Science.gov

Sample records for motor vehicle-related spinal

  1. Human Spinal Motor Control.

    PubMed

    Nielsen, Jens Bo

    2016-07-01

    Human studies in the past three decades have provided us with an emerging understanding of how cortical and spinal networks collaborate to ensure the vast repertoire of human behaviors. Humans have direct cortical connections to spinal motoneurons, which bypass spinal interneurons and exert a direct (willful) muscle control with the aid of a context-dependent integration of somatosensory and visual information at cortical level. However, spinal networks also play an important role. Sensory feedback through spinal circuitries is integrated with central motor commands and contributes importantly to the muscle activity underlying voluntary movements. Regulation of spinal interneurons is used to switch between motor states such as locomotion (reciprocal innervation) and stance (coactivation pattern). Cortical regulation of presynaptic inhibition of sensory afferents may focus the central motor command by opening or closing sensory feedback pathways. In the future, human studies of spinal motor control, in close collaboration with animal studies on the molecular biology of the spinal cord, will continue to document the neural basis for human behavior. PMID:27023730

  2. Tribal motor vehicle injury prevention programs for reducing disparities in motor vehicle-related injuries.

    PubMed

    West, Bethany A; Naumann, Rebecca B

    2014-04-18

    A previous analysis of National Vital Statistics System data for 2003-2007 that examined disparities in rates of motor vehicle-related death by race/ethnicity and sex found that death rates for American Indians/Alaska Natives were two to four times the rates of other races/ethnicities. To address the disparity in motor vehicle-related injuries and deaths among American Indians/Alaska Natives, CDC funded four American Indian tribes during 2004-2009 to tailor, implement, and evaluate evidence-based road safety interventions. During the implementation of these four motor vehicle-related injury prevention pilot programs, seat belt and child safety seat use increased and alcohol-impaired driving decreased. Four American Indian/Alaska Native tribal communities-the Tohono O'odham Nation, the Ho-Chunk Nation, the White Mountain Apache Tribe, and the San Carlos Apache Tribe-implemented evidence-based road safety interventions to reduce motor vehicle-related injuries and deaths. Each community selected interventions from the Guide to Community Preventive Services and implemented them during 2004-2009. Furthermore, each community took a multifaceted approach by incorporating several strategies, such as school and community education programs, media campaigns, and collaborations with law enforcement officers into their programs. Police data and direct observational surveys were the main data sources used to assess results of the programs. Results included increased use of seat belts and child safety seats, increased enforcement of alcohol-impaired driving laws, and decreased motor vehicle crashes involving injuries or deaths. CDC's Office of Minority Health and Health Equity selected the intervention analysis and discussion as an example of a program that might be effective for reducing motor vehicle-related injury disparities in the United States. The Guide to Community Preventive Services recognizes these selected interventions as effective; this report examines the

  3. Motor Vehicle Related Child Deaths: A Plea for Action.

    ERIC Educational Resources Information Center

    Toledo, Jose R.; And Others

    This paper reviews the literature concerning motor related child deaths, emphasizes that automobile related incidents are the major cause of death in children below 14 and over 1 year of age, and provides suggestions about what pediatricians can do to reduce highway fatalities among children. Special attention is given to investigations of the use…

  4. Reducing Motor Vehicle-Related Injuries at an Arizona Indian Reservation: Ten Years of Application of Evidence-Based Strategies

    PubMed Central

    Piontkowski, Stephen R; Peabody, Jon S; Reede, Christine; Velascosoltero, José; Tsatoke, Gordon; Shelhamer, Timothy; Hicks, Kenny R

    2015-01-01

    Unintentional injury is a significant public health burden for American Indians and Alaska Natives and was the leading cause of death among those aged 1 to 44 years between 1999 and 2004. Of those deaths, motor vehicle-related deaths cause the most mortality, justifying the need for intervention at an American Indian Reservation in Arizona (United States). We describe motor vehicle injury prevention program operations from 2004 through 2013. This community-based approach led by a multidisciplinary team primarily comprised of environmental public health and law enforcement personnel implemented evidence-based strategies to reduce the impact of motor vehicle-related injuries and deaths, focusing on reducing impaired driving and increasing occupant restraint use. Strategies included: mass media campaigns to enhance awareness and outreach; high-visibility sobriety checkpoints; passing and enforcing 0.08% blood alcohol concentration limits for drivers and primary occupant restraint laws; and child car seat distribution and education. Routine monitoring and evaluation data showed a significant 5% to 7% annual reduction of motor vehicle crashes (MVCs), nighttime MVCs, MVCs with injuries/fatalities, and nighttime MVCs with injuries/fatalities between 2004 and 2013, but the annual percent change in arrests for driving under the influence (DUI) was not significant. There was also a 144% increase in driver/front seat passenger seat belt use, from 19% in 2011 before the primary occupant restraint law was enacted to 47% during the first full year of enforcement (2013). Car seat checkpoint data also suggested a 160% increase in car seat use, from less than 20% to 52% in 2013. Implementation of evidence-based strategies in injury prevention, along with employment of key program approaches such as strong partnership building, community engagement, and consistent staffing and funding, can narrow the public health disparity gap experienced among American Indian and Alaska Native

  5. Reducing Motor Vehicle-Related Injuries at an Arizona Indian Reservation: Ten Years of Application of Evidence-Based Strategies.

    PubMed

    Piontkowski, Stephen R; Peabody, Jon S; Reede, Christine; Velascosoltero, José; Tsatoke, Gordon; Shelhamer, Timothy; Hicks, Kenny R

    2015-12-01

    Unintentional injury is a significant public health burden for American Indians and Alaska Natives and was the leading cause of death among those aged 1 to 44 years between 1999 and 2004. Of those deaths, motor vehicle-related deaths cause the most mortality, justifying the need for intervention at an American Indian Reservation in Arizona (United States). We describe motor vehicle injury prevention program operations from 2004 through 2013. This community-based approach led by a multidisciplinary team primarily comprised of environmental public health and law enforcement personnel implemented evidence-based strategies to reduce the impact of motor vehicle-related injuries and deaths, focusing on reducing impaired driving and increasing occupant restraint use. Strategies included: mass media campaigns to enhance awareness and outreach; high-visibility sobriety checkpoints; passing and enforcing 0.08% blood alcohol concentration limits for drivers and primary occupant restraint laws; and child car seat distribution and education. Routine monitoring and evaluation data showed a significant 5% to 7% annual reduction of motor vehicle crashes (MVCs), nighttime MVCs, MVCs with injuries/fatalities, and nighttime MVCs with injuries/fatalities between 2004 and 2013, but the annual percent change in arrests for driving under the influence (DUI) was not significant. There was also a 144% increase in driver/front seat passenger seat belt use, from 19% in 2011 before the primary occupant restraint law was enacted to 47% during the first full year of enforcement (2013). Car seat checkpoint data also suggested a 160% increase in car seat use, from less than 20% to 52% in 2013. Implementation of evidence-based strategies in injury prevention, along with employment of key program approaches such as strong partnership building, community engagement, and consistent staffing and funding, can narrow the public health disparity gap experienced among American Indian and Alaska Native

  6. Spinal metaplasticity in respiratory motor control

    PubMed Central

    Fields, Daryl P.; Mitchell, Gordon S.

    2015-01-01

    A hallmark feature of the neural system controlling breathing is its ability to exhibit plasticity. Less appreciated is the ability to exhibit metaplasticity, a change in the capacity to express plasticity (i.e., “plastic plasticity”). Recent advances in our understanding of cellular mechanisms giving rise to respiratory motor plasticity lay the groundwork for (ongoing) investigations of metaplasticity. This detailed understanding of respiratory metaplasticity will be essential as we harness metaplasticity to restore breathing capacity in clinical disorders that compromise breathing, such as cervical spinal injury, motor neuron disease and other neuromuscular diseases. In this brief review, we discuss key examples of metaplasticity in respiratory motor control, and our current understanding of mechanisms giving rise to spinal plasticity and metaplasticity in phrenic motor output; particularly after pre-conditioning with intermittent hypoxia. Progress in this area has led to the realization that similar mechanisms are operative in other spinal motor networks, including those governing limb movement. Further, these mechanisms can be harnessed to restore respiratory and non-respiratory motor function after spinal injury. PMID:25717292

  7. Descending motor pathways and the spinal motor system - Limbic and non-limbic components

    NASA Technical Reports Server (NTRS)

    Holstege, Gert

    1991-01-01

    Research on descending motor pathways to caudal brainstem and spinal cord in the spinal motor system is reviewed. Particular attention is given to somatic and autonomic motoneurons in the spinal cord and brainstem, local projections to motoneurons, bulbospinal interneurons projecting to motoneurons, descending pathways of somatic motor control systems, and descending pathways involved in limbic motor control systems.

  8. Construction equipment and motor vehicle related injuries on construction sites in Turkey.

    PubMed

    Gürcanli, G Emre; Müngen, Ugur; Akad, Murat

    2008-08-01

    Research on occupational accidents on construction sites in Turkey is very few. Moreover, research on motor vehicle and equipment accidents also do not exist. Investigation in the scope of this study shows that after falls and contact with electricity, accidents involving heavy equipment and motor vehicles rank third and fourth, respectively. This study aims to reveal the characteristics of these types of accidents, deduct the prominent causes that lead to fatalities as well as permanent disabilities using the present data. With the aid of obtained results, recommendations are made for safety experts on how to derive data from insufficient sources in Turkey and to evaluate these data for prevention and mitigation of the risks that construction workers are exposed to. 168 fatal and 38 non-fatal traffic accident-caused incidents as well as 206 fatal and 97 non-fatal construction equipment accidents, which were selected from official statistics and expert reports, were taken into consideration. Analysis and classification of these accidents were done according to the way they happened, the type of construction site and the occupation of the victims. Moreover, the leading causes of fatal and non-fatal injuries, to which drivers, operators and co-operators are exposed, are presented. Critical findings concerning prominent ways of occurrence, type of construction work and occupation are presented; and a number of measures for reducing the present risks are suggested. Some approaches for analysing relevant data are proposed for further research. PMID:18716386

  9. 41 CFR 102-34.320 - What Government-issued charge cards may I use to purchase fuel and motor vehicle related services?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false What Government-issued charge cards may I use to purchase fuel and motor vehicle related services? 102-34.320 Section 102-34.320 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION...

  10. 41 CFR 102-34.320 - What Government-issued charge cards may I use to purchase fuel and motor vehicle related services?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false What Government-issued charge cards may I use to purchase fuel and motor vehicle related services? 102-34.320 Section 102-34.320 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION...

  11. Spatial organization of cortical and spinal neurons controlling motor behavior

    PubMed Central

    Levine, Ariel J; Lewallen, Kathryn A; Pfaff, Samuel L

    2013-01-01

    A major task of the central nervous system (CNS) is to control behavioral actions, which necessitates a precise regulation of muscle activity. The final components of the circuitry controlling muscles are the motorneurons, which settle into pools in the ventral horn of the spinal cord in positions that mirror the musculature organization within the body. This ‘musculotopic’ motor-map then becomes the internal CNS reference for the neuronal circuits that control motor commands. This review describes recent progress in defining the neuroanatomical organization of the higher-order motor circuits in the cortex and spinal cord, and our current understanding of the integrative features that contribute to complex motor behaviors. We highlight emerging evidence that cortical and spinal motor command centers are loosely organized with respect to the musculotopic spatial-map, but these centers also incorporate organizational features that associate with the function of different muscle groups during commonly enacted behaviors. PMID:22841417

  12. Changes in corticospinal facilitation of lower limb spinal motor neurons after spinal cord lesions.

    PubMed Central

    Brouwer, B; Bugaresti, J; Ashby, P

    1992-01-01

    The projections from the cortex to the motor neurons of lower limb muscles were examined in 33 normal subjects and 16 patients with incomplete spinal cord lesions. Corticospinal neurons were excited by transcranial magnetic stimulation and the effects on single spinal motor neurons determined from peristimulus time histograms (PSTHs) of single tibialis anterior (TA) and soleus (SOL) motor units. In normal subjects magnetic stimulation produced a short latency facilitation of TA motor units but had little or no effect on SOL motor units. In the patients with spinal cord lesions magnetic stimulation also produced facilitation of TA but not SOL motor units; however, the mean latency of the TA facilitation was significantly longer (by about 14 ms) in the patient group. The F wave latencies were normal in all patients tested, suggesting that central rather than peripheral conduction was slowed. The duration of the period of increased firing probability (in TA motor units) was also significantly longer in the patients with spinal cord lesions. These changes may reflect the slowing of conduction and dispersal of conduction velocities in the corticospinal pathways as a consequence of the spinal cord lesion. No significant correlations were found between the delay of the TA facilitation and the clinical deficits in this group of patients. Images PMID:1312579

  13. Motor neurons and the generation of spinal motor neuron diversity

    PubMed Central

    Stifani, Nicolas

    2014-01-01

    Motor neurons (MNs) are neuronal cells located in the central nervous system (CNS) controlling a variety of downstream targets. This function infers the existence of MN subtypes matching the identity of the targets they innervate. To illustrate the mechanism involved in the generation of cellular diversity and the acquisition of specific identity, this review will focus on spinal MNs (SpMNs) that have been the core of significant work and discoveries during the last decades. SpMNs are responsible for the contraction of effector muscles in the periphery. Humans possess more than 500 different skeletal muscles capable to work in a precise time and space coordination to generate complex movements such as walking or grasping. To ensure such refined coordination, SpMNs must retain the identity of the muscle they innervate. Within the last two decades, scientists around the world have produced considerable efforts to elucidate several critical steps of SpMNs differentiation. During development, SpMNs emerge from dividing progenitor cells located in the medial portion of the ventral neural tube. MN identities are established by patterning cues working in cooperation with intrinsic sets of transcription factors. As the embryo develop, MNs further differentiate in a stepwise manner to form compact anatomical groups termed pools connecting to a unique muscle target. MN pools are not homogeneous and comprise subtypes according to the muscle fibers they innervate. This article aims to provide a global view of MN classification as well as an up-to-date review of the molecular mechanisms involved in the generation of SpMN diversity. Remaining conundrums will be discussed since a complete understanding of those mechanisms constitutes the foundation required for the elaboration of prospective MN regeneration therapies. PMID:25346659

  14. Iterative Role of Notch Signaling in Spinal Motor Neuron Diversification.

    PubMed

    Tan, G Christopher; Mazzoni, Esteban O; Wichterle, Hynek

    2016-07-26

    The motor neuron progenitor domain in the ventral spinal cord gives rise to multiple subtypes of motor neurons and glial cells. Here, we examine whether progenitors found in this domain are multipotent and which signals contribute to their cell-type-specific differentiation. Using an in vitro neural differentiation model, we demonstrate that motor neuron progenitor differentiation is iteratively controlled by Notch signaling. First, Notch controls the timing of motor neuron genesis by repressing Neurogenin 2 (Ngn2) and maintaining Olig2-positive progenitors in a proliferative state. Second, in an Ngn2-independent manner, Notch contributes to the specification of median versus hypaxial motor column identity and lateral versus medial divisional identity of limb-innervating motor neurons. Thus, motor neuron progenitors are multipotent, and their diversification is controlled by Notch signaling that iteratively increases cellular diversity arising from a single neural progenitor domain. PMID:27425621

  15. Motor imagery and cortico-spinal excitability: A review.

    PubMed

    Grosprêtre, Sidney; Ruffino, Célia; Lebon, Florent

    2016-01-01

    Motor imagery (MI) has received a lot of interest during the last decades as its chronic or acute use has demonstrated several effects on improving sport performances or skills. The development of neuroimagery techniques also helped further our understanding of the neural correlates underlying MI. While some authors showed that MI, motor execution and action observation activated similar motor cortical regions, transcranial magnetic stimulation (TMS) studies brought great insights on the role of the primary motor cortex and on the activation of the cortico-spinal pathway during MI. After defining MI and describing the TMS technique, a short report of MI activities only at cortical level is provided. Then, a main focus on the specificities of cortico-spinal modulations during MI, investigated by TMS, is provided. Finally, a brief overview of sub-cortical mechanisms gives importance to the activation of peripheral neural structures during MI. PMID:25830411

  16. Motor imagery muscle contraction strength influences spinal motor neuron excitability and cardiac sympathetic nerve activity

    PubMed Central

    Bunno, Yoshibumi; Suzuki, Toshiaki; Iwatsuki, Hiroyasu

    2015-01-01

    [Purpose] The aim of this study was to investigate the changes in spinal motor neuron excitability and autonomic nervous system activity during motor imagery of isometric thenar muscle activity at 10% and 50% maximal voluntary contraction (MVC). [Methods] The F-waves and low frequency/high frequency (LF/HF) ratio were recorded at rest, during motor imagery, and post-trial. For motor imagery trials, subjects were instructed to imagine thenar muscle activity at 10% and 50% MVC while holding the sensor of a pinch meter for 5 min. [Results] The F-waves and LF/HF ratio during motor imagery at 50% MVC were significantly increased compared with those at rest, whereas those during motor imagery at 10% MVC were not significantly different from those at rest. The relative values of the F/M amplitude ratio during motor imagery at 50% MVC were significantly higher than those at 10% MVC. The relative values of persistence and the LF/HF ratio during motor imagery were similar during motor imagery at the two muscle contraction strengths. [Conclusion] Motor imagery can increase the spinal motor neuron excitability and cardiac sympathetic nerve activity. Motor imagery at 50% MVC may be more effective than motor imagery at 10% MVC. PMID:26834354

  17. Experience-dependent development of spinal motor neurons

    NASA Technical Reports Server (NTRS)

    Inglis, F. M.; Zuckerman, K. E.; Kalb, R. G.; Walton, K. D. (Principal Investigator)

    2000-01-01

    Locomotor activity in many species undergoes pronounced alterations in early postnatal life, and environmental cues may be responsible for modifying this process. To determine how these events are reflected in the nervous system, we studied rats reared under two different conditions-the presence or absence of gravity-in which the performance of motor operations differed. We found a significant effect of rearing environment on the size and complexity of dendritic architecture of spinal motor neurons, particularly those that are likely to participate in postural control. These results provide evidence that neurons subserving motor function undergo activity-dependent maturation in early postnatal life in a manner analogous to sensory systems.

  18. Decreased spinal synaptic inputs to phrenic motor neurons elicit localized inactivity-induced phrenic motor facilitation

    PubMed Central

    Streeter, K.A.; Baker-Herman, T.L.

    2014-01-01

    Phrenic motor neurons receive rhythmic synaptic inputs throughout life. Since even brief disruption in phrenic neural activity is detrimental to life, on-going neural activity may play a key role in shaping phrenic motor output. To test the hypothesis that spinal mechanisms sense and respond to reduced phrenic activity, anesthetized, ventilated rats received micro-injections of procaine in the C2 ventrolateral funiculus (VLF) to transiently (~30 min) block axon conduction in bulbospinal axons from medullary respiratory neurons that innervate one phrenic motor pool; during procaine injections, contralateral phrenic neural activity was maintained. Once axon conduction resumed, a prolonged increase in phrenic burst amplitude was observed in the ipsilateral phrenic nerve, demonstrating inactivity-induced phrenic motor facilitation (iPMF). Inhibition of tumor necrosis factor alpha (TNFα) and atypical PKC (aPKC) activity in spinal segments containing the phrenic motor nucleus impaired ipsilateral iPMF, suggesting a key role for spinal TNFα and aPKC in iPMF following unilateral axon conduction block. A small phrenic burst amplitude facilitation was also observed contralateral to axon conduction block, indicating crossed spinal phrenic motor facilitation (csPMF). csPMF was independent of spinal TNFα and aPKC. Ipsilateral iPMF and csPMF following unilateral withdrawal of phrenic synaptic inputs were associated with proportional increases in phrenic responses to chemoreceptor stimulation (hypercapnia), suggesting iPMF and csPMF increase phrenic dynamic range. These data suggest that local, spinal mechanisms sense and respond to reduced synaptic inputs to phrenic motor neurons. We hypothesize that iPMF and csPMF may represent compensatory mechanisms that assure adequate motor output is maintained in a physiological system in which prolonged inactivity ends life. PMID:24681155

  19. Decreased spinal synaptic inputs to phrenic motor neurons elicit localized inactivity-induced phrenic motor facilitation.

    PubMed

    Streeter, K A; Baker-Herman, T L

    2014-06-01

    Phrenic motor neurons receive rhythmic synaptic inputs throughout life. Since even brief disruption in phrenic neural activity is detrimental to life, on-going neural activity may play a key role in shaping phrenic motor output. To test the hypothesis that spinal mechanisms sense and respond to reduced phrenic activity, anesthetized, ventilated rats received micro-injections of procaine in the C2 ventrolateral funiculus (VLF) to transiently (~30min) block axon conduction in bulbospinal axons from medullary respiratory neurons that innervate one phrenic motor pool; during procaine injections, contralateral phrenic neural activity was maintained. Once axon conduction resumed, a prolonged increase in phrenic burst amplitude was observed in the ipsilateral phrenic nerve, demonstrating inactivity-induced phrenic motor facilitation (iPMF). Inhibition of tumor necrosis factor alpha (TNFα) and atypical PKC (aPKC) activity in spinal segments containing the phrenic motor nucleus impaired ipsilateral iPMF, suggesting a key role for spinal TNFα and aPKC in iPMF following unilateral axon conduction block. A small phrenic burst amplitude facilitation was also observed contralateral to axon conduction block, indicating crossed spinal phrenic motor facilitation (csPMF). csPMF was independent of spinal TNFα and aPKC. Ipsilateral iPMF and csPMF following unilateral withdrawal of phrenic synaptic inputs were associated with proportional increases in phrenic responses to chemoreceptor stimulation (hypercapnia), suggesting iPMF and csPMF increase phrenic dynamic range. These data suggest that local, spinal mechanisms sense and respond to reduced synaptic inputs to phrenic motor neurons. We hypothesize that iPMF and csPMF may represent compensatory mechanisms that assure adequate motor output is maintained in a physiological system in which prolonged inactivity ends life. PMID:24681155

  20. Respiratory chain deficiency in aged spinal motor neurons☆

    PubMed Central

    Rygiel, Karolina A.; Grady, John P.; Turnbull, Doug M.

    2014-01-01

    Sarcopenia, muscle wasting, and strength decline with age, is an important cause of loss of mobility in the elderly individuals. The underlying mechanisms are uncertain but likely to involve defects of motor nerve, neuromuscular junction, and muscle. Loss of motor neurons with age and subsequent denervation of skeletal muscle has been recognized as one of the contributing factors. This study investigated aspects of mitochondrial biology in spinal motor neurons from elderly subjects. We found that protein components of complex I of mitochondrial respiratory chain were reduced or absent in a proportion of aged motor neurons–a phenomenon not observed in fetal tissue. Further investigation showed that complex I-deficient cells had reduced mitochondrial DNA content and smaller soma size. We propose that mitochondrial dysfunction in these motor neurons could lead to the cell loss and ultimately denervation of muscle fibers. PMID:24684792

  1. Profound motor blockade with epidural ropivacaine following spinal bupivacaine.

    PubMed

    Buggy, D J; Allsager, C M; Coley, S

    1999-09-01

    Ropivacaine, a relatively new amide local anaesthetic, reputedly produces less motor block than equivalent doses of bupivacaine, potentially combining high-quality analgesia with the ability to ambulate. We report two cases of prolonged, profound motor block with patient-controlled epidural analgesia using 0.1% ropivacaine, following spinal bupivacaine for Caesarean section. As there was no evidence of inadvertent intrathecal ropivacaine administration or of any neurological injury, we hypothesise that epidural ropivacaine may interact with intrathecal bupivacaine to prolong its effect. PMID:10460566

  2. Spinal motor neuron excitability during the cutaneous silent period.

    PubMed

    Leis, A A; Stĕtkárová, I; Berić, A; Stokić, D S

    1995-12-01

    The physiologic mechanisms generating the cutaneous silent period (CSP) remain uncertain. It is not known whether the CSP occurs because of inexcitability of the spinal motor neuron. We therefore, assessed excitability of the motor neuron during the CSP using F-wave responses. H-reflexes were also elicited during the CSP. Electrical stimulation to the fifth digit produced the CSP in the voluntarily contracting abductor pollicis brevis muscle (APB). Median nerve stimulation at the wrist elicited control F or H responses during isometric APB contraction (condition 1) and in resting muscle (condition 2). Control amplitudes were compared to those elicited in the midst of the CSP. In Condition 1, F-wave amplitudes and frequency during the CSP were unchanged compared with controls. However, F-waves were increased in amplitude and frequency during the CSP (P < 0.001) relative to responses elicited in resting muscle (condition 2). H-reflexes during the CSP were suppressed (P < 0.001) compared with controls elicited during contraction (condition 1), but facilitated relative to the resting state (condition 2) in which no H-reflexes were elicitable. We conclude that spinal motor neurons remain excitable to antidromic volleys at the same time that the corticospinal volley is inhibited to produce the CSP. Moreover, motor neuron excitability appears to be increased during the CSP compared to the relaxed state. PMID:7477071

  3. Anatomical changes in human motor cortex and motor pathways following complete thoracic spinal cord injury.

    PubMed

    Wrigley, P J; Gustin, S M; Macey, P M; Nash, P G; Gandevia, S C; Macefield, V G; Siddall, P J; Henderson, L A

    2009-01-01

    A debilitating consequence of complete spinal cord injury (SCI) is the loss of motor control. Although the goal of most SCI treatments is to re-establish neural connections, a potential complication in restoring motor function is that SCI may result in anatomical and functional changes in brain areas controlling motor output. Some animal investigations show cell death in the primary motor cortex following SCI, but similar anatomical changes in humans are not yet established. The aim of this investigation was to use voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) to determine if SCI in humans results in anatomical changes within motor cortices and descending motor pathways. Using VBM, we found significantly lower gray matter volume in complete SCI subjects compared with controls in the primary motor cortex, the medial prefrontal, and adjacent anterior cingulate cortices. DTI analysis revealed structural abnormalities in the same areas with reduced gray matter volume and in the superior cerebellar cortex. In addition, tractography revealed structural abnormalities in the corticospinal and corticopontine tracts of the SCI subjects. In conclusion, human subjects with complete SCI show structural changes in cortical motor regions and descending motor tracts, and these brain anatomical changes may limit motor recovery following SCI. PMID:18483004

  4. Spinal muscular atrophy patient-derived motor neurons exhibit hyperexcitability

    PubMed Central

    Liu, Huisheng; Lu, Jianfeng; Chen, Hong; Du, Zhongwei; Li, Xue-Jun; Zhang, Su-Chun

    2015-01-01

    Spinal muscular atrophy (SMA) presents severe muscle weakness with limited motor neuron (MN) loss at an early stage, suggesting potential functional alterations in MNs that contribute to SMA symptom presentation. Using SMA induced pluripotent stem cells (iPSCs), we found that SMA MNs displayed hyperexcitability with increased membrane input resistance, hyperpolarized threshold, and larger action potential amplitude, which was mimicked by knocking down full length survival motor neuron (SMN) in non-SMA MNs. We further discovered that SMA MNs exhibit enhanced sodium channel activities with increased current amplitude and facilitated recovery, which was corrected by restoration of SMN1 in SMA MNs. Together we propose that SMN reduction results in MN hyperexcitability and impaired neurotransmission, the latter of which exacerbate each other via a feedback loop, thus contributing to severe symptoms at an early stage of SMA. PMID:26190808

  5. Dynamic Characteristic Analysis of Spinal Motor Control Between 11- and 15-Year-Old Children.

    PubMed

    Chow, Daniel H; Lau, Newman M

    2016-07-01

    Spinal motor control can provide substantial insight for the causes of spinal musculoskeletal disorders. Its dynamic characteristics however, have not been fully investigated. The objective of this study is to explore the dynamic characteristics of spinal motor control via the fractional Brownian motion mathematical technique. Spinal curvatures and repositioning errors of different spinal regions in 64 children age 11- or 15-years old during upright stance were measured and compared for the effects of age and gender. With the application of the fractional Brownian motion analytical technique to the changes of spinal curvatures, distinct persistent movement behaviors could be determined, which could be interpreted physiologically as open-loop behaviors. Moreover, it was found that the spinal motor control of 15-year-old children was better than that of 11-year-old children with smaller repositioning error and less curvature variability as well as shorter response time and smaller curvature deformation. PMID:26314089

  6. Intraoperative monitoring of spinal cord function using motor evoked potentials via transcutaneous epidural electrode during anterior cervical spinal surgery.

    PubMed

    Gokaslan, Z L; Samudrala, S; Deletis, V; Wildrick, D M; Cooper, P R

    1997-08-01

    Because false-positive results are not infrequent when monitoring somatosensory evoked potentials during surgery, monitoring of motor evoked potentials (MEPs) has been proposed and successfully used during the removal of spinal cord tumors. However, this often requires direct visual placement of an epidural electrode after a laminectomy. We evaluated the use of MEPs, recorded via a transcutaneously placed epidural electrode, to monitor motor pathway functional integrity during surgery on the anterior cervical spine. Sixteen patients underwent anterior cervical vertebral decompression and fusion for cervical myelopathy and/or radiculopathy. Before surgery, an epidural monitoring electrode was placed transcutaneously at the midthoracic level and was used to record MEPs after transcranial cortical electrical stimulation. Electrode placement was successful in all patients but one, and satisfactory baseline spinal MEPs were obtained except for one patient who had cerebral palsy with significant motor dysfunction. Patients showed no significant changes in spinal MEPs during surgery, and all had baseline or better motor function postoperatively. None had complications from epidural electrode placement or electrical stimulation. We conclude that motor pathways can be monitored safely during anterior cervical spinal surgery using spinal MEPs recorded via a transcutaneously placed epidural electrode, that MEP preservation during surgery correlates with good postoperative motor function, and that cerebral palsy patients may possess too few functional motor fibers to allow MEP recording. PMID:9278914

  7. Serotonin Promotes Development and Regeneration of Spinal Motor Neurons in Zebrafish

    PubMed Central

    Barreiro-Iglesias, Antón; Mysiak, Karolina S.; Scott, Angela L.; Reimer, Michell M.; Yang (杨宇婕), Yujie; Becker, Catherina G.; Becker, Thomas

    2015-01-01

    Summary In contrast to mammals, zebrafish regenerate spinal motor neurons. During regeneration, developmental signals are re-deployed. Here, we show that, during development, diffuse serotonin promotes spinal motor neuron generation from pMN progenitor cells, leaving interneuron numbers unchanged. Pharmacological manipulations and receptor knockdown indicate that serotonin acts at least in part via 5-HT1A receptors. In adults, serotonin is supplied to the spinal cord mainly (90%) by descending axons from the brain. After a spinal lesion, serotonergic axons degenerate caudal to the lesion but sprout rostral to it. Toxin-mediated ablation of serotonergic axons also rostral to the lesion impaired regeneration of motor neurons only there. Conversely, intraperitoneal serotonin injections doubled numbers of new motor neurons and proliferating pMN-like progenitors caudal to the lesion. Regeneration of spinal-intrinsic serotonergic interneurons was unaltered by these manipulations. Hence, serotonin selectively promotes the development and adult regeneration of motor neurons in zebrafish. PMID:26565906

  8. Therapy induces widespread reorganization of motor cortex after complete spinal transection that supports motor recovery.

    PubMed

    Ganzer, Patrick D; Manohar, Anitha; Shumsky, Jed S; Moxon, Karen A

    2016-05-01

    Reorganization of the somatosensory system and its relationship to functional recovery after spinal cord injury (SCI) has been well studied. However, little is known about the impact of SCI on organization of the motor system. Recent studies suggest that step-training paradigms in combination with spinal stimulation, either electrically or through pharmacology, are more effective than step training alone at inducing recovery and that reorganization of descending corticospinal circuits is necessary. However, simpler, passive exercise combined with pharmacotherapy has also shown functional improvement after SCI and reorganization of, at least, the sensory cortex. In this study we assessed the effect of passive exercise and serotonergic (5-HT) pharmacological therapies on behavioral recovery and organization of the motor cortex. We compared the effects of passive hindlimb bike exercise to bike exercise combined with daily injections of 5-HT agonists in a rat model of complete mid-thoracic transection. 5-HT pharmacotherapy combined with bike exercise allowed the animals to achieve unassisted weight support in the open field. This combination of therapies also produced extensive expansion of the axial trunk motor cortex into the deafferented hindlimb motor cortex and, surprisingly, reorganization within the caudal and even the rostral forelimb motor cortex areas. The extent of the axial trunk expansion was correlated to improvement in behavioral recovery of hindlimbs during open field locomotion, including weight support. From a translational perspective, these data suggest a rationale for developing and optimizing cost-effective, non-invasive, pharmacological and passive exercise regimes to promote plasticity that supports restoration of movement after spinal cord injury. PMID:26826448

  9. Human spinal cord injury: motor unit properties and behaviour.

    PubMed

    Thomas, C K; Bakels, R; Klein, C S; Zijdewind, I

    2014-01-01

    Spinal cord injury (SCI) results in widespread variation in muscle function. Review of motor unit data shows that changes in the amount and balance of excitatory and inhibitory inputs after SCI alter management of motoneurons. Not only are units recruited up to higher than usual relative forces when SCI leaves few units under voluntary control, the force contribution from recruitment increases due to elevation of twitch/tetanic force ratios. Force gradation and precision are also coarser with reduced unit numbers. Maximal unit firing rates are low in hand muscles, limiting voluntary strength, but are low, normal or high in limb muscles. Unit firing rates during spasms can exceed voluntary rates, emphasizing that deficits in descending drive limit force production. SCI also changes muscle properties. Motor unit weakness and fatigability seem universal across muscles and species, increasing the muscle weakness that arises from paralysis of units, motoneuron death and sensory impairment. Motor axon conduction velocity decreases after human SCI. Muscle contractile speed is also reduced, which lowers the stimulation frequencies needed to grade force when paralysed muscles are activated with patterned electrical stimulation. This slowing does not necessarily occur in hind limb muscles after cord transection in cats and rats. The nature, duration and level of SCI underlie some of these species differences, as do variations in muscle function, daily usage, tract control and fibre-type composition. Exploring this diversity is important to promote recovery of the hand, bowel, bladder and locomotor function most wanted by people with SCI. PMID:23901835

  10. Excitability of spinal motor neurons during motor imagery of thenar muscle activity under maximal voluntary contractions of 50% and 100%

    PubMed Central

    Bunno, Yoshibumi; Onigata, Chieko; Suzuki, Toshiaki

    2015-01-01

    [Purpose] We often perform physical therapy using motor imagery of muscle contraction to improve motor function for healthy subjects and central nerve disorders. This study aimed to determine the differences in the excitability of spinal motor neurons during motor imagery of a muscle contraction at different contraction strengths. [Subjects] We recorded the F-wave in 15 healthy subjects. [Methods] In resting trial, the muscle was relaxed during F-wave recording. For motor imagery trial, subjects were instructed to imagine maximal voluntary contractions of 50% and 100% while holding the sensor of a pinch meter, and F-waves were recorded for each contraction. The F-wave was recorded immediately after motor imagery. [Results] Persistence and F/M amplitude ratio during motor imagery under maximal voluntary contractions of 50% and 100% were significantly higher than that at rest. In addition, the relative values of persistence, F/M amplitude ratio, and latency were similar during motor imagery under the two muscle contraction strengths. [Conclusion] Motor imagery under maximal voluntary contractions of 50% and 100% can increase the excitability of spinal motor neurons. Differences in the imagined muscle contraction strengths are not involved in changes in the excitability of spinal motor neurons. PMID:26504291

  11. High yield extraction of pure spinal motor neurons, astrocytes and microglia from single embryo and adult mouse spinal cord

    PubMed Central

    Beaudet, Marie-Josée; Yang, Qiurui; Cadau, Sébastien; Blais, Mathieu; Bellenfant, Sabrina; Gros-Louis, François; Berthod, François

    2015-01-01

    Extraction of mouse spinal motor neurons from transgenic mouse embryos recapitulating some aspects of neurodegenerative diseases like amyotrophic lateral sclerosis has met with limited success. Furthermore, extraction and long-term culture of adult mouse spinal motor neurons and glia remain also challenging. We present here a protocol designed to extract and purify high yields of motor neurons and glia from individual spinal cords collected on embryos and adult (5-month-old) normal or transgenic mice. This method is based on mild digestion of tissue followed by gradient density separation allowing to obtain two millions motor neurons over 92% pure from one E14.5 single embryo and more than 30,000 from an adult mouse. These cells can be cultured more than 14 days in vitro at a density of 100,000 cells/cm2 to maintain optimal viability. Functional astrocytes and microglia and small gamma motor neurons can be purified at the same time. This protocol will be a powerful and reliable method to obtain motor neurons and glia to better understand mechanisms underlying spinal cord diseases. PMID:26577180

  12. Body machine interface: remapping motor skills after spinal cord injury.

    PubMed

    Casadio, M; Pressman, A; Acosta, S; Danzinger, Z; Fishbach, A; Mussa-Ivaldi, F A; Muir, K; Tseng, H; Chen, D

    2011-01-01

    The goal of a body-machine interface (BMI) is to map the residual motor skills of the users into efficient patterns of control. The interface is subject to two processes of learning: while users practice controlling the assistive device, the interface modifies itself based on the user's residual abilities and preferences. In this study, we combined virtual reality and movement capture technologies to investigate the reorganization of movements that occurs when individuals with spinal cord injury (SCI) are allowed to use a broad spectrum of body motions to perform different tasks. Subjects, over multiple sessions, used their upper body movements to engage in exercises that required different operational functions such as controlling a keyboard for playing a videogame, driving a simulated wheelchair in a virtual reality (VR) environment, and piloting a cursor on a screen for reaching targets. In particular, we investigated the possibility of reducing the dimensionality of the control signals by finding repeatable and stable correlations of movement signals, established both by the presence of biomechanical constraints and by learned patterns of coordination. The outcomes of these investigations will provide guidance for further studies of efficient remapping of motor coordination for the control of assistive devices and are a basis for a new training paradigm in which the burden of learning is significantly removed from the impaired subjects and shifted to the devices. PMID:22275588

  13. 41 CFR 102-34.320 - What Government-issued charge cards may I use to purchase fuel and motor vehicle related services?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Motor Vehicle Fueling § 102-34... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What...

  14. 41 CFR 102-34.320 - What Government-issued charge cards may I use to purchase fuel and motor vehicle related services?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Motor Vehicle Fueling § 102-34... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What...

  15. 41 CFR 102-34.320 - What Government-issued charge cards may I use to purchase fuel and motor vehicle related services?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Motor Vehicle Fueling § 102-34... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What...

  16. Targeted, activity-dependent spinal stimulation produces long-lasting motor recovery in chronic cervical spinal cord injury

    PubMed Central

    McPherson, Jacob G.; Miller, Robert R.; Perlmutter, Steve I.

    2015-01-01

    Use-dependent movement therapies can lead to partial recovery of motor function after neurological injury. We attempted to improve recovery by developing a neuroprosthetic intervention that enhances movement therapy by directing spike timing-dependent plasticity in spared motor pathways. Using a recurrent neural–computer interface in rats with a cervical contusion of the spinal cord, we synchronized intraspinal microstimulation below the injury with the arrival of functionally related volitional motor commands signaled by muscle activity in the impaired forelimb. Stimulation was delivered during physical retraining of a forelimb behavior and throughout the day for 3 mo. Rats receiving this targeted, activity-dependent spinal stimulation (TADSS) exhibited markedly enhanced recovery compared with animals receiving targeted but open-loop spinal stimulation and rats receiving physical retraining alone. On a forelimb reach and grasp task, TADSS animals recovered 63% of their preinjury ability, more than two times the performance level achieved by the other therapy groups. Therapeutic gains were maintained for 3 additional wk without stimulation. The results suggest that activity-dependent spinal stimulation can induce neural plasticity that improves behavioral recovery after spinal cord injury. PMID:26371306

  17. Targeted, activity-dependent spinal stimulation produces long-lasting motor recovery in chronic cervical spinal cord injury.

    PubMed

    McPherson, Jacob G; Miller, Robert R; Perlmutter, Steve I

    2015-09-29

    Use-dependent movement therapies can lead to partial recovery of motor function after neurological injury. We attempted to improve recovery by developing a neuroprosthetic intervention that enhances movement therapy by directing spike timing-dependent plasticity in spared motor pathways. Using a recurrent neural-computer interface in rats with a cervical contusion of the spinal cord, we synchronized intraspinal microstimulation below the injury with the arrival of functionally related volitional motor commands signaled by muscle activity in the impaired forelimb. Stimulation was delivered during physical retraining of a forelimb behavior and throughout the day for 3 mo. Rats receiving this targeted, activity-dependent spinal stimulation (TADSS) exhibited markedly enhanced recovery compared with animals receiving targeted but open-loop spinal stimulation and rats receiving physical retraining alone. On a forelimb reach and grasp task, TADSS animals recovered 63% of their preinjury ability, more than two times the performance level achieved by the other therapy groups. Therapeutic gains were maintained for 3 additional wk without stimulation. The results suggest that activity-dependent spinal stimulation can induce neural plasticity that improves behavioral recovery after spinal cord injury. PMID:26371306

  18. Spinal motor outputs during step-to-step transitions of diverse human gaits

    PubMed Central

    La Scaleia, Valentina; Ivanenko, Yuri P.; Zelik, Karl E.; Lacquaniti, Francesco

    2014-01-01

    Aspects of human motor control can be inferred from the coordination of muscles during movement. For instance, by combining multimuscle electromyographic (EMG) recordings with human neuroanatomy, it is possible to estimate alpha-motoneuron (MN) pool activations along the spinal cord. It has previously been shown that the spinal motor output fluctuates with the body's center-of-mass motion, with bursts of activity around foot-strike and foot lift-off during walking. However, it is not known whether these MN bursts are generalizable to other ambulation tasks, nor is it clear if the spatial locus of the activity (along the rostrocaudal axis of the spinal cord) is fixed or variable. Here we sought to address these questions by investigating the spatiotemporal characteristics of the spinal motor output during various tasks: walking forward, backward, tiptoe and uphill. We reconstructed spinal maps from 26 leg muscle EMGs, including some intrinsic foot muscles. We discovered that the various walking tasks shared qualitative similarities in their temporal spinal activation profiles, exhibiting peaks around foot-strike and foot-lift. However, we also observed differences in the segmental level and intensity of spinal activations, particularly following foot-strike. For example, forward level-ground walking exhibited a mean motor output roughly 2 times lower than the other gaits. Finally, we found that the reconstruction of the spinal motor output from multimuscle EMG recordings was relatively insensitive to the subset of muscles analyzed. In summary, our results suggested temporal similarities, but spatial differences in the segmental spinal motor outputs during the step-to-step transitions of disparate walking behaviors. PMID:24860484

  19. Intrathecal amantadine for prolonged spinal blockade of sensory and motor functions in rats.

    PubMed

    Tzeng, Jann-Inn; Kan, Chung-Dann; Wang, Jieh-Neng; Wang, Jhi-Joung; Lin, Heng-Teng; Hung, Ching-Hsia

    2016-08-01

    We aimed to compare the hypothesized local anesthetic action of amantadine (1-adamantanamine) with that of the known local anesthetic mepivacaine. Motor, proprioceptive, and nociceptive functions were evaluated in rats after intrathecal administration. Amantadine elicited spinal anesthesia in a dose-related fashion and produced a better sensory-selective action over motor blockade (P < 0.01). On the 50% effective dose (ED50 ) basis, the rank of potency on spinal motor, proprioceptive, and nociceptive block was mepivacaine > amantadine (P < 0.01 for the differences). Amantadine (63.5 μmol/kg) and mepivacaine (7.1 μmol/kg) produced complete spinal block of motor function, proprioception, and nociception. On an equipotent basis (ED25 , ED50 , and ED75 ), the duration of amantadine was longer (P < 0.01) than that of mepivacaine on spinal motor, proprioceptive, and nociceptive block. Our preclinical data demonstrated that amantadine was less potent than mepivacaine at producing spinal anesthesia. The spinal block duration produced by amantadine was greater than that produced by mepivacaine. Both amantadine and mepivacaine produced a markedly nociceptive-specific blockade. PMID:27011292

  20. Distinct roles for secreted semaphorin signaling in spinal motor axon guidance.

    PubMed

    Huber, Andrea B; Kania, Artur; Tran, Tracy S; Gu, Chenghua; De Marco Garcia, Natalia; Lieberam, Ivo; Johnson, Dontais; Jessell, Thomas M; Ginty, David D; Kolodkin, Alex L

    2005-12-22

    Neuropilins, secreted semaphorin coreceptors, are expressed in discrete populations of spinal motor neurons, suggesting they provide critical guidance information for the establishment of functional motor circuitry. We show here that motor axon growth and guidance are impaired in the absence of Sema3A-Npn-1 signaling. Motor axons enter the limb precociously, showing that Sema3A controls the timing of motor axon in-growth to the limb. Lateral motor column (LMC) motor axons within spinal nerves are defasciculated as they grow toward the limb and converge in the plexus region. Medial and lateral LMC motor axons show dorso-ventral guidance defects in the forelimb. In contrast, Sema3F-Npn-2 signaling guides the axons of a medial subset of LMC neurons to the ventral limb, but plays no major role in regulating their fasciculation. Thus, Sema3A-Npn-1 and Sema3F-Npn-2 signaling control distinct steps of motor axon growth and guidance during the formation of spinal motor connections. PMID:16364899

  1. Targeting Motor End Plates for Delivery of Adenoviruses: An Approach to Maximize Uptake and Transduction of Spinal Cord Motor Neurons.

    PubMed

    Tosolini, Andrew Paul; Morris, Renée

    2016-01-01

    Gene therapy can take advantage of the skeletal muscles/motor neurons anatomical relationship to restrict gene expression to the spinal cord ventral horn. Furthermore, recombinant adenoviruses are attractive viral-vectors as they permit spatial and temporal modulation of transgene expression. In the literature, however, several inconsistencies exist with regard to the intramuscular delivery parameters of adenoviruses. The present study is an evaluation of the optimal injection sites on skeletal muscle, time course of expression and mice's age for maximum transgene expression in motor neurons. Targeting motor end plates yielded a 2.5-fold increase in the number of transduced motor neurons compared to injections performed away from this region. Peak adenoviral transgene expression in motor neurons was detected after seven days. Further, greater numbers of transduced motor neurons were found in juvenile (3-7 week old) mice as compared with adults (8+ weeks old). Adenoviral injections produced robust transgene expression in motor neurons and skeletal myofibres. In addition, dendrites of transduced motor neurons were shown to extend well into the white matter where the descending motor pathways are located. These results also provide evidence that intramuscular delivery of adenovirus can be a suitable gene therapy approach to treat spinal cord injury. PMID:27619631

  2. Assessment of corticospinal function in spinal cord injury using transcranial motor cortex stimulation: a review.

    PubMed

    McKay, W B; Stokic, D S; Dimitrijevic, M R

    1997-08-01

    Other than clinical examination, few methods exist for assessing the functional condition of descending long tracts of the spinal cord in humans. This review covers neurophysiological examination of the corticospinal system using transcranial electrical and magnetic motor cortex stimulation. The neurophysiological basis for the motor evoked potentials (MEPs) and the differences between the two methods are discussed followed by a review of their use in individuals with spinal cord injury (SCI). Transcranial motor cortex stimulation is used to monitor descending spinal cord tract condition during spinal surgeries and could be useful for assessing central nervous system trauma, especially in the unconscious multitrauma patient. In the chronic phase of SCI, recordings of MEPs have enabled the estimation of central conduction times that relate to the condition of axons passing through the injured segment of the spinal cord. They were found to correlate well with clinical examination scores but as predictors of outcome, the reports have been mixed. The use of transcranial motor cortex stimulation to modify segmental reflexes and in combination with volitional attempts have also provided evidence of conduction across the lesion in paralyzed SCI subjects. However, MEPs can be absent in some SCI individuals who may be able to volitionally activate muscles below the level of the spinal cord lesion. Such findings are useful in elucidating the neural mechanisms underlying the performance of a volitional movement and may serve to guide and monitor the effects of future treatments for paralysis in SCI and other neurological disorders. PMID:9300564

  3. Simultaneous Brain–Cervical Cord fMRI Reveals Intrinsic Spinal Cord Plasticity during Motor Sequence Learning

    PubMed Central

    Cohen-Adad, Julien; Marchand-Pauvert, Veronique; Benali, Habib; Doyon, Julien

    2015-01-01

    The spinal cord participates in the execution of skilled movements by translating high-level cerebral motor representations into musculotopic commands. Yet, the extent to which motor skill acquisition relies on intrinsic spinal cord processes remains unknown. To date, attempts to address this question were limited by difficulties in separating spinal local effects from supraspinal influences through traditional electrophysiological and neuroimaging methods. Here, for the first time, we provide evidence for local learning-induced plasticity in intact human spinal cord through simultaneous functional magnetic resonance imaging of the brain and spinal cord during motor sequence learning. Specifically, we show learning-related modulation of activity in the C6–C8 spinal region, which is independent from that of related supraspinal sensorimotor structures. Moreover, a brain–spinal cord functional connectivity analysis demonstrates that the initial linear relationship between the spinal cord and sensorimotor cortex gradually fades away over the course of motor sequence learning, while the connectivity between spinal activity and cerebellum gains strength. These data suggest that the spinal cord not only constitutes an active functional component of the human motor learning network but also contributes distinctively from the brain to the learning process. The present findings open new avenues for rehabilitation of patients with spinal cord injuries, as they demonstrate that this part of the central nervous system is much more plastic than assumed before. Yet, the neurophysiological mechanisms underlying this intrinsic functional plasticity in the spinal cord warrant further investigations. PMID:26125597

  4. The organization of spinal motor neurons in a monotreme is consistent with a six-region schema of the mammalian spinal cord.

    PubMed

    Mitchelle, Amer; Watson, Charles

    2016-09-01

    The motor neurons in the spinal cord of an echidna (Tachyglossus aculeatus) have been mapped in Nissl-stained sections from spinal cord segments defined by spinal nerve anatomy. A medial motor column of motor neurons is found at all spinal cord levels, and a hypaxial column is found at most levels. The organization of the motor neuron clusters in the lateral motor column of the brachial (C5 to T3) and crural (L2 to S3) limb enlargements is very similar to the pattern previously revealed by retrograde tracing in placental mammals, and the motor neuron clusters have been tentatively identified according to the muscle groups they are likely to supply. The region separating the two limb enlargements (T4 to L1) contains preganglionic motor neurons that appear to represent the spinal sympathetic outflow. Immediately caudal to the crural limb enlargement is a short column of preganglionic motor neurons (S3 to S4), which it is believed represents the pelvic parasympathetic outflow. The rostral and caudal ends of the spinal cord contain neither a lateral motor column nor a preganglionic column. Branchial motor neurons (which are believed to supply the sternomastoid and trapezius muscles) are present at the lateral margin of the ventral horn in rostral cervical segments (C2-C4). These same segments contain the phrenic nucleus, which belongs to the hypaxial column. The presence or absence of the main spinal motor neuron columns in the different regions echidna spinal cord (and also in that of other amniote vertebrates) provides a basis for dividing the spinal cord into six main regions - prebrachial, brachial, postbrachial, crural, postcrural and caudal. The considerable biological and functional significance of this subdivision pattern is supported by recent studies on spinal cord hox gene expression in chicks and mice. On the other hand, the familiar 'segments' of the spinal cord are defined only by the anatomy of adjacent vertebrae, and are not demarcated by intrinsic gene

  5. Spatiotemporal neuromodulation therapies engaging muscle synergies improve motor control after spinal cord injury.

    PubMed

    Wenger, Nikolaus; Moraud, Eduardo Martin; Gandar, Jerome; Musienko, Pavel; Capogrosso, Marco; Baud, Laetitia; Le Goff, Camille G; Barraud, Quentin; Pavlova, Natalia; Dominici, Nadia; Minev, Ivan R; Asboth, Leonie; Hirsch, Arthur; Duis, Simone; Kreider, Julie; Mortera, Andrea; Haverbeck, Oliver; Kraus, Silvio; Schmitz, Felix; DiGiovanna, Jack; van den Brand, Rubia; Bloch, Jocelyne; Detemple, Peter; Lacour, Stéphanie P; Bézard, Erwan; Micera, Silvestro; Courtine, Grégoire

    2016-02-01

    Electrical neuromodulation of lumbar segments improves motor control after spinal cord injury in animal models and humans. However, the physiological principles underlying the effect of this intervention remain poorly understood, which has limited the therapeutic approach to continuous stimulation applied to restricted spinal cord locations. Here we developed stimulation protocols that reproduce the natural dynamics of motoneuron activation during locomotion. For this, we computed the spatiotemporal activation pattern of muscle synergies during locomotion in healthy rats. Computer simulations identified optimal electrode locations to target each synergy through the recruitment of proprioceptive feedback circuits. This framework steered the design of spatially selective spinal implants and real-time control software that modulate extensor and flexor synergies with precise temporal resolution. Spatiotemporal neuromodulation therapies improved gait quality, weight-bearing capacity, endurance and skilled locomotion in several rodent models of spinal cord injury. These new concepts are directly translatable to strategies to improve motor control in humans. PMID:26779815

  6. Respiratory Motor Control Disrupted by Spinal Cord Injury: Mechanisms, Evaluation, and Restoration

    PubMed Central

    Terson de Paleville, Daniela G. L.; McKay, William B.; Folz, Rodney J.

    2012-01-01

    Pulmonary complications associated with persistent respiratory muscle weakness, paralysis, and spasticity are among the most important problems faced by patients with spinal cord injury when lack of muscle strength and disorganization of reciprocal respiratory muscle control lead to breathing insufficiency. This review describes the mechanisms of the respiratory motor control and its change in individuals with spinal cord injury, methods by which respiratory function is measured, and rehabilitative treatment used to restore respiratory function in those who have experienced such injury. PMID:22408690

  7. A Review on Locomotor Training after Spinal Cord Injury: Reorganization of Spinal Neuronal Circuits and Recovery of Motor Function

    PubMed Central

    2016-01-01

    Locomotor training is a classic rehabilitation approach utilized with the aim of improving sensorimotor function and walking ability in people with spinal cord injury (SCI). Recent studies have provided strong evidence that locomotor training of persons with clinically complete, motor complete, or motor incomplete SCI induces functional reorganization of spinal neuronal networks at multisegmental levels at rest and during assisted stepping. This neuronal reorganization coincides with improvements in motor function and decreased muscle cocontractions. In this review, we will discuss the manner in which spinal neuronal circuits are impaired and the evidence surrounding plasticity of neuronal activity after locomotor training in people with SCI. We conclude that we need to better understand the physiological changes underlying locomotor training, use physiological signals to probe recovery over the course of training, and utilize established and contemporary interventions simultaneously in larger scale research studies. Furthermore, the focus of our research questions needs to change from feasibility and efficacy to the following: what are the physiological mechanisms that make it work and for whom? The aforementioned will enable the scientific and clinical community to develop more effective rehabilitation protocols maximizing sensorimotor function recovery in people with SCI. PMID:27293901

  8. A Review on Locomotor Training after Spinal Cord Injury: Reorganization of Spinal Neuronal Circuits and Recovery of Motor Function.

    PubMed

    Smith, Andrew C; Knikou, Maria

    2016-01-01

    Locomotor training is a classic rehabilitation approach utilized with the aim of improving sensorimotor function and walking ability in people with spinal cord injury (SCI). Recent studies have provided strong evidence that locomotor training of persons with clinically complete, motor complete, or motor incomplete SCI induces functional reorganization of spinal neuronal networks at multisegmental levels at rest and during assisted stepping. This neuronal reorganization coincides with improvements in motor function and decreased muscle cocontractions. In this review, we will discuss the manner in which spinal neuronal circuits are impaired and the evidence surrounding plasticity of neuronal activity after locomotor training in people with SCI. We conclude that we need to better understand the physiological changes underlying locomotor training, use physiological signals to probe recovery over the course of training, and utilize established and contemporary interventions simultaneously in larger scale research studies. Furthermore, the focus of our research questions needs to change from feasibility and efficacy to the following: what are the physiological mechanisms that make it work and for whom? The aforementioned will enable the scientific and clinical community to develop more effective rehabilitation protocols maximizing sensorimotor function recovery in people with SCI. PMID:27293901

  9. Circuits for grasping: spinal dI3 interneurons mediate cutaneous control of motor behavior.

    PubMed

    Bui, Tuan V; Akay, Turgay; Loubani, Osama; Hnasko, Thomas S; Jessell, Thomas M; Brownstone, Robert M

    2013-04-10

    Accurate motor performance depends on the integration in spinal microcircuits of sensory feedback information. Hand grasp is a skilled motor behavior known to require cutaneous sensory feedback, but spinal microcircuits that process and relay this feedback to the motor system have not been defined. We sought to define classes of spinal interneurons involved in the cutaneous control of hand grasp in mice and to show that dI3 interneurons, a class of dorsal spinal interneurons marked by the expression of Isl1, convey input from low threshold cutaneous afferents to motoneurons. Mice in which the output of dI3 interneurons has been inactivated exhibit deficits in motor tasks that rely on cutaneous afferent input. Most strikingly, the ability to maintain grip strength in response to increasing load is lost following genetic silencing of dI3 interneuron output. Thus, spinal microcircuits that integrate cutaneous feedback crucial for paw grip rely on the intermediary role of dI3 interneurons. PMID:23583114

  10. Memantine elicits spinal blockades of motor function, proprioception, and nociception in rats.

    PubMed

    Chen, Yu-Wen; Chiu, Chong-Chi; Liu, Kuo-Sheng; Hung, Ching-Hsia; Wang, Jhi-Joung

    2015-12-01

    Although memantine blocks sodium currents and produces local skin anesthesia, spinal anesthesia with memantine is unknown. The purpose of the study was to evaluate the local anesthetic effect of memantine in spinal anesthesia and its comparison with a widely used local anesthetic lidocaine. After intrathecally injecting the rats with five doses of each drug, the dose-response curves of memantine and lidocaine were constructed. The potencies of the drugs and durations of spinal anesthetic effects on motor function, proprioception, and nociception were compared with those of lidocaine. We showed that memantine produced dose-dependent spinal blockades in motor function, proprioception, and nociception. On a 50% effective dose (ED50 ) basis, the rank of potency was lidocaine greater than memantine (P < 0.05 for the differences). At the equipotent doses (ED25 , ED50 , ED75 ), the block duration produced by memantine was longer than that produced by lidocaine (P < 0.05 for the differences). Memantine, but not lidocaine, displayed more sensory/nociceptive block than motor block. The preclinical data demonstrated that memantine is less potent than lidocaine, whereas memantine produces longer duration of spinal anesthesia than lidocaine. Memantine shows a more sensory-selective action over motor blockade. PMID:26301611

  11. Intermittent Hypoxia-Induced Spinal Inflammation Impairs Respiratory Motor Plasticity by a Spinal p38 MAP Kinase-Dependent Mechanism

    PubMed Central

    Huxtable, Adrianne G.; Smith, Stephanie M.C.; Peterson, Timothy J.; Watters, Jyoti J.

    2015-01-01

    Inflammation is characteristic of most clinical disorders that challenge the neural control of breathing. Since inflammation modulates neuroplasticity, we studied the impact of inflammation caused by prolonged intermittent hypoxia on an important form of respiratory plasticity, acute intermittent hypoxia (three, 5 min hypoxic episodes, 5 min normoxic intervals) induced phrenic long-term facilitation (pLTF). Because chronic intermittent hypoxia elicits neuroinflammation and pLTF is undermined by lipopolysaccharide-induced systemic inflammation, we hypothesized that one night of intermittent hypoxia (IH-1) elicits spinal inflammation, thereby impairing pLTF by a p38 MAP kinase-dependent mechanism. pLTF and spinal inflammation were assessed in anesthetized rats pretreated with IH-1 (2 min hypoxia, 2 min normoxia; 8 h) or sham normoxia and allowed 16 h for recovery. IH-1 (1) transiently increased IL-6 (1.5 ± 0.2-fold; p = 0.02) and inducible nitric oxide synthase (iNOS) (2.4 ± 0.4-fold; p = 0.01) mRNA in cervical spinal homogenates, (2) elicited a sustained increase in IL-1β mRNA (2.4 ± 0.2-fold; p < 0.001) in isolated cervical spinal microglia, and (3) abolished pLTF (−1 ± 5% vs 56 ± 10% in controls; p < 0.001). pLTF was restored after IH-1 by systemic NSAID administration (ketoprofen; 55 ± 9%; p < 0.001) or spinal p38 MAP kinase inhibition (58 ± 2%; p < 0.001). IH-1 increased phosphorylated (activated) p38 MAP kinase immunofluorescence in identified phrenic motoneurons and adjacent microglia. In conclusion, IH-1 elicits spinal inflammation and impairs pLTF by a spinal p38 MAP kinase-dependent mechanism. By targeting inflammation, we may develop strategies to manipulate respiratory motor plasticity for therapeutic advantage when the respiratory control system is compromised (e.g., sleep apnea, apnea of prematurity, spinal injury, or motor neuron disease). PMID:25926462

  12. Spinal motor neurons are regenerated after mechanical lesion and genetic ablation in larval zebrafish

    PubMed Central

    Ohnmacht, Jochen; Yang, Yujie; Maurer, Gianna W.; Barreiro-Iglesias, Antón; Tsarouchas, Themistoklis M.; Wehner, Daniel; Sieger, Dirk; Becker, Catherina G.; Becker, Thomas

    2016-01-01

    ABSTRACT In adult zebrafish, relatively quiescent progenitor cells show lesion-induced generation of motor neurons. Developmental motor neuron generation from the spinal motor neuron progenitor domain (pMN) sharply declines at 48 hours post-fertilisation (hpf). After that, mostly oligodendrocytes are generated from the same domain. We demonstrate here that within 48 h of a spinal lesion or specific genetic ablation of motor neurons at 72 hpf, the pMN domain reverts to motor neuron generation at the expense of oligodendrogenesis. By contrast, generation of dorsal Pax2-positive interneurons was not altered. Larval motor neuron regeneration can be boosted by dopaminergic drugs, similar to adult regeneration. We use larval lesions to show that pharmacological suppression of the cellular response of the innate immune system inhibits motor neuron regeneration. Hence, we have established a rapid larval regeneration paradigm. Either mechanical lesions or motor neuron ablation is sufficient to reveal a high degree of developmental flexibility of pMN progenitor cells. In addition, we show an important influence of the immune system on motor neuron regeneration from these progenitor cells. PMID:26965370

  13. Spinal motor neurons are regenerated after mechanical lesion and genetic ablation in larval zebrafish.

    PubMed

    Ohnmacht, Jochen; Yang, Yujie; Maurer, Gianna W; Barreiro-Iglesias, Antón; Tsarouchas, Themistoklis M; Wehner, Daniel; Sieger, Dirk; Becker, Catherina G; Becker, Thomas

    2016-05-01

    In adult zebrafish, relatively quiescent progenitor cells show lesion-induced generation of motor neurons. Developmental motor neuron generation from the spinal motor neuron progenitor domain (pMN) sharply declines at 48 hours post-fertilisation (hpf). After that, mostly oligodendrocytes are generated from the same domain. We demonstrate here that within 48 h of a spinal lesion or specific genetic ablation of motor neurons at 72 hpf, the pMN domain reverts to motor neuron generation at the expense of oligodendrogenesis. By contrast, generation of dorsal Pax2-positive interneurons was not altered. Larval motor neuron regeneration can be boosted by dopaminergic drugs, similar to adult regeneration. We use larval lesions to show that pharmacological suppression of the cellular response of the innate immune system inhibits motor neuron regeneration. Hence, we have established a rapid larval regeneration paradigm. Either mechanical lesions or motor neuron ablation is sufficient to reveal a high degree of developmental flexibility of pMN progenitor cells. In addition, we show an important influence of the immune system on motor neuron regeneration from these progenitor cells. PMID:26965370

  14. Competition with Primary Sensory Afferents Drives Remodeling of Corticospinal Axons in Mature Spinal Motor Circuits

    PubMed Central

    Jiang, Yu-Qiu; Zaaimi, Boubker

    2016-01-01

    Injury to the mature motor system drives significant spontaneous axonal sprouting instead of axon regeneration. Knowing the circuit-level determinants of axonal sprouting is important for repairing motor circuits after injury to achieve functional rehabilitation. Competitive interactions are known to shape corticospinal tract axon outgrowth and withdrawal during development. Whether and how competition contributes to reorganization of mature spinal motor circuits is unclear. To study this question, we examined plastic changes in corticospinal axons in response to two complementary proprioceptive afferent manipulations: (1) enhancing proprioceptive afferents activity by electrical stimulation; or (2) diminishing their input by dorsal rootlet rhizotomy. Experiments were conducted in adult rats. Electrical stimulation produced proprioceptive afferent sprouting that was accompanied by significant corticospinal axon withdrawal and a decrease in corticospinal connections on cholinergic interneurons in the medial intermediate zone and C boutons on motoneurons. In contrast, dorsal rootlet rhizotomy led to a significant increase in corticospinal connections, including those on cholinergic interneurons; C bouton density increased correspondingly. Motor cortex-evoked muscle potentials showed parallel changes to those of corticospinal axons, suggesting that reciprocal corticospinal axon changes are functional. Using the two complementary models, we showed that competitive interactions between proprioceptive and corticospinal axons are an important determinant in the organization of mature corticospinal axons and spinal motor circuits. The activity- and synaptic space-dependent properties of the competition enables prediction of the remodeling of spared corticospinal connection and spinal motor circuits after injury and informs the target-specific control of corticospinal connections to promote functional recovery. SIGNIFICANCE STATEMENT Neuroplasticity is limited in maturity

  15. Longitudinal Evaluation of Residual Cortical and Subcortical Motor Evoked Potentials in Spinal Cord Injured Rats.

    PubMed

    Redondo-Castro, Elena; Navarro, Xavier; García-Alías, Guillermo

    2016-05-15

    We have applied transcranial electrical stimulation to rats with spinal cord injury and selectively tested the motor evoked potentials (MEPs) conveyed by descending motor pathways with cortical and subcortical origin. MEPs were elicited by electrical stimulation to the brain and recorded on the tibialis anterior muscles. Stimulation parameters were characterized and changes in MEP responses tested in uninjured rats, in rats with mild or moderate contusion, and in animals with complete transection of the spinal cord. All injuries were located at the T8 vertebral level. Two peaks, termed N1 and N2, were obtained when changing from single pulse stimulation to trains of 9 pulses at 9 Hz. Selective injuries to the brain or spinal cord funiculi evidenced the subcortical origin of N1 and the cortical origin of N2. Animals with mild contusion showed small behavioral deficits and abolished N1 but maintained small amplitude N2 MEPs. Substantial motor deficits developed in rats with moderate contusion, and these rats had completely eliminated N1 and N2 MEPs. Animals with complete cord transection had abolished N1 and N2 and showed severe impairment of locomotion. The results indicate the reliability of MEP testing to longitudinally evaluate over time the degree of impairment of cortical and subcortical spinal pathways after spinal cord injuries of different severity. PMID:26560177

  16. Optical stimulation for restoration of motor function following spinal cord injury

    PubMed Central

    Mallory, Grant W.; Grahn, Peter J.; Hachmann, Jan T.; Lujan, J. Luis; Lee, Kendall H.

