fundamental phenomena of typing, which fall into three categories, were reviewed: timing of key strokes, pattern of errors, and general organization of typing. A model for the simulation of these phenomena was developed, based on an…

  17. Brainstem White Matter Predicts Individual Differences in Manual Motor Difficulties and Symptom Severity in Autism.

    PubMed

    Travers, Brittany G; Bigler, Erin D; Tromp, Do P M; Adluru, Nagesh; Destiche, Dan; Samsin, Danica; Froehlich, Alyson; Prigge, Molly D B; Duffield, Tyler C; Lange, Nicholas; Alexander, Andrew L; Lainhart, Janet E

    2015-09-01

    Mounting evidence suggests that poorer motor skills may be related to more severe autism symptoms. This study investigated if atypical white matter microstructure in the brain mediated the relationship between motor skills and ASD symptom severity. Sixty-seven males with ASD and 42 males with typical development (5-33 years old) completed a diffusion tensor imaging scan and measures of grip strength, finger tapping, and autism symptom severity. Within the ASD group, weaker grip strength predicted more severe autism symptoms. Fractional anisotropy of the brainstem's corticospinal tract predicted both grip strength and autism symptom severity and mediated the relationship between the two. These findings suggest that brainstem white matter may contribute to autism symptoms and grip strength in ASD. PMID:26001365

  18. A Field-Based Testing Protocol for Assessing Gross Motor Skills in Preschool Children: The CHAMPS Motor Skills Protocol (CMSP)

    PubMed Central

    Williams, Harriet G.; Pfeiffer, Karin A.; Dowda, Marsha; Jeter, Chevy; Jones, Shaverra; Pate, Russell R.

    2010-01-01

    The purpose of the study was to develop a valid and reliable tool for use in assessing motor skills in preschool children in field based settings. The development of the CHAMPS (Children’s Activity and Movement in Preschool Study) Motor Skills Protocol (CMSP) included evidence of its reliability and validity for use in field-based environments as part of large epidemiological studies. Following pilot work, 297 children (3-5 years old) from 22 preschools were tested using the final version of the CMSP and the TGMD-2. Reliability of the CMSP and interobserver reliability were determined using intraclass correlation procedures (ICC; ANOVA). Concurrent validity was assessed using Pearson correlation coefficients to compare the CMSP to the original Test of Gross Motor Development (2nd Edition) (TGMD-2). Results indicated that test reliability, interobserver reliability and validity coefficients were all high, generally above R/r = 0.90. Significant age differences were found. Outcomes indicate that the CMSP is an appropriate tool for assessing motor development of 3-, 4-, and 5-year-old children in field-based settings that are consistent with large-scale trials. PMID:21532999

  19. Perceptual and motor learning underlies human stick-balancing skill.

    PubMed

    Lee, Kwee-Yum; O'Dwyer, Nicholas; Halaki, Mark; Smith, Richard

    2015-01-01

    We investigated the acquisition of skill in balancing a stick (52 cm, 34 g) on the fingertip in nine participants using three-dimensional motion analysis. After 3.5 h of practice over 6 wk, the participants could more consistently balance the stick for longer durations with greatly reduced magnitude and speed of stick and finger movements. Irrespective of level of skill, the balanced stick behaved like a normal noninverted pendulum oscillating under greater-than-gravity torque with simple harmonic motion about a virtual pivot located at the radius of gyration above the center of mass. The control input parameter was the magnitude ratio between the torque applied on the stick by the participant and the torque due to gravity. The participants utilized only a narrow range of this parameter, which did not change with practice, to rotate the stick like a linear mass-spring system. With increased skill, the stick therefore maintained the same period of oscillation but showed marked reductions in magnitude of both oscillation and horizontal translation. Better balancing was associated with 1) more accurate visual localization of the stick and proprioceptive localization of the finger and 2) reduced cross-coupling errors between finger and stick movements in orthogonal directions; i.e., finger movements in the anteroposterior plane became less coupled with stick tip movements in the mediolateral plane, and vice versa. Development of this fine motor skill therefore depended on perceptual and motor learning to provide improved estimation of sensorimotor state and precision of motor commands to an unchanging internal model of the rotational dynamics. PMID:25298388

  20. A Field-Based Testing Protocol for Assessing Gross Motor Skills in Preschool Children: The Children's Activity and Movement in Preschool Study Motor Skills Protocol

    ERIC Educational Resources Information Center

    Williams, Harriet G.; Pfeiffer, Karin A.; Dowda, Marsha; Jeter, Chevy; Jones, Shaverra; Pate, Russell R.

    2009-01-01

    The purpose of this study was to develop a valid and reliable tool for use in assessing motor skills in preschool children in field-based settings. The development of the Children's Activity and Movement in Preschool Study Motor Skills Protocol included evidence of its reliability and validity for use in field-based environments as part of large…

  1. Motor development in individuals with congenital adrenal hyperplasia: Strength, targeting, and fine motor skill

    PubMed Central

    Collaer, Marcia L.; Brook, Charles; Conway, Gerard S.; Hindmarsh, Peter C.; Hines, Melissa

    2009-01-01

    Summary This study investigated early androgen influence on the development of human motor and visuomotor characteristics. Participants, ages 12 to 45 years, were individuals with congenital adrenal hyperplasia (CAH), a disorder causing increased adrenal androgen production before birth (40 females, 29 males) and their unaffected relatives (29 females, 30 males). We investigated grip strength and visuomotor targeting tasks on which males generally outperform females, and fine motor pegboard tasks on which females generally outperform males. Physical characteristics (height and weight) were measured to explore whether body parameters could explain differences in motor skills. Females with CAH were stronger and showed better targeting than unaffected females and showed reduced fine visuomotor skill on one pegboard measure, with no difference on the other. Males with CAH were weaker than unaffected males in grip strength but did not differ on the targeting or pegboard measures. Correction for body size could not explain the findings for females, but suggests that the reduced strength of males with CAH may relate to their smaller stature. Further, the targeting advantage in females with CAH persisted following adjustment for their greater strength. Results in females support the hypothesis that androgen may masculinize, or promote, certain motor characteristics at which males excel, and contribute to defeminization of certain fine motor characteristics at which females excel. Thus, these data suggest that organizational effects of androgens on behavior during prenatal life may extend to motor characteristics and may contribute to general sex differences in motor-related behaviors; however, alternative explanations based on activational influences of androgen or altered experiential factors cannot be excluded without further study. KEYWORDS: congenital adrenal hyperplasia (CAH), androgen, sex, motor, strength, targeting PMID:18938041

  2. Neonatal Stroke Causes Poor Midline Motor Behaviors and Poor Fine and Gross Motor Skills during Early Infancy

    ERIC Educational Resources Information Center

    Chen, Chao-Ying; Lo, Warren D.; Heathcock, Jill C.

    2013-01-01

    Upper extremity movements, midline behaviors, fine, and gross motor skills are frequently impaired in hemiparesis and cerebral palsy. We investigated midline toy exploration and fine and gross motor skills in infants at risk for hemiplegic cerebral palsy. Eight infants with neonatal stroke (NS) and thirteen infants with typical development (TD)…

  3. Improving a Bimanual Motor Skill Through Unimanual Training.

    PubMed

    Hayashi, Takuji; Nozaki, Daichi

    2016-01-01

    When we learn a bimanual motor skill (e.g., rowing a boat), we often break it down into unimanual practices (e.g., a rowing drill with the left or right arm). Such unimanual practice is thought to be useful for learning bimanual motor skills efficiently because the learner can concentrate on learning to perform a simpler component. However, it is not so straightforward to assume that unimanual training (UT) improves bimanual performance. We have previously demonstrated that motor memories for reaching movements consist of three different parts: unimanual-specific, bimanual-specific, and overlapping parts. According to this scheme, UT appears to be less effective, as its training effect is only partially transferred to the same limb for bimanual movement. In the present study, counter-intuitively, we demonstrate that, even after the bimanual skill is almost fully learned by means of bimanual training (BT), additional UT could further improve bimanual skill. We hypothesized that this effect occurs because UT increases the memory content in the overlapping part, which might contribute to an increase in the memory for bimanual movement. To test this hypothesis, we examined whether the UT performed after sufficient BT could improve the bimanual performance. Participants practiced performing bimanual reaching movements (BM) in the presence of a novel force-field imposed only on their left arm. As an index for the motor performance, we used the error-clamp method (i.e., after-effect of the left arm) to evaluate the force output to compensate for the force-field during the reaching movement. After sufficient BT, the training effect reached a plateau. However, UT performed subsequently improved the bimanual performance significantly. In contrast, when the same amount of BT was continued, the bimanual performance remained unchanged, highlighting the beneficial effect of UT on bimanual performance. Considering memory structure, we also expected that BT could improve unimanual

  4. Improving a Bimanual Motor Skill Through Unimanual Training

    PubMed Central

    Hayashi, Takuji; Nozaki, Daichi

    2016-01-01

    When we learn a bimanual motor skill (e.g., rowing a boat), we often break it down into unimanual practices (e.g., a rowing drill with the left or right arm). Such unimanual practice is thought to be useful for learning bimanual motor skills efficiently because the learner can concentrate on learning to perform a simpler component. However, it is not so straightforward to assume that unimanual training (UT) improves bimanual performance. We have previously demonstrated that motor memories for reaching movements consist of three different parts: unimanual-specific, bimanual-specific, and overlapping parts. According to this scheme, UT appears to be less effective, as its training effect is only partially transferred to the same limb for bimanual movement. In the present study, counter-intuitively, we demonstrate that, even after the bimanual skill is almost fully learned by means of bimanual training (BT), additional UT could further improve bimanual skill. We hypothesized that this effect occurs because UT increases the memory content in the overlapping part, which might contribute to an increase in the memory for bimanual movement. To test this hypothesis, we examined whether the UT performed after sufficient BT could improve the bimanual performance. Participants practiced performing bimanual reaching movements (BM) in the presence of a novel force-field imposed only on their left arm. As an index for the motor performance, we used the error-clamp method (i.e., after-effect of the left arm) to evaluate the force output to compensate for the force-field during the reaching movement. After sufficient BT, the training effect reached a plateau. However, UT performed subsequently improved the bimanual performance significantly. In contrast, when the same amount of BT was continued, the bimanual performance remained unchanged, highlighting the beneficial effect of UT on bimanual performance. Considering memory structure, we also expected that BT could improve unimanual

  5. Supporting Children with Motor Skills Difficulties: An Initial Evaluation of the Manchester Motor Skills Programme

    ERIC Educational Resources Information Center

    Bond, Caroline

    2011-01-01

    Children with motor difficulties are a very varied group. In order to target interventions more effectively researchers have attempted to identify specific sub-groups; however, attempts to identify sub-groups and provide interventions accordingly have met with limited success. Currently interventions can be classified into two main types, namely,…

  6. The Relationship between Gross Motor Skills and Academic Achievement in Children with Learning Disabilities

    ERIC Educational Resources Information Center

    Westendorp, Marieke; Hartman, Esther; Houwen, Suzanne; Smith, Joanne; Visscher, Chris

    2011-01-01

    The present study compared the gross motor skills of 7- to 12-year-old children with learning disabilities (n = 104) with those of age-matched typically developing children (n = 104) using the Test of Gross Motor Development-2. Additionally, the specific relationships between subsets of gross motor skills and academic performance in reading,…

  7. Responsiveness of the Test of Basic Motor Skills of Children with Down Syndrome

    ERIC Educational Resources Information Center

    van den Heuvel, Marieke E.; de Jong, Inge; Lauteslager, Peter E. M.; Volman, M. J. M.

    2009-01-01

    The aim of this study was to examine the responsiveness of the Test of Basic Motor Skills for Children with Down Syndrome (BMS). Forty-one children with Down Syndrome, 3 to 36 months of age, participated in the study. Gross motor skills were assessed three times using the BMS and the Gross Motor Function Measure (GMFM) before and after a baseline…

  8. Cognitive and Developmental Influences in Visual-Motor Integration Skills in Young Children

    ERIC Educational Resources Information Center

    Decker, Scott L.; Englund, Julia A.; Carboni, Jessica A.; Brooks, Janell H.

    2011-01-01

    Measures of visual-motor integration skills continue to be widely used in psychological assessments with children. However, the construct validity of many visual-motor integration measures remains unclear. In this study, we investigated the relative contributions of maturation and cognitive skills to the development of visual-motor integration…

  9. Improvement of Fine Motor Skills in Children with Visual Impairment: An Explorative Study

    ERIC Educational Resources Information Center

    Reimer, A. M.; Cox, R. F. A.; Nijhuis-Van der Sanden, M. W. G.; Boonstra, F. N.

    2011-01-01

    In this study we analysed the potential spin-off of magnifier training on the fine-motor skills of visually impaired children. The fine-motor skills of 4- and 5-year-old visually impaired children were assessed using the manual skills test for children (6-12 years) with a visual impairment (ManuVis) and movement assessment for children (Movement…

  10. Role of Early Parenting and Motor Skills on Development in Children with Spina Bifida

    ERIC Educational Resources Information Center

    Lomax-Bream, Laura E.; Taylor, Heather B.; Landry, Susan H.; Barnes, Marcia A.; Fletcher, Jack M.; Swank, Paul

    2007-01-01

    The impact of parenting and motor skills on the development of cognitive, language, and daily living skills was examined in 165 children (91 with spina bifida, SB), from 6-36 months of age. Motor scores significantly influenced cognitive, language, and daily living skills. Higher quality parenting was associated with higher levels of development…

  11. Screening preschool children for fine motor skills: environmental influence

    PubMed Central

    Comuk-Balci, Nilay; Bayoglu, Birgul; Tekindal, Agah; Kerem-Gunel, Mintaze; Anlar, Banu

    2016-01-01

    [Purpose] The aim of this study was to investigate the influence of gender and family factors on performance in the fine motor domain of the Denver II developmental screening test. [Subjects and Methods] Data were obtained from 2038 healthy children, 999 boys (49%) and 1039 girls (51%) in four age groups: 0–24 months (57%), 25–40 months (21.1%), 41–56 months (10.4%), and 57–82 months (11.5%). [Results] Female gender, higher maternal age, especially in children older than 24 months, and higher maternal education were associated with earlier accomplishment of fine motor items. Higher socioeconomic status was correlated with fine motor skills more noticeably at young ages. [Conclusion] The results of this study support the role of environmental factors in the interpretation of fine motor test results and point to target groups for intervention, such as infants in the low socioeconomic group and preschool children of less educated mothers. Studies in different populations may reveal particular patterns that affect child development. PMID:27134406

  12. Screening preschool children for fine motor skills: environmental influence.

    PubMed

    Comuk-Balci, Nilay; Bayoglu, Birgul; Tekindal, Agah; Kerem-Gunel, Mintaze; Anlar, Banu

    2016-03-01

    [Purpose] The aim of this study was to investigate the influence of gender and family factors on performance in the fine motor domain of the Denver II developmental screening test. [Subjects and Methods] Data were obtained from 2038 healthy children, 999 boys (49%) and 1039 girls (51%) in four age groups: 0-24 months (57%), 25-40 months (21.1%), 41-56 months (10.4%), and 57-82 months (11.5%). [Results] Female gender, higher maternal age, especially in children older than 24 months, and higher maternal education were associated with earlier accomplishment of fine motor items. Higher socioeconomic status was correlated with fine motor skills more noticeably at young ages. [Conclusion] The results of this study support the role of environmental factors in the interpretation of fine motor test results and point to target groups for intervention, such as infants in the low socioeconomic group and preschool children of less educated mothers. Studies in different populations may reveal particular patterns that affect child development. PMID:27134406

  13. [Motor asymmetry and learning new skills in animals].

    PubMed

    Budilin, S Iu; Pletneva, E V; Ioffe, M E; Arsen'ev, G N

    2014-01-01

    The aim was to examine the relationship between the ability to learn new motor skills and preference to the right or left front paw when performing manipulation movements in rats. As a new skill used the Morris water maze, in which the animals are initially trained to detect platform hidden under water at the swim of the sector of the opposite platform, and then when sailing from sectors on the left or the right of the platform. Preference paw was determined by using the taking of animal food from a narrow horizontal tube and, accordingly, the rats were divided into left-handedness and right-handedness. We found that when changing the place of launch, that is the first voyage from the left or right of the sector, are right-handed, unlike left-handed, spent significantly more time to find the platform. PMID:25713870

  14. Individual differences in highly skilled visual perceptual-motor striking skill.

    PubMed

    Müller, Sean; Brenton, John; Dempsey, Alasdair R; Harbaugh, Allen G; Reid, Corinne

    2015-07-01

    Expertise studies into visual perceptual-motor skills have mainly focused their investigation upon group comparisons rather than individual comparisons. This study investigated the pick-up of visual information to time weight transfer and bat kinematics within an exemplar group of striking sport experts using an in situ temporal occlusion paradigm. Highly skilled cricket batsmen faced bowlers and attempted to strike delivered balls, whilst their vision was either temporally occluded through occlusion glasses prior to ball bounce or not occluded (control condition). A chronometric analysis was conducted on trials in the occlusion condition to quantify the pick-up of visual information to time biomechanical variables. Results indicated that initiation of weight transfer and bat downswing, as well as bat downswing completion, was significantly different between some individual batsmen. No significant difference was found between individual batsmen for time of weight transfer completion. Unexpectedly, it was found that achievement of the goal to strike delivered balls, that is, the frequency of bat-ball contacts was not significantly different between batsmen. Collectively, the findings indicate that individual differences exist in the coordination pattern of a complex whole body visual perceptual-motor skill, but these different patterns are used to achieve a similar outcome, which is known as motor equivalence. PMID:25813740

  15. Fine motor skill proficiency in typically developing children: On or off the maturation track?

    PubMed

    Gaul, David; Issartel, Johann

    2016-04-01

    Fine motor skill proficiency is an essential component of numerous daily living activities such as dressing, feeding or playing. Poor fine motor skills can lead to difficulties in academic achievement, increased anxiety and poor self-esteem. Recent findings have shown that children's gross motor skill proficiency tends to fall below established developmental norms. A question remains: do fine motor skill proficiency levels also fall below developmental norms? The aim of this study was to examine the current level of fine motor skill in Irish children. Children (N=253) from 2nd, 4th and 6th grades (mean age=7.12, 9.11 and 11.02 respectively) completed the Fine Motor Composite of the Bruininks Oseretsky Test of Motor Proficiency 2nd Edition (BOT-2). Analysis revealed that only 2nd grade children met the expected level of fine motor skill proficiency. It was also found that despite children's raw scores improving with age, children's fine motor skill proficiency was not progressing at the expected rate given by normative data. This leads us to question the role and impact of modern society on fine motor skills development over the past number of decades. PMID:26735589

  16. Rapid production of new oligodendrocytes is required in the earliest stages of motor-skill learning.

    PubMed

    Xiao, Lin; Ohayon, David; McKenzie, Ian A; Sinclair-Wilson, Alexander; Wright, Jordan L; Fudge, Alexander D; Emery, Ben; Li, Huiliang; Richardson, William D

    2016-09-01

    We identified mRNA encoding the ecto-enzyme Enpp6 as a marker of newly forming oligodendrocytes, and used Enpp6 in situ hybridization to track oligodendrocyte differentiation in adult mice as they learned a motor skill (running on a wheel with unevenly spaced rungs). Within just 2.5 h of exposure to the complex wheel, production of Enpp6-expressing immature oligodendrocytes was accelerated in subcortical white matter; within 4 h, it was accelerated in motor cortex. Conditional deletion of myelin regulatory factor (Myrf) in oligodendrocyte precursors blocked formation of new Enpp6(+) oligodendrocytes and impaired learning within the same ∼2-3 h time frame. This very early requirement for oligodendrocytes suggests a direct and active role in learning, closely linked to synaptic strengthening. Running performance of normal mice continued to improve over the following week accompanied by secondary waves of oligodendrocyte precursor proliferation and differentiation. We concluded that new oligodendrocytes contribute to both early and late stages of motor skill learning. PMID:27455109

  17. Developmental changes in motor cortex activity as infants develop functional motor skills.

    PubMed

    Nishiyori, Ryota; Bisconti, Silvia; Meehan, Sean K; Ulrich, Beverly D

    2016-09-01

    Despite extensive research examining overt behavioral changes of motor skills in infants, the neural basis underlying the emergence of functional motor control has yet to be determined. We used functional near-infrared spectroscopy (fNIRS) to record hemodynamic activity of the primary motor cortex (M1) from 22 infants (11 six month-olds, 11 twelve month-olds) as they reached for an object, and stepped while supported over a treadmill. Based on the developmental systems framework, we hypothesized that as infants increased goal-directed experience, neural activity shifts from a diffused to focal pattern. Results showed that for reaching, younger infants showed diffuse areas of M1 activity that became focused by 12 months. For elicited stepping, younger infants produced much less M1 activity which shifted to diffuse activity by 12 months. Thus, the data suggest that as infants gain goal-directed experience, M1 activity emerges, initially showing a diffuse area of activity, becoming refined as the behavior stabilizes. Our data begin to document the cortical activity underlying early functional skill acquisition. PMID:27096281

  18. Managing Personal Matters. Successful Living Skills.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This module on managing personal matters is one of a series of modules designed to help teach students to become more self-sufficient in their personal and professional lives. This module provides teacher and student materials that are planned to help students maintain personal records, obtain insurance, and deal with funerals and wills. Six units…

  19. A review of environmental contributions to childhood motor skills

    PubMed Central

    Golding, Jean; Emmett, Pauline; Iles-Caven, Yasmin; Steer, Colin; Lingam, Raghu

    2013-01-01

    Although much of children’s motor skills have a heredity component, at least half of the variance is likely to be influenced by the environment It is important to ascertain features of the environment that are responsible so that toxins can be avoided, children at risk can be identified and beneficial interventions initiated. This review outlines the results of published studies and recommends the areas where further research is required. We found much confusion with little comparability concerning the ages or measures used. Few studies had sufficient power and few allowed for confounders. We found that research to date implicates associations with prenatal drinking ≥4 drinks of alcohol per day; diabetes; taking antidepressant drugs; being deficient in iodine or iron; dietary fish; and postnatal depression. The child appearing to be most at risk was born of low birth weight (but not due to preterm delivery); or with neonatal problems. PMID:24170258

  20. Infants with Down Syndrome: Percentage and Age for Acquisition of Gross Motor Skills

    ERIC Educational Resources Information Center

    Pereira, Karina; Basso, Renata Pedrolongo; Lindquist, Ana Raquel Rodrigues; da Silva, Louise Gracelli Pereira; Tudella, Eloisa

    2013-01-01

    The literature is bereft of information about the age at which infants with Down syndrome (DS) acquire motor skills and the percentage of infants that do so by the age of 12 months. Therefore, it is necessary to identify the difference in age, in relation to typical infants, at which motor skills were acquired and the percentage of infants with DS…

  1. Sensori-Motor and Daily Living Skills of Preschool Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Jasmin, Emmanuelle; Couture, Melanie; McKinley, Patricia; Reid, Greg; Fombonne, Eric; Gisel, Erika

    2009-01-01

    Sensori-motor development and performance of daily living skills (DLS) remain little explored in children with autism spectrum disorders (ASD). The objective of this study was to determine the impact of sensori-motor skills on the performance of DLS in preschool children with ASD. Thirty-five children, 3-4 years of age, were recruited and assessed…

  2. Fine Motor Skills and Executive Function Both Contribute to Kindergarten Achievement

    ERIC Educational Resources Information Center

    Cameron, Claire E.; Brock, Laura L.; Murrah, William M.; Bell, Lindsay H.; Worzalla, Samantha L.; Grissmer, David; Morrison, Frederick J.

    2012-01-01

    This study examined the contribution of executive function (EF) and multiple aspects of fine motor skills to achievement on 6 standardized assessments in a sample of middle-socioeconomic status kindergarteners. Three- and 4-year-olds' (n = 213) fine and gross motor skills were assessed in a home visit before kindergarten, EF was measured at fall…

  3. Early motor skill competence as a mediator of child and adult physical activity

    PubMed Central

    Loprinzi, Paul D.; Davis, Robert E.; Fu, Yang-Chieh

    2015-01-01

    Objective: In order to effectively promote physical activity (PA) during childhood, and across the lifespan, a better understanding of the role of early motor skill development on child and adult PA is needed. Methods: Here, we propose a conceptual model delineating the hypothesized influence of motor skill development on child and adult PA, while providing an overview of the current empirical research related to this model. Results: There is consistent and emerging evidence showing that adequate motor skill competence, particularly locomotor and gross motor skills, is associated with increased PA levels during the preschool, child, and adolescent years, with early motor skill development also influencing enjoyment of PA as well as long-term PA and motor skill performance. The physical education setting appears to be a well-suited environment for motor skill development. Conclusion: Employing appropriate strategies to target motor skill development across the childhood years is of paramount interest in helping shape children's PA behavior, their experiences related to PA, as well as maintain their PA. PMID:26844157

  4. The Relationship between Motor Skills, Perceived Social Support, and Internalizing Problems in a Community Adolescent Sample

    PubMed Central

    Mancini, Vincent O.; Rigoli, Daniela; Heritage, Brody; Roberts, Lynne D.; Piek, Jan P.

    2016-01-01

    Objectives: Poor motor skills are associated with a range of psychosocial consequences, including internalizing (anxious and depressive) symptoms. The Elaborated Environmental Stress Hypothesis provides a causal framework to explain this association. The framework posits that motor skills impact internalizing problems through an indirect effect via perceived social support. However, empirical evaluation is required. We examined whether motor skills had an indirect effect on anxious and depressive symptoms via perceived family support domains. Methods: This study used a community sample of 93 adolescents (12–16 years). Participants completed measures of motor skills, perceived social support across three dimensions (family, friend, and significant other), depressive symptoms, and anxious symptoms. Age, gender, verbal IQ, and ADHD symptoms were included as control variables. Results: Regression analysis using PROCESS revealed that motor skills had an indirect effect on depressive symptoms via perceived family support, but not by perceived friend support or significant other support. The negative association between motor skills and anxious symptoms was not mediated by any perceived social support domain. Conclusions: Findings are consistent with previous literature indicating an association between motor skills and internalizing problems. However, we identified a different pattern of relationships across anxious and depressive symptoms. While anxiety and depressive symptoms were highly correlated, motor skills had an indirect effect on depressive symptoms via perceived family support only. Our findings highlight the importance of family support as a potential protective factor in the onset of depressive symptoms. This study provides partial support for the Elaborated Environmental Stress Hypothesis, however further research is required. PMID:27148149

  5. Infant and Toddler Oral- and Manual-Motor Skills Predict Later Speech Fluency in Autism

    ERIC Educational Resources Information Center

    Gernsbacher, Morton Ann; Sauer, Eve A.; Geye, Heather M.; Schweigert, Emily K.; Goldsmith, H. Hill

    2008-01-01

    Background: Spoken and gestural communication proficiency varies greatly among autistic individuals. Three studies examined the role of oral- and manual-motor skill in predicting autistic children's speech development. Methods: Study 1 investigated whether infant and toddler oral- and manual-motor skills predict middle childhood and teenage speech…

  6. A Strategy for Embedding Functional Motor and Early Numeracy Skill Instruction into Physical Education Activities

    ERIC Educational Resources Information Center

    Whinnery, Stacie B.; Whinnery, Keith W.; Eddins, Daisy

    2016-01-01

    This article addresses the challenges educators face when attempting to find a balance between both functional and academic skill instruction for students with severe, multiple disabilities including motor impairments. The authors describe a strategy that employs embedded instruction of early numeracy and functional motor skills during physical…

  7. Teacher Compliance and Accuracy in State Assessment of Student Motor Skill Performance

    ERIC Educational Resources Information Center

    Hall, Tina J.; Hicklin, Lori K.; French, Karen E.

    2015-01-01

    Purpose: The purpose of this study was to investigate teacher compliance with state mandated assessment protocols and teacher accuracy in assessing student motor skill performance. Method: Middle school teachers (N = 116) submitted eighth grade student motor skill performance data from 318 physical education classes to a trained monitoring…

  8. Divergent Development of Gross Motor Skills in Children Who Are Blind or Sighted

    ERIC Educational Resources Information Center

    Brambring, Michael

    2006-01-01

    This empirical study compared the average ages at which four congenitally blind children acquired 29 gross motor skills with age norms for sighted children. The results indicated distinct developmental delays in the acquisition of motor skills and a high degree of variability in developmental delays within and across the six subdomains that were…

  9. The Association between Motor Skill Competence and Physical Fitness in Young Adults

    ERIC Educational Resources Information Center

    Stodden, David; Langendorfer, Stephen; Roberton, Mary Ann

    2009-01-01

    We examined the relationship between competence in three fundamental motor skills (throwing, kicking, and jumping) and six measures of health-related physical fitness in young adults (ages 18-25). We assessed motor skill competence using product scores of maximum kicking and throwing speed and maximum jumping distance. A factor analysis indicated…

  10. Are Gross Motor Skills and Sports Participation Related in Children with Intellectual Disabilities?

    ERIC Educational Resources Information Center

    Westendorp, Marieke; Houwen, Suzanne; Hartman, Esther; Visscher, Chris

    2011-01-01

    This study compared the specific gross motor skills of 156 children with intellectual disabilities (ID) (50 less than or equal to IQ greater than or equal to 79) with that of 255 typically developing children, aged 7-12 years. Additionally, the relationship between the specific gross motor skills and organized sports participation was examined in…

  11. Does Computer-Based Motor Skill Assessment Training Transfer to Live Assessing?

    ERIC Educational Resources Information Center

    Kelly, Luke E.; Taliaferro, Andrea; Krause, Jennifer

    2012-01-01

    Developing competency in motor skill assessment has been identified as a critical need in physical educator preparation. We conducted this study to evaluate (a) the effectiveness of a web-based instructional program--Motor Skill Assessment Program (MSAP)--for developing assessment competency, and specifically (b) whether competency developed by…

  12. How Fine Motor Skills Influence the Assessment of High Abilities and Underachievement in Math

    ERIC Educational Resources Information Center

    Ziegler, Albert; Stoeger, Heidrun

    2010-01-01

    Previously, fine motor skills have been of little or no interest to giftedness research. New lines of thought have been advanced that imply that fine motor skills can be of significance in the identification of gifted persons as well as gifted underachievers. This would also have consequences for the diagnostic process underlying identification.…

  13. The Development of the Manchester Motor Skills Assessment (MMSA): An Initial Evaluation

    ERIC Educational Resources Information Center

    Bond, C.; Cole, M.; Crook, H.; Fletcher, J.; Lucanz, J.; Noble, J.

    2007-01-01

    This article is an initial evaluation of a motor skills assessment for primary aged children. The Manchester Motor Skills Assessment (MMSA) is designed to be quick and easy for teaching assistants to complete, with the dual purposes of informing group programme planning and demonstrating an individual child's progress following a period of…

  14. Active Learning: Learning a Motor Skill Without a Coach

    PubMed Central

    Huang, Vincent S.; Shadmehr, Reza; Diedrichsen, Jörn

    2008-01-01

    When we learn a new skill (e.g., golf) without a coach, we are “active learners”: we have to choose the specific components of the task on which to train (e.g., iron, driver, putter, etc.). What guides our selection of the training sequence? How do choices that people make compare with choices made by machine learning algorithms that attempt to optimize performance? We asked subjects to learn the novel dynamics of a robotic tool while moving it in four directions. They were instructed to choose their practice directions to maximize their performance in subsequent tests. We found that their choices were strongly influenced by motor errors: subjects tended to immediately repeat an action if that action had produced a large error. This strategy was correlated with better performance on test trials. However, even when participants performed perfectly on a movement, they did not avoid repeating that movement. The probability of repeating an action did not drop below chance even when no errors were observed. This behavior led to suboptimal performance. It also violated a strong prediction of current machine learning algorithms, which solve the active learning problem by choosing a training sequence that will maximally reduce the learner's uncertainty about the task. While we show that these algorithms do not provide an adequate description of human behavior, our results suggest ways to improve human motor learning by helping people choose an optimal training sequence. PMID:18509079

  15. Active learning: learning a motor skill without a coach.

    PubMed

    Huang, Vincent S; Shadmehr, Reza; Diedrichsen, Jörn

    2008-08-01

    When we learn a new skill (e.g., golf) without a coach, we are "active learners": we have to choose the specific components of the task on which to train (e.g., iron, driver, putter, etc.). What guides our selection of the training sequence? How do choices that people make compare with choices made by machine learning algorithms that attempt to optimize performance? We asked subjects to learn the novel dynamics of a robotic tool while moving it in four directions. They were instructed to choose their practice directions to maximize their performance in subsequent tests. We found that their choices were strongly influenced by motor errors: subjects tended to immediately repeat an action if that action had produced a large error. This strategy was correlated with better performance on test trials. However, even when participants performed perfectly on a movement, they did not avoid repeating that movement. The probability of repeating an action did not drop below chance even when no errors were observed. This behavior led to suboptimal performance. It also violated a strong prediction of current machine learning algorithms, which solve the active learning problem by choosing a training sequence that will maximally reduce the learner's uncertainty about the task. While we show that these algorithms do not provide an adequate description of human behavior, our results suggest ways to improve human motor learning by helping people choose an optimal training sequence. PMID:18509079

  16. Body machine interface: remapping motor skills after spinal cord injury.

    PubMed

    Casadio, M; Pressman, A; Acosta, S; Danzinger, Z; Fishbach, A; Mussa-Ivaldi, F A; Muir, K; Tseng, H; Chen, D

    2011-01-01

    The goal of a body-machine interface (BMI) is to map the residual motor skills of the users into efficient patterns of control. The interface is subject to two processes of learning: while users practice controlling the assistive device, the interface modifies itself based on the user's residual abilities and preferences. In this study, we combined virtual reality and movement capture technologies to investigate the reorganization of movements that occurs when individuals with spinal cord injury (SCI) are allowed to use a broad spectrum of body motions to perform different tasks. Subjects, over multiple sessions, used their upper body movements to engage in exercises that required different operational functions such as controlling a keyboard for playing a videogame, driving a simulated wheelchair in a virtual reality (VR) environment, and piloting a cursor on a screen for reaching targets. In particular, we investigated the possibility of reducing the dimensionality of the control signals by finding repeatable and stable correlations of movement signals, established both by the presence of biomechanical constraints and by learned patterns of coordination. The outcomes of these investigations will provide guidance for further studies of efficient remapping of motor coordination for the control of assistive devices and are a basis for a new training paradigm in which the burden of learning is significantly removed from the impaired subjects and shifted to the devices. PMID:22275588

  17. Design and evaluation of a computerized test for hand motor skills.

    PubMed

    Hsiao, Hsien-Sheng; Chang, Cheng-Sian; Lin, Chien-Yu; Chiu, Ching-Tsun

    2014-06-01

    The purposes of this study are to design and develop a computerized test to measure junior high school students' motor skills, specifically their abilities in hand-eye motor coordination and hand motor skills, using the Wii Remote. The hand motor skills computerized test, which is based on the operational examinations in the General Aptitude Test Battery, examines hand and finger dexterity (i.e., motion, rotation, fabrication, and disassembly tests). 55 students participated in the experiment to assess the reliability and validity of the computerized test, which were supported. Information literacy and experience in the use of Wii devices did not affect the reliability. PMID:25068744

  18. Haptics in teaching handwriting: the role of perceptual and visuo-motor skills.

    PubMed

    Bara, Florence; Gentaz, Edouard

    2011-08-01

    Two studies were carried out in order to better understand the role of perceptual and visuo-motor skills in handwriting. Two training programs, visual-haptic (VH) and visual (V), were compared which differed in the way children explored the letters. The results revealed that improvements of VH training on letter recognition and handwriting quality were higher than improvements after V training. We suppose that VH training was more efficient because it improved both perceptual and visuo-motor skills. In the second experiment, in order to investigate the part of each component, we assessed the link between visuo-motor skills, perceptual skills and handwriting. The results showed that only the visuo-motor tasks predict handwriting copying performance. These results are discussed in relation to the respective roles of the perceptual and visuo-motor skills on letter shape learning and handwriting movement execution. PMID:21272948

  19. The relationship between gross motor skills and academic achievement in children with learning disabilities.

    PubMed

    Westendorp, Marieke; Hartman, Esther; Houwen, Suzanne; Smith, Joanne; Visscher, Chris

    2011-01-01

    The present study compared the gross motor skills of 7- to 12-year-old children with learning disabilities (n = 104) with those of age-matched typically developing children (n = 104) using the Test of Gross Motor Development-2. Additionally, the specific relationships between subsets of gross motor skills and academic performance in reading, spelling, and mathematics were examined in children with learning disabilities. As expected, the children with learning disabilities scored poorer on both the locomotor and object-control subtests than their typically developing peers. Furthermore, in children with learning disabilities a specific relationship was observed between reading and locomotor skills and a trend was found for a relationship between mathematics and object-control skills: the larger children's learning lag, the poorer their motor skill scores. This study stresses the importance of specific interventions facilitating both motor and academic abilities. PMID:21700421

  20. Trained, generalized, and collateral behavior changes of preschool children receiving gross-motor skills training.

    PubMed

    Kirby, K C; Holborn, S W

    1986-01-01

    Three preschool children participated in a behavioral training program to improve their gross-motor skills. Ten target behaviors were measured in the training setting to assess direct effects of the program. Generalization probes for two gross-motor behaviors, one fine-motor skill, and two social behaviors were conducted in other settings. Results indicated that the training program improved the gross-motor skills trained and that improvements sometimes generalized to other settings. Contrary to suggestions in educational literature, the gross-motor training program did not produce changes in fine-motor skills or social behaviors. Implications for educators and for the development of the technology of generalization are outlined. PMID:3771421

  1. Inter-individual differences in audio-motor learning of piano melodies and white matter fiber tract architecture.

    PubMed

    Engel, Annerose; Hijmans, Brenda S; Cerliani, Leonardo; Bangert, Marc; Nanetti, Luca; Keller, Peter E; Keysers, Christian

    2014-05-01

    Humans vary substantially in their ability to learn new motor skills. Here, we examined inter-individual differences in learning to play the piano, with the goal of identifying relations to structural properties of white matter fiber tracts relevant to audio-motor learning. Non-musicians (n = 18) learned to perform three short melodies on a piano keyboard in a pure audio-motor training condition (vision of their own fingers was occluded). Initial learning times ranged from 17 to 120 min (mean ± SD: 62 ± 29 min). Diffusion-weighted magnetic resonance imaging was used to derive the fractional anisotropy (FA), an index of white matter microstructural arrangement. A correlation analysis revealed that higher FA values were associated with faster learning of piano melodies. These effects were observed in the bilateral corticospinal tracts, bundles of axons relevant for the execution of voluntary movements, and the right superior longitudinal fasciculus, a tract important for audio-motor transformations. These results suggest that the speed with which novel complex audio-motor skills can be acquired may be determined by variability in structural properties of white matter fiber tracts connecting brain areas functionally relevant for audio-motor learning. PMID:23904213

  2. The Effects of Motor Skill Acquisition on the Development of Intentional Communication.

    ERIC Educational Resources Information Center

    Jones, Hazel A.; Horn, Eva M.; Warren, Steven F.

    1999-01-01

    A study investigated the effects of a neurobehavioral motor intervention on intentional communication development of four children (ages 1 to 3) with neuromotor impairments. Related communication skills linked to motor targets were observed. All subjects increased the use of communication behaviors following implementation of the motor-skill…

  3. Motor Skills, Attention and Academic Achievements. An Intervention Study in School Years 1-3

    ERIC Educational Resources Information Center

    Ericsson, Ingegerd

    2008-01-01

    The aim was to study effects of an extension of physical education and motor training on motor skills, attention and cognition during a period of three years. The study has two intervention groups (n = 152) that have physical activity and motor training one lesson every school day and one control group (n = 99) that has the school's ordinary…

  4. Enhancing the Motor Skills of Children with Autism Spectrum Disorders: A Pool-Based Approach

    ERIC Educational Resources Information Center

    Lee, Jihyun; Porretta, David L.

    2013-01-01

    Children with autism spectrum disorders (ASDs) often experience difficulties with motor skill learning and performance. The pool is a unique learning environment that can help children with ASDs learn or improve aquatic skills, fitness, and social skills. A pool-based approach is also aligned with the elements of dynamic systems theory, which…

  5. Motor development and motor resonance difficulties in autism: relevance to early intervention for language and communication skills

    PubMed Central

    McCleery, Joseph P.; Elliott, Natasha A.; Sampanis, Dimitrios S.; Stefanidou, Chrysi A.

    2013-01-01

    Research suggests that a sub-set of children with autism experience notable difficulties and delays in motor skills development, and that a large percentage of children with autism experience deficits in motor resonance. These motor-related deficiencies, which evidence suggests are present from a very early age, are likely to negatively affect social-communicative and language development in this population. Here, we review evidence for delayed, impaired, and atypical motor development in infants and children with autism. We then carefully review and examine the current language and communication-based intervention research that is relevant to motor and motor resonance (i.e., neural “mirroring” mechanisms activated when we observe the actions of others) deficits in children with autism. Finally, we describe research needs and future directions and developments for early interventions aimed at addressing the speech/language and social-communication development difficulties in autism from a motor-related perspective. PMID:23630476

  6. Motor Skill Abilities in Toddlers with Autistic Disorder, Pervasive Developmental Disorder-Not Otherwise Specified, and Atypical Development

    ERIC Educational Resources Information Center

    Matson, Johnny L.; Mahan, Sara; Fodstad, Jill C.; Hess, Julie A.; Neal, Daniene

    2010-01-01

    Motor skills were assessed in 397 toddlers, and it was demonstrated that atypically developing toddlers exhibited significantly greater motor skill abilities than toddlers with autistic disorder. No significant difference on gross or fine motor skill abilities were found between atypically developing toddlers and toddlers with pervasive…

  7. Global models: Robot sensing, control, and sensory-motor skills

    NASA Technical Reports Server (NTRS)

    Schenker, Paul S.

    1989-01-01

    Robotics research has begun to address the modeling and implementation of a wide variety of unstructured tasks. Examples include automated navigation, platform servicing, custom fabrication and repair, deployment and recovery, and science exploration. Such tasks are poorly described at onset; the workspace layout is partially unfamiliar, and the task control sequence is only qualitatively characterized. The robot must model the workspace, plan detailed physical actions from qualitative goals, and adapt its instantaneous control regimes to unpredicted events. Developing robust representations and computational approaches for these sensing, planning, and control functions is a major challenge. The underlying domain constraints are very general, and seem to offer little guidance for well-bounded approximation of object shape and motion, manipulation postures and trajectories, and the like. This generalized modeling problem is discussed, with an emphasis on the role of sensing. It is also discussed that unstructured tasks often have, in fact, a high degree of underlying physical symmetry, and such implicit knowledge should be drawn on to model task performance strategies in a methodological fashion. A group-theoretic decomposition of the workspace organization, task goals, and their admissible interactions are proposed. This group-mechanical approach to task representation helps to clarify the functional interplay of perception and control, in essence, describing what perception is specifically for, versus how it is generically modeled. One also gains insight how perception might logically evolve in response to needs of more complex motor skills. It is discussed why, of the many solutions that are often mathematically admissible to a given sensory motor-coordination problem, one may be preferred over others.

  8. Assessing Motor Skill Competency in Elementary School Students: A Three-Year Study.

    PubMed

    Chen, Weiyun; Mason, Steve; Hypnar, Andrew; Bennett, Austin

    2016-03-01

    This study was to examine how well fourth- and fifth-grade students demonstrated motor skill competency assessed with selected PE Metrics assessment rubrics (2009). Fourth- and fifth-grade students (n = 1,346-1,926) were assessed on their performance of three manipulative skills using the PE Metrics Assessment Rubrics during the pre-intervention year, the post-intervention year 1, and the post-intervention year 3. Descriptive statistics, independent t-test, ANOVA, and follow-up comparisons were conducted for data analysis. The results indicated that the post-intervention year 2 cohort performed significantly more competent than the pre-intervention cohort and the post-intervention year 1 cohort on the three manipulative skill assessments. The post-intervention year 1 cohort significantly outperformed the pre-intervention cohort on the soccer dribbling, passing, and receiving and the striking skill assessments, but not on the throwing skill assessment. Although the boys in the three cohorts performed significantly better than the girls on all three skills, the girls showed substantial improvement on the overhand throwing and the soccer skills from baseline to the post-intervention year 1 and the post-intervention year 2. However, the girls, in particular, need to improve striking skill. The CTACH PE was conducive to improving fourth- and fifth-grade students' motor skill competency in the three manipulative skills. This study suggest that PE Metrics assessment rubrics are feasible tools for PE teachers to assess levels of students' demonstration of motor skill competency during a regular PE lesson. Key pointsCATCH PE is an empirically-evidenced quality PE curricular that is conducive to improving students' manipulative skill competency.Boys significantly outperformed than girls in all three manipulative skills.Girls need to improve motor skill competency in striking skill. PE Metrics are feasible assessment rubrics that can be easily used by trained physical

  9. Assessing Motor Skill Competency in Elementary School Students: A Three-Year Study

    PubMed Central

    Chen, Weiyun; Mason, Steve; Hypnar, Andrew; Bennett, Austin

    2016-01-01

    This study was to examine how well fourth- and fifth-grade students demonstrated motor skill competency assessed with selected PE Metrics assessment rubrics (2009). Fourth- and fifth-grade students (n = 1,346-1,926) were assessed on their performance of three manipulative skills using the PE Metrics Assessment Rubrics during the pre-intervention year, the post-intervention year 1, and the post-intervention year 3. Descriptive statistics, independent t-test, ANOVA, and follow-up comparisons were conducted for data analysis. The results indicated that the post-intervention year 2 cohort performed significantly more competent than the pre-intervention cohort and the post-intervention year 1 cohort on the three manipulative skill assessments. The post-intervention year 1 cohort significantly outperformed the pre-intervention cohort on the soccer dribbling, passing, and receiving and the striking skill assessments, but not on the throwing skill assessment. Although the boys in the three cohorts performed significantly better than the girls on all three skills, the girls showed substantial improvement on the overhand throwing and the soccer skills from baseline to the post-intervention year 1 and the post-intervention year 2. However, the girls, in particular, need to improve striking skill. The CTACH PE was conducive to improving fourth- and fifth-grade students’ motor skill competency in the three manipulative skills. This study suggest that PE Metrics assessment rubrics are feasible tools for PE teachers to assess levels of students’ demonstration of motor skill competency during a regular PE lesson. Key points CATCH PE is an empirically-evidenced quality PE curricular that is conducive to improving students’ manipulative skill competency. Boys significantly outperformed than girls in all three manipulative skills. Girls need to improve motor skill competency in striking skill. PE Metrics are feasible assessment rubrics that can be easily used by trained

  10. The Neural Basis for Learning of Simple Motor Skills.

    ERIC Educational Resources Information Center

    Lisberger, Stephen G.

    1988-01-01

    Discusses the vestibulo-ocular reflex (VOR) which is used to investigate the neural basis for motor learning in monkeys. Suggests organizing principles that may apply in forms of motor learning as a result of similarities among VOR and other motor systems. (Author/RT)

  11. Skills Matter: Further Results from the Survey of Adult Skills. OECD Skills Studies

    ERIC Educational Resources Information Center

    Kankaraš, Miloš; Montt, Guillermo; Paccagnella, Marco; Quintini, Glenda; Thorn, William

    2016-01-01

    In the wake of the technological revolution that began in the last decades of the 20th century, labour market demand for information-processing and other high-level cognitive and interpersonal skills is growing substantially. The "Survey of Adult Skills," a product of the OECD Programme for the International Assessment of Adult…

  12. Comparison of motor and process skills among children with different developmental disabilities.

    PubMed

    Park, Myoung-Ok

    2015-10-01

    [Purpose] The purpose of the present study was to compare the motor and process skills of children with different developmental disabilities. [Subjects] Thirty-nine children with developmental disabilities participated in this study which was conducted at N hospital in South Korea. [Methods] The motor and process skills of the participants were compared among three different disabilities: pervasive developmental disorder, cerebral palsy, and intellectual disorder. The data were analyzed using descriptive statistics and one-way ANOVA. [Results] Significant differences in motor skills were found among the diagnoses. The cerebral palsy group showed poorer motor skills than the pervasive developmental disability and intellectual disability groups. [Conclusion] The findings have clinical implications for strategies of rehabilitation for children with developmental disabilities. PMID:26644670

  13. Teaching and Assessing Manipulative Motor Skills in High School Physical Education

    ERIC Educational Resources Information Center

    Bert, Greg

    2015-01-01

    This article provides new ways to teach and assess motor skills in various lifetime sports such as tennis, golf, badminton, and other sports that students are likely to play as adults by focusing on five basic biomechanical principles.

  14. Neural substrates underlying motor skill learning in chronic hemiparetic stroke patients

    PubMed Central

    Lefebvre, Stéphanie; Dricot, Laurence; Laloux, Patrice; Gradkowski, Wojciech; Desfontaines, Philippe; Evrard, Frédéric; Peeters, André; Jamart, Jacques; Vandermeeren, Yves

    2015-01-01

    Motor skill learning is critical in post-stroke motor recovery, but little is known about its underlying neural substrates. Recently, using a new visuomotor skill learning paradigm involving a speed/accuracy trade-off in healthy individuals we identified three subpopulations based on their behavioral trajectories: fitters (in whom improvement in speed or accuracy coincided with deterioration in the other parameter), shifters (in whom speed and/or accuracy improved without degradation of the other parameter), and non-learners. We aimed to identify the neural substrates underlying the first stages of motor skill learning in chronic hemiparetic stroke patients and to determine whether specific neural substrates were recruited in shifters versus fitters. During functional magnetic resonance imaging (fMRI), 23 patients learned the visuomotor skill with their paretic upper limb. In the whole-group analysis, correlation between activation and motor skill learning was restricted to the dorsal prefrontal cortex of the damaged hemisphere (DLPFCdamh: r = −0.82) and the dorsal premotor cortex (PMddamh: r = 0.70); the correlations was much lesser (−0.16 < r > 0.25) in the other regions of interest. In a subgroup analysis, significant activation was restricted to bilateral posterior parietal cortices of the fitters and did not correlate with motor skill learning. Conversely, in shifters significant activation occurred in the primary sensorimotor cortexdamh and supplementary motor areadamh and in bilateral PMd where activation changes correlated significantly with motor skill learning (r = 0.91). Finally, resting-state activity acquired before learning showed a higher functional connectivity in the salience network of shifters compared with fitters (qFDR < 0.05). These data suggest a neuroplastic compensatory reorganization of brain activity underlying the first stages of motor skill learning with the paretic upper limb in chronic hemiparetic stroke patients, with a key role

  15. Variability of Practice and Contextual Interference in Motor Skill Learning.

    PubMed

    Hall, K. G.; Magill, R. A.

    1995-12-01

    The purpose of this study was to investigate whether learning benefits in multiple-task learning situations are a result of contextual interference or of schema enhancement related to the amount of variability in the practice session. Two experiments were designed that replicated and extended the experiment reported by Wulf and Schmidt (1988). In a 2 (same vs. different relative time) x 2 (blocked vs. random practice schedule) design, 48 right-handed subjects were randomly assigned to one of four experimental conditions. A tapping task was employed that required a right-handed tap of three small brass plates arranged in a diamond pattern. Each segment had a specific time requirement. Target times and response times were provided on a computer screen directly in front of the subject. Each subject participated in two acquisition sessions (i.e., 198 practice trials) and was tested for learning on several different retention and transfer tests. In Experiment 2, a control group was added that received no acquisition phase. Results of both experiments showed a typical contextual interference effect, with depressed scores by the random groups during acquisition but significantly better scores than the blocked groups on several retention and transfer tests. Certain characteristics of the tests were found to influence the demonstration of the practice schedule effects. These results were consistent with predictions from Magill and Hall (1990) that the learning benefits of contextual interference are more likely to occur when skill variations are from different classes of movement and that the amount of variability in practice is more influential when the to-be-learned tasks are parameter modifications of the same generalized motor program. PMID:12529226

  16. Association between daily activities, process skills, and motor skills in community-dwelling patients after left hemiparetic stroke

    PubMed Central

    Ahn, Sinae

    2016-01-01

    [Purpose] The purpose of this study was to evaluate the relationships between daily activities, information processing, and motor skills in individuals with hemineglect after having a left hemiparetic stroke. [Subjects and Methods] The instrumental activities of daily living of 35 patients (22 male and 13 female; age: 57.1 ± 16.9 years) with hemineglect after having a left hemiparetic stroke were assessed by using three clinical measurement tools, including activity card sorting, assessment of motor and process skills, and the modified Barthel Index. [Results] The results of the regression analysis indicated that the patients’ processing skills in instrumental activities of daily living after having a left hemiparetic stroke were reduced. Participation in leisure and social activities was also affected as assessed by using the modified Barthel Index. [Conclusion] This study supports the clinical need for rehabilitation intervention after a left hemiparetic stroke to improve patients’ processing skills and independence in performing activities of daily living. PMID:27390426

  17. Task Analyses and Objectives for Trainable Mentally Retarded: Communication Skills [and] Daily Living Skills [and] Motor Skills [and] Quantitative Skills.

