Science.gov

Sample records for motor task variation

  1. Motor Task Variation Induces Structural Learning

    PubMed Central

    Braun, Daniel A.; Aertsen, Ad; Wolpert, Daniel M.; Mehring, Carsten

    2009-01-01

    Summary When we have learned a motor skill, such as cycling or ice-skating, we can rapidly generalize to novel tasks, such as motorcycling or rollerblading [1–8]. Such facilitation of learning could arise through two distinct mechanisms by which the motor system might adjust its control parameters. First, fast learning could simply be a consequence of the proximity of the original and final settings of the control parameters. Second, by structural learning [9–14], the motor system could constrain the parameter adjustments to conform to the control parameters' covariance structure. Thus, facilitation of learning would rely on the novel task parameters' lying on the structure of a lower-dimensional subspace that can be explored more efficiently. To test between these two hypotheses, we exposed subjects to randomly varying visuomotor tasks of fixed structure. Although such randomly varying tasks are thought to prevent learning, we show that when subsequently presented with novel tasks, subjects exhibit three key features of structural learning: facilitated learning of tasks with the same structure, strong reduction in interference normally observed when switching between tasks that require opposite control strategies, and preferential exploration along the learned structure. These results suggest that skill generalization relies on task variation and structural learning. PMID:19217296

  2. Individual variation in the neural processes of motor decisions in the stop signal task: the influence of novelty seeking and harm avoidance personality traits.

    PubMed

    Hu, Jianping; Lee, Dianne; Hu, Sien; Zhang, Sheng; Chao, Herta; Li, Chiang-Shan R

    2016-06-01

    Personality traits contribute to variation in human behavior, including the propensity to take risk. Extant work targeted risk-taking processes with an explicit manipulation of reward, but it remains unclear whether personality traits influence simple decisions such as speeded versus delayed responses during cognitive control. We explored this issue in an fMRI study of the stop signal task, in which participants varied in response time trial by trial, speeding up and risking a stop error or slowing down to avoid errors. Regional brain activations to speeded versus delayed motor responses (risk-taking) were correlated to novelty seeking (NS), harm avoidance (HA) and reward dependence (RD), with age and gender as covariates, in a whole brain regression. At a corrected threshold, the results showed a positive correlation between NS and risk-taking responses in the dorsomedial prefrontal, bilateral orbitofrontal, and frontopolar cortex, and between HA and risk-taking responses in the parahippocampal gyrus and putamen. No regional activations varied with RD. These findings demonstrate that personality traits influence the neural processes of executive control beyond behavioral tasks that involve explicit monetary reward. The results also speak broadly to the importance of characterizing inter-subject variation in studies of cognition and brain functions. PMID:25989852

  3. Brain oscillatory signatures of motor tasks

    PubMed Central

    Birbaumer, Niels

    2015-01-01

    Noninvasive brain-computer-interfaces (BCI) coupled with prosthetic devices were recently introduced in the rehabilitation of chronic stroke and other disorders of the motor system. These BCI systems and motor rehabilitation in general involve several motor tasks for training. This study investigates the neurophysiological bases of an EEG-oscillation-driven BCI combined with a neuroprosthetic device to define the specific oscillatory signature of the BCI task. Controlling movements of a hand robotic orthosis with motor imagery of the same movement generates sensorimotor rhythm oscillation changes and involves three elements of tasks also used in stroke motor rehabilitation: passive and active movement, motor imagery, and motor intention. We recorded EEG while nine healthy participants performed five different motor tasks consisting of closing and opening of the hand as follows: 1) motor imagery without any external feedback and without overt hand movement, 2) motor imagery that moves the orthosis proportional to the produced brain oscillation change with online proprioceptive and visual feedback of the hand moving through a neuroprosthetic device (BCI condition), 3) passive and 4) active movement of the hand with feedback (seeing and feeling the hand moving), and 5) rest. During the BCI condition, participants received contingent online feedback of the decrease of power of the sensorimotor rhythm, which induced orthosis movement and therefore proprioceptive and visual information from the moving hand. We analyzed brain activity during the five conditions using time-frequency domain bootstrap-based statistical comparisons and Morlet transforms. Activity during rest was used as a reference. Significant contralateral and ipsilateral event-related desynchronization of sensorimotor rhythm was present during all motor tasks, largest in contralateral-postcentral, medio-central, and ipsilateral-precentral areas identifying the ipsilateral precentral cortex as an integral

  4. Aging and Concurrent Task Performance: Cognitive Demand and Motor Control

    ERIC Educational Resources Information Center

    Albinet, Cedric; Tomporowski, Phillip D.; Beasman, Kathryn

    2006-01-01

    A motor task that requires fine control of upper limb movements and a cognitive task that requires executive processing--first performing them separately and then concurrently--was performed by 18 young and 18 older adults. The motor task required participants to tap alternatively on two targets, the sizes of which varied systematically. The…

  5. Cortical Activation Changes During Simple Motor Task over Repeated Sessions

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Shuichi; Yamada, Taro; Wada, Yasuhiro

    Recent fMRI studies of human motor function and learning have reported that the magnitude of brain activity involves a decreasing trend over repeated tasks in the absence of improvements in task performance, probably suggesting the effect of habituation. Here we show that similar effect can be detected by NIRS. In experiments, oxygenated hemoglobin (HbO) changes were monitored during a finger tapping task over repeated sessions. Results showed that task-related brain activity exhibited a decreasing trend on motor-related areas over the sessions. These suggest that measurements of NIRS may exhibit the brain-induced trends over repetition of simple motor tasks.

  6. Variation in motor output and motor performance in a centrally generated motor pattern

    PubMed Central

    Norris, Brian J.; Doloc-Mihu, Anca; Calabrese, Ronald L.

    2014-01-01

    Central pattern generators (CPGs) produce motor patterns that ultimately drive motor outputs. We studied how functional motor performance is achieved, specifically, whether the variation seen in motor patterns is reflected in motor performance and whether fictive motor patterns differ from those in vivo. We used the leech heartbeat system in which a bilaterally symmetrical CPG coordinates segmental heart motor neurons and two segmented heart tubes into two mutually exclusive coordination modes: rear-to-front peristaltic on one side and nearly synchronous on the other, with regular side-to-side switches. We assessed individual variability of the motor pattern and the beat pattern in vivo. To quantify the beat pattern we imaged intact adults. To quantify the phase relations between motor neurons and heart constrictions we recorded extracellularly from two heart motor neurons and movement from the corresponding heart segments in minimally dissected leeches. Variation in the motor pattern was reflected in motor performance only in the peristaltic mode, where larger intersegmental phase differences in the motor neurons resulted in larger phase differences between heart constrictions. Fictive motor patterns differed from those in vivo only in the synchronous mode, where intersegmental phase differences in vivo had a larger front-to-rear bias and were more constrained. Additionally, load-influenced constriction timing might explain the amplification of the phase differences between heart segments in the peristaltic mode and the higher variability in motor output due to body shape assumed in this soft-bodied animal. The motor pattern determines the beat pattern, peristaltic or synchronous, but heart mechanics influence the phase relations achieved. PMID:24717348

  7. Gait characteristics in patients with major depression performing cognitive and motor tasks while walking.

    PubMed

    Radovanović, Saša; Jovičić, Milica; Marić, Nadja P; Kostić, Vladimir

    2014-06-30

    Depressed patients demonstrate alterations in motor and cognitive functioning that can affect their adjustments to the variations in everyday life environment. The objective was to explore gait parameters and variability of patients with major depressive disorder in dual task walking situations. Eight patients and 20 healthy controls performed motor, mental and combined motor+mental tasks while walking. Calculated parameters were cycle time, stride length, swing time, double support time and their coefficients of variation (CV). Patients demonstrated greater gait variability (swing time CV) than controls during baseline walk (t(26)=2.64, p<0.05) and motor dual task (t(26)=3.68, p<0.05). Moreover, the transition from mental to combined task decreased stride length (M=126.48±15.35 and M=121.19±13.55, p<0.001) and increased double support time (M=0.266±0.072 and M=0.287±0.076, p<0.01) only in controls. Also, gait variability increased in controls during the combined task, while remaining the same or decreasing in patients. Tasks that required greater cognitive involvement affected gait variability in patients more than controls, but only up to a certain level, after which patients׳ stability appeared unaffected by the increase of cognitive demand. This could be explained by a tendency of patients to neglect complex cognitive tasks while walking in order to preserve stability and prevent possible falls. PMID:24613201

  8. Motor Task Persistence of Children with and without Mental Retardation.

    ERIC Educational Resources Information Center

    Kozub, Francis M.; Porretta, David L.; Hodge, Samuel R.

    2000-01-01

    Task persistence by 31 children (ages 9-13) with and without mental retardation during two challenging motor tasks was investigated. A main effect was found for group affiliation: children without mental retardation attempted more trials over three sessions. Results indicated children with mental retardation were less persistent than typical…

  9. Task-irrelevant auditory feedback facilitates motor performance in musicians.

    PubMed

    Conde, Virginia; Altenmüller, Eckart; Villringer, Arno; Ragert, Patrick

    2012-01-01

    An efficient and fast auditory-motor network is a basic resource for trained musicians due to the importance of motor anticipation of sound production in musical performance. When playing an instrument, motor performance always goes along with the production of sounds and the integration between both modalities plays an essential role in the course of musical training. The aim of the present study was to investigate the role of task-irrelevant auditory feedback during motor performance in musicians using a serial reaction time task (SRTT). Our hypothesis was that musicians, due to their extensive auditory-motor practice routine during musical training, have superior performance and learning capabilities when receiving auditory feedback during SRTT relative to musicians performing the SRTT without any auditory feedback. Behaviorally, we found that auditory feedback reinforced SRTT performance of the right hand (referring to absolute response speed) while learning capabilities remained unchanged. This finding highlights a potential important role for task-irrelevant auditory feedback in motor performance in musicians, a finding that might provide further insight into auditory-motor integration independent of the trained musical context. PMID:22623920

  10. Individual differences in the exploration of a redundant space-time motor task.

    PubMed

    King, Adam C; Ranganathan, Rajiv; Newell, Karl M

    2012-11-01

    Individual differences in learning a motor task are rarely assessed even though they can potentially contribute to our understanding of the problem of motor redundancy-i.e., how individuals can exploit multiple different strategies to realize the task goal. This study examined individual variations in the preferred movement strategy of a redundant motor task. Thirty-two participants performed a star tracing task on a digitizing tablet with the goal of minimizing a performance score that was given as feedback. The performance score was a weighted combination of spatial error and movement time, meaning that multiple strategies could yield the same score. A cluster analysis revealed three distinct groups of individuals based on their initial movement strategy preferences. These groups were not only different on their initial performance, but also exhibited differences in both local (trial-to-trial change) and global (average change) search strategies that were reflected through differential modification of spatial and temporal components. Overall, the results in this space-time task reveal that the intrinsic dynamics of the individual channel the initial exploratory solutions to learning a redundant motor task. PMID:22914583

  11. Effects of Concurrent Motor, Linguistic, or Cognitive Tasks on Speech Motor Performance

    ERIC Educational Resources Information Center

    Dromey, Christopher; Benson, April

    2003-01-01

    This study examined the influence of 3 different types of concurrent tasks on speech motor performance. The goal was to uncover potential differences in speech movements relating to the nature of the secondary task. Twenty young adults repeated sentences either with or without simultaneous distractor activities. These distractions included a motor…

  12. Electromyographic Study of Motor Learning for a Voice Production Task

    ERIC Educational Resources Information Center

    Yiu, Edwin M.-L.; Verdolini, Katherine; Chow, Linda P. Y.

    2005-01-01

    Purpose: This study's broad objective was to examine the effectiveness of surface electromyographic (EMG) biofeedback for motor learning in the voice production domain. The specific objective was to examine whether concurrent or terminal biofeedback would facilitate learning for a relaxed laryngeal musculature task during spoken reading. Method:…

  13. Toy Story: Illustrating Gender Differences in a Motor Skills Task

    ERIC Educational Resources Information Center

    Knight, Jennifer L.; Hebl, Michelle R.; Mendoza, Miriam

    2004-01-01

    To challenge students' stereotypes about gendered performance on motor skills tasks, we developed a classroom active learning demonstration. Four 3-person, same-gender teams received either a Barbie(r) doll or a Transformer(r), and team members dressed the Barbie or manipulated the Transformer from a tank to a robot as quickly as possible, with…

  14. Instrumental Assessment of Bradykinesia: A Comparison Between Motor Tasks.

    PubMed

    Mentzel, Thierry Q; Mentzel, Charlotte L; Mentzel, Stijn V; Lieverse, Ritsaert; Daanen, Hein A M; van Harten, Peter N

    2016-03-01

    Bradykinesia, a common symptom in psychiatry, is characterized by reduced movement speed and amplitude. Monitoring for bradykinesia is important, as it has been associated with reductions in quality of life and medication compliance. Subtle forms of bradykinesia have been associated with treatment response in antipsychotic-naïve first episode patients. Therefore, accurate and reliable assessment is of clinical importance. Several mechanical and electronic instruments have been developed for this purpose. However, their content validity is limited. This study investigated which tasks, or combinations thereof, are most suitable for assessing bradykinesia instrumentally. Eleven motor tasks were assessed using inertial sensors. Their capability of distinguishing bradykinetic patients with schizophrenia ( n = 6) from healthy controls ( n = 5) was investigated. Seven tasks significantly discriminated patients from controls. The combination of tasks considered most feasible for the instrumental assessment of bradykinesia was the gait, pronation/supination, leg agility and flexion/extension of elbow tasks (effect size = 2.9). PMID:25823047

  15. Comparison of Motor Inhibition in Variants of the Instructed-Delay Choice Reaction Time Task.

    PubMed

    Quoilin, Caroline; Lambert, Julien; Jacob, Benvenuto; Klein, Pierre-Alexandre; Duque, Julie

    2016-01-01

    Using instructed-delay choice reaction time (RT) paradigms, many previous studies have shown that the motor system is transiently inhibited during response preparation: motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) over the primary motor cortex are typically suppressed during the delay period. This effect has been observed in both selected and non-selected effectors, although MEP changes in selected effectors have been more inconsistent across task versions. Here, we compared changes in MEP amplitudes in three different variants of an instructed-delay choice RT task. All variants required participants to choose between left and right index finger movements but the responses were either provided "in the air" (Variant 1), on a regular keyboard (Variant 2), or on a response device designed to control from premature responses (Variant 3). The task variants also differed according to the visual layout (more concrete in Variant 3) and depending on whether participants received a feedback of their performance (absent in Variant 1). Behavior was globally comparable between the three variants of the task although the propensity to respond prematurely was highest in Variant 2 and lowest in Variant 3. MEPs elicited in a non-selected hand were similarly suppressed in the three variants of the task. However, significant differences emerged when considering MEPs elicited in the selected hand: these MEPs were suppressed in Variants 1 and 3 whereas they were often facilitated in Variant 2, especially in the right dominant hand. In conclusion, MEPs elicited in selected muscles seem to be more sensitive to small variations to the task design than those recorded in non-selected effectors, probably because they reflect a complex combination of inhibitory and facilitatory influences on the motor output system. Finally, the use of a standard keyboard seems to be particularly inappropriate because it encourages participants to respond promptly with no

  16. Task-specific stability of abundant systems: Structure of variance and motor equivalence.

    PubMed

    Mattos, D; Schöner, G; Zatsiorsky, V M; Latash, M L

    2015-12-01

    Our main goal was to test a hypothesis that transient changes in performance of a steady-state task would result in motor equivalence. We also estimated effects of visual feedback on the amount of reorganization of motor elements. Healthy subjects performed two variations of a four-finger pressing task requiring accurate production of total pressing force (F TOT) and total moment of force (M TOT). In the Jumping-Target task, a sequence of target jumps required transient changes in either F TOT or M TOT. In the Step-Perturbation task, the index finger was lifted by 1cm for 0.5s leading to a change in both F TOT and M TOT. Visual feedback could have been frozen for one of these two variables in both tasks. Deviations in the space of finger modes (hypothetical commands to individual fingers) were quantified in directions of unchanged F TOT and M TOT (motor equivalent - ME) and in directions that changed F TOT and M TOT (non-motor equivalence - nME). Both the ME and nME components increased when the performance changed. After transient target jumps leading to the same combination of F TOT and M TOT, the changes in finger modes had a large residual ME component with only a very small nME component. Without visual feedback, an increase in the nME component was observed without consistent changes in the ME component. Results from the Step-Perturbation task were qualitatively similar. These findings suggest that both external perturbations and purposeful changes in performance trigger a reorganization of elements of an abundant system, leading to large ME change. These results are consistent with the principle of motor abundance corroborating the idea that a family of solutions is facilitated to stabilize values of important performance variables. PMID:26434623

  17. Task-dependent signal variations in EEG error-related potentials for brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Iturrate, I.; Montesano, L.; Minguez, J.

    2013-04-01

    Objective. A major difficulty of brain-computer interface (BCI) technology is dealing with the noise of EEG and its signal variations. Previous works studied time-dependent non-stationarities for BCIs in which the user’s mental task was independent of the device operation (e.g., the mental task was motor imagery and the operational task was a speller). However, there are some BCIs, such as those based on error-related potentials, where the mental and operational tasks are dependent (e.g., the mental task is to assess the device action and the operational task is the device action itself). The dependence between the mental task and the device operation could introduce a new source of signal variations when the operational task changes, which has not been studied yet. The aim of this study is to analyse task-dependent signal variations and their effect on EEG error-related potentials.Approach. The work analyses the EEG variations on the three design steps of BCIs: an electrophysiology study to characterize the existence of these variations, a feature distribution analysis and a single-trial classification analysis to measure the impact on the final BCI performance.Results and significance. The results demonstrate that a change in the operational task produces variations in the potentials, even when EEG activity exclusively originated in brain areas related to error processing is considered. Consequently, the extracted features from the signals vary, and a classifier trained with one operational task presents a significant loss of performance for other tasks, requiring calibration or adaptation for each new task. In addition, a new calibration for each of the studied tasks rapidly outperforms adaptive techniques designed in the literature to mitigate the EEG time-dependent non-stationarities.

  18. Bimanual interference in children performing a dual motor task.

    PubMed

    Otte, E; van Mier, H I

    2006-10-01

    The present study addressed the development of bimanual interference in children performing a dual motor task, in which each hand executes a different task simultaneously. Forty right-handed children (aged 4, 5-6, 7-8 and 9-11years, ten in each age group) were asked to perform a bimanual task in which they had to tap with a pen using the non-preferred hand and simultaneously trace a circle or a square with a pen using the preferred hand as quickly as possible. Tapping and tracing were also performed unimanually. Differences between unimanual and bimanual performance were assessed for number of taps, length of tap trace and mean tracing velocity. It was assumed that with increasing age, better bimanual coordination would result in better performance on the dual task showing less intermanual interference. The results showed that tapping and tracing performance increased with age, unimanually as well as bimanually, consistent with developmental advancement. However, the percentage of intermanual interference due to bimanual performance was not significantly different in the four age groups. Although performing the dual task resulted in mutual intermanual interference, all groups showed a significant effect of tracing shape. More specifically, all age groups showed a larger percentage decrease in tracing velocity when performing the circle compared to the square in the dual task. The present study reveals that children as young as four years are able to coordinate both hands when tapping and tracing bimanually. PMID:17011654

  19. EFFECT OF ENERGY DRINKS ON SELECTED FINE MOTOR TASKS.

    PubMed

    Jacobson, B H; Hughes, P P; Conchola, E C; Hester, G M; Woolsey, C L

    2015-08-01

    This study assessed the effect of energy shots on selected fine motor tasks. The participants were college-age male (n=19; M age=20.5 yr., SD=0.7) and female (n=21; M age=21.1 yr., SD=0.7) volunteers who were assessed on hand steadiness, choice reaction time, rotary pursuit, and simple reaction time. The energy shots group scored significantly poorer on the hand steadiness tests and significantly better on choice reaction time and simple reaction time tests. The enhanced reaction time and disruption in hand steadiness afforded by energy shots would not be apparent in many gross motor activities, but it is possible that reaction time improvement could be beneficial in sports that require quick, reflexive movements. However, the potential adverse psychological and physiological effects warrant discretionary use of such products. PMID:26302190

  20. Variations in Articulatory Movement with Changes in Speech Task.

    ERIC Educational Resources Information Center

    Tasko, Stephen M.; McClean, Michael D.

    2004-01-01

    Studies of normal and disordered articulatory movement often rely on the use of short, simple speech tasks. However, the severity of speech disorders can be observed to vary markedly with task. Understanding task-related variations in articulatory kinematic behavior may allow for an improved understanding of normal and disordered speech motor…

  1. Force-stabilizing synergies in motor tasks involving two actors.

    PubMed

    Solnik, Stanislaw; Reschechtko, Sasha; Wu, Yen-Hsun; Zatsiorsky, Vladimir M; Latash, Mark L

    2015-10-01

    We investigated the ability of two persons to produce force-stabilizing synergies in accurate multi-finger force production tasks under visual feedback on the total force only. The subjects produced a time profile of total force (the sum of two hand forces in one-person tasks and the sum of two subject forces in two-person tasks) consisting of a ramp-up, steady-state, and ramp-down segments; the steady-state segment was interrupted in the middle by a quick force pulse. Analyses of the structure of inter-trial finger force variance, motor equivalence, anticipatory synergy adjustments (ASAs), and the unintentional drift of the sharing pattern were performed. The two-person performance was characterized by a dramatically higher amount of inter-trial variance that did not affect total force, higher finger force deviations that did not affect total force (motor equivalent deviations), shorter ASAs, and larger drift of the sharing pattern. The rate of sharing pattern drift correlated with the initial disparity between the forces produced by the two persons (or two hands). The drift accelerated following the quick force pulse. Our observations show that sensory information on the task-specific performance variable is sufficient for the organization of performance-stabilizing synergies. They suggest, however, that two actors are less likely to follow a single optimization criterion as compared to a single performer. The presence of ASAs in the two-person condition might reflect fidgeting by one or both of the subjects. We discuss the characteristics of the drift in the sharing pattern as reflections of different characteristic times of motion within the subspaces that affect and do not affect salient performance variables. PMID:26105756

  2. Mental Motor Imagery Indexes Pain: The Hand Laterality Task

    PubMed Central

    Coslett, H. Branch; Medina, Jared; Kliot, Dasha; Burkey, Adam R.

    2010-01-01

    Mental motor imagery is subserved by the same cognitive systems that underlie action. In turn, action is informed by the anticipated sensory consequences of movement, including pain. In light of these considerations, one would predict that motor imagery would provide a useful measure pain-related functional interference. We report a study in which 19 patients with chronic musculoskeletal or radiculopathic arm or shoulder pain, 24 subjects with chronic pain not involving the arm/shoulder and 41 normal controls were asked to indicate if a line drawing was a right or left hand. Previous work demonstrated that this task is performed by mental rotation of the subject’s hand to match the stimulus. Relative to normal and pain control subjects, arm/shoulder pain subjects were significantly slower for stimuli that required greater amplitude rotations. For the arm/shoulder pain subjects only there was a correlation between degree of slowing and the rating of severity of pain with movement but not the non-specific pain rating. The hand laterality task may supplement the assessment of subjects with chronic arm/shoulder pain. PMID:20638306

  3. The change in perceived motor competence and motor task values during elementary school: A longitudinal cohort study.

    PubMed

    Noordstar, Johannes J; van der Net, Janjaap; Jak, Suzanne; Helders, Paul J M; Jongmans, Marian J

    2016-09-01

    Participation in motor activities is essential for social interaction and life satisfaction in children. Self-perceptions and task values have a central position in why children do or do not participate in (motor) activities. Investigating developmental changes in motor self-perceptions and motor task values in elementary school children would provide vital information about their participation in motor activities. We therefore examined the change in, and associations between, self-perceptions and task values of fine motor competence, ball competence, and athletic competence in 292 children from kindergarten to grade 4. We also investigated differences between boys and girls, and between children with motor problems and typically developing children. Results indicated that self-perceptions and task values are domain specific and differ between boys and girls, but not between children with motor problems and typically developing children. Self-perceptions were not associated with task values. Educators should address specific self-perceptions to enhance participation into the corresponding motor activities in children between kindergarten and grade 4, and differences in self-perceptions and task values between boys and girls should be taken into account. PMID:26989988

  4. Adaptation to visual feedback delay in a redundant motor task.

    PubMed

    Farshchiansadegh, Ali; Ranganathan, Rajiv; Casadio, Maura; Mussa-Ivaldi, Ferdinando A

    2015-01-15

    The goal of this study was to examine the reorganization of hand movements during adaptation to delayed visual feedback in a novel and redundant environment. In most natural behaviors, the brain must learn to invert a many-to-one map from high-dimensional joint movements and muscle forces to a low-dimensional goal. This spatial "inverse map" is learned by associating motor commands to their low-dimensional consequences. How is this map affected by the presence of temporal delays? A delay presents the brain with a new set of kinematic data, and, because of redundancy, the brain may use these data to form a new inverse map. We consider two possible responses to a novel visuomotor delay. In one case, the brain updates the previously learned spatial map, building a new association between motor commands and visual feedback of their effects. In the alternative case, the brain preserves the original map and learns to compensate the delay by a temporal shift of the motor commands. To test these alternative possibilities, we developed a virtual reality game in which subjects controlled the two-dimensional coordinates of a cursor by continuous hand gestures. Two groups of subjects tracked a target along predictable paths by wearing an instrumented data glove that recorded finger motions. The 19-dimensional glove signals controlled a cursor on a 2-dimensional computer display. The experiment was performed on 2 consecutive days. On the 1st day, subjects practiced tracking movements without delay. On the 2nd day, the test group performed the same task with a delay of 300 ms between the glove signals and the cursor display, whereas the control group continued practicing the nondelayed trials. We found evidence that to compensate for the delay, the test group relied on the coordination patterns established during the baseline, e.g., their hand-to-cursor inverse map was robust to the delay perturbation, which was counteracted by an anticipation of the motor command. PMID:25339704

  5. Learning and Relative Performance on Two and Three Dimensional Visual Cue Perceptual-Motor Tasks.

    ERIC Educational Resources Information Center

    Glad, Harold L.

    This study evaluates the relationships that exist between three types of visual and perceptual-motor tasks (coincidence-anticipation, tracking with rotary pursuit, and a unique two-dimensional discrete motor task) and investigates the nature of learning demonstrated by the subjects on each of the three tasks. Thirty male students were given 20…

  6. Continuously Adaptive vs. Discrete Changes of Task Difficulty in the Training of a Complex Perceptual-Motor Task.

    ERIC Educational Resources Information Center

    Wood, Milton E.

    The purpose of the effort was to determine the benefits to be derived from the adaptive training technique of automatically adjusting task difficulty as a function of a student skill during early learning of a complex perceptual motor task. A digital computer provided the task dynamics, scoring, and adaptive control of a second-order, two-axis,…

  7. Concurrent cognitive task may improve motor work performance and reduce muscle fatigue.

    PubMed

    Evstigneeva, Maria; Aleksandrov, Aleksandr; Mathiassen, Svend Erik; Lyskov, Eugene

    2012-01-01

    Performance of certain cognitive tasks either during physical load or in rest pauses between boosts might lead to slowing of muscle fatigue and fatigue related decline in performance. Seventeen right-handed healthy volunteers (age 24 ± 1.4, 8 males) participated in this study, aiming to investigate the effect of the level of the cognitive information processing - 1) passive perception of audio stimuli, 2) active stimuli discrimination, 3) active stimuli discrimination following motor response - on motor task performance (handgrip test 30% and 7% of MVC) and muscle fatigue development. Cognitive tasks show the following effects on motor work: i) Perceived fatigue during 30 % MVC (fatiguing) condition developed slower if participant pressed button in response to deviant acoustic stimuli, as compared to passive listening. Counting task, an active task without motor component, took the intermediate position and did not differ significantly from two other cognitive tasks. ii) MVC after 30% MVC (fatiguing) condition tended to decrease stronger when accompanied with passive listening in comparison with both active tasks. iii) Motor task performance during 30% MVC (fatiguing) condition was better for active cognitive task with motor component than for passive task. Active task without motor component took the intermediate position and did not differ significantly from both the other cognitive tasks. PMID:22317158

  8. An action-incongruent secondary task modulates prediction accuracy in experienced performers: evidence for motor simulation.

    PubMed

    Mulligan, Desmond; Lohse, Keith R; Hodges, Nicola J

    2016-07-01

    We provide behavioral evidence that the human motor system is involved in the perceptual decision processes of skilled performers, directly linking prediction accuracy to the (in)ability of the motor system to activate in a response-specific way. Experienced and non-experienced dart players were asked to predict, from temporally occluded video sequences, the landing position of a dart thrown previously by themselves (self) or another (other). This prediction task was performed while additionally performing (a) an action-incongruent secondary motor task (right arm force production), (b) a congruent secondary motor task (mimicking) or (c) an attention-matched task (tone-monitoring). Non-experienced dart players were not affected by any of the secondary task manipulations, relative to control conditions, yet prediction accuracy decreased for the experienced players when additionally performing the force-production, motor task. This interference effect was present for 'self' as well as 'other' decisions, reducing the accuracy of experienced participants to a novice level. The mimicking (congruent) secondary task condition did not interfere with (or facilitate) prediction accuracy for either group. We conclude that visual-motor experience moderates the process of decision making, such that a seemingly visual-cognitive prediction task relies on activation of the motor system for experienced performers. This fits with a motor simulation account of action prediction in sports and other tasks, and alerts to the specificity of these simulative processes. PMID:26021748

  9. Primary motor cortex neurons classified in a postural task predict muscle activation patterns in a reaching task.

    PubMed

    Heming, Ethan A; Lillicrap, Timothy P; Omrani, Mohsen; Herter, Troy M; Pruszynski, J Andrew; Scott, Stephen H

    2016-04-01

    Primary motor cortex (M1) activity correlates with many motor variables, making it difficult to demonstrate how it participates in motor control. We developed a two-stage process to separate the process of classifying the motor field of M1 neurons from the process of predicting the spatiotemporal patterns of its motor field during reaching. We tested our approach with a neural network model that controlled a two-joint arm to show the statistical relationship between network connectivity and neural activity across different motor tasks. In rhesus monkeys, M1 neurons classified by this method showed preferred reaching directions similar to their associated muscle groups. Importantly, the neural population signals predicted the spatiotemporal dynamics of their associated muscle groups, although a subgroup of atypical neurons reversed their directional preference, suggesting a selective role in antagonist control. These results highlight that M1 provides important details on the spatiotemporal patterns of muscle activity during motor skills such as reaching. PMID:26843605

  10. Effect of observation combined with motor imagery of a skilled hand-motor task on motor cortical excitability: difference between novice and expert.

    PubMed

    Tsukazaki, Izumi; Uehara, Kazumasa; Morishita, Takuya; Ninomiya, Masato; Funase, Kozo

    2012-06-19

    We examined the effects of observation combined with motor imagery (MI) of a skilled hand-motor task on motor cortex excitability, which was assessed by transcranial magnetic stimulation (TMS). Novices and experts at 3-ball cascade juggling (3BCJ) participated in this study. In one trial, the subjects observed a video clip of 3BCJ while imagining performing it. In addition, the subjects also imagined performing 3BCJ without video clip observation. Motor evoked potentials (MEPs) were recorded from the hand muscles that were activated by the task during each trial. In the novices, the MEP amplitude was significantly increased by video clip observation combined with MI. In contrast, MI without video clip observation significantly increased the MEP amplitude of the experts. These results suggest that action observation of 3BCJ increases the ability of novices to make their MI performing the task. Meanwhile, experts use their own motor program to recall their MI of the task. PMID:22580208

  11. Self-Control of Task Difficulty during Training Enhances Motor Learning of a Complex Coincidence-Anticipation Task

    ERIC Educational Resources Information Center

    Andrieux, Mathieu; Danna, Jeremy; Thon, Bernard

    2012-01-01

    The aim of the present work was to analyze the influence of self-controlled task difficulty on motor learning. Participants had to intercept three targets falling at different velocities by displacing a stylus above a digitizer. Task difficulty corresponded to racquet width. Half the participants (self-control condition) could choose the racquet…

  12. Neural correlates of ankle movements during different motor tasks: A feasibility study.

    PubMed

    Iandolo, R; Marre, I; Bellini, A; Bommarito, G; Oesingmann, N; Fleysher, L; Levrero, F; Mancardi, G; Casadio, M; Inglese, M

    2015-08-01

    This ongoing study investigates the neural correlates of ankle dorsi-plantar flexion in active, passive, and proprioceptive tasks. Specifically, we investigated two proprioceptive matching tasks that required a simple combination of active and passive ankle movements: (1) a memory-based ipsilateral matching task and (2) a contralateral concurrent matching task. As expected, during the passive tasks, subjects recruited the same brain areas involved in the correspondent active movements (primary motor cortex (M1), premotor cortex (PM) supplementary motor cortex (SMA) and primary somatosensory cortex (S1)), but the activations were lower. Instead, in both the proprioceptive matching tasks, subjects recruited more motor and sensory-motor areas of the brain and the activations were greater. PMID:26737338

  13. Neural Correlates of Task Cost for Stance Control with an Additional Motor Task: Phase-Locked Electroencephalogram Responses

    PubMed Central

    Hwang, Ing-Shiou; Huang, Cheng-Ya

    2016-01-01

    With appropriate reallocation of central resources, the ability to maintain an erect posture is not necessarily degraded by a concurrent motor task. This study investigated the neural control of a particular postural-suprapostural procedure involving brain mechanisms to solve crosstalk between posture and motor subtasks. Participants completed a single posture task and a dual-task while concurrently conducting force-matching and maintaining a tilted stabilometer stance at a target angle. Stabilometer movements and event-related potentials (ERPs) were recorded. The added force-matching task increased the irregularity of postural response rather than the size of postural response prior to force-matching. In addition, the added force-matching task during stabilometer stance led to marked topographic ERP modulation, with greater P2 positivity in the frontal and sensorimotor-parietal areas of the N1-P2 transitional phase and in the sensorimotor-parietal area of the late P2 phase. The time-frequency distribution of the ERP primary principal component revealed that the dual-task condition manifested more pronounced delta (1–4 Hz) and beta (13–35 Hz) synchronizations but suppressed theta activity (4–8 Hz) before force-matching. The dual-task condition also manifested coherent fronto-parietal delta activity in the P2 period. In addition to a decrease in postural regularity, this study reveals spatio-temporal and temporal-spectral reorganizations of ERPs in the fronto-sensorimotor-parietal network due to the added suprapostural motor task. For a particular set of postural-suprapostural task, the behavior and neural data suggest a facilitatory role of autonomous postural response and central resource expansion with increasing interregional interactions for task-shift and planning the motor-suprapostural task. PMID:27010634

  14. Neural Correlates of Task Cost for Stance Control with an Additional Motor Task: Phase-Locked Electroencephalogram Responses.

    PubMed

    Hwang, Ing-Shiou; Huang, Cheng-Ya

    2016-01-01

    With appropriate reallocation of central resources, the ability to maintain an erect posture is not necessarily degraded by a concurrent motor task. This study investigated the neural control of a particular postural-suprapostural procedure involving brain mechanisms to solve crosstalk between posture and motor subtasks. Participants completed a single posture task and a dual-task while concurrently conducting force-matching and maintaining a tilted stabilometer stance at a target angle. Stabilometer movements and event-related potentials (ERPs) were recorded. The added force-matching task increased the irregularity of postural response rather than the size of postural response prior to force-matching. In addition, the added force-matching task during stabilometer stance led to marked topographic ERP modulation, with greater P2 positivity in the frontal and sensorimotor-parietal areas of the N1-P2 transitional phase and in the sensorimotor-parietal area of the late P2 phase. The time-frequency distribution of the ERP primary principal component revealed that the dual-task condition manifested more pronounced delta (1-4 Hz) and beta (13-35 Hz) synchronizations but suppressed theta activity (4-8 Hz) before force-matching. The dual-task condition also manifested coherent fronto-parietal delta activity in the P2 period. In addition to a decrease in postural regularity, this study reveals spatio-temporal and temporal-spectral reorganizations of ERPs in the fronto-sensorimotor-parietal network due to the added suprapostural motor task. For a particular set of postural-suprapostural task, the behavior and neural data suggest a facilitatory role of autonomous postural response and central resource expansion with increasing interregional interactions for task-shift and planning the motor-suprapostural task. PMID:27010634

  15. The Effects of Divided Attention on Speech Motor, Verbal Fluency, and Manual Task Performance

    ERIC Educational Resources Information Center

    Dromey, Christopher; Shim, Erin

    2008-01-01

    Purpose: The goal of this study was to evaluate aspects of the "functional distance hypothesis," which predicts that tasks regulated by brain networks in closer anatomic proximity will interfere more with each other than tasks controlled by spatially distant regions. Speech, verbal fluency, and manual motor tasks were examined to ascertain whether…

  16. Revisiting the Development of Time Sharing Using a Dual Motor Task Performance

    ERIC Educational Resources Information Center

    Getchell, Nancy; Pabreja, Priya

    2006-01-01

    In this article, the authors discuss and examine how to develop time sharing using a dual motor task and its effects. They state that when one is required to perform two tasks at the same time (time sharing), an individual may experience difficulty in expressing one or both of the tasks. This phenomenon, known as interference, has been studied…

  17. Fine and gross motor skills: The effects on skill-focused dual-tasks.

    PubMed

    Raisbeck, Louisa D; Diekfuss, Jed A

    2015-10-01

    Dual-task methodology often directs participants' attention towards a gross motor skill involved in the execution of a skill, but researchers have not investigated the comparative effects of attention on fine motor skill tasks. Furthermore, there is limited information about participants' subjective perception of workload with respect to task performance. To examine this, the current study administered the NASA-Task Load Index following a simulated shooting dual-task. The task required participants to stand 15 feet from a projector screen which depicted virtual targets and fire a modified Glock 17 handgun equipped with an infrared laser. Participants performed the primary shooting task alone (control), or were also instructed to focus their attention on a gross motor skill relevant to task execution (gross skill-focused) and a fine motor skill relevant to task execution (fine skill-focused). Results revealed that workload was significantly greater during the fine skill-focused task for both skill levels, but performance was only affected for the lesser-skilled participants. Shooting performance for the lesser-skilled participants was greater during the gross skill-focused condition compared to the fine skill-focused condition. Correlational analyses also demonstrated a significant negative relationship between shooting performance and workload during the gross skill-focused task for the higher-skilled participants. A discussion of the relationship between skill type, workload, skill level, and performance in dual-task paradigms is presented. PMID:26296039

  18. Non-motor tasks improve adaptive brain-computer interface performance in users with severe motor impairment

    PubMed Central

    Faller, Josef; Scherer, Reinhold; Friedrich, Elisabeth V. C.; Costa, Ursula; Opisso, Eloy; Medina, Josep; Müller-Putz, Gernot R.

    2014-01-01

    Individuals with severe motor impairment can use event-related desynchronization (ERD) based BCIs as assistive technology. Auto-calibrating and adaptive ERD-based BCIs that users control with motor imagery tasks (“SMR-AdBCI”) have proven effective for healthy users. We aim to find an improved configuration of such an adaptive ERD-based BCI for individuals with severe motor impairment as a result of spinal cord injury (SCI) or stroke. We hypothesized that an adaptive ERD-based BCI, that automatically selects a user specific class-combination from motor-related and non motor-related mental tasks during initial auto-calibration (“Auto-AdBCI”) could allow for higher control performance than a conventional SMR-AdBCI. To answer this question we performed offline analyses on two sessions (21 data sets total) of cue-guided, five-class electroencephalography (EEG) data recorded from individuals with SCI or stroke. On data from the twelve individuals in Session 1, we first identified three bipolar derivations for the SMR-AdBCI. In a similar way, we determined three bipolar derivations and four mental tasks for the Auto-AdBCI. We then simulated both, the SMR-AdBCI and the Auto-AdBCI configuration on the unseen data from the nine participants in Session 2 and compared the results. On the unseen data of Session 2 from individuals with SCI or stroke, we found that automatically selecting a user specific class-combination from motor-related and non motor-related mental tasks during initial auto-calibration (Auto-AdBCI) significantly (p < 0.01) improved classification performance compared to an adaptive ERD-based BCI that only used motor imagery tasks (SMR-AdBCI; average accuracy of 75.7 vs. 66.3%). PMID:25368546

  19. Bilateral tDCS on Primary Motor Cortex: Effects on Fast Arm Reaching Tasks

    PubMed Central

    Arias, Pablo; Corral-Bergantiños, Yoanna; Robles-García, Verónica; Madrid, Antonio; Oliviero, Antonio; Cudeiro, Javier

    2016-01-01

    Background The effects produced by transcranial direct current stimulation (tDCS) applied to the motor system have been widely studied in the past, chiefly focused on primary motor cortex (M1) excitability. However, the effects on functional tasks are less well documented. Objective This study aims to evaluate the effect of tDCS-M1 on goal-oriented actions (i.e., arm-reaching movements; ARM), in a reaction-time protocol. Methods 13 healthy subjects executed dominant ARM as fast as possible to one of two targets in front of them while surface EMG was recorded. Participants performed three different sessions. In each session they first executed ARM (Pre), then received tDCS, and finally executed Post, similar to Pre. Subjects received three different types of tDCS, one per session: In one session the anode was on right-M1 (AR), and the cathode on the left-M1 (CL), thus termed AR-CL; AL-CR reversed the montage; and Sham session was applied likewise. Real stimulation was 1mA-10min while subjects at rest. Three different variables and their coefficients of variation (CV) were analyzed: Premotor times (PMT), reaction-times (RT) and movement-times (MT). Results triceps-PMT were significantly increased at Post-Sham, suggesting fatigue. Results obtained with real tDCS were not different depending on the montage used, in both cases PMT were significantly reduced in all recorded muscles. RT and MT did not change for real or sham stimulation. RT-CV and PMT-CV were reduced after all stimulation protocols. Conclusion tDCS reduces premotor time and fatigability during the execution of fast motor tasks. Possible underlying mechanisms are discussed. PMID:27490752

  20. Sleep-dependent motor memory consolidation in older adults depends on task demands.

    PubMed

    Gudberg, Christel; Wulff, Katharina; Johansen-Berg, Heidi

    2015-03-01

    It is often suggested that sleep-dependent consolidation of motor learning is impaired in older adults. The current study challenges this view and suggests that the degree of motor consolidation seen with sleep in older age groups depends on the kinematic demands of the task. We show that, when tested with a classic sequence learning task, requiring individuated finger movements, older adults did not show sleep-dependent consolidation. By contrast, when tested with an adapted sequence learning task, in which movements were performed with the whole hand, sleep-dependent motor improvement was observed in older adults. We suggest that age-related decline in fine motor dexterity may in part be responsible for the previously described deficit in sleep-dependent motor consolidation with aging. PMID:25618616

  1. The influence of motor expertise on the brain activity of motor task performance: A meta-analysis of functional magnetic resonance imaging studies.

    PubMed

    Yang, Jie

    2015-06-01

    Previous research has investigated the influence of long-term motor training on the brain activity of motor processes, but the findings are inconsistent. To clarify how acquiring motor expertise induces cortical reorganization during motor task performance, the current study conducted a quantitative meta-analysis on 26 functional magnetic resonance imaging (fMRI) studies that investigate motor task performance in people with long-term motor training experience (e.g., athletes, musicians, and dancers) and control participants. Meta-analysis of the brain activation in motor experts and novices showed similar effects in the bilateral frontal and parietal regions. The meta-analysis on the contrast between motor experts and novices indicated that experts showed stronger effects in the left inferior parietal lobule (BA 40) than did novices in motor execution and prediction tasks. In motor observation tasks, experts showed stronger effects in the left inferior frontal gyrus (BA 9) and left precentral gyrus (BA 6) than novices. On the contrary, novices had stronger effects in the right motor areas and basal ganglia as compared with motor experts. These results indicate that motor experts have effect increases in brain areas involved in action planning and action comprehension, and suggest that intensive motor training might elaborate the motor representation related to the task performance. PMID:25450866

  2. Dual Motor-Cognitive Virtual Reality Training Impacts Dual-Task Performance in Freezing of Gait.

    PubMed

    Killane, Isabelle; Fearon, Conor; Newman, Louise; McDonnell, Conor; Waechter, Saskia M; Sons, Kristian; Lynch, Timothy; Reilly, Richard B

    2015-11-01

    Freezing of gait (FOG), an episodic gait disturbance characterized by the inability to generate effective stepping, occurs in more than half of Parkinson's disease patients. It is associated with both executive dysfunction and attention and becomes most evident during dual tasking (performing two tasks simultaneously). This study examined the effect of dual motor-cognitive virtual reality training on dual-task performance in FOG. Twenty community dwelling participants with Parkinson's disease (13 with FOG, 7 without FOG) participated in a pre-assessment, eight 20-minute intervention sessions, and a post-assessment. The intervention consisted of a virtual reality maze (DFKI, Germany) through which participants navigated by stepping-in-place on a balance board (Nintendo, Japan) under time pressure. This was combined with a cognitive task (Stroop test), which repeatedly divided participants' attention. The primary outcome measures were pre- and post-intervention differences in motor (stepping time, symmetry, rhythmicity) and cognitive (accuracy, reaction time) performance during single- and dual-tasks. Both assessments consisted of 1) a single cognitive task 2) a single motor task, and 3) a dual motor-cognitive task. Following the intervention, there was significant improvement in dual-task cognitive and motor parameters (stepping time and rhythmicity), dual-task effect for those with FOG and a noteworthy improvement in FOG episodes. These improvements were less significant for those without FOG. This is the first study to show benefit of a dual motor-cognitive approach on dual-task performance in FOG. Advances in such virtual reality interventions for home use could substantially improve the quality of life for patients who experience FOG. PMID:26394439

  3. The Source of Execution-Related Dual-Task Interference: Motor Bottleneck or Response Monitoring?

    ERIC Educational Resources Information Center

    Bratzke, Daniel; Rolke, Bettina; Ulrich, Rolf

    2009-01-01

    The present study assessed the underlying mechanism of execution-related dual-task interference in the psychological refractory period (PRP) paradigm. The motor bottleneck hypothesis attributes this interference to a processing limitation at the motor level. By contrast, the response monitoring hypothesis attributes it to a bottleneck process that…

  4. Effects of Dispositional Mindfulness on the Self-Controlled Learning of a Novel Motor Task

    ERIC Educational Resources Information Center

    Kee, Ying Hwa; Liu, Yeou-Teh

    2011-01-01

    Current literature suggests that mindful learning is beneficial to learning but its links with motor learning is seldom examined. In the present study, we examine the effects of learners' mindfulness disposition on the self-controlled learning of a novel motor task. Thirty-two participants undertook five practice sessions, in addition to a pre-,…

  5. Facilitation effect of observed motor deviants in a cooperative motor task: Evidence for direct perception of social intention in action.

    PubMed

    Quesque, François; Delevoye-Turrell, Yvonne; Coello, Yann

    2016-08-01

    Spatiotemporal parameters of voluntary motor action may help optimize human social interactions. Yet it is unknown whether individuals performing a cooperative task spontaneously perceive subtly informative social cues emerging through voluntary actions. In the present study, an auditory cue was provided through headphones to an actor and a partner who faced each other. Depending on the pitch of the auditory cue, either the actor or the partner were required to grasp and move a wooden dowel under time constraints from a central to a lateral position. Before this main action, the actor performed a preparatory action under no time constraint, consisting in placing the wooden dowel on the central location when receiving either a neutral ("prêt"-ready) or an informative auditory cue relative to who will be asked to perform the main action (the actor: "moi"-me, or the partner: "lui"-him). Although the task focused on the main action, analysis of motor performances revealed that actors performed the preparatory action with longer reaction times and higher trajectories when informed that the partner would be performing the main action. In this same condition, partners executed the main actions with shorter reaction times and lower velocities, despite having received no previous informative cues. These results demonstrate that the mere observation of socially driven motor actions spontaneously influences the low-level kinematics of voluntary motor actions performed by the observer during a cooperative motor task. These findings indicate that social intention can be anticipated from the mere observation of action patterns. PMID:26288247

  6. Motor memory preservation in aged monkeys mirrors that of aged humans on a similar task.

    PubMed

    Walton, Ashley; Scheib, Jami L; McLean, Sheila; Zhang, Zhiming; Grondin, Richard

    2008-10-01

    We studied long-term motor memory preservation in rhesus monkeys tested on a task similar to that employed in humans. First, motor speed and rate of motor decline was measured in 23 animals ranging from 4 to 26 years old. The task for the animals consisted of removing a food reward from a curved rod within the inner chamber of an automated panel. Young animals performed twice as fast as the aged animals. Second, young (n=6) and aged (n=10) animals were re-tested 1 year later on the same task with no intervening practice. We anticipated a decline in motor speed of 144 ms/year, instead the average performance time recorded during the repeat session improved significantly by 17% in the aged animals. This finding mirrors that of a longitudinal study conducted in humans using a similar test panel and supports that, while initial performance times of a novel motor task decline with age, motor memory traces are preserved over an extended time interval, even without continued practice. The data also support that the rhesus monkey could be used as a model to study the mechanisms by which long-term retention of motor memory occurs in aging. PMID:17428582

  7. Neural Correlates of Dual-Task Walking: Effects of Cognitive versus Motor Interference in Young Adults

    PubMed Central

    Beurskens, Rainer; Steinberg, Fabian; Antoniewicz, Franziska; Wolff, Wanja; Granacher, Urs

    2016-01-01

    Walking while concurrently performing cognitive and/or motor interference tasks is the norm rather than the exception during everyday life and there is evidence from behavioral studies that it negatively affects human locomotion. However, there is hardly any information available regarding the underlying neural correlates of single- and dual-task walking. We had 12 young adults (23.8 ± 2.8 years) walk while concurrently performing a cognitive interference (CI) or a motor interference (MI) task. Simultaneously, neural activation in frontal, central, and parietal brain areas was registered using a mobile EEG system. Results showed that the MI task but not the CI task affected walking performance in terms of significantly decreased gait velocity and stride length and significantly increased stride time and tempo-spatial variability. Average activity in alpha and beta frequencies was significantly modulated during both CI and MI walking conditions in frontal and central brain regions, indicating an increased cognitive load during dual-task walking. Our results suggest that impaired motor performance during dual-task walking is mirrored in neural activation patterns of the brain. This finding is in line with established cognitive theories arguing that dual-task situations overstrain cognitive capabilities resulting in motor performance decrements. PMID:27200192

  8. Effects of Peer Mediated Instruction with Task Cards on Motor Skill Acquisition in Tennis

    ERIC Educational Resources Information Center

    Iserbyt, Peter; Madou, Bob; Vergauwen, Lieven; Behets, Daniel

    2011-01-01

    This study compared the motor skill effects of a peer teaching format by means of task cards with a teacher-centered format. Tennis performance of eighth grade students (n = 55) was measured before and after a four week intervention period in a regular physical education program. Results show that peer mediated learning with task cards…

  9. Mitochondrial DNA variations in Madras motor neuron disease.

    PubMed

    Govindaraj, Periyasamy; Nalini, Atchayaram; Krishna, Nithin; Sharath, Anugula; Khan, Nahid Akhtar; Tamang, Rakesh; Gourie-Devi, M; Brown, Robert H; Thangaraj, Kumarasamy

    2013-11-01

    Although the Madras motor neuron disease (MMND) was found three decades ago, its genetic basis has not been elucidated, so far. The symptom at onset was impaired hearing, upper limb weakness and atrophy. Since some clinical features of MMND overlap with mitochondrial disorders, we analyzed the complete mitochondrial genome of 45 MMND patients and found 396 variations, including 13 disease-associated, 2 mt-tRNA and 33 non-synonymous (16 MT-ND, 10 MT-CO, 3 MT-CYB and 4 MT-ATPase). A rare variant (m.8302A>G) in mt-tRNA(Leu) was found in three patients. We predict that these variation(s) may influence the disease pathogenesis along with some unknown factor(s). PMID:23419391

  10. Mitochondrial DNA variations in Madras motor neuron disease

    PubMed Central

    Govindaraj, Periyasamy; Nalini, Atchayaram; Krishna, Nithin; Sharath, Anugula; Khan, Nahid Akhtar; Tamang, Rakesh; Devi, M. Gourie; Brown, Robert H.; Thangaraj, Kumarasamy

    2013-01-01

    Although the Madras Motor Neuron Disease (MMND) was found three decades ago, its genetic basis has not been elucidated, so far. The symptom at onset was impaired hearing, upper limb weakness and atrophy. Since some clinical features of MMND overlap with mitochondrial disorders, we analyzed the complete mitochondrial genome of 45 MMND patients and found 396 variations, including 13 disease-associated, 2 mt-tRNA and 33 non-synonymous (16 MT-ND, 10 MT-CO, 3 MT-CYB and 4 MT-ATPase). A rare variant (m.8302A>G) in mt-tRNALeu was found in three patients. We predict that these variation(s) may influence the disease pathogenesis along with some unknown factor(s). PMID:23419391

  11. Cognitive costs of motor planning do not differ between pointing and grasping in a sequential task.

    PubMed

    Schütz, Christoph; Weigelt, Matthias; Schack, Thomas

    2016-07-01

    Neurophysiologic studies have shown differences in brain activation between pointing and grasping movements. We asked whether these two movement types would differ in their cognitive costs of motor planning. To this end, we designed a sequential, continuous posture selection task, suitable to investigate pointing and grasping movements to identical target locations. Participants had to open a column of drawers or point to a column of targets in ascending and descending progression. The global hand pro/supination at the moment of drawer/target contact was measured. The size of the motor hysteresis effect, i.e., the persistence to a former posture, was used as a proxy for the cognitive cost of motor planning. A larger hysteresis effect equals higher cognitive cost. Both motor tasks had similar costs of motor planning, but a larger range of motion was found for the grasping movements. PMID:26965437

  12. Task Related Modulation of the Motor System during Language Processing

    ERIC Educational Resources Information Center

    Sato, Marc; Mengarelli, Marisa; Riggio, Lucia; Gallese, Vittorio; Buccino, Giovanni

    2008-01-01

    Recent neurophysiological and brain imaging studies have shown that the motor system is involved in language processing. However, it is an open question whether this involvement is a necessary requisite to understand language or rather a side effect of distinct cognitive processes underlying it. In order to clarify this issue we carried out three…

  13. Importance of baseline in event-related desynchronization during a combination task of motor imagery and motor observation

    NASA Astrophysics Data System (ADS)

    Tangwiriyasakul, Chayanin; Verhagen, Rens; van Putten, Michel J. A. M.; Rutten, Wim L. C.

    2013-04-01

    Objective. Event-related desynchronization (ERD) or synchronization (ERS) refers to the modulation of any EEG rhythm in response to a particular event. It is typically quantified as the ratio between a baseline and a task condition (the event). Here, we focused on the sensorimotor mu-rhythm. We explored the effects of different baselines on mu-power and ERD of the mu-rhythm during a motor imagery task. Methods. Eighteen healthy subjects performed motor imagery tasks while EEGs were recorded. Five different baseline movies were shown. For the imagery task a right-hand opening/closing movie was shown. Power and ERD of the mu-rhythm recorded over C3 and C4 for the different baselines were estimated. Main Results. 50% of the subjects showed relatively high mu-power for specific baselines only, and ERDs of these subjects were strongly dependent on the baseline used. In 17% of the subjects no preference was found. Contralateral ERD of the mu-rhythm was found in about 67% of the healthy volunteers, with a significant baseline preference in about 75% of that subgroup. Significance. The sensorimotor ERD quantifies activity of the brain during motor imagery tasks. Selection of the optimal baseline increases ERD.

  14. Sensory-guided motor tasks benefit from mental training based on serial prediction.

    PubMed

    Binder, Ellen; Hagelweide, Klara; Wang, Ling E; Kornysheva, Katja; Grefkes, Christian; Fink, Gereon R; Schubotz, Ricarda I

    2014-02-01

    Mental strategies have been suggested to constitute a promising approach to improve motor abilities in both healthy subjects and patients. This behavioural effect has been shown to be associated with changes of neural activity in premotor areas, not only during movement execution, but also while performing motor imagery or action observation. However, how well such mental tasks are performed is often difficult to assess, especially in patients. We here used a novel mental training paradigm based on the serial prediction task (SPT) in order to activate premotor circuits in the absence of a motor task. We then tested whether this intervention improves motor-related performance such as sensorimotor transformation. Two groups of healthy young participants underwent a single-blinded five-day cognitive training schedule and were tested in four different motor tests on the day before and after training. One group (N=22) received the SPT-training and the other one (N=21) received a control training based on a serial match-to-sample task. The results revealed significant improvements of the SPT-group in a sensorimotor timing task, i.e. synchronization of finger tapping to a visually presented rhythm, as well as improved visuomotor coordination in a sensory-guided pointing task compared to the group that received the control training. However, mental training did not show transfer effects on motor abilities in healthy subjects beyond the trained modalities as evident by non-significant changes in the Jebsen-Taylor handfunctiontest. In summary, the data suggest that mental training based on the serial prediction task effectively engages sensorimotor circuits and thereby improves motor behaviour. PMID:24321273

  15. Functional near infrared spectroscopy of the sensory and motor brain regions with simultaneous kinematic and EMG monitoring during motor tasks

    PubMed Central

    Sukal-Moulton, Theresa; de Campos, Ana Carolina; Stanley, Christopher J

    2015-01-01

    There are several advantages that functional near-infrared spectroscopy (fNIRS) presents in the study of the neural control of human movement. It is relatively flexible with respect to participant positioning and allows for some head movements during tasks. Additionally, it is inexpensive, light weight, and portable, with very few contraindications to its use. This presents a unique opportunity to study functional brain activity during motor tasks in individuals who are typically developing, as well as those with movement disorders, such as cerebral palsy. An additional consideration when studying movement disorders, however, is the quality of actual movements performed and the potential for additional, unintended movements. Therefore, concurrent monitoring of both blood flow changes in the brain and actual movements of the body during testing is required for appropriate interpretation of fNIRS results. Here, we show a protocol for the combination of fNIRS with muscle and kinematic monitoring during motor tasks. We explore gait, a unilateral multi-joint movement (cycling), and two unilateral single-joint movements (isolated ankle dorsiflexion, and isolated hand squeezing). The techniques presented can be useful in studying both typical and atypical motor control, and can be modified to investigate a broad range of tasks and scientific questions. PMID:25548919

  16. Discharge properties and recruitment of human diaphragmatic motor units during voluntary inspiratory tasks

    PubMed Central

    Butler, J E; McKenzie, D K; Gandevia, S C

    1999-01-01

    The behaviour of inspiratory motoneurones is poorly understood in humans and even for limb muscles there are few studies of motoneurone behaviour under concentric conditions. The current study assessed the discharge properties of the human phrenic motoneurones during a range of non-isometric voluntary contractions. We recorded activity from 60 motor units in the costal diaphragm of four subjects using an intramuscular electrode while subjects performed a set of voluntary inspiratory contractions. These included a range of inspiratory efforts above and below the usual tidal range: breaths of different sizes (5-40% vital capacity, VC) at a constant inspiratory flow (5% VC s−1) and breaths of a constant size (20% VC) at different inspiratory flows (2.5-20% VC s−1). For all the voluntary tasks, motor units were recruited throughout inspiration. For the various tasks, half-way through inspiration, 61-87% of the sampled motor units had been recruited. When the inspiratory task was deliberately altered, most single motor units began their discharge at a particular volume even when the rate of contraction had altered. The initial firing frequency (median, 6.5 Hz) was consistent for tasks with a constant flow regardless of the size of the breath. However, for breaths of a constant size the initial firing frequencies increased as the inspiratory flow increased (range across tasks, 4.8-9.3 Hz). The ‘final’ firing frequency at the end of inspiration increased significantly above the initial frequency for each task (by 0.8-5.2 Hz) and was higher for those tasks with higher final lung volumes and higher inspiratory flows (range across tasks, 7.8-11.0 Hz). There was no correlation within a task between the time of recruitment and the initial or final firing frequency for each motor unit. However, for each inspiratory task, initial and final firing frequencies were positively correlated. Because the discharge of three to four units could be recorded simultaneously in a

  17. Reliability of assessing trunk motor control using position and force tracking and stabilization tasks

    PubMed Central

    Reeves, N. Peter; Popovich, John M.; Priess, M. Cody; Cholewicki, Jacek; Choi, Jongeun; Radcliffe, Clark J.

    2014-01-01

    System-based methods have been applied to assess trunk motor control in people with and without back pain, although the reliability of these methods has yet to be established. Therefore, the goal of this study was to quantify within- and between-day reliability of assessing trunk motor control using systems-based methods involving position and force tracking and stabilization tasks. Ten healthy subjects performed six tasks, involving tracking and stabilizing of trunk angular position in the sagittal plane, and trunk flexion and extension force. Tracking tasks involved following a one-dimensional, time-varying input signal displayed on a screen by changing trunk position (position tracking) or trunk force (force tracking). Stabilization tasks involved maintaining a constant trunk position (position stabilization) or constant trunk force (force stabilization) while a sagittal plane disturbance input was applied to the pelvis using a robotic platform. Time and frequency domain assessments of error (root mean square and H2 norm, respectively) were computed for each task on two separate days. Intra-class correlation coefficients (ICC) for error and coefficients of multiple correlations (CMC) for frequency response curves were used to quantify reliability of each task. Reliability for all tasks was excellent (between-day ICC ≥ 0.8 and CMC > 0.75, within-day CMC > 0.85). Therefore, position and force control tasks used for assessing trunk motor control can be deemed reliable. PMID:24262851

  18. Changes in cortical negative DC shifts due to different motor task conditions.

    PubMed

    Niemann, J; Winker, T; Jung, R

    1992-11-01

    The experiments were performed to study the relationship between motor performance and DC potential curves recorded by scalp electrodes. Accordingly, we studied the influence of different movements (e.g., unilateral versus bilateral, simple versus complex, active versus passive, phasic versus tonic muscle activity) on negative DC potentials. Our results confirm that spatial distributions of DC potential maxima can be used as an indicator of the activation of distinct cortical areas. Furthermore, evidence is presented that some motor tasks have a greater influence on the magnitude of surface electronegativity than others. (1) Phasic muscle activity revealed a significantly larger potential size than tonic. (2) Performance of a complex finger movement task elicited an increased surface electronegativity compared with performance of a simple task. (3) No significant differences in potential size were found between left (untrained) and right (skilled) hand use during the performance of the same complex motor task. (4) This was also true for the performance of an active and a passive finger movement task, indicating that, at least in simple motor tasks, somatosensory afferents significantly contribute to the recorded potential curve. PMID:1385086

  19. Human footprint variation while performing load bearing tasks.

    PubMed

    Wall-Scheffler, Cara M; Wagnild, Janelle; Wagler, Emily

    2015-01-01

    Human footprint fossils have provided essential evidence about the evolution of human bipedalism as well as the social dynamics of the footprint makers, including estimates of speed, sex and group composition. Generally such estimates are made by comparing footprint evidence with modern controls; however, previous studies have not accounted for the variation in footprint dimensions coming from load bearing activities. It is likely that a portion of the hominins who created these fossil footprints were carrying a significant load, such as offspring or foraging loads, which caused variation in the footprint which could extend to variation in any estimations concerning the footprint's maker. To identify significant variation in footprints due to load-bearing tasks, we had participants (N = 30, 15 males and 15 females) walk at a series of speeds carrying a 20kg pack on their back, side and front. Paint was applied to the bare feet of each participant to create footprints that were compared in terms of foot length, foot width and foot area. Female foot length and width increased during multiple loaded conditions. An appreciation of footprint variability associated with carrying loads adds an additional layer to our understanding of the behavior and morphology of extinct hominin populations. PMID:25738496

  20. Human Footprint Variation while Performing Load Bearing Tasks

    PubMed Central

    Wall-Scheffler, Cara M.; Wagnild, Janelle; Wagler, Emily

    2015-01-01

    Human footprint fossils have provided essential evidence about the evolution of human bipedalism as well as the social dynamics of the footprint makers, including estimates of speed, sex and group composition. Generally such estimates are made by comparing footprint evidence with modern controls; however, previous studies have not accounted for the variation in footprint dimensions coming from load bearing activities. It is likely that a portion of the hominins who created these fossil footprints were carrying a significant load, such as offspring or foraging loads, which caused variation in the footprint which could extend to variation in any estimations concerning the footprint’s maker. To identify significant variation in footprints due to load-bearing tasks, we had participants (N = 30, 15 males and 15 females) walk at a series of speeds carrying a 20kg pack on their back, side and front. Paint was applied to the bare feet of each participant to create footprints that were compared in terms of foot length, foot width and foot area. Female foot length and width increased during multiple loaded conditions. An appreciation of footprint variability associated with carrying loads adds an additional layer to our understanding of the behavior and morphology of extinct hominin populations. PMID:25738496

  1. The contextual interference effect for skill variations from the same and different generalized motor programs.

    PubMed

    Sekiya, H; Magill, R A; Sidaway, B; Anderson, D I

    1994-12-01

    Magill and Hall (1990) hypothesized that the contextual interference (CI) effect is found only when task variations to be learned are governed by different generalized motor programs (GMPs). The present experiments examined their hypothesis by requiring subjects to learn variations of a tapping task that had either different (Experiment 1) or the same (Experiment 2) relative timing structure. In each experiment, subjects (N = 36) performed 270 acquisition trials with knowledge of results (KR) in either a blocked or a serial order. One day later, subjects performed 30 retention trials without KR. In data analyses, errors due to parameter modifications were dissociated from errors due to GMP construction to examine which process was responsible for the CI effect. In both experiments, parameter learning created a CI effect while GMP learning failed to produce a CI effect. In the light of these findings, a modification is proposed to the Magill and Hall (1990) hypothesis that takes into account these distinct processes in motor learning. PMID:7886282

  2. Chaos and Fractal Analysis of Electroencephalogram Signals during Different Imaginary Motor Movement Tasks

    NASA Astrophysics Data System (ADS)

    Soe, Ni Ni; Nakagawa, Masahiro

    2008-04-01

    This paper presents the novel approach to evaluate the effects of different motor activation tasks of the human electroencephalogram (EEG). The applications of chaos and fractal properties that are the most important tools in nonlinear analysis are been presented for four tasks of EEG during the real and imaginary motor movement. Three subjects, aged 23-30 years, participated in the experiment. Correlation dimension (D2), Lyapunov spectrum (λi), and Lyapunov dimension (DL) are been estimated to characterize the movement related EEG signals. Experimental results show that these nonlinear measures are good discriminators of EEG signals. There are significant differences in all conditions of subjective task. The fractal dimension appeared to be higher in movement conditions compared to the baseline condition. It is concluded that chaos and fractal analysis could be powerful methods in investigating brain activities during motor movements.

  3. Solid-propellant rocket motor ballistic performance variation analyses

    NASA Technical Reports Server (NTRS)

    Sforzini, R. H.; Foster, W. A., Jr.

    1975-01-01

    Results are presented of research aimed at improving the assessment of off-nominal internal ballistic performance including tailoff and thrust imbalance of two large solid-rocket motors (SRMs) firing in parallel. Previous analyses using the Monte Carlo technique were refined to permit evaluation of the effects of radial and circumferential propellant temperature gradients. Sample evaluations of the effect of the temperature gradients are presented. A separate theoretical investigation of the effect of strain rate on the burning rate of propellant indicates that the thermoelastic coupling may cause substantial variations in burning rate during highly transient operating conditions. The Monte Carlo approach was also modified to permit the effects on performance of variation in the characteristics between lots of propellants and other materials to be evaluated. This permits the variabilities for the total SRM population to be determined. A sample case shows, however, that the effect of these between-lot variations on thrust imbalances within pairs of SRMs is minor in compariosn to the effect of the within-lot variations. The revised Monte Carlo and design analysis computer programs along with instructions including format requirements for preparation of input data and illustrative examples are presented.