    2015-01-01

    Spinal cord injury (SCI) can be defined as a loss of communication between the brain and the body due to disrupted pathways within the spinal cord. While many promising molecular strategies have emerged to reduce secondary injury and promote axonal regrowth, there is still no effective cure and recovery of function remains limited. Functional electrical stimulation (FES) represents a strategy developed to restore motor function without the need for regenerating severed spinal pathways. Despite its technological success, however, FES has not been widely integrated into the lives of spinal cord injury survivors. In this review, we briefly discuss the limitations of existing FES technologies. Additionally, we discuss how optogenetics, a rapidly evolving technique used primarily to investigate select neuronal populations within the brain, may eventually be used to replace FES as a form of therapy for functional restoration following SCI. PMID:25659246

  17. Glycoconjugates Distribution during Developing Mouse Spinal Cord Motor Organizers

    PubMed Central

    Vojoudi, Elham; Ebrahimi, Vahid; Ebrahimzadeh-Bideskan, Alireza; Fazel, Alireza

    2015-01-01

    Background: The aim of this research was to study the distribution and changes of glycoconjugates particularly their terminal sugars by using lectin histochemistry during mouse spinal cord development. Methods: Formalin-fixed sections of mouse embryo (10-16 fetal days) were processed for lectin histochemical method. In this study, two groups of horseradish peroxidase-labeled specific lectins were used: N-acetylgalactosamine, including Dolichos biflorus, Wisteria floribunda agglutinin (WFA), Vicia villosa, Glycine max as well as focuse-binding lectins, including tetragonolobus, Ulex europaeus, and Orange peel fungus (OFA). All sections were counterstained with alcian blue (pH 2.5). Results: Our results showed that only WFA and OFA reacted strongly with the floor plate cells from early to late embryonic period of developing spinal cord. The strongest reactions were related to the 14, 15, and 16 days of tissue sections incubated with OFA and WFA lectins. Conclusion: The present study demonstrated that cellular and molecular differentiation of the spinal cord organizers is a wholly regulated process, and α-L-fucose, α-D-GalNAc, and α/β-D-GalNAc terminal sugars play a significant role during the prenatal spinal cord development. PMID:25605492

  18. Immediate plasticity in the motor pathways after spinal cord hemisection: implications for transcranial magnetic motor-evoked potentials.

    PubMed

    Fujiki, Minoru; Kobayashi, Hidenori; Inoue, Ryo; Ishii, Keisuke

    2004-06-01

    The present study evaluates motor functional recovery after C2 spinal cord hemisection with or without contralateral brachial root transection, which causes a condition that is similar to the crossed phrenic phenomenon on rats. Descending motor pathways, including the reticulospinal extrapyramidal tract and corticospinal pyramidal tracts, were evaluated by transcranial magnetic motor-evoked potentials (mMEPs) and direct cortical electrical motor-evoked potentials (eMEP), respectively. All MEPs recorded from the left forelimb were abolished immediately after the left C2 hemisection. Left mMEPs recovered dramatically immediately after contralateral right brachial root transection. Corticospinal eMEPs never recovered, regardless of transection. The facilitation of mMEPs in animals that had undergone combined contralateral root transection was well correlated with open-field behavioral motor performance. Both electrophysiological and neurological facilitations were significantly attenuated by the selective serotonin synthesis inhibitor para-chlorophenylalanine (p-CPA). These results suggest that serotonergic reticulospinal fibers located contralateral to hemisection contribute to the behavioral and electrophysiological improvement that immediately follows spinal cord injury (SCI). PMID:15144873

  19. Spinal atypical protein kinase C activity is necessary to stabilize inactivity-induced phrenic motor facilitation

    PubMed Central

    Strey, K.A.; Nichols, N.L.; Baertsch, N.A.; Broytman, O.; Baker-Herman, T.L.

    2012-01-01

    The neural network controlling breathing must establish rhythmic motor output at a level adequate to sustain life. Reduced respiratory neural activity elicits a novel form of plasticity in circuits driving the diaphragm known as inactivity-induced phrenic motor facilitation (iPMF), a rebound increase in phrenic inspiratory output observed once respiratory neural drive is restored. The mechanisms underlying iPMF are unknown. Here, we demonstrate in anesthetized rats that spinal mechanisms give rise to iPMF, and that iPMF consists of at least two mechanistically distinct phases: 1) an early, labile phase that requires atypical PKC (PKCζ and/or PKCΙ/λ) activity to transition to a 2) late, stable phase. Early (but not late) iPMF is associated with increased interactions between PKCζ/Ι and the scaffolding protein ZIP/p62 in spinal regions associated with the phrenic motor pool. Although PKCζ/Ι activity is necessary for iPMF, spinal aPKC activity is not necessary for phrenic long-term facilitation (pLTF) following acute intermittent hypoxia, an activity-independent form of spinal respiratory plasticity. Thus, while iPMF and pLTF both manifest as prolonged increases in phrenic burst amplitude, they arise from distinct spinal cellular pathways. Our data are consistent with the hypotheses that: 1) local mechanisms sense and respond to reduced respiratory-related activity in the phrenic motor pool, and 2) inactivity-induced increases in phrenic inspiratory output require local PKCζ/Ι activity to stabilize into a long-lasting iPMF. Although the physiological role of iPMF is unknown, we suspect that iPMF represents a compensatory mechanism, assuring adequate motor output in a physiological system where prolonged inactivity ends life. PMID:23152633

  20. Spinal atypical protein kinase C activity is necessary to stabilize inactivity-induced phrenic motor facilitation.

    PubMed

    Strey, Kristi A; Nichols, Nicole L; Baertsch, Nathan A; Broytman, Oleg; Baker-Herman, Tracy L

    2012-11-14

    The neural network controlling breathing must establish rhythmic motor output at a level adequate to sustain life. Reduced respiratory neural activity elicits a novel form of plasticity in circuits driving the diaphragm known as inactivity-induced phrenic motor facilitation (iPMF), a rebound increase in phrenic inspiratory output observed once respiratory neural drive is restored. The mechanisms underlying iPMF are unknown. Here, we demonstrate in anesthetized rats that spinal mechanisms give rise to iPMF and that iPMF consists of at least two mechanistically distinct phases: (1) an early, labile phase that requires atypical PKC (PKCζ and/or PKCι/λ) activity to transition to a (2) late, stable phase. Early (but not late) iPMF is associated with increased interactions between PKCζ/ι and the scaffolding protein ZIP (PKCζ-interacting protein)/p62 in spinal regions associated with the phrenic motor pool. Although PKCζ/ι activity is necessary for iPMF, spinal atypical PKC activity is not necessary for phrenic long-term facilitation (pLTF) following acute intermittent hypoxia, an activity-independent form of spinal respiratory plasticity. Thus, while iPMF and pLTF both manifest as prolonged increases in phrenic burst amplitude, they arise from distinct spinal cellular pathways. Our data are consistent with the hypotheses that (1) local mechanisms sense and respond to reduced respiratory-related activity in the phrenic motor pool and (2) inactivity-induced increases in phrenic inspiratory output require local PKCζ/ι activity to stabilize into a long-lasting iPMF. Although the physiological role of iPMF is unknown, we suspect that iPMF represents a compensatory mechanism, assuring adequate motor output in a physiological system in which prolonged inactivity ends life. PMID:23152633

  1. Interactive virtual feedback improves gait motor imagery after spinal cord injury: An exploratory study

    PubMed Central

    Roosink, Meyke; Robitaille, Nicolas; Jackson, Philip L.; Bouyer, Laurent J.; Mercier, Catherine

    2016-01-01

    Purpose: Motor imagery can improve motor function and reduce pain. This is relevant to individuals with spinal cord injury (SCI) in whom motor dysfunction and neuropathic pain are prevalent. However, therapy efficacy could be dependent on motor imagery ability, and a clear understanding of how motor imagery might be facilitated is currently lacking. Thus, the aim of the present study was to assess the immediate effects of interactive virtual feedback on motor imagery performance after SCI. Methods: Nine individuals with a traumatic SCI participated in the experiment. Motor imagery tasks consisted of forward (i.e. simpler) and backward (i.e. more complex) walking while receiving interactive versus static virtual feedback. Motor imagery performance (vividness, effort and speed), neuropathic pain intensity and feasibility (immersion, distraction, side-effects) were assessed. Results: During interactive feedback trials, motor imagery vividness and speed were significantly higher and effort was significantly lower as compared static feedback trials. No change in neuropathic pain was observed. Adverse effects were minor, and immersion was reported to be good. Conclusions: This exploratory study showed that interactive virtual walking was feasible and facilitated motor imagery performance. The response to motor imagery interventions after SCI might be improved by using interactive virtual feedback. PMID:26890097

  2. Effect of oscillating electrical field stimulation on motor function recovery and myelin regeneration after spinal cord injury in rats

    PubMed Central

    Tian, Da-Sheng; Jing, Jue-Hua; Qian, Jun; Chen, Lei; Zhu, Bin

    2016-01-01

    [Purpose] The aim of this study was to evaluate the effect of oscillating electrical field stimulation on motor function recovery and myelin regeneration in rats with spinal cord injury. [Subjects and Methods] A rat model of spinal cord injury was constructed by using the Allen weight-drop method. These rats were randomly divided into normal, spinal cord injury, and spinal cord injury + oscillating electrical field stimulation groups. The experimental group received the intervention with oscillating electrical field stimulation, and the control group received the intervention with an electrical field stimulator without oscillating electrical field stimulation. Each group was then randomly divided into seven subgroups according to observation time (1, 2, 4, 6, 8, 10, and 12 weeks). Basso-Beattie-Bresnahan score and inclined plate test score evaluation, motor evoked potential detection, and histological observation were performed. [Results] In the first 2 weeks of oscillating electrical field stimulation, the oscillating electrical field stimulation and inclined plate test scores of spinal cord injury group and spinal cord injury + oscillating electrical field stimulation group were not significantly different. In the fourth week, the scores of the spinal cord injury group were significantly lower than those of the spinal cord injury + oscillating electrical field stimulation group. The motor evoked potential incubation period in the spinal cord injury + oscillating electrical field stimulation group at the various time points was shorter than that in the spinal cord injury group. In the sixth week, the relative area of myelin in the spinal cord injury + oscillating electrical field stimulation group was evidently larger than that in the spinal cord injury group. [Conclusion] Oscillating electrical field stimulation could effectively improve spinal cord conduction function and promote motor function recovery in rats with spinal cord injury, as well as promote myelin

  3. Effect of oscillating electrical field stimulation on motor function recovery and myelin regeneration after spinal cord injury in rats.

    PubMed

    Tian, Da-Sheng; Jing, Jue-Hua; Qian, Jun; Chen, Lei; Zhu, Bin

    2016-05-01

    [Purpose] The aim of this study was to evaluate the effect of oscillating electrical field stimulation on motor function recovery and myelin regeneration in rats with spinal cord injury. [Subjects and Methods] A rat model of spinal cord injury was constructed by using the Allen weight-drop method. These rats were randomly divided into normal, spinal cord injury, and spinal cord injury + oscillating electrical field stimulation groups. The experimental group received the intervention with oscillating electrical field stimulation, and the control group received the intervention with an electrical field stimulator without oscillating electrical field stimulation. Each group was then randomly divided into seven subgroups according to observation time (1, 2, 4, 6, 8, 10, and 12 weeks). Basso-Beattie-Bresnahan score and inclined plate test score evaluation, motor evoked potential detection, and histological observation were performed. [Results] In the first 2 weeks of oscillating electrical field stimulation, the oscillating electrical field stimulation and inclined plate test scores of spinal cord injury group and spinal cord injury + oscillating electrical field stimulation group were not significantly different. In the fourth week, the scores of the spinal cord injury group were significantly lower than those of the spinal cord injury + oscillating electrical field stimulation group. The motor evoked potential incubation period in the spinal cord injury + oscillating electrical field stimulation group at the various time points was shorter than that in the spinal cord injury group. In the sixth week, the relative area of myelin in the spinal cord injury + oscillating electrical field stimulation group was evidently larger than that in the spinal cord injury group. [Conclusion] Oscillating electrical field stimulation could effectively improve spinal cord conduction function and promote motor function recovery in rats with spinal cord injury, as well as promote myelin

  4. Spinal segment-specific transcutaneous stimulation differentially shapes activation pattern among motor pools in humans.

    PubMed

    Sayenko, Dimitry G; Atkinson, Darryn A; Dy, Christine J; Gurley, Katelyn M; Smith, Valerie L; Angeli, Claudia; Harkema, Susan J; Edgerton, V Reggie; Gerasimenko, Yury P

    2015-06-01

    Transcutaneous and epidural electrical spinal cord stimulation techniques are becoming more valuable as electrophysiological and clinical tools. Recently, we observed selective activation of proximal and distal motor pools during epidural spinal stimulation. In the present study, we hypothesized that the characteristics of recruitment curves obtained from leg muscles will reflect a relative preferential activation of proximal and distal motor pools based on their arrangement along the lumbosacral enlargement. The purpose was to describe the electrophysiological responses to transcutaneous stimulation in leg muscles innervated by motoneurons from different segmental levels. Stimulation delivered along the rostrocaudal axis of the lumbosacral enlargement in the supine position resulted in a selective topographical recruitment of proximal and distal leg muscles, as described by threshold intensity, slope of the recruitment curves, and plateau point intensity and magnitude. Relatively selective recruitment of proximal and distal motor pools can be titrated by optimizing the site and intensity level of stimulation to excite a given combination of motor pools. The slope of the recruitment of particular muscles allows characterization of the properties of afferents projecting to specific motoneuron pools, as well as to the type and size of the motoneurons. The location and intensity of transcutaneous spinal electrical stimulation are critical to target particular neural structures across different motor pools in investigation of specific neuromodulatory effects. Finally, the asymmetry in bilateral evoked potentials is inevitable and can be attributed to both anatomical and functional peculiarities of individual muscles or muscle groups. PMID:25814642

  5. Evolution of EEG Motor Rhythms after Spinal Cord Injury: A Longitudinal Study.

    PubMed

    López-Larraz, Eduardo; Montesano, Luis; Gil-Agudo, Ángel; Minguez, Javier; Oliviero, Antonio

    2015-01-01

    Spinal cord injury (SCI) does not only produce a lack of sensory and motor function caudal to the level of injury, but it also leads to a progressive brain reorganization. Chronic SCI patients attempting to move their affected limbs present a significant reduction of brain activation in the motor cortex, which has been linked to the deafferentation. The aim of this work is to study the evolution of the motor-related brain activity during the first months after SCI. Eighteen subacute SCI patients were recruited to participate in bi-weekly experimental sessions during at least two months. Their EEG was recorded to analyze the temporal evolution of the event-related desynchronization (ERD) over the motor cortex, both during motor attempt and motor imagery of their paralyzed hands. The results show that the α and β ERD evolution after SCI is negatively correlated with the clinical progression of the patients during the first months after the injury. This work provides the first longitudinal study of the event-related desynchronization during the subacute phase of spinal cord injury. Furthermore, our findings reveal a strong association between the ERD changes and the clinical evolution of the patients. These results help to better understand the brain transformation after SCI, which is important to characterize the neuroplasticity mechanisms involved after this lesion and may lead to new strategies for rehabilitation and motor restoration of these patients. PMID:26177457

  6. Evolution of EEG Motor Rhythms after Spinal Cord Injury: A Longitudinal Study

    PubMed Central

    López-Larraz, Eduardo; Montesano, Luis; Gil-Agudo, Ángel; Minguez, Javier; Oliviero, Antonio

    2015-01-01

    Spinal cord injury (SCI) does not only produce a lack of sensory and motor function caudal to the level of injury, but it also leads to a progressive brain reorganization. Chronic SCI patients attempting to move their affected limbs present a significant reduction of brain activation in the motor cortex, which has been linked to the deafferentation. The aim of this work is to study the evolution of the motor-related brain activity during the first months after SCI. Eighteen subacute SCI patients were recruited to participate in bi-weekly experimental sessions during at least two months. Their EEG was recorded to analyze the temporal evolution of the event-related desynchronization (ERD) over the motor cortex, both during motor attempt and motor imagery of their paralyzed hands. The results show that the α and β ERD evolution after SCI is negatively correlated with the clinical progression of the patients during the first months after the injury. This work provides the first longitudinal study of the event-related desynchronization during the subacute phase of spinal cord injury. Furthermore, our findings reveal a strong association between the ERD changes and the clinical evolution of the patients. These results help to better understand the brain transformation after SCI, which is important to characterize the neuroplasticity mechanisms involved after this lesion and may lead to new strategies for rehabilitation and motor restoration of these patients. PMID:26177457

  7. Increased atypical PKC expression and activity in the phrenic motor nucleus following cervical spinal injury

    PubMed Central

    Guenther, C.H.; Windelborn, J.A.; Tubon, T.C.; Yin, J.C.P.; Mitchell, G.S.

    2012-01-01

    Atypical protein kinase C (aPKC) isoforms are expressed in phrenic motor neurons, a group of motor neurons critical for breathing. Following C2 cervical hemisection (C2HS), spontaneous plasticity occurs in crossed-spinal synaptic pathways to phrenic motor neurons, at least partially restoring inspiratory phrenic activity below the injury. Since aPKCs are necessary for synaptic plasticity in other systems, we tested the hypothesis that C2HS increases aPKC expression and activity in spinal regions associated with the phrenic motor nucleus. C2 laminectomy (sham) or C2HS was performed on adult, male Lewis rats. Ventral spinal segments C3–5 were harvested 1, 3 or 28 days post-surgery, and prepared for aPKC enzyme activity assays and immunoblots. Ventral cervical aPKC activity was elevated 1 and 28, but not 3, days post-C2HS (1 day: 63% vs sham ipsilateral to injury; p<0.05; 28 day: 426% vs sham; p<0.05; no difference in ipsilateral vs contralateral response). Total PKCζ/ι protein expression was unchanged by C2HS, but total and phosphorylated PKMζ (constitutively active PKCζ isoform) increased ipsilateral to injury 28 days post-C2HS (p<0.05). Ipsilateral aPKC activity and expression were strongly correlated (r2=0.675, p<0.001). In a distinct group of rats, immunohistochemistry confirmed that aPKCs are expressed in neurons 28 days post-C2HS, including large, presumptive phrenic motor neurons; aPKCs were not detected in adjacent microglia (OX-42 positive cells) or astrocytes (GFAP positive cells). Changes in aPKC expression in the phrenic motor nucleus following C2HS suggests that aPKCs may contribute to functional recovery following cervical spinal injury. PMID:22329943

  8. Stem cell-derived motor neurons from spinal and bulbar muscular atrophy patients.

    PubMed

    Grunseich, Christopher; Zukosky, Kristen; Kats, Ilona R; Ghosh, Laboni; Harmison, George G; Bott, Laura C; Rinaldi, Carlo; Chen, Ke-lian; Chen, Guibin; Boehm, Manfred; Fischbeck, Kenneth H

    2014-10-01

    Spinal and bulbar muscular atrophy (SBMA, Kennedy's disease) is a motor neuron disease caused by polyglutamine repeat expansion in the androgen receptor. Although degeneration occurs in the spinal cord and muscle, the exact mechanism is not clear. Induced pluripotent stem cells from spinal and bulbar muscular atrophy patients provide a useful model for understanding the disease mechanism and designing effective therapy. Stem cells were generated from six patients and compared to control lines from three healthy individuals. Motor neurons from four patients were differentiated from stem cells and characterized to understand disease-relevant phenotypes. Stem cells created from patient fibroblasts express less androgen receptor than control cells, but show androgen-dependent stabilization and nuclear translocation. The expanded repeat in several stem cell clones was unstable, with either expansion or contraction. Patient stem cell clones produced a similar number of motor neurons compared to controls, with or without androgen treatment. The stem cell-derived motor neurons had immunoreactivity for HB9, Isl1, ChAT, and SMI-32, and those with the largest repeat expansions were found to have increased acetylated α-tubulin and reduced HDAC6. Reduced HDAC6 was also found in motor neuron cultures from two other patients with shorter repeats. Evaluation of stably transfected mouse cells and SBMA spinal cord showed similar changes in acetylated α-tubulin and HDAC6. Perinuclear lysosomal enrichment, an HDAC6 dependent process, was disrupted in motor neurons from two patients with the longest repeats. SBMA stem cells present new insights into the disease, and the observations of reduced androgen receptor levels, repeat instability, and reduced HDAC6 provide avenues for further investigation of the disease mechanism and development of effective therapy. PMID:24925468

  9. Spinal adenosine A2a receptor activation elicits long-lasting phrenic motor facilitation.

    PubMed

    Golder, Francis J; Ranganathan, Lavanya; Satriotomo, Irawan; Hoffman, Michael; Lovett-Barr, Mary Rachael; Watters, Jyoti J; Baker-Herman, Tracy L; Mitchell, Gordon S

    2008-02-27

    Acute intermittent hypoxia elicits a form of spinal, brain-derived neurotrophic factor (BDNF)-dependent respiratory plasticity known as phrenic long-term facilitation. Ligands that activate G(s)-protein-coupled receptors, such as the adenosine 2a receptor, mimic the effects of neurotrophins in vitro by transactivating their high-affinity receptor tyrosine kinases, the Trk receptors. Thus, we hypothesized that A2a receptor agonists would elicit phrenic long-term facilitation by mimicking the effects of BDNF on TrkB receptors. Here we demonstrate that spinal A2a receptor agonists transactivate TrkB receptors in the rat cervical spinal cord near phrenic motoneurons, thus inducing long-lasting (hours) phrenic motor facilitation. A2a receptor activation increased phosphorylation and new synthesis of an immature TrkB protein, induced TrkB signaling through Akt, and strengthened synaptic pathways to phrenic motoneurons. RNA interference targeting TrkB mRNA demonstrated that new TrkB protein synthesis is necessary for A2a-induced phrenic motor facilitation. A2a receptor activation also increased breathing in unanesthetized rats, and improved breathing in rats with cervical spinal injuries. Thus, small, highly permeable drugs (such as adenosine receptor agonists) that transactivate TrkB receptors may provide an effective therapeutic strategy in the treatment of patients with ventilatory control disorders, such as obstructive sleep apnea, or respiratory insufficiency after spinal injury or during neurodegenerative diseases. PMID:18305238

  10. Combined motor cortex and spinal cord neuromodulation promotes corticospinal system functional and structural plasticity and motor function after injury.

    PubMed

    Song, Weiguo; Amer, Alzahraa; Ryan, Daniel; Martin, John H

    2016-03-01

    An important strategy for promoting voluntary movements after motor system injury is to harness activity-dependent corticospinal tract (CST) plasticity. We combine forelimb motor cortex (M1) activation with co-activation of its cervical spinal targets in rats to promote CST sprouting and skilled limb movement after pyramidal tract lesion (PTX). We used a two-step experimental design in which we first established the optimal combined stimulation protocol in intact rats and then used the optimal protocol in injured animals to promote CST repair and motor recovery. M1 was activated epidurally using an electrical analog of intermittent theta burst stimulation (iTBS). The cervical spinal cord was co-activated by trans-spinal direct current stimulation (tsDCS) that was targeted to the cervical enlargement, simulated from finite element method. In intact rats, forelimb motor evoked potentials (MEPs) were strongly facilitated during iTBS and for 10 min after cessation of stimulation. Cathodal, not anodal, tsDCS alone facilitated MEPs and also produced a facilitatory aftereffect that peaked at 10 min. Combined iTBS and cathodal tsDCS (c-tsDCS) produced further MEP enhancement during stimulation, but without further aftereffect enhancement. Correlations between forelimb M1 local field potentials and forelimb electromyogram (EMG) during locomotion increased after electrical iTBS alone and further increased with combined stimulation (iTBS+c-tsDCS). This optimized combined stimulation was then used to promote function after PTX because it enhanced functional connections between M1 and spinal circuits and greater M1 engagement in muscle contraction than either stimulation alone. Daily application of combined M1 iTBS on the intact side and c-tsDCS after PTX (10 days, 27 min/day) significantly restored skilled movements during horizontal ladder walking. Stimulation produced a 5.4-fold increase in spared ipsilateral CST terminations. Combined neuromodulation achieves optimal motor

  11. Acute lower motor neuron syndrome and spinal cord gray matter hyperintensities in HIV infection

    PubMed Central

    Wilson, Michael R.; Chad, David A.; Venna, Nagagopal

    2015-01-01

    Objective: To describe a novel manifestation of lower motor neuron disease in patients with well-controlled HIV infection. Methods: A retrospective study was performed to identify HIV-positive individuals with acute, painful lower motor neuron diseases. Results: Six patients were identified with HIV and lower motor neuron disease. Two patients met the inclusion criteria of well-controlled, chronic HIV infection and an acute, painful, unilateral lower motor neuron paralytic syndrome affecting the distal portion of the upper limb. These patients had segmental T2-hyperintense lesions in the central gray matter of the cervical spinal cord on MRI. One patient stabilized and the second patient improved with immunomodulatory therapy. Conclusions: This newly described syndrome expands the clinical spectrum of lower motor neuron diseases in HIV. PMID:26015990

  12. Spinal 5-HT7 receptors induce phrenic motor facilitation via EPAC-mTORC1 signaling.

    PubMed

    Fields, D P; Springborn, S R; Mitchell, G S

    2015-09-01

    Spinal serotonin type 7 (5-HT7) receptors elicit complex effects on motor activity. Whereas 5-HT7 receptor activation gives rise to long-lasting phrenic motor facilitation (pMF), it also constrains 5-HT2 receptor-induced pMF via "cross-talk inhibition." We hypothesized that divergent cAMP-dependent signaling pathways give rise to these distinct 5-HT7 receptor actions. Specifically, we hypothesized that protein kinase A (PKA) mediates cross-talk inhibition of 5-HT2 receptor-induced pMF whereas 5-HT7 receptor-induced pMF results from exchange protein activated by cAMP (EPAC) signaling. Anesthetized, paralyzed, and ventilated rats receiving intrathecal (C4) 5-HT7 receptor agonist (AS-19) injections expressed pMF for >90 min, an effect abolished by pretreatment with a selective EPAC inhibitor (ESI-05) but not a selective PKA inhibitor (KT-5720). Furthermore, intrathecal injections of a selective EPAC activator (8-pCPT-2'-Me-cAMP) were sufficient to elicit pMF. Finally, spinal mammalian target of rapamycin complex-1 (mTORC1) inhibition via intrathecal rapamycin abolished 5-HT7 receptor- and EPAC-induced pMF, demonstrating that spinal 5-HT7 receptors elicit pMF by an EPAC-mTORC1 signaling pathway. Thus 5-HT7 receptors elicit and constrain spinal phrenic motor plasticity via distinct signaling mechanisms that diverge at cAMP (EPAC vs. PKA). Selective manipulation of these molecules may enable refined regulation of serotonin-dependent spinal motor plasticity for therapeutic advantage. PMID:26269554

  13. Mitochondrial Dysfunction during the Early Stages of Excitotoxic Spinal Motor Neuron Degeneration in Vivo.

    PubMed

    Santa-Cruz, Luz Diana; Guerrero-Castillo, Sergio; Uribe-Carvajal, Salvador; Tapia, Ricardo

    2016-07-20

    Glutamate excitotoxicity and mitochondrial dysfunction are involved in motor neuron degeneration process during amyotrophic lateral sclerosis (ALS). We have previously shown that microdialysis perfusion of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) in the lumbar region of the rat spinal cord produces permanent paralysis of the ipsilateral hindlimb and death of motor neurons by a Ca(2+)-dependent mechanism, in a process that starts 2-3 h after AMPA perfusion. Co-perfusion with different energy metabolic substrates, mainly pyruvate, prevented the paralysis and motor neuron degeneration induced by AMPA, suggesting that mitochondrial energetic deficiencies are involved in this excitotoxic motor neuron death. To test this, in the present work, we studied the functional and ultrastructural characteristics of mitochondria isolated from the ventral horns of lumbar spinal cords of rats, at the beginning of the AMPA-induced degeneration process, when motor neurons are still alive. Animals were divided in four groups: perfused with AMPA, AMPA + pyruvate, and pyruvate alone and Krebs-Ringer medium as controls. Mitochondria from the AMPA-treated group showed decreased oxygen consumption rates, respiratory controls, and transmembrane potentials. Additionally, activities of the respiratory chain complexes I and IV were significantly decreased. Electron microscopy showed that mitochondria from AMPA-treated rats presented swelling, disorganized cristae and disrupted membranes. Remarkably, in the animals co-perfused with AMPA and pyruvate all these abnormalities were prevented. We conclude that mitochondrial dysfunction plays a crucial role in spinal motor neuron degeneration induced by overactivation of AMPA receptors in vivo. These mechanisms could be involved in ALS motor neuron degeneration. PMID:27090876

  14. Temporal course of motor recovery after Brown-Sequard spinal cord injuries.

    PubMed

    Little, J W; Halar, E

    1985-02-01

    Recovery of voluntary motor function after incomplete spinal cord injuries is attributed to a variety of physiological mechanisms, such as resolution of conduction block in injured axons, and neuroplasticity mechanisms in spared axons. To better understand these recovery mechanisms, we have examined motor recovery in one type of incomplete cord injury, the Brown-Sequard Syndrome. This syndrome is observed in patients with unilateral injury of the spinal cord and is manifested as asymmetric weakness and pain/temperature sensory loss contralateral to the weakest extremity. We have followed the course of motor recovery in two patients and reviewed the literature in an additional 59. Common features of this motor recovery include: 1) recovery of ipsilateral proximal extensor muscles before ipsilateral distal flexors, 2) recovery of any weakness in the extremity with pain/temperature sensory loss before the opposite extremity, and 3) recovery of voluntary motor strength and a functional gait by 1 to 6 months. We discuss these observations with respect to three hypotheses to explain motor recovery and suggest that neuroplasticity mechanisms functioning in spared descending axons may mediate much of the observed recovery after Brown-Sequard cord lesions. PMID:3982846

  15. Intraoperative monitoring during decompression of the spinal cord and spinal nerves using transcranial motor-evoked potentials: The law of twenty percent.

    PubMed

    Tanaka, Satoshi; Hirao, Jun; Oka, Hidehiro; Akimoto, Jiro; Takanashi, Junko; Yamada, Junichi

    2015-09-01

    Motor-evoked potential (MEP) monitoring was performed during 196 consecutive spinal (79 cervical and 117 lumbar) surgeries for the decompression of compressive spinal and spinal nerve diseases. MEP monitoring in spinal surgery has been considered sensitive to predict postoperative neurological recovery. In this series, transcranial stimulation consisted of trains of five pulses at a constant voltage (200-600 V). For the normalization of MEP, we recorded compound muscle action potentials (CMAP) after peripheral nerve stimulation, usually on the median nerve at the wrist 2 seconds before or after each transcranial stimulation of the motor area, for all operations. The sensitivity and specificity of MEP monitoring was 100% and 97.4%, respectively, or 96.9% with or without CMAP compensation (if the threshold of postoperative motor palsy was defined as 20% relative amplitude rate [RAR]). The mean RAR after CMAP normalization, of the most affected muscle in the patient group with excellent postoperative results (recovery rate of a Japan Orthopedic Association score of more than 50%) was significantly higher than that in the other groups (p=0.0224). All patients with an amplitude increase rate (AIR) with CMAP normalization of more than 20% achieved neurological recovery postoperatively. Our results suggest that if the RAR is more than 20%, postoperative motor palsy can be avoided in spinal surgery. If the AIR with normalization by CMAP after peripheral nerve stimulation is more than 20%, neurological recovery can be expected in spinal surgery. PMID:26142049

  16. Spinal TNF is necessary for inactivity-induced phrenic motor facilitation.

    PubMed

    Broytman, Oleg; Baertsch, Nathan A; Baker-Herman, Tracy L

    2013-11-15

    A prolonged reduction in central neural respiratory activity elicits a form of plasticity known as inactivity-induced phrenic motor facilitation (iPMF), a 'rebound' increase in phrenic burst amplitude apparent once respiratory neural activity is restored. iPMF requires atypical protein kinase C (aPKC) activity within spinal segments containing the phrenic motor nucleus to stabilize an early transient increase in phrenic burst amplitude and to form long-lasting iPMF following reduced respiratory neural activity. Upstream signal(s) leading to spinal aPKC activation are unknown. We tested the hypothesis that spinal tumour necrosis factor-α (TNFα) is necessary for iPMF via an aPKC-dependent mechanism. Anaesthetized, ventilated rats were exposed to a 30 min neural apnoea; upon resumption of respiratory neural activity, a prolonged increase in phrenic burst amplitude (42 ± 9% baseline; P < 0.05) was apparent, indicating long-lasting iPMF. Pretreatment with recombinant human soluble TNF receptor 1 (sTNFR1) in the intrathecal space at the level of the phrenic motor nucleus prior to neural apnoea blocked long-lasting iPMF (2 ± 8% baseline; P > 0.05). Intrathecal TNFα without neural apnoea was sufficient to elicit long-lasting phrenic motor facilitation (pMF; 62 ± 7% baseline; P < 0.05). Similar to iPMF, TNFα-induced pMF required spinal aPKC activity, as intrathecal delivery of a ζ-pseudosubstrate inhibitory peptide (PKCζ-PS) 35 min following intrathecal TNFα arrested TNFα-induced pMF (28 ± 8% baseline; P < 0.05). These data demonstrate that: (1) spinal TNFα is necessary for iPMF; and (2) spinal TNFα is sufficient to elicit pMF via a similar aPKC-dependent mechanism. These data are consistent with the hypothesis that reduced respiratory neural activity elicits iPMF via a TNFα-dependent increase in spinal aPKC activity. PMID:23878370

  17. Spinal TNFα is necessary for inactivity-induced phrenic motor facilitation

    PubMed Central

    Broytman, Oleg; Baertsch, Nathan A; Baker-Herman, Tracy L

    2013-01-01

    A prolonged reduction in central neural respiratory activity elicits a form of plasticity known as inactivity-induced phrenic motor facilitation (iPMF), a ‘rebound’ increase in phrenic burst amplitude apparent once respiratory neural activity is restored. iPMF requires atypical protein kinase C (aPKC) activity within spinal segments containing the phrenic motor nucleus to stabilize an early transient increase in phrenic burst amplitude and to form long-lasting iPMF following reduced respiratory neural activity. Upstream signal(s) leading to spinal aPKC activation are unknown. We tested the hypothesis that spinal tumour necrosis factor-α (TNFα) is necessary for iPMF via an aPKC-dependent mechanism. Anaesthetized, ventilated rats were exposed to a 30 min neural apnoea; upon resumption of respiratory neural activity, a prolonged increase in phrenic burst amplitude (42 ± 9% baseline; P < 0.05) was apparent, indicating long-lasting iPMF. Pretreatment with recombinant human soluble TNF receptor 1 (sTNFR1) in the intrathecal space at the level of the phrenic motor nucleus prior to neural apnoea blocked long-lasting iPMF (2 ± 8% baseline; P > 0.05). Intrathecal TNFα without neural apnoea was sufficient to elicit long-lasting phrenic motor facilitation (pMF; 62 ± 7% baseline; P < 0.05). Similar to iPMF, TNFα-induced pMF required spinal aPKC activity, as intrathecal delivery of a ζ-pseudosubstrate inhibitory peptide (PKCζ-PS) 35 min following intrathecal TNFα arrested TNFα-induced pMF (28 ± 8% baseline; P < 0.05). These data demonstrate that: (1) spinal TNFα is necessary for iPMF; and (2) spinal TNFα is sufficient to elicit pMF via a similar aPKC-dependent mechanism. These data are consistent with the hypothesis that reduced respiratory neural activity elicits iPMF via a TNFα-dependent increase in spinal aPKC activity. PMID:23878370

  18. Electrophysiological biomarkers of neuromodulatory strategies to recover motor function after spinal cord injury

    PubMed Central

    Gad, Parag; Roy, Roland R.; Choe, Jaehoon; Creagmile, Jack; Zhong, Hui; Gerasimenko, Yury

    2015-01-01

    The spinal cord contains the circuitry to control posture and locomotion after complete paralysis, and this circuitry can be enabled with epidural stimulation [electrical enabling motor control (eEmc)] and/or administration of pharmacological agents [pharmacological enabling motor control (fEmc)] when combined with motor training. We hypothesized that the characteristics of the spinally evoked potentials after chronic administration of both strychnine and quipazine under the influence of eEmc during standing and stepping can be used as biomarkers to predict successful motor performance. To test this hypothesis we trained rats to step bipedally for 7 wk after paralysis and characterized the motor potentials evoked in the soleus and tibialis anterior (TA) muscles with the rats in a non-weight-bearing position, standing and stepping. The middle responses (MRs) to spinally evoked stimuli were suppressed with either or both drugs when the rat was suspended, whereas the addition of either or both drugs resulted in an overall activation of the extensor muscles during stepping and/or standing and reduced the drag duration and cocontraction between the TA and soleus muscles during stepping. The administration of quipazine and strychnine in concert with eEmc and step training after injury resulted in larger-amplitude evoked potentials [MRs and late responses (LRs)] in flexors and extensors, with the LRs consisting of a more normal bursting pattern, i.e., randomly generated action potentials within the bursts. This pattern was linked to more successful standing and stepping. Thus it appears that selected features of the patterns of potentials evoked in specific muscles with stimulation can serve as effective biomarkers and predictors of motor performance. PMID:25695648

  19. Motor primitives and synergies in spinal cord and after injury– the current state of play

    PubMed Central

    Giszter, Simon F.; Hart, Corey B.

    2013-01-01

    Modular pattern generator elements, also known as burst synergies or motor primitives, have become a useful and important way of describing motor behavior, albeit controversial. It is suggested that these synergy elements may comprise part of the pattern shaping layers of a McCrea/Rybak two layer pattern generator, as well as being used in other ways in spinal cord. The data supporting modular synergies ranges across species including man and encompasses motor pattern analyses and neural recordings. Recently, synergy persistence and changes following clinical trauma have been presented. These new data underscore the importance of understanding the modular structure of motor behaviors and the underlying circuitry in order to best provide principled therapies and to understand phenomena reported in the clinic. We discuss the evidence and different viewpoints on modularity, the neural underpinnings identified thus far, and possible critical issues for the future of this area. PMID:23531009

  20. IPLEX Administration Improves Motor Neuron Survival and Ameliorates Motor Functions in a Severe Mouse Model of Spinal Muscular Atrophy

    PubMed Central

    Murdocca, Michela; Malgieri, Arianna; Luchetti, Andrea; Saieva, Luciano; Dobrowolny, Gabriella; de Leonibus, Elvira; Filareto, Antonio; Quitadamo, Maria Chiara; Novelli, Giuseppe; Musarò, Antonio; Sangiuolo, Federica

    2012-01-01

    Spinal muscular atrophy (SMA) is an inherited neurodegenerative disorder and the first genetic cause of death in childhood. SMA is caused by low levels of survival motor neuron (SMN) protein that induce selective loss of α-motor neurons (MNs) in the spinal cord, resulting in progressive muscle atrophy and consequent respiratory failure. To date, no effective treatment is available to counteract the course of the disease. Among the different therapeutic strategies with potential clinical applications, the evaluation of trophic and/or protective agents able to antagonize MNs degeneration represents an attractive opportunity to develop valid therapies. Here we investigated the effects of IPLEX (recombinant human insulinlike growth factor 1 [rhIGF-1] complexed with recombinant human IGF-1 binding protein 3 [rhIGFBP-3]) on a severe mouse model of SMA. Interestingly, molecular and biochemical analyses of IGF-1 carried out in SMA mice before drug administration revealed marked reductions of IGF-1 circulating levels and hepatic mRNA expression. In this study, we found that perinatal administration of IPLEX, even if does not influence survival and body weight of mice, results in reduced degeneration of MNs, increased muscle fiber size and in amelioration of motor functions in SMA mice. Additionally, we show that phenotypic changes observed are not SMN-dependent, since no significant SMN modification was addressed in treated mice. Collectively, our data indicate IPLEX as a good therapeutic candidate to hinder the progression of the neurodegenerative process in SMA. PMID:22669476

  1. Extraction of motor activity from the cervical spinal cord of behaving rats

    NASA Astrophysics Data System (ADS)

    Prasad, Abhishek; Sahin, Mesut

    2006-12-01

    Injury at the cervical region of the spinal cord results in the loss of the skeletal muscle control from below the shoulders and hence causes quadriplegia. The brain-computer interface technique is one way of generating a substitute for the lost command signals in these severely paralyzed individuals using the neural signals from the brain. In this study, we are investigating the feasibility of an alternative method where the volitional signals are extracted from the cervical spinal cord above the point of injury. A microelectrode array assembly was implanted chronically at the C5-C6 level of the spinal cord in rats. Neural recordings were made during the face cleaning behavior with forelimbs as this task involves cyclic forelimb movements and does not require any training. The correlation between the volitional motor signals and the elbow movements was studied. Linear regression technique was used to reconstruct the arm movement from the rectified-integrated version of the principal neural components. The results of this study demonstrate the feasibility of extracting the motor signals from the cervical spinal cord and using them for reconstruction of the elbow movements.

  2. Extraction of motor activity from the cervical spinal cord of behaving rats.

    PubMed

    Prasad, Abhishek; Sahin, Mesut

    2006-12-01

    Injury at the cervical region of the spinal cord results in the loss of the skeletal muscle control from below the shoulders and hence causes quadriplegia. The brain-computer interface technique is one way of generating a substitute for the lost command signals in these severely paralyzed individuals using the neural signals from the brain. In this study, we are investigating the feasibility of an alternative method where the volitional signals are extracted from the cervical spinal cord above the point of injury. A microelectrode array assembly was implanted chronically at the C5-C6 level of the spinal cord in rats. Neural recordings were made during the face cleaning behavior with forelimbs as this task involves cyclic forelimb movements and does not require any training. The correlation between the volitional motor signals and the elbow movements was studied. Linear regression technique was used to reconstruct the arm movement from the rectified-integrated version of the principal neural components. The results of this study demonstrate the feasibility of extracting the motor signals from the cervical spinal cord and using them for reconstruction of the elbow movements. PMID:17124332

  3. Motor Neuron Diseases Accompanying Spinal Stenosis: A Case Study.

    PubMed

    Shin, HyeonJu; Park, Sun Kyung; HaeJin, Suh; Choi, Yun Suk

    2016-03-01

    A 75-year-old man, who was healthy, visited the hospital because of shooting pain and numbness in both lower limbs (right > left). The patient had an L4/5 moderate right foraminal stenosis and right subarticular disc protrusion and received a lumbar epidural block. The patient experienced severe weakness in the right lower limb after 2 days. Lumbar and cervical magnetic resonance images were taken and electromyography and a nerve conduction study were performed to arrive at the diagnosis of a motor neuron disease. The patient expired 4 months later with respiratory failure due to motor neuron disease. This case suggests that any abnormal neurological symptoms that occur after an epidural block should be examined thoroughly via testing and consultations to identify the cause of the symptoms. PMID:27008301

  4. Prediction of functional outcome by motor capability after spinal cord injury.

    PubMed

    Lazar, R B; Yarkony, G M; Ortolano, D; Heinemann, A W; Perlow, E; Lovell, L; Meyer, P R

    1989-11-01

    The relationship between early motor status and functional outcome after spinal cord injury (SCI) was evaluated prospectively in 52 quadriplegic and 26 paraplegic patients. Motor status was measured within 72 hours of injury and quantified with the Motor Index Score (MIS). Functional status was evaluated with the Modified Barthel Index (MBI). A senior physical therapist completed the MIS and the MBI when each patient was admitted to the spinal cord intensive care unit and every 30 days during rehabilitation. Early motor function was correlated with average daily improvement in functional status including self-care and mobility (p = .001). The initial MIS strongly correlated with functional status of quadriplegics at admission (p = .001), at 60 days, and at rehabilitation discharge (p = .001). In paraplegics, the overall MBI at admission, after 60 days of rehabilitation, and at discharge was not correlated with early motor function. However, the MIS correlated significantly with the MBI self-care subscore at 60 days and at discharge (p = .01), but not with the mobility subscore. The initial MIS was also significantly correlated to functional status at discharge in patients with complete lesions (p = .001), but was not related to functional status at discharge in patients with incomplete lesions. The MIS appears to be a useful tool in predicting function during rehabilitation, although individual differences in ambulation, particularly for patients with paraplegia, limit the predictive utility of this index. PMID:2818153

  5. Specific Deficit in Implicit Motor Sequence Learning following Spinal Cord Injury

    PubMed Central

    Bloch, Ayala; Tamir, Dror; Vakil, Eli; Zeilig, Gabi

    2016-01-01

    Background Physical and psychosocial rehabilitation following spinal cord injury (SCI) leans heavily on learning and practicing new skills. However, despite research relating motor sequence learning to spinal cord activity and clinical observations of impeded skill-learning after SCI, implicit procedural learning following spinal cord damage has not been examined. Objective To test the hypothesis that spinal cord injury (SCI) in the absence of concomitant brain injury is associated with a specific implicit motor sequence learning deficit that cannot be explained by depression or impairments in other cognitive measures. Methods Ten participants with SCI in T1-T11, unharmed upper limb motor and sensory functioning, and no concomitant brain injury were compared to ten matched control participants on measures derived from the serial reaction time (SRT) task, which was used to assess implicit motor sequence learning. Explicit generation of the SRT sequence, depression, and additional measures of learning, memory, and intelligence were included to explore the source and specificity of potential learning deficits. Results There was no between-group difference in baseline reaction time, indicating that potential differences between the learning curves of the two groups could not be attributed to an overall reduction in response speed in the SCI group. Unlike controls, the SCI group showed no decline in reaction time over the first six blocks of the SRT task and no advantage for the initially presented sequence over the novel interference sequence. Meanwhile, no group differences were found in explicit learning, depression, or any additional cognitive measures. Conclusions The dissociation between impaired implicit learning and intact declarative memory represents novel empirical evidence of a specific implicit procedural learning deficit following SCI, with broad implications for rehabilitation and adjustment. PMID:27355834

  6. Cathodal transcutaneous spinal direct current stimulation (tsDCS) improves motor unit recruitment in healthy subjects.

    PubMed

    Bocci, Tommaso; Vannini, Beatrice; Torzini, Antonio; Mazzatenta, Andrea; Vergari, Maurizio; Cogiamanian, Filippo; Priori, Alberto; Sartucci, Ferdinando

    2014-08-22

    Transcutaneous spinal direct current stimulation (tsDCS) is a new promising technique for modulating spinal cord function in humans. However, its effects on corticospinal pathways and lower motorneuron excitability are poorly understood. We studied the effects of tsDCS on motor unit recruitment by evaluating changes in motor unit number (MUNE) and peripheral silent period (PSP) after sham (s-tsDCS), anodal (a-tsDCS) and cathodal (c-tsDCS) tsDCS applied either over the cervical or the lower thoracic spinal cord in healthy subjects. For the calculation of MUNE we used the multipoint incremental technique recording from either the ulnar nerve innervated abductor digiti minimi (ADM) or the median nerve innervated abductor pollicis brevis (APB) muscle. c-tsDCS dramatically increases MUNE values following cervical polarization, while sham and anodal polarization have no significant effect (APB: F(4,99)=26.4, p<0.001, two-way repeated measures ANOVA with "time" and "stimulation" as factors; ADM: F(4,99)=22.1, p<0.0001). At the same time, c-tsDCS dampened PSP respect to sham and anodal conditions (p<0.0001). Interestingly, also thoracic c-tsDCS significantly improved motor unit recruitment compared with both s-tsDCS and a-tsDCS (APB: F(4,99)=20.1, p<0.0001; ADM: F(4,99)=16.6, p<0.0001). Our data in healthy subjects suggest that tsDCS, possibly also through supraspinal effects, could provide a novel therapeutic tool in managing several pathological conditions characterized by reduced motor unit recruitment, such as stroke and spinal cord injuries. PMID:24970753

  7. Comparison of commonly used retrograde tracers in rat spinal motor neurons.

    PubMed

    Yu, You-Lai; Li, Hai-Yan; Zhang, Pei-Xun; Yin, Xiao-Feng; Han, Na; Kou, Yu-Hui; Jiang, Bao-Guo

    2015-10-01

    The purpose of this study was to investigate the effect of four fluorescent dyes, True Blue (TB), Fluoro-Gold (FG), Fluoro-Ruby (FR), and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI), in retrograde tracing of rat spinal motor neurons. We transected the muscle branch of the rat femoral nerve and applied each tracer to the proximal stump in single labeling experiments, or combinations of tracers (FG-DiI and TB-DiI) in double labeling experiments. In the single labeling experiments, significantly fewer labeled motor neurons were observed after FR labeling than after TB, FG, or DiI, 3 days after tracer application. By 1 week, there were no significant differences in the number of labeled neurons between the four groups. In the double-labeling experiment, the number of double-labeled neurons in the FG-DiI group was not significantly different from that in the TB-DiI group 1 week after tracer application. Our findings indicate that TB, FG, and DiI have similar labeling efficacies in the retrograde labeling of spinal motor neurons in the rat femoral nerve when used alone. Furthermore, combinations of DiI and TB or FG are similarly effective. Therefore, of the dyes studied, TB, FG and DiI, and combinations of DiI with TB or FG, are the most suitable for retrograde labeling studies of motor neurons in the rat femoral nerve. PMID:26692873

  8. Prolonged Minocycline Treatment Impairs Motor Neuronal Survival and Glial Function in Organotypic Rat Spinal Cord Cultures

    PubMed Central

    Pinkernelle, Josephine; Fansa, Hisham; Ebmeyer, Uwe; Keilhoff, Gerburg

    2013-01-01

    Background Minocycline, a second-generation tetracycline antibiotic, exhibits anti-inflammatory and neuroprotective effects in various experimental models of neurological diseases, such as stroke, Alzheimer’s disease, amyotrophic lateral sclerosis and spinal cord injury. However, conflicting results have prompted a debate regarding the beneficial effects of minocycline. Methods In this study, we analyzed minocycline treatment in organotypic spinal cord cultures of neonatal rats as a model of motor neuron survival and regeneration after injury. Minocycline was administered in 2 different concentrations (10 and 100 µM) at various time points in culture and fixed after 1 week. Results Prolonged minocycline administration decreased the survival of motor neurons in the organotypic cultures. This effect was strongly enhanced with higher concentrations of minocycline. High concentrations of minocycline reduced the number of DAPI-positive cell nuclei in organotypic cultures and simultaneously inhibited microglial activation. Astrocytes, which covered the surface of the control organotypic cultures, revealed a peripheral distribution after early minocycline treatment. Thus, we further analyzed the effects of 100 µM minocycline on the viability and migration ability of dispersed primary glial cell cultures. We found that minocycline reduced cell viability, delayed wound closure in a scratch migration assay and increased connexin 43 protein levels in these cultures. Conclusions The administration of high doses of minocycline was deleterious for motor neuron survival. In addition, it inhibited microglial activation and impaired glial viability and migration. These data suggest that especially high doses of minocycline might have undesired affects in treatment of spinal cord injury. Further experiments are required to determine the conditions for the safe clinical administration of minocycline in spinal cord injured patients. PMID:23967343

  9. Effects of baclofen on motor units paralysed by chronic cervical spinal cord injury

    PubMed Central

    Häger-Ross, Charlotte K.; Klein, Cliff S.

    2010-01-01

    Baclofen, a gamma-aminobutyric acid receptorB agonist, is used to reduce symptoms of spasticity (hyperreflexia, increases in muscle tone, involuntary muscle activity), but the long-term effects of sustained baclofen use on skeletal muscle properties are unclear. The aim of our study was to evaluate whether baclofen use and paralysis due to cervical spinal cord injury change the contractile properties of human thenar motor units more than paralysis alone. Evoked electromyographic activity and force were recorded in response to intraneural stimulation of single motor axons to thenar motor units. Data from three groups of motor units were compared: 23 paralysed units from spinal cord injured subjects who take baclofen and have done so for a median of 7 years, 25 paralysed units from spinal cord injured subjects who do not take baclofen (median: 10 years) and 45 units from uninjured control subjects. Paralysed motor unit properties were independent of injury duration and level. With paralysis and baclofen, the median motor unit tetanic forces were significantly weaker, twitch half-relaxation times longer and half maximal forces reached at lower frequencies than for units from uninjured subjects. The median values for these same parameters after paralysis alone were comparable to control data. Axon conduction velocities differed across groups and were slowest for paralysed units from subjects who were not taking baclofen and fastest for units from the uninjured. Greater motor unit weakness with long-term baclofen use and paralysis will make the whole muscle weaker and more fatigable. Significantly more paralysed motor units need to be excited during patterned electrical stimulation to produce any given force over time. The short-term benefits of baclofen on spasticity (e.g. management of muscle spasms that may otherwise hinder movement or social interactions) therefore have to be considered in relation to its possible long-term effects on muscle rehabilitation

  10. Spinal cord stimulation alleviates motor deficits in a primate model of Parkinson disease.

    PubMed

    Santana, Maxwell B; Halje, Pär; Simplício, Hougelle; Richter, Ulrike; Freire, Marco Aurelio M; Petersson, Per; Fuentes, Romulo; Nicolelis, Miguel A L

    2014-11-19

    Although deep brain electrical stimulation can alleviate the motor symptoms of Parkinson disease (PD), just a small fraction of patients with PD can take advantage of this procedure due to its invasive nature. A significantly less invasive method--epidural spinal cord stimulation (SCS)--has been suggested as an alternative approach for symptomatic treatment of PD. However, the mechanisms underlying motor improvements through SCS are unknown. Here, we show that SCS reproducibly alleviates motor deficits in a primate model of PD. Simultaneous neuronal recordings from multiple structures of the cortico-basal ganglia-thalamic loop in parkinsonian monkeys revealed abnormal highly synchronized neuronal activity within each of these structures and excessive functional coupling among them. SCS disrupted this pathological circuit behavior in a manner that mimics the effects caused by pharmacological dopamine replacement therapy or deep brain stimulation. These results suggest that SCS should be considered as an additional treatment option for patients with PD. PMID:25447740

  11. Variability analyses suggest that supraspino-spinal interactions provide dynamic stability in motor control.

    PubMed

    Wang, H; Jung, R

    2002-03-15

    Effects of supraspino-spinal feedforward-feedback (FF-FB) interactions on variability in locomotor rhythm and coordination were examined in in vitro brain-spinal cord lamprey preparations. Spinal locomotor networks were activated by applying 0.2 mM N-methyl-DL-aspartate (NMA) to three spinal pools: gill, rostral and caudal. Bathing the brain with zero Ca(2+) saline altered supraspinal-spinal drive and FF-FB interaction while spino-supraspinal feedback was changed by applying NMA to the caudal pool only. Wavelet analyses indicated a non-uniform energy distribution in ventral root (VR) activity that shifted between frequency bands on FF-FB interruption. Wavelet analysis was used to extract 300-s long epochs of low frequency burst rhythm. These were analyzed using a sliding-window time-varying covariance method. From the autocovariance in each window, the cycle period and height of the first side lobe peak were determined. Rostral VR variability (determined from standard deviation and coefficient of variation of all cycle periods and the mean peak height) was significantly higher than caudal VR variability. FF-FB interruption significantly decreased the rostral VR cycle period and variability but the rostro-caudal gradient remained. The intersegmental delay was also affected. The caudal VR rhythm with NMA in the caudal pool only was slower but more variable than with NMA over the entire cord. These results indicate that the locomotor rhythm in the presence of supraspino-spinal interactions is slower but has a higher variability. The higher variability may reflect a dynamic stability of the system. Additionally, differences in local neural organization likely contribute to rostro-caudal differences in variability of the motor output. PMID:11879799

  12. Magnetic motor evoked potentials (MEP) in diseases of the spinal cord.

    PubMed

    Linden, D; Berlit, P

    1994-11-01

    Transcranial magnetic stimulation (TMS) is a non-invasive diagnostic method particularly suited to investigation of the long motor tracts. The clinical value of this method in many cortical and subcortical diseases has been well established, but comparable studies for most spinal cord diseases have still to be made. Forty patients in whom spinal cord disease was established by clinical examination, cerebrospinal fluid examination, and magnetic resonance imaging (MRI) were studied by means of somatosensory evoked potentials (SEP, median and tibial nerve stimulation) and magnetic motor evoked potentials (MEP, first dorsal interosseus and tibialis anterior muscle recordings after transcranial and spinal stimulation). The underlying pathology was neoplastic (n = 16), inflammatory (n = 15) or ischemic (n = 9). Clinical signs and symptoms ranged from slight sensory disturbances to complete paraplegia and had developed within minutes (ischemia) or over many years (benign neoplastic disease). The overall frequency of pathological SEP was slightly higher than that of MEP (78% vs 68%) which was statistically not significant (p > 0.05). This was also true for the subgroups, except for pure motor disorders, which gave the same yield for both methods. Decreased amplitudes or absence of MEP were more frequent in neoplastic than in inflammatory lesions (75% vs 33%, p < 0.05). In the latter, however, MEP more often occurred with increased latencies (40% vs 31%, p > 0.05, n.s.). Pathological SEP were found in 75% of patients presenting with pure motor abnormalities, while pathological MEP were found in 30% of patients with pure sensory disturbances.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7887135

  13. Protective effect of rosemary on acrylamide motor neurotoxicity in spinal cord of rat offspring: postnatal follow-up study

    PubMed Central

    Al-Gholam, Marwa A.; El-Mehi, Abeer E.; El-Barbary, Abd El-Moneum; Fokar, Ahmed Zo El

    2016-01-01

    The direct interactive effects of rosemary and acrylamide on the development of motor neurons in the spinal cord remains unknown. Our goal is to confirm the protective effects of rosemary against motor neuronal degeneration induced by acrylamide in the developing postnatal rat spinal cord using a postnatal rat model. We assigned the offspring of treated female rats into control, rosemary; acrylamide group; and recovery groups. This work depended on clinical, histopathological, morphometrically, immunohistochemical and genetic methods. In the acrylamide group, we observed oxidation, motor neuron degeneration, apoptosis, myelin degeneration, neurofilament reduction, reactive gliosis. Whoever, concomitant rosemary intake and withdrawal of acrylamide modulate these effects. These findings proof that dietary rosemary can directly protect motor neuron against acrylamide toxicity in the mammalian developing spinal cord. PMID:27051566

  14. Protective effect of rosemary on acrylamide motor neurotoxicity in spinal cord of rat offspring: postnatal follow-up study.

    PubMed

    Al-Gholam, Marwa A; Nooh, Hanaa Zakaria; El-Mehi, Abeer E; El-Barbary, Abd El-Moneum; Fokar, Ahmed Zo El

    2016-03-01

    The direct interactive effects of rosemary and acrylamide on the development of motor neurons in the spinal cord remains unknown. Our goal is to confirm the protective effects of rosemary against motor neuronal degeneration induced by acrylamide in the developing postnatal rat spinal cord using a postnatal rat model. We assigned the offspring of treated female rats into control, rosemary; acrylamide group; and recovery groups. This work depended on clinical, histopathological, morphometrically, immunohistochemical and genetic methods. In the acrylamide group, we observed oxidation, motor neuron degeneration, apoptosis, myelin degeneration, neurofilament reduction, reactive gliosis. Whoever, concomitant rosemary intake and withdrawal of acrylamide modulate these effects. These findings proof that dietary rosemary can directly protect motor neuron against acrylamide toxicity in the mammalian developing spinal cord. PMID:27051566

  15. Is spinal muscular atrophy a disease of the motor neurons only: pathogenesis and therapeutic implications?

    PubMed

    Simone, Chiara; Ramirez, Agnese; Bucchia, Monica; Rinchetti, Paola; Rideout, Hardy; Papadimitriou, Dimitra; Re, Diane B; Corti, Stefania

    2016-03-01

    Spinal muscular atrophy (SMA) is a genetic neurological disease that causes infant mortality; no effective therapies are currently available. SMA is due to homozygous mutations and/or deletions in the survival motor neuron 1 gene and subsequent reduction of the SMN protein, leading to the death of motor neurons. However, there is increasing evidence that in addition to motor neurons, other cell types are contributing to SMA pathology. In this review, we will discuss the involvement of non-motor neuronal cells, located both inside and outside the central nervous system, in disease onset and progression. Even if SMN restoration in motor neurons is needed, it has been shown that optimal phenotypic amelioration in animal models of SMA requires a more widespread SMN correction. It has been demonstrated that non-motor neuronal cells are also involved in disease pathogenesis and could have important therapeutic implications. For these reasons it will be crucial to take this evidence into account for the clinical translation of the novel therapeutic approaches. PMID:26681261

  16. Is Spinal Muscular Atrophy a disease of the motor neurons only: pathogenesis and therapeutic implications?

    PubMed Central

    Simone, Chiara; Ramirez, Agnese; Bucchia, Monica; Rinchetti, Paola; Rideout, Hardy; Papadimitriou, Dimitra; Re, Diane B.; Corti, Stefania

    2016-01-01

    Spinal Muscular Atrophy (SMA) is a genetic neurological disease that causes infant mortality; no effective therapies are currently available. SMA is due to homozygous mutations and/or deletions in the Survival Motor Neuron 1 (SMN1) gene and subsequent reduction of the SMN protein, leading to the death of motor neurons. However, there is increasing evidence that in addition to motor neurons, other cell types are contributing to SMA pathology. In this review, we will discuss the involvement of non-motor neuronal cells, located both inside and outside the central nervous system, in disease onset and progression. These contribution of non-motor neuronal cells to disease pathogenesis has important therapeutic implications: in fact, even if SMN restoration in motor neurons is needed, it has been shown that optimal phenotypic amelioration in animal models of SMA requires a more widespread SMN correction. It will be crucial to take this evidence into account before clinical translation of the novel therapeutic approaches that are currently under development. PMID:26681261

  17. Premotor spinal network with balanced excitation and inhibition during motor patterns has high resilience to structural division.

    PubMed

    Petersen, Peter C; Vestergaard, Mikkel; Jensen, Kristian H R; Berg, Rune W

    2014-02-19

    Direct measurements of synaptic inhibition (I) and excitation (E) to spinal motoneurons can provide an important insight into the organization of premotor networks. Such measurements of flexor motoneurons participating in motor patterns in turtles have recently demonstrated strong concurrent E and I as well as stochastic membrane potentials and irregular spiking in the adult turtle spinal cord. These findings represent a departure from the widespread acceptance of feedforward reciprocal rate models for spinal motor function. The apparent discrepancy has been reviewed as an experimental artifact caused by the distortion of local networks in the transected turtle spinal cord. We tested this assumption in the current study by performing experiments to assess the integrity of motor functions in the intact spinal cord and the cord transected at segments D9/D10. Excitatory and inhibitory synaptic inputs to motoneurons were estimated during rhythmic motor activity and demonstrated primarily intense inputs that consisted of qualitatively similar mixed E/I before and after the transection. To understand this high functional resilience, we used mathematical modeling of networks with recurrent connectivity that could potentially explain the balanced E/I. Both experimental and modeling data support the concept of a locally balanced premotor network consisting of recurrent E/I connectivity, in addition to the well known reciprocal network activity. The multifaceted synaptic connections provide spinal networks with a remarkable ability to remain functional after structural divisions. PMID:24553920

  18. Identification of a spinal circuit for light touch and fine motor control

    PubMed Central

    Bourane, Steeve; Grossmann, Katja S.; Britz, Olivier; Dalet, Antoine; Del Barrio, Marta Garcia; Stam, Floor J.; Garcia-Campmany, Lidia; Koch, Stephanie; Goulding, Martyn

    2015-01-01

    Sensory circuits in the dorsal spinal cord integrate and transmit multiple cutaneous sensory modalities including the sense of light touch. Here we identify a population of excitatory interneurons (INs) in the dorsal horn that are important for transmitting innocuous light touch sensation. These neurons express the ROR alpha (RORα) nuclear orphan receptor and are selectively innervated by cutaneous low threshold mechanoreceptors (LTMs). Targeted removal of RORα INs in the dorsal spinal cord leads a marked reduction in behavioral responsiveness to light touch without affecting responses to noxious and itch stimuli. RORα IN-deficient mice also display a selective deficit in corrective foot movements. This phenotype, together with our demonstration that the RORα INs are innervated by corticospinal and vestibulospinal projection neurons, argues that the RORα INs direct corrective reflex movements by integrating touch information with descending motor commands from the cortex and cerebellum. PMID:25635458

  19. Crosstalk between p38, Hsp25 and Akt in spinal motor neurons after sciatic nerve injury

    NASA Technical Reports Server (NTRS)

    Murashov, A. K.; Ul Haq, I.; Hill, C.; Park, E.; Smith, M.; Wang, X.; Wang, X.; Goldberg, D. J.; Wolgemuth, D. J.