    ERIC Educational Resources Information Center

    Minneapolis Public Schools, Minn.

    The document is comprised of objectives and information on step-by-step tasks for instruction of trainable mentally retarded students and for development of individualized education programs. Each objective includes information on materials, behavioral criteria, and a chart to assess task analyzed steps. Four main skill areas are covered (sample…

  18. Reduced asymmetry in motor skill learning in left-handed compared to right-handed individuals.

    PubMed

    McGrath, Robert L; Kantak, Shailesh S

    2016-02-01

    Hemispheric specialization for motor control influences how individuals perform and adapt to goal-directed movements. In contrast to adaptation, motor skill learning involves a process wherein one learns to synthesize novel movement capabilities in absence of perturbation such that they are performed with greater accuracy, consistency and efficiency. Here, we investigated manual asymmetry in acquisition and retention of a complex motor skill that requires speed and accuracy for optimal performance in right-handed and left-handed individuals. We further determined if degree of handedness influences motor skill learning. Ten right-handed (RH) and 10 left-handed (LH) adults practiced two distinct motor skills with their dominant or nondominant arms during separate sessions two-four weeks apart. Learning was quantified by changes in the speed-accuracy tradeoff function measured at baseline and one-day retention. Manual asymmetry was evident in the RH group but not the LH group. RH group demonstrated significantly greater skill improvement for their dominant-right hand than their nondominant-left hand. In contrast, for the LH group, both dominant and nondominant hands demonstrated comparable learning. Less strongly-LH individuals (lower EHI scores) exhibited more learning of their dominant hand. These results suggest that while hemispheric specialization influences motor skill learning, these effects may be influenced by handedness. PMID:26638046

  19. A Model for the Transfer of Perceptual-Motor Skill Learning in Human Behaviors

    ERIC Educational Resources Information Center

    Rosalie, Simon M.; Muller, Sean

    2012-01-01

    This paper presents a preliminary model that outlines the mechanisms underlying the transfer of perceptual-motor skill learning in sport and everyday tasks. Perceptual-motor behavior is motivated by performance demands and evolves over time to increase the probability of success through adaptation. Performance demands at the time of an event…

  20. Interaction of Language Processing and Motor Skill in Children with Specific Language Impairment

    ERIC Educational Resources Information Center

    DiDonato Brumbach, Andrea C.; Goffman, Lisa

    2014-01-01

    Purpose: To examine how language production interacts with speech motor and gross and fine motor skill in children with specific language impairment (SLI). Method: Eleven children with SLI and 12 age-matched peers (4-6 years) produced structurally primed sentences containing particles and prepositions. Utterances were analyzed for errors and for…

  1. Relationship between Motor Skill Competency and Executive Function in Children with Down's Syndrome

    ERIC Educational Resources Information Center

    Schott, N.; Holfelder, B.

    2015-01-01

    Background: Previous studies suggest that children with Down's syndrome (DS), a genetically based neurodevelopmental disorder, demonstrate motor problems and cognitive deficits. The first aim of this study was to examine motor skills and executive functions (EFs) in school-age children with DS. The second aim was to investigate the relationship…

  2. Motor skills in Czech children with attention-deficit/hyperactivity disorder and their neurotypical counterparts.

    PubMed

    Scharoun, S M; Bryden, P J; Otipkova, Z; Musalek, M; Lejcarova, A

    2013-11-01

    Attention-deficit/hyperactivity disorder (ADHD) is the most commonly diagnosed neurobehavioural disorder. Characterized by recurring problems with impulsiveness and inattention in combination with hyperactivity, motor impairments have also been well documented in the literature. The aim of this study was to compare the fine and gross motor skills of male and female children with ADHD and their neurotypical counterparts within seven skill assessments. This included three fine motor tasks: (1) spiral tracing, (2) dot filling, (3) tweezers and beads; and four gross motor tasks: (1) twistbox, (2) foot tapping, (3) small plate finger tapping, and (4) large plate finger tapping. It was hypothesized that children with ADHD would display poorer motor skills in comparison to neurotypical controls in both fine and gross motor assessments. However, statistically significant differences between the groups only emerged in four of the seven tasks (spiral tracing, dot filling, tweezers and beads and foot tapping). In line with previous findings, the complexity underlying upper limb tasks solidified the divide in performance between children with ADHD and their neurotypical counterparts. In light of similar research, impairments in lower limb motor skill were also observed. Future research is required to further delineate trends in motor difficulties in ADHD, while further investigating the underlying mechanisms of impairment. PMID:24060728

  3. Relationship between Motor Skill and Body Mass Index in 5- to 10-Year-Old Children

    ERIC Educational Resources Information Center

    D'Hondt, Eva; Deforche, Benedicte; De Bourdeaudhuij, Ilse; Lenoir, Matthieu

    2009-01-01

    The purpose of this study was to investigate gross and fine motor skill in overweight and obese children compared with normal-weight peers. According to international cut-off points for Body Mass Index (BMI) from Cole et al. (2000), all 117 participants (5-10 year) were classified as being normal-weight, overweight, or obese. Level of motor skill…

  4. The Performance of Fundamental Gross Motor Skills by Children Enrolled in Head Start.

    ERIC Educational Resources Information Center

    Woodard, Rebecca J.; Yun, Joonkoo

    2001-01-01

    This study sought to descriptively evaluate the performance of fundamental gross motor skills among Head Start children. Levels of performance were compared and contrasted with performance profiles of the Test of Gross Motor Development. Findings suggest that Head Start curriculum should focus on the importance of developing fundamental gross…

  5. Visual Constructive and Visual-Motor Skills in Deaf Native Signers

    ERIC Educational Resources Information Center

    Hauser, Peter C.; Cohen, Julie; Dye, Matthew W. G.; Bavelier, Daphne

    2007-01-01

    Visual constructive and visual-motor skills in the deaf population were investigated by comparing performance of deaf native signers (n = 20) to that of hearing nonsigners (n = 20) on the Beery-Buktenica Developmental Test of Visual-Motor Integration, Rey-Osterrieth Complex Figure Test, Wechsler Memory Scale Visual Reproduction subtest, and…

  6. Motor Skill Performance and Sports Participation in Deaf Elementary School Children

    ERIC Educational Resources Information Center

    Hartman, Esther; Houwen, Suzanne; Visscher, Chris

    2011-01-01

    This study aimed to examine motor performance in deaf elementary school children and its association with sports participation. The population studied included 42 deaf children whose hearing loss ranged from 80 to 120 dB. Their motor skills were assessed with the Movement Assessment Battery for Children, and a questionnaire was used to determine…

  7. Behind Mathematical Learning Disabilities: What about Visual Perception and Motor Skills?

    ERIC Educational Resources Information Center

    Pieters, Stefanie; Desoete, Annemie; Roeyers, Herbert; Vanderswalmen, Ruth; Van Waelvelde, Hilde

    2012-01-01

    In a sample of 39 children with mathematical learning disabilities (MLD) and 106 typically developing controls belonging to three control groups of three different ages, we found that visual perception, motor skills and visual-motor integration explained a substantial proportion of the variance in either number fact retrieval or procedural…

  8. Developing Motor and Tactical Skills in K-2 Physical Education: Let the Games Begin

    ERIC Educational Resources Information Center

    Oslin, Judy

    2004-01-01

    Most motor development experts, teacher educators, and physical educators agree that the development of fundamental motor skills ought to be the focus of primary level (K-2nd grade) physical education. Given the limited number of days allocated for physical education in most elementary schools, ensuring that all students learn 200 or more…

  9. Sit to Talk: Relation between Motor Skills and Language Development in Infancy

    PubMed Central

    Libertus, Klaus; Violi, Dominic A.

    2016-01-01

    Relations between walking skills and language development have been reported in 10- to 14-month-old infants. However, whether earlier emerging motor milestones also affect language skills remains unknown. The current research fills this gap by examining the relation between reaching and sitting skills and later language development, respectively. Reaching and sitting were assessed eight times, starting when infants (N = 29) were around 3 months of age. All assessments were completed and recorded remotely via videoconference using Skype or FaceTime. Subsequently, infants’ language and motor skills were assessed via parent questionnaires (Communicative Development Inventories and Early Motor Questionnaire) at 10 and 14 months of age. Results revealed a significant correlation between the emergence of sitting skills and receptive vocabulary size at 10 and 14 months of age. Regression analyses further confirmed this pattern and revealed that the emergence of sitting is a significant predictor of subsequent language development above and beyond influences of concurrent motor skills. These findings suggest that the onset of independent sitting may initiate a developmental cascade that results in increased language learning opportunities. Further, this study also demonstrates how infants’ early motor skills can be assessed remotely using videoconference. PMID:27065934

  10. Sit to Talk: Relation between Motor Skills and Language Development in Infancy.

    PubMed

    Libertus, Klaus; Violi, Dominic A

    2016-01-01

    Relations between walking skills and language development have been reported in 10- to 14-month-old infants. However, whether earlier emerging motor milestones also affect language skills remains unknown. The current research fills this gap by examining the relation between reaching and sitting skills and later language development, respectively. Reaching and sitting were assessed eight times, starting when infants (N = 29) were around 3 months of age. All assessments were completed and recorded remotely via videoconference using Skype or FaceTime. Subsequently, infants' language and motor skills were assessed via parent questionnaires (Communicative Development Inventories and Early Motor Questionnaire) at 10 and 14 months of age. Results revealed a significant correlation between the emergence of sitting skills and receptive vocabulary size at 10 and 14 months of age. Regression analyses further confirmed this pattern and revealed that the emergence of sitting is a significant predictor of subsequent language development above and beyond influences of concurrent motor skills. These findings suggest that the onset of independent sitting may initiate a developmental cascade that results in increased language learning opportunities. Further, this study also demonstrates how infants' early motor skills can be assessed remotely using videoconference. PMID:27065934

  11. Motor Skill Performance of School-Age Children with Visual Impairments

    ERIC Educational Resources Information Center

    Houwen, S.; Visscher, C.; Lemmink, K. A. P. M.; Hartman, E.

    2008-01-01

    The aim of this study was to examine the performance of children with visual impairments (VI) aged 7 to 10 years on different types of motor skills. Furthermore, the association between the degree of the VI and motor performance was examined. The motor performance of 48 children with VI (32 males, 16 females; mean age 8y 10mo [SD 1y 1mo]) was…

  12. A Single Bout of Moderate Aerobic Exercise Improves Motor Skill Acquisition.

    PubMed

    Statton, Matthew A; Encarnacion, Marysol; Celnik, Pablo; Bastian, Amy J

    2015-01-01

    Long-term exercise is associated with improved performance on a variety of cognitive tasks including attention, executive function, and long-term memory. Remarkably, recent studies have shown that even a single bout of aerobic exercise can lead to immediate improvements in declarative learning and memory, but less is known about the effect of exercise on motor learning. Here we sought to determine the effect of a single bout of moderate intensity aerobic exercise on motor skill learning. In experiment 1, we investigated the effect of moderate aerobic exercise on motor acquisition. 24 young, healthy adults performed a motor learning task either immediately after 30 minutes of moderate intensity running, after running followed by a long rest period, or after slow walking. Motor skill was assessed via a speed-accuracy tradeoff function to determine how exercise might differentially affect two distinct components of motor learning performance: movement speed and accuracy. In experiment 2, we investigated both acquisition and retention of motor skill across multiple days of training. 20 additional participants performed either a bout of running or slow walking immediately before motor learning on three consecutive days, and only motor learning (no exercise) on a fourth day. We found that moderate intensity running led to an immediate improvement in motor acquisition for both a single session and on multiple sessions across subsequent days, but had no effect on between-day retention. This effect was driven by improved movement accuracy, as opposed to speed. However, the benefit of exercise was dependent upon motor learning occurring immediately after exercise-resting for a period of one hour after exercise diminished the effect. These results demonstrate that moderate intensity exercise can prime the nervous system for the acquisition of new motor skills, and suggest that similar exercise protocols may be effective in improving the outcomes of movement rehabilitation

  13. A Single Bout of Moderate Aerobic Exercise Improves Motor Skill Acquisition

    PubMed Central

    Statton, Matthew A.; Encarnacion, Marysol; Celnik, Pablo; Bastian, Amy J.

    2015-01-01

    Long-term exercise is associated with improved performance on a variety of cognitive tasks including attention, executive function, and long-term memory. Remarkably, recent studies have shown that even a single bout of aerobic exercise can lead to immediate improvements in declarative learning and memory, but less is known about the effect of exercise on motor learning. Here we sought to determine the effect of a single bout of moderate intensity aerobic exercise on motor skill learning. In experiment 1, we investigated the effect of moderate aerobic exercise on motor acquisition. 24 young, healthy adults performed a motor learning task either immediately after 30 minutes of moderate intensity running, after running followed by a long rest period, or after slow walking. Motor skill was assessed via a speed-accuracy tradeoff function to determine how exercise might differentially affect two distinct components of motor learning performance: movement speed and accuracy. In experiment 2, we investigated both acquisition and retention of motor skill across multiple days of training. 20 additional participants performed either a bout of running or slow walking immediately before motor learning on three consecutive days, and only motor learning (no exercise) on a fourth day. We found that moderate intensity running led to an immediate improvement in motor acquisition for both a single session and on multiple sessions across subsequent days, but had no effect on between-day retention. This effect was driven by improved movement accuracy, as opposed to speed. However, the benefit of exercise was dependent upon motor learning occurring immediately after exercise–resting for a period of one hour after exercise diminished the effect. These results demonstrate that moderate intensity exercise can prime the nervous system for the acquisition of new motor skills, and suggest that similar exercise protocols may be effective in improving the outcomes of movement rehabilitation

  14. Acquisition and improvement of human motor skills: Learning through observation and practice

    NASA Technical Reports Server (NTRS)

    Iba, Wayne

    1991-01-01

    Skilled movement is an integral part of the human existence. A better understanding of motor skills and their development is a prerequisite to the construction of truly flexible intelligent agents. We present MAEANDER, a computational model of human motor behavior, that uniformly addresses both the acquisition of skills through observation and the improvement of skills through practice. MAEANDER consists of a sensory-effector interface, a memory of movements, and a set of performance and learning mechanisms that let it recognize and generate motor skills. The system initially acquires such skills by observing movements performed by another agent and constructing a concept hierarchy. Given a stored motor skill in memory, MAEANDER will cause an effector to behave appropriately. All learning involves changing the hierarchical memory of skill concepts to more closely correspond to either observed experience or to desired behaviors. We evaluated MAEANDER empirically with respect to how well it acquires and improves both artificial movement types and handwritten script letters from the alphabet. We also evaluate MAEANDER as a psychological model by comparing its behavior to robust phenomena in humans and by considering the richness of the predictions it makes.

  15. Motor-Academic-Perceptual (M-A-P) Skill Development Checklist.

    ERIC Educational Resources Information Center

    Smith, Donna K., Comp.

    Presented is the M-A-P (motor, academic, and perceptual) skill development checklist, said to be designed to provide the teacher of young handicapped children with a behavior oriented evaluation of the child's skills leading to the provision of appropriate learning objectives. The checklist is designed to be completed as a result of teacher…

  16. Motor Skill Assessment of Children: Is There an Association between Performance-Based, Child-Report, and Parent-Report Measures of Children's Motor Skills?

    ERIC Educational Resources Information Center

    Kennedy, Johanna; Brown, Ted; Chien, Chi-Wen

    2012-01-01

    Client-centered practice requires therapists to actively seek the perspectives of children and families. Several assessment tools are available to facilitate this process. However, when evaluating motor skill performance, therapists typically concentrate on performance-based assessment. To improve understanding of the information provided by the…

  17. A matter of time: rapid motor memory stabilization in childhood.

    PubMed

    Adi-Japha, Esther; Badir, Rodayna; Dorfberger, Shoshi; Karni, Avi

    2014-05-01

    Are children better than adults in acquiring new skills ('how-to' knowledge) because of a difference in skill memory consolidation? Here we tested the proposal that, as opposed to adults, children's memories for newly acquired skills are immune to interference by subsequent experience. The establishment of long-term memory for a trained movement sequence in adults requires a phase of memory consolidation. This results in substantial delayed, 'offline', performance gains, which nevertheless remain susceptible to interference by subsequent competing motor experience for several hours after training, unless sleep is afforded in the interval. Here we compared the gains attained overnight (delayed gains) by 9-year-olds and adults after training on a novel finger-to-thumb movement sequence, with and without subsequent interference by repeating a different movement sequence. Our results show that, in 9-year-olds, but not in adults, an interval of 15 min. between the training session and interfering experience sufficed to ensure the expression of delayed, consolidation phase, gains. Nevertheless, in the 9-year-olds, as well as in adults, the gains attained with no interference were significantly larger. Altogether, our results show that while the behavioral expressions of childhood and adult consolidation processes are similar, procedural memory stabilizes, in the waking state, at a much faster rate in children. We propose that, in children, rapid stabilization is a mechanism whereby the constraints on consolidating new experiences into long-term procedural memory are relaxed at the cost of selectivity. PMID:24620995

  18. Motor Skill Development in Italian Pre-School Children Induced by Structured Activities in a Specific Playground.

    PubMed

    Tortella, Patrizia; Haga, Monika; Loras, Håvard; Sigmundsson, Hermundur; Fumagalli, Guido

    2016-01-01

    This study examined the effects and specificity of structured and unstructured activities played at the playground Primo Sport 0246 in Northern Italy on motor skill competence in five years old children. The playground was specifically designed to promote gross motor skills in preschool children; in this study 71 children from local kindergartens came to the park once a week for ten consecutive weeks and were exposed to 30 minutes of free play and 30 minutes of structured activities. Before and after the ten visits, each child completed nine tests to assess levels of motor skills, three for fine-motor skills and six for gross-motor skills. As control, motor skills were also assessed on 39 children from different kindergartens who did not come to the park. The results show that the experimental group who practiced gross-motor activities in the playground for 1 hour a week for 10 weeks improved significantly in 4 out of the 6 gross motor tasks and in none of the fine motor tasks. The data indicate that limited transfer occurred between tasks referring to different domains of motor competences while suggesting cross feeding for improvement of gross-motor skills between different exercises when domains related to physical fitness and strength of specific muscle groups are involved. These results are relevant to the issue of condition(s) appropriate for maintaining and developing motor skills in this age group as well as for the planning, organization and implementation of play and physical activities in kindergartens. PMID:27462985

  19. Motor Skill Development in Italian Pre-School Children Induced by Structured Activities in a Specific Playground

    PubMed Central

    Tortella, Patrizia; Haga, Monika; Loras, Håvard

    2016-01-01

    This study examined the effects and specificity of structured and unstructured activities played at the playground Primo Sport 0246 in Northern Italy on motor skill competence in five years old children. The playground was specifically designed to promote gross motor skills in preschool children; in this study 71 children from local kindergartens came to the park once a week for ten consecutive weeks and were exposed to 30 minutes of free play and 30 minutes of structured activities. Before and after the ten visits, each child completed nine tests to assess levels of motor skills, three for fine-motor skills and six for gross-motor skills. As control, motor skills were also assessed on 39 children from different kindergartens who did not come to the park. The results show that the experimental group who practiced gross-motor activities in the playground for 1 hour a week for 10 weeks improved significantly in 4 out of the 6 gross motor tasks and in none of the fine motor tasks. The data indicate that limited transfer occurred between tasks referring to different domains of motor competences while suggesting cross feeding for improvement of gross-motor skills between different exercises when domains related to physical fitness and strength of specific muscle groups are involved. These results are relevant to the issue of condition(s) appropriate for maintaining and developing motor skills in this age group as well as for the planning, organization and implementation of play and physical activities in kindergartens. PMID:27462985

  20. Preparing Pre-Service Primary School Teachers to Assess Fundamental Motor Skills: Two Skills and Two Approaches

    ERIC Educational Resources Information Center

    Haynes, John; Miller, Judith

    2015-01-01

    Background: Pre-service teacher education (PSTE) programmes for generalist primary school teachers have limited time allocated to Physical Education, Health and Personal Development. In practice, teachers in schools are required to assess motor skills despite the fact that their training provides minimal preparation. This necessitates creative…

  1. Acute effects of dietary constituents on motor skill and cognitive performance in athletes.

    PubMed

    Baker, Lindsay B; Nuccio, Ryan P; Jeukendrup, Asker E

    2014-12-01

    Performance in many sports is at least partially dependent on motor control, coordination, decision-making, and other cognitive tasks. This review summarizes available evidence about the ingestion of selected nutrients or isolated compounds (dietary constituents) and potential acute effects on motor skill and/or cognitive performance in athletes. Dietary constituents discussed include branched-chain amino acids, caffeine, carbohydrate, cocoa flavanols, Gingko biloba, ginseng, guarana, Rhodiola rosea, sage, L-theanine, theobromine, and tyrosine. Although this is not an exhaustive list, these are perhaps the most researched dietary constituents. Caffeine and carbohydrate have the greatest number of published reports supporting their ability to enhance acute motor skill and cognitive performance in athletes. At this time, there is insufficient published evidence to substantiate the use of any other dietary constituents to benefit sports-related motor skill or cognitive performance. The optimal dose and timing of caffeine and carbohydrate intake promoting enhanced motor skill and cognitive performance remain to be identified. Valid, reliable, and sensitive batteries of motor skills and cognitive tests should be developed for use in future efficacy studies. PMID:25400063

  2. Language and Motor Speech Skills in Children with Cerebral Palsy

    ERIC Educational Resources Information Center

    Pirila, Silja; van der Meere, Jaap; Pentikainen, Taina; Ruusu-Niemi, Pirjo; Korpela, Raija; Kilpinen, Jenni; Nieminen, Pirkko

    2007-01-01

    The aim of the study was to investigate associations between the severity of motor limitations, cognitive difficulties, language and motor speech problems in children with cerebral palsy. Also, the predictive power of neonatal cranial ultrasound findings on later outcome was investigated. For this purpose, 36 children (age range 1 year 10 months…

  3. The Evidence Against Learnability of Early Motor Skills Reconsidered.

    ERIC Educational Resources Information Center

    Razel, Micha

    This paper attempts to refute the assumption that early motor development is determined genetically and is not influenced by environmental factors. The paper re-examines three studies which are consistently cited as providing evidence for a maturational theory of motor development: the "early training study" by Gesell and Thompson, the "swaddling…

  4. Effectiveness of a Fundamental Motor Skill Intervention for 4-Year-Old Children with Autism Spectrum Disorder: A Pilot Study

    ERIC Educational Resources Information Center

    Bremer, Emily; Balogh, Robert; Lloyd, Meghann

    2015-01-01

    A wait-list control experimental design was employed to investigate the effectiveness of a fundamental motor skill intervention at improving the motor skills, adaptive behavior, and social skills of 4-year-old children with autism spectrum disorder (experimental n?=?5, control n?=?4); the impact of intervention intensity was also explored. The…

  5. Effect of a Mastery Climate Motor Program on Object Control Skills and Perceived Physical Competence in Preschoolers

    ERIC Educational Resources Information Center

    Robinson, Leah E.

    2011-01-01

    Fundamental motor skills (e.g., run, jump, catch, and throw) are essential building blocks for more advanced and context-specific skills. Children with these motor skills are able to function independently while learning and exploring their environment. The National Association for Sport and Physical Education (NASPE) "Active Start" guidelines…

  6. Relationship of ocular accommodation and motor skills performance in developmental coordination disorder.

    PubMed

    Rafique, Sara A; Northway, Nadia

    2015-08-01

    Ocular accommodation provides a well-focussed image, feedback for accurate eye movement control, and cues for depth perception. To accurately perform visually guided motor tasks, integration of ocular motor systems is essential. Children with motor coordination impairment are established to be at higher risk of accommodation anomalies. The aim of the present study was to examine the relationship between ocular accommodation and motor tasks, which are often overlooked, in order to better understand the problems experienced by children with motor coordination impairment. Visual function, gross and fine motor skills were assessed in children with developmental coordination disorder (DCD) and typically developing control children. Children with DCD had significantly poorer accommodation facility and amplitude dynamics compared to controls. Results indicate a relationship between impaired accommodation and motor skills. Specifically, accommodation anomalies correlated with visual motor, upper limb and fine dexterity task performance. Consequently, we argue accommodation anomalies influence the ineffective coordination of action and perception in DCD. Furthermore, reading disabilities were related to poorer motor performance. We postulate the role of the fastigial nucleus as a common pathway for accommodation and motor deficits. Implications of the findings and recommended visual screening protocols are discussed. PMID:25912514

  7. Changes in Voice Onset Time and Motor Speech Skills in Children following Motor Speech Therapy: Evidence from /pa/ productions

    PubMed Central

    Yu, Vickie Y.; Kadis, Darren S.; Oh, Anna; Goshulak, Debra; Namasivayam, Aravind; Pukonen, Margit; Kroll, Robert; De Nil, Luc F.; Pang, Elizabeth W.

    2016-01-01

    This study evaluated changes in motor speech control and inter-gestural coordination for children with speech sound disorders (SSD) subsequent to PROMPT (Prompts for Restructuring Oral Muscular Phonetic Targets) intervention. We measured the distribution patterns of voice onset time (VOT) for a voiceless stop (/p/) to examine the changes in inter-gestural coordination. Two standardized tests were used (VMPAC, GFTA-2) to assess the changes in motor speech skills and articulation. Data showed positive changes in patterns of VOT with a lower pattern of variability. All children showed significantly higher scores for VMPAC, but only some children showed higher scores for GFTA-2. Results suggest that the proprioceptive feedback provided through PROMPT had a positive influence on motor speech control and inter-gestural coordination in voicing behavior. This set of VOT data for children with SSD adds to our understanding of the speech characteristics underlying motor speech control. Directions for future studies are discussed. PMID:24446799

  8. Graphemes as Motor Units in the Acquisition of Writing Skills

    ERIC Educational Resources Information Center

    Kandel, Sonia; Soler, Olga; Valdois, Sylviane; Gros, Celine

    2006-01-01

    This study examined whether the graphemic structure of words modulates the timing of handwriting production during the acquisition of writing skills. This is particularly important during the acquisition period because phonological recoding skills are determinant in the elaboration of orthographic representations. First graders wrote seven-letter…

  9. Measures of Fine Motor Skills in People with Tremor Disorders: Appraisal and Interpretation

    PubMed Central

    Norman, Kathleen E.; Héroux, Martin E.

    2013-01-01

    People with Parkinson’s disease, essential tremor, or other movement disorders involving tremor have changes in fine motor skills that are among the hallmarks of these diseases. Numerous measurement tools have been created and other methods devised to measure such changes in fine motor skills. Measurement tools may focus on specific features – e.g., motor skills or dexterity, slowness in movement execution associated with parkinsonian bradykinesia, or magnitude of tremor. Less obviously, some tools may be better suited than others for specific goals such as detecting subtle dysfunction early in disease, revealing aspects of brain function affected by disease, or tracking changes expected from treatment or disease progression. The purpose of this review is to describe and appraise selected measurement tools of fine motor skills appropriate for people with tremor disorders. In this context, we consider the tools’ content – i.e., what movement features they focus on. In addition, we consider how measurement tools of fine motor skills relate to measures of a person’s disease state or a person’s function. These considerations affect how one should select and interpret the results of these tools in laboratory and clinical contexts. PMID:23717299

  10. How can ten fingers shape a pot? Evidence for equivalent function in culturally distinct motor skills.

    PubMed

    Gandon, Enora; Bootsma, Reinoud J; Endler, John A; Grosman, Leore

    2013-01-01

    Behavioural variability is likely to emerge when a particular task is performed in different cultural settings, assuming that part of human motor behaviour is influenced by culture. In analysing motor behaviour it is useful to distinguish how the action is performed from the result achieved. Does cultural environment lead to specific cultural motor skills? Are there differences between cultures both in the skills themselves and in the corresponding outcomes? Here we analyse the skill of pottery wheel-throwing in French and Indian cultural environments. Our specific goal was to examine the ability of expert potters from distinct cultural settings to reproduce a common model shape (a sphere). The operational aspects of motor performance were captured through the analysis of the hand positions used by the potters during the fashioning process. In parallel, the outcomes were captured by the geometrical characteristics of the vessels produced. As expected, results revealed a cultural influence on the operational aspects of the potters' motor skill. Yet, the marked cultural differences in hand positions used did not give rise to noticeable differences in the shapes of the vessels produced. Hence, for the simple model form studied, the culturally-specific motor traditions of the French and Indian potters gave rise to an equivalent outcome, that is shape uniformity. Further work is needed to test whether such equivalence is also observed in more complex ceramic shapes. PMID:24312327

  11. Enhancing Consolidation of a New Temporal Motor Skill by Cerebellar Noninvasive Stimulation.

    PubMed

    Wessel, Maximilian J; Zimerman, Máximo; Timmermann, Jan E; Heise, Kirstin F; Gerloff, Christian; Hummel, Friedhelm C

    2016-04-01

    Cerebellar transcranial direct current stimulation (tDCS) has the potential to modulate cerebellar outputs and visuomotor adaptation. The cerebellum plays a pivotal role in the acquisition and control of skilled hand movements, especially its temporal aspects. We applied cerebellar anodal tDCS concurrently with training of a synchronization-continuation motor task. We hypothesized that anodal cerebellar tDCS will enhance motor skill acquisition. Cerebellar tDCS was applied to the right cerebellum in 31 healthy subjects in a double-blind, sham-controlled, parallel design. During synchronization, the subjects tapped the sequence in line with auditory cues. Subsequently, in continuation, the learned sequence was reproduced without auditory cuing. Motor task performance was evaluated before, during, 90 min, and 24 h after training. Anodal cerebellar tDCS, compared with sham, improved the task performance in the follow-up tests (F1,28 = 5.107, P = 0.032) of the synchronization part. This effect on retention of the skill was most likely mediated by enhanced motor consolidation. We provided first evidence that cerebellar tDCS can enhance the retention of a fine motor skill. This finding supports the promising approach of using noninvasive brain stimulation techniques to restore impaired motor functions in neurological patients, such after a stroke. PMID:25604611

  12. Disentangling fine motor skills' relations to academic achievement: the relative contributions of visual-spatial integration and visual-motor coordination.

    PubMed

    Carlson, Abby G; Rowe, Ellen; Curby, Timothy W

    2013-01-01

    Recent research has established a connection between children's fine motor skills and their academic performance. Previous research has focused on fine motor skills measured prior to elementary school, while the present sample included children ages 5-18 years old, making it possible to examine whether this link remains relevant throughout childhood and adolescence. Furthermore, the majority of research linking fine motor skills and academic achievement has not determined which specific components of fine motor skill are driving this relation. The few studies that have looked at associations of separate fine motor tasks with achievement suggest that copying tasks that tap visual-spatial integration skills are most closely related to achievement. The present study examined two separate elements of fine motor skills--visual-motor coordination and visual-spatial integration--and their associations with various measures of academic achievement. Visual-motor coordination was measured using tracing tasks, while visual-spatial integration was measured using copy-a-figure tasks. After controlling for gender, socioeconomic status, IQ, and visual-motor coordination, and visual-spatial integration explained significant variance in children's math and written expression achievement. Knowing that visual-spatial integration skills are associated with these two achievement domains suggests potential avenues for targeted math and writing interventions for children of all ages. PMID:24303571

  13. Disentangling Fine Motor Skills' Relations to Academic Achievement: The Relative Contributions of Visual-Spatial Integration and Visual-Motor Coordination

    ERIC Educational Resources Information Center

    Carlson, Abby G.; Rowe, Ellen; Curby, Timothy W.

    2013-01-01

    Recent research has established a connection between children's fine motor skills and their academic performance. Previous research has focused on fine motor skills measured prior to elementary school, while the present sample included children ages 5-18 years old, making it possible to examine whether this link remains relevant throughout…

  14. Effect of observation combined with motor imagery of a skilled hand-motor task on motor cortical excitability: difference between novice and expert.

    PubMed

    Tsukazaki, Izumi; Uehara, Kazumasa; Morishita, Takuya; Ninomiya, Masato; Funase, Kozo

    2012-06-19

    We examined the effects of observation combined with motor imagery (MI) of a skilled hand-motor task on motor cortex excitability, which was assessed by transcranial magnetic stimulation (TMS). Novices and experts at 3-ball cascade juggling (3BCJ) participated in this study. In one trial, the subjects observed a video clip of 3BCJ while imagining performing it. In addition, the subjects also imagined performing 3BCJ without video clip observation. Motor evoked potentials (MEPs) were recorded from the hand muscles that were activated by the task during each trial. In the novices, the MEP amplitude was significantly increased by video clip observation combined with MI. In contrast, MI without video clip observation significantly increased the MEP amplitude of the experts. These results suggest that action observation of 3BCJ increases the ability of novices to make their MI performing the task. Meanwhile, experts use their own motor program to recall their MI of the task. PMID:22580208

  15. PROMOTING GROSS MOTOR SKILLS IN TODDLERS: THE ACTIVE BEGINNINGS PILOT CLUSTER RANDOMIZED TRIAL.

    PubMed

    Veldman, Sanne L C; Okely, Anthony D; Jones, Rachel A

    2015-12-01

    This study examined the feasibility, acceptability, and potential efficacy of a gross motor skill program for toddlers. An 8-wk. skills program in which children practiced three skills was implemented for 10 min. daily in two randomly designated childcare centers. Two other centers served as the control group. Recruitment and retention rates were collected for feasibility. Data on professional development, children's participation, program duration, and appropriateness of the lessons were collected for acceptability, and the Test of Gross Motor Development-2 and Get Skilled, Get Active (total of 28 points) were used to look at the potential efficacy. The participants were 60 toddlers (M age=2.5 yr., SD=0.4; n=29 boys), and the retention rate was 95%. Overall participation was 76%, and educators rated 98% of the lessons as appropriate. Compared with the control group, the intervention group showed significantly greater improvements in motor skills (p<.05, Cohen's d=1.13). This study shows that a brief intervention, which is easy to integrate on a daily basis in childcare settings, can improve motor skills among toddlers. PMID:26682608

  16. Fine Motor Skills Predict Maths Ability Better than They Predict Reading Ability in the Early Primary School Years.

    PubMed

    Pitchford, Nicola J; Papini, Chiara; Outhwaite, Laura A; Gulliford, Anthea

    2016-01-01

    Fine motor skills have long been recognized as an important foundation for development in other domains. However, more precise insights into the role of fine motor skills, and their relationships to other skills in mediating early educational achievements, are needed to support the development of optimal educational interventions. We explored concurrent relationships between two components of fine motor skills, Fine Motor Precision and Fine Motor Integration, and early reading and maths development in two studies with primary school children of low-to-mid socio-economic status in the UK. Two key findings were revealed. First, despite being in the first 2 years of primary school education, significantly better performance was found in reading compared to maths across both studies. This may reflect the protective effects of recent national-level interventions to promote early literacy skills in young children in the UK that have not been similarly promoted for maths. Second, fine motor skills were a better predictor of early maths ability than they were of early reading ability. Hierarchical multiple regression revealed that fine motor skills did not significantly predict reading ability when verbal short-term memory was taken into account. In contrast, Fine Motor Integration remained a significant predictor of maths ability, even after the influence of non-verbal IQ had been accounted for. These results suggest that fine motor skills should have a pivotal role in educational interventions designed to support the development of early mathematical skills. PMID:27303342

  17. Fine Motor Skills Predict Maths Ability Better than They Predict Reading Ability in the Early Primary School Years

    PubMed Central

    Pitchford, Nicola J.; Papini, Chiara; Outhwaite, Laura A.; Gulliford, Anthea

    2016-01-01

    Fine motor skills have long been recognized as an important foundation for development in other domains. However, more precise insights into the role of fine motor skills, and their relationships to other skills in mediating early educational achievements, are needed to support the development of optimal educational interventions. We explored concurrent relationships between two components of fine motor skills, Fine Motor Precision and Fine Motor Integration, and early reading and maths development in two studies with primary school children of low-to-mid socio-economic status in the UK. Two key findings were revealed. First, despite being in the first 2 years of primary school education, significantly better performance was found in reading compared to maths across both studies. This may reflect the protective effects of recent national-level interventions to promote early literacy skills in young children in the UK that have not been similarly promoted for maths. Second, fine motor skills were a better predictor of early maths ability than they were of early reading ability. Hierarchical multiple regression revealed that fine motor skills did not significantly predict reading ability when verbal short-term memory was taken into account. In contrast, Fine Motor Integration remained a significant predictor of maths ability, even after the influence of non-verbal IQ had been accounted for. These results suggest that fine motor skills should have a pivotal role in educational interventions designed to support the development of early mathematical skills. PMID:27303342

  18. Learning to never forget—time scales and specificity of long-term memory of a motor skill

    PubMed Central

    Park, Se-Woong; Dijkstra, Tjeerd M. H.; Sternad, Dagmar

    2013-01-01

    Despite anecdotal reports that humans retain acquired motor skills for many years, if not a lifetime, long-term memory of motor skills has received little attention. While numerous neuroimaging studies showed practice-induced cortical plasticity, the behavioral correlates, what is retained and also what is forgotten, are little understood. This longitudinal case study on four subjects presents detailed kinematic analyses of humans practicing a bimanual polyrhythmic task over 2 months with retention tests after 6 months and, for two subjects, after 8 years. Results showed that individuals not only retained the task, but also reproduced their individual “style” of performance, even after 8 years. During practice, variables such as the two hands' frequency ratio and relative phase, changed at different rates, indicative of multiple time scales of neural processes. Frequency leakage across hands, reflecting intermanual crosstalk, attenuated at a significantly slower rate and was the only variable not maintained after 8 years. Complementing recent findings on neuroplasticity in gray and white matter, our study presents new behavioral evidence that highlights the multi-scale process of practice-induced changes and its remarkable persistence. Results suggest that motor memory may comprise not only higher-level task variables but also individual kinematic signatures. PMID:24032015

  19. Impact of a Community-Based Programme for Motor Development on Gross Motor Skills and Cognitive Function in Preschool Children from Disadvantaged Settings

    ERIC Educational Resources Information Center

    Draper, Catherine E.; Achmat, Masturah; Forbes, Jared; Lambert, Estelle V.

    2012-01-01

    The aims of the studies were to assess the impact of the Little Champs programme for motor development on (1) the gross motor skills, and (2) cognitive function of children in the programme. In study 1, 118 children from one Early Childhood Development Centre (ECDC) were tested using the Test of Gross Motor Development-2, and in study 2, 83…

  20. Demand on skillfulness modulates interhemispheric inhibition of motor cortices.

    PubMed

    Wischnewski, Miles; Kowalski, Greg M; Rink, Farrah; Belagaje, Samir R; Haut, Marc W; Hobbs, Gerald; Buetefisch, Cathrin M

    2016-06-01

    The role of primary motor cortex (M1) in the control of hand movements is still unclear. Functional magnetic resonance imaging (fMRI) studies of unimanual performance reported a relationship between level of precision of a motor task and additional ipsilateral M1 (iM1) activation. In the present study, we determined whether the demand on accuracy of a movement influences the magnitude of the inhibitory effect between primary motor cortices (IHI). We used transcranial magnetic stimulation (TMS) to measure active IHI (aIHI) of the iM1 on the contralateral M1 (cM1) in the premovement period of a left-hand motor task. Ten healthy participants manipulated a joystick to point to targets of two different sizes. For aIHI, the conditioning stimulus (CS) was applied to iM1, and the test stimulus (TS) to cM1, with an interstimulus interval of 10 ms. The amount of the inhibitory effect of the CS on the motor-evoked potential (MEP) of the subsequent TS was expressed as percentage of the mean MEP amplitude evoked by the single TS. Across different time points of aIHI measurements in the premovement period, there was a significant effect for target size on aIHI. Preparing to point to small targets was associated with weaker aIHI compared with pointing to large targets. The present findings suggest that, during the premovement period, aIHI from iM1 on cM1 is modulated by the demand on accuracy of the motor task. This is consistent with task fMRI findings showing bilateral M1 activation during high-precision movements but only unilateral M1 activity during low-precision movements. PMID:26961108

  1. Assessment of sensorimotor cortical representation asymmetries and motor skills in violin players.

    PubMed

    Schwenkreis, Peter; El Tom, Susan; Ragert, Patrick; Pleger, Burkhard; Tegenthoff, Martin; Dinse, Hubert R

    2007-12-01

    As a model for use-dependent plasticity, the brains of professional musicians have been extensively studied to examine structural and functional adaptation to unique requirements of skilled performance. Here we provide a combination of data on motor performance and hand representation in the primary motor and somatosensory cortex of professional violin players, with the aim of assessing possible behavioural consequences of sensorimotor cortical asymmetries. We studied 15 healthy right-handed professional violin players and 35 healthy nonmusician controls. Motor and somatosensory cortex asymmetry was assessed by recording the motor output map after transcranial magnetic stimulation from a small hand muscle, and by dipole source localization of somatosensory evoked potentials after electrical stimulation of the median and ulnar nerves. Motor performance was examined using a series of standardized motor tasks covering different aspects of hand function. Violin players showed a significant right-larger-than-left asymmetry of the motor and somatosensory cortex, whereas nonmusician controls showed no significant interhemispheric difference. The amount of asymmetry in the motor and somatosensory cortices of musicians was significantly correlated. At the behavioural level, motor performance did not significantly differ between musicians and nonmusicians. The results support a use-dependent enlargement of the left hand representation in the sensorimotor cortex of violin players. However, these cortical asymmetries were not paralleled by accompanying altered asymmetries at a behavioural level, suggesting that the reorganisation might be task-specific and does not lead to improved motor abilities in general. PMID:18028115

  2. Cognitive and developmental influences in visual-motor integration skills in young children.

    PubMed

    Decker, Scott L; Englund, Julia A; Carboni, Jessica A; Brooks, Janell H

    2011-12-01

    Measures of visual-motor integration skills continue to be widely used in psychological assessments with children. However, the construct validity of many visual-motor integration measures remains unclear. In this study, we investigated the relative contributions of maturation and cognitive skills to the development of visual-motor integration skills in young children (N = 856). We used a block regression analysis to determine the contribution of maturation, as indicated by age, followed by broad cognitive factors (Study 1) and subsequently by individual subtests in verbal and nonverbal domains subsumed under each factor (Study 2) in explaining score variance of the Bender Visual-Motor Gestalt Test (2nd ed.; BG-II; Brannigan & Decker, 2003) Copy and Recall scores in children between the ages of 4 and 7 years. Results confirm that maturation accounted for a large proportion of variance in both BG-II Copy and Recall performance, above which Stanford-Binet Intelligence Scale (5th ed.; SB-5; Roid, 2003) Quantitative Reasoning and Fluid Reasoning factors significantly contributed to visual-motor integration performance for the Copy phase, and SB-5 Quantitative Reasoning and Visual-Spatial factors accounted for a significant amount of variance for the Recall phase. Additionally, nonverbal domains were more related to visual-motor performance than verbal domains. Results from this study are interpreted to suggest nonverbal reasoning and visual-spatial attention are important contributing factors to visual-motor integration, as measured by the BG-II. Developmental implications of visual-motor integration skills, nonverbal problem solving, and mathematical competence are discussed. PMID:21707185

  3. A dual process account of coarticulation in motor skill acquisition.

    PubMed

    Shah, Ashvin; Barto, Andrew G; Fagg, Andrew H

    2013-01-01

    Many tasks, such as typing a password, are decomposed into a sequence of subtasks that can be accomplished in many ways. Behavior that accomplishes subtasks in ways that are influenced by the overall task is often described as "skilled" and exhibits coarticulation. Many accounts of coarticulation use search methods that are informed by representations of objectives that define skilled. While they aid in describing the strategies the nervous system may follow, they are computationally complex and may be difficult to attribute to brain structures. Here, the authors present a biologically- inspired account whereby skilled behavior is developed through 2 simple processes: (a) a corrective process that ensures that each subtask is accomplished, but does not do so skillfully and (b) a reinforcement learning process that finds better movements using trial and error search that is not informed by representations of any objectives. We implement our account as a computational model controlling a simulated two-armed kinematic "robot" that must hit a sequence of goals with its hands. Behavior displays coarticulation in terms of which hand was chosen, how the corresponding arm was used, and how the other arm was used, suggesting that the account can participate in the development of skilled behavior. PMID:24116847

  4. Using 2D: 4D digit ratios to determine motor skills in children.

    PubMed

    Wang, Y; Wang, H-L; Li, Y-H; Zhu, F-L; Li, S-J; Ni, H

    2016-03-01

    In past few decades, there has an outburst of research surrounding second to fourth finger digit ratio (2D:4D) and its relation to prenatal sex steroids including both testosterone and estrogen. In utero, testosterone and estrogen are responsible for the differences in digit ratio between the genders. Recent research has tried to extend past the influence of steroids and look at the potential effect of digit ratios on fine and gross motor skills in children. We compiled the current understanding of the connection between sex hormones and the development of the 2D:4D ratio as well as the effect the ratio has on motor skills. There seems to be a significant positive correlation between 2D:4D digit ratio and precision of fine motor skill. In addition, there is a negative correlation between 2D:4D ratio and speed of fine motor activity. In this review, we will outline the use of 2D:4D ratio as a biomarker for prenatal sex steroids and through that, a proxy marker for fine and gross motor skills. PMID:27010133

  5. Early communicative behaviors and their relationship to motor skills in extremely preterm infants.

    PubMed

    Benassi, Erika; Savini, Silvia; Iverson, Jana M; Guarini, Annalisa; Caselli, Maria Cristina; Alessandroni, Rosina; Faldella, Giacomo; Sansavini, Alessandra

    2016-01-01

    Despite the predictive value of early spontaneous communication for identifying risk for later language concerns, very little research has focused on these behaviors in extremely low-gestational-age infants (ELGA<28 weeks) or on their relationship with motor development. In this study, communicative behaviors (gestures, vocal utterances and their coordination) were evaluated during mother-infant play interactions in 20 ELGA infants and 20 full-term infants (FT) at 12 months (corrected age for ELGA infants). Relationships between gestures and motor skills, evaluated using the Bayley-III Scales were also examined. ELGA infants, compared with FT infants, showed less advanced communicative, motor, and cognitive skills. Giving and representational gestures were produced at a lower rate by ELGA infants. In addition, pointing gestures and words were produced by a lower percentage of ELGA infants. Significant positive correlations between gestures (pointing and representational gestures) and fine motor skills were found in the ELGA group. We discuss the relevance of examining spontaneous communicative behaviors and motor skills as potential indices of early development that may be useful for clinical assessment and intervention with ELGA infants. PMID:26555385

  6. Motor Skill Learning in Children with Developmental Coordination Disorder

    ERIC Educational Resources Information Center

    Bo, Jin; Lee, Chi-Mei

    2013-01-01

    Children with Developmental Coordination Disorder (DCD) are characterized as having motor difficulties and learning impairment that may last well into adolescence and adulthood. Although behavioral deficits have been identified in many domains such as visuo-spatial processing, kinesthetic perception, and cross-modal sensory integration, recent…

  7. Computer-assisted design in perceptual-motor skills research

    NASA Technical Reports Server (NTRS)

    Rogers, C. A., Jr.

    1974-01-01

    A categorization was made of independent variables previously found to be potent in simple perceptual-motor tasks. A computer was then used to generate hypothetical factorial designs. These were evaluated in terms of literature trends and pragmatic criteria. Potential side-effects of machine-assisted research strategy were discussed.

  8. Training of Perceptual Motor Skills in Minimally Brain Damaged Children.

    ERIC Educational Resources Information Center

    Glazer, Hilda Ruth; Cox, David L.