  4. Evoked Potentials in Motor Cortical Local Field Potentials Reflect Task Timing and Behavioral Performance

    PubMed Central

    Confais, Joachim; Ponce-Alvarez, Adrián; Diesmann, Markus; Riehle, Alexa

    2010-01-01

    Evoked potentials (EPs) are observed in motor cortical local field potentials (LFPs) during movement execution (movement-related potentials [MRPs]) and in response to relevant visual cues (visual evoked potentials [VEPs]). Motor cortical EPs may be directionally selective, but little is known concerning their relation to other aspects of motor behavior, such as task timing and performance. We recorded LFPs in motor cortex of two monkeys during performance of a precued arm-reaching task. A time cue at the start of each trial signaled delay duration and thereby the pace of the task and the available time for movement preparation. VEPs and MRPs were strongly modulated by the delay duration, VEPs being systematically larger in short-delay trials and MRPs larger in long-delay trials. Despite these systematic modulations related to the task timing, directional selectivity was similar in short and long trials. The behavioral reaction time was positively correlated with MRP size and negatively correlated with VEP size, within sessions. In addition, the behavioral performance improved across sessions, in parallel with a slow decrease in the size of VEPs and MRPs. Our results clearly show the strong influence of the behavioral context and performance on motor cortical population activity during movement preparation and execution. PMID:20884766

  5. The influence of task paradigm on motor imagery ability in children with Developmental Coordination Disorder.

    PubMed

    Ferguson, G D; Wilson, P H; Smits-Engelsman, B C M

    2015-12-01

    Children with Developmental Coordination Disorder (DCD) have difficulty imagining movements such that they conform to the customary temporal constraints of real performance. We examined whether this ability is influenced by the choice of task used to elicit motor imagery (MI). Performance of typically developing (TD) (n=30) and children with DCD (n=30) was compared on two tasks: the Visually Guided Pointing Task (VGPT) and the Computerized Virtual Radial Fitts Task (C-VRFT). Since the VGPT places higher demands on executive functions like working memory but requires less spatial planning, we reasoned that the C-VRFT would provide a purer measure of motor imagery (or simulation). Based on our earlier work, we predicted that imagery deficits in DCD would more likely manifest on the C-VRFT. Results showed high correlations between tasks in terms of executed and imagined movement time suggest that both tasks measure MI ability. However, group differences were more pronounced in the imagined condition of the radial Fitts' task. Taken together, the more spatially complex C-VRFT appears to be a more sensitive measure of motor imagery, better discriminating between DCD and TD. Implications for theory and practice are discussed. PMID:26319360

  6. Differences in motor imagery time when predicting task duration in alpine skiers and equestrian riders.

    PubMed

    Louis, Magali; Collet, Christian; Champely, Stéphane; Guillot, Aymeric

    2012-03-01

    Athletes' ability to use motor imagery (MI) to predict the speed at which they could perform a motor sequence has received little attention. In this study, 21 alpine skiers and 16 equestrian riders performed MI based on a prediction of actual performance time (a) after the course inspection, (b) before the start, and (c) after the actual performance. MI and physical times were similar in expert skiers during each imagery session, while novice skiers and novice and expert riders underestimated the actual course duration. These findings provide evidence that the temporal accuracy of an imagery task prediction depends on the performer's expertise level and characteristics of the motor skill. PMID:22428415

  7. Neural model for learning-to-learn of novel task sets in the motor domain

    PubMed Central

    Pitti, Alexandre; Braud, Raphaël; Mahé, Sylvain; Quoy, Mathias; Gaussier, Philippe

    2013-01-01

    During development, infants learn to differentiate their motor behaviors relative to various contexts by exploring and identifying the correct structures of causes and effects that they can perform; these structures of actions are called task sets or internal models. The ability to detect the structure of new actions, to learn them and to select on the fly the proper one given the current task set is one great leap in infants cognition. This behavior is an important component of the child's ability of learning-to-learn, a mechanism akin to the one of intrinsic motivation that is argued to drive cognitive development. Accordingly, we propose to model a dual system based on (1) the learning of new task sets and on (2) their evaluation relative to their uncertainty and prediction error. The architecture is designed as a two-level-based neural system for context-dependent behavior (the first system) and task exploration and exploitation (the second system). In our model, the task sets are learned separately by reinforcement learning in the first network after their evaluation and selection in the second one. We perform two different experimental setups to show the sensorimotor mapping and switching between tasks, a first one in a neural simulation for modeling cognitive tasks and a second one with an arm-robot for motor task learning and switching. We show that the interplay of several intrinsic mechanisms drive the rapid formation of the neural populations with respect to novel task sets. PMID:24155736

  8. Patterned-String Tasks: Relation between Fine Motor Skills and Visual-Spatial Abilities in Parrots

    PubMed Central

    Krasheninnikova, Anastasia

    2013-01-01

    String-pulling and patterned-string tasks are often used to analyse perceptual and cognitive abilities in animals. In addition, the paradigm can be used to test the interrelation between visual-spatial and motor performance. Two Australian parrot species, the galah (Eolophus roseicapilla) and the cockatiel (Nymphicus hollandicus), forage on the ground, but only the galah uses its feet to manipulate food. I used a set of string pulling and patterned-string tasks to test whether usage of the feet during foraging is a prerequisite for solving the vertical string pulling problem. Indeed, the two species used techniques that clearly differed in the extent of beak-foot coordination but did not differ in terms of their success in solving the string pulling task. However, when the visual-spatial skills of the subjects were tested, the galahs outperformed the cockatiels. This supports the hypothesis that the fine motor skills needed for advanced beak-foot coordination may be interrelated with certain visual-spatial abilities needed for solving patterned-string tasks. This pattern was also found within each of the two species on the individual level: higher motor abilities positively correlated with performance in patterned-string tasks. This is the first evidence of an interrelation between visual-spatial and motor abilities in non-mammalian animals. PMID:24376885

  9. Knowledge discovery in databases of biomechanical variables: application to the sit to stand motor task

    PubMed Central

    Vannozzi, Giuseppe; Della Croce, Ugo; Starita, Antonina; Benvenuti, Francesco; Cappozzo, Aurelio

    2004-01-01

    Background The interpretation of data obtained in a movement analysis laboratory is a crucial issue in clinical contexts. Collection of such data in large databases might encourage the use of modern techniques of data mining to discover additional knowledge with automated methods. In order to maximise the size of the database, simple and low-cost experimental set-ups are preferable. The aim of this study was to extract knowledge inherent in the sit-to-stand task as performed by healthy adults, by searching relationships among measured and estimated biomechanical quantities. An automated method was applied to a large amount of data stored in a database. The sit-to-stand motor task was already shown to be adequate for determining the level of individual motor ability. Methods The technique of search for association rules was chosen to discover patterns as part of a Knowledge Discovery in Databases (KDD) process applied to a sit-to-stand motor task observed with a simple experimental set-up and analysed by means of a minimum measured input model. Selected parameters and variables of a database containing data from 110 healthy adults, of both genders and of a large range of age, performing the task were considered in the analysis. Results A set of rules and definitions were found characterising the patterns shared by the investigated subjects. Time events of the task turned out to be highly interdependent at least in their average values, showing a high level of repeatability of the timing of the performance of the task. Conclusions The distinctive patterns of the sit-to-stand task found in this study, associated to those that could be found in similar studies focusing on subjects with pathologies, could be used as a reference for the functional evaluation of specific subjects performing the sit-to-stand motor task. PMID:15679936

  10. Sensorimotor Adaptability Training Improves Motor and Dual-Task Performance

    NASA Technical Reports Server (NTRS)

    Bloomberg, J.J.; Peters, B.T.; Mulavara, A.P.; Brady, R.; Batson, C.; Cohen, H.S.

    2009-01-01

    The overall objective of our project is to develop a sensorimotor adaptability (SA) training program designed to facilitate recovery of functional capabilities when astronauts transition to different gravitational environments. The goal of our current study was to determine if SA training using variation in visual flow and support surface motion produces improved performance in a novel sensory environment and demonstrate the retention characteristics of SA training.

  11. Apparent and Actual Trajectory Control Depend on the Behavioral Context in Upper Limb Motor Tasks.

    PubMed

    Cluff, Tyler; Scott, Stephen H

    2015-09-01

    A central problem in motor neuroscience is to understand how we select, plan, and control motor actions. An influential idea is that the motor system computes and implements a desired limb trajectory, an intermediary control process between the behavioral goal (reach a spatial goal) and motor commands to move the limb. The most compelling evidence for trajectory control is that corrective responses are directed back toward the unperturbed trajectory when the limb is disturbed during movement. However, the idea of trajectory control conflicts with optimal control theories that emphasize goal-directed motor corrections. Here we show that corrective responses in human subjects can deviate back toward the unperturbed trajectory, but these reversals were only present when there were explicit limits on movement time. Our second experiment asked whether trajectory control could be generated if the trajectory was made an explicit goal of the task. Participants countered unexpected loads while reaching to a static goal, tracking a moving target, or maintaining their hand within a visually constrained path to a static goal. Corrective responses were directed back toward the constrained path or to intercept the moving target. However, corrections back to the unperturbed path disappeared when reaching to the static target. Long-latency muscle responses paralleled changes in the behavioral goal in both sets of experiments, but goal-directed responses were delayed by 15-25 ms when tracking the moving goal. Our results show the motor system can behave like a trajectory controller but only if a "desired trajectory" is the goal of the task. Significance statement: One of the most influential ideas in motor control is that the motor system computes a "desired trajectory" when reaching to a spatial goal. Here we revisit the experimental paradigm from seminal papers supporting trajectory control to illustrate that corrective responses appear to return to the original trajectory of the

  12. Pre-Trial EEG-Based Single-Trial Motor Performance Prediction to Enhance Neuroergonomics for a Hand Force Task.

    PubMed

    Meinel, Andreas; Castaño-Candamil, Sebastián; Reis, Janine; Tangermann, Michael

    2016-01-01

    We propose a framework for building electrophysiological predictors of single-trial motor performance variations, exemplified for SVIPT, a sequential isometric force control task suitable for hand motor rehabilitation after stroke. Electroencephalogram (EEG) data of 20 subjects with mean age of 53 years was recorded prior to and during 400 trials of SVIPT. They were executed within a single session with the non-dominant left hand, while receiving continuous visual feedback of the produced force trajectories. The behavioral data showed strong trial-by-trial performance variations for five clinically relevant metrics, which accounted for reaction time as well as for the smoothness and precision of the produced force trajectory. 18 out of 20 tested subjects remained after preprocessing and entered offline analysis. Source Power Comodulation (SPoC) was applied on EEG data of a short time interval prior to the start of each SVIPT trial. For 11 subjects, SPoC revealed robust oscillatory EEG subspace components, whose bandpower activity are predictive for the performance of the upcoming trial. Since SPoC may overfit to non-informative subspaces, we propose to apply three selection criteria accounting for the meaningfulness of the features. Across all subjects, the obtained components were spread along the frequency spectrum and showed a variety of spatial activity patterns. Those containing the highest level of predictive information resided in and close to the alpha band. Their spatial patterns resemble topologies reported for visual attention processes as well as those of imagined or executed hand motor tasks. In summary, we identified subject-specific single predictors that explain up to 36% of the performance fluctuations and may serve for enhancing neuroergonomics of motor rehabilitation scenarios. PMID:27199701

  13. Pre-Trial EEG-Based Single-Trial Motor Performance Prediction to Enhance Neuroergonomics for a Hand Force Task

    PubMed Central

    Meinel, Andreas; Castaño-Candamil, Sebastián; Reis, Janine; Tangermann, Michael

    2016-01-01

    We propose a framework for building electrophysiological predictors of single-trial motor performance variations, exemplified for SVIPT, a sequential isometric force control task suitable for hand motor rehabilitation after stroke. Electroencephalogram (EEG) data of 20 subjects with mean age of 53 years was recorded prior to and during 400 trials of SVIPT. They were executed within a single session with the non-dominant left hand, while receiving continuous visual feedback of the produced force trajectories. The behavioral data showed strong trial-by-trial performance variations for five clinically relevant metrics, which accounted for reaction time as well as for the smoothness and precision of the produced force trajectory. 18 out of 20 tested subjects remained after preprocessing and entered offline analysis. Source Power Comodulation (SPoC) was applied on EEG data of a short time interval prior to the start of each SVIPT trial. For 11 subjects, SPoC revealed robust oscillatory EEG subspace components, whose bandpower activity are predictive for the performance of the upcoming trial. Since SPoC may overfit to non-informative subspaces, we propose to apply three selection criteria accounting for the meaningfulness of the features. Across all subjects, the obtained components were spread along the frequency spectrum and showed a variety of spatial activity patterns. Those containing the highest level of predictive information resided in and close to the alpha band. Their spatial patterns resemble topologies reported for visual attention processes as well as those of imagined or executed hand motor tasks. In summary, we identified subject-specific single predictors that explain up to 36% of the performance fluctuations and may serve for enhancing neuroergonomics of motor rehabilitation scenarios. PMID:27199701

  14. Neuronal Substrates Underlying Performance Variability in Well-Trained Skillful Motor Task in Humans

    PubMed Central

    2016-01-01

    Motor performance fluctuates trial by trial even in a well-trained motor skill. Here we show neural substrates underlying such behavioral fluctuation in humans. We first scanned brain activity with functional magnetic resonance imaging while healthy participants repeatedly performed a 10 s skillful sequential finger-tapping task. Before starting the experiment, the participants had completed intensive training. We evaluated task performance per trial (number of correct sequences in 10 s) and depicted brain regions where the activity changes in association with the fluctuation of the task performance across trials. We found that the activity in a broader range of frontoparietocerebellar network, including the bilateral dorsolateral prefrontal cortex (DLPFC), anterior cingulate and anterior insular cortices, and left cerebellar hemisphere, was negatively correlated with the task performance. We further showed in another transcranial direct current stimulation (tDCS) experiment that task performance deteriorated, when we applied anodal tDCS to the right DLPFC. These results indicate that fluctuation of brain activity in the nonmotor frontoparietocerebellar network may underlie trial-by-trial performance variability even in a well-trained motor skill, and its neuromodulation with tDCS may affect the task performance. PMID:27516909

  15. Motor task event detection using Subthalamic Nucleus Local Field Potentials.

    PubMed

    Niketeghad, Soroush; Hebb, Adam O; Nedrud, Joshua; Hanrahan, Sara J; Mahoor, Mohammad H

    2015-08-01

    Deep Brain Stimulation (DBS) provides significant therapeutic benefit for movement disorders such as Parkinson's disease. Current DBS devices lack real-time feedback (thus are open loop) and stimulation parameters are adjusted during scheduled visits with a clinician. A closed-loop DBS system may reduce power consumption and DBS side effects. In such systems, DBS parameters are adjusted based on patient's behavior, which means that behavior detection is a major step in designing such systems. Various physiological signals can be used to recognize the behaviors. Subthalamic Nucleus (STN) Local Field Potential (LFP) is a great candidate signal for the neural feedback, because it can be recorded from the stimulation lead and does not require additional sensors. A practical behavior detection method should be able to detect behaviors asynchronously meaning that it should not use any prior knowledge of behavior onsets. In this paper, we introduce a behavior detection method that is able to asynchronously detect the finger movements of Parkinson patients. As a result of this study, we learned that there is a motor-modulated inter-hemispheric connectivity between LFP signals recorded bilaterally from STN. We used non-linear regression method to measure this connectivity and use it to detect the finger movements. Performance of this method is evaluated using Receiver Operating Characteristic (ROC). PMID:26737550

  16. Dynamics of Sensorimotor Oscillations in a Motor Task

    NASA Astrophysics Data System (ADS)

    Pfurtscheller, Gert; Neuper, Christa

    Many BCI systems rely on imagined movement. The brain activity associated with real or imagined movement produces reliable changes in the EEG. Therefore, many people can use BCI systems by imagining movements to convey information. The EEG has many regular rhythms. The most famous are the occipital alpha rhythm and the central mu and beta rhythms. People can desynchronize the alpha rhythm (that is, produce weaker alpha activity) by being alert, and can increase alpha activity by closing their eyes and relaxing. Sensory processing or motor behavior leads to EEG desynchronization or blocking of central beta and mu rhythms, as originally reported by Berger [1], Jasper and Andrew [2] and Jasper and Penfield [3]. This desynchronization reflects a decrease of oscillatory activity related to an internally or externally-paced event and is known as Event-Related Desynchronization (ERD, [4]). The opposite, namely the increase of rhythmic activity, was termed Event-Related Synchronization (ERS, [5]). ERD and ERS are characterized by fairly localized topography and frequency specificity [6]. Both phenomena can be studied through topographiuthc maps, time courses, and time-frequency representations (ERD maps, [7]).

  17. Dynamic Monitoring Reveals Motor Task Characteristics in Prehistoric Technical Gestures

    PubMed Central

    Pfleging, Johannes; Stücheli, Marius; Iovita, Radu; Buchli, Jonas

    2015-01-01

    Reconstructing ancient technical gestures associated with simple tool actions is crucial for understanding the co-evolution of the human forelimb and its associated control-related cognitive functions on the one hand, and of the human technological arsenal on the other hand. Although the topic of gesture is an old one in Paleolithic archaeology and in anthropology in general, very few studies have taken advantage of the new technologies from the science of kinematics in order to improve replicative experimental protocols. Recent work in paleoanthropology has shown the potential of monitored replicative experiments to reconstruct tool-use-related motions through the study of fossil bones, but so far comparatively little has been done to examine the dynamics of the tool itself. In this paper, we demonstrate that we can statistically differentiate gestures used in a simple scraping task through dynamic monitoring. Dynamics combines kinematics (position, orientation, and speed) with contact mechanical parameters (force and torque). Taken together, these parameters are important because they play a role in the formation of a visible archaeological signature, use-wear. We present our new affordable, yet precise methodology for measuring the dynamics of a simple hide-scraping task, carried out using a pull-to (PT) and a push-away (PA) gesture. A strain gage force sensor combined with a visual tag tracking system records force, torque, as well as position and orientation of hafted flint stone tools. The set-up allows switching between two tool configurations, one with distal and the other one with perpendicular hafting of the scrapers, to allow for ethnographically plausible reconstructions. The data show statistically significant differences between the two gestures: scraping away from the body (PA) generates higher shearing forces, but requires greater hand torque. Moreover, most benchmarks associated with the PA gesture are more highly variable than in the PT gesture

  18. Dynamic Monitoring Reveals Motor Task Characteristics in Prehistoric Technical Gestures.

    PubMed

    Pfleging, Johannes; Stücheli, Marius; Iovita, Radu; Buchli, Jonas

    2015-01-01

    Reconstructing ancient technical gestures associated with simple tool actions is crucial for understanding the co-evolution of the human forelimb and its associated control-related cognitive functions on the one hand, and of the human technological arsenal on the other hand. Although the topic of gesture is an old one in Paleolithic archaeology and in anthropology in general, very few studies have taken advantage of the new technologies from the science of kinematics in order to improve replicative experimental protocols. Recent work in paleoanthropology has shown the potential of monitored replicative experiments to reconstruct tool-use-related motions through the study of fossil bones, but so far comparatively little has been done to examine the dynamics of the tool itself. In this paper, we demonstrate that we can statistically differentiate gestures used in a simple scraping task through dynamic monitoring. Dynamics combines kinematics (position, orientation, and speed) with contact mechanical parameters (force and torque). Taken together, these parameters are important because they play a role in the formation of a visible archaeological signature, use-wear. We present our new affordable, yet precise methodology for measuring the dynamics of a simple hide-scraping task, carried out using a pull-to (PT) and a push-away (PA) gesture. A strain gage force sensor combined with a visual tag tracking system records force, torque, as well as position and orientation of hafted flint stone tools. The set-up allows switching between two tool configurations, one with distal and the other one with perpendicular hafting of the scrapers, to allow for ethnographically plausible reconstructions. The data show statistically significant differences between the two gestures: scraping away from the body (PA) generates higher shearing forces, but requires greater hand torque. Moreover, most benchmarks associated with the PA gesture are more highly variable than in the PT gesture

  19. Brain activity during observation and motor imagery of different balance tasks: an fMRI study.

    PubMed

    Taube, Wolfgang; Mouthon, Michael; Leukel, Christian; Hoogewoud, Henri-Marcel; Annoni, Jean-Marie; Keller, Martin

    2015-03-01

    After immobilization, patients show impaired postural control and increased risk of falling. Therefore, loss of balance control should already be counteracted during immobilization. Previously, studies have demonstrated that both motor imagery (MI) and action observation (AO) can improve motor performance. The current study elaborated how the brain is activated during imagination and observation of different postural tasks to provide recommendations about the conception of non-physical balance training. For this purpose, participants were tested in a within-subject design in an fMRI-scanner in three different conditions: (a) AO + MI, (b) AO, and (c) MI. In (a) participants were instructed to imagine themselves as the person pictured in the video whereas in (b) they were instructed simply to watch the video. In (c) subjects closed their eyes and kinesthetically imagined the task displayed in the video. Two tasks were evaluated in each condition: (i) static standing balance and (ii) dynamic standing balance (medio-lateral perturbation). In all conditions the start of a new trial was indicated every 2 sec by a sound. During AO + MI of the dynamic task, participants activated motor centers including the putamen, cerebellum, supplementary motor area, premotor cortices (PMv/d) and primary motor cortex (M1). MI showed a similar pattern but no activity in M1 and PMv/d. In the SMA and cerebellum, activity was generally higher in the dynamic than in the static condition. AO did not significantly activate any of these brain areas. Our results showed that (I) mainly AO + MI, but also MI, activate brain regions important for balance control; (II) participants display higher levels of brain activation in the more demanding balance task; (III) there is a significant difference between AO + MI and AO. Consequently, best training effects should be expected when participants apply MI during AO (AO + MI) of challenging postural tasks. PMID:25461711

  20. Reach task-associated excitatory overdrive of motor cortical neurons following infusion with ALS-CSF.

    PubMed

    Sankaranarayani, R; Raghavan, Mohan; Nalini, A; Laxmi, T R; Raju, T R

    2014-01-01

    Converging evidence from transgenic animal models of amyotrophic lateral sclerosis (ALS) and human studies suggest alterations in excitability of the motor neurons in ALS. Specifically, in studies on human subjects with ALS the motor cortex was reported to be hyperexcitable. The present study was designed to test the hypothesis that infusion of cerebrospinal fluid from patients with sporadic ALS (ALS-CSF) into the rat brain ventricle can induce hyperexcitability and structural changes in the motor cortex leading to motor dysfunction. A robust model of sporadic ALS was developed experimentally by infusing ALS-CSF into the rat ventricle. The effects of ALS-CSF at the single neuron level were examined by recording extracellular single unit activity from the motor cortex while rats were performing a reach to grasp task. We observed an increase in the firing rate of the neurons of the motor cortex in rats infused with ALS-CSF compared to control groups. This was associated with impairment in a specific component of reach with alterations in the morphological characteristics of the motor cortex. It is likely that the increased cortical excitability observed in the present study could be the result of changes in the intrinsic properties of motor cortical neurons, a dysfunctional inhibitory mechanism and/or an underlying structural change culminating in a behavioral deficit. PMID:23900732

  1. Cognitive processing and motor execution in the lexical decision task: a developmental study.

    PubMed

    Schroeder, Sascha; Verrel, Julius

    2014-04-01

    We investigated lexical decision making in children and adults by analyzing spatiotemporal characteristics of responses involving a hand movement. Children's and adults' movement trajectories were assessed in three tasks: a lexical decision task (LDT), a pointing task that involved minimal cognitive processing, and a symbol task requiring a simple binary decision. Cognitive interference on motor performance was quantified by analyzing movement characteristics in the LDT and symbol task relative to the pointing task. Across age groups, movements in the LDT were less smooth, slower, and more strongly curved to the opposite response option, and these interference effects decreased steadily with age. Older children showed stronger interference effects than did adults, even though their reaction times were similar to adults' performance. No comparable effects were found in the symbol task, indicating that task characteristics such as response mapping and decision selection alone are not able to explain the developmental differences observed in the LDT. Our results indicate substantial overlap between cognitive processing and motor execution in the LDT in children that is not captured by computational models of visual word recognition and cognitive development. PMID:24030472

  2. Motor Learning of a Bimanual Task in Children with Unilateral Cerebral Palsy

    ERIC Educational Resources Information Center

    Hung, Ya-Ching; Gordon, Andrew M.

    2013-01-01

    Children with unilateral cerebral palsy (CP) have been shown to improve their motor performance with sufficient practice. However, little is known about how they learn goal-oriented tasks. In the current study, 21 children with unilateral CP (age 4-10 years old) and 21 age-matched typically developed children (TDC) practiced a simple bimanual…

  3. Dramatic Effects of Speech Task on Motor and Linguistic Planning in Severely Dysfluent Parkinsonian Speech

    ERIC Educational Resources Information Center

    Van Lancker Sidtis, Diana; Cameron, Krista; Sidtis, John J.

    2012-01-01

    In motor speech disorders, dysarthric features impacting intelligibility, articulation, fluency and voice emerge more saliently in conversation than in repetition, reading or singing. A role of the basal ganglia in these task discrepancies has been identified. Further, more recent studies of naturalistic speech in basal ganglia dysfunction have…

  4. Search for Autonomy in Motor Task Learning in Physical Education University Students

    ERIC Educational Resources Information Center

    Moreno Murcia, Juan Antonio; Lacarcel, Jose Antonio Vera; Del Villar Alvarez, Fernando

    2010-01-01

    The study focused on discovering the influence that an autonomous motor task learning programme had on the improvement of perceived competence, intrinsic regulation, incremental belief and motivational orientations. The study was performed with two groups of participants (n = 22 and n = 20) aged between 19 and 35 years. The instruments used were…

  5. Selective Influence of Circadian Modulation and Task Characteristics on Motor Imagery Time

    ERIC Educational Resources Information Center

    Debarnot, Ursula; Sahraoui, Djafar; Champely, Stephane; Collet, Christian; Guillot, Aymeric

    2012-01-01

    In this study, we examined the effect of circadian modulation on motor imagery (MI) time while also considering the effects of task complexity and duration. The ability to imagine in real time was influenced by circadian modulation in a simple walking condition, with longer MI times in the morning and evening sessions. By contrast, there was no…

  6. Responding to a Challenging Perceptual-Motor Task as a Function of Level of Experiential Avoidance

    ERIC Educational Resources Information Center

    Zettle, Robert D.; Petersen, Connie L.; Hocker, Tanya R.; Provines, Jessica L.

    2007-01-01

    Participants displaying high versus low levels of experiential avoidance as assessed by the Acceptance and Action Questionnaire (Hayes, Strosahl, et al., 2004) were compared in their reactions to and performance on a challenging perceptual-motor task. Participants were offered incentives for sorting colored straws into different colored containers…

  7. Short Term Auditory Pacing Changes Dual Motor Task Coordination in Children with and without Dyslexia

    ERIC Educational Resources Information Center

    Getchell, Nancy; Mackenzie, Samuel J.; Marmon, Adam R.

    2010-01-01

    This study examined the effect of short-term auditory pacing practice on dual motor task performance in children with and without dyslexia. Groups included dyslexic with Movement Assessment Battery for Children (MABC) scores greater than 15th percentile (D_HIGH, n = 18; mean age 9.89 [plus or minus] 2.0 years), dyslexic with MABC [less than or…

  8. Transfer from Audiovisual Pretraining to a Continuous Perceptual-Motor Task.

    ERIC Educational Resources Information Center

    Wood, Milton E.; Gerlach, Vernon S.

    A study was devised to develop a method for describing a continuous, complex perceptual-motor task in descrete categories by which subjects could be pretrained through the use of static, programed, audiovisual techniques; to construct an audiovisual training device to provide realistic, programed practice in the stimulus-response events selected…

  9. Impaired Inhibition of Prepotent Motor Tendencies in Friedreich Ataxia Demonstrated by the Simon Interference Task

    ERIC Educational Resources Information Center

    Corben, L. A.; Akhlaghi, H.; Georgiou-Karistianis, N.; Bradshaw, J. L.; Egan, G. F.; Storey, E.; Churchyard, A. J.; Delatycki, M. B.

    2011-01-01

    Friedreich ataxia (FRDA) is the most common of the genetically inherited ataxias. We recently demonstrated that people with FRDA have impairment in motor planning--most likely because of pathology affecting the cerebral cortex and/or cerebello-cortical projections. We used the Simon interference task to examine how effective 13 individuals with…

  10. Spontaneous Gestures during Mental Rotation Tasks: Insights into the Microdevelopment of the Motor Strategy

    ERIC Educational Resources Information Center

    Chu, Mingyuan; Kita, Sotaro

    2008-01-01

    This study investigated the motor strategy involved in mental rotation tasks by examining 2 types of spontaneous gestures (hand-object interaction gestures, representing the agentive hand action on an object, vs. object-movement gestures, representing the movement of an object by itself) and different types of verbal descriptions of rotation.…

  11. Performance of a motor task learned on levodopa deteriorates when subsequently practiced off.

    PubMed

    Anderson, Elise D; Horak, Fay B; Lasarev, Michael R; Nutt, John G

    2014-01-01

    Studies in animals and in people with Parkinson's disease (PD) demonstrate complex effects of dopamine on learning motor tasks; its effect on retention of motor learning has received little attention. Recent animal studies demonstrate that practicing a task in the off state, when initially learned in the on state, leads to progressive deterioration in performance. We measured the acquisition and retention of 3 different motor tasks in the presence and absence of levodopa. Twenty individuals with Hoehn and Yahr Stage 1.5 to 3 PD practiced the tasks daily for two 4-day weeks, one half practicing on L-dopa the first week and off the second week. The other half practiced off l-dopa both weeks. The tasks were (1) alternate tapping of 2 keys, (2) moving the body toward 2 targets on a posturography device, and (3) mirror drawing of a star. For the tapping and body movement tests, those who practiced on the first week had a progressive decline in performance with practice during week 2, while subjects off during week 1 maintained or improved. In contrast, for the mirror task, subjects on L-dopa initially had much more difficulty completing the task compared to subjects who practiced off. Both groups improved with practice the first week and had flat performance the second week. These data suggest that performance of speed-accuracy tasks learned in the on state may progressively worsen if subsequently practiced in the off state. In addition, performance, but not learning, of some tasks may be impeded by L-dopa. PMID:24132873

  12. Using the Hand Laterality Judgement Task to Assess Motor Imagery: A Study of Practice Effects in Repeated Measurements

    ERIC Educational Resources Information Center

    Boonstra, Anne M.; de Vries, Sjoerd J.; Veenstra, Evelien; Tepper, Marga; Feenstra, Wya; Otten, Egbert

    2012-01-01

    The aim of this study was to determine whether there is a practice effect on the Hand Laterality Judgement Task (HLJT). The HLJT task is a mental rotation task that can be used to assess motor imagery ability in stroke patients. Thirty-three healthy individuals performed the HLJT and two control tasks twice at a 3-week interval. Differences in the…

  13. The effects of a concurrent motor task on walking in Alzheimer's disease.

    PubMed

    Wittwer, Joanne E; Webster, Kate E; Hill, Keith

    2014-01-01

    The important relationship between cognition and gait in people with dementia has been explored with dual-task studies using added cognitive tasks. Effects of less commonly studied but also attention-dividing motor dual-tasks are important to assess in this group as they are common in everyday function and may affect gait differently from cognitive dual-tasks. They may also be easier to comprehend allowing their application with more severe cognitive impairment. The aim of this study was to evaluate the effects and feasibility of a motor dual-task (MDT) on gait measures in people with Alzheimer's disease (AD). Thirty people (15 men, mean age ± SD, 80.2 ± 5.8 years) with a diagnosis of probable AD (MMSE range 8-28) walked on an electronic walkway (i) at self-selected comfortable pace and (ii) at self-selected comfortable pace while carrying a tray and glasses. The MDT produced significant decreases in velocity (Baseline=111.5 ± 26.5 cm/s, MDT=96.8 ± 25.7 cm/s, p<0.001) and stride length (Baseline=121.4 ± 21.6 cm, MDT=108.1 ± 21.0 cm, p<0.001) with medium effect sizes, and increased stride time (Baseline=1.11 ± 0.11s, MDT=1.14 ± 0.12s, p=0.001) with small effect size. Measures of spatial (Baseline=3.2 ± 1.0%, MDT=3.9 ± 1.5%, p=0.006) and temporal (Baseline=2.4 ± 0.8%, MDT=2.8 ± 0.8%, p=0.008) variability increased with the motor dual-task, with medium effect sizes. A trend for motor dual-task changes in gait measures to increase with greater disease severity did not reach significance. The tray-carrying task was feasible, even for participants with severe cognitive decline. Further comparison of different types of motor and cognitive dual-tasks may contribute to development of a framework for clinical intervention to improve reduced dual-task walking capacity in people with AD. PMID:23978694

  14. Neural correlates of error prediction in a complex motor task

    PubMed Central

    Maurer, Lisa Katharina; Maurer, Heiko; Müller, Hermann

    2015-01-01

    The goal of the study was to quantify error prediction processes via neural correlates in the Electroencephalogram (EEG). Access to such a neural signal will allow to gain insights into functional and temporal aspects of error perception in the course of learning. We focused on the error negativity (Ne) or error-related negativity (ERN) as a candidate index for the prediction processes. We have used a virtual goal-oriented throwing task where participants used a lever to throw a virtual ball displayed on a computer monitor with the goal of hitting a virtual target as often as possible. After one day of practice with 400 trials, participants performed another 400 trials on a second day with EEG measurement. After error trials (i.e., when the ball missed the target), we found a sharp negative deflection in the EEG peaking 250 ms after ball release (mean amplitude: t = −2.5, df = 20, p = 0.02) and another broader negative deflection following the first, reaching from about 300 ms after release until unambiguous visual knowledge of results (KR; hitting or passing by the target; mean amplitude: t = −7.5, df = 20, p < 0.001). According to shape and timing of the two deflections, we assume that the first deflection represents a predictive Ne/ERN (prediction based on efferent commands and proprioceptive feedback) while the second deflection might have arisen from action monitoring. PMID:26300754

  15. A functional tracking task to assess frontal plane motor control in post stroke gait.

    PubMed

    Reissman, Megan E; Dhaher, Yasin Y

    2015-07-16

    The ability to execute appropriate medio-lateral foot placements during gait is thought to require active frontal plane control and to be critical in maintaining upright posture during gait. The aggregate frontal plane metrics of step width and step width variability have been assessed for post-stroke populations, but only under normal walking conditions. However, in the case of stroke, limb specific differences in sensory-motor control are likely. Thus, an investigation of limb specific motor control characteristics under tracking task conditions is needed to appropriately characterize frontal plane sensory-motor control post-stroke. Chronic stroke subjects (n=15) and age matched control subjects (n=10) tracked static, bilateral foot placement targets at self-selected walking speeds and completed a free walking trial. Variability and error of tracking performance were analyzed for step width and foot placement. Stroke subjects demonstrated reduced ability to control step width variability and foot placement variability, compared to control subjects. Step width variability and affected limb foot placement variability were sensitive to task complexity, increasing significantly in response to a decrease in step width target size. These results show that stroke mediated changes in the sensory-motor integration processes are manifested as inter-limb differences in frontal plane motor variability during a gait tracking task, with an additional sensitivity to task complexity. Additionally, the proposed step width tracking paradigm presents a clinically reproducible motor control metric that can be used for diagnostic assessment or as a potential outcome for a gait training regimen. PMID:26037229

  16. The impact of a concurrent motor task on auditory and visual temporal discrimination tasks.

    PubMed

    Mioni, Giovanna; Grassi, Massimo; Tarantino, Vincenza; Stablum, Franca; Grondin, Simon; Bisiacchi, Patrizia S

    2016-04-01

    Previous studies have shown the presence of an interference effect on temporal perception when participants are required to simultaneously execute a nontemporal task. Such interference likely has an attentional source. In the present work, a temporal discrimination task was performed alone or together with a self-paced finger-tapping task used as concurrent, nontemporal task. Temporal durations were presented in either the visual or the auditory modality, and two standard durations (500 and 1,500 ms) were used. For each experimental condition, the participant's threshold was estimated and analyzed. The mean Weber fraction was higher in the visual than in the auditory modality, but only for the subsecond duration, and it was higher with the 500-ms than with the 1,500-ms standard duration. Interestingly, the Weber fraction was significantly higher in the dual-task condition, but only in the visual modality. The results suggest that the processing of time in the auditory modality is likely automatic, but not in the visual modality. PMID:26965441

  17. Automatic motor task selection via a bandit algorithm for a brain-controlled button

    NASA Astrophysics Data System (ADS)

    Fruitet, Joan; Carpentier, Alexandra; Munos, Rémi; Clerc, Maureen

    2013-02-01

    Objective. Brain-computer interfaces (BCIs) based on sensorimotor rhythms use a variety of motor tasks, such as imagining moving the right or left hand, the feet or the tongue. Finding the tasks that yield best performance, specifically to each user, is a time-consuming preliminary phase to a BCI experiment. This study presents a new adaptive procedure to automatically select (online) the most promising motor task for an asynchronous brain-controlled button. Approach. We develop for this purpose an adaptive algorithm UCB-classif based on the stochastic bandit theory and design an EEG experiment to test our method. We compare (offline) the adaptive algorithm to a naïve selection strategy which uses uniformly distributed samples from each task. We also run the adaptive algorithm online to fully validate the approach. Main results. By not wasting time on inefficient tasks, and focusing on the most promising ones, this algorithm results in a faster task selection and a more efficient use of the BCI training session. More precisely, the offline analysis reveals that the use of this algorithm can reduce the time needed to select the most appropriate task by almost half without loss in precision, or alternatively, allow us to investigate twice the number of tasks within a similar time span. Online tests confirm that the method leads to an optimal task selection. Significance. This study is the first one to optimize the task selection phase by an adaptive procedure. By increasing the number of tasks that can be tested in a given time span, the proposed method could contribute to reducing ‘BCI illiteracy’.

  18. The relationship between motor recovery and gait velocity during dual tasks in patients with chronic stroke.

    PubMed

    Lee, Kyoung Bo; Kim, Jang Hwan; Lee, Kang Sung

    2015-04-01

    [Purpose] The aims of this study were to identify the relationship between motor recovery and gait velocity during dual tasks in patients with chronic stroke and determine automatic gait ability following stroke. [Subjects and Methods] Thirty-three outpatients and twelve healthy subjects participated in a cross-sectional assessment. Community ambulation was assessed using a self-administered questionnaire. Outcome measures included the Motricity index, Berg Balance Scale, and gait speed under three conditions (self-paced ambulation for 10 m, ambulation while performing dual cognitive tasks, and ambulation while performing dual manual tasks). Gait automaticity was calculated. [Results] No significant differences were observed for muscle strength or balance between the limited community ambulation and the community ambulation groups. However, a significant difference in gait velocity was observed between the groups under the three conditions. In particular, a significant difference was detected only in the limited community ambulation group depending on the level of motor function recovery during cognitive and manual dual task ambulation. Additionally, we revealed that the community ambulation group had a lower level of gait automaticity compared with that in the normal group. [Conclusion] Our results show the influence of motor recovery on the change in gait velocity depending on the task if a patient is limitedly ambulatory. We revealed that community ambulators did not have a sufficient level of gait automaticity. PMID:25995582

  19. The relationship between motor recovery and gait velocity during dual tasks in patients with chronic stroke

    PubMed Central

    Lee, Kyoung Bo; Kim, Jang Hwan; Lee, Kang Sung

    2015-01-01

    [Purpose] The aims of this study were to identify the relationship between motor recovery and gait velocity during dual tasks in patients with chronic stroke and determine automatic gait ability following stroke. [Subjects and Methods] Thirty-three outpatients and twelve healthy subjects participated in a cross-sectional assessment. Community ambulation was assessed using a self-administered questionnaire. Outcome measures included the Motricity index, Berg Balance Scale, and gait speed under three conditions (self-paced ambulation for 10 m, ambulation while performing dual cognitive tasks, and ambulation while performing dual manual tasks). Gait automaticity was calculated. [Results] No significant differences were observed for muscle strength or balance between the limited community ambulation and the community ambulation groups. However, a significant difference in gait velocity was observed between the groups under the three conditions. In particular, a significant difference was detected only in the limited community ambulation group depending on the level of motor function recovery during cognitive and manual dual task ambulation. Additionally, we revealed that the community ambulation group had a lower level of gait automaticity compared with that in the normal group. [Conclusion] Our results show the influence of motor recovery on the change in gait velocity depending on the task if a patient is limitedly ambulatory. We revealed that community ambulators did not have a sufficient level of gait automaticity. PMID:25995582

  20. The Effect of Self-Regulated and Experimenter-Imposed Practice Schedules on Motor Learning for Tasks of Varying Difficulty

    ERIC Educational Resources Information Center

    Keetch, Katherine M.; Lee, Timothy D.

    2007-01-01

    Research suggests that allowing individuals to control their own practice schedule has a positive effect on motor learning. In this experiment we examined the effect of task difficulty and self-regulated practice strategies on motor learning. The task was to move a mouse-operated cursor through pattern arrays that differed in two levels of…

  1. Task complexity and maximal isometric strength gains through motor learning

    PubMed Central

    McGuire, Jessica; Green, Lara A.; Gabriel, David A.

    2014-01-01

    Abstract This study compared the effects of a simple versus complex contraction pattern on the acquisition, retention, and transfer of maximal isometric strength gains and reductions in force variability. A control group (N = 12) performed simple isometric contractions of the wrist flexors. An experimental group (N = 12) performed complex proprioceptive neuromuscular facilitation (PNF) contractions consisting of maximal isometric wrist extension immediately reversing force direction to wrist flexion within a single trial. Ten contractions were completed on three consecutive days with a retention and transfer test 2‐weeks later. For the retention test, the groups performed their assigned contraction pattern followed by a transfer test that consisted of the other contraction pattern for a cross‐over design. Both groups exhibited comparable increases in strength (20.2%, P < 0.01) and reductions in mean torque variability (26.2%, P < 0.01), which were retained and transferred. There was a decrease in the coactivation ratio (antagonist/agonist muscle activity) for both groups, which was retained and transferred (35.2%, P < 0.01). The experimental group exhibited a linear decrease in variability of the torque‐ and sEMG‐time curves, indicating transfer to the simple contraction pattern (P < 0.01). The control group underwent a decrease in variability of the torque‐ and sEMG‐time curves from the first day of training to retention, but participants returned to baseline levels during the transfer condition (P < 0.01). However, the difference between torque RMS error versus the variability in torque‐ and sEMG‐time curves suggests the demands of the complex task were transferred, but could not be achieved in a reproducible way. PMID:25428951

  2. Approaches to analysis of handwriting as a task of coordinating a redundant motor system

    PubMed Central

    Latash, Mark L.; Danion, Frederic; Scholz, John F.; Zatsiorsky, Vladimir M.; Schöner, Gregor

    2010-01-01

    We consider problems of motor redundancy associated with handwriting using the framework of the uncontrolled manifold (UCM) hypothesis. Recent studies of finger coordination during force production tasks have demonstrated that the UCM-hypothesis provides a fruitful framework for analysis of multi-finger actions. In particular, it has been shown that during relatively fast force changes, finger force variance across trials is structured such that a time pattern of total moment produced by the fingers with respect to a point between the two most lateral fingers involved in the task is stabilized while the time pattern of total force may be destabilized. The findings of selective moment stabilization have been interpreted as being conditioned by the experience with everyday motor tasks that commonly pose more strict requirements to stabilization of total moment than to stabilization of total force. We discuss implications of these findings for certain features of handwriting seen in elderly, children, patients with neurological disorders, and forgers. PMID:12667747

  3. The ecological approach to cognitive–motor dual-tasking: findings on the effects of expertise and age

    PubMed Central

    Schaefer, Sabine

    2014-01-01

    The underlying assumption of studies on cognitive–motor dual-tasking is that resources are limited, and when they have to be shared between a cognitive and a motor task, performances will suffer. Resource competition should therefore be particularly pronounced in children, older adults, or people who are just acquiring a new motor skill. The current review summarizes expertise and age comparative studies that have combined a cognitive and a motor task. Expertise studies have often assessed sports performances (e.g., golf putting, soccer dribbling, rugby drills) and have shown that experts are more successful than novices to keep up their performances in dual-task situations. The review also presents age-comparative studies that have used walking (on narrow tracks or on a treadmill) as the motor task. Older adults often show higher costs than young adults, and they tend to prioritize the motor domain. These findings are discussed in relation to the ecological approach to dual-task research originally introduced by Li et al. (2005). The approach proposes to study ecologically valid dual-task situations, and always to investigate dual-task costs for both domains (cognitive and motor performance) in order to assess potential tradeoffs. In addition, task difficulties should be individually adjusted, and differential-emphasis instructions should be included in the study design. PMID:25352820

  4. Differences in visuo-motor control in skilled vs. novice martial arts athletes during sustained and transient attention tasks: a motor-related cortical potential study.

    PubMed

    Sanchez-Lopez, Javier; Fernandez, Thalia; Silva-Pereyra, Juan; Martinez Mesa, Juan A; Di Russo, Francesco

    2014-01-01

    Cognitive and motor processes are essential for optimal athletic performance. Individuals trained in different skills and sports may have specialized cognitive abilities and motor strategies related to the characteristics of the activity and the effects of training and expertise. Most studies have investigated differences in motor-related cortical potential (MRCP) during self-paced tasks in athletes but not in stimulus-related tasks. The aim of the present study was to identify the differences in performance and MRCP between skilled and novice martial arts athletes during two different types of tasks: a sustained attention task and a transient attention task. Behavioral and electrophysiological data from twenty-two martial arts athletes were obtained while they performed a continuous performance task (CPT) to measure sustained attention and a cued continuous performance task (c-CPT) to measure transient attention. MRCP components were analyzed and compared between groups. Electrophysiological data in the CPT task indicated larger prefrontal positive activity and greater posterior negativity distribution prior to a motor response in the skilled athletes, while novices showed a significantly larger response-related P3 after a motor response in centro-parietal areas. A different effect occurred in the c-CPT task in which the novice athletes showed strong prefrontal positive activity before a motor response and a large response-related P3, while in skilled athletes, the prefrontal activity was absent. We propose that during the CPT, skilled athletes were able to allocate two different but related processes simultaneously according to CPT demand, which requires controlled attention and controlled motor responses. On the other hand, in the c-CPT, skilled athletes showed better cue facilitation, which permitted a major economy of resources and "automatic" or less controlled responses to relevant stimuli. In conclusion, the present data suggest that motor expertise

  5. Differences in Visuo-Motor Control in Skilled vs. Novice Martial Arts Athletes during Sustained and Transient Attention Tasks: A Motor-Related Cortical Potential Study

    PubMed Central

    Sanchez-Lopez, Javier; Fernandez, Thalia; Silva-Pereyra, Juan; Martinez Mesa, Juan A.; Di Russo, Francesco

    2014-01-01

    Cognitive and motor processes are essential for optimal athletic performance. Individuals trained in different skills and sports may have specialized cognitive abilities and motor strategies related to the characteristics of the activity and the effects of training and expertise. Most studies have investigated differences in motor-related cortical potential (MRCP) during self-paced tasks in athletes but not in stimulus-related tasks. The aim of the present study was to identify the differences in performance and MRCP between skilled and novice martial arts athletes during two different types of tasks: a sustained attention task and a transient attention task. Behavioral and electrophysiological data from twenty-two martial arts athletes were obtained while they performed a continuous performance task (CPT) to measure sustained attention and a cued continuous performance task (c-CPT) to measure transient attention. MRCP components were analyzed and compared between groups. Electrophysiological data in the CPT task indicated larger prefrontal positive activity and greater posterior negativity distribution prior to a motor response in the skilled athletes, while novices showed a significantly larger response-related P3 after a motor response in centro-parietal areas. A different effect occurred in the c-CPT task in which the novice athletes showed strong prefrontal positive activity before a motor response and a large response-related P3, while in skilled athletes, the prefrontal activity was absent. We propose that during the CPT, skilled athletes were able to allocate two different but related processes simultaneously according to CPT demand, which requires controlled attention and controlled motor responses. On the other hand, in the c-CPT, skilled athletes showed better cue facilitation, which permitted a major economy of resources and “automatic” or less controlled responses to relevant stimuli. In conclusion, the present data suggest that motor expertise

  6. Studying Mathematics Teacher Education: Analysing the Process of Task Variation on Learning

    ERIC Educational Resources Information Center

    Bragg, Leicha A.

    2015-01-01

    Self-study of variations to task design offers a way of analysing how learning takes place. Over several years, variations were made to improve an assessment task completed by final-year teacher candidates in a primary mathematics teacher education subject. This article describes how alterations to a task informed on-going developments in…

  7. Parkinson's Disease and Cognitive-Motor Dual-Task: Is Motor Prioritization Possible in the Early Stages of the Disease?

    PubMed

    Fernandes, Ângela; Sousa, Andreia S P; Rocha, Nuno; Tavares, João Manuel R S

    2016-01-01

    The authors aimed to compare the postural phase of gait initiation under single-task (gait initiation) and dual-task (gait initiation plus Stroop test) conditions in healthy subjects and in subjects with Parkinson's disease (PD) in the early stages (Hoehn and Yahr scale < 3). The postural phase of gait initiation was assessed through the centre of pressure in single and dual task in 10 healthy subjects and 9 with PD. The analysis indicated that in the early stages of PD, an additional cognitive task did not affect the displacement of the gait initiation. No significant effects occurred between the groups and within-subjects (p > .05). Also, no interaction was found between the groups and the conditions (single- and dual-task). Differences were found in the duration of the mediolateral postural phase (p = .003), which was higher in PD subjects than in healthy subjects. The findings suggest that subjects in the early stages of PD prioritize gait initiation, as their motor performance was similar to that of healthy subjects. PMID:27159414

  8. Positron computed tomography studies of cerebral metabolic responses to complex motor tasks

    SciTech Connect

    Phelps, M.E.; Mazziotta, J.C.

    1984-01-01

    Human motor system organization was explored in 8 right-handed male subjects using /sup 18/F-fluorodeoxyglucose and positron computed tomography to measure cerebral glucose metabolism. Five subjects had triple studies (eyes closed) including: control (hold pen in right hand without moving), normal size writing (subject repeatedly writes name) and large (10-15 X normal) name writing. In these studies normal and large size writing had a similar distribution of metabolic responses when compared to control studies. Activations (percent change from control) were in the range of 12-20% and occurred in the striatum bilaterally > contralateral Rolandic cortex > contralateral thalamus. No significant activations were observed in the ipsilateral thalamus, Rolandic cortex or cerebellum (supplementary motor cortex was not examined). The magnitude of the metabolic response in the striatum was greater with the large versus normal sized writing. This differential response may be due to an increased number and topographic distribution of neurons responding with the same average activity between tasks or an increase in the functional activity of the same neuronal population between the two tasks (present spatial resolution inadequate to differentiate). When subjects (N=3) performed novel sequential finger movements, the maximal metabolic response was in the contralateral Rolandic cortex > striatum. Such studies provide a means of exploring human motor system organization, motor learning and provide a basis for examining patients with motor system disorders.

  9. Watch and learn: seeing is better than doing when acquiring consecutive motor tasks.

    PubMed

    Larssen, Beverley C; Ong, Nicole T; Hodges, Nicola J

    2012-01-01

    During motor adaptation learning, consecutive physical practice of two different tasks compromises the retention of the first. However, there is evidence that observational practice, while still effectively aiding acquisition, will not lead to interference and hence prove to be a better practice method. Observers and Actors practised in a clockwise (Task A) followed by a counterclockwise (Task B) visually rotated environment, and retention was immediately assessed. An Observe-all and Act-all group were compared to two groups who both physically practised Task A, but then only observed (ObsB) or did not see or practice Task B (NoB). The two observer groups and the NoB control group better retained Task A than Actors, although importantly only the observer groups learnt Task B. RT data and explicit awareness of the rotation suggested that the observers had acquired their respective tasks in a more strategic manner than Actor and Control groups. We conclude that observational practice benefits learning of multiple tasks more than physical practice due to the lack of updating of implicit, internal models for aiming in the former. PMID:22723909

  10. A latent discriminative model-based approach for classification of imaginary motor tasks from EEG data.

    PubMed

    Saa, Jaime F Delgado; Çetin, Müjdat

    2012-04-01

    We consider the problem of classification of imaginary motor tasks from electroencephalography (EEG) data for brain-computer interfaces (BCIs) and propose a new approach based on hidden conditional random fields (HCRFs). HCRFs are discriminative graphical models that are attractive for this problem because they (1) exploit the temporal structure of EEG; (2) include latent variables that can be used to model different brain states in the signal; and (3) involve learned statistical models matched to the classification task, avoiding some of the limitations of generative models. Our approach involves spatial filtering of the EEG signals and estimation of power spectra based on autoregressive modeling of temporal segments of the EEG signals. Given this time-frequency representation, we select certain frequency bands that are known to be associated with execution of motor tasks. These selected features constitute the data that are fed to the HCRF, parameters of which are learned from training data. Inference algorithms on the HCRFs are used for the classification of motor tasks. We experimentally compare this approach to the best performing methods in BCI competition IV as well as a number of more recent methods and observe that our proposed method yields better classification accuracy. PMID:22414728

  11. Abnormal motor cortex excitability during linguistic tasks in adductor-type spasmodic dysphonia.

    PubMed

    Suppa, A; Marsili, L; Giovannelli, F; Di Stasio, F; Rocchi, L; Upadhyay, N; Ruoppolo, G; Cincotta, M; Berardelli, A

    2015-08-01

    In healthy subjects (HS), transcranial magnetic stimulation (TMS) applied during 'linguistic' tasks discloses excitability changes in the dominant hemisphere primary motor cortex (M1). We investigated 'linguistic' task-related cortical excitability modulation in patients with adductor-type spasmodic dysphonia (ASD), a speech-related focal dystonia. We studied 10 ASD patients and 10 HS. Speech examination included voice cepstral analysis. We investigated the dominant/non-dominant M1 excitability at baseline, during 'linguistic' (reading aloud/silent reading/producing simple phonation) and 'non-linguistic' tasks (looking at non-letter strings/producing oral movements). Motor evoked potentials (MEPs) were recorded from the contralateral hand muscles. We measured the cortical silent period (CSP) length and tested MEPs in HS and patients performing the 'linguistic' tasks with different voice intensities. We also examined MEPs in HS and ASD during hand-related 'action-verb' observation. Patients were studied under and not-under botulinum neurotoxin-type A (BoNT-A). In HS, TMS over the dominant M1 elicited larger MEPs during 'reading aloud' than during the other 'linguistic'/'non-linguistic' tasks. Conversely, in ASD, TMS over the dominant M1 elicited increased-amplitude MEPs during 'reading aloud' and 'syllabic phonation' tasks. CSP length was shorter in ASD than in HS and remained unchanged in both groups performing 'linguistic'/'non-linguistic' tasks. In HS and ASD, 'linguistic' task-related excitability changes were present regardless of the different voice intensities. During hand-related 'action-verb' observation, MEPs decreased in HS, whereas in ASD they increased. In ASD, BoNT-A improved speech, as demonstrated by cepstral analysis and restored the TMS abnormalities. ASD reflects dominant hemisphere excitability changes related to 'linguistic' tasks; BoNT-A returns these excitability changes to normal. PMID:26061279

  12. Preschoolers' motor and verbal self-control strategies during a resistance-to-temptation task.

    PubMed

    Manfra, Louis; Davis, Kelly D; Ducenne, Lesley; Winsler, Adam

    2014-01-01

    Although prior research has shown that young children exhibit enhanced self-control when they use verbal strategies provided through adult instructions, little work has examined the role of children's spontaneous verbalizations or motor behavior as strategies for enhancing self-control. The present study examined the usefulness of spontaneous verbal and motor strategies for 39 3- and 4-year-old children's ability to exercise self-control during a resistance-to-temptation task. After a 2-min play period, participants were asked by an experimenter not to touch an attractive train set while he was out of the room. Children were videotaped during the 3-min waiting period and videos were coded for frequency and duration of touches, motor movements, and verbalizations. Results indicated that self-control was improved by using both motor and verbal strategies. Children who were unable to resist touching the forbidden toy used limited motor or verbal strategies. These findings add to the growing literature demonstrating the positive role of verbalizations on cognitive control and draw attention to motor behaviors as additional strategies used by young children to exercise self-control. PMID:25175682

  13. Performance of fine motor and spatial tasks during the menstrual cycle.

    PubMed

    Simić, Nataša; Tokić, Andrea; Peričić, Marina

    2010-12-01

    Various studies have shown fluctuations in task performance during the menstrual cycle. The aim of this study was to see the effects of the menstrual cycle on performing fine motor and spatial tasks of different level of complexity in twenty students aged 18 to 21 years, with regular menstrual cycle (28 to 30 days). The students performed O'Connor Finger Dexterity Test and mental rotation test during the menstrual, late follicular, and midluteal phase. Before the tests were performed, we administered Spielberger's State-Trait Anxiety Inventory for each phase. After the tasks were completed, the subjects ranked their difficulty on Borg's scale.The results showed the best performance in both tests in the midluteal phase (with sex hormones at their peak). The anxiety level and task difficulty ranking were the highest in the menstrual phase, when the hormone levels were the lowest. PMID:21183432

  14. Self-Control of Task Difficulty During Early Practice Promotes Motor Skill Learning.

    PubMed

    Andrieux, Mathieu; Boutin, Arnaud; Thon, Bernard

    2016-01-01

    This study was designed to determine whether the effect of self-control of task difficulty on motor learning is a function of the period of self-control administration. In a complex anticipation-coincidence task that required participants to intercept 3 targets with a virtual racquet, the task difficulty was either self-controlled or imposed to the participants in the two phases of the acquisition session. First, the results confirmed the beneficial effects of self-control over fully prescribed conditions. Second, the authors also demonstrated that a partial self-control of task difficulty better promotes learning than does a complete self-controlled procedure. Overall, the results revealed that these benefits are increased when this choice is allowed during early practice. The findings are discussed in terms of theoretical and applied perspectives. PMID:25961604

  15. Age-related trends in Stroop and conflicting motor response task findings.

    PubMed

    Nichelli, Francesca; Scala, Gabriella; Vago, Chiara; Riva, Daria; Bulgheroni, Sara

    2005-10-01

    Inhibition problems are reportedly at the heart of several childhood pathologies and learning disorders, but few instruments are available for their in-depth investigation. The main aim of the present study was to investigate the development of a capacity to inhibit automatic responses in young and middle childhood. For this purpose, 100 children between 6 and 11 years old were administered two tests that measure executive inhibition: an animal Stroop task (in a paper-and-pencil version of the computerized original proposed by Wright and colleagues in 2003) and a conflicting motor response task. Our results indicate that performance clearly improves in both tests during the course of a child's development and the data obtained with the paper-and-pencil animal Stroop task overlap with those obtained with the computerized version. When the task calls for a stronger inhibitory control (the incongruent situation in the Stroop task and in the opposite condition in the conflicting motor response test) the trend of the response times is less homogeneous, peaking in the youngest and oldest age brackets considered. The positivity and significance of the correlation coefficients between the two tests also suggest that the two measures are tapping cognitive abilities that are developing in a parallel fashion. PMID:16306018

  16. Acute aerobic exercise and information processing: energizing motor processes during a choice reaction time task.

    PubMed

    Audiffren, Michel; Tomporowski, Phillip D; Zagrodnik, James

    2008-11-01

    The immediate and short-term after effects of a bout of aerobic exercise on young adults' information processing were investigated. Seventeen participants performed an auditory two-choice reaction time (RT) task before, during, and after 40 min of ergometer cycling. In a separate session, the same sequence of testing was completed while seated on an ergometer without pedalling. Results indicate that exercise (1) improves the speed of reactions by energizing motor outputs; (2) interacts with the arousing effect of a loud auditory signal suggesting a direct link between arousal and activation; (3) gradually reduces RT and peaks between 15 and 20 min; (4) effects on RT disappear very quickly after exercise cessation; and (5) effects on motor processes cannot be explained by increases in body temperature caused by exercise. Taken together, these results support a selective influence of acute aerobic exercise on motor adjustment stage. PMID:18930445

  17. Measurement of functional task difficulty during motor learning: What level of difficulty corresponds to the optimal challenge point?

    PubMed

    Akizuki, Kazunori; Ohashi, Yukari

    2015-10-01

    The relationship between task difficulty and learning benefit was examined, as was the measurability of task difficulty. Participants were required to learn a postural control task on an unstable surface at one of four different task difficulty levels. Results from the retention test showed an inverted-U relationship between task difficulty during acquisition and motor learning. The second-highest level of task difficulty was the most effective for motor learning, while learning was delayed at the most and least difficult levels. Additionally, the results indicate that salivary α-amylase and the performance dimension of the National Aeronautics and Space Administration-Task Load Index (NASA-TLX) are useful indices of task difficulty. Our findings suggested that instructors may be able to adjust task difficulty based on salivary α-amylase and the performance dimension of the NASA-TLX to enhance learning. PMID:26253223

  18. Motor planning in different grasping tasks by capuchin monkeys (Sapajus spp.).

    PubMed

    Sabbatini, Gloria; Meglio, Giusy; Truppa, Valentina

    2016-10-01

    Studies on motor planning and action selection in object use reveal that what we choose to do in the present moment depends on our next planned action. In particular, many studies have shown that adult humans initially adopt uncomfortable hand postures to accommodate later task demands (i.e., the end-state comfort effect). Recent studies on action planning in different non-human primates species have provided contrasting results. Here, we tested whether capuchin monkeys (Sapajus spp.), natural tool users, would show planning abilities in two tasks with varying complexity: (i) an object-retrieval task involving self-directed actions (Experiment 1) and (ii) a tool-using task involving actions directed toward an external target (Experiment 2). In Experiment 1, six of 10 monkeys preferentially used a radial grip (i.e., with the thumb-side oriented towards the baited end) to grasp a horizontal dowel with either the left- or right-end baited and bring it to their mouth. In Experiment 2, all six tested capuchins preferentially used a radial grip (i.e., with the thumb-side oriented towards the center of the dowel) to grasp a dowel that was positioned horizontally at different orientations and to dislodge an out-of-reach food reward. Thus, we found that the capuchins showed second-order planning abilities in both tasks, but performance differences emerged in relation to hand preference and learning across sessions. Our findings support the idea that second-order motor planning occurred in an early stage of the primate lineage. Factors affecting the ability of nonhuman primates to estimate motor costs in action selection are discussed. PMID:27283976

  19. Distributed task-specific processing of somatosensory feedback for voluntary motor control

    PubMed Central

    Omrani, Mohsen; Murnaghan, Chantelle D; Pruszynski, J Andrew; Scott, Stephen H

    2016-01-01

    Corrective responses to limb disturbances are surprisingly complex, but the neural basis of these goal-directed responses is poorly understood. Here we show that somatosensory feedback is transmitted to many sensory and motor cortical regions within 25 ms of a mechanical disturbance applied to the monkey’s arm. When limb feedback was salient to an ongoing motor action (task engagement), neurons in parietal area 5 immediately (~25 ms) increased their response to limb disturbances, whereas neurons in other regions did not alter their response until 15 to 40 ms later. In contrast, initiation of a motor action elicited by a limb disturbance (target selection) altered neural responses in primary motor cortex ~65 ms after the limb disturbance, and then in dorsal premotor cortex, with no effect in parietal regions until 150 ms post-perturbation. Our findings highlight broad parietofrontal circuits that provide the neural substrate for goal-directed corrections, an essential aspect of highly skilled motor behaviors. DOI: http://dx.doi.org/10.7554/eLife.13141.001 PMID:27077949

  20. Task-Dependent Intermuscular Motor Unit Synchronization between Medial and Lateral Vastii Muscles during Dynamic and Isometric Squats

    PubMed Central

    Mohr, Maurice; Nann, Marius; von Tscharner, Vinzenz; Eskofier, Bjoern; Nigg, Benno Maurus

    2015-01-01

    Purpose Motor unit activity is coordinated between many synergistic muscle pairs but the functional role of this coordination for the motor output is unclear. The purpose of this study was to investigate the short-term modality of coordinated motor unit activity–the synchronized discharge of individual motor units across muscles within time intervals of 5ms–for the Vastus Medialis (VM) and Lateralis (VL). Furthermore, we studied the task-dependency of intermuscular motor unit synchronization between VM and VL during static and dynamic squatting tasks to provide insight into its functional role. Methods Sixteen healthy male and female participants completed four tasks: Bipedal squats, single-leg squats, an isometric squat, and single-leg balance. Monopolar surface electromyography (EMG) was used to record motor unit activity of VM and VL. For each task, intermuscular motor unit synchronization was determined using a coherence analysis between the raw EMG signals of VM and VL and compared to a reference coherence calculated from two desynchronized EMG signals. The time shift between VM and VL EMG signals was estimated according to the slope of the coherence phase angle spectrum. Results For all tasks, except for singe-leg balance, coherence between 15–80Hz significantly exceeded the reference. The corresponding time shift between VM and VL was estimated as 4ms. Coherence between 30–60Hz was highest for the bipedal squat, followed by the single-leg squat and the isometric squat. Conclusion There is substantial short-term motor unit synchronization between VM and VL. Intermuscular motor unit synchronization is enhanced for contractions during dynamic activities, possibly to facilitate a more accurate control of the joint torque, and reduced during single-leg tasks that require balance control and thus, a more independent muscle function. It is proposed that the central nervous system scales the degree of intermuscular motor unit synchronization according to the

  1. Task-dependent activity of motor unit populations in feline ankle extensor muscles

    PubMed Central

    Hodson-Tole, Emma F.; Pantall, Annette; Maas, Huub; Farrell, Brad; Gregor, Robert J.; Prilutsky, Boris I.

    2012-01-01

    SUMMARY Understanding the functional significance of the morphological diversity of mammalian skeletal muscles is limited by technical difficulties of estimating the contribution of motor units with different properties to unconstrained motor behaviours. Recently developed wavelet and principal components analysis of intramuscular myoelectric signals has linked signals with lower and higher frequency contents to the use of slower and faster motor unit populations. In this study we estimated the relative contributions of lower and higher frequency signals of cat ankle extensors (soleus, medial and lateral gastrocnemii, plantaris) during level, downslope and upslope walking and the paw-shake response. This was done using the first two myoelectric signal principal components (PCI, PCII), explaining over 90% of the signal, and an angle θ, a function of PCI/PCII, indicating the relative contribution of slower and faster motor unit populations. Mean myoelectric frequencies in all walking conditions were lowest for slow soleus (234 Hz) and highest for fast gastrocnemii (307 and 330 Hz) muscles. Motor unit populations within and across the studied muscles that demonstrated lower myoelectric frequency (suggesting slower populations) were recruited during tasks and movement phases with lower mechanical demands on the ankle extensors – during downslope and level walking and in early walking stance and paw-shake phases. With increasing mechanical demands (upslope walking, mid-phase of paw-shake cycles), motor unit populations generating higher frequency signals (suggesting faster populations) contributed progressively more. We conclude that the myoelectric frequency contents within and between feline ankle extensors vary across studied motor behaviours, with patterns that are generally consistent with muscle fibre-type composition. PMID:22811250

  2. Task-dependent activity of motor unit populations in feline ankle extensor muscles.

    PubMed

    Hodson-Tole, Emma F; Pantall, Annette; Maas, Huub; Farrell, Brad; Gregor, Robert J; Prilutsky, Boris I

    2012-11-01

    Understanding the functional significance of the morphological diversity of mammalian skeletal muscles is limited by technical difficulties of estimating the contribution of motor units with different properties to unconstrained motor behaviours. Recently developed wavelet and principal components analysis of intramuscular myoelectric signals has linked signals with lower and higher frequency contents to the use of slower and faster motor unit populations. In this study we estimated the relative contributions of lower and higher frequency signals of cat ankle extensors (soleus, medial and lateral gastrocnemii, plantaris) during level, downslope and upslope walking and the paw-shake response. This was done using the first two myoelectric signal principal components (PCI, PCII), explaining over 90% of the signal, and an angle θ, a function of PCI/PCII, indicating the relative contribution of slower and faster motor unit populations. Mean myoelectric frequencies in all walking conditions were lowest for slow soleus (234 Hz) and highest for fast gastrocnemii (307 and 330 Hz) muscles. Motor unit populations within and across the studied muscles that demonstrated lower myoelectric frequency (suggesting slower populations) were recruited during tasks and movement phases with lower mechanical demands on the ankle extensors--during downslope and level walking and in early walking stance and paw-shake phases. With increasing mechanical demands (upslope walking, mid-phase of paw-shake cycles), motor unit populations generating higher frequency signals (suggesting faster populations) contributed progressively more. We conclude that the myoelectric frequency contents within and between feline ankle extensors vary across studied motor behaviours, with patterns that are generally consistent with muscle fibre-type composition. PMID:22811250

  3. Reading Rate, Readability, and Variations in Task-Induced Processing

    ERIC Educational Resources Information Center

    Coke, Esther U.

    1976-01-01

    This study explored the hypothesis that task variables account for previous findings that reading rate is unaffected by readability. The findings suggest that when appropriate reading tasks are chosen, reading rate can be used to infer underlying processes in reading. (Author/DEP)

  4. Changing students' attitudes towards risky motor tasks: an application of the IZOF model.

    PubMed

    Robazza, Claudio; Bortoli, Laura

    2005-10-01

    The aim of this study was to evaluate the effectiveness of an intervention programme in the physical education setting designed to change attitudes and emotions triggered by potentially risky motor tasks. The individual zones of optimal functioning (IZOF) model was used as a theoretical framework for the study. Italian male and female high school students (N = 84) took part in a 12 lesson intervention and in test-retest sessions. The assessment was conducted using the Motor Activity Anxiety Test to measure the students' approach-avoidance attitudes in the face of physical education tasks purported to engender strong emotional reactions. An idiosyncratic emotional profile was also implemented using a list of pleasant/unpleasant emotional adjectives. Two experimental groups were involved in the learning and performing of several potentially risky, highly emotion-arousing tasks, while two control groups were engaged in low-risk team sports. According to the hypothesis of the study, the programme was effective in decreasing the students' avoidance tendencies towards thrilling tasks and in increasing optimal-pleasant emotions. Our findings also demonstrated the feasibility and utility of applying the IZOF model to the context of physical education. PMID:16194984

  5. Frontocentral DC-potential shifts predicting behavior with or without a motor task.

    PubMed

    Morgan, J M; Wenzl, M; Lang, W; Lindinger, G; Deecke, L

    1992-12-01

    This study was designed to investigate the predictive value of the event-related potentials (ERPs) preceding the initiation of a difficult perceptual-memory task and to investigate whether these ERPs require a motor movement on the part of the subject for their occurrence. Across 4 conditions the DC-potential shifts were recorded from 23 right-handed subjects using DC amplifiers. Although the start of each trial began with a ready signal, the conditions differed in that the subjects initiated the task by a button press in 2 conditions and the computer initiated it in 2 others without a press. The results showed that, especially in the frontocentral electrode sites, the DC-potential shifts which began those trials ending in correct performance were more negative relative to those trials ending in an incorrect response. Those conditions which required the subjects to self-initiate the trial and those which were initiated by the computer showed similar results indicating that the negative DC-potential shifts preceding correct performance are neither produced by nor depend on a task initiating motor movement. The onset of the DC-potential shifts preceded task initiation by up to 4.1 sec indicating that they were more than the Bereitschaftspotential. PMID:1281084

  6. Sleep-Related Offline Improvements in Gross Motor Task Performance Occur Under Free Recall Requirements

    PubMed Central

    Malangré, Andreas; Blischke, Klaus

    2016-01-01

    Nocturnal sleep effects on memory consolidation following gross motor sequence learning were examined using a complex arm movement task. This task required participants to produce non-regular spatial patterns in the horizontal plane by successively fitting a small peg into different target-holes on an electronic pegboard. The respective reaching movements typically differed in amplitude and direction. Targets were visualized prior to each transport movement on a computer screen. With this task we tested 18 subjects (22.6 ± 1.9 years; 8 female) using a between-subjects design. Participants initially learned a 10-element arm movement sequence either in the morning or in the evening. Performance was retested under free recall requirements 15 min post training, as well as 12 and 24 h later. Thus, each group was provided with one sleep-filled and one wake retention interval. Dependent variables were error rate (number of Erroneous Sequences, ES) and average sequence execution time (correct sequences only). Performance improved during acquisition. Error rate remained stable across retention. Sequence execution time (inverse to execution speed) significantly decreased again during the sleep-filled retention intervals, but remained stable during the respective wake intervals. These results corroborate recent findings on sleep-related enhancement consolidation in ecological valid, complex gross motor tasks. At the same time, they suggest this effect to be truly memory-based and independent from repeated access to extrinsic sequence information during retests. PMID:27065834

  7. The effects of sleep, wake activity and time-on-task on offline motor sequence learning.

    PubMed

    Landry, Shane; Anderson, Clare; Conduit, Russell

    2016-01-01

    While intervening sleep promotes the consolidation of memory, it is well established that cognitive interference from competing stimuli can impede memory retention. The current study examined changes in motor skill learning across periods of wakefulness with and without competing stimuli, and periods of sleep with and without disruption from external stimuli. A napping study design was adopted where participants (N=44) either had (1) a 30min nap composed of Non-Rapid Eye Movement (NREM) sleep, (2) 30min NREM nap fragmented by audio tone induced arousals, (3) 45min of quiet wakefulness, or (4) 45min of active wakefulness. Measures of subjective sleepiness (KSS), alertness (PVT) and motor skill learning (Sequential Finger Tapping Task, SFTT) were completed in the morning and evening to assess performance pre- and post-nap or wakefulness. Following a practice session, change in motor skill performance was measured over a 10min post training rest interval, as well as following a 7h morning to evening interval comprising one of the four study conditions. A significant offline enhancement in motor task performance (13-23%) was observed following 10min of rest in all conditions. Following the long delay with the intervening nap/wake condition, there were no further offline gains or losses in performance in any sleep (uninterrupted/fragmented) or wake (quiet/active) condition. The current findings suggest that after controlling for offline gains in performance that occur after a brief rest and likely to due to the dissipation of fatigue, the subsequent effect of an intervening sleep or wake period on motor skill consolidation is not significant. Consistent with this null result, the impact of disrupting the sleep episode or manipulating activity during intervening wake also appears to be negligible. PMID:26655281

  8. Brain Activity During a Motor Learning Task: An fMRI and Skin Conductance Study

    PubMed Central

    MacIntosh, Bradley J.; Mraz, Richard; McIlroy, William E.; Graham, Simon J.