    2001-01-01

    The p38 stress-activated protein kinase pathway is involved in regulation of phosphorylation of Hsp25, which in turn regulates actin filament dynamic in non-neuronal cells. We report that p38, Hsp25 and Akt signaling pathways were specifically activated in spinal motor neurons after sciatic nerve axotomy. The activation of the p38 kinase was required for induction of Hsp25 expression. Furthermore, Hsp25 formed a complex with Akt, a member of PI-3 kinase pathway that prevents neuronal cell death. Together, our observations implicate Hsp25 as a central player in a complex system of signaling that may both promote regeneration of nerve fibers and prevent neuronal cell death in the injured spinal cord.

  20. Osteopontin is an alpha motor neuron marker in the mouse spinal cord.

    PubMed

    Misawa, Hidemi; Hara, Mayumi; Tanabe, Shogo; Niikura, Mamiko; Moriwaki, Yasuhiro; Okuda, Takashi

    2012-04-01

    Motor neurons (MNs) are designated as alpha/gamma and fast/slow based on their target sites and the types of muscle fibers innervated; however, few molecular markers that distinguish between these subtypes are available. Here we report that osteopontin (OPN) is a selective marker of alpha MNs in the mouse spinal cord. OPN was detected in approximately 70% of postnatal choline acetyltransferase (ChAT)-positive MNs with relatively large somas, but not in those with smaller somas. OPN+/ChAT+ MNs were also positive for NeuN, an alpha MN marker, but were negative for Err3, a gamma MN marker. The size distribution of OPN+/ChAT+ cells was nearly identical to that of NeuN+/ChAT+ alpha MNs. Group Ia proprioceptive terminals immunoreactive for vesicular glutamate transporter-1 were selectively detected on the OPN+/ChAT+ cells. OPN staining was also detected at motor axon terminals at neuromuscular junctions, where the OPN+ terminals were positive or negative for SV2A, a marker distinguishing fast/slow motor endplates. Finally, retrograde labeling following intramuscular injection of fast blue indicated that OPN is expressed in both fast and slow MNs. Collectively, our findings show that OPN is an alpha MN marker present in both the soma and the endplates of alpha MNs in the postnatal mouse spinal cord. PMID:22420030

  1. Influence of Baclofen on Laryngeal and Spinal Motor Drive During Cough in the Anesthetized Cat

    PubMed Central

    Castillo, Daniel; Pitts, Teresa

    2016-01-01

    Objectives/Hypothesis The antitussive properties of (±) baclofen on laryngeal muscle activities have not been determined. The hypothesis of this study was that administration of (±) baclofen would suppress upper airway muscle motor activity in a dose-dependent manner during cough. Study Design This is a prospective, preclinical, hypothesis-driven, paired design. Methods Electromyograms of the parasternal, rectus abdominis, thyroarytenoid, posterior cricoarytenoid, and thyrohyoid were measured, along with esophageal pressure. Cough was elicited by mechanical stimulation of the lumen of the intrathoracic trachea in spontaneously breathing cats. Results Baclofen (±) (3–10 µg kg−1 i.a.) induced decreases in the electromyogram amplitude of the rectus abdominis motor drive during coughing, the inspiratory and active expiratory (E1) phases of cough, and cough number per epoch. There was no effect of (±) baclofen on the EMG amplitudes of any of the laryngeal muscles, the parasternal, or the duration of the passive expiratory (E2) phase. Conclusions Results from the present study indicate differential control mechanisms for laryngeal and inspiratory motor drive during cough, providing evidence of a control system regulating laryngeal activity and inspiratory spinal drive that is divergent from the control of expiratory spinal motoneurons. PMID:23670824

  2. Reorganization and Preservation of Motor Control of the Brain in Spinal Cord Injury: A Systematic Review

    PubMed Central

    Kokotilo, Kristen J; Eng, Janice J; Curt, Armin

    2011-01-01

    Reorganization of brain function in people with CNS damage has been identified as one of the fundamental mechanisms involved in the recovery of sensori-motor function. Spinal cord injury (SCI) brain mapping studies during motor tasks aim for assessing the reorganization and preservation of brain networks involved in motor control. Revealing the activation of cortical and sub-cortical brain areas in people with SCI can indicate principal patterns of brain reorganization when the neurotrauma is distal to the brain. This review assessed brain activation after SCI in terms of intensity, volume, and somatotopic localization, as well as preservation of activation during attempted and/or imagined movements. Twenty-five studies meeting the inclusion criteria could be identified in MEDLINE (1980 to January 2008). Relevant characteristics of studies (level of lesion, time after injury, motor task) and mapping techniques varied widely. Changes in brain activation were found in both cortical and subcortical areas of individuals with SCI. In addition, several studies described a shift in the region of brain activation. These patterns appeared to be dynamic and influenced by the level, completeness and time after injury, as well as extent of clinical recovery. In addition, several aspects of reorganization of brain function following SCI resembled those reported in stroke. This review demonstrates that brain networks involved in different demands of motor control remain responsive even in chronic paralysis. These findings imply that therapeutic strategies aiming for restoring spinal cord function even in people with chronic SCI can build on a preserved competent brain control. PMID:19604097

  3. The Impact of Sacral Sensory Sparing in Motor Complete Spinal Cord Injury

    PubMed Central

    Kirshblum, Steven; Botticello, Amanda; Lammertse, Daniel P.; Marino, Ralph J.; Chiodo, Anthony E.; Jha, Amitabh

    2013-01-01

    Objective To determine the effect of sensory sparing in motor complete persons with spinal cord injury (SCI) on completion of rehabilitation on neurologic, functional, and social outcomes reported at 1 year. Design Secondary analysis of longitudinal data collected by using prospective survey-based methods. Setting Data submitted to the National SCI Statistical Center Database. Participants Of persons (N=4106) enrolled in the model system with a motor complete injury (American Spinal Injury Association Impairment Scale [AIS] grade A or B) at the time of discharge between 1997 and 2007, a total of 2331 (56.8%) completed a 1-year follow-up interview (Form II) and 1284 (31.3%) had complete data for neurologic (eg, AIS grade, injury level) variables at 1 year. Interventions Not applicable. Main Outcome Measures AIS grade (A vs B) at 1 year, bladder management, hospitalizations, perceived health status, motor FIM items, Satisfaction With Life Scale, depressive symptoms, and social participation. Results Compared with persons with AIS grade A at discharge, persons with AIS grade B were less likely to require indwelling catheterization and be hospitalized and more likely to perceive better health, report greater functional independence (ie, self-care, sphincter control, mobility, locomotion), and report social participation in the first year postinjury. A greater portion of individuals with AIS grade B at discharge had improved neurologic recovery at 1 year postinjury than those with AIS grade A. Significant AIS group differences in 1-year outcomes related to physical health were maintained after excluding persons who improved to motor incomplete status for only bladder management and change in perceived health status. This recognition of differences between persons with motor complete injuries (AIS grade A vs B) has important ramifications for the field of SCI rehabilitation and research. PMID:21353822

  4. SRC family kinases are required for limb trajectory selection by spinal motor axons.

    PubMed

    Kao, Tzu-Jen; Palmesino, Elena; Kania, Artur

    2009-04-29

    Signal relay by guidance receptors at the axonal growth cone is a process essential for the assembly of a functional nervous system. We investigated the in vivo function of Src family kinases (SFKs) as growth cone guidance signaling intermediates in the context of spinal lateral motor column (LMC) motor axon projection toward the ventral or dorsal limb mesenchyme. Using in situ mRNA detection we determined that Src and Fyn are expressed in LMC motor neurons of chick and mouse embryos at the time of limb trajectory selection. Inhibition of SFK activity by C-terminal Src kinase (Csk) overexpression in chick LMC axons using in ovo electroporation resulted in LMC axons selecting the inappropriate dorsoventral trajectory within the limb mesenchyme, with medial LMC axon projecting into the dorsal and ventral limb nerve with apparently random incidence. We also detected LMC axon trajectory choice errors in Src mutant mice demonstrating a nonredundant role for Src in motor axon guidance in agreement with gain and loss of Src function in chick LMC neurons which led to the redirection of LMC axons. Finally, Csk-mediated SFK inhibition attenuated the retargeting of LMC axons caused by EphA or EphB over-expression, implying the participation of SFKs in Eph-mediated LMC motor axon guidance. In summary, our findings demonstrate that SFKs are essential for motor axon guidance and suggest that they play an important role in relaying ephrin:Eph signals that mediate the selection of motor axon trajectory in the limb. PMID:19403835

  5. Effect of hyperbaric oxygen on MMP9/2 expression and motor function in rats with spinal cord injury.

    PubMed

    Hou, Ying-Nuo; Ding, Wen-Yuan; Shen, Yong; Yang, Da-Long; Wang, Lin-Feng; Zhang, Peng

    2015-01-01

    To study the effect of hyperbaric oxygen intervention on the microenvironment of nerve regeneration after spinal cord injury modeling and to explore the possible mechanism of nerve regeneration and functional recovery in rats with spinal cord injury. In 98 adult female SD rats, 90 successful models were obtained, which were divided into sham group, spinal cord injury group and hyperbaric oxygen group using randomized block method, 30/group. Spinal cord injury rat model was established in accordance with the modified Allen method. Motor function was assessed at the time points of before modeling, one day, three days, one week, two weeks, three weeks and four weeks after modeling respectively by BBB rating, inclined plane test and improved Tarlov score. At 3 days after modeling, apoptosis of neuronal cells in spinal cord injury region in experimental group was detected by TUNEL method; gene and protein expression of MMP9/2 in spinal cord injury and surrounding tissues was detected by RT-PCR and Western blot assay. At 4 weeks after modeling, histopathological morphological changes in spinal cord injury were observed by HE staining; fluorogold retrograde tracing was used to observe the regeneration and distribution of spinal cord nerve fibers and axon regeneration was observed by TEM. The three motor function scores in hyperbaric oxygen group at each time point after two weeks of treatment were significantly increased compared with spinal cord injury group (P < 0.05). At 3 d after modeling, apoptosis index in hyperbaric oxygen group were significantly lower than those in spinal cord injury group (P < 0.05). At 72 h after modeling, compared with spinal cord injury group, MMP9/2 gene and protein expression in hyperbaric oxygen group was significantly lower (P < 0.05). At four weeks after modeling, fluorogold positive nerve fibers were the most sham group, followed by hyperbaric oxygen group and spinal cord injury group in order; the differences among the groups were

  6. Effect of hyperbaric oxygen on MMP9/2 expression and motor function in rats with spinal cord injury

    PubMed Central

    Hou, Ying-Nuo; Ding, Wen-Yuan; Shen, Yong; Yang, Da-Long; Wang, Lin-Feng; Zhang, Peng

    2015-01-01

    To study the effect of hyperbaric oxygen intervention on the microenvironment of nerve regeneration after spinal cord injury modeling and to explore the possible mechanism of nerve regeneration and functional recovery in rats with spinal cord injury. In 98 adult female SD rats, 90 successful models were obtained, which were divided into sham group, spinal cord injury group and hyperbaric oxygen group using randomized block method, 30/group. Spinal cord injury rat model was established in accordance with the modified Allen method. Motor function was assessed at the time points of before modeling, one day, three days, one week, two weeks, three weeks and four weeks after modeling respectively by BBB rating, inclined plane test and improved Tarlov score. At 3 days after modeling, apoptosis of neuronal cells in spinal cord injury region in experimental group was detected by TUNEL method; gene and protein expression of MMP9/2 in spinal cord injury and surrounding tissues was detected by RT-PCR and Western blot assay. At 4 weeks after modeling, histopathological morphological changes in spinal cord injury were observed by HE staining; fluorogold retrograde tracing was used to observe the regeneration and distribution of spinal cord nerve fibers and axon regeneration was observed by TEM. The three motor function scores in hyperbaric oxygen group at each time point after two weeks of treatment were significantly increased compared with spinal cord injury group (P < 0.05). At 3 d after modeling, apoptosis index in hyperbaric oxygen group were significantly lower than those in spinal cord injury group (P < 0.05). At 72 h after modeling, compared with spinal cord injury group, MMP9/2 gene and protein expression in hyperbaric oxygen group was significantly lower (P < 0.05). At four weeks after modeling, fluorogold positive nerve fibers were the most sham group, followed by hyperbaric oxygen group and spinal cord injury group in order; the differences among the groups were

  7. Motor command for precision grip in the macaque monkey can be mediated by spinal interneurons.

    PubMed

    Alstermark, B; Pettersson, L G; Nishimura, Y; Yoshino-Saito, K; Tsuboi, F; Takahashi, M; Isa, T

    2011-07-01

    In motor control, the general view is still that spinal interneurons mainly contribute to reflexes and automatic movements. The question raised here is whether spinal interneurons can mediate the cortical command for independent finger movements, like a precision grip between the thumb and index finger in the macaque monkey, or if this function depends exclusively on a direct corticomotoneuronal pathway. This study is a followup of a previous report (Sasaki et al. J Neurophysiol 92: 3142-3147, 2004) in which we trained macaque monkeys to pick a small piece of sweet potato from a cylinder by a precision grip between the index finger and thumb. We have now isolated one spinal interneuronal system, the C3-C4 propriospinal interneurons with projection to hand and arm motoneurons. In the previous study, the lateral corticospinal tract (CST) was interrupted in C4/C5 (input intact to the C3-C4 propriospinal interneurons), and in this study, the CST was interrupted in C2 (input abolished). The precision grip could be performed within the first 15 days after a CST lesion in C4/C5 but not in C2. We conclude that C3-C4 propriospinal interneurons also can carry the command for precision grip. PMID:21511706

  8. Motor Vehicle Crash–Related Injury Causation Scenarios for Spinal Injuries in Restrained Children and Adolescents

    PubMed Central

    ZONFRILLO, MARK R.; LOCEY, CAITLIN M.; SCARFONE, STEVEN R.; ARBOGAST, KRISTY B.

    2016-01-01

    Objective Motor vehicle crash (MVC)-related spinal injuries result in significant morbidity and mortality in children. The objective was to identify MVC-related injury causation scenarios for spinal injuries in restrained children. Methods This was a case series of occupants in MVCs from the Crash Injury Research and Engineering Network (CIREN) data set. Occupants aged 0–17 years old with at least one Abbreviated Injury Scale (AIS) 2+ severity spinal injury in vehicles model year 1990+ that did not experience a rollover were included. Unrestrained occupants, those not using the shoulder portion of the belt restraint, and those with child restraint gross misuse were excluded. Occupants with preexisting comorbidities contributing to spinal injury and occupants with limited injury information were also excluded. A multidisciplinary team retrospectively reviewed each case to determine injury causation scenarios (ICSs). Crash conditions, occupant and restraint characteristics, and injuries were qualitatively summarized. Results Fifty-nine cases met the study inclusion criteria and 17 were excluded. The 42 occupants included sustained 97 distinct AIS 2+ spinal injuries (27 cervical, 22 thoracic, and 48 lumbar; 80 AIS-2, 15 AIS-3, 1 AIS-5, and 1 AIS-6), with fracture as the most common injury type (80%). Spinal-injured occupants were most frequently in passenger cars (64%), and crash direction was most often frontal (62%). Mean delta-V was 51.3 km/h ± 19.4 km/h. The average occupant age was 12.4 ± 5.3 years old, and 48% were 16- to 17-year-olds. Thirty-six percent were right front passengers and 26% were drivers. Most occupants were lap and shoulder belt restrained (88%). Non-spinal AIS 2+ injuries included those of the lower extremity and pelvis (n = 56), head (n = 43), abdomen (n = 39), and thorax (n = 36). Spinal injury causation was typically due to flexion or lateral bending over the lap and or shoulder belt or child restraint harness, compression by occupant

  9. Ryk controls remapping of motor cortex during functional recovery after spinal cord injury.

    PubMed

    Hollis, Edmund R; Ishiko, Nao; Yu, Ting; Lu, Chin-Chun; Haimovich, Ariela; Tolentino, Kristine; Richman, Alisha; Tury, Anna; Wang, Shih-Hsiu; Pessian, Maysam; Jo, Euna; Kolodkin, Alex; Zou, Yimin

    2016-05-01

    Limited functional recovery can be achieved through rehabilitation after incomplete spinal cord injury. Eliminating the function of a repulsive Wnt receptor, Ryk, in mice and rats by either conditional knockout in the motor cortex or monoclonal antibody infusion resulted in increased corticospinal axon collateral branches with presynaptic puncta in the spinal cord and enhanced recovery of forelimb reaching and grasping function following a cervical dorsal column lesion. Using optical stimulation, we observed that motor cortical output maps underwent massive changes after injury and that hindlimb cortical areas were recruited to control the forelimb over time. Furthermore, a greater cortical area was dedicated to controlling the forelimb in Ryk conditional knockout mice than in controls (wild-type or heterozygotes). In the absence of weekly task-specific training, recruitment of ectopic cortical areas was greatly reduced and there was no significant functional recovery even in Ryk conditional knockout mice. Our study provides evidence that maximal circuit reorganization and functional recovery can be achieved by combining molecular manipulation and targeted rehabilitation. PMID:27065364

  10. Radial glia inhibit peripheral glial infiltration into the spinal cord at motor exit point transition zones.

    PubMed

    Smith, Cody J; Johnson, Kimberly; Welsh, Taylor G; Barresi, Michael J F; Kucenas, Sarah

    2016-07-01

    In the mature vertebrate nervous system, central and peripheral nervous system (CNS and PNS, respectively) GLIA myelinate distinct motor axon domains at the motor exit point transition zone (MEP TZ). How these cells preferentially associate with and myelinate discrete, non-overlapping CNS versus PNS axonal segments, is unknown. Using in vivo imaging and genetic cell ablation in zebrafish, we demonstrate that radial glia restrict migration of PNS glia into the spinal cord during development. Prior to development of radial glial endfeet, peripheral cells freely migrate back and forth across the MEP TZ. However, upon maturation, peripherally located cells never enter the CNS. When we ablate radial glia, peripheral glia ectopically migrate into the spinal cord during developmental stages when they would normally be restricted. These findings demonstrate that radial glia contribute to both CNS and PNS development and control the unidirectional movement of glial cell types across the MEP TZ early in development. GLIA 2016. GLIA 2016;64:1138-1153. PMID:27029762

  11. Spinal cord injury affects I-wave facilitation in human motor cortex.

    PubMed

    Nardone, Raffaele; Höller, Yvonne; Bathke, Arne C; Orioli, Andrea; Schwenker, Kerstin; Frey, Vanessa; Golaszewski, Stefan; Brigo, Francesco; Trinka, Eugen

    2015-07-01

    Transcranial magnetic stimulation (TMS) is a useful non-invasive approach for studying cortical physiology. To further clarify the mechanisms of cortical reorganization after spinal cord injury (SCI), we used a non-invasive paired TMS protocol for the investigation of the corticospinal I-waves, the so-called I-wave facilitation, in eight patients with cervical SCI. We found that the pattern of I-wave facilitation significantly differs between SCI patients with normal and abnormal central motor conduction (CMCT), and healthy controls. The group with normal CMCT showed increased I-wave facilitation, while the group with abnormal CMCT showed lower I-wave facilitation compared to a control group. The facilitatory I-wave interaction occurs at the level of the motor cortex, and the mechanisms responsible for the production of I-waves are under control of GABA-related inhibition. Therefore, the findings of our small sample preliminary study provide further physiological evidence of increased motor cortical excitability in patients with preserved corticospinal projections. This is possibly due to decreased GABAergic intracortical inhibition. The excitability of networks producing short-interval intracortical facilitation could increase after SCI as a mechanism to enhance activation of residual corticospinal tract pathways and thus compensate for the impaired ability of the motor cortex to generate appropriate voluntary movements. Finally, the I-wave facilitation technique could be used in clinical neurorehabilitation as an additional method of assessing and monitoring function in SCI. PMID:26151771

  12. Spinal Muscular Atrophy Patient iPSC-Derived Motor Neurons Have Reduced Expression of Proteins Important in Neuronal Development

    PubMed Central

    Fuller, Heidi R.; Mandefro, Berhan; Shirran, Sally L.; Gross, Andrew R.; Kaus, Anjoscha S.; Botting, Catherine H.; Morris, Glenn E.; Sareen, Dhruv

    2016-01-01

    Spinal muscular atrophy (SMA) is an inherited neuromuscular disease primarily characterized by degeneration of spinal motor neurons, and caused by reduced levels of the SMN protein. Previous studies to understand the proteomic consequences of reduced SMN have mostly utilized patient fibroblasts and animal models. We have derived human motor neurons from type I SMA and healthy controls by creating their induced pluripotent stem cells (iPSCs). Quantitative mass spectrometry of these cells revealed increased expression of 63 proteins in control motor neurons compared to respective fibroblasts, whereas 30 proteins were increased in SMA motor neurons vs. their fibroblasts. Notably, UBA1 was significantly decreased in SMA motor neurons, supporting evidence for ubiquitin pathway defects. Subcellular distribution of UBA1 was predominantly cytoplasmic in SMA motor neurons in contrast to nuclear in control motor neurons; suggestive of neurodevelopmental abnormalities. Many of the proteins that were decreased in SMA motor neurons, including beta III-tubulin and UCHL1, were associated with neurodevelopment and differentiation. These neuron-specific consequences of SMN depletion were not evident in fibroblasts, highlighting the importance of iPSC technology. The proteomic profiles identified here provide a useful resource to explore the molecular consequences of reduced SMN in motor neurons, and for the identification of novel biomarker and therapeutic targets for SMA. PMID:26793058

  13. Spinal Muscular Atrophy Patient iPSC-Derived Motor Neurons Have Reduced Expression of Proteins Important in Neuronal Development.

    PubMed

    Fuller, Heidi R; Mandefro, Berhan; Shirran, Sally L; Gross, Andrew R; Kaus, Anjoscha S; Botting, Catherine H; Morris, Glenn E; Sareen, Dhruv

    2015-01-01

    Spinal muscular atrophy (SMA) is an inherited neuromuscular disease primarily characterized by degeneration of spinal motor neurons, and caused by reduced levels of the SMN protein. Previous studies to understand the proteomic consequences of reduced SMN have mostly utilized patient fibroblasts and animal models. We have derived human motor neurons from type I SMA and healthy controls by creating their induced pluripotent stem cells (iPSCs). Quantitative mass spectrometry of these cells revealed increased expression of 63 proteins in control motor neurons compared to respective fibroblasts, whereas 30 proteins were increased in SMA motor neurons vs. their fibroblasts. Notably, UBA1 was significantly decreased in SMA motor neurons, supporting evidence for ubiquitin pathway defects. Subcellular distribution of UBA1 was predominantly cytoplasmic in SMA motor neurons in contrast to nuclear in control motor neurons; suggestive of neurodevelopmental abnormalities. Many of the proteins that were decreased in SMA motor neurons, including beta III-tubulin and UCHL1, were associated with neurodevelopment and differentiation. These neuron-specific consequences of SMN depletion were not evident in fibroblasts, highlighting the importance of iPSC technology. The proteomic profiles identified here provide a useful resource to explore the molecular consequences of reduced SMN in motor neurons, and for the identification of novel biomarker and therapeutic targets for SMA. PMID:26793058

  14. Inducing Chronic Excitotoxicity in the Mouse Spinal Cord to Investigate Lower Motor Neuron Degeneration

    PubMed Central

    Blizzard, Catherine A.; Lee, K. M.; Dickson, Tracey C.

    2016-01-01

    We report the methodology for the chronic delivery of an excitotoxin to the mouse spinal cord via surgically implanted osmotic mini-pumps. Previous studies have investigated the effect of chronic application of excitotoxins in the rat, however there has been little translation of this model to the mouse. Using mice that express yellow fluorescent protein (YFP), motor neuron and neuromuscular junction alterations can be investigate following targeted, long-term (28 days) exposure to the α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor excitotoxin, kainic acid. By targeting the L3-4 region of the lumbar spinal cord, with insertion of an intrathecal catheter into the subarachnoid space at L5, chronic application of the kainic acid results in slow excitotoxic death in the anterior ventral horn, with a significant (P < 0.05) reduction in the number of SMI-32 immunopositive neurons present after 28 days infusion. Use of the Thy1-YFP mice provides unrivaled visualization of the neuromuscular junction and enables the resultant distal degeneration in skeletal muscle to be observed. Both neuromuscular junction retraction at the gastrocnemius muscle and axonal fragmentation in the sciatic nerve were observed after chronic infusion of kainic acid for 28 days. Lower motor neuron, and distal neuromuscular junction, degeneration are pathological hallmarks of the devastating neurodegenerative disease Amyotrophic Lateral Sclerosis (ALS). This mouse model will be advantageous for increasing our understanding of how the pathophysiological phenomena associated with this disease can lead to lower motor neuron loss and distal pathology, as well as providing a robust in vivo platform to test therapeutic interventions directed at excitotoxic mechanisms. PMID:26973454

  15. Mechanism of Forelimb Motor Function Restoration after Cervical Spinal Cord Hemisection in Rats: A Comparison of Juveniles and Adults

    PubMed Central

    Hasegawa, Atsushi; Takahashi, Masahito; Satomi, Kazuhiko; Ohne, Hideaki; Takeuchi, Takumi; Sato, Shunsuke; Ichimura, Shoichi

    2016-01-01

    The aim of this study was to investigate forelimb motor function after cervical spinal cord injury in juvenile and adult rats. Both rats received a left segmental hemisection of the spinal cord after C3-C4 laminectomy. Behavioral evaluation of motor function was monitored and assessed using the New Rating Scale (NRS) and Forelimb Locomotor Scale (FLS) and by measuring the range of motion (ROM) of both the elbow and wrist. Complete left forelimb motor paralysis was observed in both rats. The NRS showed motor function recovery restored to 50.2 ± 24.7% in juvenile rats and 34.0 ± 19.8% in adult rats. FLS was 60.4 ± 26.8% in juvenile rats and 46.5 ± 26.9% in adult rats. ROM of the elbow and wrist were 88.9 ± 20.6% and 44.4 ± 24.1% in juvenile rats and 70.0 ± 29.2% and 40.0 ± 21.1% in adult rats. Thus, the NRS and ROM of the elbow showed a significant difference between age groups. These results indicate that left hemisection of the cervical spinal cord was not related to right-sided motor functions. Moreover, while motor paralysis of the left forelimb gradually recovered in both groups, the improvement was greater in juvenile rats. PMID:27065569

  16. Effect of transgenic human insulin-like growth factor-1 on spinal motor neurons following peripheral nerve injury

    PubMed Central

    GU, JIAXIANG; LIU, HONGJUN; ZHANG, NAICHEN; TIAN, HENG; PAN, JUNBO; ZHANG, WENZHONG; WANG, JINGCHENG

    2015-01-01

    The aim of the present study was to observe the protective effect of exogenous human insulin-like growth factor-1 (hIGF-1) on spinal motor neurons, following its local transfection into an area of peripheral nerve injury. A total of 90 male Wistar rats that had been established as sciatic nerve crush injury models were randomly divided into three groups: hIGF-1 treatment, sham-transfected control and blank control groups. The different phases of hIGF-1 expression were observed in the spinal cord via postoperative immunostaining and the apoptosis of motor neurons was observed using the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling method. Pathological changes of the motor neurons and Nissl bodies within cell bodies were observed via Marsland and Luxol fast blue double staining, while changes in the neuropil of the spinal cord anterior horn were investigated via ultrastructural observation. It was found that hIGF-1, locally transfected into an area of peripheral nerve injury, was expressed in the spinal anterior horn following axoplasmic transport; the peak hIGF-1 expression occurred approximately a week following transfection. The number of apoptotic spinal cord motor neurons observed in the hIGF-1 treatment group was fewer than that in the sham-transfected and blank control groups at days 7, 14 and 21 following transfection (P<0.01). Furthermore, the quantity of motor neuron cells in the anterior horn of the spinal cord in the hIGF-1 treatment group was higher compared with those in the sham-transfected and blank control groups at days 2, 7, 14 and 28 following transfection (P<0.01). The degenerative changes of Nissl bodies within the cytoplasm of the hIGF-1 treatment group were less severe compared with those of the sham-transfected and blank control groups. At day 56 following transfection, the spinal anterior horn neuropil ultrastructure in the hIGF-1 treatment group was generally normal, while the sham-transfected and blank control

  17. Generating Diverse Spinal Motor Neuron Subtypes from Human Pluripotent Stem Cells

    PubMed Central

    Patani, Rickie

    2016-01-01

    Resolving the mechanisms underlying human neuronal diversification remains a major challenge in developmental and applied neurobiology. Motor neurons (MNs) represent a diverse pool of neuronal subtypes exhibiting differential vulnerability in different human neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). The ability to predictably manipulate MN subtype lineage restriction from human pluripotent stem cells (PSCs) will form the essential basis to establishing accurate, clinically relevant in vitro disease models. I first overview motor neuron developmental biology to provide some context for reviewing recent studies interrogating pathways that influence the generation of MN diversity. I conclude that motor neurogenesis from PSCs provides a powerful reductionist model system to gain insight into the developmental logic of MN subtype diversification and serves more broadly as a leading exemplar of potential strategies to resolve the molecular basis of neuronal subclass differentiation within the nervous system. These studies will in turn permit greater mechanistic understanding of differential MN subtype vulnerability using in vitro human disease models. PMID:26823667

  18. Synergistic integration of Netrin and ephrin axon guidance signals by spinal motor neurons

    PubMed Central

    Poliak, Sebastian; Morales, Daniel; Croteau, Louis-Philippe; Krawchuk, Dayana; Palmesino, Elena; Morton, Susan; Cloutier, Jean-François; Charron, Frederic; Dalva, Matthew B; Ackerman, Susan L; Kao, Tzu-Jen; Kania, Artur

    2015-01-01

    During neural circuit assembly, axonal growth cones are exposed to multiple guidance signals at trajectory choice points. While axonal responses to individual guidance cues have been extensively studied, less is known about responses to combination of signals and underlying molecular mechanisms. Here, we studied the convergence of signals directing trajectory selection of spinal motor axons entering the limb. We first demonstrate that Netrin-1 attracts and repels distinct motor axon populations, according to their expression of Netrin receptors. Quantitative in vitro assays demonstrate that motor axons synergistically integrate both attractive or repulsive Netrin-1 signals together with repulsive ephrin signals. Our investigations of the mechanism of ephrin-B2 and Netrin-1 integration demonstrate that the Netrin receptor Unc5c and the ephrin receptor EphB2 can form a complex in a ligand-dependent manner and that Netrin–ephrin synergistic growth cones responses involve the potentiation of Src family kinase signaling, a common effector of both pathways. DOI: http://dx.doi.org/10.7554/eLife.10841.001 PMID:26633881

  19. Alterations in multidimensional motor unit number index of hand muscles after incomplete cervical spinal cord injury.

    PubMed

    Li, Le; Li, Xiaoyan; Liu, Jie; Zhou, Ping

    2015-01-01

    The objective of this study was to apply a novel multidimensional motor unit number index (MD-MUNIX) technique to examine hand muscles in patients with incomplete cervical spinal cord injury (SCI). The MD-MUNIX was estimated from the compound muscle action potential (CMAP) and different levels of surface interference pattern electromyogram (EMG) at multiple directions of voluntary isometric muscle contraction. The MD-MUNIX was applied in the first dorsal interosseous (FDI), thenar and hypothenar muscles of SCI (n = 12) and healthy control (n = 12) subjects. The results showed that the SCI subjects had significantly smaller CMAP and MD-MUNIX in all the three examined muscles, compared to those derived from the healthy control subjects. The multidimensional motor unit size index (MD-MUSIX) demonstrated significantly larger values for the FDI and hypothenar muscles in SCI subjects than those from healthy control subjects, whereas the MD-MUSIX enlargement was marginally significant for the thenar muscles. The findings from the MD-MUNIX analyses provide an evidence of motor unit loss in hand muscles of cervical SCI patients, contributing to hand function deterioration. PMID:26005410

  20. Characterization of recovered walking patterns and motor control after contusive spinal cord injury in rats

    PubMed Central

    Hansen, Christopher N; Linklater, William; Santiago, Raquel; Fisher, Lesley C; Moran, Stephanie; Buford, John A; Michele Basso, D

    2012-01-01

    Currently, complete recovery is unattainable for most individuals with spinal cord injury (SCI). Instead, recovery is typically accompanied by persistent sensory and motor deficits. Restoration of preinjury function will likely depend on improving plasticity and integration of these impaired systems. Eccentric muscle actions require precise integration of sensorimotor signals and are predominant during the yield (E2) phase of locomotion. Motor neuron activation and control during eccentric contractions is impaired across a number of central nervous system (CNS) disorders, but remains unexamined after SCI. Therefore, we characterized locomotor recovery after contusive SCI using hindlimb (HL) kinematics and electromyographic (EMG) recordings with specific consideration of eccentric phases of treadmill (TM) walking. Deficits in E2 and a caudal shift of locomotor subphases persisted throughout the 3-week recovery period. EMG records showed notable deficits in the semitendinosus (ST) during yield. Unlike other HL muscles, recruitment of ST changed with recovery. At 7 days, the typical dual-burst pattern of ST was lost and the second burst (ST2) was indistinct. By 21 days, the dual-burst pattern returned, but latencies remained impaired. We show that ST2 burst duration is highly predictive of open field Basso, Beattie, Bresnahan (BBB) scores. Moreover, we found that simple changes in locomotor specificity which enhance eccentric actions result in new motor patterns after SCI. Our findings identify a caudal shift in stepping kinematics, irregularities in E2, and aberrant ST2 bursting as markers of incomplete recovery. These residual impairments may provide opportunities for targeted rehabilitation. PMID:23139900

  1. Motor Alterations Induced by Chronic 4-Aminopyridine Infusion in the Spinal Cord In vivo: Role of Glutamate and GABA Receptors

    PubMed Central

    Lazo-Gómez, Rafael; Tapia, Ricardo

    2016-01-01

    Motor neuron (MN) degeneration is the pathological hallmark of MN diseases, a group of neurodegenerative disorders clinically manifested as muscle fasciculations and hyperreflexia, followed by paralysis, respiratory failure, and death. Ample evidence supports a role of glutamate-mediated excitotoxicity in motor death. In previous work we showed that stimulation of glutamate release from nerve endings by perfusion of the K+-channel blocker 4-aminopyridine (4-AP) in the rat hippocampus induces seizures and neurodegeneration, and that AMPA infusion in the spinal cord produces paralysis and MN death. On these bases, in this work we have tested the effect of the chronic infusion of 4-AP in the spinal cord, using implanted osmotic minipumps, on motor activity and on MN survival, and the mechanisms underlying this effect. 4-AP produced muscle fasciculations and motor deficits assessed in two motor tests, which start 2–3 h after the implant, which ameliorated spontaneously within 6–7 days, but no neurodegeneration. These effects were prevented by both AMPA and NMDA receptors blockers. The role of GABAA receptors was also explored, and we found that chronic infusion of bicuculline induced moderate MN degeneration and enhanced the hyperexcitation produced by 4-AP. Unexpectedly, the GABAAR agonist muscimol also induced motor deficits and failed to prevent the MN death induced by AMPA. We conclude that motor alterations induced by chronic 4-AP infusion in the spinal cord in vivo is due to ionotropic glutamate receptor overactivation and that blockade of GABAergic neurotransmission induces MN death under chronic conditions. These results shed light on the role of glutamatergic and GABAergic neurotransmission in the regulation of MN excitability in the spinal cord. PMID:27242406

  2. eGFP expression under the Uchl1 promoter labels corticospinal motor neurons and a subpopulation of degeneration resistant spinal motor neurons in ALS mouse models

    NASA Astrophysics Data System (ADS)

    Yasvoina, Marina V.

    Current understanding of basic cellular and molecular mechanisms for motor neuron vulnerability during motor neuron disease initiation and progression is incomplete. The complex cytoarchitecture and cellular heterogeneity of the cortex and spinal cord greatly impedes our ability to visualize, isolate, and study specific neuron populations in both healthy and diseased states. We generated a novel reporter line, the Uchl1-eGFP mouse, in which cortical and spinal components of motor neuron circuitry are genetically labeled with eGFP under the Uchl1 promoter. A series of cellular and anatomical analyses combined with retrograde labeling, molecular marker expression, and electrophysiology were employed to determine identity of eGFP expressing cells in the motor cortex and the spinal cord of novel Uchl1-eGFP reporter mice. We conclude that eGFP is expressed in corticospinal motor neurons (CSMN) in the motor cortex and a subset of S-type alpha and gamma spinal motor neurons (SMN) in the spinal cord. hSOD1G93A and Alsin-/- mice, mouse models for amyotrophic lateral sclerosis (ALS), were bred to Uchl1-eGFP reporter mouse line to investigate the pathophysiology and underlying mechanisms of CSMN degeneration in vivo. Evidence suggests early and progressive degeneration of CSMN and SMN in the hSOD1G93A transgenic mice. We show an early increase of autophagosome formation in the apical dendrites of vulnerable CSMN in hSOD1G93A-UeGFP mice, which is localized to the apical dendrites. In addition, labeling S-type alpha and gamma SMN in the hSOD1G93A-UeGFP mice provide a unique opportunity to study basis of their resistance to degeneration. Mice lacking alsin show moderate clinical phenotype and mild CSMN axon degeneration in the spinal cord, which suggests vulnerability of CSMN. Therefore, we investigated the CSMN cellular and axon defects in aged Alsin-/- mice bred to Uchl1-eGFP reporter mouse line. We show that while CSMN are preserved and lack signs of degeneration, CSMN axons

  3. Transgenic mice ectopically expressing HOXA5 in the dorsal spinal cord show structural defects of the cervical spinal cord along with sensory and motor defects of the forelimb.

    PubMed

    Krieger, Karin E; Abbott, Matthew A; Joksimovic, Milan; Lueth, Paul A; Sonea, Ioana M; Jeannotte, Lucie; Tuggle, Christopher K

    2004-06-21

    Mutation of murine Hoxa5 has shown that HOXA5 controls lung, gastrointestinal tract and vertebrae development. Hoxa5 is also expressed in the spinal cord, yet no central nervous system phenotype has been described in Hoxa5 knockouts. To identify the role of Hoxa5 in spinal cord development, we developed transgenic mice that express HOXA5 in the dorsal spinal cord in the brachial region. Using HOXA5-specific antibodies, we show this expression pattern is ectopic as the endogenous protein is expressed only in the ventral spinal cord at this anterio-posterior level. This transgenic line (Hoxa5SV2) also displays forelimb-specific motor and sensory defects. Hoxa5SV2 transgenic mice cannot support their body weight in a forelimb hang, and forelimb strength is decreased. However, Rotarod performance was not impaired in Hoxa5SV2 mice. Hoxa5SV2 mice also show a delayed forelimb response to noxious heat, although hindlimb response time was normal. Administration of an analgesic significantly reduced the hang test defect and decreased the transgene effect on forelimb strength, indicating that pain pathways may be affected. The morphology of transgenic cervical (but not lumbar) spinal cord is highly aberrant. Nissl staining indicates superficial laminae of the dorsal horn are severely disrupted. The distribution of cells and axons immunoreactive for substance P, neurokinin-B, and their primary receptors were aberrant only in transgenic cervical spinal cord. Further, we see increased levels of apoptosis in transgenic spinal cord at embryonic day 13.5. Our evidence suggests apoptosis due to HOXA5 misexpression is a major cause of loss of superficial lamina cells in Hoxa5SV2 mice. PMID:15158076

  4. Collateral development and spinal motor reorganization after nerve injury and repair

    PubMed Central

    Yu, Youlai; Zhang, Peixun; Han, Na; Kou, Yuhui; Yin, Xiaofeng; Jiang, Baoguo

    2016-01-01

    Functional recovery is often unsatisfactory after severe extended nerve defects or proximal nerve trunks injuries repaired by traditional repair methods, as the long regeneration distance for the regenerated axons to reinnervate their original target end-organs. The proximal nerve stump can regenerate with many collaterals that reinnervate the distal stump after peripheral nerve injury, it may be possible to use nearby fewer nerve fibers to repair more nerve fibers at the distal end to shorten the regenerating distance. In this study, the proximal peroneal nerve was used to repair both the distal peroneal and tibial nerve. The number and location of motor neurons in spinal cord as well as functional and morphological recovery were assessed at 2 months, 4 months and 8 months after nerve repair, respectively. Projections from the intact peroneal and tibial nerves were also studied in normal animals. The changes of motor neurons were assessed using the retrograde neurotracers FG and DiI to backlabel motor neurons that regenerate axons into two different pathways. To evaluate the functional recovery, the muscle forces and sciatic function index were examined. The muscles and myelinated axons were assessed using electrophysiology and histology. The results showed that all labeled motor neurons after nerve repair were always confined within the normal peroneal nerve pool and nearly all the distribution of motor neurons labeled via distal different nerves was disorganized as compared to normal group. However, there was a significant decline in the number of double labeled motor neurons and an obvious improvement with respect to the functional and morphological recovery between 2 and 8 months. In addition, the tibial/peroneal motor neuron number ratio at different times was 2.11±0.05, 2.13±0.08, 2.09±0.12, respectively, and was close to normal group (2.21±0.09). Quantitative analysis showed no significant morphological differences between myelinated nerve fibers

  5. Direct-trauma model of posttraumatic syringomyelia with a computer-controlled motorized spinal cord impactor.

    PubMed

    Wong, Johnny H Y; Song, Xin; Hemley, Sarah J; Bilston, Lynne E; Cheng, Shaokoon; Stoodley, Marcus A

    2016-05-01

    OBJECTIVE The pathogenesis of posttraumatic syringomyelia remains enigmatic and is not adequately explained by current theories. Experimental investigations require a reproducible animal model that replicates the human condition. Current animal models are imperfect because of their low reliability, severe neurological deficits, or dissimilar mechanism of injury. The objective of this study was to develop a reproducible rodent model of posttraumatic syringomyelia using a spinal cord impactor that produces an injury that more closely mimics the human condition and does not produce severe neurological deficits. METHODS The study consisted of 2 parts. Seventy animals were studied overall: 20 in Experiment 1 and 48 in Experiment 2 after two rats with severe deficits were killed early. Experiment 1 aimed to determine the optimal force setting for inducing a cystic cavity without neurological deficits using a computer-controlled motorized spinal cord impactor. Twenty animals received an impact that ranged from 50 to 150 kDyn. Using the optimal force for producing an initial cyst determined from Experiment 1, Experiment 2 aimed to compare the progression of cavities in animals with and those without arachnoiditis induced by kaolin. Forty-eight animals were killed at 1, 3, 6, or 12 weeks after syrinx induction. Measurements of cavity size and maximum anteroposterior and lateral diameters were evaluated using light microscopy. RESULTS In Experiment 1, cavities were present in 95% of the animals. The duration of limb weakness and spinal cord cavity size correlated with the delivered force. The optimal force chosen for Experiment 2 was 75 kDyn. In Experiment 2, cavities occurred in 92% of the animals. Animals in the kaolin groups developed larger cavities and more vacuolations and enlarged perivascular spaces than those in the nonkaolin groups. CONCLUSIONS This impact model reliably produces cavities that resemble human posttraumatic syringomyelia and is suitable for further

  6. Genetic circuitry of Survival motor neuron, the gene underlying spinal muscular atrophy

    PubMed Central

    Sen, Anindya; Dimlich, Douglas N.; Guruharsha, K. G.; Kankel, Mark W.; Hori, Kazuya; Yokokura, Takakazu; Brachat, Sophie; Richardson, Delwood; Loureiro, Joseph; Sivasankaran, Rajeev; Curtis, Daniel; Davidow, Lance S.; Rubin, Lee L.; Hart, Anne C.; Van Vactor, David; Artavanis-Tsakonas, Spyros

    2013-01-01

    The clinical severity of the neurodegenerative disorder spinal muscular atrophy (SMA) is dependent on the levels of functional Survival Motor Neuron (SMN) protein. Consequently, current strategies for developing treatments for SMA generally focus on augmenting SMN levels. To identify additional potential therapeutic avenues and achieve a greater understanding of SMN, we applied in vivo, in vitro, and in silico approaches to identify genetic and biochemical interactors of the Drosophila SMN homolog. We identified more than 300 candidate genes that alter an Smn-dependent phenotype in vivo. Integrating the results from our genetic screens, large-scale protein interaction studies, and bioinformatic analysis, we define a unique interactome for SMN that provides a knowledge base for a better understanding of SMA. PMID:23757500

  7. Differences in recruitment order of motor units in phasic and tonic flexion reflex in `spinal man'

    PubMed Central

    Grimby, Lennart; Hannerz, Jan

    1970-01-01

    The recruitment order of motoneurones in muscle contractions has been held to be largely constant and determined by the size of the cell. However, as shown in a previous investigation using electromyographic techniques, the order in which different motor units are activated during voluntary muscle contractions changes in normal human subjects on shifts from phasic to tonic contraction. In order to investigate these two types of activity also in cases in which the cerebral influence on the motoneurone pool is blocked, an analysis was made of the recruitment order in phasic and tonic flexion reflexes in 10 patients with total interruption of the spinal cord. The following four principles were found to apply and presumed to be generally valid for the isolated human spinal cord: (1) in the phasic exteroceptive reflex, the order of recruitment varies despite application of a standardized stimulus; (2) in the tonic reflex, the first unit to be recruited is usually the same even with widely different types of stimuli; (3) a shift from phasic to tonic reflex activation may result in considerable changes in recruitment order; (4) after facilitation by a subliminal long-lasting stimulus, the first unit to be recruited in the phasic reflex is also the first to be recruited in the tonic reflex. It is suggested that a tonic influence on the motoneurone pool is required for the presupposed constancy of the recruitment order. Images PMID:5478941

  8. Chronic uranium contamination alters spinal motor neuron integrity via modulation of SMN1 expression and microglia recruitment.

    PubMed

    Saint-Marc, Brice; Elie, Christelle; Manens, Line; Tack, Karine; Benderitter, Marc; Gueguen, Yann; Ibanez, Chrystelle

    2016-07-01

    Consequences of uranium contamination have been extensively studied in brain as cognitive function impairments were observed in rodents. Locomotor disturbances have also been described in contaminated animals. Epidemiological studies have revealed increased risk of motor neuron diseases in veterans potentially exposed to uranium during their military duties. To our knowledge, biological response of spinal cord to uranium contamination has not been studied even though it has a crucial role in locomotion. Four groups of rats were contaminated with increasing concentrations of uranium in their drinking water compared to a control group to study cellular mechanisms involved in locomotor disorders. Nissl staining of spinal cord sections revealed the presence of chromatolytic neurons in the ventral horn. This observation was correlated with a decreased number of motor neurons in the highly contaminated group and a decrease of SMN1 protein expression (Survival of Motor Neuron 1). While contamination impairs motor neuron integrity, an increasing number of microglial cells indicates the trigger of a neuroinflammation process. Potential overexpression of a microglial recruitment chemokine, MCP-1 (Monocyte Chimioattractant Protein 1), by motor neurons themselves could mediate this process. Studies on spinal cord appear to be relevant for risk assessment of population exposed via contaminated food and water. PMID:27153795

  9. Trunk robot rehabilitation training with active stepping reorganizes and enriches trunk motor cortex representations in spinal transected rats.

    PubMed

    Oza, Chintan S; Giszter, Simon F

    2015-05-01

    Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we examine effects of robot rehabilitation that promotes recovery of hindlimb weight support functions on trunk motor cortex representations. Adult rats spinal transected as neonates (NTX rats) at the T9/10 level significantly improve function with our robot rehabilitation paradigm, whereas treadmill-only trained do not. We used intracortical microstimulation to map motor cortex in two NTX groups: (1) treadmill trained (control group); and (2) robot-assisted treadmill trained (improved function group). We found significant robot rehabilitation-driven changes in motor cortex: (1) caudal trunk motor areas expanded; (2) trunk coactivation at cortex sites increased; (3) richness of trunk cortex motor representations, as examined by cumulative entropy and mutual information for different trunk representations, increased; (4) trunk motor representations in the cortex moved toward more normal topography; and (5) trunk and forelimb motor representations that SCI-driven plasticity and compensations had caused to overlap were segregated. We conclude that effective robot rehabilitation training induces significant reorganization of trunk motor cortex and partially reverses some plastic changes that may be adaptive in non-stepping paraplegia after SCI. PMID:25948267

  10. Trunk Robot Rehabilitation Training with Active Stepping Reorganizes and Enriches Trunk Motor Cortex Representations in Spinal Transected Rats

    PubMed Central

    Oza, Chintan S.

    2015-01-01

    Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we examine effects of robot rehabilitation that promotes recovery of hindlimb weight support functions on trunk motor cortex representations. Adult rats spinal transected as neonates (NTX rats) at the T9/10 level significantly improve function with our robot rehabilitation paradigm, whereas treadmill-only trained do not. We used intracortical microstimulation to map motor cortex in two NTX groups: (1) treadmill trained (control group); and (2) robot-assisted treadmill trained (improved function group). We found significant robot rehabilitation-driven changes in motor cortex: (1) caudal trunk motor areas expanded; (2) trunk coactivation at cortex sites increased; (3) richness of trunk cortex motor representations, as examined by cumulative entropy and mutual information for different trunk representations, increased; (4) trunk motor representations in the cortex moved toward more normal topography; and (5) trunk and forelimb motor representations that SCI-driven plasticity and compensations had caused to overlap were segregated. We conclude that effective robot rehabilitation training induces significant reorganization of trunk motor cortex and partially reverses some plastic changes that may be adaptive in non-stepping paraplegia after SCI. PMID:25948267

  11. Ethanol withdrawal hyper-responsiveness mediated by NMDA receptors in spinal cord motor neurons

    PubMed Central

    Li, Hui-Fang; Kendig, Joan J

    2003-01-01

    Following ethanol (EtOH) exposure, population excitatory postsynaptic potentials (pEPSPs) in isolated spinal cord increase to a level above control (withdrawal hyper-responsiveness). The present studies were designed to characterize this phenomenon and in particular to test the hypothesis that protein kinases mediate withdrawal. Patch-clamp studies were carried out in motor neurons in rat spinal cord slices. Currents were evoked by brief pulses of glutamate, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) or N-methyl-D-aspartic acid (NMDA). Of 15 EtOH-sensitive neurons in which currents were evoked by glutamate, four (27%) displayed withdrawal hyper-responsiveness in the washout period. Mean current area after washout was 129.6±5% of control. When currents were evoked by AMPA, two of 10 neurons (20%) displayed withdrawal hyper-responsiveness, with a mean current area 122±8% of control on washout. Of a group of 11 neurons in which currents were evoked by NMDA, nine (82%) displayed withdrawal hyper-responsiveness. Mean increase in current area at the end of the washout period was to 133±6% of control (n=9, P<0.001). When NMDA applications were stopped durithe period of EtOH exposure, mean area of NMDA-evoked responses on washout was only 98.0±5% of control (n=6, P>0.05). The tyrosine kinase inhibitor genistein (10–20 μM) blocked withdrawal hyper-responsiveness. Of six EtOH-sensitive neurons, the mean NMDA-evoked current area after washout was 89±6% of control, P>0.05. The protein kinase A (PKA) inhibitor Rp-cAMP (20–500 μM) did not block withdrawal hyper-responsiveness. On washout, the mean NMDA-evoked current area was 124±6% of control (n=5, P<0.05). Two broad-spectrum specific protein kinase C (PKC) inhibitors, GF-109203X (0.3 μM) and chelerythrine chloride (0.5–2 nM), blocked withdrawal hyper-responsiveness. Responses on washout were 108±7%, n=5 and 88±4%, n=4 of control, respectively, P>0.05. NMDA activation during EtOH exposure

  12. Effects of anodal transcranial direct current stimulation over the leg motor area on lumbar spinal network excitability in healthy subjects.

    PubMed

    Roche, N; Lackmy, A; Achache, V; Bussel, B; Katz, R

    2011-06-01

    In recent years, two techniques have become available for the non-invasive stimulation of human motor cortex: transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). The effects of TMS and tDCS when applied over motor cortex should be considered with regard not only to cortical circuits but also to spinal motor circuits. The different modes of action and specificity of TMS and tDCS suggest that their effects on spinal network excitability may be different from that in the cortex. Until now, the effects of tDCS on lumbar spinal network excitability have never been studied. In this series of experiments, on healthy subjects, we studied the effects of anodal tDCS over the lower limb motor cortex on (i) reciprocal Ia inhibition projecting from the tibialis anterior muscle (TA) to the soleus (SOL), (ii) presynaptic inhibition of SOL Ia terminals, (iii) homonymous SOL recurrent inhibition, and (iv) SOL H-reflex recruitment curves. The results show that anodal tDCS decreases reciprocal Ia inhibition, increases recurrent inhibition and induces no modification of presynaptic inhibition of SOL Ia terminals and of SOL-H reflex recruitment curves. Our results indicate therefore that the effects of tDCS are the opposite of those previously described for TMS on spinal network excitability. They also indicate that anodal tDCS induces effects on spinal network excitability similar to those observed during co-contraction suggesting that anodal tDCS activates descending corticospinal projections mainly involved in co-contractions. PMID:21502292

  13. Motor imagery reinforces brain compensation of reach-to-grasp movement after cervical spinal cord injury

    PubMed Central

    Mateo, Sébastien; Di Rienzo, Franck; Bergeron, Vance; Guillot, Aymeric; Collet, Christian; Rode, Gilles

    2015-01-01

    Individuals with cervical spinal cord injury (SCI) that causes tetraplegia are challenged with dramatic sensorimotor deficits. However, certain rehabilitation techniques may significantly enhance their autonomy by restoring reach-to-grasp movements. Among others, evidence of motor imagery (MI) benefits for neurological rehabilitation of upper limb movements is growing. This literature review addresses MI effectiveness during reach-to-grasp rehabilitation after tetraplegia. Among articles from MEDLINE published between 1966 and 2015, we selected ten studies including 34 participants with C4 to C7 tetraplegia and 22 healthy controls published during the last 15 years. We found that MI of possible non-paralyzed movements improved reach-to-grasp performance by: (i) increasing both tenodesis grasp capabilities and muscle strength; (ii) decreasing movement time (MT), and trajectory variability; and (iii) reducing the abnormally increased brain activity. MI can also strengthen motor commands by potentiating recruitment and synchronization of motoneurons, which leads to improved recovery. These improvements reflect brain adaptations induced by MI. Furthermore, MI can be used to control brain-computer interfaces (BCI) that successfully restore grasp capabilities. These results highlight the growing interest for MI and its potential to recover functional grasping in individuals with tetraplegia, and motivate the need for further studies to substantiate it. PMID:26441568

  14. Contact-Mediated Inhibition Between Oligodendrocyte Progenitor Cells and Motor Exit Point Glia Establishes the Spinal Cord Transition Zone

    PubMed Central

    Smith, Cody J.; Morris, Angela D.; Welsh, Taylor G.; Kucenas, Sarah

    2014-01-01

    Rapid conduction of action potentials along motor axons requires that oligodendrocytes and Schwann cells myelinate distinct central and peripheral nervous system (CNS and PNS) domains along the same axon. Despite the importance of this arrangement for nervous system function, the mechanisms that establish and maintain this precise glial segregation at the motor exit point (MEP) transition zone are unknown. Using in vivo time-lapse imaging in zebrafish, we observed that prior to myelination, oligodendrocyte progenitor cells (OPCs) extend processes into the periphery via the MEP and immediately upon contact with spinal motor root glia retract back into the spinal cord. Characterization of the peripheral cell responsible for repelling OPC processes revealed that it was a novel, CNS-derived population of glia we propose calling MEP glia. Ablation of MEP glia resulted in the absence of myelinating glia along spinal motor root axons and an immediate breach of the MEP by OPCs. Taken together, our results identify a novel population of CNS-derived peripheral glia located at the MEP that selectively restrict the migration of OPCs into the periphery via contact-mediated inhibition. PMID:25268888

  15. Time-of-Flight Secondary Ion Mass Spectrometry based Molecular Histology of Human Spinal Cord Tissue and Motor Neurons

    PubMed Central

    Hanrieder, Jörg; Malmberg, Per; Lindberg, Olle R.; Fletcher, John S.; Ewing, Andrew G.

    2013-01-01

    Secondary ion mass spectrometry is a powerful method for imaging biological samples with high spatial resolution. Whole section ToF SIMS scans and multivariate data analysis have been performed on human spinal cord in order to delineate anatomical regions of interest based on their chemical distribution pattern. ToF SIMS analysis of thoracic spinal cord sections was performed at 5µm resolution within 2 hours. Multivariate image analysis by means of principal component analysis and maximum auto correlation factor analysis resulted in detection of more than 400 m/z peaks that were found to be significantly changed. Here, the results show characteristic biochemical distributions that are well in line with major histological regions, including grey and white matter. As an approach for iterative segmentation, we further evaluated previously outlined regions of interest as identified by multivariate image analysis. Here, further discrimination of the grey matter into ventral, lateral and dorsal neuroanatomical regions was observed. TOF SIMS imaging has been carried out at submicron resolution obtaining localization and characterization of spinal motor neurons based on their chemical fingerprint, including neurotransmitter precursors that serve as molecular indicators for motor neuron integrity. Thus, TOF SIMS can be used as an approach for chemical histology and pathology. SIMS holds immense potential for investigating the subcellular mechanisms underlying spinal cord related diseases including chronic pain and amyotrophic lateral sclerosis. PMID:23947367

  16. Metamorphosis-induced changes in the coupling of spinal thoraco-lumbar motor outputs during swimming in Xenopus laevis.

    PubMed

    Beyeler, Anna; Métais, Charles; Combes, Denis; Simmers, John; Le Ray, Didier

    2008-09-01

    Anuran metamorphosis includes a complete remodeling of the animal's biomechanical apparatus, requiring a corresponding functional reorganization of underlying central neural circuitry. This involves changes that must occur in the coordination between the motor outputs of different spinal segments to harmonize locomotor and postural functions as the limbs grow and the tail regresses. In premetamorphic Xenopus laevis tadpoles, axial motor output drives rostrocaudally propagating segmental myotomal contractions that generate propulsive body undulations. During metamorphosis, the anterior axial musculature of the tadpole progressively evolves into dorsal muscles in the postmetamorphic froglet in which some of these back muscles lose their implicit locomotor function to serve exclusively in postural control in the adult. To understand how locomotor and postural systems interact during locomotion in juvenile Xenopus, we have investigated the coordination between postural back and hindlimb muscle activity during free forward swimming. Axial/dorsal muscles, which contract in bilateral alternation during undulatory swimming in premetamorphic tadpoles, change their left-right coordination to become activated in phase with bilaterally synchronous hindlimb extensions in locomoting juveniles. Based on in vitro electrophysiological experiments as well as specific spinal lesions in vivo, a spinal cord region was delimited in which propriospinal interactions are directly responsible for the coordination between leg and back muscle contractions. Our findings therefore indicate that dynamic postural adjustments during adult Xenopus locomotion are mediated by local intraspinal pathways through which the lumbar generator for hindlimb propulsive kicking provides caudorostral commands to thoracic spinal circuitry controlling the dorsal trunk musculature. PMID:18596184

  17. Role of proteasomes in the formation of neurofilamentous inclusions in spinal motor neurons of aluminum-treated rabbits.

    PubMed

    Kimura, Noriyuki; Kumamoto, Toshihide; Ueyama, Hidetsugu; Horinouchi, Hideo; Ohama, Eisaku

    2007-12-01

    We examined the role of the 20S proteasome in pathologic changes, including abnormal aggregation of phosphorylated neurofilaments, of spinal motor nerve cells from aluminum-treated rabbits. Immunohistochemistry for the 20S proteasome revealed that many lumbar spinal motor neurons without intracytoplasmic neurofilamentous inclusions or with small inclusions were more intensely stained in aluminum-treated rabbits than in controls, whereas the immunoreactivity was greatly decreased in some enlarged neurons containing large neurofilamentous inclusions. Proteasome activity in whole spinal cord extracts was significantly increased in aluminum-treated rabbits compared with controls. Furthermore, Western blot analysis indicated that the 20S proteasome degraded non-phosphorylated high molecular weight neurofilament (neurofilament-H) protein in vitro. These results suggest that aluminum does not inhibit 20S proteasome activity, and the 20S proteasome degrades neurofilament-H protein. We propose that abnormal aggregation of phosphorylated neurofilaments is induced directly by aluminum, and is not induced by the proteasome inhibition in the aluminum-treated rabbits. Proteasome activation might be involved in intracellular proteolysis, especially in the earlier stages of motor neuron degeneration in aluminum-treated rabbits. PMID:18021372

  18. Maternal Care Effects on the Development of a Sexually Dimorphic Motor System: The Role of Spinal Oxytocin

    PubMed Central

    Lenz, Kathryn M.; Sengelaub, Dale R.

    2010-01-01

    Maternal licking in rats affects the development of the spinal nucleus of the bulbocavernosus (SNB), a sexually dimorphic motor nucleus that controls penile reflexes involved with copulation. Reduced maternal licking results in decreased motoneuron number, size, and dendritic length in the adult SNB, as well as deficits in adult male copulatory behavior. Our previous findings that licking-like tactile stimulation influences SNB dendritic development and upregulates Fos expression in the lumbosacral spinal cord suggest that afferent signaling is changed by differences in maternal stimulation. Oxytocin afferents from the hypothalamus are a possible candidate, given previous research that has shown oxytocin is released following sensory stimulation, oxytocin modulates excitability in the spinal cord, and is a pro-erectile modulator of male sex behavior. In this experiment, we used immunofluorescence and immediate early gene analysis to assess whether licking-like tactile stimulation of the perineum activated parvocellular oxytocinergic neurons in the hypothalamus in neonates. We also used enzyme immunoassay to determine whether this same stroking stimulation produced an increase in spinal oxytocin levels. We found that stroking increased Fos immunolabeling in small oxytocin-positive cells in the paraventricular nucleus of the hypothalamus, in comparison to unstroked or handled control pups. In addition, sixty seconds of licking-like perineal stimulation produced a transient 89% increase in oxytocin levels in the lumbosacral spinal cord. Together, these results suggest that oxytocin afferent activity may contribute to the effects of early maternal care on the masculinization of the SNB and resultant male copulatory behavior. PMID:20688065

  19. Electroacupuncture promotes the recovery of motor neuron function in the anterior horn of the injured spinal cord

    PubMed Central

    Yang, Jian-hui; Lv, Jian-guo; Wang, Hui; Nie, Hui-yong

    2015-01-01

    Acupuncture has been shown to lessen the inflammatory reaction after acute spinal cord injury and reduce secondary injury. However, the mechanism of action remains unclear. In this study, a rat model of spinal cord injury was established by compressing the T8–9 segments using a modified Nystrom method. Twenty-four hours after injury, Zusanli (ST36), Xuanzhong (GB39), Futu (ST32) and Sanyinjiao (SP6) were stimulated with electroacupuncture. Rats with spinal cord injury alone were used as controls. At 2, 4 and 6 weeks after injury, acetylcholinesterase (AChE) activity at the site of injury, the number of medium and large neurons in the spinal cord anterior horn, glial cell line-derived neurotrophic factor (GDNF) mRNA expression, and Basso, Beattie and Bresnahan locomotor rating scale scores were greater in the electroacupuncture group compared with the control group. These results demonstrate that electroacupuncture increases AChE activity, up-regulates GDNF mRNA expression, and promotes the recovery of motor neuron function in the anterior horn after spinal cord injury. PMID:26889195

  20. FK1706, a novel non-immunosuppressant neurophilin ligand, ameliorates motor dysfunction following spinal cord injury through its neuroregenerative action.