    Twenty-five male (aged 7 years, 6 months to 10 years, 7 months) and five female (aged 9 years, 3 months to 10 years, 2 months) minimally brain damaged children were examined to determine feasibility of perceptual motor training on the pursuit rotor (which requires Ss to track a light as it revolves under a pattern on a turntable). Experimental Ss…

  9. Multiple measures of visual attention predict novice motor skill performance when attention is focused externally.

    PubMed

    Kasper, Ryan W; Elliott, James C; Giesbrecht, Barry

    2012-10-01

    Multiple lines of evidence indicate that the control of attention and motor skill performance are related. Athletes of various skill levels differ in terms of their control over the focus of attention and directing athletes to adopt an internal or external focus of attention modulates performance. However, it is unclear (a) whether the relationship between skill level and attentional control arises from preexisting individual differences in attention or from practice of the motor skill and (b) whether the effect of adopting an internal or external focus of attention on motor performance is influenced by individual differences in attention. To address these issues, individuals were measured on three distinct attention functions - orienting, alerting, and executive - prior to engaging in a novel golf-putting task performed with either external or internal focus instructions. The results indicated that, on average, attentional functioning and putting performance were related but that the strong relationships with orienting and executive attention were only present in the group given external focus instructions. These findings suggest that individual differences in attentional abilities are predictive of novel skill performance under an external focus of attention and they shed light on the mechanisms underlying the effects of focus instructions during motor performance. PMID:22516836

  10. Overthinking skilled motor performance: or why those who teach can't do.

    PubMed

    Flegal, Kristin E; Anderson, Michael C

    2008-10-01

    Skilled athletes often maintain that overthinking disrupts performance of their motor skills. Here, we examined whether these experiences have a basis in verbal overshadowing, a phenomenon in which describing memories for ineffable perceptual experiences disrupts later retention. After learning a unique golf-putting task, golfers of low and intermediate skill either described their actions in detail or performed an irrelevant verbal task. They then performed the putting task again. Strikingly, describing their putting experience significantly impaired higher skill golfers' ability to reachieve the putting criterion, compared with higher skill golfers who performed the irrelevant verbal activity. Verbalization had no such effect, however, for lower skill golfers. These findings establish that the effects of overthinking extend beyond dual-task interference and may sometimes reflect impacts on long-term memory. We propose that these effects are mediated by competition between procedural and declarative memory, as suggested by recent work in cognitive neuroscience. PMID:18926983

  11. Contextual interference effects on the acquisition and retention of fundamental motor skills.

    PubMed

    Wegman, E

    1999-02-01

    This study was designed to examine the effect of three practice models (repetitions, random, and combined) on the acquisition and retention of fundamental motor skills. 54 girls in Grade 4 were randomly assigned to the three different practice groups who practiced three skills of ball rolling, racket striking, and ball kicking. All subjects received pretests posttests, and a 3-wk, retention test. Performance was significantly improved during practice in the three groups for the three skills. The repetitions group performed better than the other two groups at the end of practice. The contextual interference effect in retention was only shown for the racket-striking skill, in which the random group was significantly better than the repetitions and the combined groups. An attempt was made to attribute that specific result to the special characteristics of the striking skill in this study as an open skill with which subjects had a previous experience. PMID:10214642

  12. Sleep-Dependent Reactivation of Ensembles in Motor Cortex Promotes Skill Consolidation

    PubMed Central

    Ramanathan, Dhakshin S.; Gulati, Tanuj; Ganguly, Karunesh

    2015-01-01

    Despite many prior studies demonstrating offline behavioral gains in motor skills after sleep, the underlying neural mechanisms remain poorly understood. To investigate the neurophysiological basis for offline gains, we performed single-unit recordings in motor cortex as rats learned a skilled upper-limb task. We found that sleep improved movement speed with preservation of accuracy. These offline improvements were linked to both replay of task-related ensembles during non-rapid eye movement (NREM) sleep and temporal shifts that more tightly bound motor cortical ensembles to movements; such offline gains and temporal shifts were not evident with sleep restriction. Interestingly, replay was linked to the coincidence of slow-wave events and bursts of spindle activity. Neurons that experienced the most consistent replay also underwent the most significant temporal shift and binding to the motor task. Significantly, replay and the associated performance gains after sleep only occurred when animals first learned the skill; continued practice during later stages of learning (i.e., after motor kinematics had stabilized) did not show evidence of replay. Our results highlight how replay of synchronous neural activity during sleep mediates large-scale neural plasticity and stabilizes kinematics during early motor learning. PMID:26382320

  13. Motor Skills of Children with Unilateral Visual Impairment in the Infant Aphakia Treatment Study

    PubMed Central

    Celano, Marianne; Hartmann, E. Eugenie; DuBois, Lindreth G.; Drews-Botsch, Carolyn

    2016-01-01

    Aim To assess motor functioning in 4.5 year olds enrolled in the Infant Aphakia Treatment Study, and to determine contributions of visual acuity and stereopsis to measured motor skills. Method Children with unilateral aphakia randomized to intraocular lens (IOL) or contact lens (CL) treatment were evaluated at 4.5 years for monocular recognition visual acuity, motor skills, and stereopsis by a traveling examiner masked to treatment condition. Motor skills were assessed with the Movement ABC-2. Visual acuity was operationalized as logMAR value for treated eye, best logMAR value for either eye, and intraocular logMAR difference. Results T-tests showed no significant differences in MABC-2 scores between the IOL and CL groups. The mean total score was low (6.43; 18th percentile) compared to the normative reference group. Motor functioning was not related to visual acuity in the treated eye or to intraocular logMAR difference, but was predicted in a regression model by the better visual acuity of either eye (usually the fellow eye), even after accounting for the influence of age at surgery, examiner, orthotropic ocular alignment, and stereopsis. Interpretation Children with unilateral congenital cataract may have delayed motor functioning at 4.5 years, which may adversely affect their social and academic functioning. PMID:26084944

  14. The Percentage of Body Fat in Children and the Level of their Motor Skills.

    PubMed

    Prskalo, Ivan; Badrić, Marko; Kunješić, Mateja

    2015-07-01

    The aim of this study was to determine the prevalence of overweight and obesity among primary education pupils and to identify differences in motor skills between normal weight, excessive and obese pupils. Partial aim was to determine differences in motor status of girls and boys and their anthropometric characteristics (Body Mass Index, body fat percentage). The study was conducted in two primary schools in Zagreb, Ivan Goran Kovačić and Davorin Trstenjak. Total of 333 pupils, aged 7-11, were measured (178 boys and 155 girls). Four anthropometric and seven motor variables were used to analyze differences in motor abilities of children. Children were divided into three groups within gender based on their body fat measures. We established a statistically significant difference in motor abilities between groups of subjects in three subsamples (1st-2nd class girls and 3rd-4th boys and girls). Children with normal weight have better results in explosive strength, coordination, static strength of arm and shoulder than children who are overweight and obese. The differences are not observed in motor variables where body weight is not a requisite for efficient execution of movement. Differences in motor skills by gender showed that boys are better in coordination, speed of the simple movements, explosive and repetitive strength, and girls are better in flexibility. The conclusion of this study confirmed the existence of differences in the development of motor skills in children with normal body weight compared to children who are overweight or obese. These facts prove that excessive body weight has negative repercussions on motor performance. PMID:26434007

  15. Obesity and motor skills among 4 to 6-year-old children in the united states: nationally-representative surveys

    PubMed Central

    2012-01-01

    Background Few population-based studies have assessed relationships between body weight and motor skills in young children. Our objective was to estimate the association between obesity and motor skills at 4 years and 5-6 years of age in the United States. We used repeated cross-sectional assessments of the national sample from the Early Childhood Longitudinal Survey-Birth Cohort (ECLS-B) of preschool 4-year-old children (2005-2006; n = 5 100) and 5-6-year-old kindergarteners (2006-2007; n = 4 700). Height, weight, and fine and gross motor skills were assessed objectively via direct standardized procedures. We used categorical and continuous measures of body weight status, including obesity (Body Mass Index (BMI) ≥ 95th percentile) and BMI z-scores. Multivariate logistic and linear models estimated the association between obesity and gross and fine motor skills in very young children adjusting for individual, social, and economic characteristics and parental involvement. Results The prevalence of obesity was about 15%. The relationship between motor skills and obesity varied across types of skills. For hopping, obese boys and girls had significantly lower scores, 20% lower in obese preschoolers and 10% lower in obese kindergarteners than normal weight counterparts, p < 0.01. Obese girls could jump 1.6-1.7 inches shorter than normal weight peers (p < 0.01). Other gross motor skills and fine motor skills of young children were not consistently related to BMI z-scores and obesity. Conclusions Based on objective assessment of children's motor skills and body weight and a full adjustment for confounding covariates, we find no reduction in overall coordination and fine motor skills in obese young children. Motor skills are adversely associated with childhood obesity only for skills most directly related to body weight. PMID:22420636

  16. Motor Cortex Activity During Functional Motor Skills: An fNIRS Study.

    PubMed

    Nishiyori, Ryota; Bisconti, Silvia; Ulrich, Beverly

    2016-01-01

    Assessments of brain activity during motor task performance have been limited to fine motor movements due to technological constraints presented by traditional neuroimaging techniques, such as functional magnetic resonance imaging. Functional near-infrared spectroscopy (fNIRS) offers a promising method by which to overcome these constraints and investigate motor performance of functional motor tasks. The current study used fNIRS to quantify hemodynamic responses within the primary motor cortex in twelve healthy adults as they performed unimanual right, unimanual left, and bimanual reaching, and stepping in place. Results revealed that during both unimanual reaching tasks, the contralateral hemisphere showed significant activation in channels located approximately 3 cm medial to the C3 (for right-hand reach) and C4 (for left-hand reach) landmarks. Bimanual reaching and stepping showed activation in similar channels, which were located bilaterally across the primary motor cortex. The medial channels, surrounding Cz, showed significantly higher activations during stepping when compared to bimanual reaching. Our results extend the viability of fNIRS to study motor function and build a foundation for future investigation of motor development in infants during nascent functional behaviors and monitor how they may change with age or practice. PMID:26243304

  17. Motor Development: Theory into Practice. Monograph 3. Motor Skills: Theory into Practice.

    ERIC Educational Resources Information Center

    Morris, Arlene M., Ed.

    Eight papers present information about children's motor development and its application for program design. Jerry R. Thomas, Kathi T. Thomas, and Jere D. Gallagher discuss "Children's Processing of Information in Physical Activity and Sport." In "Toward Inclusion," G. S. Don Morris considers characteristics of children and of motor tasks with…

  18. Teaching Practices that Promote Motor Skills in Early Childhood Settings

    ERIC Educational Resources Information Center

    Robinson, Leah E.; Webster, E. Kipling; Logan, S. Wood; Lucas, W. Amarie; Barber, Laura T.

    2012-01-01

    Early childhood educators, especially those in preschool centers, are often expected to design and implement movement programs. However, these individuals may not have been taught these skills during their education. The purpose of this study was to determine if early childhood majors could successfully be taught to implement a mastery climate…

  19. Reduced corticomotor excitability and motor skills development in children born preterm.

    PubMed

    Pitcher, Julia B; Schneider, Luke A; Burns, Nicholas R; Drysdale, John L; Higgins, Ryan D; Ridding, Michael C; Nettelbeck, Theodore J; Haslam, Ross R; Robinson, Jeffrey S

    2012-11-15

    The mechanisms underlying the altered neurodevelopment commonly experienced by children born preterm, but without brain lesions, remain unknown. While individuals born the earliest are at most risk, late preterm children also experience significant motor, cognitive and behavioural dysfunction from school age, and reduced income and educational attainment in adulthood. We used transcranial magnetic stimulation and functional assessments to examine corticomotor development in 151 children without cerebral palsy, aged 10-13 years and born after gestations of 25-41 completed weeks. We hypothesized that motor cortex and corticospinal development are altered in preterm children, which underpins at least some of their motor dysfunction. We report for the first time that every week of reduced gestation is associated with a reduction in corticomotor excitability that remains evident in late childhood. This reduced excitability was associated with poorer motor skill development, particularly manual dexterity. However, child adiposity, sex and socio-economic factors regarding the child's home environment soon after birth were also powerful influences on development of motor skills. Preterm birth was also associated with reduced left hemisphere lateralization, but without increasing the likelihood of being left handed per se. These corticomotor findings have implications for normal motor development, but also raise questions regarding possible longer term consequences of preterm birth on motor function. PMID:22966161

  20. Mental practice promotes motor anticipation: evidence from skilled music performance

    PubMed Central

    Bernardi, Nicolò F.; De Buglio, Matteo; Trimarchi, Pietro D.; Chielli, Alfonso; Bricolo, Emanuela

    2013-01-01

    Mental practice (MP) has been shown to improve movement accuracy and velocity, but it is not known whether MP can also optimize movement timing. We addressed this question by studying two groups of expert pianists who performed challenging music sequences after either MP or physical practice (PP). Performance and motion-capture data were collected along with responses to imagery questionnaires. The results showed that MP produced performance improvements, although to a lower degree than PP did. MP and PP induced changes in both movement velocity and movement timing, promoting the emergence of movement anticipatory patterns. Furthermore, motor imagery was associated with greater changes in movement velocity, while auditory imagery was associated with greater movement anticipation. Data from a control group that was not allowed to practice confirmed that the changes in accuracy and kinematics were not due to mere repetition of the sequence during testing. This study provides the first evidence of an anticipatory control following MP and extends the present knowledge on the effectiveness of MP to a task of unparalleled motor complexity. The practical implications of MP in the motor domain are discussed. PMID:23970859

  1. Mental practice promotes motor anticipation: evidence from skilled music performance.

    PubMed

    Bernardi, Nicolò F; De Buglio, Matteo; Trimarchi, Pietro D; Chielli, Alfonso; Bricolo, Emanuela

    2013-01-01

    Mental practice (MP) has been shown to improve movement accuracy and velocity, but it is not known whether MP can also optimize movement timing. We addressed this question by studying two groups of expert pianists who performed challenging music sequences after either MP or physical practice (PP). Performance and motion-capture data were collected along with responses to imagery questionnaires. The results showed that MP produced performance improvements, although to a lower degree than PP did. MP and PP induced changes in both movement velocity and movement timing, promoting the emergence of movement anticipatory patterns. Furthermore, motor imagery was associated with greater changes in movement velocity, while auditory imagery was associated with greater movement anticipation. Data from a control group that was not allowed to practice confirmed that the changes in accuracy and kinematics were not due to mere repetition of the sequence during testing. This study provides the first evidence of an anticipatory control following MP and extends the present knowledge on the effectiveness of MP to a task of unparalleled motor complexity. The practical implications of MP in the motor domain are discussed. PMID:23970859

  2. Associations between Low-Income Children's Fine Motor Skills in Preschool and Academic Performance in Second Grade

    ERIC Educational Resources Information Center

    Dinehart, Laura; Manfra, Louis

    2013-01-01

    Research Findings: Given the growing literature pertaining to the importance of fine motor skills for later academic achievement (D. W. Grissmer, K. J. Grimm, S. M. Aiyer, W. M. Murrah, & J. S. Steele, 2010), the current study examines whether the fine motor skills of economically disadvantaged preschool students predict later academic performance…

  3. Atypical Acquisition and Atypical Expression of Memory Consolidation Gains in a Motor Skill in Young Female Adults with ADHD

    ERIC Educational Resources Information Center

    Adi-Japha, Esther; Fox, Orly; Karni, Avi

    2011-01-01

    Individuals with ADHD often show performance deficits in motor tasks. It is not clear, however, whether this reflects less effective acquisition of skill (procedural knowledge), or deficient consolidation into long-term memory, in ADHD. The aim of the study was to compare the acquisition of skilled motor performance, the expression of…

  4. Developing and Sustaining Provision for Children with Motor Skills Difficulties in Schools: The Role of Educational Psychologists

    ERIC Educational Resources Information Center

    Bond, Caroline; Cole, Marilyn; Fletcher, Judy; Noble, Jennifer; O'Connell, Maria

    2011-01-01

    The current paper outlines a three-year action research project with 39 schools in one inner city local authority. A local need to improve provision for children with motor skills difficulties resulted in a team of educational psychologists (EPs) and specialist teachers developing the Manchester Motor Skills Intervention (MMSI), which is a…

  5. Examining the Potential of Web-Based Multimedia to Support Complex Fine Motor Skill Learning: An Empirical Study

    ERIC Educational Resources Information Center

    Papastergiou, Marina; Pollatou, Elisana; Theofylaktou, Ioannis; Karadimou, Konstantina

    2014-01-01

    Research on the utilization of the Web for complex fine motor skill learning that involves whole body movements is still scarce. The aim of this study was to evaluate the impact of the introduction of a multimedia web-based learning environment, which was targeted at a rhythmic gymnastics routine consisting of eight fine motor skills, into an…

  6. Changes in voice onset time and motor speech skills in children following motor speech therapy: Evidence from /pa/ productions.

    PubMed

    Yu, Vickie Y; Kadis, Darren S; Oh, Anna; Goshulak, Debra; Namasivayam, Aravind; Pukonen, Margit; Kroll, Robert; De Nil, Luc F; Pang, Elizabeth W

    2014-06-01

    This study evaluated changes in motor speech control and inter-gestural coordination for children with speech sound disorders (SSD) subsequent to Prompts for Restructuring Oral and Muscular Phonetic Targets (PROMPT) intervention. We measured the distribution patterns of voice onset time (VOT) for a voiceless stop (/p/) to examine the changes in inter-gestural coordination. Two standardized tests were used (Verbal Motor Production Assessment for Children (VMPAC), GFTA-2) to assess the changes in motor speech skills and articulation. Data showed positive changes in patterns of VOT with a lower pattern of variability. All children showed significantly higher scores for VMPAC, but only some children showed higher scores for GFTA-2. Results suggest that the proprioceptive feedback provided through PROMPT had a positive influence on speech motor control and inter-gestural coordination in voicing behavior. This set of VOT data for children with SSD adds to our understanding of the speech characteristics underlying speech motor control. Directions for future studies are discussed. PMID:24446799

  7. The Effects of Collectivism-Individualism on the Cooperative Learning of Motor Skill

    ERIC Educational Resources Information Center

    Luo, Yi; Sun, Yan; Strobel, Johannes

    2013-01-01

    This study examined how cultural background (collectivism vs. individualism) affects motor skill learning in a dyadic cooperative learning environment. The research context of this study was Nintendo™ Wii Tennis. Twenty college students from a Midwestern university participated in the study, among whom half were from an individualistic culture…

  8. Basic Motor Skills Instruction for Children with Neuromotor Delays: A Critical Review.

    ERIC Educational Resources Information Center

    Horn, Eva M.

    1991-01-01

    This paper analyzes the methodology and effectiveness of the training approaches implemented in 28 empirical studies on basic motor skills instruction for children with neuromotor delays. For all types of training approaches (neuromotor interventions, sensory integration techniques, behavioral programing, and naturalistic programing), assessment…

  9. Preschool Children's Fundamental Motor Skills: A Review of Significant Determinants

    ERIC Educational Resources Information Center

    Iivonen, S.; Sääkslahti, A. K.

    2014-01-01

    Fundamental motor skills (FMS) affect children's physical, social, and cognitive development. To plan successful interventions when promoting the development of children's FMS, the underlying positive determinants for the acquisition of FMS competence during preschool years need to be identified. The purpose of this systematic review was…

  10. Effects of Interventions Based in Behavior Analysis on Motor Skill Acquisition: A Meta-Analysis

    ERIC Educational Resources Information Center

    Alstot, Andrew E.; Kang, Minsoo; Alstot, Crystal D.

    2013-01-01

    Techniques based in applied behavior analysis (ABA) have been shown to be useful across a variety of settings to improve numerous behaviors. Specifically within physical activity settings, several studies have examined the effect of interventions based in ABA on a variety of motor skills, but the overall effects of these interventions are unknown.…

  11. The Effect of Contextual Variety on the Practice, Retention, and Transfer of an Applied Motor Skill.

    ERIC Educational Resources Information Center

    Wrisberg, Craig A.; Liu, Zhan

    1991-01-01

    Researchers examined the effect of contextual variety on practice, retention, and transfer of the long and short badminton service in a college physical education class. Results indicated a practice schedule requiring students to change the plan of action from trial to trial facilitated retention and transfer of motor skills. (SM)

  12. Assessing Motor Skills as a Differentiating Feature between High Functioning Autism and Asperger's Disorder

    ERIC Educational Resources Information Center

    Cid, Maria R.

    2011-01-01

    The purpose of this research was to investigate if motor skills could be used as a differentiating feature between Asperger's Disorder (AD) and High Functioning (HFA) in children under the age of 9 years, 0 months, in order to provide additional information regarding the usefulness and validity of distinguishing these two disorders. There is…

  13. Using Video-Based Modeling to Promote Acquisition of Fundamental Motor Skills

    ERIC Educational Resources Information Center

    Obrusnikova, Iva; Rattigan, Peter J.

    2016-01-01

    Video-based modeling is becoming increasingly popular for teaching fundamental motor skills to children in physical education. Two frequently used video-based instructional strategies that incorporate modeling are video prompting (VP) and video modeling (VM). Both strategies have been used across multiple disciplines and populations to teach a…

  14. Deficits in Fine Motor Skills and Their Influence on Persistence among Gifted Elementary School Pupils

    ERIC Educational Resources Information Center

    Stoeger, Heidrun; Ziegler, Albert

    2013-01-01

    This article addresses the causes of underachievement in scholastic education. Whereas many studies have been able to show that motivational deficits provide an explanation for underachievement, little research has yet explored the possible influences of deficits in fine motor skills. The aim of our empirical study was, therefore, to investigate…

  15. Fine Motor Skill Predicts Expressive Language in Infant Siblings of Children with Autism

    ERIC Educational Resources Information Center

    LeBarton, Eve Sauer; Iverson, Jana M.

    2013-01-01

    We investigated whether fine motor and expressive language skills are related in the later-born siblings of children with autism (heightened-risk, HR infants) who are at increased risk for language delays. We observed 34 HR infants longitudinally from 12 to 36 months. We used parent report and standardized observation measures to assess fine motor…

  16. Self-Pacing a Gross Motor Skills Course: Crawler Tractor Operator, MOS 62E20.

    ERIC Educational Resources Information Center

    Brennan, Mark F.; Taylor, John E.

    As part of the Army's emphasis on performance-oriented instruction in training centers, a study was conducted to determine the feasibility of using self-paced instruction in a gross motor skills course. The Crawler Tractor Operator Course, a seven-week heavy equipment course conducted at Fort Leonard Wood, Missouri was selected for the study…

  17. The Use of Cognitive Strategies To Enhance Motor Skill Acquisition and Retention in the Elderly.

    ERIC Educational Resources Information Center

    Anshel, Mark H.

    It has been hypothesized that the use of techniques to enhance motor skill acquisition and retention in the elderly may retard the onset of retirement, result in the continuation of a productive professional career, allow continued participation in recreational activities, and possibly slow the decline in physiological functions that normally…

  18. Assessment of Perceptual Motor Skills Contribution to Psycho-Evaluation: Unit 4

    ERIC Educational Resources Information Center

    Peabody, Albert D. Jr.

    2005-01-01

    According to (Koppitz, 1975) manual suggests, "the use of the BVMGT is a rough test of intelligence. The BVMGT is not an intelligence test but a measure of a child's skill in coping geometric designs. It provides a very limited sample of behavior. Although perceptual motor development has emerged as a very important instrument for the development…

  19. Does Data Distribution Change as a Function of Motor Skill Practice?

    ERIC Educational Resources Information Center

    Yan, Jin H.; Rodriguez, Ward A.; Thomas, Jerry R.

    2005-01-01

    The purpose of this study was to determine whether data distribution changes as a result of motor skill practice or learning. The data on three dependent measures (movement time; MT), percentage of movement time in primary submovement (PSB), and movement jerk (JEK) were collected at baseline and practice Blocks 1 to 5. Sixty 6-year-olds,…

  20. The Effects of Direct Teaching Styles on Motor Skill Acquisition of Fifth Grade Children.

    ERIC Educational Resources Information Center

    Goldberger, Michael; Gerney, Philip

    1986-01-01

    This study tested the effects of three teaching styles on the motor skill acquisition of fifth grade children from low and high socio-economic status. Results revealed that, while one style was most productive with average children, exceptional children prospered under another style. (Author/MT)

  1. Motivational Climate, Motor-Skill Development, and Perceived Competence: Two Studies of Developmentally Delayed Kindergarten Children

    ERIC Educational Resources Information Center

    Valentini, Nadia; Rudisill, Mary E.

    2004-01-01

    Two studies were conducted to examine the effects of motivational climate on motor-skill development and perceived physical competence in kindergarten children with developmental delays. In Experiment 1, two intervention groups were exposed to environments with either high (mastery climate) or low autonomy for 12 weeks. Results showed that the…

  2. Motor Skill Performance of Children and Adolescents with Visual Impairments: A Review

    ERIC Educational Resources Information Center

    Houwen, Suzanne; Visscher, Chris; Lemmink, Koen A. P. M.; Hartman, Esther

    2009-01-01

    This article reviews studies on variables that are related to the motor skill performance of children and adolescents with visual impairments (VI). Three major groups of variables are considered (child, environmental, and task). Thirty-nine studies are included in this review, 26 of which examined the effects of child, environmental, and/or task…

  3. Content Evaluation and Development of Videotapes Demonstrating Regional Anesthesia Motor Skills

    ERIC Educational Resources Information Center

    Warwick, Pamela M.; Ravin, Mark B.

    1975-01-01

    A study is reported which evaluated the content of three instructional videotapes designed to impart information and to demonstrate regional (spinal, epidural, and caudal) anesthesia motor skills. Pretest-posttest results demonstrated that the tapes successfully met predetermined criteria. Advantages of the method for medical student instruction…

  4. Motor Skills in Children Aged 7-10 Years, Diagnosed with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Whyatt, Caroline P.; Craig, Cathy M.

    2012-01-01

    This study used the Movement Assessment Battery for Children (M-ABC2) to assess motor skills in children aged 7-10 years with autism (n = 18) in comparison to two groups of age-matched typically developing children; a receptive vocabulary matched group (n = 19) and a nonverbal IQ matched group (n = 22). The results supported previous work, as…

  5. Goal Scoring in Soccer: A Polar Coordinate Analysis of Motor Skills Used by Lionel Messi

    PubMed Central

    Castañer, Marta; Barreira, Daniel; Camerino, Oleguer; Anguera, M. Teresa; Canton, Albert; Hileno, Raúl

    2016-01-01

    Soccer research has traditionally focused on technical and tactical aspects of team play, but few studies have analyzed motor skills in individual actions, such as goal scoring. The objective of this study was to investigate how Lionel Messi, one of the world's top soccer players, uses his motor skills and laterality in individual attacking actions resulting in a goal. We analyzed 103 goals scored by Messi between over a decade in three competitions: La Liga (n = 74), Copa del Rey (n = 8), and the UEFA Champions League (n = 21). We used an ad-hoc observation instrument (OSMOS-soccer player) comprising 10 criteria and 50 categories; polar coordinate analysis, a powerful data reduction technique, revealed significant associations for body part and orientation, foot contact zone, turn direction, and locomotion. No significant associations were observed for pitch area or interaction with opponents. Our analysis confirms significant associations between different aspects of motor skill use by Messi immediately before scoring, namely use of lower limbs, foot contact zones, turn direction, use of wings, and orientation of body to move toward the goal. Studies of motor skills in soccer could shed light on the qualities that make certain players unique. PMID:27303357

  6. Effects of Peer Mediated Instruction with Task Cards on Motor Skill Acquisition in Tennis

    ERIC Educational Resources Information Center

    Iserbyt, Peter; Madou, Bob; Vergauwen, Lieven; Behets, Daniel

    2011-01-01

    This study compared the motor skill effects of a peer teaching format by means of task cards with a teacher-centered format. Tennis performance of eighth grade students (n = 55) was measured before and after a four week intervention period in a regular physical education program. Results show that peer mediated learning with task cards…

  7. The Effect of Fine Motor Skill Activities on Kindergarten Student Attention

    ERIC Educational Resources Information Center

    Stewart, Roger A.; Rule, Audrey C.; Giordano, Debra A.

    2007-01-01

    This study explored the effect of fine motor skill activities on the development of attention in kindergarteners (n = 68) in five classes at a suburban public school in the Intermountain West through a pretest/posttest experimental group (n = 36) control group (n = 32) design. All children received the regular curriculum which included typical…

  8. Goal Scoring in Soccer: A Polar Coordinate Analysis of Motor Skills Used by Lionel Messi.

    PubMed

    Castañer, Marta; Barreira, Daniel; Camerino, Oleguer; Anguera, M Teresa; Canton, Albert; Hileno, Raúl

    2016-01-01

    Soccer research has traditionally focused on technical and tactical aspects of team play, but few studies have analyzed motor skills in individual actions, such as goal scoring. The objective of this study was to investigate how Lionel Messi, one of the world's top soccer players, uses his motor skills and laterality in individual attacking actions resulting in a goal. We analyzed 103 goals scored by Messi between over a decade in three competitions: La Liga (n = 74), Copa del Rey (n = 8), and the UEFA Champions League (n = 21). We used an ad-hoc observation instrument (OSMOS-soccer player) comprising 10 criteria and 50 categories; polar coordinate analysis, a powerful data reduction technique, revealed significant associations for body part and orientation, foot contact zone, turn direction, and locomotion. No significant associations were observed for pitch area or interaction with opponents. Our analysis confirms significant associations between different aspects of motor skill use by Messi immediately before scoring, namely use of lower limbs, foot contact zones, turn direction, use of wings, and orientation of body to move toward the goal. Studies of motor skills in soccer could shed light on the qualities that make certain players unique. PMID:27303357

  9. The Carter Neurocognitive Assessment for Children with Severely Compromised Expressive Language and Motor Skills

    ERIC Educational Resources Information Center

    Leevers, Hilary J.; Roesler, Cynthia P.; Flax, Judy; Benasich, April A.

    2005-01-01

    In this paper, different means of assessing cognitive development in children with severe impairments in "both" their expressive language and their motor skills are reviewed. A range of techniques are considered, including traditional cognitive tests and behavioral and physiological measures, but these techniques are generally impractical and…

  10. The Effectiveness of a Web-Based Motor Skill Assessment Training Program

    ERIC Educational Resources Information Center

    Kelly, Luke E.; Moran, Thomas E.

    2010-01-01

    The purpose of this study was to evaluate the effectiveness of a web-based, intereactive video assessment program on teaching preservice physical education majors to assess the motor skill of kicking. The program provided component specific feedback through tutorial, guided practice, and competency training options. The 72 participants were…

  11. The Application of Sequential Probability Ratio Testing To a Test of Motor Skill.

    ERIC Educational Resources Information Center

    Safrit, Margaret J.; And Others

    1985-01-01

    Constraints on criterion-referenced tests to make mastery/nonmastery classifications of motor skills can lead to excessively long tests. A sequential probability ratio test classified many subjects' golf shots quickly but required many trials for four subjects. The test's classification accuracy makes it a potentially useful device for physical…

  12. Assessment of motor and process skills: assessing client work performance in Belgium.

    PubMed

    Vandamme, Dirk

    2010-01-01

    The aim of this study is to establish whether the Assessment of Motor and Process Skills (AMPS) is an appropriate tool to evaluate the quality of work performance by comparing clients' results on the AMPS with the quality of the skills that they demonstrate on the shop floor. A convenience sample of chronically unemployed (vocationally disabled) participants (N=139) with no formal training who were seeking unskilled work through Jobcentrum West-Vlaanderen (West Flanders Job Centre, Belgium) was used. Results demonstrated that in 75.2% of cases the prediction of employment outcome was correct; it is suggested that an AMPS motor score < 2.5 and a process score < 1.2 is insufficient for regular employment, while a motor score > 3.1 and process score > 1.5 indicates that regular employment is a realistic goal. The quality of the motor skills measured by the AMPS and measured on the shop floor are comparable, but little similarity was found in the measurement of process skills. PMID:20164615

  13. Get Kids Moving: Simple Activities To Build Gross-Motor Skills.

    ERIC Educational Resources Information Center

    Texas Child Care, 2003

    2003-01-01

    Highlights the importance of activities to build gross motor skills and provides hints for encouraging such activities. Specific areas of activities presented are: (1) running and jumping; (2) music games; (3) action games; (4) races; (5) bed sheets or parachutes; (6) hula hoops; (7) balls; (8) batting; (9) balance; and (10) creative movement. (SD)

  14. Do Nimble Hands Make for Nimble Lexicons? Fine Motor Skills Predict Knowledge of Embodied Vocabulary Items

    ERIC Educational Resources Information Center

    Suggate, Sebastian P.; Stoeger, Heidrun

    2014-01-01

    Theories and research in embodied cognition postulate that cognition grounded in action enjoys a processing advantage. Extending this theory to the study of how fine motor skills (FMS) link to vocabulary development in preschool children, the authors investigated FMS and vocabulary in 76 preschoolers. Building on previous research, they…

  15. A Gross Motor Skills Development Program for Children in Kindergarten-Primary.

    ERIC Educational Resources Information Center

    Sall, Nona G.

    This report describes the activities of a practicum which developed, implemented, and evaluated a transportable gross motor skills development program for kindergarten and primary children. The practicum involved three major components: (1) program materials, (2) inservice workshops, and (3) parent training. The program was implemented for three…

  16. Gender Differences in Fundamental Motor Skill Development in Disadvantaged Preschoolers from Two Geographical Regions

    ERIC Educational Resources Information Center

    Goodway, Jacqueline D.; Robinson, Leah E.; Crowe, Heather

    2010-01-01

    This study examined the influence of gender and region on object control (OC) and locomotor skill development. Participants were 275 midwestern African American and 194 southwestern Hispanic preschool children who were disadvantaged. All were evaluated on the Test of Gross Motor Development-2 (Ulrich, 2000). Two, 2 Gender (girls, boys) x 2 Region…

  17. Fine motor skills and early comprehension of the world: two new school readiness indicators.

    PubMed

    Grissmer, David; Grimm, Kevin J; Aiyer, Sophie M; Murrah, William M; Steele, Joel S

    2010-09-01

    Duncan et al. (2007) presented a new methodology for identifying kindergarten readiness factors and quantifying their importance by determining which of children's developing skills measured around kindergarten entrance would predict later reading and math achievement. This article extends Duncan et al.'s work to identify kindergarten readiness factors with 6 longitudinal data sets. Their results identified kindergarten math and reading readiness and attention as the primary long-term predictors but found no effects from social skills or internalizing and externalizing behavior. We incorporated motor skills measures from 3 of the data sets and found that fine motor skills are an additional strong predictor of later achievement. Using one of the data sets, we also predicted later science scores and incorporated an additional early test of general knowledge of the social and physical world as a predictor. We found that the test of general knowledge was by far the strongest predictor of science and reading and also contributed significantly to predicting later math, making the content of this test another important kindergarten readiness indicator. Together, attention, fine motor skills, and general knowledge are much stronger overall predictors of later math, reading, and science scores than early math and reading scores alone. PMID:20822219

  18. Motor Skills of Children Newly Diagnosed with Attention Deficit Hyperactivity Disorder Prior to and Following Treatment with Stimulant Medication

    ERIC Educational Resources Information Center

    Brossard-Racine, Marie; Shevell, Michael; Snider, Laurie; Belanger, Stacey Ageranioti; Majnemer, Annette

    2012-01-01

    Motor difficulties are common in children with Attention Deficit Hyperactivity Disorder (ADHD). Although preliminary evidence has suggested that methylphenidate can improve the motor skills in children with ADHD and Developmental Coordination Disorder (DCD), the effect of stimulant medication on motor performance in children newly diagnosed with…

  19. Comparison of effects of transcranial magnetic stimulation on primary motor cortex and supplementary motor area in motor skill learning (randomized, cross over study).

    PubMed

    Kim, Yong Kyun; Shin, Sung Hun

    2014-01-01

    Motor skills require quick visuomotor reaction time, fast movement time, and accurate performance. Primary motor cortex (M1) and supplementary motor area (SMA) are closely related in learning motor skills. Also, it is well known that high frequency repeated transcranial magnetic stimulation (rTMS) on these sites has a facilitating effect. The aim of this study was to compare the effects of high frequency rTMS activation of these two brain sites on learning of motor skills. Twenty three normal volunteers participated. Subjects were randomly stimulated on either brain area, SMA or M1. The motor task required the learning of sequential finger movements, explicitly or implicitly. It consisted of pressing the keyboard sequentially with their right hand on seeing 7 digits on the monitor explicitly, and then tapping the 7 digits by memorization, implicitly. Subjects were instructed to hit the keyboard as fast and accurately as possible. Using Musical Instrument Digital Interface (MIDI), the keyboard pressing task was measured before and after high frequency rTMS for motor performance, which was measured by response time (RT), movement time, and accuracy (AC). A week later, the same task was repeated by cross-over study design. At this time, rTMS was applied on the other brain area. Two-way ANOVA was used to assess the carry over time effect and stimulation sites (M1 and SMA), as factors. Results indicated that no carry-over effect was observed. The AC and RT were not different between the two stimulating sites (M1 and SMA). But movement time was significantly decreased after rTMS on both SMA and M1. The amount of shortened movement time after rTMS on SMA was significantly increased as compared to the movement time after rTMS on M1 (p < 0.05), especially for implicit learning of motor tasks. The coefficient of variation was lower in implicit trial than in explicit trial. In conclusion, this finding indicated an important role of SMA compared to M1, in implicit motor

  20. Characterizing skill acquisition through motor imagery with no prior physical practice.

    PubMed

    Kraeutner, Sarah N; MacKenzie, Laura A; Westwood, David A; Boe, Shaun G

    2016-02-01

    Motor learning depends upon plasticity in neural networks involved in the planning and execution of movement. Physical practice (PP) is the primary means of motor learning, but it can be augmented with nonphysical forms of practice including motor imagery (MI)-the mental rehearsal of movement. It is unknown if MI alone, without prior PP of a movement, can produce robust learning. Here the authors used an implicit sequence learning task to explore motor learning via MI alone or PP. Participants underwent implicit sequence learning training via MI (n = 31) or PP (n = 33). Posttraining reaction time was faster for implicit versus random sequences for both the MI group (M = 583 ± 84 ms; 632 ± 86 ms, d = 0.59) and PP group (M = 532 ± 73 ms; 589 ± 70 ms, d = 0.80), demonstrating that MI without PP facilitated skill acquisition. Relative to MI alone, PP led to reduced reaction time for both random (d = 0.65) and implicit sequences (d = 0.55) consistent with a nonspecific motor benefit favoring PP over MI. These results have broad implication for theories of MI and support the use of MI as a form of practice to acquire implicit motor skills. (PsycINFO Database Record PMID:26389615

  1. Dopamine-dependent reinforcement of motor skill learning: evidence from Gilles de la Tourette syndrome.

    PubMed

    Palminteri, Stefano; Lebreton, Maël; Worbe, Yulia; Hartmann, Andreas; Lehéricy, Stéphane; Vidailhet, Marie; Grabli, David; Pessiglione, Mathias

    2011-08-01

    Reinforcement learning theory has been extensively used to understand the neural underpinnings of instrumental behaviour. A central assumption surrounds dopamine signalling reward prediction errors, so as to update action values and ensure better choices in the future. However, educators may share the intuitive idea that reinforcements not only affect choices but also motor skills such as typing. Here, we employed a novel paradigm to demonstrate that monetary rewards can improve motor skill learning in humans. Indeed, healthy participants progressively got faster in executing sequences of key presses that were repeatedly rewarded with 10 euro compared with 1 cent. Control tests revealed that the effect of reinforcement on motor skill learning was independent of subjects being aware of sequence-reward associations. To account for this implicit effect, we developed an actor-critic model, in which reward prediction errors are used by the critic to update state values and by the actor to facilitate action execution. To assess the role of dopamine in such computations, we applied the same paradigm in patients with Gilles de la Tourette syndrome, who were either unmedicated or treated with neuroleptics. We also included patients with focal dystonia, as an example of hyperkinetic motor disorder unrelated to dopamine. Model fit showed the following dissociation: while motor skills were affected in all patient groups, reinforcement learning was selectively enhanced in unmedicated patients with Gilles de la Tourette syndrome and impaired by neuroleptics. These results support the hypothesis that overactive dopamine transmission leads to excessive reinforcement of motor sequences, which might explain the formation of tics in Gilles de la Tourette syndrome. PMID:21727098

  2. Sport stacking activities in school children's motor skill development.

    PubMed

    Li, Yuhua; Coleman, Diane; Ransdell, Mary; Coleman, Lyndsie; Irwin, Carol

    2011-10-01

    This study examined the impact of a 12-wk. sport stacking intervention on reaction time (RT), manual dexterity, and hand-eye coordination in elementary school-aged children. 80 Grade 2 students participated in a 15-min. sport stacking practice session every school day for 12 wk., and were tested on psychomotor performance improvement. Tests for choice RT, manual dexterity, and photoelectric rotary pursuit tracking were conducted pre- and post-intervention for both experimental group (n = 36) and the controls (n = 44) who did no sport stacking. Students who had the intervention showed a greater improvement in two-choice RT. No other group difference was found. Such sport stacking activities may facilitate children's central processing and perceptual-motor integration. PMID:22185058

  3. Fundamental motor skill proficiency of Hong Kong children aged 6-9 years.

    PubMed

    Pang, Agnes Wai-Yin; Fong, Daniel Tik-Pui

    2009-01-01

    This study investigated the fundamental motor skill proficiency of Hong Kong children ages 6-9. Ninety-one male and 76 female Chinese students (mean age = 7.6 years) from six local primary schools in Hong Kong participated in this study. The Test of Gross Motor Development-Second Edition (TGMD-2) was administrated to assess the mastery of gross motor skills by an experienced physical education instructor. The performance was videotaped, and it was rated by the same physical education instructor again (1 week apart) to show the reliability (0.88-0.97). Results showed that the participants were in general superior to the normative samples from the TGMD-2 manual, scoring a gross motor quotient (GMQ) of 56.8-80.9. Overall, 24% of the participants were rated as superior, 36% as above average, 47% as average, and 2% as below average. Excellent proficiency (>80% in every subitem) was observed in running, galloping, leaping, sliding, catching, and throwing skills. In comparing the results with other studies, we found that the participants were superior to the data reported in previous studies in United States, Brazil, and Australia. This study added valuable information to the establishment of a worldwide normative reference for the comparison of future studies in other countries. PMID:19731174

  4. Associations of postural knowledge and basic motor skill with dyspraxia in autism: implication for abnormalities in distributed connectivity and motor learning.

    PubMed

    Dowell, Lauren R; Mahone, E Mark; Mostofsky, Stewart H

    2009-09-01

    Children with autism often have difficulty performing skilled movements. Praxis performance requires basic motor skill, knowledge of representations of the movement (mediated by parietal regions), and transcoding of these representations into movement plans (mediated by premotor circuits). The goals of this study were (a) to determine whether dyspraxia in autism is associated with impaired representational ("postural") knowledge and (b) to examine the contributions of postural knowledge and basic motor skill to dyspraxia in autism. Thirty-seven children with autism spectrum disorder (ASD) and 50 typically developing (TD) children, ages 8-13, completed (a) an examination of basic motor skills, (b) a postural knowledge test assessing praxis discrimination, and (c) a praxis examination. Children with ASD showed worse basic motor skill and postural knowledge than did controls. The ASD group continued to show significantly poorer praxis than did controls after accounting for age, IQ, basic motor skill, and postural knowledge. Dyspraxia in autism appears to be associated with impaired formation of spatial representations, as well as transcoding and execution. Distributed abnormality across parietal, premotor, and motor circuitry, as well as anomalous connectivity, may be implicated. PMID:19702410

  5. Associations of Postural Knowledge and Basic Motor Skill with Dyspraxia in Autism: Implication for Abnormalities in Distributed Connectivity and Motor Learning

    PubMed Central

    Dowell, Lauren R.; Mahone, E. Mark; Mostofsky, Stewart H.

    2009-01-01

    Children with autism often have difficulty performing skilled movements. Praxis performance requires basic motor skill, knowledge of representations of the movement (mediated by parietal regions), and transcoding of these representations into movement plans (mediated by premotor circuits). The goals of this study were: (a) to determine whether dyspraxia in autism is associated with impaired representational (“postural”) knowledge, and (b) to examine the contributions of postural knowledge and basic motor skill to dyspraxia in autism. Thirty-seven children with autism spectrum disorder (ASD) and 50 typically developing (TD) children, ages 8–13, completed: (a) an examination of basic motor skills, (b) a postural knowledge test assessing praxis discrimination, and (c) a praxis examination. Children with ASD showed worse basic motor skill and postural knowledge than controls. The ASD group continued to show significantly poorer praxis than controls after accounting for age, IQ, basic motor skill, and postural knowledge. Dyspraxia in autism appears to be associated with impaired formation of spatial representations, as well as transcoding and execution. Distributed abnormality across parietal, premotor, and motor circuitry, as well as anomalous connectivity may be implicated. PMID:19702410

  6. Biographic and behavioral factors are associated with music-related motor skills in children pianists.

    PubMed

    Spector, June T; Yong, Raymond; Altenmüller, Eckart; Jabusch, Hans-Christian

    2014-10-01

    This study aimed to identify biographical and behavioral factors associated with children pianists' motor skills using an objective assessment of a music-relevant motor task. Motor skills at the piano were assessed in 30 children pianists by measuring temporal unevenness in standardized scale playing using musical instrument digital interface (MIDI)-based scale analysis. Questionnaires were used to collect detailed information about the amount of time playing the piano, practice characteristics, attitudes toward music and practice, and the environment of music and practice. Associations between performance values and variables from the questionnaire were investigated using multivariable linear regression. A higher number of years playing the piano, more frequent parental involvement in the child's practice, more frequent practice of technical exercises, and greater enjoyment of practice and of the visual arts were associated with better motor performance. In addition to cumulative experience and aspects of practice, extrinsic motivational factors (e.g., parental interest) and intrinsic motivational factors (e.g., an artistic disposition) were associated with better performance on a musically-relevant motor task in children pianists. PMID:25215624

  7. A Matter of Time: Rapid Motor Memory Stabilization in Childhood

    ERIC Educational Resources Information Center

    Adi-Japha, Esther; Badir, Rodayna; Dorfberger, Shoshi; Karni, Avi

    2014-01-01

    Are children better than adults in acquiring new skills ("how-to" knowledge) because of a difference in skill memory consolidation? Here we tested the proposal that, as opposed to adults, children's memories for newly acquired skills are immune to interference by subsequent experience. The establishment of long-term memory for a…

  8. Review of Selected Literature: Assessment of Motor and Sensory/Motor Skills in Severely/Multiply Handicapped Infants and Young Children.

    ERIC Educational Resources Information Center

    Guess, Doug; And Others

    The authors examine existing procedures and instruments used to assess the motor and perceptual/motor skills of severely/multiply handicapped infants and young children. Following an introductory section is a discussion of the rationale for the sequencing of assessment items and the limitations of the instruments for yielding specific quantitative…

  9. Child Development Associate Training Program. Unit IV: Motor Development in Young Children. Module 1: Fostering the Development of Gross Motor Skills in Young Children. Unit Overview.

    ERIC Educational Resources Information Center

    Office of Child Development (DHEW), Washington, DC.

    This Child Development Associate (CDA) training module enables CDA interns to identify, prescribe, plan and implement activities and lessons which foster the development of gross motor skills in young children. At a satisfactoy level of proficiency the trainee will be able to identify levels of gross motor maturation, select appropriate equipment,…

  10. Effects of robotically modulating kinematic variability on motor skill learning and motivation.

    PubMed

    Duarte, Jaime E; Reinkensmeyer, David J

    2015-04-01

    It is unclear how the variability of kinematic errors experienced during motor training affects skill retention and motivation. We used force fields produced by a haptic robot to modulate the kinematic errors of 30 healthy adults during a period of practice in a virtual simulation of golf putting. On day 1, participants became relatively skilled at putting to a near and far target by first practicing without force fields. On day 2, they warmed up at the task without force fields, then practiced with force fields that either reduced or augmented their kinematic errors and were finally assessed without the force fields active. On day 3, they returned for a long-term assessment, again without force fields. A control group practiced without force fields. We quantified motor skill as the variability in impact velocity at which participants putted the ball. We quantified motivation using a self-reported, standardized scale. Only individuals who were initially less skilled benefited from training; for these people, practicing with reduced kinematic variability improved skill more than practicing in the control condition. This reduced kinematic variability also improved self-reports of competence and satisfaction. Practice with increased kinematic variability worsened these self-reports as well as enjoyment. These negative motivational effects persisted on day 3 in a way that was uncorrelated with actual skill. In summary, robotically reducing kinematic errors in a golf putting training session improved putting skill more for less skilled putters. Robotically increasing kinematic errors had no performance effect, but decreased motivation in a persistent way. PMID:25673732

  11. Effects of robotically modulating kinematic variability on motor skill learning and motivation

    PubMed Central

    Reinkensmeyer, David J.

    2015-01-01

    It is unclear how the variability of kinematic errors experienced during motor training affects skill retention and motivation. We used force fields produced by a haptic robot to modulate the kinematic errors of 30 healthy adults during a period of practice in a virtual simulation of golf putting. On day 1, participants became relatively skilled at putting to a near and far target by first practicing without force fields. On day 2, they warmed up at the task without force fields, then practiced with force fields that either reduced or augmented their kinematic errors and were finally assessed without the force fields active. On day 3, they returned for a long-term assessment, again without force fields. A control group practiced without force fields. We quantified motor skill as the variability in impact velocity at which participants putted the ball. We quantified motivation using a self-reported, standardized scale. Only individuals who were initially less skilled benefited from training; for these people, practicing with reduced kinematic variability improved skill more than practicing in the control condition. This reduced kinematic variability also improved self-reports of competence and satisfaction. Practice with increased kinematic variability worsened these self-reports as well as enjoyment. These negative motivational effects persisted on day 3 in a way that was uncorrelated with actual skill. In summary, robotically reducing kinematic errors in a golf putting training session improved putting skill more for less skilled putters. Robotically increasing kinematic errors had no performance effect, but decreased motivation in a persistent way. PMID:25673732

  12. Genetic basis in motor skill and hand preference for tool use in chimpanzees (Pan troglodytes)

    PubMed Central

    Hopkins, William D.; Reamer, Lisa; Mareno, Mary Catherine; Schapiro, Steven J.

    2015-01-01

    Chimpanzees are well known for their tool using abilities. Numerous studies have documented variability in tool use among chimpanzees and the role that social learning and other factors play in their development. There are also findings on hand use in both captive and wild chimpanzees; however, less understood are the potential roles of genetic and non-genetic mechanisms in determining individual differences in tool use skill and laterality. Here, we examined heritability in tool use skill and handedness for a probing task in a sample of 243 captive chimpanzees. Quantitative genetic analysis, based on the extant pedigrees, showed that overall both tool use skill and handedness were significantly heritable. Significant heritability in motor skill was evident in two genetically distinct populations of apes, and between two cohorts that received different early social rearing experiences. We further found that motor skill decreased with age and that males were more commonly left-handed than females. Collectively, these data suggest that though non-genetic factors do influence tool use performance and handedness in chimpanzees, genetic factors also play a significant role, as has been reported in humans. PMID:25520351

  13. Genetic basis in motor skill and hand preference for tool use in chimpanzees (Pan troglodytes).

    PubMed

    Hopkins, William D; Reamer, Lisa; Mareno, Mary Catherine; Schapiro, Steven J

    2015-02-01

    Chimpanzees are well known for their tool using abilities. Numerous studies have documented variability in tool use among chimpanzees and the role that social learning and other factors play in their development. There are also findings on hand use in both captive and wild chimpanzees; however, less understood are the potential roles of genetic and non-genetic mechanisms in determining individual differences in tool use skill and laterality. Here, we examined heritability in tool use skill and handedness for a probing task in a sample of 243 captive chimpanzees. Quantitative genetic analysis, based on the extant pedigrees, showed that overall both tool use skill and handedness were significantly heritable. Significant heritability in motor skill was evident in two genetically distinct populations of apes, and between two cohorts that received different early social rearing experiences. We further found that motor skill decreased with age and that males were more commonly left-handed than females. Collectively, these data suggest that though non-genetic factors do influence tool use performance and handedness in chimpanzees, genetic factors also play a significant role, as has been reported in humans. PMID:25520351

  14. The Written Communication Skills That Matter Most for Accountants

    ERIC Educational Resources Information Center

    Riley, Tracey J.; Simons, Kathleen A.

    2016-01-01

    Given the importance of effective written communication skills to the discipline of accounting, faculty must emphasize these skills in their classroom in order to adequately prepare students for successful careers in the field. Since 2000, only two studies in the accounting literature have examined which written communication skills are needed by…

  15. Child Development Associate Training Program. Unit IV: Motor Development in Young Children. Module 2: Fostering the Development of Fine Motor Skills in Young Children.

    ERIC Educational Resources Information Center

    Office of Child Development (DHEW), Washington, DC.

    Skills necessary for fostering fine motor development in young children are indicated and discussed in this training module for Child Development Associate (CDA) trainees. Trainees are taught to identify appropriate classroom equipment and materials, plan lessons and activities, assess children's skills, and finally teach a lesson or guide an…

  16. Motor Skill Interventions to Improve Fundamental Movement Skills of Preschoolers with Developmental Delay

    ERIC Educational Resources Information Center

    Kirk, Megan A.; Rhodes, Ryan E.

    2011-01-01

    Preschoolers with developmental delay (DD) are at risk for poor fundamental movement skills (FMS), but a paucity of early FMS interventions exist. The purpose of this review was to critically appraise the existing interventions to establish direction for future trials targeting preschoolers with DD. A total of 11 studies met the inclusion…

  17. Motor-Life-Skills of Toddlers--A Comparative Study of Norwegian and British Boys and Girls Applying the Early Years Movement Skills Checklist

    ERIC Educational Resources Information Center

    Moser, Thomas; Reikerås, Elin

    2016-01-01

    This article discusses motor-life-skills in a sample (n?=?1083) of 33 months (2.9-year-old) children in Norwegian early childhood education and care institutions (ECEC-institutions) and to compare the findings with the results from a similar British sample. The Early Years Movement Skills Checklist (EYMSC) (Chambers and Sugden 2006) was applied.…

  18. Translational studies exploring neuroplasticity associated with motor skill learning and the regulatory role of the dopamine system.