    2016-01-01

    Measuring electrodermal activity (EDA) during fMRI is an effective means of studying the influence of task-related arousal, inferred from autonomic nervous system activity, on brain activation patterns. The goals of this study were: (1) to measure reliable EDA from healthy individuals during fMRI involving an effortful unilateral motor task, (2) to explore how EDA recordings can be used to augment fMRI data analysis. In addition to conventional hemodynamic modeling, skin conductance time series data were used as model waveforms to generate activation images from fMRI data. Activations from the EDA model produced significantly different brain regions from those obtained with a standard hemodynamic model, primarily in the insula and cingulate cortices. Onsets of the EDA changes were synchronous with the hemodynamic model, but EDA data showed additional transient features, such as a decrease in amplitude with time, and helped to provide behavioral evidence suggesting task difficulty decreased with movement repetition. Univariate statistics also confirmed that several brain regions showed early versus late session effects. Partial least squares (PLS) multivariate analysis of EDA and fMRI data provided complimentary, additional insight on how the motor network varied over the course of a single fMRI session. Brain regions identified in this manner included the insula, cingulate gyrus, pre- and postcentral gyri, putamen and parietal cortices. These results suggest that recording EDA during motor fMRI experiments provides complementary information that can be used to improve the fMRI analysis, particularly when behavioral or task effects are difficult to model a priori. PMID:17318835

  9. The influence of task variation on manifestation of fatigue is ambiguous - a literature review.

    PubMed

    Luger, Tessy; Bosch, Tim; Veeger, Dirkjan; de Looze, Michiel

    2014-01-01

    Task variation has been proposed to reduce shoulder fatigue resulting from repetitive hand-arm tasks. This review analyses the effect of task variation, both 'temporal (i.e. change of work-rest ratio)' and 'activity (i.e. job rotation)' variation, on physiological responses, endurance time (ET) and subjective feelings. Pubmed was searched and complemented with references from selected articles, resulting in 17 articles. Temporal variation had some positive effects on the objective parameters, as blood pressure decreased and ET increased, and on the subjective feelings, as perceived discomfort decreased. The observed findings of activity variation showed both positive and negative effects of increased activity variation, while hardly any effects were found on electromyography manifestations of fatigue. In conclusion, the evidence for positive effects of increasing the level of variation is scarce. The number of studies on variation is limited, while in most studies the findings were not controlled for the amount or intensity of work. PMID:24552472

  10. Decreased Modulation of EEG Oscillations in High-Functioning Autism during a Motor Control Task.

    PubMed

    Ewen, Joshua B; Lakshmanan, Balaji M; Pillai, Ajay S; McAuliffe, Danielle; Nettles, Carrie; Hallett, Mark; Crone, Nathan E; Mostofsky, Stewart H

    2016-01-01

    Autism spectrum disorders (ASD) are thought to result in part from altered cortical excitatory-inhibitory balance; this pathophysiology may impact the generation of oscillations on electroencephalogram (EEG). We investigated premotor-parietal cortical physiology associated with praxis, which has strong theoretical and empirical associations with ASD symptomatology. Twenty five children with high-functioning ASD (HFA) and 33 controls performed a praxis task involving the pantomiming of tool use, while EEG was recorded. We assessed task-related modulation of signal power in alpha and beta frequency bands. Compared with controls, subjects with HFA showed 27% less left central (motor/premotor) beta (18-22 Hz) event-related desynchronization (ERD; p = 0.030), as well as 24% less left parietal alpha (7-13 Hz) ERD (p = 0.046). Within the HFA group, blunting of central ERD attenuation was associated with impairments in clinical measures of praxis imitation (r = -0.4; p = 0.04) and increased autism severity (r = 0.48; p = 0.016). The modulation of central beta activity is associated, among other things, with motor imagery, which may be necessary for imitation. Impaired imitation has been associated with core features of ASD. Altered modulation of oscillatory activity may be mechanistically involved in those aspects of motor network function that relate to the core symptoms of ASD. PMID:27199719

  11. Decreased Modulation of EEG Oscillations in High-Functioning Autism during a Motor Control Task

    PubMed Central

    Ewen, Joshua B.; Lakshmanan, Balaji M.; Pillai, Ajay S.; McAuliffe, Danielle; Nettles, Carrie; Hallett, Mark; Crone, Nathan E.; Mostofsky, Stewart H.

    2016-01-01

    Autism spectrum disorders (ASD) are thought to result in part from altered cortical excitatory-inhibitory balance; this pathophysiology may impact the generation of oscillations on electroencephalogram (EEG). We investigated premotor-parietal cortical physiology associated with praxis, which has strong theoretical and empirical associations with ASD symptomatology. Twenty five children with high-functioning ASD (HFA) and 33 controls performed a praxis task involving the pantomiming of tool use, while EEG was recorded. We assessed task-related modulation of signal power in alpha and beta frequency bands. Compared with controls, subjects with HFA showed 27% less left central (motor/premotor) beta (18–22 Hz) event-related desynchronization (ERD; p = 0.030), as well as 24% less left parietal alpha (7–13 Hz) ERD (p = 0.046). Within the HFA group, blunting of central ERD attenuation was associated with impairments in clinical measures of praxis imitation (r = −0.4; p = 0.04) and increased autism severity (r = 0.48; p = 0.016). The modulation of central beta activity is associated, among other things, with motor imagery, which may be necessary for imitation. Impaired imitation has been associated with core features of ASD. Altered modulation of oscillatory activity may be mechanistically involved in those aspects of motor network function that relate to the core symptoms of ASD. PMID:27199719

  12. Peripheral neuropathy reduces asymmetries in inter-limb transfer in a visuo-motor task.

    PubMed

    Pan, Zhujun; Van Gemmert, Arend W A

    2016-05-01

    Asymmetry of inter-limb transfer has been associated with the specialization of the dominant and non-dominant motor system. Reductions of asymmetry have been interpreted as behavioural evidence showing a decline of hemispheric lateralization. A previous study showed that ageing did not qualitatively change the inter-limb transfer asymmetry of a visuo-motor task. The current study elaborates on these findings; it examines whether diminished somatosensory information as a result of peripheral neuropathy (PN) adversely affects inter-limb transfer asymmetry. Twenty individuals affected by PN and 20 older controls were recruited and divided equally across two groups. One group trained a visuo-motor task with the right hand while the other group trained it with the left hand. Performance (initial direction error) of the untrained hand before and after training was collected to determine learning effects from inter-limb transfer. Similar to previous studies, the current study showed asymmetric inter-limb transfer in older controls. In contrast, PN showed inter-limb transfer in both directions indicating that PN reduces inter-limb transfer asymmetry. Increased bilateral hemispheric recruitment is suggested to be responsible for this reduced asymmetry which may compensate for deteriorated tactile and/or proprioceptive inputs in PN. Two possible hypotheses are discussed explaining the relationship between declined somatosensory information and increases in bilateral hemispheric recruitment. PMID:26857239

  13. Testing the embodied account of object naming: a concurrent motor task affects naming artifacts and animals.

    PubMed

    Matheson, Heath E; White, Nicole; McMullen, Patricia A

    2014-01-01

    Embodied theories of object representation propose that the same neural networks are involved in encoding and retrieving object knowledge. In the present study, we investigated whether motor programs play a causal role in the retrieval of object names. Participants performed an object-naming task while squeezing a sponge with either their right or left hand. The objects were artifacts (e.g. hammer) or animals (e.g. giraffe) and were presented in an orientation that favored a grasp or not. We hypothesized that, if activation of motor programs is necessary to retrieve object knowledge, then concurrent motor activity would interfere with naming manipulable artifacts but not non-manipulable animals. In Experiment 1, we observed naming interference for all objects oriented towards the occupied hand. In Experiment 2, we presented the objects in more 'canonical orientations'. Participants named all objects more quickly when they were oriented towards the occupied hand. Together, these interference/facilitation effects suggest that concurrent motor activity affects naming for both categories. These results also suggest that picture-plane orientation interacts with an attentional bias that is elicited by the objects and their relationship to the occupied hand. These results may be more parsimoniously accounted for by a domain-general attentional effect, constraining the embodied theory of object representations. We suggest that researchers should scrutinize attentional accounts of other embodied cognitive effects. PMID:24291119

  14. The impact of diurnal sleep on the consolidation of a complex gross motor adaptation task

    PubMed Central

    Hoedlmoser, Kerstin; Birklbauer, Juergen; Schabus, Manuel; Eibenberger, Patrick; Rigler, Sandra; Mueller, Erich

    2015-01-01

    Diurnal sleep effects on consolidation of a complex, ecological valid gross motor adaptation task were examined using a bicycle with an inverse steering device. We tested 24 male subjects aged between 20 and 29 years using a between-subjects design. Participants were trained to adapt to the inverse steering bicycle during 45 min. Performance was tested before (TEST1) and after (TEST2) training, as well as after a 2 h retention interval (TEST3). During retention, participants either slept or remained awake. To assess gross motor performance, subjects had to ride the inverse steering bicycle 3 × 30 m straight-line and 3 × 30 m through a slalom. Beyond riding time, we sophisticatedly measured performance accuracy (standard deviation of steering angle) in both conditions using a rotatory potentiometer. A significant decrease of accuracy during straight-line riding after nap and wakefulness was shown. Accuracy during slalom riding remained stable after wakefulness but was reduced after sleep. We found that the duration of rapid eye movement sleep as well as sleep spindle activity are negatively related with gross motor performance changes over sleep. Together these findings suggest that the consolidation of adaptation to a new steering device does not benefit from a 2 h midday nap. We speculate that in case of strongly overlearned motor patterns such as normal cycling, diurnal sleep spindles and rapid eye movement sleep might even help to protect everyday needed skills, and to rapidly forget newly acquired, interfering and irrelevant material. PMID:25256866

  15. Effect of practice on performance of a skilled motor task in patients with Parkinson's disease.

    PubMed

    Soliveri, P; Brown, R G; Jahanshahi, M; Marsden, C D

    1992-06-01

    Parkinson's disease leads to a breakdown in the execution of highly practised, skilled movements such as walking and handwriting. The improved execution of skilled movements with practice can be understood as a process of schema learning, the determining of the relevant parameters of the specific movement. The ability of patients with Parkinson's disease and age matched normal control subjects to improve their performance, with practice, on a skilled motor task, doing up buttons, was assessed. The task was assessed on its own and with simultaneous foot tapping. Both groups showed an initial improvement in the task on its own and deterioration in performance when buttoning with foot tapping. The amount of interference, however, decreased with practice, particularly in the patients with a 2 Hz tapping rate. The results suggest that patients with Parkinson's disease are capable of schema learning but require more practice than control subjects to achieve comparable levels of performance. This may be a reflection of the fundamental motor dysfunction of the disease rather than a specific learning deficit. PMID:1619411

  16. Changes in predictive motor control in drop-jumps based on uncertainties in task execution.

    PubMed

    Leukel, Christian; Taube, Wolfgang; Lorch, Michael; Gollhofer, Albert

    2012-02-01

    Drop-jumps are controlled by predictive and reactive motor strategies which differ with respect to the utilization of sensory feedback. With reaction, sensory feedback is integrated while performing the task. With prediction, sensory information may be used prior to movement onset. Certainty about upcoming events is important for prediction. The present study aimed at investigating how uncertainties in the task execution affect predictive motor control in drop-jumps. Ten healthy subjects (22±1 years, M±SD) participated. The subjects performed either (i) drop-jumps by knowing that they might had to switch to a landing movement upon an auditory cue, which was sometimes elicited prior to touch-down (uncertainty). In (ii), subjects performed drop-jumps by knowing that there would be no auditory cue and consequently no switch of the movement (certainty). The m. soleus EMG prior to touch-down was higher when subjects knew there would be no auditory cue compared to when subjects performed the same task but switching from drop-jump to landing was possible (uncertainty). The EMG was reversed in the late concentric phase, meaning that it was higher in the high uncertainty task. The results of the present study showed that the muscular activity was predictively adjusted according to uncertainties in task execution. It is argued that tendomuscular stiffness was the variable responsible for the adjustment of muscular activity. The required tendomuscular stiffness was higher in drop-jumps than in landings. Consequently, when it was not certain whether to jump or to land, muscular activity and therefore tendomuscular stiffness was reduced. PMID:21757248

  17. Effect of a Task-Oriented Rehabilitation Program on Upper Extremity Recovery Following Motor Stroke

    PubMed Central

    Winstein, Carolee J.; Wolf, Steven L.; Dromerick, Alexander W.; Lane, Christianne J.; Nelsen, Monica A.; Lewthwaite, Rebecca; Cen, Steven Yong; Azen, Stanley P.

    2016-01-01

    IMPORTANCE Clinical trials suggest that higher doses of task-oriented training are superior to current clinical practice for patients with stroke with upper extremity motor deficits. OBJECTIVE To compare the efficacy of a structured, task-oriented motor training program vs usual and customary occupational therapy (UCC) during stroke rehabilitation. DESIGN, SETTING, AND PARTICIPANTS Phase 3, pragmatic, single-blind randomized trial among 361 participants with moderate motor impairment recruited from 7 US hospitals over 44 months, treated in the outpatient setting from June 2009 to March 2014. INTERVENTIONS Structured, task-oriented upper extremity training (Accelerated Skill Acquisition Program[ASAP]; n = 119); dose-equivalent occupational therapy (DEUCC; n = 120); or monitoring-only occupational therapy (UCC; n = 122). The DEUCC group was prescribed 30 one-hour sessions over 10 weeks; the UCC group was only monitored, without specification of dose. MAIN OUTCOMES AND MEASURES The primary outcome was 12-month change in log-transformed Wolf Motor Function Test time score (WMFT, consisting of a mean of 15 timed arm movements and hand dexterity tasks). Secondary outcomes were change in WMFT time score (minimal clinically important difference [MCID] = 19 seconds) and proportion of patients improving ≥25 points on the Stroke Impact Scale (SIS) hand function score (MCID = 17.8 points). RESULTS Among the 361 randomized patients (mean age, 60.7 years; 56% men; 42% African American; mean time since stroke onset, 46 days), 304 (84%) completed the 12-month primary outcome assessment; in intention-to-treat analysis, mean group change scores (log WMFT, baseline to 12 months) were, for the ASAP group, 2.2 to 1.4 (difference, 0.82); DEUCC group, 2.0 to 1.2 (difference, 0.84); and UCC group, 2.1 to 1.4 (difference, 0.75), with no significant between-group differences (ASAP vs DEUCC:0.14; 95% CI, −0.05 to 0.33; P = .16; ASAP vs UCC: −0.01; 95% CI, −0.22 to 0.21; P = .94; and

  18. Extracting motor synergies from random movements for low-dimensional task-space control of musculoskeletal robots.

    PubMed

    Fu, Kin Chung Denny; Dalla Libera, Fabio; Ishiguro, Hiroshi

    2015-10-01

    In the field of human motor control, the motor synergy hypothesis explains how humans simplify body control dimensionality by coordinating groups of muscles, called motor synergies, instead of controlling muscles independently. In most applications of motor synergies to low-dimensional control in robotics, motor synergies are extracted from given optimal control signals. In this paper, we address the problems of how to extract motor synergies without optimal data given, and how to apply motor synergies to achieve low-dimensional task-space tracking control of a human-like robotic arm actuated by redundant muscles, without prior knowledge of the robot. We propose to extract motor synergies from a subset of randomly generated reaching-like movement data. The essence is to first approximate the corresponding optimal control signals, using estimations of the robot's forward dynamics, and to extract the motor synergies subsequently. In order to avoid modeling difficulties, a learning-based control approach is adopted such that control is accomplished via estimations of the robot's inverse dynamics. We present a kernel-based regression formulation to estimate the forward and the inverse dynamics, and a sliding controller in order to cope with estimation error. Numerical evaluations show that the proposed method enables extraction of motor synergies for low-dimensional task-space control. PMID:26448530

  19. The effect of dual-task difficulty on the inhibition of the motor cortex.

    PubMed

    Corp, Daniel T; Rogers, Mark A; Youssef, George J; Pearce, Alan J

    2016-02-01

    Dual-tasking is intrinsic to many daily activities, including walking and driving. However, the activity of the primary motor cortex (M1) in response to dual-tasks (DT) is still not well characterised. A recent meta-analysis (Corp in Neurosci Biobehav Rev 43:74-87, 2014) demonstrated a reduction in M1 inhibition during dual-tasking, yet responses were not consistent between studies. It was suggested that DT difficulty might account for some of this between-study variability. The aim of this study was to investigate whether corticospinal excitability and M1 inhibition differed between an easier and more difficult dual-task. Transcranial magnetic stimulation (TMS) was applied to participants' abductor pollicis brevis muscle representation during a concurrent pincer grip task and stationary bike-riding. The margin of error in which to maintain pincer grip force was reduced to increase task difficulty. Compared to ST conditions, significantly increased M1 inhibition was demonstrated for the easier, but not more difficult, DT. However, there was no significant difference in M1 inhibition between easy and difficult DTs. The difference in difficulty between the two tasks may not have been wide enough to result in significant differences in M1 inhibition. Increased M1 inhibition for the easy DT condition was in opposition to the reduction in M1 inhibition found in our meta-analysis (Corp in Neurosci Biobehav Rev 43:74-87, 2014). We propose that this may be partially explained by differences in the timing of the TMS pulse between DT studies. PMID:26514811

  20. Development of Vestibular Stochastic Resonance as a Sensorimotor Countermeasure: Improving Otolith Ocular and Motor Task Responses

    NASA Technical Reports Server (NTRS)

    Mulavara, Ajitkumar; Fiedler, Matthew; DeDios,Yiri E.; Galvan, Raquel; Bloomberg, Jacob; Wood, Scott

    2011-01-01

    Astronauts experience disturbances in sensorimotor function after spaceflight during the initial introduction to a gravitational environment, especially after long-duration missions. Stochastic resonance (SR) is a mechanism by which noise can assist and enhance the response of neural systems to relevant, imperceptible sensory signals. We have previously shown that imperceptible electrical stimulation of the vestibular system enhances balance performance while standing on an unstable surface. The goal of our present study is to develop a countermeasure based on vestibular SR that could improve central interpretation of vestibular input and improve motor task responses to mitigate associated risks.

  1. Current Sensor Offset and Motor Parameter Variations Estimation Method for PM Motor by Using Current Simulator

    NASA Astrophysics Data System (ADS)

    Sazawa, Masaki; Senko, Tomohiro; Uenaka, Yutaro; Ohishi, Kiyoshi

    The servo system of a PM motor is required to have a fine torque response and fine speed response. The current controller of the PM motor should have a fine current response. However, when the current sensors of the U phase and V phase have offset values, the servo system of the PM motor shows a torque ripple and cannot accurately identify motor parameters such as the motor resistance Ra and motor inductance La. In order to overcome these problems, this paper proposes a new method for the fine estimation and automatic adjustment of current sensor offsets and the electrical parameters of the PM motor. The proposed method involves the use of a real-time algorithm and a current simulator, which is operated using a DSP software system. The experimental results of this study confirm that the proposed method satisfactorily estimates the offsets of the current of sensors of theU phase and V phase, Ra, and La accurately; the method also helps in the fine self-tuning of the current controller of the servo system.

  2. Reading Rate, Readability and Variations in Task-Induced Processing.

    ERIC Educational Resources Information Center

    Coke, Esther U.

    This study examined the adaptability of reading rate to passage difficulty under different conditions of task-induced processing. Sixteen experimental passages varying in subject matter and ranging from 85 to 171 words were selected from a set of 32 texts rated for comprehensibility. The eight easiest and eight hardest texts were selected. Another…

  3. Dramatic effects of speech task on motor and linguistic planning in severely dysfluent parkinsonian speech

    PubMed Central

    Van Lancker Sidtis, Diana; Cameron, Krista; Sidtis, John J.

    2015-01-01

    In motor speech disorders, dysarthric features impacting intelligibility, articulation, fluency, and voice emerge more saliently in conversation than in repetition, reading, or singing. A role of the basal ganglia in these task discrepancies has been identified. Further, more recent studies of naturalistic speech in basal ganglia dysfunction have revealed that formulaic language is more impaired than novel language. This descriptive study extends these observations to a case of severely dysfluent dysarthria due to a parkinsonian syndrome. Dysfluencies were quantified and compared for conversation, two forms of repetition, reading, recited speech, and singing. Other measures examined phonetic inventories, word forms, and formulaic language. Phonetic, syllabic, and lexical dysfluencies were more abundant in conversation than in other task conditions. Formulaic expressions in conversation were reduced compared to normal speakers. A proposed explanation supports the notion that the basal ganglia contribute to formulation of internal models for execution of speech. PMID:22774929

  4. Sonification and haptic feedback in addition to visual feedback enhances complex motor task learning.

    PubMed

    Sigrist, Roland; Rauter, Georg; Marchal-Crespo, Laura; Riener, Robert; Wolf, Peter

    2015-03-01

    Concurrent augmented feedback has been shown to be less effective for learning simple motor tasks than for complex tasks. However, as mostly artificial tasks have been investigated, transfer of results to tasks in sports and rehabilitation remains unknown. Therefore, in this study, the effect of different concurrent feedback was evaluated in trunk-arm rowing. It was then investigated whether multimodal audiovisual and visuohaptic feedback are more effective for learning than visual feedback only. Naïve subjects (N = 24) trained in three groups on a highly realistic virtual reality-based rowing simulator. In the visual feedback group, the subject's oar was superimposed to the target oar, which continuously became more transparent when the deviation between the oars decreased. Moreover, a trace of the subject's trajectory emerged if deviations exceeded a threshold. The audiovisual feedback group trained with oar movement sonification in addition to visual feedback to facilitate learning of the velocity profile. In the visuohaptic group, the oar movement was inhibited by path deviation-dependent braking forces to enhance learning of spatial aspects. All groups significantly decreased the spatial error (tendency in visual group) and velocity error from baseline to the retention tests. Audiovisual feedback fostered learning of the velocity profile significantly more than visuohaptic feedback. The study revealed that well-designed concurrent feedback fosters complex task learning, especially if the advantages of different modalities are exploited. Further studies should analyze the impact of within-feedback design parameters and the transferability of the results to other tasks in sports and rehabilitation. PMID:25511166

  5. Manipulation gesture effect in visual and auditory presentations: the link between tools in perceptual and motor tasks

    PubMed Central

    Rey, Amandine E.; Roche, Kévin; Versace, Rémy; Chainay, Hanna

    2015-01-01

    There is much behavioral and neurophysiological evidence in support of the idea that seeing a tool activates motor components of action related to the perceived object (e.g., grasping, use manipulation). However, the question remains as to whether the processing of the motor components associated with the tool is automatic or depends on the situation, including the task and the modality of tool presentation. The present study investigated whether the activation of motor components involved in tool use in response to the simple perception of a tool is influenced by the link between prime and target tools, as well as by the modality of presentation, in perceptual or motor tasks. To explore this issue, we manipulated the similarity of gesture involved in the use of the prime and target (identical, similar, different) with two tool presentation modalities of the presentation tool (visual or auditory) in perceptual and motor tasks. Across the experiments, we also manipulated the relevance of the prime (i.e., associated or not with the current task). The participants saw a first tool (or heard the sound it makes), which was immediately followed by a second tool on which they had to perform a perceptual task (i.e., indicate whether the second tool was identical to or different from the first tool) or a motor task (i.e., manipulate the second tool as if it were the first tool). In both tasks, the similarity between the gestures employed for the first and the second tool was manipulated (Identical, Similar or Different gestures). The results showed that responses were faster when the manipulation gestures for the two tools were identical or similar, but only in the motor task. This effect was observed irrespective of the modality of presentation of the first tool, i.e., visual or auditory. We suggest that the influence of manipulation gesture on response time depends on the relevance of the first tool in motor tasks. We discuss these motor activation results in terms of the

  6. How task complexity and stimulus modality affect motor execution: target accuracy, response timing and hesitations.

    PubMed

    Parrington, Lucy; MacMahon, Clare; Ball, Kevin

    2015-01-01

    Elite sports players are characterized by the ability to produce successful outcomes while attending to changing environmental conditions. Few studies have assessed whether the perceptual environment affects motor skill execution. To test the effect of changing task complexity and stimulus conditions, the authors examined response times and target accuracy of 12 elite Australian football players using a passing-based laboratory test. Data were assessed using mixed modeling and chi-square analyses. No differences were found in target accuracy for changes in complexity or stimulus condition. Decision, movement and total disposal time increased with complexity and decision hesitations were greater when distractions were present. Decision, movement and disposal time were faster for auditory in comparison to visual signals, and when free to choose, players passed more frequently to auditory rather than visual targets. These results provide perspective on how basic motor control processes such as reaction and response to stimuli are influenced in a complex motor skill. Findings suggest auditory stimuli should be included in decision-making studies and may be an important part of a decision-training environment. PMID:25584721

  7. Risk sensitivity in a motor task with speed-accuracy trade-off

    PubMed Central

    Braun, Daniel A.; Wolpert, Daniel M.

    2011-01-01

    When a racing driver steers a car around a sharp bend, there is a trade-off between speed and accuracy, in that high speed can lead to a skid whereas a low speed increases lap time, both of which can adversely affect the driver's payoff function. While speed-accuracy trade-offs have been studied extensively, their susceptibility to risk sensitivity is much less understood, since most theories of motor control are risk neutral with respect to payoff, i.e., they only consider mean payoffs and ignore payoff variability. Here we investigate how individual risk attitudes impact a motor task that involves such a speed-accuracy trade-off. We designed an experiment where a target had to be hit and the reward (given in points) increased as a function of both subjects' endpoint accuracy and endpoint velocity. As faster movements lead to poorer endpoint accuracy, the variance of the reward increased for higher velocities. We tested subjects on two reward conditions that had the same mean reward but differed in the variance of the reward. A risk-neutral account predicts that subjects should only maximize the mean reward and hence perform identically in the two conditions. In contrast, we found that some (risk-averse) subjects chose to move with lower velocities and other (risk-seeking) subjects with higher velocities in the condition with higher reward variance (risk). This behavior is suboptimal with regard to maximizing the mean number of points but is in accordance with a risk-sensitive account of movement selection. Our study suggests that individual risk sensitivity is an important factor in motor tasks with speed-accuracy trade-offs. PMID:21430284

  8. Risk sensitivity in a motor task with speed-accuracy trade-off.

    PubMed

    Nagengast, Arne J; Braun, Daniel A; Wolpert, Daniel M

    2011-06-01

    When a racing driver steers a car around a sharp bend, there is a trade-off between speed and accuracy, in that high speed can lead to a skid whereas a low speed increases lap time, both of which can adversely affect the driver's payoff function. While speed-accuracy trade-offs have been studied extensively, their susceptibility to risk sensitivity is much less understood, since most theories of motor control are risk neutral with respect to payoff, i.e., they only consider mean payoffs and ignore payoff variability. Here we investigate how individual risk attitudes impact a motor task that involves such a speed-accuracy trade-off. We designed an experiment where a target had to be hit and the reward (given in points) increased as a function of both subjects' endpoint accuracy and endpoint velocity. As faster movements lead to poorer endpoint accuracy, the variance of the reward increased for higher velocities. We tested subjects on two reward conditions that had the same mean reward but differed in the variance of the reward. A risk-neutral account predicts that subjects should only maximize the mean reward and hence perform identically in the two conditions. In contrast, we found that some (risk-averse) subjects chose to move with lower velocities and other (risk-seeking) subjects with higher velocities in the condition with higher reward variance (risk). This behavior is suboptimal with regard to maximizing the mean number of points but is in accordance with a risk-sensitive account of movement selection. Our study suggests that individual risk sensitivity is an important factor in motor tasks with speed-accuracy trade-offs. PMID:21430284

  9. No Effect of Anodal Transcranial Direct Current Stimulation Over the Motor Cortex on Response-Related ERPs during a Conflict Task.

    PubMed

    Conley, Alexander C; Fulham, W R; Marquez, Jodie L; Parsons, Mark W; Karayanidis, Frini

    2016-01-01

    Anodal transcranial direct current stimulation (tDCS) over the motor cortex is considered a potential treatment for motor rehabilitation following stroke and other neurological pathologies. However, both the context under which this stimulation is effective and the underlying mechanisms remain to be determined. In this study, we examined the mechanisms by which anodal tDCS may affect motor performance by recording event-related potentials (ERPs) during a cued go/nogo task after anodal tDCS over dominant primary motor cortex (M1) in young adults (Experiment 1) and both dominant and non-dominant M1 in older adults (Experiment 2). In both experiments, anodal tDCS had no effect on either response time (RT) or response-related ERPs, including the cue-locked contingent negative variation (CNV) and both target-locked and response-locked lateralized readiness potentials (LRP). Bayesian model selection analyses showed that, for all measures, the null effects model was stronger than a model including anodal tDCS vs. sham. We conclude that anodal tDCS has no effect on RT or response-related ERPs during a cued go/nogo task in either young or older adults. PMID:27547180

  10. No Effect of Anodal Transcranial Direct Current Stimulation Over the Motor Cortex on Response-Related ERPs during a Conflict Task

    PubMed Central

    Conley, Alexander C.; Fulham, W. R.; Marquez, Jodie L.; Parsons, Mark W.; Karayanidis, Frini

    2016-01-01

    Anodal transcranial direct current stimulation (tDCS) over the motor cortex is considered a potential treatment for motor rehabilitation following stroke and other neurological pathologies. However, both the context under which this stimulation is effective and the underlying mechanisms remain to be determined. In this study, we examined the mechanisms by which anodal tDCS may affect motor performance by recording event-related potentials (ERPs) during a cued go/nogo task after anodal tDCS over dominant primary motor cortex (M1) in young adults (Experiment 1) and both dominant and non-dominant M1 in older adults (Experiment 2). In both experiments, anodal tDCS had no effect on either response time (RT) or response-related ERPs, including the cue-locked contingent negative variation (CNV) and both target-locked and response-locked lateralized readiness potentials (LRP). Bayesian model selection analyses showed that, for all measures, the null effects model was stronger than a model including anodal tDCS vs. sham. We conclude that anodal tDCS has no effect on RT or response-related ERPs during a cued go/nogo task in either young or older adults. PMID:27547180

  11. Working memory modulates neural efficiency over motor components during a novel action planning task: an EEG study.

    PubMed

    Behmer, Lawrence P; Fournier, Lisa R

    2014-03-01

    Research shows neural efficiency of motor-related activity based on learning and expertise in a specific domain (e.g., guitar playing, sharp-shooting or a sport). However, it is unknown whether neural efficiency of motor-related activity, underlying action planning and maintenance, can be modulated by general cognitive ability alone. This study examined whether working memory span can influence motor-related neural activity during a novel motor task. Participants were divided into low- and high-span working memory groups based on their scores in an operation span task. Afterwards, participants learned different sequences of button responses corresponding to different abstract stimuli. The task required participants to briefly maintain an action plan in working memory to a stimulus that they would execute after responding to a subsequent stimulus. We used EEG to record changes in event related power in the mu- and beta-bands in left and right motor components during the interval where participants planned and maintained an action in working memory. Results showed decreases in mu- and beta-event related power for low-span participants and increases in mu- and beta-event related power for high-span participants over the left motor cluster while maintaining an action plan in working memory. Also, high-span participants were faster and more accurate in the task than low-span participants. This suggests that neural efficiency during a novel motor task can be influenced by working memory span, and that such differences are localized to the motor system. PMID:24291024

  12. Action dynamics in multitasking: the impact of additional task factors on the execution of the prioritized motor movement

    PubMed Central

    Scherbaum, Stefan; Gottschalk, Caroline; Dshemuchadse, Maja; Fischer, Rico

    2015-01-01

    In multitasking, the execution of a prioritized task is in danger of crosstalk by the secondary task. Task shielding allows minimizing this crosstalk. However, the locus and temporal dynamics of crosstalk effects and further sources of influence on the execution of the prioritized task are to-date only vaguely understood. Here we combined a dual-task paradigm with an action dynamics approach and studied how and according to which temporal characteristics crosstalk, previously experienced interference and previously executed responses influenced participants' mouse movements in the prioritized task's execution. Investigating continuous mouse movements of the prioritized task, our results indicate a continuous crosstalk from secondary task processing until the endpoint of the movement was reached, although the secondary task could only be executed after finishing execution of the prioritized task. The motor movement in the prioritized task was further modulated by previously experienced interference between the prioritized and the secondary task. Furthermore, response biases from previous responses of the prioritized and the secondary task in movements indicate different sources of such biases. The bias by previous responses to the prioritized task follows a sustained temporal pattern typical for a contextual reactivation, while the bias by previous responses to the secondary task follows a decaying temporal pattern indicating residual activation of previously activated spatial codes. PMID:26217267

  13. Hemodynamic Response of the Supplementary Motor Area during Locomotor Tasks with Upright versus Horizontal Postures in Humans.

    PubMed

    Yozu, Arito; Obayashi, Shigeru; Nakajima, Katsumi; Hara, Yukihiro

    2016-01-01

    To understand cortical mechanisms related to truncal posture control during human locomotion, we investigated hemodynamic responses in the supplementary motor area (SMA) with quadrupedal and bipedal gaits using functional near-infrared spectroscopy in 10 healthy adults. The subjects performed three locomotor tasks where the degree of postural instability varied biomechanically, namely, hand-knee quadrupedal crawling (HKQuad task), upright quadrupedalism using bilateral Lofstrand crutches (UpQuad task), and typical upright bipedalism (UpBi task), on a treadmill. We measured the concentration of oxygenated hemoglobin (oxy-Hb) during the tasks. The oxy-Hb significantly decreased in the SMA during the HKQuad task, whereas it increased during the UpQuad task. No significant responses were observed during the UpBi task. Based on the degree of oxy-Hb responses, we ranked these locomotor tasks as UpQuad > UpBi > HKQuad. The order of the different tasks did not correspond with postural instability of the tasks. However, qualitative inspection of oxy-Hb time courses showed that oxy-Hb waveform patterns differed between upright posture tasks (peak-plateau-trough pattern for the UpQuad and UpBi tasks) and horizontal posture task (downhill pattern for the HKQuad task). Thus, the SMA may contribute to the control of truncal posture accompanying locomotor movements in humans. PMID:27413555

  14. Hemodynamic Response of the Supplementary Motor Area during Locomotor Tasks with Upright versus Horizontal Postures in Humans

    PubMed Central

    Obayashi, Shigeru; Nakajima, Katsumi; Hara, Yukihiro

    2016-01-01

    To understand cortical mechanisms related to truncal posture control during human locomotion, we investigated hemodynamic responses in the supplementary motor area (SMA) with quadrupedal and bipedal gaits using functional near-infrared spectroscopy in 10 healthy adults. The subjects performed three locomotor tasks where the degree of postural instability varied biomechanically, namely, hand-knee quadrupedal crawling (HKQuad task), upright quadrupedalism using bilateral Lofstrand crutches (UpQuad task), and typical upright bipedalism (UpBi task), on a treadmill. We measured the concentration of oxygenated hemoglobin (oxy-Hb) during the tasks. The oxy-Hb significantly decreased in the SMA during the HKQuad task, whereas it increased during the UpQuad task. No significant responses were observed during the UpBi task. Based on the degree of oxy-Hb responses, we ranked these locomotor tasks as UpQuad > UpBi > HKQuad. The order of the different tasks did not correspond with postural instability of the tasks. However, qualitative inspection of oxy-Hb time courses showed that oxy-Hb waveform patterns differed between upright posture tasks (peak-plateau-trough pattern for the UpQuad and UpBi tasks) and horizontal posture task (downhill pattern for the HKQuad task). Thus, the SMA may contribute to the control of truncal posture accompanying locomotor movements in humans. PMID:27413555

  15. Evaluation of a modified Fitts law BCI target acquisition task in able and motor disabled individuals

    PubMed Central

    Felton, E A; Radwin, R G; Wilson, J A; Williams, J C

    2013-01-01

    A brain-computer interface (BCI) is a communication system that takes recorded brain signals and translates them into real-time actions, in this case movement of a cursor on a computer screen. This work applied Fitts’ law to the evaluation of performance on a target acquisition task during sensorimotor rhythm-based BCI training. Fitts’ law, which has been used as a predictor of movement time in studies of human movement, was used here to determine the information transfer rate, which was based on target acquisition time and target difficulty. The information transfer rate was used to make comparisons between control modalities and subject groups on the same task. Data were analyzed from eight able-bodied and five motor disabled participants who wore an electrode cap that recorded and translated their electroencephalogram (EEG) signals into computer cursor movements. Direct comparisons were made between able-bodied and disabled subjects and between EEG and joystick cursor control in able-bodied subjects. Fitts’ law aptly described the relationship between movement time and index of difficulty for each task movement direction when evaluated separately and averaged together. This study showed that Fitts’ law can be successfully applied to computer cursor movement controlled by neural signals. PMID:19700814

  16. Oscillations in the power spectra of motor unit signals caused by refractoriness variations

    NASA Astrophysics Data System (ADS)

    Hu, X. L.; Tong, K. Y.; Hung, L. K.

    2004-09-01

    The refractory period of a motor unit is an important mechanism that regulates the motor unit firing, and its variation has been found in many physiological cases. In this study, a new observation that an increase in the motor unit refractoriness results in an enhancement of oscillations, or ripple effects, in the motor unit output power density spectra (PDS) has been identified and studied. The effects of the refractoriness variation on the PDS of motor unit firing were investigated on three levels: theoretical modeling, simulation and electromyographic (EMG) experimentation on human subjects. Both theoretical modeling and simulation showed the enhanced oscillations, ripple effects, in MUAPT PDS, given the increase in the refractoriness. It was also found that the extent of the increment in output PDS oscillation could be related to the motor unit size and the mean firing rate of the stimulation. A needle EMG experiment on biceps brachii muscles of five healthy human subjects was carried out during isometric contraction at 20% maximum voluntary contraction (MVC) for 20 s with a fatigue effort proceeded by MVC. The increased oscillations in the PDS of the real MUAPTs were observed with the rising of the motor unit refractoriness due to fatigue. The study gives new information for EMG spectra interpretation, and also provides a potential method for accessing neuromuscular transmission failure (NTF) due to fatigue during voluntary contraction.

  17. Signal, Noise, and Variation in Neural and Sensory-Motor Latency.

    PubMed

    Lee, Joonyeol; Joshua, Mati; Medina, Javier F; Lisberger, Stephen G

    2016-04-01

    Analysis of the neural code for sensory-motor latency in smooth pursuit eye movements reveals general principles of neural variation and the specific origin of motor latency. The trial-by-trial variation in neural latency in MT comprises a shared component expressed as neuron-neuron latency correlations and an independent component that is local to each neuron. The independent component arises heavily from fluctuations in the underlying probability of spiking, with an unexpectedly small contribution from the stochastic nature of spiking itself. The shared component causes the latency of single-neuron responses in MT to be weakly predictive of the behavioral latency of pursuit. Neural latency deeper in the motor system is more strongly predictive of behavioral latency. A model reproduces both the variance of behavioral latency and the neuron-behavior latency correlations in MT if it includes realistic neural latency variation, neuron-neuron latency correlations in MT, and noisy gain control downstream of MT. PMID:26971946

  18. Prefrontal cortex activity during motor tasks with additional mental load requiring attentional demand: a near-infrared spectroscopy study.

    PubMed

    Mandrick, Kevin; Derosiere, Gérard; Dray, Gérard; Coulon, Denis; Micallef, Jean-Paul; Perrey, Stéphane

    2013-07-01

    Functional near-infrared spectroscopy (fNIRS) is suitable for investigating cerebral oxygenation changes during motor and/or mental tasks. In the present study, we investigated how an additional mental load during a motor task at two submaximal loadings affects the fNIRS-measured brain activation over the right prefrontal cortex (PFC). Fifteen healthy males performed isometric grasping contractions at 15% and 30% of the maximal voluntary contraction (MVC) with or without an additional mental (i.e., arithmetic) task. Mental performance, force variability, fNIRS and subjective perception responses were measured in each condition. The performance of the mental task decreased significantly while the force variability increased significantly at 30% MVC as compared to 15% MVC, suggesting that performance of dual-task required more attentional resources. PFC activity increased significantly as the effort increased from 15% to 30% MVC (p<.001). Although a larger change in the deoxyhemoglobin was observed in dual-task conditions (p=.051), PFC activity did not change significantly as compared to the motor tasks alone. In summary, participants were unable to invest more attention and effort in performing the more difficult levels in order to maintain adequate mental performance. PMID:23665138

  19. Keeping an eye on the violinist: motor experts show superior timing consistency in a visual perception task

    PubMed Central

    Cañal-Bruland, Rouwen

    2010-01-01

    Common coding theory states that perception and action may reciprocally induce each other. Consequently, motor expertise should map onto perceptual consistency in specific tasks such as predicting the exact timing of a musical entry. To test this hypothesis, ten string musicians (motor experts), ten non-string musicians (visual experts), and ten non-musicians were asked to watch progressively occluded video recordings of a first violinist indicating entries to fellow members of a string quartet. Participants synchronised with the perceived timing of the musical entries. Results revealed significant effects of motor expertise on perception. Compared to visual experts and non-musicians, string players not only responded more accurately, but also with less timing variability. These findings provide evidence that motor experts’ consistency in movement execution—a key characteristic of expert motor performance—is mirrored in lower variability in perceptual judgements, indicating close links between action competence and perception. PMID:20300943

  20. Adolescent Balloon Analog Risk Task and Behaviors that Influence Risk of Motor Vehicle Crash Injury

    PubMed Central

    Vaca, Federico E.; Walthall, Jessica M.; Ryan, Sheryl; Moriarty-Daley, Alison; Riera, Antonio; Crowley, Michael J.; Mayes, Linda C.

    2013-01-01

    Risk-taking propensity is a pivotal facet of motor vehicle crash involvement and subsequent traumatic injury in adolescents. Clinical encounters are important opportunities to identify teens with high risk-taking propensity who may later experience serious injury. Our objective was to compare self-reports of health risk behavior with performance on the Balloon Analog Risk Task (BART), a validated metric of risk-taking propensity, in adolescents during a clinical encounter. 100 adolescent patients from a hospital emergency department and adolescent health clinic completed a computer-based survey of self-reported risk behaviors including substance use behaviors and behaviors that influence crash involvement. They then completed the BART, a validated laboratory-based risk task in which participants earn points by pumping up a computer-generated balloon with greater pumps leading to increased chance of balloon explosion. 20 trials were undertaken. Mean number of pumps on the BART showed a correlation of .243 (p=.015) with self-reported driver/passenger behaviors and attitudes towards driving that influence risk of crash injury. Regression analyses showed that self-reports of substance use and mean number of pumps on the BART uniquely predict self-reports of behaviors influencing the risk of crash injury. The BART is a promising correlate of real-world risk-taking behavior related to traffic safety. It remains a valid predictor of behaviors influencing risk of crash injury when using just 10 trials, suggesting its utility as a quick and effective screening measure for use in busy clinical environments. This tool may be an important link to prevention interventions for those most at-risk for future motor vehicle crash involvement and injury. PMID:24406948

  1. Task-dependent constraints in motor control: pinhole goggles make the head move like an eye.

    PubMed

    Ceylan, M; Henriques, D Y; Tweed, D B; Crawford, J D

    2000-04-01

    In the 19th century, Donders observed that only one three-dimensional eye orientation is used for each gaze direction. Listing's law further specifies that the full set of eye orientation vectors forms a plane, whereas the equivalent Donders' law for the head, the Fick strategy, specifies a twisted two-dimensional range. Surprisingly, despite considerable research and speculation, the biological reasons for choosing one such range over another remain obscure. In the current study, human subjects performed head-free gaze shifts between visual targets while wearing pinhole goggles. During fixations, the head orientation range still obeyed Donders' law, but in most subjects, it immediately changed from the twisted Fick-like range to a flattened Listing-like range. Further controls showed that this was not attributable to loss of binocular vision or increased range of head motion, nor was it attributable to blocked peripheral vision; when subjects pointed a helmet-mounted laser toward targets (a task with goggle-like motor demands but normal vision), the head followed Listing's law even more closely. Donders' law of the head only broke down (in favor of a "minimum-rotation strategy") when head motion was dissociated from gaze. These behaviors could not be modeled using current "Donders' operators" but were readily simulated nonholonomically, i.e., by modulating head velocity commands as a function of position and task. We conclude that the gaze control system uses such velocity rules to shape Donders' law on a moment-to-moment basis, not primarily to satisfy perceptual or anatomic demands, but rather for motor optimization; the Fick strategy optimizes the role of the head as a platform for eye movement, whereas Listing's law optimizes rapid control of the eye (or head) as a gaze pointer. PMID:10729353

  2. Explicit knowledge enhances motor vigor and performance: motivation versus practice in sequence tasks.

    PubMed

    Wong, Aaron L; Lindquist, Martin A; Haith, Adrian M; Krakauer, John W

    2015-07-01

    Motor skill learning involves a practice-induced improvement in the speed and/or accuracy of a discrete movement. It is often thought that paradigms involving repetitive practice of discrete movements performed in a fixed sequence result in a further enhancement of skill beyond practice of the individual movements in a random order. Sequence-specific performance improvements could, however, arise without practice as a result of knowledge of the sequence order; knowledge could operate by either enabling advanced motor planning of the known sequence elements or by increasing overall motivation. Here, we examined how knowledge and practice contribute to performance of a sequence of movements. We found that explicit knowledge provided through instruction produced practice-independent improvements in reaction time and execution quality. These performance improvements occurred even for random elements within a partially known sequence, indicative of a general motivational effect rather than a sequence-specific effect of advanced planning. This motivational effect suggests that knowledge influences performance in a manner analogous to reward. Additionally, practice led to similar improvements in execution quality for both known and random sequences. The lack of interaction between knowledge and practice suggests that any skill acquisition occurring during discrete sequence tasks arises solely from practice of the individual movement elements, independent of their order. We conclude that performance improvements in discrete sequence tasks arise from the combination of knowledge-based motivation and sequence-independent practice; investigating this interplay between cognition and movement may facilitate a greater understanding of the acquisition of skilled behavior. PMID:25904709

  3. How do age and nature of the motor task influence visuomotor adaptation?

    PubMed

    Nemanich, Samuel T; Earhart, Gammon M

    2015-10-01

    Visuomotor adaptation with prism glasses is a paradigm often used to understand how the motor system responds to visual perturbations. Both reaching and walking adaptation have been documented, but not directly compared. Because the sensorimotor environment and demands are different between reaching and walking, we hypothesized that characteristics of prism adaptation, namely rates and aftereffects, would be different during walking compared to reaching. Furthermore, we aimed to determine the impact of age on motor adaptation. We studied healthy younger and older adults who performed visually guided reaching and walking tasks with and without prism glasses. We noted age effects on visuomotor adaptation, such that older adults adapted and re-adapted slower compared to younger adults, in accord with previous studies of adaptation in older adults. Interestingly, we also noted that both groups adapted slower and showed smaller aftereffects during walking prism adaptation compared to reaching. We propose that walking adaptation is slower because of the complex multi-effector and multi-sensory demands associated with walking. Altogether, these data suggest that humans can adapt various movement types but the rate and extent of adaptation is not the same across movement types nor across ages. PMID:26385199

  4. Cortical EEG alpha rhythms reflect task-specific somatosensory and motor interactions in humans.

    PubMed

    Babiloni, Claudio; Del Percio, Claudio; Arendt-Nielsen, Lars; Soricelli, Andrea; Romani, Gian Luca; Rossini, Paolo Maria; Capotosto, Paolo

    2014-10-01

    Anticipating sensorimotor events allows adaptive reactions to environment with crucial implications for self-protection and survival. Here we review several studies of our group that aimed to test the hypothesis that the cortical processes preparing the elaboration of sensorimotor interaction is reflected by the reduction of anticipatory electroencephalographic alpha power (about 8-12Hz; event-related desynchronization, ERD), as an index that regulate task-specific sensorimotor processes, accounted by high-alpha sub-band (10-12Hz), rather than a general tonic alertness, accounted by low-alpha sub-band (8-10Hz). In this line, we propose a model for human cortical processes anticipating warned sensorimotor interactions. Overall, we reported a stronger high-alpha ERD before painful than non-painful somatosensory stimuli that is also predictive of the subjective evaluation of pain intensity. Furthermore, we showed that anticipatory high-alpha ERD increased before sensorimotor interactions between non-painful or painful stimuli and motor demands involving opposite hands. In contrast, sensorimotor interactions between painful somatosensory and sensorimotor demands involving the same hand decreased anticipatory high-alpha ERD, due to a sort of sensorimotor "gating" effect. In conclusion, we suggest that anticipatory cortical high-alpha rhythms reflect the central interference and/or integration of ascending (sensory) and descending (motor) signals relative to one or two hands before non-painful and painful sensorimotor interactions. PMID:24929901

  5. The Effect of an Acute Bout of Moderate-Intensity Aerobic Exercise on Motor Learning of a Continuous Tracking Task

    PubMed Central

    Snow, Nicholas J.; Mang, Cameron S.; Roig, Marc; Boyd, Lara A.

    2016-01-01

    Introduction There is evidence for beneficial effects of acute and long-term exercise interventions on several forms of memory, including procedural motor learning. In the present study we examined how performing a single bout of continuous moderate intensity aerobic exercise would impact motor skill acquisition and retention in young healthy adults, compared to a period of rest. We hypothesized that exercise would improve motor skill acquisition and retention, compared to motor practice alone. Materials and Methods Sixteen healthy adults completed sessions of aerobic exercise or seated rest that were immediately followed by practice of a novel motor task (practice). Exercise consisted of 30 minutes of continuous cycling at 60% peak O2 uptake. Twenty-four hours after practice, we assessed motor learning with a no-exercise retention test (retention). We also quantified changes in offline motor memory consolidation, which occurred between practice and retention (offline). Tracking error was separated into indices of temporal precision and spatial accuracy. Results There were no differences between conditions in the timing of movements during practice (p = 0.066), at retention (p = 0.761), or offline (p = 0.966). However, the exercise condition enabled participants to maintain spatial accuracy during practice (p = 0.477); whereas, following rest performance diminished (p = 0.050). There were no significant differences between conditions at retention (p = 0.532) or offline (p = 0.246). Discussion An acute bout of moderate-intensity aerobic exercise facilitated the maintenance of motor performance during skill acquisition, but did not influence motor learning. Given past work showing that pairing high intensity exercise with skilled motor practice benefits learning, it seems plausible that intensity is a key modulator of the effects of acute aerobic exercise on changes in complex motor behavior. Further work is necessary to establish a dose-response relationship between

  6. Motor perseveration during an "A not B" task in children with intellectual disabilities.

    PubMed

    Mauerberg-deCastro, Eliane; Cozzani, Márcia V; Polanczyk, Suelen D; de Paula, Adriana I; Lucena, Camila S; Moraes, Renato

    2009-12-01

    This study was designed to identify perseverative reaching tendencies in children with intellectual disabilities (ID), over a period of 1 year, by using a version of the Piagetian "A not B" task modified by Smith, Thelen, Titzer, and McLin (1999). Nine children (4.8 years old at the beginning of the study) with intellectual disabilities (ID) (eight with mild ID; one with moderate ID) were assessed every 3 months for approximately 1 year, totaling four assessments. The results indicate that in a majority of the cases perseveration was resilient, and that the visual system decoupled from the reaching, especially towards the later assessment periods at the end of the year. Across assessment periods variability seemed to increase in each trial (A1 through B2) for reached target. These individuals, vulnerable to distraction and attention and to short-term memory deficits, are easily locked into rigid modes of motor habits. They are susceptible to perseveration while performing simple task contexts that are typically designed for 10- to 12-month-old, normally-developing infants, therefore creating strong confinements to stable, rigid modes of elementary forms of behavior. PMID:19846232

  7. Behavioral, Cognitive, and Motor Preparation Deficits in a Visual Cued Spatial Attention Task in Autism Spectrum Disorder.

    PubMed

    Sokhadze, Estate M; Tasman, Allan; Sokhadze, Guela E; El-Baz, Ayman S; Casanova, Manuel F

    2016-03-01

    Abnormalities in motor skills have been regarded as part of the symptomatology characterizing autism spectrum disorder (ASD). It has been estimated that 80 % of subjects with autism display "motor dyspraxia" or clumsiness that are not readily identified in a routine neurological examination. In this study we used behavioral measures, event-related potentials (ERP), and lateralized readiness potential (LRP) to study cognitive and motor preparation deficits contributing to the dyspraxia of autism. A modified Posner cueing task was used to analyze motor preparation abnormalities in children with autism and in typically developing children (N = 30/per group). In this task, subjects engage in preparing motor response based on a visual cue, and then execute a motor movement based on the subsequent imperative stimulus. The experimental conditions, such as the validity of the cue and the spatial location of the target stimuli were manipulated to influence motor response selection, preparation, and execution. Reaction time and accuracy benefited from validly cued targets in both groups, while main effects of target spatial position were more obvious in the autism group. The main ERP findings were prolonged and more negative early frontal potentials in the ASD in incongruent trials in both types of spatial location. The LRP amplitude was larger in incongruent trials and had stronger effect in the children with ASD. These effects were better expressed at the earlier stages of LRP, specifically those related to response selection, and showed difficulties at the cognitive phase of stimulus processing rather that at the motor execution stage. The LRP measures at different stages reflect the chronology of cognitive aspects of movement preparation and are sensitive to manipulations of cue correctness, thus representing very useful biomarker in autism dyspraxia research. Future studies may use more advance and diverse manipulations of movement preparation demands in testing more

  8. Task-dependent modification of leg motor neuron synaptic input underlying changes in walking direction and walking speed

    PubMed Central

    Rosenbaum, Philipp; Schmitz, Josef; Schmidt, Joachim

    2015-01-01

    Animals modify their behavior constantly to perform adequately in their environment. In terrestrial locomotion many forms of adaptation exist. Two tasks are changes of walking direction and walking speed. We investigated these two changes in motor output in the stick insect Cuniculina impigra to see how they are brought about at the level of leg motor neurons. We used a semi-intact preparation in which we can record intracellularly from leg motor neurons during walking. In this single-leg preparation the middle leg of the animal steps in a vertical plane on a treadwheel. Stimulation of either abdomen or head reliably elicits fictive forward or backward motor activity, respectively, in the fixed and otherwise deafferented thorax-coxa joint. With a change of walking direction only thorax-coxa-joint motor neurons protractor and retractor changed their activity. The protractor switched from swing activity during forward to stance activity during backward walking, and the retractor from stance to swing. This phase switch was due to corresponding change of phasic synaptic inputs from inhibitory to excitatory and vice versa at specific phases of the step cycle. In addition to phasic synaptic input a tonic depolarization of the motor neurons was present. Analysis of changes in stepping velocity during stance showed only a significant correlation to flexor motor neuron activity, but not to that of retractor and depressor motor neurons during forward walking. These results show that different tasks in the stick insect walking system are generated by altering synaptic inputs to specific leg joint motor neurons only. PMID:26063769

  9. Task-dependent modification of leg motor neuron synaptic input underlying changes in walking direction and walking speed.

    PubMed

    Rosenbaum, Philipp; Schmitz, Josef; Schmidt, Joachim; Büschges, Ansgar

    2015-08-01

    Animals modify their behavior constantly to perform adequately in their environment. In terrestrial locomotion many forms of adaptation exist. Two tasks are changes of walking direction and walking speed. We investigated these two changes in motor output in the stick insect Cuniculina impigra to see how they are brought about at the level of leg motor neurons. We used a semi-intact preparation in which we can record intracellularly from leg motor neurons during walking. In this single-leg preparation the middle leg of the animal steps in a vertical plane on a treadwheel. Stimulation of either abdomen or head reliably elicits fictive forward or backward motor activity, respectively, in the fixed and otherwise deafferented thorax-coxa joint. With a change of walking direction only thorax-coxa-joint motor neurons protractor and retractor changed their activity. The protractor switched from swing activity during forward to stance activity during backward walking, and the retractor from stance to swing. This phase switch was due to corresponding change of phasic synaptic inputs from inhibitory to excitatory and vice versa at specific phases of the step cycle. In addition to phasic synaptic input a tonic depolarization of the motor neurons was present. Analysis of changes in stepping velocity during stance showed only a significant correlation to flexor motor neuron activity, but not to that of retractor and depressor motor neurons during forward walking. These results show that different tasks in the stick insect walking system are generated by altering synaptic inputs to specific leg joint motor neurons only. PMID:26063769

  10. Acquisition of Internal Models of Motor Tasks in Children with Autism

    ERIC Educational Resources Information Center

    Gidley Larson, Jennifer C.; Bastian, Amy J.; Donchin, Opher; Shadmehr, Reza; Mostofsky, Stewart H.

    2008-01-01

    Children with autism exhibit a host of motor disorders including poor coordination, poor tool use and delayed learning of complex motor skills like riding a tricycle. Theory suggests that one of the crucial steps in motor learning is the ability to form internal models: to predict the sensory consequences of motor commands and learn from errors to…

  11. The Influence of Parkinson's Disease Motor Symptom Asymmetry on Hand Performance: An Examination of the Grooved Pegboard Task

    PubMed Central

    Scharoun, Sara M.; Bryden, Pamela J.; Sage, Michael D.; Almeida, Quincy J.; Roy, Eric A.

    2015-01-01

    This study examined the influence of motor symptom asymmetry in Parkinson's disease (PD) on Grooved Pegboard (GP) performance in right-handed participants. The Unified Parkinson's Disease Rating Scale was used to assess motor symptoms and separate participants with PD into two groups (right-arm affected, left-arm affected) for comparison with a group of healthy older adults. Participants completed the place and replace GP tasks two times with both hands. Laterality quotients were computed to quantify performance differences between the two hands. Comparisons among the three groups indicated that when the nonpreferred hand is affected by PD motor symptoms, superior preferred hand performance (as seen in healthy older adults) is further exaggerated in tasks that require precision (i.e., place task). Regardless of the task, when the preferred hand is affected, there is an evident shift to superior left-hand performance, which may inevitably manifest as a switch in hand preference. Results add to the discussion of the relationship between handedness and motor symptom asymmetry in PD. PMID:26693383

  12. Relationships between Task-Oriented Postural Control and Motor Ability in Children and Adolescents with Down Syndrome

    ERIC Educational Resources Information Center

    Wang, Hui-Yi; Long, I-Man; Liu, Mei-Fang

    2012-01-01

    Individuals with Down syndrome (DS) have been characterized by greater postural sway in quiet stance and insufficient motor ability. However, there is a lack of studies to explore the properties of dynamic postural sway, especially under conditions of task-oriented movement. The purpose of this study was to investigate the relationships between…

  13. Changes of slow cortical negative DC-potentials during the acquisition of a complex finger motor task.

    PubMed

    Niemann, J; Winker, T; Gerling, J; Landwehrmeyer, B; Jung, R

    1991-01-01

    To study whether electrophysiological correlates of increasing motor skill can be demonstrated in man, we recorded cortical negative DC-potentials during the acquisition of a complex finger movement in 21 subjects. The movement consisted in moving a matchstick to and fro between the index finger (II) and the little finger (V). Cortical negative DC-potentials were recorded at Fz, Cz, C1, C2 and Pz. As a control a simple finger movement was performed during the same session by 7 of the Ss. Both tasks were repeated 60-80 times and averages of the first and the last 15 artifact-free single runs were compared. Whereas only a slight, inconstant decrease in surface electronegativity during the simple motor task was observed, a significant reduction in potential size occurred during the complex task at Cz (maximum), C1, C2 and Pz but not at Fz. In addition, a significant difference in the decrease of surface electronegativity between various electrode positions was observed. We suggest that these changes in potential size during the process of motor learning may reflect an altered cortical organisation of movement control during the acquisition of a complex motor task. PMID:1893989

  14. The effects of bromazepam over the central and frontal areas during a motor task: an EEG study.

    PubMed

    Fortunato, Suzete; Tanaka, Guaraci Ken; Araújo, Fernanda; Bittencourt, Juliana; Aprigio, Danielle; Gongora, Mariana; Teixeira, Silmar; Pompeu, Fernando Augusto Monteiro Saboia; Cagy, Mauricio; Basile, Luis F; Ribeiro, Pedro; Velasques, Bruna

    2015-04-01

    The present study investigates the influence of bromazepam while executing a motor task. Specifically, we intend to analyze the changes in alpha absolute power under two experimental conditions, bromazepam and placebo. We also included analyses of theta and beta frequencies. We collected electroencephalographic data before, during, and after motor task execution. We used a Two Way ANOVA to investigate the condition (PL × Br6 mg) and moment (pre and post) variables for the following electrodes: Fp1, Fp2, F7, F3, Fz, F4, F8, C3, CZ and C4. We found a main effect for condition on the electrodes FP1, F7, F3, Fz, F4, C3 and CZ, for alpha and beta bands. For beta band we also found a main effect for condition on the electrodes Fp2, F8 and C4; for theta band we identified a main effect for condition on C3, Cz and C4 electrodes. This finding suggests that the motor task did not have any influence on the electrocortical activity in alpha, and that the existing modifications were a consequence due merely to the drug use. Despite its anxiolytic and sedative action, bromazepam did not show any significant changes when the individuals executed a finger extension motor task. PMID:25992523

  15. Distribution of Practice and Metacognition in Learning and Long-Term Retention of a Discrete Motor Task

    ERIC Educational Resources Information Center

    Dail, Teresa K.; Christina, Robert W.

    2004-01-01

    This study examined judgments of learning and the long-term retention of a discrete motor task (golf putting) as a function of practice distribution. The results indicated that participants in the distributed practice group performed more proficiently than those in the massed practice group during both acquisition and retention phases. No…

  16. Effects of short-term training on behavioral learning and skill acquisition during intraoral fine motor task.

    PubMed

    Kumar, A; Grigoriadis, J; Trulsson, M; Svensson, P; Svensson, K G

    2015-10-15

    Sensory information from the orofacial mechanoreceptors are used by the nervous system to optimize the positioning of food, determine the force levels, and force vectors involved in biting of food morsels. Moreover, practice resulting from repetition could be a key to learning and acquiring a motor skill. Hence, the aim of the experiment was to test the hypothesis that repeated splitting of a food morsel during a short-term training with an oral fine motor task would result in increased performance and optimization of jaw movements, in terms of reduction in duration of various phases of the jaw movements. Thirty healthy volunteers were asked to intraorally manipulate and split a chocolate candy, into two equal halves. The participants performed three series (with 10 trials) of the task before and after a short-term (approximately 30 min) training. The accuracy of the split and vertical jaw movement during the task were recorded. The precision of task performance improved significantly after training (22% mean deviation from ideal split after vs. 31% before; P<0.001). There was a significant decrease in the total duration of jaw movements during the task after the training (1.21 s total duration after vs. 1.56 s before; P<0.001). Further, when the jaw movements were divided into different phases, the jaw opening phase and contact phase were significantly shorter after training than before training (P=0.001, P=0.002). The results indicate that short-term training of an oral fine motor task induces behavior learning, skill acquisition and optimization of jaw movements in terms of better performance and reduction in the duration of jaw movements, during the task. The finding of the present study provides insights into how humans learn oral motor behaviors or the kind of adaptation that takes place after a successful prosthetic rehabilitation. PMID:26162238

  17. An Analysis on Lyapunov Spectrum of Hemodynamic Response in Functional Near Infrared Spectroscopic Measurement during Different Imaginary Motor Tasks

    NASA Astrophysics Data System (ADS)

    Soe, Ni Ni; Nakagawa, Masahiro

    2008-03-01

    This paper presents the novel approach to evaluate the effects of different motor activation tasks of functional near infrared spectroscopy signal (fNIRS). Functional near infrared spectroscopy is a practical non-invasive optical technique to detect characteristic of hemodynamic response during functional activation of the cerebral cortex. In this paper, fNIRS measurements were made in the area of motor cortex. Three subjects, aged 23-30 years, participated in the experiment. The application of the Lyapunov analysis which is a method of nonlinear analysis to analyze and to quantify the chaotic property in the time series of the hemoglobin dynamics of the various motor imagery tasks of fNIRS signal was presented. The strength of chaos was estimated by the Kolmogorov entropy which is related to Lyapunov spectrum. Experimental results show that these nonlinear measures are good discriminators of NIRS signals. The Lyapunov spectra, Lyapunov dimension (DL), and Kolmogorov entropy (K) all indicated chaotic behavior.

  18. Can stereotype threat affect motor performance in the absence of explicit monitoring processes? Evidence using a strength task.

    PubMed

    Chalabaev, Aïna; Brisswalter, Jeanick; Radel, Rémi; Coombes, Stephen A; Easthope, Christopher; Clément-Guillotin, Corentin

    2013-04-01

    Previous evidence shows that stereotype threat impairs complex motor skills through increased conscious monitoring of task performance. Given that one-step motor skills may not be susceptible to these processes, we examined whether performance on a simple strength task may be reduced under stereotype threat. Forty females and males performed maximum voluntary contractions under stereotypical or nullified-stereotype conditions. Results showed that the velocity of force production within the first milliseconds of the contraction decreased in females when the negative stereotype was induced, whereas maximal force did not change. In males, the stereotype induction only increased maximal force. These findings suggest that stereotype threat may impair motor skills in the absence of explicit monitoring processes, by influencing the planning stage of force production. PMID:23535978

  19. When Affordances Climb into Your Mind: Advantages of Motor Simulation in a Memory Task Performed by Novice and Expert Rock Climbers

    ERIC Educational Resources Information Center

    Pezzulo, Giovanni; Barca, Laura; Bocconi, Alessandro Lamberti; Borghi, Anna M.

    2010-01-01

    Does the sight of multiple climbing holds laid along a path activate a motor simulation of climbing that path? One way of testing whether multiple affordances and their displacement influence the formation of a motor simulation is to study acquired motor skills. We used a behavioral task in which expert and novice rock climbers were shown three…

  20. Variation, Signal, and Noise in Cerebellar Sensory–Motor Processing for Smooth-Pursuit Eye Movements

    PubMed Central

    Medina, Javier F.; Lisberger, Stephen G.

    2009-01-01

    Neural responses are variable, yet motor performance can be quite precise. To ask how neural signal and noise are processed in the brain during sensory–motor behavior, we have evaluated the trial-by-trial variation of Purkinje cell (PC) activity in the floccular complex of the cerebellum, an intermediate stage in the neural circuit for smooth-pursuit eye movements. We find strong correlations between small trial-by-trial variations in the simple spike activity of individual PCs and the eye movements at the initiation of pursuit. The correlation is lower but still present during steady-state pursuit. Recordings from a few pairs of PCs verified the predictions of a model of the PC population, that there is a transition from highly covariant PC activity during movement initiation to more independent activity later on. Application to the data of a theoretical and computational analysis suggests that variation in pursuit initiation arises mostly from variation in visual motion signals that provide common inputs to the PC population. Variation in eye movement during steady-state pursuit can be attributed primarily to signal-dependent motor noise that arises downstream from PCs. PMID:17581971

  1. Enhanced spontaneous oscillations in the supplementary motor area are associated with sleep-dependent offline learning of finger-tapping motor-sequence task.

    PubMed

    Tamaki, Masako; Huang, Tsung-Ren; Yotsumoto, Yuko; Hämäläinen, Matti; Lin, Fa-Hsuan; Náñez, José E; Watanabe, Takeo; Sasaki, Yuka

    2013-08-21

    Sleep is beneficial for various types of learning and memory, including a finger-tapping motor-sequence task. However, methodological issues hinder clarification of the crucial cortical regions for sleep-dependent consolidation in motor-sequence learning. Here, to investigate the core cortical region for sleep-dependent consolidation of finger-tapping motor-sequence learning, while human subjects were asleep, we measured spontaneous cortical oscillations by magnetoencephalography together with polysomnography, and source-localized the origins of oscillations using individual anatomical brain information from MRI. First, we confirmed that performance of the task at a retest session after sleep significantly increased compared with performance at the training session before sleep. Second, spontaneous δ and fast-σ oscillations significantly increased in the supplementary motor area (SMA) during post-training compared with pretraining sleep, showing significant and high correlation with the performance increase. Third, the increased spontaneous oscillations in the SMA correlated with performance improvement were specific to slow-wave sleep. We also found that correlations of δ oscillation between the SMA and the prefrontal and between the SMA and the parietal regions tended to decrease after training. These results suggest that a core brain region for sleep-dependent consolidation of the finger-tapping motor-sequence learning resides in the SMA contralateral to the trained hand and is mediated by spontaneous δ and fast-σ oscillations, especially during slow-wave sleep. The consolidation may arise along with possible reorganization of a larger-scale cortical network that involves the SMA and cortical regions outside the motor regions, including prefrontal and parietal regions. PMID:23966709

  2. Characterization of cognitive and motor performance during dual-tasking in healthy older adults and patients with Parkinson's disease.