    PubMed

    Yamaji, Takayuki; Yamazaki, Shunji; Li, Jiyao; Price, Raymond D; Matsuoka, Nobuya; Mutoh, Seitaro

    2008-09-01

    Injured spinal cord axons fail to regenerate in part due to a lack of trophic support. While various methods for replacing neurotrophins have been pursued, clinical uses of these methods face significant barriers. FK1706, a non-immunosuppressant neurophilin ligand, potentiates nerve growth factor signaling, suggesting therapeutic potential for functional deficits following spinal cord injury. Here, we demonstrate that FK1706 significantly improves behavioral outcomes in animal models of spinal cord hemisection and contusion injuries in rats. Furthermore, we show that FK1706 is effective even if administration is delayed until 1 week after injury, suggesting that FK1706 has a reasonable therapeutic time-window. Morphological analysis of injured axons in the dorsal corticospinal tract showed an increase in the radius and perimeter of stained axons, which were reduced by FK1706 treatment, suggesting that axonal swelling and retraction balls observed in injured spinal cord were improved by the neurotrophic effect of FK1706. Taken together, FK1706 improves both behavioral motor function and the underlying morphological changes, suggesting that FK1706 may have therapeutic potential in meeting the significant unmet needs in spinal cord injury. PMID:18602914

  1. Spinal NMDA receptor activation constrains inactivity-induced phrenic motor facilitation in Charles River Sprague-Dawley rats

    PubMed Central

    Streeter, K. A.

    2014-01-01

    Reduced spinal synaptic inputs to phrenic motor neurons elicit a unique form of spinal plasticity known as inactivity-induced phrenic motor facilitation (iPMF). iPMF requires tumor necrosis factor-α (TNF-α) and atypical protein kinase C (aPKC) activity within spinal segments containing the phrenic motor nucleus to stabilize early, transient increases in phrenic burst amplitude into long-lasting iPMF. Here we tested the hypothesis that spinal N-methyl-d-aspartate receptor (NMDAR) activation constrains long-lasting iPMF in some rat substrains. Phrenic motor output was recorded in anesthetized, ventilated Harlan (HSD) and Charles River (CRSD) Sprague-Dawley rats exposed to a 30-min central neural apnea. HSD rats expressed a robust, long-lasting (>60 min) increase in phrenic burst amplitude (i.e., long-lasting iPMF) when respiratory neural activity was restored. By contrast, CRSD rats expressed an attenuated, transient (∼15 min) iPMF. Spinal NMDAR inhibition with DL-2-amino-5-phosphonopentanoic acid (APV) before neural apnea or shortly (4 min) prior to the resumption of respiratory neural activity revealed long-lasting iPMF in CRSD rats that was phenotypically similar to that in HSD rats. By contrast, APV did not alter iPMF expression in HSD rats. Spinal TNF-α or aPKC inhibition impaired long-lasting iPMF enabled by NMDAR inhibition in CRSD rats, suggesting that similar mechanisms give rise to long-lasting iPMF in CRSD rats with NMDAR inhibition as those giving rise to long-lasting iPMF in HSD rats. These results suggest that NMDAR activation can impose constraints on TNF-α-induced aPKC activation after neural apnea, impairing stabilization of transient iPMF into long-lasting iPMF. These data may have important implications for understanding differential responses to reduced respiratory neural activity in a heterogeneous human population. PMID:25103979

  2. Spinal NMDA receptor activation constrains inactivity-induced phrenic motor facilitation in Charles River Sprague-Dawley rats.

    PubMed

    Streeter, K A; Baker-Herman, T L

    2014-10-01

    Reduced spinal synaptic inputs to phrenic motor neurons elicit a unique form of spinal plasticity known as inactivity-induced phrenic motor facilitation (iPMF). iPMF requires tumor necrosis factor-α (TNF-α) and atypical protein kinase C (aPKC) activity within spinal segments containing the phrenic motor nucleus to stabilize early, transient increases in phrenic burst amplitude into long-lasting iPMF. Here we tested the hypothesis that spinal N-methyl-d-aspartate receptor (NMDAR) activation constrains long-lasting iPMF in some rat substrains. Phrenic motor output was recorded in anesthetized, ventilated Harlan (HSD) and Charles River (CRSD) Sprague-Dawley rats exposed to a 30-min central neural apnea. HSD rats expressed a robust, long-lasting (>60 min) increase in phrenic burst amplitude (i.e., long-lasting iPMF) when respiratory neural activity was restored. By contrast, CRSD rats expressed an attenuated, transient (∼15 min) iPMF. Spinal NMDAR inhibition with DL-2-amino-5-phosphonopentanoic acid (APV) before neural apnea or shortly (4 min) prior to the resumption of respiratory neural activity revealed long-lasting iPMF in CRSD rats that was phenotypically similar to that in HSD rats. By contrast, APV did not alter iPMF expression in HSD rats. Spinal TNF-α or aPKC inhibition impaired long-lasting iPMF enabled by NMDAR inhibition in CRSD rats, suggesting that similar mechanisms give rise to long-lasting iPMF in CRSD rats with NMDAR inhibition as those giving rise to long-lasting iPMF in HSD rats. These results suggest that NMDAR activation can impose constraints on TNF-α-induced aPKC activation after neural apnea, impairing stabilization of transient iPMF into long-lasting iPMF. These data may have important implications for understanding differential responses to reduced respiratory neural activity in a heterogeneous human population. PMID:25103979

  3. The role of spinal GABAergic circuits in the control of phrenic nerve motor output

    PubMed Central

    Ghali, Michael G. Z.; Rogers, Robert F.

    2015-01-01

    While supraspinal mechanisms underlying respiratory pattern formation are well characterized, the contribution of spinal circuitry to the same remains poorly understood. In this study, we tested the hypothesis that intraspinal GABAergic circuits are involved in shaping phrenic motor output. To this end, we performed bilateral phrenic nerve recordings in anesthetized adult rats and observed neurogram changes in response to knocking down expression of both isoforms (65 and 67 kDa) of glutamate decarboxylase (GAD65/67) using microinjections of anti-GAD65/67 short-interference RNA (siRNA) in the phrenic nucleus. The number of GAD65/67-positive cells was drastically reduced on the side of siRNA microinjections, especially in the lateral aspects of Rexed's laminae VII and IX in the ventral horn of cervical segment C4, but not contralateral to microinjections. We hypothesize that intraspinal GABAergic control of phrenic output is primarily phasic, but also plays an important role in tonic regulation of phrenic discharge. Also, we identified respiration-modulated GABAergic interneurons (both inspiratory and expiratory) located slightly dorsal to the phrenic nucleus. Our data provide the first direct evidence for the existence of intraspinal GABAergic circuits contributing to the formation of phrenic output. The physiological role of local intraspinal inhibition, independent of descending direct bulbospinal control, is discussed. PMID:25833937

  4. Combined Muscle Motor and Somatosensory Evoked Potentials for Intramedullary Spinal Cord Tumour Surgery

    PubMed Central

    Choi, Il; Hyun, Seung-Jae; Kang, Joong-Koo

    2014-01-01

    Purpose To evaluate whether intraoperative neurophysiologic monitoring (IONM) with combined muscle motor evoked potentials (mMEPs) and somatosensory evoked potentials is useful for more aggressive and safe resection in intramedullary spinal cord tumour (IMSCT) surgery. Materials and Methods We reviewed data from consecutive patients who underwent surgery for IMSCT between 1998 and April 2012. The patients were divided into two groups based on whether or not IONM was applied. In the monitored group, the procedures were performed under IONM using 75% muscle amplitude decline weaning criteria. The control group was comprised of patients who underwent IMSCT surgery without IONM. The primary outcome was the rate of gross total excision of the tumour on magnetic resonance imaging at one week after surgery. The secondary outcome was the neurologic outcome based on the McCormick Grade scale. Results The two groups had similar demographics. The total gross removal tended to increase when intraoperative neurophysiologic monitoring was used, but this tendency did not reach statistical significance (76% versus 58%; univariate analysis, p=0.049; multivariate regression model, p=0.119). The serial McCormick scale score was similar between the two groups (based on repeated measure ANOVA). Conclusion Our study evaluated combined IONM of trans-cranial electrical (Tce)-mMEPs and SEPs for IMSCT. During IMSCT surgery, combined Tce-mMEPs and SEPs using 75% muscle amplitude weaning criteria did not result in significant improvement in the rate of gross total excision of the tumour or neurologic outcome. PMID:24954338

  5. The response to paired motor cortical stimuli is abolished at a spinal level during human muscle fatigue

    PubMed Central

    McNeil, Chris J; Martin, Peter G; Gandevia, Simon C; Taylor, Janet L

    2009-01-01

    During maximal exercise, supraspinal fatigue contributes significantly to the decline in muscle performance but little is known about intracortical inhibition during such contractions. Long-interval inhibition is produced by a conditioning motor cortical stimulus delivered via transcranial magnetic stimulation (TMS) 50–200 ms prior to a second test stimulus. We aimed to delineate changes in this inhibition during a sustained maximal voluntary contraction (MVC). Eight subjects performed a 2 min MVC of elbow flexors. Single test and paired (conditioning–test interval of 100 ms) stimuli were delivered via TMS over the motor cortex every 7–8 s throughout the effort and during intermittent MVCs in the recovery period. To determine the role of spinal mechanisms, the protocol was repeated but the TMS test stimulus was replaced by cervicomedullary stimulation which activates the corticospinal tract. TMS motor evoked potentials (MEPs) and cervicomedullary motor evoked potentials (CMEPs) were recorded from biceps brachii. Unconditioned MEPs increased progressively with fatigue, whereas CMEPs increased initially but returned to the control value in the final 40 s of contraction. In contrast, both conditioned MEPs and CMEPs decreased rapidly with fatigue and were virtually abolished within 30 s. In recovery, unconditioned responses required <30 s but conditioned MEPs and CMEPs required ∼90 s to return to control levels. Thus, long-interval inhibition increased markedly as fatigue progressed. Contrary to expectations, subcortically evoked CMEPs were inhibited as much as MEPs. This new phenomenon was also observed in the first dorsal interosseous muscle. Tested with a high intensity conditioning stimulus during a fatiguing maximal effort, long-interval inhibition of MEPs was increased primarily by spinal rather than motor cortical mechanisms. The spinal mechanisms exposed here may contribute to the development of central fatigue in human muscles. PMID:19805743

  6. Plasticity and alterations of trunk motor cortex following spinal cord injury and non-stepping robot and treadmill training.

    PubMed

    Oza, Chintan S; Giszter, Simon F

    2014-06-01

    Spinal cord injury (SCI) induces significant reorganization in the sensorimotor cortex. Trunk motor control is crucial for postural stability and propulsion after low thoracic SCI and several rehabilitative strategies are aimed at trunk stability and control. However little is known about the effect of SCI and rehabilitation training on trunk motor representations and their plasticity in the cortex. Here, we used intracortical microstimulation to examine the motor cortex representations of the trunk in relation to other representations in three groups of chronic adult complete low thoracic SCI rats: chronic untrained, treadmill trained (but 'non-stepping') and robot assisted treadmill trained (but 'non-stepping') and compared with a group of normal rats. Our results demonstrate extensive and significant reorganization of the trunk motor cortex after chronic adult SCI which includes (1) expansion and rostral displacement of trunk motor representations in the cortex, with the greatest significant increase observed for rostral (to injury) trunk, and slight but significant increase of motor representation for caudal (to injury) trunk at low thoracic levels in all spinalized rats; (2) significant changes in coactivation and the synergy representation (or map overlap) between different trunk muscles and between trunk and forelimb. No significant differences were observed between the groups of transected rats for the majority of the comparisons. However, (3) the treadmill and robot-treadmill trained groups of rats showed a further small but significant rostral migration of the trunk representations, beyond the shift caused by transection alone. We conclude that SCI induces a significant reorganization of the trunk motor cortex, which is not qualitatively altered by non-stepping treadmill training or non-stepping robot assisted treadmill training, but is shifted further from normal topography by the training. This shift may potentially make subsequent rehabilitation with

  7. Motor axon exit from the mammalian spinal cord is controlled by the homeodomain protein Nkx2.9 via Robo-Slit signaling

    PubMed Central

    Bravo-Ambrosio, Arlene; Mastick, Grant; Kaprielian, Zaven

    2012-01-01

    Mammalian motor circuits control voluntary movements by transmitting signals from the central nervous system (CNS) to muscle targets. To form these circuits, motor neurons (MNs) must extend their axons out of the CNS. Although exit from the CNS is an indispensable phase of motor axon pathfinding, the underlying molecular mechanisms remain obscure. Here, we present the first identification of a genetic pathway that regulates motor axon exit from the vertebrate spinal cord, utilizing spinal accessory motor neurons (SACMNs) as a model system. SACMNs are a homogeneous population of spinal MNs with axons that leave the CNS through a discrete lateral exit point (LEP) and can be visualized by the expression of the cell surface protein BEN. We show that the homeodomain transcription factor Nkx2.9 is selectively required for SACMN axon exit and identify the Robo2 guidance receptor as a likely downstream effector of Nkx2.9; loss of Nkx2.9 leads to a reduction in Robo2 mRNA and protein within SACMNs and SACMN axons fail to exit the spinal cord in Robo2-deficient mice. Consistent with short-range interactions between Robo2 and Slit ligands regulating SACMN axon exit, Robo2-expressing SACMN axons normally navigate through LEP-associated Slits as they emerge from the spinal cord, and fail to exit in Slit-deficient mice. Our studies support the view that Nkx2.9 controls SACMN axon exit from the mammalian spinal cord by regulating Robo-Slit signaling. PMID:22399681

  8. Targeted axonal import (TAxI) peptide delivers functional proteins into spinal cord motor neurons after peripheral administration.

    PubMed

    Sellers, Drew L; Bergen, Jamie M; Johnson, Russell N; Back, Heidi; Ravits, John M; Horner, Philip J; Pun, Suzie H

    2016-03-01

    A significant unmet need in treating neurodegenerative disease is effective methods for delivery of biologic drugs, such as peptides, proteins, or nucleic acids into the central nervous system (CNS). To date, there are no operative technologies for the delivery of macromolecular drugs to the CNS via peripheral administration routes. Using an in vivo phage-display screen, we identify a peptide, targeted axonal import (TAxI), that enriched recombinant bacteriophage accumulation and delivered protein cargo into spinal cord motor neurons after intramuscular injection. In animals with transected peripheral nerve roots, TAxI delivery into motor neurons after peripheral administration was inhibited, suggesting a retrograde axonal transport mechanism for delivery into the CNS. Notably, TAxI-Cre recombinase fusion proteins induced selective recombination and tdTomato-reporter expression in motor neurons after intramuscular injections. Furthermore, TAxI peptide was shown to label motor neurons in the human tissue. The demonstration of a nonviral-mediated delivery of functional proteins into the spinal cord establishes the clinical potential of this technology for minimally invasive administration of CNS-targeted therapeutics. PMID:26888285

  9. Targeted axonal import (TAxI) peptide delivers functional proteins into spinal cord motor neurons after peripheral administration

    PubMed Central

    Sellers, Drew L.; Bergen, Jamie M.; Johnson, Russell N.; Back, Heidi; Ravits, John M.; Horner, Philip J.; Pun, Suzie H.

    2016-01-01

    A significant unmet need in treating neurodegenerative disease is effective methods for delivery of biologic drugs, such as peptides, proteins, or nucleic acids into the central nervous system (CNS). To date, there are no operative technologies for the delivery of macromolecular drugs to the CNS via peripheral administration routes. Using an in vivo phage-display screen, we identify a peptide, targeted axonal import (TAxI), that enriched recombinant bacteriophage accumulation and delivered protein cargo into spinal cord motor neurons after intramuscular injection. In animals with transected peripheral nerve roots, TAxI delivery into motor neurons after peripheral administration was inhibited, suggesting a retrograde axonal transport mechanism for delivery into the CNS. Notably, TAxI-Cre recombinase fusion proteins induced selective recombination and tdTomato-reporter expression in motor neurons after intramuscular injections. Furthermore, TAxI peptide was shown to label motor neurons in the human tissue. The demonstration of a nonviral-mediated delivery of functional proteins into the spinal cord establishes the clinical potential of this technology for minimally invasive administration of CNS-targeted therapeutics. PMID:26888285

  10. Topographic maps of human motor cortex in normal and pathological conditions: mirror movements, amputations and spinal cord injuries.

    PubMed

    Cohen, L G; Bandinelli, S; Topka, H R; Fuhr, P; Roth, B J; Hallett, M

    1991-01-01

    We studied motor evoked potentials to transcranial magnetic stimulation in patients with unilateral upper limb amputations, complete T10-T12 spinal cord transection, and congenital mirror movements and in controls. Different muscles in the trunk and upper and lower extremities were evaluated at rest. In controls, muscles could be activated with stimulation of regions several centimeters wide. These areas overlapped extensively when muscles studied were from the same limb and shifted positions abruptly when muscles were from different limbs. Distal muscles were easier to activate than proximal muscles and normally evidenced exclusively a contralateral representation. Congenital defects in motor control in patients with mirror movements resulted in marked derangement of the map of outputs of distal hand muscles with enlarged and ipsilateral representations. Peripheral lesions, either acquired (amputations) or congenital (congenital absence of a limb), resulted in plastic reorganization of motor outputs targeting muscles immediately proximal to the stump. Central nervous system lesions (i.e., spinal cord injury producing paraplegia) also resulted in enlargement of the map of outputs targeting muscles proximal to the lesion. These results indicate that magnetic stimulation is a useful non-invasive tool for exploring plastic changes in human motor pathways following different types of injury. PMID:1773774

  11. Time-related changes of motor unit properties in the rat medial gastrocnemius muscle after the spinal cord injury. II. Effects of a spinal cord hemisection.

    PubMed

    Celichowski, Jan; Kryściak, Katarzyna; Krutki, Piotr; Majczyński, Henryk; Górska, Teresa; Sławińska, Urszula

    2010-06-01

    The contractile properties of motor units (MUs) were investigated in the medial gastrocnemius (MG) muscle in rats after the spinal cord hemisection at a low thoracic level. Hemisected animals were divided into 4 groups: 14, 30, 90 and 180 days after injury. Intact rats formed a control group. The mass of the MG muscle did not change significantly after spinal cord hemisection, hind limb locomotor pattern was almost unchanged starting from two weeks after injury, but contractile properties of MUs were however altered. Contraction time (CT) and half-relaxation time (HRT) of MUs were prolonged in all investigated groups of hemisected rats. The twitch-to-tetanus ratio (Tw/Tet) of fast MUs after the spinal cord hemisection increased. For slow MUs Tw/Tet values did not change in the early stage after the injury, but significantly decreased in rats 90 and 180 days after hemisection. As a result of hemisection the fatigue resistance especially of slow and fast resistant MU types was reduced, as well as fatigue index (Fat I) calculated for the whole examined population of MUs decreased progressively with the time. After spinal cord hemisection a reduced number of fast MUs presented the sag at frequencies 30 and 40 Hz, however more of them revealed sag in 20 Hz tetanus in comparison to control group. Due to considerable changes in twitch contraction time and disappearance of sag effect in unfused tetani of some MUs in hemisected animals, the classification of MUs in all groups of rats was based on the 20 Hz tetanus index (20 Hz Tet I) but not on the standard criteria usually applied for MUs classification. MU type differentiations demonstrated some clear changes in MG muscle composition in hemisected animals consisting of an increase in the proportion of slow MUs (likely due to an increased participation of the studied muscle in tonic antigravity activity) together with an increase in the percentage of fast fatigable MUs. PMID:19679495

  12. The effects of anodal transcranial direct current stimulation and patterned electrical stimulation on spinal inhibitory interneurons and motor function in patients with spinal cord injury.

    PubMed

    Yamaguchi, Tomofumi; Fujiwara, Toshiyuki; Tsai, Yun-An; Tang, Shuen-Chang; Kawakami, Michiyuki; Mizuno, Katsuhiro; Kodama, Mitsuhiko; Masakado, Yoshihisa; Liu, Meigen

    2016-06-01

    Supraspinal excitability and sensory input may play an important role for the modulation of spinal inhibitory interneurons and functional recovery among patients with incomplete spinal cord injury (SCI). Here, we investigated the effects of anodal transcranial direct current stimulation (tDCS) combined with patterned electrical stimulation (PES) on spinal inhibitory interneurons in patients with chronic incomplete SCI and in healthy individuals. Eleven patients with incomplete SCI and ten healthy adults participated in a single-masked, sham-controlled crossover study. PES involved stimulating the common peroneal nerve with a train of ten 100 Hz pulses every 2 s for 20 min. Anodal tDCS (1 mA) was simultaneously applied to the primary motor cortex that controls the tibialis anterior muscle. We measured reciprocal inhibition and presynaptic inhibition of a soleus H-reflex by stimulating the common peroneal nerve prior to tibial nerve stimulation, which elicits the H-reflex. The inhibition was assessed before, immediately after, 10 min after and 20 min after the stimulation. Compared with baseline, simultaneous application of anodal tDCS with PES significantly increased changes in disynaptic reciprocal inhibition and long-latency presynaptic inhibition in both healthy and SCI groups for at least 20 min after the stimulation (all, p < 0.001). In patients with incomplete SCI, anodal tDCS with PES significantly increased the number of ankle movements in 10 s at 20 min after the stimulation (p = 0.004). In conclusion, anodal tDCS combined with PES could induce spinal plasticity and improve ankle movement in patients with incomplete SCI. PMID:26790423

  13. Effects of A Voltage Sensitive Calcium Channel Blocker and A Sodium-Calcium Exchanger Inhibitor on Apoptosis of Motor Neurons in Adult Spinal Cord Slices

    PubMed Central

    Momeni, Hamid Reza; Jarahzadeh, Mahsa

    2012-01-01

    Objective: The apoptosis of motor neurons is a critical phenomenon in spinal cord injuries. Adult spinal cord slices were used to investigate whether voltage sensitive calcium channels and Na+/Ca2+ exchangers play a role in the apoptosis of motor neurons. Materials and Methods: In this experimental research, the thoracic region of the adult mouse spinal cord was sliced using a tissue chopper and the slices were incubated in a culture medium in the presence or absence of N/L type voltage sensitive calcium channels blocker (loperamide, 100 µM) or Na+/Ca2+ exchangers inhibitor(bepridil, 20 µM) for 6 hours. 3-(4, 5-dimethylthiazol-2-yl)-2, 5 diphenyl tetrazolium (MTT) staining was used to assess slice viability while morphological features of apoptosis in motor neurons were studied using fluorescent staining. Results: After 6 hours in culture, loperamideand bepridil not only increased slice viability, but also prevented motor neuron apoptosis and significantly increased the percentage of viable motor neurons in the ventral horns of the spinal cord. Conclusion: The results of this study suggest that voltage sensitive calcium channels and Na+/Ca2+ exchanger might be involved in the apoptosis of motor neurons in adult spinal cord slices. PMID:23508879

  14. Identification of gangliosides recognized by IgG anti-GalNAc-GD1a antibodies in bovine spinal motor neurons and motor nerves.

    PubMed

    Yoshino, Hiide; Ariga, Toshio; Suzuki, Akemi; Yu, Robert K; Miyatake, Tadashi

    2008-08-28

    The presence of immunoglobulin G (IgG)-type antibodies to the ganglioside, N-acetylgalactosaminyl GD1a (GalNAc-GD1a), is closely associated with the pure motor type of Guillain-Barré syndrome (GBS). In the present study, we isolated disialogangliosides from the motor neurons and motor nerves of bovine spinal cords by DEAE-Sephadex column chromatography. The disialoganglioside fraction contained GD1a, GD2, GD1b, and three gangliosides, designated X1, X2 and X3. Serum from a patient with axonal GBS with IgG anti-GalNAc-GD1a antibody yielded positive immunostaining with X1, X2, and X3. When isolated by preparative thin-layer chromatography (TLC), X1 migrated at the same position as GalNAc-GD1a from Tay-Sachs brain, suggesting that X1 is GalNAc-GD1a containing N-acetylneuraminic acid (NeuAc). TLC of isolated X2 revealed that it migrated between GD1a and GD2. On the other hand, X3 had a migratory rate on TLC between and GD1b and GT1b. Since both X2 and X3 were recognized by IgG anti-GalNAc-GD1a antibody, the results suggest that X2 is a GalNAc-GD1a species containing a mixture containing a NeuAc-and an N-glycolylneuraminic acid (NeuGc) species, and X3 is a GalNAc-GD1a species with two NeuGc. This evidence indicating the specific localization of GalNAc-GD1a and its isomers in spinal motor neurons should be useful in elucidating the pathogenic role of IgG anti-GalNAc-GD1a antibody in pure motor-type GBS. PMID:18598683

  15. Serotonin 2A and 2B receptor-induced phrenic motor facilitation: differential requirement for spinal NADPH oxidase activity

    PubMed Central

    MacFarlane, P.M.; Vinit, S.; Mitchell, G.S.

    2011-01-01

    Acute intermittent hypoxia (AIH) facilitates phrenic motor output by a mechanism that requires spinal serotonin (type 2) receptor activation, NADPH oxidase activity and formation of reactive oxygen species (ROS). Episodic spinal serotonin (5-HT) receptor activation alone, without changes in oxygenation, is sufficient to elicit NADPH oxidase-dependent phrenic motor facilitation (pMF). Here we investigated: 1) whether serotonin 2A and/or 2B (5-HT2a/b) receptors are expressed in identified phrenic motor neurons, and 2) which receptor subtype is capable of eliciting NADPH-oxidase-dependent pMF. In anesthetized, artificially ventilated adult rats, episodic C4 intrathecal injections (3 × 6µl injections, 5 min intervals) of a 5-HT2a (DOI) or 5-HT2b (BW723C86) receptor agonist elicited progressive and sustained increases in integrated phrenic nerve burst amplitude (i.e. pMF), an effect lasting at least 90 minutes post-injection for both receptor subtypes. 5-HT2a and 5-HT2b receptor agonist-induced pMF were both blocked by selective antagonists (ketanserin and SB206553, respectively), but not by antagonists to the other receptor subtype. Single injections of either agonist failed to elicit pMF, demonstrating a need for episodic receptor activation. Phrenic motor neurons retrogradely labeled with cholera toxin B fragment expressed both 5-HT2a and 5-HT2b receptors. Pre-treatment with NADPH oxidase inhibitors (apocynin and DPI) blocked 5-HT2b, but not 5-HT2a-induced pMF. Thus, multiple spinal type 2 serotonin receptors elicit pMF, but they act via distinct mechanisms that differ in their requirement for NADPH oxidase activity. PMID:21223996

  16. A Simple Experimentally Based Model Using Proprioceptive Regulation of Motor Primitives Captures Adjusted Trajectory Formation in Spinal Frogs

    PubMed Central

    Kargo, William J.; Ramakrishnan, Arun; Hart, Corey B.; Rome, Lawrence C.

    2010-01-01

    Spinal circuits may organize trajectories using pattern generators and synergies. In frogs, prior work supports fixed-duration pulses of fixed composition synergies, forming primitives. In wiping behaviors, spinal frogs adjust their motor activity according to the starting limb position and generate fairly straight and accurate isochronous trajectories across the workspace. To test whether a compact description using primitives modulated by proprioceptive feedback could reproduce such trajectory formation, we built a biomechanical model based on physiological data. We recorded from hindlimb muscle spindles to evaluate possible proprioceptive input. As movement was initiated, early skeletofusimotor activity enhanced many muscle spindles firing rates. Before movement began, a rapid estimate of the limb position from simple combinations of spindle rates was possible. Three primitives were used in the model with muscle compositions based on those observed in frogs. Our simulations showed that simple gain and phase shifts of primitives based on published feedback mechanisms could generate accurate isochronous trajectories and motor patterns that matched those observed. Although on-line feedback effects were omitted from the model after movement onset, our primitive-based model reproduced the wiping behavior across a range of starting positions. Without modifications from proprioceptive feedback, the model behaviors missed the target in a manner similar to that in deafferented frogs. These data show how early proprioception might be used to make a simple estimate initial limb state and to implicitly plan a movement using observed spinal motor primitives. Simulations showed that choice of synergy composition played a role in this simplicity. To generate froglike trajectories, a hip flexor synergy without sartorius required motor patterns with more proprioceptive knee flexor control than did patterns built with a more natural synergy including sartorius. Such synergy

  17. Early phrenic motor neuron loss and transient respiratory abnormalities after unilateral cervical spinal cord contusion.

    PubMed

    Nicaise, Charles; Frank, David M; Hala, Tamara J; Authelet, Michèle; Pochet, Roland; Adriaens, Dominique; Brion, Jean-Pierre; Wright, Megan C; Lepore, Angelo C

    2013-06-15

    Contusion-type cervical spinal cord injury (SCI) is one of the most common forms of SCI observed in patients. In particular, injuries targeting the C3-C5 region affect the pool of phrenic motor neurons (PhMNs) that innervates the diaphragm, resulting in significant and often chronic respiratory dysfunction. Using a previously described rat model of unilateral midcervical C4 contusion with the Infinite Horizon Impactor, we have characterized the early time course of PhMN degeneration and consequent respiratory deficits following injury, as this knowledge is important for designing relevant treatment strategies targeting protection and plasticity of PhMN circuitry. PhMN loss (48% of the ipsilateral pool) occurred almost entirely during the first 24 h post-injury, resulting in persistent phrenic nerve axonal degeneration and denervation at the diaphragm neuromuscular junction (NMJ). Reduced diaphragm compound muscle action potential amplitudes following phrenic nerve stimulation were observed as early as the first day post-injury (30% of pre-injury maximum amplitude), with slow functional improvement over time that was associated with partial reinnervation at the diaphragm NMJ. Consistent with ipsilateral diaphragmatic compromise, the injury resulted in rapid, yet only transient, changes in overall ventilatory parameters measured via whole-body plethysmography, including increased respiratory rate, decreased tidal volume, and decreased peak inspiratory flow. Despite significant ipsilateral PhMN loss, the respiratory system has the capacity to quickly compensate for partially impaired hemidiaphragm function, suggesting that C4 hemicontusion in rats is a model of SCI that manifests subacute respiratory abnormalities. Collectively, these findings demonstrate significant and persistent diaphragm compromise in a clinically relevant model of midcervical contusion SCI; however, the therapeutic window for PhMN protection is restricted to early time points post-injury. On

  18. Locomotor step training with body weight support improves respiratory motor function in individuals with chronic spinal cord injury

    PubMed Central

    de Paleville, Daniela Terson; McKay, William; Aslan, Sevda; Folz, Rodney; Sayenko, Dimitry; Ovechkin, Alexander V.

    2013-01-01

    This prospective case-controlled clinical study was undertaken to investigate to what extent the manually assisted treadmill stepping Locomotor Training with body weight support (LT) can change respiratory function in individuals with chronic Spinal Cord Injury (SCI). Pulmonary function outcomes (Forced Vital Capacity /FVC/, Forced Expiratory Volume one second /FEV1/, Maximum Inspiratory Pressure /PImax/, Maximum Expiratory Pressure /PEmax/) and surface electromyographic (sEMG) measures of respiratory muscles activity during respiratory taskswere obtained from eight individuals with chronic C3-T12 SCI before and after 62±10 (Mean ± SD) sessions of the LT. FVC, FEV1, PImax, PEmax, amount of overall sEMG activity and rate of motor unit recruitment were significantly increased after LT (p<0.05) These results suggest that these improvements induced by the LT are likely the result of neuroplastic changes in spinal neural circuitry responsible for the activation of respiratory muscles preserved after injury. PMID:23999001

  19. Grafted Human Embryonic Progenitors Expressing Neurogenin-2 Stimulate Axonal Sprouting and Improve Motor Recovery after Severe Spinal Cord Injury

    PubMed Central

    Perrin, Florence E.; Lonjon, Nicolas; Serre, Angeline; Prieto, Monica; Mallet, Jacques; Privat, Alain

    2010-01-01

    Background Spinal cord injury (SCI) is a widely spread pathology with currently no effective treatment for any symptom. Regenerative medicine through cell transplantation is a very attractive strategy and may be used in different non-exclusive ways to promote functional recovery. We investigated functional and structural outcomes after grafting human embryonic neural progenitors (hENPs) in spinal cord-lesioned rats. Methods and Principal Findings With the objective of translation to clinics we have chosen a paradigm of delayed grafting, i.e., one week after lesion, in a severe model of spinal cord compression in adult rats. hENPs were either naïve or engineered to express Neurogenin 2 (Ngn2). Moreover, we have compared integrating and non-integrating lentiviral vectors, since the latter present reduced risks of insertional mutagenesis. We show that transplantation of hENPs transduced to express Ngn2 fully restore weight support and improve functional motor recovery after severe spinal cord compression at thoracic level. This was correlated with partial restoration of serotonin innervations at lumbar level, and translocation of 5HT1A receptors to the plasma membrane of motoneurons. Since hENPs were not detectable 4 weeks after grafting, transitory expression of Ngn2 appears sufficient to achieve motor recovery and to permit axonal regeneration. Importantly, we also demonstrate that transplantation of naïve hENPs is detrimental to functional recovery. Conclusions and Significance Transplantation and short-term survival of Ngn2-expressing hENPs restore weight support after SCI and partially restore serotonin fibers density and 5HT1A receptor pattern caudal to the lesion. Moreover, grafting of naïve-hENPs was found to worsen the outcome versus injured only animals, thus pointing to the possible detrimental effect of stem cell-based therapy per se in SCI. This is of major importance given the increasing number of clinical trials involving cell grafting developed for

  20. Spinal dorsal horn neuron response to mechanical stimuli is decreased by electrical stimulation of the primary motor cortex.

    PubMed

    Senapati, Arun K; Huntington, Paula J; Peng, Yuan B

    2005-03-01

    Motor cortex stimulation (MCS) has been used clinically as a tool for the control for central post-stroke pain and neuropathic facial pain. The underlying mechanisms involved in the antinociceptive effect of MCS are not clearly understood. We hypothesize that the antinociceptive effect is through the modulation of the spinal dorsal horn neuron activity. Thirty-two wide dynamic range spinal dorsal horn neurons were recorded, in response to graded mechanical stimulation (brush, pressure, and pinch) at their respective receptive fields, while a stepwise electrical stimulation was applied simultaneously in the motor cortex. The responses to brush at control, 10 V, 20 V, and 30 V, and recovery were 11.5+/-1.6, 12.1+/-2.6, 11.1+/-2.2, 10.5+/-2.1, and 13.2+/-2.5 spikes/s, respectively. The responses to pressure at control, 10 V, 20 V, and 30 V, and recovery were 33.2+/-6.1, 22.9+/-5.3, 20.5+/-5.0, 17.3+/-3.8, and 27.0+/-4.0 spikes/s, respectively. The responses to pinch at control, 10 V, 20 V, and 30 V, and recovery were 37.2+/-6.4, 26.3+/-4.7, 25.9+/-4.7, 22.5+/-4.3, and 35.0+/-6.2 spikes/s, respectively. It is concluded that, in the rat, electrical stimulation of the motor cortex produces significant transient inhibition of the responses of spinal cord dorsal horn neurons to higher intensity mechanical stimuli without affecting their response to an innocuous stimulus. PMID:15725415

  1. Neuronal nitric oxide synthase inhibitor, 7-nitroindazole, delays motor dysfunction and spinal motoneuron degeneration in the wobbler mouse.

    PubMed

    Ikeda, K; Iwasaki, Y; Kinoshita, M

    1998-09-18

    Gene mutations of superoxide dismutase (SOD) have been discovered in familial amyotrophic lateral sclerosis (ALS). Neuronal nitric oxide synthase (NOS), endothelial NOS and 3-nitrotyrosine immunoreactivities are selectively increased in the spinal motoneurons of sporadic ALS. Other study suggests that 3-nitrotyrosine immunoreactivity is enhanced in the spinal motoneurons of sporadic and familial ALS patients. The hypothesis is postulated that increased production of radical species, such as superoxide and peroxynitrite, may cause motoneuron degeneration in ALS. There are increased amounts of nitric oxide and SOD hypoactivities in the brain and spinal cord of wobbler mice. NOS is also induced in the vacuolated spinal motoneurons or axons in this animal. Free radicals might contribute to the pathogenesis of wobbler mouse motoneuron disease. Lecithinized SOD treatment has retarded the progression of this disease. This evidence allowed us to determine whether NOS inhibitors delay progression of wobbler mouse motoneuron disease. After clinical diagnosis at age 3-4 weeks, wobbler mice were injected with intraperitoneal non-selective NOS inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME, 50 mg/kg), two doses of neuronal NOS inhibitor, 7-nitroindazole (5 or 50 mg/kg) or a vehicle solution, daily for 4 weeks in a blind fashion. In comparison with vehicle, 7-nitroindazole-treated mice potentiated grip strength and attenuated deformities in the forelimbs. 7-Nitroindazole treatment increased the biceps muscle weight, reduced denervation muscle atrophy, and suppressed degeneration of spinal motoneurons. To a lesser degree, L-NAME-treated mice displayed slowed progression of disease. The present studies indicate that neuronal NOS inhibitor may be a candidate for promising therapy in lower motoneuron disease or motor neuropathy. PMID:9804111

  2. Safe transcranial electric stimulation motor evoked potential monitoring during posterior spinal fusion in two patients with cochlear implants.

    PubMed

    Yellin, Joseph L; Wiggins, Cheryl R; Franco, Alier J; Sankar, Wudbhav N

    2016-08-01

    Transcranial electric stimulation (TES) motor evoked potentials (MEPs) have become a regular part of intraoperative neurophysiologic monitoring (IONM) for posterior spinal fusion (PSF) surgery. Almost all of the relative contraindications to TES have come and gone. One exception is in the case of patients with a cochlear implant (CI). Herein we illustrate two cases of pediatric patients with CIs who underwent PSF using TES MEPs as part of IONM. In both instances the patients displayed no untoward effects from TES, and post-operatively both CIs were intact and functioning as they were prior to surgery. PMID:26103915

  3. Motor recovery at 6 months after admission is related to structural and functional reorganization of the spine and brain in patients with spinal cord injury.

    PubMed

    Hou, Jingming; Xiang, Zimin; Yan, Rubing; Zhao, Ming; Wu, Yongtao; Zhong, Jianfeng; Guo, Lei; Li, Haitao; Wang, Jian; Wu, Jixiang; Sun, Tiansheng; Liu, Hongliang

    2016-06-01

    This study aimed to explore structural and functional reorganization of the brain in the early stages of spinal cord injury (SCI) and identify brain areas that contribute to motor recovery. We studied 25 patients with SCI, including 10 with good motor recovery and 15 with poor motor recovery, along with 25 matched healthy controls. The mean period post-SCI was 9.2 ± 3.5 weeks in good recoverers and 8.8 ± 2.6 weeks in poor recoverers. All participants underwent structural and functional MRI on a 3-T magnetic resonance system. We evaluated differences in cross-sectional spinal cord area at the C2/C3 level, brain cortical thickness, white matter microstructure, and functional connectivity during the resting state among the three groups. We also evaluated associations between structural and functional reorganization and the rate of motor recovery. After SCI, compared with good recoverers, poor recoverers had a significantly decreased cross-sectional spinal cord area, cortical thickness in the right supplementary motor area and premotor cortex, and fractional anisotropy (FA) in the right primary motor cortex and posterior limb of the internal capsule. Meanwhile, poor recoverers showed decreased functional connectivity between the primary motor cortex and higher order motor areas (supplementary motor area and premotor cortex), while good recoverers showed increased functional connectivity among these regions. The structural and functional reorganization of the spine and brain was associated with motor recovery rate in all SCI patients. In conclusion, structural and functional reorganization of the spine and brain directly affected the motor recovery of SCI. Less structural atrophy and enhanced functional connectivity are associated with good motor recovery in patients with SCI. Multimodal imaging has the potential to predict motor recovery in the early stage of SCI. Hum Brain Mapp 37:2195-2209, 2016. © 2016 Wiley Periodicals, Inc. PMID:26936834

  4. Lateralization of cervical spinal cord activity during an isometric upper extremity motor task with functional magnetic resonance imaging.

    PubMed

    Weber, Kenneth A; Chen, Yufen; Wang, Xue; Kahnt, Thorsten; Parrish, Todd B

    2016-01-15

    The purpose of this study was to use an isometric upper extremity motor task to detect activity induced blood oxygen level dependent signal changes in the cervical spinal cord with functional magnetic resonance imaging. Eleven healthy volunteers performed six 5minute runs of an alternating left- and right-sided isometric wrist flexion task, during which images of the cervical spinal cord were acquired with a reduced field-of-view T2*-weighted gradient-echo echo-planar-imaging sequence. Spatial normalization to a standard spinal cord template was performed, and group average activation maps were generated in a mixed-effects analysis. The task activity significantly exceeded that of the control analyses. The activity was lateralized to the hemicord ipsilateral to the task and reliable across the runs at the group and subject level. Finally, a multi-voxel pattern analysis was able to successfully decode the left and right tasks at the C6 and C7 vertebral levels. PMID:26488256

  5. Spatacsin and spastizin act in the same pathway required for proper spinal motor neuron axon outgrowth in zebrafish.

    PubMed

    Martin, Elodie; Yanicostas, Constantin; Rastetter, Agnès; Alavi Naini, Seyedeh Maryam; Maouedj, Alissia; Kabashi, Edor; Rivaud-Péchoux, Sophie; Brice, Alexis; Stevanin, Giovanni; Soussi-Yanicostas, Nadia

    2012-12-01

    Hereditary spastic paraplegias (HSPs) are rare neurological conditions caused by degeneration of the long axons of the cerebrospinal tracts, leading to locomotor impairment and additional neurological symptoms. There are more than 40 different causative genes, 24 of which have been identified, including SPG11 and SPG15 mutated in complex clinical forms. Since the vast majority of the causative mutations lead to loss of function of the corresponding proteins, we made use of morpholino-oligonucleotide (MO)-mediated gene knock-down to generate zebrafish models of both SPG11 and SPG15 and determine how invalidation of the causative genes (zspg11 and zspg15) during development might contribute to the disease. Micro-injection of MOs targeting each gene caused locomotor impairment and abnormal branching of spinal cord motor neurons at the neuromuscular junction. More severe phenotypes with abnormal tail developments were also seen. Moreover, partial depletion of both proteins at sub-phenotypic levels resulted in the same phenotypes, suggesting for the first time, in vivo, a genetic interaction between these genes. In conclusion, the zebrafish orthologues of the SPG11 and SPG15 genes are important for proper development of the axons of spinal motor neurons and likely act in a common pathway to promote their proper path finding towards the neuromuscular junction. PMID:22801083

  6. An ~140-kb deletion associated with feline spinal muscular atrophy implies an essential LIX1 function for motor neuron survival

    PubMed Central

    Fyfe, John C.; Menotti-Raymond, Marilyn; David, Victor A.; Brichta, Lars; Schäffer, Alejandro A.; Agarwala, Richa; Murphy, William J.; Wedemeyer, William J.; Gregory, Brittany L.; Buzzell, Bethany G.; Drummond, Meghan C.; Wirth, Brunhilde; O'Brien, Stephen J.

    2006-01-01

    The leading genetic cause of infant mortality is spinal muscular atrophy (SMA), a clinically and genetically heterogeneous group of disorders. Previously we described a domestic cat model of autosomal recessive, juvenile-onset SMA similar to human SMA type III. Here we report results of a whole-genome scan for linkage in the feline SMA pedigree using recently developed species-specific and comparative mapping resources. We identified a novel SMA gene candidate, LIX1, in an ~140-kb deletion on feline chromosome A1q in a region of conserved synteny to human chromosome 5q15. Though LIX1 function is unknown, the predicted secondary structure is compatible with a role in RNA metabolism. LIX1 expression is largely restricted to the central nervous system, primarily in spinal motor neurons, thus offering explanation of the tissue restriction of pathology in feline SMA. An exon sequence screen of 25 human SMA cases, not otherwise explicable by mutations at the SMN1 locus, failed to identify comparable LIX1 mutations. Nonetheless, a LIX1-associated etiology in feline SMA implicates a previously undetected mechanism of motor neuron maintenance and mandates consideration of LIX1 as a candidate gene in human SMA when SMN1 mutations are not found. PMID:16899656

  7. A Systematic Review of Experimental Strategies Aimed at Improving Motor Function after Acute and Chronic Spinal Cord Injury.

    PubMed

    Gomes-Osman, Joyce; Cortes, Mar; Guest, James; Pascual-Leone, Alvaro

    2016-03-01

    While various approaches have been proposed in clinical trials aimed at improving motor function after spinal cord injury in humans, there is still limited information regarding the scope, methodological quality, and evidence associated with single-intervention and multi-intervention approaches. A systematic review performed using the PubMed search engine and the key words "spinal cord injury motor recovery" identified 1973 records, of which 39 were selected (18 from the search records and 21 from reference list inspection). Study phase ( clinicaltrials.org criteria) and methodological quality (Cochrane criteria) were assessed. Studies included proposed a broad range of single-intervention (encompassing cell therapies, pharmacology, electrical stimulation, rehabilitation) (encompassing cell therapies, pharmacology, electrical stimulation, rehabilitation) and multi-intervention approaches (that combined more than one strategy). The highest evidence level was for Phase III studies supporting the role of multi-intervention approaches that contained a rehabilitation component. Quality appraisal revealed that the percentage of selected studies classified with high risk of bias by Cochrane criteria was as follows: random sequence generation = 64%; allocation concealment = 77%; blinding of participants and personnel = 69%; blinding of outcome assessment = 64%; attrition = 44%; selective reporting = 44%. The current literature contains a high proportion of studies with a limited ability to measure efficacy in a valid manner because of low methodological strength in all items of the Cochrane risk of bias assessment. Recommendations to decrease bias are discussed and include increased methodological rigor in the study design and recruitment of study participants, and the use of electrophysiological and imaging measures that can assess functional integrity of the spinal cord (and may be sufficiently sensitive to detect changes that occur in response to therapeutic

  8. DL-Homocysteic acid application disrupts calcium homeostasis and induces degeneration of spinal motor neurons in vivo.

    PubMed

    Adalbert, Róbert; Engelhardt, József I; Siklós, László

    2002-05-01

    Excitotoxicity, autoimmunity and free radicals have been postulated to play a role in the pathomechanism of amyotrophic lateral sclerosis (ALS), the most frequent motor neuron disease. Altered calcium homeostasis has already been demonstrated in Cu/Zn superoxide dismutase transgenic animals, suggesting a role for free radicals in the pathogenesis of ALS, and in passive transfer experiments, modeling autoimmunity. These findings also suggested that yet-confined pathogenic insults, associated with ALS, could trigger the disruption of calcium homeostasis of motor neurons. To test the possibility that excitotoxic processes may also be able to increase calcium in motor neurons, we applied the glutamate analogue DL-homocysteic acid to the spinal cord of rats in vivo and analyzed the calcium distribution of the motor neurons over a 24-h survival period by electron microscopy. Initially, an elevated cytoplasmic calcium level, with no morphological sign of degeneration, was noticed. Later, increasing calcium accumulation was seen in different cellular compartments with characteristic features of alteration at different survival times. This calcium accumulation in organelles was paralleled by their progressive degeneration, which culminated in cell death by the end of the observation time. These findings confirm that increased calcium also plays a role in excitotoxic lesion of motor neurons, in line with previous studies documenting the involvement of calcium ions in motor neuronal injury in other models of the disease as well as elevated calcium in biopsy samples from ALS patients. We suggest that intracellular calcium might be responsible for the interplay between the different pathogenic processes resulting in a uniform clinicopathological picture of the disease. PMID:11935257

  9. Copy Number Variations in the Survival Motor Neuron Genes: Implications for Spinal Muscular Atrophy and Other Neurodegenerative Diseases

    PubMed Central

    Butchbach, Matthew E. R.

    2016-01-01

    Proximal spinal muscular atrophy (SMA), a leading genetic cause of infant death worldwide, is an early-onset, autosomal recessive neurodegenerative disease characterized by the loss of spinal α-motor neurons. This loss of α-motor neurons is associated with muscle weakness and atrophy. SMA can be classified into five clinical grades based on age of onset and severity of the disease. Regardless of clinical grade, proximal SMA results from the loss or mutation of SMN1 (survival motor neuron 1) on chromosome 5q13. In humans a large tandem chromosomal duplication has lead to a second copy of the SMN gene locus known as SMN2. SMN2 is distinguishable from SMN1 by a single nucleotide difference that disrupts an exonic splice enhancer in exon 7. As a result, most of SMN2 mRNAs lack exon 7 (SMNΔ7) and produce a protein that is both unstable and less than fully functional. Although only 10–20% of the SMN2 gene product is fully functional, increased genomic copies of SMN2 inversely correlates with disease severity among individuals with SMA. Because SMN2 copy number influences disease severity in SMA, there is prognostic value in accurate measurement of SMN2 copy number from patients being evaluated for SMA. This prognostic value is especially important given that SMN2 copy number is now being used as an inclusion criterion for SMA clinical trials. In addition to SMA, copy number variations (CNVs) in the SMN genes can affect the clinical severity of other neurological disorders including amyotrophic lateral sclerosis (ALS) and progressive muscular atrophy (PMA). This review will discuss how SMN1 and SMN2 CNVs are detected and why accurate measurement of SMN1 and SMN2 copy numbers is relevant for SMA and other neurodegenerative diseases. PMID:27014701

  10. Similarities and differences in cervical and thoracolumbar multisegmental motor responses and the combined use for testing spinal circuitries

    PubMed Central

    Sabbahi, Mohamed A.; Uzun, Selda; Ovak Bittar, Fikriye; Sengul, Yesim

    2014-01-01

    Study design Experimental study. Objective To determine similarities and differences of C7 and T11–12 multisegmental motor responses (MMR) studies for the upper limbs (UL) and lower limbs (LL). Settings Neuroscience Lab, TWU (School of Physical Therapy, TX, USA). Methods C7 and T11–12 percutaneous electrical stimulations were applied while recording muscle action potentials from ULs and LLs. Results The procedure of cervical MMR (CMMR) was easier in application than thoracolumbar MMR (TMMR), requiring less current intensities but cause more “jolts” in the trapezius/shoulder complex, due to close proximity of the stimulation electrodes. CMMR evoked large amplitude motor responses in the millivolts range in (UL) muscles, but smaller amplitude signal in (LL) muscles (in microvolts). TMMR evoked large amplitude motor responses in both UL and LL (in millivolts). The MMR amplitude was generally larger in the UL as compared to the LL, in the distal limb muscles more than in the proximal limb muscles. CMMR and TMMR for the UL were comparable in amplitude, latencies and action potential shapes. Signal latencies were longer for distal limb muscles as compared to proximal limb muscles and were slightly longer for LL as compared to UL muscles. MMR signals were either biphasic or triphasic in shape. Conclusion CMMR and TMMR have similarities and differences in the methods and recording signal that must be considered during its clinical applications. Comparing the signal of the UL muscles with CMMR and TMMR could be a useful test for the integrity of the ascending and descending spinal pathways in patients with spinal cord injuries and diseases. PMID:24621020

  11. Surgical and conservative methods for restoring impaired motor function - facial nerve, spinal accessory nerve, hypoglossal nerve (not including vagal nerve or swallowing)

    PubMed Central

    Laskawi, R.; Rohrbach, S.

    2005-01-01

    The present review gives a survey of rehabilitative measures for disorders of the motor function of the mimetic muscles (facial nerve), and muscles innervated by the spinal accessory and hypoglossal nerves. The dysfunction can present either as paralysis or hyperkinesis (hyperkinesia). Conservative and surgical treatment options aimed at restoring normal motor function and correcting the movement disorders are described. Static reanimation techniques are not dealt with. The final section describes the use of botulinum toxin in the therapy of dysphagia. PMID:22073058

  12. Overexpression of the astrocyte glutamate transporter GLT1 exacerbates phrenic motor neuron degeneration, diaphragm compromise, and forelimb motor dysfunction following cervical contusion spinal cord injury.

    PubMed

    Li, Ke; Nicaise, Charles; Sannie, Daniel; Hala, Tamara J; Javed, Elham; Parker, Jessica L; Putatunda, Rajarshi; Regan, Kathleen A; Suain, Valérie; Brion, Jean-Pierre; Rhoderick, Fred; Wright, Megan C; Poulsen, David J; Lepore, Angelo C

    2014-05-28

    A major portion of spinal cord injury (SCI) cases affect midcervical levels, the location of the phrenic motor neuron (PhMN) pool that innervates the diaphragm. While initial trauma is uncontrollable, a valuable opportunity exists in the hours to days following SCI for preventing PhMN loss and consequent respiratory dysfunction that occurs during secondary degeneration. One of the primary causes of secondary injury is excitotoxic cell death due to dysregulation of extracellular glutamate homeostasis. GLT1, mainly expressed by astrocytes, is responsible for the vast majority of functional uptake of extracellular glutamate in the CNS, particularly in spinal cord. We found that, in bacterial artificial chromosome-GLT1-enhanced green fluorescent protein reporter mice following unilateral midcervical (C4) contusion SCI, numbers of GLT1-expressing astrocytes in ventral horn and total intraspinal GLT1 protein expression were reduced soon after injury and the decrease persisted for ≥6 weeks. We used intraspinal delivery of adeno-associated virus type 8 (AAV8)-Gfa2 vector to rat cervical spinal cord ventral horn for targeting focal astrocyte GLT1 overexpression in areas of PhMN loss. Intraspinal delivery of AAV8-Gfa2-GLT1 resulted in transduction primarily of GFAP(+) astrocytes that persisted for ≥6 weeks postinjury, as well as increased intraspinal GLT1 protein expression. Surprisingly, we found that astrocyte-targeted GLT1 overexpression increased lesion size, PhMN loss, phrenic nerve axonal degeneration, and diaphragm neuromuscular junction denervation, and resulted in reduced functional diaphragm innervation as assessed by phrenic nerve-diaphragm compound muscle action potential recordings. These results demonstrate that GLT1 overexpression via intraspinal AAV-Gfa2-GLT1 delivery exacerbates neuronal damage and increases respiratory impairment following cervical SCI. PMID:24872566

  13. AMPA Receptor Phosphorylation and Synaptic Colocalization on Motor Neurons Drive Maladaptive Plasticity below Complete Spinal Cord Injury1,2,3

    PubMed Central

    Stuck, Ellen D.; Irvine, Karen-Amanda; Bresnahan, Jacqueline C.

    2015-01-01

    Abstract Clinical spinal cord injury (SCI) is accompanied by comorbid peripheral injury in 47% of patients. Human and animal modeling data have shown that painful peripheral injuries undermine long-term recovery of locomotion through unknown mechanisms. Peripheral nociceptive stimuli induce maladaptive synaptic plasticity in dorsal horn sensory systems through AMPA receptor (AMPAR) phosphorylation and trafficking to synapses. Here we test whether ventral horn motor neurons in rats demonstrate similar experience-dependent maladaptive plasticity below a complete SCI in vivo. Quantitative biochemistry demonstrated that intermittent nociceptive stimulation (INS) rapidly and selectively increases AMPAR subunit GluA1 serine 831 phosphorylation and localization to synapses in the injured spinal cord, while reducing synaptic GluA2. These changes predict motor dysfunction in the absence of cell death signaling, suggesting an opportunity for therapeutic reversal. Automated confocal time-course analysis of lumbar ventral horn motor neurons confirmed a time-dependent increase in synaptic GluA1 with concurrent decrease in synaptic GluA2. Optical fractionation of neuronal plasma membranes revealed GluA2 removal from extrasynaptic sites on motor neurons early after INS followed by removal from synapses 2 h later. As GluA2-lacking AMPARs are canonical calcium-permeable AMPARs (CP-AMPARs), their stimulus- and time-dependent insertion provides a therapeutic target for limiting calcium-dependent dynamic maladaptive plasticity after SCI. Confirming this, a selective CP-AMPAR antagonist protected against INS-induced maladaptive spinal plasticity, restoring adaptive motor responses on a sensorimotor spinal training task. These findings highlight the critical involvement of AMPARs in experience-dependent spinal cord plasticity after injury and provide a pharmacologically targetable synaptic mechanism by which early postinjury experience shapes motor plasticity. PMID:26668821

  14. Effects of Pain and Pain Management on Motor Recovery of Spinal Cord-Injured Patients: A Longitudinal Study.

    PubMed

    Cragg, Jacquelyn J; Haefeli, Jenny; Jutzeler, Catherine R; Röhrich, Frank; Weidner, Norbert; Saur, Marion; Maier, Doris D; Kalke, Yorck B; Schuld, Christian; Curt, Armin; Kramer, John K

    2016-09-01

    Background Approximately 60% of patients suffering from acute spinal cord injury (SCI) develop pain within days to weeks after injury, which ultimately persists into chronic stages. To date, the consequences of pain after SCI have been largely examined in terms of interfering with quality of life. Objective The objective of this study was to examine the effects of pain and pain management on neurological recovery after SCI. Methods We analyzed clinical data in a prospective multicenter observational cohort study in patients with SCI. Using mixed effects regression techniques, total motor and sensory scores were modelled at 1, 3, 6, and 12 months postinjury. Results A total of 225 individuals were included in the study (mean age: 45.8 ± 18 years, 80% male). At 1 month postinjury, 28% of individuals with SCI reported at- or below-level neuropathic pain. While pain classification showed no effect on neurological outcomes, individuals administered anticonvulsant medications at 1 month postinjury showed significant reductions in pain intensity (2 points over 1 year; P < .05) and greater recovery in total motor scores (7.3 points over 1 year; P < .05). This drug effect on motor recovery remained significant after adjustment for injury level and injury severity, pain classification, and pain intensity. Conclusion While initial pain classification and intensity did not reveal an effect on motor recovery following acute SCI, anticonvulsants conferred a significant beneficial effect on motor outcomes. Early intervention with anticonvulsants may have effects beyond pain management and warrant further studies to evaluate the therapeutic effectiveness in human SCI. PMID:26747127

  15. The contractile properties of the medial gastrocnemius motor units innervated by L4 and L5 spinal nerves in the rat.

    PubMed

    Celichowski, Jan; Taborowska, Malwina

    2011-01-01

    When a muscle innervation originates from more than one spinal cord segment, the injury of one of the respective ventral roots evokes an overload, and alters the activity and properties of the remaining motor units. However, it is not well documented if the three types of motor units are equally represented within the innervating ventral roots. Single motor units in the rat medial gastrocnemius muscle were studied and their contractile properties as well as distribution of different types of motor units belonging to subpopulations innervated by axons in L4 and L5 ventral roots were analyzed. The composition of the three physiological types of motor units in the two subpopulations was similar. Force parameters were similar for motor units belonging to the two subpopulations. However, the twitch time parameters were slightly longer in L4 in comparison to L5 motor units although the difference was significant only for fast resistant to fatigue motor units. The force-frequency relationships in the two subpopulations of motor units were not different. Concluding, the two subpopulations of motor units in the studied muscle differ in the number of motor units, but contain similar proportions of the three physiological types of these units and their contractile properties are similar. Therefore, the injury of one ventral root evokes various degrees of muscle denervation, but is non-selective in relation to the three types of motor units. PMID:21846299

  16. Age-related changes in soma size of neurons in the spinal cord motor column of the cat.

    PubMed

    Liu, R H; Bertolotto, C; Engelhardt, J K; Chase, M H

    1996-06-28

    The present study was undertaken to examine the effect of the aging process on the soma size and number of motoneurons and interneurons in the motor column of the spinal cord of old cats. Neurons in the motor column were divided into small and large populations based on a bimodal distribution of their soma cross-sectional areas. A 17% decrease in the cross-sectional area of small neurons was observed, this decrease was statistically significant (P < 0.0001). The cross-sectional area of large neurons decreased by only 6%, which was statistically significant (P < 0.05). On the other hand, there was no significant difference in the number of large, small or of these combined population of ventral horn neurons in the aged cats compared with the control animals. This data suggest that neurons in the motor column are not uniformly affected by the aging process because morphological changes are proportionally greater in small neurons than in large neurons. PMID:8817566

  17. Spinal muscular atrophy phenotype is ameliorated in human motor neurons by SMN increase via different novel RNA therapeutic approaches.

    PubMed

    Nizzardo, Monica; Simone, Chiara; Dametti, Sara; Salani, Sabrina; Ulzi, Gianna; Pagliarani, Serena; Rizzo, Federica; Frattini, Emanuele; Pagani, Franco; Bresolin, Nereo; Comi, Giacomo; Corti, Stefania

    2015-01-01

    Spinal muscular atrophy (SMA) is a primary genetic cause of infant mortality due to mutations in the Survival Motor Neuron (SMN) 1 gene. No cure is available. Antisense oligonucleotides (ASOs) aimed at increasing SMN levels from the paralogous SMN2 gene represent a possible therapeutic strategy. Here, we tested in SMA human induced pluripotent stem cells (iPSCs) and iPSC-differentiated motor neurons, three different RNA approaches based on morpholino antisense targeting of the ISSN-1, exon-specific U1 small nuclear RNA (ExSpeU1), and Transcription Activator-Like Effector-Transcription Factor (TALE-TF). All strategies act modulating SMN2 RNA: ASO affects exon 7 splicing, TALE-TF increase SMN2 RNA acting on the promoter, while ExSpeU1 improves pre-mRNA processing. These approaches induced up-regulation of full-length SMN mRNA and differentially affected the Delta-7 isoform: ASO reduced this isoform, while ExSpeU1 and TALE-TF increased it. All approaches upregulate the SMN protein and significantly improve the in vitro SMA motor neurons survival. Thus, these findings demonstrate that therapeutic tools that act on SMN2 RNA are able to rescue the SMA disease phenotype. Our data confirm the feasibility of SMA iPSCs as in vitro disease models and we propose novel RNA approaches as potential therapeutic strategies for treating SMA and other genetic neurological disorders. PMID:26123042

  18. Role of Neurotrophins in Recovery of Phrenic Motor Function Following Spinal Cord Injury

    PubMed Central

    Sieck, Gary C.; Mantilla, Carlos B.

    2009-01-01

    Many individuals who sustain a cervical spinal cord injury are unable to maintain adequate ventilation due to diaphragm muscle paralysis. These patients become dependent on mechanical ventilators and this situation is associated with ongoing problems with pulmonary clearance, infections, and lung injury leading to significant morbidity and reduced life expectancy. Therefore, functional recovery of rhythmic phrenic activity and the ability to generate expulsive forces would dramatically affect the quality of life of patients with cervical spinal cord injury. Neurotrophins are very promising in that they have been shown to play an important role in modulating functional neuroplasticity. Specifically, brain-derived neurotrophic factor (BDNF) acting via the tropomyosin-related kinase receptor type B (TrkB) has been implicated in neuroplasticity following spinal cord injury. Our central hypothesis is that functional recovery of rhythmic phrenic activity after cervical spinal cord injury is enhanced by an increase in BDNF/TrkB signaling in phrenic motoneurons, providing a novel therapeutic target for patients. PMID:19703592

  19. Motor strategies used by rats spinalized at birth to maintain stance in response to imposed perturbations

    PubMed Central

    Giszter, Simon F; Davies, Michelle R; Graziani, Virginia

    2010-01-01

    Some rats spinalized P1/P2 achieve autonomous weight supported locomotion and quiet stance as adults. We used force platforms and robot applied perturbations to test such spinalized rats (n=6) which exhibited both weight supporting locomotion and stance, and also normal rats (n=8). Ground reaction forces in individual limbs, and the animals’ center of pressure were examined. In normal rats, both forelimbs and hindlimbs participated actively to control horizontal components of ground reaction forces. Rostral perturbations increased forelimb ground reaction forces, and caudal perturbations increased hindlimb ground reaction forces. Operate rats carried 60% body weight on the forelimbs and had a more rostral center of pressure placement. Normal rats pattern was to carry significantly more weight on the hindlimbs in quiet stance (~60%). Operate rats strategy of compensation for perturbations was entirely in forelimbs; as a result, the hind-limbs were largely isolated from the perturbation. Stiffness magnitude of the whole body was measured: its magnitude was hourglass shaped, with the principal axis oriented rostrocaudally. Operate rats were significantly less stiff; only 60-75% of normal rats’ stiffness. The injured rats adopt a stance strategy that isolates the hindlimbs from perturbation and may thus prevent hindlimb loadings. Such loadings could initiate reflex stepping, which we observed. This might activate lumbar pattern generators used in their locomotion. Adult spinalized rats never achieve independent hindlimb weight supported stance. The stance strategy of the P1 spinalized rats differed strongly from the behavior of intact rats and may be difficult for rats spinalized as adults to master. PMID:17287444

  20. Effect of dexmedetomidine-etomidate-fentanyl combined anesthesia on somatosensory- and motor-evoked potentials in patients undergoing spinal surgery

    PubMed Central

    LIN, SHENG; DAI, NA; CHENG, ZHENGYAN; SHAO, WEI; FU, ZHIJIAN

    2014-01-01

    This aim of the present study was to evaluate the effects of dexmedetomidine (DEX) on the intraoperative monitoring of somatosensory-evoked potentials (SEPs) and motor-evoked potentials (MEPs) in patients undergoing spinal surgery. A total of 36 patients who received spinal surgery under general anesthesia were randomly divided into two groups (n=18 per group), group C, the test group and group D, the control group, and these groups were subjected to a matching anesthesia induction. In brief, the anesthesia was administered via injection of etomidate and fentanyl; once the patients were unconscious, a laryngeal mask airway (LMA) was inserted, SEPs and MEPs were monitored and the collected data were considered to be basic data. Cisatracurium was subsequently injected and an endotracheal tube (7#) was inserted to replace the LMA. The following procedures were conducted for anesthesia maintenance: Group C, the anesthesia was maintained via target-controlled infusion of etomidate and intermittent injection of fentanyl; and group D, DEX (0.5 μg/kg) was injected over a duration of 10 min and then pumped at a rate of 0.5 μg/kg/h. In the two groups, all of the other drugs used were the same and a muscle relaxant was not administered. The bispectral index was maintained between 45 and 55 during surgery, and the SEPs and MEPs were monitored continuously until the surgery was completed. No significant difference in duration and amplitude of the SEPs (P15-N20) was identified between group C and D (P>0.05). Furthermore, the MEPs were monitored in the two groups at specific durations and no significant difference was observed between the two groups (P>0.05). The SEPs and MEPs were maintained in the patients who were administered with the DEX-etomidate-fentanyl combined anesthesia during spinal surgery. PMID:24940443

  1. Co-aggregation of RNA binding proteins in ALS spinal motor neurons: evidence of a common pathogenic mechanism.

    PubMed

    Keller, Brian A; Volkening, Kathryn; Droppelmann, Cristian A; Ang, Lee Cyn; Rademakers, Rosa; Strong, Michael J

    2012-11-01

    While the pathogenesis of amyotrophic lateral sclerosis (ALS) remains to be clearly delineated, there is mounting evidence that altered RNA metabolism is a commonality amongst several of the known genetic variants of the disease. In this study, we evaluated the expression of 10 ALS-associated proteins in spinal motor neurons (MNs) in ALS patients with mutations in C9orf72 (C9orf72(GGGGCC)-ALS; n = 5), SOD1 (mtSOD1-ALS; n = 9), FUS/TLS (mtFUS/TLS-ALS; n = 2), or TARDBP (mtTDP-43-ALS; n = 2) and contrasted these to cases of sporadic ALS (sALS; n = 4) and familial ALS without known mutations (fALS; n = 2). We performed colorimetric immunohistochemistry (IHC) using antibodies against TDP-43, FUS/TLS, SOD1, C9orf72, ubiquitin, sequestosome 1 (p62), optineurin, phosphorylated high molecular weight neurofilament, peripherin, and Rho-guanine nucleotide exchange factor (RGNEF). We observed that RGNEF-immunoreactive neuronal cytoplasmic inclusions (NCIs) can co-localize with TDP-43, FUS/TLS and p62 within spinal MNs. We confirmed their capacity to interact by co-immunoprecipitations. We also found that mtSOD1-ALS cases possess a unique IHC signature, including the presence of C9orf72-immunoreactive diffuse NCIs, which allows them to be distinguished from other variants of ALS at the level of light microscopy. These findings support the hypothesis that alterations in RNA metabolism are a core pathogenic pathway in ALS. We also conclude that routine IHC-based analysis of spinal MNs may aid in the identification of families not previously suspected to harbor SOD1 mutations. PMID:22941224

  2. Discovery and Optimization of Small Molecule Splicing Modifiers of Survival Motor Neuron 2 as a Treatment for Spinal Muscular Atrophy.