    PubMed

    Diaz Heijtz, Rochellys; Forssberg, Hans

    2015-04-01

    Cerebral palsy (CP) is a heterogeneous group of neurodevelopmental disorders associated with lifelong motor impairment and disability. Current intervention programmes aim to capitalize on the neuroplasticity of the undamaged part of the brain to improve motor functions, by engaging individuals in active motor learning and training. In this review, we highlight recent animal studies (1) exploring cellular and molecular mechanisms contributing to neuroplasticity during motor training, (2) assessing the functional role of the mesocortical dopaminergic system in motor skill learning, and (3) exploring the impact of naturally occurring genetic variation in dopamine-related gene expression on the acquisition and performance of fine motor skills. Finally, the potential influence of the dopamine system on the outcome of motor learning interventions in cerebral palsy is discussed. PMID:25690110

  19. Neural changes in the primate brain correlated with the evolution of complex motor skills.

    PubMed

    Yamazaki, Y; Hikishima, K; Saiki, M; Inada, M; Sasaki, E; Lemon, R N; Price, C J; Okano, H; Iriki, A

    2016-01-01

    Complex motor skills of eventual benefit can be learned after considerable trial and error. What do structural brain changes that accompany such effortful long-term learning tell us about the mechanisms for developing innovative behavior? Using MRI, we monitored brain structure before, during and after four marmosets learnt to use a rake, over a long period of 10-13 months. Throughout learning, improvements in dexterity and visuo-motor co-ordination correlated with increased volume in the lateral extrastriate cortex. During late learning, when the most complex behavior was maintained by sustained motivation to acquire the skill, the volume of the nucleus accumbens increased. These findings reflect the motivational state required to learn, and show accelerated function in higher visual cortex that is consistent with neurocognitive divergence across a spectrum of primate species. PMID:27498966

  20. Psychophysiological support of increasing attentional reserve during the development of a motor skill.

    PubMed

    Rietschel, Jeremy C; McDonald, Craig G; Goodman, Ronald N; Miller, Matthew W; Jones-Lush, Lauren M; Wittenberg, George F; Hatfield, Bradley D

    2014-12-01

    The aim of this study was to determine the relationship between motor skill and attentional reserve. Participants practiced a reaching task with the dominant upper extremity, to which a distortion of the visual feedback was applied, while a control group performed the same task without distortion. Event-related brain potentials (ERPs), elicited by auditory stimuli were recorded throughout practice. Performance, as measured by initial directional error, was initially worse relative to controls and improved over trials. Analyses of the ERPs revealed that exogenous components, N1 and P2, were undifferentiated between the groups and did not change with practice. Notably, amplitude of the novelty P3 component, an index of the involuntary orienting of attention, was initially attenuated relative to controls, but progressively increased in amplitude over trials in the learning group only. The results provide psychophysiological evidence that attentional reserve increases as a function of motor skill acquisition. PMID:25457640

  1. Neural changes in the primate brain correlated with the evolution of complex motor skills

    PubMed Central

    Yamazaki, Y.; Hikishima, K.; Saiki, M.; Inada, M.; Sasaki, E.; Lemon, R. N.; Price, C. J.; Okano, H.; Iriki, A.

    2016-01-01

    Complex motor skills of eventual benefit can be learned after considerable trial and error. What do structural brain changes that accompany such effortful long-term learning tell us about the mechanisms for developing innovative behavior? Using MRI, we monitored brain structure before, during and after four marmosets learnt to use a rake, over a long period of 10–13 months. Throughout learning, improvements in dexterity and visuo-motor co-ordination correlated with increased volume in the lateral extrastriate cortex. During late learning, when the most complex behavior was maintained by sustained motivation to acquire the skill, the volume of the nucleus accumbens increased. These findings reflect the motivational state required to learn, and show accelerated function in higher visual cortex that is consistent with neurocognitive divergence across a spectrum of primate species. PMID:27498966

  2. The Dutch motor skills assessment as tool for talent development in table tennis: a reproducibility and validity study.

    PubMed

    Faber, Irene R; Nijhuis-Van Der Sanden, Maria W G; Elferink-Gemser, Marije T; Oosterveld, Frits G J

    2015-01-01

    A motor skills assessment could be helpful in talent development by estimating essential perceptuo-motor skills of young players, which are considered requisite to develop excellent technical and tactical qualities. The Netherlands Table Tennis Association uses a motor skills assessment in their talent development programme consisting of eight items measuring perceptuo-motor skills specific to table tennis under varying conditions. This study aimed to investigate this assessment regarding its reproducibility, internal consistency, underlying dimensions and concurrent validity in 113 young table tennis players (6-10 years). Intraclass correlation coefficients of six test items met the criteria of 0.7 with coefficients of variation between 3% and 8%. Cronbach's alpha valued 0.853 for internal consistency. The principal components analysis distinguished two conceptually meaningful factors: "ball control" and "gross motor function." Concurrent validity analyses demonstrated moderate associations between the motor skills assessment's results and national ranking; boys r = -0.53 (P < 0.001) and girls r = -0.45 (P = 0.015). In conclusion, this evaluation demonstrated six test items with acceptable reproducibility, good internal consistency and good prospects for validity. Two test items need revision to upgrade reproducibility. Since the motor skills assessment seems to be a reproducible, objective part of a talent development programme, more longitudinal studies are required to investigate its predictive validity. PMID:25482916

  3. Working memory and fine motor skills predict early numeracy performance of children with cerebral palsy.

    PubMed

    Van Rooijen, Maaike; Verhoeven, Ludo; Steenbergen, Bert

    2016-01-01

    Early numeracy is an important precursor for arithmetic performance, academic proficiency, and work success. Besides their apparent motor difficulties, children with cerebral palsy (CP) often show additional cognitive disturbances. In this study, we examine whether working memory, non-verbal intelligence, linguistic skills, counting and fine motor skills are positively related to the early numeracy performance of 6-year-old children with CP. A total of 56 children (M = 6.0, SD = 0.61, 37 boys) from Dutch special education schools participated in this cross-sectional study. Of the total group, 81% of the children have the spastic type of CP (33% unilateral and 66% bilateral), 9% have been diagnosed as having diskinetic CP, 8% have been diagnosed as having spastic and diskinetic CP and 2% have been diagnosed as having a combination of diskinetic and atactic CP. The children completed standardized tests assessing early numeracy performance, working memory, non-verbal intelligence, sentence understanding and fine motor skills. In addition, an experimental task was administered to examine their basic counting performance. Structural equation modeling showed that working memory and fine motor skills were significantly related to the early numeracy performance of the children (β = .79 and p < .001, β = .41 and p < .001, respectively). Furthermore, counting was a mediating variable between working memory and early numeracy (β = .57, p < .001). Together, these findings highlight the importance of working memory for early numeracy performance in children with CP and they warrant further research into the efficacy of intervention programs aimed at working memory training. PMID:26070109

  4. Endurance exercise facilitates relearning of forelimb motor skill after focal ischemia.

    PubMed

    Ploughman, Michelle; Attwood, Zachary; White, Nicole; Doré, Jules J E; Corbett, Dale

    2007-06-01

    Endurance exercise (i.e. running), by up-regulating brain-derived neurotrophic factor (BDNF) and other modulators of synaptic plasticity, improves attention and learning, both critical components of stroke rehabilitation. We hypothesized that, following middle cerebral artery occlusion in male Sprague-Dawley rats, endurance exercise would act synergistically with a challenging skilled forelimb task to facilitate motor recovery. Animals were randomly assigned to one of four rehabilitation conditions: no rehabilitation, running only, reach training only, and reach training preceded by running (run/reach training) for 5 weeks beginning 5 days after stroke. The behavioral outcome, morphological change and mRNA expression of proteins implicated in neuroplasticity (BDNF, synapsin I and microtubule-associated protein 2) were compared. Endurance exercise on a motorized running wheel, prior to reach training, enhanced recovery of skilled reaching ability but did not transfer to gross motor skills such as postural support (forelimb asymmetry test) and gait (ladder rung walking test). Microtubule-associated protein 2 staining density in the run/reach group was slightly enhanced in the contralateral motor cortex compared with the contralateral sensory and ipsilateral cingulate cortices, suggesting that running preceding reach training may have resulted in more dendritic branching within the motor cortex in this group. No significant differences in mRNA levels were detected among the training paradigms; however, there was a trend toward greater BDNF and synapsin I mRNA in the reaching groups. These findings suggest that exercise facilitates learning of subsequent challenging reaching tasks after stroke, which has the potential to optimize outcomes in patients with stroke. PMID:17553014

  5. Parental Writing Support and Preschoolers' Early Literacy, Language, and Fine Motor Skills

    PubMed Central

    Bindman, Samantha W.; Skibbe, Lori E.; Hindman, Annemarie H.; Aram, Dorit; Morrison, Frederick J.

    2014-01-01

    The current study examines the nature and variability of parents' aid to preschoolers in the context of a shared writing task, as well as the relations between this support and children's literacy, vocabulary, and fine motor skills. In total, 135 preschool children (72 girls) and their parents (primarily mothers) in an ethnically diverse, middle-income community were observed while writing a semi-structured invitation for a pretend birthday party together. Children's phonological awareness, alphabet knowledge, word decoding, vocabulary, and fine motor skills were also assessed. Results revealed that parents provided variable, but generally low–level, support for children's approximation of sound-symbol correspondence in their writing (i.e., graphophonemic support), as well as for their production of letter forms (i.e., print support). Parents frequently accepted errors rather than asking for corrections (i.e., demand for precision). Further analysis of the parent-child dyads (n = 103) who wrote the child's name on the invitation showed that parents provided higher graphophonemic, but not print, support when writing the child's name than other words. Overall parental graphophonemic support was positively linked to children's decoding and fine motor skills, whereas print support and demand for precision were not related to any of the child outcomes. In sum, this study indicates that while parental support for preschoolers' writing may be minimal, it is uniquely linked to key literacy-related outcomes in preschool. PMID:25284957

  6. Parental Writing Support and Preschoolers' Early Literacy, Language, and Fine Motor Skills.

    PubMed

    Bindman, Samantha W; Skibbe, Lori E; Hindman, Annemarie H; Aram, Dorit; Morrison, Frederick J

    2014-01-01

    The current study examines the nature and variability of parents' aid to preschoolers in the context of a shared writing task, as well as the relations between this support and children's literacy, vocabulary, and fine motor skills. In total, 135 preschool children (72 girls) and their parents (primarily mothers) in an ethnically diverse, middle-income community were observed while writing a semi-structured invitation for a pretend birthday party together. Children's phonological awareness, alphabet knowledge, word decoding, vocabulary, and fine motor skills were also assessed. Results revealed that parents provided variable, but generally low-level, support for children's approximation of sound-symbol correspondence in their writing (i.e., graphophonemic support), as well as for their production of letter forms (i.e., print support). Parents frequently accepted errors rather than asking for corrections (i.e., demand for precision). Further analysis of the parent-child dyads (n = 103) who wrote the child's name on the invitation showed that parents provided higher graphophonemic, but not print, support when writing the child's name than other words. Overall parental graphophonemic support was positively linked to children's decoding and fine motor skills, whereas print support and demand for precision were not related to any of the child outcomes. In sum, this study indicates that while parental support for preschoolers' writing may be minimal, it is uniquely linked to key literacy-related outcomes in preschool. PMID:25284957

  7. Neuronal Substrates Underlying Performance Variability in Well-Trained Skillful Motor Task in Humans

    PubMed Central

    2016-01-01

    Motor performance fluctuates trial by trial even in a well-trained motor skill. Here we show neural substrates underlying such behavioral fluctuation in humans. We first scanned brain activity with functional magnetic resonance imaging while healthy participants repeatedly performed a 10 s skillful sequential finger-tapping task. Before starting the experiment, the participants had completed intensive training. We evaluated task performance per trial (number of correct sequences in 10 s) and depicted brain regions where the activity changes in association with the fluctuation of the task performance across trials. We found that the activity in a broader range of frontoparietocerebellar network, including the bilateral dorsolateral prefrontal cortex (DLPFC), anterior cingulate and anterior insular cortices, and left cerebellar hemisphere, was negatively correlated with the task performance. We further showed in another transcranial direct current stimulation (tDCS) experiment that task performance deteriorated, when we applied anodal tDCS to the right DLPFC. These results indicate that fluctuation of brain activity in the nonmotor frontoparietocerebellar network may underlie trial-by-trial performance variability even in a well-trained motor skill, and its neuromodulation with tDCS may affect the task performance. PMID:27516909

  8. Acquisition of Motor and Cognitive Skills through Repetition in Typically Developing Children

    PubMed Central

    Magallón, Sara; Narbona, Juan; Crespo-Eguílaz, Nerea

    2016-01-01

    Background Procedural memory allows acquisition, consolidation and use of motor skills and cognitive routines. Automation of procedures is achieved through repeated practice. In children, improvement in procedural skills is a consequence of natural neurobiological development and experience. Methods The aim of the present research was to make a preliminary evaluation and description of repetition-based improvement of procedures in typically developing children (TDC). Ninety TDC children aged 6–12 years were asked to perform two procedural learning tasks. In an assembly learning task, which requires predominantly motor skills, we measured the number of assembled pieces in 60 seconds. In a mirror drawing learning task, which requires more cognitive functions, we measured time spent and efficiency. Participants were tested four times for each task: three trials were consecutive and the fourth trial was performed after a 10-minute nonverbal interference task. The influence of repeated practice on performance was evaluated by means of the analysis of variance with repeated measures and the paired-sample test. Correlation coefficients and simple linear regression test were used to examine the relationship between age and performance. Results TDC achieved higher scores in both tasks through repetition. Older children fitted more pieces than younger ones in assembling learning and they were faster and more efficient at the mirror drawing learning task. Conclusions These findings indicate that three consecutive trials at a procedural task increased speed and efficiency, and that age affected basal performance in motor-cognitive procedures. PMID:27384671

  9. TMS enhances retention of a motor skill in Parkinson’s Disease

    PubMed Central

    Moisello, Clara; Blanco, Daniella; Fontanesi, Cecilia; Lin, Jing; Biagioni, Milton; Kumar, Pawan; Brys, Miroslaw; Loggini, Andrea; Marinelli, Lucio; Abbruzzese, Giovanni; Quartarone, Angelo; Tononi, Giulio; Di Rocco, Alessandro; Ghilardi, Maria Felice

    2015-01-01

    Background In Parkinson’s disease (PD), skill retention is poor, even when acquisition rate is generally preserved. Recent work in normal subjects suggests that 5 Hz-repetitive transcranial magnetic stimulation (5Hz-rTMS) may induce phenomena of long-term potentiation at the cortical level. Objective/Hypothesis We thus verified whether, in PD, 5Hz-rTMS enhances retention of a visuo-motor skill that involves the activity of the right posterior parietal cortex. Methods A group of patients with PD was tested in two two-day sessions, separated by one week (treatment and placebo sessions). The first day of each session, they learned to adapt their movements to a step-wise 60° visual rotation. Immediately after the task, either real 5Hz-rTMS (treatment) or sham (placebo) stimulation was applied over the right posterior parietal cortex (P6). Retention of this motor skill was tested the following day. Results In patients with PD, adaptation achieved at the end of training was comparable in the treatment and placebo sessions and was similar to that of a group of age-matched controls. However, retention indices tested on the following day were significantly lower in the placebo compared to the treatment session in which retention indices were restored to the level of the controls. Importantly, reaction and movement time as well as other kinematic measures were the same in the treatment and placebo sessions. Conclusion These results suggest that rTMS applied after the acquisition of a motor skill over specific areas involved in this process might enhance skill retention in PD. PMID:25533243

  10. Spectral modulation of frontal EEG during motor skill acquisition: a mobile EEG study.

    PubMed

    Wong, Savio W H; Chan, Rosa H M; Mak, Joseph N

    2014-01-01

    This study investigates the modulation of frontal EEG dynamics with respect to progress in motor skill acquisition using a wireless EEG system with a single dry sensor. Participants were required to complete repeated trials of a computerized visual-motor task similar to mirror drawing while the EEG was collected. In each trial, task performance of the participants was summarized with a familiarity index which took into account the performance accuracy, completion rate and time. Our findings demonstrated that certain EEG power spectra decreased with an increase in motor task familiarity. In particular, frontal EEG activities in delta and theta bands of the whole trial and in gamma band in the middle of the trial are having a significant negative relationship with the overall familiarity level of the task. The findings suggest that frontal EEG spectra are significantly modulated during motor skill acquisition. Results of this study shed light on the possibility of simultaneous monitoring of brain activity during an unconstrained natural task with a single dry sensor mobile EEG in an everyday environment. PMID:24095979

  11. Patterned-String Tasks: Relation between Fine Motor Skills and Visual-Spatial Abilities in Parrots

    PubMed Central

    Krasheninnikova, Anastasia

    2013-01-01

    String-pulling and patterned-string tasks are often used to analyse perceptual and cognitive abilities in animals. In addition, the paradigm can be used to test the interrelation between visual-spatial and motor performance. Two Australian parrot species, the galah (Eolophus roseicapilla) and the cockatiel (Nymphicus hollandicus), forage on the ground, but only the galah uses its feet to manipulate food. I used a set of string pulling and patterned-string tasks to test whether usage of the feet during foraging is a prerequisite for solving the vertical string pulling problem. Indeed, the two species used techniques that clearly differed in the extent of beak-foot coordination but did not differ in terms of their success in solving the string pulling task. However, when the visual-spatial skills of the subjects were tested, the galahs outperformed the cockatiels. This supports the hypothesis that the fine motor skills needed for advanced beak-foot coordination may be interrelated with certain visual-spatial abilities needed for solving patterned-string tasks. This pattern was also found within each of the two species on the individual level: higher motor abilities positively correlated with performance in patterned-string tasks. This is the first evidence of an interrelation between visual-spatial and motor abilities in non-mammalian animals. PMID:24376885

  12. Differences in visuo-motor control in skilled vs. novice martial arts athletes during sustained and transient attention tasks: a motor-related cortical potential study.

    PubMed

    Sanchez-Lopez, Javier; Fernandez, Thalia; Silva-Pereyra, Juan; Martinez Mesa, Juan A; Di Russo, Francesco

    2014-01-01

    Cognitive and motor processes are essential for optimal athletic performance. Individuals trained in different skills and sports may have specialized cognitive abilities and motor strategies related to the characteristics of the activity and the effects of training and expertise. Most studies have investigated differences in motor-related cortical potential (MRCP) during self-paced tasks in athletes but not in stimulus-related tasks. The aim of the present study was to identify the differences in performance and MRCP between skilled and novice martial arts athletes during two different types of tasks: a sustained attention task and a transient attention task. Behavioral and electrophysiological data from twenty-two martial arts athletes were obtained while they performed a continuous performance task (CPT) to measure sustained attention and a cued continuous performance task (c-CPT) to measure transient attention. MRCP components were analyzed and compared between groups. Electrophysiological data in the CPT task indicated larger prefrontal positive activity and greater posterior negativity distribution prior to a motor response in the skilled athletes, while novices showed a significantly larger response-related P3 after a motor response in centro-parietal areas. A different effect occurred in the c-CPT task in which the novice athletes showed strong prefrontal positive activity before a motor response and a large response-related P3, while in skilled athletes, the prefrontal activity was absent. We propose that during the CPT, skilled athletes were able to allocate two different but related processes simultaneously according to CPT demand, which requires controlled attention and controlled motor responses. On the other hand, in the c-CPT, skilled athletes showed better cue facilitation, which permitted a major economy of resources and "automatic" or less controlled responses to relevant stimuli. In conclusion, the present data suggest that motor expertise

  13. Differences in Visuo-Motor Control in Skilled vs. Novice Martial Arts Athletes during Sustained and Transient Attention Tasks: A Motor-Related Cortical Potential Study

    PubMed Central

    Sanchez-Lopez, Javier; Fernandez, Thalia; Silva-Pereyra, Juan; Martinez Mesa, Juan A.; Di Russo, Francesco

    2014-01-01

    Cognitive and motor processes are essential for optimal athletic performance. Individuals trained in different skills and sports may have specialized cognitive abilities and motor strategies related to the characteristics of the activity and the effects of training and expertise. Most studies have investigated differences in motor-related cortical potential (MRCP) during self-paced tasks in athletes but not in stimulus-related tasks. The aim of the present study was to identify the differences in performance and MRCP between skilled and novice martial arts athletes during two different types of tasks: a sustained attention task and a transient attention task. Behavioral and electrophysiological data from twenty-two martial arts athletes were obtained while they performed a continuous performance task (CPT) to measure sustained attention and a cued continuous performance task (c-CPT) to measure transient attention. MRCP components were analyzed and compared between groups. Electrophysiological data in the CPT task indicated larger prefrontal positive activity and greater posterior negativity distribution prior to a motor response in the skilled athletes, while novices showed a significantly larger response-related P3 after a motor response in centro-parietal areas. A different effect occurred in the c-CPT task in which the novice athletes showed strong prefrontal positive activity before a motor response and a large response-related P3, while in skilled athletes, the prefrontal activity was absent. We propose that during the CPT, skilled athletes were able to allocate two different but related processes simultaneously according to CPT demand, which requires controlled attention and controlled motor responses. On the other hand, in the c-CPT, skilled athletes showed better cue facilitation, which permitted a major economy of resources and “automatic” or less controlled responses to relevant stimuli. In conclusion, the present data suggest that motor expertise

  14. Comparing the Effects of Drug Therapy, Perceptual Motor Training, and Both Combined on the Motor Skills of School-Aged Attention Deficit Hyperactivity Disorder Children.

    PubMed

    Taft Yazd, Susan Nasiri; Ayatizadeh, Farahnaz; Dehghan, Faezeh; Machado, Sergio; Wegner, Mirko

    2015-01-01

    The purpose of this research was to compare the effects of drug therapy, perceptual motor training and a combination of drug therapy and perceptual motor training on gross and fine motor skills of 6 to 12 year-old Iranian attention deficit hyperactivity disorder children. Thirty-six attention deficit hyperactivity disorder children currently under treatment in three Iranian psychological-neurological clinics participated in this research study. Participants were sampled from the accessible population and randomly assigned to three experimental groups (n = 12 each). The Conners Parent Rating Scale was used to classify the children and the Bruininks-Oseretsky Test of Motor Proficiency was administered before and after a three month treatment/ training session. Participants in the first experimental group received drug therapy (including methylphenidate). In the second group participants took part in 18 sessions of perceptual-motor skill training for six consecutive weeks, and in the third group children received both interventions. The results indicated that interventions using perceptual-motor training alone or in combination with a drug therapy significantly improved both gross and fine motor skills over a period of six weeks. Participants in the drug-only group showed no improvement in motor performance. PMID:26556079

  15. Ghostman: Augmented Reality Application for Telerehabilitation and Remote Instruction of a Novel Motor Skill

    PubMed Central

    Chinthammit, Winyu; Visentin, Denis

    2014-01-01

    This paper describes a pilot study using a prototype telerehabilitation system (Ghostman). Ghostman is a visual augmentation system designed to allow a physical therapist and patient to inhabit each other's viewpoint in an augmented real-world environment. This allows the therapist to deliver instruction remotely and observe performance of a motor skill through the patient's point of view. In a pilot study, we investigated the efficacy of Ghostman by using it to teach participants to use chopsticks. Participants were randomized to a single training session, receiving either Ghostman or face-to-face instructions by the same skilled instructor. Learning was assessed by measuring retention of skills at 24-hour and 7-day post instruction. As hypothesised, there were no differences in reduction of error or time to completion between participants using Ghostman compared to those receiving face-to-face instruction. These initial results in a healthy population are promising and demonstrate the potential application of this technology to patients requiring learning or relearning of motor skills as may be required following a stroke or brain injury. PMID:24829910

  16. Relationships between physical activity and motor skills in middle school children.

    PubMed

    Reed, Julian A; Metzker, Andrea; Phillips, D Allen

    2004-10-01

    The purpose of this study was to examine the relationships between physical activity measured as pedometer steps and performance on three motor skill tests. A secondary purpose was to determine if middle school children are meeting the recommendation for the number of daily steps. A sample (n =217) of 6th, 7th and 8th grade students participated. Each subject wore a Digi-Walker pedometer for three consecutive days. Subjects additionally recorded their pedometer steps in two 45 min.-physical education classes. There were strong significant correlations between daily steps taken by boys and girls, pedometer steps during physical education class and the AAHPERD Passing Test and the Bass Stick Balance. Similar correlations were weaker for the Side-Step Agility Test. Multivariate analysis of variance was utilized to examine variability of the three skills test by sex and year in school. Differences between students in Grades 7 and 8 on the AAHPERD Passing Test were significant. In addition, significant differences between daily pedometer steps and steps during physical education between Grades 6 and 7 were observed. Boys and girls had similar means on the AAHPERD Passing Test and Bass Stick Balance Test, but not on the Side-Step Agility Test. Scores on the three movement skills tested in this study were not strongly related to physical activity of the entire sample. Steps taken by middle school children appear not to be related to these measures of motor skills. PMID:15560336

  17. Systems in development: motor skill acquisition facilitates three-dimensional object completion.

    PubMed

    Soska, Kasey C; Adolph, Karen E; Johnson, Scott P

    2010-01-01

    How do infants learn to perceive the backs of objects that they see only from a limited viewpoint? Infants' 3-dimensional object completion abilities emerge in conjunction with developing motor skills--independent sitting and visual-manual exploration. Infants at 4.5 to 7.5 months of age (n = 28) were habituated to a limited-view object and tested with volumetrically complete and incomplete (hollow) versions of the same object. Parents reported infants' sitting experience, and infants' visual-manual exploration of objects was observed in a structured play session. Infants' self-sitting experience and visual-manual exploratory skills predicted looking at the novel, incomplete object on the habituation task. Further analyses revealed that self-sitting facilitated infants' visual inspection of objects while they manipulated them. The results are framed within a developmental systems approach, wherein infants' sitting skill, multimodal object exploration, and object knowledge are linked in developmental time. PMID:20053012

  18. Patient activation and advocacy: which literacy skills matter most?

    PubMed

    Martin, Laurie T; Schonlau, Matthias; Haas, Ann; Derose, Kathryn Pitkin; Rosenfeld, Lindsay; Buka, Stephen L; Rudd, Rima

    2011-01-01

    Attention to the effect of a patient's literacy skills on health care interactions is relatively new. So, too, are studies of either structural or personal factors that inhibit or support a patient's ability to navigate health services and systems and to advocate for their own needs within a service delivery system. Contributions of the structural environment, of interpersonal dynamics, and of a variety of psychological and sociological factors in the relationship between patients and providers have long been under study. Less frequently examined is the advocacy role expected of patients. However, the complex nature of health care in the United States increasingly requires a proactive stance. This study examined whether four literacy skills (reading, numeracy, speaking, and listening) were associated with patient self-advocacy--a component of health literacy itself--when faced with a hypothetical barrier to scheduling a medical appointment. Although all literacy skills were significantly associated with advocacy when examined in isolation, greater speaking and listening skills remained significantly associated with better patient advocacy when all four skills were examined simultaneously. These findings suggest that speaking and listening skills and support for such skills may be important factors to consider when developing patient activation and advocacy skills. PMID:21951251

  19. Overlapping Phenotypes in Autism Spectrum Disorder and Developmental Coordination Disorder: A Cross-Syndrome Comparison of Motor and Social Skills.

    PubMed

    Sumner, Emma; Leonard, Hayley C; Hill, Elisabeth L

    2016-08-01

    Motor and social difficulties are often found in children with an autism spectrum disorder (ASD) and with developmental coordination disorder (DCD), to varying degrees. This study investigated the extent of overlap of these problems in children aged 7-10 years who had a diagnosis of either ASD or DCD, compared to typically-developing controls. Children completed motor and face processing assessments. Parents completed questionnaires concerning their child's early motor and current motor and social skills. There was considerable overlap between the ASD and DCD groups on the motor and social assessments, with both groups more impaired than controls. Furthermore, motor skill predicted social functioning for both groups. Future research should consider the relationships between core symptoms and their consequences in other domains. PMID:27126816

  20. Sleep-Dependent Consolidation of Procedural Motor Memories in Children and Adults: The Pre-Sleep Level of Performance Matters

    ERIC Educational Resources Information Center

    Wilhelm, Ines; Metzkow-Meszaros, Maila; Knapp, Susanne; Born, Jan

    2012-01-01

    In striking contrast to adults, in children sleep following training a motor task did not induce the expected (offline) gain in motor skill performance in previous studies. Children normally perform at distinctly lower levels than adults. Moreover, evidence in adults suggests that sleep dependent offline gains in skill essentially depend on the…

  1. Physical activity, motor function, and white matter hyperintensity burden in healthy older adults

    PubMed Central

    Yang, Jingyun; Arfanakis, Konstantinos; Arvanitakis, Zoe; Leurgans, Sue E.; Turner, Arlener D.; Barnes, Lisa L.; Bennett, David A.; Buchman, Aron S.

    2015-01-01

    Objective: To test the hypothesis that physical activity modifies the association between white matter hyperintensity (WMH) burden and motor function in healthy older persons without dementia. Methods: Total daily activity (exercise and nonexercise physical activity) was measured for up to 11 days with actigraphy (Actical; Philips Respironics, Bend, OR) in 167 older adults without dementia participating in the Rush Memory and Aging Project. Eleven motor performances were summarized into a previously described global motor score. WMH volume was expressed as percent of intracranial volume. Linear regression models, adjusted for age, education, and sex, were performed with total WMH volume as the predictor and global motor score as the outcome. Terms for total daily physical activity and its interaction with WMH volume were then added to the model. Results: Higher WMH burden was associated with lower motor function (p = 0.006), and total daily activity was positively associated with motor function (p = 0.002). Total daily activity modified the association between WMH and motor function (p = 0.007). WMH burden was not associated with motor function in persons with high activity (90th percentile). By contrast, higher WMH burden remained associated with lower motor function in persons with average (50th percentile; estimate = −0.304, slope = −0.133) and low (10th percentile; estimate = −1.793, slope = −0.241) activity. Conclusions: Higher levels of physical activity may reduce the effect of WMH burden on motor function in healthy older adults. PMID:25762710

  2. Directly Observed Physical Activity and Fundamental Motor Skills in Four-Year-Old Children in Day Care

    ERIC Educational Resources Information Center

    Iivonen, S.; Sääkslahti, A. K.; Mehtälä, A.; Villberg, J. J.; Soini, A.; Poskiparta, M.

    2016-01-01

    Physical activity (PA), its location, social interactions and fundamental motor skills (FMS) were investigated in four-year-old Finnish children in day care. Six skills in the stability, locomotor and manipulative domains were assessed in 53 children (24 boys, 29 girls, normal anthropometry) with the APM-Inventory manual for assessing children's…

  3. Motor Cortical Networks for Skilled Movements Have Dynamic Properties That Are Related to Accurate Reaching

    PubMed Central

    Putrino, David F.; Chen, Zhe; Ghosh, Soumya; Brown, Emery N.

    2011-01-01

    Neurons in the Primary Motor Cortex (MI) are known to form functional ensembles with one another in order to produce voluntary movement. Neural network changes during skill learning are thought to be involved in improved fluency and accuracy of motor tasks. Unforced errors during skilled tasks provide an avenue to study network connections related to motor learning. In order to investigate network activity in MI, microwires were implanted in the MI of cats trained to perform a reaching task. Spike trains from eight groups of simultaneously recorded cells (95 neurons in total) were acquired. A point process generalized linear model (GLM) was developed to assess simultaneously recorded cells for functional connectivity during reaching attempts where unforced errors or no errors were made. Whilst the same groups of neurons were often functionally connected regardless of trial success, functional connectivity between neurons was significantly different at fine time scales when the outcome of task performance changed. Furthermore, connections were shown to be significantly more robust across multiple latencies during successful trials of task performance. The results of this study indicate that reach-related neurons in MI form dynamic spiking dependencies whose temporal features are highly sensitive to unforced movement errors. PMID:22007332

  4. Recontextualizing Dance Skills: Overcoming Impediments to Motor Learning and Expressivity in Ballet Dancers

    PubMed Central

    Karin, Janet

    2016-01-01

    The process of transmitting ballet’s complex technique to young dancers can interfere with the innate processes that give rise to efficient, expressive and harmonious movement. With the intention of identifying possible solutions, this article draws on research across the fields of neurology, psychology, motor learning, and education, and considers their relevance to ballet as an art form, a technique, and a training methodology. The integration of dancers’ technique and expressivity is a core theme throughout the paper. A brief outline of the historical development of ballet’s aesthetics and training methods leads into factors that influence dancers’ performance. An exploration of the role of the neuromotor system in motor learning and the acquisition of expert skills reveals the roles of sensory awareness, imagery, and intention in cuing efficient, expressive movement. It also indicates potentially detrimental effects of conscious muscle control, explicit learning and persistent naïve beliefs. Finally, the paper presents a new theory regarding the acquisition of ballet skills. Recontextualization theory proposes that placing a problematic task within a new context may engender a new conceptual approach and/or sensory intention, and hence the genesis of new motor programs; and that these new programs may lead to performance that is more efficient, more rewarding for the dancer, more pleasing aesthetically, and more expressive. From an anecdotal point of view, this theory appears to be supported by the progress of many dancers at various stages of their dancing lives. PMID:27047437

  5. Fine motor skills of the hands in Polish and Czech female senior citizens from different backgrounds.

    PubMed

    Skrzek, Anna; Přidalová, Miroslava; Sebastjan, Anna; Harásková, Dominika; Fugiel, Jaroslaw; Ignasiak, Zofia; Slawinska, Teresa; Rozek, Krystyna

    2015-08-01

    The aim of the present study was an in-depth analysis of fine motor skills of the hands in elderly women from different socio-cultural backgrounds. The research also included analysis of the associations of age with the variables assessing right- and left-hand motor skills and its effect on hand performance asymmetry. The study examined 486 women over the age of 60. The study measured dominant and non-dominant hand performance using the motor performance series test battery (aiming, line tracking, inserting pins, tapping) from the Vienna test system. The best results in the tests assessing coordinated hand movements were achieved by the group of elderly women attending a University of the Third Age in Poland. This may be the result of a larger variety of physical activity programs offered at this type of institution. However, due to the cross-sectional design of the study, additional research of a longitudinal nature needs to be performed using the same sample of individuals to draw any definitive conclusions. Additionally, a decrease in the differences between dominant and non-dominant hand function with age was observed. PMID:25520241

  6. Perceptual Estimates of Motor Skill Proficiency Are Constrained by the Stability of Coordination Patterns.

    PubMed

    Buchanan, John J

    2015-01-01

    This study demonstrated that motor skill proficiency ratings are constrained by the same order parameter dynamics that constrain action production and action perception processes. Participants produced rhythmic actions simulated by an animated stick figure of the human arm. The primary finding was that participants' proficiency ratings covaried most with relative phase (φ) variability compared to mean relative phase. In-phase (φ = 0°) was produced with the least variability and received the highest proficiency rating, whereas the patterns φ = ±150° were attempted with the most variability and received the lowest proficiency ratings. A temporal delay in attempting to produce the animated pattern had a large impact on produced relative phase, yet had little impact on the proficiency ratings. Proprioceptive processes provide individuals information on motor skill proficiency. The lead or lag motion of the hand to forearm segment of the animated arm was identified consistently through visual processes and revealed asymmetries in the mapping of visual input to motor output. The results are consistent with concepts from the dynamic pattern theory of coordination and are discussed with regard to relative phase as an informational variable that constraints the perception-action system across many levels. PMID:25763507

  7. Recontextualizing Dance Skills: Overcoming Impediments to Motor Learning and Expressivity in Ballet Dancers.

    PubMed

    Karin, Janet

    2016-01-01

    The process of transmitting ballet's complex technique to young dancers can interfere with the innate processes that give rise to efficient, expressive and harmonious movement. With the intention of identifying possible solutions, this article draws on research across the fields of neurology, psychology, motor learning, and education, and considers their relevance to ballet as an art form, a technique, and a training methodology. The integration of dancers' technique and expressivity is a core theme throughout the paper. A brief outline of the historical development of ballet's aesthetics and training methods leads into factors that influence dancers' performance. An exploration of the role of the neuromotor system in motor learning and the acquisition of expert skills reveals the roles of sensory awareness, imagery, and intention in cuing efficient, expressive movement. It also indicates potentially detrimental effects of conscious muscle control, explicit learning and persistent naïve beliefs. Finally, the paper presents a new theory regarding the acquisition of ballet skills. Recontextualization theory proposes that placing a problematic task within a new context may engender a new conceptual approach and/or sensory intention, and hence the genesis of new motor programs; and that these new programs may lead to performance that is more efficient, more rewarding for the dancer, more pleasing aesthetically, and more expressive. From an anecdotal point of view, this theory appears to be supported by the progress of many dancers at various stages of their dancing lives. PMID:27047437

  8. Effect of practice on performance of a skilled motor task in patients with Parkinson's disease.

    PubMed

    Soliveri, P; Brown, R G; Jahanshahi, M; Marsden, C D

    1992-06-01

    Parkinson's disease leads to a breakdown in the execution of highly practised, skilled movements such as walking and handwriting. The improved execution of skilled movements with practice can be understood as a process of schema learning, the determining of the relevant parameters of the specific movement. The ability of patients with Parkinson's disease and age matched normal control subjects to improve their performance, with practice, on a skilled motor task, doing up buttons, was assessed. The task was assessed on its own and with simultaneous foot tapping. Both groups showed an initial improvement in the task on its own and deterioration in performance when buttoning with foot tapping. The amount of interference, however, decreased with practice, particularly in the patients with a 2 Hz tapping rate. The results suggest that patients with Parkinson's disease are capable of schema learning but require more practice than control subjects to achieve comparable levels of performance. This may be a reflection of the fundamental motor dysfunction of the disease rather than a specific learning deficit. PMID:1619411

  9. Auditory-motor entrainment and phonological skills: precise auditory timing hypothesis (PATH).

    PubMed

    Tierney, Adam; Kraus, Nina

    2014-01-01

    Phonological skills are enhanced by music training, but the mechanisms enabling this cross-domain enhancement remain unknown. To explain this cross-domain transfer, we propose a precise auditory timing hypothesis (PATH) whereby entrainment practice is the core mechanism underlying enhanced phonological abilities in musicians. Both rhythmic synchronization and language skills such as consonant discrimination, detection of word and phrase boundaries, and conversational turn-taking rely on the perception of extremely fine-grained timing details in sound. Auditory-motor timing is an acoustic feature which meets all five of the pre-conditions necessary for cross-domain enhancement to occur (Patel, 2011, 2012, 2014). There is overlap between the neural networks that process timing in the context of both music and language. Entrainment to music demands more precise timing sensitivity than does language processing. Moreover, auditory-motor timing integration captures the emotion of the trainee, is repeatedly practiced, and demands focused attention. The PATH predicts that musical training emphasizing entrainment will be particularly effective in enhancing phonological skills. PMID:25505879

  10. Auditory-motor entrainment and phonological skills: precise auditory timing hypothesis (PATH)

    PubMed Central

    Tierney, Adam; Kraus, Nina

    2014-01-01

    Phonological skills are enhanced by music training, but the mechanisms enabling this cross-domain enhancement remain unknown. To explain this cross-domain transfer, we propose a precise auditory timing hypothesis (PATH) whereby entrainment practice is the core mechanism underlying enhanced phonological abilities in musicians. Both rhythmic synchronization and language skills such as consonant discrimination, detection of word and phrase boundaries, and conversational turn-taking rely on the perception of extremely fine-grained timing details in sound. Auditory-motor timing is an acoustic feature which meets all five of the pre-conditions necessary for cross-domain enhancement to occur (Patel, 2011, 2012, 2014). There is overlap between the neural networks that process timing in the context of both music and language. Entrainment to music demands more precise timing sensitivity than does language processing. Moreover, auditory-motor timing integration captures the emotion of the trainee, is repeatedly practiced, and demands focused attention. The PATH predicts that musical training emphasizing entrainment will be particularly effective in enhancing phonological skills. PMID:25505879

  11. Implicit Guidance to Stable Performance in a Rhythmic Perceptual-Motor Skill

    PubMed Central

    Huber, Meghan E.; Sternad, Dagmar

    2015-01-01

    Feedback information about error or reward is regarded essential to aid learners to acquire a perceptual-motor skill. Yet, simple error feedback does not suffice in guiding the learner towards the optimal solutions, when tasks have redundancy where the mapping between execution and performance outcome is unknown. The present study developed and tested a new means of implicitly guiding learners to acquire a perceptual-motor skill, rhythmically bouncing a ball on a racket. Due to its rhythmic nature, this task affords dynamically stable solutions that are resistant to small errors and noise, a strategy that is independent from simply reducing error. Based on the task model implemented in a virtual environment, a state-dependent manipulation was designed that shifted the range of ball-racket contacts that achieved to dynamically stable solutions. In two experiments, subjects practiced with this manipulation that guided them to impact the ball with more negative racket accelerations, the indicator for the strategy with dynamic stability. Subjects who practiced under normal conditions took longer time to acquire this skill, although error measures were identical between the control and experimental groups. Unlike in many other haptic guidance or adaptation studies, the experimental groups not only learned but also maintained the stable solution after the manipulation was removed. These results are a first demonstration that more subtle ways to guide the learner to better performance are needed to assist performance improvements, especially in tasks with redundancy, where error feedback may not be sufficient. PMID:25821180

  12. Pollen foraging: learning a complex motor skill by bumblebees (Bombus terrestris)

    NASA Astrophysics Data System (ADS)

    Raine, Nigel E.; Chittka, Lars

    2007-06-01

    To investigate how bumblebees (Bombus terrestris) learn the complex motor skills involved in pollen foraging, we observed naïve workers foraging on arrays of nectarless poppy flowers (Papaver rhoeas) in a greenhouse. Foraging skills were quantified by measuring the pollen load collected during each foraging bout and relating this to the number of flowers visited and bout duration on two consecutive days. The pollen standing crop (PSC) in each flower decreased drastically from 0530 to 0900 hours. Therefore, we related foraging performance to the changing levels of pollen available (per flower) and found that collection rate increased over the course of four consecutive foraging bouts (comprising between 277 and 354 individual flower visits), suggesting that learning to forage for pollen represents a substantial time investment for individual foragers. The pollen collection rate and size of pollen loads collected at the start of day 2 were markedly lower than at the end of day 1, suggesting that components of pollen foraging behaviour could be subject to imperfect overnight retention. Our results suggest that learning the necessary motor skills to collect pollen effectively from morphologically simple flowers takes three times as many visits as learning how to handle the most morphologically complex flowers to extract nectar, potentially explaining why bees are more specialised in their choice of pollen flowers.

  13. THE VIEWING OF ONESELF PERFORMING SELECTED MOTOR SKILLS IN MOTION PICTURES AND ITS EFFECT UPON THE EXPRESSED CONCEPT OF SELF IN MOVEMENT.

    ERIC Educational Resources Information Center

    CLIFTON, MARGUERITE A.; SMITH, HOPE M.

    A STUDY WAS CONDUCTED TO DETERMINE IF ONE'S EXPRESSED CONCEPT OF HIS PERFORMANCE OF CERTAIN SELECTED MOTOR SKILLS IS CHANGED THROUGH THE PROCESS OF VIEWING MOTION PICTURES OF HIMSELF PERFORMING THESE SAME SKILLS. SIXTY-FIVE COLLEGE STUDENTS 17 TO 21 YEARS OF AGE, PARTICIPATED. EACH SUBJECT PERFORMED FIVE MOTOR SKILLS IN SEQUENCE (1) WALKED 30 FEET…

  14. Functional competence of community-dwelling persons with multiple sclerosis using the assessment of motor and process skills.

    PubMed

    Doble, S E; Fisk, J D; Fisher, A G; Ritvo, P G; Murray, T J

    1994-08-01

    The Assessment of Motor and Process Skills (AMPS) is an observational measure of functional competence in instrumental activities of daily living (IADL) that was designed to overcome the limitations of self reports and proxy reports. The AMPS allows simultaneous evaluation of the underlying motor and process (organizational/adaptive) skills necessary for competent task performance. We examined the IADL performance of 22 community-dwelling patients with mild to moderate MS in comparison to nondisabled subjects matched for age and gender. Functional competence of the MS subjects, as measured by the AMPS, was poorer than that of the control group. Many MS subjects who would not have been expected to have IADL difficulties on the basis of ratings of neurologic impairment were impaired in their IADL performance. For some patients, IADL impairment reflected deficits in their motor and process skills, whereas for others, process skill impairments alone were responsible for deficient task performance. PMID:8053789

  15. Engaging Environments Enhance Motor Skill Learning in a Computer Gaming Task.

    PubMed

    Lohse, Keith R; Boyd, Lara A; Hodges, Nicola J

    2016-01-01

    Engagement during practice can motivate a learner to practice more, hence having indirect effects on learning through increased practice. However, it is not known whether engagement can also have a direct effect on learning when the amount of practice is held constant. To address this question, 40 participants played a video game that contained an embedded repeated sequence component, under either highly engaging conditions (the game group) or mechanically identical but less engaging conditions (the sterile group). The game environment facilitated retention over a 1-week interval. Specifically, the game group improved in both speed and accuracy for random and repeated trials, suggesting a general motor-related improvement, rather than a specific influence of engagement on implicit sequence learning. These data provide initial evidence that increased engagement during practice has a direct effect on generalized learning, improving retention and transfer of a complex motor skill. PMID:26296097

  16. Acute lower motor neuron syndrome and spinal cord gray matter hyperintensities in HIV infection

    PubMed Central

    Wilson, Michael R.; Chad, David A.; Venna, Nagagopal

    2015-01-01

    Objective: To describe a novel manifestation of lower motor neuron disease in patients with well-controlled HIV infection. Methods: A retrospective study was performed to identify HIV-positive individuals with acute, painful lower motor neuron diseases. Results: Six patients were identified with HIV and lower motor neuron disease. Two patients met the inclusion criteria of well-controlled, chronic HIV infection and an acute, painful, unilateral lower motor neuron paralytic syndrome affecting the distal portion of the upper limb. These patients had segmental T2-hyperintense lesions in the central gray matter of the cervical spinal cord on MRI. One patient stabilized and the second patient improved with immunomodulatory therapy. Conclusions: This newly described syndrome expands the clinical spectrum of lower motor neuron diseases in HIV. PMID:26015990

  17. Systems in Development: Motor Skill Acquisition Facilitates 3D Object Completion

    PubMed Central

    Soska, Kasey C.; Adolph, Karen E.; Johnson, Scott P.

    2009-01-01

    How do infants learn to perceive the backs of objects that they see only from a limited viewpoint? Infants’ 3D object completion abilities emerge in conjunction with developing motor skills—independent sitting and visual-manual exploration. Twenty-eight 4.5- to 7.5-month-old infants were habituated to a limited-view object and tested with volumetrically complete and incomplete (hollow) versions of the same object. Parents reported infants’ sitting experience, and infants’ visual-manual exploration of objects was observed in a structured play session. Infants’ self-sitting experience and visual-manual exploratory skills predicted looking to the novel, incomplete object on the habituation task. Further analyses revealed that self-sitting facilitated infants’ visual inspection of objects while they manipulated them. The results are framed within a developmental systems approach, wherein infants’ sitting skill, multimodal object exploration, and object knowledge are linked in developmental time. PMID:20053012

  18. Granulocyte macrophage colony-stimulating factor treatment results in recovery of motor function after white matter damage in mice.

    PubMed

    Theoret, Jennifer K; Jadavji, Nafisa M; Zhang, Min; Smith, Patrice D

    2016-01-01

    Clinical stroke usually results from a cerebral ischaemic event, and is frequently a debilitating condition with limited treatment options. A significant proportion of clinical strokes result from specific damage to the subcortical white matter (SWM), but currently there are few animal models available to investigate the pathogenesis and potential therapeutic strategies to promote recovery. Granulocyte macrophage colony-stimulating factor (GM-CSF) is a cytokine that has been previously shown to promote neuroprotective effects after brain damage; however, the mechanisms mediating this effect are not known. Here, it is reported that GM-CSF treatment results in dramatic functional improvement in a white matter model of stroke in mice. SWM stroke was induced in mice by unilateral injections of the vasoconstrictor, endothelin-1 (ET-1). The results reveal that ET-1-induced stroke impairs skilled motor function on the single pellet-reaching task and results in forelimb asymmetry, in adult mice. Treatment with GM-CSF, after stroke, restores motor function and abolishes forelimb asymmetry. The results also indicate that GM-CSF promotes its effects by activating mammalian target of rapamycin signalling mechanisms in the brain following stroke injury. Additionally, a significant increase in GM-CSF receptor expression was found in the ipsilateral hemisphere of the ET-1-injected brain. Taken together, the present study highlights the use of an under-utilized mouse model of stroke (using ET-1) and suggests that GM-CSF treatment can attenuate ET-1-induced functional deficits. PMID:26474338

  19. Rapid Responsiveness to Practice Predicts Longer-Term Retention of Upper Extremity Motor Skill in Non-Demented Older Adults

    PubMed Central

    Schaefer, Sydney Y.; Duff, Kevin

    2015-01-01

    Skill acquisition is a form of motor learning that may provide key insights into the aging brain. Although previous work suggests that older adults learn novel motor tasks slower and to a lesser extent than younger adults, we have recently demonstrated no significant effect of chronological age on the rates and amounts of skill acquisition, nor on its long-term retention, in adults over the age of 65. To better understand predictors of skill acquisition in non-demented older adults, we now explore the relationship between early improvements in motor performance due to practice (i.e., rapid responsiveness) and longer-term retention of an upper extremity motor skill, and whether the extent of rapid responsiveness was associated with global cognitive status. Results showed significant improvements in motor performance within the first five (of 150) trials, and that this “rapid responsiveness” was predictive of skill retention 1 month later. Notably, the extent of rapid responsiveness was not dependent on global cognitive status, as measured by the Montreal Cognitive Assessment (MoCA). Thus, rapid responsiveness appears to be an important variable in longer-term neurorehabilitative efforts with older adults, regardless of their cognitive status. PMID:26635601

  20. Impaired motor skills on static and mobile beams in lurcher mutant mice.

    PubMed

    Le Marec, N; Caston, J; Lalonde, R

    1997-08-01

    The cerebellum plays a role in various sensorimotor learning tasks. The purpose of the present studies was to evaluate sensorimotor skills in a spontaneous mouse mutant with cerebellar cortical atrophy. Lurcher mutant mice, characterized by massive losses of cerebellar granule cells and Purkinje cells, were assessed on two static beams varying in width and on an accelerating rotorod. On the static beams, lurcher mutants were deficient in stable positioning while immobile. Contrary to normal mice, they retreated backwards involuntarily and clung off-balance to the side of the beams. However, lurcher mutants were not deficient in segment crossings, body turns, latencies before crossing the first segment, and time spent in motion. There was an improvement over days in static stable positioning on both beams. On the rotorod, although lurcher mutants fell sooner and were inferior to controls in maximal speed of rotation achieved, there was an improvement on both measures across days. Moreover, retention of this motor skill was normal. These results indicate that, although lurcher mutants are limited in their capacity to execute motor coordination tasks, postural sensorimotor learning is not abolished in the absence of cerebellar cortical output neurons. PMID:9305822

  1. Implicit guidance to stable performance in a rhythmic perceptual-motor skill.

    PubMed

    Huber, Meghan E; Sternad, Dagmar

    2015-06-01

    Feedback about error or reward is regarded essential for aiding learners to acquire a perceptual-motor skill. Yet, when a task has redundancy and the mapping between execution and performance outcome is unknown, simple error feedback does not suffice in guiding the learner toward the optimal solutions. The present study developed and tested a new means of implicitly guiding learners to acquire a perceptual-motor skill, rhythmically bouncing a ball on a racket. Due to its rhythmic nature, this task affords dynamically stable solutions that are robust to small errors and noise, a strategy that is independent from actively correcting error. Based on the task model implemented in a virtual environment, a time-shift manipulation was designed to shift the range of ball-racket contacts that achieved dynamically stable solutions. In two experiments, subjects practiced with this manipulation that guided them to impact the ball with more negative racket accelerations, the indicator for the strategy with dynamic stability. Subjects who practiced under normal conditions took longer time to acquire this strategy, although error measures were identical between the control and experimental groups. Unlike in many other haptic guidance or adaptation studies, the experimental groups not only learned, but also maintained the stable solution after the manipulation was removed. These results are a first demonstration that more subtle ways to guide the learner to better performance are needed especially in tasks with redundancy, where error feedback may not be sufficient. PMID:25821180

  2. Neonatal White Matter Abnormality Predicts Childhood Motor Impairment in Very Preterm Children

    ERIC Educational Resources Information Center

    Spittle, Alicia J.; Cheong, Jeanie; Doyle, Lex W.; Roberts, Gehan; Lee, Katherine J.; Lim, Jeremy; Hunt, Rod W.; Inder, Terrie E.; Anderson, Peter J.

    2011-01-01

    Aim: Children born very preterm are at risk for impaired motor performance ranging from cerebral palsy (CP) to milder abnormalities, such as developmental coordination disorder. White matter abnormalities (WMA) at term have been associated with CP in very preterm children; however, little is known about the impact of WMA on the range of motor…

  3. Aging, Motor Skill, and the Energy Cost of Walking: Implications for the Prevention and Treatment of Mobility Decline in Older Persons

    PubMed Central

    Studenski, Stephanie A.