    PubMed

    Wild, Lucia Bartmann; de Lima, Daiane Borba; Balardin, Joana Bisol; Rizzi, Luana; Giacobbo, Bruno Lima; Oliveira, Henrique Bianchi; de Lima Argimon, Irani Iracema; Peyré-Tartaruga, Leonardo Alexandre; Rieder, Carlos R M; Bromberg, Elke

    2013-02-01

    The primary purpose of this study was to investigate the effect of dual-tasking on cognitive performance and gait parameters in patients with idiopathic Parkinson's disease (PD) without dementia. The impact of cognitive task complexity on cognition and walking was also examined. Eighteen patients with PD (ages 53-88, 10 women; Hoehn and Yahr stage I-II) and 18 older adults (ages 61-84; 10 women) completed two neuropsychological measures of executive function/attention (the Stroop Test and Wisconsin Card Sorting Test). Cognitive performance and gait parameters related to functional mobility of stride were measured under single (cognitive task only) and dual-task (cognitive task during walking) conditions with different levels of difficulty and different types of stimuli. In addition, dual-task cognitive costs were calculated. Although cognitive performance showed no significant difference between controls and PD patients during single or dual-tasking conditions, only the patients had a decrease in cognitive performance during walking. Gait parameters of patients differed significantly from controls at single and dual-task conditions, indicating that patients gave priority to gait while cognitive performance suffered. Dual-task cognitive costs of patients increased with task complexity, reaching significantly higher values then controls in the arithmetic task, which was correlated with scores on executive function/attention (Stroop Color-Word Page). Baseline motor functioning and task executive/attentional load affect the performance of cognitive tasks of PD patients while walking. These findings provide insight into the functional strategies used by PD patients in the initial phases of the disease to manage dual-task interference. PMID:23052601

  3. Gaze motor asymmetries in the perception of faces during a memory task.

    PubMed

    Mertens, I; Siegmund, H; Grüsser, O J

    1993-09-01

    In 33 male and female adult volunteers, eye position recordings were performed by means of an infrared reflection technique. Slides of randomly shuffled black-and-white photographs (7.5 x 10 degrees) of faces and vases were projected for 6 or 20 sec respectively in a visual memory task. In each series, 10 slides of art nouveau vases and of the "inner part" of masked Caucasian faces were used. During recording the head was fixed by a bite-board. (a) For faces the preferred targets of the centre of gaze were the eyes, the mouth and nose region, for vases the contours and some prominent ornaments. (b) Left-right asymmetries in the gaze-movement sampling strategy appeared with faces, but not with vases. In faces, the overall time that the centre of gaze remained in the left half of the field of gaze was significantly longer than in the right half. (c) When, however, the amplitude of the gaze excursions into the left and right halves of the inspected items was taken as a measure and normalized, a preference for the right gaze field was observed. (d) The relative left-right bias during face inspection was stronger with the 6 sec than with the 20 sec inspection period and significantly stronger in female than in male subjects for the 6 sec tasks. (e) Left/right inversion of the face stimuli did not abolish the side bias. Thus the asymmetric sampling strategy when faces were inspected as compared to vases was due to "internal" factors on the part of the subjects. It is hypothesized that a left-right asymmetry in hemispheric visual data processing for face stimuli was the cause of a left-right asymmetry in gaze motor strategies when faces were inspected. PMID:8232855

  4. Hybrid EEG-fNIRS Asynchronous Brain-Computer Interface for Multiple Motor Tasks.

    PubMed

    Buccino, Alessio Paolo; Keles, Hasan Onur; Omurtag, Ahmet

    2016-01-01

    Non-invasive Brain-Computer Interfaces (BCI) have demonstrated great promise for neuroprosthetics and assistive devices. Here we aim to investigate methods to combine Electroencephalography (EEG) and functional Near-Infrared Spectroscopy (fNIRS) in an asynchronous Sensory Motor rhythm (SMR)-based BCI. We attempted to classify 4 different executed movements, namely, Right-Arm-Left-Arm-Right-Hand-Left-Hand tasks. Previous studies demonstrated the benefit of EEG-fNIRS combination. However, since normally fNIRS hemodynamic response shows a long delay, we investigated new features, involving slope indicators, in order to immediately detect changes in the signals. Moreover, Common Spatial Patterns (CSPs) have been applied to both EEG and fNIRS signals. 15 healthy subjects took part in the experiments and since 25 trials per class were available, CSPs have been regularized with information from the entire population of participants and optimized using genetic algorithms. The different features have been compared in terms of performance and the dynamic accuracy over trials shows that the introduced methods diminish the fNIRS delay in the detection of changes. PMID:26730580

  5. Hybrid EEG-fNIRS Asynchronous Brain-Computer Interface for Multiple Motor Tasks

    PubMed Central

    Buccino, Alessio Paolo; Keles, Hasan Onur; Omurtag, Ahmet

    2016-01-01

    Non-invasive Brain-Computer Interfaces (BCI) have demonstrated great promise for neuroprosthetics and assistive devices. Here we aim to investigate methods to combine Electroencephalography (EEG) and functional Near-Infrared Spectroscopy (fNIRS) in an asynchronous Sensory Motor rhythm (SMR)-based BCI. We attempted to classify 4 different executed movements, namely, Right-Arm—Left-Arm—Right-Hand—Left-Hand tasks. Previous studies demonstrated the benefit of EEG-fNIRS combination. However, since normally fNIRS hemodynamic response shows a long delay, we investigated new features, involving slope indicators, in order to immediately detect changes in the signals. Moreover, Common Spatial Patterns (CSPs) have been applied to both EEG and fNIRS signals. 15 healthy subjects took part in the experiments and since 25 trials per class were available, CSPs have been regularized with information from the entire population of participants and optimized using genetic algorithms. The different features have been compared in terms of performance and the dynamic accuracy over trials shows that the introduced methods diminish the fNIRS delay in the detection of changes. PMID:26730580

  6. Variation among Developmental Dyslexics: Evidence from a Printed-Word-Learning Task

    ERIC Educational Resources Information Center

    Bailey, Caroline E.; Manis, Franklin R.; Pedersen, William C.; Seidenberg, Mark S.

    2004-01-01

    A word-learning task was used to investigate variation among developmental dyslexics classified as phonological and surface dyslexics. Dyslexic children and chronological age (CA)- and reading level (RL)-matched normal readers were taught to pronounce novel nonsense words such as "veep." Words were assigned either a regular (e.g., ''veep'') or an…

  7. Correlation of near-infrared spectroscopy and transcranial magnetic stimulation of the motor cortex in overt reading and musical tasks.

    PubMed

    Lo, Y L; Zhang, H H; Wang, C C; Chin, Z Y; Fook-Chong, S; Gabriel, C; Guan, C T

    2009-01-01

    In overt reading and singing tasks, actual vocalization of words in a rhythmic fashion is performed. During execution of these tasks, the role of underlying vascular processes in relation to cortical excitability changes in a spatial manner is uncertain. Our objective was to investigate cortical excitability changes during reading and singing with transcranial magnetic stimulation (TMS), as well as vascular changes with nearinfrared spectroscopy (NIRS). Findings with TMS and NIRS were correlated. TMS and NIRS recordings were performed in 5 normal subjects while they performed reading and singing tasks separately. TMS was applied over the left motor cortex at 9 positions 2.5 cm apart. NIRS recordings were made over these identical positions. Although both TMS and NIRS showed significant mean cortical excitability and hemodynamic changes from baseline during vocalization tasks, there was no significant spatial correlation of these changes evaluated with the 2 techniques over the left motor cortex. Our findings suggest that increased left-sided cortical excitability from overt vocalization tasks in the corresponding "hand area" were the result of "functional connectivity," rather than an underlying "vascular overflow mechanism" from the adjacent speech processing or face/mouth areas. Our findings also imply that functional neurophysiological and vascular methods may evaluate separate underlying processes, although subjects performed identical vocalization tasks. Future research combining similar methodologies should embrace this aspect and harness their separate capabilities. PMID:19246780

  8. Motor Control in Children and Adults during a Non-Speech Oral Task.

    ERIC Educational Resources Information Center

    Clark, Heather M.; Robin, Donald A.; McCullagh, Gail; Schmidt, Richard A.

    2001-01-01

    This study examined the accuracy and stability of oral motor control in 20 adults and 20 children. Although the children were less accurate and less stable, adults and children exhibited similar variability in their generalized motor program. Results are discussed within the framework of a schema model of motor control, especially the strategic…

  9. Decreased Connectivity and Cerebellar Activity in Autism during Motor Task Performance

    ERIC Educational Resources Information Center

    Mostofsky, Stewart H.; Powell, Stephanie K.; Simmonds, Daniel J.; Goldberg, Melissa C.; Caffo, Brian; Pekar, James J.

    2009-01-01

    Although motor deficits are common in autism, the neural correlates underlying the disruption of even basic motor execution are unknown. Motor deficits may be some of the earliest identifiable signs of abnormal development and increased understanding of their neural underpinnings may provide insight into autism-associated differences in parallel…

  10. Why Do Fine Motor Skills Predict Mathematics? Construct Validity of the Design Copying Task

    ERIC Educational Resources Information Center

    Murrah, William M.; Chen, Wei-Bing; Cameron, Claire E.

    2013-01-01

    Recent educational studies have found evidence that measures of fine motor skills are predictive of educational outcomes. However, the precise nature of fine motor skills has received little attention in these studies. With evidence mounting that fine motor skills are an important indicator of school readiness, investigating the nature of this…

  11. The Effect of a Six-Month Dancing Program on Motor-Cognitive Dual-Task Performance in Older Adults.

    PubMed

    Hamacher, Dennis; Hamacher, Daniel; Rehfeld, Kathrin; Hökelmann, Anita; Schega, Lutz

    2015-10-01

    Dancing is a complex sensorimotor activity involving physical and mental elements which have positive effects on cognitive functions and motor control. The present randomized controlled trial aims to analyze the effects of a dancing program on the performance on a motor-cognitive dual task. Data of 35 older adults, who were assigned to a dancing group or a health-related exercise group, are presented in the study. In pretest and posttest, we assessed cognitive performance and variability of minimum foot clearance, stride time, and stride length while walking. Regarding the cognitive performance and the stride-to-stride variability of minimum foot clearance, interaction effects have been found, indicating that dancing lowers gait variability to a higher extent than conventional health-related exercise. The data show that dancing improves minimum foot clearance variability and cognitive performance in a dual-task situation. Multi-task exercises (like dancing) might be a powerful tool to improve motor-cognitive dual-task performance. PMID:25642826

  12. Motor intensive anti-gravity training improves performance in dynamic balance related tasks in persons with Parkinson's disease.

    PubMed

    Malling, Anne Sofie B; Jensen, Bente R

    2016-01-01

    Recent studies indicate that the effect of training on motor performance in persons with Parkinson's disease (PDP) is dependent on motor intensity. However, training of high motor intensity can be hard to apply in PDP due to e.g. bradykinesia, rigidity, tremor and postural instability. Therefore, the aim was to study the effect of motor intensive training performed in a safe anti-gravity environment using lower-body positive pressure (LBPP) technology on performance during dynamic balance related tasks. Thirteen male PDP went through an 8-week control period followed by 8 weeks of motor intensive antigravity training. Seventeen healthy males constituted a control group (CON). Performance during a five repetition sit-to-stand test (STS; sagittal plane) and a dynamic postural balance test (DPB; transversal plane) was evaluated. Effect measures were completion time, functional rates of force development, directional changes and force variance. STS completion time improved by 24% to the level of CON which was explained by shorter sitting-time and standing-time and larger numeric rate of force change during lowering to the chair, indicating faster vertical directional change and improved relaxation. DPB completion time tended to improve and was accompanied by improvements of functional medial and lateral rates of force development and higher vertical force variance during DPB. Our results suggest that the performance improvements may relate to improved inter-limb coordination. It is concluded that 8 weeks of motor intensive training in a safe LBPP environment improved performance during dynamic balance related tasks in PDP. PMID:26444077

  13. Functional near-infrared spectroscopy-based correlates of prefrontal cortical dynamics during a cognitive-motor executive adaptation task

    PubMed Central

    Gentili, Rodolphe J.; Shewokis, Patricia A.; Ayaz, Hasan; Contreras-Vidal, José L.

    2013-01-01

    This study investigated changes in brain hemodynamics, as measured by functional near infrared spectroscopy, during performance of a cognitive-motor adaptation task. The adaptation task involved the learning of a novel visuomotor transformation (a 60° counterclockwise screen-cursor rotation), which required inhibition of a prepotent visuomotor response. A control group experienced a familiar transformation and thus, did not face any executive challenge. Analysis of the experimental group hemodynamic responses revealed that the performance enhancement was associated with a monotonic reduction in the oxygenation level in the prefrontal cortex. This finding confirms and extends functional magnetic resonance imaging and electroencephalography studies of visuomotor adaptation and learning. The changes in prefrontal brain activation suggest an initial recruitment of frontal executive functioning to inhibit prepotent visuomotor mappings followed by a progressive de-recruitment of the same prefrontal regions. The prefrontal hemodynamic changes observed in the experimental group translated into enhanced motor performance revealed by a reduction in movement time, movement extent, root mean square error and the directional error. These kinematic adaptations are consistent with the acquisition of an internal model of the novel visuomotor transformation. No comparable change was observed in the control group for either the hemodynamics or for the kinematics. This study (1) extends our understanding of the frontal executive processes from the cognitive to the cognitive-motor domain and (2) suggests that optical brain imaging can be employed to provide hemodynamic based-biomarkers to assess and monitor the level of adaptive cognitive-motor performance. PMID:23847489

  14. Intra-Auditory Integration Improves Motor Performance and Synergy in an Accurate Multi-Finger Pressing Task

    PubMed Central

    Koh, Kyung; Kwon, Hyun Joon; Park, Yang Sun; Kiemel, Tim; Miller, Ross H.; Kim, Yoon Hyuk; Shin, Joon-Ho; Shim, Jae Kun

    2016-01-01

    Humans detect changes in the air pressure and understand the surroundings through the auditory system. The sound humans perceive is composed of two distinct physical properties, frequency and intensity. However, our knowledge is limited how the brain perceives and combines these two properties simultaneously (i.e., intra-auditory integration), especially in relation to motor behaviors. Here, we investigated the effect of intra-auditory integration between the frequency and intensity components of auditory feedback on motor outputs in a constant finger-force production task. The hierarchical variability decomposition model previously developed was used to decompose motor performance into mathematically independent components each of which quantifies a distinct motor behavior such as consistency, repeatability, systematic error, within-trial synergy, or between-trial synergy. We hypothesized that feedback on two components of sound as a function of motor performance (frequency and intensity) would improve motor performance and multi-finger synergy compared to feedback on just one component (frequency or intensity). Subjects were instructed to match the reference force of 18 N with the sum of all finger forces (virtual finger or VF force) while listening to auditory feedback of their accuracy. Three experimental conditions were used: (i) condition F, where frequency changed; (ii) condition I, where intensity changed; (iii) condition FI, where both frequency and intensity changed. Motor performance was enhanced for the FI conditions as compared to either the F or I condition alone. The enhancement of motor performance was achieved mainly by the improved consistency and repeatability. However, the systematic error remained unchanged across conditions. Within- and between-trial synergies were also improved for the FI condition as compared to either the F or I condition alone. However, variability of individual finger forces for the FI condition was not significantly

  15. Intra-Auditory Integration Improves Motor Performance and Synergy in an Accurate Multi-Finger Pressing Task.

    PubMed

    Koh, Kyung; Kwon, Hyun Joon; Park, Yang Sun; Kiemel, Tim; Miller, Ross H; Kim, Yoon Hyuk; Shin, Joon-Ho; Shim, Jae Kun

    2016-01-01

    Humans detect changes in the air pressure and understand the surroundings through the auditory system. The sound humans perceive is composed of two distinct physical properties, frequency and intensity. However, our knowledge is limited how the brain perceives and combines these two properties simultaneously (i.e., intra-auditory integration), especially in relation to motor behaviors. Here, we investigated the effect of intra-auditory integration between the frequency and intensity components of auditory feedback on motor outputs in a constant finger-force production task. The hierarchical variability decomposition model previously developed was used to decompose motor performance into mathematically independent components each of which quantifies a distinct motor behavior such as consistency, repeatability, systematic error, within-trial synergy, or between-trial synergy. We hypothesized that feedback on two components of sound as a function of motor performance (frequency and intensity) would improve motor performance and multi-finger synergy compared to feedback on just one component (frequency or intensity). Subjects were instructed to match the reference force of 18 N with the sum of all finger forces (virtual finger or VF force) while listening to auditory feedback of their accuracy. Three experimental conditions were used: (i) condition F, where frequency changed; (ii) condition I, where intensity changed; (iii) condition FI, where both frequency and intensity changed. Motor performance was enhanced for the FI conditions as compared to either the F or I condition alone. The enhancement of motor performance was achieved mainly by the improved consistency and repeatability. However, the systematic error remained unchanged across conditions. Within- and between-trial synergies were also improved for the FI condition as compared to either the F or I condition alone. However, variability of individual finger forces for the FI condition was not significantly

  16. Dual-Task Interference during Initial Learning of a New Motor Task Results from Competition for the Same Brain Areas

    ERIC Educational Resources Information Center

    Remy, Florence; Wenderoth, Nicole; Lipkens, Karen; Swinnen, Stephan P.

    2010-01-01

    Cerebral patterns of activity elicited by dual-task performance throughout the learning of a complex bimanual coordination pattern were addressed. Subjects (N = 12) were trained on the coordination pattern and scanned using fMRI at early (PRE) and late (POST) learning stages. During scanning, the coordination pattern was performed either as a…

  17. Bilateral motor tasks involve more brain regions and higher neural activation than unilateral tasks: an fMRI study

    PubMed Central

    Noble, Jeremy W.; Eng, Janice J.; Boyd, Lara A.

    2015-01-01

    Movements that involve simultaneous coordination of muscles of the right and left lower limbs form a large part of our daily activities (e.g., standing, rising from a chair). This study used functional magnetic resonance imaging (fMRI) to determine which brain areas are used to control coordinated lower limb movements, specifically comparing regions that are activated during bilateral exertions to those performed unilaterally. Plantarflexor exertions were produced at a target force level of 15% of the participants’ maximum voluntary contraction, in three conditions, with their right (dominant) foot, with their left foot and with both feet simultaneously. A voxel-wise analysis determined which regions were active in the bilateral, but not in the unilateral conditions. In addition, a regions of interest (ROI) approach was used to determine differences in the percent signal change (PSC) between the conditions within motor areas. The voxel-wise analysis showed a large number of regions (cortical, subcortical and cerebellar) that were active during the bilateral condition, but not during either unilateral condition. The ROI analysis showed several motor regions with higher activation in the bilateral condition than unilateral conditions; further, the magnitude of bilateral PSC was more than the sum of the two unilateral conditions in several of these regions. We postulate that the greater levels of activation during bilateral exertions may arise from interhemispheric inhibition, as well as from the greater need for motor coordination (e.g., synchronizing the two limbs to activate together) and visual processing (e.g., monitoring of two visual stimuli). PMID:24770862

  18. Walking in School-Aged Children in a Dual-Task Paradigm Is Related to Age But Not to Cognition, Motor Behavior, Injuries, or Psychosocial Functioning

    PubMed Central

    Hagmann-von Arx, Priska; Manicolo, Olivia; Lemola, Sakari; Grob, Alexander

    2016-01-01

    Age-dependent gait characteristics and associations with cognition, motor behavior, injuries, and psychosocial functioning were investigated in 138 typically developing children aged 6.7–13.2 years (M = 10.0 years). Gait velocity, normalized velocity, and variability were measured using the walkway system GAITRite without an additional task (single task) and while performing a motor or cognitive task (dual task). Assessment of children’s cognition included tests for intelligence and executive functions; parents reported on their child’s motor behavior, injuries, and psychosocial functioning. Gait variability (an index of gait regularity) decreased with increasing age in both single- and dual-task walking. Dual-task gait decrements were stronger when children walked in the motor compared to the cognitive dual-task condition and decreased with increasing age in both dual-task conditions. Gait alterations from single- to dual-task conditions were not related to children’s cognition, motor behavior, injuries, or psychosocial functioning. PMID:27014158

  19. Differences in Motor Imagery Time when Predicting Task Duration in Alpine Skiers and Equestrian Riders

    ERIC Educational Resources Information Center

    Louis, Magali; Collet, Christian; Champely, Stephane; Guillot, Aymeric

    2012-01-01

    Athletes' ability to use motor imagery (MI) to predict the speed at which they could perform a motor sequence has received little attention. In this study, 21 alpine skiers and 16 equestrian riders performed MI based on a prediction of actual performance time (a) after the course inspection, (b) before the start, and (c) after the actual…

  20. Variation in U.S. Traffic Safety Policy Environments and Motor Vehicle Fatalities 1980–2010

    PubMed Central

    Silver, Diana; Macinko, James; Bae, Jin Yung; Jimenez, Geronimo; Paul, Maggie

    2013-01-01

    Objective To examine the impact of variation in state laws governing traffic safety on motor vehicle fatalities. Study Design Repeated cross sectional time series design. Methods Fixed effects regression models estimate the relationship between state motor vehicle fatality rates and the strength of the state law environment for 50 states, 1980–2010. The strength of the state policy environment is measured by calculating the proportion of a set of 27 evidence-based laws in place each year. The effect of alcohol consumption on motor vehicle fatalities is estimated using a subset of alcohol laws as instrumental variables. Results Once other risk factors are controlled in statistical models, states with stronger regulation of safer driving and driver/passenger protections had significantly lower motor vehicle fatality rates for all ages. Alcohol consumption was strongly associated with higher MVC death rates, as were state unemployment rates. Conclusions Encouraging laggard states to adopt the full range of available laws could significantly reduce preventable traffic-related deaths in the U.S. – especially those among younger individuals. Estimating the relationship between different policy environments and health outcomes can quantify the result of policy gaps. PMID:24275035

  1. Non-physical practice improves task performance in an unstable, perturbed environment: motor imagery and observational balance training

    PubMed Central

    Taube, Wolfgang; Lorch, Michael; Zeiter, Sibylle; Keller, Martin

    2014-01-01

    For consciously performed motor tasks executed in a defined and constant way, both motor imagery (MI) and action observation (AO) have been shown to promote motor learning. It is not known whether these forms of non-physical training also improve motor actions when these actions have to be variably applied in an unstable and unpredictable environment. The present study therefore investigated the influence of MI balance training (MI_BT) and a balance training combining AO and MI (AO+MI_BT) on postural control of undisturbed and disturbed upright stance on unstable ground. As spinal reflex excitability after classical (i.e., physical) balance training (BT) is generally decreased, we tested whether non-physical BT also has an impact on spinal reflex circuits. Thirty-six participants were randomly allocated into an MI_BT group, in which participants imagined postural exercises, an AO+MI_BT group, in which participants observed videos of other people performing balance exercises and imagined being the person in the video, and a non-active control group (CON). Before and after 4 weeks of non-physical training, balance performance was assessed on a free-moving platform during stance without perturbation and during perturbed stance. Soleus H-reflexes were recorded during stable and unstable stance. The post-measurement revealed significantly decreased postural sway during undisturbed and disturbed stance after both MI_BT and AO+MI_BT. Spinal reflex excitability remained unchanged. This is the first study showing that non-physical training (MI_BT and AO+MI_BT) not only promotes motor learning of “rigid” postural tasks but also improves performance of highly variable and unpredictable balance actions. These findings may be relevant to improve postural control and thus reduce the risk of falls in temporarily immobilized patients. PMID:25538598

  2. The primary motor cortex is associated with learning the absolute, but not relative, timing dimension of a task: A tDCS study.

    PubMed

    Apolinário-Souza, Tércio; Romano-Silva, Marco Aurélio; de Miranda, Débora Marques; Malloy-Diniz, Leandro Fernandes; Benda, Rodolfo Novellino; Ugrinowitsch, Herbert; Lage, Guilherme Menezes

    2016-06-01

    The functional role of the primary motor cortex (M1) in the production of movement parameters, such as length, direction and force, is well known; however, whether M1 is associated with the parametric adjustments in the absolute timing dimension of the task remains unknown. Previous studies have not applied tasks and analyses that could separate the absolute (variant) and relative (invariant) dimensions. We applied transcranial direct current stimulation (tDCS) to M1 before motor practice to facilitate motor learning. A sequential key-pressing task was practiced with two goals: learning the relative timing dimension and learning the absolute timing dimension. All effects of the stimulation of M1 were observed only in the absolute dimension of the task. Mainly, the stimulation was associated with better performance in the transfer test in the absolute dimension. Taken together, our results indicate that M1 is an important area for learning the absolute timing dimension of a motor sequence. PMID:27018089

  3. Increased topographical variability of task-related activation in perceptive and motor associative regions in adult autistics

    PubMed Central

    Poulin-Lord, Marie-Pier; Barbeau, Elise B.; Soulières, Isabelle; Monchi, Oury; Doyon, Julien; Benali, Habib; Mottron, Laurent

    2014-01-01

    Background An enhanced plasticity is suspected to play a role in various microstructural alterations, as well as in regional cortical reallocations observed in autism. Combined with multiple indications of enhanced perceptual functioning in autism, and indications of atypical motor functioning, enhanced plasticity predicts a superior variability in functional cortical allocation, predominant in perceptual and motor regions. Method To test this prediction, we scanned 23 autistics and 22 typical participants matched on age, FSIQ, Raven percentile scores and handedness during a visuo-motor imitation task. For each participant, the coordinates of the strongest task-related activation peak were extracted in the primary (Brodmann area 4) and supplementary (BA 6) motor cortex, the visuomotor superior parietal cortex (BA 7), and the primary (BA 17) and associative (BAs 18 + 19) visual areas. Mean signal changes for each ROI in both hemispheres, and the number of voxels composing the strongest activation cluster were individually extracted to compare intensity and size of the signal between groups. For each ROI, in each hemisphere, and for every participant, the distance from their respective group average was used as a variable of interest to determine group differences in localization variability using repeated measures ANOVAs. Between-group comparison of whole-brain activation was also performed. Results Both groups displayed a higher mean variability in the localization of activations in the associative areas compared to the primary visual or motor areas. However, despite this shared increased variability in associative cortices, a direct between-group comparison of the individual variability in localization of the activation revealed a significantly greater variability in the autistic group than in the typical group in the left visuo-motor superior parietal cortex (BA 7) and in the left associative visual areas (BAs 18 + 19). Conclusion Different and possibly

  4. Method for On-line Estimation of Electrical Motor Parameter Variation and Current Sensor Offset for SPM Motor

    NASA Astrophysics Data System (ADS)

    Uenaka, Yutaro; Sazawa, Masaki; Ohishi, Kiyoshi; Kenji, Takahashi

    The servo system of a permanent magnet (PM) motor should always maintain fine torque and fine speed responses. Accurate motor parameter identification is necessary for the PM motor servo system because the current control system is designed by considering the electric parameters of the PM motor. However, the motor parameters vary with the age of the motor and temperature. Moreover, current sensors have offset values. When the current sensor has offset values, the PM motor servo system produces torque ripple. In order to overcome these problems, this paper proposes a new real-time estimation method for both current sensor offsets and electrical parameters (resistance Ra, inductance La, and magnetic flux φfa) of the surface permanent magnet (SPM) motor. The proposed method involves the use of a real-time algorithm and a current simulator, which is operated using a DSP software system. In order to accurately estimate the motor parametera, the proposed method is using estimate currents, DC terms of sensor currents, and nominal motor parameter value. The experimental results of this study confirm that the proposed method satisfactorily estimates the current sensor offset of the U phase and V phase, as well as the electrical motor parametersRa, La, and φfa accurately.

  5. Potential Predictors of Changes in Gross Motor Function during Various Tasks for Children with Cerebral Palsy: A Follow-Up Study

    ERIC Educational Resources Information Center

    Chen, Chia-ling; Chen, Chung-yao; Chen, Hsieh-ching; Liu, Wen-yu; Shen, I-hsuan; Lin, Keh-chung

    2013-01-01

    Very few studies have investigated predictors of change in various gross motor outcomes in ambulatory children with cerebral palsy (CP). The aim of this study was to identify potential predictors for change in gross motor outcomes measured during various tasks in children with CP. A group of 45 children (age, 6-15 years) with CP and 7 potential…

  6. Shoulder motor performance assessment in the sagittal plane in children with hemiplegia during single joint pointing tasks

    PubMed Central

    2014-01-01

    Background Pointing is a motor task extensively used during daily life activities and it requires complex visuo-motor transformation to select the appropriate movement strategy. The study of invariant characteristics of human movements has led to several theories on how the brain solves the redundancy problem, but the application of these theories on children affected by hemiplegia is limited. This study aims at giving a quantitative assessment of the shoulder motor behaviour in children with hemiplegia during pointing tasks. Methods Eight children with hemiplegia were involved in the study and were asked to perform movements on the sagittal plane with both arms, at low and high speed. Subject movements were recorded using an optoelectronic system; a 4-DOF model of children arm has been developed to calculate kinematic and dynamic variables. A set of evaluation indexes has been extracted in order to quantitatively assess whether and how children modify their motor control strategies when perform movements with the more affected or less affected arm. Results In low speed movements, no differences can be seen in terms of movement duration and peak velocity between the More Affected arm (MA) and the Less Affected arm (LA), as well as in the main characteristics of movement kinematics and dynamics. As regards fast movements, remarkable differences in terms of strategies of motor control can be observed: while movements with LA did not show any significant difference in Dimensionless Jerk Index (JI) and Dimensionless Torque-change Cost index (TC) between the elevation and lowering phases, suggesting that motor control optimization is similar for movements performed with or against gravity, movements with MA showed a statistically significant increase of both JI and TC during lowering phase. Conclusions Results suggest the presence of a different control strategy for fast movements in particular during lowering phase. Results suggest that motor control is not able to

  7. Lateralization of cervical spinal cord activity during an isometric upper extremity motor task with functional magnetic resonance imaging.

    PubMed

    Weber, Kenneth A; Chen, Yufen; Wang, Xue; Kahnt, Thorsten; Parrish, Todd B

    2016-01-15

    The purpose of this study was to use an isometric upper extremity motor task to detect activity induced blood oxygen level dependent signal changes in the cervical spinal cord with functional magnetic resonance imaging. Eleven healthy volunteers performed six 5minute runs of an alternating left- and right-sided isometric wrist flexion task, during which images of the cervical spinal cord were acquired with a reduced field-of-view T2*-weighted gradient-echo echo-planar-imaging sequence. Spatial normalization to a standard spinal cord template was performed, and group average activation maps were generated in a mixed-effects analysis. The task activity significantly exceeded that of the control analyses. The activity was lateralized to the hemicord ipsilateral to the task and reliable across the runs at the group and subject level. Finally, a multi-voxel pattern analysis was able to successfully decode the left and right tasks at the C6 and C7 vertebral levels. PMID:26488256

  8. Caspr3-Deficient Mice Exhibit Low Motor Learning during the Early Phase of the Accelerated Rotarod Task

    PubMed Central

    Hirata, Haruna; Takahashi, Aki; Shimoda, Yasushi; Koide, Tsuyoshi

    2016-01-01

    Caspr3 (Contactin-associated protein-like 3, Cntnap3) is a neural cell adhesion molecule belonging to the Caspr family. We have recently shown that Caspr3 is expressed abundantly between the first and second postnatal weeks in the mouse basal ganglia, including the striatum, external segment of the globus pallidus, subthalamic nucleus, and substantia nigra. However, its physiological role remains largely unknown. In this study, we conducted a series of behavioral analyses on Capsr3-knockout (KO) mice and equivalent wild-type (WT) mice to investigate the role of Caspr3 in brain function. No significant differences were observed in most behavioral traits between Caspr3-KO and WT mice, but we found that Caspr3-KO mice performed poorly during the early phase of the accelerated rotarod task in which latency to falling off a rod rotating with increasing velocity was examined. In the late phase, the performance of the Caspr3-KO mice caught up to the level of WT mice, suggesting that the deletion of Caspr3 caused a delay in motor learning. We then examined changes in neural activity after training on the accelerated rotarod by conducting immunohistochemistry using antibody to c-Fos, an indirect marker for neuronal activity. Experience of the accelerated rotarod task caused increases in the number of c-Fos-positive cells in the dorsal striatum, cerebellum, and motor cortex in both Caspr3-KO and WT mice, but the number of c-Fos-positive cells was significantly lower in the dorsal striatum of Caspr3-KO mice than in that of WT mice. The expression of c-Fos in the ventral striatum of Caspr3-KO and WT mice was not altered by the training. Our findings suggest that reduced activation of neural cells in the dorsal striatum in Caspr3-KO mice leads to a decline in motor learning in the accelerated rotarod task. PMID:26807827

  9. Caspr3-Deficient Mice Exhibit Low Motor Learning during the Early Phase of the Accelerated Rotarod Task.

    PubMed

    Hirata, Haruna; Takahashi, Aki; Shimoda, Yasushi; Koide, Tsuyoshi

    2016-01-01

    Caspr3 (Contactin-associated protein-like 3, Cntnap3) is a neural cell adhesion molecule belonging to the Caspr family. We have recently shown that Caspr3 is expressed abundantly between the first and second postnatal weeks in the mouse basal ganglia, including the striatum, external segment of the globus pallidus, subthalamic nucleus, and substantia nigra. However, its physiological role remains largely unknown. In this study, we conducted a series of behavioral analyses on Capsr3-knockout (KO) mice and equivalent wild-type (WT) mice to investigate the role of Caspr3 in brain function. No significant differences were observed in most behavioral traits between Caspr3-KO and WT mice, but we found that Caspr3-KO mice performed poorly during the early phase of the accelerated rotarod task in which latency to falling off a rod rotating with increasing velocity was examined. In the late phase, the performance of the Caspr3-KO mice caught up to the level of WT mice, suggesting that the deletion of Caspr3 caused a delay in motor learning. We then examined changes in neural activity after training on the accelerated rotarod by conducting immunohistochemistry using antibody to c-Fos, an indirect marker for neuronal activity. Experience of the accelerated rotarod task caused increases in the number of c-Fos-positive cells in the dorsal striatum, cerebellum, and motor cortex in both Caspr3-KO and WT mice, but the number of c-Fos-positive cells was significantly lower in the dorsal striatum of Caspr3-KO mice than in that of WT mice. The expression of c-Fos in the ventral striatum of Caspr3-KO and WT mice was not altered by the training. Our findings suggest that reduced activation of neural cells in the dorsal striatum in Caspr3-KO mice leads to a decline in motor learning in the accelerated rotarod task. PMID:26807827

  10. Bursts of beta oscillation differentiate postperformance activity in the striatum and motor cortex of monkeys performing movement tasks

    PubMed Central

    Feingold, Joseph; Gibson, Daniel J.; DePasquale, Brian; Graybiel, Ann M.

    2015-01-01

    Studies of neural oscillations in the beta band (13–30 Hz) have demonstrated modulations in beta-band power associated with sensory and motor events on time scales of 1 s or more, and have shown that these are exaggerated in Parkinson’s disease. However, even early reports of beta activity noted extremely fleeting episodes of beta-band oscillation lasting <150 ms. Because the interpretation of possible functions for beta-band oscillations depends strongly on the time scale over which they occur, and because of these oscillations’ potential importance in Parkinson’s disease and related disorders, we analyzed in detail the distributions of duration and power for beta-band activity in a large dataset recorded in the striatum and motor-premotor cortex of macaque monkeys performing reaching tasks. Both regions exhibited typical beta-band suppression during movement and postmovement rebounds of up to 3 s as viewed in data averaged across trials, but single-trial analysis showed that most beta oscillations occurred in brief bursts, commonly 90–115 ms long. In the motor cortex, the burst probabilities peaked following the last movement, but in the striatum, the burst probabilities peaked at task end, after reward, and continued through the postperformance period. Thus, what appear to be extended periods of postperformance beta-band synchronization reflect primarily the modulated densities of short bursts of synchrony occurring in region-specific and task-time-specific patterns. We suggest that these short-time-scale events likely underlie the functions of most beta-band activity, so that prolongation of these beta episodes, as observed in Parkinson’s disease, could produce deleterious network-level signaling. PMID:26460033

  11. Teaching a High-Avoidance Motor Task to a Retarded Child through Participant Modeling.

    ERIC Educational Resources Information Center

    Feltz, Deborah L.

    1980-01-01

    The study investigated the effectiveness of participant modeling as a technique for teaching an educable mentally retarded 12-year-old a task that was considered high in avoidance (a modified forward dive). Participant modeling with self-directed performance at each step was successful in teaching the student a high avoidance diving task. (SBH)

  12. Motor Cortical Correlates of Arm Resting in the Context of a Reaching Task and Implications for Prosthetic Control

    PubMed Central

    Kennedy, Scott D.; Schwartz, Andrew B.; Whitford, Andrew S.; Sohn, Jeong-Woo; McMorland, Angus J.C.

    2014-01-01

    Prosthetic devices are being developed to restore movement for motor-impaired individuals. A robotic arm can be controlled based on models that relate motor-cortical ensemble activity to kinematic parameters. The models are typically built and validated on data from structured trial periods during which a subject actively performs specific movements, but real-world prosthetic devices will need to operate correctly during rest periods as well. To develop a model of motor cortical modulation during rest, we trained monkeys (Macaca mulatta) to perform a reaching task with their own arm while recording motor-cortical single-unit activity. When a monkey spontaneously put its arm down to rest between trials, our traditional movement decoder produced a nonzero velocity prediction, which would cause undesired motion when applied to a prosthetic arm. During these rest periods, a marked shift was found in individual units' tuning functions. The activity pattern of the whole population during rest (Idle state) was highly distinct from that during reaching movements (Active state), allowing us to predict arm resting from instantaneous firing rates with 98% accuracy using a simple classifier. By cascading this state classifier and the movement decoder, we were able to predict zero velocity correctly, which would avoid undesired motion in a prosthetic application. Interestingly, firing rates during hold periods followed the Active pattern even though hold kinematics were similar to those during rest with near-zero velocity. These findings expand our concept of motor-cortical function by showing that population activity reflects behavioral context in addition to the direct parameters of the movement itself. PMID:24760860

  13. Fine and Gross Motor Task Performance When Using Computer-Based Video Models by Students with Autism and Moderate Intellectual Disability

    ERIC Educational Resources Information Center

    Mechling, Linda C.; Swindle, Catherine O.

    2013-01-01

    This investigation examined the effects of video modeling on the fine and gross motor task performance by three students with a diagnosis of moderate intellectual disability (Group 1) and by three students with a diagnosis of autism spectrum disorder (Group 2). Using a multiple probe design across three sets of tasks, the study examined the…

  14. The human motor system alters its reaching movement plan for task-irrelevant, positional forces

    PubMed Central

    Cashaback, Joshua G. A.; McGregor, Heather R.

    2015-01-01

    The minimum intervention principle and the uncontrolled manifold hypothesis state that our nervous system only responds to force perturbations and sensorimotor noise if they affect task success. This idea has been tested in muscle and joint coordinate frames and more recently using workspace redundancy (e.g., reaching to large targets). However, reaching studies typically involve spatial and or temporal constraints. Constrained reaches represent a small proportion of movements we perform daily and may limit the emergence of natural behavior. Using more relaxed constraints, we conducted two reaching experiments to test the hypothesis that humans respond to task-relevant forces and ignore task-irrelevant forces. We found that participants responded to both task-relevant and -irrelevant forces. Interestingly, participants experiencing a task-irrelevant force, which simply pushed them into a different area of a large target and had no bearing on task success, changed their movement trajectory prior to being perturbed. These movement trajectory changes did not counteract the task-irrelevant perturbations, as shown in previous research, but rather were made into new areas of the workspace. A possible explanation for this behavior change is that participants were engaging in active exploration. Our data have implications for current models and theories on the control of biological motion. PMID:25589594

  15. The human motor system alters its reaching movement plan for task-irrelevant, positional forces.

    PubMed

    Cashaback, Joshua G A; McGregor, Heather R; Gribble, Paul L

    2015-04-01

    The minimum intervention principle and the uncontrolled manifold hypothesis state that our nervous system only responds to force perturbations and sensorimotor noise if they affect task success. This idea has been tested in muscle and joint coordinate frames and more recently using workspace redundancy (e.g., reaching to large targets). However, reaching studies typically involve spatial and or temporal constraints. Constrained reaches represent a small proportion of movements we perform daily and may limit the emergence of natural behavior. Using more relaxed constraints, we conducted two reaching experiments to test the hypothesis that humans respond to task-relevant forces and ignore task-irrelevant forces. We found that participants responded to both task-relevant and -irrelevant forces. Interestingly, participants experiencing a task-irrelevant force, which simply pushed them into a different area of a large target and had no bearing on task success, changed their movement trajectory prior to being perturbed. These movement trajectory changes did not counteract the task-irrelevant perturbations, as shown in previous research, but rather were made into new areas of the workspace. A possible explanation for this behavior change is that participants were engaging in active exploration. Our data have implications for current models and theories on the control of biological motion. PMID:25589594

  16. Effect of loudness on reaction time and response force in different motor tasks.

    PubMed

    Jaśkowski, Piotr; Włodarczyk, Dariusz

    2005-12-01

    Van der Molen and Keuss, in 1979 and 1981, showed that paradoxically long reaction times occur with extremely strong auditory stimuli when the task is difficult, e.g., choice-by-location or Simon paradigm. It was argued that this paradoxical behavior of RT is due to active inhibition of an arousal-dependent bypassing mechanism to prevent false responses. As the peak force, i.e., maximal force exerted by participants on a response key, is considered to be related to immediate arousal, we predicted that for extremely loud stimuli and for difficult tasks, lengthening of RT should be associated with reduction of peak force. Moreover, these effects should be enhanced when emphasis is on accuracy rather than speed. Although the relation between RT and intensity depended on task difficulty, no increase in RT was found for the loudest tones. Moreover, peak force increased monotonically with loudness, showing no tendency to be suppressed for loudest tones and difficult tasks. PMID:16491701

  17. How within-group behavioural variation and task efficiency enhance fitness in a social group

    PubMed Central

    Pruitt, Jonathan N.; Riechert, Susan E.

    2011-01-01

    How task specialization, individual task performance and within-group behavioural variation affects fitness is a longstanding and unresolved problem in our understanding of animal societies. In the temperate social spider, Anelosimus studiosus, colony members exhibit a behavioural polymorphism; females either exhibit an aggressive ‘asocial’ or docile ‘social’ phenotype. We assessed individual prey-capture success for both phenotypes, and the role of phenotypic composition on group-level prey-capture success for three prey size classes. We then estimated the effect of group phenotypic composition on fitness in a common garden, as inferred from individual egg-case masses. On average, asocial females were more successful than social females at capturing large prey, and colony-level prey-capture success was positively associated with the frequency of the asocial phenotype. Asocial colony members were also more likely to engage in prey-capture behaviour in group-foraging situations. Interestingly, our fitness estimates indicate females of both phenotypes experience increased fitness when occupying colonies containing unlike individuals. These results imply a reciprocal fitness benefit of within-colony behavioural variation, and perhaps division of labour in a spider society. PMID:20943687

  18. Stereotype threat and lift effects in motor task performance: the mediating role of somatic and cognitive anxiety.

    PubMed

    Laurin, Raphael

    2013-01-01

    The aim of this investigation was to replicate the stereotype threat and lift effects in a motor task in a neutral sex-typed activity, using somatic and cognitive anxiety as key mediators of these phenomena. It was hypothesized that an ingroup/outgroup social categorization based on gender would have distinctive effects for female and male participants. A total of 161 French physical education students were randomly assigned to three threat conditions--no threat, female threat, and male threat--thus leading to a 3 x 2 (threat by gender) design. The analyses revealed a stereotype lift effect on the performances for both male and female participants, as well as a stereotype threat effect only for female participants. They also indicated that somatic anxiety had a mediating effect on the performance of female participants targeted by a negative stereotype, but that it had a facilitating effect on their performance. The stereotype threat and lift effects on motor tasks were replicated in a neutral sex-typed activity and somatic anxiety seems to have a facilitating mediating effect of the relationships between the gender-conditions (control or female threat) interaction and free-throw performance. The model used to distinguish somatic and cognitive anxiety appeared to be a relevant means of explaining the stereotype threat and lift mechanisms. PMID:24236380

  19. An analysis of the processing requirements of a complex perceptual-motor task

    NASA Technical Reports Server (NTRS)

    Kramer, A. F.; Wickens, C. D.; Donchin, E.

    1983-01-01

    Current concerns in the assessment of mental workload are discussed, and the event-related brain potential (ERP) is introduced as a promising mental-workload index. Subjects participated in a series of studies in which they were required to perform a target acquisition task while also covertly counting either auditory or visual probes. The effects of several task-difficulty manipulations on the P300 component of the ERP elicited by the counted stimulus probes were investigated. With sufficiently practiced subjects the amplitude of the P300 was found to decrease with increases in task difficulty. The second experiment also provided evidence that the P300 is selectively sensitive to task-relevant attributes. A third experiment demonstrated a convergence in the amplitude of the P300s elicited in the simple and difficult versions of the tracking task. The amplitude of the P300 was also found to covary with the measures of tracking performance. The results of the series of three experiments illustrate the sensitivity of the P300 to the processing requirements of a complex target acquisition task. The findings are discussed in terms of the multidimensional nature of processing resources.

  20. A novel calibration and task guidance framework for motor imagery BCI via a tendon vibration induced sensation with kinesthesia illusion

    NASA Astrophysics Data System (ADS)

    Yao, Lin; Meng, Jianjun; Sheng, Xinjun; Zhang, Dingguo; Zhu, Xiangyang

    2015-02-01

    Objective. Lack of efficient calibration and task guidance in motor imagery (MI) based brain-computer interface (BCI) would result in the failure of communication or control, especially in patients, such as a stroke with motor impairment and intact sensation, locked-in state amyotrophic lateral sclerosis, in which the sources of data for calibration may worsen the subsequent decoding. In addition, enhancing the proprioceptive experience in MI might improve the BCI performance. Approach. In this work, we propose a new calibrating and task guidance methodology to further improve the MI BCI, exploiting the afferent nerve system through tendon vibration stimulation to induce a sensation with kinesthesia illusion. A total of 30 subjects’ experiments were carried out, and randomly divided into a control group (control-group) and calibration and task guidance group (CTG-group). Main results. Online experiments have shown that MI could be decoded by classifier calibrated solely using sensation data, with 8 of the 15 subjects in the CTG-Group above 80%, 3 above 95% and all above 65%. Offline chronological cross-validation analysis shows that it has reached a comparable performance with the traditional calibration method (F(1,14)=0.14,P=0.7176). In addition, the discrimination accuracy of MI in the CTG-Group is significantly 12.17% higher on average than that in the control-group (unpaired-T test, P = 0.0086), and illusory sensation indicates no significant difference (unpaired-T test, p = 0.3412). The finding of the existed similarity of the discriminative brain patterns and grand averaged ERD/ERS between imagined movement (actively induced) and illusory movement (passively evoked) also validates the proposed calibration and task guidance framework. Significance. The cognitive complexity of the illusory sensation task is much lower and more objective than that of MI. In addition, subjects’ kinesthetic experience mentally simulated during the MI task might be enhanced by

  1. Effects of cognitive function on gait and dual tasking abilities in patients with Parkinson's disease suffering from motor response fluctuations.

    PubMed

    Plotnik, Meir; Dagan, Yaacov; Gurevich, Tanya; Giladi, Nir; Hausdorff, Jeffrey M

    2011-01-01

    Recent studies have demonstrated that cognitive loading aggravates the gait impairments that are typically seen in Parkinson's disease (PD). To better understand the relationship between cognition and gait in PD, we evaluated 30 subjects with PD who suffer from motor response fluctuations. The subjects were clinically and cognitively assessed using standard clinical (e.g., Unified Parkinson's Disease Rating Scale) and cognitive tests while in the "ON" period of the medication cycle. In addition, the subjects wore force-sensitive insoles to quantify the timing of the gait cycles during 80-m walks at a self-selected, comfortable pace during three randomly presented gait conditions: (1) usual-walking, (2) dual tasking (DT), performing serial 3 subtractions (DT_S3), and (3) DT_S7. Stride length, gait speed, gait variability and bilateral coordination of gait were affected by DT, compared to the usual-walking (P < 0.001) as was gait asymmetry (P = 0.024). Stepwise regression analyses showed that a subset of the cognitive performance scores accounted for the changes seen in the gait parameters during DT, e.g., set shifting capabilities as expressed by the Trial Making Test Scores (P < 0.001). Affect (e.g., anxiety) was not associated with DT-related gait changes. For most gait features, DT had a large impact on the DT_S3 condition with only minimal additional effect in the DT_S7 condition. These results demonstrate that the complex cognitive-motor interplay in the control of gait in patients with PD who suffer from motor response fluctuations has a profound and marked effect during DT conditions on gait variability, asymmetry and bilateral coordination, even in the "ON" state when patients are likely to be most active, mobile and vulnerable to the negative effects of dual tasking. PMID:21063692

  2. Reconciling the influence of task-set switching and motor inhibition processes on stop signal after-effects

    PubMed Central

    Anguera, Joaquin A.; Lyman, Kyle; Zanto, Theodore P.; Bollinger, Jacob; Gazzaley, Adam

    2013-01-01

    Executive response functions can be affected by preceding events, even if they are no longer associated with the current task at hand. For example, studies utilizing the stop signal task have reported slower response times to “GO” stimuli when the preceding trial involved the presentation of a “STOP” signal. However, the neural mechanisms that underlie this behavioral after-effect are unclear. To address this, behavioral and electroencephalography (EEG) measures were examined in 18 young adults (18–30 years) on “GO” trials following a previously “Successful Inhibition” trial (pSI), a previously “Failed Inhibition” trial (pFI), and a previous “GO” trial (pGO). Like previous research, slower response times were observed during both pSI and pFI trials (i.e., “GO” trials that were preceded by a successful and unsuccessful inhibition trial, respectively) compared to pGO trials (i.e., “GO” trials that were preceded by another “GO” trial). Interestingly, response time slowing was greater during pSI trials compared to pFI trials, suggesting executive control is influenced by both task set switching and persisting motor inhibition processes. Follow-up behavioral analyses indicated that these effects resulted from between-trial control adjustments rather than repetition priming effects. Analyses of inter-electrode coherence (IEC) and inter-trial coherence (ITC) indicated that both pSI and pFI trials showed greater phase synchrony during the inter-trial interval compared to pGO trials. Unlike the IEC findings, differential ITC was present within the beta and alpha frequency bands in line with the observed behavior (pSI > pFI > pGO), suggestive of more consistent phase synchrony involving motor inhibition processes during the ITI at a regional level. These findings suggest that between-trial control adjustments involved with task-set switching and motor inhibition processes influence subsequent performance, providing new insights into the

  3. Engaging Environments Enhance Motor Skill Learning in a Computer Gaming Task.

    PubMed

    Lohse, Keith R; Boyd, Lara A; Hodges, Nicola J

    2016-01-01

    Engagement during practice can motivate a learner to practice more, hence having indirect effects on learning through increased practice. However, it is not known whether engagement can also have a direct effect on learning when the amount of practice is held constant. To address this question, 40 participants played a video game that contained an embedded repeated sequence component, under either highly engaging conditions (the game group) or mechanically identical but less engaging conditions (the sterile group). The game environment facilitated retention over a 1-week interval. Specifically, the game group improved in both speed and accuracy for random and repeated trials, suggesting a general motor-related improvement, rather than a specific influence of engagement on implicit sequence learning. These data provide initial evidence that increased engagement during practice has a direct effect on generalized learning, improving retention and transfer of a complex motor skill. PMID:26296097

  4. The effects of achievement goals on performance, enjoyment, and practice of a novel motor task.

    PubMed

    Kavussanu, Maria; Morris, Rebecca L; Ring, Christopher

    2009-10-01

    We examined the effects of trichotomous achievement goals on performance, enjoyment, and practice of a golf-putting task. Male (n = 39) and female (n = 63) undergraduate students participated in the experiment in exchange for course credit. Participants were assigned to a mastery, performance-approach, or performance-avoidance goal condition and completed seven blocks of 10 trials (one for baseline, four for the experimental phase, and two for the transfer phase) of a golf-putting task. Distance from the target was measured and performance measures of accuracy and consistency were calculated. Self-reported enjoyment during the baseline and experimental phases and practice during a 5-min period before and following the experimental task were also assessed. Performance accuracy and consistency improved similarly among the three groups. Individuals in all three conditions reported enjoying the task to the same extent. Mastery participants practiced for longer than performance-approach participants during the practice period. Performance-avoidance participants did not differ significantly from the other two groups. The three goals were equally effective in promoting performance and enjoyment of the golf-putting task. The differential practice results for the two performance goals suggest that they should be considered separately. PMID:19735037

  5. On the interference of task-irrelevant hue variation on texture segmentation.

    PubMed

    Pearson, P M; Kingdom, F A

    2001-01-01

    Although natural images often include discordant information about object boundaries, the majority of research on texture segmentation has involved variation along a single dimension, e.g. colour, orientation, size. In this study, we examined orientation-based texture segmentation in the presence and absence of task-irrelevant colour variation. Previously, it had been shown that orientation-based texture segmentation was impaired if the elements, normally of one colour, were randomly allocated one of two colours (Morgan et al, 1992 Proceedings of the Royal Society of London, Series B 248 291-295). We found that this interference disappeared, however, when the spatial pattern of the colour variation was regular, as opposed to random, and when the elements were randomly positioned. We consider four models of how relevant and irrelevant texture information might combine to produce the interference effect, with special regard to these new findings. None of the models could account for the dependency of the interference effect on the spatial arrangement of colour and orientation in the texture. We suggest that inter-element separation and spatial-frequency selectivity are critical variables in the interference effect. PMID:11430241

  6. The influence of unilateral contraction of hand muscles on the contralateral corticomuscular coherence during bimanual motor tasks.

    PubMed

    Zheng, Yang; Gao, Lin; Wang, Gang; Wang, Yingtuo; Yang, Zi; Wang, Xiuyue; Li, Tianqi; Dang, Chuan; Zhu, Ruohan; Wang, Jue

    2016-05-01

    The mechanisms behind how muscle contractions in one hand influence corticomuscular coherence in the opposite hand are still undetermined. Twenty-two subjects were recruited to finish bimanual and unimanual motor tasks. In the unimanual tasks, subjects performed precision grip using their right hand with visual feedback of exerted forces. The bimanual tasks involved simultaneous finger abduction of their left hand with visual feedback and precision grip of their right hand. They were divided into four conditions according to the two contraction levels of the left-hand muscles and whether visual feedback existed for the right hand. Measures of coherence and power spectrum were calculated from EEG and EMG data and statistically analyzed to identify changes in corticomuscular coupling and oscillatory activity. Results showed that compared with the unimanual task, a significant increase in the mean corticomuscular coherence of the right hand was found when left-hand muscles contracted at 5% of the maximal isometric voluntary contraction (MVC). No significant changes were found when the contraction level was 50% of the MVC. Furthermore, both the increase of muscle contraction levels and the elimination of visual feedback for right hand can significantly decrease the corticomuscular coupling in right hand during bimanual tasks. In summary, the involvement of moderate left-hand muscle contractions resulted in an increase tendency of corticomuscular coherence in right hand while strong left-hand muscle contractions eliminated it. We speculated that the perturbation of activities in one corticospinal tract resulted from the movement of the opposite hand can enhance the corticomuscular coupling when attention distraction is limited. PMID:27018484

  7. Evaluation of a modified Fitts law brain-computer interface target acquisition task in able and motor disabled individuals

    NASA Astrophysics Data System (ADS)

    Felton, E. A.; Radwin, R. G.; Wilson, J. A.; Williams, J. C.

    2009-10-01

    A brain-computer interface (BCI) is a communication system that takes recorded brain signals and translates them into real-time actions, in this case movement of a cursor on a computer screen. This work applied Fitts' law to the evaluation of performance on a target acquisition task during sensorimotor rhythm-based BCI training. Fitts' law, which has been used as a predictor of movement time in studies of human movement, was used here to determine the information transfer rate, which was based on target acquisition time and target difficulty. The information transfer rate was used to make comparisons between control modalities and subject groups on the same task. Data were analyzed from eight able-bodied and five motor disabled participants who wore an electrode cap that recorded and translated their electroencephalogram (EEG) signals into computer cursor movements. Direct comparisons were made between able-bodied and disabled subjects, and between EEG and joystick cursor control in able-bodied subjects. Fitts' law aptly described the relationship between movement time and index of difficulty for each task movement direction when evaluated separately and averaged together. This study showed that Fitts' law can be successfully applied to computer cursor movement controlled by neural signals.

  8. Evaluation of a modified Fitts law brain-computer interface target acquisition task in able and motor disabled individuals.

    PubMed

    Felton, E A; Radwin, R G; Wilson, J A; Williams, J C

    2009-10-01

    A brain-computer interface (BCI) is a communication system that takes recorded brain signals and translates them into real-time actions, in this case movement of a cursor on a computer screen. This work applied Fitts' law to the evaluation of performance on a target acquisition task during sensorimotor rhythm-based BCI training. Fitts' law, which has been used as a predictor of movement time in studies of human movement, was used here to determine the information transfer rate, which was based on target acquisition time and target difficulty. The information transfer rate was used to make comparisons between control modalities and subject groups on the same task. Data were analyzed from eight able-bodied and five motor disabled participants who wore an electrode cap that recorded and translated their electroencephalogram (EEG) signals into computer cursor movements. Direct comparisons were made between able-bodied and disabled subjects, and between EEG and joystick cursor control in able-bodied subjects. Fitts' law aptly described the relationship between movement time and index of difficulty for each task movement direction when evaluated separately and averaged together. This study showed that Fitts' law can be successfully applied to computer cursor movement controlled by neural signals. PMID:19700814

  9. Postural Sway and Motor Control in Trans-Tibial Amputees as Assessed by Electroencephalography during Eight Balance Training Tasks

    PubMed Central

    Petrofsky, Jerrold Scott; Khowailed, Iman Akef

    2014-01-01

    Background The purpose of this study was to investigate the changes in the Power Spectral Density (PSD) of the electroencephalogram (EEG) during 8 common sensorimotor balance training tasks of varying difficulty in single-limb trans-tibial amputees. Material/Methods Eight sensorimotor balance exercises, including alteration in vision, base of support, and surface compliance, were used to test postural control and how it related to the electroencephalogram (EEG). A control group was compared to a group of people with trans-tibial amputation of 1 leg to see how the brain responds to loss of a single limb during progressively harder balance testing. Postural sway and EEG changes of the alpha, beta, and sigma wave bands were measured in 20 participants (10 controls, 10 amputees) during 8 balance tasks of varying difficulty with eyes open and closed, feet in tandem or apart, and on a foam or a firm surface. Results The power of alpha, beta, and sigma bands increased significantly in most tests when comparing the amputees to the control subjects. Balance was significantly worse in the amputees even when standing on both legs. In amputees, balance required more cortical activity than in the controls. Conclusions This study demonstrated that amputees have considerably more difficulty in motor control for the brain during balance tasks. Balance was impaired even when standing feet apart on 2 legs and EEG showed more spectral power in all areas of the brain in the amputees. PMID:25515646

  10. Optimal Weighting of Costs and Probabilities in a Risky Motor Decision-Making Task Requires Experience

    ERIC Educational Resources Information Center

    Neyedli, Heather F.; Welsh, Timothy N.

    2013-01-01

    Previous research has revealed that people choose to aim toward an "optimal" endpoint when faced with a movement task with externally imposed payoffs. This optimal endpoint is modeled based on the magnitude of the payoffs and the probability of hitting the different payoff regions (endpoint variability). Endpoint selection, however, has only been…

  11. Response Inhibition in Motor and Oculomotor Conflict Tasks: Different Mechanisms, Different Dynamics?

    ERIC Educational Resources Information Center

    Wijnen, Jasper G.; Ridderinkhof, K. Richard

    2007-01-01

    Previous research has shown that the appearance of task-irrelevant abrupt onsets influences saccadic eye movements during visual search and may slow down manual reactions to target stimuli. Analysis of reaction time distributions in the present study offers evidence suggesting that top-down inhibition processes actively suppress oculomotor or…

  12. Robotic guidance induces long-lasting changes in the movement pattern of a novel sport-specific motor task.

    PubMed

    Kümmel, Jakob; Kramer, Andreas; Gruber, Markus

    2014-12-01

    Facilitating the learning or relearning of motor tasks is one of the main goals of coaches, teachers and therapists. One promising way to achieve this goal is guiding the learner through the correct movement trajectory with the help of a robotic device. The aim of this study was to investigate if haptic guidance can induce long-lasting changes in the movement pattern of a complex sport-specific motor task. For this purpose, 31 subjects were assigned to one of three groups: EA (early angle, n=10), LA (late angle, n=11) and CON (control, n=10). EA and LA successfully completed five training sessions, which consisted of 50 robot-guided golf swings and 10 free swings each, whereas CON had no training. The EA group was guided through the movement with the wrist being bent early during backswing, whereas in the LA group it was bent late. The participants of EA and LA were not told about this difference in the movement patterns. To assess if the robot-guided training was successful in shaping the movement pattern, the timing of the wrist bending during the backswing in free swings was measured before (PRE), one day after (POST), and 7 days after (FUP) the five training sessions. The ANOVA (time×group×angle) showed that during POST and FUP, the participants of the EA group bent their wrist significantly earlier during the backswing than the other groups. Post-hoc analyses revealed that this interaction effect was mainly due to the differences in the wrist angle progression during the first 5° of the backswing. The robot-guided training was successful in shaping the movement pattern, and these changes persisted even after 7 days without further practice. This might have implications for the learning of complex motor tasks in general, as haptic guidance might quickly provide the beginner with an internal model of the correct movement pattern without having to direct the learner's attention towards the key points of the correct movement pattern. PMID:25238621

  13. Motor Impulsivity during Childhood and Adolescence: A Longitudinal Biometric Analysis of the Go/No-Go Task in 9- to 18-Year-Old Twins

    ERIC Educational Resources Information Center

    Bezdjian, Serena; Tuvblad, Catherine; Wang, Pan; Raine, Adrian; Baker, Laura A.

    2014-01-01

    In the present study, we investigated genetic and environmental effects on motor impulsivity from childhood to late adolescence using a longitudinal sample of twins from ages 9 to 18 years. Motor impulsivity was assessed using errors of commission (no-go errors) in a visual go/no-go task at 4 time points: ages 9-10, 11-13, 14-15, and 16-18 years.…

  14. The ability of 6- to 8-year-old children to use motor imagery in a goal-directed pointing task.

    PubMed

    Spruijt, Steffie; van der Kamp, John; Steenbergen, Bert

    2015-11-01

    It has been suggested that motor imagery ability develops gradually between 5 and 12 years of age, but ambiguity remains over the precise developmental course before 9 years. Hence, we determined the age-related differences in the use of motor imagery by children on the mental chronometry paradigm. In addition, we examined whether the use of motor imagery is related to cognitive and hand abilities. To this end, we compared duration of actual pointing and imagined pointing on a radial Fitts' task in 82 children (three age groups; 6-, 7-, and 8-year-olds). In line with previous studies, we found an age-related increase in temporal congruence between actual and imagined pointing and compliance with Fitts' law. Importantly, however, we showed that only a limited number of 7- and 8-year-olds were actually using motor imagery to perform the imagined pointing task, whereas the 6-year-olds did not employ motor imagery to perform the task. The current results extend previous research by establishing that the age of onset to use motor imagery in the mental chronometry paradigm is not prior to 7 years. PMID:26163179

  15. Sit-to-walk Task in Hemiplegic Stroke Patients: Relationship between Movement Fluidity and the Motor Strategy in Initial Contact

    PubMed Central

    Osada, Yuji; Yamamoto, Sumiko; Fuchi, Masako; Ibayashi, Setsuro

    2015-01-01

    Purpose: Generally, stroke patients can walk and stand up fluidly but fulfill the sit-to-walk (STW) task with difficulty. The purpose of this study was to investigate the relationship between movement fluidity and motor strategy in the initial contact of the STW task. Method: Thirty stroke patients and ten healthy subjects performed the STW task from a sitting position, and their movement was measured by a motion analysis system. The differences in data between patients and healthy subjects were analyzed using the Mann-Whitney U test. The relationship between fluidity index (FI) and other indices (kinetic and kinematic data in STW, functional independence measure [FIM], and Fugl-Meyer Assessment [FMA]) were analyzed using Spearman's rank correlation coefficient. Results: The stroke patients had lower FI values than the healthy subjects and exhibited shortened step length and prolonged duration from onset to the first stance leg off. FI values correlated with trunk flexure angle at initial contact, first step length, and maximum vertical floor reaction force. The independent level of the FIM of stair climbing and walking ability and the FMA of balance also correlated with FI. Conclusion: There is a possibility that poor balance is one of the reasons why stroke patients are unable to start walking fluently from the sitting position. To perform the STW fluidly, patients must start walking before the trunk extension is fully completed. The relationship between FI and indices of physical ability, namely stair climbing and balance, may have therapeutic benefits for coaching the STW task to stroke patients. PMID:26733761

  16. Real-time tracking of motor response activation and response competition in a Stroop task in young children: a lateralized readiness potential study.

    PubMed

    Szucs, Dénes; Soltész, Fruzsina; Bryce, Donna; Whitebread, David

    2009-11-01

    The ability to select an appropriate motor response by resolving competition among alternative responses plays a major role in cognitive performance. fMRI studies suggest that the development of this skill is related to the maturation of the frontal cortex that underlies the improvement of motor inhibition abilities. However, fMRI cannot characterize the temporal properties of motor response competition and motor activation in general. We studied the development of the time course of resolving motor response competition. To this end, we used the lateralized readiness potential (LRP), an ERP measure, for tracking correct and incorrect motor cortex activation in children in real time. Fourteen children and 14 adults took part in an animal-size Stroop task where they selected between two animals, presented simultaneously on the computer screen, which was larger in real life. In the incongruent condition, the LRP detected stronger and longer lasting incorrect response activation in children than in adults. LRP results could explain behavioral congruency effects, the generally longer RT in children than in adults and the larger congruency effect in children than in adults. In contrast, the peak latency of ERP waves, usually associated with stimulus processing speed, could explain neither of the above effects. We conclude that the development of resolving motor response competition, relying on motor inhibition skills, is a crucial factor in child development. Our study demonstrates that the LRP is an excellent tool for studying motor activation in children. PMID:19296726

  17. Can short-term oral fine motor training affect precision of task performance and induce cortical plasticity of the jaw muscles?

    PubMed

    Zhang, Hong; Kumar, Abhishek; Kothari, Mohit; Luo, Xiaoping; Trulsson, Mats; Svensson, Krister G; Svensson, Peter

    2016-07-01

    The aim was to test the hypothesis that short-term oral sensorimotor training of the jaw muscles would increase the precision of task performance and induce neuroplastic changes in the corticomotor pathways, related to the masseter muscle. Fifteen healthy volunteers performed six series with ten trials of an oral sensorimotor task. The task was to manipulate and position a spherical chocolate candy in between the anterior teeth and split it into two equal halves. The precision of the task performance was evaluated by comparing the ratio between the two split halves. A series of "hold-and-split" tasks was also performed before and after the training. The hold force and split force along with the electromyographic (EMG) activity of jaw muscles were recorded. Motor-evoked potentials and cortical motor maps of the right masseter muscle were evoked by transcranial magnetic stimulation. There was a significant effect of series on the precision of the task performance during the short-term oral sensorimotor training (P < 0.002). The hold force during the "hold-and-split" task was significantly lower after training than before the short-term training (P = 0.011). However, there was no change in the split force and the EMG activity of the jaw muscles before and after the training. Further, there was a significant increase in the amplitude of the motor-evoked potentials (P < 0.016) and in the motor cortex map areas (P = 0.033), after the short-term oral sensorimotor training. Therefore, short-term oral sensorimotor task training increased the precision of task performance and induced signs of neuroplastic changes in the corticomotor pathways, related to the masseter muscle. PMID:26914481

  18. Verbal-motor attention-focusing instructions influence kinematics and performance on a golf-putting task.

    PubMed

    Munzert, Jörn; Maurer, Heiko; Reiser, Mathias

    2014-01-01

    The authors examined how varying the content of verbal-motor instructions and requesting an internal versus external focus influenced the kinematics and outcome of a golf putting task. On Day 1, 30 novices performed 120 trials with the instruction to focus attention either on performing a pendulum-like movement (internal) or on the desired ball path (external). After 20 retention trials on Day 2, they performed 20 transfer trials with the opposite instruction. Group differences for retention and a group by block interaction showed that external instruction enhanced movement outcome. Kinematic data indicated that specific instruction content influenced outcomes by eliciting changes in movement execution. Switching from the external to the internal focus instruction resulted in a more pendulum-like movement. PMID:24857254

  19. Distribution of practice and metacognition in learning and long-term retention of a discrete motor task.

    PubMed

    Dail, Teresa K; Christina, Robert W

    2004-06-01

    This study examined judgments of learning and the long-term retention of a discrete motor task (golf putting) as a function of practice distribution. The results indicated that participants in the distributed practice group performed more proficiently than those in the massed practice group during both acquisition and retention phases. No significant differences in retention performance were found as a function of three retention intervals (1, 7, and 28 days). Echoing actual acquisition scores, participants in the distributed practice group predicted more proficient retention performance than did those in the massed practice group. Although all participants predicted more proficient performance than was actually achieved, the difference between predicted and actual performance failed to reach significance. PMID:15209333

  20. Structure of the set of feasible neural commands for complex motor tasks.

    PubMed

    Valero-Cuevas, F J; Cohn, B A; Szedlak, M; Fukuda, K; Gartner, B

    2015-08-01

    The brain must select its control strategies among an infinite set of possibilities; researchers believe that it must be solving an optimization problem. While this set of feasible solutions is infinite and lies in high dimensions, it is bounded by kinematic, neuromuscular, and anatomical constraints, within which the brain must select optimal solutions. That is, the set of feasible activations is well structured. However, to date there is no method to describe and quantify the structure of these high-dimensional solution spaces. Bounding boxes or dimensionality reduction algorithms do not capture their detailed structure. We present a novel approach based on the well-known Hit-and-Run algorithm in computational geometry to extract the structure of the feasible activations capable of producing 50% of maximal fingertip force in a specific direction. We use a realistic model of a human index finger with 7 muscles, and 4 DOFs. For a given static force vector at the endpoint, the feasible activation space is a 3D convex polytope, embedded in the 7D unit cube. It is known that explicitly computing the volume of this polytope can become too computationally complex in many instances. However, our algorithm was able to sample 1,000,000 uniform at random points from the feasible activation space. The computed distribution of activation across muscles sheds light onto the structure of these solution spaces-rather than simply exploring their maximal and minimal values. Although this paper presents a 7 dimensional case of the index finger, our methods extend to systems with at least 40 muscles. This will allow our motor control community to understand the distributions of feasible muscle activations, providing important contextual information into learning, optimization and adaptation of motor patterns in future research. PMID:26736540

  1. A Transform-Based Feature Extraction Approach for Motor Imagery Tasks Classification

    PubMed Central

    Khorshidtalab, Aida; Mesbah, Mostefa; Salami, Momoh J. E.