    PubMed

    Woll, Matthew G; Qi, Hongyan; Turpoff, Anthony; Zhang, Nanjing; Zhang, Xiaoyan; Chen, Guangming; Li, Chunshi; Huang, Song; Yang, Tianle; Moon, Young-Choon; Lee, Chang-Sun; Choi, Soongyu; Almstead, Neil G; Naryshkin, Nikolai A; Dakka, Amal; Narasimhan, Jana; Gabbeta, Vijayalakshmi; Welch, Ellen; Zhao, Xin; Risher, Nicole; Sheedy, Josephine; Weetall, Marla; Karp, Gary M

    2016-07-14

    The underlying cause of spinal muscular atrophy (SMA) is a deficiency of the survival motor neuron (SMN) protein. Starting from hits identified in a high-throughput screening campaign and through structure-activity relationship investigations, we have developed small molecules that potently shift the alternative splicing of the SMN2 exon 7, resulting in increased production of the full-length SMN mRNA and protein. Three novel chemical series, represented by compounds 9, 14, and 20, have been optimized to increase the level of SMN protein by >50% in SMA patient-derived fibroblasts at concentrations of <160 nM. Daily administration of these compounds to severe SMA Δ7 mice results in an increased production of SMN protein in disease-relevant tissues and a significant increase in median survival time in a dose-dependent manner. Our work supports the development of an orally administered small molecule for the treatment of patients with SMA. PMID:27299569

  3. Activation of the unfolded protein response enhances motor recovery after spinal cord injury

    PubMed Central

    Valenzuela, V; Collyer, E; Armentano, D; Parsons, G B; Court, F A; Hetz, C

    2012-01-01

    Spinal cord injury (SCI) is a major cause of paralysis, and involves multiple cellular and tissular responses including demyelination, inflammation, cell death and axonal degeneration. Recent evidence suggests that perturbation on the homeostasis of the endoplasmic reticulum (ER) is observed in different SCI models; however, the functional contribution of this pathway to this pathology is not known. Here we demonstrate that SCI triggers a fast ER stress reaction (1–3 h) involving the upregulation of key components of the unfolded protein response (UPR), a process that propagates through the spinal cord. Ablation of X-box-binding protein 1 (XBP1) or activating transcription factor 4 (ATF4) expression, two major UPR transcription factors, leads to a reduced locomotor recovery after experimental SCI. The effects of UPR inactivation were associated with a significant increase in the number of damaged axons and reduced amount of oligodendrocytes surrounding the injury zone. In addition, altered microglial activation and pro-inflammatory cytokine expression were observed in ATF4 deficient mice after SCI. Local expression of active XBP1 into the spinal cord using adeno-associated viruses enhanced locomotor recovery after SCI, and was associated with an increased number of oligodendrocytes. Altogether, our results demonstrate a functional role of the UPR in SCI, offering novel therapeutic targets to treat this invalidating condition. PMID:22337234

  4. Riluzole promotes motor and respiratory recovery associated with enhanced neuronal survival and function following high cervical spinal hemisection.

    PubMed

    Satkunendrarajah, K; Nassiri, F; Karadimas, S K; Lip, A; Yao, G; Fehlings, M G

    2016-02-01

    Cervical spinal cord injury (SCI) can result in devastating functional deficits that involve the respiratory and hand function. The mammalian spinal cord has limited ability to regenerate and restore meaningful functional recovery following SCI. Riluzole, 2-amino-6-trifluoromethoxybenzothiazole, an anti-glutamatergic drug has been shown to reduce excitotoxicity and confer neuroprotection at the site of injury following experimental SCI. Based on promising preclinical studies, riluzole is currently under Phase III clinical trial for the treatment of SCI (ClinicalTrials.gov: NCT01597518). Riluzole's anti-glutamatergic role has the potential to regulate neuronal function and provide neuroprotection and influence glutamatergic connections distal to the initial injury leading to enhanced functional recovery following SCI. In order to investigate this novel role of riluzole we used a high cervical hemisection model of SCI, which interrupts all descending input to motoneurons innervating the ipsilateral forelimb and diaphragm muscles. Following C2 spinal cord hemisection, animals were placed into one of two groups: one group received riluzole (8 mg/kg) 1 h after injury and every 12 h thereafter for 7 days at 6 mg/kg, while the second group of injured rats received vehicle solution for the same duration of time. A third group of sham injured rats underwent a C2 laminectomy without hemisection and served as uninjured control rats. Interestingly, this study reports a significant loss of motoneurons within the cervical spinal cord caudal to C2 hemisection injury. Disruption of descending input led to a decrease in glutamatergic synapses and motoneurons caudal to the injury while riluzole treatment significantly limited this decline. Functionally, Hoffmann reflex recordings revealed an increase in the excitability of the remaining ipsilateral cervical motoneurons and significant improvements in skilled and unskilled forelimb function and respiratory motor function in the

  5. Substantially elevating the levels of αB-crystallin in spinal motor neurons of mutant SOD1 mice does not significantly delay paralysis or attenuate mutant protein aggregation

    PubMed Central

    Xu, Guilian; Fromholt, Susan; Ayers, Jacob I.; Brown, Hilda; Siemienski, Zoe; Crosby, Keith W.; Mayer, Christopher A.; Janus, Christopher; Borchelt, David R.

    2015-01-01

    There has been great interest in enhancing endogenous protein maintenance pathways such as the heat-shock chaperone response, as it is postulated that enhancing clearance of misfolded proteins could have beneficial disease modifying effects in ALS and other neurodegenerative disorders. In cultured cell models of mutant SOD1 aggregation, co-expression of αB-crystallin (αB-crys) has been shown to inhibit the formation of detergent-insoluble forms of mutant protein. Here, we describe the generation of a new line of transgenic mice that express αB-crys at >6-fold the normal level in spinal cord, with robust increases in immunoreactivity throughout the spinal cord grey matter and, specifically, in spinal motor neurons. Surprisingly, spinal cords of mice expressing αB-crys alone contained 20% more motor neurons per section than littermate controls. Raising αB-crys by these levels in mice transgenic for either G93A or L126Z mutant SOD1 had no effect on the age at which paralysis developed. In the G93A mice, which showed the most robust degree of motor neuron loss, the number of these cells declined by the same proportion as in mice expressing the mutant SOD1 alone. In paralyzed bigenic mice, the levels of detergent-insoluble, misfolded, mutant SOD1 were similar to those of mice expressing mutant SOD1 alone. These findings indicate that raising the levels of αB-crys in spinal motor neurons by 6-fold does not produce the therapeutic effects predicted by cell culture models of mutant SOD1 aggregation. PMID:25557022

  6. In vivo and in vitro studies of glycine- and glutamate-evoked acetylcholinesterase release from spinal motor neurones: implications for amyotrophic lateral sclerosis/motor neurone disease pathogenesis.

    PubMed

    Rodríguez-Ithurralde, D; Olivera, S; Vincent, O; Maruri, A

    1997-10-01

    To investigate the spinal cellular structures and molecular mechanisms involved in acetylcholinesterase (AChE) release evoked by both glycine (GLY) and glutamate (GLU)--responses that might play a role in chronic neurotoxicity--we analysed AChE histochemistry and histology upon systemic administration of aspartate (ASP), and conducted in vitro experiments in synaptosomes and slices prepared from mouse spinal ventral horns. Upon superfusion and incubation exposure of these preparations to GLY- and GLU-receptor agonists, we assayed both tissue content and release of AChE, butyrylcholinesterase and lactic dehydrogenase. Histochemical reduction of motor neurone (MN) AChE, calcium dependency, decreases in intracellular AChE and the ratio amongst molecular forms released, suggest that both synaptosomal GLY-evoked AChE release (GLY-EAR) and GLU-receptor-elicited AChE release (GEAR) have release sites located at MN presynaptic terminals. These responses exhibited remarkable postnatal regulation. GEAR seems to be mediated through alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid/kainate receptors after the fourth postnatal week and through both NMDA and non-NMDA receptors at earlier stages. Sustained rises of extracellular AChE might link acute excitotoxic injury with several long-lasting pathways leading to chronic neurotoxicity, since AChE molecular properties include: (1) the ability to block cholinergic mechanisms that protect MN against overactivity; (2) activation of ATP-dependent potassium channels; (3) promotion of neurite and axon outgrowth; and possibly (4) stimulation of brain macrophage migration and activation. PMID:9419055

  7. Spinal muscular atrophy and a model for survival of motor neuron protein function in axonal ribonucleoprotein complexes.

    PubMed

    Rossoll, Wilfried; Bassell, Gary J

    2009-01-01

    Spinal muscular atrophy (SMA) is a neurodegenerative disease that results from loss of function of the SMN1 gene, encoding the ubiquitously expressed survival of motor neuron (SMN) protein, a protein best known for its housekeeping role in the SMN-Gemin multiprotein complex involved in spliceosomal small nuclear ribonucleoprotein (snRNP) assembly. However, numerous studies reveal that SMN has many interaction partners, including mRNA binding proteins and actin regulators, suggesting its diverse role as a molecular chaperone involved in mRNA metabolism. This review focuses on studies suggesting an important role of SMN in regulating the assembly, localization, or stability of axonal messenger ribonucleoprotein (mRNP) complexes. Various animal models for SMA are discussed, and phenotypes described that indicate a predominant function for SMN in neuronal development and synapse formation. These models have begun to be used to test different therapeutic strategies that have the potential to restore SMN function. Further work to elucidate SMN mechanisms within motor neurons and other cell types involved in neuromuscular circuitry hold promise for the potential treatment of SMA. PMID:19343312

  8. Neuropathological characterization of spinal motor neuron degeneration processes induced by acute and chronic excitotoxic stimulus in vivo.

    PubMed

    Ramírez-Jarquín, Uri Nimrod; Tapia, Ricardo

    2016-09-01

    Motor neuron (MN) diseases are characterized by progressive cell degeneration, and excitotoxicity has been postulated as a causal factor. Using two experimental procedures for inducing excitotoxic spinal MN degeneration in vivo, by acute and chronic overactivation of α-amino-3-hydroxy-5-methyl-4-isoxazoleacetic acid (AMPA) receptors, we characterized the time course of the neuropathological changes. Electron transmission microscopy showed that acute AMPA perfusion by microdialysis caused MN swelling 1.5h after surgery and lysis with membrane rupture as early as 3h; no cleaved caspase 3 was detected by immunochemistry. Chronic AMPA infusion by osmotic minipumps induced a slow degeneration process along 5days, characterized by progressive changes: endoplasmic reticulum swelling, vacuolization of cytoplasm, vacuole fusion and cell membrane rupture. Quantification of these ultrastructural alterations showed that the increase of vacuolated area was at the expense of the nuclear area. Caspase 3 cleavage was observed since the first day of AMPA infusion. We conclude that acute AMPA-induced excitotoxicity induces MN loss by necrosis, while the progress of degeneration induced by chronic infusion is slow, starting with an early apoptotic process followed by necrosis. In both the acute and chronic procedures a correlation could be established between the loss of MN by necrosis, but not by caspase 3-linked apoptosis, and severe motor deficits and hindlimb paralysis. Our findings are relevant for understanding the mechanisms of neuron death in degenerative diseases and thus for the design of pharmacological therapeutic strategies. PMID:27320208

  9. Motor Neuron Diseases

    MedlinePlus

    ... called upper motor neurons ) are transmitted to nerve cells in the brain stem and spinal cord (called lower motor neurons ) and from them to particular muscles. Upper motor neurons direct the lower motor neurons ...

  10. Motor units in incomplete spinal cord injury: electrical activity, contractile properties and the effects of biofeedback.

    PubMed

    Stein, R B; Brucker, B S; Ayyar, D R

    1990-10-01

    The electrical and contractile properties of hand muscles in a selected population of quadriplegic subjects were studied intensively before and after EMG biofeedback. Spontaneously active motor units and units that could only be slowly and weakly activated were observed in these subjects, in addition to units that were voluntarily activated normally. This suggests a considerable overlap of surviving motor neurons to a single muscle that are below, near or above the level of a lesion. Despite the common occurrence of polyphasic potentials and other signs of neuromuscular reinnervation, the average twitch tension of single motor units in hand muscles of quadriplegic subjects was not significantly different from that in control subjects. Nor did it increase after biofeedback training that typically increased the peak surface EMG by a factor of 2-5 times. The percentage of spontaneously active units was also constant. The surface EMG may be increased during biofeedback by using higher firing rates in motor units that can already be activated, rather than by recruiting previously unavailable motor units. PMID:2266370

  11. Neuroprotective Effects of Toll-Like Receptor 4 Antagonism in Spinal Cord Cultures and in a Mouse Model of Motor Neuron Degeneration

    PubMed Central

    De Paola, Massimiliano; Mariani, Alessandro; Bigini, Paolo; Peviani, Marco; Ferrara, Giovanni; Molteni, Monica; Gemma, Sabrina; Veglianese, Pietro; Castellaneta, Valeria; Boldrin, Valentina; Rossetti, Carlo; Chiabrando, Chiara; Forloni, Gianluigi; Mennini, Tiziana; Fanelli, Roberto

    2012-01-01

    Sustained inflammatory reactions are common pathological events associated with neuron loss in neurodegenerative diseases. Reported evidence suggests that Toll-like receptor 4 (TLR4) is a key player of neuroinflammation in several neurodegenerative diseases. However, the mechanisms by which TLR4 mediates neurotoxic signals remain poorly understood. We investigated the role of TLR4 in in vitro and in vivo settings of motor neuron degeneration. Using primary cultures from mouse spinal cords, we characterized both the proinflammatory and neurotoxic effects of TLR4 activation with lipopolysaccharide (activation of microglial cells, release of proinflammatory cytokines and motor neuron death) and the protective effects of a cyanobacteria-derived TLR4 antagonist (VB3323). With the use of TLR4-deficient cells, a critical role of the microglial component with functionally active TLR4 emerged in this setting. The in vivo experiments were carried out in a mouse model of spontaneous motor neuron degeneration, the wobbler mouse, where we preliminarily confirmed a protective effect of TLR4 antagonism. Compared with vehicle- and riluzole-treated mice, those chronically treated with VB3323 showed a decrease in microglial activation and morphological alterations of spinal cord neurons and a better performance in the paw abnormality and grip-strength tests. Taken together, our data add new understanding of the role of TLR4 in mediating neurotoxicity in the spinal cord and suggest that TLR4 antagonists could be considered in future studies as candidate protective agents for motor neurons in degenerative diseases. PMID:22562723

  12. The control of rostrocaudal pattern in the developing spinal cord: specification of motor neuron subtype identity is initiated by signals from paraxial mesoderm.

    PubMed

    Ensini, M; Tsuchida, T N; Belting, H G; Jessell, T M

    1998-03-01

    The generation of distinct classes of motor neurons is an early step in the control of vertebrate motor behavior. To study the interactions that control the generation of motor neuron subclasses in the developing avian spinal cord we performed in vivo grafting studies in which either the neural tube or flanking mesoderm were displaced between thoracic and brachial levels. The positional identity of neural tube cells and motor neuron subtype identity was assessed by Hox and LIM homeodomain protein expression. Our results show that the rostrocaudal identity of neural cells is plastic at the time of neural tube closure and is sensitive to positionally restricted signals from the paraxial mesoderm. Such paraxial mesodermal signals appear to control the rostrocaudal identity of neural tube cells and the columnar subtype identity of motor neurons. These results suggest that the generation of motor neuron subtypes in the developing spinal cord involves the integration of distinct rostrocaudal and dorsoventral patterning signals that derive, respectively, from paraxial and axial mesodermal cell groups. PMID:9463344

  13. The use of magnetic motor evoked potentials in horses with cervical spinal cord disease.

    PubMed

    Nollet, H; Deprez, P; Van Ham, L; Verschooten, F; Vanderstraeten, G

    2002-03-01

    The aim of this study was to investigate the use of magnetic motor evoked potentials as an ancillary diagnostic test in horses with cervical cord lesions. Transcranial magnetic stimulation was performed in 12 ataxic horses and the results of the evoked responses were compared to those found in normal horses. The latency and peak-to-peak amplitude of the potentials in the 12 ataxic horses were significantly different from those measured in normal horses. The configuration of the abnormal potentials was also polyphasic. Normalisation of the evoked potentials occurred in none of the horses, presented after a period of clinical improvement. These findings demonstrate that the technique is also able to detect lesions in horses with subtle clinical signs of incoordination. Magnetic transcranial stimulation is a valuable ancillary test to assess the integrity of the motor tracts. The technique is painless and safe and shows good sensitivity to detect lesions along the descending motor pathways. PMID:11902758

  14. Role of Direct vs. Indirect Pathways from the Motor Cortex to Spinal Motoneurons in the Control of Hand Dexterity

    PubMed Central

    Isa, Tadashi; Kinoshita, Masaharu; Nishimura, Yukio

    2013-01-01

    Evolutionally, development of the direct connection from the motor cortex to spinal motoneurons [corticomotoneuronal (CM) pathway] parallels the ability of hand dexterity. Damage to the corticofugal fibers in higher primates resulted in deficit of fractionated digit movements. Based on such observations, it was generally believed that the CM pathway plays a critical role in the control of hand dexterity. On the other hand, a number of “phylogenetically older” indirect pathways from the motor cortex to motoneurons still exist in primates. The indirect pathways are mediated by intercalated neurons such as segmental interneurons (sINs), propriospinal neurons (PNs) reticulospinal neurons (RSNs), or rubrospinal neurons (RuSNs). However, their contribution to hand dexterity remains elusive. Lesion of the brainstem pyramid sparing the transmission through the RuSNs and RSNs, resulted in permanent deficit of fractionated digit movements in macaque monkeys. On the other hand, in our recent study, after lesion of the dorsolateral funiculus (DLF) at the C5 segment, which removed the lateral corticospinal tract (l-CST) including the CM pathway and the transmission through sINs and RuSNs but spared the processing through the PNs and RSNs, fractionated digit movements recovered within several weeks. These results suggest that the PNs can be involved in the recovery of fractionated digit movements, but the RSNs and RuSNs have less capacity in this regard. However, on closer inspection, it was found that the activation pattern of hand and arm muscles considerably changed after the C5 lesion, suggesting limitation of PNs for the compensation of hand dexterity. Altogether, it is suggested that PNs, RSNs RuSNs, and the CM pathway (plus sINs) make a different contribution to the hand dexterity and appearance of motor deficit of the hand dexterity caused by damage to the corticofugal fibers and potential of recovery varies depending on the rostrocaudal level of the lesion. PMID

  15. Stimulation of Glia Reveals Modulation of Mammalian Spinal Motor Networks by Adenosine.

    PubMed

    Acton, David; Miles, Gareth B

    2015-01-01

    Despite considerable evidence that glia can release modulators to influence the excitability of neighbouring neurons, the importance of gliotransmission for the operation of neural networks and in shaping behaviour remains controversial. Here we characterise the contribution of glia to the modulation of the mammalian spinal central pattern generator for locomotion, the output of which is directly relatable to a defined behaviour. Glia were stimulated by specific activation of protease-activated receptor-1 (PAR1), an endogenous G-protein coupled receptor preferentially expressed by spinal glia during ongoing activity of the spinal central pattern generator for locomotion. Selective activation of PAR1 by the agonist TFLLR resulted in a reversible reduction in the frequency of locomotor-related bursting recorded from ventral roots of spinal cord preparations isolated from neonatal mice. In the presence of the gliotoxins methionine sulfoximine or fluoroacetate, TFLLR had no effect, confirming the specificity of PAR1 activation to glia. The modulation of burst frequency upon PAR1 activation was blocked by the non-selective adenosine-receptor antagonist theophylline and by the A1-receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine, but not by the A2A-receptor antagonist SCH5826, indicating production of extracellular adenosine upon glial stimulation, followed by A1-receptor mediated inhibition of neuronal activity. Modulation of network output following glial stimulation was also blocked by the ectonucleotidase inhibitor ARL67156, indicating glial release of ATP and its subsequent degradation to adenosine rather than direct release of adenosine. Glial stimulation had no effect on rhythmic activity recorded following blockade of inhibitory transmission, suggesting that glial cell-derived adenosine acts via inhibitory circuit components to modulate locomotor-related output. Finally, the modulation of network output by endogenous adenosine was found to scale with the

  16. Stimulation of Glia Reveals Modulation of Mammalian Spinal Motor Networks by Adenosine

    PubMed Central

    Acton, David; Miles, Gareth B.

    2015-01-01

    Despite considerable evidence that glia can release modulators to influence the excitability of neighbouring neurons, the importance of gliotransmission for the operation of neural networks and in shaping behaviour remains controversial. Here we characterise the contribution of glia to the modulation of the mammalian spinal central pattern generator for locomotion, the output of which is directly relatable to a defined behaviour. Glia were stimulated by specific activation of protease-activated receptor-1 (PAR1), an endogenous G-protein coupled receptor preferentially expressed by spinal glia during ongoing activity of the spinal central pattern generator for locomotion. Selective activation of PAR1 by the agonist TFLLR resulted in a reversible reduction in the frequency of locomotor-related bursting recorded from ventral roots of spinal cord preparations isolated from neonatal mice. In the presence of the gliotoxins methionine sulfoximine or fluoroacetate, TFLLR had no effect, confirming the specificity of PAR1 activation to glia. The modulation of burst frequency upon PAR1 activation was blocked by the non-selective adenosine-receptor antagonist theophylline and by the A1-receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine, but not by the A2A-receptor antagonist SCH5826, indicating production of extracellular adenosine upon glial stimulation, followed by A1-receptor mediated inhibition of neuronal activity. Modulation of network output following glial stimulation was also blocked by the ectonucleotidase inhibitor ARL67156, indicating glial release of ATP and its subsequent degradation to adenosine rather than direct release of adenosine. Glial stimulation had no effect on rhythmic activity recorded following blockade of inhibitory transmission, suggesting that glial cell-derived adenosine acts via inhibitory circuit components to modulate locomotor-related output. Finally, the modulation of network output by endogenous adenosine was found to scale with the

  17. G-protein-coupled receptor 30-mediated antiapoptotic effect of estrogen on spinal motor neurons following injury and its underlying mechanisms

    PubMed Central

    CHEN, JINGYU; HU, RONG; GE, HONGFEI; DUANMU, WANGSHENG; LI, YUHONG; XUE, XINGSENG; HU, SHENGLI; FENG, HUA

    2015-01-01

    Spinal cord injury (SCI) may result in severe dysfunction of motor neurons. G-protein-coupled receptor 30 (GPR30) expression in the motor neurons of the ventral horn of the spinal cord mediates neuroprotection through estrogen signaling. The present study explored the antiapoptotic effect of estrogen, mediated by GPR30 following SCI, and the mechanisms underlying this effect. Spinal motor neurons from rats were cultured in vitro in order to establish cell models of oxygen and glucose deprivation (OGD). The effects of estrogen, the estrogen agonist, G1, and the estrogen inhibitor, G15, on motor neurons were observed using MTT assays. The effects of E2, G1 and G15 on spinal motor neuron apoptosis following OGD, were detected using flow cytometry. The role of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) inhibitor, LY294002, was also determined using flow cytometry. Rat SCI models were established. E2, G1 and E2+LY294002 were administered in vivo. Motor function was scored at 3, 7, 14, 21 and 28 d following injury, using Basso-Beattie-Bresnahan (BBB) standards. Cell activity in the estrogen and G1 groups was higher than that in the solvent group, whereas cell activity in the E2+G15 group was lower than that in the E2 group (P<0.05). Following OGD, the proportion of apoptotic cells significantly increased (P<0.05). The proportion in the estrogen group was significantly lower than that in the solvent group, whereas the proportion of apoptotic cells in the E2+G15 and E2+LY294002 groups was higher than that in the E2 group (P<0.05). Treatment with E2 and G1 led to upregulation of P-Akt expression in normal cells and post-OGD cells. The BBB scores of rats in the E2 and G1 groups were higher than those in the placebo group (P<0.05). The BBB scores of the E2+LY294002 group were lower than those of the E2 group (P<0.05). Estrogen thus appears to exert a protective effect on spinal motor neurons following OGD, via GPR30. The PI3K/Akt pathway may be one of those

  18. A novel closed-body model of spinal cord injury caused by high-pressure air blasts produces extensive axonal injury and motor impairments

    PubMed Central

    del Mar, Nobel; von Buttlar, Xinyu; Yu, Angela S.; Guley, Natalie H.; Reiner, Anton; Honig, Marcia G.

    2015-01-01

    Diffuse axonal injury is thought to be the basis of the functional impairments stemming from mild traumatic brain injury. To examine how axons are damaged by traumatic events, such as motor vehicle accidents, falls, sports activities, or explosive blasts, we have taken advantage of the spinal cord with its extensive white matter tracts. We developed a closed-body model of spinal cord injury in mice whereby high-pressure air blasts targeted to lower thoracic vertebral levels produce tensile, compressive, and shear forces within the parenchyma of the spinal cord and thereby cause extensive axonal injury. Markers of cytoskeletal integrity showed that spinal cord axons exhibited three distinct pathologies: microtubule breakage, neurofilament compaction, and calpain-mediated spectrin breakdown. The dorsally situated axons of the corticospinal tract primarily exhibited microtubule breakage, whereas all three pathologies were common in the lateral and ventral white matter. Individual axons typically demonstrated only one of the three pathologies during the first 24 h after blast injury, suggesting that the different perturbations are initiated independently of one another. For the first few days after blast, neurofilament compaction was frequently accompanied by autophagy, and subsequent to that, by the fragmentation of degenerating axons. TuJ1 immunolabeling and mice with YFP-reporter labeling each revealed more extensive microtubule breakage than did βAPP immunolabeling, raising doubts about the sensitivity of this standard approach for assessing axonal injury. Although motor deficits were mild and largely transient, some aspects of motor function gradually worsened over several weeks, suggesting that a low level of axonal degeneration continued past the initial wave. Our model can help provide further insight into how to intervene in the processes by which initial axonal damage culminates in axonal degeneration, to improve outcomes after traumatic injury. Importantly

  19. A novel closed-body model of spinal cord injury caused by high-pressure air blasts produces extensive axonal injury and motor impairments.

    PubMed

    del Mar, Nobel; von Buttlar, Xinyu; Yu, Angela S; Guley, Natalie H; Reiner, Anton; Honig, Marcia G

    2015-09-01

    Diffuse axonal injury is thought to be the basis of the functional impairments stemming from mild traumatic brain injury. To examine how axons are damaged by traumatic events, such as motor vehicle accidents, falls, sports activities, or explosive blasts, we have taken advantage of the spinal cord with its extensive white matter tracts. We developed a closed-body model of spinal cord injury in mice whereby high-pressure air blasts targeted to lower thoracic vertebral levels produce tensile, compressive, and shear forces within the parenchyma of the spinal cord and thereby cause extensive axonal injury. Markers of cytoskeletal integrity showed that spinal cord axons exhibited three distinct pathologies: microtubule breakage, neurofilament compaction, and calpain-mediated spectrin breakdown. The dorsally situated axons of the corticospinal tract primarily exhibited microtubule breakage, whereas all three pathologies were common in the lateral and ventral white matter. Individual axons typically demonstrated only one of the three pathologies during the first 24h after blast injury, suggesting that the different perturbations are initiated independently of one another. For the first few days after blast, neurofilament compaction was frequently accompanied by autophagy, and subsequent to that, by the fragmentation of degenerating axons. TuJ1 immunolabeling and mice with YFP-reporter labeling each revealed more extensive microtubule breakage than did βAPP immunolabeling, raising doubts about the sensitivity of this standard approach for assessing axonal injury. Although motor deficits were mild and largely transient, some aspects of motor function gradually worsened over several weeks, suggesting that a low level of axonal degeneration continued past the initial wave. Our model can help provide further insight into how to intervene in the processes by which initial axonal damage culminates in axonal degeneration, to improve outcomes after traumatic injury. Importantly

  20. Novel Concept of Motor Functional Analysis for Spinal Cord Injury in Adult Mice

    PubMed Central

    Shinozaki, Munehisa; Takahashi, Yuichiro; Mukaino, Masahiko; Saito, Nobuhito; Toyama, Yoshiaki; Okano, Hideyuki; Nakamura, Masaya

    2011-01-01

    In basic research on spinal cord injury (SCI), behavioral evaluation of the SCI animal model is critical. However, it is difficult to accurately evaluate function in the mouse SCI model due to the small size of mice. Although the open-field scoring scale is an outstanding appraisal method, supplementary objective tests are required. Using a compact SCANET system, in which a mouse carries out free movement for 5 min, we developed a novel method to detect locomotor ability. A SCANET system samples the horizontal coordinates of a mouse every 0.1 s, and both the speed and acceleration of its motion are calculated at each moment. It was found that the maximum speed and acceleration of motion over 5 min varied by injury severity. Moreover, these values were significantly correlated with open-field scores. The maximum speed and acceleration of SCI model mice using a SCANET system are objective, easy to obtain, and reproducible for evaluating locomotive function. PMID:21253580

  1. Ketogenic Diet Improves Forelimb Motor Function after Spinal Cord Injury in Rodents

    PubMed Central

    Streijger, Femke; Plunet, Ward T.; Lee, Jae H. T.; Liu, Jie; Lam, Clarrie K.; Park, Soeyun; Hilton, Brett J.; Fransen, Bas L.; Matheson, Keely A. J.; Assinck, Peggy; Kwon, Brian K.; Tetzlaff, Wolfram

    2013-01-01

    High fat, low carbohydrate ketogenic diets (KD) are validated non-pharmacological treatments for some forms of drug-resistant epilepsy. Ketones reduce neuronal excitation and promote neuroprotection. Here, we investigated the efficacy of KD as a treatment for acute cervical spinal cord injury (SCI) in rats. Starting 4 hours following C5 hemi-contusion injury animals were fed either a standard carbohydrate based diet or a KD formulation with lipid to carbohydrate plus protein ratio of 3:1. The forelimb functional recovery was evaluated for 14 weeks, followed by quantitative histopathology. Post-injury 3:1 KD treatment resulted in increased usage and range of motion of the affected forepaw. Furthermore, KD improved pellet retrieval with recovery of wrist and digit movements. Importantly, after returning to a standard diet after 12 weeks of KD treatment, the improved forelimb function remained stable. Histologically, the spinal cords of KD treated animals displayed smaller lesion areas and more grey matter sparing. In addition, KD treatment increased the number of glucose transporter-1 positive blood vessels in the lesion penumbra and monocarboxylate transporter-1 (MCT1) expression. Pharmacological inhibition of MCTs with 4-CIN (α-cyano-4-hydroxycinnamate) prevented the KD-induced neuroprotection after SCI, In conclusion, post-injury KD effectively promotes functional recovery and is neuroprotective after cervical SCI. These beneficial effects require the function of monocarboxylate transporters responsible for ketone uptake and link the observed neuroprotection directly to the function of ketones, which are known to exert neuroprotection by multiple mechanisms. Our data suggest that current clinical nutritional guidelines, which include relatively high carbohydrate contents, should be revisited. PMID:24223849

  2. Feasibility of visual instrumented movement feedback therapy in individuals with motor incomplete spinal cord injury walking on a treadmill

    PubMed Central

    Schließmann, Daniel; Schuld, Christian; Schneiders, Matthias; Derlien, Steffen; Glöckner, Maria; Gladow, Till; Weidner, Norbert; Rupp, Rüdiger

    2014-01-01

    Background: Incomplete spinal cord injury (iSCI) leads to motor and sensory deficits. Even in ambulatory persons with good motor function an impaired proprioception may result in an insecure gait. Limited internal afferent feedback (FB) can be compensated by provision of external FB by therapists or technical systems. Progress in computational power of motion analysis systems allows for implementation of instrumented real-time FB. The aim of this study was to test if individuals with iSCI can normalize their gait kinematics during FB and more importantly maintain an improvement after therapy. Methods: Individuals with chronic iSCI had to complete 6 days (1 day per week) of treadmill-based FB training with a 2 weeks pause after 3 days of training. Each day consists of an initial gait analysis followed by 2 blocks with FB/no-FB. During FB the deviation of the mean knee angle during swing from a speed matched reference (norm distance, ND) is visualized as a number. The task consists of lowering the ND, which was updated after every stride. Prior to the tests in patients the in-house developed FB implementation was tested in healthy subjects with an artificial movement task. Results: Four of five study participants benefited from FB in the short and medium term. Decrease of mean ND was highest during the first 3 sessions (from 3.93 ± 1.54 to 2.18 ± 1.04). After the pause mean ND stayed in the same range than before. In the last 3 sessions the mean ND decreased slower (2.40 ± 1.18 to 2.20 ± 0.90). Direct influences of FB ranged from 60 to 15% of reduction in mean ND compared to initial gait analysis and from 20 to 1% compared to no-FB sessions. Conclusions: Instrumented kinematic real-time FB may serve as an effective adjunct to established gait therapies in normalizing the gait pattern after incomplete spinal cord injury. Further studies with larger patient groups need to prove long term learning and the successful transfer of newly acquired skills to activities of

  3. Using Transcranial Magnetic Stimulation to Evaluate the Motor Pathways After an Intraoperative Spinal Cord Injury and to Predict the Recovery of Intraoperative Transcranial Electrical Motor Evoked Potentials: A Case Report.

    PubMed

    Grover, Helen J; Thornton, Rachel; Lutchman, Lennel N; Blake, Julian C

    2016-06-01

    The authors report a case of unilateral loss of intraoperative transcranial electrical motor evoked potentials (TES MEP) associated with a spinal cord injury during scoliosis correction and the subsequent use of extraoperative transcranial magnetic stimulation to monitor the recovery of spinal cord function. The authors demonstrate the absence of TES MEPs and absent transcranial magnetic stimulation responses in the immediate postoperative period, and document the partial recovery of transcranial magnetic stimulation responses, which corresponded to partial recovery of TES MEPs. Intraoperative TES MEPs were enhanced using spatial facilitation technique, which enabled the patient to undergo further surgery to stabilize the spine and correct her scoliosis. This case report supports evidence of the use of extraoperative transcranial magnetic stimulation to predict the presence of intraoperative TES responses and demonstrates the usefulness of spatial facilitation to monitor TES MEPs in a patient with a preexisting spinal cord injury. PMID:26061481

  4. A Prediction Model for Determining Over Ground Walking Speed After Locomotor Training in Persons With Motor Incomplete Spinal Cord Injury

    PubMed Central

    Winchester, Patricia; Smith, Patricia; Foreman, Nathan; Mosby, James M; Pacheco, Fides; Querry, Ross; Tansey, Keith

    2009-01-01

    Background/Objective: To develop and test a clinically relevant model for predicting the recovery of over ground walking speed after 36 sessions of progressive body weight–supported treadmill training (BWSTT) in individuals with motor incomplete spinal cord injury (SCI). Design: A retrospective review and stepwise regression analysis of a SCI clinical outcomes data set. Setting: Outpatient SCI laboratory. Subjects: Thirty individuals with a motor incomplete SCI who had participated in locomotor training with BWSTT. Eight individuals with similar diagnoses were used to prospectively test the prediction model. Main Outcome Measures: Over ground walking speed was assessed using the 10-m walking test. Methods: The locomotor training program consisted of 36 sessions of sequential comprehensive training comprised of robotic assisted BWSTT, followed by manual assisted BWSTT, and over ground walking. The dose of locomotor training was standardized throughout the protocol. Results: Clinical characteristics with predictive value for walking speed were time from injury onset, the presence or absence of voluntary bowel and bladder voiding, a functional spasticity assessment, and over ground walking speed before locomotor training. The model identified that these characteristics accounted for 78.3% of the variability in the actual final over ground walking speed after 36 sessions of locomotor training. The model was successful in prospectively predicting over ground walking speed in the 8 test participants within 4.15 ± 2.22 cm/s in their recovered walking speed. Conclusions: This prediction model can identify individuals who are most likely to experience success using locomotor training by determining an expected magnitude of training effect, thereby allowing individualized decisions regarding the use of this intensive approach to rehabilitation. PMID:19264051

  5. Comparison of neurological and functional outcomes after administration of granulocyte-colony-stimulating factor in motor-complete versus motor-incomplete postrehabilitated, chronic spinal cord injuries: a phase I/II study.

    PubMed

    Saberi, Hooshang; Derakhshanrad, Nazi; Yekaninejad, Mir Saeed

    2014-01-01

    Granulocyte-colony-stimulating factor (G-CSF) is a major growth factor in the activation and differentiation of granulocytes. This cytokine has been widely and safely employed in different disease conditions over many years. The administration of the growth factors in spinal cord injury (SCI) has been reported elsewhere; here we have tried to see the effect of SCI severity on the neurological outcomes after neuroprotective treatment for SCI with G-CSF. Seventy-four consecutive patients with SCI of at least 6 months' duration, with stable neurological status in the last 3 months, having informed consent for the treatment were included in the study. All the patients had undergone at least 3 months of standard rehabilitation. Patients were assessed by the American Spinal Injury Association (ASIA) scale, Spinal Cord Independence Measure (SCIM) III, and International Association of Neurorestoratology-Spinal Cord Injury Functional Rating Scale (IANR-SCIFRS) just before intervention and periodically until 6 months after subcutaneous administration of 5 µg/kg per day of G-CSF for 7 consecutive days. Multiple linear regression models were performed for statistical evaluation of lesion completeness and level of injury on changes in ASIA motor, light touch, pinprick, IANR-SCIFRS, and SCIM III scores, as a phase I/II comparative study. The study consisted of 52 motor-complete and 22 motor-incomplete SCI patients. There was no significant difference regarding age and sex, chronicity, and level of SCI between the two groups. Motor-incomplete patients had significantly more improvement in ASIA motor score compared to the motor-complete patients (7.68 scores, p < 0.001); also they had significant improvement in light touch (6.42 scores, p = 0.003) and pinprick sensory scores (4.89 scores, p = 0.011). Therefore, G-CSF administration in motor-incomplete SCIs is associated with significantly higher motor improvement, and also the higher the initial ASIA Impairment Scale

  6. Novel Transabdominal Motor Action Potential (TaMAP) Neuromonitoring System for Spinal Surgery

    PubMed Central

    Feldman, Erica; Gabel, Brandon C; Taylor, Natalie; Gharib, James; Lee, Yu-Po; Taylor, William

    2016-01-01

    Introduction Minimally invasive lateral lumbar interbody fusion (LLIF) approaches to the lumbar spine reduce patient morbidity compared to anterior or posterior alternatives. This approach, however, decreases direct anatomical visualization, creating the need for highly sensitive and specific neurophysiological monitoring. We seek to determine feasibility in 'transabdominal motor action potential (TaMAP)' monitoring as an assessment for the integrity of the neural elements during lateral-approach surgeries to the lumbar spine.  Methods Cathode and anode leads were placed on the posterior and anterior surfaces of two porcine subjects. Currents of varying degrees were transmitted across, from front to back. Motor responses were monitored and recorded by needle electrodes in specific distal muscle groups of the lower extremity. Lastly, the cathode and anode were placed anterior and posterior to the chest wall and stimulated to the maximum of 1500 mA to determine any effect on cardiac rhythm. Results Responses were seen by measuring vertical height differences between peaks of corresponding evoked potentials. Recruitment began at 200 mA in the lower extremities. Stimulation at 450 mA recruited a reliable and distinguishable electrographic response from most muscle groups. Responses were recorded and reliably measured and increased in proportion to the graduation of transabdominal stimulation current; no responses were seen in the arms or face. 1500 mA across the chest wall failed to stimulate or induce cardiac arrhythmia on repeated stimulation, indicating safety of stimulation. Conclusion TaMAPs seen in the animal model provide a potential alternative to standard transcranial motor evoked potentials done in the lateral approach of LLIFs. TaMAP recordings in most muscle groups were recordable and reliable, though some muscle groups failed to stimulate. Safety of transabdominal motor evoked potentials was confirmed in this porcine study. Future studies

  7. The effect of Am-80, a synthetic retinoid, on spinal cord injury-induced motor dysfunction in rats.

    PubMed

    Takenaga, Mitsuko; Ohta, Yuki; Tokura, Yukie; Hamaguchi, Akemi; Shudo, Koichi; Okano, Hideyuki; Igarashi, Rie

    2009-02-01

    The present study investigated the effect of 4[(5,6,7,8-tetrahydro-5,5,8,8,-tetramethyl-2-naphthalenyl)carbamoyl] benzoic acid (Am-80), a synthetic retinoid, on spinal cord injury (SCI) in rats. Treatment with Am-80 (orally and subcutaneously) significantly promoted recovery from SCI-induced motor dysfunction. On day 28 after injury, the lesion cavity was markedly reduced, while the expression of myelin basic protein (MBP; myelin), betaIIItubulin (neuron), and glial fibrillary acidic protein (GFAP; astrocyte) was increased, in comparison with SCI controls. Interestingly, expression of neurotrophin receptor, tyrosine kinase B (TrkB) was over 3-fold higher after Am-80 treatment than in SCI controls. A lot of TrkB-positive cells as well as brain-derived neurotrophic factor (BDNF)-positive ones were observed around the injured site. Am-80 (10 microM) combined with BDNF (100 ng/ml) promoted extensive neurite outgrowth and TrkB gene expression by cultured SH-SY5Y cells, as did all-trans retinoic acid (ATRA). Thymidine incorporation was dramatically suppressed, but there was little effect on cell viability. These findings suggest that Am-80 has the potential to be used for treating neurodegenerative disorders, including SCI. Its efficacy may be partly ascribed to promotion of cell viability and differentiation of neural stem cells through increased TrkB expression. PMID:19182380

  8. Motor-related cortical activity after cervical spinal cord injury: multifaceted EEG analysis of isometric elbow flexion contractions.

    PubMed

    Cremoux, Sylvain; Tallet, Jessica; Berton, Eric; Dal Maso, Fabien; Amarantini, David

    2013-10-01

    Electroencephalographic (EEG) studies have well established that motor cortex (M1) activity ~20 Hz decreases during muscular contraction and increases as soon as contraction stops, which are known as event-related desynchronization (ERD) and event-related synchronization (ERS), respectively. ERD is supposed to reflect M1 activation, sending information to recruited muscles, while the process underlying ERS is interpreted either as active cortical inhibition or as processing of sensory inputs. Investigation of the process behind ERD/ERS in people with spinal cord injury (SCI) would be particularly relevant since their M1 remains effective despite decreased sensorimotor abilities. In this study, we recorded net joint torque and EEG in 6 participants with cervical SCI and 8 healthy participants who performed isometric elbow flexion at 3 force levels. Multifaceted EEG analysis was introduced to assess ERD/ERS according to their amplitude, frequency range and duration. The results revealed that net joint torque increased with the required force level for all participants and time to contraction inhibition was longer in the SCI group. At the cortical level, ERD/ERS frequency ranges increased with the required force level in all participants, indicating that the modulation of cortical activity with force level is preserved after SCI. However, ERS amplitude decreased only in SCI participants, which may be linked to delayed contraction inhibition. All in all, cortical modulation of frequency range and amplitude could reflect two different kinds of neural communication. PMID:23939224

  9. Learning with the Spinal Cord.

    PubMed

    Robinson, Richard

    2015-06-01

    To what extent does the spinal cord play a role in the learning of motor tasks? A new study that simultaneously images the brain and spinal cord shows that the spinal cord is actively and independently involved in the earliest stages of motor learning. PMID:26125625

  10. Spinal and supraspinal motor control predictors of rate of torque development.

    PubMed

    Johnson, S T; Kipp, K; Norcross, M F; Hoffman, M A

    2015-10-01

    During explosive movements and potentially injurious situations, the ability to rapidly generate torque is critical. Previous research has suggested that different phases of rate of torque development (RTD) are differentiately controlled. However, the extent to which supraspinal and spinal mechanisms predict RTD at different time intervals is unknown. RTD of the plantarflexors across various phases of contraction (i.e., 0-25, 0-50, 0-100, 0-150, 0-200, and 0-250 ms) was measured in 37 participants. The following predictor variables were also measured: (a) gain of the resting soleus H-reflex recruitment curve; (b) gain of the resting homonymous post-activation depression recruitment curve; (c) gain of the GABAergic presynaptic inhibition recruitment curve; (d) the level of postsynaptic recurrent inhibition at rest; (e) level of supraspinal drive assessed by measuring V waves; and (f) the gain of the resting soleus M wave. Stepwise regression analyses were used to determine which variables significantly predicted allometrically scaled RTD. The analyses indicated that supraspinal drive was the dominant predictor of RTD across all phases. Additionally, recurrent inhibition predicted RTD in all of the time intervals except 0-150 ms. These results demonstrate the importance of supraspinal drive and recurrent inhibition to RTD. PMID:25039746

  11. Contractile dysfunction in muscle may underlie androgen-dependent motor dysfunction in spinal bulbar muscular atrophy

    PubMed Central

    Oki, Kentaro; Halievski, Katherine; Vicente, Laura; Xu, Youfen; Zeolla, Donald; Poort, Jessica; Katsuno, Masahisa; Adachi, Hiroaki; Sobue, Gen; Wiseman, Robert W.; Breedlove, S. Marc

    2015-01-01

    Spinal and bulbar muscular atrophy (SBMA) is characterized by progressive muscle weakness linked to a polyglutamine expansion in the androgen receptor (AR). Current evidence indicates that mutant AR causes SBMA by acting in muscle to perturb its function. However, information about how muscle function is impaired is scant. One fundamental question is whether the intrinsic strength of muscles, an attribute of muscle independent of its mass, is affected. In the current study, we assess the contractile properties of hindlimb muscles in vitro from chronically diseased males of three different SBMA mouse models: a transgenic (Tg) model that broadly expresses a full-length human AR with 97 CAGs (97Q), a knock-in (KI) model that expresses a humanized AR containing a CAG expansion in the first exon, and a Tg myogenic model that overexpresses wild-type AR only in skeletal muscle fibers. We found that hindlimb muscles in the two Tg models (97Q and myogenic) showed marked losses in their intrinsic strength and resistance to fatigue, but were minimally affected in KI males. However, diseased muscles of all three models showed symptoms consistent with myotonic dystrophy type 1, namely, reduced resting membrane potential and deficits in chloride channel mRNA. These data indicate that muscle dysfunction is a core feature of SBMA caused by at least some of the same pathogenic mechanisms as myotonic dystrophy. Thus mechanisms controlling muscle function per se independent of mass are prime targets for SBMA therapeutics. PMID:25663674

  12. Effectiveness of intense, activity-based physical therapy for individuals with spinal cord injury in promoting motor and sensory recovery: Is olfactory mucosa autograft a factor?

    PubMed Central

    Larson, Cathy A.; Dension, Paula M.

    2013-01-01

    Background/objectives Rehabilitation for individuals with spinal cord injury (SCI) is expanding to include intense, activity-based, out-patient physical therapy (PT). The study's primary purposes were to (i) examine the effectiveness of intense PT in promoting motor and sensory recovery in individuals with SCI and (ii) compare recovery for individuals who had an olfactory mucosa autograft (OMA) with individuals who did not have the OMA while both groups participated in the intense PT program. Methods Prospective, non-randomized, non-blinded, intervention study. Using the American Spinal Injury Association examination, motor and sensory scores for 23 (7 OMA, 6 matched control and 10 other) participants were recorded. Results Mean therapy dosage was 137.3 total hours. The participants’ total, upper and lower extremity motor scores improved significantly while sensory scores did not improve during the first 60 days and from initial to discharge examination. Incomplete SCI or paraplegia was associated with greater motor recovery. Five of 14 participants converted from motor-complete to motor-incomplete SCI. Individuals who had the OMA and participated in intense PT did not have greater sensory or greater magnitude or rate of motor recovery as compared with participants who had intense PT alone. Conclusion This study provides encouraging evidence as to the effectiveness of intense PT for individuals with SCI. Future research is needed to identify the optimal therapy dosage and specific therapeutic activities required to generate clinically meaningful recovery for individuals with SCI including those who elect to undergo a neural recovery/regenerative surgical procedure and those that elect intense therapy alone. PMID:23433335

  13. Functional Preservation and Reorganization of Brain during Motor Imagery in Patients with Incomplete Spinal Cord Injury: A Pilot fMRI Study

    PubMed Central

    Chen, Xin; Wan, Lu; Qin, Wen; Zheng, Weimin; Qi, Zhigang; Chen, Nan; Li, Kuncheng

    2016-01-01

    Motor imagery (MI) is a cognitive process involved in mentally rehearsing movement representations, and it has great potential for the rehabilitation of motor function in patients with spinal cord injuries. The aim of this study was to explore changes in the brain activation patterns in incomplete spinal cord injury (ISCI) patients during motor execution (ME) and MI tasks, and to thereby explore whether MI shares similar motor-related networks with ME in ISCI patients. Seventeen right-handed ISCI patients with impaired motor function of their right ankles and 17 age- and gender-matched healthy controls were enrolled in this study. The activation patterns of the ISCI subjects and those of the healthy subjects were compared, both during mental dorsi-plantar flexion of the right ankle (the MI task) and the actual movement of the joint (the ME task). The patients and the healthy controls shared similar activation patterns during the MI or ME tasks. The activation patterns of the MI task between the patients and the healthy controls were more similar than those of the ME task. These findings indicate that the MI network is more functionally preserved than the ME network in ISCI patients. In addition, increased activation in the motor-related regions during ME task, and decreased activation in the parietal regions during both ME and MI tasks, were identified in the ISCI patients compared to the healthy controls, indicating a functional reorganization of these regions after ISCI. The functional preservation and reorganization of the MI network in the ISCI patients suggests a potential role for MI training in motor rehabilitation. PMID:26913000

  14. Trophic and proliferative effects of Shh on motor neurons in embryonic spinal cord culture from wildtype and G93A SOD1 mice

    PubMed Central

    2013-01-01

    Background The developmental morphogen sonic hedgehog (Shh) may continue to play a trophic role in the support of terminally-differentiated motor neurons, of potential relevance to motor neuron disease. In addition, it may support the proliferation and differentiation of endogenous stem cells along motor neuronal lineages. As such, we have examined the trophic and proliferative effects of Shh supplementation or Shh antagonism in embryonic spinal cord cell cultures derived from wildtype or G93A SOD1 mice, a mouse model of amyotrophic lateral sclerosis. Results Shh supported survival, and stimulated growth of motor neurons, neurite outgrowth, and neurosphere formation in primary culture derived from both G93A SOD1 and WT mice. Shh increased the percentage of ciliated motor neurons, especially in G93A SOD1 culture. Shh-treated cultures showed increased neuronal proliferation compared to controls and especially cyclopamine treated cultures, from G93A SOD1 and WT mice. Moreover, Shh enhanced cell survival and differentiation of motor neuron precursors in WT culture. Conclusions Shh is neurotrophic to motor neurons and has mitogenic effects in WT and mSOD1 G93A culture in vitro. PMID:24119209

  15. Genetics Home Reference: spinal muscular atrophy

    MedlinePlus

    ... a loss of specialized nerve cells, called motor neurons , in the spinal cord and the part of ... spinal cord ( the brainstem ). The loss of motor neurons leads to weakness and wasting ( atrophy ) of muscles ...

  16. Effect of low-energy extracorporeal shock wave on vascular regeneration after spinal cord injury and the recovery of motor function

    PubMed Central

    Wang, Lei; Jiang, Yuquan; Jiang, Zheng; Han, Lizhang

    2016-01-01

    Background Latest studies show that low-energy extracorporeal shock wave therapy (ESWT) can upregulate levels of vascular endothelial growth factor (VEGF). VEGF can ease nervous tissue harm after spinal cord injury (SCI). This study aims to explore whether low-energy ESWT can promote expression of VEGF, protect nervous tissue after SCI, and improve motor function. Methods Ninety adult female rats were divided into the following groups: Group A (simple laminectomy), Group B (laminectomy and low-energy ESWT), Group C (spinal cord injury), and Group D (spinal cord injury and low-energy ESWT). Impinger was used to cause thoracic spinal cord injury. Low-energy ESWT was applied as treatment after injury three times a week, for 3 weeks. After SCI, the Basso, Beattie, and Bresnahan (BBB) scale was used to evaluate motor function over a period of 42 days at different time points. Hematoxylin and eosin (HE) staining was used to evaluate nerve tissue injury. Neuronal nuclear antigen (NeuN) staining was also used to evaluate loss of neurons. Polymerase chain reaction was used to detect messenger RNA (mRNA) expression of VEGF and its receptor fms-like tyrosine kinase 1 (Flt-1). Immunostaining was used to evaluate VEGF protein expression level in myeloid tissue. Results BBB scores of Groups A and B showed no significant result related to dyskinesia. HE and NeuN staining indicated that only using low-energy ESWT could not cause damage of nervous tissue in Group B. Recovery of motor function at 7, 35, and 42 days after SCI in Group D was better than that in Group C (P<0.05). Compared with Group C, number of NeuN-positive cells at 42 days after SCI increased significantly (P<0.05). The mRNA levels of VEGF and Flt-1 and VEGF expression at 7 days after SCI in Group D were significantly higher than those in Group C (P<0.05). Conclusion Low-energy ESWT promotes expression of VEGF, decreases secondary damage of nerve tissue, and improves recovery of motor function. It can be regarded as

  17. Familial motor neuron disease with prominent onion-bulb-like structures and axonal swelling restricted to the spinal ventral root: autopsy findings in two siblings.

    PubMed

    Tokuyama, Wataru; Yagishita, Saburo; Ryo, Masafuchi; Kusunoki, Junichi; Hasegawa, Kazuko; Yoshida, Tsutomu; Mikami, Tetuo; Okayasu, Isao

    2010-02-01

    We report autopsy cases of two siblings who developed muscular atrophy and dementia, clinically considered to be familial motor neuron disease (MND). They presented with motor neuron signs predominantly in the distal limbs without sensory impairment. At autopsy, severe neuronal loss in the anterior horn consistent with MND was found, but histopathological hallmarks like Bunina bodies and skein-like inclusions were absent. Surprisingly, numerous huge axonal swellings (about 30 microm in diameter) and onion-bulb-like structures were found in the spinal ventral roots. These changes were not observed in spinal dorsal roots or peripheral nerves. However, obvious segmental demyelination of the ventral root was not found. In addition, neurofibrillary tangles (NFTs) and neuritic plaques were present in the frontal cortex, temporal cortex and hippocampus, and to a lesser degree, in the amygdala, substantia nigra and thalamus. Our two cases are a hitherto unreported type of MND, which shows focal giant axonopathy and prominent formation of onion-bulb-like structures due to Schwann cell proliferation restricted to the spinal ventral roots. PMID:19496941

  18. The Extract of Roots of Sophora flavescens Enhances the Recovery of Motor Function by Axonal Growth in Mice with a Spinal Cord Injury

    PubMed Central

    Tanabe, Norio; Kuboyama, Tomoharu; Kazuma, Kohei; Konno, Katsuhiro; Tohda, Chihiro

    2016-01-01

    Although axonal extension to reconstruct spinal tracts should be effective for restoring function after spinal cord injury (SCI), chondroitin sulfate proteoglycan (CSPG) levels increase at spinal cord lesion sites, and inhibit axonal regrowth. In this study, we found that the water extract of roots of Sophora flavescens extended the axons of mouse cortical neurons, even on a CSPG-coated surface. Consecutive oral administrations of S. flavescens extract to SCI mice for 31 days increased the density of 5-HT-positive axons at the lesion site and improved the motor function. Further, the active constituents in the S. flavescens extract were identified. The water and alkaloid fractions of the S. flavescens extract each exhibited axonal extension activity in vitro. LC/MS analysis revealed that these fractions mainly contain matrine and/or oxymatrine, which are well-known major compounds in S. flavescens. Matrine and oxymatrine promoted axonal extension on the CSPG-coated surface. This study is the first to demonstrate that S. flavescens extract, matrine, and oxymatrine enhance axonal growth in vitro, even on a CSPG-coated surface, and that S. flavescens extract improves motor function and increases axonal density in SCI mice. PMID:26834638

  19. Characterization of Thoracic Motor and Sensory Neurons and Spinal Nerve Roots in Canine Degenerative Myelopathy, a Potential Disease Model of Amyotrophic Lateral Sclerosis

    PubMed Central

    Morgan, Brandie R.; Coates, Joan R.; Johnson, Gayle C.; Shelton, G. Diane; Katz, Martin L.

    2014-01-01

    Canine Degenerative Myelopathy (DM) is a progressive adult-onset multisystem degenerative disease with many features in common with amyotrophic lateral sclerosis (ALS). As with some forms of ALS, DM is associated with mutations in superoxide dismutase 1 (SOD1). Clinical signs include general proprioceptive ataxia and spastic upper motor neuron paresis in pelvic limbs, which progress to flaccid tetraplegia and dysphagia. The purpose of this study was to characterize DM as a potential disease model for ALS. We previously reported that intercostal muscle atrophy develops in dogs with advanced stage DM. To determine if other components of the thoracic motor unit (MU) also demonstrated morphological changes consistent with dysfunction, histopathologic and morphometric analyses were conducted on thoracic spinal motor neurons (MN) and dorsal root ganglia (DRG), and in motor and sensory nerve root axons from DM-affected Boxers and Pembroke Welsh Corgis (PWCs). No alterations in MNs, or motor root axons were observed in either breed. However, advanced stage PWCs exhibited significant losses of sensory root axons, and numerous DRG sensory neurons displayed evidence of degeneration. These results indicate that intercostal muscle atrophy in DM is not preceded by physical loss of the motor neurons innervating these muscles, or of their axons. Axonal loss in thoracic sensory roots and sensory nerve death suggest sensory involvement may play an important role in DM disease progression. Further analysis of the mechanisms responsible for these morphological findings would aid in the development of therapeutic intervention for DM and some forms of ALS. PMID:24375814

  20. The relationship of spinal muscular atrophy to motor neuron disease: investigation of SMN and NAIP gene deletions in sporadic and familial ALS.

    PubMed

    Orrell, R W; Habgood, J J; de Belleroche, J S; Lane, R J

    1997-01-01

    Amyotrophic lateral sclerosis (ALS) is found in a familial form in around 5-10% of cases. Of these familial cases around 20% are associated with mutations of SOD-1. The genetic basis of the disease in the remaining familial cases, and genetic risk factors in sporadic cases, are unknown. Recently, the common forms of spinal muscular atrophy (SMA) have been associated with mutations of the SMN and NAIP genes on chromosome 5, in the region q11.2-13.3. Some patients with both familial and sporadic motor neuron disease show only lower motor neuron signs, in common with SMA patients, and families containing individuals with phenotypes of both childhood SMA and adult motor neuron disease have been reported. We therefore examined the SMA locus as a candidate for ALS, in 54 patients with sporadic motor neuron disease, and 10 single-generation familial patients (with no evidence of SOD-1 mutations), and in a single patient with Brown-Vialetto-Van Laere syndrome. No mutations of the SMN or NAIP genes were detected. The difficulties of classification of lower motor neuron presentations of motor neuron diseases are discussed. The demonstration that mutations diagnostic of SMA are not found in ALS patients helps distinguish these conditions. PMID:9073029

  1. Characterization of thoracic motor and sensory neurons and spinal nerve roots in canine degenerative myelopathy, a potential disease model of amyotrophic lateral sclerosis.

    PubMed

    Morgan, Brandie R; Coates, Joan R; Johnson, Gayle C; Shelton, G Diane; Katz, Martin L

    2014-04-01

    Canine degenerative myelopathy (DM) is a progressive, adult-onset, multisystem degenerative disease with many features in common with amyotrophic lateral sclerosis (ALS). As with some forms of ALS, DM is associated with mutations in superoxide dismutase 1 (SOD1). Clinical signs include general proprioceptive ataxia and spastic upper motor neuron paresis in pelvic limbs, which progress to flaccid tetraplegia and dysphagia. The purpose of this study was to characterize DM as a potential disease model for ALS. We previously reported that intercostal muscle atrophy develops in dogs with advanced-stage DM. To determine whether other components of the thoracic motor unit (MU) also demonstrated morphological changes consistent with dysfunction, histopathologic and morphometric analyses were conducted on thoracic spinal motor neurons (MNs) and dorsal root ganglia (DRG) and in motor and sensory nerve root axons from DM-affected boxers and Pembroke Welsh corgis (PWCs). No alterations in MNs or motor root axons were observed in either breed. However, advanced-stage PWCs exhibited significant losses of sensory root axons, and numerous DRG sensory neurons displayed evidence of degeneration. These results indicate that intercostal muscle atrophy in DM is not preceded by physical loss of the motor neurons innervating these muscles, nor of their axons. Axonal loss in thoracic sensory roots and sensory neuron death suggest that sensory involvement may play an important role in DM disease progression. Further analysis of the mechanisms responsible for these morphological findings would aid in the development of therapeutic intervention for DM and some forms of ALS. PMID:24375814

  2. Muscle Synergies in Cycling after Incomplete Spinal Cord Injury: Correlation with Clinical Measures of Motor Function and Spasticity

    PubMed Central

    Barroso, Filipe O.; Torricelli, Diego; Bravo-Esteban, Elisabeth; Taylor, Julian; Gómez-Soriano, Julio; Santos, Cristina; Moreno, Juan C.; Pons, José L.

    2016-01-01

    Background: After incomplete spinal cord injury (iSCI), patients suffer important sensorimotor impairments, such as abnormal locomotion patterns and spasticity. Complementary to current clinical diagnostic procedures, the analysis of muscle synergies has emerged as a promising tool to study muscle coordination, which plays a major role in the control of multi-limb functional movements. Objective: Based on recent findings suggesting that walking and cycling share similar synergistic control, the analysis of muscle synergies during cycling might be explored as an early descriptor of gait-related impaired control. This idea was split into the following two hypotheses: (a) iSCI patients present a synergistic control of muscles during cycling; (b) muscle synergies outcomes extracted during cycling correlate with clinical measurements of gait performance and/or spasticity. Methods: Electromyographic (EMG) activity of 13 unilateral lower limb muscles was recorded in a group of 10 healthy individuals and 10 iSCI subjects during cycling at four different cadences. A non-negative matrix factorization (NNMF) algorithm was applied to identify synergistic components (i.e., activation coefficients and muscle synergy vectors). Reconstruction goodness scores (VAF and r2) were used to evaluate the ability of a given number of synergies to reconstruct the EMG signals. A set of metrics based on the similarity between pathologic and healthy synergies were correlated with clinical scales of gait performance and spasticity. Results: iSCI patients preserved a synergistic control of muscles during cycling. The similarity with the healthy reference was consistent with the degree of the impairment, i.e., less impaired patients showed higher similarities with the healthy reference. There was a strong correlation between reconstruction goodness scores at 42 rpm and motor performance scales (TUG, 10-m test and WISCI II). On the other hand, the similarity between the healthy and affected

  3. Intrathecal infusion of BMAA induces selective motor neuron damage and astrogliosis in the ventral horn of the spinal cord

    PubMed Central

    Yin, Hong Z.; Yu, Stephen; Hsu, Cheng-I; Liu, Joe; Acab, Allan; Wu, Richard; Tao, Anna; Chiang, Benjamin J.; Weiss, John H.