    2014-01-01

    Background. Age-associated neural changes profoundly affect the biomechanics and energetics of walking, increase energy cost, and require novel approaches to exercise that focus on motor learning theory. Methods. We present a conceptual framework for motor skill in walking, its effect on the energy cost of walking, and the influence of the aging brain. Results. Motor learning theory and practice can be incorporated into interventions to promote skilled, energy efficient walking in older people. Conclusions. An extensive literature on motor skill and motor learning, derived from neuroscience, sports medicine, and neurorehabilitation, can be applied to problems of walking in late life. PMID:25182600

  4. Learner-Controlled Self-Observation is Advantageous for Motor Skill Acquisition

    PubMed Central

    Ste-Marie, Diane M.; Vertes, Kelly A.; Law, Barbi; Rymal, Amanda M.

    2013-01-01

    There were two main objectives of this research. First, we wanted to examine whether video feedback of the self (self-observation) was more effective for motor skill learning when the choice to view the video was provided to the learner (learner-controlled, LC) as opposed to an experimenter-controlled (EC) delivery. Secondly, we explored whether there were differences in the self-regulatory processes of self-efficacy and intrinsic motivation, as well as perceived choice between the LC and EC conditions. Two groups (LC and EC) of children (M age of 11.2 years; SD = 1.89) attempted to learn a progression of trampoline skills during a 2-day acquisition phase in which video self-observation was available. The second acquisition day was followed by a no self-observation retention test 1 day later. It was hypothesized that, during retention, the LC group would be more self-efficacious about their ability to progress through the trampoline skills, show greater intrinsic motivation and perceived choice, and go further in skill progression than the EC group. Analysis of the acquisition data showed the LC group had greater increases in self-efficacy as compared to the EC group. Results of the retention test showed that the participants in the LC group obtained higher scores on the intrinsic motivation and perceived choice measures and had higher skill progression scores as compared to the EC group. Regression analysis showed that group assignment and self-efficacy were significant predictors of the physical performance benefits noted in retention. These findings are discussed within Zimmerman’s (2004) self-regulation of learning model. PMID:23355826

  5. Grounding Early Intervention: Physical Therapy Cannot Just Be About Motor Skills Anymore

    PubMed Central

    Harbourne, Regina T.; Dusing, Stacey C.; McCoy, Sarah Westcott

    2013-01-01

    This perspective article provides support for 4 interrelated tenets: grounded perceptual-motor experience within cultural and social contexts forms cognition; exploration through early behaviors, such as object interaction, sitting, and locomotion, broadly facilitates development; infants and children with limited exploration are at risk for global developmental impairments; and early interventions targeting exploratory behaviors may be feasible and effective at advancing a range of abilities across developmental domains and time. These tenets emphasize that through the promotion of early perceptual-motor behaviors, broader, more global developmental advancements can be facilitated and future delays can be minimized across domains for infants and children with special needs. Researchers, educators, and clinicians should build on these tenets to further demonstrate the effectiveness of targeted early interventions. The goals of these interventions should be not only to advance targeted perceptual-motor skills in the moment but also to more broadly advance future abilities and meet the early intervention goal of maximizing children's learning potential. PMID:23001524

  6. Different Faces of Variability in the Adaptive Process of Motor Skill Learning.

    PubMed

    Corrêa, Umberto Cesar; Benda, Rodolfo Novelino; de Oliveira, Dalton Lustosa; Ugrinowitsch, Herbert; Freudenheim, Andrea Michele; Tani, Go

    2015-10-01

    This study investigated the variability by considering an action programme as hierarchically organized, which reconciles invariant and variant features of motor skills at the macro- and microstructural level of analysis. It was assumed that invariant aspects of skilled actions express the macrostructure and therefore measures of sequencing, relative size, relative timing, relative force and relative pause time. The microstructure was related to the variant aspects so that total size, total movement time, total force, and total pause time were selected as its measures. These propositions were tested in an experimental design comprised by three learning phases: a stabilisation phase that entailed a given number of trials to achieve the functional stabilization on a graphic task, followed by transfer and retention phases. In the transfer phase, the graphic task was modified to yield different demands upon skill reorganization. Two such modifications demanded parametric changes (i.e. microstructure changes), in which graphic size and drawing speed were altered. Another modification demanded structural alterations (i.e. macrostructure change), in which drawing was changed. Overall, results supported the main predictions by showing that parametric changes in the task affected the microstructure, but did not affect the macrostructure consistently. Furthermore, a structural change affected both macro- and microstructure. PMID:26375936

  7. Fundamental motor skill, physical activity, and sedentary behavior in socioeconomically disadvantaged kindergarteners.

    PubMed

    Gu, Xiangli

    2016-10-01

    Guided by Stodden et al's conceptual model, the main purpose of the study was to examine the relation between fundamental motor skills (FMS; locomotor and objective control skills), different intensity levels of physical activity (light PA [LPA], moderate-to-vigorous PA [MVPA], and vigorous PA[VPA]), and sedentary behavior (SB) in socioeconomically disadvantaged kindergarteners. A prospective design was used in this study and the data were collected across the 2013-2014 academic school year. Participants were 256 (129 boys; 127 girls; Mage = 5.37, SD = 0.48) kindergarteners recruited from three public schools in the southern United States. Results found that FMS were significantly related to LPA, MVPA, VPA, and SB. Regression analyses indicate that locomotor skills explained significant variance for LPA (6.4%; p < .01), MVPA (7.9%; p < .001), and VPA (5.3%; p < .01) after controlling for weight status. Mediational analysis supports the significant indirect effect of MVPA on the relation between FMS and SB (95% CI: [-0.019, -0.006]). Adequate FMS development during early childhood may result in participating in more varied physical activities, thus leading to lower risk of obesity-related behaviors. PMID:26691744

  8. Motor Skills and Exercise Capacity Are Associated with Objective Measures of Cognitive Functions and Academic Performance in Preadolescent Children

    PubMed Central

    Thomas, Richard; Larsen, Malte Nejst; Dahn, Ida Marie; Andersen, Josefine Needham; Krause-Jensen, Matilde; Korup, Vibeke; Nielsen, Claus Malta; Wienecke, Jacob; Ritz, Christian; Krustrup, Peter; Lundbye-Jensen, Jesper

    2016-01-01

    Objective To investigate associations between motor skills, exercise capacity and cognitive functions, and evaluate how they correlate to academic performance in mathematics and reading comprehension using standardised, objective tests. Methods This cross-sectional study included 423 Danish children (age: 9.29±0.35 years, 209 girls). Fine and gross motor skills were evaluated in a visuomotor accuracy-tracking task, and a whole-body coordination task, respectively. Exercise capacity was estimated from the Yo-Yo intermittent recovery level 1 children's test (YYIR1C). Selected tests from the Cambridge Neuropsychological Test Automated Battery (CANTAB) were used to assess different domains of cognitive functions, including sustained attention, spatial working memory, episodic and semantic memory, and processing speed. Linear mixed-effects models were used to investigate associations between these measures and the relationship with standard tests of academic performance in mathematics and reading comprehension. Results Both fine and gross motor skills were associated with better performance in all five tested cognitive domains (all P<0.001), whereas exercise capacity was only associated with better sustained attention (P<0.046) and spatial working memory (P<0.038). Fine and gross motor skills (all P<0.001), exercise capacity and cognitive functions such as working memory, episodic memory, sustained attention and processing speed were all associated with better performance in mathematics and reading comprehension. Conclusions The data demonstrate that fine and gross motor skills are positively correlated with several aspects of cognitive functions and with academic performance in both mathematics and reading comprehension. Moreover, exercise capacity was associated with academic performance and performance in some cognitive domains. Future interventions should investigate associations between changes in motor skills, exercise capacity, cognitive functions, and academic

  9. The effects of practice and delay on motor skill learning and retention.

    PubMed

    Savion-Lemieux, Tal; Penhune, Virginia B

    2005-03-01

    The present study assessed the effects of amount of practice and length of delay on the learning and retention of a timed motor sequence task. Participants learned to reproduce ten-element visual sequences by tapping in synchrony with the stimulus. Participants were randomly assigned to a varied-practice condition or a varied-delay condition. In the varied-practice condition, participants received either one, three, or six blocks of practice followed by a fixed 4-week delayed-recall. In the varied-delay condition, participants received three blocks of practice followed by a varied delay of either 3 days, or 2, 4, or 8 weeks. Learning was assessed by changes in accuracy, response variance, and percent response asynchrony. Our results showed that amount of practice per se did not affect learning and retention of the task. Rather, distribution of practice over several days was the most important factor affecting learning and retention. We hypothesize that passage of time is essential for a maximum benefit of practice to be gained, as the time delay may allow for consolidation of learning, possibly reflecting plastic changes in motor cortical representations of the skill. With regards to delay, our findings suggest that explicit and motoric components of a motor sequence are likely to be learned and maintained in separate but interacting systems. First, only the longest delay group showed decrements in percent correct, indicating that longer lengths of delay might hinder retrieval of explicit aspects of the task. Second, all groups showed a decrement in percent response asynchrony, suggesting that synchronization may be a more difficult parameter to maintain because it relies heavily on sensorimotor integration. PMID:15551084

  10. Locomotor play drives motor skill acquisition at the expense of growth: A life history trade-off

    PubMed Central

    Berghänel, Andreas; Schülke, Oliver; Ostner, Julia

    2015-01-01

    The developmental costs and benefits of early locomotor play are a puzzling topic in biology, psychology, and health sciences. Evolutionary theory predicts that energy-intensive behavior such as play can only evolve if there are considerable benefits. Prominent theories propose that locomotor play is (i) low cost, using surplus energy remaining after growth and maintenance, and (ii) beneficial because it trains motor skills. However, both theories are largely untested. Studying wild Assamese macaques, we combined behavioral observations of locomotor play and motor skill acquisition with quantitative measures of natural food availability and individual growth rates measured noninvasively via photogrammetry. Our results show that investments in locomotor play were indeed beneficial by accelerating motor skill acquisition but carried sizable costs in terms of reduced growth. Even under moderate natural energy restriction, investment in locomotor play accounted for up to 50% of variance in growth, which strongly contradicts the current theory that locomotor play only uses surplus energy remaining after growth and maintenance. Male immatures played more, acquired motor skills faster, and grew less than female immatures, leading to persisting size differences until the age of female maturity. Hence, depending on skill requirements, investment in play can take ontogenetic priority over physical development unconstrained by costs of play with consequences for life history, which strongly highlights the ontogenetic and evolutionary importance of play. PMID:26601237

  11. Locomotor play drives motor skill acquisition at the expense of growth: A life history trade-off.

    PubMed

    Berghänel, Andreas; Schülke, Oliver; Ostner, Julia

    2015-08-01

    The developmental costs and benefits of early locomotor play are a puzzling topic in biology, psychology, and health sciences. Evolutionary theory predicts that energy-intensive behavior such as play can only evolve if there are considerable benefits. Prominent theories propose that locomotor play is (i) low cost, using surplus energy remaining after growth and maintenance, and (ii) beneficial because it trains motor skills. However, both theories are largely untested. Studying wild Assamese macaques, we combined behavioral observations of locomotor play and motor skill acquisition with quantitative measures of natural food availability and individual growth rates measured noninvasively via photogrammetry. Our results show that investments in locomotor play were indeed beneficial by accelerating motor skill acquisition but carried sizable costs in terms of reduced growth. Even under moderate natural energy restriction, investment in locomotor play accounted for up to 50% of variance in growth, which strongly contradicts the current theory that locomotor play only uses surplus energy remaining after growth and maintenance. Male immatures played more, acquired motor skills faster, and grew less than female immatures, leading to persisting size differences until the age of female maturity. Hence, depending on skill requirements, investment in play can take ontogenetic priority over physical development unconstrained by costs of play with consequences for life history, which strongly highlights the ontogenetic and evolutionary importance of play. PMID:26601237

  12. Developing Teaching Expertise Where It Matters: Radio-Assisted Practice as an Application of Skills Psychology.

    ERIC Educational Resources Information Center

    Tomlinson, Peter D.

    This paper introduces the concept of radio-assisted practice (RAP) and outlines the nature and initial findings of a British research project which is investigating the potential of RAP in preservice teacher education. The paper falls into three main parts. The first situates matters in terms of information-processing skill (IPS) psychology and…

  13. Pre-Service Geography Teachers' Confidence in Geographical Subject Matter Knowledge and Teaching Geographical Skills

    ERIC Educational Resources Information Center

    Harte, Wendy; Reitano, Paul

    2015-01-01

    This research tracked the confidence of 16 undergraduate and postgraduate pre-service geography teachers as they completed a single semester, senior phase geography curriculum course. The study focused specifically on the pre-service teachers' confidence in geographical subject matter knowledge and their confidence in teaching geographical skills.…

  14. Effects of exergaming on executive function and motor skills in children with autism spectrum disorder: a pilot study.

    PubMed

    Hilton, Claudia List; Cumpata, Kristina; Klohr, Cheryl; Gaetke, Shannon; Artner, Amanda; Johnson, Hailey; Dobbs, Sarah

    2014-01-01

    Executive function (EF) and motor deficits have consistently been documented in studies of people with autism spectrum disorders (ASD). We investigated the effects of a pilot 30-session Makoto arena training intervention, a light and sound speed-based exergame, on response speed, EF, and motor skills in school-aged children with ASD. Strong correlations were seen between certain EF and motor scores, suggesting a relationship between the two constructs. Participants increased their average reaction speed (effect size = 1.18). Significant improvement was seen in the EF areas of working memory and metacognition and the motor area of strength and agility. Findings suggest that use of exergaming, specifically the Makoto arena, has the potential to be a valuable addition to standard intervention for children with ASD who have motor and EF impairments. PMID:24367956

  15. Motor imagery-based skill acquisition disrupted following rTMS of the inferior parietal lobule.

    PubMed

    Kraeutner, Sarah N; Keeler, Laura T; Boe, Shaun G

    2016-02-01

    Motor imagery (MI), the mental rehearsal of motor tasks, has promise as a therapy in post-stroke rehabilitation. The potential effectiveness of MI is attributed to the facilitation of plasticity in numerous brain regions akin to those recruited for physical practice. It is suggested, however, that MI relies more heavily on regions commonly affected post-stroke, including left hemisphere parietal regions involved in visuospatial processes. However, the impact of parietal damage on MI-based skill acquisition that underlies rehabilitation remains unclear. Here, we examine the contribution of the left inferior parietal lobule (IPL) to MI using inhibitory transcranial magnetic stimulation (TMS) and an MI-based implicit sequence learning (ISL) paradigm. Participants (N = 27) completed the MI-based ISL paradigm after receiving continuous theta burst stimulation to the left IPL (TMS), or with the coil angled away from the scalp (sham). Reaction time differences (dRT) and effect sizes between implicit and random sequences assessed success of MI-based learning. Mean dRT for the sham group was 36.1 ± 28.2 ms (d = 0.71). Mean dRT in the TMS group was 7.7 ± 38.5 ms (d = 0.11). These results indicate that inhibition of the left IPL impaired MI-based learning. We conclude that the IPL and likely the visuospatial processes it mediates are critical for MI performance and thus MI-based skill acquisition or learning. Ultimately, these findings have implications for the use of MI in post-stroke rehabilitation. PMID:26487181

  16. Comparing Motor Skills in Autism Spectrum Individuals With and Without Speech Delay.

    PubMed

    Barbeau, Elise B; Meilleur, Andrée-Anne S; Zeffiro, Thomas A; Mottron, Laurent

    2015-12-01

    Movement atypicalities in speed, coordination, posture, and gait have been observed across the autism spectrum (AS) and atypicalities in coordination are more commonly observed in AS individuals without delayed speech (DSM-IV Asperger) than in those with atypical or delayed speech onset. However, few studies have provided quantitative data to support these mostly clinical observations. Here, we compared perceptual and motor performance between 30 typically developing and AS individuals (21 with speech delay and 18 without speech delay) to examine the associations between limb movement control and atypical speech development. Groups were matched for age, intelligence, and sex. The experimental design included: an inspection time task, which measures visual processing speed; the Purdue Pegboard, which measures finger dexterity, bimanual performance, and hand-eye coordination; the Annett Peg Moving Task, which measures unimanual goal-directed arm movement; and a simple reaction time task. We used analysis of covariance to investigate group differences in task performance and linear regression models to explore potential associations between intelligence, language skills, simple reaction time, and visually guided movement performance. AS participants without speech delay performed slower than typical participants in the Purdue Pegboard subtests. AS participants without speech delay showed poorer bimanual coordination than those with speech delay. Visual processing speed was slightly faster in both AS groups than in the typical group. Altogether, these results suggest that AS individuals with and without speech delay differ in visually guided and visually triggered behavior and show that early language skills are associated with slower movement in simple and complex motor tasks. PMID:25820662

  17. Team-Teaching in Physical Education for Promoting Coordinative Motor Skills in Children: The More You Invest the More You Get

    ERIC Educational Resources Information Center

    Bardaglio, Giulia; Marasso, Danilo; Magno, Francesca; Rabaglietti, Emanuela; Ciairano, Silvia

    2015-01-01

    Background: Standard physical education (PE) programs and the team-teaching methodology have rarely been evaluated to investigate their real efficacy in changing children's motor skills. Aims: The aims of this study are two-fold: The first aim is to evaluate the effectiveness of a PE program for improving coordinative motor skills in the team…

  18. The Relationships among Fundamental Motor Skills, Health-Related Physical Fitness, and Body Fatness in South Korean Adolescents with Mental Retardation

    ERIC Educational Resources Information Center

    Foley, John T.; Harvey, Stephen; Chun, Hae-Ja; Kim, So-Yeun

    2008-01-01

    The purpose of this study was to examine the following: (a) the relationships among the latent constructs of fundamental motor skills (FMS), health-related physical fitness (HRF), and observed body fatness in South Korean adolescents with mental retardation (MR); (b) the indirect effect of fundamental motor skills on body fatness when mediated by…

  19. Motor and Tactile-Perceptual Skill Differences between Individuals with High-Functioning Autism and Typically Developing Individuals Ages 5-21

    ERIC Educational Resources Information Center

    Abu-Dahab, Sana M. N.; Skidmore, Elizabeth R.; Holm, Margo B.; Rogers, Joan C.; Minshew, Nancy J.

    2013-01-01

    We examined motor and tactile-perceptual skills in individuals with high-functioning autism (IHFA) and matched typically developing individuals (TDI) ages 5-21 years. Grip strength, motor speed and coordination were impaired in IHFA compared to matched TDI, and the differences between groups varied with age. Although tactile-perceptual skills of…

  20. Effects of Increased Physical Activity on Motor Skills and Marks in Physical Education: An Intervention Study in School Years 1 through 9 in Sweden

    ERIC Educational Resources Information Center

    Ericsson, Ingegerd

    2011-01-01

    Background: Studies have shown that some children do not participate in sport or exercise because they did not establish early coordination and basic motor skills while at school. Basic motor skills form significant parts of the goals for students to achieve in the Swedish school subject Physical Education and Health (PEH). Aims: The aim was to…

  1. Associations among Selected Motor Skills and Health-Related Fitness: Indirect Evidence for Seefeldt's Proficiency Barrier in Young Adults?

    ERIC Educational Resources Information Center

    Stodden, David F.; True, Larissa K.; Langendorfer, Stephen J.; Gao, Zan

    2013-01-01

    Purpose: This exploratory study examined the notion of Seefeldt's (1980) hypothesized motor skill "proficiency barrier" related to composite levels of health-related physical fitness (HRF) in young adults. Method: A motor skill competence (MSC) index composed of maximum throwing and kicking speed and jumping distance in 187 young…

  2. Time series analysis of knowledge of results effects during motor skill acquisition.

    PubMed

    Blackwell, J R; Simmons, R W; Spray, J A

    1991-03-01

    Time series analysis was used to investigate the hypothesis that during acquisition of a motor skill, knowledge of results (KR) information is used to generate a stable internal referent about which response errors are randomly distributed. Sixteen subjects completed 50 acquisition trials of each of three movements whose spatial-temporal characteristics differed. Acquisition trials were either blocked, with each movement being presented in series, or randomized, with the presentation of movements occurring in random order. Analysis of movement time data indicated the contextual interference effect reported in previous studies was replicated in the present experiment. Time series analysis of the acquisition trial data revealed the majority of individual subject response patterns during blocked trials were best described by a model with a temporarily stationary, internal reference of the criterion and systematic, trial-to-trial variation of response errors. During random trial conditions, response patterns were usually best described by a "White-noise" model. This model predicts a permanently stationary, internal reference associated with randomly distributed response errors that are unaffected by KR information. These results are not consistent with previous work using time series analysis to describe motor behavior (Spray & Newell, 1986). PMID:2028084

  3. A test of motor skill-specific action embodiment in ice-hockey players.

    PubMed

    Ong, Nicole T; Lohse, Keith R; Chua, Romeo; Sinnett, Scott; Hodges, Nicola J

    2014-07-01

    To further our understanding of the role of the motor system in comprehending action-related sentences, we compared action experts (athletes) to visual experts (fans) and novices when responding with an action-specific effector (either hand or foot). These conditions allowed inferences about the degree and specificity of embodiment in language comprehension. Ice hockey players, fans and novices made speeded judgments regarding the congruence between an auditorily presented sentence and a subsequently presented picture. Picture stimuli consisted of either hockey or everyday items. Half of these pictures 'matched' the action implied in the preceding sentence. Further, the action in these images involved either primarily the hand or the foot. For everyday items, action-matched items were responded to faster than action-mismatched items. However, only the players and fans showed the action-match effect for hockey items. There were no consistent effector-stimuli compatibility effects, nor skill-based interactions with compatibility, suggesting that the action-match effect was not based on motor ability per se, but rather a construction of the action based on knowledge or visual experience with the hockey related sentences. PMID:24818535

  4. Preliminary evaluation of SensHand V1 in assessing motor skills performance in Parkinson disease.

    PubMed

    Cavallo, Filippo; Esposito, Dario; Rovini, Erika; Aquilano, Michela; Carrozza, Maria Chiara; Dario, Paolo; Maremmani, Carlo; Bongioanni, Paolo

    2013-06-01

    Nowadays, the increasing old population 65+ as well as the pace imposed by work activities lead to a high number of people that have particular injuries for limbs. In addition to persistent or temporary disabilities related to accidental injuries we must take into account that part of the population suffers from motor deficits of the hands due to stroke or diseases of various clinical nature. The most recurrent technological solutions to measure the rehabilitation or skill motor performance of the hand are glove-based devices, able to faithfully capture the movements of the hand and fingers. This paper presents a system for hand motion analysis based on 9-axis complete inertial modules and dedicated microcontroller which are fixed on fingers and forearm. The technological solution presented is able to track the patients' hand motions in real-time and then to send data through wireless communication reducing the clutter and the disadvantages of a glove equipped with sensors through a different technological structure. The device proposed has been tested in the study of Parkinson's disease. PMID:24187283

  5. Motor Skills Enhance Procedural Memory Formation and Protect against Age-Related Decline.

    PubMed

    Müller, Nils C J; Genzel, Lisa; Konrad, Boris N; Pawlowski, Marcel; Neville, David; Fernández, Guillén; Steiger, Axel; Dresler, Martin

    2016-01-01

    The ability to consolidate procedural memories declines with increasing age. Prior knowledge enhances learning and memory consolidation of novel but related information in various domains. Here, we present evidence that prior motor experience-in our case piano skills-increases procedural learning and has a protective effect against age-related decline for the consolidation of novel but related manual movements. In our main experiment, we tested 128 participants with a sequential finger-tapping motor task during two sessions 24 hours apart. We observed enhanced online learning speed and offline memory consolidation for piano players. Enhanced memory consolidation was driven by a strong effect in older participants, whereas younger participants did not benefit significantly from prior piano experience. In a follow up independent control experiment, this compensatory effect of piano experience was not visible after a brief offline period of 30 minutes, hence requiring an extended consolidation window potentially involving sleep. Through a further control experiment, we rejected the possibility that the decreased effect in younger participants was caused by training saturation. We discuss our results in the context of the neurobiological schema approach and suggest that prior experience has the potential to rescue memory consolidation from age-related cognitive decline. PMID:27333186

  6. Modulation of Training by Single-Session Transcranial Direct Current Stimulation to the Intact Motor Cortex Enhances Motor Skill Acquisition of the Paretic Hand

    PubMed Central

    Zimerman, Máximo; Heise, Kirstin F.; Hoppe, Julia; Cohen, Leonardo G.; Gerloff, Christian; Hummel, Friedhelm C.

    2016-01-01

    Background and Purpose Mechanisms of skill learning are paramount components for stroke recovery. Recent noninvasive brain stimulation studies demonstrated that decreasing activity in the contralesional motor cortex might be beneficial, providing transient functional improvements after stroke. The more crucial question, however, is whether this intervention can also enhance the acquisition of complex motor tasks, yielding longer-lasting functional improvements. In the present study, we tested the capacity of cathodal transcranial direct current stimulation (tDCS) applied over the contralesional motor cortex during training to enhance the acquisition and retention of complex sequential finger movements of the paretic hand. Method Twelve well-recovered chronic patients with subcortical stroke attended 2 training sessions during which either cathodal tDCS or a sham intervention were applied to the contralesional motor cortex in a double-blind, crossover design. Two different motor sequences, matched for their degree of complexity, were tested in a counterbalanced order during as well as 90 minutes and 24 hours after the intervention. Potential underlying mechanisms were evaluated with transcranial magnetic stimulation. Results tDCS facilitated the acquisition of a new motor skill compared with sham stimulation (P=0.04) yielding better task retention results. A significant correlation was observed between the tDCS-induced improvement during training and the tDCS-induced changes of intracortical inhibition (R2=0.63). Conclusions These results indicate that tDCS is a promising tool to improve not only motor behavior, but also procedural learning. They further underline the potential of noninvasive brain stimulation as an adjuvant treatment for long-term recovery, at least in patients with mild functional impairment after stroke. PMID:22618381

  7. The effect of surgery and intracerebral injections on motor skill learning in rats: results from a database analysis.

    PubMed

    Schubring-Giese, M; Luft, A R; Hosp, J A

    2016-10-15

    Male Long-Evans rats are often used to investigate neural mechanisms of learning in the motor system. Successful acquisition of a skilled motor task is influenced by various variables such as animal supplier and batch membership. In this retrospective analysis of our laboratory database, we investigate how head and brain surgery as well as intracerebral injections that were performed to address particular scientific questions affect motor learning. Overall, invasive interventions (n=90) slow the acquisition of a skilled-reaching task when compared to naïve animals (n=184; P=0.01). With respect to subgroups, this detrimental effect widely differs between particular procedures: whereas epidural implantations of thin-film electrode arrays and punctual injection through pre-implanted cannulas into primary motor cortex (M1) do not interfere with learning, skill acquisition is slowed after chronic infusion using osmotic minipumps into M1 and skill acquisition is lastingly impaired after bilateral cannula implantation within the dorsal striatum. In line with previous reports, breeder-specific differences could be observed in the analysis of the overall population. In summary, interventions may impair learning-behavior in an unpredictable fashion. Thus, a comparison of behavioral data to a naïve population is recommended to be aware of these drawbacks. PMID:27457136

  8. Training the Motor Aspects of Pre-Driving Skills of Young Adults with and without Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Brooks, Johnell; Kellett, Julie; Seeanner, Julia; Jenkins, Casey; Buchanan, Caroline; Kinsman, Anne; Kelly, Desmond; Pierce, Susan

    2016-01-01

    The purpose of this study was to investigate the utility of using a driving simulator to address the motor aspects of pre-driving skills with young adults with Autism Spectrum Disorder (ASD). A group of neurotypical control participants and ten participants with ASD completed 18 interactive steering and pedal exercises with the goal to achieve…

  9. Fine Motor Skills and Mathematics Achievement in East Asian American and European American Kindergartners and First Graders

    ERIC Educational Resources Information Center

    Luo, Zupei; Jose, Paul E.; Huntsinger, Carol S.; Pigott, Therese D.

    2007-01-01

    This study examined whether fine motor skills were related to the initial scores and growth rate of mathematics achievement in American kindergartners and first graders. Participants were 244 East Asian American and 9,816 European American children from the US-based Early Childhood Longitudinal Study (ECLS-K). To control sampling bias, two…

  10. Adolescents' School-Related Self-Concept Mediates Motor Skills and Psychosocial Well-Being

    ERIC Educational Resources Information Center

    Viholainen, Helena; Aro, Tuija; Purtsi, Jarno; Tolvanen, Asko; Cantell, Marja

    2014-01-01

    Background: The health benefits of exercise participation and physical activity for mental health and psychosocial well-being (PSWB) have been shown in several studies. However, one important background factor, that is, motor skills (MSs), has largely been ignored. In addition, most of the existing research focuses on poor MSs, that is, poor MSs…

  11. Pairing Learners by Companionship: Effects on Motor Skill Performance and Comfort Levels in the Reciprocal Style of Teaching

    ERIC Educational Resources Information Center

    Chatoupis, Constantine

    2015-01-01

    Mosston and Ashworth's (2008) reciprocal style of teaching gives learners the opportunity to work in pairs to support each other's learning (one practices a task and the other gives feedback). The effects of pairing learners by companionship (friend and nonacquaintance) on 8-year-old children's motor skill performance and comfort levels were…

  12. Effects of Electrical Stimulation, Exercise Training and Motor Skills Training on Strength of Children with Meningomyelocele: A Systematic Review

    ERIC Educational Resources Information Center

    Dagenais, Liese M.; Lahay, Erin R.; Stueck, Kailey A.; White, Erin; Williams, Lindsay; Harris, Susan R.

    2009-01-01

    This systematic review provides a critical synthesis of research regarding the effects of electrical stimulation, exercise training, and motor skills training on muscle strength in children with meningomyelocele. Nine databases were searched using terms related to meningomyelocele and physical therapy interventions. Of 298 potentially relevant…

  13. The Effect of Stereotype Threat on Performance of a Rhythmic Motor Skill

    PubMed Central

    Huber, Meghan E.; Seitchik, Allison E.; Brown, Adam J.; Sternad, Dagmar; Harkins, Stephen G.

    2015-01-01

    Many studies using cognitive tasks have found that stereotype threat, or concern about confirming a negative stereotype about one's group, debilitates performance. The few studies that documented similar effects on sensorimotor performance have used only relatively coarse measures to quantify performance. Three experiments tested the effect of stereotype threat on a rhythmic ball bouncing task, both at the novice and skilled level. Previous analysis of the task dynamics afforded more detailed quantification of the effect of threat on motor control. In this task, novices hit the ball with positive racket acceleration, indicative of unstable performance. With practice, they learn to stabilize error by changing their ball-racket impact from positive to negative acceleration. Results showed that for novices, stereotype threat potentiated hitting the ball with positive racket acceleration, leading to poorer performance of stigmatized females. However, when the threat manipulation was delivered after having acquired some skill, reflected by negative racket acceleration, the stigmatized females performed better. These findings are consistent with the mere effort account that argues that stereotype threat potentiates the most likely response on the given task. The study also demonstrates the value of identifying the control mechanisms through which stereotype threat has its effects on outcome measures. PMID:25706769

  14. The consolidation of a motor skill in young adults with ADHD: Shorter practice can be better.

    PubMed

    Fox, Orly; Karni, Avi; Adi-Japha, Esther

    2016-01-01

    Practice on a given sequence of movements can lead to robust procedural memory (skill). In young adults, in addition to gains in performance accrued during practice, speed and accuracy can further improve overnight; the latter, delayed, 'offline', gains are thought to emerge when procedural memory consolidation processes are completed. A recent study suggested that female college students with ADHD show an atypical procedural memory consolidation phase, specifically, gaining speed but losing accuracy, overnight. Here, to test if this accuracy loss reflected a cost of overlong training in adults with ADHD, we compared the performance of female college students with (N=16) and without (N=16) ADHD, both groups given a shorter training protocol (80 rather than the standard 160 task repetitions). Speed and accuracy were recorded before training, immediately after, and at 24-h and 2 weeks post-training. The shortened practice session resulted in as robust within-session gains and additional overnight gains in speed at no costs in accuracy, in both groups. Moreover, individuals with ADHD showed as robust speed gains and retention as in the longer training session, but the costs in accuracy incurred in the latter were eliminated. The shortening of practice sessions may benefit motor skill acquisition in ADHD. PMID:26826465

  15. Combining Diffusion Tensor Imaging and Gray Matter Volumetry to Investigate Motor Functioning in Chronic Stroke

    PubMed Central

    Yang, Ming; Yang, Ya-ru; Li, Hui-jun; Lu, Xue-song; Shi, Yong-mei; Liu, Bin; Chen, Hua-jun; Teng, Gao-jun; Chen, Rong; Herskovits, Edward H.

    2015-01-01

    Motor impairment after stroke is related to the integrity of the corticospinal tract (CST). However, considerable variability in motor impairment remains unexplained. To increase the accuracy in evaluating long-term motor function after ischemic stroke, we tested the hypothesis that combining diffusion tensor imaging (DTI) and gray matter (GM) volumetry can better characterize long-term motor deficit than either method alone in patients with chronic stroke. We recruited 31 patients whose Medical Research Council strength grade was ≤ 3/5 in the extensor muscles of the affected upper extremity in the acute phase. We used the Upper Extremity Fugl-Meyer (UE-FM) assessment to evaluate motor impairment, and as the primary outcome variable. We computed the fractional anisotropy ratio of the entire CST (CSTratio) and the volume of interest ratio (VOIratio), between ipsilesional and contralesional hemispheres, to explain long-term motor impairment. The results showed that CSTratio, VOIratio of motor-related brain regions, and VOIratio in the temporal lobe were correlated with UE-FM. A multiple regression model including CSTratio and VOIratio of the caudate nucleus explained 40.7% of the variability in UE-FM. The adjusted R2 of the regression model with CSTratio as an independent variable was 29.4%, and that of using VOIratio of the caudate nucleus as an independent variable was 23.1%. These results suggest that combining DTI and GM volumetry may achieve better explanation of long-term motor deficit in stroke patients, than using either measure individually. This finding may provide guidance in determining optimal neurorehabilitative interventions. PMID:25965398

  16. School-Based Fundamental-Motor-Skill Intervention for Children With Autism-Like Characteristics: An Exploratory Study.

    PubMed

    Bremer, Emily; Lloyd, Meghann

    2016-01-01

    The purpose of this pilot study was to demonstrate the impact of a fundamental-motor-skill (FMS) intervention on the motor skills of 3- to 7-year-old children with autism-like characteristics in an early intervention classroom. A secondary purpose was to qualitatively assess the impact of the program as described by the classroom's special education teacher. All children in the classroom (N = 5) took part in an FMS intervention for two 6-wk blocks (fall 2013 and winter 2014). Motor-skill proficiency and social skills were assessed at 3 times: baseline, after Block 1 of the intervention, and after Block 2 of the intervention. In addition, an interview was conducted with the classroom teacher after Assessment 3 to draw further insights into the relative success and impact of the program. Results were analyzed through a visual analysis and presented individually. They indicated improvements in the participants' individual FMS and social-skill scores, possible improvements in declarative knowledge, and an increase in the special education teacher's readiness to teach FMS; further research with larger, controlled samples is warranted. PMID:26785501

  17. Helping Young Children Develop Motor Skills in a Bilingual-Multicultural Environment. Bilingual/Bicultural Child Development Associate Pilot Project: Module VI.

    ERIC Educational Resources Information Center

    Coleman, Joyce H.

    This Child Development Associate (CDA) training module, the sixth in a series of 16, provides an introductory course in the development of motor skills in children. In the first two sections, the importance and characteristics of motor development are briefly discussed. Maturation factors and predictable patterns and stages in motor development…

  18. Predicting Motor Skills from Strengths and Difficulties Questionnaire Scores, Language Ability, and Other Features of New Zealand Children Entering Primary School

    ERIC Educational Resources Information Center

    Sargisson, Rebecca J.; Powell, Cheniel; Stanley, Peter; de Candole, Rosalind

    2014-01-01

    The motor and language skills, emotional and behavioural problems of 245 children were measured at school entry. Fine motor scores were significantly predicted by hyperactivity, phonetic awareness, prosocial behaviour, and the presence of medical problems. Gross motor scores were significantly predicted by the presence of medical problems. The…

  19. DEVELOPMENT OF A MICROSCALE EMISSION FACTOR MODEL FOR PARTICULATE MATTER (MICROFACPM) FOR PREDICTING REAL TIME MOTOR VEHICLE EMISSIONS

    EPA Science Inventory

    Health risk evaluation needs precise measurement and modeling of human exposures in microenvironments to support review of current air quality standards. The particulate matter emissions from motor vehicles are a major component of human exposures in urban microenvironments. Cu...

  20. Upper limb motor rehabilitation impacts white matter microstructure in multiple sclerosis.

    PubMed

    Bonzano, Laura; Tacchino, Andrea; Brichetto, Giampaolo; Roccatagliata, Luca; Dessypris, Adriano; Feraco, Paola; Lopes De Carvalho, Maria L; Battaglia, Mario A; Mancardi, Giovanni L; Bove, Marco

    2014-04-15

    Upper limb impairments can occur in patients with multiple sclerosis, affecting daily living activities; however there is at present no definite agreement on the best rehabilitation treatment strategy to pursue. Moreover, motor training has been shown to induce changes in white matter architecture in healthy subjects. This study aimed at evaluating the motor behavioral and white matter microstructural changes following a 2-month upper limb motor rehabilitation treatment based on task-oriented exercises in patients with multiple sclerosis. Thirty patients (18 females and 12 males; age=43.3 ± 8.7 years) in a stable phase of the disease presenting with mild or moderate upper limb sensorimotor deficits were randomized into two groups of 15 patients each. Both groups underwent twenty 1-hour treatment sessions, three times a week. The "treatment group" received an active motor rehabilitation treatment, based on voluntary exercises including task-oriented exercises, while the "control group" underwent passive mobilization of the shoulder, elbow, wrist and fingers. Before and after the rehabilitation protocols, motor performance was evaluated in all patients with standard tests. Additionally, finger motor performance accuracy was assessed by an engineered glove. In the same sessions, every patient underwent diffusion tensor imaging to obtain parametric maps of fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity. The mean value of each parameter was separately calculated within regions of interest including the fiber bundles connecting brain areas involved in voluntary movement control: the corpus callosum, the corticospinal tracts and the superior longitudinal fasciculi. The two rehabilitation protocols induced similar effects on unimanual motor performance, but the bimanual coordination task revealed that the residual coordination abilities were maintained in the treated patients while they significantly worsened in the control group (p=0

  1. Can Perceptuo-Motor Skills Assessment Outcomes in Young Table Tennis Players (7-11 years) Predict Future Competition Participation and Performance? An Observational Prospective Study.

    PubMed

    Faber, Irene R; Elferink-Gemser, Marije T; Faber, Niels R; Oosterveld, Frits G J; Nijhuis-Van der Sanden, Maria W G

    2016-01-01

    Forecasting future performance in youth table tennis players based on current performance is complex due to, among other things, differences between youth players in growth, development, maturity, context and table tennis experience. Talent development programmes might benefit from an assessment of underlying perceptuo-motor skills for table tennis, which is hypothesized to determine the players' potential concerning the perceptuo-motor domain. The Dutch perceptuo-motor skills assessment intends to measure the perceptuo-motor potential for table tennis in youth players by assessing the underlying skills crucial for developing technical and tactical qualities. Untrained perceptuo-motor tasks are used as these are suggested to represent a player's future potential better than specific sport skills themselves as the latter depend on exposure to the sport itself. This study evaluated the value of the perceptuo-motor skills assessment for a talent developmental programme by evaluating its predictive validity for competition participation and performance in 48 young table tennis players (7-11 years). Players were tested on their perceptuo-motor skills once during a regional talent day, and the subsequent competition results were recorded half-yearly over a period of 2.5 years. Logistic regression analysis showed that test scores did not predict future competition participation (p >0.05). Yet, the Generalized Estimating Equations analysis, including the test items 'aiming at target', 'throwing a ball', and 'eye-hand coordination' in the best fitting model, revealed that the outcomes of the perceptuo-motor skills assessment were significant predictors for future competition results (R2 = 51%). Since the test age influences the perceptuo-motor skills assessment's outcome, another multivariable model was proposed including test age as a covariate (R2 = 53%). This evaluation demonstrates promising prospects for the perceptuo-motor skills assessment to be included in a talent

  2. The effect of age, sex and obesity on fundamental motor skills among 4 to 6 years-old children

    PubMed Central

    Vameghi, Roshanak; Shams, Amir; Shamsipour Dehkordi, Parvane

    2013-01-01

    Objective: To examine the effect of age, sex and obesity on Fundamental Motor Skills (FMS) in 4 to 6 years-old children. Methodology: A total of 400 preschool children (200 boys and 200 girls) between the ages of 4 to 6 years old participated in this research. Subjects were selected through multi-stage cluster random sampling. Fundamental motor skills (FMS) were assessed with using the OSU-SIGMA scale. Body mass index (BMI) was directly measured from height(m)2/weight(kg) for each child and based on CDC growth charts, normal weight, overweight and obesity were defined. Results: The results showed that age and sex variables were a significant effect on walking and running skills, but BMI was not significant (P>0.05). Also, these variables had a significant effect on jumping, skipping, hopping and ladder climbing. In both ages, boys in jumping and ladder climbing skills were better than girls, but the girls were better in skipping and hopping skills (P<0.05). Moreover, the results showed that age and BMI variables have a significant effect on stair climbing skill, but sex was not significant (P>0.05). For object control skills, the results showed that age and sex variables were a significant effect on catching and throwing skills, but BMI was not significant (P>0.05). Finally, the age, sex and BMI variables were a significant effect on kicking and sticking skills. Conclusion: This research demonstrated that boys performed better than girls, and both overweight and obese children have lower performance than normal children. PMID:24353582

  3. The Effects of SPARK Physical Education Program on Fundamental Motor Skills in 4-6 Year-Old Children

    PubMed Central

    Mostafavi, Reza; Ziaee, Vahid; Akbari, Hakimeh; Haji-Hosseini, Samaneh

    2013-01-01

    Objective The purpose of this study was to investigate the effect of SPARK Physical Education (PE) program on fundamental motor skills in 4-6 year children. SPARK (Sports, Play, and Active Recreation for Kids) is an evidence based PE program designed in order to promote the lifelong wellbeing. Methods In total, 90 children aged 4 to 6 years were selected randomly. The children were allocated into 3 groups with separate PE programs: 1-SPARK, 2-Gymnastics and 3-Routine activity. Using the Test of Gross Motor Development (TGMD-2), a pretest was done in all groups. Afterwards, SPARK and Gym PE programs were performed for 8 weeks and 3 sessions each week. The third group used to do the routine physical education program in their daycare. After 8 weeks (24 sessions), the post tests were done for all groups with the same scoring system as the pretest. Findings The results showed that the SPARK program had a higher efficacy on the promotion of the fundamental motor skills comparing to the routine physical education programs or gymnastics PE group. Conclusion SPARK can be used as an appropriate alternative in order to promote the children's motor skills. PMID:23724186

  4. Individual Differences in Language Development: Relationship with Motor Skill at 21 Months

    ERIC Educational Resources Information Center

    Alcock, Katherine J.; Krawczyk, Kirsty

    2010-01-01

    Language development has long been associated with motor development, particularly manual gesture. We examined a variety of motor abilities--manual gesture including symbolic, meaningless and sequential memory, oral motor control, gross and fine motor control--in 129 children aged 21 months. Language abilities were assessed and cognitive and…

  5. Variable sequencing is actively maintained in a well learned motor skill.

    PubMed

    Warren, Timothy L; Charlesworth, Jonathan D; Tumer, Evren C; Brainard, Michael S

    2012-10-31

    Variation in sequencing of actions occurs in many natural behaviors, yet how such variation is maintained is poorly understood. We investigated maintenance of sequence variation in adult Bengalese finch song, a learned skill with rendition-to-rendition variation in the sequencing of discrete syllables (i.e., syllable "b" might transition to "c" with 70% probability and to "d" with 30% probability). We found that probabilities of transitions ordinarily remain stable but could be modified by delivering aversive noise bursts following one transition (e.g., "b→c") but not the alternative (e.g., "b→d"). Such differential reinforcement induced gradual, adaptive decreases in probabilities of targeted transitions and compensatory increases in alternative transitions. Thus, the normal stability of transition probabilities does not reflect hardwired premotor circuitry. While all variable transitions could be modified by differential reinforcement, some were less readily modified than others; these were cases that exhibited more alternation between possible transitions than predicted by chance (i.e., "b→d " would tend to follow "b→c " and vice versa). These history-dependent transitions were less modifiable than more stochastic transitions. Similarly, highly stereotyped transitions (which are completely predictable) were not modifiable. This suggests that stochastically generated variability is crucial for sequence modification. Finally, we found that, when reinforcement ceased, birds gradually restored transition probabilities to their baseline values. Hence, the nervous system retains a representation of baseline probabilities and has the impetus to restore them. Together, our results indicate that variable sequencing in a motor skill can reflect an end point of learning that is stably maintained via continual self-monitoring. PMID:23115179

  6. Neuroanatomical and cognitive correlates of adult age differences in acquisition of a perceptual-motor skill.

    PubMed

    Raz, N; Williamson, A; Gunning-Dixon, F; Head, D; Acker, J D

    2000-10-01

    The objective of this study was to examine age differences in procedural learning and performance in conjunction with differential aging of central nervous system (CNS) structures. Sixty-eight healthy volunteers (age 22-80) performed a pursuit rotor task (four blocks of 20 15-second trials each). Volumes of the cerebellar hemispheres, neostriatum, prefrontal cortex, and hippocampus were measured from Magnetic Resonance (MR) images. Improvement in pursuit rotor performance was indexed by increase in time on target (TOT). A general improvement trend was evident across the blocks of trials. Overall, younger participants showed significantly longer TOT. The rate of improvement was age-invariant during the initial stages of skill acquisition but became greater in middle-aged participants as the practice progressed. When the influences of regional brain volumes were taken into account, the direct age effect on mean TOT measured during the first day of practice disappeared. Instead, reduced volumes of the cerebellar hemispheres and the putamen and poorer performance on nonverbal working memory tasks predicted shorter TOT. In contrast, neither the volume of the caudate and the hippocampus, nor verbal working memory showed association with motor performance. Pursuit rotor performance at the later stages of practice was unrelated to the reduction in putamen volume and was affected directly by age, cerebellar volume, and nonverbal working memory proficiency. We conclude that in a healthy population showing no clinical signs of extrapyramidal disease, age-related declines in procedural learning are associated with reduced volume of the cerebellar hemispheres and lower nonverbal working memory scores. During initial stages of skill acquisition, reduced volume of the putamen is also predictive of poorer performance. PMID:11002356

  7. Cerebellar white matter pathways are associated with reading skills in children and adolescents

    PubMed Central

    Travis, Katherine E; Leitner, Yael; Feldman, Heidi M.; Ben-Shachar, Michal

    2015-01-01

    Reading is a critical life skill in the modern world. The neural basis of reading incorporates a distributed network of cortical areas and their white matter connections. The cerebellum has also been implicated in reading and reading disabilities. However, little is known about the contribution of cerebellar white matter pathways to major component skills of reading. We used diffusion magnetic resonance imaging (dMRI) with tractography to identify the cerebellar peduncles in a group of 9–17 year old children and adolescents born full term (n=19) or preterm (n=26). In this cohort, no significant differences were found between fractional anisotropy (FA) measures of the peduncles in the preterm and full term groups. FA of the cerebellar peduncles correlated significantly with measures of decoding and reading comprehension in the combined sample of full term and preterm subjects. Correlations were negative in the superior and inferior cerebellar peduncles and positive in the middle cerebellar peduncle. Additional analyses revealed that full term and preterm groups demonstrated similar patterns of reading associations within the left SCP, MCP and left ICP. Partial correlation analyses showed that distinct sub-skills of reading were associated with FA in segments of different cerebellar peduncles. Overall, the present findings are the first to document associations of microstructure of the cerebellar peduncles and the component skills of reading. PMID:25504986

  8. The effect of stereotype threat on performance of a rhythmic motor skill.

    PubMed

    Huber, Meghan E; Seitchik, Allison E; Brown, Adam J; Sternad, Dagmar; Harkins, Stephen G

    2015-04-01

    Many studies using cognitive tasks have found that stereotype threat, or concern about confirming a negative stereotype about one's group, debilitates performance. The few studies that documented similar effects on sensorimotor performance have used only relatively coarse measures to quantify performance. This study tested the effect of stereotype threat on a rhythmic ball bouncing task, where previous analyses of the task dynamics afforded more detailed quantification of the effect of threat on motor control. In this task, novices hit the ball with positive racket acceleration, indicative of unstable performance. With practice, they learn to stabilize error by changing their ball-racket impact from positive to negative acceleration. Results showed that for novices, stereotype threat potentiated hitting the ball with positive racket acceleration, leading to poorer performance of stigmatized females. However, when the threat manipulation was delivered after having acquired some skill, reflected by negative racket acceleration, the stigmatized females performed better. These findings are consistent with the mere effort account that argues that stereotype threat potentiates the most likely response on the given task. The study also demonstrates the value of identifying the control mechanisms through which stereotype threat has its effects on outcome measures. PMID:25706769

  9. Cognitive demands of error processing associated with preparation and execution of a motor skill.

    PubMed

    Lam, Wing Kai; Masters, Richard S W; Maxwell, Jonathan P

    2010-12-01

    Maxwell et al. [Maxwell, J. P., Masters, R. S. W., Kerr, E., & Weedon, E. (2001). The implicit benefit of learning without errors. The Quarterly Journal of Experimental Psychology, 54A, 1049-1068. The implicit benefit of learning without errors. The Quarterly Journal of Experimental Psychology, 54A, 1049-1068] suggested that, following unsuccessful movements, the learner forms hypotheses about the probable causes of the error and the required movement adjustments necessary for its elimination. Hypothesis testing is an explicit process that places demands on cognitive resources. Demands on cognitive resources can be identified by measuring probe reaction times (PRT) and movement times. Lengthened PRT and movement times reflects increased cognitive demands. Thus, PRT and movement times should be longer following errors, relative to successful, movements. This hypothesis was tested using a motor skill (golf putting). Furthermore, the association between error processing and the preparation and execution phases of movement was examined. The data confirmed that cognitive demand is greater for trials following an error, relative to trials without an error. This effect was apparent throughout learning and in both the preparatory and execution phases of the movement. Cognitive effort also appeared to be higher during movement preparation, relative to movement execution. PMID:21074112

  10. SENSITIVITY ANALYSIS AND EVALUATION OF MICROFACPM: A MICROSCALE MOTOR VEHICLE EMISSION FACTOR MODEL FOR PARTICULATE MATTER EMISSIONS

    EPA Science Inventory

    A microscale emission factor model (MicroFacPM) for predicting real-time site-specific motor vehicle particulate matter emissions was presented in the companion paper entitled "Development of a Microscale Emission Factor Model for Particulate Matter (MicroFacPM) for Predicting Re...

  11. Motor fMRI and cortical grey matter volume in adults born very preterm

    PubMed Central

    Lawrence, E.J.; Froudist-Walsh, S.; Neilan, R.; Nam, K.W.; Giampietro, V.; McGuire, P.; Murray, R.M.; Nosarti, C.