    2015-01-01

    In this paper, we present a new motor imagery classification method in the context of electroencephalography (EEG)-based brain–computer interface (BCI). This method uses a signal-dependent orthogonal transform, referred to as linear prediction singular value decomposition (LP-SVD), for feature extraction. The transform defines the mapping as the left singular vectors of the LP coefficient filter impulse response matrix. Using a logistic tree-based model classifier; the extracted features are classified into one of four motor imagery movements. The proposed approach was first benchmarked against two related state-of-the-art feature extraction approaches, namely, discrete cosine transform (DCT) and adaptive autoregressive (AAR)-based methods. By achieving an accuracy of 67.35%, the LP-SVD approach outperformed the other approaches by large margins (25% compared with DCT and 6 % compared with AAR-based methods). To further improve the discriminatory capability of the extracted features and reduce the computational complexity, we enlarged the extracted feature subset by incorporating two extra features, namely, Q- and the Hotelling’s \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$T^{2}$ \\end{document} statistics of the transformed EEG and introduced a new EEG channel selection method. The performance of the EEG classification based on the expanded feature set and channel selection method was compared with that of a number of the state-of-the-art classification methods previously reported with the BCI IIIa competition data set. Our method came second with an average accuracy of 81.38%. PMID:27170898

  2. Performance in an escape task induces fos-like immunoreactivity in a specific area of the motor cortex of the rat.

    PubMed

    Castro-Alamancos, M A; Borrell, J; García-Segura, L M

    1992-07-01

    The expression of the c-fos proto-oncogene was studied in two different areas of the motor cortex and in the hippocampus of the rat after performance in an escape task in a Skinner box. Performance in this task caused an increase in the number of cells showing fos-like immunoreactivity in layers V and VI of the forelimb motor-sensory cortex with respect to yoked animals which had received the same amount, frequency and duration of aversive stimulation and manipulation as the trained animals. Therefore, this increase is the specific effect of performing the behavioral task. In the hindlimb motor-sensory cortex there were no differences between the trained and the yoked animals in any of the cortical layers. No differences were observed in the dentate gyrus of the hippocampus between trained and yoked animals, while the control animals showed a much lower fos-like immunoreactivity. In conclusion, infragranular layers in the forelimb representation of the primary motor cortex become activated with respect to the expression of fos-like immunoreactivity after performance in an escape task in a Skinner box. This result is consistent with the idea that even in complex structures such as the cerebral cortex, specific trace systems become activated for the performance of complex behavioral tasks. PMID:1407543

  3. Changes in EEG power spectral density and cortical connectivity in healthy and tetraplegic patients during a motor imagery task.

    PubMed

    Cona, Filippo; Zavaglia, Melissa; Astolfi, Laura; Babiloni, Fabio; Ursino, Mauro

    2009-01-01

    Knowledge of brain connectivity is an important aspect of modern neuroscience, to understand how the brain realizes its functions. In this work, neural mass models including four groups of excitatory and inhibitory neurons are used to estimate the connectivity among three cortical regions of interests (ROIs) during a foot-movement task. Real data were obtained via high-resolution scalp EEGs on two populations: healthy volunteers and tetraplegic patients. A 3-shell Boundary Element Model of the head was used to estimate the cortical current density and to derive cortical EEGs in the three ROIs. The model assumes that each ROI can generate an intrinsic rhythm in the beta range, and receives rhythms in the alpha and gamma ranges from other two regions. Connectivity strengths among the ROIs were estimated by means of an original genetic algorithm that tries to minimize several cost functions of the difference between real and model power spectral densities. Results show that the stronger connections are those from the cingulate cortex to the primary and supplementary motor areas, thus emphasizing the pivotal role played by the CMA_L during the task. Tetraplegic patients exhibit higher connectivity strength on average, with significant statistical differences in some connections. The results are commented and virtues and limitations of the proposed method discussed. PMID:19584939

  4. Motor imagery is less efficient in adults with probable developmental coordination disorder: evidence from the hand rotation task.

    PubMed

    Hyde, Christian; Fuelscher, Ian; Buckthought, Karen; Enticott, Peter G; Gitay, Maria A; Williams, Jacqueline

    2014-11-01

    The present study aimed to provide preliminary insight into the integrity of motor imagery (MI) in adults with probable developmental coordination disorder (pDCD). Based on a strong body of evidence indicating that paediatric samples of DCD often experience difficulties engaging MI, we hypothesised that young adults with pDCD would demonstrate similar difficulties. The performance of 12 young adults (19-35 years) with pDCD was compared to 47 age-matched controls on a traditional mental hand rotation task. Mean inverse efficiency scores were generated for each participant by dividing each participant's mean RT by their proportion of correct responses at each of the stimuli presentation conditions. Preliminary analysis revealed that the performance profiles of individuals with pDCD and age-matched controls showed evidence of being constrained by the biomechanical and postural constraints of real movement, suggesting that both groups engaged in an embodied (MI) strategy to complete the task. Despite engaging in a MI strategy, however, young adults with pDCD were nonetheless significantly less efficient when doing so, shown by significant main effects for group on all group efficiency comparisons. Based on the assumption that MI provides insight into the internal 'neural' action representation that precedes action, we argue that the less efficient MI performance demonstrated by young adults with pDCD may indicate inefficiencies engaging or implementing internal action representations. Implications and directions for future research are discussed. PMID:25134075

  5. Disparity in Frontal Lobe Connectivity on a Complex Bimanual Motor Task Aids in Classification of Operator Skill Level.

    PubMed

    Andreu-Perez, Javier; Leff, Daniel Richard; Shetty, Kunal; Darzi, Ara; Yang, Guang-Zhong

    2016-06-01

    Objective metrics of technical performance (e.g., dexterity, time, and path length) are insufficient to fully characterize operator skill level, which may be encoded deep within neural function. Unlike reports that capture plasticity across days or weeks, this articles studies long-term plasticity in functional connectivity that occurs over years of professional task practice. Optical neuroimaging data are acquired from professional surgeons of varying experience on a complex bimanual coordination task with the aim of investigating learning-related disparity in frontal lobe functional connectivity that arises as a consequence of motor skill level. The results suggest that prefrontal and premotor seed connectivity is more critical during naïve versus expert performance. Given learning-related differences in connectivity, a least-squares support vector machine with a radial basis function kernel is employed to evaluate skill level using connectivity data. The results demonstrate discrimination of operator skill level with accuracy ≥0.82 and Multiclass Matthew's Correlation Coefficient ≥0.70. Furthermore, these indices are improved when local (i.e., within-region) rather than inter-regional (i.e., between-region) frontal connectivity is considered (p = 0.002). The results suggest that it is possible to classify operator skill level with good accuracy from functional connectivity data, upon which objective assessment and neurofeedback may be used to improve operator performance during technical skill training. PMID:26899241

  6. Velocity Fluctuations in Kinesin-1 Gliding Motility Assays Originate in Motor Attachment Geometry Variations.

    PubMed

    Palacci, Henri; Idan, Ofer; Armstrong, Megan J; Agarwal, Ashutosh; Nitta, Takahiro; Hess, Henry

    2016-08-01

    Motor proteins such as myosin and kinesin play a major role in cellular cargo transport, muscle contraction, cell division, and engineered nanodevices. Quantifying the collective behavior of coupled motors is critical to our understanding of these systems. An excellent model system is the gliding motility assay, where hundreds of surface-adhered motors propel one cytoskeletal filament such as an actin filament or a microtubule. The filament motion can be observed using fluorescence microscopy, revealing fluctuations in gliding velocity. These velocity fluctuations have been previously quantified by a motional diffusion coefficient, which Sekimoto and Tawada explained as arising from the addition and removal of motors from the linear array of motors propelling the filament as it advances, assuming that different motors are not equally efficient in their force generation. A computational model of kinesin head diffusion and binding to the microtubule allowed us to quantify the heterogeneity of motor efficiency arising from the combination of anharmonic tail stiffness and varying attachment geometries assuming random motor locations on the surface and an absence of coordination between motors. Knowledge of the heterogeneity allows the calculation of the proportionality constant between the motional diffusion coefficient and the motor density. The calculated value (0.3) is within a standard error of our measurements of the motional diffusion coefficient on surfaces with varying motor densities calibrated by landing rate experiments. This allowed us to quantify the loss in efficiency of coupled molecular motors arising from heterogeneity in the attachment geometry. PMID:27414063

  7. Fine motor movements while drawing during the encoding phase of a serial verbal recall task reduce working memory performance.

    PubMed

    Tindle, Richard; Longstaff, Mitchell G

    2016-02-01

    The time-based resource-sharing (TBRS) model of working memory indicates that secondary tasks that capture attention for relatively long periods can result in the interference of working memory processing and maintenance. The current study investigates if discrete and continuous movements have differing effects on a concurrent, verbal serial recall task. In the listening condition, participants were asked to recall spoken words presented in lists of six. In the drawing conditions, participants performed the same task while producing discrete (star) or continuous (circle) movements. As hypothesised, participants recalled more words overall in the listening condition compared to the combined drawing conditions. The prediction that the continuous movement condition would reduce recall compared to listening was also supported. Fine-grained analysis at each serial position revealed significantly more words were recalled at mid serial positions in the listening condition, with worst recall for the continuous condition at position 5 compared to the listening and discrete conditions. Kinematic analysis showed that participants increased the size and speed of the continuous movements resulting in a similar duration and number of strokes for each condition. The duration of brief pauses in the discrete condition was associated with the number of words recalled. The results indicate that fine motor movements reduced working memory performance; however, it was not merely performing a movement but the type of the movement that determined how resources were diverted. In the context of the TBRS, continuous movements could be capturing attention for longer periods relative to discrete movements, reducing verbal serial recall. PMID:26783694

  8. Persistent residual errors in motor adaptation tasks: reversion to baseline and exploratory escape.

    PubMed

    Vaswani, Pavan A; Shmuelof, Lior; Haith, Adrian M; Delnicki, Raymond J; Huang, Vincent S; Mazzoni, Pietro; Shadmehr, Reza; Krakauer, John W

    2015-04-29

    When movements are perturbed in adaptation tasks, humans and other animals show incomplete compensation, tolerating small but sustained residual errors that persist despite repeated trials. State-space models explain this residual asymptotic error as interplay between learning from error and reversion to baseline, a form of forgetting. Previous work using zero-error-clamp trials has shown that reversion to baseline is not obligatory and can be overcome by manipulating feedback. We posited that novel error-clamp trials, in which feedback is constrained but has nonzero error and variance, might serve as a contextual cue for recruitment of other learning mechanisms that would then close the residual error. When error clamps were nonzero and had zero variance, human subjects changed their learning policy, using exploration in response to the residual error, despite their willingness to sustain such an error during the training block. In contrast, when the distribution of feedback in clamp trials was naturalistic, with persistent mean error but also with variance, a state-space model accounted for behavior in clamps, even in the absence of task success. Therefore, when the distribution of errors matched those during training, state-space models captured behavior during both adaptation and error-clamp trials because error-based learning dominated; when the distribution of feedback was altered, other forms of learning were triggered that did not follow the state-space model dynamics exhibited during training. The residual error during adaptation appears attributable to an error-dependent learning process that has the property of reversion toward baseline and that can suppress other forms of learning. PMID:25926471

  9. Persistent Residual Errors in Motor Adaptation Tasks: Reversion to Baseline and Exploratory Escape

    PubMed Central

    Shmuelof, Lior; Haith, Adrian M.; Delnicki, Raymond J.; Huang, Vincent S.; Mazzoni, Pietro; Shadmehr, Reza; Krakauer, John W.

    2015-01-01

    When movements are perturbed in adaptation tasks, humans and other animals show incomplete compensation, tolerating small but sustained residual errors that persist despite repeated trials. State-space models explain this residual asymptotic error as interplay between learning from error and reversion to baseline, a form of forgetting. Previous work using zero-error-clamp trials has shown that reversion to baseline is not obligatory and can be overcome by manipulating feedback. We posited that novel error-clamp trials, in which feedback is constrained but has nonzero error and variance, might serve as a contextual cue for recruitment of other learning mechanisms that would then close the residual error. When error clamps were nonzero and had zero variance, human subjects changed their learning policy, using exploration in response to the residual error, despite their willingness to sustain such an error during the training block. In contrast, when the distribution of feedback in clamp trials was naturalistic, with persistent mean error but also with variance, a state-space model accounted for behavior in clamps, even in the absence of task success. Therefore, when the distribution of errors matched those during training, state-space models captured behavior during both adaptation and error-clamp trials because error-based learning dominated; when the distribution of feedback was altered, other forms of learning were triggered that did not follow the state-space model dynamics exhibited during training. The residual error during adaptation appears attributable to an error-dependent learning process that has the property of reversion toward baseline and that can suppress other forms of learning. PMID:25926471

  10. The Use of Music to Increase Task-Oriented Behaviors in Preschool Children with Autism Spectrum Disorders in a Gross Motor Setting

    ERIC Educational Resources Information Center

    Dieringer, Shannon M.

    2012-01-01

    The purpose of this study is to determine the effect of music and music + instruction on task-oriented behaviors in preschool children with ASD within individual gross motor movement settings. Five preschool children (four boys; one girl) diagnosed with ASD attending a Midwestern private preschool for children with ASD served as participants. The…

  11. Children's Search Strategies and Accompanying Verbal and Motor Strategic Behavior: Developmental Trends and Relations with Task Performance among Children Age 5 to 17

    ERIC Educational Resources Information Center

    Winsler, Adam; Naglieri, Jack; Manfra, Louis

    2006-01-01

    Children's reported use of single and multiple search strategies during a matching numbers task, along with accompanying verbal (private speech, self-talk) and motoric (finger pointing, place-holding) strategic behaviors were examined with a large, nationally representative cross-sectional sample ("n"=1,979) of children between the ages of 5 and…

  12. The Effect of Picture Task Cards on Performance of the Test of Gross Motor Development by Preschool-Aged Children: A Preliminary Study

    ERIC Educational Resources Information Center

    Breslin, Casey M.; Robinson, Leah E.; Rudisill, Mary E.

    2013-01-01

    Performance on the Test of Gross Motor Development (Second Edition; TGMD-2) by children with autism spectrum disorders improves when picture task cards were implemented into the assessment protocol [Breslin, C.M., & Rudisill, M.E. (2011). "The effect of visual supports on performance of the TGMD-2 for children with autism spectrum disorder."…

  13. When affordances climb into your mind: advantages of motor simulation in a memory task performed by novice and expert rock climbers.

    PubMed

    Pezzulo, Giovanni; Barca, Laura; Bocconi, Alessandro Lamberti; Borghi, Anna M

    2010-06-01

    Does the sight of multiple climbing holds laid along a path activate a motor simulation of climbing that path? One way of testing whether multiple affordances and their displacement influence the formation of a motor simulation is to study acquired motor skills. We used a behavioral task in which expert and novice rock climbers were shown three routes: an easy route, a route impossible to climb but perceptually salient, and a difficult route. After a distraction task, they were then given a recall test in which they had to write down the sequence of holds composing each route. We found no difference between experts and novices on the easy and impossible routes, whereas on the difficult route, the performance of experts was better than that of novices. This suggests that seeing a climbing wall activates a motor, embodied simulation, which relies not on perceptual salience, but on motor competence. More importantly, our results show that the capability to form this simulation is modulated by individuals' motor repertoire and expertise, and that this strongly impacts recall. PMID:20381226

  14. Reaction Time in a Visual 4-Choice Reaction Time Task: ERP Effects of Motor Preparation and Hemispheric Involvement.

    PubMed

    Antonova, Ingrida; van Swam, Claudia; Hubl, Daniela; Dierks, Thomas; Griskova-Bulanova, Inga; Koenig, Thomas

    2016-07-01

    Reaction time (RT), the most common measure of CNS efficiency, shows intra- and inter-individual variability. This may be accounted for by hemispheric specialization, individual neuroanatomy, and transient functional fluctuations between trials. To explore RT on these three levels, ERPs were measured in a visual 4-choice RT task with lateralized stimuli (left lateral, left middle, right middle, and right lateral) in 28 healthy right-handed subjects. We analyzed behavioral data, ERP microstates (MS), N1 and P3 components, and trial-by-trial variance. Across subjects, the N1 component was contralateral to the stimulation side. N1-MSs were stronger over the left hemisphere, and middle stimulation evoked stronger activation than lateral stimulation in both hemispheres. The P3 was larger for the right visual field stimulation. RTs were shorter for the right visual hemifield stimulation/right hand responses. Within subjects, covariance analysis of single trial ERPs with RTs showed consistent lateralized predictors of RT over the motor cortex (MC) in the 112-248 ms interval. Decreased RTs were related to negativity over the MC contralateral to the stimulation side, an effect that could be interpreted as the lateralized readiness potential (LRP), and which was strongest for right side stimulation. The covariance analysis linking individual mean RTs and individual mean ERPs showed a frontal negativity and an occipital positivity correlating with decreased RTs in the 212-232 ms interval. We concluded that a particular RT is a composite measure that depends on the appropriateness of the motor preparation to a particular response and on stimulus lateralization that selectively involves a particular hemisphere. PMID:26830770

  15. Cortical activity of skilled performance in a complex sports related motor task.

    PubMed

    Baumeister, Jochen; Reinecke, Kirsten; Liesen, Heinz; Weiss, Michael

    2008-11-01

    A skilled player in goal-directed sports performance has the ability to process internal and external information in an effective manner and decide which pieces of information are important and which are irrelevant. Focused attention and somatosensory information processing play a crucial role in this process. Electroencephalographic (EEG) recordings are able to demonstrate cortical changes in conjunction with this concept and were examined during a golf putting performance in an expert-novice paradigm. The success in putting (score) and performance-related cortical activity were recorded with an EEG during a 5 x 4 min putting series. Subjects were asked to putt balls for four min at their own pace. The EEG data was divided into different frequencies: Theta (4.75-6.75 Hz), Alpha-1 (7-9.5 Hz), Alpha-2 (9.75-12.5 Hz) and Beta-1 (12.75-18.5 Hz) and performance related power values were calculated. Statistical analysis shows significant better performance in the expert golfers (P < 0.001). This was associated with higher fronto-midline Theta power (P < 0.05) and higher parietal Alpha-2 power values (P < 0.05) compared to the novices in golf putting. Frontal Theta and parietal Alpha-2 spectral power in the ongoing EEG demonstrate differences due to skill level. Furthermore the findings suggest that with increasing skill level, golfers have developed task solving strategies including focussed attention and an economy in parietal sensory information processing which lead to more successful performance. In a theoretical framework both cortical parameters may play a role in the concept of the working memory. PMID:18607621

  16. Synchronous Spike Patterns in Macaque Motor Cortex during an Instructed-Delay Reach-to-Grasp Task

    PubMed Central

    Torre, Emiliano; Quaglio, Pietro; Denker, Michael; Brochier, Thomas; Riehle, Alexa

    2016-01-01

    neurons. We recently published a method to extend this type of investigation to larger data. Here, we apply it to simultaneous recordings of hundreds of neurons from the motor cortex of macaque monkeys performing a motor task. Our analysis reveals groups of neurons selectively synchronizing their activity in relation to behavior, which sheds new light on the role of synchrony in information processing in the cerebral cortex. PMID:27511007

  17. Implementation of a three degree of freedom, motor/brake hybrid force output device for virtual environment control tasks

    NASA Technical Reports Server (NTRS)

    Russo, Massimo; Tadros, Alfred; Flowers, Woodie; Zeltzer, David

    1991-01-01

    The advent of high resolution, physical model based computer graphics has left a gap in the design of input/output technology appropriate for interacting with such complex virtual world models. Since virtual worlds consist of physical models, it is appropriate to output the inherent force information necessary for the simulation to the user. The detailed design, construction, and control of a three degree freedom force output joystick will be presented. A novel kinematic design allows all three axes to be uncoupled, so that the system inertia matrix is diagonal. The two planar axes are actuated through an offset gimbal, and the third through a sleeved cable. To compensate for friction and inertia effects, this transmission is controlled by a force feedforward and a closed force feedback proportional loop. Workspace volume is a cone of 512 cubic inches, and the device bandwidth is maximized at 60 Hz for the two planar and 30 Hz for the third axis. Each axis is controlled by a motor/proportional magnetic particle brake combination fixed to the base. The innovative use of motors and brakes allows objects with high resistive torque requirements to be simulated without the stability and related safety issues involved with high torque, energy storing motors alone. Position, velocity, and applied endpoint force are sensed directly. Different control strategies are discussed and implemented, with an emphasis on how virtual environment force information, generated by the MIT Media Lab Computer Graphics and Animation Group BOLIO system, is transmitted to the device controller. The design constraints for a kinesthetic force feedback device can be summarized as: How can the symbiosis between the sense of presence in the virtual environment be maximized without compromising the interaction task under the constraints of the mechanical device limitations? Research in this field will yield insights to the optimal human sensory feedback mix for a wide spectrum of control and

  18. Motor Impulsivity During Childhood and Adolescence: A Longitudinal Biometric Analysis of the Go/No-Go Task in 9- to 18-Year-Old Twins

    PubMed Central

    Bezdjian, Serena; Tuvblad, Catherine; Wang, Pan; Raine, Adrian; Baker, Laura A.

    2015-01-01

    In the present study, we investigated genetic and environmental effects on motor impulsivity from childhood to late adolescence using a longitudinal sample of twins from ages 9 to 18 years. Motor impulsivity was assessed using errors of commission (no-go errors) in a visual go/no-go task at 4 time points: ages 9–10, 11–13, 14–15, and 16–18 years. Significant genetic and nonshared environmental effects on motor impulsivity were found at each of the 4 waves of assessment with genetic factors explaining 22%–41% of the variance within each of the 4 waves. Phenotypically, children’s average performance improved across age (i.e., fewer no-go errors during later assessments). Multivariate biometric analyses revealed that common genetic factors influenced 12%–40% of the variance in motor impulsivity across development, whereas nonshared environmental factors common to all time points contributed to 2%–52% of the variance. Nonshared environmental influences specific to each time point also significantly influenced motor impulsivity. Overall, results demonstrated that although genetic factors were critical to motor impulsivity across development, both common and specific nonshared environmental factors played a strong role in the development of motor impulsivity across age. PMID:25347305

  19. Targeted brain activation using an MR-compatible wrist torque measurement device and isometric motor tasks during functional magnetic resonance imaging.

    PubMed

    Vlaar, Martijn P; Mugge, Winfred; Groot, Paul F C; Sharifi, Sarvi; Bour, Lo J; van der Helm, Frans C T; van Rootselaar, Anne-Fleur; Schouten, Alfred C

    2016-07-01

    Dedicated pairs of isometric wrist flexion tasks, with and without visual feedback of the exerted torque, were designed to target activation of the CBL and BG in healthy subjects during functional magnetic resonance imaging (fMRI). Selective activation of the cerebellum (CBL) and basal ganglia (BG), often implicated in movement disorders such as tremor and dystonia, may help identify pathological changes and expedite diagnosis. A prototyped MR-compatible wrist torque measurement device, free of magnetic and conductive materials, allowed safe execution of tasks during fMRI without causing artifacts. A significant increase of activity in CBL and BG was found in healthy volunteers during a constant torque task with visual feedback compared to a constant torque task without visual feedback. This study shows that specific pairs of motor tasks using MR-compatible equipment at the wrist allow for targeted activation of CBL and BG, paving a new way for research into the pathophysiology of movement disorders. PMID:26968144

  20. Classification of Two Class Motor Imagery Tasks Using Hybrid GA-PSO Based K-Means Clustering.

    PubMed

    Suraj; Tiwari, Purnendu; Ghosh, Subhojit; Sinha, Rakesh Kumar

    2015-01-01

    Transferring the brain computer interface (BCI) from laboratory condition to meet the real world application needs BCI to be applied asynchronously without any time constraint. High level of dynamism in the electroencephalogram (EEG) signal reasons us to look toward evolutionary algorithm (EA). Motivated by these two facts, in this work a hybrid GA-PSO based K-means clustering technique has been used to distinguish two class motor imagery (MI) tasks. The proposed hybrid GA-PSO based K-means clustering is found to outperform genetic algorithm (GA) and particle swarm optimization (PSO) based K-means clustering techniques in terms of both accuracy and execution time. The lesser execution time of hybrid GA-PSO technique makes it suitable for real time BCI application. Time frequency representation (TFR) techniques have been used to extract the feature of the signal under investigation. TFRs based features are extracted and relying on the concept of event related synchronization (ERD) and desynchronization (ERD) feature vector is formed. PMID:25972896

  1. Classification of Two Class Motor Imagery Tasks Using Hybrid GA-PSO Based K-Means Clustering

    PubMed Central

    Suraj; Tiwari, Purnendu; Ghosh, Subhojit; Sinha, Rakesh Kumar

    2015-01-01

    Transferring the brain computer interface (BCI) from laboratory condition to meet the real world application needs BCI to be applied asynchronously without any time constraint. High level of dynamism in the electroencephalogram (EEG) signal reasons us to look toward evolutionary algorithm (EA). Motivated by these two facts, in this work a hybrid GA-PSO based K-means clustering technique has been used to distinguish two class motor imagery (MI) tasks. The proposed hybrid GA-PSO based K-means clustering is found to outperform genetic algorithm (GA) and particle swarm optimization (PSO) based K-means clustering techniques in terms of both accuracy and execution time. The lesser execution time of hybrid GA-PSO technique makes it suitable for real time BCI application. Time frequency representation (TFR) techniques have been used to extract the feature of the signal under investigation. TFRs based features are extracted and relying on the concept of event related synchronization (ERD) and desynchronization (ERD) feature vector is formed. PMID:25972896

  2. Relationship between Reaction Time, Fine Motor Control, and Visual-Spatial Perception on Vigilance and Visual-Motor Tasks in 22q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Howley, Sarah A.; Prasad, Sarah E.; Pender, Niall P.; Murphy, Kieran C.

    2012-01-01

    22q11.2 Deletion Syndrome (22q11DS) is a common microdeletion disorder associated with mild to moderate intellectual disability and specific neurocognitive deficits, particularly in visual-motor and attentional abilities. Currently there is evidence that the visual-motor profile of 22q11DS is not entirely mediated by intellectual disability and…

  3. Disadvantageous decision-making on a rodent gambling task is associated with increased motor impulsivity in a population of male rats

    PubMed Central

    Barrus, Michael M.; Hosking, Jay G.; Zeeb, Fiona D.; Tremblay, Melanie; Winstanley, Catharine A.

    2015-01-01

    Background Impulsivity is understood as a range of behaviours, but the association between these behaviours is not well understood. Although high motor impulsivity is a key symptom of disorders like pathological gambling and addiction, in which decision-making on laboratory tasks is compromised, there have been no clear demonstrations that choice and motor impulsivity are associated in the general population. We examined this association in a large population of rodents. Methods We performed a meta-analysis on behavioural data from 211 manipulation-naive male animals that performed a rodent gambling task in our laboratory between 2008 and 2012. The task measures an aspect of both impulsive decision-making and impulsive action, making it possible to evaluate whether these 2 forms of maladaptive behaviour are related. Results Our meta-analysis revealed that motor impulsivity was positively correlated with poor decision-making under risk. Highly motor impulsive rats were slower to adopt an advantageous choice strategy and quicker to make a choice on individual trials. Limitations The data analyzed were limited to that produced by our laboratory and did not include data of other researchers who have used the task. Conclusion This work may represent the first demonstration of a clear association between choice and motor impulsivity in a nonclinical population. This lends support to the common practice of studying impulsivity in nonclinical populations to gain insight into impulse control disorders and suggests that differences in impulsive behaviours between clinical and nonclinical populations may be ones of magnitude rather than ones of quality. PMID:25703645

  4. Insights into Intraspecies Variation in Primate Prosocial Behavior: Capuchins (Cebus apella) Fail to Show Prosociality on a Touchscreen Task

    PubMed Central

    Drayton, Lindsey A.; Santos, Laurie R.

    2014-01-01

    Over the past decade, many researchers have used food donation tasks to test whether nonhuman primates show human-like patterns of prosocial behavior in experimental settings. Although these tasks are elegant in their simplicity, performance within and across species is difficult to explain under a unified theoretical framework. Here, we attempt to better understand variation in prosociality by examining the circumstances that promote and hinder the expression of prosocial preferences. To this end, we tested whether capuchin monkeys (Cebus apella)—a species that has previously demonstrated prosocial preferences—would behave prosocially using a novel touchscreen task. In contrast to previous studies, we found that capuchins as a group did not prosocially deliver food to a partner. Importantly however, data from control conditions revealed that subjects demonstrated limited understanding of the reward contingencies of the task. We also compared individuals’ performance in the current study with their performance in a previously published prosociality study. We conclude by discussing how continuing to explore intraspecies variation in performance on prosocial tasks may help inform debates regarding the existence of other-regarding preferences in nonhuman species. PMID:25379271

  5. The Possible Role of TASK Channels in Rank-Ordered Recruitment of Motoneurons in the Dorsolateral Part of the Trigeminal Motor Nucleus

    PubMed Central

    Okamoto, Keiko; Emura, Norihito; Sato, Hajime; Fukatsu, Yuki; Tanaka, Chie; Morita, Yukako; Nishimura, Kayo; Kuramoto, Eriko; Xu Yin, Dong; Kurachi, Yoshihisa; Kaneko, Takeshi; Maeda, Yoshinobu; Yamashiro, Takashi

    2016-01-01

    Abstract Because a rank-ordered recruitment of motor units occurs during isometric contraction of jaw-closing muscles, jaw-closing motoneurons (MNs) may be recruited in a manner dependent on their soma sizes or input resistances (IRs). In the dorsolateral part of the trigeminal motor nucleus (dl-TMN) in rats, MNs abundantly express TWIK (two-pore domain weak inwardly rectifying K channel)-related acid-sensitive-K+ channel (TASK)-1 and TASK3 channels, which determine the IR and resting membrane potential. Here we examined how TASK channels are involved in IR-dependent activation/recruitment of MNs in the rat dl-TMN by using multiple methods. The real-time PCR study revealed that single large MNs (>35 μm) expressed TASK1 and TASK3 mRNAs more abundantly compared with single small MNs (15–20 μm). The immunohistochemistry revealed that TASK1 and TASK3 channels were complementarily distributed in somata and dendrites of MNs, respectively. The density of TASK1 channels seemed to increase with a decrease in soma diameter while there were inverse relationships between the soma size of MNs and IR, resting membrane potential, or spike threshold. Dual whole-cell recordings obtained from smaller and larger MNs revealed that the recruitment of MNs depends on their IRs in response to repetitive stimulation of the presumed Ia afferents. 8-Bromoguanosine-cGMP decreased IRs in small MNs, while it hardly changed those in large MNs, and subsequently decreased the difference in spike-onset latency between the smaller and larger MNs, causing a synchronous activation of MNs. These results suggest that TASK channels play critical roles in rank-ordered recruitment of MNs in the dl-TMN. PMID:27482536

  6. The Possible Role of TASK Channels in Rank-Ordered Recruitment of Motoneurons in the Dorsolateral Part of the Trigeminal Motor Nucleus.

    PubMed

    Okamoto, Keiko; Emura, Norihito; Sato, Hajime; Fukatsu, Yuki; Saito, Mitsuru; Tanaka, Chie; Morita, Yukako; Nishimura, Kayo; Kuramoto, Eriko; Xu Yin, Dong; Furutani, Kazuharu; Okazawa, Makoto; Kurachi, Yoshihisa; Kaneko, Takeshi; Maeda, Yoshinobu; Yamashiro, Takashi; Takada, Kenji; Toyoda, Hiroki; Kang, Youngnam

    2016-01-01

    Because a rank-ordered recruitment of motor units occurs during isometric contraction of jaw-closing muscles, jaw-closing motoneurons (MNs) may be recruited in a manner dependent on their soma sizes or input resistances (IRs). In the dorsolateral part of the trigeminal motor nucleus (dl-TMN) in rats, MNs abundantly express TWIK (two-pore domain weak inwardly rectifying K channel)-related acid-sensitive-K(+) channel (TASK)-1 and TASK3 channels, which determine the IR and resting membrane potential. Here we examined how TASK channels are involved in IR-dependent activation/recruitment of MNs in the rat dl-TMN by using multiple methods. The real-time PCR study revealed that single large MNs (>35 μm) expressed TASK1 and TASK3 mRNAs more abundantly compared with single small MNs (15-20 μm). The immunohistochemistry revealed that TASK1 and TASK3 channels were complementarily distributed in somata and dendrites of MNs, respectively. The density of TASK1 channels seemed to increase with a decrease in soma diameter while there were inverse relationships between the soma size of MNs and IR, resting membrane potential, or spike threshold. Dual whole-cell recordings obtained from smaller and larger MNs revealed that the recruitment of MNs depends on their IRs in response to repetitive stimulation of the presumed Ia afferents. 8-Bromoguanosine-cGMP decreased IRs in small MNs, while it hardly changed those in large MNs, and subsequently decreased the difference in spike-onset latency between the smaller and larger MNs, causing a synchronous activation of MNs. These results suggest that TASK channels play critical roles in rank-ordered recruitment of MNs in the dl-TMN. PMID:27482536

  7. Effects of Task Index Variations On Transfer of Training Criteria. Final Report.

    ERIC Educational Resources Information Center

    Mirabella, Angelo; Wheaton, George R.

    The concluding series of a research program designed to validate a battery of task indexes for use in forecasting the effectiveness of training devices is described. Phase I collated 17 task indexes and applied them to sonar training devices, while in Phase II the 17 index battery was validated, using skill acquisition measures as criteria.…

  8. Genetic Variation in the Human Brain Dopamine System Influences Motor Learning and Its Modulation by L-Dopa

    PubMed Central

    Pearson-Fuhrhop, Kristin M.; Minton, Brian; Acevedo, Daniel; Shahbaba, Babak; Cramer, Steven C.

    2013-01-01

    Dopamine is important to learning and plasticity. Dopaminergic drugs are the focus of many therapies targeting the motor system, where high inter-individual differences in response are common. The current study examined the hypothesis that genetic variation in the dopamine system is associated with significant differences in motor learning, brain plasticity, and the effects of the dopamine precursor L-Dopa. Skilled motor learning and motor cortex plasticity were assessed using a randomized, double-blind, placebo-controlled, crossover design in 50 healthy adults during two study weeks, one with placebo and one with L-Dopa. The influence of five polymorphisms with established effects on dopamine neurotransmission was summed using a gene score, with higher scores corresponding to higher dopaminergic neurotransmission. Secondary hypotheses examined each polymorphism individually. While training on placebo, higher gene scores were associated with greater motor learning (p = .03). The effect of L-Dopa on learning varied with the gene score (gene score*drug interaction, p = .008): participants with lower gene scores, and thus lower endogenous dopaminergic neurotransmission, showed the largest learning improvement with L-Dopa relative to placebo (p<.0001), while L-Dopa had a detrimental effect in participants with higher gene scores (p = .01). Motor cortex plasticity, assessed via transcranial magnetic stimulation (TMS), also showed a gene score*drug interaction (p = .02). Individually, DRD2/ANKK1 genotype was significantly associated with motor learning (p = .02) and its modulation by L-Dopa (p<.0001), but not with any TMS measures. However, none of the individual polymorphisms explained the full constellation of findings associated with the gene score. These results suggest that genetic variation in the dopamine system influences learning and its modulation by L-Dopa. A polygene score explains differences in L-Dopa effects on learning and plasticity

  9. fMRI brain mapping during motion capture and FES induced motor tasks: signal to noise ratio assessment.

    PubMed

    Gandolla, Marta; Ferrante, Simona; Casellato, Claudia; Ferrigno, Giancarlo; Molteni, Franco; Martegani, Alberto; Frattini, Tiziano; Pedrocchi, Alessandra

    2011-10-01

    Functional Electrical Stimulation (FES) is a well known clinical rehabilitation procedure, however the neural mechanisms that underlie this treatment at Central Nervous System (CNS) level are still not completely understood. Functional magnetic resonance imaging (fMRI) is a suitable tool to investigate effects of rehabilitative treatments on brain plasticity. Moreover, monitoring the effective executed movement is needed to correctly interpret activation maps, most of all in neurological patients where required motor tasks could be only partially accomplished. The proposed experimental set-up includes a 1.5 T fMRI scanner, a motion capture system to acquire kinematic data, and an electro-stimulation device. The introduction of metallic devices and of stimulation current in the MRI room could affect fMRI acquisitions so as to prevent a reliable activation maps analysis. What we are interested in is that the Blood Oxygenation Level Dependent (BOLD) signal, marker of neural activity, could be detected within a given experimental condition and set-up. In this paper we assess temporal Signal to Noise Ratio (SNR) as image quality index. BOLD signal change is about 1-2% as revealed by a 1.5 T scanner. This work demonstrates that, with this innovative set-up, in the main cortical sensorimotor regions 1% BOLD signal change can be detected at least in the 93% of the sub-volumes, and almost 100% of the sub-volumes are suitable for 2% signal change detection. The integrated experimental set-up will therefore allows to detect FES induced movements fMRI maps simultaneously with kinematic acquisitions so as to investigate FES-based rehabilitation treatments contribution at CNS level. PMID:21550290

  10. Cerebellar plasticity and motor learning deficits in a copy-number variation mouse model of autism.

    PubMed

    Piochon, Claire; Kloth, Alexander D; Grasselli, Giorgio; Titley, Heather K; Nakayama, Hisako; Hashimoto, Kouichi; Wan, Vivian; Simmons, Dana H; Eissa, Tahra; Nakatani, Jin; Cherskov, Adriana; Miyazaki, Taisuke; Watanabe, Masahiko; Takumi, Toru; Kano, Masanobu; Wang, Samuel S-H; Hansel, Christian

    2014-01-01

    A common feature of autism spectrum disorder (ASD) is the impairment of motor control and learning, occurring in a majority of children with autism, consistent with perturbation in cerebellar function. Here we report alterations in motor behaviour and cerebellar synaptic plasticity in a mouse model (patDp/+) for the human 15q11-13 duplication, one of the most frequently observed genetic aberrations in autism. These mice show ASD-resembling social behaviour deficits. We find that in patDp/+ mice delay eyeblink conditioning--a form of cerebellum-dependent motor learning--is impaired, and observe deregulation of a putative cellular mechanism for motor learning, long-term depression (LTD) at parallel fibre-Purkinje cell synapses. Moreover, developmental elimination of surplus climbing fibres--a model for activity-dependent synaptic pruning--is impaired. These findings point to deficits in synaptic plasticity and pruning as potential causes for motor problems and abnormal circuit development in autism. PMID:25418414

  11. The effect of local vs remote experimental pain on motor learning and sensorimotor integration using a complex typing task.

    PubMed

    Dancey, Erin; Murphy, Bernadette A; Andrew, Danielle; Yielder, Paul

    2016-08-01

    Recent work demonstrated that capsaicin-induced acute pain improved motor learning performance; however, baseline accuracy was very high, making it impossible to discern the impact of acute pain on motor learning and retention. In addition, the effects of the spatial location of capsaicin application were not explored. Two experiments were conducted to determine the interactive effects of acute pain vs control (experiment 1) and local vs remote acute pain (experiment 2) on motor learning and sensorimotor processing. For both experiments, somatosensory evoked potential (SEP) amplitudes and motor learning acquisition and retention (accuracy and response time) data were collected at baseline, after application, and after motor learning. Experiment 1: N11 (P < 0.05), N13 (P < 0.05), and N30 (P < 0.05) SEP peak amplitudes increased after motor learning in both groups, whereas the N20 SEP peak increased in the control group (P < 0.05). At baseline, the intervention group outperformed the control group in accuracy (P < 0.001). Response time improved after motor learning (P < 0.001) and at retention (P < 0.001). Experiment 2: The P25 SEP peak decreased in the local group after application of capsaicin cream (P < 0.01), whereas the N30 SEP peaks increased after motor learning in both groups (P < 0.05). Accuracy improved in the local group at retention (P < 0.005), and response time improved after motor learning (P < 0.005) and at retention (P < 0.001). This study suggests that acute pain may increase focal attention to the body part used in motor learning, contributing to our understanding of how the location of pain impacts somatosensory processing and the associated motor learning. PMID:27023419

  12. Variation of Electric Properties Between Surface Permanent Magnet and Interior Permanent Magnet Motor

    NASA Astrophysics Data System (ADS)

    Woo, Byung-Chul; Hong, Do-Kwan; Lee, Ji-Young

    The most distinctive advantage of transverse flux motor(TFM) is high torque density which has prompted many researches into studying various design variants. TFM is well suited for low speed direct drive applications due to its high torque density. This paper deals with simulation based comparisons between a surface permanent magnet transverse flux motor(SPM-TFM) and an interior permanent magnet transverse flux motor(IPM-TFM). A commercial finite element analysis(FEA) software Maxwell 3D is used for electromagnetic field computation to fully analyze complex geometry of the TFMs. General characteristics, such as cogging torque, rated torque and torque ripple characteristics of the two TFMs are analyzed and compared by extensive 3D FEA.

  13. Variations in task constraints shape emergent performance outcomes and complexity levels in balancing.

    PubMed

    Caballero Sánchez, Carla; Barbado Murillo, David; Davids, Keith; Moreno Hernández, Francisco J

    2016-06-01

    This study investigated the extent to which specific interacting constraints of performance might increase or decrease the emergent complexity in a movement system, and whether this could affect the relationship between observed movement variability and the central nervous system's capacity to adapt to perturbations during balancing. Fifty-two healthy volunteers performed eight trials where different performance constraints were manipulated: task difficulty (three levels) and visual biofeedback conditions (with and without the center of pressure (COP) displacement and a target displayed). Balance performance was assessed using COP-based measures: mean velocity magnitude (MVM) and bivariate variable error (BVE). To assess the complexity of COP, fuzzy entropy (FE) and detrended fluctuation analysis (DFA) were computed. ANOVAs showed that MVM and BVE increased when task difficulty increased. During biofeedback conditions, individuals showed higher MVM but lower BVE at the easiest level of task difficulty. Overall, higher FE and lower DFA values were observed when biofeedback was available. On the other hand, FE reduced and DFA increased as difficulty level increased, in the presence of biofeedback. However, when biofeedback was not available, the opposite trend in FE and DFA values was observed. Regardless of changes to task constraints and the variable investigated, balance performance was positively related to complexity in every condition. Data revealed how specificity of task constraints can result in an increase or decrease in complexity emerging in a neurobiological system during balance performance. PMID:26838357

  14. Selective Effects of Motor Expertise in Mental Body Rotation Tasks: Comparing Object-Based and Perspective Transformations

    ERIC Educational Resources Information Center

    Steggemann, Yvonne; Engbert, Kai; Weigelt, Matthias

    2011-01-01

    Brain imaging studies provide strong evidence for the involvement of the human mirror system during the observation of complex movements, depending on the individual's motor expertise. Here, we ask the question whether motor expertise not only affects perception while observing movements, but also benefits perception while solving mental rotation…

  15. Over the hill at 24: persistent age-related cognitive-motor decline in reaction times in an ecologically valid video game task begins in early adulthood.

    PubMed

    Thompson, Joseph J; Blair, Mark R; Henrey, Andrew J

    2014-01-01

    Typically studies of the effects of aging on cognitive-motor performance emphasize changes in elderly populations. Although some research is directly concerned with when age-related decline actually begins, studies are often based on relatively simple reaction time tasks, making it impossible to gauge the impact of experience in compensating for this decline in a real world task. The present study investigates age-related changes in cognitive motor performance through adolescence and adulthood in a complex real world task, the real-time strategy video game StarCraft 2. In this paper we analyze the influence of age on performance using a dataset of 3,305 players, aged 16-44, collected by Thompson, Blair, Chen & Henrey [1]. Using a piecewise regression analysis, we find that age-related slowing of within-game, self-initiated response times begins at 24 years of age. We find no evidence for the common belief expertise should attenuate domain-specific cognitive decline. Domain-specific response time declines appear to persist regardless of skill level. A second analysis of dual-task performance finds no evidence of a corresponding age-related decline. Finally, an exploratory analyses of other age-related differences suggests that older participants may have been compensating for a loss in response speed through the use of game mechanics that reduce cognitive load. PMID:24718593

  16. Over the Hill at 24: Persistent Age-Related Cognitive-Motor Decline in Reaction Times in an Ecologically Valid Video Game Task Begins in Early Adulthood

    PubMed Central

    Thompson, Joseph J.; Blair, Mark R.; Henrey, Andrew J.

    2014-01-01

    Typically studies of the effects of aging on cognitive-motor performance emphasize changes in elderly populations. Although some research is directly concerned with when age-related decline actually begins, studies are often based on relatively simple reaction time tasks, making it impossible to gauge the impact of experience in compensating for this decline in a real world task. The present study investigates age-related changes in cognitive motor performance through adolescence and adulthood in a complex real world task, the real-time strategy video game StarCraft 2. In this paper we analyze the influence of age on performance using a dataset of 3,305 players, aged 16-44, collected by Thompson, Blair, Chen & Henrey [1]. Using a piecewise regression analysis, we find that age-related slowing of within-game, self-initiated response times begins at 24 years of age. We find no evidence for the common belief expertise should attenuate domain-specific cognitive decline. Domain-specific response time declines appear to persist regardless of skill level. A second analysis of dual-task performance finds no evidence of a corresponding age-related decline. Finally, an exploratory analyses of other age-related differences suggests that older participants may have been compensating for a loss in response speed through the use of game mechanics that reduce cognitive load. PMID:24718593

  17. Head-repositioning does not reduce the reproducibility of fMRI activation in a block-design motor task.

    PubMed

    Soltysik, David A; Thomasson, David; Rajan, Sunder; Gonzalez-Castillo, Javier; DiCamillo, Paul; Biassou, Nadia

    2011-06-01

    It is hypothesized that, based upon partial volume effects and spatial non-uniformities of the scanning environment, repositioning a subject's head inside the head coil between separate functional MRI scans will reduce the reproducibility of fMRI activation compared to a series of functional runs where the subject's head remains in the same position. Nine subjects underwent fMRI scanning where they performed a sequential, oppositional finger-tapping task. The first five runs were conducted with the subject's head remaining stable inside the head coil. Following this, four more runs were collected after the subject removed and replaced his/her head inside the head coil before each run. The coefficient of variation was calculated for four metrics: the distance from the anterior commisure to the center of mass of sensorimotor activation, maximum t-statistic, activation volume, and average percent signal change. These values were compared for five head-stabilization runs and five head-repositioning runs. Voxelwise intraclass correlation coefficients were also calculated to assess the spatial distribution of sources of variance. Interestingly, head repositioning was not seen to significantly affect the reproducibility of fMRI activation (p<0.05). In addition, the threshold level affected the reproducibility of activation volume and percent signal change. PMID:21406235

  18. Effects of contextual interference and conditions of movement task on acquisition, retention, and transfer of motor skills by women.

    PubMed

    Jarus, T; Wughalter, E H; Gianutsos, J G

    1997-02-01

    This experiment was designed to investigate varying conditions of contextual interference within two different conditions of movement tasks during acquisition on the acquisition and retention of a computerized task and transfer to a functional skill. Performance of head movements was conducted under open- or closed-task conditions and with random or blocked schedules of practice. Analysis indicated that learning under the open-task condition resulted in better retention and transfer than the closed-task condition. It is suggested that increasing the within-trial variability in the open-task condition produced a contextual interference effect. In this regard, support for Battig's predictions is provided by the current findings in that the high variability present during the open-task condition was more beneficial for retention and transfer than the low variability present during the closed-task condition. Differences between random and blocked schedules of practice on the retention and transfer data were not statistically significant. PMID:9132708

  19. The Effects of Time Limitations on the Performance of Educable Mentally Retarded Children on a Selected Manipulative Motor Task.

    ERIC Educational Resources Information Center

    Patterson, Patrick E.

    1982-01-01

    When time for task completion was reduced, performance of 30 educable mentally retarded elementary students on a peg placement task did not degrade, although too much or too little available time increased the use of random placement. (Author/CL)

  20. The Presence or Absence of Older Siblings and Variation in Infant Goal-Directed Motor Development

    ERIC Educational Resources Information Center

    Reid, Vincent; Stahl, Daniel; Striano, Tricia

    2010-01-01

    This study investigates the relationship between having an older sibling and early goal-directed motor development. In a longitudinal study, infants were filmed playing with their mother and were observed at 5 and 12 months of age. After each observation, they were assessed with the Mental Bayley Scale. From the mother-child interaction, playing…

  1. Acoustic Variations in Adductor Spasmodic Dysphonia as a Function of Speech Task.

    ERIC Educational Resources Information Center

    Sapienza, Christine M.; Walton, Suzanne; Murry, Thomas

    1999-01-01

    Acoustic phonatory events were identified in 14 women diagnosed with adductor spasmodic dysphonia (ADSD), a focal laryngeal dystonia that disturbs phonatory function, and compared with those of 14 age-matched women with no vocal dysfunction. Findings indicated ADSD subjects produced more aberrant acoustic events than controls during tasks of…

  2. What Comes First? How Selective Attentional Processes Regulate the Activation of a Motor Routine in a Manual Search Task

    ERIC Educational Resources Information Center

    Riviere, James; Falaise, Aurelie

    2011-01-01

    An intriguing error has been observed in toddlers presented with a 3-location search task involving invisible displacements of an object, namely, the C-not-B task. In 3 experiments, the authors investigated the dynamics of the attentional focus process that is suspected to be involved in this task. In Experiment 1, 2.5-year-old children were…

  3. And Yet They Act Together: Interpersonal Perception Modulates Visuo-Motor Interference and Mutual Adjustments during a Joint-Grasping Task

    PubMed Central

    Sacheli, Lucia Maria; Candidi, Matteo; Pavone, Enea Francesco; Tidoni, Emmanuele; Aglioti, Salvatore Maria

    2012-01-01

    Prediction of “when” a partner will act and “what” he is going to do is crucial in joint-action contexts. However, studies on face-to-face interactions in which two people have to mutually adjust their movements in time and space are lacking. Moreover, while studies on passive observation have shown that somato-motor simulative processes are disrupted when the observed actor is perceived as an out-group or unfair individual, the impact of interpersonal perception on joint-actions has never been directly addressed. Here we explored this issue by comparing the ability of pairs of participants who did or did not undergo an interpersonal perception manipulation procedure to synchronise their reach-to-grasp movements during: i) a guided interaction, requiring pure temporal reciprocal coordination, and ii) a free interaction, requiring both time and space adjustments. Behavioural results demonstrate that while in neutral situations free and guided interactions are equally challenging for participants, a negative interpersonal relationship improves performance in guided interactions at the expense of the free interactive ones. This was paralleled at the kinematic level by the absence of movement corrections and by low movement variability in these participants, indicating that partners cooperating within a negative interpersonal bond executed the cooperative task on their own, without reciprocally adapting to the partner's motor behaviour. Crucially, participants' performance in the free interaction improved in the manipulated group during the second experimental session while partners became interdependent as suggested by higher movement variability and by the appearance of interference between the self-executed actions and those observed in the partner. Our study expands current knowledge about on-line motor interactions by showing that visuo-motor interference effects, mutual motor adjustments and motor-learning mechanisms are influenced by social perception

  4. Cortisol responses to a group public speaking task for adolescents: variations by age, gender, and race.

    PubMed

    Hostinar, Camelia E; McQuillan, Mollie T; Mirous, Heather J; Grant, Kathryn E; Adam, Emma K

    2014-12-01

    Laboratory social stress tests involving public speaking challenges are widely used for eliciting an acute stress response in older children, adolescents, and adults. Recently, a group protocol for a social stress test (the Trier Social Stress Test for Groups, TSST-G) was shown to be effective in adults and is dramatically less time-consuming and resource-intensive compared to the single-subject version of the task. The present study sought to test the feasibility and effectiveness of an adapted group public speaking task conducted with a racially diverse, urban sample of U.S. adolescents (N=191; 52.4% female) between the ages of 11 and 18 (M=14.4 years, SD=1.93). Analyses revealed that this Group Public Speaking Task for Adolescents (GPST-A) provoked a significant increase in cortisol production (on average, approximately 60% above baseline) and in self-reported negative affect, while at the same time avoiding excessive stress responses that would raise ethical concerns or provoke substantial participant attrition. Approximately 63.4% of participants exhibited an increase in cortisol levels in response to the task, with 59.2% of the total sample showing a 10% or greater increase from baseline. Results also suggested that groups of five adolescents might be ideal for achieving more uniform cortisol responses across various serial positions for speech delivery. Basal cortisol levels increased with age and participants belonging to U.S. national minorities tended to have either lower basal cortisol or diminished cortisol reactivity compared to non-Hispanic Whites. This protocol facilitates the recruitment of larger sample sizes compared to prior research and may show great utility in answering new questions about adolescent stress reactivity and development. PMID:25218656

  5. Cortisol Responses to a Group Public Speaking Task for Adolescents: Variations by Age, Gender, and Race

    PubMed Central

    Hostinar, Camelia E.; McQuillan, Mollie T.; Mirous, Heather J.; Grant, Kathryn E.; Adam, Emma K.

    2014-01-01

    Laboratory social stress tests involving public speaking challenges are widely used for eliciting an acute stress response in older children, adolescents, and adults. Recently, a group protocol for a social stress test (the Trier Social Stress Test for Groups, TSST-G) was shown to be effective in adults and is dramatically less time-consuming and resource-intensive compared to the single-subject version of the task. The present study sought to test the feasibility and effectiveness of an adapted group public speaking task conducted with a racially diverse, urban sample of U.S. adolescents (N = 191; 52.4% female) between the ages of 11 and 18 (M = 14.4 years, SD = 1.93). Analyses revealed that this Group Public Speaking Task for Adolescents (GPST-A) provoked a significant increase in cortisol production (on average, approximately 60% above baseline) and in self-reported negative affect, while at the same time avoiding excessive stress responses that would raise ethical concerns or provoke substantial participant attrition. Approximately 63.4% of participants exhibited an increase in cortisol levels in response to the task, with 59.2% of the total sample showing a 10% or greater increase from baseline. Results also suggested that groups of 5 adolescents might be ideal for achieving more uniform cortisol responses across various serial positions for speech delivery. Basal cortisol levels increased with age and participants belonging to U.S. national minorities tended to have either lower basal cortisol or diminished cortisol reactivity compared to non-Hispanic Whites. This protocol facilitates the recruitment of larger sample sizes compared to prior research and may show great utility in answering new questions about adolescent stress reactivity and development. PMID:25218656

  6. Space Shuttle Redesigned Solid Rocket Motor nozzle natural frequency variations with burn time

    NASA Technical Reports Server (NTRS)

    Lui, C. Y.; Mason, D. R.

    1991-01-01

    The effects of erosion and thermal degradation on the Space Shuttle Redesigned Solid Rocket Motor (RSRM) nozzle's structural dynamic characteristics were analytically evaluated. Also considered was stiffening of the structure due to internal pressurization. A detailed NASTRAN finite element model of the nozzle was developed and used to evaluate the influence of these effects at several discrete times during motor burn. Methods were developed for treating erosion and thermal degradation, and a procedure was developed to account for internal pressure stiffening using differential stiffness matrix techniques. Results were verified using static firing test accelerometer data. Fast Fourier Transform and Maximum Entropy Method techniques were applied to the data to generate waterfall plots which track modal frequencies with burn time. Results indicate that the lower frequency nozzle 'vectoring' modes are only slightly affected by erosion, thermal effects and internal pressurization. The higher frequency shell modes of the nozzle are, however, significantly reduced.

  7. Solid-propellant rocket motor internal ballistic performance variation analysis, phase 2

    NASA Technical Reports Server (NTRS)

    Sforzini, R. H.; Foster, W. A., Jr.

    1976-01-01

    The Monte Carlo method was used to investigate thrust imbalance and its first time derivative throughtout the burning time of pairs of solid rocket motors firing in parallel. Results obtained compare favorably with Titan 3 C flight performance data. Statistical correlations of the thrust imbalance at various times with corresponding nominal trace slopes suggest several alternative methods of predicting thrust imbalance. The effect of circular-perforated grain deformation on internal ballistics is discussed, and a modified design analysis computer program which permits such an evaluation is presented. Comparisons with SRM firings indicate that grain deformation may account for a portion of the so-called scale factor on burning rate between large motors and strand burners or small ballistic test motors. Thermoelastic effects on burning rate are also investigated. Burning surface temperature is calculated by coupling the solid phase energy equation containing a strain rate term with a model of gas phase combustion zone using the Zeldovich-Novozhilov technique. Comparisons of solutions with and without the strain rate term indicate a small but possibly significant effect of the thermoelastic coupling.

  8. Group-level variations in motor representation areas of thenar and anterior tibial muscles: Navigated Transcranial Magnetic Stimulation Study.

    PubMed

    Niskanen, Eini; Julkunen, Petro; Säisänen, Laura; Vanninen, Ritva; Karjalainen, Pasi; Könönen, Mervi

    2010-08-01

    Navigated transcranial magnetic stimulation (TMS) can be used to stimulate functional cortical areas at precise anatomical location to induce measurable responses. The stimulation has commonly been focused on anatomically predefined motor areas: TMS of that area elicits a measurable muscle response, the motor evoked potential. In clinical pathologies, however, the well-known homunculus somatotopy theory may not be straightforward, and the representation area of the muscle is not fixed. Traditionally, the anatomical locations of TMS stimulations have not been reported at the group level in standard space. This study describes a methodology for group-level analysis by investigating the normal representation areas of thenar and anterior tibial muscle in the primary motor cortex. The optimal representation area for these muscles was mapped in 59 healthy right-handed subjects using navigated TMS. The coordinates of the optimal stimulation sites were then normalized into standard space to determine the representation areas of these muscles at the group-level in healthy subjects. Furthermore, 95% confidence interval ellipsoids were fitted into the optimal stimulation site clusters to define the variation between subjects in optimal stimulation sites. The variation was found to be highest in the anteroposterior direction along the superior margin of the precentral gyrus. These results provide important normative information for clinical studies assessing changes in the functional cortical areas because of plasticity of the brain. Furthermore, it is proposed that the presented methodology to study TMS locations at the group level on standard space will be a suitable tool for research purposes in population studies. PMID:20082330

  9. STUDIES OF THE EFFECTS OF SYSTEMATIC VARIATION OF CERTAIN CONDITIONS RELATED TO LEARNING. III. TASK CONDITIONS.

    ERIC Educational Resources Information Center

    BLAKE, KATHRYN A.; AND OTHERS

    A SERIES OF RESEARCH PROGRAMS CONCERNED WITH THE EFFECTS OF SYSTEMATIC VARIATIONS OF CERTAIN CONDITIONS RELATED TO LEARNING HAS BEEN CONDUCTED. PROJECTS PREVIOUSLY REPORTED INCLUDED TWO INVESTIGATIONS OF REINFORCEMENT AND SUBJECT VARIABLES AND ONE ON THE STUDY OF PRACTICE AND SUBJECT VARIABLES. THE NATURE OF THE OVERALL PROGRAM WAS DISCUSSED IN…

  10. Improving the performance of an EEG-based motor imagery brain computer interface using task evoked changes in pupil diameter.

    PubMed

    Rozado, David; Duenser, Andreas; Howell, Ben

    2015-01-01

    For individuals with high degrees of motor disability or locked-in syndrome, it is impractical or impossible to use mechanical switches to interact with electronic devices. Brain computer interfaces (BCIs) can use motor imagery to detect interaction intention from users but lack the accuracy of mechanical switches. Hence, there exists a strong need to improve the accuracy of EEG-based motor imagery BCIs attempting to implement an on/off switch. Here, we investigate how monitoring the pupil diameter of a person as a psycho-physiological parameter in addition to traditional EEG channels can improve the classification accuracy of a switch-like BCI. We have recently noticed in our lab (work not yet published) how motor imagery is associated with increases in pupil diameter when compared to a control rest condition. The pupil diameter parameter is easily accessible through video oculography since most gaze tracking systems report pupil diameter invariant to head position. We performed a user study with 30 participants using a typical EEG based motor imagery BCI. We used common spatial patterns to separate motor imagery, signaling movement intention, from a rest control condition. By monitoring the pupil diameter of the user and using this parameter as an additional feature, we show that the performance of the classifier trying to discriminate motor imagery from a control condition improves over the traditional approach using just EEG derived features. Given the limitations of EEG to construct highly robust and reliable BCIs, we postulate that multi-modal approaches, such as the one presented here that monitor several psycho-physiological parameters, can be a successful strategy in making BCIs more accurate and less vulnerable to constraints such as requirements for long training sessions or high signal to noise ratio of electrode channels. PMID:25816285

  11. Improving the Performance of an EEG-Based Motor Imagery Brain Computer Interface Using Task Evoked Changes in Pupil Diameter

    PubMed Central

    Rozado, David; Duenser, Andreas; Howell, Ben

    2015-01-01

    For individuals with high degrees of motor disability or locked-in syndrome, it is impractical or impossible to use mechanical switches to interact with electronic devices. Brain computer interfaces (BCIs) can use motor imagery to detect interaction intention from users but lack the accuracy of mechanical switches. Hence, there exists a strong need to improve the accuracy of EEG-based motor imagery BCIs attempting to implement an on/off switch. Here, we investigate how monitoring the pupil diameter of a person as a psycho-physiological parameter in addition to traditional EEG channels can improve the classification accuracy of a switch-like BCI. We have recently noticed in our lab (work not yet published) how motor imagery is associated with increases in pupil diameter when compared to a control rest condition. The pupil diameter parameter is easily accessible through video oculography since most gaze tracking systems report pupil diameter invariant to head position. We performed a user study with 30 participants using a typical EEG based motor imagery BCI. We used common spatial patterns to separate motor imagery, signaling movement intention, from a rest control condition. By monitoring the pupil diameter of the user and using this parameter as an additional feature, we show that the performance of the classifier trying to discriminate motor imagery from a control condition improves over the traditional approach using just EEG derived features. Given the limitations of EEG to construct highly robust and reliable BCIs, we postulate that multi-modal approaches, such as the one presented here that monitor several psycho-physiological parameters, can be a successful strategy in making BCIs more accurate and less vulnerable to constraints such as requirements for long training sessions or high signal to noise ratio of electrode channels. PMID:25816285

  12. Exploring the Fundamental Dynamics of Error-Based Motor Learning Using a Stationary Predictive-Saccade Task

    PubMed Central

    Wong, Aaron L.; Shelhamer, Mark

    2011-01-01

    The maintenance of movement accuracy uses prior performance errors to correct future motor plans; this motor-learning process ensures that movements remain quick and accurate. The control of predictive saccades, in which anticipatory movements are made to future targets before visual stimulus information becomes available, serves as an ideal paradigm to analyze how the motor system utilizes prior errors to drive movements to a desired goal. Predictive saccades constitute a stationary process (the mean and to a rough approximation the variability of the data do not vary over time, unlike a typical motor adaptation paradigm). This enables us to study inter-trial correlations, both on a trial-by-trial basis and across long blocks of trials. Saccade errors are found to be corrected on a trial-by-trial basis in a direction-specific manner (the next saccade made in the same direction will reflect a correction for errors made on the current saccade). Additionally, there is evidence for a second, modulating process that exhibits long memory. That is, performance information, as measured via inter-trial correlations, is strongly retained across a large number of saccades (about 100 trials). Together, this evidence indicates that the dynamics of motor learning exhibit complexities that must be carefully considered, as they cannot be fully described with current state-space (ARMA) modeling efforts. PMID:21966462

  13. Which Factors Affect Hand Selection in Children's Grasping in Hemispace? Combined Effects of Task Demand and Motor Dominance

    ERIC Educational Resources Information Center

    Leconte, Pascale; Fagard, Jacqueline

    2006-01-01

    Sixty-five right- and left-handed preschool and school children were tested on three reach-to-grasp tasks of different levels of complexity, performed in three space locations. Our goal was to evaluate how the effect of attentional information related to object location interacts with task complexity and degree of handedness on children's hand…

  14. Task Analyses and Objectives for Trainable Mentally Retarded: Communication Skills [and] Daily Living Skills [and] Motor Skills [and] Quantitative Skills.

    ERIC Educational Resources Information Center

    Minneapolis Public Schools, Minn.

    The document is comprised of objectives and information on step-by-step tasks for instruction of trainable mentally retarded students and for development of individualized education programs. Each objective includes information on materials, behavioral criteria, and a chart to assess task analyzed steps. Four main skill areas are covered (sample…

  15. Transfer from Audiovisual Pretraining to a Continuous Perceptual Motor Task. Final Report for Period June 1972 - August 1973.

    ERIC Educational Resources Information Center

    Wood, Milton E.; Gerlach, Vernon S.

    A technique was developed for providing transfer-of-training from a form of audiovisual pretraining to an instrument flight task. The continuous flight task was broken into discrete categories of flight; each category combined an instrument configuration with a return-to-criterion aircraft control response. Three methods of sequencing categories…

  16. Anodal transcranial direct current stimulation enhances the effects of motor imagery training in a finger tapping task.

    PubMed

    Saimpont, Arnaud; Mercier, Catherine; Malouin, Francine; Guillot, Aymeric; Collet, Christian; Doyon, Julien; Jackson, Philip L

    2016-01-01

    Motor imagery (MI) training and anodal transcranial direct current stimulation (tDCS) applied over the primary motor cortex can independently improve hand motor function. The main objective of this double-blind, sham-controlled study was to examine whether anodal tDCS over the primary motor cortex could enhance the effects of MI training on the learning of a finger tapping sequence. Thirty-six right-handed young human adults were assigned to one of three groups: (i) who performed MI training combined with anodal tDCS applied over the primary motor cortex; (ii) who performed MI training combined with sham tDCS; and (iii) who received tDCS while reading a book. The MI training consisted of mentally rehearsing an eight-item complex finger sequence for 13 min. Before (Pre-test), immediately after (Post-test 1), and at 90 min after (Post-test 2) MI training, the participants physically repeated the sequence as fast and as accurately as possible. An anova showed that the number of sequences correctly performed significantly increased between Pre-test and Post-test 1 and remained stable at Post-test 2 in the three groups (P < 0.001). Furthermore, the percentage increase in performance between Pre-test and Post-test 1 and Post-test 2 was significantly greater in the group that performed MI training combined with anodal tDCS compared with the other two groups (P < 0.05). As a potential physiological explanation, the synaptic strength within the primary motor cortex could have been reinforced by the association of MI training and tDCS compared with MI training alone and tDCS alone. PMID:26540137

  17. Continued investigation of solid propulsion economics. Task 1B: Large solid rocket motor case fabrication methods - Supplement process complexity factor cost technique

    NASA Technical Reports Server (NTRS)

    Baird, J.

    1967-01-01

    This supplement to Task lB-Large Solid Rocket Motor Case Fabrication Methods supplies additional supporting cost data and discusses in detail the methodology that was applied to the task. For the case elements studied, the cost was found to be directly proportional to the Process Complexity Factor (PCF). The PCF was obtained for each element by identifying unit processes that are common to the elements and their alternative manufacturing routes, by assigning a weight to each unit process, and by summing the weighted counts. In three instances of actual manufacture, the actual cost per pound equaled the cost estimate based on PCF per pound, but this supplement, recognizes that the methodology is of limited, rather than general, application.

  18. Parametric study of potential early commercial MHD power plants. Task 3: Parameter variation of plant size

    NASA Technical Reports Server (NTRS)

    Hals, F. A.

    1981-01-01

    Plants with a nominal output of 200 and 500 MWe and conforming to the same design configuration as the Task II plant were investigated. This information is intended to permit an assessment of the competitiveness of first generation MHD/steam plants with conventional steam plants over the range of 200 to 1000 MWe. The results show that net plant efficiency of the MHD plant is significantly higher than a conventional steam plant of corresponding size. The cost of electricity is also less for the MHD plant over the entire plant size range. As expected, the cost differential is higher for the larger plant and decreases with plant size. Even at the 200 MWe capacity, however, the differential in COE between the MHD plant and the conventional plant is sufficient attractive to warrant serious consideration. Escalating fuel costs will enhance the competitive position of MHD plants because they can utilize the fuel more efficiently than conventional steam plants.

  19. The Influence of rTMS over Prefrontal and Motor Areas in a Morphological Task: Grammatical vs. Semantic Effects

    ERIC Educational Resources Information Center

    LoGerfo, Emanuele; Oliveri, Massimiliano; Torriero, Sara; Salerno, Silvia; Koch, Giacomo; Caltagirone, Carlo

    2008-01-01

    We investigated the differential role of two frontal regions in the processing of grammatical and semantic knowledge. Given the documented specificity of the prefrontal cortex for the grammatical class of verbs, and of the primary motor cortex for the semantic class of action words, we sought to investigate whether the prefrontal cortex is also…

  20. Genetic variation in the two-pore domain potassium channel, TASK-1, may contribute to an atrial substrate for arrhythmogenesis.

    PubMed

    Liang, Bo; Soka, Magdalena; Christensen, Alex Horby; Olesen, Morten S; Larsen, Anders P; Knop, Filip K; Wang, Fan; Nielsen, Jonas B; Andersen, Martin N; Humphreys, David; Mann, Stefan A; Huttner, Inken G; Vandenberg, Jamie I; Svendsen, Jesper H; Haunsø, Stig; Preiss, Thomas; Seebohm, Guiscard; Olesen, Søren-Peter; Schmitt, Nicole; Fatkin, Diane

    2014-02-01

    The two-pore domain potassium channel, K2P3.1 (TASK-1) modulates background conductance in isolated human atrial cardiomyocytes and has been proposed as a potential drug target for atrial fibrillation (AF). TASK-1 knockout mice have a predominantly ventricular phenotype however, and effects of TASK-1 inactivation on atrial structure and function have yet to be demonstrated in vivo. The extent to which genetic variation in KCNK3, that encodes TASK-1, might be a determinant of susceptibility to AF is also unknown. To address these questions, we first evaluated the effects of transient knockdown of the zebrafish kcnk3a and kcnk3b genes and cardiac phenotypes were evaluated using videomicroscopy. Combined kcnk3a and kcnk3b knockdown in 72 hour post fertilization embryos resulted in lower heart rate (p<0.001), marked increase in atrial diameter (p<0.001), and mild increase in end-diastolic ventricular diameter (p=0.01) when compared with control-injected embryos. We next performed genetic screening of KCNK3 in two independent AF cohorts (373 subjects) and identified three novel KCNK3 variants. Two of these variants, present in one proband with familial AF, were located at adjacent nucleotides in the Kozak sequence and reduced expression of an engineered reporter. A third missense variant, V123L, in a patient with lone AF, reduced resting membrane potential and altered pH sensitivity in patch-clamp experiments, with structural modeling predicting instability in the vicinity of the TASK-1 pore. These in vitro data suggest that the double Kozak variants and V123L will have loss-of-function effects on ITASK. Cardiac action potential modeling predicted that reduced ITASK prolongs atrial action potential duration, and that this is potentiated by reciprocal changes in activity of other ion channel currents. Our findings demonstrate the functional importance of ITASK in the atrium and suggest that inactivation of TASK-1 may have diverse effects on atrial size and

  1. Copy Number Variations in the Survival Motor Neuron Genes: Implications for Spinal Muscular Atrophy and Other Neurodegenerative Diseases

    PubMed Central

    Butchbach, Matthew E. R.