    2014-01-01

    The neurotoxin beta-N-methylamino-L-alanine (BMAA) was first identified as a “toxin of interest” in regard to the amyotrophic lateral sclerosis–Parkinsonism Dementia Complex of Guam (ALS/PDC); studies in recent years highlighting widespread environmental sources of BMAA exposure and providing new clues to toxic mechanisms have suggested possible relevance to sporadic ALS as well. However, despite clear evidence of uptake into tissues and a range of toxic effects in cells and animals, an animal model in which BMAA induces a neurodegenerative picture resembling ALS is lacking, possibly in part reflecting limited understanding of critical factors pertaining to its absorption, biodistribution and metabolism. To bypass some of these issues and ensure delivery to a key site of disease pathology, we examined effects of prolonged (30 day) intrathecal infusion in wild type (WT) rats, and rats harboring the familial ALS associated G93A SOD1 mutation, over an age range (80±2 to 110±2 days) during which the G93A rats are developing disease pathology yet remain asymptomatic. The BMAA exposures induced changes that in many ways resembles those seen in the G93A rats, with degenerative changes in ventral horn motor neurons (MNs) with relatively little dorsal horn pathology, marked ventral horn astrogliosis and increased 3-nitrotyrosine labeling in and surrounding MNs, a loss of labeling for the astrocytic glutamate transporter, GLT-1, surrounding MNs, and mild accumulation and aggregation of TDP-43 in the cytosol of some injured and degenerating MNs. Thus, prolonged intrathecal infusion of BMAA can reproduce a picture in spinal cord incorporating many of the pathological hallmarks of diverse forms of human ALS, including substantial restriction of overt pathological changes to the ventral horn, consistent with the possibility that environmental BMAA exposure could be a risk factor and/or contributor to some human disease. PMID:24918341

  4. Intrathecal infusion of BMAA induces selective motor neuron damage and astrogliosis in the ventral horn of the spinal cord.

    PubMed

    Yin, Hong Z; Yu, Stephen; Hsu, Cheng-I; Liu, Joe; Acab, Allan; Wu, Richard; Tao, Anna; Chiang, Benjamin J; Weiss, John H

    2014-11-01

    The neurotoxin beta-N-methylamino-l-alanine (BMAA) was first identified as a "toxin of interest" in regard to the amyotrophic lateral sclerosis-Parkinsonism Dementia Complex of Guam (ALS/PDC); studies in recent years highlighting widespread environmental sources of BMAA exposure and providing new clues to toxic mechanisms have suggested possible relevance to sporadic ALS as well. However, despite clear evidence of uptake into tissues and a range of toxic effects in cells and animals, an animal model in which BMAA induces a neurodegenerative picture resembling ALS is lacking, possibly in part reflecting limited understanding of critical factors pertaining to its absorption, biodistribution and metabolism. To bypass some of these issues and ensure delivery to a key site of disease pathology, we examined effects of prolonged (30day) intrathecal infusion in wild type (WT) rats, and rats harboring the familial ALS associated G93A SOD1 mutation, over an age range (80±2 to 110±2days) during which the G93A rats are developing disease pathology yet remain asymptomatic. The BMAA exposures induced changes that in many ways resemble those seen in the G93A rats, with degenerative changes in ventral horn motor neurons (MNs) with relatively little dorsal horn pathology, marked ventral horn astrogliosis and increased 3-nitrotyrosine labeling in and surrounding MNs, a loss of labeling for the astrocytic glutamate transporter, GLT-1, surrounding MNs, and mild accumulation and aggregation of TDP-43 in the cytosol of some injured and degenerating MNs. Thus, prolonged intrathecal infusion of BMAA can reproduce a picture in spinal cord incorporating many of the pathological hallmarks of diverse forms of human ALS, including substantial restriction of overt pathological changes to the ventral horn, consistent with the possibility that environmental BMAA exposure could be a risk factor and/or contributor to some human disease. PMID:24918341

  5. GAB(A) receptors present higher affinity and modified subunit composition in spinal motor neurons from a genetic model of amyotrophic lateral sclerosis.

    PubMed

    Carunchio, Irene; Mollinari, Cristiana; Pieri, Massimo; Merlo, Daniela; Zona, Cristina

    2008-10-01

    Amyotrophic lateral sclerosis is a neurodegenerative disease characterized by the selective degeneration of motor neurons in the spinal cord, brainstem and cerebral cortex. In this study we have analysed the electrophysiological properties of GABA(A) receptors and GABA(A) alpha1 and alpha2 subunits expression in spinal motor neurons in culture obtained from a genetic model of ALS (G93A) and compared with transgenic wild type SOD1 (SOD1) and their corresponding non transgenic litter mates (Control). Although excitotoxic motor neuron death has been extensively studied in relation to Ca(2+)-dependent processes, strong evidence indicates that excitotoxic cell death is also remarkably dependent on Cl(-) ions and on GABA(A) receptor activation. In this study we have analysed the electrophysiological properties of GABA(A) receptors and the expression of GABA(A)alpha(1) and alpha(2) subunits in cultured motor neurons obtained from a genetic model of amyotrophic lateral sclerosis (G93A) and compared them with transgenic wild-type Cu,Zn superoxide dismutase and their corresponding non-transgenic littermates (Control). In all tested motor neurons, the application of gamma-aminobutyric acid (GABA) (0.5-100 mum) evoked an inward current that was reversibly blocked by bicuculline (100 mum), thus indicating that it was mediated by the activation of GABA(A) receptors. Our results indicate that the current density at high GABA concentrations is similar in control, Cu,Zn superoxide dismutase and G93A motor neurons. However, the dose-response curve significantly shifted toward lower concentration values in G93A motor neurons and the extent of desensitization also increased in these neurons. Finally, multiplex single-cell real-time polymerase chain reaction and immunofluorescence revealed that the amount of GABA(A)alpha(1) subunit was significantly increased in G93A motor neurons, whereas the levels of alpha(2) subunit were unchanged. These data show that the functionality and

  6. Intermittent reductions in respiratory neural activity elicit spinal TNF-α-independent, atypical PKC-dependent inactivity-induced phrenic motor facilitation

    PubMed Central

    Baertsch, Nathan A.

    2015-01-01

    In many neural networks, mechanisms of compensatory plasticity respond to prolonged reductions in neural activity by increasing cellular excitability or synaptic strength. In the respiratory control system, a prolonged reduction in synaptic inputs to the phrenic motor pool elicits a TNF-α- and atypical PKC-dependent form of spinal plasticity known as inactivity-induced phrenic motor facilitation (iPMF). Although iPMF may be elicited by a prolonged reduction in respiratory neural activity, iPMF is more efficiently induced when reduced respiratory neural activity (neural apnea) occurs intermittently. Mechanisms giving rise to iPMF following intermittent neural apnea are unknown. The purpose of this study was to test the hypothesis that iPMF following intermittent reductions in respiratory neural activity requires spinal TNF-α and aPKC. Phrenic motor output was recorded in anesthetized and ventilated rats exposed to brief intermittent (5, ∼1.25 min), brief sustained (∼6.25 min), or prolonged sustained (30 min) neural apnea. iPMF was elicited following brief intermittent and prolonged sustained neural apnea, but not following brief sustained neural apnea. Unlike iPMF following prolonged neural apnea, spinal TNF-α was not required to initiate iPMF during intermittent neural apnea; however, aPKC was still required for its stabilization. These results suggest that different patterns of respiratory neural activity induce iPMF through distinct cellular mechanisms but ultimately converge on a similar downstream pathway. Understanding the diverse cellular mechanisms that give rise to inactivity-induced respiratory plasticity may lead to development of novel therapeutic strategies to treat devastating respiratory control disorders when endogenous compensatory mechanisms fail. PMID:25673781

  7. Intermittent reductions in respiratory neural activity elicit spinal TNF-α-independent, atypical PKC-dependent inactivity-induced phrenic motor facilitation.

    PubMed

    Baertsch, Nathan A; Baker-Herman, Tracy L

    2015-04-15

    In many neural networks, mechanisms of compensatory plasticity respond to prolonged reductions in neural activity by increasing cellular excitability or synaptic strength. In the respiratory control system, a prolonged reduction in synaptic inputs to the phrenic motor pool elicits a TNF-α- and atypical PKC-dependent form of spinal plasticity known as inactivity-induced phrenic motor facilitation (iPMF). Although iPMF may be elicited by a prolonged reduction in respiratory neural activity, iPMF is more efficiently induced when reduced respiratory neural activity (neural apnea) occurs intermittently. Mechanisms giving rise to iPMF following intermittent neural apnea are unknown. The purpose of this study was to test the hypothesis that iPMF following intermittent reductions in respiratory neural activity requires spinal TNF-α and aPKC. Phrenic motor output was recorded in anesthetized and ventilated rats exposed to brief intermittent (5, ∼1.25 min), brief sustained (∼6.25 min), or prolonged sustained (30 min) neural apnea. iPMF was elicited following brief intermittent and prolonged sustained neural apnea, but not following brief sustained neural apnea. Unlike iPMF following prolonged neural apnea, spinal TNF-α was not required to initiate iPMF during intermittent neural apnea; however, aPKC was still required for its stabilization. These results suggest that different patterns of respiratory neural activity induce iPMF through distinct cellular mechanisms but ultimately converge on a similar downstream pathway. Understanding the diverse cellular mechanisms that give rise to inactivity-induced respiratory plasticity may lead to development of novel therapeutic strategies to treat devastating respiratory control disorders when endogenous compensatory mechanisms fail. PMID:25673781

  8. Selective vulnerability of motor neurons and dissociation of pre- and post-synaptic pathology at the neuromuscular junction in mouse models of spinal muscular atrophy.

    PubMed

    Murray, Lyndsay M; Comley, Laura H; Thomson, Derek; Parkinson, Nick; Talbot, Kevin; Gillingwater, Thomas H

    2008-04-01

    Proximal spinal muscular atrophy (SMA) is a common autosomal recessive childhood form of motor neuron disease. Previous studies have highlighted nerve- and muscle-specific events in SMA, including atrophy of muscle fibres and post-synaptic motor endplates, loss of lower motor neuron cell bodies and denervation of neuromuscular junctions caused by loss of pre-synaptic inputs. Here we have undertaken a detailed morphological investigation of neuromuscular synaptic pathology in the Smn-/-;SMN2 and Smn-/-;SMN2;Delta7 mouse models of SMA. We show that neuromuscular junctions in the transversus abdominis (TVA), levator auris longus (LAL) and lumbrical muscles were disrupted in both mouse models. Pre-synaptic inputs were lost and abnormal accumulations of neurofilament were present, even in early/mid-symptomatic animals in the most severely affected muscle groups. Neuromuscular pathology was more extensive in the postural TVA muscle compared with the fast-twitch LAL and lumbrical muscles. Pre-synaptic pathology in Smn-/-;SMN2;Delta7 mice was reduced compared with Smn-/-;SMN2 mice at late-symptomatic time-points, although post-synaptic pathology was equally severe. We demonstrate that shrinkage of motor endplates does not correlate with loss of motor nerve terminals, signifying that one can occur in the absence of the other. We also demonstrate selective vulnerability of a subpopulation of motor neurons in the caudal muscle band of the LAL. Paralysis with botulinum toxin resulted in less terminal sprouting and ectopic synapse formation in the caudal band compared with the rostral band, suggesting that motor units conforming to a Fast Synapsing (FaSyn) phenotype are likely to be more vulnerable than those with a Delayed Synapsing (DeSyn) phenotype. PMID:18065780

  9. Ethanol directly depresses AMPA and NMDA glutamate currents in spinal cord motor neurons independent of actions on GABAA or glycine receptors.

    PubMed

    Wang, M Y; Rampil, I J; Kendig, J J

    1999-07-01

    Ethanol is a general anesthetic agent as defined by abolition of movement in response to noxious stimulation. This anesthetic endpoint is due to spinal anesthetic actions. This study was designed to test the hypothesis that ethanol acts directly on motor neurons to inhibit excitatory synaptic transmission at glutamate receptors. Whole cell recordings were made in visually identified motor neurons in spinal cord slices from 14- to 23-day-old rats. Currents were evoked by stimulating a dorsal root fragment or by brief pulses of glutamate. Ethanol at general anesthetic concentrations (50-200 mM) depressed both responses. Ethanol also depressed glutamate-evoked responses in the presence of tetrodotoxin (300 nM), showing that its actions are postsynaptic. Block of inhibitory gamma-aminobutyric acidA and glycine receptors by bicuculline (50 microM) and strychnine (5 microM), respectively, did not significantly reduce the effects of ethanol on glutamate currents. Ethanol also depressed glutamate-evoked currents when the inhibitory receptors were blocked and either D, L-2-amino-5-phosphonopentanoic acid (40 microM) or 6-cyano-7-nitroquinoxaline-2,3-dione disodium (10 microM) were applied to block N-methyl-D-aspartate or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate receptors, respectively. The results show that ethanol exerts direct depressant effects on both alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl-D-aspartate glutamate currents in motor neurons. Enhancement of gamma-aminobutyric acidA and glycine inhibition is not required for this effect. Direct depression of glutamatergic excitatory transmission by a postsynaptic action on motor neurons thus may contribute to general anesthesia as defined by immobility in response to a noxious stimulus. PMID:10381800

  10. Clonidine, an alpha-2 adrenoceptor agonist relieves mechanical allodynia in oxaliplatin-induced neuropathic mice; potentiation by spinal p38 MAPK inhibition without motor dysfunction and hypotension.

    PubMed

    Yeo, Ji-Hee; Yoon, Seo-Yeon; Kim, Sol-Ji; Oh, Seog-Bae; Lee, Jang-Hern; Beitz, Alvin J; Roh, Dae-Hyun

    2016-05-15

    Cancer chemotherapy with platinum-based antineoplastic agents including oxaliplatin frequently results in a debilitating and painful peripheral neuropathy. We evaluated the antinociceptive effects of the alpha-2 adrenoceptor agonist, clonidine on oxaliplatin-induced neuropathic pain. Specifically, we determined if (i) the intraperitoneal (i.p.) injection of clonidine reduces mechanical allodynia in mice with an oxaliplatin-induced neuropathy and (ii) concurrent inhibition of p38 mitogen-activated protein kinase (MAPK) activity by the p38 MAPK inhibitor SB203580 enhances clonidine's antiallodynic effect. Clonidine (0.01-0.1 mg kg(-1), i.p.), with or without SB203580(1-10 nmol, intrathecal) was administered two weeks after oxaliplatin injection(10 mg kg(-1), i.p.) to mice. Mechanical withdrawal threshold, motor coordination and blood pressure were measured. Postmortem expression of p38 MAPK and ERK as well as their phosphorylated forms(p-p38 and p-ERK) were quantified 30 min or 4 hr after drug injection in the spinal cord dorsal horn of treated and control mice. Clonidine dose-dependently reduced oxaliplatin-induced mechanical allodynia and spinal p-p38 MAPK expression, but not p-ERK. At 0.1 mg kg(-1), clonidine also impaired motor coordination and decreased blood pressure. A 10 nmol dose of SB203580 alone significantly reduced mechanical allodynia and p-p38 MAPK expression, while a subeffective dose(3 nmol) potentiated the antiallodynic effect of 0.03 mg kg(-1) clonidine and reduced the increased p-p38 MAPK. Coadministration of SB203580 and 0.03 mg kg(-1) clonidine decreased allodynia similar to that of 0.10 mg kg(-1) clonidine, but without significant motor or vascular effects. These findings demonstrate that clonidine treatment reduces oxaliplatin-induced mechanical allodynia. The concurrent administration of SB203580 reduces the dosage requirements for clonidine, thereby alleviating allodynia without producing undesirable motor or cardiovascular effects. PMID

  11. Intermittent hypoxia promotes recovery of respiratory motor function in spinal cord-injured mice depleted of serotonin in the central nervous system.

    PubMed

    Komnenov, Dragana; Solarewicz, Julia Z; Afzal, Fareeza; Nantwi, Kwaku D; Kuhn, Donald M; Mateika, Jason H

    2016-08-01

    We examined the effect of repeated daily exposure to intermittent hypoxia (IH) on the recovery of respiratory and limb motor function in mice genetically depleted of central nervous system serotonin. Electroencephalography, diaphragm activity, ventilation, core body temperature, and limb mobility were measured in spontaneously breathing wild-type (Tph2(+/+)) and tryptophan hydroxylase 2 knockout (Tph2(-/-)) mice. Following a C2 hemisection, the mice were exposed daily to IH (i.e., twelve 4-min episodes of 10% oxygen interspersed with 4-min normoxic periods followed by a 90-min end-recovery period) or normoxia (i.e., sham protocol, 21% oxygen) for 10 consecutive days. Diaphragm activity recovered to prehemisection levels in the Tph2(+/+) and Tph2(-/-) mice following exposure to IH but not normoxia [Tph2(+/+) 1.3 ± 0.2 (SE) vs. 0.3 ± 0.2; Tph2(-/-) 1.06 ± 0.1 vs. 0.3 ± 0.1, standardized to prehemisection values, P < 0.01]. Likewise, recovery of tidal volume and breathing frequency was evident, although breathing frequency values did not return to prehemisection levels within the time frame of the protocol. Partial recovery of limb motor function was also evident 2 wk after spinal cord hemisection. However, recovery was not dependent on IH or the presence of serotonin in the central nervous system. We conclude that IH promotes recovery of respiratory function but not basic motor tasks. Moreover, we conclude that spontaneous or treatment-induced recovery of respiratory and motor limb function is not dependent on serotonin in the central nervous system in a mouse model of spinal cord injury. PMID:27402561

  12. Mitochondrial Division Inhibitor 1 Ameliorates Mitochondrial Injury, Apoptosis, and Motor Dysfunction After Acute Spinal Cord Injury in Rats.

    PubMed

    Li, Gang; Jia, Zhiqiang; Cao, Yang; Wang, Yansong; Li, Haotian; Zhang, Zhenyu; Bi, Jing; Lv, Gang; Fan, Zhongkai

    2015-07-01

    Mitochondrial division inhibitor 1 (Mdivi-1) is the most effective pharmacological inhibitor of mitochondrial fission. Spinal cord injury (SCI) is a common and serious trauma, which lacks efficient treatment. This study aimed to detect the role of Mdivi-1 in neuronal injury and its underlying mechanism after acute SCI (ASCI) in rats. Western blot analysis showed that Bax levels on the mitochondrial outer membrane, and release of cytochrome C (cytC) and apoptosis-inducing factor (AIF) from the mitochondria began to increase significantly at 4 h after ASCI, then peaked at 16 h, and declined significantly from 16 to 24 h. However, the mitochondrial levels of Bcl-2 increased significantly at 2 h, peaked at 4 h, and subsequently significantly decreased from 4 to 24 h after ASCI. In addition, Mdivi-1(1.2 mg/kg) significantly suppressed the translocation of dynamin-related protein 1 (Drp1) and Bax to the mitochondria, mitochondrial depolarization, decrease of ATP and reduced Glutathione, increase of the Malondialdehyde, cytC release, and AIF translocation at 16 h and 3 days after ASCI, and also inhibited the caspase-3 activation and decrease of the percentage of apoptotic cells at 16 h, 3 and 10 days, further, ameliorated the motor dysfunction greatly from 3 to 10 days after ASCI in rats. This neuroprotective effect was dose-dependent. However, Mdivi-1(1.2 mg/kg) had no effects on the translocation of Bcl-2 and fission protein 1 on the mitochondria, and did not affect the expression of total Drp1 at 16 h after ASCI. Our experimental findings indicated that Mdivi-1 can protect rats against ASCI, and that its underlying mechanism may be associated with inhibition of Drp1 translocation to the mitochondria, alleviation of mitochondrial dysfunction and oxidative stress, and suppression of caspase-dependent and -independent apoptosis. PMID:25968480

  13. Spinal tumor

    MedlinePlus

    Tumor - spinal cord ... spinal tumors occur in the nerves of the spinal cord itself. Most often these are ependymomas and other ... gene mutations. Spinal tumors can occur: Inside the spinal cord (intramedullary) In the membranes (meninges) covering the spinal ...

  14. What Is Spinal Cord Injury?

    MedlinePlus

    ... lowest point on the spinal cord below which sensory feeling and motor movement diminish or disappear. The ... injury is so severe that almost all feeling (sensory function) and all ability to control movement (motor ...

  15. Zinc transporter 3 (ZnT3) gene deletion reduces spinal cord white matter damage and motor deficits in a murine MOG-induced multiple sclerosis model.

    PubMed

    Choi, Bo Young; Kim, In Yeol; Kim, Jin Hee; Kho, A Ra; Lee, Song Hee; Lee, Bo Eun; Sohn, Min; Koh, Jae-Young; Suh, Sang Won

    2016-10-01

    The present study aimed to evaluate the role of zinc transporter 3 (ZnT3) on multiple sclerosis (MS) pathogenesis. Experimental autoimmune encephalomyelitis (EAE), a disease model of multiple sclerosis, was induced by immunization with myelin oligodendrocyte glycoprotein (MOG35-55) in female mice. Three weeks after the initial immunization, demyelination, immune cell infiltration and blood brain barrier (BBB) disruption in the spinal cord were analyzed. Clinical signs of EAE first appeared on day 11 and reached a peak level on day 19 after the initial immunization. ZnT3 gene deletion profoundly reduced the daily clinical score of EAE. The ZnT3 gene deletion-mediated inhibition of the clinical course of EAE was accompanied by suppression of inflammation and demyelination in the spinal cord. The motor deficit accompanying neuropathological changes associated with EAE were mild in ZnT3 gene deletion mice. This reduction in motor deficit was accompanied by coincident reductions in demyelination and infiltration of encephalitogenic immune cells including CD4+ T cells, CD8+ T cells, CD20+ B cells and F4/80+ microglia in the spinal cord. These results demonstrate that ZnT3 gene deletion inhibits the clinical features and neuropathological changes associated with EAE. ZnT3 gene deletion also remarkably inhibited formation of EAE-associated aberrant synaptic zinc patches, matrix metalloproteinases-9 (MMP-9) activation and BBB disruption. Therefore, amelioration of EAE-induced clinical and neuropathological changes by ZnT3 gene deletion suggests that vesicular zinc may be involved in several steps of MS pathogenesis. PMID:27370228

  16. Production of high quality brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) RNA from isolated populations of rat spinal cord motor neurons obtained by Laser Capture Microdissection (LCM).

    PubMed

    Mehta, Prachi; Premkumar, Brian; Morris, Renée

    2016-08-01

    The mammalian central nervous system (CNS) is composed of multiple cellular elements, making it challenging to segregate one particular cell type to study their gene expression profile. For instance, as motor neurons represent only 5-10% of the total cell population of the spinal cord, meaningful transcriptional analysis on these neurons is almost impossible to achieve from homogenized spinal cord tissue. A major challenge faced by scientists is to obtain good quality RNA from small amounts of starting material. In this paper, we used Laser Capture Microdissection (LCM) techniques to identify and isolate spinal cord motor neurons. The present analysis revealed that perfusion with paraformaldehyde (PFA) does not alter RNA quality. RNA integrity numbers (RINs) of tissue samples from rubrospinal tract (RST)-transected, intact spinal cord or from whole spinal cord homogenate were all above 8, which indicates intact, high-quality RNA. Levels of mRNA for brain-derived neurotrophic factor (BDNF) or for its tropomyosin receptor kinase B (TrkB) were not affected by rubrospinal tract (RST) transection, a surgical procedure that deprive motor neurons from one of their main supraspinal input. The isolation of pure populations of neurons with LCM techniques allows for robust transcriptional characterization that cannot be achieved with spinal cord homogenates. Such preparations of pure population of motor neurons will provide valuable tools to advance our understanding of the molecular mechanisms underlying spinal cord injury and neuromuscular diseases. In the near future, LCM techniques might be instrumental to the success of gene therapy for these debilitating conditions. PMID:27260986

  17. Sodium vanadate combined with l-ascorbic acid delays disease progression, enhances motor performance, and ameliorates muscle atrophy and weakness in mice with spinal muscular atrophy

    PubMed Central

    2013-01-01

    Background Proximal spinal muscular atrophy (SMA), a neurodegenerative disorder that causes infant mortality, has no effective treatment. Sodium vanadate has shown potential for the treatment of SMA; however, vanadate-induced toxicity in vivo remains an obstacle for its clinical application. We evaluated the therapeutic potential of sodium vanadate combined with a vanadium detoxification agent, L-ascorbic acid, in a SMA mouse model. Methods Sodium vanadate (200 μM), L-ascorbic acid (400 μM), or sodium vanadate combined with L-ascorbic acid (combined treatment) were applied to motor neuron-like NSC34 cells and fibroblasts derived from a healthy donor and a type II SMA patient to evaluate the cellular viability and the efficacy of each treatment in vitro. For the in vivo studies, sodium vanadate (20 mg/kg once daily) and L-ascorbic acid (40 mg/kg once daily) alone or in combination were orally administered daily on postnatal days 1 to 30. Motor performance, pathological studies, and the effects of each treatment (vehicle, L-ascorbic acid, sodium vanadate, and combined treatment) were assessed and compared on postnatal days (PNDs) 30 and 90. The Kaplan-Meier method was used to evaluate the survival rate, with P < 0.05 indicating significance. For other studies, one-way analysis of variance (ANOVA) and Student's t test for paired variables were used to measure significant differences (P < 0.05) between values. Results Combined treatment protected cells against vanadate-induced cell death with decreasing B cell lymphoma 2-associated X protein (Bax) levels. A month of combined treatment in mice with late-onset SMA beginning on postnatal day 1 delayed disease progression, improved motor performance in adulthood, enhanced survival motor neuron (SMN) levels and motor neuron numbers, reduced muscle atrophy, and decreased Bax levels in the spinal cord. Most importantly, combined treatment preserved hepatic and renal function and substantially decreased vanadium accumulation

  18. Spinal Muscular Atrophy

    MedlinePlus

    ... diseases that progressively destroy lower motor neurons—nerve cells in the brain stem and spinal cord that control essential voluntary muscle activity such as speaking, walking, breathing, and swallowing. ...

  19. Restoration of motor function following spinal cord injury via optimal control of intraspinal microstimulation: toward a next generation closed-loop neural prosthesis

    PubMed Central

    Grahn, Peter J.; Mallory, Grant W.; Berry, B. Michael; Hachmann, Jan T.; Lobel, Darlene A.; Lujan, J. Luis

    2014-01-01

    Movement is planned and coordinated by the brain and carried out by contracting muscles acting on specific joints. Motor commands initiated in the brain travel through descending pathways in the spinal cord to effector motor neurons before reaching target muscles. Damage to these pathways by spinal cord injury (SCI) can result in paralysis below the injury level. However, the planning and coordination centers of the brain, as well as peripheral nerves and the muscles that they act upon, remain functional. Neuroprosthetic devices can restore motor function following SCI by direct electrical stimulation of the neuromuscular system. Unfortunately, conventional neuroprosthetic techniques are limited by a myriad of factors that include, but are not limited to, a lack of characterization of non-linear input/output system dynamics, mechanical coupling, limited number of degrees of freedom, high power consumption, large device size, and rapid onset of muscle fatigue. Wireless multi-channel closed-loop neuroprostheses that integrate command signals from the brain with sensor-based feedback from the environment and the system's state offer the possibility of increasing device performance, ultimately improving quality of life for people with SCI. In this manuscript, we review neuroprosthetic technology for improving functional restoration following SCI and describe brain-machine interfaces suitable for control of neuroprosthetic systems with multiple degrees of freedom. Additionally, we discuss novel stimulation paradigms that can improve synergy with higher planning centers and improve fatigue-resistant activation of paralyzed muscles. In the near future, integration of these technologies will provide SCI survivors with versatile closed-loop neuroprosthetic systems for restoring function to paralyzed muscles. PMID:25278830

  20. Early predictive factors for lower-extremity motor or sensory deficits and surgical results of patients with spinal tuberculosis: A retrospective study of 329 patients.

    PubMed

    Wang, Hongwei; Yang, Xiao; Shi, Ying; Zhou, Yue; Li, Changqing; Chen, Yu; Yu, Hailong; Wang, Qi; Liu, Jun; Cheng, Jiwei; Zhao, Yiwen; Han, Jianda; Xiang, Liangbi

    2016-08-01

    Many studies about the characteristics of spinal tuberculosis (STB) have been published, but none has investigated the predictive factors for lower-extremity motor or sensory deficits (LMSD) in patients with STB.The objective of this study was to find early predictive factors for LMSD and evaluate surgical results of patients with STB.From 2001 through 2010, 329 patients with STB were treated in our department and surgical treatment was performed in 274 patients. The factors assessed included age, sex, duration of symptoms, worsening of illness, clinical symptoms, clinical signs, imaging characteristics, kyphotic angle, Oswestry disability index (ODI), and visual analogue scale (VAS) scores.Of the 329 patients studied, 164 presented with LMSD (the LMSD group), of which 93 patients (28.3%) had motor deficits and 177 patients (53.8%) had sensory disturbance. The other 165 patients were included in the control group (the No LMSD group). Using univariate logistic regression analysis, we found that the sex (P = 0.042), age (P = 0.001), worsening of sickness (P = 0.013), location (P = 0.009), and spinal compression (P = 0.035) were the risk factors of LMSD. Furthermore, the multivariate logistic regression analysis indicated that age (OR = 1.761, 95% CI: 1.227-2.526, P = 0.002), worsening of sickness (yes vs no: OR = 1.910, 95% CI: 1.161-3.141, P = 0.011), location (T vs C: OR = 0.204, 95% CI: 0.063-0.662, P = 0.008), and spinal compression (yes vs no: OR = 1.672, 95% CI: 1.020-2.741, P = 0.042) were independent risk factors of LMSD. Surgical treatment was performed in 274 patients. The kyphotic angle improved from 25.8 ± 9.1° preoperatively to 14.0 ± 7.6°, with a mean correction of 11.8 ± 4.0°, and a mean correction loss of 1.5 ± 1.8° at final visit. There were significant differences between the preoperative and the final ODI and VAS scores in both groups (P < 0.001 and P < 0

  1. Self-Sustained Motor Activity Triggered by Interlimb Reflexes in Chronic Spinal Cord Injury, Evidence of Functional Ascending Propriospinal Pathways

    PubMed Central

    McNulty, Penelope A.; Burke, David

    2013-01-01

    The loss or reduction of supraspinal inputs after spinal cord injury provides a unique opportunity to examine the plasticity of neural pathways within the spinal cord. In a series of nine experiments on a patient, quadriplegic due to spinal cord injury, we investigated interlimb reflexes and self-sustained activity in completely paralyzed and paretic muscles due to a disinhibited propriospinal pathway. Electrical stimuli were delivered over the left common peroneal nerve at the fibular head as single stimuli or in trains at 2–100 Hz lasting 1 s. Single stimuli produced a robust interlimb reflex twitch in the contralateral thumb at a mean latency 69 ms, but no activity in other muscles. With stimulus trains the thumb twitch occurred at variable subharmonics of the stimulus rate, and strong self-sustained activity developed in the contralateral wrist extensors, outlasting both the stimuli and the thumb reflex by up to 20 s. Similar behavior was recorded in the ipsilateral wrist extensors and quadriceps femoris of both legs, but not in the contralateral thenar or peroneal muscles. The patient could not terminate the self-sustained activity voluntarily, but it was abolished on the left by attempted contractions of the paralyzed thumb muscles of the right hand. These responses depend on the functional integrity of an ascending propriospinal pathway, and highlight the plasticity of spinal circuitry following spinal cord injury. They emphasize the potential for pathways below the level of injury to generate movement, and the role of self-sustained reflex activity in the sequelae of spinal cord injury. PMID:23936543

  2. Mutant SOD1G93A Triggers Mitochondrial Fragmentation in Spinal Cord Motor Neurons: Neuroprotection by SIRT3 and PGC-1α

    PubMed Central

    Song, Wenjun; Song, Yuting; Kincaid, Brad; Bossy, Blaise; Bossy-Wetzel, Ella

    2014-01-01

    Mutations in the Cu/Zn Superoxide Dismutase (SOD1) gene cause an inherited form of ALS with upper and lower motor neuron loss. The mechanism underlying mutant SOD1-mediated motor neuron degeneration remains unclear. While defects in mitochondrial dynamics contribute to neurodegeneration, including ALS, previous reports remain conflicted. Here, we report an improved technique to isolate, transfect, and culture rat spinal cord motor neurons. Using this improved system, we demonstrate that mutant SOD1G93A triggers a significant decrease in mitochondrial length and an accumulation of round fragmented mitochondria. The increase of fragmented mitochondria coincides with an arrest in both anterograde and retrograde axonal transport and increased cell death. In addition, mutant SOD1G93A induces a reduction in neurite length and branching that is accompanied with an abnormal accumulation of round mitochondria in growth cones. Furthermore, restoration of the mitochondrial fission and fusion balance by dominant-negative dynamin-related protein 1 (DRP1) expression rescues the mutant SOD1G93A-induced defects in mitochondrial morphology, dynamics, and cell viability. Interestingly, both SIRT3 and PGC-1α protect against mitochondrial fragmentation and neuronal cell death by mutant SOD1G93A. This data suggests that impairment in mitochondrial dynamics participates in ALS and restoring this defect might provide protection against mutant SOD1G93A-induced neuronal injury. PMID:22819776

  3. Monocyte Locomotion Inhibitory Factor Produced by E. histolytica Improves Motor Recovery and Develops Neuroprotection after Traumatic Injury to the Spinal Cord

    PubMed Central

    Bermeo, Gabriela; García, Elisa; Flores-Romero, Adrian; Rico-Rosillo, Guadalupe; Marroquín, Rubén; Flores, Carmina; Blanco-Favela, Francisco; Silva-García, Raúl

    2013-01-01

    Monocyte locomotion inhibitory factor (MLIF) is a pentapeptide produced by Entamoeba histolytica that has a potent anti-inflammatory effect. Either MLIF or phosphate buffered saline (PBS) was administered directly onto the spinal cord (SC) immediately after injury. Motor recovery was evaluated. We also analyzed neuroprotection by quantifying the number of surviving ventral horn motor neurons and the persistence of rubrospinal tract neurons. To evaluate the mechanism through which MLIF improved the outcome of SC injury, we quantified the expression of inducible nitric oxide synthase (iNOS), interleukin-10 (IL-10), and transforming growth factor-β (TGF-β) genes at the site of injury. Finally, the levels of nitric oxide and of lipid peroxidation were also determined in peripheral blood. Results showed that MLIF improved the rate of motor recovery and this correlated with an increased survival of ventral horn and rubrospinal neurons. These beneficial effects were in turn associated with a reduction in iNOS gene products and a significant upregulation of IL-10 and TGF-β expression. In the same way, MLIF reduced the concentration of nitric oxide and the levels of lipid peroxidation in systemic circulation. The present results demonstrate for the first time the neuroprotective effects endowed by MLIF after SC injury. PMID:24294606

  4. Subarachnoid Transplant of the Human Neuronal hNT2.19 Serotonergic Cell Line Attenuates Behavioral Hypersensitivity without Affecting Motor Dysfunction after Severe Contusive Spinal Cord Injury

    PubMed Central

    Eaton, Mary J.; Widerström-Noga, Eva; Wolfe, Stacey Quintero

    2011-01-01

    Transplant of cells which make biologic agents that can modulate the sensory and motor responses after spinal cord injury (SCI) would be useful to treat pain and paralysis. To address this need for clinically useful human cells, a unique neuronal cell line that synthesizes and secretes/releases the neurotransmitter serotonin (5HT) was isolated. Hind paw tactile allodynia and thermal hyperalgesia induced by severe contusive SCI were potently reversed after lumbar subarachnoid transplant of differentiated cells, but had no effect on open field motor scores, stride length, foot rotation, base of support, or gridwalk footfall errors associated with the SCI. The sensory effects appeared 1 week after transplant and did not diminish during the 8-week course of the experiment when grafts were placed 2 weeks after SCI. Many grafted cells were still present and synthesizing 5HT at the end of the study. These data suggest that the human neuronal serotonergic hNT2.19 cells can be used as a biologic minipump for receiving SCI-related neuropathic pain, but likely requires intraspinal grafts for motor recovery. PMID:21799949

  5. Weather, geography, and vehicle-related hyperthermia in children.

    PubMed

    Grundstein, Andrew; Null, Jan; Meentemeyer, Vernon

    2011-01-01

    Vehicle-related hyperthermia is an unfortunate tragedy that leads to the accidental deaths of children each year. This research utilizes the most extensive dataset of child vehicle-related hyperthermia deaths in the United States, including 414 deaths between 1998 and 2008. Deaths follow a seasonal pattern, with a peak in July and no deaths in December or January. Also, deaths occurred over a wide range of temperature and radiation levels and across virtually all regions, although most of them took place across the southern United States. In particular, the Phoenix, Houston, Dallas, and Las Vegas metropolitan areas had the greatest number of deaths. We utilize our vehicle hyperthermia index (vhi) to compare expected deaths versus actual deaths in a metropolitan area, based on the number of children in the area who are under the age of five and on the frequency of hot days in the area. The vhi indicates that the Memphis, West Palm Beach-Boca Raton, and Las Vegas metropolitan areas are the most dangerous places for vehicle-related hyperthermia. We conclude by discussing several recommendations with public health policy implications. PMID:22164877

  6. Systemic, postsymptomatic antisense oligonucleotide rescues motor unit maturation delay in a new mouse model for type II/III spinal muscular atrophy

    PubMed Central

    Bogdanik, Laurent P.; Osborne, Melissa A.; Davis, Crystal; Martin, Whitney P.; Austin, Andrew; Rigo, Frank; Bennett, C. Frank; Lutz, Cathleen M.

    2015-01-01

    Clinical presentation of spinal muscular atrophy (SMA) ranges from a neonatal-onset, very severe disease to an adult-onset, milder form. SMA is caused by the mutation of the Survival Motor Neuron 1 (SMN1) gene, and prognosis inversely correlates with the number of copies of the SMN2 gene, a human-specific homolog of SMN1. Despite progress in identifying potential therapies for the treatment of SMA, many questions remain including how late after onset treatments can still be effective and what the target tissues should be. These questions can be addressed in part with preclinical animal models; however, modeling the array of SMA severities in the mouse, which lacks SMN2, has proven challenging. We created a new mouse model for the intermediate forms of SMA presenting with a delay in neuromuscular junction maturation and a decrease in the number of functional motor units, all relevant to the clinical presentation of the disease. Using this new model, in combination with clinical electrophysiology methods, we found that administering systemically SMN-restoring antisense oligonucleotides (ASOs) at the age of onset can extend survival and rescue the neurological phenotypes. Furthermore, these effects were also achieved by administration of the ASOs late after onset, independent of the restoration of SMN in the spinal cord. Thus, by adding to the limited repertoire of existing mouse models for type II/III SMA, we demonstrate that ASO therapy can be effective even when administered after onset of the neurological symptoms, in young adult mice, and without being delivered into the central nervous system. PMID:26460027

  7. Exendin-4 Enhances Motor Function Recovery via Promotion of Autophagy and Inhibition of Neuronal Apoptosis After Spinal Cord Injury in Rats.

    PubMed

    Li, Hao-Tian; Zhao, Xing-Zhang; Zhang, Xin-Ran; Li, Gang; Jia, Zhi-Qiang; Sun, Ping; Wang, Ji-Quan; Fan, Zhong-Kai; Lv, Gang

    2016-08-01

    Autophagy occurs prior to apoptosis and plays an important role in cell death regulation during spinal cord injury (SCI). This study aimed to determine the effects and potential mechanism of the glucagon-like peptide-1 (GLP-1) agonist extendin-4 (Ex-4) in SCI. Seventy-two male Sprague Dawley rats were randomly assigned to sham, SCI, 2.5 μg Ex-4, and 10 μg Ex-4 groups. To induce SCI, a 10-g iron rod was dropped from a 20-mm height to the spinal cord surface. Ex-4 was administered via intraperitoneal injection immediately after surgery. Motor function evaluation with the Basso Beattie Bresnahan (BBB) locomotor rating scale indicated significantly increased scores (p < 0.01) in the Ex-4-treated groups, especially 10 μg, which demonstrated the neuroprotective effect of Ex-4 after SCI. The light chain 3-II (LC3-II) and Beclin 1 protein expression determined via western blot and the number of autophagy-positive neurons via immunofluorescence double labeling were increased by Ex-4, which supports promotion of autophagy (p < 0.01). The caspase-3 protein level and neuronal apoptosis via transferase UTP nick end labeling (TUNEL)/NeuN/DAPI double labeling were significantly reduced in the Ex-4-treated groups, which indicates anti-apoptotic effects (p < 0.01). Finally, histological assessment via Nissl staining demonstrated the Ex-4 groups exhibited a significantly greater number of surviving neurons and less cavity (p < 0.01). To our knowledge, this is the first study to indicate that Ex-4 significantly enhances motor function in rats after SCI, and these effects are associated with the promotion of autophagy and inhibition of apoptosis. PMID:26198566

  8. Motor imagery-induced EEG patterns in individuals with spinal cord injury and their impact on brain-computer interface accuracy

    NASA Astrophysics Data System (ADS)

    Müller-Putz, G. R.; Daly, I.; Kaiser, V.

    2014-06-01

    Objective. Assimilating the diagnosis complete spinal cord injury (SCI) takes time and is not easy, as patients know that there is no ‘cure' at the present time. Brain-computer interfaces (BCIs) can facilitate daily living. However, inter-subject variability demands measurements with potential user groups and an understanding of how they differ to healthy users BCIs are more commonly tested with. Thus, a three-class motor imagery (MI) screening (left hand, right hand, feet) was performed with a group of 10 able-bodied and 16 complete spinal-cord-injured people (paraplegics, tetraplegics) with the objective of determining what differences were present between the user groups and how they would impact upon the ability of these user groups to interact with a BCI. Approach. Electrophysiological differences between patient groups and healthy users are measured in terms of sensorimotor rhythm deflections from baseline during MI, electroencephalogram microstate scalp maps and strengths of inter-channel phase synchronization. Additionally, using a common spatial pattern algorithm and a linear discriminant analysis classifier, the classification accuracy was calculated and compared between groups. Main results. It is seen that both patient groups (tetraplegic and paraplegic) have some significant differences in event-related desynchronization strengths, exhibit significant increases in synchronization and reach significantly lower accuracies (mean (M) = 66.1%) than the group of healthy subjects (M = 85.1%). Significance. The results demonstrate significant differences in electrophysiological correlates of motor control between healthy individuals and those individuals who stand to benefit most from BCI technology (individuals with SCI). They highlight the difficulty in directly translating results from healthy subjects to participants with SCI and the challenges that, therefore, arise in providing BCIs to such individuals.

  9. Involvement of Peripheral Adenosine A2 Receptors in Adenosine A1 Receptor–Mediated Recovery of Respiratory Motor Function After Upper Cervical Spinal Cord Hemisection

    PubMed Central

    James, Elysia; Nantwi, Kwaku D

    2006-01-01

    Background/Objective: In an animal model of spinal cord injury, a latent respiratory motor pathway can be pharmacologically activated through central adenosine A1 receptor antagonism to restore respiratory function after cervical (C2) spinal cord hemisection that paralyzes the hemidiaphragm ipsilateral to injury. Although respiration is modulated by central and peripheral mechanisms, putative involvement of peripheral adenosine A2 receptors in functional recovery in our model is untested. The objective of this study was to assess the effects of peripherally located adenosine A2 receptors on recovery of respiratory function after cervical (C2) spinal cord hemisection. Methods: Respiratory activity was electrophysiologically assessed (under standardized recording conditions) in C2-hemisected adult rats with the carotid bodies intact (H-CBI; n =12) or excised (H-CBE; n =12). Animals were administered the adenosine A2 receptor agonist, CGS-21680, followed by the A1 receptor antagonist, 1, 3-dipropyl-8-cyclopentylxanthine (DPCPX), or administered DPCPX alone. Recovered respiratory activity, characterized as drug-induced activity in the previously quiescent left phrenic nerve of C2-hemisected animals in H-CBI and H-CBE rats, was compared. Recovered respiratory activity was calculated by dividing drug-induced activity in the left phrenic nerve by activity in the right phrenic nerve. Results: Administration of CGS-21680 before DPCPX (n = 6) in H-CBI rats induced a significantly greater recovery (58.5 ± 3.6%) than when DPCPX (42.6 ± 4.6%) was administered (n = 6) alone. In H-CBE rats, prior administration of CGS-21680 (n = 6) did not enhance recovery over that induced by DPCPX (n = 6) alone. Recovery in H-CBE rats amounted to 39.7 ± 3.7% and 38.4 + 4.2%, respectively. Conclusions: Our results suggest that adenosine A2 receptors located in the carotid bodies can enhance the magnitude of adenosine A1 receptor–mediated recovery of respiratory function after C2 hemisection

  10. A high-fat jelly diet restores bioenergetic balance and extends lifespan in the presence of motor dysfunction and lumbar spinal cord motor neuron loss in TDP-43A315T mutant C57BL6/J mice.

    PubMed

    Coughlan, Karen S; Halang, Luise; Woods, Ina; Prehn, Jochen H M

    2016-09-01

    Transgenic transactivation response DNA-binding protein 43 (TDP-43) mice expressing the A315T mutation under control of the murine prion promoter progressively develop motor function deficits and are considered a new model for the study of amyotrophic lateral sclerosis (ALS); however, premature sudden death resulting from intestinal obstruction halts disease phenotype progression in 100% of C57BL6/J congenic TDP-43(A315T) mice. Similar to our recent results in SOD1(G93A) mice, TDP-43(A315T) mice fed a standard pellet diet showed increased 5' adenosine monophosphate-activated protein kinase (AMPK) activation at postnatal day (P)80, indicating elevated energetic stress during disease progression. We therefore investigated the effects of a high-fat jelly diet on bioenergetic status and lifespan in TDP-43(A315T) mice. In contrast to standard pellet-fed mice, mice fed high-fat jelly showed no difference in AMPK activation up to P120 and decreased phosphorylation of acetly-CoA carboxylase (ACC) at early-stage time points. Exposure to a high-fat jelly diet prevented sudden death and extended survival, allowing development of a motor neuron disease phenotype with significantly decreased body weight from P80 onward that was characterised by deficits in Rotarod abilities and stride length measurements. Development of this phenotype was associated with a significant motor neuron loss as assessed by Nissl staining in the lumbar spinal cord. Our work suggests that a high-fat jelly diet improves the pre-clinical utility of the TDP-43(A315T) model by extending lifespan and allowing the motor neuron disease phenotype to progress, and indicates the potential benefit of this diet in TDP-43-associated ALS. PMID:27491077

  11. Trunk and Shoulder Kinematic and Kinetic and Electromyographic Adaptations to Slope Increase during Motorized Treadmill Propulsion among Manual Wheelchair Users with a Spinal Cord Injury

    PubMed Central

    Champagne, Audrey

    2015-01-01

    The main objective was to quantify the effects of five different slopes on trunk and shoulder kinematics as well as shoulder kinetic and muscular demands during manual wheelchair (MWC) propulsion on a motorized treadmill. Eighteen participants with spinal cord injury propelled their MWC at a self-selected constant speed on a motorized treadmill set at different slopes (0°, 2.7°, 3.6°, 4.8°, and 7.1°). Trunk and upper limb movements were recorded with a motion analysis system. Net shoulder joint moments were computed with the forces applied to the handrims measured with an instrumented wheel. To quantify muscular demand, the electromyographic activity (EMG) of the pectoralis major (clavicular and sternal portions) and deltoid (anterior and posterior fibers) was recorded during the experimental tasks and normalized against maximum EMG values obtained during static contractions. Overall, forward trunk flexion and shoulder flexion increased as the slope became steeper, whereas shoulder flexion, adduction, and internal rotation moments along with the muscular demand also increased as the slope became steeper. The results confirm that forward trunk flexion and shoulder flexion movement amplitudes, along with shoulder mechanical and muscular demands, generally increase when the slope of the treadmill increases despite some similarities between the 2.7° to 3.6° and 3.6° to 4.8° slope increments. PMID:25793200

  12. Spinal Plasticity following Intermittent Hypoxia: Implications for Spinal Injury

    PubMed Central

    Dale-Nagle, Erica A.; Hoffman, Michael S.; MacFarlane, Peter M.; Satriotomo, Irawan; Lovett-Barr, Mary Rachael; Vinit, Stéphane; Mitchell, Gordon S.

    2011-01-01

    Plasticity is a fundamental property of the neural system controlling breathing. One frequently studied model of respiratory plasticity is long-term facilitation of phrenic motor output (pLTF) following acute intermittent hypoxia (AIH). pLTF arises from spinal plasticity, increasing respiratory motor output through a mechanism that requires new synthesis of brain derived neurotrophic factor (BDNF), activation of its high affinity receptor, tropomyosin-related kinase B (TrkB) and extracellular-related kinase (ERK) mitogen-activated protein (MAP) kinase signaling in or near phrenic motor neurons. Since intermittent hypoxia induces spinal plasticity, we are exploring the potential to harness repetitive AIH as a means of inducing functional recovery in conditions causing respiratory insufficiency, such as cervical spinal injury. Since repetitive AIH induces phenotypic plasticity in respiratory and motor neurons, it may restore respiratory motor function in patients with incomplete spinal injury. PMID:20536940

  13. Mitigation of sensory and motor deficits by acrolein scavenger phenelzine in a rat model of spinal cord contusive injury.

    PubMed

    Chen, Zhe; Park, Jonghyuck; Butler, Breanne; Acosta, Glen; Vega-Alvarez, Sasha; Zheng, Lingxing; Tang, Jonathan; McCain, Robyn; Zhang, Wenpeng; Ouyang, Zheng; Cao, Peng; Shi, Riyi

    2016-07-01

    Currently there are no effective therapies available for the excruciating neuropathic pain that develops after spinal cord injuries (SCI). As such, a great deal of effort is being put into the investigation of novel therapeutic targets that can alleviate this pain. One such target is acrolein, a highly reactive aldehyde produced as a byproduct of oxidative stress and inflammation that is capable of activating the transient receptor potential ankyrin 1 (TRPA1) cation channel, known to be involved in the transmission and propagation of chronic neuropathic pain. One anti-acrolein agent, hydralazine, has already been shown to reduce neuropathic pain behaviors and offer neuroprotection after SCI. This study investigates another acrolein scavenger, phenelzine, for its possible role of alleviating sensory hypersensitivity through acrolein suppression. The results show that phenelzine is indeed capable of attenuating neuropathic pain behaviors in acute, delayed, and chronic administration schedules after injury in a rat model of SCI. In addition, upon the comparison of hydralazine to phenelzine, both acrolein scavengers displayed a dose-dependent response in the reduction of acrolein in vivo. Finally, phenelzine proved capable of providing locomotor function recovery and neuroprotection of spinal cord tissue when administered immediately after injury for 2 weeks. These results indicate that phenelzine may be an effective treatment for neuropathic pain after SCI and likely a viable alternative to hydralazine. We have shown that phenelzine can attenuate neuropathic pain behavior in acute, delayed, and chronic administration in post-SCI rats. This was accompanied by a dose-dependent reduction in an acrolein metabolite in urine and an acrolein adduct in spinal cord tissue, and the suppression of TRPA1 over-expression in central and peripheral locations post-trauma. Acrolein scavenging might be a novel therapeutic strategy to reduce post-SCI neuropathic pain. PMID:27060873

  14. Ligation of mouse L4 and L5 spinal nerves produces robust allodynia without major motor function deficit.

    PubMed

    Ye, Gui-Lan; Savelieva, Katerina V; Vogel, Peter; Baker, Kevin B; Mason, Sara; Lanthorn, Thomas H; Rajan, Indrani

    2015-01-01

    Spinal nerve L5/L6 ligation (SNL) in rats has become the standard for mechanistic studies of peripheral neuropathy and screening for novel analgesics. Conventional SNL in our hybrid mice resulted in a wide range of allodynia. Anatomical evaluation indicated that a variable number of lumbar vertebrae existed, resulting in L4/L5 or L5/L6 being ligated. Surprisingly, L4/L5 ligation did not result in ipsilateral hind limb paralysis and produced robust allodynia. Following a recent report that the mouse L4 neural segment is homologous with rat L5 we generated L4, L5 or both L4 and L5 (L4/L5) ligations in C57 mice after establishing a modified set of surgical landmarks. In contrast to rats, L4 ligation in these mice did not result in hind limb paralysis. Robust allodynia was observed in all three ligation groups. Nerve degeneration confirmed that L4 and L5, respectively, are primary contributors to the tibial and sural branches of the sciatic nerve in mice. A larger von Frey sensitive area reflected the wider distribution of Wallerian degeneration in the hindlimb of L4- compared to L5-ligated mice. Ligation of mouse L4 and L5 spinal nerves produces consistent, robust neuropathic pain behaviors and is suitable as a model for investigating mechanisms of neuropathic pain and for testing of novel analgesics. Gabapentin, used as a validation drug in neuropathic pain models and as a reference compound for novel analgesics, significantly reduced allodynia in the mice tested (L4/L5 ligations). Given the ease of surgery, robust allodynia, and larger von Frey sensitive area, we conclude that combined ligation of spinal nerves L4 and L5 optimizes the SNL model in mice. PMID:24786331

  15. Spinal stenosis

    MedlinePlus

    ... spinal stenosis; Foraminal spinal stenosis; Degenerative spine disease; Back pain - spinal stenosis ... help your pain during flare-ups. Treatments for back pain caused by spinal stenosis include: Medicines that may ...

  16. Increased cytoplasmic TARDBP mRNA in affected spinal motor neurons in ALS caused by abnormal autoregulation of TDP-43

    PubMed Central

    Koyama, Akihide; Sugai, Akihiro; Kato, Taisuke; Ishihara, Tomohiko; Shiga, Atsushi; Toyoshima, Yasuko; Koyama, Misaki; Konno, Takuya; Hirokawa, Sachiko; Yokoseki, Akio; Nishizawa, Masatoyo; Kakita, Akiyoshi; Takahashi, Hitoshi; Onodera, Osamu

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disorder. In motor neurons of ALS, TAR DNA binding protein-43 (TDP-43), a nuclear protein encoded by TARDBP, is absent from the nucleus and forms cytoplasmic inclusions. TDP-43 auto-regulates the amount by regulating the TARDBP mRNA, which has three polyadenylation signals (PASs) and three additional alternative introns within the last exon. However, it is still unclear how the autoregulatory mechanism works and how the status of autoregulation in ALS motor neurons without nuclear TDP-43 is. Here we show that TDP-43 inhibits the selection of the most proximal PAS and induces splicing of multiple alternative introns in TARDBP mRNA to decrease the amount of cytoplasmic TARDBP mRNA by nonsense-mediated mRNA decay. When TDP-43 is depleted, the TARDBP mRNA uses the most proximal PAS and is increased in the cytoplasm. Finally, we have demonstrated that in ALS motor neurons—especially neurons with mislocalized TDP-43—the amount of TARDBP mRNA is increased in the cytoplasm. Our observations indicate that nuclear TDP-43 contributes to the autoregulation and suggests that the absence of nuclear TDP-43 induces an abnormal autoregulation and increases the amount of TARDBP mRNA. The vicious cycle might accelerate the disease progression of ALS. PMID:27257061

  17. Increased cytoplasmic TARDBP mRNA in affected spinal motor neurons in ALS caused by abnormal autoregulation of TDP-43.

    PubMed

    Koyama, Akihide; Sugai, Akihiro; Kato, Taisuke; Ishihara, Tomohiko; Shiga, Atsushi; Toyoshima, Yasuko; Koyama, Misaki; Konno, Takuya; Hirokawa, Sachiko; Yokoseki, Akio; Nishizawa, Masatoyo; Kakita, Akiyoshi; Takahashi, Hitoshi; Onodera, Osamu

    2016-07-01

    Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disorder. In motor neurons of ALS, TAR DNA binding protein-43 (TDP-43), a nuclear protein encoded by TARDBP, is absent from the nucleus and forms cytoplasmic inclusions. TDP-43 auto-regulates the amount by regulating the TARDBP mRNA, which has three polyadenylation signals (PASs) and three additional alternative introns within the last exon. However, it is still unclear how the autoregulatory mechanism works and how the status of autoregulation in ALS motor neurons without nuclear TDP-43 is. Here we show that TDP-43 inhibits the selection of the most proximal PAS and induces splicing of multiple alternative introns in TARDBP mRNA to decrease the amount of cytoplasmic TARDBP mRNA by nonsense-mediated mRNA decay. When TDP-43 is depleted, the TARDBP mRNA uses the most proximal PAS and is increased in the cytoplasm. Finally, we have demonstrated that in ALS motor neurons-especially neurons with mislocalized TDP-43-the amount of TARDBP mRNA is increased in the cytoplasm. Our observations indicate that nuclear TDP-43 contributes to the autoregulation and suggests that the absence of nuclear TDP-43 induces an abnormal autoregulation and increases the amount of TARDBP mRNA. The vicious cycle might accelerate the disease progression of ALS. PMID:27257061

  18. Marked synergism between mutant SOD1 and glutamate transport inhibition in the induction of motor neuronal degeneration in spinal cord slice cultures.

    PubMed

    Yin, Hong Z; Weiss, John H

    2012-04-11

    Loss of astrocytic glutamate transport capacity in ALS spinal cord supports an excitotoxic contribution to motor neuron (MN) damage in the disease, and dominant gain of function mutations in Cu/Zn superoxide dismutase (SOD1) cause certain familial forms of ALS. We have used organotypic slice cultures from wild type and G93A SOD1 mutant rat spinal cords to examine interactions between excitotoxicity and the presence of mutant SOD1 in the induction of MN degeneration. Slice cultures were prepared from 1 week old pups, and after an additional week in vitro, some were exposed to either a low level (30 μM) of the glutamate uptake inhibitor, trans-pyrrolidine-2,4-dicarboxylic acid (PDC) for 3 weeks, or a higher level (50 μM) for 48 h, followed by histochemical labeling to assess MN injury. In wild type animals these exposures caused relatively little MN degeneration. Similarly, little MN degeneration was seen in slices from SOD1 mutant animals that were not exposed to PDC. However, addition of PDC to SOD1 mutant slices resulted in substantial MN injury, which was markedly attenuated by a Ca2+ permeable AMPA-type (Ca-AMPA) glutamate channel blocker, or by a nitric oxide synthase antagonist. These observations illustrate the utility of the organotypic culture model for the investigation of intracellular interactions underlying MN degeneration in ALS, and support the hypothesis that activation of Ca-AMPA channels on MNs provides a metabolic burden that synergizes with deleterious effects of mutant SOD1 in the induction of MN injury. PMID:22370146

  19. Evaluation of muscle strength and motor abilities in children with type II and III spinal muscle atrophy treated with valproic acid

    PubMed Central

    2011-01-01

    Background Spinal muscular atrophy (SMA) is an autosomal recessive disorder that affects the motoneurons of the spinal anterior horn, resulting in hypotonia and muscle weakness. The disease is caused by deletion or mutation in the telomeric copy of SMN gene (SMN1) and clinical severity is in part determined by the copy number of the centromeric copy of the SMN gene (SMN2). The SMN2 mRNA lacks exon 7, resulting in a production of lower amounts of the full-length SMN protein. Knowledge of the molecular mechanism of diseases has led to the discovery of drugs capable of increasing SMN protein level through activation of SMN2 gene. One of these drugs is the valproic acid (VPA), a histone deacetylase inhibitor. Methods Twenty-two patients with type II and III SMA, aged between 2 and 18 years, were treated with VPA and were evaluated five times during a one-year period using the Manual Muscle Test (Medical Research Council scale-MRC), the Hammersmith Functional Motor Scale (HFMS), and the Barthel Index. Results After 12 months of therapy, the patients did not gain muscle strength. The group of children with SMA type II presented a significant gain in HFMS scores during the treatment. This improvement was not observed in the group of type III patients. The analysis of the HFMS scores during the treatment period in the groups of patients younger and older than 6 years of age did not show any significant result. There was an improvement of the daily activities at the end of the VPA treatment period. Conclusion Treatment of SMA patients with VPA may be a potential alternative to alleviate the progression of the disease. Trial Registration ClinicalTrials.gov: NCT01033331 PMID:21435220

  20. Shift from extracellular signal-regulated kinase to AKT/cAMP response element-binding protein pathway increases survival-motor-neuron expression in spinal-muscular-atrophy-like mice and patient cells.

    PubMed

    Branchu, Julien; Biondi, Olivier; Chali, Farah; Collin, Thibault; Leroy, Felix; Mamchaoui, Kamel; Makoukji, Joelle; Pariset, Claude; Lopes, Philippe; Massaad, Charbel; Chanoine, Christophe; Charbonnier, Frédéric

    2013-03-01

    Spinal muscular atrophy (SMA), a recessive neurodegenerative disease, is characterized by the selective loss of spinal motor neurons. No available therapy exists for SMA, which represents one of the leading genetic causes of death in childhood. SMA is caused by a mutation of the survival-of-motor-neuron 1 (SMN1) gene, leading to a quantitative defect in the survival-motor-neuron (SMN) protein expression. All patients retain one or more copies of the SMN2 gene, which modulates the disease severity by producing a small amount of stable SMN protein. We reported recently that NMDA receptor activation, directly in the spinal cord, significantly enhanced the transcription rate of the SMN2 genes in a mouse model of very severe SMA (referred as type 1) by a mechanism that involved AKT/CREB pathway activation. Here, we provide the first compelling evidence for a competition between the MEK/ERK/Elk-1 and the phosphatidylinositol 3-kinase/AKT/CREB signaling pathways for SMN2 gene regulation in the spinal cord of type 1 SMA-like mice. The inhibition of the MEK/ERK/Elk-1 pathway promotes the AKT/CREB pathway activation, leading to (1) an enhanced SMN expression in the spinal cord of SMA-like mice and in human SMA myotubes and (2) a 2.8-fold lifespan extension in SMA-like mice. Furthermore, we identified a crosstalk between ERK and AKT signaling pathways that involves the calcium-dependent modulation of CaMKII activity. Together, all these data open new perspectives to the therapeutic strategy for SMA patients. PMID:23467345

  1. A functional model and simulation of spinal motor pools and intrafascicular recordings of motoneuron activity in peripheral nerve

    PubMed Central

    Abdelghani, Mohamed N.; Abbas, James J.; Horch, Kenneth W.; Jung, Ranu

    2014-01-01

    Decoding motor intent from recorded neural signals is essential for the development of effective neural-controlled prostheses. To facilitate the development of online decoding algorithms we have developed a software platform to simulate neural motor signals recorded with peripheral nerve electrodes, such as longitudinal intrafascicular electrodes (LIFEs). The simulator uses stored motor intent signals to drive a pool of simulated motoneurons with various spike shapes, recruitment characteristics, and firing frequencies. Each electrode records a weighted sum of a subset of simulated motoneuron activity patterns. As designed, the simulator facilitates development of a suite of test scenarios that would not be possible with actual data sets because, unlike with actual recordings, in the simulator the individual contributions to the simulated composite recordings are known and can be methodically varied across a set of simulation runs. In this manner, the simulation tool is suitable for iterative development of real-time decoding algorithms prior to definitive evaluation in amputee subjects with implanted electrodes. The simulation tool was used to produce data sets that demonstrate its ability to capture some features of neural recordings that pose challenges for decoding algorithms. PMID:25452711

  2. Conditional genetic deletion of PTEN after a spinal cord injury enhances regenerative growth of CST axons and motor function recovery in mice

    PubMed Central

    Danilov, Camelia A.; Steward, Oswald

    2015-01-01

    Previous studies indicate that conditional genetic deletion of phosphatase and tensin homolog (PTEN) in neonatal mice enhances the ability of axons to regenerate following spinal cord injury (SCI) in adults. Here, we assessed whether deleting PTEN in adult neurons post-SCI is also effective, and whether enhanced regenerative growth is accompanied by enhanced recovery of voluntary motor function. PTENloxP/loxP mice received moderate contusion injuries at cervical level 5 (C5). One group received unilateral injections of adeno-associated virus expressing CRE (AAV-CRE) into the sensorimotor cortex; controls received a vector expressing green fluorescent protein (AAV-GFP) or injuries only (no vector injections). Forelimb function was tested for 14 weeks post-SCI using a grip strength meter (GSM) and a hanging task. The corticospinal tract (CST) was traced by injecting mini-ruby BDA into the sensorimotor cortex. Forelimb gripping ability was severely impaired immediately post-SCI but recovered slowly over time. The extent of recovery was significantly greater in PTEN-deleted mice in comparison to either the AAV-GFP group or the injury only group. BDA tract tracing revealed significantly higher numbers of BDA-labeled axons in caudal segments in the PTEN-deleted group compared to control groups. In addition, in the PTEN-deleted group, there were exuberant collaterals extending from the main tract rostral to the lesion, into and around the scar tissue at the injury site. These results indicate that PTEN deletion in adult mice shortly post-SCI can enhance regenerative growth of CST axons and forelimb motor function recovery. PMID:25704959

  3. Association of copy numbers of survival motor neuron gene 2 and neuronal apoptosis inhibitory protein gene with the natural history in a Chinese spinal muscular atrophy cohort.