    2014-01-01

    The primary aim of this study was to investigate the functional neuroanatomy of motor planning, initiation and execution in a cohort of young adults (mean age 20 years) who were born very preterm (VPT; <33 weeks of gestation), as these individuals are at increased risk of experiencing neuromotor difficulties compared to controls. A cued motor task was presented to 20 right-handed VPT individuals and 20 controls within a functional magnetic resonance imaging (fMRI) paradigm. Whole-brain grey matter volume was also quantified and associations with functional data were examined. Despite comparable task performance, fMRI results showed that the VPT group displayed greater brain activation compared to controls in a region comprising the right cerebellum and the lingual, parahippocampal and middle temporal gyri. The VPT group also displayed decreased grey matter volume in the right superior frontal/premotor cortex and left middle temporal gyri. Grey matter volume in the premotor and middle temporal clusters was significantly negatively correlated with BOLD activation in the cerebellum. Overall, these data suggest that preterm birth is associated with functional neuronal differences that persist into adulthood, which are likely to reflect neural reorganisation following early brain injury. PMID:25016248

  12. Motor fMRI and cortical grey matter volume in adults born very preterm.

    PubMed

    Lawrence, E J; Froudist-Walsh, S; Neilan, R; Nam, K W; Giampietro, V; McGuire, P; Murray, R M; Nosarti, C

    2014-10-01

    The primary aim of this study was to investigate the functional neuroanatomy of motor planning, initiation and execution in a cohort of young adults (mean age 20 years) who were born very preterm (VPT; <33 weeks of gestation), as these individuals are at increased risk of experiencing neuromotor difficulties compared to controls. A cued motor task was presented to 20 right-handed VPT individuals and 20 controls within a functional magnetic resonance imaging (fMRI) paradigm. Whole-brain grey matter volume was also quantified and associations with functional data were examined. Despite comparable task performance, fMRI results showed that the VPT group displayed greater brain activation compared to controls in a region comprising the right cerebellum and the lingual, parahippocampal and middle temporal gyri. The VPT group also displayed decreased grey matter volume in the right superior frontal/premotor cortex and left middle temporal gyri. Grey matter volume in the premotor and middle temporal clusters was significantly negatively correlated with BOLD activation in the cerebellum. Overall, these data suggest that preterm birth is associated with functional neuronal differences that persist into adulthood, which are likely to reflect neural reorganisation following early brain injury. PMID:25016248

  13. Lasting pure-motor deficits after focal posterior internal capsule white-matter infarcts in rats.

    PubMed

    Blasi, Francesco; Whalen, Michael J; Ayata, Cenk

    2015-06-01

    Small white-matter infarcts of the internal capsule are clinically prevalent but underrepresented among currently available animal models of ischemic stroke. In particular, the assessment of long-term outcome, a primary end point in clinical practice, has been challenging due to mild deficits and the rapid and often complete recovery in most experimental models. We, therefore, sought to develop a focal white-matter infarction model that can mimic the lasting neurologic deficits commonly observed in stroke patients. The potent vasoconstrictor endothelin-1 (n=24) or vehicle (n=9) was stereotactically injected into the internal capsule at one of three antero-posterior levels (1, 2, or 3 mm posterior to bregma) in male Sprague-Dawley rats. Endothelin-injected animals showed highly focal (~1 mm(3)) and reproducible ischemic infarcts, with severe axonal and myelin loss accompanied by cellular infiltration when examined 2 and 4 weeks after injection. Only those rats injected with endothelin-1 at the most posterior location developed robust and pure-motor deficits in adhesive removal, cylinder and foot-fault tests that persisted at 1 month, without detectable sensory impairments. In summary, we present an internal capsule stroke model optimized to produce lasting pure-motor deficits in rats that may be suitable to study neurologic recovery and rehabilitation after white-matter injury. PMID:25649992

  14. Training the Motor Aspects of Pre-driving Skills of Young Adults With and Without Autism Spectrum Disorder.

    PubMed

    Brooks, Johnell; Kellett, Julie; Seeanner, Julia; Jenkins, Casey; Buchanan, Caroline; Kinsman, Anne; Kelly, Desmond; Pierce, Susan

    2016-07-01

    The purpose of this study was to investigate the utility of using a driving simulator to address the motor aspects of pre-driving skills with young adults with Autism Spectrum Disorder (ASD). A group of neurotypical control participants and ten participants with ASD completed 18 interactive steering and pedal exercises with the goal to achieve error-free performance. Most participants were able to achieve this goal within five trials for all exercises except for the two most difficult ones. Minimal performance differences were observed between the two groups. Participants with ASD needed more time to complete the tasks. Overall, the interactive exercises and the process used worked well to address motor related aspects of pre-driving skills in young adults with ASD. PMID:27055416

  15. Limited Fine Motor and Grasping Skills in Six-month-old Infants at High Risk for Autism

    PubMed Central

    Libertus, Klaus; Sheperd, Kelly A.; Ross, Samuel W.; Landa, Rebecca J.

    2014-01-01

    Atypical motor behaviors are common among children with Autism Spectrum Disorders (ASD). However, little is known about onset and functional implications of differences in early motor development among infants later diagnosed with ASD. Two prospective experiments were conducted to investigate motor skills among six-month-olds at increased risk (high-risk) for ASD (N1 = 129; N2 = 46). Infants were assessed using the Mullen Scales of Early Learning (MSEL) and during toy play. Across both experiments, high-risk infants exhibited less mature object manipulation in a highly structured (MSEL) context and reduced grasping activity in an unstructured (free play) context than infants with no family history of ASD. Longitudinal assessments suggest that between six and ten months, grasping activity increases in high-risk infants. PMID:24978128

  16. Effects of consistent food presentation on oral-motor skill acquisition in children with severe neurological impairment.

    PubMed

    Pinnington, L; Hegarty, J

    2000-01-01

    The purpose of this study was to evaluate systematically the effect of presenting food consistently, in a position regarded as optimal, to children with severe neurological impairment who have associated oral-motor dysfunction. We tested the validity of some recommendations often made in the literature regarding good feeding practices. The trial used an ABA within-subjects design and extended over a 9-month period. Sixteen children between 7 and 17 years of age with severe neurological impairment and associated eating difficulties were studied. Six subjects had some speech. The effects of the intervention were compared by detailed analysis of standard feeding assessments carried out and video-recorded under control and experimental conditions. Statistically significant differences in components of oral-motor behavior were found when a consistent method of food presentation was employed and significant improvements, which could not be attributed to maturation alone, were found between assessment periods. There were also significant differences in the degree of oral-motor learning achieved by children who had some speech and those who had none. Newly acquired skills were not always evident at followup, however, nor in control assessments of feeding. We conclude that some children, even those with severe neurological impairment, can acquire mastery over latent or previously undeveloped oral-motor skills when feeding strategies are modified to allow appropriate opportunities for learning to occur. PMID:11014884

  17. Effect of Implicit Perceptual-Motor Training on Decision-Making Skills and Underpinning Gaze Behavior in Combat Athletes.

    PubMed

    Milazzo, Nicolas; Farrow, Damian; Fournier, Jean F

    2016-08-01

    This study investigated the effect of a 12-session, implicit perceptual-motor training program on decision-making skills and visual search behavior of highly skilled junior female karate fighters (M age = 15.7 years, SD = 1.2). Eighteen participants were required to make (physical or verbal) reaction decisions to various attacks within different fighting scenarios. Fighters' performance and eye movements were assessed before and after the intervention, and during acquisition through the use of video-based and on-mat decision-making tests. The video-based test revealed that following training, only the implicit perceptual-motor group (n = 6) improved their decision-making accuracy significantly compared to a matched motor training (placebo, n = 6) group and a control group (n = 6). Further, the implicit training group significantly changed their visual search behavior by focusing on fewer locations for longer durations. In addition, the session-by-session analysis showed no significant improvement in decision accuracy between training session 1 and all the other sessions, except the last one. Coaches should devote more practice time to implicit learning approaches during perceptual-motor training program to achieve significant decision-making improvements and more efficient visual search strategy with elite athletes. PMID:27371637

  18. Neonatal neuropsychology: emerging relations of neonatal sensory-motor responses to white matter integrity.

    PubMed

    Weinstein, Maya; Marom, Ronella; Berger, Irit; Ben Bashat, Dafna; Gross-Tsur, Varda; Ben-Sira, Liat; Artzi, Moran; Uliel, Shimrit; Leitner, Yael; Geva, Ronny

    2014-09-01

    The neonatal period is considered to be essential for neurodevelopment and wellbeing throughout the life span, yet little is known about brain-behavior relationships in the neonatal period. The aim of this study was to evaluate the association between neonatal sensory-motor regulation and white-matter (WM) integrity of major fiber tracts in the neonatal period. We hypothesized that WM integrity of sensory-motor systems would predict neurobehavioral maturation during the first month of life. Forty-nine premature neonates underwent magnetic-resonance-imaging at term. Diffusion-tensor-imaging analysis was performed in major WM tracts along with repeated neonatal neurobehavioral evaluations assessing sensory reactivity and motor regulation. Difficulties in one or more behavioral sub-category, mostly in auditory and visual attention, hypotonicity and jitteriness, were documented in 78.3% infants at term. Sixty-six percent of infants experienced difficulties, mostly in auditory attention, head-neck control, hypotonicity and motor asymmetry, at 44 weeks. Attention difficulties were associated with reduced integrity of cerebral and superior cerebellar peduncles; while tonicity was associated with reduced integrity of the corpus-callosum and inferior-posterior tracts. Overall, results showed that early maturing tracts were related with the degree of typicality of sensory reactivity status while late maturing tracts were related with the degree of typicality of tonic regulation. WM integrity and maturation factors explained 40.2% of the variance in neurobehavior at 44 weeks. This study suggests that in preterm neonates, deviant sensory-motor reactivity can be detected very early in development in manners that are related to lower integrity/maturational level of early and late maturing fiber tracts. PMID:25090927

  19. Disparity in Frontal Lobe Connectivity on a Complex Bimanual Motor Task Aids in Classification of Operator Skill Level.

    PubMed

    Andreu-Perez, Javier; Leff, Daniel Richard; Shetty, Kunal; Darzi, Ara; Yang, Guang-Zhong

    2016-06-01

    Objective metrics of technical performance (e.g., dexterity, time, and path length) are insufficient to fully characterize operator skill level, which may be encoded deep within neural function. Unlike reports that capture plasticity across days or weeks, this articles studies long-term plasticity in functional connectivity that occurs over years of professional task practice. Optical neuroimaging data are acquired from professional surgeons of varying experience on a complex bimanual coordination task with the aim of investigating learning-related disparity in frontal lobe functional connectivity that arises as a consequence of motor skill level. The results suggest that prefrontal and premotor seed connectivity is more critical during naïve versus expert performance. Given learning-related differences in connectivity, a least-squares support vector machine with a radial basis function kernel is employed to evaluate skill level using connectivity data. The results demonstrate discrimination of operator skill level with accuracy ≥0.82 and Multiclass Matthew's Correlation Coefficient ≥0.70. Furthermore, these indices are improved when local (i.e., within-region) rather than inter-regional (i.e., between-region) frontal connectivity is considered (p = 0.002). The results suggest that it is possible to classify operator skill level with good accuracy from functional connectivity data, upon which objective assessment and neurofeedback may be used to improve operator performance during technical skill training. PMID:26899241

  20. Motor Skill Learning Is Associated with Phase-Dependent Modifications in the Striatal cAMP/PKA/DARPP-32 Signaling Pathway in Rodents

    PubMed Central

    Qian, Yu; Forssberg, Hans; Diaz Heijtz, Rochellys

    2015-01-01

    Abundant evidence points to a key role of dopamine in motor skill learning, although the underlying cellular and molecular mechanisms are still poorly understood. Here, we used a skilled-reaching paradigm to first examine changes in the expression of the plasticity-related gene Arc to map activity in cortico-striatal circuitry during different phases of motor skill learning in young animals. In the early phase, Arc mRNA was significantly induced in the medial prefrontal cortex (mPFC), cingulate cortex, primary motor cortex, and striatum. In the late phase, expression of Arc did not change in most regions, except in the mPFC and dorsal striatum. In the second series of experiments, we studied the learning-induced changes in the phosphorylation state of dopamine and cAMP-regulated phosphoprotein, 32k Da (DARPP-32). Western blot analysis of the phosphorylation state of DARPP-32 and its downstream target cAMP response element-binding protein (CREB) in the striatum revealed that the early, but not late, phase of motor skill learning was associated with increased levels of phospho-Thr34-DARPP-32 and phospho-Ser133-CREB. Finally, we used the DARPP-32 knock-in mice with a point mutation in the Thr34 regulatory site (i.e., protein kinase A site) to test the significance of this pathway in motor skill learning. In accordance with our hypothesis, inhibition of DARPP-32 activity at the Thr34 regulatory site strongly attenuated the motor learning rate and skilled reaching performance of mice. These findings suggest that the cAMP/PKA/DARPP-32 signaling pathway is critically involved in the acquisition of novel motor skills, and also demonstrate a dynamic shift in the contribution of cortico-striatal circuitry during different phases of motor skill learning. PMID:26488498

  1. Peripheral androgen receptors sustain the acrobatics and fine motor skill of elaborate male courtship.

    PubMed

    Fuxjager, Matthew J; Longpre, Kristy M; Chew, Jennifer G; Fusani, Leonida; Schlinger, Barney A

    2013-09-01

    Androgenic hormones regulate many aspects of animal social behavior, including the elaborate display routines on which many species rely for advertisement and competition. One way that this might occur is through peripheral effects of androgens, particularly on skeletal muscles that control complex movements and postures of the body and its limbs. However, the specific contribution of peripheral androgen-muscle interactions to the performance of elaborate behavioral displays in the natural world has never been examined. We study this issue in one of the only natural physiological models of animal acrobatics: the golden-collared manakin (Manacus vitellinus). In this tropical bird, males compete with each other and court females by producing firecracker-like wing- snaps and by rapidly dancing among saplings over the forest floor. To test how activation of peripheral androgen receptors (AR) influences this display, we treat reproductively active adult male birds with the peripherally selective antiandrogen bicalutamide (BICAL) and observe the effects of this manipulation on male display performance. We not only validate the peripheral specificity of BICAL in this species, but we also show that BICAL treatment reduces the frequency with which adult male birds perform their acrobatic display maneuvers and disrupts the overall structure and fine-scale patterning of these birds' main complex wing-snap sonation. In addition, this manipulation has no effect on the behavioral metrics associated with male motivation to display. Together, our findings help differentiate the various effects of peripheral and central AR on the performance of a complex sociosexual behavioral phenotype by indicating that peripheral AR can optimize the motor skills necessary for the production of an elaborate animal display. PMID:23782945

  2. The acquisition of skilled motor performance: Fast and slow experience-driven changes in primary motor cortex

    PubMed Central

    Karni, Avi; Meyer, Gundela; Rey-Hipolito, Christine; Jezzard, Peter; Adams, Michelle M.; Turner, Robert; Ungerleider, Leslie G.

    1998-01-01

    Behavioral and neurophysiological studies suggest that skill learning can be mediated by discrete, experience-driven changes within specific neural representations subserving the performance of the trained task. We have shown that a few minutes of daily practice on a sequential finger opposition task induced large, incremental performance gains over a few weeks of training. These gains did not generalize to the contralateral hand nor to a matched sequence of identical component movements, suggesting that a lateralized representation of the learned sequence of movements evolved through practice. This interpretation was supported by functional MRI data showing that a more extensive representation of the trained sequence emerged in primary motor cortex after 3 weeks of training. The imaging data, however, also indicated important changes occurring in primary motor cortex during the initial scanning sessions, which we proposed may reflect the setting up of a task-specific motor processing routine. Here we provide behavioral and functional MRI data on experience-dependent changes induced by a limited amount of repetitions within the first imaging session. We show that this limited training experience can be sufficient to trigger performance gains that require time to become evident. We propose that skilled motor performance is acquired in several stages: “fast” learning, an initial, within-session improvement phase, followed by a period of consolidation of several hours duration, and then “slow” learning, consisting of delayed, incremental gains in performance emerging after continued practice. This time course may reflect basic mechanisms of neuronal plasticity in the adult brain that subserve the acquisition and retention of many different skills. PMID:9448252

  3. Motor skill failure or flow-experience? Functional brain asymmetry and brain connectivity in elite and amateur table tennis players.

    PubMed

    Wolf, Sebastian; Brölz, Ellen; Keune, Philipp M; Wesa, Benjamin; Hautzinger, Martin; Birbaumer, Niels; Strehl, Ute

    2015-02-01

    Functional hemispheric asymmetry is assumed to constitute one underlying neurophysiological mechanism of flow-experience and skilled psycho-motor performance in table tennis athletes. We hypothesized that when initiating motor execution during motor imagery, elite table tennis players show higher right- than left-hemispheric temporal activity and stronger right temporal-premotor than left temporal-premotor theta coherence compared to amateurs. We additionally investigated, whether less pronounced left temporal cortical activity is associated with more world rank points and more flow-experience. To this aim, electroencephalographic data were recorded in 14 experts and 15 amateur table tennis players. Subjects watched videos of an opponent serving a ball and were instructed to imagine themselves responding with a specific table tennis stroke. Alpha asymmetry scores were calculated by subtracting left from right hemispheric 8-13 Hz alpha power. 4-7 Hz theta coherence was calculated between temporal (T3/T4) and premotor (Fz) cortex. Experts showed a significantly stronger shift towards lower relative left-temporal brain activity compared to amateurs and a significantly stronger right temporal-premotor coherence than amateurs. The shift towards lower relative left-temporal brain activity in experts was associated with more flow-experience and lower relative left temporal activity was correlated with more world rank points. The present findings suggest that skilled psycho-motor performance in elite table tennis players reflect less desynchronized brain activity at the left hemisphere and more coherent brain activity between fronto-temporal and premotor oscillations at the right hemisphere. This pattern probably reflect less interference of irrelevant communication of verbal-analytical with motor-control mechanisms which implies flow-experience and predict world rank in experts. PMID:25616246

  4. The Development of Fundamental Motor Skills of Four- to Five-Year-Old Preschool Children and the Effects of a Preschool Physical Education Curriculum

    ERIC Educational Resources Information Center

    Iivonen, S.; Saakslahti, A.; Nissinen, K.

    2011-01-01

    Altogether 38 girls and 46 boys aged four to five years were studied to analyse the linear and non-linear development of fundamental motor skills. The children were grouped into one experimental and one control group to study the effects of an eight-month preschool physical education curriculum. In the course of one year, the balance skills of the…

  5. Objective Evaluation of Motor Skills for Orthopedic Residents Using a Motion Tracking Drill System: Outcomes of an ABOS Approved Surgical Skills Training Program

    PubMed Central

    Pourkand, Ashkan; Salas, Christina; Regalado, Jasmin; Bhakta, Krishan; Tufaro, Rachel; Mercer, Deana

    2016-01-01

    Abstract Background Orthopedics is a motor skills-demanding surgical specialty requiring surgical skills training outside of the operating room. Unfortunately, limited quantitative techniques exist to determine the effectiveness of these surgical skills training programs. Using a variety of drill, surgeon, and specimen mounted sensors, we evaluated orthopedic surgery residents during a surgical skills training course approved by the American Board of Orthopaedic Surgeons (ABOS). This evaluation consisted of quantitative measures of various kinematic and kinetic parameters with the goal of relating these to clinically-significant outcomes. Methods Seven experienced surgeons and 22 surgical residents participated in this study, each performing 5 surgical drilling trials, pre- and post-training. Utilizing arm and tool kinematics, applied force, tool and bone vibration, and drill RPM were measured using a combination of force, acceleration, and optical tracking sensors. Post hoc screw pullout testing and resident survey data were also evaluated. Overall, 25 measured parameters were expressed as scalars and their covariance calculated. Results Non-trivial direct correlations whose magnitude exceeded 0.5 were: maximum penetration distance with applied force, drill toggle with drill roll angle, and drill RPM with force. Surgeons applying a high drill RPM also yielded a large force which in turn gave an increase in tendency for over-penetration. As a whole, the differences between experienced and novice surgeons measured in these trials were not statistically significant. However, when looking at specific performance criterion individually (maintaining steady force, minimizing over-penetration, minimizing both the major and minor axis diameters, minimizing toggle and drill vibration), experienced surgeons tended to outperform their novice counterparts. Conclusions Objective assessment of surgical skills using sensor based technologies may help elucidate differences between

  6. Neural synchrony indexes impaired motor slowing after errors and novelty following white matter damage.

    PubMed

    Wessel, Jan R; Ullsperger, Markus; Obrig, Hellmuth; Villringer, Arno; Quinque, Eva; Schroeter, Matthias L; Bretschneider, Katharina J; Arelin, Katrin; Roggenhofer, Elisabeth; Frisch, Stefan; Klein, Tilmann A

    2016-02-01

    In humans, action errors and perceptual novelty elicit activity in a shared frontostriatal brain network, allowing them to adapt their ongoing behavior to such unexpected action outcomes. Healthy and pathologic aging reduces the integrity of white matter pathways that connect individual hubs of such networks and can impair the associated cognitive functions. Here, we investigated whether structural disconnection within this network because of small-vessel disease impairs the neural processes that subserve motor slowing after errors and novelty (post-error slowing, PES; post-novel slowing, PNS). Participants with intact frontostriatal circuitry showed increased right-lateralized beta-band (12-24 Hz) synchrony between frontocentral and frontolateral electrode sites in the electroencephalogram after errors and novelty, indexing increased neural communication. Importantly, this synchrony correlated with PES and PNS across participants. Furthermore, such synchrony was reduced in participants with frontostriatal white matter damage, in line with reduced PES and PNS. The results demonstrate that behavioral change after errors and novelty result from coordinated neural activity across a frontostriatal brain network and that such cognitive control is impaired by reduced white matter integrity. PMID:26563990

  7. A Model of Motor Inhibition for a Complex Skill: Baseball Batting

    ERIC Educational Resources Information Center

    Gray, Rob

    2009-01-01

    The ability to inhibit an ongoing action in response to a signal from the environment is important for many perceptual-motor actions. This paper examines a particular example of this behavior: attempting to inhibit or "check" a swing in baseball batting. A model of motor inhibition in batting is proposed. In the model there are three different…

  8. A network for audio-motor coordination in skilled pianists and non-musicians.

    PubMed

    Baumann, Simon; Koeneke, Susan; Schmidt, Conny F; Meyer, Martin; Lutz, Kai; Jancke, Lutz

    2007-08-01

    Playing a musical instrument requires efficient auditory and motor processing. Fast feed forward and feedback connections that link the acoustic target to the corresponding motor programs need to be established during years of practice. The aim of our study is to provide a detailed description of cortical structures that participate in this audio-motor coordination network in professional pianists and non-musicians. In order to map these interacting areas using functional magnetic resonance imaging (fMRI), we considered cortical areas that are concurrently activated during silent piano performance and motionless listening to piano sound. Furthermore we investigated to what extent interactions between the auditory and the motor modality happen involuntarily. We observed a network of predominantly secondary and higher order areas belonging to the auditory and motor modality. The extent of activity was clearly increased by imagination of the absent modality. However, this network did neither comprise primary auditory nor primary motor areas in any condition. Activity in the lateral dorsal premotor cortex (PMd) and the pre-supplementary motor cortex (preSMA) was significantly increased for pianists. Our data imply an intermodal transformation network of auditory and motor areas which is subject to a certain degree of plasticity by means of intensive training. PMID:17603027

  9. Creative Paradoxical Thinking and Its Implications for Teaching and Learning Motor Skills

    ERIC Educational Resources Information Center

    Chen, David

    2011-01-01

    A paradox is a statement or situation that involves two or more contradictory, mutually exclusive elements that operate at the same time. This article examines a number of findings in motor-learning and motor-control research and categorizes them into six paradoxes. Based on those research findings, the concept of creative paradoxical thinking is…

  10. Accuracy of Subjective Performance Appraisal is Not Modulated by the Method Used by the Learner During Motor Skill Acquisition.

    PubMed

    Patterson, Jae T; McRae, Matthew; Lai, Sharon

    2016-04-01

    The present experiment examined whether the method of subjectively appraising motor performance during skill acquisition would differentially strengthen performance appraisal capabilities and subsequent motor learning. Thirty-six participants (18 men and 18 women; M age = 20.8 years, SD = 1.0) learned to execute a serial key-pressing task at a particular overall movement time (2550 ms). Participants were randomly separated into three groups: the Generate group estimated their overall movement time then received knowledge of results of their actual movement time; the Choice group selected their perceived movement time from a list of three alternatives; the third group, the Control group, did not self-report their perceived movement time and received knowledge of results of their actual movement time on every trial. All groups practiced 90 acquisition trials and 30 no knowledge of results trials in a delayed retention test. Results from the delayed retention test showed that both methods of performance appraisal (Generate and Choice) facilitated superior motor performance and greater accuracy in assessing their actual motor performance compared with the control condition. Therefore, the processing required for accurate appraisal of performance was strengthened, independent of performance appraisal method. PMID:27166340

  11. Can Perceptuo-Motor Skills Assessment Outcomes in Young Table Tennis Players (7–11 years) Predict Future Competition Participation and Performance? An Observational Prospective Study

    PubMed Central

    2016-01-01

    Forecasting future performance in youth table tennis players based on current performance is complex due to, among other things, differences between youth players in growth, development, maturity, context and table tennis experience. Talent development programmes might benefit from an assessment of underlying perceptuo-motor skills for table tennis, which is hypothesized to determine the players’ potential concerning the perceptuo-motor domain. The Dutch perceptuo-motor skills assessment intends to measure the perceptuo-motor potential for table tennis in youth players by assessing the underlying skills crucial for developing technical and tactical qualities. Untrained perceptuo-motor tasks are used as these are suggested to represent a player’s future potential better than specific sport skills themselves as the latter depend on exposure to the sport itself. This study evaluated the value of the perceptuo-motor skills assessment for a talent developmental programme by evaluating its predictive validity for competition participation and performance in 48 young table tennis players (7–11 years). Players were tested on their perceptuo-motor skills once during a regional talent day, and the subsequent competition results were recorded half-yearly over a period of 2.5 years. Logistic regression analysis showed that test scores did not predict future competition participation (p >0.05). Yet, the Generalized Estimating Equations analysis, including the test items ‘aiming at target’, ‘throwing a ball’, and ‘eye-hand coordination’ in the best fitting model, revealed that the outcomes of the perceptuo-motor skills assessment were significant predictors for future competition results (R2 = 51%). Since the test age influences the perceptuo-motor skills assessment’s outcome, another multivariable model was proposed including test age as a covariate (R2 = 53%). This evaluation demonstrates promising prospects for the perceptuo-motor skills assessment to be

  12. Relationship between Isometric Strength of Six Lower Limb Muscle Groups and Motor Skills among Nursing Home Residents.

    PubMed

    Buckinx, F; Croisier, J L; Reginster, J Y; Petermans, J; Goffart, E; Bruyère, O

    2015-01-01

    This research aimed to assess the correlation between isometric muscle strength of the lower limb and motor skills. This is a cross sectional study performed among volunteer nursing home residents included in the SENIOR (Sample of Elderly Nursing home Individuals: an Observational Research) cohort. The present analysis focused on isometric muscle strength of 6 lower limb muscle groups (i.e. knee extensors, knee flexors, hip abductors, hip extensors, ankle flexors and ankle extensors), assessed using a validated hand-held dynamometer (i.e. the MicroFET2 device), and motor skills evaluated using the Tinetti test, the Timed Up and Go test, the Short Physical Performance Battery test (SPPB) and the walking speed. The relationship between all these parameters was tested by means of a multiple correlation, adjusted on age, sex and body mass index. 450 nursing home residents (69.8% of women) with a mean age of 83.1±9.4 years were included in this study. Our results showed a significant inverse correlation between lower limb muscle strength and the time required to perform the TUG test or gait speed, except for ankle flexors and ankle extensors. The relationship between the Tinetti test or the SPPB score, and lower limb muscle strength was significant, except for ankle flexors and ankle extensors. In conclusion, a positive association between lower limb muscle strength of the four main muscle groups and motor skills of the elderly nursing residents was found in this research. Therefore, special attention should be given to these muscle groups during rehabilitation programs. PMID:27031016

  13. Effects of short-term training on behavioral learning and skill acquisition during intraoral fine motor task.

    PubMed

    Kumar, A; Grigoriadis, J; Trulsson, M; Svensson, P; Svensson, K G

    2015-10-15

    Sensory information from the orofacial mechanoreceptors are used by the nervous system to optimize the positioning of food, determine the force levels, and force vectors involved in biting of food morsels. Moreover, practice resulting from repetition could be a key to learning and acquiring a motor skill. Hence, the aim of the experiment was to test the hypothesis that repeated splitting of a food morsel during a short-term training with an oral fine motor task would result in increased performance and optimization of jaw movements, in terms of reduction in duration of various phases of the jaw movements. Thirty healthy volunteers were asked to intraorally manipulate and split a chocolate candy, into two equal halves. The participants performed three series (with 10 trials) of the task before and after a short-term (approximately 30 min) training. The accuracy of the split and vertical jaw movement during the task were recorded. The precision of task performance improved significantly after training (22% mean deviation from ideal split after vs. 31% before; P<0.001). There was a significant decrease in the total duration of jaw movements during the task after the training (1.21 s total duration after vs. 1.56 s before; P<0.001). Further, when the jaw movements were divided into different phases, the jaw opening phase and contact phase were significantly shorter after training than before training (P=0.001, P=0.002). The results indicate that short-term training of an oral fine motor task induces behavior learning, skill acquisition and optimization of jaw movements in terms of better performance and reduction in the duration of jaw movements, during the task. The finding of the present study provides insights into how humans learn oral motor behaviors or the kind of adaptation that takes place after a successful prosthetic rehabilitation. PMID:26162238

  14. [Electromyographic study on motor skill in chewing movement. A new concept on relating electromyographic analysis to chewing movements].

    PubMed

    Ishigaki, S; Tanaka, K; Nakatani, E; Yoshikawa, K; Omae, T; Inoue, S; Okuda, T; Akanishi, M; Maruyama, T

    1990-04-01

    This article was aimed to propose a new concept on evaluating electromyographic activities of masticatory muscles during chewing movements viewed from the standpoint of motor skill. Correlation coefficients between the ratio of lateral distance to ten vertical level set at 0.5 mm to 5.0 mm with 0.5 mm step from the end of closing phase and activities of bilateral masseter, anterior and posterior temporalis in each chewing stroke were evaluated using raisin, peanut, soft and hard testing gum in five subjects. Habitual chewing side always demonstrated less numbers of subjects who showed high correlation coefficients especially in the case of soft testing gum. PMID:2134796

  15. Delta-9-tetrahydrocannabinol (THC) affects forelimb motor map expression but has little effect on skilled and unskilled behavior.

    PubMed

    Scullion, K; Guy, A R; Singleton, A; Spanswick, S C; Hill, M N; Teskey, G C

    2016-04-01

    It has previously been shown in rats that acute administration of delta-9-tetrahydrocannabinol (THC) exerts a dose-dependent effect on simple locomotor activity, with low doses of THC causing hyper-locomotion and high doses causing hypo-locomotion. However the effect of acute THC administration on cortical movement representations (motor maps) and skilled learned movements is completely unknown. It is important to determine the effects of THC on motor maps and skilled learned behaviors because behaviors like driving place people at a heightened risk. Three doses of THC were used in the current study: 0.2mg/kg, 1.0mg/kg and 2.5mg/kg representing the approximate range of the low to high levels of available THC one would consume from recreational use of cannabis. Acute peripheral administration of THC to drug naïve rats resulted in dose-dependent alterations in motor map expression using high resolution short duration intracortical microstimulation (SD-ICMS). THC at 0.2mg/kg decreased movement thresholds and increased motor map size, while 1.0mg/kg had the opposite effect, and 2.5mg/kg had an even more dramatic effect. Deriving complex movement maps using long duration (LD)-ICMS at 1.0mg/kg resulted in fewer complex movements. Dosages of 1.0mg/kg and 2.5mg/kg THC reduced the number of reach attempts but did not affect percentage of success or the kinetics of reaching on the single pellet skilled reaching task. Rats that received 2.5mg/kg THC did show an increase in latency of forelimb removal on the bar task, while dose-dependent effects of THC on unskilled locomotor activity using the rotorod and horizontal ladder tasks were not observed. Rats may be employing compensatory strategies after receiving THC, which may account for the robust changes in motor map expression but moderate effects on behavior. PMID:26826333

  16. Effects of an Exhaustive Exercise on Motor Skill Learning and on the Excitability of Primary Motor Cortex and Supplementary Motor Area

    PubMed Central

    Coco, Marinella; Perciavalle, Vincenzo; Cavallari, Paolo; Perciavalle, Valentina

    2016-01-01

    Abstract We examined, on 28 healthy adult subjects, the possible correlations of an exhaustive exercise, and the consequent high blood lactate levels, on immediate (explicit) and delayed (implicit) motor execution of sequential finger movements (cognitive task). Moreover, we determined with transcranial magnetic stimulation whether changes in motor performance are associated with variations in excitability of primary motor area (M1) and supplementary motor area (SMA). We observed that, after an acute exhaustive exercise, the large increase of blood lactate is associated with a significant worsening of both explicit and implicit sequential visuomotor task paradigms, without gender differences. We also found that, at the end of the exhaustive exercise, there is a change of excitability in both M1 and SMA. In particular, the excitability of M1 was increased whereas that of SMA decreased and, also in this case, without gender differences. These results support the idea that an increase of blood lactate after an exhaustive exercise appears to have a protective effect at level of primary cortical areas (as M1), although at the expense of efficiency of adjacent cortical regions (as SMA). PMID:26986109

  17. Effects of an Exhaustive Exercise on Motor Skill Learning and on the Excitability of Primary Motor Cortex and Supplementary Motor Area.

    PubMed

    Coco, Marinella; Perciavalle, Vincenzo; Cavallari, Paolo; Perciavalle, Valentina

    2016-03-01

    We examined, on 28 healthy adult subjects, the possible correlations of an exhaustive exercise, and the consequent high blood lactate levels, on immediate (explicit) and delayed (implicit) motor execution of sequential finger movements (cognitive task). Moreover, we determined with transcranial magnetic stimulation whether changes in motor performance are associated with variations in excitability of primary motor area (M1) and supplementary motor area (SMA). We observed that, after an acute exhaustive exercise, the large increase of blood lactate is associated with a significant worsening of both explicit and implicit sequential visuomotor task paradigms, without gender differences. We also found that, at the end of the exhaustive exercise, there is a change of excitability in both M1 and SMA. In particular, the excitability of M1 was increased whereas that of SMA decreased and, also in this case, without gender differences. These results support the idea that an increase of blood lactate after an exhaustive exercise appears to have a protective effect at level of primary cortical areas (as M1), although at the expense of efficiency of adjacent cortical regions (as SMA). PMID:26986109

  18. Investigating Age-Related Changes in Fine Motor Control Across Different Effectors and the Impact of White Matter Integrity

    PubMed Central

    Holtrop, Joseph L.; Loucks, Torrey M; Sosnoff, Jacob J; Sutton, Bradley P

    2014-01-01

    Changes in fine motor control that eventually compromise dexterity accompany advanced age; however there is evidence that age-related decline in motor control may not be uniform across effectors. Particularly, the role of central mechanisms in effector-specific decline has not been examined but is relevant for placing age-related motor declines into the growing literature of age-related changes in brain function. We examined sub-maximal force control across three different effectors (fingers, lips, and tongue) in 18 young and 14 older adults. In parallel with the force variability measures we examined changes in white matter structural integrity in effector-specific pathways in the brain with diffusion tensor imaging (DTI). Motor pathways for each effector were identified by using an fMRI localizer task followed by tractography to identify the fiber tracts propagating to the midbrain. Increases in force control variability were found with age in all three effectors but the effectors showed different degrees of age-related variability. Motor control changes were accompanied by a decline in white matter structural integrity with age shown by measures of fractional anisotropy and radial diffusivity. The DTI metrics appear to mediate some of the age-related declines in motor control. Our findings indicate that the structural integrity of descending motor systems may play a significant role in age-related increases in motor performance variability, but that differential age-related declines in oral and manual effectors are not likely due to structural integrity of descending motor pathways in the brain. PMID:24657352

  19. Precision Teaching a Foundational Motor Skill to a Child with Autism

    ERIC Educational Resources Information Center

    Fabrizio, Michael A.; Schirmer, Kristin; King, Amy; Diakite, Ami; Stovel, Leah

    2007-01-01

    Since the early work of Anne Desjardin (1980) and others, Precision Teachers have developed Big 6+6 skills in their students' repertoires when needed. In this article, the authors present the Standard Celeration Chart (SCC) which documents how they analyzed the Big 6+6 skill of "squeeze" in terms of arranging sequences of instruction. The SCC…

  20. A Method for Extracting Sensory Motor Skills and Designing a Training System

    ERIC Educational Resources Information Center

    Doyo, Daisuke; Ohara, Atushi; Shida, Keisuke; Matsumoto, Toshiyuki; Otomo, Kazuo

    2009-01-01

    Two years ago, the rapid retirement of the "baby boomer artisans" in vast numbers threatened to erode the competitiveness of Japanese manufacturers (i.e., the 2007 problem). This study proposes a practical process for extracting skills and designing a training system, to accelerate the learning of skills in production fields by younger…

  1. Marketable job skills for high school students: what we learned from an evaluation of After School Matters.

    PubMed

    Alexander, Kendra P; Hirsch, Barton J

    2012-01-01

    This article summarizes findings from an experimental evaluation of After School Matters (ASM), a paid, apprenticeship-based, after-school program in Chicago for high school students. Analysis of quantitative data from a mock job interview revealed that ASM participants did not demonstrate more marketable job skills than youth in the control group. Qualitative data suggested that the nature of interpersonal interactions and the degree of professional orientation in apprenticeships contributed to variation in marketable job skills across apprenticeships. The article considers the perspective of human resource professionals who participated in the evaluation and describes an interviewing skills curriculum developed in response to the evaluation findings. PMID:22826166

  2. Developmental omega-3 supplementation improves motor skills in juvenile-adult rats.

    PubMed

    Coluccia, Addolorata; Borracci, Pietro; Renna, Giuseppe; Giustino, Arcangela; Latronico, Tiziana; Riccio, Paolo; Carratù, Maria Rosaria

    2009-10-01

    Long-chain polyunsaturated fatty acids are critical for brain growth spurt during both foetal and postnatal period. They play important roles in the expression of genes regulating cell differentiation and neuronal growth, as well as in the development of synaptic processing of neural cell interaction. Foetus and placenta are dependent on maternal supply for their growth and development, and supplemented infants show significantly greater mental and psychomotor scores. In particular, it has been shown that if mothers take omega-3 supplements, their babies are smarter and better physically coordinated. On these grounds, the aim of the present study was to investigate, in the Sprague-Dawley rat, the effects of perinatal treatment with omega-3 on motor activity, motor coordination, motor learning and memory. From gestational day 8 throughout the lactation period, dams received either an emulsion of 0.05g/kg body weight omega-3 in fruit juice, or an emulsion of 1g/kg body weight omega-3 in fruit juice or just the fruit juice (control). Omega-3 formula was made of 27% docosahexaenoic acid and 53% eicosapentaenoic acid. On the day of birth (postnatal day 1), all pups were weighed, and then randomly culled to eight pups per litter. Pups were weaned at 21 days of age. One male pup per litter from each litter (control, n=6; omega-3 0.05g/kg, n=5; omega-3 1g/kg, n=6) was used. Both control and treated rats were tested for (i) locomotor activity using the open field paradigm, (ii) motor coordination and motor learning using the rotarod/accelerod task and (iii) memory using the passive avoidance paradigm. Rats were tested on postnatal day 21 and re-tested on postnatal day 90. As a result, docosahexaenoic acid and eicosapentaenoic acid supplementation significantly improved motor coordination. In particular, the latency to fall at the first speed was significantly increased in the treated rats as compared to the control animals. This benefit was observed with both doses at each

  3. Gender Differences in Motor Skill Proficiency from Childhood to Adolescence: A Longitudinal Study

    ERIC Educational Resources Information Center

    Barnett, Lisa M.; van Beurden, Eric; Morgan, Philip J.; Brooks, Lyndon O.; Beard, John R.

    2010-01-01

    Students' proficiency in three object control and three locomotor skills were assessed in 2000 (M age = 10.06 years, SD = 0.63) in New South Wales, Australia and in 2006-07 (M age = 16.44 years, SD = 0.64). In 2006-07, 266 students, 138 girls (51.9%) and 128 boys (48.1%), had at least one skill reassessed. Boys were more object control proficient…

  4. Do motor skills in infancy and early childhood predict anxious and depressive symptomatology at school age?

    PubMed

    Piek, Jan P; Barrett, Nicholas C; Smith, Leigh M; Rigoli, Daniela; Gasson, Natalie

    2010-10-01

    Research has identified a relationship between social-emotional problems and motor impairment in both pre-school and school-age children. The aim of the current study was to determine how motor performance in infancy and early childhood is related to levels of anxious and depressive symptomatology at age 6-12 years. Fifty participants were assessed by their parents 11 times between the ages of 4 months and 4 years using the Ages and Stages Questionnaire (ASQ), and once between the age of 6 and 12 years using the Child Behavior Checklist (CBCL). The ASQ scores were used to obtain the stability (variance) of fine and gross motor performance. Once gestational age, sex and age of testing were taken into account, the stability of gross motor scores predicted both the anxiety/depression measure and the anxious score from the CBCL. It appears that how variable a young child's gross motor development is from 4 months to 4 years predicts the level of anxious/depressive symptoms at school age. These findings may assist in the early identification of children at risk of anxiety disorders and depression at school age. PMID:20650535

  5. Frontoparietal white matter diffusion properties predict mental arithmetic skills in children

    PubMed Central

    Tsang, Jessica M.; Dougherty, Robert F.; Deutsch, Gayle K.; Wandell, Brian A.; Ben-Shachar, Michal

    2009-01-01

    Functional MRI studies of mental arithmetic consistently report blood oxygen level–dependent signals in the parietal and frontal regions. We tested whether white matter pathways connecting these regions are related to mental arithmetic ability by using diffusion tensor imaging (DTI) to measure these pathways in 28 children (age 10–15 years, 14 girls) and assessing their mental arithmetic skills. For each child, we identified anatomically the anterior portion of the superior longitudinal fasciculus (aSLF), a pathway connecting parietal and frontal cortex. We measured fractional anisotropy in a core region centered along the length of the aSLF. Fractional anisotropy in the left aSLF positively correlates with arithmetic approximation skill, as measured by a mental addition task with approximate answer choices. The correlation is stable in adjacent core aSLF regions but lower toward the pathway endpoints. The correlation is not explained by shared variance with other cognitive abilities and did not pass significance in the right aSLF. These measurements used DTI, a structural method, to test a specific functional model of mental arithmetic. PMID:19948963

  6. Effects of combined fine motor skill and cognitive therapy to cognition, degree of dementia, depression, and activities of daily living in the elderly with Alzheimer’s disease

    PubMed Central

    Lee, Jin; Lee, ByoungHee; Park, YuHyung; Kim, Yumi

    2015-01-01

    [Purpose] This study evaluated the effects of combined fine motor skill and cognitive therapies on cognition, depression, and activities of daily living in elderly patients with Alzheimer’s disease (AD). [Subjects and Methods] Twenty-six participants comprised 2 groups. The experimental group (n=13) received combined fine motor skill and cognitive therapy, and the control group (n=13) received only general medical care. [Results] The experimental group showed improvements in cognition, degree of dementia, depression, and activities of daily living compared to the control group. However, there were no significant differences between the two groups. [Conclusion] These results suggest that combined fine motor skill and cognitive therapy improves cognition, degree of dementia, depression, and daily living in elderly patients with AD. These therapies would therefore be effective as general medical care strategies. PMID:26644663

  7. Motor Origin of Precise Synaptic Inputs onto Forebrain Neurons Driving a Skilled Behavior

    PubMed Central

    Vallentin, Daniela

    2015-01-01

    Sensory feedback is crucial for learning and performing many behaviors, but its role in the execution of complex motor sequences is poorly understood. To address this, we consider the forebrain nucleus HVC in the songbird, which contains the premotor circuitry for song production and receives multiple convergent sensory inputs. During singing, projection neurons within HVC exhibit precisely timed synaptic events that may represent the ongoing motor program or song-related sensory feedback. To distinguish between these possibilities, we recorded the membrane potential from identified HVC projection neurons in singing zebra finches. External auditory perturbations during song production did not affect synaptic inputs in these neurons. Furthermore, the systematic removal of three sensory feedback streams (auditory, proprioceptive, and vagal) did not alter the frequency or temporal precision of synaptic activity observed. These findings support a motor origin for song-related synaptic events and suggest an updated circuit model for generating behavioral sequences. PMID:25568122

  8. Marketable Job Skills for High School Students: What We Learned from an Evaluation of after School Matters

    ERIC Educational Resources Information Center

    Alexander, Kendra P.; Hirsch, Barton J.

    2012-01-01

    This article summarizes findings from an experimental evaluation of After School Matters (ASM), a paid, apprenticeship-based, after-school program in Chicago for high school students. Analysis of quantitative data from a mock job interview revealed that ASM participants did not demonstrate more marketable job skills than youth in the control…

  9. The Effects of Coordination and Movement Education on Pre School Children's Basic Motor Skills Improvement

    ERIC Educational Resources Information Center

    Altinkök, Mustafa

    2016-01-01

    This research was conducted for the purpose of analyzing the effect of the movement education program through a 12-week-coordination on the development of basic motor movements of pre-school children. A total of 78 students of pre-school period, 38 of whom were in the experimental group and 40 of whom were in the control group, were incorporated…

  10. Self-Controlled Amount of Practice Benefits Learning of a Motor Skill

    ERIC Educational Resources Information Center

    Post, Phillip G.; Fairbrother, Jeffrey T.; Barros, Joao A. C.

    2011-01-01

    Self-control over factors involving task-related information (e.g., feedback) can enhance motor learning. It is unknown if these benefits extend to manipulations that do not directly affect such information. The purpose of this study was to determine if self-control over the amount of practice would also facilitate learning. Participants learned…

  11. Motor Skill Acquisition and Retention after Somatosensory Electrical Stimulation in Healthy Humans

    PubMed Central

    Veldman, Menno P.; Zijdewind, Inge; Maffiuletti, Nicola A.; Hortobágyi, Tibor

    2016-01-01

    Somatosensory electrical stimulation (SES) can increase motor performance, presumably through a modulation of neuronal excitability. Because the effects of SES can outlast the period of stimulation, we examined the possibility that SES can also enhance the retention of motor performance, motor memory consolidation, after 24 h (Day 2) and 7 days (Day 7), that such effects would be scaled by SES duration, and that such effects were mediated by changes in aspects of corticospinal excitability, short-interval intracortical inhibition (SICI), and intracortical facilitation (ICF). Healthy young adults (n = 40) received either 20 (SES-20), 40 (SES-40), or 60 min (SES-60) of real SES, or sham SES (SES-0). The results showed SES-20 increased visuomotor performance on Day 2 (15%) and Day 7 (17%) and SES-60 increased visuomotor performance on Day 7 (11%; all p < 0.05) compared with SES-0. Specific responses to transcranial magnetic stimulation (TMS) increased immediately after SES (p < 0.05) but not on Days 2 and 7. In addition, changes in behavioral and neurophysiological parameters did not correlate, suggesting that paths and structures other than the ones TMS can assay must be (also) involved in the increases in visuomotor performance after SES. As examined in the present study, low-intensity peripheral electrical nerve stimulation did not have acute effects on healthy adults' visuomotor performance but SES had delayed effects in the form of enhanced motor memory consolidation that were not scaled by the duration of SES. PMID:27014043

  12. Gesture and Motor Skill in Relation to Language in Children with Language Impairment

    ERIC Educational Resources Information Center

    Iverson, Jana M.; Braddock, Barbara A.

    2011-01-01

    Purpose: To examine gesture and motor abilities in relation to language in children with language impairment (LI). Method: Eleven children with LI (aged 2;7 to 6;1 [years;months]) and 16 typically developing (TD) children of similar chronological ages completed 2 picture narration tasks, and their language (rate of verbal utterances, mean length…

  13. Contextual Interference Effects on the Acquisition, Retention, and Transfer of a Motor Skill.

    ERIC Educational Resources Information Center

    Shea, John B.; Morgan, Robyn L.

    1979-01-01

    Retention and transfer of motor tasks was greater for high interference (random) acquisition groups than for low interference (blocked) acquisition groups. This effect was most notable when transfer was measured for the transfer task of greatest complexity. Results support Battig's conceptualization of contextual interference effects on retention…

  14. The Relationship between Motor Skill Proficiency and Body Mass Index in Preschool Children

    ERIC Educational Resources Information Center

    Logan, Samuel W.; Scrabis-Fletcher, Kristin; Modlesky, Christopher; Getchell, Nancy

    2011-01-01

    The purpose of this study was to examine the relationship between motor proficiency and body mass index (BMI) in preschool children. Thirty-eight children ages 4-6 years had their BMI calculated and were assessed using the Movement Assessment Battery for Children-2 (MABC-2; Henderson, Sugden, & Barnett, 2007). These data were analyzed in two ways.…

  15. Motor Skill Acquisition: A Function of Gender or Sex-Role?

    ERIC Educational Resources Information Center

    Lombardo, John P.; And Others

    Previous research has found that males perform better than females on the pursuit rotor. To examine whether males and females with different sex role orientations would perform differently on a motor task, 120 students (classified as androgynous, traditional sex role, cross-sexed, or undifferentiated, based on scores on the Personal Attributes…

  16. THE EFFECT OF MENTAL AND PHYSICAL PRACTICE ON THE LEARNING OF GROSS MOTOR SKILLS.

    ERIC Educational Resources Information Center

    OXENDINE, JOSEPH B.

    THE PURPOSE OF THE STUDY WAS TO DETERMINE THE EFFECTS OF DIFFERENT SCHEDULES OF MENTAL AND PHYSICAL PRACTICE ON THE LEARNING AND RETENTION OF THREE MOTOR TASKS--USING THE PURSUIT ROTOR AND LEARNING THE SOCCER KICK, AND JUMP SHOT. THREE SEPARATE EXPERIMENTS WERE CONDUCTED IN THREE JUNIOR HIGH SCHOOLS USING 80, 72, AND 60 SEVENTH GRADE BOYS AS…

  17. Educational Gymnastics: The Effectiveness of Montessori Practical Life Activities in Developing Fine Motor Skills in Kindergartners

    ERIC Educational Resources Information Center

    Bhatia, Punum; Davis, Alan; Shamas-Brandt, Ellen

    2015-01-01

    Research Findings: A quasi-experiment was undertaken to test the effect of Montessori practical life activities on kindergarten children's fine motor development and hand dominance over an 8-month period. Participants were 50 children age 5 in 4 Montessori schools and 50 students age 5 in a kindergarten program in a high-performing suburban…

  18. A Developmental Perspective on the Role of Motor Skill Competence in Physical Activity: An Emergent Relationship

    ERIC Educational Resources Information Center

    Stodden, David F.; Goodway, Jacqueline D.; Langendorfer, Stephen J.; Roberton, Mary Ann; Rudisill, Mary E.; Garcia, Clersida; Garcia, Luis E.

    2008-01-01

    Although significant attention has been paid to promoting the importance of physical activity in children, adolescents, and adults, we do not currently understand how to promote sustained physical activity levels throughout the lifespan. We contend that previous research has failed to consider the dynamic and synergistic role that motor skill…

  19. Relationship between Motor Skill Impairment and Severity in Children with Asperger Syndrome

    ERIC Educational Resources Information Center

    Hilton, Claudia; Wente, Lyndsay; LaVesser, Patricia; Ito, Max; Reed, Carol; Herzberg, Georgiana

    2007-01-01

    This study examined the correlation between severity and motor impairment in children with Asperger syndrome (AS). Children, ages 6-12 with AS (N = 51) and a control group of typical children (N = 56), were assessed using the Social Responsiveness Scale (SRS) and the Movement Assessment Battery For Children (MABC). A bivariate correlational design…

  20. A Study of the Effects of an Intensive Training Program on the Motor Skills of Young Educable Mentally Retarded Children. Final Report.

    ERIC Educational Resources Information Center

    Ross, Sheila A.