    2016-01-01

    Proximal spinal muscular atrophy (SMA), a leading genetic cause of infant death worldwide, is an early-onset, autosomal recessive neurodegenerative disease characterized by the loss of spinal α-motor neurons. This loss of α-motor neurons is associated with muscle weakness and atrophy. SMA can be classified into five clinical grades based on age of onset and severity of the disease. Regardless of clinical grade, proximal SMA results from the loss or mutation of SMN1 (survival motor neuron 1) on chromosome 5q13. In humans a large tandem chromosomal duplication has lead to a second copy of the SMN gene locus known as SMN2. SMN2 is distinguishable from SMN1 by a single nucleotide difference that disrupts an exonic splice enhancer in exon 7. As a result, most of SMN2 mRNAs lack exon 7 (SMNΔ7) and produce a protein that is both unstable and less than fully functional. Although only 10–20% of the SMN2 gene product is fully functional, increased genomic copies of SMN2 inversely correlates with disease severity among individuals with SMA. Because SMN2 copy number influences disease severity in SMA, there is prognostic value in accurate measurement of SMN2 copy number from patients being evaluated for SMA. This prognostic value is especially important given that SMN2 copy number is now being used as an inclusion criterion for SMA clinical trials. In addition to SMA, copy number variations (CNVs) in the SMN genes can affect the clinical severity of other neurological disorders including amyotrophic lateral sclerosis (ALS) and progressive muscular atrophy (PMA). This review will discuss how SMN1 and SMN2 CNVs are detected and why accurate measurement of SMN1 and SMN2 copy numbers is relevant for SMA and other neurodegenerative diseases. PMID:27014701

  2. Variation in Vocal-Motor Development in Infant Siblings of Children with Autism

    PubMed Central

    Wozniak, Robert H.

    2012-01-01

    In this study we examined early motor, vocal, and communicative development in a group of younger siblings of children diagnosed with autism (Infant Siblings). Infant Siblings and no-risk comparison later-born infants were videotaped at home with a primary caregiver each month from 5 to 14 months, with follow-up at 18 months. As a group, Infant Siblings were delayed in the onset of early developmental milestones and spent significantly less time in a greater number of postures, suggestive of relative postural instability. In addition, they demonstrated attenuated patterns of change in rhythmic arm activity around the time of reduplicated babble onset; and they were highly likely to exhibit delayed language development at 18 months. PMID:17191097

  3. Task-specific brain reorganization in motor recovery induced by a hybrid-rehabilitation combining training with brain stimulation after stroke.

    PubMed

    Koganemaru, Satoko; Sawamoto, Nobukatsu; Aso, Toshihiko; Sagara, Akiko; Ikkaku, Tomoko; Shimada, Kenji; Kanematsu, Madoka; Takahashi, Ryosuke; Domen, Kazuhisa; Fukuyama, Hidenao; Mima, Tatsuya

    2015-03-01

    Recently, we have developed a new hybrid-rehabilitation combining 5Hz repetitive transcranial magnetic stimulation and extensor motor training of the paretic upper-limb for stroke patients with flexor hypertonia. We previously showed that the extensor-specific plastic change in M1 was associated with beneficial effects of our protocol (Koganemaru et al., 2010). Here, we investigated whether extensor-specific multiregional brain reorganization occurred after the hybrid-rehabilitation using functional magnetic resonance imaging. Eleven chronic stroke patients were scanned while performing upper-limb extensor movements. Untrained flexor movements were used as a control condition. The scanning and clinical assessments were done before, immediately and 2 weeks after the hybrid-rehabilitation. As a result, during the trained extensor movements, the imaging analysis showed a significant reduction of brain activity in the ipsilesional sensorimotor cortex, the contralesional cingulate motor cortex and the contralesional premotor cortex in association with functional improvements of the paretic hands. The activation change was not found for the control condition. Our results suggested that use-dependent plasticity induced by repetitive motor training with brain stimulation might be related to task-specific multi-regional brain reorganization. It provides a key to understand why repetitive training of the target action is one of the most powerful rehabilitation strategies to help patients. PMID:25450315

  4. Association of Genetic Variation in Cannabinoid Mechanisms and Gastric Motor Functions and Satiation in Overweight and Obesity

    PubMed Central

    Vazquez-Roque, Maria I.; Camilleri, Michael; Vella, Adrian; Carlson, Paula; Laugen, Jeanette; Zinsmeister, Alan R.

    2011-01-01

    Objective The endocannabinoid system is associated with food intake. Genes regulating cannabinoids are associated with obesity. Hypothesis Genetic variations in fatty acid amide hydroxylase (FAAH), and cannabinoid receptor 1 (CNR1) are associated with satiation and gastric motor function. Methods In 62 overweight or obese adults of European ancestry, single nucleotide polymorphisms (SNPs) of rs806378 (nearest gene CNR1) and rs324420 (nearest gene FAAH) were genotyped and the associations with gastric emptying (GE) of solids and liquids, gastric volume (GV) and satiation (maximum tolerated volume [MTV] and symptoms after Ensure® nutrient drink test) were explored using a dominant genetic model, with gender and BMI as co-variates. Results rs806378 CC genotype was associated with reduced fasting GV (210.2±11.0 mL for CC group compared to 242.5±11.3 mL for CT/TT group, p=0.031) and a modest, non-significant association with GE of solids (p=0.17). rs324420 genotype was not associated with alterations in gastric motor functions; however there was a difference in the Ensure® MTV (1174.6±37.2 mL for CC group compared to 1395.0±123.1 mL for CA/AA group, p= 0.046) suggesting higher satiation with CC genotype. Conclusion Our data suggest that CNR1 and FAAH are associated with altered gastric functions or satiation that may predispose to obesity. PMID:21477106

  5. The effect of a motor skills training program in the improvement of practiced and non-practiced tasks performance in children with developmental coordination disorder (DCD).

    PubMed

    Farhat, Faiçal; Hsairi, Ines; Baati, Hamza; Smits-Engelsman, B C M; Masmoudi, Kaouthar; Mchirgui, Radhouane; Triki, Chahnez; Moalla, Wassim

    2016-04-01

    The purpose of the present study was to examine the effect of a group-based task oriented skills training program on motor and physical ability for children with DCD. It was also investigated if there was an effect on fine motor and handwriting tasks that were not specifically practiced during the training program. Forty-one children aged 6-10years took part in this study. Children were assigned to three groups: an experimental training group consisting of 14 children with DCD, a control non-training group consisted of 13 children with DCD and a control non-training group consisting of 14 typically developed children. The measurements included were, the Movement Assessment Battery for Children (MABC), the Modified Agility Test (MAT), the Triple Hop Distance (THD), the 5 Jump-test (5JT) and the Handwriting Performance Test. All measures were administered pre and post an 8-week training program. The results showed that 10 children of the DCD training-group improved their performance in MABC test, attaining a score above the 15th percentile after their participation in the training program. DCD training-group showed a significant improvement on all cluster scores (manual dexterity (t (13)=5.3, p<.001), ball skills (t (13)=2.73, p<.05) and balance (t (13)=5.13, p<.001). Significant performance improvements were also found in MAT, THD, 5JT (t (13)=-4.55; p<.01), handwriting quality (t (12)=-2.73; p<.05) and speed (t (12)=-4.2; p<.01) after the training program. In conclusion, improvement in both practiced and non-practiced skills, in the training program, may reflect improvement in motor skill but also transfer to other skills. PMID:26703915

  6. A novel semi-immersive virtual reality visuo-motor task activates ventrolateral prefrontal cortex: a functional near-infrared spectroscopy study

    NASA Astrophysics Data System (ADS)

    Basso Moro, Sara; Carrieri, Marika; Avola, Danilo; Brigadoi, Sabrina; Lancia, Stefania; Petracca, Andrea; Spezialetti, Matteo; Ferrari, Marco; Placidi, Giuseppe; Quaresima, Valentina

    2016-06-01

    Objective. In the last few years, the interest in applying virtual reality systems for neurorehabilitation is increasing. Their compatibility with neuroimaging techniques, such as functional near-infrared spectroscopy (fNIRS), allows for the investigation of brain reorganization with multimodal stimulation and real-time control of the changes occurring in brain activity. The present study was aimed at testing a novel semi-immersive visuo-motor task (VMT), which has the features of being adopted in the field of neurorehabilitation of the upper limb motor function. Approach. A virtual environment was simulated through a three-dimensional hand-sensing device (the LEAP Motion Controller), and the concomitant VMT-related prefrontal cortex (PFC) response was monitored non-invasively by fNIRS. Upon the VMT, performed at three different levels of difficulty, it was hypothesized that the PFC would be activated with an expected greater level of activation in the ventrolateral PFC (VLPFC), given its involvement in the motor action planning and in the allocation of the attentional resources to generate goals from current contexts. Twenty-one subjects were asked to move their right hand/forearm with the purpose of guiding a virtual sphere over a virtual path. A twenty-channel fNIRS system was employed for measuring changes in PFC oxygenated-deoxygenated hemoglobin (O2Hb/HHb, respectively). Main results. A VLPFC O2Hb increase and a concomitant HHb decrease were observed during the VMT performance, without any difference in relation to the task difficulty. Significance. The present study has revealed a particular involvement of the VLPFC in the execution of the novel proposed semi-immersive VMT adoptable in the neurorehabilitation field.

  7. Cortical Modulation of Motor Control Biofeedback among the Elderly with High Fall Risk during a Posture Perturbation Task with Augmented Reality

    PubMed Central

    Chang, Chun-Ju; Yang, Tsui-Fen; Yang, Sai-Wei; Chern, Jen-Suh

    2016-01-01

    The cerebral cortex provides sensorimotor integration and coordination during motor control of daily functional activities. Power spectrum density based on electroencephalography (EEG) has been employed as an approach that allows an investigation of the spatial–temporal characteristics of neuromuscular modulation; however, the biofeedback mechanism associated with cortical activation during motor control remains unclear among elderly individuals. Thirty one community-dwelling elderly participants were divided into low fall-risk potential (LF) and high fall-risk potential (HF) groups based upon the results obtained from a receiver operating characteristic analysis of the ellipse area of the center of pressure. Electroencephalography (EEG) was performed while the participants stood on a 6-degree-of-freedom Stewart platform, which generated continuous perturbations and done either with or without the virtual reality scene. The present study showed that when there was visual stimulation and poor somatosensory coordination, a higher level of cortical response was activated in order to keep postural balance. The elderly participants in the LF group demonstrated a significant and strong correlation between postural-related cortical regions; however, the elderly individuals in the HF group did not show such a relationship. Moreover, we were able to clarify the roles of various brainwave bands functioning in motor control. Specifically, the gamma and beta bands in the parietal–occipital region facilitate the high-level cortical modulation and sensorimotor integration, whereas the theta band in the frontal–central region is responsible for mediating error detection during perceptual motor tasks. Finally, the alpha band is associated with processing visual challenges in the occipital lobe.With a variety of motor control demands, increment in brainwave band coordination is required to maintain postural stability. These investigations shed light on the cortical modulation

  8. Cortical Modulation of Motor Control Biofeedback among the Elderly with High Fall Risk during a Posture Perturbation Task with Augmented Reality.

    PubMed

    Chang, Chun-Ju; Yang, Tsui-Fen; Yang, Sai-Wei; Chern, Jen-Suh

    2016-01-01

    The cerebral cortex provides sensorimotor integration and coordination during motor control of daily functional activities. Power spectrum density based on electroencephalography (EEG) has been employed as an approach that allows an investigation of the spatial-temporal characteristics of neuromuscular modulation; however, the biofeedback mechanism associated with cortical activation during motor control remains unclear among elderly individuals. Thirty one community-dwelling elderly participants were divided into low fall-risk potential (LF) and high fall-risk potential (HF) groups based upon the results obtained from a receiver operating characteristic analysis of the ellipse area of the center of pressure. Electroencephalography (EEG) was performed while the participants stood on a 6-degree-of-freedom Stewart platform, which generated continuous perturbations and done either with or without the virtual reality scene. The present study showed that when there was visual stimulation and poor somatosensory coordination, a higher level of cortical response was activated in order to keep postural balance. The elderly participants in the LF group demonstrated a significant and strong correlation between postural-related cortical regions; however, the elderly individuals in the HF group did not show such a relationship. Moreover, we were able to clarify the roles of various brainwave bands functioning in motor control. Specifically, the gamma and beta bands in the parietal-occipital region facilitate the high-level cortical modulation and sensorimotor integration, whereas the theta band in the frontal-central region is responsible for mediating error detection during perceptual motor tasks. Finally, the alpha band is associated with processing visual challenges in the occipital lobe.With a variety of motor control demands, increment in brainwave band coordination is required to maintain postural stability. These investigations shed light on the cortical modulation of

  9. Solid propellant rocket motor internal ballistics performance variation analysis, phase 3

    NASA Technical Reports Server (NTRS)

    Sforzini, R. H.; Foster, W. A., Jr.; Murph, J. E.; Adams, G. W., Jr.

    1977-01-01

    Results of research aimed at improving the predictability of off nominal internal ballistics performance of solid propellant rocket motors (SRMs) including thrust imbalance between two SRMs firing in parallel are reported. The potential effects of nozzle throat erosion on internal ballistic performance were studied and a propellant burning rate low postulated. The propellant burning rate model when coupled with the grain deformation model permits an excellent match between theoretical results and test data for the Titan IIIC, TU455.02, and the first Space Shuttle SRM (DM-1). Analysis of star grain deformation using an experimental model and a finite element model shows the star grain deformation effects for the Space Shuttle to be small in comparison to those of the circular perforated grain. An alternative technique was developed for predicting thrust imbalance without recourse to the Monte Carlo computer program. A scaling relationship used to relate theoretical results to test results may be applied to the alternative technique of predicting thrust imbalance or to the Monte Carlo evaluation. Extended investigation into the effect of strain rate on propellant burning rate leads to the conclusion that the thermoelastic effect is generally negligible for both steadily increasing pressure loads and oscillatory loads.

  10. Promoting neuroplasticity for motor rehabilitation after stroke: considering the effects of aerobic exercise and genetic variation on brain-derived neurotrophic factor.

    PubMed

    Mang, Cameron S; Campbell, Kristin L; Ross, Colin J D; Boyd, Lara A

    2013-12-01

    Recovery of motor function after stroke involves relearning motor skills and is mediated by neuroplasticity. Recent research has focused on developing rehabilitation strategies that facilitate such neuroplasticity to maximize functional outcome poststroke. Although many molecular signaling pathways are involved, brain-derived neurotrophic factor (BDNF) has emerged as a key facilitator of neuroplasticity involved in motor learning and rehabilitation after stroke. Thus, rehabilitation strategies that optimize BDNF effects on neuroplasticity may be especially effective for improving motor function poststroke. Two potential poststroke rehabilitation strategies that consider the importance of BDNF are the use of aerobic exercise to enhance brain function and the incorporation of genetic information to individualize therapy. Converging evidence demonstrates that aerobic exercise increases BDNF production and consequently enhances learning and memory processes. Nevertheless, a common genetic variant reduces activity-dependent secretion of the BDNF protein. Thus, BDNF gene variation may affect response to motor rehabilitation training and potentially modulate the effects of aerobic exercise on neuroplasticity. This perspective article discusses evidence that aerobic exercise promotes neuroplasticity by increasing BDNF production and considers how aerobic exercise may facilitate the acquisition and retention of motor skills for poststroke rehabilitation. Next, the impact of the BDNF gene val66met polymorphism on motor learning and response to rehabilitation is explored. It is concluded that the effects of aerobic exercise on BDNF and motor learning may be better exploited if aerobic exercise is paired more closely in time with motor training. Additionally, information about BDNF genotype could provide insight into the type and magnitude of effects that aerobic exercise may have across individuals and potentially help guide an individualized prescription of aerobic exercise

  11. Solid-propellant rocket motor internal ballistics performance variation analysis, phase 5

    NASA Technical Reports Server (NTRS)

    Sforzini, R. H.; Murph, J. E.

    1980-01-01

    The results of research aimed at improving the predictability of internal ballistics performance of solid-propellant rocket motors (SRM's) including thrust imbalance between two SRM's firing in parallel are presented. Static test data from the first six Space Shuttle SRM's is analyzed using a computer program previously developed for this purpose. The program permits intentional minor design biases affecting the imbalance between any two SMR's to be removed. Results for the last four of the six SRM's, with only the propellant bulk temperature as a non-random variable, are generally within limits predicted by theory. Extended studies of internal ballistic performance of single SRM's are presented based on an earlier developed mathematical model which includes an assessment of grain deformation. The erosive burning rate law used in the model is upgraded and made more general. Excellent results are obtained in predictions of the performances of five different SRM's of quite different sizes and configurations. These SRM's all employ PBAN type propellants with ammonium perchlorate oxidizer and 16 to 20% aluminum except one which uses carboxyl terminated butadiene binder. The only non-calculated parameters in the burning rate equations that are changed for the different SRM's are the zero crossflow velocity burning rate coefficients and exponents. The results, in general, confirm the importance of grain deformation. The improved internal ballistic model makes practical development of an effective computer program for application of an optimization technique to SRM design which is also demonstrated. The program uses a pattern search technique to minimize the difference between a desired thrust-time trace and one calculated based on the internal ballistic model.

  12. Food-cue affected motor response inhibition and self-reported dieting success: a pictorial affective shifting task

    PubMed Central

    Meule, Adrian; Lutz, Annika P. C.; Krawietz, Vera; Stützer, Judith; Vögele, Claus; Kübler, Andrea

    2014-01-01

    Behavioral inhibition is one of the basic facets of executive functioning and is closely related to self-regulation. Impulsive reactions, that is, low inhibitory control, have been associated with higher body mass index (BMI), binge eating, and other problem behaviors (e.g., substance abuse, pathological gambling, etc.). Nevertheless, studies which investigated the direct influence of food-cues on behavioral inhibition have been fairly inconsistent. In the current studies, we investigated food-cue affected behavioral inhibition in young women. For this purpose, we used a go/no-go task with pictorial food and neutral stimuli in which stimulus-response mapping is reversed after every other block (affective shifting task). In study 1, hungry participants showed faster reaction times to and omitted fewer food than neutral targets. Low dieting success and higher BMI were associated with behavioral disinhibition in food relative to neutral blocks. In study 2, both hungry and satiated individuals were investigated. Satiation did not influence overall task performance, but modulated associations of task performance with dieting success and self-reported impulsivity. When satiated, increased food craving during the task was associated with low dieting success, possibly indicating a preload-disinhibition effect following food intake. Food-cues elicited automatic action and approach tendencies regardless of dieting success, self-reported impulsivity, or current hunger levels. Yet, associations between dieting success, impulsivity, and behavioral food-cue responses were modulated by hunger and satiation. Future research investigating clinical samples and including other salient non-food stimuli as control category is warranted. PMID:24659978

  13. State Variation in Underreporting of Alcohol Involvement on Death Certificates: Motor Vehicle Traffic Crash Fatalities as an Example

    PubMed Central

    Castle, I-Jen P; Yi, Hsiao-Ye; Hingson, Ralph W; White, Aaron M

    2014-01-01

    Objective: We used motor vehicle traffic (MVT) crash fatalities as an example to examine the extent of underreporting of alcohol involvement on death certificates and state variations. Method: We compared MVT-related death certificates identified from national mortality data (Multiple Cause of Death [MCoD] data) with deaths in national traffic census data from the Fatality Analysis Reporting System (FARS). Because MCoD data were not individually linked to FARS data, the comparisons were at the aggregate level. Reporting ratio of alcohol involvement on death certificates was thus computed as the prevalence of any mention of alcohol-related conditions among MVT deaths in MCoD, divided by the prevalence of decedents with blood alcohol concentration (BAC) test results (not imputed) of .08% or greater in FARS. Through bivariate analysis and multiple regression, we explored state characteristics correlated with state reporting ratios. Results: Both MCoD and FARS identified about 450,000 MVT deaths in 1999–2009. Reporting ratio was only 0.16 for all traffic deaths and 0.18 for driver deaths nationally, reflecting that death certificates captured only a small percentage of MVT deaths involving BAC of .08% or more. Reporting ratio did not improve over time, even though FARS indicated that the prevalence of BAC of at least .08% in MVT deaths increased from 19.9% in 1999 to 24.2% in 2009. State reporting ratios varied widely, from 0.02 (Nevada and New Jersey) to 0.81 (Delaware). Conclusions: The comparison of MCoD with FARS revealed a large discrepancy in reporting alcohol involvement in MVT deaths and considerable state variation in the magnitude of underreporting. We suspect similar underreporting and state variations in alcohol involvement in other types of injury deaths. PMID:24650824

  14. Visual-motor response of crewmen during a simulated 90-day space mission as measured by the critical task battery

    NASA Technical Reports Server (NTRS)

    Allen, R. W.; Jex, H. R.

    1973-01-01

    In order to test various components of a regenerative life support system and to obtain data on the physiological and psychological effects of long duration exposure to confinement in a space station atmosphere, four carefully screened young men were sealed in a space station simulator for 90 days and administered a tracking test battery. The battery included a clinical test (Critical Instability Task) designed to measure a subject's dynamic time delay, and a more conventional steady tracking task, during which dynamic response (describing functions) and performance measures were obtained. Good correlation was noted between the clinical critical instability scores and more detailed tracking parameters such as dynamic time delay and gain-crossover frequency. The levels of each parameter span the range observed with professional pilots and astronaut candidates tested previously. The chamber environment caused no significant decrement on the average crewman's dynamic response behavior, and the subjects continued to improve slightly in their tracking skills during the 90-day confinement period.

  15. User Experience May be Producing Greater Heart Rate Variability than Motor Imagery Related Control Tasks during the User-System Adaptation in Brain-Computer Interfaces

    PubMed Central

    Alonso-Valerdi, Luz M.; Gutiérrez-Begovich, David A.; Argüello-García, Janet; Sepulveda, Francisco; Ramírez-Mendoza, Ricardo A.

    2016-01-01

    Brain-computer interface (BCI) is technology that is developing fast, but it remains inaccurate, unreliable and slow due to the difficulty to obtain precise information from the brain. Consequently, the involvement of other biosignals to decode the user control tasks has risen in importance. A traditional way to operate a BCI system is via motor imagery (MI) tasks. As imaginary movements activate similar cortical structures and vegetative mechanisms as a voluntary movement does, heart rate variability (HRV) has been proposed as a parameter to improve the detection of MI related control tasks. However, HR is very susceptible to body needs and environmental demands, and as BCI systems require high levels of attention, perceptual processing and mental workload, it is important to assess the practical effectiveness of HRV. The present study aimed to determine if brain and heart electrical signals (HRV) are modulated by MI activity used to control a BCI system, or if HRV is modulated by the user perceptions and responses that result from the operation of a BCI system (i.e., user experience). For this purpose, a database of 11 participants who were exposed to eight different situations was used. The sensory-cognitive load (intake and rejection tasks) was controlled in those situations. Two electrophysiological signals were utilized: electroencephalography and electrocardiography. From those biosignals, event-related (de-)synchronization maps and event-related HR changes were respectively estimated. The maps and the HR changes were cross-correlated in order to verify if both biosignals were modulated due to MI activity. The results suggest that HR varies according to the experience undergone by the user in a BCI working environment, and not because of the MI activity used to operate the system. PMID:27458384

  16. User Experience May be Producing Greater Heart Rate Variability than Motor Imagery Related Control Tasks during the User-System Adaptation in Brain-Computer Interfaces.

    PubMed

    Alonso-Valerdi, Luz M; Gutiérrez-Begovich, David A; Argüello-García, Janet; Sepulveda, Francisco; Ramírez-Mendoza, Ricardo A

    2016-01-01

    Brain-computer interface (BCI) is technology that is developing fast, but it remains inaccurate, unreliable and slow due to the difficulty to obtain precise information from the brain. Consequently, the involvement of other biosignals to decode the user control tasks has risen in importance. A traditional way to operate a BCI system is via motor imagery (MI) tasks. As imaginary movements activate similar cortical structures and vegetative mechanisms as a voluntary movement does, heart rate variability (HRV) has been proposed as a parameter to improve the detection of MI related control tasks. However, HR is very susceptible to body needs and environmental demands, and as BCI systems require high levels of attention, perceptual processing and mental workload, it is important to assess the practical effectiveness of HRV. The present study aimed to determine if brain and heart electrical signals (HRV) are modulated by MI activity used to control a BCI system, or if HRV is modulated by the user perceptions and responses that result from the operation of a BCI system (i.e., user experience). For this purpose, a database of 11 participants who were exposed to eight different situations was used. The sensory-cognitive load (intake and rejection tasks) was controlled in those situations. Two electrophysiological signals were utilized: electroencephalography and electrocardiography. From those biosignals, event-related (de-)synchronization maps and event-related HR changes were respectively estimated. The maps and the HR changes were cross-correlated in order to verify if both biosignals were modulated due to MI activity. The results suggest that HR varies according to the experience undergone by the user in a BCI working environment, and not because of the MI activity used to operate the system. PMID:27458384

  17. A cognitive-motor intervention using a dance video game to enhance foot placement accuracy and gait under dual task conditions in older adults: a randomized controlled trial

    PubMed Central

    2012-01-01

    Background Computer-based interventions have demonstrated consistent positive effects on various physical abilities in older adults. This study aims to compare two training groups that achieve similar amounts of strength and balance exercise where one group receives an intervention that includes additional dance video gaming. The aim is to investigate the different effects of the training programs on physical and psychological parameters in older adults. Methods Thirty-one participants (mean age ± SD: 86.2 ± 4.6 years), residents of two Swiss hostels for the aged, were randomly assigned to either the dance group (n = 15) or the control group (n = 16). The dance group absolved a twelve-week cognitive-motor exercise program twice weekly that comprised progressive strength and balance training supplemented with additional dance video gaming. The control group performed only the strength and balance exercises during this period. Outcome measures were foot placement accuracy, gait performance under single and dual task conditions, and falls efficacy. Results After the intervention between-group comparison revealed significant differences for gait velocity (U = 26, P = .041, r = .45) and for single support time (U = 24, P = .029, r = .48) during the fast walking dual task condition in favor of the dance group. No significant between-group differences were observed either in the foot placement accuracy test or in falls efficacy. Conclusions There was a significant interaction in favor of the dance video game group for improvements in step time. Significant improved fast walking performance under dual task conditions (velocity, double support time, step length) was observed for the dance video game group only. These findings suggest that in older adults a cognitive-motor intervention may result in more improved gait under dual task conditions in comparison to a traditional strength and balance exercise program. Trial registration

  18. gSRT-Soft: a generic software application and some methodological guidelines to investigate implicit learning through visual-motor sequential tasks.

    PubMed

    Chambaron, Stéphanie; Ginhac, Dominique; Perruchet, Pierre

    2008-05-01

    Serial reaction time tasks and, more generally, the visual-motor sequential paradigms are increasingly popular tools in a variety of research domains, from studies on implicit learning in laboratory contexts to the assessment of residual learning capabilities of patients in clinical settings. A consequence of this success, however, is the increased variability in paradigms and the difficulty inherent in respecting the methodological principles that two decades of experimental investigations have made more and more stringent. The purpose of the present article is to address those problems. We present a user-friendly application that simplifies running classical experiments, but is flexible enough to permit a broad range of nonstandard manipulations for more specific objectives. Basic methodological guidelines are also provided, as are suggestions for using the software to explore unconventional directions of research. The most recent version of gSRT-Soft may be obtained for free by contacting the authors. PMID:18522060

  19. Differences between mild cognitive impairment subtypes as indicated by event-related potential correlates of cognitive and motor processes in a Simon task.

    PubMed

    Cespón, Jesús; Galdo-Álvarez, Santiago; Pereiro, Arturo X; Díaz, Fernando

    2015-01-01

    Mild cognitive impairment (MCI) may represent a prodromal stage of Alzheimer's disease (AD), although the clinical manifestations of MCI are heterogeneous. Consequently, MCI subtypes are differentiated since amnestic decline (particularly when combined with decline on multiple cognitive domains) increases the probability of progression to AD. In the present study, event-related potential (ERP) correlates of stimulus evaluation (N2), visuospatial attention (negativity posterior-contralateral, N2pc), stimulus categorization (P3b), executive control (pre-response positivity, PP, and medial frontal negativity), and motor (lateralized readiness potential, LRP) processes were studied in 53 participants while they performed a Simon task. Participants were divided into control group (CG), multiple-domain non-amnestic MCI (mdnaMCI), single-domain amnestic MCI (sdaMCI), and multiple-domain amnesic MCI (mdaMCI). Although there were no differences in reaction times and percentage of errors in the performed Simon-type task, a differential pattern of electrophysiological correlates was observed in MCI compared to CG. Concretely, amnestic MCI (sdaMCI and mdaMCI) showed reduced motor activity (LRP amplitude; AUC: 0.84); impairment in executive control (PP amplitude; AUC: 0.80) was observed in multiple-domain MCI (mdaMCI and mdnaMCI); finally, stimulus evaluation (N2 latency; AUC: 0.86) and visuospatial attention (N2pc amplitude; AUC: 0.78) was affected in mdaMCI. Overall, results linked the poorer prognosis of the mdaMCI subtype with a greater number of differences in ERP correlates regarding CG. Therefore, the present results enable us to suggest possible ERP biomarkers for specific MCI subtypes. PMID:25125461

  20. Using Fractal and Local Binary Pattern Features for Classification of ECOG Motor Imagery Tasks Obtained from the Right Brain Hemisphere.

    PubMed

    Xu, Fangzhou; Zhou, Weidong; Zhen, Yilin; Yuan, Qi; Wu, Qi

    2016-09-01

    The feature extraction and classification of brain signal is very significant in brain-computer interface (BCI). In this study, we describe an algorithm for motor imagery (MI) classification of electrocorticogram (ECoG)-based BCI. The proposed approach employs multi-resolution fractal measures and local binary pattern (LBP) operators to form a combined feature for characterizing an ECoG epoch recording from the right hemisphere of the brain. A classifier is trained by using the gradient boosting in conjunction with ordinary least squares (OLS) method. The fractal intercept, lacunarity and LBP features are extracted to classify imagined movements of either the left small finger or the tongue. Experimental results on dataset I of BCI competition III demonstrate the superior performance of our method. The cross-validation accuracy and accuracy is 90.6% and 95%, respectively. Furthermore, the low computational burden of this method makes it a promising candidate for real-time BCI systems. PMID:27255798

  1. Menstrual cycle variations in the BOLD-response to a number bisection task: implications for research on sex differences.

    PubMed

    Pletzer, Belinda; Kronbichler, Martin; Ladurner, Gunther; Nuerk, Hans-Christoph; Kerschbaum, Hubert

    2011-10-28

    Numerical processing involves either number magnitude processing, which has been related to spatial abilities and relies on superior parietal regions, or arithmetic fact retrieval, which has been related to verbal abilities and involves the inferior parietal lobule. Since men score better in spatial and women in verbal tasks, we assume that women have advantages in fact retrieval, while men have benefits in number magnitude processing. According to findings on menstrual cycle variations in spatial and verbal abilities, fact retrieval should improve during the luteal phase and magnitude processing during the follicular phase. To dissociate sex- and menstrual cycle-dependent effects on fact retrieval and number magnitude processing, we applied a number bisection task in 15 men and 15 naturally cycling women. Multiplicative items (e.g. 12_15_18) are part of a multiplication series and can be solved by fact retrieval, while non-multiplicative items (e.g. 11_14_17) are not part of a multiplication series and require number magnitude processing. In men and women in their luteal phase, error rates were higher and deactivation of the medial prefrontal cortex and the bilateral inferior parietal lobules was stronger for non-multiplicative compared to multiplicative items (positive multiplicativity effect), while in the follicular phase women showed higher error rates and stronger deactivation in multiplicative compared to non-multiplicative items (negative multiplicativity effect). Thus, number magnitude processing improves, while arithmetic fact retrieval impairs during the follicular phase. While a female superiority in arithmetic fact retrieval could not be confirmed, we observed that sex differences are significantly modulated by menstrual cycle phase. PMID:21955726

  2. On the nature of extraversion: variation in conditioned contextual activation of dopamine-facilitated affective, cognitive, and motor processes

    PubMed Central

    Depue, Richard A.; Fu, Yu

    2013-01-01

    Research supports an association between extraversion and dopamine (DA) functioning. DA facilitates incentive motivation and the conditioning and incentive encoding of contexts that predict reward. Therefore, we assessed whether extraversion is related to the efficacy of acquiring conditioned contextual facilitation of three processes that are dependent on DA: motor velocity, positive affect, and visuospatial working memory. We exposed high and low extraverts to three days of association of drug reward (methylphenidate, MP) with a particular laboratory context (Paired group), a test day of conditioning, and three days of extinction in the same laboratory. A Placebo group and an Unpaired group (that had MP in a different laboratory context) served as controls. Conditioned contextual facilitation was assessed by (i) presenting video clips that varied in their pairing with drug and laboratory context and in inherent incentive value, and (ii) measuring increases from day 1 to Test day on the three processes above. Results showed acquisition of conditioned contextual facilitation across all measures to video clips that had been paired with drug and laboratory context in the Paired high extraverts, but no conditioning in the Paired low extraverts (nor in either of the control groups). Increases in the Paired high extraverts were correlated across the three measures. Also, conditioned facilitation was evident on the first day of extinction in Paired high extraverts, despite the absence of the unconditioned effects of MP. By the last day of extinction, responding returned to day 1 levels. The findings suggest that extraversion is associated with variation in the acquisition of contexts that predict reward. Over time, this variation may lead to differences in the breadth of networks of conditioned contexts. Thus, individual differences in extraversion may be maintained by activation of differentially encoded central representations of incentive contexts that predict reward

  3. Quantitative Assessment of the Training Improvement in a Motor-Cognitive Task by Using EEG, ECG and EOG Signals.

    PubMed

    Borghini, Gianluca; Aricò, Pietro; Graziani, Ilenia; Salinari, Serenella; Sun, Yu; Taya, Fumihiko; Bezerianos, Anastatios; Thakor, Nitish V; Babiloni, Fabio

    2016-01-01

    Generally, the training evaluation methods consist in experts supervision and qualitative check of the operator's skills improvement by asking them to perform specific tasks and by verifying the final performance. The aim of this work is to find out if it is possible to obtain quantitative information about the degree of the learning process throughout the training period by analyzing neuro-physiological signals, such as the electroencephalogram, the electrocardiogram and the electrooculogram. In fact, it is well known that such signals correlate with a variety of cognitive processes, e.g. attention, information processing, and working memory. A group of 10 subjects have been asked to train daily with the NASA multi-attribute-task-battery. During such training period the neuro-physiological, behavioral and subjective data have been collected. In particular, the neuro-physiological signals have been recorded on the first (T1), on the third (T3) and on the last training day (T5), while the behavioral and subjective data have been collected every day. Finally, all these data have been compared for a complete overview of the learning process and its relations with the neuro-physiological parameters. It has been shown how the integration of brain activity, in the theta and alpha frequency bands, with the autonomic parameters of heart rate and eyeblink rate could be used as metric for the evaluation of the learning progress, as well as the final training level reached by the subjects, in terms of request of cognitive resources. PMID:25609212

  4. Comparison of error-amplification and haptic-guidance training techniques for learning of a timing-based motor task by healthy individuals.

    PubMed

    Milot, Marie-Hélène; Marchal-Crespo, Laura; Green, Christopher S; Cramer, Steven C; Reinkensmeyer, David J

    2010-03-01

    Performance errors drive motor learning for many tasks. Some researchers have suggested that reducing performance errors with haptic guidance can benefit learning by demonstrating correct movements, while others have suggested that artificially increasing errors will force faster and more complete learning. This study compared the effect of these two techniques--haptic guidance and error amplification--as healthy subjects learned to play a computerized pinball-like game. The game required learning to press a button using wrist movement at the correct time to make a flipper hit a falling ball to a randomly positioned target. Errors were decreased or increased using a robotic device that retarded or accelerated wrist movement, based on sensed movement initiation timing errors. After training with either error amplification or haptic guidance, subjects significantly reduced their timing errors and generalized learning to untrained targets. However, for a subset of more skilled subjects, training with amplified errors produced significantly greater learning than training with the reduced errors associated with haptic guidance, while for a subset of less skilled subjects, training with haptic guidance seemed to benefit learning more. These results suggest that both techniques help enhanced performance of a timing task, but learning is optimized if training subjects with the appropriate technique based on their baseline skill level. PMID:19787345

  5. Temporal Co-Variation between Eye Lens Accommodation and Trapezius Muscle Activity during a Dynamic Near-Far Visual Task

    PubMed Central

    Zetterberg, Camilla; Richter, Hans O.; Forsman, Mikael

    2015-01-01

    Near work is associated with increased activity in the neck and shoulder muscles, but the underlying mechanism is still unknown. This study was designed to determine whether a dynamic change in focus, alternating between a nearby and a more distant visual target, produces a direct parallel change in trapezius muscle activity. Fourteen healthy controls and 12 patients with a history of visual and neck/shoulder symptoms performed a Near-Far visual task under three different viewing conditions; one neutral condition with no trial lenses, one condition with negative trial lenses to create increased accommodation, and one condition with positive trial lenses to create decreased accommodation. Eye lens accommodation and trapezius muscle activity were continuously recorded. The trapezius muscle activity was significantly higher during Near than during Far focusing periods for both groups within the neutral viewing condition, and there was a significant co-variation in time between accommodation and trapezius muscle activity within the neutral and positive viewing conditions for the control group. In conclusion, these results reveal a connection between Near focusing and increased muscle activity during dynamic changes in focus between a nearby and a far target. A direct link, from the accommodation/vergence system to the trapezius muscles cannot be ruled out, but the connection may also be explained by an increased need for eye-neck (head) stabilization when focusing on a nearby target as compared to a more distant target. PMID:25961299

  6. I know what I will see: action-specific motor preparation activity in a passive observation task.

    PubMed

    Bozzacchi, Chiara; Spinelli, Donatella; Pitzalis, Sabrina; Giusti, Maria Assunta; Di Russo, Francesco

    2015-06-01

    Literature on mirror neurons has shown that seeing someone preparing to move generates in the motor areas of the observers a brain activity similar to that generated when the subject prepares his own actions. Thus, the 'mirroring' of action would not be limited to the execution phase but also involves the preparation process. Here we confirm and extend this notion showing that, just as different brain activities prepare different voluntary actions, also different brain activities prepare to observe different predictable actions. Videos of two different actions from egocentric point of view were presented in separate blocks: (i) grasping of a cup and (ii) impossible grasping of a cup. Subjects had to passively observe the videos showing object-directed hand movements. Through the use of the event-related potentials, we found a cortical activity before observing the actions, which was very similar to the one recorded prior to the actual execution of that same action, in terms of both topography and latency. This anticipatory activity does not represent a general preparation state but an action-specific state, because being dependent on the specific meaning of the forthcoming action. These results reinforce our knowledge about the correspondence between action, perception and cognition. PMID:25261822

  7. The role of the posterior parietal cortex in stereopsis and hand-eye coordination during motor task behaviours.

    PubMed

    Paggetti, Giulia; Leff, Daniel Richard; Orihuela-Espina, Felipe; Mylonas, George; Darzi, Ara; Yang, Guang-Zhong; Menegaz, Gloria

    2015-05-01

    The field of 'Neuroergonomics' has the potential to improve safety in high-risk operative environments through a better appreciation of the way in which the brain responds during human-tool interactions. This is especially relevant to minimally invasive surgery (MIS). Amongst the many challenges imposed on the surgeon by traditional MIS (laparoscopy), arguably the greatest is the loss of depth perception. Robotic MIS platforms, on the other hand, provide the surgeon with a magnified three-dimensional view of the environment, and as a result may offload a degree of the cognitive burden. The posterior parietal cortex (PPC) plays an integral role in human depth perception. Therefore, it can be hypothesized that differences in PPC activation between monoscopic and stereoscopic vision may be observed. In order to investigate this hypothesis, the current study explores disparities in PPC responses between monoscopic and stereoscopic visual perception to better de-couple the burden imposed by laparoscopy and robotic surgery on the operator's brain. Fourteen participants conducted tasks of depth perception and hand-eye coordination under both monoscopic and stereoscopic visual feedback. Cortical haemodynamic responses were monitored throughout using optical functional neuroimaging. Overall, recruitment of the bilateral superior parietal lobule was observed during both depth perception and hand-eye coordination tasks. This occurred contrary to our hypothesis, regardless of the mode of visual feedback. Operator technical performance was significantly different in two- and three-dimensional visual displays. These differences in technical performance do not appear to be explained by significant differences in parietal lobe processing. PMID:25394882

  8. Motor Adaptations to Pain during a Bilateral Plantarflexion Task: Does the Cost of Using the Non-Painful Limb Matter?

    PubMed Central

    Hodges, Paul W.; Carroll, Timothy J.; De Martino, Enrico; Magnard, Justine; Tucker, Kylie

    2016-01-01

    During a force-matched bilateral task, when pain is induced in one limb, a shift of load to the non-painful leg is classically observed. This study aimed to test the hypothesis that this adaptation to pain depends on the mechanical efficiency of the non-painful leg. We studied a bilateral plantarflexion task that allowed flexibility in the relative force produced with each leg, but constrained the sum of forces from both legs to match a target. We manipulated the mechanical efficiency of the non-painful leg by imposing scaling factors: 1, 0.75, or 0.25 to decrease mechanical efficiency (Decreased efficiency experiment: 18 participants); and 1, 1.33 or 4 to increase mechanical efficiency (Increased efficiency experiment: 17 participants). Participants performed multiple sets of three submaximal bilateral isometric plantarflexions with each scaling factor during two conditions (Baseline and Pain). Pain was induced by injection of hypertonic saline into the soleus. Force was equally distributed between legs during the Baseline contractions (laterality index was close to 1; Decreased efficiency experiment: 1.16±0.33; Increased efficiency experiment: 1.11±0.32), with no significant effect of Scaling factor. The laterality index was affected by Pain such that the painful leg contributed less than the non-painful leg to the total force (Decreased efficiency experiment: 0.90±0.41, P<0.001; Increased efficiency experiment: 0.75±0.32, P<0.001), regardless of the efficiency (scaling factor) of the non-painful leg. When compared to the force produced during Baseline of the corresponding scaling condition, a decrease in force produced by the painful leg was observed for all conditions, except for scaling 0.25. This decrease in force was correlated with a decrease in drive to the soleus muscle. These data highlight that regardless of the overall mechanical cost, the nervous system appears to prefer to alter force sharing between limbs such that force produced by the painful

  9. Effects of mirror therapy combined with motor tasks on upper extremity function and activities daily living of stroke patients

    PubMed Central

    Kim, Kyunghoon; Lee, Sukmin; Kim, Donghoon; Lee, Kyoungbo; Kim, Youlim

    2016-01-01

    [Purpose] The objective of this study was to investigate the effects of mirror therapy combined with exercise tasks on the function of the upper limbs and activities of daily living. [Subjects and Methods] Twenty-five stroke patients who were receiving physical therapy at K Hospital in Gyeonggi-do, South Korea, were classified into a mirror therapy group (n=12) and a conventional therapy group (n=13). The therapies were applied for 30 minutes per day, five times per week, for a total of four weeks. Upper limb function was measured with the Action Research Arm test, the Fugl-Meyer Assessment, and the Box and Block test, and activities of daily living were measured with the Functional Independence Measure. A paired test was performed to compare the intragroup differences between before training and after four weeks of therapy, and an independent t-test was performed to compare the differences between the two groups before and after four weeks of therapy. [Results] In the intragroup comparison, both groups showed significant differences between measurements taken before and after four weeks of therapy. In the intergroup comparison, the mirror therapy group showed significant improvements compared with the conventional therapy group, both in upper limb function and activities of daily living. [Conclusion] The findings of this study demonstrated that mirror therapy is more effective than conventional therapy for the training of stroke patients to improve their upper limb function and activities of daily living. PMID:27065534

  10. Implicit overcompensation: the influence of negative self-instructions on performance of a self-paced motor task.

    PubMed

    de la Peña, Derek; Murray, Nicholas P; Janelle, Christopher M

    2008-10-01

    According to Wegner's (1994) theory of ironic processes of mental control, self-instructions not to perform in a certain way, together with mental loads, can induce thoughts, emotions, and behaviours that are precisely the opposite of intention. Wegner's theory was tested against the implicit overcompensation hypothesis, which states that movement direction and magnitude are implicitly dictated by self-instruction, irrespective of load, promoting overcompensation of action. Two experiments were conducted using a golf-putting task. In Experiment 1, 48 participants were randomly assigned to one of four load conditions: cognitive, visual, auditory, and self-presentation/incentive. In the experimental trials, participants were instructed to make the putt, but it was emphasized that the putt should not be left short of the target. Following the instructional strategy, putts landed significantly longer than at baseline, irrespective of load. In Experiment 2, 36 participants were divided into one of three groups, without load, in which different instructional sets (control, not putting long, and not putting short) were emphasized. A significant interaction emerged, as participants putted significantly longer or shorter than controls depending on the instructional set given. Overall, our findings support the implicit overcompensation hypothesis. Theoretical and practical considerations are discussed. PMID:18819030

  11. Effects of mirror therapy combined with motor tasks on upper extremity function and activities daily living of stroke patients.

    PubMed

    Kim, Kyunghoon; Lee, Sukmin; Kim, Donghoon; Lee, Kyoungbo; Kim, Youlim

    2016-01-01

    [Purpose] The objective of this study was to investigate the effects of mirror therapy combined with exercise tasks on the function of the upper limbs and activities of daily living. [Subjects and Methods] Twenty-five stroke patients who were receiving physical therapy at K Hospital in Gyeonggi-do, South Korea, were classified into a mirror therapy group (n=12) and a conventional therapy group (n=13). The therapies were applied for 30 minutes per day, five times per week, for a total of four weeks. Upper limb function was measured with the Action Research Arm test, the Fugl-Meyer Assessment, and the Box and Block test, and activities of daily living were measured with the Functional Independence Measure. A paired test was performed to compare the intragroup differences between before training and after four weeks of therapy, and an independent t-test was performed to compare the differences between the two groups before and after four weeks of therapy. [Results] In the intragroup comparison, both groups showed significant differences between measurements taken before and after four weeks of therapy. In the intergroup comparison, the mirror therapy group showed significant improvements compared with the conventional therapy group, both in upper limb function and activities of daily living. [Conclusion] The findings of this study demonstrated that mirror therapy is more effective than conventional therapy for the training of stroke patients to improve their upper limb function and activities of daily living. PMID:27065534

  12. Anger fosters action. Fast responses in a motor task involving approach movements toward angry faces and bodies.

    PubMed

    de Valk, Josje M; Wijnen, Jasper G; Kret, Mariska E

    2015-01-01

    Efficiently responding to others' emotions, especially threatening expressions such as anger and fear, can have great survival value. Previous research has shown that humans have a bias toward threatening stimuli. Most of these studies focused on facial expressions, yet emotions are expressed by the whole body, and not just by the face. Body language contains a direct action component, and activates action preparation areas in the brain more than facial expressions. Hence, biases toward threat may be larger following threatening bodily expressions as compared to facial expressions. The current study investigated reaction times of movements directed toward emotional bodies and faces. For this purpose, a new task was developed where participants were standing in front of a computer screen on which angry, fearful, and neutral faces and bodies were presented which they had to touch as quickly as possible. Results show that participants responded faster to angry than to neutral stimuli, regardless of the source (face or body). No significant difference was observed between fearful and neutral stimuli, demonstrating that the threat bias was not related to the negativity of the stimulus, but likely to the directness of the threat in relation to the observer. Whereas fearful stimuli might signal an environmental threat that requires further exploration before action, angry expressions signal a direct threat to the observer, asking for immediate action. This study provides a novel and implicit method to directly test the speed of actions toward emotions from the whole body. PMID:26388793

  13. Optimization and variability of motor behavior in multi-finger tasks: What variables does the brain use?

    PubMed Central

    Martin, Joel R.; Terekhov, Alexander V.; Latash, Mark L.; Zatsiorsky, Vladimir M.

    2014-01-01

    The neural control of movement has been described using different sets of elemental variables. Two possible sets of elemental variables have been suggested for finger pressing tasks: the forces of individual fingers and the finger commands (also called “finger modes” or “central commands”). In this study we analyze which of the two sets of the elemental variables is more likely used in the optimization of the finger force sharing and which set is used for the stabilization of performance. We used two recently developed techniques – the analytical inverse optimization (ANIO) and the uncontrolled manifold (UCM) analysis – to evaluate each set of elemental variables with respect to both aspects of performance. The results of the UCM analysis favored the finger commands as the elemental variables used for performance stabilization, while ANIO worked equally well on both sets of elemental variables. A simple scheme is suggested as to how the CNS could optimize a cost function dependent on the finger forces, but for the sake of facilitation of the feed-forward control it substitutes the original cost function by a cost function, which is convenient to optimize in the space of finger commands. PMID:23742067

  14. Vowel reduction across tasks for male speakers of American English.

    PubMed

    Kuo, Christina; Weismer, Gary

    2016-07-01

    This study examined acoustic variation of vowels within speakers across speech tasks. The overarching goal of the study was to understand within-speaker variation as one index of the range of normal speech motor behavior for American English vowels. Ten male speakers of American English performed four speech tasks including citation form sentence reading with a clear-speech style (clear-speech), citation form sentence reading (citation), passage reading (reading), and conversational speech (conversation). Eight monophthong vowels in a variety of consonant contexts were studied. Clear-speech was operationally defined as the reference point for describing variation. Acoustic measures associated with the conventions of vowel targets were obtained and examined. These included temporal midpoint formant frequencies for the first three formants (F1, F2, and F3) and the derived Euclidean distances in the F1-F2 and F2-F3 planes. Results indicated that reduction toward the center of the F1-F2 and F2-F3 planes increased in magnitude across the tasks in the order of clear-speech, citation, reading, and conversation. The cross-task variation was comparable for all speakers despite fine-grained individual differences. The characteristics of systematic within-speaker acoustic variation across tasks have potential implications for the understanding of the mechanisms of speech motor control and motor speech disorders. PMID:27475161

  15. Motor variability in occupational health and performance.

    PubMed

    Srinivasan, Divya; Mathiassen, Svend Erik

    2012-12-01

    Several recent reviews have reported that 'repetitive movements' constitute a risk factor for occupational musculoskeletal disorders in the neck, shoulder and arm regions. More variation in biomechanical exposure is often suggested as an effective intervention in such settings. Since increasing variation using extrinsic methods like job rotation may not always be possible in an industrial context, the intrinsic variability of the motor system may offer an alternative opportunity to increase variation. Motor variability refers to the natural variation in postures, movements and muscle activity observed to different extents in all tasks. The current review discusses research appearing in motor control, sports sciences and occupational biomechanics literature to answer whether motor variability is important to consider in an occupational context, and if yes, whether it can be manipulated by training the worker or changing the working conditions so as to increase biomechanical variation without jeopardizing production. The review concludes that motor variability is, indeed, a relevant issue in occupational health and performance and suggests a number of key issues for further research. PMID:22954427

  16. How coordinate and categorical spatial relations combine with egocentric and allocentric reference frames in a motor task: effects of delay and stimuli characteristics.

    PubMed

    Ruotolo, Francesco; van der Ham, Ineke; Postma, Albert; Ruggiero, Gennaro; Iachini, Tina

    2015-05-01

    This study explores how people represent spatial information in order to accomplish a visuo-motor task. To this aim we combined two fundamental components of the human visuo-spatial system: egocentric and allocentric frames of reference and coordinate and categorical spatial relations. Specifically, participants learned the position of three objects and then had to judge the distance (coordinate information) and the relation (categorical information) of a target object with respect to themselves (egocentric frame) or with respect to another object (allocentric frame). They gave spatial judgments by reaching and touching the exact position or the side previously occupied by the target object. The possible influence of stimuli characteristics (3D objects vs. 2D images) and delay between learning phase and testing phase (1.5 vs. 5s) was also assessed. Results showed an advantage of egocentric coordinate judgments over the allocentric coordinate ones independently from the kind of stimuli used and the temporal parameters of the response, whereas egocentric categorical judgments were more accurate than allocentric categorical ones only with 3D stimuli and when an immediate response was requested. This pattern of data is discussed in the light of the "perception-action" model by Milner and Goodale [13] and of neuroimaging evidence about frames of reference and spatial relations. PMID:25698602

  17. Motor variability--an important issue in occupational life.

    PubMed

    Srinivasan, Divya; Mathiassen, Svend Erik

    2012-01-01

    Several recent reviews have reported that 'repetitive movements' is a risk factor for occupational musculoskeletal disorders (MSD) in the neck, shoulder and arm regions. More variation in biomechanical exposure is often suggested as an effective intervention in such settings. While increasing variation using extrinsic methods like job rotation may not always be possible in an industrial context, the intrinsic variability of the motor system may offer an alternative opportunity to increase variation. Motor variability (MV) refers to the natural variation in postures, movements and muscle activity observed to different extents in all tasks. The current review explores the state of the art in MV research from motor control, sports and occupational biomechanics literature to answer whether MV is important to consider in an occupational context, and if yes, whether this literature stimulates further studies to test if MV can be manipulated as a deliberate intervention for increasing biomechanical variation without jeopardizing production. PMID:22317100

  18. Variations in speciated emissions from spark-ignition and compression-ignition motor vehicles in California's south coast air basin.

    PubMed

    Fujita, Eric M; Zielinska, Barbara; Campbell, David E; Arnott, W Patrick; Sagebiel, John C; Mazzoleni, Lynn; Chow, Judith C; Gabele, Peter A; Crews, William; Snow, Richard; Clark, Nigel N; Wayne, W Scott; Lawson, Douglas R

    2007-06-01

    gasoline motor oil but not in fresh oil and are negligible in used diesel engine oil. The contributions of lubrication oils to abundances of these PAHs in the exhaust were large in some cases and were variable with the age and consumption rate of the oil. These factors contributed to the observed variations in their abundances to total carbon or PM2.5 among the SI composition profiles. PMID:17608006

  19. Examining methodological variation in response inhibition: The effects of outcome measures and task characteristics on age-related differences.

    PubMed

    Klenberg, Liisa; Närhi, Vesa; Korkman, Marit; Hokkanen, Laura

    2015-01-01

    This study addressed methodological issues common to developmental studies on response inhibition. Age-related differences were investigated using two Stroop-like tasks with different levels of complexity and comparing different outcome measures in a sample of 340 children and adolescents aged 7-15 years. First, speed and accuracy of task performance were examined; the results showing that improvement in speed continued until age 13 in both the basic naming task and the two inhibition tasks. Improvement in accuracy was less consistent and continued until age 9 or 13 years. Second, two different algorithms were employed to control for the effects of basic processes in inhibition tasks. The difference algorithm indicated age-related differences similar to those for speed. The ratio algorithm, however, suggested earlier deceleration of development of response inhibition at 9 or 11 years of age. Factors related to the cognitive requirements and presented stimuli also had an effect on the results. The present findings shed light on the inconsistencies in the developmental studies of response inhibition and demonstrated that the selection of outcome measures and task characteristics are critical because they affect the way development is depicted. PMID:25175830

  20. Disposed to distraction: genetic variation in the cholinergic system influences distractibility but not time-on-task effects.

    PubMed

    Berry, Anne S; Demeter, Elise; Sabhapathy, Surya; English, Brett A; Blakely, Randy D; Sarter, Martin; Lustig, Cindy

    2014-09-01

    Both the passage of time and external distraction make it difficult to keep attention on the task at hand. We tested the hypothesis that time-on-task and external distraction pose independent challenges to attention and that the brain's cholinergic system selectively modulates our ability to resist distraction. Participants with a polymorphism limiting cholinergic capacity (Ile89Val variant [rs1013940] of the choline transporter gene SLC5A7) and matched controls completed self-report measures of attention and a laboratory task that measured decrements in sustained attention with and without distraction. We found evidence that distraction and time-on-task effects are independent and that the cholinergic system is strongly linked to greater vulnerability to distraction. Ile89Val participants reported more distraction during everyday life than controls, and their task performance was more severely impacted by the presence of an ecologically valid video distractor (similar to a television playing in the background). These results are the first to demonstrate a specific impairment in cognitive control associated with the Ile89Val polymorphism and add to behavioral and cognitive neuroscience studies indicating the cholinergic system's critical role in overcoming distraction. PMID:24666128

  1. Long-term decoding stability of local field potentials from silicon arrays in primate motor cortex during a 2D center out task

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Zhang, Qiaosheng; Li, Yue; Wang, Yiwen; Zhu, Junming; Zhang, Shaomin; Zheng, Xiaoxiang

    2014-06-01

    Objective. Many serious concerns exist in the long-term stability of brain-machine interfaces (BMIs) based on spike signals (single unit activity, SUA; multi unit activity, MUA). Some studies showed local field potentials (LFPs) could offer a stable decoding performance. However, the decoding stability of LFPs was examined only when high quality spike signals were recorded. Here we aim to examine the long-term decoding stability of LFPs over a larger time scale when the quality of spike signals was from good to poor or even no spike was recorded. Approach. Neural signals were collected from motor cortex of three monkeys via silicon arrays over 230, 290 and 690 days post-implantation when they performed 2D center out task. To compare long-term stability between LFPs and spike signals, we examined them in neural signals characteristics, directional tuning properties and offline decoding performance, respectively. Main results. We observed slow decreasing trends in the number of LFP channels recorded and mean LFP power in different frequency bands when spike signals quality decayed over time. The number of significantly directional tuning LFP channels decreased more slowly than that of tuning SUA and MUA. The variable preferred directions for the same signal features across sessions indicated non-stationarity of neural activity. We also found that LFPs achieved better decoding performance than SUA and MUA in retrained decoder when the quality of spike signals seriously decayed. Especially, when no spike was recorded in one monkey after 671 days post-implantation, LFPs still provided some kinematic information. In addition, LFPs outperformed MUA in long-term decoding stability in a static decoder. Significance. Our results suggested that LFPs were more durable and could provide better decoding performance when spike signals quality seriously decayed. It might be due to their resistance to recording degradation and their high redundancy among channels.

  2. Variation in left posterior parietal-motor cortex interhemispheric facilitation following right parietal continuous theta-burst stimulation in healthy adults.

    PubMed

    Killington, Christopher; Barr, Christopher; Loetscher, Tobias; Bradnam, Lynley V

    2016-08-25

    Spatial neglect is modeled on an imbalance of interhemispheric inhibition (IHI); however evidence is emerging that it may not explain neglect in all cases. The aim of this study was to investigate the IHI imbalance model of visual neglect in healthy adults, using paired pulse transcranial magnetic stimulation to probe excitability of projections from posterior parietal cortex (PPC) to contralateral primary motor cortex (M1) bilaterally. Motor-evoked potentials (MEPs) were recorded from the first dorsal interossei and facilitation was determined as ratio of conditioned to non-conditioned MEP amplitude. A laterality index reflecting the balance of excitability between the two hemispheres was calculated. A temporal order judgment task (TOJ) assessed visual attention. Continuous theta-burst stimulation was used to transiently suppress right parietal cortex activity and the effect on laterality and judgment task measured, along with associations between baseline and post stimulation measures. Stimulation had conflicting results on laterality, with most participants demonstrating an effect in the negative direction with no decrement in the TOJ task. Correlation analysis suggests a strong association between laterality direction and degree of facilitation of left PPC-to right M1 following stimulation (r=.902), with larger MEP facilitation at baseline demonstrating greater reduction (r=-.908). Findings indicate there was relative balance between the cortices at baseline but right PPC suppression did not evoke left PPC facilitation in most participants, contrary to the IHI imbalance model. Left M1 facilitation prior to stimulation may predict an individual's response to continuous theta-burst stimulation of right PPC. PMID:27267243

  3. The functional alterations associated with motor imagery training: a comparison between motor execution and motor imagery of sequential finger tapping

    NASA Astrophysics Data System (ADS)

    Zhang, Hang; Yao, Li; Long, Zhiying

    2011-03-01

    Motor imagery training, as an effective strategy, has been more and more applied to mental disorders rehabilitation and motor skill learning. Studies on the neural mechanism underlying motor imagery have suggested that such effectiveness may be related to the functional congruence between motor execution and motor imagery. However, as compared to the studies on motor imagery, the studies on motor imagery training are much fewer. The functional alterations associated with motor imagery training and the effectiveness of motor imagery training on motor performance improvement still needs further investigation. Using fMRI, we employed a sequential finger tapping paradigm to explore the functional alterations associated with motor imagery training in both motor execution and motor imagery task. We hypothesized through 14 consecutive days motor imagery training, the motor performance could be improved and the functional congruence between motor execution and motor imagery would be sustained form pre-training phase to post-training phase. Our results confirmed the effectiveness of motor imagery training in improving motor performance and demonstrated in both pre and post-training phases, motor imagery and motor execution consistently sustained the congruence in functional neuroanatomy, including SMA (supplementary motor cortex), PMA (premotor area); M1( primary motor cortex) and cerebellum. Moreover, for both execution and imagery tasks, a similar functional alteration was observed in fusiform through motor imagery training. These findings provided an insight into the effectiveness of motor imagery training and suggested its potential therapeutic value in motor rehabilitation.

  4. Building a framework for a dual task taxonomy.

    PubMed

    McIsaac, Tara L; Lamberg, Eric M; Muratori, Lisa M

    2015-01-01

    The study of dual task interference has gained increasing attention in the literature for the past 35 years, with six MEDLINE citations in 1979 growing to 351 citations indexed in 2014 and a peak of 454 cited papers in 2013. Increasingly, researchers are examining dual task cost in individuals with pathology, including those with neurodegenerative diseases. While the influence of these papers has extended from the laboratory to the clinic, the field has evolved without clear definitions of commonly used terms and with extreme variations in experimental procedures. As a result, it is difficult to examine the interference literature as a single body of work. In this paper we present a new taxonomy for classifying cognitive-motor and motor-motor interference within the study of dual task behaviors that connects traditional concepts of learning and principles of motor control with current issues of multitasking analysis. As a first step in the process we provide an operational definition of dual task, distinguishing it from a complex single task. We present this new taxonomy, inclusive of both cognitive and motor modalities, as a working model; one that we hope will generate discussion and create a framework from which one can view previous studies and develop questions of interest. PMID:25961027

  5. Building a Framework for a Dual Task Taxonomy

    PubMed Central

    McIsaac, Tara L.; Lamberg, Eric M.; Muratori, Lisa M.

    2015-01-01

    The study of dual task interference has gained increasing attention in the literature for the past 35 years, with six MEDLINE citations in 1979 growing to 351 citations indexed in 2014 and a peak of 454 cited papers in 2013. Increasingly, researchers are examining dual task cost in individuals with pathology, including those with neurodegenerative diseases. While the influence of these papers has extended from the laboratory to the clinic, the field has evolved without clear definitions of commonly used terms and with extreme variations in experimental procedures. As a result, it is difficult to examine the interference literature as a single body of work. In this paper we present a new taxonomy for classifying cognitive-motor and motor-motor interference within the study of dual task behaviors that connects traditional concepts of learning and principles of motor control with current issues of multitasking analysis. As a first step in the process we provide an operational definition of dual task, distinguishing it from a complex single task. We present this new taxonomy, inclusive of both cognitive and motor modalities, as a working model; one that we hope will generate discussion and create a framework from which one can view previous studies and develop questions of interest. PMID:25961027

  6. Systematic Variations of Instructional Variables on Learner Performance: Aircraft Instrument Comprehension Task. Final Report, June 1973-July 1974.

    ERIC Educational Resources Information Center

    Tenpas, Barbara G.; And Others

    Incentive, practice, instruction, and feedback were manipulated in a series of four 2 x 2 factorial studies, with Air Force Reserve Officer Training Corps cadets and graduate students in education, to determine the individual and combined effects of these variables on learner performance (both speed and accuracy) of an aircraft comprehension task.…

  7. Reduced task-induced variations in the distribution of activity across back muscle regions in individuals with low back pain.

    PubMed

    Falla, Deborah; Gizzi, Leonardo; Tschapek, Marika; Erlenwein, Joachim; Petzke, Frank

    2014-05-01

    This study investigated change in the distribution of lumbar erector spinae muscle activity and pressure pain sensitivity across the low back in individuals with low back pain (LBP) and healthy controls. Surface electromyographic (EMG) signals were recorded from multiple locations over the lumbar erector spinae muscle with a 13×5 grid of electrodes from 19 people with chronic nonspecific LBP and 17 control subjects as they performed a repetitive lifting task. The EMG root mean square (RMS) was computed for each location of the grid to form a map of the EMG amplitude distribution. Pressure pain thresholds (PPT) were recorded before and after the lifting task over a similar area of the back. For the control subjects, the EMG RMS progressively increased more in the caudal region of the lumbar erector spinae during the repetitive task, resulting in a shift in the distribution of muscle activity. In contrast, the distribution of muscle activity remained unaltered in the LBP group despite an overall increase in EMG amplitude. PPT was lower in the LBP group after completion of the repetitive task compared to baseline (average across all locations: pre: 268.0±165.9 kPa; post: 242.0±166.7 kPa), whereas no change in PPT over time was observed for the control group (320.1±162.1 kPa; post: 322.0±179.5 kPa). The results demonstrate that LBP alters the normal adaptation of lumbar erector spinae muscle activity to exercise, which occurs in the presence of exercise-induced hyperalgesia. Reduced variability of muscle activity may have important implications for the provocation and recurrence of LBP due to repetitive tasks. PMID:24502841

  8. An Efficient Power Regeneration and Drive Method of an Induction Motor by Means of an Optimal Torque Derived by Variational Method

    NASA Astrophysics Data System (ADS)

    Inoue, Kaoru; Ogata, Kenji; Kato, Toshiji

    When the motor speed is reduced by using a regenerative brake, the mechanical energy of rotation is converted to the electrical energy. When the regenerative torque is large, the corresponding current increases so that the copper loss also becomes large. On the other hand, the damping effect of rotation increases according to the time elapse when the regenerative torque is small. In order to use the limited energy effectively, an optimal regenerative torque should be discussed in order to regenerate electrical energy as much as possible. This paper proposes a design methodology of a regenerative torque for an induction motor to maximize the regenerative electric energy by means of the variational method. Similarly, an optimal torque for acceleration is derived in order to minimize the energy to drive. Finally, an efficient motor drive system with the proposed optimal torque and the power storage system stabilizing the DC link voltage will be proposed. The effectiveness of the proposed methods are illustrated by both simulations and experiments.

  9. Real-Time Tracking of Motor Response Activation and Response Competition in a Stroop Task in Young Children: A Lateralized Readiness Potential Study

    ERIC Educational Resources Information Center

    Szucs, Denes; Soltesz, Fruzsina; Bryce, Donna; Whitebread, David

    2009-01-01

    The ability to select an appropriate motor response by resolving competition among alternative responses plays a major role in cognitive performance. fMRI studies suggest that the development of this skill is related to the maturation of the frontal cortex that underlies the improvement of motor inhibition abilities. However, fMRI cannot…

  10. Effects of Arm Weight on C-Not-B Task Performance: Implications for the Motor Inhibitory Deficit Account of Search Failures

    ERIC Educational Resources Information Center

    Riviere, James; Lecuyer, Roger

    2008-01-01

    Toddlers have been found to fail on a three-location search task involving the invisible displacements of an object, namely the C-not-B task. In this task, a child is shown the experimenter's hand that contains a toy. The toy then successively disappears under the three cloths (A, B, then C). The examiner silently releases the toy under the second…

  11. PRESCHOOL CHILDREN'S WILLINGNESS TO TRY DIFFICULT TASKS.

    ERIC Educational Resources Information Center

    STARKWEATHER, ELIZABETH K.