    PubMed

    Qu, Yu-jin; Ge, Xiu-shan; Bai, Jin-li; Wang, Li-wen; Cao, Yan-yan; Lu, Yan-yu; Jin, Yu-wei; Wang, Hong; Song, Fang

    2015-03-01

    We evaluated survival motor neuron 2 (SMN2) and neuronal apoptosis inhibitory protein (NAIP) gene copy distribution and the association of copy number with survival in 232 Chinese spinal muscular atrophy (SMA) patients. The SMN2 and NAIP copy numbers correlated positively with the median onset age (r = 0.72 and 0.377). The risk of death for patients with fewer copies of SMN2 or NAIP was much higher than for those with more copies (P < .01). The survival probabilities at 5 years were 5.1%, 90.7%, and 100% for 2, 3, and 4 SMN2 copies and 27.9%, 66.7%, and 87.2% for 0, 1, and 2 NAIP copies, respectively. Our results indicated that combined SMN1-SMN2-NAIP genotypes with fewer copies were associated with earlier onset age and poorer survival probability. Better survival status for Chinese type I SMA might due to a higher proportion of 3 SMN2 and a lower rate of zero NAIP. PMID:25330799

  4. Energy Cost of Lower Body Dressing, Pop-Over Transfers, and Manual Wheelchair Propulsion in People with Paraplegia Due to Motor-Complete Spinal Cord Injury

    PubMed Central

    McCormick, Zachary; Liem, Brian; Jacobs, Geneva; Hwang, Peter; Hornby, Thomas George; Rydberg, Leslie; Roth, Elliot J.

    2015-01-01

    Background: Energy required for able-bodied individuals to perform common activities is well documented, whereas energy associated with daily activities among people with spinal cord injury (SCI) is less understood. Objective: To determine energy expended during several basic physical tasks specific to individuals with paraplegia due to motor-complete SCI. Methods: Sixteen adults with motor-complete SCI below T2 level and duration of paraplegia greater than 3 months were included. Oxygen consumption (VO2), caloric expenditure, and heart rate were measured at rest and while participants performed lower body dressing (LBD), pop-over transfers (POTs), and manual wheelchair propulsion (MWP) at a self-selected pace. These data were used to calculate energy expenditure in standard metabolic equivalents (METs), as defined by 1 MET = 3.5 mL O2/kg/min, and in SCI METs using the conversion 1 SCI MET = 2.7 mL O2/kg/min. Results: VO2 at rest was 3.0 ± 0.9 mL O2/kg/min, which equated to 0.9 ± 0.3 standard METs and 1.1 ± 0.4 SCI METs in energy expenditure. LBD required 3.2 ± 0.7 METs and 4.1 ± 0.9 SCI METs; POTs required 3.4 ± 1.0 METs and 4.5 ± 1.3 SCI METs; and MWP required 2.4 ± 0.6 METs and 3.1 ± 0.7 SCI METs. Conclusion: Resting VO2 for adults with motor-complete paraplegia is 3.0 mL O2/kg/min, which is lower than standard resting VO2 in able-bodied individuals. Progressively more energy is required to perform MWP, LBD, and POTs, respectively. Use of the standard METs formula may underestimate the level of intensity an individual with SCI uses to perform physical activities. PMID:26364283

  5. Spinal injury

    MedlinePlus

    ... head. Alternative Names Spinal cord injury; SCI Images Skeletal spine Vertebra, cervical (neck) Vertebra, lumbar (low back) Vertebra, thoracic (mid back) Vertebral column Central nervous system Spinal cord injury Spinal anatomy Two person roll - ...

  6. Spinal fusion

    MedlinePlus

    ... Anterior spinal fusion; Spine surgery - spinal fusion; Low back pain - fusion; Herniated disk - fusion ... If you had chronic back pain before surgery, you will likely still have some pain afterward. Spinal fusion is unlikely to take away all your pain ...

  7. Spinal stenosis

    MedlinePlus

    ... injection (ESI) involves injecting medicine directly into the space around your spinal nerves or spinal cord. Spinal stenosis symptoms often become worse over time, but this may happen slowly. If the pain ...

  8. Comparison of activation of corticospinal neurons and spinal motor neurons by magnetic and electrical transcranial stimulation in the lumbosacral cord of the anaesthetized monkey.

    PubMed

    Edgley, S A; Eyre, J A; Lemon, R N; Miller, S

    1997-05-01

    To illuminate the action of non-invasive stimuli on the human cerebral cortex, responses of corticospinal axons and of plantar alpha-motor neurons following transcranial magnetic (TMS) and electrical stimulation (TES) were recorded in the lumbosacral cord in the anaesthetized macaque monkey. A round coil was used for TMS, and the anode was located at the vertex for TES. The responses of 175 identified corticospinal axons (conduction velocities of 24-95 m/s) were recorded from the lateral corticospinal tract at the T12-L3 spinal level. A single magnetic or electrical stimulus could evoke an early spike corresponding to the direct (D) wave in surface recorded volleys and was termed a D response. In the same axon, up to four further spikes, termed indirect (I) responses, could also be evoked. At a given intensity of stimulation, D responses had clear thresholds and fixed latencies, whereas I responses were labile in both respects. For TMS and TES, the thresholds of both D and I responses were inversely correlated with axonal conduction velocity. For TMS, fast conducting axons (> 75 m/s) had lower thresholds for D responses, while more slowly conducting axons (< 55 m/s) had lower thresholds for I responses. Very few of the axons with a conduction velocity of < 40 m/s (three out of 23) gave a D response to TMS. For TES, the majority of axons had lower thresholds for D responses or a similar threshold for both D and I responses. At threshold, the latencies of D responses evoked by TMS and TES were consistent with activation within the cortex, while TES also excited some corticospinal axons deep to the cortex. At 2.5 times threshold for the D response, TMS still excited axons mostly within the cortex, but with TES the site of activation shifted by as much as 65 mm below the cortex (mode 20 mm). Intracellular responses were recorded in 23 plantar alpha motor neurons supplying intrinsic muscles of the foot. All showed monosynaptic excitatory post-synaptic potentials (EPSPs

  9. Retraining the injured spinal cord

    NASA Technical Reports Server (NTRS)

    Edgerton, V. R.; Leon, R. D.; Harkema, S. J.; Hodgson, J. A.; London, N.; Reinkensmeyer, D. J.; Roy, R. R.; Talmadge, R. J.; Tillakaratne, N. J.; Timoszyk, W.; Tobin, A.

    2001-01-01

    The present review presents a series of concepts that may be useful in developing rehabilitative strategies to enhance recovery of posture and locomotion following spinal cord injury. First, the loss of supraspinal input results in a marked change in the functional efficacy of the remaining synapses and neurons of intraspinal and peripheral afferent (dorsal root ganglion) origin. Second, following a complete transection the lumbrosacral spinal cord can recover greater levels of motor performance if it has been exposed to the afferent and intraspinal activation patterns that are associated with standing and stepping. Third, the spinal cord can more readily reacquire the ability to stand and step following spinal cord transection with repetitive exposure to standing and stepping. Fourth, robotic assistive devices can be used to guide the kinematics of the limbs and thus expose the spinal cord to the new normal activity patterns associated with a particular motor task following spinal cord injury. In addition, such robotic assistive devices can provide immediate quantification of the limb kinematics. Fifth, the behavioural and physiological effects of spinal cord transection are reflected in adaptations in most, if not all, neurotransmitter systems in the lumbosacral spinal cord. Evidence is presented that both the GABAergic and glycinergic inhibitory systems are up-regulated following complete spinal cord transection and that step training results in some aspects of these transmitter systems being down-regulated towards control levels. These concepts and observations demonstrate that (a) the spinal cord can interpret complex afferent information and generate the appropriate motor task; and (b) motor ability can be defined to a large degree by training.

  10. The Cerebellum in Maintenance of a Motor Skill: A Hierarchy of Brain and Spinal Cord Plasticity Underlies H-Reflex Conditioning

    ERIC Educational Resources Information Center

    Wolpaw, Jonathan R.; Chen, Xiang Yang

    2006-01-01

    Operant conditioning of the H-reflex, the electrical analog of the spinal stretch reflex, is a simple model of skill acquisition and involves plasticity in the spinal cord. Previous work showed that the cerebellum is essential for down-conditioning the H-reflex. This study asks whether the cerebellum is also essential for maintaining…

  11. Motoneurons of the adult marmoset can grow axons and reform motor endplates through a peripheral nerve bridge joining the locally injured cervical spinal cord to the denervated biceps brachii muscle.

    PubMed

    Emery, E; Rhrich-Haddout, F; Kassar-Duchossoy, L; Lyoussi, B; Tadié, M; Horvat, J C

    2000-12-15

    Reconnection of the injured spinal cord (SC) of the marmoset with the denervated biceps brachii muscle (BB) was obtained by using a peripheral nerve (PN) bridge. In 13 adult males, a 45 mm segment of the peroneal nerve was removed: one end was implanted unilaterally into the cervical SC of the same animal (autograft), determining a local injury, although the other end was either directly inserted into the BB (Group A) or, alternatively, sutured to its transected motor nerve, the musculocutaneous nerve (Group B). From 2-4 months post-surgery, eight out of the 10 surviving animals responded by a contraction of the BB to electrical stimulations of the PN bridge. All ten were then processed for a morphological study. As documented by retrograde axonal tracing studies using horse radish peroxidase or Fast Blue (FB), a mean number of 314 (Group A) or 45 (Group B) spinal neurons, mainly located close to the site of injury and grafting, re-expressed a capacity to grow and extend axons into the PN bridge. Most of these regenerated axons were able to grow up to the BB and form or reform functional motor endplates. Many of the spinal neurons that were retrogradely labeled with FB simultaneously displayed immunoreactivity for choline acetyl-transferase and consequently were assumed to be motoneurons. Reinnervation and regeneration of the BB were documented by methods revealing axon terminals, endplates and myofibrillary ATPase activity. Our results indicate that motoneurons of the focally injured SC of a small-sized primate can, following the example of the adult rat, re-establish a lost motor function by extending new axons all the way through a PN bridge connected to a denervated skeletal muscle. PMID:11107167

  12. What Is the Best Multimodality Combination for Intraoperative Spinal Cord Monitoring of Motor Function? A Multicenter Study by the Monitoring Committee of the Japanese Society for Spine Surgery and Related Research

    PubMed Central

    Ito, Zenya; Matsuyama, Yukihiro; Ando, Muneharu; Kawabata, Shigenori; Kanchiku, Tsukasa; Kida, Kazunobu; Fujiwara, Yasushi; Yamada, Kei; Yamamoto, Naoya; Kobayashi, Sho; Saito, Takanori; Wada, Kanichiro; Satomi, Kazuhiko; Shinomiya, Kenichi; Tani, Toshikazu

    2015-01-01

    Study Design Surgeon survey. Objective To analyze multimodal intraoperative monitoring (MIOM) for different combinations of methods based on the collected data and determine the best combination. Methods A questionnaire was sent to 72 training institutions to analyze and compile data about monitoring that had been conducted during the preceding 5 years to obtain data on the following: (1) types of monitoring; (2) names and number of diseases; (3) conditions of anesthesia; (4) condition of stimulation, the monitored muscle and its number; (5) complications; and (6) preoperative and postoperative manual muscle testing, presence of dysesthesia, and the duration of postoperative motor deficit. Sensitivity and specificity, false-positive rates, and false-negative rates were examined for each type of monitoring, along with the relationship between each type of monitoring and the period of postoperative motor deficit. Results Comparison of the various combinations showed transcranial electrical stimulation motor evoked potential (TcMEP) + cord evoked potential after stimulation to the brain (Br-SCEP) combination had the highest sensitivity (90%). The TcMEP + somatosensory evoked potential (SSEP) and TcMEP + spinal cord evoked potential after stimulation to the spinal cord (Sp-SCEP) combinations each had a sensitivity of 80%, exhibiting little difference between their sensitivity and that obtained when TcMEP alone was used. Meanwhile, the sensitivity was as low as 50% with Br-SCEP + Sp-SCEP (i.e., the cases where TcMEP was not included). Conclusions The best multimodality combination for intraoperative spinal cord monitoring is TcMEP + Br-SCEP, which had the highest sensitivity (90%), the lowest false-positive rate (6.1%), and the lowest false-negative rate (0.2%). PMID:27099814

  13. What Is the Best Multimodality Combination for Intraoperative Spinal Cord Monitoring of Motor Function? A Multicenter Study by the Monitoring Committee of the Japanese Society for Spine Surgery and Related Research.

    PubMed

    Ito, Zenya; Matsuyama, Yukihiro; Ando, Muneharu; Kawabata, Shigenori; Kanchiku, Tsukasa; Kida, Kazunobu; Fujiwara, Yasushi; Yamada, Kei; Yamamoto, Naoya; Kobayashi, Sho; Saito, Takanori; Wada, Kanichiro; Satomi, Kazuhiko; Shinomiya, Kenichi; Tani, Toshikazu

    2016-05-01

    Study Design Surgeon survey. Objective To analyze multimodal intraoperative monitoring (MIOM) for different combinations of methods based on the collected data and determine the best combination. Methods A questionnaire was sent to 72 training institutions to analyze and compile data about monitoring that had been conducted during the preceding 5 years to obtain data on the following: (1) types of monitoring; (2) names and number of diseases; (3) conditions of anesthesia; (4) condition of stimulation, the monitored muscle and its number; (5) complications; and (6) preoperative and postoperative manual muscle testing, presence of dysesthesia, and the duration of postoperative motor deficit. Sensitivity and specificity, false-positive rates, and false-negative rates were examined for each type of monitoring, along with the relationship between each type of monitoring and the period of postoperative motor deficit. Results Comparison of the various combinations showed transcranial electrical stimulation motor evoked potential (TcMEP) + cord evoked potential after stimulation to the brain (Br-SCEP) combination had the highest sensitivity (90%). The TcMEP + somatosensory evoked potential (SSEP) and TcMEP + spinal cord evoked potential after stimulation to the spinal cord (Sp-SCEP) combinations each had a sensitivity of 80%, exhibiting little difference between their sensitivity and that obtained when TcMEP alone was used. Meanwhile, the sensitivity was as low as 50% with Br-SCEP + Sp-SCEP (i.e., the cases where TcMEP was not included). Conclusions The best multimodality combination for intraoperative spinal cord monitoring is TcMEP + Br-SCEP, which had the highest sensitivity (90%), the lowest false-positive rate (6.1%), and the lowest false-negative rate (0.2%). PMID:27099814

  14. Hybrid survival motor neuron genes in patients with autosomal recessive spinal muscular atrophy: New insights into molecular mechanisms responsible for the disease

    SciTech Connect

    Hahnen, E.; Schoenling, J.; Zerres, K.

    1996-11-01

    Spinal muscular atrophy (SMA) is a frequent autosomal recessive neurodegenerative disorder leading to weakness and atrophy of voluntary muscles. The survival motor-neuron gene (SMN), a strong candidate for SMA, is present in two highly homologous copies (telSMN and cenSMN) within the SMA region. Only five nucleotide differences within the region between intron 6 and exon 8 distinguish these homologues. Independent of the severity of the disease, 90%-98% of all SMA patients carry homozygous deletions in telSMN, affecting either exon 7 or both exons 7 and 8. We present the molecular analysis of 42 SMA patients who carry homozygous deletions of telSMN exon 7 but not of exon 8. The question arises whether in these cases the telSMN is truncated upstream of exon 8 or whether hybrid SMN genes exist that are composed of centromeric and telomeric sequences. By a simple PCR-based assay we demonstrate that in each case the remaining telSMN exon 8 is part of a hybrid SMN gene. Sequencing of cloned hybrid SMN genes from seven patients revealed the same composition in all but two patients: the base-pair differences in introns 6 and 7 and exon 7 are of centromeric origin whereas exon 8 is of telomeric origin. Nonetheless, haplotype analysis with polymorphic multicopy markers, Ag1-CA and C212, localized at the 5{prime} end of the SMN genes, suggests different mechanisms of occurrence, unequal rearrangements, and gene conversion involving both copies of the SMN genes. In approximately half of all patients, we identified a consensus haplotype, suggesting a common origin. Interestingly, we identified a putative recombination hot spot represented by recombination-simulating elements (TGGGG and TGAGGT) in exon 8 that is homologous to the human deletion-hot spot consensus sequence in the immunoglobulin switch region, the {alpha}-globin cluster, and the polymerase {alpha} arrest sites. This may explain why independent hybrid SMN genes show identical sequences. 35 refs., 4 figs., 1 tab.

  15. Quantitative Evaluation of 3D Mouse Behaviors and Motor Function in the Open-Field after Spinal Cord Injury Using Markerless Motion Tracking

    PubMed Central

    Sheets, Alison L.; Lai, Po-Lun; Fisher, Lesley C.; Basso, D. Michele

    2013-01-01

    Thousands of scientists strive to identify cellular mechanisms that could lead to breakthroughs in developing ameliorative treatments for debilitating neural and muscular conditions such as spinal cord injury (SCI). Most studies use rodent models to test hypotheses, and these are all limited by the methods available to evaluate animal motor function. This study’s goal was to develop a behavioral and locomotor assessment system in a murine model of SCI that enables quantitative kinematic measurements to be made automatically in the open-field by applying markerless motion tracking approaches. Three-dimensional movements of eight naïve, five mild, five moderate, and four severe SCI mice were recorded using 10 cameras (100 Hz). Background subtraction was used in each video frame to identify the animal’s silhouette, and the 3D shape at each time was reconstructed using shape-from-silhouette. The reconstructed volume was divided into front and back halves using k-means clustering. The animal’s front Center of Volume (CoV) height and whole-body CoV speed were calculated and used to automatically classify animal behaviors including directed locomotion, exploratory locomotion, meandering, standing, and rearing. More detailed analyses of CoV height, speed, and lateral deviation during directed locomotion revealed behavioral differences and functional impairments in animals with mild, moderate, and severe SCI when compared with naïve animals. Naïve animals displayed the widest variety of behaviors including rearing and crossing the center of the open-field, the fastest speeds, and tallest rear CoV heights. SCI reduced the range of behaviors, and decreased speed (r = .70 p<.005) and rear CoV height (r = .65 p<.01) were significantly correlated with greater lesion size. This markerless tracking approach is a first step toward fundamentally changing how rodent movement studies are conducted. By providing scientists with sensitive, quantitative measurement

  16. Spinal Tuberculosis

    PubMed Central

    Ekinci, Safak; Tatar, Oner; Akpancar, Serkan; Bilgic, Serkan; Ersen, Omer

    2015-01-01

    Spinal tuberculosis (TB) is a significant form of TB, causing spinal deformity and paralysis. Early diagnosis and treatment are crucial for avoiding multivertebral destruction and are critical for improving outcomes in spinal TB. We believe that appropriate treatment method should be implemented at the early stage of this disease and that the Gulhane Askeri Tıp Akademisi classification system can be considered a practical guide for spinal TB treatment planning in all countries. PMID:26609247

  17. Spinal hemianesthesia: Unilateral and posterior

    PubMed Central

    Imbelloni, Luiz Eduardo

    2014-01-01

    The injection of a non-isobaric local anesthetic should induce a unilateral spinal anesthesia in patients in a lateral decubitus position. The posterior spinal hemianesthesia only be obtained with hypobaric solutions injected in the jackknife position. The most important factors to be considered when performing a spinal hemianesthesia are: type and gauge of the needle, density of the local anesthetic relative to the CSF, position of the patient, speed of administration of the solution, time of stay in position, and dose/concentration/volume of the anesthetic solution. The distance between the spinal roots on the right-left sides and anterior-posterior is, approximately, 10-15 mm. This distance allows performing unilateral spinal anesthesia or posterior spinal anesthesia. The great advantage of obtaining spinal hemianesthesia is the reduction of cardiovascular changes. Likewise, both the dorsal and unilateral sensory block predominates in relation to the motor block. Because of the numerous advantages of producing spinal hemianesthesia, anesthesiologists should apply this technique more often. This review considers the factors which are relevant, plausible and proven to obtain spinal hemianesthesia. PMID:25886320

  18. Remote spinal epidural haematoma after spinal anaesthesia presenting with a ‘spinal lucid interval’

    PubMed Central

    Madhugiri, Venkatesh S; Singh, Manish; Sasidharan, Gopalakrishnan M; Kumar, V R Roopesh

    2012-01-01

    An obstetric patient who had no significant risk factors developed a spinal epidural haematoma remote from the site of needle puncture (for administration of spinal anaesthesia). The clinical deficits were manifest after recovery from the motor blockade had started a phenomenon that we have termed as a ‘spinal lucid interval’. The patient developed flaccid paraplegia with a sharp sensory level and urinary retention. The patient underwent emergency laminectomy and evacuation of the haematoma. She gradually recovered near normal power and was ambulant independently and had normal sphincter function at follow-up. PMID:23109417

  19. Muscles in a mouse model of spinal muscular atrophy show profound defects in neuromuscular development even in the absence of failure in neuromuscular transmission or loss of motor neurons

    PubMed Central

    Lee, Young il; Mikesh, Michelle; Smith, Ian; Rimer, Mendell; Thompson, Wesley

    2011-01-01

    A mouse model of the devastating human disease "spinal muscular atrophy" (SMA) was used to investigate the severe muscle weakness and spasticity that precedes the death of these animals near the end of the 2nd postnatal week. Counts of motor units to the soleus muscle as well as of axons in the soleus muscle nerve showed no loss of motor neurons. Similarly, neither immunostaining of neuromuscular junctions nor the measurement of the tension generated by nerve stimulation gave evidence of any significant impairment in neuromuscular transmission, even when animals were maintained up to 5 days longer via a supplementary diet. However, the muscles were clearly weaker, generating less than half their normal tension. Weakness in 3 muscles examined in the study appears due to a severe but uniform reduction in muscle fiber size. The size reduction results from a failure of muscle fibers to grow during early postnatal development and, in soleus, to a reduction in number of fibers generated. Neuromuscular development is severely delayed in these mutant animals: expression of myosin heavy chain isoforms, the elimination of polyneuronal innervation, the maturation in the shape of the AChR plaque, the arrival of SCs at the junctions and their coverage of the nerve terminal, the development of junctional folds. Thus, if SMA in this particular mouse is a disease of motor neurons, it can act in a manner that does not result in their death or disconnection from their targets but nonetheless alters many aspects of neuromuscular development. PMID:21658376

  20. Intraoperative neurophysiological monitoring in spinal surgery.

    PubMed

    Park, Jong-Hwa; Hyun, Seung-Jae

    2015-09-16

    Recently, many surgeons have been using intraoperative neurophysiological monitoring (IOM) in spinal surgery to reduce the incidence of postoperative neurological complications, including level of the spinal cord, cauda equina and nerve root. Several established technologies are available and combined motor and somatosensory evoked potentials are considered mandatory for practical and successful IOM. Spinal cord evoked potentials are elicited compound potentials recorded over the spinal cord. Electrical stimulation is provoked on the dorsal spinal cord from an epidural electrode. Somatosensory evoked potentials assess the functional integrity of sensory pathways from the peripheral nerve through the dorsal column and to the sensory cortex. For identification of the physiological midline, the dorsal column mapping technique can be used. It is helpful for reducing the postoperative morbidity associated with dorsal column dysfunction when distortion of the normal spinal cord anatomy caused by an intramedullary cord lesion results in confusion in localizing the midline for the myelotomy. Motor evoked potentials (MEPs) consist of spinal, neurogenic and muscle MEPs. MEPs allow selective and specific assessment of the functional integrity of descending motor pathways, from the motor cortex to peripheral muscles. Spinal surgeons should understand the concept of the monitoring techniques and interpret monitoring records adequately to use IOM for the decision making during the surgery for safe surgery and a favorable surgical outcome. PMID:26380823

  1. Intraoperative neurophysiological monitoring in spinal surgery

    PubMed Central

    Park, Jong-Hwa; Hyun, Seung-Jae

    2015-01-01

    Recently, many surgeons have been using intraoperative neurophysiological monitoring (IOM) in spinal surgery to reduce the incidence of postoperative neurological complications, including level of the spinal cord, cauda equina and nerve root. Several established technologies are available and combined motor and somatosensory evoked potentials are considered mandatory for practical and successful IOM. Spinal cord evoked potentials are elicited compound potentials recorded over the spinal cord. Electrical stimulation is provoked on the dorsal spinal cord from an epidural electrode. Somatosensory evoked potentials assess the functional integrity of sensory pathways from the peripheral nerve through the dorsal column and to the sensory cortex. For identification of the physiological midline, the dorsal column mapping technique can be used. It is helpful for reducing the postoperative morbidity associated with dorsal column dysfunction when distortion of the normal spinal cord anatomy caused by an intramedullary cord lesion results in confusion in localizing the midline for the myelotomy. Motor evoked potentials (MEPs) consist of spinal, neurogenic and muscle MEPs. MEPs allow selective and specific assessment of the functional integrity of descending motor pathways, from the motor cortex to peripheral muscles. Spinal surgeons should understand the concept of the monitoring techniques and interpret monitoring records adequately to use IOM for the decision making during the surgery for safe surgery and a favorable surgical outcome. PMID:26380823

  2. Effect of high-frequency repetitive transcranial magnetic stimulation on motor cortical excitability and sensory nerve conduction velocity in subacute-stage incomplete spinal cord injury patients

    PubMed Central

    Cha, Hyun Gyu; Ji, Sang-Goo; Kim, Myoung-Kwon

    2016-01-01

    [Purpose] The aim of the present study was to determine whether repetitive transcranial magnetic stimulation can improve sensory recovery of the lower extremities in subacute-stage spinal cord injury patients. [Subjects and Methods] This study was conducted on 20 subjects with diagnosed paraplegia due to spinal cord injury. These 20 subjects were allocated to an experimental group of 10 subjects that underwent active repetitive transcranial magnetic stimulation or to a control group of 10 subjects that underwent sham repetitive transcranial magnetic stimulation. The SCI patients in the experimental group underwent active repetitive transcranial magnetic stimulation and conventional rehabilitation therapy, whereas the spinal cord injury patients in the control group underwent sham repetitive transcranial magnetic stimulation and conventional rehabilitation therapy. Participants in both groups received therapy five days per week for six-weeks. Latency, amplitude, and sensory nerve conduction velocity were assessed before and after the six week therapy period. [Results] A significant intergroup difference was observed for posttreatment velocity gains, but no significant intergroup difference was observed for amplitude or latency. [Conclusion] repetitive transcranial magnetic stimulation may be improve sensory recovery of the lower extremities in subacute-stage spinal cord injury patients. PMID:27512251

  3. Effect of high-frequency repetitive transcranial magnetic stimulation on motor cortical excitability and sensory nerve conduction velocity in subacute-stage incomplete spinal cord injury patients.

    PubMed

    Cha, Hyun Gyu; Ji, Sang-Goo; Kim, Myoung-Kwon

    2016-07-01

    [Purpose] The aim of the present study was to determine whether repetitive transcranial magnetic stimulation can improve sensory recovery of the lower extremities in subacute-stage spinal cord injury patients. [Subjects and Methods] This study was conducted on 20 subjects with diagnosed paraplegia due to spinal cord injury. These 20 subjects were allocated to an experimental group of 10 subjects that underwent active repetitive transcranial magnetic stimulation or to a control group of 10 subjects that underwent sham repetitive transcranial magnetic stimulation. The SCI patients in the experimental group underwent active repetitive transcranial magnetic stimulation and conventional rehabilitation therapy, whereas the spinal cord injury patients in the control group underwent sham repetitive transcranial magnetic stimulation and conventional rehabilitation therapy. Participants in both groups received therapy five days per week for six-weeks. Latency, amplitude, and sensory nerve conduction velocity were assessed before and after the six week therapy period. [Results] A significant intergroup difference was observed for posttreatment velocity gains, but no significant intergroup difference was observed for amplitude or latency. [Conclusion] repetitive transcranial magnetic stimulation may be improve sensory recovery of the lower extremities in subacute-stage spinal cord injury patients. PMID:27512251

  4. Spinal Cord Stimulation and Augmentative Control Strategies for Leg Movement after Spinal Paralysis in Humans.

    PubMed

    Minassian, Karen; Hofstoetter, Ursula S

    2016-04-01

    Severe spinal cord injury is a devastating condition, tearing apart long white matter tracts and causing paralysis and disability of body functions below the lesion. But caudal to most injuries, the majority of neurons forming the distributed propriospinal system, the localized gray matter spinal interneuronal circuitry, and spinal motoneuron populations are spared. Epidural spinal cord stimulation can gain access to this neural circuitry. This review focuses on the capability of the human lumbar spinal cord to generate stereotyped motor output underlying standing and stepping, as well as full weight-bearing standing and rhythmic muscle activation during assisted treadmill stepping in paralyzed individuals in response to spinal cord stimulation. By enhancing the excitability state of the spinal circuitry, the stimulation can have an enabling effect upon otherwise "silent" translesional volitional motor control. Strategies for achieving functional movement in patients with severe injuries based on minimal translesional intentional control, task-specific proprioceptive feedback, and next-generation spinal cord stimulation systems will be reviewed. The role of spinal cord stimulation can go well beyond the immediate generation of motor output. With recently developed training paradigms, it can become a major rehabilitation approach in spinal cord injury for augmenting and steering trans- and sublesional plasticity for lasting therapeutic benefits. PMID:26890324

  5. AAVshRNA-Mediated Suppression of PTEN in Adult Rats in Combination with Salmon Fibrin Administration Enables Regenerative Growth of Corticospinal Axons and Enhances Recovery of Voluntary Motor Function after Cervical Spinal Cord Injury

    PubMed Central

    2014-01-01

    Conditional genetic deletion of phosphatase and tensin homolog (PTEN) in the sensorimotor cortex of neonatal mice enables regeneration of corticospinal tract (CST) axons after spinal cord injury (SCI). The present study addresses three questions: (1) whether PTEN knockdown in adult rats by nongenetic techniques enables CST regeneration, (2) whether interventions to enable CST regeneration enhance recovery of voluntary motor function, and (3) whether delivery of salmon fibrin into the injury site further enhances CST regeneration and motor recovery. Adult rats were trained in a staircase-reaching task and then received either intracortical injections of AAVshPTEN to delete PTEN or a control vector expressing shRNA for luciferase (AAVshLuc). Rats then received cervical dorsal hemisection injuries and salmon fibrin was injected into the injury site in half the rats, yielding four groups (AAVshPTEN, AAVshLuc, AAVshPTEN + fibrin, and AAVshLuc + fibrin). Forepaw function was assessed for 10 weeks after injury and CST axons were traced by injecting biotin-conjugated dextran amine into the sensorimotor cortex. Rats that received AAVshPTEN alone did not exhibit improved motor function, whereas rats that received AAVshPTEN and salmon fibrin had significantly higher forelimb-reaching scores. Tract tracing revealed that CST axons extended farther caudally in the group that received AAVshPTEN and salmon fibrin versus other groups. There were no significant differences in lesion size between the groups. Together, these data suggest that the combination of PTEN deletion and salmon fibrin injection into the lesion can significantly improve voluntary motor function after SCI by enabling regenerative growth of CST axons. PMID:25057197

  6. Genetics of Pediatric-Onset Motor Neuron and Neuromuscular Diseases

    ClinicalTrials.gov

    2015-08-24

    Spinal Muscular Atrophy; Charcot-Marie-Tooth Disease; Muscular Dystrophy; Spinal Muscular Atrophy With Respiratory Distress 1; Amyotrophic Lateral Sclerosis; Motor Neuron Disease; Neuromuscular Disease; Peroneal Muscular Atrophy; Fragile X Syndrome

  7. Spinal epidural abscess complicating vertebral osteomyelitis: an insidious cause of deteriorating spinal cord function.

    PubMed

    Lee, H J; Bach, J R; White, R E

    1992-01-01

    Spinal epidural abscess may complicate vertebral osteomyelitis. The purpose of this report is to discuss its course in two patients with sensory/motor and cognitive impairment and to demonstrate the need for its early detection. Delayed detection may lead to spinal cord injury or meningitis. It may also delay functional return and hinder intensive rehabilitation efforts. Two patients are presented. PMID:1545229

  8. Spinal anaesthesia for spinal surgery.

    PubMed

    Jellish, W Scott; Shea, John F

    2003-09-01

    Spinal anaesthesia for spinal surgery is becoming increasingly more popular because this anaesthetic technique allows the patient to self-position and avoid neurological injury that may occur with prone positioning under general anaesthesia. Spinal anaesthesia reduces intraoperative surgical blood loss, improves perioperative haemodynamic stability and reduces pain in the immediate postoperative period. This leads to a reduced need for analgesics and a reduction in the incidence of nausea and vomiting in the postoperative setting. Spinal anaesthesia for lumbar spine surgery also decreases the incidence of lower extremity thrombo-embolic complications and does not increase the occurrence of problems with micturition. These benefits increase the patient's satisfaction, and they expedite discharge of the patient from the hospital. Combination anaesthetic techniques, using both subarachnoid and epidural dosing schemes, may be beneficial for improving postoperative pain control and add further to the benefit of spinal anaesthesia for lumbar spine surgical procedures. PMID:14529005

  9. Chimeric Self-assembling Nanofiber Containing Bone Marrow Homing Peptide's Motif Induces Motor Neuron Recovery in Animal Model of Chronic Spinal Cord Injury; an In Vitro and In Vivo Investigation.

    PubMed

    Tavakol, Shima; Saber, Reza; Hoveizi, Elham; Aligholi, Hadi; Ai, Jafar; Rezayat, Seyed Mahdi

    2016-07-01

    To date, spinal cord injury (SCI) has remained an incurable disaster. The use of self-assembling peptide nanofiber containing bioactive motifs such as bone marrow homing peptide (BMHP1) as an injectable scaffold in spinal cord regeneration has been suggested. Human endometrial-derived stromal cells (hEnSCs) have been approved by the FDA for clinical application. In this regard, we were interested in investigating the role of BMHP1 in hEnSCs' neural differentiation in vitro and evaluating the supportive effects of this scaffold in rat model of chronic SCI. 1,1-Diphenyl-2-picryl-hydrazyl (DPPH), lactate dehydrogenase (LDH) release, 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay, real-time PCR, and immunocyotochemistry (ICC) were performed as a biocompatibility and neural differentiation evaluations on neuron-like hEnSC-derived cells encapsulated into nanofiber. Nanofiber was implanted into rats and followed by behavioral test, Nissl, luxol fast blue (LFB) staining and immunohistostaining (IHC). Results indicated that cell membrane of neuroblastoma cells were more sensitive than hEnSCs to concentration of proton and cell proliferation decreased with increase of concentration. This effect might be related to oxygen tension and elastic modules of scaffold. -BMHP1 nanofiber induced neural differentiation in hEnSC and decreased GFAP gene and protein as a marker of reactive astrocytes in vitro and in vivo. A reason for this finding might be related to the role of spacer number in induction of mechano-transduction signals. The presented study revealed the chimeric BMHP1 nanofiber induced higher axon regeneration and myelniation around the cavity and motor neuron function was encouraged to improve with less inflammatory response following SCI in rats. These effects were possibly due to nanostructured topography and mechano-transduction signals derived from hydrogel at low concentration. PMID:26063594

  10. Spinal Stenosis

    MedlinePlus

    ... all. They include Pain in your neck or back Numbness, weakness, cramping, or pain in your arms or legs Pain going down the leg Foot problems Doctors diagnose spinal stenosis with a physical exam and ...

  11. Spinal deformity.

    PubMed

    Bunnell, W P

    1986-12-01

    Spinal deformity is a relatively common disorder, particularly in teenage girls. Early detection is possible by a simple, quick visual inspection that should be a standard part of the routine examination of all preteen and teenage patients. Follow-up observation will reveal those curvatures that are progressive and permit orthotic treatment to prevent further increase in the deformity. Spinal fusion offers correction and stabilization of more severe degrees of scoliosis. PMID:3786010

  12. Spinal cord trauma

    MedlinePlus

    Spinal cord injury; Compression of spinal cord; SCI; Cord compression ... them more likely to fall may also have spinal cord injury. ... vary depending on the location of the injury. Spinal cord injury causes weakness and loss of feeling at, and ...

  13. Neurotrophins and spinal circuit function

    PubMed Central

    Boyce, Vanessa S.; Mendell, Lorne M.

    2014-01-01

    Work early in the last century emphasized the stereotyped activity of spinal circuits based on studies of reflexes. However, the last several decades have focused on the plasticity of these spinal circuits. These considerations began with studies of the effects of monoamines on descending and reflex circuits. In recent years new classes of compounds called growth factors that are found in peripheral nerves and the spinal cord have been shown to affect circuit behavior in the spinal cord. In this review we will focus on the effects of neurotrophins, particularly nerve growth factor (NGF), brain derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), on spinal circuits. We also discuss evidence that these molecules can modify functions including nociceptive behavior, motor reflexes and stepping behavior. Since these substances and their receptors are normally present in the spinal cord, they could potentially be useful in improving function in disease states and after injury. Here we review recent findings relevant to these translational issues. PMID:24926235

  14. [Subarachnoid hematoma and spinal anesthesia].

    PubMed

    Dupeyrat, A; Dequiré, P M; Mérouani, A; Moullier, P; Eid, G

    1990-01-01

    Two cases of spinal subarachnoid haematoma occurring after spinal anaesthesia are reported. In the first case, lumbar puncture was attempted three times in a 81-year-old man; spinal anaesthesia trial was than abandoned, and the patient given a general anaesthetic. He was given prophylactic calcium heparinate soon after surgery. On the fourth day, the patient became paraparetic. Radioculography revealed a blockage between T10 and L3. Laminectomy was performed to remove the haematoma, but the patient recovered motor activity only very partially. The second case was a 67-year-old man, in whom spinal anaesthesia was easily carried out. He was also given prophylactic calcium heparinate soon after surgery. On the fourth postoperative day, pulmonary embolism was suspected. Heparin treatment was then started. Twelve hours later, lumbar and bilateral buttock pain occurred, which later spread to the neck. On the eighth day, the patient had neck stiffness and two seizures. Emergency laminectomy was carried out, which revealed a subarachnoid haematoma spreading to a level higher than T6 and below L1, with no flow of cerebrospinal fluid, and a non pulsatile spinal cord. Surgery was stopped. The patient died on the following day. Both these cases are similar to those previously reported and point out the role played by anticoagulants. Because early diagnosis of spinal cord compression is difficult, the prognosis is poor, especially in case of paraplegia. PMID:2278424

  15. Spinal lipomas in children.

    PubMed

    Xenos, C; Sgouros, S; Walsh, R; Hockley, A

    2000-06-01

    Spinal cord lipomas are a common cause of cord tethering that can lead to progressive neurological defects. The role of prophylactic surgery for spinal lipomas has recently been questioned. Between 1985 and 1999, 59 children underwent a total of 69 surgical procedures at the Birmingham Children's Hospital in Birmingham, UK. The spinal lipomas were classified into: 18 terminal, 17 transitional, 6 dorsal and 18 filum lipomas - including 12 who had a typical thickened filum terminale. At the first operation, 19 patients (32%) were asymptomatic, and 40 patients (68%) presented with symptoms. Surgical indications in the asymptomatic group included the presence of a dermal sinus tract or syrinx. Prophylactic surgery was undertaken in selected cases. The mean total follow-up for the group since the first surgical procedure was 61.8 months (range: 7.0-203.0 months). In the asymptomatic group, 26% of the patients had late neurological deterioration. Of the 14 patients with asymptomatic conus lipomas, 3 (21%) developed sphincter dysfunction and motor problems at long-term follow-up. In the symptomatic group, 68% improved, 20% remained unchanged, and 12% had late neurological deterioration. None of the 18 patients with symptomatic filum lipoma deteriorated postoperatively. However, 39% had bladder dysfunction, 54% had neuro-orthopaedic deformity, and only 15% returned to overall normal function at latest follow-up. Of the 27 patients with symptomatic conus lipomas, 67% improved, 15% remained stable, and 18% had late neurological deterioration. However, 74% had bladder dysfunction, 67% had neuro-orthopaedic deformity, and 45% had motor problems at long-term follow-up. Spinal lipomas can cause progressive neurological deficits irrespective of spinal untethering surgery. This study demonstrates that filum and conus lipomas have similar clinical presentation, but differ in their outcome following surgery. Filum lipomas are 'benign', for which surgery is safe and effective. Conus

  16. Perinatal modification of a sexually dimorphic motor nucleus in the spinal cord of the B6D2F1 house mouse.

    PubMed

    Wagner, C K; Clemens, L G

    1989-04-01

    The sexually dimorphic dorsomedial nucleus (DM) of the spinal cord of mice is affected by gonadal steroids in adulthood and these effects are dependent upon genotype. Following castration of adult mice there is a decrease in DM cell size in DBA/2J and hybrid B6D2F1 strains and a decrease in the number of cells staining with thionin in C57B1/6J and B6D2F1 strains. The effects of androgens on development of the DM nucleus were examined in B6D2F1 mice, which exhibit both characteristics in adulthood. Testosterone propionate (TP) administered to females pre- or postnatally resulted in a significantly larger number of motoneurons in the region of the DM when compared to administration of the vehicle alone, while soma area remained unchanged. Adult males castrated on the day of birth had significantly fewer cells in the DM than did intact males. Differences in cell size between shams and castrates were dependent upon age. PMID:2780856

  17. Spinal stenosis.

    PubMed

    Melancia, João Levy; Francisco, António Fernandes; Antunes, João Lobo

    2014-01-01

    Narrowing of the spinal canal or foramina is a common finding in spine imaging of the elderly. Only when symptoms of neurogenic claudication and/or cervical myelopathy are present is a spinal stenosis diagnosis made, either of the lumbar spine, cervical spine or both (only very rarely is the thoracic spine involved). Epidemiological data suggest an incidence of 1 case per 100 000 for cervical spine stenosis and 5 cases per 100 000 for lumbar spine stenosis. Cervical myelopathy in patients over 50 years of age is most commonly due to cervical spine stenosis. Symptomatic spinal narrowing can be congenital, or, more frequently, acquired. The latter may be the result of systemic illneses, namely endocrinopathies (such as Cushing disease or acromegaly), calcium metabolism disorders (including hyporarthyroidism and Paget disease), inflammatory diseases (such as rheumathoid arthritis) and infectious diseases. Physical examination is more often abnormal in cervical spondylotic myeloptahy whereas in lumbar spinal stenosis it is typically normal. Therefore spinal stenosis diagnosis relies on the clinical picture corresponding to conspicuous causative changes identified by imaging techniques, most importantly CT and MRI. Other ancillary diagnostic tests are more likely to be yielding for establishing a differential diagnosis, namely vascular claudication. Most patients have a progressive presentation and are offered non operative management as first treatment strategy. Surgery is indicated for progressive intolerable symptoms or, more rarely, for the neurologically catastrophic initial presentations. Surgical strategy consists mainly of decompression (depending on the anatomical level and type of narrowing: laminectomy, foraminotomy, discectomy, corporectomy) with additional instrumentation should spinal stability and sagittal balance be at risk. For cervical spine stenosis the main objective of surgery is to halt disease progression. There is class 1b evidence that surgery

  18. Prediction of isometric motor tasks and effort levels based on high-density EMG in patients with incomplete spinal cord injury

    NASA Astrophysics Data System (ADS)

    Jordanić, Mislav; Rojas-Martínez, Mónica; Mañanas, Miguel Angel; Francesc Alonso, Joan

    2016-08-01

    Objective. The development of modern assistive and rehabilitation devices requires reliable and easy-to-use methods to extract neural information for control of devices. Group-specific pattern recognition identifiers are influenced by inter-subject variability. Based on high-density EMG (HD-EMG) maps, our research group has already shown that inter-subject muscle activation patterns exist in a population of healthy subjects. The aim of this paper is to analyze muscle activation patterns associated with four tasks (flexion/extension of the elbow, and supination/pronation of the forearm) at three different effort levels in a group of patients with incomplete Spinal Cord Injury (iSCI). Approach. Muscle activation patterns were evaluated by the automatic identification of these four isometric tasks along with the identification of levels of voluntary contractions. Two types of classifiers were considered in the identification: linear discriminant analysis and support vector machine. Main results. Results show that performance of classification increases when combining features extracted from intensity and spatial information of HD-EMG maps (accuracy = 97.5%). Moreover, when compared to a population with injuries at different levels, a lower variability between activation maps was obtained within a group of patients with similar injury suggesting stronger task-specific and effort-level-specific co-activation patterns, which enable better prediction results. Significance. Despite the challenge of identifying both the four tasks and the three effort levels in patients with iSCI, promising results were obtained which support the use of HD-EMG features for providing useful information regarding motion and force intention.

  19. Risk of fatal rollover in utility vehicles relative to static stability.

    PubMed Central

    Robertson, L S

    1989-01-01

    The risk of fatal rollover of utility vehicles per 100,000 registered vehicles relative to cars during 1982-87 was strongly correlated to the static stability of the vehicles. Distance between the center of the tires divided by twice the height of center of gravity explained 62 per cent of the variation in fatal rollover rates where rollover was the first harmful event. Statistical controls for 20 major risk factors indicated no correlations that would deflate the correlation between stability and rollover. Low stability utility vehicles roll over more often on the road suggesting that the lateral force of turning is often the tipping force. PMID:2916715

  20. Long-Term Spinal Ventral Root Reimplantation, but not Bone Marrow Mononuclear Cell Treatment, Positively Influences Ultrastructural Synapse Recovery and Motor Axonal Regrowth

    PubMed Central

    Barbizan, Roberta; Castro, Mateus V.; Ferreira Jr., Rui Seabra; Barraviera, Benedito; Oliveira, Alexandre L. R.

    2014-01-01

    We recently proposed a new surgical approach to treat ventral root avulsion, resulting in motoneuron protection. The present work combined such a surgical approach with bone marrow mononuclear cells (MC) therapy. Therefore, MC were added to the site of reimplantation. Female Lewis rats (seven weeks old) were subjected to unilateral ventral root avulsion (VRA) at L4, L5 and L6 levels and divided into the following groups (n = 5 for each group): Avulsion, sealant reimplanted roots and sealant reimplanted roots plus MC. After four weeks and 12 weeks post-surgery, the lumbar intumescences were processed by transmission electron microscopy, to analyze synaptic inputs to the repaired α motoneurons. Also, the ipsi and contralateral sciatic nerves were processed for axon counting and morphometry. The ultrastructural results indicated a significant preservation of inhibitory pre-synaptic boutons in the groups repaired with sealant alone and associated with MC therapy. Moreover, the average number of axons was higher in treated groups when compared to avulsion only. Complementary to the fiber counting, the morphometric analysis of axonal diameter and “g” ratio demonstrated that root reimplantation improved the motor component recovery. In conclusion, the data herein demonstrate that root reimplantation at the lesion site may be considered a therapeutic approach, following proximal lesions in the interface of central nervous system (CNS) and peripheral nervous system (PNS), and that MC therapy does not further improve the regenerative recovery, up to 12 weeks post lesion. PMID:25353176

  1. [Gene expression profile of spinal ventral horn in ALS].

    PubMed

    Yamamoto, Masahiko; Tanaka, Fumiaki; Sobue, Gen

    2007-10-01

    The causative pathomechanism of sporadic amyotrophic lateral sclerosis (ALS) is not clearly understood. Using microarray technology combined with laser-captured microdissection, gene expression profiles of degenerating spinal motor neurons as well as spinal ventral horn from autopsied patients with sporadic ALS were examined. Spinal motor neurons showed a distinct gene expression profile from the whole spinal ventral horn. Three percent of genes examined were significantly downregulated, and 1% were upregulated in motor neurons. In contrast with motor neurons, the total spinal ventral horn homogenates demonstrated 0.7% and 0.2% significant upregulation and downregulation of gene expression, respectively. Downregulated genes in motor neurons included those associated with cytoskeleton/axonal transport, transcription and cell surface antigens/receptors, such as dynactin 1 (DCTN1) and early growth response 3 (EGR3). In particular, DCTN1 was markedly downregulated in most residual motor neurons prior to the accumulation of pNF-H and ubiquitylated protein. Promoters for cell death pathway, death receptor 5 (DR5), cyclins C (CCNC) and A1 (CCNA), and caspases were upregulated, whereas cell death inhibitors, acetyl-CoA transporter (ACATN) and NF-kappaB (NFKB) were also upregulated. In terms of spinal ventral horn, the expression of genes related to cell surface antigens/receptors, transcription and cell adhesion/ECM were increased. The gene expression resulting in neurodegenerative and neuroprotective changes were both present in spinal motor neurons and ventral horn. Moreover, Inflammation-related genes, such as belonging to the cytokine family were not, however, significantly upregulated in either motor neurons or ventral horn. The sequence of motor neuron-specific gene expression changes from early DCTN1 downregulation to late CCNC upregulation in sporadic ALS can provide direct information on the genes leading to neurodegeneration and neuronal death, and are helpful

  2. Aquatic Therapy for a Child with Type III Spinal Muscular Atrophy: A Case Report

    ERIC Educational Resources Information Center

    Salem, Yasser; Gropack, Stacy Jaffee

    2010-01-01

    Spinal muscular atrophy (SMA) is a neuromuscular disorder characterized by degeneration of alpha motor neurons. This case report describes an aquatic therapy program and the outcomes for a 3-year-old girl with type III SMA. Motor skills were examined using the 88-item Gross Motor Function Measure (GMFM), the Peabody Developmental Motor Scales…

  3. Spinal Osteosarcoma

    PubMed Central

    Katonis, P.; Datsis, G.; Karantanas, A.; Kampouroglou, A.; Lianoudakis, S.; Licoudis, S.; Papoutsopoulou, E.; Alpantaki, K.

    2013-01-01

    Although osteosarcoma represents the second most common primary bone tumor, spinal involvement is rare, accounting for 3%–5% of all osteosarcomas. The most frequent symptom of osteosarcoma is pain, which appears in almost all patients, whereas more than 70% exhibit neurologic deficit. At a molecular level, it is a tumor of great genetic complexity and several genetic disorders have been associated with its appearance. Early diagnosis and careful surgical staging are the most important factors in accomplishing sufficient management. Even though overall prognosis remains poor, en-block tumor removal combined with adjuvant radiotherapy and chemotherapy is currently the treatment of choice. This paper outlines histopathological classification, epidemiology, diagnostic procedures, and current concepts of management of spinal osteosarcoma. PMID:24179411

  4. Spinal Bracing

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Dr. Arthur Copes of the Copes Foundation, Baton Rouge, LA, says that 35 percent of the 50 technical reports he received from the NASA/Southern University Industrial Applications Center in Baton Rouge and the Central Industrial Applications Center, Durant, OK, were vital to the development of his Copes Scoliosis Braces, which are custom designed and feature a novel pneumatic bladder that exerts constant corrective pressure to the torso to slowly reduce or eliminate the spinal curve.

  5. Spinal injury - resources

    MedlinePlus

    Resources - spinal injury ... The following organizations are good resources for information on spinal injury : National Institute of Neurological Disorders and Stroke -- www.ninds.nih.gov The National Spinal Cord Injury ...

  6. Spinal Cord Injuries

    MedlinePlus

    Your spinal cord is a bundle of nerves that runs down the middle of your back. It carries signals back ... forth between your body and your brain. A spinal cord injury disrupts the signals. Spinal cord injuries usually ...

  7. Spinal Cord Injury Map

    MedlinePlus

    ... on the severity of the injury. Tap this spinal column to see how the level of injury affects loss of function and control. Learn more about spinal cord injuries. A spinal cord injury affects the ...

  8. Tethered Spinal Cord Syndrome

    MedlinePlus

    ... Enhancing Diversity Find People About NINDS NINDS Tethered Spinal Cord Syndrome Information Page Table of Contents (click to ... being done? Clinical Trials Organizations What is Tethered Spinal Cord Syndrome? Tethered spinal cord syndrome is a neurological ...

  9. Spinal Cord Infarction

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Spinal Cord Infarction Information Page Table of Contents (click to ... Organizations Related NINDS Publications and Information What is Spinal Cord Infarction? Spinal cord infarction is a stroke either ...

  10. Spinal Cord Diseases

    MedlinePlus

    Your spinal cord is a bundle of nerves that runs down the middle of your back. It carries signals back ... of the spine, this can also injure the spinal cord. Other spinal cord problems include Tumors Infections such ...

  11. Developing therapies for spinal muscular atrophy.

    PubMed

    Wertz, Mary H; Sahin, Mustafa

    2016-02-01

    Spinal muscular atrophy is an autosomal-recessive pediatric neurodegenerative disease characterized by loss of spinal motor neurons. It is caused by mutation in the gene survival of motor neuron 1 (SMN1), leading to loss of function of the full-length SMN protein. SMN has a number of functions in neurons, including RNA splicing and snRNP biogenesis in the nucleus, and RNA trafficking in neurites. The expression level of full-length SMN protein from the SMN2 locus modifies disease severity. Increasing full-length SMN protein by a small amount can lead to significant improvements in the neurological phenotype. Currently available interventions for spinal muscular atrophy patients are physical therapy and orthopedic, nutritional, and pulmonary interventions; these are palliative or supportive measures and do not address the etiology of the disease. In the past decade, there has been a push for developing therapeutics to improve motor phenotypes and increase life span of spinal muscular atrophy patients. These therapies are aimed primarily at restoration of full-length SMN protein levels, but other neuroprotective treatments have been investigated as well. Here, we discuss recent advances in basic and clinical studies toward finding safe and effective treatments of spinal muscular atrophy using gene therapy, antisense oligonucleotides, and other small molecule modulators of SMN expression. PMID:26173388

  12. Acute lower motor neuron tetraparesis.

    PubMed

    Añor, Sònia

    2014-11-01

    Flaccid nonambulatory tetraparesis or tetraplegia is an infrequent neurologic presentation; it is characteristic of neuromuscular disease (lower motor neuron [LMN] disease) rather than spinal cord disease. Paresis beginning in the pelvic limbs and progressing to the thoracic limbs resulting in flaccid tetraparesis or tetraplegia within 24 to 72 hours is a common presentation of peripheral nerve or neuromuscular junction disease. Complete body flaccidity develops with severe decrease or complete loss of spinal reflexes in pelvic and thoracic limbs. Animals with acute generalized LMN tetraparesis commonly show severe motor dysfunction in all limbs and severe generalized weakness in all muscles. PMID:25441630

  13. Spinal surgery -- cervical - series (image)

    MedlinePlus

    The cervical spinal column is made up of vertebral bodies which protect the spinal cord. ... spinal nerves, trauma, and narrowing (stenosis) of the spinal column around the spinal cord. Symptoms of cervical spine ...

  14. Transcranial magnetic motor-evoked potentials in scoliosis surgery.

    PubMed

    Glassman, S D; Zhang, Y P; Shields, C B; Johnson, J R; Linden, R D

    1995-10-01

    Spinal cord monitoring using SSEPs is an accepted adjunct in the surgical correction of spinal deformities, but does not directly assess motor function. Motor-evoked potentials have been introduced in an effort to meet this important need. In this series of 18 patients, the feasibility of intraoperative monitoring using transcranial magnetic motor-evoked potentials is documented. The potential value of this neurophysiologic monitoring technique, as well as the pitfalls in interpretation, are reviewed. PMID:8584459

  15. A Clinical Perspective and Definition of Spinal Cord Injury.

    PubMed

    Kretzer, Ryan M

    2016-04-01

    Spinal cord injury (SCI) can be complete or incomplete. The level of injury in SCI is defined as the most caudal segment with motor function rated at greater than or equal to 3/5, with pain and temperature preserved. The standard neurological classification of SCI provided by the American Spinal Injury Association (ASIA) assigns grades from ASIA A (complete SCI) through ASIA E (normal sensory/motor), with B, C, and D representing varying degrees of injury between these extremes. The most common causes of SCI include trauma (motor vehicle accidents, sports, violence, falls), degenerative spinal disease, vascular injury (anterior spinal artery syndrome, epidural hematoma), tumor, infection (epidural abscess), and demyelinating processes (). (SDC Figure 1, http://links.lww.com/BRS/B91)(Figure is included in full-text article.). PMID:27015067

  16. Spinal Interneurons and Forelimb Plasticity after Incomplete Cervical Spinal Cord Injury in Adult Rats

    PubMed Central

    Rombola, Angela M.; Rousseau, Celeste A.; Mercier, Lynne M.; Fitzpatrick, Garrett M.; Reier, Paul J.; Fuller, David D.; Lane, Michael A.

    2015-01-01

    Abstract Cervical spinal cord injury (cSCI) disrupts bulbospinal projections to motoneurons controlling the upper limbs, resulting in significant functional impairments. Ongoing clinical and experimental research has revealed several lines of evidence for functional neuroplasticity and recovery of upper extremity function after SCI. The underlying neural substrates, however, have not been thoroughly characterized. The goals of the present study were to map the intraspinal motor circuitry associated with a defined upper extremity muscle, and evaluate chronic changes in the distribution of this circuit following incomplete cSCI. Injured animals received a high cervical (C2) lateral hemisection (Hx), which compromises supraspinal input to ipsilateral spinal motoneurons controlling the upper extremities (forelimb) in the adult rat. A battery of behavioral tests was used to characterize the time course and extent of forelimb motor recovery over a 16 week period post-injury. A retrograde transneuronal tracer – pseudorabies virus – was used to define the motor and pre-motor circuitry controlling the extensor carpi radialis longus (ECRL) muscle in spinal intact and injured animals. In the spinal intact rat, labeling was observed unilaterally within the ECRL motoneuron pool and within spinal interneurons bilaterally distributed within the dorsal horn and intermediate gray matter. No changes in labeling were observed 16 weeks post-injury, despite a moderate degree of recovery of forelimb motor function. These results suggest that recovery of the forelimb function assessed following C2Hx injury does not involve recruitment of new interneurons into the ipsilateral ECRL motor pathway. However, the functional significance of these existing interneurons to motor recovery requires further exploration. PMID:25625912

  17. Primary extramedullary spinal melanoma mimicking spinal meningioma: A case report and literature review

    PubMed Central

    LI, YU-PING; ZHANG, HENG-ZHU; SHE, LEI; WANG, XIAO-DONG; DONG, LUN; XU, ENXI; WANG, XING-DONG

    2014-01-01

    Primary spinal melanoma is a rare lesion, which occurs throughout the cranial and spinal regions, however, is primarily observed in the middle or lower thoracic spine. The clinical features of primary spinal melanoma are complex and unspecific, resulting in a high misdiagnosis rate. In the present case report, a rare case of spinal melanoma exhibiting the dural tail sign and mimicking spinal meningioma is reported. The initial diagnosis, using magnetic resonance imaging (MRI), was unclear. Thus, melanin-containing tumors and spinal meningioma should have been considered in the differential diagnosis. The tumor was completely resected using a standard posterior midline approach, which was followed by chemotherapy. Subsequent to the surgery, the patient was discharged with improved motor capacity and a follow-up MRI scan showed no recurrence after six months. The present study demonstrates that it is critical for neurosurgeons to focus on increasing the accuracy of initial diagnoses in order to make informed decisions regarding the requirement for surgical resection. The present case report presents the clinical, radiological and pathological features of primary extramedullary spinal melanoma mimicking spinal meningioma to emphasize the importance of early identification and diagnosis. PMID:24959273

  18. Spinal muscular atrophy

    PubMed Central

    2011-01-01

    Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease characterized by degeneration of alpha motor neurons in the spinal cord, resulting in progressive proximal muscle weakness and paralysis. Estimated incidence is 1 in 6,000 to 1 in 10,000 live births and carrier frequency of 1/40-1/60. This disease is characterized by generalized muscle weakness and atrophy predominating in proximal limb muscles, and phenotype is classified into four grades of severity (SMA I, SMAII, SMAIII, SMA IV) based on age of onset and motor function achieved. This disease is caused by homozygous mutations of the survival motor neuron 1 (SMN1) gene, and the diagnostic test demonstrates in most patients the homozygous deletion of the SMN1 gene, generally showing the absence of SMN1 exon 7. The test achieves up to 95% sensitivity and nearly 100% specificity. Differential diagnosis should be considered with other neuromuscular disorders which are not associated with increased CK manifesting as infantile hypotonia or as limb girdle weakness starting later in life. Considering the high carrier frequency, carrier testing is requested by siblings of patients or of parents of SMA children and are aimed at gaining information that may help with reproductive planning. Individuals at risk should be tested first and, in case of testing positive, the partner should be then analyzed. It is recommended that in case of a request on carrier testing on siblings of an affected SMA infant, a detailed neurological examination should be done and consideration given doing the direct test to exclude SMA. Prenatal diagnosis should be offered to couples who have previously had a child affected with SMA (recurrence risk 25%). The role of follow-up coordination has to be managed by an expert in neuromuscular disorders and in SMA who is able to plan a multidisciplinary intervention that includes pulmonary, gastroenterology/nutrition, and orthopedic care. Prognosis depends on the phenotypic

  19. Lower Motor Neuron Findings after Upper Motor Neuron Injury: Insights from Postoperative Supplementary Motor Area Syndrome

    PubMed Central

    Florman, Jeffrey E.; Duffau, Hugues; Rughani, Anand I.

    2013-01-01

    Hypertonia and hyperreflexia are classically described responses to upper motor neuron injury. However, acute hypotonia and areflexia with motor deficit are hallmark findings after many central nervous system insults such as acute stroke and spinal shock. Historic theories to explain these contradictory findings have implicated a number of potential mechanisms mostly relying on the loss of descending corticospinal input as the underlying etiology. Unfortunately, these simple descriptions consistently fail to adequately explain the pathophysiology and connectivity leading to acute hyporeflexia and delayed hyperreflexia that result from such insult. This article highlights the common observation of acute hyporeflexia after central nervous system insults and explores the underlying anatomy and physiology. Further, evidence for the underlying connectivity is presented and implicates the dominant role of supraspinal inhibitory influence originating in the supplementary motor area descending through the corticospinal tracts. Unlike traditional explanations, this theory more adequately explains the findings of postoperative supplementary motor area syndrome in which hyporeflexia motor deficit is observed acutely in the face of intact primary motor cortex connections to the spinal cord. Further, the proposed connectivity can be generalized to help explain other insults including stroke, atonic seizures, and spinal shock. PMID:23508473

  20. Spinal cord maturation and locomotion in mice with an isolated cortex.

    PubMed

    Han, Q; Feng, J; Qu, Y; Ding, Y; Wang, M; So, K-F; Wu, W; Zhou, L

    2013-12-01

    The spinal cord plays a key role in motor behavior. It relays major sensory information, receives afferents from supraspinal centers and integrates movement in the central pattern generators. Spinal motor output is controlled via corticofugal pathways including corticospinal and cortico-subcortical projections. Spinal cord injury damages descending supraspinal as well as ascending sensory pathways. In adult rodent models, plasticity of the spinal cord is thought to contribute to functional recovery. How much spinal cord function depends on cortical input is not well known. Here, we address this question using Celsr3/Foxg1 mice, in which cortico-subcortical connections (including corticospinal tract (CST) and the terminal sensory pathway, the thalamocortical tract) are genetically ablated during early development. Although Celsr3/Foxg1 mice are able to eat, walk, climb on grids and swim, open-field tests showed them to be hyperactive. When compared with normal littermates, mutant animals had reduced number of spinal motor neurons, with atrophic dendritic trees. Furthermore, motor axon terminals were decreased in number, and this was confirmed by electromyography. The number of cholinergic, calbindin, and calretinin-positive interneurons was moderately increased in the mutant spinal cord, whereas that of reelin and parvalbumin-positive interneurons was unchanged. As far as we know, our study provides the first genetic evidence that the spinal motor network does not mature fully in the absence of corticofugal connections, and that some motor function is preserved despite congenital absence of the CST. PMID:24012835

  1. Partly shared spinal cord networks for locomotion and scratching.

    PubMed

    Berkowitz, Ari; Hao, Zhao-Zhe

    2011-12-01

    Animals produce a variety of behaviors using a limited number of muscles and motor neurons. Rhythmic behaviors are often generated in basic form by networks of neurons within the central nervous system, or central pattern generators (CPGs). It is known from several invertebrates that different rhythmic behaviors involving the same muscles and motor neurons can be generated by a single CPG, multiple separate CPGs, or partly overlapping CPGs. Much less is known about how vertebrates generate multiple, rhythmic behaviors involving the same muscles. The spinal cord of limbed vertebrates contains CPGs for locomotion and multiple forms of scratching. We investigated the extent of sharing of CPGs for hind limb locomotion and for scratching. We used the spinal cord of adult red-eared turtles. Animals were immobilized to remove movement-related sensory feedback and were spinally transected to remove input from the brain. We took two approaches. First, we monitored individual spinal cord interneurons (i.e., neurons that are in between sensory neurons and motor neurons) during generation of each kind of rhythmic output of motor neurons (i.e., each motor pattern). Many spinal cord interneurons were rhythmically activated during the motor patterns for forward swimming and all three forms of scratching. Some of these scratch/swim interneurons had physiological and morphological properties consistent with their playing a role in the generation of motor patterns for all of these rhythmic behaviors. Other spinal cord interneurons, however, were rhythmically activated during scratching motor patterns but inhibited during swimming motor patterns. Thus, locomotion and scratching may be generated by partly shared spinal cord CPGs. Second, we delivered swim-evoking and scratch-evoking stimuli simultaneously and monitored the resulting motor patterns. Simultaneous stimulation could cause interactions of scratch inputs with subthreshold swim inputs to produce normal swimming, acceleration

  2. Vehicle Related Factors that Influence Injury Outcome in Head-On Collisions

    PubMed Central

    Blum, Jeremy J.; Scullion, Paul; Morgan, Richard M.; Digges, Kennerly; Kan, Cing-Dao; Park, Shinhee; Bae, Hanil

    2008-01-01

    This study specifically investigated a range of vehicle-related factors that are associated with a lower risk of serious or fatal injury to a belted driver in a head-on collision. This analysis investigated a range of structural characteristics, quantities that describes the physical features of a passenger vehicle, e.g., stiffness or frontal geometry. The study used a data-mining approach (classification tree algorithm) to find the most significant relationships between injury outcome and the structural variables. The algorithm was applied to 120,000 real-world, head-on collisions, from the National Highway Traffic Safety Administration’s (NHTSA’s) State Crash data files, that were linked to structural attributes derived from frontal crash tests performed as part of the USA New Car Assessment Program. As with previous literature, the analysis found that the heavier vehicles were correlated with lower injury risk to their drivers. This analysis also found a new and significant correlation between the vehicle’s stiffness and injury risk. When an airbag deployed, the vehicle’s stiffness has the most statistically significant correlation with injury risk. These results suggest that in severe collisions, lower intrusion in the occupant cabin associated with higher stiffness is at least as important to occupant protection as vehicle weight for self-protection of the occupant. Consequently, the safety community might better improve self-protection by a renewed focus on increasing vehicle stiffness in order to improve crashworthiness in head-on collisions. PMID:19026230

  3. Hyperbaric oxygen therapy improves local microenvironment after spinal cord injury

    PubMed Central

    Wang, Yang; Zhang, Shuquan; Luo, Min; Li, Yajun

    2014-01-01

    Clinical studies have shown that hyperbaric oxygen therapy improves motor function in patients with spinal cord injury. In the present study, we explored the mechanisms associated with the recovery of neurological function after hyperbaric oxygen therapy in a rat model of spinal cord injury. We established an acute spinal cord injury model using a modification of the free-falling object method, and treated the animals with oxygen at 0.2 MPa for 45 minutes, 4 hours after injury. The treatment was administered four times per day, for 3 days. Compared with model rats that did not receive the treatment, rats exposed to hyperbaric oxygen had fewer apoptotic cells in spinal cord tissue, lower expression levels of aquaporin 4/9 mRNA and protein, and more NF-200 positive nerve fibers. Furthermore, they had smaller spinal cord cavities, rapid recovery of somatosensory and motor evoked potentials, and notably better recovery of hindlimb motor function than model rats. Our findings indicate that hyperbaric oxygen therapy reduces apoptosis, downregulates aquaporin 4/9 mRNA and protein expression in injured spinal cord tissue, improves the local microenvironment for nerve regeneration, and protects and repairs the spinal cord after injury. PMID:25657740

  4. Intermittent hypoxia induces functional recovery following cervical spinal injury

    PubMed Central

    Vinit, Stéphane; Lovett-Barr, Mary Rachael; Mitchell, Gordon S.