    In a study on improvement of basic motor skills by educable mentally retarded (EMR) children with special training in a sport and game situation, 21 EMR boys and 19 EMR girls (aged 4-1 to 10-1) were divided into an experimental and a control group, matched by chronological age, IQ, sex, and pretest scores on the Basic Skills Test (reliability .97)…

  1. Development of Body Composition, Hormone Profile, Physical Fitness, General Perceptual Motor Skills, Soccer Skills and On-The-Ball Performance in Soccer-Specific Laboratory Test Among Adolescent Soccer Players

    PubMed Central

    Vänttinen, Tomi; Blomqvist, Minna; Häkkinen, Keijo

    2010-01-01

    The aim of the present study was to examine the development of on-the-ball skills in soccer-specific laboratory test and to examine how traditional measures of body composition, hormone profile, physical fitness, general perceptual motor skills and soccer skills were related to performance measured in open skill environment among 10, 12, and 14-year-old regional male soccer players (n = 12/group). The measured variables were height, weight, fat, muscle mass, testosterone, 10m sprint, agility, counter movement jump, peripheral awareness, Eye- Hand-Foot coordination, passing skill, dribbling skill and on-the-ball skills (performance time and passing accuracy) in soccer-specific laboratory test. A significant main effect by age was found in all measured variables except in fat, in peripheral awareness and in passing accuracy. In discriminant analysis 63.9% (λ = 0.603, F = 4.600, p < 0.01) of the players were classified correctly based on physical fitness and general perceptual motor skills into three ability groups originally classified with performance time in soccer-specific laboratory test. Correlation co- efficient analysis with-in age groups revealed that variables associated with performance time in soccer-specific laboratory test were peripheral awareness (r = 0.72, p < 0.01) in 10-year-olds; testosterone (r = -0.70, p < 0.05), dribbling skill (r = 0.73, p < 0.01) and passing skill (r = 0.73, p < 0.01) in 12-year-olds; agility (r = 0.79, p < 0.01), counter movement jump (r = - 0.62, p < 0.01), dribbling skill (r = 0.80, p < 0.01) and passing skill (r = 0.58, p < 0. 05) in 14-year olds. Corresponding relationships with passing accuracy were weight (r = 0.59, p < 0.05), fat (r = 0.66, p < 0.05), 10m sprint (r = 0.71, p < 0.01) and countermovement jump (r = -0.64, p < 0.05) in 10-year-olds; Eye-Hand-Foot coordination (r = 0.63, p < 0.05) in 14-year- olds. The relationship between soccer-specific anticipation time and performance time in soccer- specific

  2. Development of body composition, hormone profile, physical fitness, general perceptual motor skills, soccer skills and on-the-ball performance in soccer-specific laboratory test among adolescent soccer players.

    PubMed

    Vänttinen, Tomi; Blomqvist, Minna; Häkkinen, Keijo

    2010-01-01

    The aim of the present study was to examine the development of on-the-ball skills in soccer-specific laboratory test and to examine how traditional measures of body composition, hormone profile, physical fitness, general perceptual motor skills and soccer skills were related to performance measured in open skill environment among 10, 12, and 14-year-old regional male soccer players (n = 12/group). The measured variables were height, weight, fat, muscle mass, testosterone, 10m sprint, agility, counter movement jump, peripheral awareness, Eye- Hand-Foot coordination, passing skill, dribbling skill and on-the-ball skills (performance time and passing accuracy) in soccer-specific laboratory test. A significant main effect by age was found in all measured variables except in fat, in peripheral awareness and in passing accuracy. In discriminant analysis 63.9% (λ = 0.603, F = 4.600, p < 0.01) of the players were classified correctly based on physical fitness and general perceptual motor skills into three ability groups originally classified with performance time in soccer-specific laboratory test. Correlation co- efficient analysis with-in age groups revealed that variables associated with performance time in soccer-specific laboratory test were peripheral awareness (r = 0.72, p < 0.01) in 10-year-olds; testosterone (r = -0.70, p < 0.05), dribbling skill (r = 0.73, p < 0.01) and passing skill (r = 0.73, p < 0.01) in 12-year-olds; agility (r = 0.79, p < 0.01), counter movement jump (r = - 0.62, p < 0.01), dribbling skill (r = 0.80, p < 0.01) and passing skill (r = 0.58, p < 0. 05) in 14-year olds. Corresponding relationships with passing accuracy were weight (r = 0.59, p < 0.05), fat (r = 0.66, p < 0.05), 10m sprint (r = 0.71, p < 0.01) and countermovement jump (r = -0.64, p < 0.05) in 10-year-olds; Eye-Hand-Foot coordination (r = 0.63, p < 0.05) in 14-year- olds. The relationship between soccer-specific anticipation time and performance time in soccer- specific

  3. Blind Evaluation of Body Reflexes and Motor Skills in Learning Disability.

    ERIC Educational Resources Information Center

    Freides, David; And Others

    1980-01-01

    Twelve 6 to 10 year old boys with learning disability were blindly compared with paired controls on measures of postural and equilibrium reflexes as well as skills. Learning disabled children as a group showed significant deficits on all measures; a few, however, were totally without deficit. (Author/SBH)

  4. Domain Expertise and the Effectiveness of Dynamic Simulator Interfaces in the Acquisition of Procedural Motor Skills

    ERIC Educational Resources Information Center

    Akinlofa, Olurotimi R.; Holt, Patrik O'Brian; Elyan, Eyad

    2013-01-01

    Previous research into the effectiveness of dynamic versus static instructional design paradigms has reported divergent findings. Dynamic instructions have been shown to be more effective in teaching novel procedural skills. In contrast, the apparent benefit of dynamic over static instructions has been attributed in other studies to the cognitive…

  5. Challenges to Cognitive Bases for an Especial Motor Skill at the Regulation Baseball Pitching Distance

    ERIC Educational Resources Information Center

    Simons, Jeffery P.; Wilson, Jacob M.; Wilson, Gabriel J.; Theall, Stephen

    2009-01-01

    We tested expert baseball pitchers for evidence of especial skills at the regulation pitching distance. Seven college pitchers threw indoors to a target placed at 60.5 feet (18.44 m) and four closer and four further distances away. Accuracy at the regulation distance was significantly better than predicted by regression on the nonregulation…

  6. Fine Motor Skills and Early Comprehension of the World: Two New School Readiness Indicators

    ERIC Educational Resources Information Center

    Grissmer, David; Grimm, Kevin J.; Aiyer, Sophie M.; Murrah, William M.; Steele, Joel S.

    2010-01-01

    Duncan et al. (2007) presented a new methodology for identifying kindergarten readiness factors and quantifying their importance by determining which of children's developing skills measured around kindergarten entrance would predict later reading and math achievement. This article extends Duncan et al.'s work to identify kindergarten readiness…

  7. Contribution of Organized and Nonorganized Activity to Children's Motor Skills and Fitness

    ERIC Educational Resources Information Center

    Hardy, Louise L.; O'Hara, Blythe J.; Rogers, Kris; St George, Alexis; Bauman, Adrian

    2014-01-01

    Background: To examine the associations between children's organized physical activity (OPA), nonorganized physical activity (NOPA), and health-related outcomes (fundamental movement skill [FMS] fitness). Methods: Cross-sectional survey of children aged 10-16?years (N?=?4273). Organized physical activity and NOPA were assessed by self-report,…

  8. A Training Program for Selected Self-Feeding Skills for the Motorically Impaired.

    ERIC Educational Resources Information Center

    Banerdt, Barbara; Bricker, Diane

    1978-01-01

    The effects of proper positioning and prosthetic equipment on the acquisition of selected self-feeding skills were studied in a young cerebral palsy child, with an eye toward developing evaluation strategies and procedures that could be easily employed by a teacher or parent in a classroom or home setting. (Author/DLS)

  9. Primary School Teacher Perceived Self-Efficacy to Teach Fundamental Motor Skills

    ERIC Educational Resources Information Center

    Callea, Micarle B.; Spittle, Michael; O'Meara, James; Casey, Meghan

    2008-01-01

    Fundamental Movement Skills (FMS) are a part of the school curricula, yet many Australian primary-age children are not mastering FMS. One reason may be a lack of perceived self-efficacy of primary teachers to teach FMS. This study investigated the level of perceived self-efficacy of primary school teachers to teach FMS in Victoria, Australia. A…

  10. A model of motor inhibition for a complex skill: baseball batting.

    PubMed

    Gray, Rob

    2009-06-01

    The ability to inhibit an ongoing action in response to a signal from the environment is important for many perceptual-motor actions. This paper examines a particular example of this behavior: attempting to inhibit or "check" a swing in baseball batting. A model of motor inhibition in batting is proposed. In the model there are three different inhibition signals (out of range launch angle, early expected-actual trajectory discrepancy, and late expected-actual trajectory discrepancy) resulting in four possible response outcomes for the batter's swing (full swing, inhibited swing, partial response, or interrupted swing). The predictions of the model were compared with the actual batting performance of 20 baseball players using a high-fidelity batting simulator. The proportions of the different response outcomes could be explained by the inhibition model for 17/20 of the batters in the study. These findings suggest that models of motor inhibition developed for simple, discrete tasks can be applied to complex, multistage behaviors. This batting inhibition model could be used to provide a quantitative measure of a player's bat control for training and player-screening purposes. (PsycINFO Database Record (c) 2009 APA, all rights reserved). PMID:19586249

  11. Rhetorical meta-language to promote the development of students' writing skills and subject matter understanding

    NASA Astrophysics Data System (ADS)

    Pelger, Susanne; Sigrell, Anders

    2016-01-01

    Background: Feedback is one of the most significant factors for students' development of writing skills. For feedback to be successful, however, students and teachers need a common language - a meta-language - for discussing texts. Not least because in science education such a meta-language might contribute to improve writing training and feedback-giving. Purpose: The aim of this study was to explore students' perception of teachers' feedback given on their texts in two genres, and to suggest how writing training and feedback-giving could become more efficient. Sample: In this study were included 44 degree project students in biology and molecular biology, and 21 supervising teachers at a Swedish university. Design and methods: The study concerned students' writing about their degree projects in two genres: scientific writing and popular science writing. The data consisted of documented teacher feedback on the students' popular science texts. It also included students' and teachers' answers to questionnaires about writing and feedback. All data were collected during the spring of 2012. Teachers' feedback, actual and recalled - by students and teachers, respectively - was analysed and compared using the so-called Canons of rhetoric. Results: While the teachers recalled the given feedback as mainly positive, most students recalled only negative feedback. According to the teachers, suggested improvements concerned firstly the content, and secondly the structure of the text. In contrast, the students mentioned language style first, followed by content. Conclusions: The disagreement between students and teachers regarding how and what feedback was given on the students texts confirm the need of improved strategies for writing training and feedback-giving in science education. We suggest that the rhetorical meta-language might play a crucial role in overcoming the difficulties observed in this study. We also discuss how training of writing skills may contribute to

  12. Surface area accounts for the relation of gray matter volume to reading-related skills and history of dyslexia.

    PubMed

    Frye, Richard E; Liederman, Jacqueline; Malmberg, Benjamin; McLean, John; Strickland, David; Beauchamp, Michael S

    2010-11-01

    It is unknown whether the abnormalities in brain structure and function observed in dyslexic readers are congenital or arise later in development. Analyzing the 2 components of gray matter volume separately may help in differentiating these possibilities. Gray matter volume is the product of cortical surface area, determined during prenatal brain development, and cortical thickness, determined during postnatal development. For this study, 16 adults with a history of phonological dyslexia and 16 age- and gender-matched controls underwent magnetic resonance imaging and an extensive battery of tests of reading-related skills. Cortical surface area and gray matter volume measures of the whole brain, the inferior frontal gyrus, and the fusiform gyrus were similarly related to phonological skills and a history of dyslexia. There was no relationship between cortical thickness and phonological skills or history of dyslexia. Because cortical surface area reflects cortical folding patterns determined prenatally, this suggests that brain differences in dyslexia are rooted in early cortical development and are not due to compensatory changes that occur during postnatal development and would be expected to influence cortical thickness. This study demonstrates the importance of examining the separate components of gray matter volume when studying developmental abnormalities. PMID:20154011

  13. Developing Basic Motor Skills in Infants and Children with Severe Handicaps: An Experimental Analysis with Implications for Education and Treatment. Final Report.

    ERIC Educational Resources Information Center

    Rues, Jane; And Others

    This final report details the outcomes of a 3-year project involving children with severe disabilities (ages birth-6) designed to: (1) determine the effectiveness of specific therapeutic intervention techniques on the development of basic motor skills in young children with severe and multiple disabilities; (2) explore the relationship between…

  14. Investigating the Visual-Motor Integration Skills of 60-72-Month-Old Children at High and Low Socio-Economic Status as Regard the Age Factor

    ERIC Educational Resources Information Center

    Ercan, Zülfiye Gül; Ahmetoglu, Emine; Aral, Neriman

    2011-01-01

    This study aims to define whether age creates any differences in the visual-motor integration skills of 60-72 months old children at low and high socio-economic status. The study was conducted on a total of 148 children consisting of 78 children representing low socio-economic status and 70 children representing high socio-economic status in the…

  15. Development and preliminary evaluation of a particulate matter emission factor model for European motor vehicles.

    PubMed

    Singh, R B; Colls, J J

    2000-10-01

    Although modeling of gaseous emissions from motor vehicles is now quite advanced, prediction of particulate emissions is still at an unsophisticated stage. Emission factors for gasoline vehicles are not reliably available, since gasoline vehicles are not included in the European Union (EU) emission test procedure. Regarding diesel vehicles, emission factors are available for different driving cycles but give little information about change of emissions with speed or engine load. We have developed size-specific speed-dependent emission factors for gasoline and diesel vehicles. Other vehicle-generated emission factors are also considered and the empirical equation for re-entrained road dust is modified to include humidity effects. A methodology is proposed to calculate modal (accelerating, cruising, or idling) emission factors. The emission factors cover particle size ranges up to 10 microns, either from published data or from user-defined size distributions. A particulate matter emission factor model (PMFAC), which incorporates virtually all the available information on particulate emissions for European motor vehicles, has been developed. PMFAC calculates the emission factors for five particle size ranges [i.e., total suspended particulates (TSP), PM10, PM5, PM2.5, and PM1] from both vehicle exhaust and nonexhaust emissions, such as tire wear, brake wear, and re-entrained road dust. The model can be used for an unlimited number of roads and lanes, and to calculate emission factors near an intersection in user-defined elements of the lane. PMFAC can be used for a variety of fleet structures. Hot emission factors at the user-defined speed can be calculated for individual vehicles, along with relative cold-to-hot emission factors. The model accounts for the proportions of distance driven with cold engines as a function of ambient temperature and road type (i.e., urban, rural, or motorway). A preliminary evaluation of PMFAC with an available dispersion model to predict

  16. Developing an eBook-Integrated High-Fidelity Mobile App Prototype for Promoting Child Motor Skills and Taxonomically Assessing Children's Emotional Responses Using Face and Sound Topology.

    PubMed

    Brown, William; Liu, Connie; John, Rita Marie; Ford, Phoebe

    2014-01-01

    Developing gross and fine motor skills and expressing complex emotion is critical for child development. We introduce "StorySense", an eBook-integrated mobile app prototype that can sense face and sound topologies and identify movement and expression to promote children's motor skills and emotional developmental. Currently, most interactive eBooks on mobile devices only leverage "low-motor" interaction (i.e. tapping or swiping). Our app senses a greater breath of motion (e.g. clapping, snapping, and face tracking), and dynamically alters the storyline according to physical responses in ways that encourage the performance of predetermined motor skills ideal for a child's gross and fine motor development. In addition, our app can capture changes in facial topology, which can later be mapped using the Facial Action Coding System (FACS) for later interpretation of emotion. StorySense expands the human computer interaction vocabulary for mobile devices. Potential clinical applications include child development, physical therapy, and autism. PMID:25954336

  17. Modulation dynamics in the orofacial sensorimotor cortex during motor skill acquisition.

    PubMed

    Arce-McShane, Fritzie I; Hatsopoulos, Nicholas G; Lee, Jye-Chang; Ross, Callum F; Sessle, Barry J

    2014-04-23

    The orofacial sensorimotor cortex is known to play a role in motor learning. However, how motor learning changes the dynamics of neuronal activity and whether these changes differ between orofacial primary motor (MIo) and somatosensory (SIo) cortices remain unknown. To address these questions, we used chronically implanted microelectrode arrays to track learning-induced changes in the activity of simultaneously recorded neurons in MIo and SIo as two naive monkeys (Macaca mulatta) were trained in a novel tongue-protrusion task. Over a period of 8-12 d, the monkeys showed behavioral improvements in task performance that were accompanied by rapid and long-lasting changes in neuronal responses in MIo and SIo occurring in parallel: (1) increases in the proportion of task-modulated neurons, (2) increases in the mutual information between tongue-protrusive force and spiking activity, (3) reductions in the across-trial firing rate variability, and (4) transient increases in coherent firing of neuronal pairs. More importantly, the time-resolved mutual information in MIo and SIo exhibited temporal alignment. While showing parallel changes, MIo neurons exhibited a bimodal distribution of peak correlation lag times between spiking activity and force, whereas SIo neurons showed a unimodal distribution. Moreover, coherent activity between pairs of MIo neurons was higher and centered around force onset compared with pairwise coherence of SIo neurons. Overall, the results suggest that the neuroplasticity in MIo and SIo occurring in parallel serves as a substrate for linking sensation and movement during sensorimotor learning, whereas the differing dynamic organizations reflect specific ways to control movement parameters as learning progresses. PMID:24760857

  18. Motor-skill learning-associated gene regulation in the striatum: effects of cocaine.

    PubMed

    Willuhn, Ingo; Steiner, Heinz

    2006-12-01

    Psychostimulant-induced molecular changes in cortico-basal ganglia-cortical circuits play a critical role in addiction and dependence. These changes include alterations in gene regulation particularly in projection neurons of the sensorimotor striatum. We previously showed that cocaine-induced gene regulation in such neurons is dependent on the behavior performed during drug action. Rats trained on a running wheel under the influence of cocaine for 4 days subsequently displayed greater c-fos induction by cocaine than untrained controls. This effect was selective for the sensorimotor striatum, which is known to mediate forms of motor learning. In the present study, we investigated whether this enhanced cellular responsiveness was associated with learning of wheel running or with prolonged running (exercising), by assessing c-fos inducibility after 1, 2, or 8 days of training. Wheel training was performed after injection of cocaine (25 mg/kg) or vehicle, and c-fos induction by a cocaine challenge was measured 24 h later. Rats that trained under cocaine (but not vehicle) showed a greater c-fos response in the striatum compared to locked-wheel controls. This effect was present after the 1-day training, peaked after 2 days, and dissipated by 8 days of training. Similar effects were found for substance P, but not enkephalin, expression. These changes in striatal gene regulation paralleled improvement in wheel running, which was facilitated by cocaine. Thus, these training-induced molecular changes do not appear to represent exercising effects, but may reflect motor learning-associated neuronal changes altered by cocaine. Such cocaine effects may contribute to aberrant motor learning implicated in psychostimulant addiction. PMID:16395306

  19. The contextual interference effect for skill variations from the same and different generalized motor programs.

    PubMed

    Sekiya, H; Magill, R A; Sidaway, B; Anderson, D I

    1994-12-01

    Magill and Hall (1990) hypothesized that the contextual interference (CI) effect is found only when task variations to be learned are governed by different generalized motor programs (GMPs). The present experiments examined their hypothesis by requiring subjects to learn variations of a tapping task that had either different (Experiment 1) or the same (Experiment 2) relative timing structure. In each experiment, subjects (N = 36) performed 270 acquisition trials with knowledge of results (KR) in either a blocked or a serial order. One day later, subjects performed 30 retention trials without KR. In data analyses, errors due to parameter modifications were dissociated from errors due to GMP construction to examine which process was responsible for the CI effect. In both experiments, parameter learning created a CI effect while GMP learning failed to produce a CI effect. In the light of these findings, a modification is proposed to the Magill and Hall (1990) hypothesis that takes into account these distinct processes in motor learning. PMID:7886282

  20. Motor Skills Enhance Procedural Memory Formation and Protect against Age-Related Decline

    PubMed Central

    Müller, Nils C. J.; Genzel, Lisa; Konrad, Boris N.; Pawlowski, Marcel; Neville, David; Fernández, Guillén; Steiger, Axel

    2016-01-01

    The ability to consolidate procedural memories declines with increasing age. Prior knowledge enhances learning and memory consolidation of novel but related information in various domains. Here, we present evidence that prior motor experience–in our case piano skills–increases procedural learning and has a protective effect against age-related decline for the consolidation of novel but related manual movements. In our main experiment, we tested 128 participants with a sequential finger-tapping motor task during two sessions 24 hours apart. We observed enhanced online learning speed and offline memory consolidation for piano players. Enhanced memory consolidation was driven by a strong effect in older participants, whereas younger participants did not benefit significantly from prior piano experience. In a follow up independent control experiment, this compensatory effect of piano experience was not visible after a brief offline period of 30 minutes, hence requiring an extended consolidation window potentially involving sleep. Through a further control experiment, we rejected the possibility that the decreased effect in younger participants was caused by training saturation. We discuss our results in the context of the neurobiological schema approach and suggest that prior experience has the potential to rescue memory consolidation from age-related cognitive decline. PMID:27333186

  1. Cortical activity of skilled performance in a complex sports related motor task.

    PubMed

    Baumeister, Jochen; Reinecke, Kirsten; Liesen, Heinz; Weiss, Michael

    2008-11-01

    A skilled player in goal-directed sports performance has the ability to process internal and external information in an effective manner and decide which pieces of information are important and which are irrelevant. Focused attention and somatosensory information processing play a crucial role in this process. Electroencephalographic (EEG) recordings are able to demonstrate cortical changes in conjunction with this concept and were examined during a golf putting performance in an expert-novice paradigm. The success in putting (score) and performance-related cortical activity were recorded with an EEG during a 5 x 4 min putting series. Subjects were asked to putt balls for four min at their own pace. The EEG data was divided into different frequencies: Theta (4.75-6.75 Hz), Alpha-1 (7-9.5 Hz), Alpha-2 (9.75-12.5 Hz) and Beta-1 (12.75-18.5 Hz) and performance related power values were calculated. Statistical analysis shows significant better performance in the expert golfers (P < 0.001). This was associated with higher fronto-midline Theta power (P < 0.05) and higher parietal Alpha-2 power values (P < 0.05) compared to the novices in golf putting. Frontal Theta and parietal Alpha-2 spectral power in the ongoing EEG demonstrate differences due to skill level. Furthermore the findings suggest that with increasing skill level, golfers have developed task solving strategies including focussed attention and an economy in parietal sensory information processing which lead to more successful performance. In a theoretical framework both cortical parameters may play a role in the concept of the working memory. PMID:18607621

  2. Inosine promotes recovery of skilled motor function in a model of focal brain injury.

    PubMed

    Smith, Justin M; Lunga, Precious; Story, David; Harris, Neil; Le Belle, Janel; James, Michael F; Pickard, John D; Fawcett, James W

    2007-04-01

    Recovery of function following traumatic brain injury (TBI) is partly through neuronal plasticity. However plasticity is limited in the adult CNS compared with young animals. In order to test whether treatments that enhance CNS plasticity might improve functional recovery after TBI, a new rat head injury model was developed, in which a computer-controlled impactor produced full thickness lesions of the forelimb region of the sensorimotor cortex. Behavioural deficits were seen in several sensorimotor tasks, most of which recovered spontaneously by 21 days. However, skilled paw reaching behaviour, a task that requires corticospinal function, was only approximately 40% recovered by 28 days. In order to promote plasticity inosine was infused into the lateral ventricles for 28 days. This treatment produced an almost complete recovery of skilled paw reaching ability, associated with sprouting of the uninjured corticospinal axons across the midline into the territory of the lesioned pathway. In the cervical spinal cord the number of corticospinal axons originating from the uninjured cortex that innervated the contralateral cervical cord was five times that of controls, and in the red nucleus the number of contralaterally projecting axons was four times control values. Inosine treatment did not affect recovery in unskilled behavioural tasks, most of which recovered to normal levels by 28 days without treatment. Animals were placed in an enriched environment as an alternative method to promote plasticity. This resulted in more rapid recovery in several tasks including skilled paw function, but by 28 days normally housed animals had caught up to the same level of improvement. PMID:17293357

  3. Effects of reducing frequency of intrinsic knowledge of results on the learning of a motor skill.

    PubMed

    Butki, Brian D; Hoffman, Shirl J

    2003-10-01

    The guidance hypothesis suggests too much knowledge of results during skill acquisition can be detrimental to long-term performance. Possibly, the learner becomes dependent on augmented KR and is unable to use intrinsic feedback. This study examined this hypothesis with three groups performing a golf putting task. One group received continuous KR about ball path and final location; the other groups were deprived of specific KR on 50% or 100% of the acquisition trials. As expected, the continuous KR group performed better during acquisition, but the KR-deprived groups performed better on delayed retention trials, especially when KR was absent. PMID:14620246

  4. White Matter Fractional Anisotropy Correlates With Speed of Processing and Motor Speed in Young Childhood Cancer Survivors

    SciTech Connect

    Aukema, Eline J.; Oudhuis, Nienke; Vos, Frans M.; Reneman, Liesbeth; Last, Bob F.; Grootenhuis, Martha A.

    2009-07-01

    Purpose: To determine whether childhood medulloblastoma and acute lymphoblastic leukemia (ALL) survivors have decreased white matter fractional anisotropy (WMFA) and whether WMFA is related to the speed of processing and motor speed. Methods and Materials: For this study, 17 patients (6 medulloblastoma, 5 ALL treated with high-dose methotrexate (MTX) (4 x 5 g/m{sup 2}) and 6 with low-dose MTX (3 x 2 g/m{sup 2})) and 17 age-matched controls participated. On a 3.0-T magnetic resonance imaging (MRI) scanner, diffusion tensor imaging (DTI) was performed, and WMFA values were calculated, including specific regions of interest (ROIs), and correlated with the speed of processing and motor speed. Results: Mean WMFA in the patient group, mean age 14 years (range 8.9 - 16.9), was decreased compared with the control group (p = 0.01), as well as WMFA in the right inferior fronto-occipital fasciliculus (IFO) (p = 0.03) and in the genu of the corpus callosum (gCC) (p = 0.01). Based on neurocognitive results, significant positive correlations were present between processing speed and WMFA in the splenium (sCC) (r = 0.53, p = 0.03) and the body of the corpus callosum (bCC) (r = 0.52, p = 0.03), whereas the right IFO WMFA was related to motor speed (r = 0.49, p < 0.05). Conclusions: White matter tracts, using a 3.0-T MRI scanner, show impairment in childhood cancer survivors, medulloblastoma survivors, and also those treated with high doses of MTX. In particular, white matter tracts in the sCC, bCC and right IFO are positively correlated with speed of processing and motor speed.

  5. Self-Control of Task Difficulty During Early Practice Promotes Motor Skill Learning.

    PubMed

    Andrieux, Mathieu; Boutin, Arnaud; Thon, Bernard

    2016-01-01

    This study was designed to determine whether the effect of self-control of task difficulty on motor learning is a function of the period of self-control administration. In a complex anticipation-coincidence task that required participants to intercept 3 targets with a virtual racquet, the task difficulty was either self-controlled or imposed to the participants in the two phases of the acquisition session. First, the results confirmed the beneficial effects of self-control over fully prescribed conditions. Second, the authors also demonstrated that a partial self-control of task difficulty better promotes learning than does a complete self-controlled procedure. Overall, the results revealed that these benefits are increased when this choice is allowed during early practice. The findings are discussed in terms of theoretical and applied perspectives. PMID:25961604

  6. Girls can play ball: Stereotype threat reduces variability in a motor skill.

    PubMed

    Huber, Meghan E; Brown, Adam J; Sternad, Dagmar

    2016-09-01

    The majority of research on stereotype threat shows what is expected: threat debilitates performance. However, facilitation is also possible, although seldom reported. This study investigated how stereotype threat influences novice females when performing the sensorimotor task of bouncing a ball to a target. We tested the predictions of two prevailing accounts for debilitation and facilitation due to sterotype threat effects: working memory and mere effort. Experimental results showed that variability in performance decreased more in stigmatized females than in control females, consistent with the prediction of the mere effort account, but inconsistent with the working memory account. These findings suggest that stereotype threat effects may be predicated upon the correctness of the dominant motor behavior, rather than on a novice-expert distinction or task difficulty. Further, a comprehensive understanding should incorporate the fact that stereotype threat can facilitate, as well as debilitate, performance. PMID:27249638

  7. Deficits in Lower Limb Muscle Reflex Contraction Latency and Peak Force Are Associated With Impairments in Postural Control and Gross Motor Skills of Children With Developmental Coordination Disorder

    PubMed Central

    Fong, Shirley S.M.; Ng, Shamay S.M.; Guo, X.; Wang, Yuling; Chung, Raymond C.K.; Stat, Grad; Ki, W.Y.; Macfarlane, Duncan J.

    2015-01-01

    Abstract This cross-sectional, exploratory study aimed to compare neuromuscular performance, balance and motor skills proficiencies of typically developing children and those with developmental coordination disorder (DCD) and to determine associations of these neuromuscular factors with balance and motor skills performances in children with DCD. One hundred thirty children with DCD and 117 typically developing children participated in the study. Medial hamstring and gastrocnemius muscle activation onset latencies in response to an unexpected posterior-to-anterior trunk perturbation were assessed by electromyography and accelerometer. Hamstring and gastrocnemius muscle peak force and time to peak force were quantified by dynamometer, and balance and motor skills performances were evaluated with the Movement Assessment Battery for Children (MABC). Independent t tests revealed that children with DCD had longer hamstring and gastrocnemius muscle activation onset latencies (P < 0.001) and lower isometric peak forces (P < 0.001), but not times to peak forces (P > 0.025), than the controls. Multiple regression analysis accounting for basic demographics showed that gastrocnemius peak force was independently associated with the MABC balance subscore and ball skills subscore, accounting for 5.7% (P = 0.003) and 8.5% (P = 0.001) of the variance, respectively. Gastrocnemius muscle activation onset latency also explained 11.4% (P < 0.001) of the variance in the MABC ball skills subscore. Children with DCD had delayed leg muscle activation onset times and lower isometric peak forces. Gastrocnemius peak force was associated with balance and ball skills performances, whereas timing of gastrocnemius muscle activation was a determinant of ball skill performance in the DCD population. PMID:26469921

  8. Speed and accuracy in the learning of a complex motor skill.

    PubMed

    Engelhorn, R

    1997-12-01

    The effect of emphasizing speed or accuracy on the learning of a high speed-high accuracy skill, the fastpitch softball pitch was investigated. 26 10- and 11-yr.-old girls were randomly assigned to two groups receiving feedback on speed of throwing or accuracy of throwing during a 6-wk. training. Measurements of speed and accuracy were made and recorded on all participants at each practice session and a videotape of their pitching technique was also made at each session. Data were subjected to 2 x 3 (2 groups by 3 testing times) repeated-measures analyses of variance. The speed group threw faster and with better technique during the study and was able to maintain speed and accuracy in the reversed test condition. PMID:9399311

  9. [Reaching behavior of rats during realization of a lateralized motor food skill].

    PubMed

    Stashkevich, I S; Kulikov, M A

    2004-01-01

    Adult Wistar rats were trained to obtain food pellets from a narrow horizontal tube with a preferred forepaw. The feeder was equipped with five photoelectric sensors with 5-mm spacing. The following parameters were recorded: total number of movements performed for a given task, amplitude (depth) of each movement, number of anticipatory movements performed with different amplitudes, and amplitude of a successful movement. It was shown that in rats with good skill acquisition, a successful food extraction was preceded by a series of differently organized sequence of preliminary movements. In some rats, such a series consisted of initial non-deep attempts followed by movements with high amplitude, whereas in other animals, it was represented, mainly, by deep attempts. Both groups of animals terminated the series by grasping and extracting food from a long distance. It is suggested that the observed organizations of the lateralized food-getting behavior of rats under the given experimental conditions represent fixed (stereotyped) action patterns. PMID:15326954

  10. The Elaborated Environmental Stress Hypothesis as a Framework for Understanding the Association Between Motor Skills and Internalizing Problems: A Mini-Review

    PubMed Central

    Mancini, Vincent O.; Rigoli, Daniela; Cairney, John; Roberts, Lynne D.; Piek, Jan P.

    2016-01-01

    Poor motor skills have been shown to be associated with a range of psychosocial issues, including internalizing problems (anxiety and depression). While well-documented empirically, our understanding of why this relationship occurs remains theoretically underdeveloped. The Elaborated Environmental Stress Hypothesis by Cairney et al. (2013) provides a promising framework that seeks to explain the association between motor skills and internalizing problems, specifically in children with developmental coordination disorder (DCD). The framework posits that poor motor skills predispose the development of internalizing problems via interactions with intermediary environmental stressors. At the time the model was proposed, limited direct evidence was available to support or refute the framework. Several studies and developments related to the framework have since been published. This mini-review seeks to provide an up-to-date overview of recent developments related to the Elaborated Environmental Stress Hypothesis. We briefly discuss the past research that led to its development, before moving to studies that have investigated the framework since it was proposed. While originally developed within the context of DCD in childhood, recent developments have found support for the model in community samples. Through the reviewed literature, this article provides support for the Elaborated Environmental Stress Hypothesis as a promising theoretical framework that explains the psychosocial correlates across the broader spectrum of motor ability. However, given its recent conceptualization, ongoing evaluation of the Elaborated Environmental Stress Hypothesis is recommended. PMID:26941690

  11. Motor-driven effective temperature and viscoelastic response of active matter.

    PubMed

    Morozov, Konstantin I; Pismen, Len M

    2010-06-01

    We consider dynamic response of a cytoskeletal network to both thermal and motor-induced fluctuations. The latter are viewed in two independent ways, as either additive or multiplicative colored noise. Due to a natural upper frequency limit of the motor agitation, the response of a living cell is similar to that of an equilibrium system in the high-frequency domain. At lower frequencies, the role of motor agitation manifests itself in intensified network fluctuations, which is equivalent to effective growth of the environment temperature. The effective temperature becomes frequency dependent, which signifies violation of the conventional fluctuation-dissipation theorem. The motor action affects the dynamic shear modulus in two opposite ways: by stiffening the network through filament prestress and softening it through increased agitation. The latter tendency is isolated when only single-headed motors are present. The theory is in good agreement with experimental measurements of the amplitude of the shear modulus under these conditions. PMID:20866455

  12. High-Impact, Self-Motivated Training Within an Enriched Environment With Single Animal Tracking Dose-Dependently Promotes Motor Skill Acquisition and Functional Recovery.

    PubMed

    Starkey, Michelle L; Bleul, Christiane; Kasper, Hansjörg; Mosberger, Alice C; Zörner, Björn; Giger, Stefan; Gullo, Miriam; Buschmann, Frank; Schwab, Martin E

    2014-02-11

    Functional recovery following central nervous system injuries is strongly influenced by rehabilitative training. In the clinical setting, the intensity of training and the level of motivation for a particular task are known to play important roles. With increasing neuroscience studies investigating the effects of training and rehabilitation, it is important to understand how the amount and type of training of individuals influences outcome. However, little is known about the influence of spontaneous "self-training" during daily life as it is often uncontrolled, not recorded, and mostly disregarded. Here, we investigated the effects of the intensity of self-training on motor skill acquisition in normal, intact rats and on the recovery of functional motor behavior following spinal cord injury in adult rats. We used a custom-designed small animal tracking system, "RatTrack," to continuously record the activity of multiple rats, simultaneously in a complex Natural Habitat-enriched environment. Naïve, adult rats performed high-intensity, self-motivated motor training, which resulted in them out-performing rats that were conventionally housed and trained on skilled movement tasks, for example, skilled prehension (grasping) and ladder walking. Following spinal cord injury the amount of self-training was correlated with improved functional recovery. These data suggest that high-impact, self-motivated training leads to superior skill acquisition and functional recovery than conventional training paradigms. These findings have important implications for the design of animal studies investigating rehabilitation and for the planning of human rehabilitation programs. PMID:24519022

  13. Relationship between characteristics on magnetic resonance imaging and motor outcomes in children with cerebral palsy and white matter injury.

    PubMed

    Reid, Susan M; Ditchfield, Michael R; Bracken, Jenny; Reddihough, Dinah S

    2015-01-01

    In a population cohort of children with white matter injury (WMI) and cerebral palsy (CP), we aimed to describe the magnetic resonance imaging (MRI) characteristics, identify key structure-function relationships, and classify the severity of WMI in a clinically relevant way. Stratified on MRI laterality/symmetry, variables indicating the extent and location of cerebral abnormalities for 272 children with CP and WMI on chronic-phase MRI were related to gross motor function and motor topography using univariable and multivariable approaches. We found that symmetrical involvement, severe WM loss in the hemispheres and corpus callosum, and cerebellar involvement were the strongest predictors of poor gross motor function, but the final model explained only a small proportion of the variability. Bilateral, extensive WM loss was more likely to result in quadriplegia, whereas volume loss in the posterior-mid WM more frequently resulted in diplegia. The extent and location of MRI abnormalities differed according to laterality/symmetry; asymmetry was associated with less extensive hemispheric involvement than symmetrical WMI, and unilateral lesions were more focal and located more anteriorly. In summary, laterality/symmetry of WMI, possibly reflecting different pathogenic mechanisms, together with extent of WM loss and cerebellar abnormality predicted gross motor function in CP, but to a limited extent. PMID:26263404

  14. The negative cell cycle regulator, Tob (transducer of ErbB-2), is involved in motor skill learning

    SciTech Connect

    Wang Xinming; Gao Xiang; Zhang Xuehan; Tu Yanyang; Jin Meilei; Zhao Guoping; Yu Lei; Jing Naihe; Li Baoming . E-mail: bmli@fudan.edu.cn

    2006-02-24

    Tob (transducer of ErbB-2) is a negative cell cycle regulator with anti-proliferative activity in peripheral tissues. Our previous study identified Tob as a protein involved in hippocampus-dependent memory consolidation (M.L. Jin, X.M. Wang, Y.Y. Tu, X.H. Zhang, X. Gao, N. Guo, Z.Q. Xie, G.P. Zhao, N.H. Jing, B.M. Li, Y.Yu, The negative cell cycle regulator, Tob (Transducer of ErbB-2), is a multifunctional protein involved in hippocampus-dependent learning and memory, Neuroscience 131 (2005) 647-659). Here, we provide evidence that Tob in the central nervous system is engaged in acquisition of motor skill. Tob has a relatively high expression in the cerebellum. Tob expression is up-regulated in the cerebellum after rats receive training on a rotarod-running task. Rats infused with Tob antisense oligonucleotides into the 4th ventricle exhibit a severe deficit in running on a rotating rod or walking across a horizontally elevated beam.

  15. Boys, Girls and Communication: Their Views, Confidence and Why These Skills Matter

    ERIC Educational Resources Information Center

    Clark, Christina

    2011-01-01

    This is the first large-scale survey of young people's views on communication skills in the UK. The purpose of this survey was three-fold. Since a search of the published literature had highlighted real gaps in knowledge, the author and her colleagues wanted answers to the following questions: What do young people think about communication skills?…

  16. Do the Cognitive Skills of School Dropouts Matter in the Labor Market?

    ERIC Educational Resources Information Center

    Tyler, John H.; Murnane, Richard J.; Willett, John B.

    2000-01-01

    For high school dropouts who last attempted the General Educational Development (GED) test in Florida and New York in 1989-1990, earnings of those without GEDs, least-skilled GED holders, and highest-skilled GED holders were compared. Higher GED scores were associated with higher earnings, except for white males. These earnings differences were as…

  17. Effectiveness of knowledge of result and knowledge of performance in the learning of a skilled motor activity by healthy young adults.

    PubMed

    Sharma, Dhara A; Chevidikunnan, Mohamed Faisal; Khan, Fayaz Rahman; Gaowgzeh, Riziq Allah

    2016-05-01

    [Purpose] The acquisition of motor skills are fundamental to human life. There is a lack of research on whether knowledge of performance or knowledge of result as augmented feedback is more effective. The objective of this study was to compare the effectiveness of knowledge of result and knowledge of performance in the learning of a skilled motor activity by healthy young adults. [Subjects and Methods] A total of thirty healthy young adult males and females without any neurological or musculoskeletal impairment, between the age of 18-30 years were the subjects of the study. They were randomly allocated to 2 groups: group 1 was given knowledge of result as feedback, and knowledge of performance was given as feedback to group 2. Both the groups practiced the task of throwing a soft spongy ball for 6 days per week for 4 weeks, with 40 trials each day. The outcome measure used was the distance of the throw. [Results] The results were analyzed using the t-test. The mean distances thrown by both the groups showed highly significant improvements and throwing distance of group 2 showed better improvement than that of group 1. [Conclusion] Both types of augmented feedback were effective at improving skilled motor activity, but the knowledge of performance group showed better improvement than the knowledge of result group. PMID:27313355

  18. Effectiveness of knowledge of result and knowledge of performance in the learning of a skilled motor activity by healthy young adults

    PubMed Central

    Sharma, Dhara A; Chevidikunnan, Mohamed Faisal; Khan, Fayaz Rahman; Gaowgzeh, Riziq Allah

    2016-01-01

    [Purpose] The acquisition of motor skills are fundamental to human life. There is a lack of research on whether knowledge of performance or knowledge of result as augmented feedback is more effective. The objective of this study was to compare the effectiveness of knowledge of result and knowledge of performance in the learning of a skilled motor activity by healthy young adults. [Subjects and Methods] A total of thirty healthy young adult males and females without any neurological or musculoskeletal impairment, between the age of 18–30 years were the subjects of the study. They were randomly allocated to 2 groups: group 1 was given knowledge of result as feedback, and knowledge of performance was given as feedback to group 2. Both the groups practiced the task of throwing a soft spongy ball for 6 days per week for 4 weeks, with 40 trials each day. The outcome measure used was the distance of the throw. [Results] The results were analyzed using the t-test. The mean distances thrown by both the groups showed highly significant improvements and throwing distance of group 2 showed better improvement than that of group 1. [Conclusion] Both types of augmented feedback were effective at improving skilled motor activity, but the knowledge of performance group showed better improvement than the knowledge of result group. PMID:27313355

  19. Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design

    PubMed Central

    Timmermans, Annick AA; Seelen, Henk AM; Willmann, Richard D; Kingma, Herman

    2009-01-01

    Background It is the purpose of this article to identify and review criteria that rehabilitation technology should meet in order to offer arm-hand training to stroke patients, based on recent principles of motor learning. Methods A literature search was conducted in PubMed, MEDLINE, CINAHL, and EMBASE (1997–2007). Results One hundred and eighty seven scientific papers/book references were identified as being relevant. Rehabilitation approaches for upper limb training after stroke show to have shifted in the last decade from being analytical towards being focussed on environmentally contextual skill training (task-oriented training). Training programmes for enhancing motor skills use patient and goal-tailored exercise schedules and individual feedback on exercise performance. Therapist criteria for upper limb rehabilitation technology are suggested which are used to evaluate the strengths and weaknesses of a number of current technological systems. Conclusion This review shows that technology for supporting upper limb training after stroke needs to align with the evolution in rehabilitation training approaches of the last decade. A major challenge for related technological developments is to provide engaging patient-tailored task oriented arm-hand training in natural environments with patient-tailored feedback to support (re) learning of motor skills. PMID:19154570

  20. Language and Reading Skills in School-Aged Children and Adolescents Born Preterm Are Associated with White Matter Properties on Diffusion Tensor Imaging

    ERIC Educational Resources Information Center

    Feldman, Heidi M.; Lee, Eliana S.; Yeatman, Jason D.; Yeom, Kristen W.

    2012-01-01

    Children born preterm are at risk for deficits in language and reading. They are also at risk for injury to the white matter of the brain. The goal of this study was to determine whether performance in language and reading skills would be associated with white matter properties in children born preterm and full-term. Children born before 36 weeks…

  1. The effect of a motor skills training program in the improvement of practiced and non-practiced tasks performance in children with developmental coordination disorder (DCD).

    PubMed

    Farhat, Faiçal; Hsairi, Ines; Baati, Hamza; Smits-Engelsman, B C M; Masmoudi, Kaouthar; Mchirgui, Radhouane; Triki, Chahnez; Moalla, Wassim

    2016-04-01

    The purpose of the present study was to examine the effect of a group-based task oriented skills training program on motor and physical ability for children with DCD. It was also investigated if there was an effect on fine motor and handwriting tasks that were not specifically practiced during the training program. Forty-one children aged 6-10years took part in this study. Children were assigned to three groups: an experimental training group consisting of 14 children with DCD, a control non-training group consisted of 13 children with DCD and a control non-training group consisting of 14 typically developed children. The measurements included were, the Movement Assessment Battery for Children (MABC), the Modified Agility Test (MAT), the Triple Hop Distance (THD), the 5 Jump-test (5JT) and the Handwriting Performance Test. All measures were administered pre and post an 8-week training program. The results showed that 10 children of the DCD training-group improved their performance in MABC test, attaining a score above the 15th percentile after their participation in the training program. DCD training-group showed a significant improvement on all cluster scores (manual dexterity (t (13)=5.3, p<.001), ball skills (t (13)=2.73, p<.05) and balance (t (13)=5.13, p<.001). Significant performance improvements were also found in MAT, THD, 5JT (t (13)=-4.55; p<.01), handwriting quality (t (12)=-2.73; p<.05) and speed (t (12)=-4.2; p<.01) after the training program. In conclusion, improvement in both practiced and non-practiced skills, in the training program, may reflect improvement in motor skill but also transfer to other skills. PMID:26703915

  2. Impact of aerobic exercise on sleep and motor skills in children with autism spectrum disorders – a pilot study

    PubMed Central

    Brand, Serge; Jossen, Stefanie; Holsboer-Trachsler, Edith; Pühse, Uwe; Gerber, Markus

    2015-01-01

    Background Prevalence rates of autism spectrum disorder (ASD) have increased dramatically in the last two decades. In addition to the core symptoms such as impaired communication, difficulties in social interaction, and restricted and stereotypical patterns of behavior and interests, poor sleep and motor skill (MS) deficits have also been observed in children with ASD. On the other hand, there is evidence that aerobic exercise training (AET) has a positive impact on sleep, and that specific training improves MSs. Accordingly, the aim of the present pilot study was to investigate to what extent a combination of AET and MS training (MST) would improve sleep and physical performance in a small sample of children with ASD. Methods Ten children with ASD (mean age: 10 years) took part in the study. After a thorough medical examination and psychiatric assessment, children participated in thrice-weekly 60-minute sessions of AET and MST lasting for 3 consecutive weeks. Sleep was assessed both objectively (sleep-encephalography [sleep-EEG]) and subjectively (parents’ questionnaire). MSs were assessed via standardized test batteries. Parents completed sleep and mood logs, and ratings of mood. Results Mild-to-moderate insomnia was reported in 70% of children. Compared to nights without previous AET and MS, on nights following AET and MS, sleep efficiency increased (d=1.07), sleep onset latency shortened (d=0.38), and wake time after sleep onset decreased for 63% of the sample (d=1.09), as assessed via sleep-EEG. Mood in the morning, as rated by parents, improved after three weeks (d=0.90), as did MSs (ball playing, balance exercise: ds>0.6). Conclusion The pattern of results of this pilot study suggests that regular AET and MST impact positively on sleep, MSs, and mood among children with ASD. PMID:26346856

  3. From Counselor Skill to Decreased Marijuana Use: Does Change Talk Matter?

    PubMed Central

    Barnett, Elizabeth; Moyers, Theresa B.; Sussman, Steve; Smith, Caitlin; Rohrbach, Louise A.; Sun, Ping; Spruijt-Metz, Donna

    2014-01-01

    Client language about change, or change talk, is hypothesized to mediate the relationship between counselor fidelity in Motivational Interviewing (MI) and drug use outcomes. To investigate this causal chain, this study used data from a MI booster delivered to alternative high school students immediately after a universal classroom-based drug abuse prevention program. One hundred and seventy audio-recorded MI sessions about substance use were coded using the Motivational Interviewing Skill Code 2.5. Structural equation modeling showed that percentage of change talk on the part of the client mediated three of the four relationships between MI quality indicators and marijuana outcomes, while percentage of reflections of change talk showed a main effect of counselor skill on marijuana outcomes. Findings support change talk as an active ingredient of MI and provide new empirical support for the micro-skills of MI. PMID:24462244

  4. History of Illicit Stimulant Use Is Not Associated with Long-Lasting Changes in Learning of Fine Motor Skills in Humans.

    PubMed

    Todd, Gabrielle; Pearson-Dennett, Verity; Flavel, Stanley C; Haberfield, Miranda; Edwards, Hannah; White, Jason M

    2016-01-01

    Little is known about the long-lasting effect of use of illicit stimulant drugs on learning of new motor skills. We hypothesised that abstinent individuals with a history of primarily methamphetamine and ecstasy use would exhibit normal learning of a visuomotor tracking task compared to controls. The study involved three groups: abstinent stimulant users (n = 21; 27 ± 6 yrs) and two gender-matched control groups comprising nondrug users (n = 16; 22 ± 4 yrs) and cannabis users (n = 16; 23 ± 5 yrs). Motor learning was assessed with a three-minute visuomotor tracking task. Subjects were instructed to follow a moving target on a computer screen with movement of the index finger. Metacarpophalangeal joint angle and first dorsal interosseous electromyographic activity were recorded. Pattern matching was assessed by cross-correlation of the joint angle and target traces. Distance from the target (tracking error) was also calculated. Motor learning was evident in the visuomotor task. Pattern matching improved over time (cross-correlation coefficient) and tracking error decreased. However, task performance did not differ between the groups. The results suggest that learning of a new fine visuomotor skill is unchanged in individuals with a history of illicit stimulant use. PMID:26819778

  5. History of Illicit Stimulant Use Is Not Associated with Long-Lasting Changes in Learning of Fine Motor Skills in Humans

    PubMed Central

    Todd, Gabrielle; Pearson-Dennett, Verity; Flavel, Stanley C.; Haberfield, Miranda; Edwards, Hannah; White, Jason M.

    2016-01-01

    Little is known about the long-lasting effect of use of illicit stimulant drugs on learning of new motor skills. We hypothesised that abstinent individuals with a history of primarily methamphetamine and ecstasy use would exhibit normal learning of a visuomotor tracking task compared to controls. The study involved three groups: abstinent stimulant users (n = 21; 27 ± 6 yrs) and two gender-matched control groups comprising nondrug users (n = 16; 22 ± 4 yrs) and cannabis users (n = 16; 23 ± 5 yrs). Motor learning was assessed with a three-minute visuomotor tracking task. Subjects were instructed to follow a moving target on a computer screen with movement of the index finger. Metacarpophalangeal joint angle and first dorsal interosseous electromyographic activity were recorded. Pattern matching was assessed by cross-correlation of the joint angle and target traces. Distance from the target (tracking error) was also calculated. Motor learning was evident in the visuomotor task. Pattern matching improved over time (cross-correlation coefficient) and tracking error decreased. However, task performance did not differ between the groups. The results suggest that learning of a new fine visuomotor skill is unchanged in individuals with a history of illicit stimulant use. PMID:26819778

  6. Independent Living Skills Can Be Fun! How One Mom Took Matters into Her Own Hands

    ERIC Educational Resources Information Center

    Schoenfeld, Jane

    2006-01-01

    Jane Schoenfeld's eighteen-year-old daughter and five of her daughter's friends have major learning differences. After searching fruitlessly for a summer class in independent living skills, Shoenfeld relates how she and the parents of her daughter's friends decided to set up their own summer program. They found a facilitator and invited two…

  7. Youth Matters: Equipping Vulnerable Young People with Literacy and Life Skills. UIL Policy Brief 2

    ERIC Educational Resources Information Center

    UNESCO Institute for Lifelong Learning, 2013

    2013-01-01

    Youth literacy and life skills, especially for vulnerable youth who have left school or never received a formal education, should be a policy priority to secure the full participation of young people in society and to ensure peaceful and sustainable development. This document assesses the complex challenge of designing policy for vulnerable youth.…

  8. Rhetorical Meta-Language to Promote the Development of Students' Writing Skills and Subject Matter Understanding

    ERIC Educational Resources Information Center

    Pelger, Susanne; Sigrell, Anders

    2016-01-01

    Background: Feedback is one of the most significant factors for students' development of writing skills. For feedback to be successful, however, students and teachers need a common language--a meta-language--for discussing texts. Not least because in science education such a meta-language might contribute to improve writing training and…

  9. Evaluation of Resident Communication Skills and Professionalism: A Matter of Perspective?

    ERIC Educational Resources Information Center

    Brinkman, William B.; Geraghty, Sheela R.; Lanphear, Bruce P.; Khoury, Jane C.; del Rey, Javier A. Gonzalez; DeWitt, Thomas G.; Britto, Maria T.