    INSTRUMENTS WERE ADMINISTERED TO PRESCHOOL CHILDREN TO MEASURE THEIR PERFORMANCE ON VARIOUS TASKS. THE INSTRUMENTS WERE (1) A BUTTONING TASK FOR FINE MOTOR COORDINATION, (2) A PUZZLE TASK FOR VISUAL DISCRIMINATION, AND (3) A TARGET GAME FOR GROSS MOTOR COORDINATION. EACH INSTRUMENT CONSISTED OF FIVE TASKS GRADED IN DIFFICULTY, ADJUSTED TO THE…

  12. Motor Planning.

    PubMed

    Wong, Aaron L; Haith, Adrian M; Krakauer, John W

    2015-08-01

    Motor planning colloquially refers to any process related to the preparation of a movement that occurs during the reaction time prior to movement onset. However, this broad definition encompasses processes that are not strictly motor-related, such as decision-making about the identity of task-relevant stimuli in the environment. Furthermore, the assumption that all motor-planning processes require processing time, and can therefore be studied behaviorally by measuring changes in the reaction time, needs to be reexamined. In this review, we take a critical look at the processes leading from perception to action and suggest a definition of motor planning that encompasses only those processes necessary for a movement to be executed-that is, processes that are strictly movement related. These processes resolve the ambiguity inherent in an abstract goal by defining a specific movement to achieve it. We propose that the majority of processes that meet this definition can be completed nearly instantaneously, which means that motor planning itself in fact consumes only a small fraction of the reaction time. PMID:24981338

  13. Risk-Taking Behavior in a Gambling Task Associated with Variations in the Tryptophan Hydroxylase 2 Gene: Relevance to Psychiatric Disorders

    PubMed Central

    Juhasz, Gabriella; Downey, Darragh; Hinvest, Neal; Thomas, Emma; Chase, Diana; Toth, Zoltan G; Lloyd-Williams, Kathryn; Mekli, Krisztina; Platt, Hazel; Payton, Antony; Bagdy, Gyorgy; Elliott, Rebecca; Deakin, J F William; Anderson, Ian M

    2010-01-01

    Decision making, choosing the best option from the possible outcomes, is impaired in many psychiatric conditions including affective disorders. We tested the hypothesis that variations in serotonergic genes (TPH2, TPH1, SLC6A4, HTR1A), which influence serotonin availability, affect choice behavior in a probabilistic gambling task. A population cohort (N=1035) completed a paper-and-pencil gambling task, filled out personality and symptom questionnaires and gave consent for the use of their DNA in a genetic association study. A subgroup of subjects (N=69) also completed a computer version of the task. The gambling task was designed to estimate an individual's tendency to take a risk when choosing between a smaller but more certain ‘win' and a larger, less probable one. We genotyped seven haplotype tagging SNPs in the TPH2 gene, and previously reported functional polymorphisms from the other genes (rs1800532, 5HTTLPR, and rs6295). Carriers of the more prevalent TPH2 haplotype, which was previously associated with less active enzyme variant, showed reduced risk taking on both tasks compared with subjects not carrying the common haplotype. The effect of TPH2 haplotypes on risk-taking was independent of current depression and anxiety symptoms, neuroticism and impulsiveness scores. We did not find an association between functional polymorphisms in the TPH1, SLC6A4, HTR1A genes and risk-taking behavior. In conclusion, our study demonstrates the role of the TPH2 gene and the serotonin system in risk taking and suggests that TPH2 gene may contribute to the expression of psychiatric phenotypes through altered decision making. PMID:20043001

  14. Dissociable Neural Correlates of Intention and Action Preparation in Voluntary Task Switching

    PubMed Central

    Poljac, Edita; Yeung, Nick

    2014-01-01

    This electroencephalographic (EEG) study investigated the impact of between-task competition on intentional control in voluntary task switching. Anticipatory preparation for an upcoming task switch is a hallmark of top-down intentional control. Meanwhile, asymmetries in performance and voluntary choice when switching between tasks differing in relative strength reveal the effects of between-task competition, reflected in a surprising bias against switching to an easier task. Here, we assessed the impact of this bias on EEG markers of intentional control during preparation for an upcoming task switch. The results revealed strong and varied effects of between-task competition on EEG markers of global task preparation—a frontal contingent negative variation (CNV), a posterior slow positive wave, and oscillatory activity in the alpha band (8–12 Hz) over posterior scalp sites. In contrast, we observed no between-task differences in motor-specific task preparation, as indexed by the lateralized readiness potential and by motor-related amplitude asymmetries in the mu (9–13 Hz) and beta (18–26 Hz) frequency bands. Collectively, these findings demonstrate that between-task competition directly influences the formation of top-down intentions, not only their expression in overt behavior. Specifically, this influence occurs at the level of global task intention rather than the preparation of specific actions. PMID:23104682

  15. Corollary Discharge Failure in an Oculomotor Task Is Related to Delusional Ideation in Healthy Individuals

    PubMed Central

    Malassis, Raphaëlle; Del Cul, Antoine; Collins, Thérèse

    2015-01-01

    Predicting the sensory consequences of saccadic eye movements likely plays a crucial role in planning sequences of saccades and in maintaining visual stability despite saccade-caused retinal displacements. Deficits in predictive activity, such as that afforded by a corollary discharge signal, have been reported in patients with schizophrenia, and may lead to the emergence of positive symptoms, in particular delusions of control and auditory hallucinations. We examined whether a measure of delusional thinking in the general, non-clinical population correlated with measures of predictive activity in two oculomotor tasks. The double-step task measured predictive activity in motor control, and the in-flight displacement task measured predictive activity in trans-saccadic visual perception. Forty-one healthy adults performed both tasks and completed a questionnaire to assess delusional thinking. The quantitative measure of predictive activity we obtained correlated with the tendency towards delusional ideation, but only for the motor task, and not the perceptual task: Individuals with higher levels of delusional thinking showed less self-movement information use in the motor task. Variation of the degree of self-generated movement knowledge as a function of the prevalence of delusional ideation in the normal population strongly supports the idea that corollary discharge deficits measured in schizophrenic patients in previous researches are not due to neuroleptic medication. We also propose that this difference in results between the perceptual and the motor tasks may point to a dissociation between corollary discharge for perception and corollary discharge for action. PMID:26305115

  16. Accuracy and Precision of a Custom Camera-Based System for 2-D and 3-D Motion Tracking during Speech and Nonspeech Motor Tasks

    ERIC Educational Resources Information Center

    Feng, Yongqiang; Max, Ludo

    2014-01-01

    Purpose: Studying normal or disordered motor control requires accurate motion tracking of the effectors (e.g., orofacial structures). The cost of electromagnetic, optoelectronic, and ultrasound systems is prohibitive for many laboratories and limits clinical applications. For external movements (lips, jaw), video-based systems may be a viable…

  17. Neural Control Adaptation to Motor Noise Manipulation

    PubMed Central

    Hasson, Christopher J.; Gelina, Olga; Woo, Garrett

    2016-01-01

    Antagonistic muscular co-activation can compensate for movement variability induced by motor noise at the expense of increased energetic costs. Greater antagonistic co-activation is commonly observed in older adults, which could be an adaptation to increased motor noise. The present study tested this hypothesis by manipulating motor noise in 12 young subjects while they practiced a goal-directed task using a myoelectric virtual arm, which was controlled by their biceps and triceps muscle activity. Motor noise was increased by increasing the coefficient of variation (CV) of the myoelectric signals. As hypothesized, subjects adapted by increasing antagonistic co-activation, and this was associated with reduced noise-induced performance decrements. A second hypothesis was that a virtual decrease in motor noise, achieved by smoothing the myoelectric signals, would have the opposite effect: co-activation would decrease and motor performance would improve. However, the results showed that a decrease in noise made performance worse instead of better, with no change in co-activation. Overall, these findings suggest that the nervous system adapts to virtual increases in motor noise by increasing antagonistic co-activation, and this preserves motor performance. Reducing noise may have failed to benefit performance due to characteristics of the filtering process itself, e.g., delays are introduced and muscle activity bursts are attenuated. The observed adaptations to increased noise may explain in part why older adults and many patient populations have greater antagonistic co-activation, which could represent an adaptation to increased motor noise, along with a desire for increased joint stability. PMID:26973487

  18. Neural Control Adaptation to Motor Noise Manipulation.

    PubMed

    Hasson, Christopher J; Gelina, Olga; Woo, Garrett

    2016-01-01

    Antagonistic muscular co-activation can compensate for movement variability induced by motor noise at the expense of increased energetic costs. Greater antagonistic co-activation is commonly observed in older adults, which could be an adaptation to increased motor noise. The present study tested this hypothesis by manipulating motor noise in 12 young subjects while they practiced a goal-directed task using a myoelectric virtual arm, which was controlled by their biceps and triceps muscle activity. Motor noise was increased by increasing the coefficient of variation (CV) of the myoelectric signals. As hypothesized, subjects adapted by increasing antagonistic co-activation, and this was associated with reduced noise-induced performance decrements. A second hypothesis was that a virtual decrease in motor noise, achieved by smoothing the myoelectric signals, would have the opposite effect: co-activation would decrease and motor performance would improve. However, the results showed that a decrease in noise made performance worse instead of better, with no change in co-activation. Overall, these findings suggest that the nervous system adapts to virtual increases in motor noise by increasing antagonistic co-activation, and this preserves motor performance. Reducing noise may have failed to benefit performance due to characteristics of the filtering process itself, e.g., delays are introduced and muscle activity bursts are attenuated. The observed adaptations to increased noise may explain in part why older adults and many patient populations have greater antagonistic co-activation, which could represent an adaptation to increased motor noise, along with a desire for increased joint stability. PMID:26973487

  19. Quantitative comparisons on hand motor functional areas determined by resting state and task BOLD fMRI and anatomical MRI for pre-surgical planning of patients with brain tumors

    PubMed Central

    Hou, Bob L.; Bhatia, Sanjay; Carpenter, Jeffrey S.

    2016-01-01

    For pre-surgical planning we present quantitative comparison of the location of the hand motor functional area determined by right hand finger tapping BOLD fMRI, resting state BOLD fMRI, and anatomically using high resolution T1 weighted images. Data were obtained on 10 healthy subjects and 25 patients with left sided brain tumors. Our results show that there are important differences in the locations (i.e., > 20 mm) of the determined hand motor voxels by these three MR imaging methods. This can have significant effect on the pre-surgical planning of these patients depending on the modality used. In 13 of the 25 cases (i.e., 52%) the distances between the task-determined and the rs-fMRI determined hand areas were more than 20 mm; in 13 of 25 cases (i.e., 52%) the distances between the task-determined and anatomically determined hand areas were > 20 mm; and in 16 of 25 cases (i.e., 64%) the distances between the rs-fMRI determined and anatomically determined hand areas were more than 20 mm. In just three cases, the distances determined by all three modalities were within 20 mm of each other. The differences in the location or fingerprint of the hand motor areas, as determined by these three MR methods result from the different underlying mechanisms of these three modalities and possibly the effects of tumors on these modalities. PMID:27069871

  20. Motor adaptation in complex sports - the influence of visual context information on the adaptation of the three-point shot to altered task demands in expert basketball players.

    PubMed

    Stöckel, Tino; Fries, Udo

    2013-01-01

    We examined the influence of visual context information on skilled motor behaviour and motor adaptation in basketball. The rules of basketball in Europe have recently changed, such that that the distance for three-point shots increased from 6.25 m to 6.75 m. As such, we tested the extent to which basketball experts can adapt to the longer distance when a) only the unfamiliar, new three-point line was provided as floor markings (NL group), or b) the familiar, old three-point line was provided in addition to the new floor markings (OL group). In the present study 20 expert basketball players performed 40 three-point shots from 6.25 m and 40 shots from 6.75 m. We assessed the percentage of hits and analysed the landing position of the ball. Results showed better adaptation of throwing performance to the longer distance when the old three-point line was provided as a visual landmark, compared to when only the new three-point line was provided. We hypothesise that the three-point line delivered relevant information needed to successfully adapt to the greater distance in the OL group, whereas it disturbed performance and ability to adapt in the NL group. The importance of visual landmarks on motor adaptation in basketball throwing is discussed relative to the influence of other information sources (i.e. angle of elevation relative to the basket) and sport practice. PMID:23215863

  1. Characterization of fine motor development: dynamic analysis of children's drawing movements.

    PubMed

    Lin, Qiushi; Luo, Jianfei; Wu, Zhongcheng; Shen, Fei; Sun, Zengwu

    2015-04-01

    In this study, we investigated children's fine motor development by analyzing drawing trajectories, kinematics and kinetics. Straight lines drawing task and circles drawing task were performed by using a force sensitive tablet. Forty right-handed and Chinese mother-tongue students aged 6-12, attending classes from grade 1 to 5, were engaged in the experiment. Three spatial parameters, namely cumulative trace length, vector length of straight line and vertical diameter of circle were determined. Drawing duration, mean drawing velocity, and number of peaks in stroke velocity profile (NPV) were derived as kinematic parameters. Besides mean normal force, two kinetic indices were proposed: normalized force angle regulation (NFR) and variation of fine motor control (VFC) for circles drawing task. The maturation and automation of fine motor ability were reflected by increased drawing velocity, reduced drawing duration, NPV and NFR, with decreased VFC in circles drawing task. Grade and task main effects as well as significant correlations between age and parameters suggest that factors such as schooling, age and task should be considered in the assessment of fine motor skills. Compared with kinematic parameters, findings of NFR and VFC revealed that kinetics is another important perspective in the analysis of fine motor movement. PMID:25574765

  2. Dividing organelle tracks into Brownian and motor-driven intervals by variational maximization of the Bayesian evidence.

    PubMed

    Martin, Matthew J; Smelser, Amanda M; Holzwarth, George

    2016-04-01

    Many organelles and vesicles in live cells move in a start-stop manner when observed for ~10 s by optical microscopy. Changes in velocity and directional persistence of such particles are a potentially rich source of insight into the mechanisms leading to the start and stop states. Unbiased assessment of the most probable number of states, the properties of each state, and the most probable state for the particle at each moment can be accomplished by variational Bayesian methods combined with a hidden Markov model and a Gaussian mixture model. Our track analysis method, "vbTRACK", applied this combination of methods to particle velocity v or changes in the direction of travel evaluated from simulated tracks and from tracks of peroxisomes in live cells. When tested with numerical data, vbTRACK reliably determined the number of states, the mean and variance of the velocity or the direction of travel for each state, and the most probable state during each frame. When applied to the tracks of peroxisomes in live cells, some tracks separated into two states, one with high velocity and directionality, the other approximately Brownian. Other tracks of particles in live cells separated into several diffusive states with distinct diffusion constants. PMID:26538332

  3. Proximal movements compensate for distal forelimb movement impairments in a reach-to-eat task in Huntington's disease: new insights into motor impairments in a real-world skill.

    PubMed

    Klein, Alexander; Sacrey, Lori-Ann R; Dunnett, Stephen B; Whishaw, Ian Q; Nikkhah, Guido

    2011-02-01

    Huntington's disease (HD) causes severe motor impairments that are characterized by chorea, dystonia, and impaired fine motor control. The motor deficits include deficits in the control of the forelimb, but as yet there has been no comprehensive assessment of the impairments in arm, hand and digit movements as they are used in every-day tasks. The present study investigated the reaching of twelve HD subjects and twelve age-matched control subjects on a reach-to-eat task. The subjects were asked to reach for a small food item, with the left or the right hand, and then bring it to the mouth for eating. The task assesses the major features of skilled forelimb use, including orienting to a target, transport of the hand to a target, use of a precision grasp of the target, limb withdrawal to the mouth, and release of the food item into the mouth, and the integration of the movements into a smooth act. The movements were analyzed frame-by-frame by scoring the video record using an established movement element rating scale and by biometric analysis to describe limb trajectory. All HD subjects displayed greater reliance on more proximal movements in reaching. They also displayed overall jerkiness, a significant impairment in end point error correction (i.e. no smooth trajectories), deficits in timing and terminating motion (overshooting the target), impairments in rotation of the hand, abnormalities in grasping, and impairments in releasing the food item to the mouth. Although impairment in the control of the distal segments of the limb was common to all subjects, the intrusion of choreatic movements produced a pattern of highly variable performance between subjects. The quantification of reaching performance as measured by this analysis provides new insights into the impairments of HD subjects, allows an easily administered and inexpensive way to document the many skilled limb movement abnormalities, and relates the impairments to a real-world context. The protocol can

  4. Performance of Male and Female C57BL/6J Mice on Motor and Cognitive Tasks Commonly Used in Pre-Clinical Traumatic Brain Injury Research.

    PubMed

    Tucker, Laura B; Fu, Amanda H; McCabe, Joseph T

    2016-05-01

    To date, clinical trials have failed to find an effective therapy for victims of traumatic brain injury (TBI) who live with motor, cognitive, and psychiatric complaints. Pre-clinical investigators are now encouraged to include male and female subjects in all translational research, which is of particular interest in the field of neurotrauma given that circulating female hormones (progesterone and estrogen) have been demonstrated to exert neuroprotective effects. To determine whether behavior of male and female C57BL6/J mice is differentially impaired by TBI, male and cycling female mice were injured by controlled cortical impact and tested for several weeks with functional assessments commonly employed in pre-clinical research. We found that cognitive and motor impairments post-TBI, as measured by the Morris water maze (MWM) and rotarod, respectively, were largely equivalent in male and female animals. However, spatial working memory, assessed by the y-maze, was poorer in female mice. Female mice were generally more active, as evidenced by greater distance traveled in the first exposure to the open field, greater distance in the y-maze, and faster swimming speeds in the MWM. Statistical analysis showed that variability in all behavioral data was no greater in cycling female mice than it was in male mice. These data all suggest that with careful selection of tests, procedures, and measurements, both sexes can be included in translational TBI research without concern for effect of hormones on functional impairments or behavioral variability. PMID:25951234

  5. Prediction of isometric motor tasks and effort levels based on high-density EMG in patients with incomplete spinal cord injury

    NASA Astrophysics Data System (ADS)

    Jordanić, Mislav; Rojas-Martínez, Mónica; Mañanas, Miguel Angel; Francesc Alonso, Joan

    2016-08-01

    Objective. The development of modern assistive and rehabilitation devices requires reliable and easy-to-use methods to extract neural information for control of devices. Group-specific pattern recognition identifiers are influenced by inter-subject variability. Based on high-density EMG (HD-EMG) maps, our research group has already shown that inter-subject muscle activation patterns exist in a population of healthy subjects. The aim of this paper is to analyze muscle activation patterns associated with four tasks (flexion/extension of the elbow, and supination/pronation of the forearm) at three different effort levels in a group of patients with incomplete Spinal Cord Injury (iSCI). Approach. Muscle activation patterns were evaluated by the automatic identification of these four isometric tasks along with the identification of levels of voluntary contractions. Two types of classifiers were considered in the identification: linear discriminant analysis and support vector machine. Main results. Results show that performance of classification increases when combining features extracted from intensity and spatial information of HD-EMG maps (accuracy = 97.5%). Moreover, when compared to a population with injuries at different levels, a lower variability between activation maps was obtained within a group of patients with similar injury suggesting stronger task-specific and effort-level-specific co-activation patterns, which enable better prediction results. Significance. Despite the challenge of identifying both the four tasks and the three effort levels in patients with iSCI, promising results were obtained which support the use of HD-EMG features for providing useful information regarding motion and force intention.

  6. Mandibular Motor Control During the Early Development of Speech and Nonspeech Behaviors

    PubMed Central

    Steeve, Roger W.; Moore, Christopher A.

    2014-01-01

    Purpose The mandible is often portrayed as a primary structure of early babble production, but empiricists still need to specify (a) how mandibular motor control and kinematics vary among different types of multisyllabic babble, (b) whether chewing or jaw oscillation relies on a coordinative infrastructure that can be exploited for early types of multisyllables, and (c) whether the organization of motor control and associated kinematics varies across the nonspeech behaviors that are candidate motor stereotypies for speech. Method Electromyographic signals were obtained from mandibular muscle groups, and associated kinematics were measured longitudinally from a typically developing infant from 9 to 22 months during jaw oscillation, chewing, and several types of early multisyllabic babble. Results Measures of early motor control and mandibular kinematics for multisyllabic productions indicated task-dependent changes across syllable types and significant differences across babble and nonspeech behaviors. Differences in motor control were also observed across nonspeech behaviors. Conclusions Motor control for babble appears to be influenced by the balanced interaction between developing motor and linguistic systems, such that variation in linguistic complexity systematically evinces changes in motor organization apparently to meet these demands. This same effect was noted among chewing and jaw oscillation; task-dependent changes in mandibular control were noted across behaviors. PMID:19717649

  7. Gray Matter Volume and Resting-State Functional Connectivity of the Motor Cortex-Cerebellum Network Reflect the Individual Variation in Masticatory Performance in Healthy Elderly People

    PubMed Central

    Lin, Chia-Shu; Wu, Shih-Yun; Wu, Ching-Yi; Ko, Hsien-Wei

    2016-01-01

    Neuroimaging studies have consistently identified brain activation in the motor area and the cerebellum during chewing. In this study, we further investigated the structural and functional brain signature associated with masticatory performance, which is a widely used index for evaluating overall masticatory function in the elderly. Twenty-five healthy elderly participants underwent oral examinations, masticatory performance tests, and behavioral assessments, including the Cognitive Abilities Screening Instrument and the short-form Geriatric Depression Scale. Masticatory performance was assessed with the validated colorimetric method, using color-changeable chewing gum. T1-weighted structural magnetic resonance imaging (MRI) and resting-state function MRI were performed. We analyzed alterations in gray matter volume (GMV) using voxel-based morphometry and resting-state functional connectivity (rsFC) between brain regions using the seed-based method. The structural and functional MRI analyses revealed the following findings: (1) the GMV change in the premotor cortex was positively correlated with masticatory performance. (2) The rsFC between the cerebellum and the premotor cortex was positively correlated with masticatory performance. (3) The GMV changes in the dorsolateral prefrontal cortex (DLPFC), as well as the rsFC between the cerebellum and the DLPFC, were positively correlated with masticatory performance. The findings showed that in the premotor cortex, a reduction of GMV and rsFC would reflect declined masticatory performance. The positive correlation between DLPFC connectivity and masticatory performance implies that masticatory ability is associated with cognitive function in the elderly. Our findings highlighted the role of the central nervous system in masticatory performance and increased our understanding of the structural and functional brain signature underlying individual variations in masticatory performance in the elderly. PMID:26779015

  8. Accuracy and precision of a custom camera-based system for 2D and 3D motion tracking during speech and nonspeech motor tasks

    PubMed Central

    Feng, Yongqiang; Max, Ludo

    2014-01-01

    Purpose Studying normal or disordered motor control requires accurate motion tracking of the effectors (e.g., orofacial structures). The cost of electromagnetic, optoelectronic, and ultrasound systems is prohibitive for many laboratories, and limits clinical applications. For external movements (lips, jaw), video-based systems may be a viable alternative, provided that they offer high temporal resolution and sub-millimeter accuracy. Method We examined the accuracy and precision of 2D and 3D data recorded with a system that combines consumer-grade digital cameras capturing 60, 120, or 240 frames per second (fps), retro-reflective markers, commercially-available computer software (APAS, Ariel Dynamics), and a custom calibration device. Results Overall mean error (RMSE) across tests was 0.15 mm for static tracking and 0.26 mm for dynamic tracking, with corresponding precision (SD) values of 0.11 and 0.19 mm, respectively. The effect of frame rate varied across conditions, but, generally, accuracy was reduced at 240 fps. The effect of marker size (3 vs. 6 mm diameter) was negligible at all frame rates for both 2D and 3D data. Conclusion Motion tracking with consumer-grade digital cameras and the APAS software can achieve sub-millimeter accuracy at frame rates that are appropriate for kinematic analyses of lip/jaw movements for both research and clinical purposes. PMID:24686484

  9. Accuracy and precision of a custom camera-based system for 2-d and 3-d motion tracking during speech and nonspeech motor tasks.

    PubMed

    Feng, Yongqiang; Max, Ludo

    2014-04-01

    PURPOSE Studying normal or disordered motor control requires accurate motion tracking of the effectors (e.g., orofacial structures). The cost of electromagnetic, optoelectronic, and ultrasound systems is prohibitive for many laboratories and limits clinical applications. For external movements (lips, jaw), video-based systems may be a viable alternative, provided that they offer high temporal resolution and submillimeter accuracy. METHOD The authors examined the accuracy and precision of 2-D and 3-D data recorded with a system that combines consumer-grade digital cameras capturing 60, 120, or 240 frames per second (fps), retro-reflective markers, commercially available computer software (APAS, Ariel Dynamics), and a custom calibration device. RESULTS Overall root-mean-square error (RMSE) across tests was 0.15 mm for static tracking and 0.26 mm for dynamic tracking, with corresponding precision (SD) values of 0.11 and 0.19 mm, respectively. The effect of frame rate varied across conditions, but, generally, accuracy was reduced at 240 fps. The effect of marker size (3- vs. 6-mm diameter) was negligible at all frame rates for both 2-D and 3-D data. CONCLUSION Motion tracking with consumer-grade digital cameras and the APAS software can achieve submillimeter accuracy at frame rates that are appropriate for kinematic analyses of lip/jaw movements for both research and clinical purposes. PMID:24686484

  10. 76 FR 32390 - Motor Carrier Safety Advisory Committee Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-06

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of Motor Carrier Safety Advisory... MCSAC will complete action on Task 11-01, regarding Patterns of Safety Violations by Motor...

  11. Variation in the electrical properties of 100 V/100 a rated mesh and stripe TDMOSFETs (Trench Double-Diffused MOSFETs) for motor drive applications

    NASA Astrophysics Data System (ADS)

    Na, Kyoung-Il; Kah, Dong-Ha; Kim, Sang-Gi; Koo, Jin-Gun; Kim, Jongdae; Yang, Yil-Suk; Lee, Jin-Ho

    2012-05-01

    The vertical power metal-oxide semiconductor field-effect transistors (MOSFETs) with deep trench structures are the most promising candidates to overcome the trade-off relationship between the ON-resistance (R ON ) and the blocking voltage (BV DS ). Especially, 100 V/100 A rated trench power MOSFETs are used in components of many power systems, such as motors and LED lighting drive ICs, DC-DC converters in electric vehicles, and so on. In this work, we studied variations of the electrical characteristics, such as threshold voltage (V TH ), BV DS , and drain current drivability, with p-well doping concentration via the SILVACO simulator. From simulation results, we found the BV DS and the drain current (I D ) as functions of the p-well doping concentration at an ion implantation energy of 80 keV. With increasing of p-well doping concentration in the guard ring region, both V TH and BV DS slowly increased, but I D decreased, because the boron lateral diffusion during the fabrication process below gate trench region affected the doping concentration of the p-body at the active region. Additionally, 100 V/100 A rated trench double-diffused MOSFETs (TDMOSFETs) with meshes and stripes were successfully developed by using a silicon deep etching process. The variations in the electrical properties, such as V TH , BV DS , and drain current drivability, of the two different kinds of fabricated devices, with cell design and density in TDMOSFETs were also studied. The BV DS and the V TH in the stripe-type TDMOSFET were 110 and 3 V, respectively. However, the V TH of mesh-type device was smaller 0.5 V than that of stripe-type because of corner effect. The BV DS improved about 20 V compared to stripe-type TDMOSFET due to edge termination, and the maximum drain current (I D.MAX ) was improved by about 10% due to an increase in the gate width at the same chip size. These effects were reflected in devices with different cell densities. When the cell density was increased, however

  12. Measuring motor coordination in mice.

    PubMed

    Deacon, Robert M J

    2013-01-01

    Mice are increasingly being used in behavioral neuroscience, largely replacing rats as the behaviorist's animal of choice. Before aspects of behavior such as emotionality or cognition can be assessed, however, it is vital to determine whether the motor capabilities of e.g. a mutant or lesioned mouse allow such an assessment. Performance on a maze task requiring strength and coordination, such as the Morris water maze, might well be impaired in a mouse by motor, rather than cognitive, impairments, so it is essential to selectively dissect the latter from the former. For example, sensorimotor impairments caused by NMDA antagonists have been shown to impair water maze performance(2). Motor coordination has traditionally been assessed in mice and rats by the rotarod test, in which the animal is placed on a horizontal rod that rotates about its long axis; the animal must walk forwards to remain upright and not fall off. Both set speed and accelerating versions of the rotarod are available. The other three tests described in this article (horizontal bar, static rods and parallel bars) all measure coordination on static apparatus. The horizontal bar also requires strength for adequate performance, particularly of the forelimbs as the mouse initially grips the bar just with the front paws. Adult rats do not perform well on tests such as the static rods and parallel bars (personal observations); they appear less well coordinated than mice. I have only tested male rats, however, and male mice seem generally less well coordinated than females. Mice appear to have a higher strength:weight ratio than rats; the Latin name, Mus musculus, seems entirely appropriate. The rotarod, the variations of the foot fault test(12) or the Catwalk (Noldus)(15) apparatus are generally used to assess motor coordination in rats. PMID:23748408

  13. Task-specific Dystonias

    PubMed Central

    Torres-Russotto, Diego; Perlmutter, Joel S.

    2009-01-01

    Task-specific dystonias are primary focal dystonias characterized by excessive muscle contractions producing abnormal postures during selective motor activities that often involve highly skilled, repetitive movements. Historically these peculiar postures were considered psychogenic but have now been classified as forms of dystonia. Writer’s cramp is the most commonly identified task-specific dystonia and has features typical of this group of disorders. Symptoms may begin with lack of dexterity during performance of a specific motor task with increasingly abnormal posturing of the involved body part as motor activity continues. Initially, the dystonia may manifest only during the performance of the inciting task, but as the condition progresses it may also occur during other activities or even at rest. Neurological exam is usually unremarkable except for the dystonia-related abnormalities. Although the precise pathophysiology remains unclear, increasing evidence suggests reduced inhibition at different levels of the sensorimotor system. Symptomatic treatment options include oral medications, botulinum toxin injections, neurosurgical procedures, and adaptive strategies. Prognosis may vary depending upon body part involved and specific type of task affected. Further research may reveal new insights into the etiology, pathophysiology, natural history, and improved treatment of these conditions. PMID:18990127

  14. Comparison of haptic guidance and error amplification robotic trainings for the learning of a timing-based motor task by healthy seniors

    PubMed Central

    Bouchard, Amy E.; Corriveau, Hélène; Milot, Marie-Hélène

    2015-01-01

    With age, a decline in the temporal aspect of movement is observed such as a longer movement execution time and a decreased timing accuracy. Robotic training can represent an interesting approach to help improve movement timing among the elderly. Two types of robotic training—haptic guidance (HG; demonstrating the correct movement for a better movement planning and improved execution of movement) and error amplification (EA; exaggerating movement errors to have a more rapid and complete learning) have been positively used in young healthy subjects to boost timing accuracy. For healthy seniors, only HG training has been used so far where significant and positive timing gains have been obtained. The goal of the study was to evaluate and compare the impact of both HG and EA robotic trainings on the improvement of seniors’ movement timing. Thirty-two healthy seniors (mean age 68 ± 4 years) learned to play a pinball-like game by triggering a one-degree-of-freedom hand robot at the proper time to make a flipper move and direct a falling ball toward a randomly positioned target. During HG and EA robotic trainings, the subjects’ timing errors were decreased and increased, respectively, based on the subjects’ timing errors in initiating a movement. Results showed that only HG training benefited learning, but the improvement did not generalize to untrained targets. Also, age had no influence on the efficacy of HG robotic training, meaning that the oldest subjects did not benefit more from HG training than the younger senior subjects. Using HG to teach the correct timing of movement seems to be a good strategy to improve motor learning for the elderly as for younger people. However, more studies are needed to assess the long-term impact of HG robotic training on improvement in movement timing. PMID:25873868

  15. Comparison of effects of transcranial magnetic stimulation on primary motor cortex and supplementary motor area in motor skill learning (randomized, cross over study).

    PubMed

    Kim, Yong Kyun; Shin, Sung Hun

    2014-01-01

    Motor skills require quick visuomotor reaction time, fast movement time, and accurate performance. Primary motor cortex (M1) and supplementary motor area (SMA) are closely related in learning motor skills. Also, it is well known that high frequency repeated transcranial magnetic stimulation (rTMS) on these sites has a facilitating effect. The aim of this study was to compare the effects of high frequency rTMS activation of these two brain sites on learning of motor skills. Twenty three normal volunteers participated. Subjects were randomly stimulated on either brain area, SMA or M1. The motor task required the learning of sequential finger movements, explicitly or implicitly. It consisted of pressing the keyboard sequentially with their right hand on seeing 7 digits on the monitor explicitly, and then tapping the 7 digits by memorization, implicitly. Subjects were instructed to hit the keyboard as fast and accurately as possible. Using Musical Instrument Digital Interface (MIDI), the keyboard pressing task was measured before and after high frequency rTMS for motor performance, which was measured by response time (RT), movement time, and accuracy (AC). A week later, the same task was repeated by cross-over study design. At this time, rTMS was applied on the other brain area. Two-way ANOVA was used to assess the carry over time effect and stimulation sites (M1 and SMA), as factors. Results indicated that no carry-over effect was observed. The AC and RT were not different between the two stimulating sites (M1 and SMA). But movement time was significantly decreased after rTMS on both SMA and M1. The amount of shortened movement time after rTMS on SMA was significantly increased as compared to the movement time after rTMS on M1 (p < 0.05), especially for implicit learning of motor tasks. The coefficient of variation was lower in implicit trial than in explicit trial. In conclusion, this finding indicated an important role of SMA compared to M1, in implicit motor

  16. Distraction as a Function of Within-Task Stimulation for Hyperactive and Normal Children.

    ERIC Educational Resources Information Center

    Zentall, Sydney S.; And Others

    To investigate the effects of distraction, task performance with or without within-task color, holding task complexity constant, was assessed with 25 hyperactive Ss and 22 controls (5 to 10 years old). Two visual-motor drawing tasks, one visual concentration task and a combined visual-motor and visual concentration task were given. Error analyses…

  17. CEINMS: A toolbox to investigate the influence of different neural control solutions on the prediction of muscle excitation and joint moments during dynamic motor tasks.

    PubMed

    Pizzolato, Claudio; Lloyd, David G; Sartori, Massimo; Ceseracciu, Elena; Besier, Thor F; Fregly, Benjamin J; Reggiani, Monica

    2015-11-01

    Personalized neuromusculoskeletal (NMS) models can represent the neurological, physiological, and anatomical characteristics of an individual and can be used to estimate the forces generated inside the human body. Currently, publicly available software to calculate muscle forces are restricted to static and dynamic optimisation methods, or limited to isometric tasks only. We have created and made freely available for the research community the Calibrated EMG-Informed NMS Modelling Toolbox (CEINMS), an OpenSim plug-in that enables investigators to predict different neural control solutions for the same musculoskeletal geometry and measured movements. CEINMS comprises EMG-driven and EMG-informed algorithms that have been previously published and tested. It operates on dynamic skeletal models possessing any number of degrees of freedom and musculotendon units and can be calibrated to the individual to predict measured joint moments and EMG patterns. In this paper we describe the components of CEINMS and its integration with OpenSim. We then analyse how EMG-driven, EMG-assisted, and static optimisation neural control solutions affect the estimated joint moments, muscle forces, and muscle excitations, including muscle co-contraction. PMID:26522621

  18. Retention of Motor Skills: Review.

    ERIC Educational Resources Information Center

    Schendel, J. D.; And Others

    A summary of an extensive literature survey deals with the variables known or suspected to affect the retention of learned motor behaviors over lengthy no-practice intervals. Emphasis was given to research conducted by or for the military. The variables that may affect the retention of motor skills were dichotomized into task variables and…

  19. Motor Coordination and Executive Functions

    ERIC Educational Resources Information Center

    Michel, Eva

    2012-01-01

    Since Piaget, the view that motor and cognitive development are interrelated has gained wide acceptance. However, empirical research on this issue is still rare. Few studies show a correlation of performance in cognitive and motor tasks in typically developing children. More specifically, Diamond A. (2000) hypothesizes an involvement of executive…

  20. Age Differences between Children and Young Adults in the Dynamics of Dual-Task Prioritization: Body (Balance) versus Mind (Memory)

    ERIC Educational Resources Information Center

    Schaefer, Sabine; Krampe, Ralf Th.; Lindenberger, Ulman; Baltes, Paul B.

    2008-01-01

    Task prioritization can lead to trade-off patterns in dual-task situations. The authors compared dual-task performances in 9- and 11-year-old children and young adults performing a cognitive task and a motor task concurrently. The motor task required balancing on an ankle-disc board. Two cognitive tasks measured working memory and episodic memory…

  1. Neuropsychological Investigation of Motor Impairments in Autism

    PubMed Central

    Duffield, Tyler; Trontel, Haley; Bigler, Erin D.; Froehlich, Alyson; Prigge, Molly B.; Travers, Brittany; Green, Ryan R.; Cariello, Annahir N.; Cooperrider, Jason; Nielsen, Jared; Alexander, Andrew; Anderson, Jeffrey; Fletcher, P. Thomas; Lange, Nicholas; Zielinski, Brandon; Lainhart, Janet

    2013-01-01

    It is unclear how standardized neuropsychological measures of motor function relate to brain volumes of motor regions in autism spectrum disorder (ASD). An all male sample composed of 59 ASD and 30 controls (ages 5–33 years) completed three measures of motor function: strength of grip (SOG), finger tapping test (FTT), and grooved peg-board test (GPT). Likewise, all participants underwent magnetic resonance imaging with region of interest (ROI) volumes obtained to include the following regions: motor cortex (pre-central gyrus), somatosensory cortex (post-central gyrus), thalamus, basal ganglia, cerebellum and caudal middle frontal gyrus. These traditional neuropsychological measures of motor function are assumed to differ in motor complexity with GPT requiring the most followed by FTT and SOG. Performance by ASD participants on the GPT and FTT differed significantly from controls, with the largest effect size differences observed on the more complex GPT task. Differences on the SOG task between the two groups were non-significant. Since more complex motor tasks tap more complex networks, poorer GPT performance by those with ASD may reflect less efficient motor networks. There was no gross pathology observed in classic motor areas of the brain in ASD, as region of interest (ROI) volumes did not differ, but FTT was negatively related to motor cortex volume in ASD. The results suggest a hierarchical motor disruption in ASD, with difficulties evident only in more complex tasks as well as a potential anomalous size-function relation in motor cortex in ASD. PMID:23985036

  2. Heritability of motor control and motor learning

    PubMed Central

    Missitzi, Julia; Gentner, Reinhard; Misitzi, Angelica; Geladas, Nickos; Politis, Panagiotis; Klissouras, Vassilis; Classen, Joseph

    2013-01-01

    Abstract The aim of this study was to elucidate the relative contribution of genes and environment on individual differences in motor control and acquisition of a force control task, in view of recent association studies showing that several candidate polymorphisms may have an effect on them. Forty‐four healthy female twins performed brisk isometric abductions with their right thumb. Force was recorded by a transducer and fed back to the subject on a computer screen. The task was to place the tracing of the peak force in a force window defined between 30% and 40% of the subject's maximum force, as determined beforehand. The initial level of proficiency was defined as the number of attempts reaching the force window criterion within the first 100 trials. The difference between the number of successful trials within the last and the first 100 trials was taken as a measure of motor learning. For motor control, defined by the initial level of proficiency, the intrapair differences in monozygotic (MZ) and dizygotic (DZ) twins were 6.8 ± 7.8 and 13.8 ± 8.4, and the intrapair correlations 0.77 and 0.39, respectively. Heritability was estimated at 0.68. Likewise for motor learning intrapair differences in the increment of the number of successful trials in MZ and DZ twins were 5.4 ± 5.2 and 12.8 ± 7, and the intrapair correlations 0.58 and 0.19. Heritability reached 0.70. The present findings suggest that heredity accounts for a major part of existing differences in motor control and motor learning, but uncertainty remains which gene polymorphisms may be responsible. PMID:24744865

  3. Temporal structure of motor variability is dynamically regulated and predicts motor learning ability

    PubMed Central

    Wu, Howard G; Miyamoto, Yohsuke R; Castro, Luis Nicolas Gonzalez; Ölveczky, Bence P; Smith, Maurice A

    2015-01-01

    Individual differences in motor learning ability are widely acknowledged, yet little is known about the factors that underlie them. Here we explore whether movement-to-movement variability in motor output, a ubiquitous if often unwanted characteristic of motor performance, predicts motor learning ability. Surprisingly, we found that higher levels of task-relevant motor variability predicted faster learning both across individuals and across tasks in two different paradigms, one relying on reward-based learning to shape specific arm movement trajectories and the other relying on error-based learning to adapt movements in novel physical environments. We proceeded to show that training can reshape the temporal structure of motor variability, aligning it with the trained task to improve learning. These results provide experimental support for the importance of action exploration, a key idea from reinforcement learning theory, showing that motor variability facilitates motor learning in humans and that our nervous systems actively regulate it to improve learning. PMID:24413700

  4. Effects of an Exhaustive Exercise on Motor Skill Learning and on the Excitability of Primary Motor Cortex and Supplementary Motor Area

    PubMed Central

    Coco, Marinella; Perciavalle, Vincenzo; Cavallari, Paolo; Perciavalle, Valentina

    2016-01-01

    Abstract We examined, on 28 healthy adult subjects, the possible correlations of an exhaustive exercise, and the consequent high blood lactate levels, on immediate (explicit) and delayed (implicit) motor execution of sequential finger movements (cognitive task). Moreover, we determined with transcranial magnetic stimulation whether changes in motor performance are associated with variations in excitability of primary motor area (M1) and supplementary motor area (SMA). We observed that, after an acute exhaustive exercise, the large increase of blood lactate is associated with a significant worsening of both explicit and implicit sequential visuomotor task paradigms, without gender differences. We also found that, at the end of the exhaustive exercise, there is a change of excitability in both M1 and SMA. In particular, the excitability of M1 was increased whereas that of SMA decreased and, also in this case, without gender differences. These results support the idea that an increase of blood lactate after an exhaustive exercise appears to have a protective effect at level of primary cortical areas (as M1), although at the expense of efficiency of adjacent cortical regions (as SMA). PMID:26986109

  5. Effects of an Exhaustive Exercise on Motor Skill Learning and on the Excitability of Primary Motor Cortex and Supplementary Motor Area.

    PubMed

    Coco, Marinella; Perciavalle, Vincenzo; Cavallari, Paolo; Perciavalle, Valentina

    2016-03-01

    We examined, on 28 healthy adult subjects, the possible correlations of an exhaustive exercise, and the consequent high blood lactate levels, on immediate (explicit) and delayed (implicit) motor execution of sequential finger movements (cognitive task). Moreover, we determined with transcranial magnetic stimulation whether changes in motor performance are associated with variations in excitability of primary motor area (M1) and supplementary motor area (SMA). We observed that, after an acute exhaustive exercise, the large increase of blood lactate is associated with a significant worsening of both explicit and implicit sequential visuomotor task paradigms, without gender differences. We also found that, at the end of the exhaustive exercise, there is a change of excitability in both M1 and SMA. In particular, the excitability of M1 was increased whereas that of SMA decreased and, also in this case, without gender differences. These results support the idea that an increase of blood lactate after an exhaustive exercise appears to have a protective effect at level of primary cortical areas (as M1), although at the expense of efficiency of adjacent cortical regions (as SMA). PMID:26986109

  6. Neural mechanisms of timing control in a coincident timing task.

    PubMed

    Masaki, Hiroaki; Sommer, Werner; Takasawa, Noriyoshi; Yamazaki, Katuo

    2012-04-01

    Many ball sports such as tennis or baseball require precise temporal anticipation of both sensory input and motor output (i.e., receptor anticipation and effector anticipation, respectively) and close performance monitoring. We investigated the neural mechanisms underlying timing control and performance monitoring in a coincident timing task involving both types of anticipations. Peak force for two time-to-peak force (TTP) conditions-recorded with a force-sensitive key-was required to coincide with a specific position of a stimulus rotating either slow or fast on a clock face while the contingent negative variation (CNV) and the motor-elicited negativity were recorded. Absolute timing error was generally smaller for short TTP (high velocity) conditions. CNV amplitudes increased with both faster stimulus velocity and longer TTPs possibly reflecting increased motor programming efforts. In addition, the motor-elicited negativity was largest in the slow stimulus/short TTP condition, probably representing some forms of performance monitoring as well as shorter response duration. Our findings indicate that the coincident timing task is a good model for real-life situations of tool use. PMID:22415201

  7. Motor sequence learning and motor adaptation in primary cervical dystonia.

    PubMed

    Katschnig-Winter, Petra; Schwingenschuh, Petra; Davare, Marco; Sadnicka, Anna; Schmidt, Reinhold; Rothwell, John C; Bhatia, Kailash P; Edwards, Mark J

    2014-06-01

    Motor sequence learning and motor adaptation rely on overlapping circuits predominantly involving the basal ganglia and cerebellum. Given the importance of these brain regions to the pathophysiology of primary dystonia, and the previous finding of abnormal motor sequence learning in DYT1 gene carriers, we explored motor sequence learning and motor adaptation in patients with primary cervical dystonia. We recruited 12 patients with cervical dystonia and 11 healthy controls matched for age. Subjects used a joystick to move a cursor from a central starting point to radial targets as fast and accurately as possible. Using this device, we recorded baseline motor performance, motor sequence learning and a visuomotor adaptation task. Patients with cervical dystonia had a significantly higher peak velocity than controls. Baseline performance with random target presentation was otherwise normal. Patients and controls had similar levels of motor sequence learning and motor adaptation. Our patients had significantly higher peak velocity compared to controls, with similar movement times, implying a different performance strategy. The preservation of motor sequence learning in cervical dystonia patients contrasts with the previously observed deficit seen in patients with DYT1 gene mutations, supporting the hypothesis of differing pathophysiology in different forms of primary dystonia. Normal motor adaptation is an interesting finding. With our paradigm we did not find evidence that the previously documented cerebellar abnormalities in cervical dystonia have a behavioral correlate, and thus could be compensatory or reflect "contamination" rather than being directly pathological. PMID:24411324

  8. Locus of the intensity effect in simple reaction time tasks.

    PubMed

    Jaśkowski, Piotr; Kurczewska, Marta; Nowik, Agnieszka; van der Lubbe, Rob H J; Verleger, Rolf

    2007-11-01

    Evidence is still inconclusive regarding the locus of the stimulus intensity effect on information processing in reaction tasks. Miller, Ulrich, and Rinkenauer (1999) addressed this question by assessing the intensity effect on stimulus- and response-locked lateralized readiness potentials (LRPs) as indices of the sensory and motor parts of reaction time (RT). In the case of visual stimuli, they observed that application of brighter stimuli resulted in a shortening of RT and stimulus-locked LRP (S-LRP), but not of response-locked LRP (R-LRP). The results for auditory stimuli, however, were unclear. In spite of a clear RT reduction due to increased loudness, neither S-LRP nor R-LRP onset was affected. A reason for this failure might have been a relatively small range of intensity variation and the type of task. To check for this possibility, we performed three experiments in which broader ranges of stimulus intensities and simple, rather than choice, response tasks were used. Although the intensity effect on the R-LRP was negligible, S-LRP followed RT changes, irrespective of stimulus modality. These findings support the conclusion that stimulus intensity exerts its effect before the start of motoric processes. Finally, S-LRP and R-LRP findings are discussed within a broader information-processing perspective to check the validity of the claim that S-LRP and R-LRP can, indeed, be considered as pure estimates of the duration of sensory and motor processes. PMID:18078225

  9. Wave form variations in auditory event-related potentials evoked by a memory-scanning task and their relationship with tests of intellectual function.

    PubMed

    Pelosi, L; Holly, M; Slade, T; Hayward, M; Barrett, G; Blumhardt, L D

    1992-01-01

    The inter-subject wave form variability of auditory event-related potentials (ERPs) evoked by digit probe identification in a memory-scanning task (Sternberg paradigm) and the effects of reaction time (RT) and task difficulty were studied in 26 healthy subjects. The response wave forms were compared with the performance of psychological tests of intelligence and memory. ERPs to 1-digit sets consisted of a sequence of waves identified as P100, N170, P250, N290, P400, P560 and N640. The major inter-subject difference in the response wave form was either the presence or absence of the late parietal positive wave P560. This wave occurred significantly more often in responses associated with larger memory sets and slow RT, suggesting that its presence reflects subjective difficulty in performing a task. With increasing set size, the P400 showed variable effects in different subjects, ranging from relative preservation of amplitude, through attenuation, to replacement or overlap by a broad surface-negative wave. This predominantly 'negative-going' effect of increasing task difficulty on the P400 was significantly correlated with scores of psychological tests; the greater the amplitude difference between the responses to easy and more difficult tasks, the better the scores, suggesting that these wave form changes reflect a more effective cognitive processing mechanism. PMID:1378004

  10. Alpha power indexes task-related networks on large and small scales: A multimodal ECoG study in humans and a non-human primate.

    PubMed

    de Pesters, A; Coon, W G; Brunner, P; Gunduz, A; Ritaccio, A L; Brunet, N M; de Weerd, P; Roberts, M J; Oostenveld, R; Fries, P; Schalk, G

    2016-07-01

    Performing different tasks, such as generating motor movements or processing sensory input, requires the recruitment of specific networks of neuronal populations. Previous studies suggested that power variations in the alpha band (8-12Hz) may implement such recruitment of task-specific populations by increasing cortical excitability in task-related areas while inhibiting population-level cortical activity in task-unrelated areas (Klimesch et al., 2007; Jensen and Mazaheri, 2010). However, the precise temporal and spatial relationships between the modulatory function implemented by alpha oscillations and population-level cortical activity remained undefined. Furthermore, while several studies suggested that alpha power indexes task-related populations across large and spatially separated cortical areas, it was largely unclear whether alpha power also differentially indexes smaller networks of task-related neuronal populations. Here we addressed these questions by investigating the temporal and spatial relationships of electrocorticographic (ECoG) power modulations in the alpha band and in the broadband gamma range (70-170Hz, indexing population-level activity) during auditory and motor tasks in five human subjects and one macaque monkey. In line with previous research, our results confirm that broadband gamma power accurately tracks task-related behavior and that alpha power decreases in task-related areas. More importantly, they demonstrate that alpha power suppression lags population-level activity in auditory areas during the auditory task, but precedes it in motor areas during the motor task. This suppression of alpha power in task-related areas was accompanied by an increase in areas not related to the task. In addition, we show for the first time that these differential modulations of alpha power could be observed not only across widely distributed systems (e.g., motor vs. auditory system), but also within the auditory system. Specifically, alpha power was

  11. Speech versus Nonspeech: Different Tasks, Different Neural Organization

    PubMed Central

    Bunton, Kate

    2009-01-01

    This article reviews the extant studies of the relation of oromotor nonspeech activities to speech production. The relevancy of nonspeech oral motor behaviors to speech motor performance in assessment and treatment is challenged on several grounds. First, contemporary motor theory suggests that movement control is task-specific; in other words, tied to the unique goals, sources of information and characteristics of varying motor acts. Documented differences in movement characteristics for speech production versus nonspeech oral motor tasks support this claim. Second, advantages of training nonspeech oral motor tasks versus training speech production are not supported by current principles of motor learning and neural plasticity. Empirical data supports experience-specific training. Finally, functional imaging studies document differences in activation patterns for speech compared to nonspeech oral motor tasks in neurologically healthy individuals. PMID:19058113

  12. The Richness of Task-Evoked Hemodynamic Responses Defines a Pseudohierarchy of Functionally Meaningful Brain Networks.

    PubMed

    Orban, Pierre; Doyon, Julien; Petrides, Michael; Mennes, Maarten; Hoge, Richard; Bellec, Pierre

    2015-09-01

    Functional magnetic resonance imaging can measure distributed and subtle variations in brain responses associated with task performance. However, it is unclear whether the rich variety of responses observed across the brain is functionally meaningful and consistent across individuals. Here, we used a multivariate clustering approach that grouped brain regions into clusters based on the similarity of their task-evoked temporal responses at the individual level, and then established the spatial consistency of these individual clusters at the group level. We observed a stable pseudohierarchy of task-evoked networks in the context of a delayed sequential motor task, where the fractionation of networks was driven by a gradient of involvement in motor sequence preparation versus execution. In line with theories about higher-level cognitive functioning, this gradient evolved in a rostro-caudal manner in the frontal lobe. In addition, parcellations in the cerebellum and basal ganglia matched with known anatomical territories and fiber pathways with the cerebral cortex. These findings demonstrate that subtle variations in brain responses associated with task performance are systematic enough across subjects to define a pseudohierarchy of task-evoked networks. Such networks capture meaningful functional features of brain organization as shaped by a given cognitive context. PMID:24729172

  13. Young Children's Affective Responses to Acceptance and Rejection from Peers: A Computer-Based Task Sensitive to Variation in Temperamental Shyness and Gender

    ERIC Educational Resources Information Center

    Howarth, Grace Z.; Guyer, Amanda E.; Perez-Edgar, Koraly

    2013-01-01

    This study presents a novel task examining young children's affective responses to evaluative feedback--specifically, social acceptance and rejection--from peers. We aimed to determine (1) whether young children report their affective responses to hypothetical peer evaluation predictably and consistently, and (2) whether young children's responses…

  14. Dyspraxia, motor function and visual-motor integration in autism.

    PubMed

    Miller, M; Chukoskie, L; Zinni, M; Townsend, J; Trauner, D

    2014-08-01

    This project assessed dyspraxia in high-functioning school aged children with autism with a focus on Ideational Praxis. We examined the association of specific underlying motor function including eye movement with ideational dyspraxia (sequences of skilled movements) as well as the possible role of visual-motor integration in dyspraxia. We found that compared to IQ-, sex- and age-matched typically developing children, the children with autism performed significantly worse on: Ideational and Buccofacial praxis; a broad range of motor tests, including measures of simple motor skill, timing and accuracy of saccadic eye movements and motor coordination; and tests of visual-motor integration. Impairments in individual children with autism were heterogeneous in nature, although when we examined the praxis data as a function of a qualitative measure representing motor timing, we found that children with poor motor timing performed worse on all praxis categories and had slower and less accurate eye movements while those with regular timing performed as well as typical children on those same tasks. Our data provide evidence that both motor function and visual-motor integration contribute to dyspraxia. We suggest that dyspraxia in autism involves cerebellar mechanisms of movement control and the integration of these mechanisms with cortical networks implicated in praxis. PMID:24742861

  15. Dyspraxia, Motor Function and Visual-Motor Integration in Autism

    PubMed Central

    Miller, M.; Chukoskie, L.; Zinni, M.; Townsend, J.; Trauner, D.

    2014-01-01

    This project assessed dyspraxia in high-functioning school aged children with autism with a focus on Ideational Praxis. We examined the association of specific underlying motor function including eye movement with ideational dyspraxia (sequences of skilled movements) as well as the possible role of visual-motor integration in dyspraxia. We found that compared to IQ-, sex- and age-matched typically developing children, the children with autism performed significantly worse on: Ideational and Buccofacial praxis; a broad range of motor tests, including measures of simple motor skill, timing and accuracy of saccadic eye movements and motor coordination; and tests of visual-motor integration. Impairments in individual children with autism were heterogeneous in nature, although when we examined the praxis data as a function of a qualitative measure representing motor timing, we found that children with poor motor timing performed worse on all praxis categories and had slower and less accurate eye movements while those with regular timing performed as well as typical children on those same tasks. Our data provide evidence that both motor function and visual-motor integration contribute to dyspraxia. We suggest that dyspraxia in autism involves cerebellar mechanisms of movement control and the integration of these mechanisms with cortical networks implicated in praxis. PMID:24742861

  16. Compromised Motor Planning and Motor Imagery in Right Hemiparetic Cerebral Palsy

    ERIC Educational Resources Information Center

    Craje, Celine; van Elk, Michiel; Beeren, Manuela; van Schie, Hein T.; Bekkering, Harold; Steenbergen, Bert

    2010-01-01

    We investigated whether motor planning problems in people with Hemiparetic Cerebral Palsy (HCP) are paralleled by impaired ability to use Motor Imagery (MI). While some studies have shown that individuals with HCP can solve a mental rotation task, it was not clear if they used MI or Visual Imagery (VI). In the present study, motor planning and MI…

  17. Haptic fMRI: combining functional neuroimaging with haptics for studying the brain's motor control representation.

    PubMed

    Menon, Samir; Brantner, Gerald; Aholt, Chris; Kay, Kendrick; Khatib, Oussama

    2013-01-01

    A challenging problem in motor control neuroimaging studies is the inability to perform complex human motor tasks given the Magnetic Resonance Imaging (MRI) scanner's disruptive magnetic fields and confined workspace. In this paper, we propose a novel experimental platform that combines Functional MRI (fMRI) neuroimaging, haptic virtual simulation environments, and an fMRI-compatible haptic device for real-time haptic interaction across the scanner workspace (above torso ∼ .65×.40×.20m(3)). We implement this Haptic fMRI platform with a novel haptic device, the Haptic fMRI Interface (HFI), and demonstrate its suitability for motor neuroimaging studies. HFI has three degrees-of-freedom (DOF), uses electromagnetic motors to enable high-fidelity haptic rendering (>350Hz), integrates radio frequency (RF) shields to prevent electromagnetic interference with fMRI (temporal SNR >100), and is kinematically designed to minimize currents induced by the MRI scanner's magnetic field during motor displacement (<2cm). HFI possesses uniform inertial and force transmission properties across the workspace, and has low friction (.05-.30N). HFI's RF noise levels, in addition, are within a 3 Tesla fMRI scanner's baseline noise variation (∼.85±.1%). Finally, HFI is haptically transparent and does not interfere with human motor tasks (tested for .4m reaches). By allowing fMRI experiments involving complex three-dimensional manipulation with haptic interaction, Haptic fMRI enables-for the first time-non-invasive neuroscience experiments involving interactive motor tasks, object manipulation, tactile perception, and visuo-motor integration. PMID:24110643

  18. Novice motor performance: better not to verbalize.

    PubMed

    Chauvel, Guillaume; Maquestiaux, François; Ruthruff, Eric; Didierjean, André; Hartley, Alan A

    2013-02-01

    Offline verbalization about a new motor experience is often assumed to positively influence subsequent performance. Here, we evaluated this presumed positive influence and whether it originates from declarative or from procedural knowledge using the explicit/implicit motor-learning paradigm. To this end, 80 nongolfers learned to perform a golf-putting task with high error rates (i.e., explicit motor learning), and thus relied on declarative knowledge, or low error rates (i.e., implicit motor learning), and thus relied on procedural knowledge. Afterward, they either put their memories of the previous motor experience into words or completed an irrelevant verbal task. Finally, they performed the putting task again. Verbalization did not improve novice motor performance: Putting was impaired, overall, and especially so for high-error learners. We conclude that declarative knowledge is altered by verbalization, whereas procedural knowledge is not. PMID:23073721

  19. The torque ripple reduction of a concentrated winding synchronous reluctance motor according to stator and rotor structure variations using response surface methodology

    NASA Astrophysics Data System (ADS)

    Choi, Yun-Chul; Lee, Jung-Ho; Hong, Jung Pyo

    2008-04-01

    This paper deals with optimum design criteria to minimize the torque ripple of a concentrated winding synchronous reluctance motor (SynRM) using response surface methodology (RSM). The feasibility of using RSM with the finite element method in practical engineering problem is investigated with computational examples and comparison between the fitted response and the results obtained from an analytical solution according to the design variables of stator and rotor in concentrated winding SynRM (6slot).

  20. Save power in AC induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1977-01-01

    Relatively simple and inexpensive circuitry improves power factor and reduces power dissipation in induction motors operating below full load. Electronic control loop conserves energy by reducing voltage applied to lightly loaded motor. Circuit forces motor to run at constant predetermined optimum power factor, regardless of load or line voltage variations. Solid-state switch varies voltage.

  1. Patterns of regional brain activation associated with different forms of motor learning.

    PubMed

    Ghilardi, M; Ghez, C; Dhawan, V; Moeller, J; Mentis, M; Nakamura, T; Antonini, A; Eidelberg, D

    2000-07-14

    To examine the variations in regional cerebral blood flow during execution and learning of reaching movements, we employed a family of kinematically and dynamically controlled motor tasks in which cognitive, mnemonic and executive features of performance were differentiated and characterized quantitatively. During 15O-labeled water positron emission tomography (PET) scans, twelve right-handed subjects moved their dominant hand on a digitizing tablet from a central location to equidistant targets displayed with a cursor on a computer screen in synchrony with a tone. In the preceding week, all subjects practiced three motor tasks: 1) movements to a predictable sequence of targets; 2) learning of new visuomotor transformations in which screen cursor motion was rotated by 30 degrees -60 degrees; 3) learning new target sequences by trial and error, by using previously acquired routines in a task placing heavy load on spatial working memory. The control condition was observing screen and audio displays. Subtraction images were analyzed with Statistical Parametric Mapping to identify significant brain activation foci. Execution of predictable sequences was characterized by a modest decrease in movement time and spatial error. The underlying pattern of activation involved primary motor and sensory areas, cerebellum, basal ganglia. Adaptation to a rotated reference frame, a form of procedural learning, was associated with decrease in the imposed directional bias. This task was associated with activation in the right posterior parietal cortex. New sequences were learned explicitly. Significant activation was found in dorsolateral prefrontal and anterior cingulate cortices. In this study, we have introduced a series of flexible motor tasks with similar kinematic characteristics and different spatial attributes. These tasks can be used to assess specific aspects of motor learning with imaging in health and disease. PMID:10882792

  2. Transcranial direct current stimulation of the motor cortex in waking resting state induces motor imagery.

    PubMed

    Speth, Jana; Speth, Clemens; Harley, Trevor A

    2015-11-01

    This study investigates if anodal and cathodal transcranial direct current stimulation (tDCS) of areas above the motor cortex (C3) influences spontaneous motor imagery experienced in the waking resting state. A randomized triple-blinded design was used, combining neurophysiological techniques with tools of quantitative mentation report analysis from cognitive linguistics. The results indicate that while spontaneous motor imagery rarely occurs under sham stimulation, general and athletic motor imagery (classified as athletic disciplines), is induced by anodal tDCS. This insight may have implications beyond basic consciousness research. Motor imagery and corresponding motor cortical activation have been shown to benefit later motor performance. Electrophysiological manipulations of motor imagery could in the long run be used for rehabilitative tDCS protocols benefitting temporarily immobile clinical patients who cannot perform specific motor imagery tasks - such as dementia patients, infants with developmental and motor disorders, and coma patients. PMID:26204566

  3. Motor Starters

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The power factor controller (PFC) was invented by a NASA engineer. It matches voltage with a motor's actual need by sensing shifts in the relationship between voltage and current flow. With the device, power can be trimmed as much as 65%. Intellinet adopted this technology and designed "soft start" and "load-responsive" control modes to start engines gradually and recycle voltage without reducing motor speed. Other features are lower motor heat and faster fault identification.

  4. Motor syndromes.

    PubMed

    Corea, Francesco; Micheli, Sara

    2012-01-01

    Motor disturbances alone or associated with other focal deficits are the most common symptoms suggesting a neurovascular event. An appropriate clinical assessment of these signs and symptoms may help physicians to better diagnose and to both better treat and predict outcome. In this paper the main clinical features of motor deficit are described together with other motor-related events such as ataxia and movement disturbances. PMID:22377850

  5. Young Children’s Affective Responses to Acceptance and Rejection From Peers: A Computer-based Task Sensitive to Variation in Temperamental Shyness and Gender

    PubMed Central

    Howarth, Grace Z.; Guyer, Amanda E.; Pérez-Edgar, Koraly

    2013-01-01

    This study presents a novel task examining young children’s affective responses to evaluative feedback—specifically, social acceptance and rejection—from peers. We aimed to determine (1) whether young children report their affective responses to hypothetical peer evaluation predictably and consistently, and (2) whether young children’s responses to peer evaluation vary as a function of temperamental shyness and gender. Four- to seven-year-old children (N = 48) sorted pictures of unknown, similar-aged children into those with whom they wished or did not wish to play. Computerized peer evaluation later noted whether the pictured children were interested in a future playdate with participants. Participants then rated their affective responses to each acceptance or rejection event. Children were happy when accepted by children with whom they wanted to play, and disappointed when these children rejected them. Highly shy boys showed a wider range of responses to acceptance and rejection based on initial social interest, and may be particularly sensitive to both positive and negative evaluation. Overall, the playdate task captures individual differences in affective responses to evaluative peer feedback and is potentially amenable to future applications in research with young children, including pairings with psychophysiological measures. PMID:23997429

  6. Task frequency influences stimulus-driven effects on task selection during voluntary task switching.

    PubMed

    Arrington, Catherine M; Reiman, Kaitlin M

    2015-08-01

    Task selection during voluntary task switching involves both top-down (goal-directed) and bottom-up (stimulus-driven) mechanisms. The factors that shift the balance between these two mechanisms are not well characterized. In the present research, we studied the role that task frequency plays in determining the extent of stimulus-driven task selection. In two experiments, we used the basic paradigm adapted from Arrington (Memory & Cognition, 38, 991-997, 2008), in which the effect of stimulus availability serves as a marker of stimulus-driven task selection. A number and letter appeared on each trial with varying stimulus onset asynchronies, and participants performed either a consonant/vowel or an even/odd judgment. In Experiment 1, participants were instructed as to the relative frequency with which each task was to be performed (i.e., 50/50, 60/40, or 75/25) and were further instructed to make their transitions between tasks unpredictable. In Experiment 2, participants were given no instructions about how to select tasks, resulting in naturally occurring variation in task frequency. With both instructed (Exp. 1) and naturally occurring (Exp. 2) relative task frequencies, the less frequently performed task showed a greater effect of stimulus availability on task selection, suggestive of a larger influence of stimulus-driven mechanisms during task performance for the less frequent task. When goal-directed mechanisms of task choice are engaged less frequently, the relative influence of the stimulus environment increases. PMID:26106057

  7. Task-specific dystonia: pathophysiology and management.

    PubMed

    Sadnicka, Anna; Kassavetis, Panagiotis; Pareés, Isabel; Meppelink, Anne Marthe; Butler, Katherine; Edwards, Mark

    2016-09-01

    Task-specific dystonia is a form of isolated focal dystonia with the peculiarity of being displayed only during performance of a specific skilled motor task. This distinctive feature makes task-specific dystonia a particularly mysterious and fascinating neurological condition. In this review, we cover phenomenology and its increasingly broad-spectrum risk factors for the disease, critically review pathophysiological theories and evaluate current therapeutic options. We conclude by highlighting the unique features of task-specific dystonia within the wider concept of dystonia. We emphasise the central contribution of environmental risk factors, and propose a model by which these triggers may impact on the motor control of skilled movement. By viewing task-specific dystonia through this new lens which considers the disorder a modifiable disorder of motor control, we are optimistic that research will yield novel therapeutic avenues for this highly motivated group of patients. PMID:26818730

  8. Molecular motors

    NASA Astrophysics Data System (ADS)

    Allemand, Jean François Desbiolles, Pierre

    2015-10-01

    How do we move? More precisely, what are the molecular mechanisms that can explain that our muscles, made of very small components can move at a osopic scale? To answer these questions we must introduce molecular motors. Those motors are proteins, or small protein assemblies that, in our cells, transform chemical energy into mechanical work. Then, like we could do for a oscopic motor, used in a car or in a fan, we are going to study the basic behavior of these molecular machines, present what are their energy sources, calculate their power, their yield. If molecular motors are crucial for our oscopic movements, we are going to see that they are also essential to cellular transport and that considering the activity of some enzymes as molecular motors bring some interesting new insights on their activity.

  9. Summary of electric vehicle dc motor-controller tests

    NASA Technical Reports Server (NTRS)

    Mcbrien, E. F.; Tryon, H. B.

    1982-01-01

    The differences in the performance of dc motors are evaluated when operating with chopper type controllers, and when operating on direct current. The interactions between the motor and the controller which cause these differences are investigated. Motor-controlled tests provided some of the data the quantified motor efficiency variations for both ripple free and chopper modes of operation.

  10. Motor deficits correlate with resting state motor network connectivity in patients with brain tumours

    PubMed Central

    Mikell, Charles B.; Youngerman, Brett E.; Liston, Conor; Sisti, Michael B.; Bruce, Jeffrey N.; Small, Scott A.; McKhann, Guy M.

    2012-01-01

    While a tumour in or abutting primary motor cortex leads to motor weakness, how tumours elsewhere in the frontal or parietal lobes affect functional connectivity in a weak patient is less clear. We hypothesized that diminished functional connectivity in a distributed network of motor centres would correlate with motor weakness in subjects with brain masses. Furthermore, we hypothesized that interhemispheric connections would be most vulnerable to subtle disruptions in functional connectivity. We used task-free functional magnetic resonance imaging connectivity to probe motor networks in control subjects and patients with brain tumours (n = 22). Using a control dataset, we developed a method for automated detection of key nodes in the motor network, including the primary motor cortex, supplementary motor area, premotor area and superior parietal lobule, based on the anatomic location of the hand-motor knob in the primary motor cortex. We then calculated functional connectivity between motor network nodes in control subjects, as well as patients with and without brain masses. We used this information to construct weighted, undirected graphs, which were then compared to variables of interest, including performance on a motor task, the grooved pegboard. Strong connectivity was observed within the identified motor networks between all nodes bilaterally, and especially between the primary motor cortex and supplementary motor area. Reduced connectivity was observed in subjects with motor weakness versus subjects with normal strength (P < 0.001). This difference was driven mostly by decreases in interhemispheric connectivity between the primary motor cortices (P < 0.05) and between the left primary motor cortex and the right premotor area (P < 0.05), as well as other premotor area connections. In the subjects without motor weakness, however, performance on the grooved pegboard did not relate to interhemispheric connectivity, but rather was inversely

  11. On task and theory specificity.

    PubMed

    Newell, K M

    1989-03-01

    One of the significant limitations of the motor control and skill acquisition domain is that the theories, models, and hypotheses are, in most cases, task specific. Many lines of theorizing fail to hold up under even small changes in task constraints, although clearly the field does have some robust phenomena. It is proposed that a broader consideration of the role of task constraints, which is grounded in the methodology of nonlinear dynamics, may help to formulate a more general action theory of coordination and control. PMID:15117675

  12. Forelimb training drives transient map reorganization in ipsilateral motor cortex.

    PubMed

    Pruitt, David T; Schmid, Ariel N; Danaphongse, Tanya T; Flanagan, Kate E; Morrison, Robert A; Kilgard, Michael P; Rennaker, Robert L; Hays, Seth A

    2016-10-15

    Skilled motor training results in reorganization of contralateral motor cortex movement representations. The ipsilateral motor cortex is believed to play a role in skilled motor control, but little is known about how training influences reorganization of ipsilateral motor representations of the trained limb. To determine whether training results in reorganization of ipsilateral motor cortex maps, rats were trained to perform the isometric pull task, an automated motor task that requires skilled forelimb use. After either 3 or 6 months of training, intracortical microstimulation (ICMS) mapping was performed to document motor representations of the trained forelimb in the hemisphere ipsilateral to that limb. Motor training for 3 months resulted in a robust expansion of right forelimb representation in the right motor cortex, demonstrating that skilled motor training drives map plasticity ipsilateral to the trained limb. After 6 months of training, the right forelimb representation in the right motor cortex was significantly smaller than the representation observed in rats trained for 3 months and similar to untrained controls, consistent with a normalization of motor cortex maps. Forelimb map area was not correlated with performance on the trained task, suggesting that task performance is maintained despite normalization of cortical maps. This study provides new insights into how the ipsilateral cortex changes in response to skilled learning and may inform rehabilitative strategies to enhance cortical plasticity to support recovery after brain injury. PMID:27392641

  13. Motor imagery facilitates force field learning.

    PubMed

    Anwar, Muhammad Nabeel; Tomi, Naoki; Ito, Koji

    2011-06-13

    Humans have the ability to produce an internal reproduction of a specific motor action without any overt motor output. Recent findings show that the processes underlying motor imagery are similar to those active during motor execution and both share common neural substrates. This suggests that the imagery of motor movements might play an important role in acquiring new motor skills. In this study we used haptic robot in conjunction with motor imagery technique to improve learning in a robot-based adaptation task. Two groups of subjects performed reaching movements with or without motor imagery in a velocity-dependent and position-dependent mixed force field. The groups performed movements with motor imagery produced higher after effects and decreased muscle co-contraction with respect to no-motor imagery group. These results showed a positive influence of motor imagery on acquiring new motor skill and suggest that motor learning can be facilitated by mental practice and could be used to increase the rate of adaptation. PMID:21555118

  14. Motor Controller

    NASA Technical Reports Server (NTRS)

    1988-01-01

    M.H. Marks Enterprises' Power Factor Controller (PFC) matches voltage with motor's actual need. Plugged into a motor, PFC continuously determines motor load by sensing shifts between voltage and current flow. When it senses a light load, it cuts voltage to the minimum needed. It offers potential energy savings ranging from eight percent up to 65 percent depending on the application. Myles Marks started out with the notion of writing an article for Popular Electronics magazine at the same time offering to furnish kits to readers interested in assembling PFC's. Within two weeks from publication he had orders for 500 kits and orders are still coming three years later.

  15. Stepper motor

    NASA Technical Reports Server (NTRS)

    Dekramer, Cornelis

    1994-01-01

    The purpose of this document is to describe the more commonly used permanent magnet stepper motors for spaceflight. It will discuss the mechanical and electrical aspects of the devices, their torque behavior, those parameters which need to be controlled and measured, and test methods to be employed. It will also discuss torque margins, compare these to the existing margin requirements, and determine the applicability of these requirements. Finally it will attempt to generate a set of requirements which will be used in any stepper motor procurement and will fully characterize the stepper motor behavior in a consistent and repeatable fashion.

  16. Chaotic motors

    NASA Astrophysics Data System (ADS)

    Laroche, C.; Labbé, R.; Pétrélis, F.; Fauve, S.

    2012-02-01

    We show that electric motors and dynamos can be used to illustrate most elementary instabilities or bifurcations discussed in courses on nonlinear oscillators and dynamical systems. These examples are easier to understand and display a richer behavior than the ones commonly used from mechanics, electronics, hydrodynamics, lasers, chemical reactions, and population dynamics. In particular, an electric motor driven by a dynamo can display stationary, Hopf, and codimension-two bifurcations by tuning the driving speed of the dynamo and the electric current in the stator of the electric motor. When the dynamo is driven at constant torque instead of constant rotation rate, chaotic reversals of the generated current and of the angular rotation of the motor are observed. Simple deterministic models are presented which capture the observed dynamical regimes.

  17. Higher Levels of Psychopathy Predict Poorer Motor Control: Implications for Understanding the Psychopathy Construct

    PubMed Central

    Robinson, Michael D.; Bresin, Konrad

    2014-01-01

    A review of the literature suggests that higher levels of psychopathy may be linked to less effective behavioral control. However, several commentators have urged caution in making statements of this type in the absence of direct evidence. In two studies (total N = 142), moment-to-moment accuracy in a motor control task was examined as a function of dimensional variations in psychopathy in an undergraduate population. As hypothesized, motor control was distinctively worse at higher levels of psychopathy relative to lower levels, both as a function of primary and secondary psychopathy and particularly their shared variance. These novel findings provide support for the idea that motor control systematically varies by psychopathy, in a basic manner, consistent with views of psychopathy emphasizing lesser control. PMID:25419045

  18. Dorsal anterior cingulate cortex modulates supplementary motor area in coordinated unimanual motor behavior

    PubMed Central

    Asemi, Avisa; Ramaseshan, Karthik; Burgess, Ashley; Diwadkar, Vaibhav A.; Bressler, Steven L.

    2015-01-01

    Motor control is integral to all types of human behavior, and the dorsal Anterior Cingulate Cortex (dACC) is thought to play an important role in the brain network underlying motor control. Yet the role of the dACC in motor control is under-characterized. Here we aimed to characterize the dACC’s role in adolescent brain network interactions during a simple motor control task involving visually coordinated unimanual finger movements. Network interactions were assessed using both undirected and directed functional connectivity analysis of functional Magnetic Resonance Imaging (fMRI) Blood-Oxygen-Level-Dependent (BOLD) signals, comparing the task with a rest condition. The relation between the dACC and Supplementary Motor Area (SMA) was compared to that between the dACC and Primary Motor Cortex (M1). The directed signal from dACC to SMA was significantly elevated during motor control in the task. By contrast, the directed signal from SMA to dACC, both directed signals between dACC and M1, and the undirected functional connections of dACC with SMA and M1, all did not differ between task and rest. Undirected coupling of dACC with both SMA and dACC, and only the dACC-to-SMA directed signal, were significantly greater for a proactive than a reactive task condition, suggesting that dACC plays a role in motor control by maintaining stimulus timing expectancy. Overall, these results suggest that the dACC selectively modulates the SMA during visually coordinated unimanual behavior in adolescence. The role of the dACC as an important brain area for the mediation of task-related motor control may be in place in adolescence, continuing into adulthood. The task and analytic approach described here should be extended to the study of healthy adults to examine network profiles of the dACC during basic motor behavior. PMID:26089783

  19. Motor-reduced visual perceptual abilities and visual-motor integration abilities of Chinese learning children.

    PubMed

    Lai, Mun Yee; Leung, Frederick Koon Shing

    2012-10-01

    This study investigated the relationship between motor-reduced visual perceptual abilities and visual-motor integration abilities of Chinese learning children by employing the Developmental Test of Visual Perception (Hammill, Pearson, & Voress, 1993), in which both abilities are measured in a single test. A total of 72 native Chinese learners of age 5 participated in this study. The findings indicated that the Chinese learners scored much higher in the visual-motor integration tasks than in motor-reduced visual perceptual tasks. The results support the theory of autonomous systems of motor-reduced visual perception and visual-motor integration and query current beliefs about the prior development of the former to the latter for the Chinese learners. To account for the Chinese participants' superior performance in visual-motor integration tasks over motor-reduced visual perceptual tasks, the visual-spatial properties of Chinese characters, general handwriting theories, the motor control theory and the psychogeometric theory of Chinese character-writing are referred to. The significance of the findings is then discussed. PMID:22663773

  20. Motor skill acquisition.

    PubMed

    Higgins, S

    1991-02-01

    The purpose of this article is to provide a framework for understanding motor skill and the process by which it is acquired. A selective historical overview is presented to demonstrate how the study of movement is a necessary preliminary to the study of motor skill learning. The phenomenon of skill is explored as an inherent feature of goal-directed organisms whose effective functioning depends on achieving a degree of competence in solving problems that are encountered in the everyday world. The relationship between problems and solutions is discussed. Movement is examined as a problem-solving tool and as the means by which the individual expresses skill. Factors that influence the individual's level of skill are fully explored, along with the implications for functional behavior. The creative use of resources in problem solving is thoroughly examined, and tasks are discussed in terms of the demands imposed on the individual. PMID:1989008

  1. Brain effective connectivity during motor-imagery and execution following stroke and rehabilitation

    PubMed Central

    Bajaj, Sahil; Butler, Andrew J.; Drake, Daniel; Dhamala, Mukesh

    2015-01-01

    Brain areas within the motor system interact directly or indirectly during motor-imagery and motor-execution tasks. These interactions and their functionality can change following stroke and recovery. How brain network interactions reorganize and recover their functionality during recovery and treatment following stroke are not well understood. To contribute to answering these questions, we recorded blood oxygenation-level dependent (BOLD) functional magnetic resonance imaging (fMRI) signals from 10 stroke survivors and evaluated dynamical causal modeling (DCM)-based effective connectivity among three motor areas: primary motor cortex (M1), pre-motor cortex (PMC) and supplementary motor area (SMA), during motor-imagery and motor-execution tasks. We compared the connectivity between affected and unaffected hemispheres before and after mental practice and combined mental practice and physical therapy as treatments. The treatment (intervention) period varied in length between 14 to 51 days but all patients received the same dose of 60 h of treatment. Using Bayesian model selection (BMS) approach in the DCM approach, we found that, after intervention, the same network dominated during motor-imagery and motor-execution tasks but modulatory parameters suggested a suppressive influence of SM A on M1 during the motor-imagery task whereas the influence of SM A on M1 was unrestricted during the motor-execution task. We found that the intervention caused a reorganization of the network during both tasks for unaffected as well as for the affected hemisphere. Using Bayesian model averaging (BMA) approach, we found that the intervention improved the regional connectivity among the motor areas during both the tasks. The connectivity between PMC and M1 was stronger in motor-imagery tasks whereas the connectivity from PMC to M1, SM A to M1 dominated in motor-execution tasks. There was significant behavioral improvement (p = 0.001) in sensation and motor movements because of the

  2. Which motor cortical region best predicts imagined movement?

    PubMed

    Park, Chang-Hyun; Chang, Won Hyuk; Lee, Minji; Kwon, Gyu Hyun; Kim, Laehyun; Kim, Sung Tae; Kim, Yun-Hee

    2015-06-01

    In brain-computer interfacing (BCI), motor imagery is used to provide a gateway to an effector action or behavior. However, in contrast to the main functional role of the primary motor cortex (M1) in motor execution, the M1's involvement in motor imagery has been debated, while the roles of secondary motor areas such as the premotor cortex (PMC) and supplementary motor area (SMA) in motor imagery have been proposed. We examined which motor cortical region had the greatest predictive ability for imagined movement among the primary and secondary motor areas. For two modes of motor performance, executed movement and imagined movement, in 12 healthy subjects who performed two types of motor task, hand grasping and hand rotation, we used the multivariate Bayes method to compare predictive ability between the primary and secondary motor areas (M1, PMC, and SMA) contralateral to the moved hand. With the distributed representation of activation, executed movement was best predicted from the M1 while imagined movement from the SMA, among the three motor cortical regions, in both types of motor task. In addition, the most predictive information about the distinction between executed movement and imagined movement was contained in the M1. The greater predictive ability of the SMA for imagined movement suggests its functional role that could be applied to motor imagery-based BCI. PMID:25800212

  3. Motor Activity Improves Temporal Expectancy

    PubMed Central

    Fautrelle, Lilian; Mareschal, Denis; French, Robert; Addyman, Caspar; Thomas, Elizabeth

    2015-01-01

    Certain brain areas involved in interval timing are also important in motor activity. This raises the possibility that motor activity might influence interval timing. To test this hypothesis, we assessed interval timing in healthy adults following different types of training. The pre- and post-training tasks consisted of a button press in response to the presentation of a rhythmic visual stimulus. Alterations in temporal expectancy were evaluated by measuring response times. Training consisted of responding to the visual presentation of regularly appearing stimuli by either: (1) pointing with a whole-body movement, (2) pointing only with the arm, (3) imagining pointing with a whole-body movement, (4) simply watching the stimulus presentation, (5) pointing with a whole-body movement in response to a target that appeared at irregular intervals (6) reading a newspaper. Participants performing a motor activity in response to the regular target showed significant improvements in judgment times compared to individuals with no associated motor activity. Individuals who only imagined pointing with a whole-body movement also showed significant improvements. No improvements were observed in the group that trained with a motor response to an irregular stimulus, hence eliminating the explanation that the improved temporal expectations of the other motor training groups was purely due to an improved motor capacity to press the response button. All groups performed a secondary task equally well, hence indicating that our results could not simply be attributed to differences in attention between the groups. Our results show that motor activity, even when it does not play a causal or corrective role, can lead to improved interval timing judgments. PMID:25806813

  4. Sleep quality influences subsequent motor skill acquisition.

    PubMed

    Appleman, Erica R; Albouy, Genevieve; Doyon, Julien; Cronin-Golomb, Alice; King, Bradley R

    2016-06-01

    While the influence of sleep on motor memory consolidation has been extensively investigated, its relation to initial skill acquisition is less well understood. The purpose of the present study was to investigate the influence of sleep quality and quantity on subsequent motor skill acquisition in young adults without sleep disorders. Fifty-five healthy adults (mean age = 23.8 years; 34 women) wore actigraph wristbands for 4 nights, which provided data on sleep patterns before the experiment, and then returned to the laboratory to engage in a motor sequence learning task (explicit 5-item finger sequence tapping task). Indicators of sleep quality and quantity were then regressed on a measure of motor skill acquisition (Gains Within Training, GWT). Wake After Sleep Onset (WASO; i.e., the total amount of time the participants spent awake after falling asleep) was significantly and negatively related to GWT. This effect was not because of general arousal level, which was measured immediately before the motor task. Conversely, there was no relationship between GWT and sleep duration or self-reported sleep quality. These results indicate that sleep quality, as assessed by WASO and objectively measured with actigraphy before the motor task, significantly impacts motor skill acquisition in young healthy adults without sleep disorders. (PsycINFO Database Record PMID:26881313

  5. Advanced Motors

    SciTech Connect

    Knoth, Edward A; Chelluri, Bhanumathi; Schumaker, Edward J

    2012-12-14

    vProject Summary Transportation energy usage is predicted to increase substantially by 2020. Hybrid vehicles and fuel cell powered vehicles are destined to become more prominent as fuel prices rise with the demand. Hybrid and fuel cell vehicle platforms are both dependent on high performance electric motors. Electric motors for transportation duty will require sizeable low-speed torque to accelerate the vehicle. As motor speed increases, the torque requirement decreases which results in a nearly constant power motor output. Interior permanent magnet synchronous motors (IPMSM) are well suited for this duty. , , These rotor geometries are configured in straight lines and semi circular arc shapes. These designs are of limited configurations because of the lack of availability of permanent magnets of any other shapes at present. We propose to fabricate rotors via a novel processing approach where we start with magnet powders and compact them into a net shape rotor in a single step. Using this approach, widely different rotor designs can be implemented for efficiency. The current limitation on magnet shape and thickness will be eliminated. This is accomplished by co-filling magnet and soft iron powders at specified locations in intricate shapes using specially designed dies and automatic powder filling station. The process fundamentals for accomplishing occurred under a previous Applied Technology Program titled, Motors and Generators for the 21st Century. New efficient motor designs that are not currently possible (or cost prohibitive) can be accomplished by this approach. Such an approach to motor fabrication opens up a new dimension in motor design. Feasibility Results We were able to optimize a IPMSM rotor to take advantage of the powder co-filling and DMC compaction processing methods. The minimum low speed torque requirement of 5 N-m can be met through an optimized design with magnet material having a Br capability of 0.2 T. This level of magnetic performance can

  6. Optimal Schedules in Multitask Motor Learning.

    PubMed

    Lee, Jeong Yoon; Oh, Youngmin; Kim, Sung Shin; Scheidt, Robert A; Schweighofer, Nicolas

    2016-04-01

    Although scheduling multiple tasks in motor learning to maximize long-term retention of performance is of great practical importance in sports training and motor rehabilitation after brain injury, it is unclear how to do so. We propose here a novel theoretical approach that uses optimal control theory and computational models of motor adaptation to determine schedules that maximize long-term retention predictively. Using Pontryagin's maximum principle, we derived a control law that determines the trial-by-trial task choice that maximizes overall delayed retention for all tasks, as predicted by the state-space model. Simulations of a single session of adaptation with two tasks show that when task interference is high, there exists a threshold in relative task difficulty below which the alternating schedule is optimal. Only for large differences in task difficulties do optimal schedules assign more trials to the harder task. However, over the parameter range tested, alternating schedules yield long-term retention performance that is only slightly inferior to performance given by the true optimal schedules. Our results thus predict that in a large number of learning situations wherein tasks interfere, intermixing tasks with an equal number of trials is an effective strategy in enhancing long-term retention. PMID:26890347

  7. Modification of motor cortex excitability during muscle relaxation in motor learning.

    PubMed

    Sugawara, Kenichi; Tanabe, Shigeo; Suzuki, Tomotaka; Saitoh, Kei; Higashi, Toshio

    2016-01-01

    We postulated that gradual muscle relaxation during motor learning would dynamically change activity in the primary motor cortex (M1) and modify short-interval intracortical inhibition (SICI). Thus, we compared changes in M1 excitability both pre and post motor learning during gradual muscle relaxation. Thirteen healthy participants were asked to gradually relax their muscles from an isometric right wrist extension (30% maximum voluntary contraction; MVC) using a tracking task for motor learning. Single or paired transcranial magnetic stimulation (TMS) was applied at either 20% or 80% of the downward force output during muscle release from 30% MVC, and we compared the effects of motor learning immediately after the 1st and 10th blocks. Motor-evoked potentials (MEPs) from the extensor and flexor carpi radialis (ECR and FCR) were then measured and compared to evaluate their relationship before and after motor learning. In both muscles and each downward force output, motor cortex excitability during muscle relaxation was significantly increased following motor learning. In the ECR, the SICI in the 10th block was significantly increased during the 80% waveform decline compared to the SICI in the 1st block. In the FCR, the SICI also exhibited a greater inhibitory effect when muscle relaxation was terminated following motor learning. During motor training, acquisition of the ability to control muscle relaxation increased the SICI in both the ECR and FCR during motor termination. This finding aids in our understanding of the cortical mechanisms that underlie muscle relaxation during motor learning. PMID:26341320

  8. Motor Development: Theory into Practice. Monograph 3. Motor Skills: Theory into Practice.

    ERIC Educational Resources Information Center

    Morris, Arlene M., Ed.

    Eight papers present information about children's motor development and its application for program design. Jerry R. Thomas, Kathi T. Thomas, and Jere D. Gallagher discuss "Children's Processing of Information in Physical Activity and Sport." In "Toward Inclusion," G. S. Don Morris considers characteristics of children and of motor tasks with…

  9. Circuit Regulates Speed Of dc Motor

    NASA Technical Reports Server (NTRS)

    Weaver, Charles; Padden, Robin; Brown, Floyd A., Jr.

    1990-01-01

    Driving circuit regulates speed of small dc permanent-magnet motor in tape recorder. Two nested feedback loops maintain speed within 1 percent of constant value. Inner loop provides coarse regulation, while outer loop removes most of variation in speed that remains in the presence of regulation by the inner loop. Compares speed of motor with commanded speed and adjusts current supplied to motor accordingly.

  10. Analysis of Time-Dependent Brain Network on Active and MI Tasks for Chronic Stroke Patients.

    PubMed

    Kim, Da-Hye; Kim, Leahyun; Park, Wanjoo; Chang, Won Hyuk; Kim, Yun-Hee; Lee, Seong-Whan; Kwon, Gyu Hyun

    2015-01-01

    Several researchers have analyzed brain activities by investigating brain networks. However, there is a lack of the research on the temporal characteristics of the brain network during a stroke by EEG and the comparative studies between motor execution and imagery, which became known to have similar motor functions and pathways. In this study, we proposed the possibility of temporal characteristics on the brain networks of a stroke. We analyzed the temporal properties of the brain networks for nine chronic stroke patients by the active and motor imagery tasks by EEG. High beta band has a specific role in the brain network during motor tasks. In the high beta band, for the active task, there were significant characteristics of centrality and small-worldness on bilateral primary motor cortices at the initial motor execution. The degree centrality significantly increased on the contralateral primary motor cortex, and local efficiency increased on the ipsilateral primary motor cortex. These results indicate that the ipsilateral primary motor cortex constructed a powerful subnetwork by influencing the linked channels as compensatory effect, although the contralateral primary motor cortex organized an inefficient network by using the connected channels due to lesions. For the MI task, degree centrality and local efficiency significantly decreased on the somatosensory area at the initial motor imagery. Then, there were significant correlations between the properties of brain networks and motor function on the contralateral primary motor cortex and somatosensory area for each motor execution/imagery task. Our results represented that the active and MI tasks have different mechanisms of motor acts. Based on these results, we indicated the possibility of customized rehabilitation according to different motor tasks. We expect these results to help in the construction of the customized rehabilitation system depending on motor tasks by understanding temporal functional

  11. Analysis of Time-Dependent Brain Network on Active and MI Tasks for Chronic Stroke Patients

    PubMed Central

    Chang, Won Hyuk; Kim, Yun-Hee; Lee, Seong-Whan; Kwon, Gyu Hyun

    2015-01-01

    Several researchers have analyzed brain activities by investigating brain networks. However, there is a lack of the research on the temporal characteristics of the brain network during a stroke by EEG and the comparative studies between motor execution and imagery, which became known to have similar motor functions and pathways. In this study, we proposed the possibility of temporal characteristics on the brain networks of a stroke. We analyzed the temporal properties of the brain networks for nine chronic stroke patients by the active and motor imagery tasks by EEG. High beta band has a specific role in the brain network during motor tasks. In the high beta band, for the active task, there were significant characteristics of centrality and small-worldness on bilateral primary motor cortices at the initial motor execution. The degree centrality significantly increased on the contralateral primary motor cortex, and local efficiency increased on the ipsilateral primary motor cortex. These results indicate that the ipsilateral primary motor cortex constructed a powerful subnetwork by influencing the linked channels as compensatory effect, although the contralateral primary motor cortex organized an inefficient network by using the connected channels due to lesions. For the MI task, degree centrality and local efficiency significantly decreased on the somatosensory area at the initial motor imagery. Then, there were significant correlations between the properties of brain networks and motor function on the contralateral primary motor cortex and somatosensory area for each motor execution/imagery task. Our results represented that the active and MI tasks have different mechanisms of motor acts. Based on these results, we indicated the possibility of customized rehabilitation according to different motor tasks. We expect these results to help in the construction of the customized rehabilitation system depending on motor tasks by understanding temporal functional

  12. Motor Controllers

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Kollmorgen Corporation's Mermaid II two person submersible is propeller-driven by a system of five DC brushless motors with new electronic controllers that originated in work performed in a NASA/DOE project managed by Lewis Research Center. A key feature of the system is electric commutation rather than mechanical commutation for converting AC current to DC.

  13. Therma motor

    DOEpatents

    Kandarian, R.

    The disclosure is directed to a thermal motor utilizing two tapered prestressed parallel adjacent cylinders lengthwise disposed about one third in a coolant. Heat is applied to contacting portions of the cylinders outside the coolant to cause them to deform and turn. Heat sources such as industrial waste heat, geothermal hot water, solar radiation, etc. can be used.

  14. Hemispheric asymmetry in cerebrovascular reactivity of the human primary motor cortex: an in vivo study at 7 T.

    PubMed

    Driver, Ian D; Andoh, Jamila; Blockley, Nicholas P; Francis, Susan T; Gowland, Penny A; Paus, Tomáš

    2015-05-01

    Current functional MRI (fMRI) approaches assess underlying neuronal activity through monitoring the related local variations in cerebral blood oxygenation, blood volume and blood flow. This vascular response is likely to vary across brain regions and across individuals, depending on the composition of the local vascular bed and on the vascular capacity to dilate. The most widely used technique uses the blood oxygen level dependent (BOLD) fMRI signal, which arises from a complex combination of all of these factors. The model of handedness provides a case where one brain region (dominant motor cortex) is known to have a stronger BOLD response over another (non-dominant motor cortex) during hand motor task performance. We predict that this is accompanied by a higher vascular reactivity in the dominant motor cortex, when compared with the non-dominant motor cortex. Precise measurement of end-tidal CO2 and a novel sinusoidal CO2 respiratory challenge were combined with the high sensitivity and finer spatial resolution available for fMRI at 7 T to measure BOLD cerebrovascular reactivity (CVR) in eight healthy male participants. BOLD CVR was compared between the left (dominant) and right (non-dominant) primary motor cortices of right-handed adults. Hemispheric asymmetry in vascular reactivity was predicted and observed in the primary motor cortex (left CVR = 0.60 ± 0.15%/mm Hg; right CVR = 0.47 ± 0.08%/mm Hg; left CVR > right CVR, P = 0.04), the first reported evidence of such a vascular difference. These findings demonstrate a cerebral vascular asymmetry between the left and right primary motor cortex. The origin of this asymmetry largely arises from the contribution of large draining veins. This work has implications for future motor laterality studies that use BOLD, and it is also suggestive of a vascular plasticity in the human primary motor cortex. PMID:25788020

  15. RESPONSES OF BRIGHT, NORMAL, AND RETARDED CHILDREN TO LEARNING TASKS.

    ERIC Educational Resources Information Center

    CARRIER, NEIL A.; AND OTHERS

    THE RELATIONSHIPS AMONG THE VARIABLES OF INTELLIGENCE, LEARNING TASK PERFORMANCE, EMOTIONAL TENSION, AND TASK MOTIVATION WERE STUDIED. ABOUT 120 BRIGHT, NORMAL, AND RETARDED CHILDREN PERFORMED SIX TRIALS OF NUMBER LEARNING, CONCEPT FORMATION, PROBLEM SOLVING, PERCEPTUAL-MOTOR COORDINATION, AND VERBAL LEARNING TASKS. DURING THE LEARNING SESSIONS,…

  16. Motor Neuron Diseases

    MedlinePlus

    ... Enhancing Diversity Find People About NINDS NINDS Motor Neuron Diseases Information Page Condensed from Motor Neuron Diseases ... and Information Publicaciones en Español What are Motor Neuron Diseases? The motor neuron diseases (MNDs) are a ...

  17. Motor Neuron Diseases

    MedlinePlus

    ... called upper motor neurons ) are transmitted to nerve cells in the brain stem and spinal cord (called lower motor neurons ) and from them to particular muscles. Upper motor neurons direct the lower motor neurons ...

  18. Task difficulty and aberrant behavior in severely handicapped students.

    PubMed Central

    Weeks, M; Gaylord-Ross, R

    1981-01-01

    The influence of task difficulty on aberrant behavior was investigated with three severely handicapped students. Noticeably higher rates of problem behavior occurred in demand compared to no-demand conditions. In addition, there were higher rates of problem behaviors on difficult versus easy tasks. Both these findings were validated with visual discrimination and perceptual motor tasks. An errorless learning procedure effectively minimized errors and aberrant behavior in visual discrimination tasks but not in perceptual motor tasks. It was conceptualized that aberrant behavior was maintained by negative reinforcement contingencies. Difficult tasks were aversive to the children, who emitted aberrant responses to escape or avoid such tasks. By contrast, conditions in which no demands were made, easy tasks, and, in visual discrimination learning, errorless tasks, were less aversive and resulted in little or no problem behavior. Implications for reducing maladaptive behaviors through curricular modifications are discussed and contrasted to more traditional consequence manipulation approaches. PMID:7328069

  19. Dissociating temporal attention from spatial attention and motor response preparation: A high-density EEG study.

    PubMed

    Faugeras, Frédéric; Naccache, Lionel

    2016-01-01

    Engagement of various forms of attention and response preparation determines behavioral performance during stimulus-response tasks. Many studies explored the respective properties and neural signatures of each of these processes. However, very few experiments were conceived to explore their interaction. In the present work we used an auditory target detection task during which both temporal attention on the one side, and spatial attention and motor response preparation on the other side could be explicitly cued. Both cueing effects speeded response times, and showed strictly additive effects. Target ERP analysis revealed modulations of N1 and P3 responses by these two forms of cueing. Cue-target interval analysis revealed two main effects paralleling behavior. First, a typical contingent negative variation (CNV), induced by the cue and resolved immediately after target onset, was found larger for temporal attention cueing than for spatial and motor response cueing. Second, a posterior and late cue-P3 complex showed the reverse profile. Analyses of lateralized readiness potentials (LRP) revealed both patterns of motor response inhibition and activation. Taken together these results help to clarify and disentangle the respective effects of temporal attention on the one hand, and of the combination of spatial attention and motor response preparation on the other hand on brain activity and behavior. PMID:26433120

  20. Motor Imagery Ability in Children with Congenital Hemiplegia: Effect of Lesion Side and Functional Level

    ERIC Educational Resources Information Center

    Williams, Jacqueline; Reid, Susan M.; Reddihough, Dinah S.; Anderson, Vicki

    2011-01-01

    In addition to motor execution problems, children with hemiplegia have motor planning deficits, which may stem from poor motor imagery ability. This study aimed to provide a greater understanding of motor imagery ability in children with hemiplegia using the hand rotation task. Three groups of children, aged 8-12 years, participated: right…

  1. LTD, RP, and Motor Learning.

    PubMed

    Hirano, Tomoo; Yamazaki, Yoshito; Nakamura, Yoji

    2016-02-01

    Long-term depression (LTD) at excitatory synapses between parallel fibers and a Purkinje cell has been regarded as a critical cellular mechanism for motor learning. However, it was demonstrated that normal motor learning occurs under LTD suppression, suggesting that cerebellar plasticity mechanisms other than LTD also contribute to motor learning. One candidate for such plasticity is rebound potentiation (RP), which is long-term potentiation at inhibitory synapses between a stellate cell and a Purkinje cell. Both LTD and RP are induced by the increase in postsynaptic Ca(2+) concentration, and work to suppress the activity of a Purkinje cell. Thus, LTD and RP might work synergistically, and one might compensate defects of the other. RP induction is dependent on the interaction between GABAA receptor and GABAA receptor binding protein (GABARAP). Transgenic mice expressing a peptide which inhibits binding of GABARAP and GABAA receptor only in Purkinje cells show defects in both RP and adaptation of vestibulo-ocular reflex (VOR), a motor learning paradigm. However, another example of motor learning, adaptation of optokinetic response (OKR), is normal in the transgenic mice. Both VOR and OKR are reflex eye movements suppressing the slip of visual image on the retina during head movement. Previously, we reported that delphilin knockout mice show facilitated LTD induction and enhanced OKR adaptation, but we recently found that VOR adaptation was not enhanced in the knockout mice. These results together suggest that animals might use LTD and RP differently depending on motor learning tasks. PMID:26160222

  2. Motor Demands Constrain Cognitive Rule Structures.

    PubMed

    Collins, Anne Gabrielle Eva; Frank, Michael Joshua

    2016-03-01

    Study of human executive function focuses on our ability to represent cognitive rules independently of stimulus or response modality. However, recent findings suggest that executive functions cannot be modularized separately from perceptual and motor systems, and that they instead scaffold on top of motor action selection. Here we investigate whether patterns of motor demands influence how participants choose to implement abstract rule structures. In a learning task that requires integrating two stimulus dimensions for determining appropriate responses, subjects typically structure the problem hierarchically, using one dimension to cue the task-set and the other to cue the response given the task-set. However, the choice of which dimension to use at each level can be arbitrary. We hypothesized that the specific structure subjects adopt would be constrained by the motor patterns afforded within each rule. Across four independent data-sets, we show that subjects create rule structures that afford motor clustering, preferring structures in which adjacent motor actions are valid within each task-set. In a fifth data-set using instructed rules, this bias was strong enough to counteract the well-known task switch-cost when instructions were incongruent with motor clustering. Computational simulations confirm that observed biases can be explained by leveraging overlap in cortical motor representations to improve outcome prediction and hence infer the structure to be learned. These results highlight the importance of sensorimotor constraints in abstract rule formation and shed light on why humans have strong biases to invent structure even when it does not exist. PMID:26966909

  3. Motor Demands Constrain Cognitive Rule Structures

    PubMed Central

    Collins, Anne Gabrielle Eva; Frank, Michael Joshua

    2016-01-01

    Study of human executive function focuses on our ability to represent cognitive rules independently of stimulus or response modality. However, recent findings suggest that executive functions cannot be modularized separately from perceptual and motor systems, and that they instead scaffold on top of motor action selection. Here we investigate whether patterns of motor demands influence how participants choose to implement abstract rule structures. In a learning task that requires integrating two stimulus dimensions for determining appropriate responses, subjects typically structure the problem hierarchically, using one dimension to cue the task-set and the other to cue the response given the task-set. However, the choice of which dimension to use at each level can be arbitrary. We hypothesized that the specific structure subjects adopt would be constrained by the motor patterns afforded within each rule. Across four independent data-sets, we show that subjects create rule structures that afford motor clustering, preferring structures in which adjacent motor actions are valid within each task-set. In a fifth data-set using instructed rules, this bias was strong enough to counteract the well-known task switch-cost when instructions were incongruent with motor clustering. Computational simulations confirm that observed biases can be explained by leveraging overlap in cortical motor representations to improve outcome prediction and hence infer the structure to be learned. These results highlight the importance of sensorimotor constraints in abstract rule formation and shed light on why humans have strong biases to invent structure even when it does not exist. PMID:26966909

  4. A task description model for robotic rehabilitation.

    PubMed

    Carmichael, Marc G; Liu, Dikai

    2012-01-01

    The desire to produce robots to aid in physical neurorehabilitation has led to the control paradigm Assistance-As-Needed. This paradigm aims to assist patients in performing physical rehabilitation tasks whilst providing the least amount of assistance required, maximizing the patient's effort which is essential for recovery. Ideally the provided assistance equals the gap between the capability required to perform the task and the patient's available capability. Current implementations derive a measure of this gap by critiquing task performance based on some criteria. This paper presents a task description model for tasks performed by a patient's limb, allowing physical requirements to be calculated. Applied to two upper limb tasks typical of rehabilitation and daily activities, the effect of task variations on the task's physical requirements are observed. It is proposed that using the task description model to compensate for changing task requirements will allow better support by providing assistance closer to the true needs of the patient. PMID:23366577

  5. Psychosocial Modulators of Motor Learning in Parkinson's Disease.

    PubMed

    Zemankova, Petra; Lungu, Ovidiu; Bares, Martin

    2016-01-01

    Using the remarkable overlap between brain circuits affected in Parkinson's disease (PD) and those underlying motor sequence learning, we may improve the effectiveness of motor rehabilitation interventions by identifying motor learning facilitators in PD. For instance, additional sensory stimulation and task cueing enhanced motor learning in people with PD, whereas exercising using musical rhythms or console computer games improved gait and balance, and reduced some motor symptoms, in addition to increasing task enjoyment. Yet, despite these advances, important knowledge gaps remain. Most studies investigating motor learning in PD used laboratory-specific tasks and equipment, with little resemblance to real life situations. Thus, it is unknown whether similar results could be achieved in more ecological setups and whether individual's task engagement could further improve motor learning capacity. Moreover, the role of social interaction in motor skill learning process has not yet been investigated in PD and the role of mind-set and self-regulatory mechanisms have been sporadically examined. Here, we review evidence suggesting that these psychosocial factors may be important modulators of motor learning in PD. We propose their incorporation in future research, given that it could lead to development of improved non-pharmacological interventions aimed to preserve or restore motor function in PD. PMID:26973495

  6. Psychosocial Modulators of Motor Learning in Parkinson’s Disease

    PubMed Central

    Zemankova, Petra; Lungu, Ovidiu; Bares, Martin

    2016-01-01

    Using the remarkable overlap between brain circuits affected in Parkinson’s disease (PD) and those underlying motor sequence learning, we may improve the effectiveness of motor rehabilitation interventions by identifying motor learning facilitators in PD. For instance, additional sensory stimulation and task cueing enhanced motor learning in people with PD, whereas exercising using musical rhythms or console computer games improved gait and balance, and reduced some motor symptoms, in addition to increasing task enjoyment. Yet, despite these advances, important knowledge gaps remain. Most studies investigating motor learning in PD used laboratory-specific tasks and equipment, with little resemblance to real life situations. Thus, it is unknown whether similar results could be achieved in more ecological setups and whether individual’s task engagement could further improve motor learning capacity. Moreover, the role of social interaction in motor skill learning process has not yet been investigated in PD and the role of mind-set and self-regulatory mechanisms have been sporadically examined. Here, we review evidence suggesting that these psychosocial factors may be important modulators of motor learning in PD. We propose their incorporation in future research, given that it could lead to development of improved non-pharmacological interventions aimed to preserve or restore motor function in PD. PMID:26973495

  7. CONTEXTUAL INTERFERENCE AND INTROVERSION/EXTRAVERSION IN MOTOR LEARNING.

    PubMed

    Meira, Cassio M; Fairbrother, Jeffrey T; Perez, Carlos R

    2015-10-01

    The Introversion/Extraversion dimension may interact with contextual interference, as random and blocked practice schedules imply distinct levels of variation. This study investigated the effect of different practice schedules in the acquisition of a motor skill in extraverts and introverts. Forty male undergraduate students (M = 24.3 yr., SD = 5.6) were classified as extraverts (n = 20) and introverts (n = 20) by the Eysenck Personality Questionnaire and allocated in one of two practice schedules with different levels of contextual interference: blocked (low contextual interference) and random (high contextual interference). Half of each group was assigned to a blocked practice schedule, and the other half was assigned to a random practice schedule. The design had two phases: acquisition and transfer (5 min. and 24 hr.). The participants learned variations of a sequential timing keypressing task. Each variation required the same sequence but different timing; three variations were used in acquisition, and one variation of intermediate length was used in transfer. Results for absolute error and overall timing error (root mean square error) indicated that the contextual interference effect was more pronounced for introverts. In addition, introverts who practiced according to the blocked schedule committed more errors during the 24-hr. transfer, suggesting that introverts did not appear to be challenged by a low contextual interference practice schedule. PMID:26447746

  8. Rational adaptation under task and processing constraints: implications for testing theories of cognition and action.

    PubMed

    Howes, Andrew; Lewis, Richard L; Vera, Alonso

    2009-10-01

    The authors assume that individuals adapt rationally to a utility function given constraints imposed by their cognitive architecture and the local task environment. This assumption underlies a new approach to modeling and understanding cognition-cognitively bounded rational analysis-that sharpens the predictive acuity of general, integrated theories of cognition and action. Such theories provide the necessary computational means to explain the flexible nature of human behavior but in doing so introduce extreme degrees of freedom in accounting for data. The new approach narrows the space of predicted behaviors through analysis of the payoff achieved by alternative strategies, rather than through fitting strategies and theoretical parameters to data. It extends and complements established approaches, including computational cognitive architectures, rational analysis, optimal motor control, bounded rationality, and signal detection theory. The authors illustrate the approach with a reanalysis of an existing account of psychological refractory period (PRP) dual-task performance and the development and analysis of a new theory of ordered dual-task responses. These analyses yield several novel results, including a new understanding of the role of strategic variation in existing accounts of PRP and the first predictive, quantitative account showing how the details of ordered dual-task phenomena emerge from the rational control of a cognitive system subject to the combined constraints of internal variance, motor interference, and a response selection bottleneck. PMID:19839682

  9. Motor Cortex Activity During Functional Motor Skills: An fNIRS Study.

    PubMed

    Nishiyori, Ryota; Bisconti, Silvia; Ulrich, Beverly

    2016-01-01

    Assessments of brain activity during motor task performance have been limited to fine motor movements due to technological constraints presented by traditional neuroimaging techniques, such as functional magnetic resonance imaging. Functional near-infrared spectroscopy (fNIRS) offers a promising method by which to overcome these constraints and investigate motor performance of functional motor tasks. The current study used fNIRS to quantify hemodynamic responses within the primary motor cortex in twelve healthy adults as they performed unimanual right, unimanual left, and bimanual reaching, and stepping in place. Results revealed that during both unimanual reaching tasks, the contralateral hemisphere showed significant activation in channels located approximately 3 cm medial to the C3 (for right-hand reach) and C4 (for left-hand reach) landmarks. Bimanual reaching and stepping showed activation in similar channels, which were located bilaterally across the primary motor cortex. The medial channels, surrounding Cz, showed significantly higher activations during stepping when compared to bimanual reaching. Our results extend the viability of fNIRS to study motor function and build a foundation for future investigation of motor development in infants during nascent functional behaviors and monitor how they may change with age or practice. PMID:26243304

  10. Electrophysiological evidence for preparatory reconfiguration before voluntary task switches but not cued task switches.

    PubMed

    Kang, Min-Suk; Diraddo, Adrienne; Logan, Gordon D; Woodman, Geoffrey F

    2014-04-01

    An unresolved issue in the task-switching literature is whether preparatory reconfiguration occurs before a change of task. In this study, we used event-related potentials (ERPs) to determine whether preparatory reconfiguration occurs during two different task-switching procedures: voluntary and cued task switching. We focused on two ERP components that index different cognitive operations. The contingent negative variation (CNV) is a sensitive measure of a participant's preparedness to use a specific stimulus-response mapping. In contrast, the P3 indexes memory updating. We found a pronounced modulation of the CNV before voluntary task switches, but not before cued task switches. Instead, cued task switches were preceded by a larger P3, as compared with task repetitions. Our findings suggest that task set reconfiguration is carried out prior to voluntary task switches, whereas memory processes dominate cued task switches. PMID:23979831

  11. Apraxia and Motor Dysfunction in Corticobasal Syndrome

    PubMed Central

    Burrell, James R.; Hornberger, Michael; Vucic, Steve; Kiernan, Matthew C.; Hodges, John R.

    2014-01-01

    Background Corticobasal syndrome (CBS) is characterized by multifaceted motor system dysfunction and cognitive disturbance; distinctive clinical features include limb apraxia and visuospatial dysfunction. Transcranial magnetic stimulation (TMS) has been used to study motor system dysfunction in CBS, but the relationship of TMS parameters to clinical features has not been studied. The present study explored several hypotheses; firstly, that limb apraxia may be partly due to visuospatial impairment in CBS. Secondly, that motor system dysfunction can be demonstrated in CBS, using threshold-tracking TMS, and is linked to limb apraxia. Finally, that atrophy of the primary motor cortex, studied using voxel-based morphometry analysis (VBM), is associated with motor system dysfunction and limb apraxia in CBS. Methods Imitation of meaningful and meaningless hand gestures was graded to assess limb apraxia, while cognitive performance was assessed using the Addenbrooke's Cognitive Examination – Revised (ACE-R), with particular emphasis placed on the visuospatial subtask. Patients underwent TMS, to assess cortical function, and VBM. Results In total, 17 patients with CBS (7 male, 10 female; mean age 64.4+/− 6.6 years) were studied and compared to 17 matched control subjects. Of the CBS patients, 23.5% had a relatively inexcitable motor cortex, with evidence of cortical dysfunction in the remaining 76.5% patients. Reduced resting motor threshold, and visuospatial performance, correlated with limb apraxia. Patients with a resting motor threshold <50% performed significantly worse on the visuospatial sub-task of the ACE-R than other CBS patients. Cortical function correlated with atrophy of the primary and pre-motor cortices, and the thalamus, while apraxia correlated with atrophy of the pre-motor and parietal cortices. Conclusions Cortical dysfunction appears to underlie the core clinical features of CBS, and is associated with atrophy of the primary motor and pre-motor

  12. Electrifying the motor engram: effects of tDCS on motor learning and control.

    PubMed

    Orban de Xivry, Jean-Jacques; Shadmehr, Reza

    2014-11-01

    Learning to control our movements is accompanied by neuroplasticity of motor areas of the brain. The mechanisms of neuroplasticity are diverse and produce what is referred to as the motor engram, i.e., the neural trace of the motor memory. Transcranial direct current stimulation (tDCS) alters the neural and behavioral correlates of motor learning, but its precise influence on the motor engram is unknown. In this review, we summarize the effects of tDCS on neural activity and suggest a few key principles: (1) Firing rates are increased by anodal polarization and decreased by cathodal polarization, (2) anodal polarization strengthens newly formed associations, and (3) polarization modulates the memory of new/preferred firing patterns. With these principles in mind, we review the effects of tDCS on motor control, motor learning, and clinical applications. The increased spontaneous and evoked firing rates may account for the modulation of dexterity in non-learning tasks by tDCS. The facilitation of new association may account for the effect of tDCS on learning in sequence tasks while the ability of tDCS to strengthen memories of new firing patterns may underlie the effect of tDCS on consolidation of skills. We then describe the mechanisms of neuroplasticity of motor cortical areas and how they might be influenced by tDCS. We end with current challenges for the fields of brain stimulation and motor learning. PMID:25200178

  13. Electrifying the motor engram: effects of tDCS on motor learning and control

    PubMed Central

    de Xivry, Jean-Jacques Orban; Shadmehr, Reza

    2014-01-01

    Learning to control our movements accompanies neuroplasticity of motor areas of the brain. The mechanisms of neuroplasticity are diverse and produce what is referred to as the motor engram, i.e. the neural trace of the motor memory. Transcranial direct current stimulation (tDCS) alters the neural and behavioral correlates of motor learning, but its precise influence on the motor engram is unknown. In this review, we summarize the effects of tDCS on neural activity and suggest a few key principles: 1) firing rates are increased by anodal polarization and decreased by cathodal polarization, 2) anodal polarization strengthens newly formed associations, and 3) polarization modulates the memory of new/preferred firing patterns. With these principles in mind, we review the effects of tDCS on motor control, motor learning, and clinical applications. The increased spontaneous and evoked firing rates may account for the modulation of dexterity in non-learning tasks by tDCS. The facilitation of new association may account for the effect of tDCS on learning in sequence tasks while the ability of tDCS to strengthen memories of new firing patterns may underlie the effect of tDCS on consolidation of skills. We then describe the mechanisms of neuroplasticity of motor cortical areas and how they might be influenced by tDCS. We end with current challenges for the fields of brain stimulation and motor learning. PMID:25200178

  14. Measuring Motor-Shaft Clearance And Wobble During Operation

    NASA Technical Reports Server (NTRS)

    Chern, Engmin James

    1996-01-01

    Noncontact proximity sensor, preferably eddy-current liftoff probe, provides realtime measurement of distance and small variations of distance between two mechanical components designed to be maintained at precise, fixed distance. In particular, system intended for use in measuring lateral clearance and variations in lateral clearance (wobble) of motor shaft relative to motor housing while shaft turning. Provides early indication of wear in motor bearings. Rate of rotation also measured.

  15. Minimum Principles in Motor Control.

    PubMed

    Engelbrecht, Sascha E.

    2001-06-01

    Minimum (or minimal) principles are mathematical laws that were first used in physics: Hamilton's principle and Fermat's principle of least time are two famous example. In the past decade, a number of motor control theories have been proposed that are formally of the same kind as the minimum principles of physics, and some of these have been quite successful at predicting motor performance in a variety of tasks. The present paper provides a comprehensive review of this work. Particular attention is given to the relation between minimum theories in motor control and those used in other disciplines. Other issues around which the review is organized include: (1) the relation between minimum principles and structural models of motor planning and motor control, (2) the empirically-driven development of minimum principles and the danger of circular theorizing, and (3) the design of critical tests for minimum theories. Some perspectives for future research are discussed in the concluding section of the paper. Copyright 2001 Academic Press. PMID:11401453

  16. High-speed electrical motor evaluation

    SciTech Connect

    Not Available

    1989-02-03

    Under this task, MTI conducted a general review of state-of-the-art high-speed motors. The purpose of this review was to assess the operating parameters, limitations and performance of existing motor designs, and to establish commercial sources for a motor compatible with the requirements of the Brayton-cycle system. After the motor requirements were established, a list of motor types, manufacturers and designs capable of achieving the requisite performance was compiled. This list was based on an in-house evaluation of designs. Following the establishment of these options, a technical evaluation of the designs selected was conducted. In parallel with their evaluations, MTI focused on the establishment of commercial sources.

  17. Response Inhibition in Motor Conversion Disorder

    PubMed Central

    Voon, Valerie; Ekanayake, Vindhya; Wiggs, Edythe; Kranick, Sarah; Ameli, Rezvan; Harrison, Neil A.; Hallett, Mark

    2014-01-01

    Conversion disorders (CDs) are unexplained neurological symptoms presumed to be related to a psychological issue. Studies focusing on conversion paralysis have suggested potential impairments in motor initiation or execution. Here we studied CD patients with aberrant or excessive motor movements and focused on motor response inhibition. We also assessed cognitive measures in multiple domains. We compared 30 CD patients and 30 age-, sex-, and education-matched healthy volunteers on a motor response inhibition task (go/no go), along with verbal motor response inhibition (color-word interference) and measures of attention, sustained attention, processing speed, language, memory, visuospatial processing, and executive function including planning and verbal fluency. CD patients had greater impairments in commission errors on the go/no go task (P <.001) compared with healthy volunteers, which remained significant after Bonferroni correction for multiple comparisons and after controlling for attention, sustained attention, depression, and anxiety. There were no significant differences in other cognitive measures. We highlight a specific deficit in motor response inhibition that may play a role in impaired inhibition of unwanted movement such as the excessive and aberrant movements seen in motor conversion. Patients with nonepileptic seizures, a different form of conversion disorder, are commonly reported to have lower IQ and multiple cognitive deficits. Our results point toward potential differences between conversion disorder subgroups. PMID:23554084

  18. Is there symmetry in motor imagery? Exploring different versions of the mental chronometry paradigm

    PubMed Central

    Rieger, Martina

    2016-01-01

    Motor imagery and motor execution share similar processes. However, only some factors that affect motor execution affect motor imagery in the same way. We investigated whether bimanual coordination constraints (parallel movements are performed slower than symmetric movements) are observed in motor imagery and whether the way of implementing the mental chronometry paradigm, which is used to investigate motor imagery, influences the results. Participants imagined and executed repetitive symmetric and parallel bimanual movements in three different tasks. Participants performed a certain number of movement repetitions (number task), repeated movements for a fixed duration (duration task), and performed movements in synchrony with pacing sounds (synchronization task). In both, imagination and execution, inter-response intervals were longer with parallel movements than with symmetric movements (number task and duration task), and the percentage of correct movements was lower with parallel than with symmetric movements (synchronization task). Performance of imagined and executed movements was correlated in all tasks. However, imagination took longer or was rated as less accurate than execution, and in the synchronization task the coordination constraint affected accuracy more in execution than in imagination. Thus, motor imagery and overt execution involve shared and unique processes. The synchronization task offers a promising alternative to investigate motor imagery, because the speed-accuracy trade-off is taken into account, different tempi can be used, and psychometric functions can be calculated. PMID:27173486

  19. Influence of dual-task on postexercise facilitation: a transcranial magnetic stimulation study.

    PubMed

    Concerto, Carmen; Amer, Bahaa; Abagyan, Anaida; Cao, Yisheng; Infortuna, Carmenrita; Chusid, Eileen; Coira, Diego; Battaglia, Fortunato

    2016-06-01

    In this study we investigated the effect of a dual task (DT) comprised of a nonfatiguing leg and foot extension coupled with a calculation task on postexercise facilitation (PEF) of motor evoked potentials (MEPs) tested by using transcranial magnetic stimulation (TMS). Twelve right-handed healthy subjects participated in the study. They were required to perform a motor task, a cognitive task and a DT. The motor task consisted of extending the right leg and foot for 30 sec at 20% of the maximal voluntary contraction. The cognitive task consisted of a 30-sec backward calculation. In the DT condition, motor and cognitive tasks were performed concurrently. Resting motor threshold and 10 MEPs were collected before and immediately after each task. TMS was delivered to the motor hot spot of the right vastus lateralis and tibialis anterior (TA) muscles. Results showed that exercise induced a significant PEF in both VL and TA muscles while calculation was not associated with significant PEF. Furthermore, DT was associated with lack of significant PEF in both muscles (VL, 116.1%±9.6%; TA, 115.7%±9%). Our data indicates DT interference on corticospinal excitability after a nonfatiguing exercise. Our experimental paradigm may be used to address postexercise motor cortex plastic adaptations induced by motor and cognitive tasks of different complexity in sport, aging and neuropsychiatric diseases. PMID:27419111

  20. Influence of dual-task on postexercise facilitation: a transcranial magnetic stimulation study

    PubMed Central

    Concerto, Carmen; Amer, Bahaa; Abagyan, Anaida; Cao, Yisheng; Infortuna, Carmenrita; Chusid, Eileen; Coira, Diego; Battaglia, Fortunato

    2016-01-01

    In this study we investigated the effect of a dual task (DT) comprised of a nonfatiguing leg and foot extension coupled with a calculation task on postexercise facilitation (PEF) of motor evoked potentials (MEPs) tested by using transcranial magnetic stimulation (TMS). Twelve right-handed healthy subjects participated in the study. They were required to perform a motor task, a cognitive task and a DT. The motor task consisted of extending the right leg and foot for 30 sec at 20% of the maximal voluntary contraction. The cognitive task consisted of a 30-sec backward calculation. In the DT condition, motor and cognitive tasks were performed concurrently. Resting motor threshold and 10 MEPs were collected before and immediately after each task. TMS was delivered to the motor hot spot of the right vastus lateralis and tibialis anterior (TA) muscles. Results showed that exercise induced a significant PEF in both VL and TA muscles while calculation was not associated with significant PEF. Furthermore, DT was associated with lack of significant PEF in both muscles (VL, 116.1%±9.6%; TA, 115.7%±9%). Our data indicates DT interference on corticospinal excitability after a nonfatiguing exercise. Our experimental paradigm may be used to address postexercise motor cortex plastic adaptations induced by motor and cognitive tasks of different complexity in sport, aging and neuropsychiatric diseases. PMID:27419111

  1. Learning a stick-balancing task involves task-specific coupling between posture and hand displacements.

    PubMed

    Cluff, Tyler; Boulet, Jason; Balasubramaniam, Ramesh

    2011-08-01

    Theories of motor learning argue that the acquisition of novel motor skills requires a task-specific organization of sensory and motor subsystems. We examined task-specific coupling between motor subsystems as subjects learned a novel stick-balancing task. We focused on learning-induced changes in finger movements and body sway and investigated the effect of practice on their coupling. Eight subjects practiced balancing a cylindrical wooden stick for 30 min a day during a 20 day learning period. Finger movements and center of pressure trajectories were recorded in every fifth practice session (4 in total) using a ten camera VICON motion capture system interfaced with two force platforms. Motor learning was quantified using average balancing trial lengths, which increased with practice and confirmed that subjects learned the task. Nonlinear time series and phase space reconstruction methods were subsequently used to investigate changes in the spatiotemporal properties of finger movements, body sway and their progressive coupling. Systematic increases in subsystem coupling were observed despite reduced autocorrelation and differences in the temporal properties of center of pressure and finger trajectories. The average duration of these coupled trajectories increased systematically across the learning period. In short, the abrupt transition between coupled and decoupled subsystem dynamics suggested that stick balancing is regulated by a hierarchical control mechanism that switches from collective to independent control of the finger and center of pressure. In addition to traditional measures of motor performance, dynamical analyses revealed changes in motor subsystem organization that occurred when subjects learned a novel stick-balancing task. PMID:21706299

  2. Modulation of human motoneuron activity by a mental arithmetic task.

    PubMed

    Bensoussan, Laurent; Duclos, Yann; Rossi-Durand, Christiane

    2012-10-01

    This study aimed to determine whether the performance of a mental task affects motoneuron activity. To this end, the tonic discharge pattern of wrist extensor motor units was analyzed in healthy subjects while they were required to maintain a steady wrist extension force and to concurrently perform a mental arithmetic (MA) task. A shortening of the mean inter-spike interval (ISI) and a decrease in ISI variability occurred when MA task was superimposed to the motor task. Aloud and silent MA affected equally the rate and variability of motoneuron discharge. Increases in surface EMG activity and force level were consistent with the modulation of the motor unit discharge rate. Trial-by-trial analysis of the characteristics of motor unit firing revealed that performing MA increases activation of wrist extensor SMU. It is suggested that increase in muscle spindle afferent activity, resulting from fusimotor drive activation by MA, may have contributed to the increase in synaptic inputs to motoneurons during the mental task performance, likely together with enhancement in the descending drive. The finding that a mental task affects motoneuron activity could have consequences in assessment of motor disabilities and in rehabilitation in motor pathologies. PMID:23159444

  3. The Selective Task Trainer: The Expert Solution.

    ERIC Educational Resources Information Center

    Gerson, Charles W.

    1995-01-01

    Examines simulator classification and design in light of new technology, current research, and a changing focus for using flight simulators in the military, and proposes a selective task trainer that addresses the expert's performance needs. Highlights include motor skill physiology; retention; automaticity skills; the novice to expert…

  4. Gross motor control

    MedlinePlus

    Gross motor control is the ability to make large, general movements (such as waving an arm or lifting a ... Gross motor control is a milestone in the development of an infant. Infants develop gross motor control before they ...

  5. Multifocal Motor Neuropathy

    MedlinePlus

    ... Diversity Find People About NINDS NINDS Multifocal Motor Neuropathy Information Page Table of Contents (click to jump ... done? Clinical Trials Organizations What is Multifocal Motor Neuropathy? Multifocal motor neuropathy is a progressive muscle disorder ...

  6. Optimization of a motor learning attention-directing strategy based on an individual's motor imagery ability.

    PubMed

    Sakurada, Takeshi; Hirai, Masahiro; Watanabe, Eiju

    2016-01-01

    Motor learning performance has been shown to be affected by various cognitive factors such as the focus of attention and motor imagery ability. Most previous studies on motor learning have shown that directing the attention of participants externally, such as on the outcome of an assigned body movement, can be more effective than directing their attention internally, such as on body movement itself. However, to the best of our knowledge, no findings have been reported on the effect of the focus of attention selected according to the motor imagery ability of an individual on motor learning performance. We measured individual motor imagery ability assessed by the Movement Imagery Questionnaire and classified the participants into kinesthetic-dominant (n = 12) and visual-dominant (n = 8) groups based on the questionnaire score. Subsequently, the participants performed a motor learning task such as tracing a trajectory using visuomotor rotation. When the participants were required to direct their attention internally, the after-effects of the learning task in the kinesthetic-dominant group were significantly greater than those in the visual-dominant group. Conversely, when the participants were required to direct their attention externally, the after-effects of the visual-dominant group were significantly greater than those of the kinesthetic-dominant group. Furthermore, we found a significant positive correlation between the size of after-effects and the modality-dominance of motor imagery. These results suggest that a suitable attention strategy based on the intrinsic motor imagery ability of an individual can improve performance during motor learning tasks. PMID:26466828

  7. Intraoperative monitoring of motor function by magnetic motor evoked potentials.

    PubMed

    Lee, W Y; Hou, W Y; Yang, L H; Lin, S M

    1995-03-01

    Under etomidate anesthesia, motor evoked potentials produced by magnetic stimulation were successfully recorded from 10 thenar muscles and 10 anterior tibial muscles of eight patients who had undergone surgery on the medulla oblongata and the cervical and thoracic spinal cords. Recordings taken before placing the neural tissue at risk were assessed for variability in amplitude and latency. The lower limit in amplitude was approximately one-third (25-43%) of the baseline. The latencies were more difficult to monitor than were the amplitudes. The latency variations were 2.56 +/- 0.50 milliseconds for the hand and 6.84 +/- 1.37 milliseconds for the leg. During surgery, the unilateral recordings of two patients were transiently lost but partially recovered after a pause in the operation. No obvious postoperative weaknesses in the corresponding limbs occurred. One patient, who showed a permanent loss of unilateral recording, had transient monoplegia with a complete recovery. None of the remaining five patients who had amplitudes larger than one-third of the baseline at the end of the operation had additional motor deficits. Our conclusions are that under etomidate anesthesia, the magnetic motor evoked potentials can be convenient and reliable monitors of motor function, that changes in the amplitude may be superior to those in the latency for intraoperative warning, that the criterion for potential neural damage under magnetic motor evoked potential monitoring might be an amplitude reduction of two-thirds of the control value, and that the magnetic stimulation seems to be more sensitive than the electrical stimulation in the monitoring of motor function and also allows more time and opportunities for the motor function to recover. PMID:7753349

  8. Task Switching: Interplay of Reconfiguration and Interference Control

    ERIC Educational Resources Information Center

    Vandierendonck, Andre; Liefooghe, Baptist; Verbruggen, Frederick

    2010-01-01

    The task-switching paradigm is being increasingly used as a tool for studying cognitive control and task coordination. Different procedural variations have been developed. They have in common that a comparison is made between transitions in which the previous task is repeated and transitions that involve a change toward another task. In general, a…

  9. Neuronal mechanisms of motor learning and motor memory consolidation in healthy old adults.

    PubMed

    Berghuis, K M M; Veldman, M P; Solnik, S; Koch, G; Zijdewind, I; Hortobágyi, T

    2015-06-01

    It is controversial whether or not old adults are capable of learning new motor skills and consolidate the performance gains into motor memory in the offline period. The underlying neuronal mechanisms are equally unclear. We determined the magnitude of motor learning and motor memory consolidation in healthy old adults and examined if specific metrics of neuronal excitability measured by magnetic brain stimulation mediate the practice and retention effects. Eleven healthy old adults practiced a wrist extension-flexion visuomotor skill for 20 min (MP, 71.3 years), while a second group only watched the templates without movements (attentional control, AC, n = 11, 70.5 years). There was 40 % motor learning in MP but none in AC (interaction, p < 0.001) with the skill retained 24 h later in MP and a 16 % improvement in AC. Corticospinal excitability at rest and during task did not change, but when measured during contraction at 20 % of maximal force, it strongly increased in MP and decreased in AC (interaction, p = 0.002). Intracortical inhibition at rest and during the task decreased and facilitation at rest increased in MP, but these metrics changed in the opposite direction in AC. These neuronal changes were especially profound at retention. Healthy old adults can learn a new motor skill and consolidate the learned skill into motor memory, processes that are most likely mediated by disinhibitory mechanisms. These results are relevant for the increasing number of old adults who need to learn and relearn movements during motor rehabilitation. PMID:25956604

  10. EPIC Computational Models of Psychological Refractory-Period Effects in Human Multiple-Task Performance.

    ERIC Educational Resources Information Center

    Meyer, David E.; Kieras, David E.

    Perceptual-motor and cognitive processes whereby people perform multiple concurrent tasks have been studied through an overlapping-tasks procedure in which two successive choice-reaction tasks are performed with a variable interval (stimulus onset asynchrony, or SOA) between the beginning of the first and second tasks. The increase in subjects'…

  11. A Single Bout of Exercise Improves Motor Memory

    PubMed Central

    Roig, Marc; Skriver, Kasper; Lundbye-Jensen, Jesper; Kiens, Bente; Nielsen, Jens Bo

    2012-01-01

    Regular physical activity has a positive impact on cognition and brain function. Here we investigated if a single bout of exercise can improve motor memory and motor skill learning. We also explored if the timing of the exercise bout in relation to the timing of practice has any impact on the acquisition and retention of a motor skill. Forty-eight young subjects were randomly allocated into three groups, which practiced a visuomotor accuracy-tracking task either before or after a bout of intense cycling or after rest. Motor skill acquisition was assessed during practice and retention was measured 1 hour, 24 hours and 7 days after practice. Differences among groups in the rate of motor skill acquisition were not significant. In contrast, both exercise groups showed a significantly better retention of the motor skill 24 hours and 7 days after practice. Furthermore, compared to the subjects that exercised before practice, the subjects that exercised after practice showed a better retention of the motor skill 7 days after practice. These findings indicate that one bout of intense exercise performed immediately before or after practicing a motor task is sufficient to improve the long-term retention of a motor skill. The positive effects of acute exercise on motor memory are maximized when exercise is performed immediately after practice, during the early stages of memory consolidation. Thus, the timing of exercise in relation to practice is possibly an important factor regulating the effects of acute exercise on long-term motor memory. PMID:22973462

  12. Motor control for a brushless DC motor

    NASA Technical Reports Server (NTRS)

    Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)

    1985-01-01

    This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.

  13. Development of Ultra-Efficient Electric Motors Final Technical Report Covering work from April 2002 through September 2007

    SciTech Connect

    Rich Schiferl

    2008-05-30

    High temperature superconducting (HTS) motors offer the potential for dramatic volume and loss reduction compared to conventional, high horspower, industrial motors. This report is the final report on the results of eight research tasks that address some of the issues related to HTS motor development that affect motor efficiency, cost, and reliability.

  14. Sleep-Related Improvements in Motor Learning Following Mental Practice

    ERIC Educational Resources Information Center

    Debarnot, Ursula; Creveaux, Thomas; Collet, Christian; Gemignani, Angelo; Massarelli, Raphael; Doyon, Julien; Guillot, Aymeric

    2009-01-01

    A wide range of experimental studies have provided evidence that a night of sleep may enhance motor performance following physical practice (PP), but little is known, however, about its effect after motor imagery (MI). Using an explicitly learned pointing task paradigm, thirty participants were assigned to one of three groups that differed in the…

  15. Regulating Cognitive Control through Approach-Avoidance Motor Actions

    ERIC Educational Resources Information Center

    Koch, Severine; Holland, Rob W.; van Knippenberg, Ad

    2008-01-01

    In two studies, the regulatory function of approach-avoidance cues in activating cognitive control processes was investigated. It was hypothesized that avoidance motor actions, relative to approach motor actions, increase the recruitment of cognitive resources, resulting in better performance on tasks that draw on these capacities. In Study 1,…

  16. Primary Motor Cortex Involvement in Initial Learning during Visuomotor Adaptation

    ERIC Educational Resources Information Center

    Riek, Stephan; Hinder, Mark R.; Carson, Richard G.

    2012-01-01

    Human motor behaviour is continually modified on the basis of errors between desired and actual movement outcomes. It is emerging that the role played by the primary motor cortex (M1) in this process is contingent upon a variety of factors, including the nature of the task being performed, and the stage of learning. Here we used repetitive TMS to…

  17. Improved motor sequence retention by motionless listening.

    PubMed

    Lahav, Amir; Katz, Tal; Chess, Roxanne; Saltzman, Elliot

    2013-05-01

    This study examined the effect of listening to a newly learned musical piece on subsequent motor retention of the piece. Thirty-six non-musicians were trained to play an unfamiliar melody on a piano keyboard. Next, they were randomly assigned to participate in three follow-up listening sessions over 1 week. Subjects who, during their listening sessions, listened to the same initial piece showed significant improvements in motor memory and retention of the piece despite the absence of physical practice. These improvements included increased pitch accuracy, time accuracy, and dynamic intensity of key pressing. Similar improvements, though to a lesser degree, were observed in subjects who, during their listening sessions, were distracted by another task. Control subjects, who after learning the piece had listened to nonmusical sounds, showed impaired motoric retention of the piece at 1 week from the initial acquisition day. These results imply that motor sequences can be established in motor memory without direct access to motor-related information. In addition, the study revealed that the listening-induced improvements did not generalize to the learning of a new musical piece composed of the same notes as the initial piece learned, limiting the effects to musical motor sequences that are already part of the individual's motor repertoire. PMID:22434336

  18. Reactor coolant pump testing using motor current signatures analysis

    SciTech Connect

    Burstein, N.; Bellamy, J.

    1996-12-01

    This paper describes reactor coolant pump motor testing carried out at Florida Power Corporation`s Crystal River plant using Framatome Technologies` new EMPATH (Electric Motor Performance Analysis and Trending Hardware) system. EMPATH{trademark} uses an improved form of Motor Current Signature Analysis (MCSA), technology, originally developed at Oak Ridge National Laboratories, for detecting deterioration in the rotors of AC induction motors. Motor Current Signature Analysis (MCSA) is a monitoring tool for motor driven equipment that provides a non-intrusive means for detecting the presence of mechanical and electrical abnormalities in the motor and the driven equipment. The base technology was developed at the Oak Ridge National Laboratory as a means for determining the affects of aging and service wear specifically on motor-operated valves used in nuclear power plant safety systems, but it is applicable to a broad range of electric machinery. MCSA is based on the recognition that an electric motor (ac or dc) driving a mechanical load acts as an efficient and permanently available transducer by sensing mechanical load variations, large and small, long-term and rapid, and converting them into variations in the induced current generated in the motor windings. The motor current variations, resulting from changes in load caused by gears, pulleys, friction, bearings, and other conditions that may change over the life of the motor, are carried by the electrical cables powering the motor and are extracted at any convenient location along the motor lead. These variations modulate the 60 Hz carrier frequency and appear as sidebands in the spectral plot.

  19. Auditory-motor learning influences auditory memory for music.

    PubMed

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features. PMID:22271265

  20. Differential sensitivity of cranial and limb motor function to nigrostriatal dopamine depletion.

    PubMed

    Plowman, Emily K; Maling, Nicholas; Rivera, Benjamin J; Larson, Krista; Thomas, Nagheme J; Fowler, Stephen C; Manfredsson, Fredric P; Shrivastav, Rahul; Kleim, Jeffrey A

    2013-01-15

    The present study determined the differential effects of unilateral striatal dopamine depletion on cranial motor versus limb motor function. Forty male Long Evans rats were first trained on a comprehensive motor testing battery that dissociated cranial versus limb motor function and included: cylinder forepaw placement, single pellet reaching, vermicelli pasta handling; sunflower seed opening, pasta biting acoustics, and a licking task. Following baseline testing, animals were randomized to either a 6-hydroxydopamine (6-OHDA) (n=20) or control (n=20) group. Animals in the 6-OHDA group received unilateral intrastriatal 6-OHDA infusions to induce striatal dopamine depletion. Six-weeks following infusion, all animals were re-tested on the same battery of motor tests. Near infrared densitometry was performed on sections taken through the striatum that were immunohistochemically stained for tyrosine hydroxylase (TH). Animals in the 6-OHDA condition showed a mean reduction in TH staining of 88.27%. Although 6-OHDA animals were significantly impaired on all motor tasks, limb motor deficits were more severe than cranial motor impairments. Further, performance on limb motor tasks was correlated with degree of TH depletion while performance on cranial motor impairments showed no significant correlation. These results suggest that limb motor function may be more sensitive to striatal dopaminergic depletion than cranial motor function and is consistent with the clinical observation that therapies targeting the nigrostriatal dopaminergic system in Parkinson's disease are more effective for limb motor symptoms than cranial motor impairments. PMID:23018122

  1. Consequences of biomechanically constrained tasks in the design and interpretation of synergy analyses

    PubMed Central

    Tresch, Matthew C.; Perreault, Eric J.

    2015-01-01

    Matrix factorization algorithms are commonly used to analyze muscle activity and provide insight into neuromuscular control. These algorithms identify low-dimensional subspaces, commonly referred to as synergies, which can describe variation in muscle activity during a task. Synergies are often interpreted as reflecting underlying neural control; however, it is unclear how these analyses are influenced by biomechanical and task constraints, which can also lead to low-dimensional patterns of muscle activation. The aim of this study was to evaluate whether commonly used algorithms and experimental methods can accurately identify synergy-based control strategies. This was accomplished by evaluating synergies from five common matrix factorization algorithms using muscle activations calculated from 1) a biomechanically constrained task using a musculoskeletal model and 2) without task constraints using random synergy activations. Algorithm performance was assessed by calculating the similarity between estimated synergies and those imposed during the simulations; similarities ranged from 0 (random chance) to 1 (perfect similarity). Although some of the algorithms could accurately estimate specified synergies without biomechanical or task constraints (similarity >0.7), with these constraints the similarity of estimated synergies decreased significantly (0.3–0.4). The ability of these algorithms to accurately identify synergies was negatively impacted by correlation of synergy activations, which are increased when substantial biomechanical or task constraints are present. Increased variability in synergy activations, which can be captured using robust experimental paradigms that include natural variability in motor activation patterns, improved identification accuracy but did not completely overcome effects of biomechanical and task constraints. These results demonstrate that a biomechanically constrained task can reduce the accuracy of estimated synergies and highlight

  2. Philosophy of Research in Motor Speech Disorders

    ERIC Educational Resources Information Center

    Weismer, Gary

    2006-01-01

    The primary objective of this position paper is to assess the theoretical and empirical support that exists for the Mayo Clinic view of motor speech disorders in general, and for oromotor, nonverbal tasks as a window to speech production processes in particular. Literature both in support of and against the Mayo clinic view and the associated use…

  3. Contribution of hand motor circuits to counting.

    PubMed

    Andres, Michael; Seron, Xavier; Olivier, Etienne

    2007-04-01

    The finding that number processing activates a cortical network partly overlapping that recruited for hand movements has renewed interest in the relationship between number and finger representations. Further evidence about a possible link between fingers and numbers comes from developmental studies showing that finger movements play a crucial role in learning counting. However, increased activity in hand motor circuits during counting may unveil unspecific processes, such as shifting attention, reciting number names, or matching items with a number name. To address this issue, we used transcranial magnetic stimulation to measure changes in corticospinal (CS) excitability during a counting task performed silently and using either numbers or letters of the alphabet to enumerate items. We found an increased CS excitability of hand muscles during the counting task, irrespective of the use of numbers or letters, whereas it was unchanged in arm and foot muscles. Control tasks allowed us to rule out a possible influence of attention allocation or covert speech on CS excitability increase of hand muscles during counting. The present results support a specific involvement of hand motor circuits in counting because no CS changes were found in arm and foot muscles during the same task. However, the contribution of hand motor areas is not exclusively related to number processing because an increase in CS excitability was also found when letters were used to enumerate items. This finding suggests that hand motor circuits are involved whenever items have to be put in correspondence with the elements of any ordered series. PMID:17381248

  4. Motor interference in interactive contexts.

    PubMed

    Chinellato, Eris; Castiello, Umberto; Sartori, Luisa

    2015-01-01

    Action observation and execution share overlapping neural substrates, so that simultaneous activation by observation and execution modulates motor performance. Previous literature on simple prehension tasks has revealed that motor influence can be two-sided: facilitation for observed and performed congruent actions and interference for incongruent actions. But little is known of the specific modulations of motor performance in complex forms of interaction. Is it possible that the very same observed movement can lead either to interference or facilitation effects on a temporally overlapping congruent executed action, depending on the context? To answer this question participants were asked to perform a reach-to-grasp movement adopting a precision grip (PG) while: (i) observing a fixation cross, (ii) observing an actor performing a PG with interactive purposes, (iii) observing an actor performing a PG without interactive purposes. In particular, in the interactive condition the actor was shown trying to pour some sugar on a large cup located out of her reach but close to the participant watching the video, thus eliciting in reaction a complementary whole-hand grasp. Notably, fine-grained kinematic analysis for this condition revealed a specific delay in the grasping and reaching components and an increased trajectory deviation despite the observed and executed movement's congruency. Moreover, early peaks of