    2007-01-01

    Objective: Evaluation procedures that rely solely on attending physician ratings may not identify residents who display poor communication skills or unprofessional behavior. Inclusion of non-physician evaluators should capture a more complete account of resident competency. No published reports have examined the relationship between resident…

  10. The Relationship between Motor Skill Proficiency and Body Mass Index in Children with and without Dyslexia: A Pilot Study

    ERIC Educational Resources Information Center

    Logan, S. Wood; Getchell, Nancy

    2010-01-01

    The purpose of this study was twofold. First, the authors wanted to examine the associations of motor proficiency and body composition in children with and without dyslexia. They hypothesized there would be a negative relationship between body composition (measured by body mass index [BMI]) and motor proficiency (measured by MABC [Movement…

  11. A Comparison Study of Gross Motor Development Skills of Normal, Hearing-Impaired and Down Syndrome Children.

    ERIC Educational Resources Information Center

    Bilir, Sule; And Others

    This study, conducted in Ankara, Turkey, compared motor development in 48 normal children (ages 3 to 6), 12 children (ages 5 to 7) with Down syndrome, and 33 children (ages 3 to 7) with hearing impairments. The Motor Development Section of the Portage Early Childhood Educational Program checklist was administered to all the children. Results…

  12. The Effect of Acute Exercise and Psychosocial Stress on Fine Motor Skills and Testosterone Concentration in the Saliva of High School Students

    PubMed Central

    Wegner, Mirko; Koedijker, Johan M.; Budde, Henning

    2014-01-01

    Little is known about the influence of different stressors on fine motor skills, the concentration of testosterone (T), and their interaction in adolescents. Therefore, 62 high school students aged 14–15 years were randomly assigned to two experimental groups (exercise, psychosocial stress) and a control group. Exercise stress was induced at 65–75% of the maximum heart rate by running for 15 minutes (n = 24). Psychosocial stress was generated by an intelligence test (HAWIK-IV), which was uncontrollable and characterized by social-evaluative-threat to the students (n = 21). The control group followed was part of a regular school lesson with the same duration (n = 28). Saliva was collected after a normal school lesson (pre-test) as well as after the intervention/control period (post-test) and was analyzed for testosterone. Fine motor skills were assessed pre- and post-intervention using a manual dexterity test (Flower Trail) from the Movement Assessment Battery for Children-2. A repeated measure ANCOVA including gender as a covariate revealed a significant group by test interaction, indicating an increase in manual dexterity only for the psychosocial stress group. Correlation analysis of all students shows that the change of testosterone from pre- to post-test was directly linked (r = −.31, p = .01) to the changes in manual dexterity performance. Participants showing high increases in testosterone from pre- to post-test made fewer mistakes in the fine motor skills task. Findings suggest that manual dexterity increases when psychosocial stress is induced and that improvement of manual dexterity performance corresponds with the increase of testosterone. PMID:24664108

  13. Fine motor control

    MedlinePlus

    ... figure out the child's developmental age. Children develop fine motor skills over time, by practicing and being taught. To have fine motor control, children need: Awareness and planning Coordination ...

  14. Final report for measurement of primary particulate matter emissions from light-duty motor vehicles

    SciTech Connect

    Norbeck, J. M.; Durbin, T. D.; Truex, T. J.

    1998-12-31

    This report describes the results of a particulate emissions study conducted at the University of California, Riverside, College of Engineering-Center for Environmental Research and Technology (CE-CERT) from September of 1996 to August of 1997. The goal of this program was to expand the database of particulate emissions measurements from motor vehicles to include larger numbers of representative in-use vehicles. This work was co-sponsored by the Coordinating Research Council (CRC), the South Coast Air Quality Management District (SCAQMD), and the National Renewable Energy Laboratory (NREL) and was part of a larger study of particulate emissions being conducted in several states under sponsorship by CRC. For this work, FTP particulate mass emission rates were determined for gasoline and diesel vehicles, along with the fractions of particulates below 2.5 and 10 microns aerodynamic diameter. A total of 129 gasoline-fueled vehicles and 19 diesel-fueled vehicles were tested as part of the program.

  15. A Functional Curriculum for Teaching Students with Disabilities. Volume I: Self-Care, Motor Skills, Household Management, and Living Skills. Third Edition.

    ERIC Educational Resources Information Center

    Bender, Michael; And Others

    This first of three manuals providing a curriculum for students with disabilities focuses on the development of functional daily living skills. An introductory chapter provides an overview of the functional curriculum and offers guidelines for developing instructional plans for the four units of study which follow. Unit 1 is about self-care…

  16. The impact of stress on motor performance in skilled musicians suffering from focal dystonia: Physiological and psychological characteristics.

    PubMed

    Ioannou, Christos I; Furuya, Shinichi; Altenmüller, Eckart

    2016-05-01

    Recent investigations have suggested that stress can modulate motor function. However, the impact of stress on motor performance of musicians suffering from focal dystonia (FDM) remains unknown. The current study assessed motor performance in 20 FDM patients and 16 healthy musicians (HM) before and under stress. Stress was manipulated using the Trier Social Stress Test (TSST). Motor performance was evaluated based on analysis of electromyographic (EMG) activity and temporal variability, while electrocardiography (ECG) and the level of free cortisol were used to test for objective alterations of the hypothalamic-pituitary-adrenal (HPA) axis. Finally, the psychological profiles of both groups were analyzed using three psycho-diagnostic standardized questionnaires. Results showed that patients' motor impairments did not change under acute stressful conditions. However, an increase in muscular co-contractions was observed, reflecting a physiological muscular response under stressful conditions. Psycho-diagnostic analysis revealed higher levels of psychological traits related to elevated anxiety, stress and perfectionism in 40% of the patients. Although the motor outcome between those patients and those with an opposing psychological profile did not differ, patients characterized by stressful and perfectionistic personalities had, on average, developed dystonia about ten years earlier than the rest of the patients. The current study suggests that acute stress conditions may not have any direct impact on fine motor control of FDM patients. However psychological traits associated with increased stress, anxiety and perfectionism may have a long-lasting effect on the motor function of affected musicians, by promoting the acceleration or even the triggering of dystonia. PMID:27033741

  17. Effect of catechol-O-methyltransferase-val158met-polymorphism on the automatization of motor skills - a post hoc view on an experimental data.

    PubMed

    Krause, Daniel; Beck, Frieder; Agethen, Manfred; Blischke, Klaus

    2014-06-01

    The purpose of this study was to evaluate if the catechol-O-methyltransferase-val158met (COMT)-polymorphism, which is known to affect prefrontal dopaminergic metabolism, affects the automatization of motor skills. Twenty-two participants volunteered for gene analysis after they had participated in experiments in which they practiced a single-joint arm movement sequence 460-760 times under different feedback conditions. Motor automaticity was assessed in a pre-test and a post-test according to the dual-task paradigm, which incorporated a visuo-spatial secondary task. To account for the different practice conditions in the four original studies, dual-task cost reduction was assessed using single case effect sizes proportioned to the respective group mean. For the secondary task but not for the prioritized motor task, these relative single case effect sizes proved to be positively (and significantly) correlated with the number of met-alleles on the COMT-genotype, rs=.553; p=.004. Thus, the number of met-alleles indicated a tendency toward enhanced motor automatization. Thus, due to an increased prefrontal dopamine level, met-carriers may be able to develop a well formed and stable, spatially coded movement representation early in practice, thereby supporting the formation of a representation in motor coordinates in the course of extended practice, which later enables automatic movement execution. This process might also be enhanced by a prevalence of met-carriers to functionally evaluate positive feedback information (i.e., rewards) and to better maintain recent reward information in active working memory. PMID:24607512

  18. Motorized mobility scooters – The use of training/intervention and technology for improving driving skills in aging adults - A Mini-Review

    PubMed Central

    Toosizadeh, Nima; Bunting, Matthew; Howe, Carol; Mohler, Jane; Sprinkle, Jonathan; Najafi, Bijan

    2014-01-01

    Background Motorized mobility scooters (MMS) have become the most acceptable powered assistive device for those with impaired mobility, who have sufficient upper body strength and dexterity, and postural stability. Although several benefits have been attributed to MMS usage, there are likewise risks of use, including injuries and even deaths. Objective The aim of the current review was to summarize results from clinical studies regarding the enhancement of MMS driver safety with a primary focus on improving driving skills/performance using clinical approaches. We addressed three main objectives: 1) to identify and summarize any available evidence (strong, moderate, or weak evidence based on the quality of studies) regarding improved driving skills/performance following training/intervention; 2) to identify types of driving skills/performance that might be improved by training/intervention; and 3) to identify the use of technology in improving MMS performance or training procedure. Methods Articles were searched for in the following medical and engineering electronic databases: PubMed, Cochrane Library, Web of Science, ClinicalTrials.gov, PsycINFO, CINAHL, ERIC, EI Compendix, IEEE Explore, and REHABDATA. Inclusion criteria included: aging adults or those with ambulatory problems; intervention or targeted training; and clinical trial. Outcomes included: MMS skills/performance. Results Six articles met the inclusion criteria and are analyzed in this review. Four of the six articles contained training approaches for MMS drivers including skill trainings using real MMS inside and outside (i.e., in community) and in a 3D virtual environment. The other two studies contain infrastructural assessments (i.e., the minimum space required for safe maneuverability of MMS users) and additional mobility assistance tools to improve maneuverability and to enhance driving performance. Conclusions Results from the current review showed improved driving skills/performance by training

  19. What matters? Assessing and developing inquiry and multivariable reasoning skills in high school chemistry

    NASA Astrophysics Data System (ADS)

    Daftedar Abdelhadi, Raghda Mohamed

    Although the Next Generation Science Standards (NGSS) present a detailed set of Science and Engineering Practices, a finer grained representation of the underlying skills is lacking in the standards document. Therefore, it has been reported that teachers are facing challenges deciphering and effectively implementing the standards, especially with regards to the Practices. This analytical study assessed the development of high school chemistry students' (N = 41) inquiry, multivariable causal reasoning skills, and metacognition as a mediator for their development. Inquiry tasks based on concepts of element properties of the periodic table as well as reaction kinetics required students to conduct controlled thought experiments, make inferences, and declare predictions of the level of the outcome variable by coordinating the effects of multiple variables. An embedded mixed methods design was utilized for depth and breadth of understanding. Various sources of data were collected including students' written artifacts, audio recordings of in-depth observational groups and interviews. Data analysis was informed by a conceptual framework formulated around the concepts of coordinating theory and evidence, metacognition, and mental models of multivariable causal reasoning. Results of the study indicated positive change towards conducting controlled experimentation, making valid inferences and justifications. Additionally, significant positive correlation between metastrategic and metacognitive competencies, and sophistication of experimental strategies, signified the central role metacognition played. Finally, lack of consistency in indicating effective variables during the multivariable prediction task pointed towards the fragile mental models of multivariable causal reasoning the students had. Implications for teacher education, science education policy as well as classroom research methods are discussed. Finally, recommendations for developing reform-based chemistry

  20. High-Density Electromyography and Motor Skill Learning for Robust Long-Term Control of a 7-DoF Robot Arm.

    PubMed

    Ison, Mark; Vujaklija, Ivan; Whitsell, Bryan; Farina, Dario; Artemiadis, Panagiotis

    2016-04-01

    Myoelectric control offers a direct interface between human intent and various robotic applications through recorded muscle activity. Traditional control schemes realize this interface through direct mapping or pattern recognition techniques. The former approach provides reliable control at the expense of functionality, while the latter increases functionality at the expense of long-term reliability. An alternative approach, using concepts of motor learning, provides session-independent simultaneous control, but previously relied on consistent electrode placement over biomechanically independent muscles. This paper extends the functionality and practicality of the motor learning-based approach, using high-density electrode grids and muscle synergy-inspired decomposition to generate control inputs with reduced constraints on electrode placement. The method is demonstrated via real-time simultaneous and proportional control of a 4-DoF myoelectric interface over multiple days. Subjects showed learning trends consistent with typical motor skill learning without requiring any retraining or recalibration between sessions. Moreover, they adjusted to physical constraints of a robot arm after learning the control in a constraint-free virtual interface, demonstrating robust control as they performed precision tasks. The results demonstrate the efficacy of the proposed man-machine interface as a viable alternative to conventional control schemes for myoelectric interfaces designed for long-term use. PMID:25838524

  1. Decreased dopamine receptor 1 activity and impaired motor-skill transfer in Dyt1 ΔGAG heterozygous knock-in mice

    PubMed Central

    Yokoi, Fumiaki; Dang, Mai T.; Liu, Jun; Gandre, Jason R.; Kwon, Kelly; Yuen, Robert; Li, Yuqing

    2014-01-01

    DYT1 dystonia is a movement disorder caused by a trinucleotide deletion (ΔGAG) in DYT1 (TOR1A), corresponding to a glutamic acid loss in the C-terminal region of torsinA. Functional alterations in the basal ganglia circuits have been reported in both DYT1 dystonia patients and rodent models. Dyt1 ΔGAG heterozygous knock-in (KI) mice exhibit motor deficits and decreased striatal dopamine receptor 2 (D2R) binding activity, suggesting a malfunction of the indirect pathway. However, the role of the direct pathway in pathogenesis of dystonia is not yet clear. Here, we report that Dyt1 KI mice exhibit significantly decreased striatal dopamine receptor 1 (D1R) binding activity and D1R protein levels, suggesting the alteration of the direct pathway. The decreased D1R may be caused by translational or post-translational processes since Dyt1 KI mice had normal levels of striatal D1R mRNA and a normal number of striatal neurons expressing D1R. Levels of striatal ionotropic glutamate receptor subunits, dopamine transporter, acetylcholine muscarinic M4 receptor and adenosine A2A receptor were not altered suggesting a specificity of affected polytopic membrane-associated proteins. Contribution of the direct pathway to motor-skill learning has been suggested in another pharmacological rat model injected with a D1R antagonist. In the present study, we developed a novel motor skill transfer test for mice and found deficits in Dyt1 KI mice. Further characterization of both the direct and the indirect pathways in Dyt1 KI mice will aid the development of novel therapeutic drugs. PMID:25451552

  2. Fine-Motor Skill Deficits in Childhood Predict Adulthood Tic Severity and Global Psychosocial Functioning in Tourette's Syndrome

    ERIC Educational Resources Information Center

    Bloch, Michael H.; Sukhodolsky, Denis G.; Leckman, James F.; Schultz, Robert T.

    2006-01-01

    Background: Most children with Tourette's syndrome (TS) experience a significant decline in tic symptoms during adolescence. Currently no clinical measures have been identified that can predict whose tic symptoms will persist into adulthood. Patients with TS have deficits on neuropsychological tests involving fine-motor coordination and…

  3. Role of Broca's Area in Implicit Motor Skill Learning: Evidence from Continuous Theta-Burst Magnetic Stimulation

    ERIC Educational Resources Information Center

    Clerget, Emeline; Poncin, William; Fadiga, Luciano; Olivier, Etienne

    2012-01-01

    Complex actions can be regarded as a concatenation of simple motor acts, arranged according to specific rules. Because the caudal part of the Broca's region (left Brodmann's area 44, BA 44) is involved in processing hierarchically organized behaviors, we aimed to test the hypothesis that this area may also play a role in learning structured motor…

  4. The Effect of Teachers Trained in a Fundamental Movement Skills Programme on Children's Self-Perceptions and Motor Competence

    ERIC Educational Resources Information Center

    Breslin, Gavin; Murphy, Marie; McKee, David; Delaney, Brian; Dempster, Martin

    2012-01-01

    Perceived and actual motor competence are hypothesized to have potential links to children and young people's physical activity (PA) levels with a potential consequential link to long-term health. In this cross-sectional study, Harter's (1985, "Manual for the Self-perception Profile for Children." Denver, CO: University of Denver) Competency…

  5. Overlapping Phenotypes in Autism Spectrum Disorder and Developmental Coordination Disorder: A Cross-Syndrome Comparison of Motor and Social Skills

    ERIC Educational Resources Information Center

    Sumner, Emma; Leonard, Hayley C.; Hill, Elisabeth L.

    2016-01-01

    Motor and social difficulties are often found in children with an autism spectrum disorder (ASD) and with developmental coordination disorder (DCD), to varying degrees. This study investigated the extent of overlap of these problems in children aged 7-10 years who had a diagnosis of either ASD or DCD, compared to typically-developing controls.…

  6. An Analysis of the Efficacy of a Motor Skills Training Programme for Young People with Moderate Learning Difficulties

    ERIC Educational Resources Information Center

    Boyle, Christopher M.

    2007-01-01

    A secondary school for children with Moderate Learning Difficulties had requested assistance from psychological services for pupils that the school felt were experiencing poor motor-coordination and in some cases low self-esteem. An intervention programme for children with dyspraxic type difficulties (Portwood, 1999) was proposed as a suitable…

  7. Impaired Retention of Motor Learning of Writing Skills in Patients with Parkinson’s Disease with Freezing of Gait

    PubMed Central

    Heremans, Elke; Nackaerts, Evelien; Vervoort, Griet; Broeder, Sanne; Swinnen, Stephan P.; Nieuwboer, Alice

    2016-01-01

    Background Patients with Parkinson’s disease (PD) and freezing of gait (FOG) suffer from more impaired motor and cognitive functioning than their non-freezing counterparts. This underlies an even higher need for targeted rehabilitation programs in this group. However, so far it is unclear whether FOG affects the ability for consolidation and generalization of motor learning and thus the efficacy of rehabilitation. Objective To investigate the hallmarks of motor learning in people with FOG compared to those without by comparing the effects of an intensive motor learning program to improve handwriting. Methods Thirty five patients with PD, including 19 without and 16 with FOG received six weeks of handwriting training consisting of exercises provided on paper and on a touch-sensitive writing tablet. Writing training was based on single- and dual-task writing and was supported by means of visual target zones. To investigate automatization, generalization and retention of learning, writing performance was assessed before and after training in the presence and absence of cues and dual tasking and after a six-week retention period. Writing amplitude was measured as primary outcome measure and variability of writing and dual-task accuracy as secondary outcomes. Results Significant learning effects were present on all outcome measures in both groups, both for writing under single- and dual-task conditions. However, the gains in writing amplitude were not retained after a retention period of six weeks without training in the patient group without FOG. Furthermore, patients with FOG were highly dependent on the visual target zones, reflecting reduced generalization of learning in this group. Conclusions Although short-term learning effects were present in both groups, generalization and retention of motor learning were specifically impaired in patients with PD and FOG. The results of this study underscore the importance of individualized rehabilitation protocols. PMID

  8. Size-segregated particulate matter and gaseous emissions from motor vehicles in a road tunnel

    NASA Astrophysics Data System (ADS)

    Alves, Célia A.; Gomes, Joana; Nunes, Teresa; Duarte, Márcio; Calvo, Ana; Custódio, Danilo; Pio, Casimiro; Karanasiou, Angeliki; Querol, Xavier

    2015-02-01

    In order to address road traffic emissions, studies need to be performed under realistic driving conditions where the input from other sources is minimised. Measurements in traffic tunnels have been used for quantifying emissions, but so far no study has established emission factors (EFs) for Southern Europe. To fill this gap, a sampling campaign was carried out for one week in the Liberdade Avenue tunnel (Braga, Portugal). The campaign included the monitoring of gaseous pollutants (CO2, CO, NOx) and suspended particulate matter (PM) at two sites, one in the tunnel and another in an urban background location. Organic and elemental carbon (OC and EC) in size-segregated particles (PM0.5, PM0.5-1, PM1-2.5 and PM2.5-10) were determined by a thermal-optical system, whereas major and trace elements were analysed by ICP-MS and ICP-AES. PM0.5 accounted for 56% of the PM10 mass, while PM2.5-10 represented only 12%. The carbonaceous fraction was concentrated in PM0.5, encompassing 88% of the EC and 67% of the OC present in PM10. Elements attributable to non-exhaust emissions could be divided into two groups. Fe, Ba, Cu, Sb, Sn and Zn, from tyre and brake wear, were more abundant in particles between 1 and 2 μm. Ca, Al, K, Sr and Ti, associated with soil resuspension, were mainly present in particles > 2 μm. The average EFs of CO, CO2 and NOx were 212, 4.02 and 1.22 g veh- 1 km- 1, respectively, while values of 152 mg PM10 veh- 1 km- 1 and 133 mg PM2.5 veh- 1 km- 1 were obtained for the particles. OC and EC emission factor was 39 mg veh- 1 km- 1 for PM10. The corresponding OC and EC values for PM2.5 were 34 and 38 mg veh- 1 km- 1. The EFs are slightly lower than those found for other tunnels, but within the ranges presented by the EMEP/EEA inventory.

  9. A matter of interpretation: developing primary pupils' enquiry skills using position-linked datalogging

    NASA Astrophysics Data System (ADS)

    Davies, Daniel John; Collier, Christopher; Howe, Alan

    2012-11-01

    not been sustained. While there is evidence of pupils developing a range of scientific enquiry skills through the project, the extent to which their interpretation of data improved is unclear. All participating schools made greater use of scientific data than before the project to develop their environmental education. Conclusions: The project has demonstrated the potential of combining datalogging with GPS technology to support challenging, motivating and relevant scientific enquiry. Primary teachers require targeted technical and pedagogical support to maximise learning benefits for pupils.

  10. Learning from the Experts: Gaining Insights into Best Practice during the Acquisition of Three Novel Motor Skills

    ERIC Educational Resources Information Center

    Hodges, Nicola J.; Edwards, Christopher; Luttin, Shaun; Bowcock, Alison

    2011-01-01

    The amount and quality of practice predicts expertise, yet optimal conditions of practice have primarily been explored with novice learners. Ten expert musicians and ten novices practiced disc-throwing skills under self-regulated conditions. A third novice group practiced with the same schedule as the music experts (yoked). The groups did not…

  11. Early musical training is linked to gray matter structure in the ventral premotor cortex and auditory-motor rhythm synchronization performance.

    PubMed

    Bailey, Jennifer Anne; Zatorre, Robert J; Penhune, Virginia B

    2014-04-01

    Evidence in animals and humans indicates that there are sensitive periods during development, times when experience or stimulation has a greater influence on behavior and brain structure. Sensitive periods are the result of an interaction between maturational processes and experience-dependent plasticity mechanisms. Previous work from our laboratory has shown that adult musicians who begin training before the age of 7 show enhancements in behavior and white matter structure compared with those who begin later. Plastic changes in white matter and gray matter are hypothesized to co-occur; therefore, the current study investigated possible differences in gray matter structure between early-trained (ET; <7) and late-trained (LT; >7) musicians, matched for years of experience. Gray matter structure was assessed using voxel-wise analysis techniques (optimized voxel-based morphometry, traditional voxel-based morphometry, and deformation-based morphometry) and surface-based measures (cortical thickness, surface area and mean curvature). Deformation-based morphometry analyses identified group differences between ET and LT musicians in right ventral premotor cortex (vPMC), which correlated with performance on an auditory motor synchronization task and with age of onset of musical training. In addition, cortical surface area in vPMC was greater for ET musicians. These results are consistent with evidence that premotor cortex shows greatest maturational change between the ages of 6-9 years and that this region is important for integrating auditory and motor information. We propose that the auditory and motor interactions required by musical practice drive plasticity in vPMC and that this plasticity is greatest when maturation is near its peak. PMID:24236696

  12. The effects of 8 weeks of motor skill training on cardiorespiratory fitness and endurance performance in children with developmental coordination disorder.

    PubMed

    Farhat, Faiçal; Masmoudi, Kaouthar; Hsairi, Ines; Smits-Engelsman, Bouwien C M; Mchirgui, Radhouane; Triki, Chahnez; Moalla, Wassim

    2015-12-01

    Interventions based on everyday motor skills have been developed to be effective in children with developmental coordination disorder (DCD). The purpose of the present study was to examine the effects of motor skill training on exercise tolerance and cardiorespiratory fitness in children with DCD. Children were assigned to 3 groups: an experimental training group comprising 14 children with DCD, a control nontraining group comprising 13 children with DCD, and a control nontraining group comprising 14 typically developed children. All participants were tested twice with an interval of 8-weeks on a cardiopulmonary exercise test, pulmonary function testing, and a 6-min walk test. After the training program the maximal power output was significantly increased for DCD group at anaerobic threshold (p < 0.05) and at peak level (maximal oxygen uptake, p < 0.001). Improvement in power output was more pronounced at the anaerobic threshold (t (13) = -5.21, p < 0.001) than at the maximal intensity (maximal oxygen uptake, t (13) = -3.08, p < 0.01) in the DCD training group. Children with DCD that participated in the training program improved their walking distance (t (13) = -9.08, p < 0.001), had a higher maximum heart rate (t (13) = -3.41, p < 0.01), and reduced perceived exertion (t (13) = 2.75, p < 0.05). The DCD nontraining group and the typically developed group did not change on any of the measures. In conclusion, training delayed reaching the anaerobic threshold and improved aerobic endurance and exercise tolerance in children with DCD. PMID:26579947

  13. Motor Education: Educational Development Programs.

    ERIC Educational Resources Information Center

    Tansley, A. E.

    This booklet presents educational programs and activities focusing on motor skills for 5- to 9-year-old children and older children with learning problems. The premise of the activities is that the acquisition of motor skills is essential to basic learning. The role of language as a mediator and controller of motor development is emphasized. The…

  14. Structural white matter changes in descending motor tracts correlate with improvements in motor impairment after undergoing a treatment course of tDCS and physical therapy.

    PubMed

    Zheng, Xin; Schlaug, Gottfried

    2015-01-01

    Motor impairment after stroke has been related to the structural and functional integrity of corticospinal tracts including multisynaptic motor fibers and tracts such as the cortico-rubral-spinal and the cortico-tegmental-spinal tract. Furthermore, studies have shown that the concurrent use of transcranial direct current stimulation (tDCS) with peripheral sensorimotor activities can improve motor impairment. We examined microstructural effects of concurrent non-invasive bihemispheric stimulation and physical/occupational therapy for 10 days on the structural components of the CST as well as other descending motor tracts which will be referred to here as alternate motor fibers (aMF). In this pilot study, ten chronic patients with a uni-hemispheric stroke underwent Upper-Extremity Fugl-Meyer assessments (UE-FM) and diffusion tensor imaging (DTI) for determining diffusivity measures such as fractional anisotropy (FA) before and after treatment in a section of the CST and aMF that spanned between the lower end of the internal capsule (below each patient's lesion) and the upper pons region on the affected and unaffected hemisphere. The treated group (tDCS + PT/OT) showed significant increases in the proportional UE-FM scores (+21%; SD 10%), while no significant changes were observed in an untreated comparison group. Significant increases in FA (+0.007; SD 0.0065) were found in the ipsilesional aMF in the treated group while no significant changes were found in the contralesional aMF, in either CST, or in any tracts in the untreated group. The FA changes in the ipsilesional aMF significantly correlated with the proportional change in the UE-FM (r = 0.65; p < 0.05). The increase in FA might indicate an increase in motor fiber alignment, myelination, and overall fiber integrity. Crossed and uncrossed fibers from multiple cortical regions might be one reason why the aMF fiber system showed more plastic structural changes that correlate with motor improvements than the CST

  15. Structural white matter changes in descending motor tracts correlate with improvements in motor impairment after undergoing a treatment course of tDCS and physical therapy

    PubMed Central

    Zheng, Xin; Schlaug, Gottfried

    2015-01-01

    Motor impairment after stroke has been related to the structural and functional integrity of corticospinal tracts including multisynaptic motor fibers and tracts such as the cortico-rubral-spinal and the cortico-tegmental-spinal tract. Furthermore, studies have shown that the concurrent use of transcranial direct current stimulation (tDCS) with peripheral sensorimotor activities can improve motor impairment. We examined microstructural effects of concurrent non-invasive bihemispheric stimulation and physical/occupational therapy for 10 days on the structural components of the CST as well as other descending motor tracts which will be referred to here as alternate motor fibers (aMF). In this pilot study, ten chronic patients with a uni-hemispheric stroke underwent Upper-Extremity Fugl-Meyer assessments (UE-FM) and diffusion tensor imaging (DTI) for determining diffusivity measures such as fractional anisotropy (FA) before and after treatment in a section of the CST and aMF that spanned between the lower end of the internal capsule (below each patient’s lesion) and the upper pons region on the affected and unaffected hemisphere. The treated group (tDCS + PT/OT) showed significant increases in the proportional UE-FM scores (+21%; SD 10%), while no significant changes were observed in an untreated comparison group. Significant increases in FA (+0.007; SD 0.0065) were found in the ipsilesional aMF in the treated group while no significant changes were found in the contralesional aMF, in either CST, or in any tracts in the untreated group. The FA changes in the ipsilesional aMF significantly correlated with the proportional change in the UE-FM (r = 0.65; p < 0.05). The increase in FA might indicate an increase in motor fiber alignment, myelination, and overall fiber integrity. Crossed and uncrossed fibers from multiple cortical regions might be one reason why the aMF fiber system showed more plastic structural changes that correlate with motor improvements than the CST

  16. Technical, perceptual and motor skills in novice-expert water polo players: an individual discriminant analysis for talent development.

    PubMed

    DʼErcole, Alessandro A; DʼErcole, Cristina; Gobbi, Massimo; Gobbi, Fabio

    2013-12-01

    The 4 tasks (A, B, C, and Y) have the characteristic of containing one more element than the task performed before it. In fact, task B introduces the slalom which is not present in task A. Task C introduces the ball control that are not present in tasks A and B, whereas task Y introduces the slalom and ball control in a visual dual task situation developed in horizontal swimming over a distance of 20 m at maximum speed. This exercise not included in task C. These tasks were performed by a group of pre-adolescent players and national under 18 water polo players. The novice players showed that tasks B and C are predictors of task Y. Such characteristics were not present in the expert players. The novice players also had difficulty in performing task Y because of the visual-attention overload, a difficulty that was not present in the expert players. To improve the 4 skills, the coach of the novice players developed a technical-didactic program, which was checked 6 months after the pretest. The posttest was not significantly different from the pretest while the individual discriminant analysis identified the improvements in some novice players, which on elaboration proved significant, enabling us to distinguish 2 subgroups, one with higher learning rates and the other with lower learning rates. In the practical applications, we describe the didactic tools (task analysis) and the different levels of development of technical skills in water polo. Improvements in these skills are explained through computational models like the HMOSAIC (Hierarchical, Modular, Selection and Identification for Control) while the individual discriminant analysis enables us to do a longitudinal analysis that is not possible with cross-sectional models. PMID:24270458

  17. Skill in Expert Dogs

    ERIC Educational Resources Information Center

    Helton, William S.

    2007-01-01

    The motor control of novice participants is often cognitively demanding and susceptible to interference by other tasks. As people develop expertise, their motor control becomes less susceptible to interference from other tasks. Researchers propose a transition in human motor skill from active control to automaticity. This progression may also be…

  18. Differential adaptation of descending motor tracts in musicians.

    PubMed

    Rüber, Theodor; Lindenberg, Robert; Schlaug, Gottfried

    2015-06-01

    Between-group comparisons of musicians and nonmusicians have revealed structural brain differences and also functional differences in motor performance. In this study, we aimed to examine the relation between white matter microstructure and high-level motor skills by contrasting 2 groups of musicians with different instrument-specific motor requirements. We used diffusion tensor imaging to compare diffusivity measures of different corticospinal motor tracts of 10 keyboard players, 10 string players, and 10 nonmusicians. Additionally, the maximal tapping rates of their left and right index fingers were determined. When compared with nonmusicians, fractional anisotropy (FA) values of right-hemispheric motor tracts were significantly higher in both musician groups, whereas left-hemispheric motor tracts showed significantly higher FA values only in the keyboard players. Voxel-wise FA analysis found a group effect in white matter underlying the right motor cortex. Diffusivity measures of fibers originating in the primary motor cortex correlated with the maximal tapping rate of the contralateral index finger across all groups. The observed between-group diffusivity differences might represent an adaptation to the specific motor demands of the respective musical instrument. This is supported further by finding correlations between diffusivity measures and maximal tapping rates. PMID:24363265

  19. Gender recognition depends on type of movement and motor skill. Analyzing and perceiving biological motion in musical and nonmusical tasks.

    PubMed

    Wöllner, Clemens; Deconinck, Frederik J A

    2013-05-01

    Gender recognition in point-light displays was investigated with regard to body morphology cues and motion cues of human motion performed with different levels of technical skill. Gestures of male and female orchestral conductors were recorded with a motion capture system while they conducted excerpts from a Mendelssohn string symphony to musicians. Point-light displays of conductors were presented to observers under the following conditions: visual-only, auditory-only, audiovisual, and two non-conducting conditions (walking and static images). Observers distinguished between male and female conductors in gait and static images, but not in visual-only and auditory-only conducting conditions. Across all conductors, gender recognition for audiovisual stimuli was better than chance, yet significantly less reliable than for gait. Separate analyses for two groups of conductors indicated an expertise effect in that novice conductors' gender was perceived above chance level for visual-only and audiovisual conducting, while skilled conducting gestures of experts did not afford gender-specific cues. In these conditions, participants may have ignored the body morphology cues that led to correct judgments for static images. Results point to a response bias such that conductors were more often judged to be male. Thus judgment accuracy depended both on the conductors' level of expertise as well as on the observers' concepts, suggesting that perceivable differences between men and women may diminish for highly trained movements of experienced individuals. PMID:23542808

  20. Organization of goal-directed action at a high level of motor skill: the case of stone knapping in India.

    PubMed

    Biryukova, E V; Bril, B

    2008-07-01

    We analyzed the relationship between goal achievement and execution variability in craftsmen who have acquired the highest "ultimate" skills of stone knapping. The goal of a knapping movement is defined as the vector of the final velocity of a hammer, crucial for detaching a flake and, consequently, for the shape of the final product. The execution of the movement is defined by the kinematic pattern of the arm (i.e., by the coordination between the joint angles corresponding to the seven arm degrees of freedom). The results show that (a) the direction of final velocity is very stable for all craftsmen, whereas the amount of kinetic energy transmitted to the stone was craftsman specific and (b) the kinematic pattern of the arm was strongly individual and was a reliable sign of the level of skill--the highest level was characterized by the highest flexibility of movement kinematics. We stress the importance of conducting the experiment in natural conditions for better understanding of the relationship among the purpose (the final shape of the stone), the goal, and the execution of the movement. PMID:18698105

  1. Developmental delay in motor skill acquisition in Niemann-Pick C1 mice reveals abnormal cerebellar morphogenesis.

    PubMed

    Caporali, Paola; Bruno, Francesco; Palladino, Giampiero; Dragotto, Jessica; Petrosini, Laura; Mangia, Franco; Erickson, Robert P; Canterini, Sonia; Fiorenza, Maria Teresa

    2016-01-01

    Niemann-Pick type C1 (NPC1) disease is a lysosomal storage disorder caused by defective intracellular trafficking of exogenous cholesterol. Purkinje cell (PC) degeneration is the main sign of cerebellar dysfunction in both NPC1 patients and animal models. It has been recently shown that a significant decrease in Sonic hedgehog (Shh) expression reduces the proliferative potential of granule neuron precursors in the developing cerebellum of Npc1 (-/-) mice. Pursuing the hypothesis that this developmental defect translates into functional impairments, we have assayed Npc1-deficient pups belonging to the milder mutant mouse strain Npc1 (nmf164) for sensorimotor development from postnatal day (PN) 3 to PN21. Npc1 (nmf164) / Npc1 (nmf164) pups displayed a 2.5-day delay in the acquisition of complex motor abilities compared to wild-type (wt) littermates, in agreement with the significant disorganization of cerebellar cortex cytoarchitecture observed between PN11 and PN15. Compared to wt, Npc1 (nmf164) homozygous mice exhibited a poorer morphological differentiation of Bergmann glia (BG), as indicated by thicker radial shafts and less elaborate reticular pattern of lateral processes. Also BG functional development was defective, as indicated by the significant reduction in GLAST and Glutamine synthetase expression. A reduced VGluT2 and GAD65 expression also indicated an overall derangement of the glutamatergic/GABAergic stimulation that PCs receive by climbing/parallel fibers and basket/stellate cells, respectively. Lastly, Npc1-deficiency also affected oligodendrocyte differentiation as indicated by the strong reduction of myelin basic protein. Two sequential 2-hydroxypropyl-β-cyclodextrin administrations at PN4 and PN7 counteract these defects, partially preventing functional impairment of BG and fully restoring the normal patterns of glutamatergic/GABAergic stimulation to PCs.These findings indicate that in Npc1 (nmf164) homozygous mice the derangement of synaptic

  2. Deficits in Lower Limb Muscle Reflex Contraction Latency and Peak Force Are Associated With Impairments in Postural Control and Gross Motor Skills of Children With Developmental Coordination Disorder: A Cross-Sectional Study.

    PubMed

    Fong, Shirley S M; Ng, Shamay S M; Guo, X; Wang, Yuling; Chung, Raymond C K; Stat, Grad; Ki, W Y; Macfarlane, Duncan J

    2015-10-01

    This cross-sectional, exploratory study aimed to compare neuromuscular performance, balance and motor skills proficiencies of typically developing children and those with developmental coordination disorder (DCD) and to determine associations of these neuromuscular factors with balance and motor skills performances in children with DCD.One hundred thirty children with DCD and 117 typically developing children participated in the study. Medial hamstring and gastrocnemius muscle activation onset latencies in response to an unexpected posterior-to-anterior trunk perturbation were assessed by electromyography and accelerometer. Hamstring and gastrocnemius muscle peak force and time to peak force were quantified by dynamometer, and balance and motor skills performances were evaluated with the Movement Assessment Battery for Children (MABC).Independent t tests revealed that children with DCD had longer hamstring and gastrocnemius muscle activation onset latencies (P < 0.001) and lower isometric peak forces (P < 0.001), but not times to peak forces (P > 0.025), than the controls. Multiple regression analysis accounting for basic demographics showed that gastrocnemius peak force was independently associated with the MABC balance subscore and ball skills subscore, accounting for 5.7% (P = 0.003) and 8.5% (P = 0.001) of the variance, respectively. Gastrocnemius muscle activation onset latency also explained 11.4% (P < 0.001) of the variance in the MABC ball skills subscore.Children with DCD had delayed leg muscle activation onset times and lower isometric peak forces. Gastrocnemius peak force was associated with balance and ball skills performances, whereas timing of gastrocnemius muscle activation was a determinant of ball skill performance in the DCD population. PMID:26469921

  3. Effects of contextual interference and conditions of movement task on acquisition, retention, and transfer of motor skills by women.

    PubMed

    Jarus, T; Wughalter, E H; Gianutsos, J G

    1997-02-01

    This experiment was designed to investigate varying conditions of contextual interference within two different conditions of movement tasks during acquisition on the acquisition and retention of a computerized task and transfer to a functional skill. Performance of head movements was conducted under open- or closed-task conditions and with random or blocked schedules of practice. Analysis indicated that learning under the open-task condition resulted in better retention and transfer than the closed-task condition. It is suggested that increasing the within-trial variability in the open-task condition produced a contextual interference effect. In this regard, support for Battig's predictions is provided by the current findings in that the high variability present during the open-task condition was more beneficial for retention and transfer than the low variability present during the closed-task condition. Differences between random and blocked schedules of practice on the retention and transfer data were not statistically significant. PMID:9132708

  4. Acute nonhypothermic exposure to cold impedes motor skill performance in video gaming compared to thermo-neutral and hot conditions.

    PubMed

    Edwards, Andrew M; Crowther, Robert G; Morton, R Hugh; Polman, Remco C

    2011-02-01

    The study examined whether or not acute exposure to unfamiliar hot or cold conditions impairs performance of highly skilled coordinative activities and whether prior physical self-efficacy beliefs were associated with task completion. Nineteen volunteers completed both Guitar Hero and Archery activities as a test battery using the Nintendo Wii console in cold (2 degrees C), neutral (20 degrees C), and hot (38 degrees C) conditions. Participants all completed physical self-efficacy questionnaires following experimental familiarization. Performances of both Guitar Hero and Archery significantly decreased in the cold compared with the neutral condition. The cold trial was also perceived as the condition requiring both greater concentration and effort. There was no association between performance and physical self-efficacy. Performance of these coordinative tasks was compromised by acute (nonhypothermic) exposure to cold; the most likely explanation is that the cold condition presented a greater challenge to attentional processes as a form of environmental distraction. PMID:21466095

  5. Does Teaching Problem-Solving Skills Matter? An Evaluation of Problem-Solving Skills Training for the Treatment of Social and Behavioral Problems in Children

    ERIC Educational Resources Information Center

    Bushman, Bryan B.; Peacock, Gretchen Gimpel

    2010-01-01

    Problem-solving skills training (PSST) has been proposed as a potentially effective addition to behavioral parent training (PT). However, it is not clear whether PSST specifically increases the benefits provided by PT. In this study, PT + PSST was compared to PT + nondirective therapy in a sample of 26 families. All parents received PT. Following…

  6. Developing an eBook-Integrated High-Fidelity Mobile App Prototype for Promoting Child Motor Skills and Taxonomically Assessing Children’s Emotional Responses Using Face and Sound Topology

    PubMed Central

    Brown, William; Liu, Connie; John, Rita Marie; Ford, Phoebe

    2014-01-01

    Developing gross and fine motor skills and expressing complex emotion is critical for child development. We introduce “StorySense”, an eBook-integrated mobile app prototype that can sense face and sound topologies and identify movement and expression to promote children’s motor skills and emotional developmental. Currently, most interactive eBooks on mobile devices only leverage “low-motor” interaction (i.e. tapping or swiping). Our app senses a greater breath of motion (e.g. clapping, snapping, and face tracking), and dynamically alters the storyline according to physical responses in ways that encourage the performance of predetermined motor skills ideal for a child’s gross and fine motor development. In addition, our app can capture changes in facial topology, which can later be mapped using the Facial Action Coding System (FACS) for later interpretation of emotion. StorySense expands the human computer interaction vocabulary for mobile devices. Potential clinical applications include child development, physical therapy, and autism. PMID:25954336

  7. DEVELOPMENT OF A MICROSCALE EMISSION FACTOR MODEL FOR PARTICULATE MATTER (MICROFACPM) FOR PREDICTING REAL-TIME MOTOR VEHICLE EMISSIONS

    EPA Science Inventory

    The United States Environmental Protection Agency's National Exposure Research Laboratory is pursuing a project to improve the methodology for modeling human exposure to motor vehicle emissions. The overall project is to develop improved methods for modeling the source through...

  8. DEVELOPMENT OF A MICROSCALE EMISSION FACTOR MODEL FOR PARTICULATE MATTER (MICROFACPM) FOR PREDICTING REAL-TIME MOTOR VEHICLE EMISSIONS

    EPA Science Inventory

    The United States Environmental Protection Agency's National Exposure Research Laboratory has initiated a project to improve the methodology for modeling human exposure to motor vehicle emissions. The overall project goal is to develop improved methods for modeling the source t...

  9. A Parietal-Temporal Sensory-Motor Integration Area for the Human Vocal Tract: Evidence from an fMRI Study of Skilled Musicians

    ERIC Educational Resources Information Center

    Pa, Judy; Hickok, Gregory

    2008-01-01

    Several sensory-motor integration regions have been identified in parietal cortex, which appear to be organized around motor-effectors (e.g., eyes, hands). We investigated whether a sensory-motor integration area might exist for the human vocal tract. Speech requires extensive sensory-motor integration, as does other abilities such as vocal…

  10. Early Gray-Matter and White-Matter Concentration in Infancy Predict Later Language Skills: A Whole Brain Voxel-Based Morphometry Study

    ERIC Educational Resources Information Center

    Can, Dilara Deniz; Richards, Todd; Kuhl, Patricia K.

    2013-01-01

    Magnetic Resonance Imaging (MRI) brain scans were obtained from 19 infants at 7 months. Expressive and receptive language performance was assessed at 12 months. Voxel-based morphometry (VBM) identified brain regions where gray-matter and white-matter concentrations at 7 months correlated significantly with children's language scores at 12 months.…

  11. Damage to Fronto-Parietal Networks Impairs Motor Imagery Ability after Stroke: A Voxel-Based Lesion Symptom Mapping Study

    PubMed Central

    Oostra, Kristine M.; Van Bladel, Anke; Vanhoonacker, Ann C. L.; Vingerhoets, Guy

    2016-01-01

    Background: Mental practice with motor imagery has been shown to promote motor skill acquisition in healthy subjects and patients. Although lesions of the common motor imagery and motor execution neural network are expected to impair motor imagery ability, functional equivalence appears to be at least partially preserved in stroke patients. Aim: To identify brain regions that are mandatory for preserved motor imagery ability after stroke. Method: Thirty-seven patients with hemiplegia after a first time stroke participated. Motor imagery ability was measured using a Motor Imagery questionnaire and temporal congruence test. A voxelwise lesion symptom mapping approach was used to identify neural correlates of motor imagery in this cohort within the first year post-stroke. Results: Poor motor imagery vividness was associated with lesions in the left putamen, left ventral premotor cortex and long association fibers linking parieto-occipital regions with the dorsolateral premotor and prefrontal areas. Poor temporal congruence was otherwise linked to lesions in the more rostrally located white matter of the superior corona radiata. Conclusion: This voxel-based lesion symptom mapping study confirms the association between white matter tract lesions and impaired motor imagery ability, thus emphasizing the importance of an intact fronto-parietal network for motor imagery. Our results further highlight the crucial role of the basal ganglia and premotor cortex when performing motor imagery tasks. PMID:26869894

  12. Differentiating technical skill and motor abilities in selected and non-selected 3-5 year old team-sports players.

    PubMed

    Archer, David T; Drysdale, Kristian; Bradley, Edward J

    2016-06-01

    This study examined the difference in 22 3-5year old boys selected to an advanced or non-advanced group on an English community-based professional club training program. Time to complete 15m linear sprint and 15m zig-zag agility tests, with and without a ball, were used to assess the children's technical skill and motor ability. Age and body mass of both groups were the same, whereas height was greater and BMI was lower in the selected group (p<0.01). Linear sprint times without and with the ball were 3.98±0.35 and 4.44±0.36s, respectively for the selected and corresponding times were 4.64±1.04 and 11.2±5.37s for the non-selected (p<0.01, ES 0.8, 1.8). Similar results were found when a change of movement was included, both with and without the ball. A model of selection indicated that performance in an agility test with the ball and height had the greatest discriminatory power and explained 95.5% of between group variance. Selected players performed significantly better in tests when ball control was required. These findings suggest that technical proficiency and physical differences may influence team selection in three to five year old children. PMID:26904973

  13. Early white matter abnormalities, progressive brain pathology and motor deficits in a novel knock-in mouse model of Huntington's disease

    PubMed Central

    Jin, Jing; Peng, Qi; Hou, Zhipeng; Jiang, Mali; Wang, Xin; Langseth, Abraham J.; Tao, Michael; Barker, Peter B.; Mori, Susumu; Bergles, Dwight E.; Ross, Christopher A.; Detloff, Peter J.; Zhang, Jiangyang; Duan, Wenzhen

    2015-01-01

    White matter abnormalities have been reported in premanifest Huntington's disease (HD) subjects before overt striatal neuronal loss, but whether the white matter changes represent a necessary step towards further pathology and the underlying mechanism of these changes remains unknown. Here, we characterized a novel knock-in mouse model that expresses mouse HD gene homolog (Hdh) with extended CAG repeat- HdhQ250, which was derived from the selective breeding of HdhQ150 mice. HdhQ250 mice manifest an accelerated and robust phenotype compared with its parent line. HdhQ250 mice exhibit progressive motor deficits, reduction in striatal and cortical volume, accumulation of mutant huntingtin aggregation, decreased levels of DARPP32 and BDNF and altered striatal metabolites. The abnormalities detected in this mouse model are reminiscent of several aspects of human HD. In addition, disturbed myelination was evident in postnatal Day 14 HdhQ250 mouse brain, including reduced levels of myelin regulatory factor and myelin basic protein, and decreased numbers of myelinated axons in the corpus callosum. Thinner myelin sheaths, indicated by increased G-ratio of myelin, were also detected in the corpus callosum of adult HdhQ250 mice. Moreover, proliferation of oligodendrocyte precursor cells is altered by mutant huntingtin both in vitro and in vivo. Our data indicate that this model is suitable for understanding comprehensive pathogenesis of HD in white matter and gray matter as well as developing therapeutics for HD. PMID:25609071

  14. Assessment of Preschoolers' Gross Motor Proficiency: Revisiting Bruininks-Oseretsky Test of Motor Proficiency

    ERIC Educational Resources Information Center

    Lam, Hazel Mei Yung

    2011-01-01

    Literature reveals that there are very few validated motor proficiency tests for young children. According to Gallahue and Ozmun, the Bruininks-Oseretsky Test of Motor Proficiency is a valid test. However, manipulative skills, which are classified as gross motor skills by most motor development specialists, are only tested in the Upper Limb…

  15. Biomechanical modeling as a practical tool for predicting injury risk related to repetitive muscle lengthening during learning and training of human complex motor skills.

    PubMed

    Wan, Bingjun; Shan, Gongbing

    2016-01-01

    motor skill learning and training. PMID:27104129

  16. Farther, Faster: Six Promising Programs Show How Career Pathway Bridges Help Basic Skills Students Earn Credentials That Matter

    ERIC Educational Resources Information Center

    Strawn, Julie

    2011-01-01

    Students forced to complete a long sequence of remedial or English language classes before they can begin their postsecondary program rarely earn college certificates or degrees. This brief highlights six promising programs that show how career pathway bridges help lower-skilled students move farther and faster along college and career paths…

  17. Developing Students' Referencing Skills: A Matter of Plagiarism, Punishment and Morality or of Learning to Write Critically?

    ERIC Educational Resources Information Center

    Vardi, Iris

    2012-01-01

    Just as plagiarism is viewed poorly in the academic community, so is plagiarism viewed poorly in student writing, with a range of sanctions and penalties applying for not displaying academic integrity. Yet learning to cite effectively to progress one's argument, position or understandings is a skill that takes time to develop and hone. This paper…

  18. Links between Parent-Teacher Relationships and Kindergartners' Social Skills: Do Child Ethnicity and Family Income Matter?

    ERIC Educational Resources Information Center

    Iruka, Iheoma U.; Winn, Donna-Marie C.; Kingsley, Susan J.; Orthodoxou, Yannick J.

    2011-01-01

    This study uses National Center for Early Development and Learning (NCEDL) data to examine the moderating effects of child ethnicity and family income on the links between parent-teacher relationships and kindergartners' social skills. This study includes 481 Caucasian, African American, and Latino children from low-income households. Overall,…

  19. Reference Guide to Developmental Skills.

    ERIC Educational Resources Information Center

    Lake County Special Education District, Gurnee, IL.

    As an aid in devising individualized programs for handicapped students, the document presents a breakdown of developmental skills. Behavioral statements are arranged hierarchically for eleven skill areas (subskills in parentheses); gross motor (walking, eye/arm coordination, singing), fine motor control (grasp, block manipulation, and finger…

  20. The functional alterations associated with motor imagery training: a comparison between motor execution and motor imagery of sequential finger tapping

    NASA Astrophysics Data System (ADS)

    Zhang, Hang; Yao, Li; Long, Zhiying

    2011-03-01

    Motor imagery training, as an effective strategy, has been more and more applied to mental disorders rehabilitation and motor skill learning. Studies on the neural mechanism underlying motor imagery have suggested that such effectiveness may be related to the functional congruence between motor execution and motor imagery. However, as compared to the studies on motor imagery, the studies on motor imagery training are much fewer. The functional alterations associated with motor imagery training and the effectiveness of motor imagery training on motor performance improvement still needs further investigation. Using fMRI, we employed a sequential finger tapping paradigm to explore the functional alterations associated with motor imagery training in both motor execution and motor imagery task. We hypothesized through 14 consecutive days motor imagery training, the motor performance could be improved and the functional congruence between motor execution and motor imagery would be sustained form pre-training phase to post-training phase. Our results confirmed the effectiveness of motor imagery training in improving motor performance and demonstrated in both pre and post-training phases, motor imagery and motor execution consistently sustained the congruence in functional neuroanatomy, including SMA (supplementary motor cortex), PMA (premotor area); M1( primary motor cortex) and cerebellum. Moreover, for both execution and imagery tasks, a similar functional alteration was observed in fusiform through motor imagery training. These findings provided an insight into the effectiveness of motor imagery training and suggested its potential therapeutic value in motor rehabilitation.