    2009-01-01

    Respiratory-related complications are the leading cause of death in spinal cord injury (SCI) patients. Few effective SCI treatments are available after therapeutic interventions are performed in the period shortly after injury (e.g. spine stabilization and prevention of further spinal damage). In this review we explore the capacity to harness endogenous spinal plasticity induced by intermittent hypoxia to optimize function of surviving (spared) neural pathways associated with breathing. Two primary questions are addressed: 1) does intermittent hypoxia induce plasticity in spinal synaptic pathways to respiratory motor neurons following experimental SCI? and 2) can this plasticity improve respiratory function? In normal rats, intermittent hypoxia induces serotonin-dependent plasticity in spinal pathways to respiratory motor neurons. Early experiments suggest that intermittent hypoxia also enhances respiratory motor output in experimental models of cervical SCI, (cervical hemisection) and that the capacity to induce functional recovery is greater with longer durations post-injury. Available evidence suggests that intermittent hypoxia-induced spinal plasticity has considerable therapeutic potential to treat respiratory insufficiency following chronic cervical spinal injury. PMID:19651247

  5. Recovery of airway protective behaviors after spinal cord injury

    PubMed Central

    Bolser, Donald C.; Jefferson, Stephanie C.; Rose, Melanie J.; Tester, Nicole J.; Reier, Paul J.; Fuller, David D.; Davenport, Paul W.; Howland, Dena R.

    2009-01-01

    Pulmonary morbidity is high following spinal cord injury and is due, in part, to impairment of airway protective behaviors. These airway protective behaviors include augmented breaths, the cough reflex, and expiration reflexes. Functional recovery of these behaviors has been reported after spinal cord injury. In humans, evidence for functional recovery is restricted to alterations in motor strategy and changes in the frequency of occurrence of these behaviors. In animal models, compensatory alterations in motor strategy have been identified. Crossed descending respiratory motor pathways at the thoracic spinal cord levels exist that are composed of crossed premotor axons, local circuit interneurons, and propriospinal neurons. These pathways can collectively form a substrate that supports maintenance and/or recovery of function, especially after asymmetric spinal cord injury. Local sprouting of premotor axons in the thoracic spinal cord also can occur following chronic spinal cord injury. These mechanisms may contribute to functional resiliency of the cough reflex that has been observed following chronic spinal cord injury in the cat. PMID:19635591

  6. Intrathecal orphenadrine elicits spinal block in the rat.

    PubMed

    Chen, Yu-Wen; Tzeng, Jann-Inn; Chen, Yu-Chung; Hung, Ching-Hsia; Wang, Jhi-Joung

    2014-11-01

    The purpose of this study was to estimate the local anesthetic effect of orphenadrine, an anti-muscarinic agent, in spinal anesthesia and its comparison with the local anesthetic lidocaine. After the rat was injected intrathecally, the spinal block of orphenadrine and lidocaine was constructed in a dosage-dependent fashion. The potency and duration of spinal anesthesia with orphenadrine were compared with that of lidocaine. Our data demonstrated that orphenadrine and lidocaine elicited dose-dependent spinal blockades on the motor function, sensory, and proprioception. On the 50% effective dose (ED50) basis, the ranks of potency in motor function, nociception, and proprioception were orphenadrine>lidocaine (P<0.01). At equipotent doses (ED25, ED50, ED75), the block duration elicited by orphenadrine was greater than that elicited by lidocaine (P<0.01). Orphenadrine, but not lidocaine, exhibited longer duration of nociceptive/sensory blockade than that of motor blockade at equipotent doses. Ineffective-dose orphenadrine as adjuvant did not enhance spinal anesthesia with lidocaine. The preclinical data revealed that orphenadrine with a more sensory-selective action over motor block exhibited more potent and longer spinal anesthesia when compared to lidocaine. PMID:25205132

  7. Inhibition of spinal c-Jun-NH2-terminal kinase (JNK) improves locomotor activity of spinal cord injured rats.

    PubMed

    Martini, Alessandra C; Forner, Stefânia; Koepp, Janice; Rae, Giles Alexander

    2016-05-16

    Mitogen-activated protein kinases (MAPKs) have been implicated in central nervous system injuries, yet the roles within neurodegeneration following spinal cord injury (SCI) still remain partially elucidated. We aimed to investigate the changes in expression of the three MAPKs following SCI and the role of spinal c-jun-NH2-terminal kinase (JNK) in motor impairment following the lesion. SCI induced at the T9 level resulted in enhanced expression of phosphorylated MAPKs shortly after trauma. SCI increased spinal cord myeloperoxidase levels, indicating a local neutrophil infiltration, and elevated the number of spinal apoptotic cells. Intrathecal administration of a specific inhibitor of JNK phosphorylation, SP600125, given at 1 and 4h after SCI, reduced the p-JNK expression, the number of spinal apoptotic cells and many of the histological signs of spinal injury. Notably, restoration of locomotor performance was clearly ameliorated by SP600125 treatment. Altogether, the results demonstrate that SCI induces activation of spinal MAPKs and that JNK plays a major role in mediating the deleterious consequences of spinal injury, not only at the spinal level, but also those regarding locomotor function. Therefore, inhibition of JNK activation in the spinal cord shortly after trauma might constitute a feasible therapeutic strategy for the functional recovery from SCI. PMID:27080425

  8. Neurologic Complication Following Spinal Epidural Anesthesia in a Patient with Spinal Intradural Extramedullary Tumor

    PubMed Central

    Kim, Sung Hoon; Son, Dong Wuk; Lee, Sang Won

    2010-01-01

    Paraplegia following spinal epidural anesthesia is extremely rare. Various lesions for neurologic complications have been documented in the literature. We report a 66-year-old female who developed paraplegia after left knee surgery for osteoarthritis under spinal epidural anesthesia. In the recovery room, paraplegia and numbness below T4 vertebra was checked. A magnetic resonance image (MRI) scan showed a spinal thoracic intradural extramedullary (IDEM) tumor. After extirpation of the tumor, the motor weakness improved to the grade of 3/5. If a neurologic deficit following spinal epidural anesthesia does not resolve, a MRI should be performed without delay to accurately diagnose the cause of the deficit and optimal treatment should be rendered for the causative lesion. PMID:21430985

  9. Spinal Cord and Spinal Nerve Root Involvement (Myeloradiculopathy) in Tuberculous Meningitis

    PubMed Central

    Gupta, Rahul; Garg, Ravindra Kumar; Jain, Amita; Malhotra, Hardeep Singh; Verma, Rajesh; Sharma, Praveen Kumar

    2015-01-01

    Abstract Most of the information about spinal cord and nerve root involvement in tuberculous meningitis is available in the form of isolated case reports or case series. In this article, we evaluated the incidence, predictors, and prognostic impact of spinal cord and spinal nerve root involvement in tuberculous meningitis. In this prospective study, 71 consecutive patients of newly diagnosed tuberculous meningitis were enrolled. In addition to clinical evaluation, patients were subjected to magnetic resonance imaging (MRI) of brain and spine. Patients were followed up for at least 6 months. Out of 71 patients, 33 (46.4%) had symptoms/signs of spinal cord and spinal nerve root involvement, 22 (30.9%) of whom had symptoms/signs at enrolment. Eleven (15.4%) patients had paradoxical involvement. Paraparesis was present in 22 (31%) patients, which was of upper motor neuron type in 6 (8.4%) patients, lower motor neuron type in 10 (14%) patients, and mixed type in 6 (8.4%) patients. Quadriparesis was present in 3 (4.2%) patients. The most common finding on spinal MRI was meningeal enhancement, seen in 40 (56.3%) patients; in 22 (30.9%), enhancement was present in the lumbosacral region. Other MRI abnormalities included myelitis in 16 (22.5%), tuberculoma in 4 (5.6%), cerebrospinal fluid (CSF) loculations in 4 (5.6%), cord atrophy in 3 (4.2%), and syrinx in 2 (2.8%) patients. The significant predictor associated with myeloradiculopathy was raised CSF protein (>250 mg/dL). Myeloradiculopathy was significantly associated with poor outcome. In conclusion, spinal cord and spinal nerve root involvement in tuberculous meningitis is common. Markedly raised CSF protein is an important predictor. Patients with myeloradiculopathy have poor outcome. PMID:25621686

  10. Electrophysiological Mapping of Rat Sensorimotor Lumbosacral Spinal Networks after Complete Paralysis

    PubMed Central

    Gad, Parag; Roy, Roland R.; Choe, Jaehoon; Zhong, Hui; Nandra, Mandheeraj Singh; Tai, Y.C.; Gerasimenko, Yury; Edgerton, V. Reggie

    2015-01-01

    Stimulation of the spinal cord has been shown to have great potential for improving function after motor deficits caused by injury or pathological conditions. Using a wide range of animal models, many studies have shown that stimulation applied to the neural networks intrinsic to the spinal cord can result in a dramatic improvement of motor ability, even allowing an animal to step and stand after a complete spinal cord transection. Clinical use of this technology, however, has been slow to develop due to the invasive nature of the implantation procedures and the difficulty of ascertaining specific sites of stimulation that would provide optimal amelioration of the motor deficits. Moreover, the development of tools available to control precise stimulation chronically via biocompatible electrodes has been limited. In this paper, we outline the use of a multisite electrode array in the spinal rat model to identify and stimulate specific sites of the spinal cord to produce discrete motor behaviors in spinal rats. The results demonstrate that spinal rats can stand and step when the spinal cord is stimulated tonically via electrodes located at specific sites on the spinal cord. The quality of stepping and standing was dependent on the location of the electrodes on the spinal cord, the specific stimulation parameters, and the orientation of the cathode and anode. The spinal motor evoked potentials (sMEP) in selected muscles during standing and stepping are shown to be critical tools to study selective activation of interneuronal circuits via responses of varying latencies. The present results provide further evidence that the assessment of functional networks in the background of behaviorally relevant functional states is likely to be a physiological tool of considerable importance in developing strategies to facilitate recovery of motor function after a number of neuromotor disorders. PMID:25890138

  11. Spinal Cord Diseases

    MedlinePlus

    ... this can also injure the spinal cord. Other spinal cord problems include Tumors Infections such as meningitis and polio Inflammatory diseases Autoimmune diseases Degenerative diseases such as amyotrophic lateral ...

  12. Spinal cord trauma

    MedlinePlus

    ... that can be removed or reduced before the spinal nerves are completely destroyed, paralysis may improve. Surgery may be needed to: Realign the spinal bones (vertebrae) Remove fluid or tissue that presses ...

  13. Spinal fusion - series (image)

    MedlinePlus

    The vertebrae are the bones that make up the spinal column, which surrounds and protects the spinal cord. The ... disks are soft tissues that sit between each vertebrae and act as cushions between vertebrae, and absorb ...

  14. Spinal cord stimulation

    MedlinePlus

    Spinal cord stimulation is a treatment for pain that uses a mild electric current to block nerve impulses ... stretched into the space on top of your spinal cord. These wires will be connected to a small ...

  15. Common mechanisms of compensatory respiratory plasticity in spinal neurological disorders.

    PubMed

    Johnson, Rebecca A; Mitchell, Gordon S

    2013-11-01

    In many neurological disorders that disrupt spinal function and compromise breathing (e.g. ALS, cervical spinal injury, MS), patients often maintain ventilatory capacity well after the onset of severe CNS pathology. In progressive neurodegenerative diseases, patients ultimately reach a point where compensation is no longer possible, leading to catastrophic ventilatory failure. In this brief review, we consider evidence that common mechanisms of compensatory respiratory plasticity preserve breathing capacity in diverse clinical disorders, despite the onset of severe pathology (e.g. respiratory motor neuron denervation and/or death). We propose that a suite of mechanisms, operating at distinct sites in the respiratory control system, underlies compensatory respiratory plasticity, including: (1) increased (descending) central respiratory drive, (2) motor neuron plasticity, (3) plasticity at the neuromuscular junction or spared respiratory motor neurons, and (4) shifts in the balance from more to less severely compromised respiratory muscles. To establish this framework, we contrast three rodent models of neural dysfunction, each posing unique problems for the generation of adequate inspiratory motor output: (1) respiratory motor neuron death, (2) de- or dysmyelination of cervical spinal pathways, and (3) cervical spinal cord injury, a neuropathology with components of demyelination and motor neuron death. Through this contrast, we hope to understand the multilayered strategies used to "fight" for adequate breathing in the face of mounting pathology. PMID:23727226

  16. Brain and Spinal Tumors

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Brain and Spinal Tumors Information Page Synonym(s): Spinal Cord ... en Español Additional resources from MedlinePlus What are Brain and Spinal Tumors? Tumors of the brain and ...

  17. Spinal Cord Injuries

    MedlinePlus

    ... forth between your body and your brain. A spinal cord injury disrupts the signals. Spinal cord injuries usually begin with a blow that fractures or ... down on the nerve parts that carry signals. Spinal cord injuries can be complete or incomplete. With a complete ...

  18. Repeated early thrombolysis in cervical spinal cord ischemia.

    PubMed

    Etgen, Thorleif; Höcherl, Constanze

    2016-07-01

    Specific therapy of acute spinal ischemia is not established. We report the first case of an MRI-verified cervical spinal ischemia treated by thrombolysis and review the literature. A 72-year old woman with right-sided motor hemiparesis and trunk ataxia was treated by intravenous thrombolysis with full recovery. Three days later she developed again a severe right-sided sensorimotor hemiparesis and a second off-label intravenous thrombolysis was repeated. Magnetic resonance imaging revealed a right-sided posterior-lateral cervical spinal ischemia. Spinal ischemia may clinically present with a cerebral-stroke-like picture challenging diagnostic and therapeutic procedure. Systemic thrombolysis might be a treatment option in acute spinal ischemia. In addition, early repeated systemic thrombolysis may be considered in selected strokes. PMID:26762860

  19. Cocaine-induced vasospasm causing spinal cord transient ischemia.

    PubMed

    Gorelik, N; Tampieri, D

    2012-07-01

    A 25-year-old woman developed a spinal cord infarction leading to quadriplegia and respiratory insufficiency after consuming cocaine and vodka for several days. Within five months, she regained full motor and respiratory function. A literature review revealed 11 cases of cocaine-induced spinal cord infarction. A complete recovery from quadriplegia and respiratory failure following cocaine abuse has never been reported to date. The value of diffusion-weighted imaging in cocaine-induced spinal cord infarction is here presented and discussed. The literature proposes several mechanisms for cocaine-induced infarction including vasospasm, arteritis, and thrombosis. In this case, the imaging studies and the full recovery suggest that the spinal cord ischemia was secondary to a transient vasospasm of the anterior spinal artery. PMID:24028991

  20. Muscle proprioceptive feedback and spinal networks.

    PubMed

    Windhorst, U

    2007-07-12

    This review revolves primarily around segmental feedback systems established by muscle spindle and Golgi tendon organ afferents, as well as spinal recurrent inhibition via Renshaw cells. These networks are considered as to their potential contributions to the following functions: (i) generation of anti-gravity thrust during quiet upright stance and the stance phase of locomotion; (ii) timing of locomotor phases; (iii) linearization and correction for muscle nonlinearities; (iv) compensation for muscle lever-arm variations; (v) stabilization of inherently unstable systems; (vi) compensation for muscle fatigue; (vii) synergy formation; (viii) selection of appropriate responses to perturbations; (ix) correction for intersegmental interaction forces; (x) sensory-motor transformations; (xi) plasticity and motor learning. The scope will at times extend beyond the narrow confines of spinal circuits in order to integrate them into wider contexts and concepts. PMID:17562384

  1. Spinal internuncial neurones in progressive encephalomyelitis with rigidity.

    PubMed Central

    Howell, D A; Lees, A J; Toghill, P J

    1979-01-01

    The clinical and pathological features of a fourth patient with progressive encephalomyelitis with rigidity are reported and compared with those previously described. It is suggested that the muscular rigidity, abnormal postures, painful muscular spasms, and myoclonus are a product of excessive and abnormal discharges of alpha motor neurones caused by their release from control by spinal internuncial neurones. A count of neuronal perikarya in the ventral horns confirmed that the disease selectively destroyed small and medium sized neurones, most of which were spinal internuncial neurones. Experimental, clinical, and pathological evidence concerning spinal internuncial neurones is reviewed and found to conform to this theory. The pathogenesis of opsoclonus may be similar. Images PMID:501376

  2. Biological Basis of Exercise-based Treatments: Spinal Cord Injury

    PubMed Central

    Basso, D. Michele; Hansen, Christopher N.

    2016-01-01

    Despite intensive neurorehabilitation, extensive functional recovery after spinal cord injury is unattainable for most individuals. Optimal recovery will likely depend on activity-based, task-specific training that personalizes the timing of intervention with the severity of injury. Exercise paradigms elicit both beneficial and deleterious biophysical effects after spinal cord injury. Modulating the type, intensity, complexity, and timing of training may minimize risk and induce greater recovery. This review discusses the following: (a) the biological underpinning of training paradigms that promote motor relearning and recovery, and (b) how exercise interacts with cellular cascades after spinal cord injury. Clinical implications are discussed throughout. PMID:21703584

  3. Monitoring of Motor and Somatosensory Evoked Potentials During Spine Surgery: Intraoperative Changes and Postoperative Outcomes

    PubMed Central

    2016-01-01

    Objective To evaluate whether the combination of muscle motor evoked potentials (mMEPs) and somatosensory evoked potentials (SEPs) measured during spinal surgery can predict immediate and permanent postoperative motor deficits. Methods mMEP and SEP was monitored in patients undergoing spinal surgery between November 2012 and July 2014. mMEPs were elicited by a train of transcranial electrical stimulation over the motor cortex and recorded from the upper/lower limbs. SEPs were recorded by stimulating the tibial and median nerves. Results Combined mMEP/SEP recording was successfully achieved in 190 operations. In 117 of these, mMEPs and SEPs were stable and 73 showed significant changes. In 20 cases, motor deficits in the first 48 postoperative hours were observed and 6 patients manifested permanent neurological deficits. The two potentials were monitored in a number of spinal surgeries. For surgery on spinal deformities, the sensitivity and specificity of combined mMEP/SEP monitoring were 100% and 92.4%, respectively. In the case of spinal cord tumor surgeries, sensitivity was only 50% but SEP changes were observed preceding permanent motor deficits in some cases. Conclusion Intraoperative monitoring is a useful tool in spinal surgery. For spinal deformity surgery, combined mMEP/SEP monitoring showed high sensitivity and specificity; in spinal tumor surgery, only SEP changes predicted permanent motor deficits. Therefore, mMEP, SEP, and joint monitoring may all be appropriate and beneficial for the intraoperative monitoring of spinal surgery. PMID:27446784

  4. Intrathecal rimantadine induces motor, proprioceptive, and nociceptive blockades in rats.

    PubMed

    Tzeng, Jann-Inn; Wang, Jieh-Neng; Wang, Jhi-Joung; Chen, Yu-Wen; Hung, Ching-Hsia

    2016-04-01

    The purpose of the experiment was to evaluate the local anesthetic effect of rimantadine in spinal anesthesia. Rimantadine in a dose-dependent fashion was constructed after intrathecally injecting the rats with four different doses. The potency and duration of rimantadine were compared with that of the local anesthetic lidocaine at producing spinal motor, nociceptive, and proprioceptive blockades. We demonstrated that intrathecal rimantadine dose-dependently produced spinal motor, nociceptive, and proprioceptive blockades. On the 50% effective dose (ED50) basis, the ranks of potencies at inducing spinal motor, nociceptive, and proprioceptive blockades was lidocaine>rimantadine (P<0.01). Rimantadine exhibited more nociceptive block (ED50) than motor block (P<0.05). At equi-anesthetic doses (ED25, ED50, and ED75), the spinal block duration produced by rimantadine was longer than that produced by lidocaine (P<0.01). Furthermore, rimantadine (26.52μmol/kg) prolonged the nociceptive nerve block more than the motor block (P<0.001). Our preclinical data showed that rimantadine, with a more sensory-selective action over motor block, was less potent than lidocaine. Rimantadine produced longer duration in spinal anesthesia when compared with lidocaine. PMID:26949181

  5. Neuromuscular interaction is required for neurotrophins-mediated locomotor recovery following treadmill training in rat spinal cord injury

    PubMed Central

    Wu, Qinfeng; Cao, Yana; Dong, Chuanming; Wang, Hongxing; Wang, Qinghua; Tong, Weifeng; Li, Xiangzhe

    2016-01-01

    Recent results have shown that exercise training promotes the recovery of injured rat distal spinal cords, but are still unclear about the function of skeletal muscle in this process. Herein, rats with incomplete thoracic (T10) spinal cord injuries (SCI) with a dual spinal lesion model were subjected to four weeks of treadmill training and then were treated with complete spinal transection at T8. We found that treadmill training allowed the retention of hind limb motor function after incomplete SCI, even with a heavy load after complete spinal transection. Moreover, treadmill training alleviated the secondary injury in distal lumbar spinal motor neurons, and enhanced BDNF/TrkB expression in the lumbar spinal cord. To discover the influence of skeletal muscle contractile activity on motor function and gene expression, we adopted botulinum toxin A (BTX-A) to block the neuromuscular activity of the rat gastrocnemius muscle. BTX-A treatment inhibited the effects of treadmill training on motor function and BDNF/TrKB expression. These results indicated that treadmill training through the skeletal muscle-motor nerve-spinal cord retrograde pathway regulated neuralplasticity in the mammalian central nervous system, which induced the expression of related neurotrophins and promoted motor function recovery. PMID:27190721

  6. Neuromuscular interaction is required for neurotrophins-mediated locomotor recovery following treadmill training in rat spinal cord injury.

    PubMed

    Wu, Qinfeng; Cao, Yana; Dong, Chuanming; Wang, Hongxing; Wang, Qinghua; Tong, Weifeng; Li, Xiangzhe; Shan, Chunlei; Wang, Tong

    2016-01-01

    Recent results have shown that exercise training promotes the recovery of injured rat distal spinal cords, but are still unclear about the function of skeletal muscle in this process. Herein, rats with incomplete thoracic (T10) spinal cord injuries (SCI) with a dual spinal lesion model were subjected to four weeks of treadmill training and then were treated with complete spinal transection at T8. We found that treadmill training allowed the retention of hind limb motor function after incomplete SCI, even with a heavy load after complete spinal transection. Moreover, treadmill training alleviated the secondary injury in distal lumbar spinal motor neurons, and enhanced BDNF/TrkB expression in the lumbar spinal cord. To discover the influence of skeletal muscle contractile activity on motor function and gene expression, we adopted botulinum toxin A (BTX-A) to block the neuromuscular activity of the rat gastrocnemius muscle. BTX-A treatment inhibited the effects of treadmill training on motor function and BDNF/TrKB expression. These results indicated that treadmill training through the skeletal muscle-motor nerve-spinal cord retrograde pathway regulated neuralplasticity in the mammalian central nervous system, which induced the expression of related neurotrophins and promoted motor function recovery. PMID:27190721

  7. Integration of sensory, spinal, and volitional descending inputs in regulation of human locomotion.

    PubMed

    Gerasimenko, Yury; Gad, Parag; Sayenko, Dimitry; McKinney, Zach; Gorodnichev, Ruslan; Puhov, Aleksandr; Moshonkina, Tatiana; Savochin, Aleksandr; Selionov, Victor; Shigueva, Tatiana; Tomilovskaya, Elena; Kozlovskaya, Inessa; Edgerton, V Reggie

    2016-07-01

    We reported previously that both transcutaneous electrical spinal cord stimulation and direct pressure stimulation of the plantar surfaces of the feet can elicit rhythmic involuntary step-like movements in noninjured subjects with their legs in a gravity-neutral apparatus. The present experiments investigated the convergence of spinal and plantar pressure stimulation and voluntary effort in the activation of locomotor movements in uninjured subjects under full body weight support in a vertical position. For all conditions, leg movements were analyzed using electromyographic (EMG) recordings and optical motion capture of joint kinematics. Spinal cord stimulation elicited rhythmic hip and knee flexion movements accompanied by EMG bursting activity in the hamstrings of 6/6 subjects. Similarly, plantar stimulation induced bursting EMG activity in the ankle flexor and extensor muscles in 5/6 subjects. Moreover, the combination of spinal and plantar stimulation exhibited a synergistic effect in all six subjects, eliciting greater motor responses than either modality alone. While the motor responses to spinal vs. plantar stimulation seems to activate distinct but overlapping spinal neural networks, when engaged simultaneously, the stepping responses were functionally complementary. As observed during induced (involuntary) stepping, the most significant modulation of voluntary stepping occurred in response to the combination of spinal and plantar stimulation. In light of the known automaticity and plasticity of spinal networks in absence of supraspinal input, these findings support the hypothesis that spinal and plantar stimulation may be effective tools for enhancing the recovery of motor control in individuals with neurological injuries and disorders. PMID:27075538

  8. The Animal Model of Spinal Cord Injury as an Experimental Pain Model

    PubMed Central

    Nakae, Aya; Nakai, Kunihiro; Yano, Kenji; Hosokawa, Ko; Shibata, Masahiko; Mashimo, Takashi

    2011-01-01

    Pain, which remains largely unsolved, is one of the most crucial problems for spinal cord injury patients. Due to sensory problems, as well as motor dysfunctions, spinal cord injury research has proven to be complex and difficult. Furthermore, many types of pain are associated with spinal cord injury, such as neuropathic, visceral, and musculoskeletal pain. Many animal models of spinal cord injury exist to emulate clinical situations, which could help to determine common mechanisms of pathology. However, results can be easily misunderstood and falsely interpreted. Therefore, it is important to fully understand the symptoms of human spinal cord injury, as well as the various spinal cord injury models and the possible pathologies. The present paper summarizes results from animal models of spinal cord injury, as well as the most effective use of these models. PMID:21436995

  9. Useful signals from motor cortex

    PubMed Central

    Schwartz, Andrew B

    2007-01-01

    Historically, the motor cortical function has been explained as a funnel to muscle activation. This invokes the idea that motor cortical neurons, or ‘upper motoneurons’, directly cause muscle contraction just like spinal motoneurons. Thus, the motor cortex and muscle activity are inextricably entwined like a puppet master and his marionette. Recently, this concept has been challenged by current experimentation showing that many behavioural aspects of action are represented in motor cortical activity. Although this activity may still be related to muscle activation, the relation between the two is likely to be indirect and complex, whereas the relation between cortical activity and kinematic parameters is simple and robust. These findings show how to extract useful signals that help explain the underlying process that generates behaviour and to harness these signals for potentially therapeutic applications. PMID:17255162

  10. Spinal Muscular Atrophy

    MedlinePlus

    ... or missing gene known as the survival motor neuron gene 1 (SMN1), which is responsible for the production of a protein essential to motor neurons. Without this protein, lower motor neurons in the ...

  11. Spinal surgery -- cervical - series (image)

    MedlinePlus

    ... on the vertebral bodies (osteophytes), which compress spinal nerves, trauma, and narrowing (stenosis) of the spinal column around the spinal cord. Symptoms of cervical spine problems include: pain that interferes with daily ...

  12. Spinally projecting preproglucagon axons preferentially innervate sympathetic preganglionic neurons

    PubMed Central

    Llewellyn-Smith, I.J.; Marina, N.; Manton, R.N.; Reimann, F.; Gribble, F.M.; Trapp, S.

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) affects central autonomic neurons, including those controlling the cardiovascular system, thermogenesis, and energy balance. Preproglucagon (PPG) neurons, located mainly in the nucleus tractus solitarius (NTS) and medullary reticular formation, produce GLP-1. In transgenic mice expressing glucagon promoter-driven yellow fluorescent protein (YFP), these brainstem PPG neurons project to many central autonomic regions where GLP-1 receptors are expressed. The spinal cord also contains GLP-1 receptor mRNA but the distribution of spinal PPG axons is unknown. Here, we used two-color immunoperoxidase labeling to examine PPG innervation of spinal segments T1–S4 in YFP-PPG mice. Immunoreactivity for YFP identified spinal PPG axons and perikarya. We classified spinal neurons receiving PPG input by immunoreactivity for choline acetyltransferase (ChAT), nitric oxide synthase (NOS) and/or Fluorogold (FG) retrogradely transported from the peritoneal cavity. FG microinjected at T9 defined cell bodies that supplied spinal PPG innervation. The deep dorsal horn of lower lumbar cord contained YFP-immunoreactive neurons. Non-varicose, YFP-immunoreactive axons were prominent in the lateral funiculus, ventral white commissure and around the ventral median fissure. In T1–L2, varicose, YFP-containing axons closely apposed many ChAT-immunoreactive sympathetic preganglionic neurons (SPN) in the intermediolateral cell column (IML) and dorsal lamina X. In the sacral parasympathetic nucleus, about 10% of ChAT-immunoreactive preganglionic neurons received YFP appositions, as did occasional ChAT-positive motor neurons throughout the rostrocaudal extent of the ventral horn. YFP appositions also occurred on NOS-immunoreactive spinal interneurons and on spinal YFP-immunoreactive neurons. Injecting FG at T9 retrogradely labeled many YFP-PPG cell bodies in the medulla but none of the spinal YFP-immunoreactive neurons. These results show that brainstem PPG neurons

  13. Evaluation of optimal electrode configurations for epidural spinal cord stimulation in cervical spinal cord injured rats

    PubMed Central

    Alam, Monzurul; Garcia-Alias, Guillermo; Shah, Prithvi K.; Gerasimenko, Yury; Zhong, Hui; Roy, Roland R.; Edgerton, V. Reggie

    2015-01-01

    Background Epidural spinal cord stimulation is a promising technique for modulating the level of excitability and reactivation of dormant spinal neuronal circuits after spinal cord injury (SCI). We examined the ability of chronically implanted epidural stimulation electrodes within the cervical spinal cord to (1) directly elicit spinal motor evoked potentials (sMEPs) in forelimb muscles and (2) determine whether these sMEPs can serve as a biomarker of forelimb motor function after SCI. New method We implanted EMG electrodes in forelimb muscles and epidural stimulation electrodes at C6 and C8 in adult rats. After recovering from a dorsal funiculi crush (C4), rats were tested with different stimulation configurations and current intensities to elicit sMEPs and determined forelimb grip strength. Results: sMEPs were evoked in all muscles tested and their characteristics were dependent on electrode configurations and current intensities. C6(−) stimulation elicited more robust sMEPs than stimulation at C8(−). Stimulating C6 and C8 simultaneously produced better muscle recruitment and higher grip strengths than stimulation at one site. Comparison with existing method(s) Classical method to select the most optimal stimulation configuration is to empirically test each combination individually for every subject and relate to functional improvements. This approach is impractical, requiring extensively long experimental time to determine the more effective stimulation parameters. Our proposed method is fast and physiologically sound. Conclusions Results suggest that sMEPs from forelimb muscles can be useful biomarkers for identifying optimal parameters for epidural stimulation of the cervical spinal cord after SCI. PMID:25791014

  14. Monoaminergic Modulation of Spinal Viscero-Sympathetic Function in the Neonatal Mouse Thoracic Spinal Cord

    PubMed Central

    Zimmerman, Amanda L.; Sawchuk, Michael; Hochman, Shawn

    2012-01-01

    Descending serotonergic, noradrenergic, and dopaminergic systems project diffusely to sensory, motor and autonomic spinal cord regions. Using neonatal mice, this study examined monoaminergic modulation of visceral sensory input and sympathetic preganglionic output. Whole-cell recordings from sympathetic preganglionic neurons (SPNs) in spinal cord slice demonstrated that serotonin, noradrenaline, and dopamine modulated SPN excitability. Serotonin depolarized all, while noradrenaline and dopamine depolarized most SPNs. Serotonin and noradrenaline also increased SPN current-evoked firing frequency, while both increases and decreases were seen with dopamine. In an in vitro thoracolumbar spinal cord/sympathetic chain preparation, stimulation of splanchnic nerve visceral afferents evoked reflexes and subthreshold population synaptic potentials in thoracic ventral roots that were dose-dependently depressed by the monoamines. Visceral afferent stimulation also evoked bicuculline-sensitive dorsal root potentials thought to reflect presynaptic inhibition via primary afferent depolarization. These dorsal root potentials were likewise dose-dependently depressed by the monoamines. Concomitant monoaminergic depression of population afferent synaptic transmission recorded as dorsal horn field potentials was also seen. Collectively, serotonin, norepinephrine and dopamine were shown to exert broad and comparable modulatory regulation of viscero-sympathetic function. The general facilitation of SPN efferent excitability with simultaneous depression of visceral afferent-evoked motor output suggests that descending monoaminergic systems reconfigure spinal cord autonomic function away from visceral sensory influence. Coincident monoaminergic reductions in dorsal horn responses support a multifaceted modulatory shift in the encoding of spinal visceral afferent activity. Similar monoamine-induced changes have been observed for somatic sensorimotor function, suggesting an integrative

  15. Epidemiology of spinal cord injury.

    PubMed

    Kurtzke, J F

    1977-01-01

    Accidents are the cause of some 50 deaths per 100 000 population each year in the US; some 3% of these are from traumatic spinal cord injury alone. Traumatic spinal cord injury in socioeconomically advanced countries, has a probably annual incidence rate of 3 per 100 000 population. Males are affected five times as often as females, and in the US, Negroes have twice the rates of whites. Half the cases are due to motor vehicle accidents, 1/4 to falls, and 1/10 to sports injuries. Maximal ages at risk are 15 to 34; only for cord damage due to falls do this risk differ, and here elderly are the more prone. Associated injuries are common in traumatic cord injury, and head injury and pulmonary dysfunction are frequent causes of the acute deaths in traumatic SCI which is why complete quadriplegia has a high early case-fatality ratio. Late deaths in SCI are principally the direct or indirect result of the neurogenic bladder. With treatment in comprehensive spinal cord injury centers, more than 4 of 5 traumatic SCI patients will survive ten years with an average of almost 18 years. Median survival may be almost 14 years for complete quadriplegia, 17 for complete paraplegia, 19 for incomplete quadriplegia, 20 for incomplete paraplegia and 28 for cauda equina lesions. Prevalence is likely to be some 50 per 100 000 population with about 20 per 100 000 completely paralyzed (3 quadriplegic and 19 paraplegic). Some 4 out of 5 survivors of traumatic SCI should be able to live at home and perform gainful work after such treatment. PMID:616527

  16. Arachnoiditis ossificans after spinal surgery.

    PubMed

    Liu, Li-Di; Zhao, Song; Liu, Wan-Guo; Zhang, Shao-Kun

    2015-05-01

    This article presents an unusual case of arachnoiditis ossificans after spinal surgery. A case of arachnoiditis ossificans secondary to lumbar fixation and decompression surgery for the treatment of multilevel lumbar fractures is reported and the relevant literature is reviewed. A 29-year-old man who previously underwent posterior pedicle screw fixation and fusion for multiple lumbar spine fractures reported lower back stiffness and discomfort 23 months postoperatively. A laminectomy was performed at L2 and at L3-L4. At L2, bone fragments from the burst fracture had injured the dural sac and some nerve roots. A posterolateral fusion was performed using allogeneic bone. Postoperatively, there were no signs of fever, infection, or systemic inflammatory responses. Arachnoiditis ossificans of the thecal sac from L1-L5 was diagnosed by magnetic resonance imaging and computed tomography at the 2-year follow-up. His postoperative neurological status progressively improved and he regained motor and sensory functions. Because of neurological improvements, fixation hardware was removed without further decompression. The authors report a case of arachnoiditis ossificans secondary to lumbar fixation and decompression surgery, which involved a large region. Arachnoiditis ossificans is a relatively rare disorder with unclear etiologies and limited treatment options. Spinal surgical intervention of arachnoiditis ossificans should be carefully considered because it may lead to poor outcomes and multiple revision surgeries. PMID:25970374

  17. Human Neural Stem Cell Replacement Therapy for Amyotrophic Lateral Sclerosis by Spinal Transplantation

    PubMed Central

    Hefferan, Michael P.; Galik, Jan; Kakinohana, Osamu; Sekerkova, Gabriela; Santucci, Camila; Marsala, Silvia; Navarro, Roman; Hruska-Plochan, Marian; Johe, Karl; Feldman, Eva; Cleveland, Don W.; Marsala, Martin

    2012-01-01

    Background Mutation in the ubiquitously expressed cytoplasmic superoxide dismutase (SOD1) causes an inherited form of Amyotrophic Lateral Sclerosis (ALS). Mutant synthesis in motor neurons drives disease onset and early disease progression. Previous experimental studies have shown that spinal grafting of human fetal spinal neural stem cells (hNSCs) into the lumbar spinal cord of SOD1G93A rats leads to a moderate therapeutical effect as evidenced by local α-motoneuron sparing and extension of lifespan. The aim of the present study was to analyze the degree of therapeutical effect of hNSCs once grafted into the lumbar spinal ventral horn in presymptomatic immunosuppressed SOD1G93A rats and to assess the presence and functional integrity of the descending motor system in symptomatic SOD1G93A animals. Methods/Principal Findings Presymptomatic SOD1G93A rats (60–65 days old) received spinal lumbar injections of hNSCs. After cell grafting, disease onset, disease progression and lifespan were analyzed. In separate symptomatic SOD1G93A rats, the presence and functional conductivity of descending motor tracts (corticospinal and rubrospinal) was analyzed by spinal surface recording electrodes after electrical stimulation of the motor cortex. Silver impregnation of lumbar spinal cord sections and descending motor axon counting in plastic spinal cord sections were used to validate morphologically the integrity of descending motor tracts. Grafting of hNSCs into the lumbar spinal cord of SOD1G93A rats protected α-motoneurons in the vicinity of grafted cells, provided transient functional improvement, but offered no protection to α-motoneuron pools distant from grafted lumbar segments. Analysis of motor-evoked potentials recorded from the thoracic spinal cord of symptomatic SOD1G93A rats showed a near complete loss of descending motor tract conduction, corresponding to a significant (50–65%) loss of large caliber descending motor axons. Conclusions/Significance These data

  18. Asymptomatic spinal arteriovenous fistula presenting only as continuous murmur.

    PubMed

    Asada, Dai; Itoi, Toshiyuki; Hamaoka, Kenji

    2015-12-01

    Spinal arteriovenous fistula is extremely rare in children. Weakness and sensory disturbance in the lower extremities are the specific clinical presentations. Children, however, commonly have no subjective symptoms; in rare cases, a continuous murmur is the only physical finding. An 18-month-old boy was referred for evaluation of a continuous murmur audible at the back. He had no motor or sensory disorder; only a Levine 3/6 continuous murmur audible at the back was found. Echocardiography showed a structurally normal heart but indicated ascending continuous blood flow behind the aortic arch and dilatation of the innominate vein. We suspected spinal arteriovenous fistula, and it was visualized on computed tomography angiography. Spinal arteriovenous fistula was detected using only auscultation and echocardiography. Suspicion of this anomaly on careful auscultation and simple examination, and confirmation on detailed examination, even in the absence of motor or sensory disturbance, is important. PMID:26711922

  19. Influence of Spinal Cord Integrity on Gait Control in Human Spinal Cord Injury.

    PubMed

    Awai, Lea; Bolliger, Marc; Ferguson, Adam R; Courtine, Grégoire; Curt, Armin

    2016-07-01

    Background Clinical trials in spinal cord injury (SCI) primarily rely on simplified outcome metrics (ie, speed, distance) to obtain a global surrogate for the complex alterations of gait control. However, these assessments lack sufficient sensitivity to identify specific patterns of underlying impairment and to target more specific treatment interventions. Objective To disentangle the differential control of gait patterns following SCI beyond measures of time and distance. Methods The gait of 22 individuals with motor-incomplete SCI and 21 healthy controls was assessed using a high-resolution 3-dimensional motion tracking system and complemented by clinical and electrophysiological evaluations applying unbiased multivariate analysis. Results Motor-incomplete SCI patients showed varying degrees of spinal cord integrity (spinal conductivity) with severe limitations in walking speed and altered gait patterns. Principal component (PC) analysis applied on all the collected data uncovered robust coherence between parameters related to walking speed, distortion of intralimb coordination, and spinal cord integrity, explaining 45% of outcome variance (PC 1). Distinct from the first PC, the modulation of gait-cycle variables (step length, gait-cycle phases, cadence; PC 2) remained normal with respect to regained walking speed, whereas hip and knee ranges of motion were distinctly altered with respect to walking speed (PC 3). Conclusions In motor-incomplete SCI, distinct clusters of discretely controlled gait parameters can be discerned that refine the evaluation of gait impairment beyond outcomes of walking speed and distance. These findings are specifically different from that in other neurological disorders (stroke, Parkinson) and are more discrete at targeting and disentangling the complex effects of interventions to improve walking outcome following motor-incomplete SCI. PMID:26428035

  20. Senegenin inhibits neuronal apoptosis after spinal cord contusion injury

    PubMed Central

    Zhang, Shu-quan; Wu, Min-fei; Gu, Rui; Liu, Jia-bei; Li, Ye; Zhu, Qing-san; Jiang, Jin-lan

    2016-01-01

    Senegenin has been shown to inhibit neuronal apoptosis, thereby exerting a neuroprotective effect. In the present study, we established a rat model of spinal cord contusion injury using the modified Allen's method. Three hours after injury, senegenin (30 mg/g) was injected into the tail vein for 3 consecutive days. Senegenin reduced the size of syringomyelic cavities, and it substantially reduced the number of apoptotic cells in the spinal cord. At the site of injury, Bax and Caspase-3 mRNA and protein levels were decreased by senegenin, while Bcl-2 mRNA and protein levels were increased. Nerve fiber density was increased in the spinal cord proximal to the brain, and hindlimb motor function and electrophysiological properties of rat hindlimb were improved. Taken together, our results suggest that senegenin exerts a neuroprotective effect by suppressing neuronal apoptosis at the site of spinal cord injury. PMID:27212931

  1. Optical measurement of blood flow changes in spinal cord injury

    NASA Astrophysics Data System (ADS)

    Phillips, J. P.; Kyriacou, P. A.; George, K. J.; Langford, R. M.

    2010-07-01

    Little is known about cell death in spinal cord tissue following compression injury, despite compression being a key component of spinal injuries. Currently models are used to mimic compression injury in animals and the effects of the compression evaluated by observing the extent and duration of recovery of normal motor function in the days and weeks following the injury. A fibreoptic photoplethysmography system was used to investigate whether pulsation of the small arteries in the spinal cord occurred before, during and after compressive loads were applied to the tissue. It was found that the signal amplitudes were reduced and this reduction persisted for at least five minutes after the compression ceased. It is hoped that results from this preliminary study may improve knowledge of the mechanism of spinal cord injury.

  2. Molecular and cellular development of spinal cord locomotor circuitry

    PubMed Central

    Lu, Daniel C.; Niu, Tianyi; Alaynick, William A.

    2015-01-01

    The spinal cord of vertebrate animals is comprised of intrinsic circuits that are capable of sensing the environment and generating complex motor behaviors. There are two major perspectives for understanding the biology of this complicated structure. The first approaches the spinal cord from the point of view of function and is based on classic and ongoing research in electrophysiology, adult behavior, and spinal cord injury. The second view considers the spinal cord from a developmental perspective and is founded mostly on gene expression and gain-of-function and loss-of-function genetic experiments. Together these studies have uncovered functional classes of neurons and their lineage relationships. In this review, we summarize our knowledge of developmental classes, with an eye toward understanding the functional roles of each group. PMID:26136656

  3. Senegenin inhibits neuronal apoptosis after spinal cord contusion injury.

    PubMed

    Zhang, Shu-Quan; Wu, Min-Fei; Gu, Rui; Liu, Jia-Bei; Li, Ye; Zhu, Qing-San; Jiang, Jin-Lan

    2016-04-01

    Senegenin has been shown to inhibit neuronal apoptosis, thereby exerting a neuroprotective effect. In the present study, we established a rat model of spinal cord contusion injury using the modified Allen's method. Three hours after injury, senegenin (30 mg/g) was injected into the tail vein for 3 consecutive days. Senegenin reduced the size of syringomyelic cavities, and it substantially reduced the number of apoptotic cells in the spinal cord. At the site of injury, Bax and Caspase-3 mRNA and protein levels were decreased by senegenin, while Bcl-2 mRNA and protein levels were increased. Nerve fiber density was increased in the spinal cord proximal to the brain, and hindlimb motor function and electrophysiological properties of rat hindlimb were improved. Taken together, our results suggest that senegenin exerts a neuroprotective effect by suppressing neuronal apoptosis at the site of spinal cord injury. PMID:27212931

  4. Clinical and Experimental Advances in Regeneration of Spinal Cord Injury

    PubMed Central

    Hyun, Jung Keun; Kim, Hae-Won

    2010-01-01

    Spinal cord injury (SCI) is one of the major disabilities dealt with in clinical rehabilitation settings and is multifactorial in that the patients suffer from motor and sensory impairments as well as many other complications throughout their lifetimes. Many clinical trials have been documented during the last two decades to restore damaged spinal cords. However, only a few pharmacological therapies used in clinical settings which still have only limited effects on the regeneration, recovery speed, or retraining of the spinal cord. In this paper, we will introduce recent clinical trials, which performed pharmacological treatments and cell transplantations for patients with SCI, and evaluate recent in vivo studies for the regeneration of injured spinal cord, including stem-cell transplantation, application of neurotrophic factors and suppressor of inhibiting factors, development of biomaterial scaffolds and delivery systems, rehabilitation, and the combinations of these therapies to evaluate what can be appropriately applied in the future to the patients with SCI. PMID:21350645

  5. Transcutaneous electrical spinal-cord stimulation in humans

    PubMed Central

    Gerasimenko, Yury; Gorodnichev, Ruslan; Moshonkina, Tatiana; Sayenko, Dimitry; Gad, Parag; Edgerton, V. Reggie

    2016-01-01

    Locomotor behavior is controlled by specific neural circuits called central pattern generators primarily located at the lumbosacral spinal cord. These locomotor-related neuronal circuits have a high level of automaticity; that is, they can produce a “stepping” movement pattern also seen on electromyography (EMG) in the absence of supraspinal and/or peripheral afferent inputs. These circuits can be modulated by epidural spinal-cord stimulation and/or pharmacological intervention. Such interventions have been used to neuromodulate the neuronal circuits in patients with motor-complete spinal-cord injury (SCI) to facilitate postural and locomotor adjustments and to regain voluntary motor control. Here, we describe a novel non-invasive stimulation strategy of painless transcutaneous electrical enabling motor control (pcEmc) to neuromodulate the physiological state of the spinal cord. The technique can facilitate a stepping performance in non-injured subjects with legs placed in a gravity-neutral position. The stepping movements were induced more effectively with multi-site than single-site spinal-cord stimulation. From these results, a multielectrode surface array technology was developed. Our preliminary data indicate that use of the multielectrode surface array can fine-tune the control of the locomotor behavior. As well, the pcEmc strategy combined with exoskeleton technology is effective for improving motor function in paralyzed patients with SCI. The potential impact of using pcEmc to neuromodulate the spinal circuitry has significant implications for furthering our understanding of the mechanisms controlling locomotion and for rehabilitating sensorimotor function even after severe SCI. PMID:26205686

  6. Osteoporotic fractures and hospitalization risk in chronic spinal cord injury

    PubMed Central

    Battaglino, R. A.; Stolzmann, K. L.; Hallett, L. D.; Waddimba, A.; Gagnon, D.; Lazzari, A. A.; Garshick, E.

    2008-01-01

    Summary Osteoporosis is a well acknowledged complication of spinal cord injury. We report that motor complete spinal cord injury and post-injury alcohol consumption are risk factors for hospitalization for fracture treatment. The clinical assessment did not include osteoporosis diagnosis and treatment considerations, indicating a need for improved clinical protocols. Introduction Treatment of osteoporotic long bone fractures often results in lengthy hospitalizations for individuals with spinal cord injury. Clinical features and factors that contribute to hospitalization risk have not previously been described. Methods Three hundred and fifteen veterans ≥ 1 year after spinal cord injury completed a health questionnaire and underwent clinical exam at study entry. Multivariate Cox regression accounting for repeated events was used to assess longitudinal predictors of fracture-related hospitalizations in Veterans Affairs Medical Centers 1996–2003. Results One thousand four hundred and eighty-seven hospital admissions occurred among 315 participants, and 39 hospitalizations (2.6%) were for fracture treatment. Median length of stay was 35 days. Fracture-related complications occurred in 53%. Independent risk factors for admission were motor complete versus motor incomplete spinal cord injury (hazard ratio = 3.73, 95% CI = 1.46–10.50). There was a significant linear trend in risk with greater alcohol consumption after injury. Record review indicated that evaluation for osteoporosis was not obtained during these admissions. Conclusions Assessed prospectively, hospitalization in Veterans Affairs Medical Centers for low-impact fractures is more common in motor complete spinal cord injury and is associated with greater alcohol use after injury. Osteoporosis diagnosis and treatment considerations were not part of a clinical assessment, indicating the need for improved protocols that might prevent low-impact fractures and related admissions. PMID:18581033

  7. Endoplasmic reticulum stress in spinal and bulbar muscular atrophy: a potential target for therapy.

    PubMed

    Montague, Karli; Malik, Bilal; Gray, Anna L; La Spada, Albert R; Hanna, Michael G; Szabadkai, Gyorgy; Greensmith, Linda

    2014-07-01

    Spinal and bulbar muscular atrophy is an X-linked degenerative motor neuron disease caused by an abnormal expansion in the polyglutamine encoding CAG repeat of the androgen receptor gene. There is evidence implicating endoplasmic reticulum stress in the development and progression of neurodegenerative disease, including polyglutamine disorders such as Huntington's disease and in motor neuron disease, where cellular stress disrupts functioning of the endoplasmic reticulum, leading to induction of the unfolded protein response. We examined whether endoplasmic reticulum stress is also involved in the pathogenesis of spinal and bulbar muscular atrophy. Spinal and bulbar muscular atrophy mice that carry 100 pathogenic polyglutamine repeats in the androgen receptor, and develop a late-onset neuromuscular phenotype with motor neuron degeneration, were studied. We observed a disturbance in endoplasmic reticulum-associated calcium homeostasis in cultured embryonic motor neurons from spinal and bulbar muscular atrophy mice, which was accompanied by increased endoplasmic reticulum stress. Furthermore, pharmacological inhibition of endoplasmic reticulum stress reduced the endoplasmic reticulum-associated cell death pathway. Examination of spinal cord motor neurons of pathogenic mice at different disease stages revealed elevated expression of markers for endoplasmic reticulum stress, confirming an increase in this stress response in vivo. Importantly, the most significant increase was detected presymptomatically, suggesting that endoplasmic reticulum stress may play an early and possibly causal role in disease pathogenesis. Our results therefore indicate that the endoplasmic reticulum stress pathway could potentially be a therapeutic target for spinal and bulbar muscular atrophy and related polyglutamine diseases. PMID:24898351

  8. Developmental regulation of N-methyl-D-aspartate- and kainate-type glutamate receptor expression in the rat spinal cord

    NASA Technical Reports Server (NTRS)

    Stegenga, S. L.; Kalb, R. G.

    2001-01-01

    Spinal motor neurons undergo experience-dependent development during a critical period in early postnatal life. It has been suggested that the repertoire of glutamate receptor subunits differs between young and mature motor neurons and contributes to this activity-dependent development. In the present study we examined the expression patterns of N-methyl-D-aspartate- and kainate-type glutamate receptor subunits during the postnatal maturation of the spinal cord. Young motor neurons express much higher levels of the N-methyl-D-aspartate receptor subunit NR1 than do adult motor neurons. Although there are eight potential splice variants of NR1, only a subgroup is expressed by motor neurons. With respect to NR2 receptor subunits, young motor neurons express NR2A and C, while adult motor neurons express only NR2A. Young motor neurons express kainate receptor subunits GluR5, 6 and KA2 but we are unable to detect these or any other kainate receptor subunits in the adult spinal cord. Other spinal cord regions display a distinct pattern of developmental regulation of N-methyl-D-aspartate and kainate receptor subunit expression in comparison to motor neurons. Our findings indicate a precise spatio-temporal regulation of individual subunit expression in the developing spinal cord. Specific combinations of subunits in developing neurons influence their excitable properties and could participate in the emergence of adult neuronal form and function.

  9. Mirror Movements After Stroke Suggest Facilitation From Nonprimary Motor Cortex: A Case Presentation.

    PubMed

    Caronni, Antonio; Sciumé, Luciana; Ferpozzi, Valentina; Blasi, Valeria; Castellano, Antonella; Falini, Andrea; Perucca, Laura; Cerri, Gabriella

    2016-05-01

    When stroke occurs in adulthood, mirror movements (MMs; involuntary movements occurring in 1 hand when performing unilateral movements with the contralateral hand) in the paretic hand rarely occur. We present a case of an apparently healthy 54-year-old man presenting with MMs in his left (nondominant) hand. Further evaluation revealed diminished strength and dexterity in left hand, increased spinal excitability, decreased corticospinal excitability, occurrence of ipsilateral motor responses, enlarged cortical motor representation, and imaging findings consistent with a previously undiagnosed right-subcortical stroke. MMs and ipsilateral motor responses may reflect the increased spinal motor neurons' excitability sustained by the spared nonprimary ipsilesional motor areas. PMID:26514789

  10. Neurological complications in adult spinal deformity surgery.

    PubMed

    Iorio, Justin A; Reid, Patrick; Kim, Han Jo

    2016-09-01

    The number of surgeries performed for adult spinal deformity (ASD) has been increasing due to an aging population, longer life expectancy, and studies supporting an improvement in health-related quality of life scores after operative intervention. However, medical and surgical complication rates remain high, and neurological complications such as spinal cord injury and motor deficits can be especially debilitating to patients. Several independent factors potentially influence the likelihood of neurological complications including surgical approach (anterior, lateral, or posterior), use of osteotomies, thoracic hyperkyphosis, spinal region, patient characteristics, and revision surgery status. The majority of ASD surgeries are performed by a posterior approach to the thoracic and/or lumbar spine, but anterior and lateral approaches are commonly performed and are associated with unique neural complications such as femoral nerve palsy and lumbar plexus injuries. Spinal morphology, such as that of hyperkyphosis, has been reported to be a risk factor for complications in addition to three-column osteotomies, which are often utilized to correct large deformities. Additionally, revision surgeries are common in ASD and these patients are at an increased risk of procedure-related complications and nervous system injury. Patient selection, surgical technique, and use of intraoperative neuromonitoring may reduce the incidence of complications and optimize outcomes. PMID:27250041

  11. Proprioceptive pathways of the spinal cord.

    PubMed Central

    Schneider, R J; Kulics, A T; Ducker, T B

    1977-01-01

    In the Macaque, surgical lesions were made in the dorsal funiculus, in the dorsolateral funiculus, and through half of the spinal cord. The somatosensory and motor capacity of the animal were examined neurologically and electrophysiologically. The exact lesion was then confirmed pathologically in detail. The results of these experiments indicate that limb position information from the distal limb and proximal limb are relayed to the brain in two different fashions. Distal limb position information, especially the cortical representation of the limbs' volar surface as it moves in space, is drastically impaired by dorsal funiculus or posterior white column lesions. Proximal limb position may or may not be impaired by similar lesions, for this information while initially in the dorsal or posterior white columns is sorted out (as it ascends in the spinal cord) to the dorsolateral funiculus or white columns. For example, in the lower thoracic spinal cord, both distal and proximal hind limb sensation are impaired by posterior white column damage; in the cervical cord, only distal sensation is impaired by the same lesion, and proximal information is spared. We refer to this neuroanatomic rearranging as "fibre sorting", and we believe that it is clinically significant in spinal cord disease. Images PMID:408463

  12. Spinal subarachnoid haematoma after spinal anaesthesia: case report.

    PubMed

    Vidal, Marion; Strzelecki, Antoine; Houadec, Mireille; Krikken, Isabelle Ranz; Danielli, Antoine; Souza Neto, Edmundo Pereira de

    2016-01-01

    Subarachnoid haematoma after spinal anaesthesia is known to be very rare. In the majority of these cases, spinal anaesthesia was difficult to perform and/or unsuccessful; other risk factors included antiplatelet or anticoagulation therapy, and direct spinal cord trauma. We report a case of subarachnoid haematoma after spinal anaesthesia in a young patient without risk factors. PMID:27591468

  13. Curcumin protects against ischemic spinal cord injury: The pathway effect.

    PubMed

    Zhang, Jinhua; Wei, Hao; Lin, Meimei; Chen, Chunmei; Wang, Chunhua; Liu, Maobai

    2013-12-25

    Inducible nitric oxide synthase and N-methyl-D-aspartate receptors have been shown to participate in nerve cell injury during spinal cord ischemia. This study observed a protective effect of curcumin on ischemic spinal cord injury. Models of spinal cord ischemia were established by ligating the lumbar artery from the left renal artery to the bifurcation of the abdominal aorta. At 24 hours after model establishment, the rats were intraperitoneally injected with curcumin. Reverse transcription-polymerase chain reaction and immunohistochemical results demonstrated that after spinal cord ischemia, inducible nitric oxide synthase and N-methyl-D-aspartate receptor mRNA and protein expression significantly increased. However, curcumin significantly decreased inducible nitric oxide synthase and N-methyl-D-aspartate receptor mRNA and protein expression in the ischemic spinal cord. Tarlov scale results showed that curcumin significantly improved motor function of the rat hind limb after spinal cord ischemia. The results demonstrate that curcumin exerts a neuroprotective fect against ischemic spinal cord injury by decreasing inducible nitric oxide synthase and N-methyl-D-aspartate receptor expression. PMID:25206661

  14. Breathing patterns after mid-cervical spinal contusion in rats

    PubMed Central

    Golder, FJ; Fuller, DD; Lovett-Barr, MR; Vinit, S; Resnick, DK; Mitchell, GS

    2011-01-01

    Respiratory failure is the leading cause of death after cervical spinal injury. We hypothesized that incomplete cervical spinal injuries would alter respiratory pattern and initiate plasticity in the neural control of breathing. Further, we hypothesized that the severity of cervical spinal contusion would correlate with changes in breathing pattern. Fourteen days after C4–C5 contusions, respiratory frequency and tidal volume were measured in unanesthetized Sprague Dawley rats in a whole body plethysmograph. Phrenic motor output was monitored in the same rats which were anesthetized, vagotomized, paralyzed and ventilated to eliminate and/or control sensory feedback that could alter breathing patterns. The extent of spinal injury was approximated histologically by measurements of the injury-induced cyst area in transverse sections; cysts ranged from 2 to 28% of spinal cross-sectional area, and had a unilateral bias. In unanesthetized rats, the severity of spinal injury correlated negatively with tidal volume (R2=0.85; p<0.001) and positively with breathing frequency (R2=0.65; p<0.05). Thus, the severity of C4–C5 spinal contusion dictates post-injury breathing pattern. In anesthetized rats, phrenic burst amplitude was decreased on the side of injury, and burst frequency correlated negatively with contusion size (R2=0.51; p<0.05). A strong correlation between unanesthetized breathing pattern and the pattern of phrenic bursts in anesthetized, vagotomized and ventilated rats suggests that changes in respiratory motor output after spinal injury reflect, at least in part, intrinsic neural mechanisms of CNS plasticity initiated by injury. PMID:21683697

  15. Magnetic-motor-root stimulation: review.

    PubMed

    Matsumoto, Hideyuki; Hanajima, Ritsuko; Terao, Yasuo; Ugawa, Yoshikazu

    2013-06-01

    Magnetic stimulation can activate the human central and peripheral nervous systems non-invasively and virtually painlessly. Magnetic stimulation over the spinal enlargements can activate spinal nerves at the neuroforamina (magnetic-neuroforamina stimulation). This stimulation method provides us with information related to the latency of compound-muscle action potential (CMAP), which is usually interpreted as peripheral motor-conduction time (PMCT). However, this stimulation method has faced several problems in clinical applications. One is that supramaximal CMAPs were unobtainable. Another is that magnetic stimulation did not usually activate the spinal nerves in the spinal canal, i.e., the cauda equina, which prevented an evaluation of its conduction. For these reasons, magnetic-neuroforamina stimulation was rarely used to evaluate the conduction of peripheral nerves. It was mainly used to evaluate the conduction of the corticospinal tract using the parameter of central motor-conduction time (CMCT), which was calculated by subtracting PMCT from the latency of motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) over the primary motor cortex. Recently, supramaximal stimulation has been achieved in magnetic-neuroforamina stimulation, and this has contributed to the measurement of both CMAP size and latency. The achievement of supramaximal stimulation is ascribed to the increase in magnetic-stimulator output and a novel coil, the magnetic augmented translumbosacral stimulation (MATS) coil. The most proximal part of the cauda equina can be reliably activated using the MATS coil (magnetic-conus stimulation), thus contributing to the measurement of cauda equina conduction time (CECT) and cortico-conus motor-conduction time (CCCT). These recent developments in magnetic-motor-root stimulation enable us to more precisely evaluate the conduction of the proximal part of peripheral nerves and that of the corticospinal tract for lower-limb muscles

  16. A test of the 1992 International Standards for Neurological and Functional Classification of Spinal Cord Injury.

    PubMed

    Cohen, M E; Ditunno, J F; Donovan, W H; Maynard, F M

    1998-08-01

    This study was designed to test the 1992 International Standards for Neurological and Functional Classification of Spinal Cord Injury. One hundred and six professionals in the field of spinal cord injury attending an instructional course at the 1994 ASIA Meeting participated in the test. Participants completed a pretest and posttest in which they classified two patients who had a spinal cord injury (one with complete tetraplegia and one with incomplete paraplegia) by sensory and motor levels, zone of partial preservation (ZPP), ASIA Impairment Scale and completeness of injury. Between tests, three members of the ASIA Standards Executive Committee gave presentations on the neurological assessment, scoring, scaling and classification of spinal cord injury and a video of the actual examinations of the two cases was viewed. Percent 'correct' (as defined by the ASIA Standards Committee) was calculated for sensory and motor levels, ZPP, ASIA Impairment and completeness. Overall, the analyses showed that participants had very little difficulty in correctly classifying the patient with complete tetraplegia. Pretests scores ranged from 72% (left motor level) to 96% (complete injury), posttest scores from 73% (left motor level) to 100% correct (complete injury). For the patient with incomplete paraplegia (Case 2), scores were considerably lower. Pretest scores ranged from 16% (right motor level) to 95% correct (incomplete injury); posttest scores from 21% (right motor level) to 97% correct (incomplete injury). The results showed that further revisions of the 1992 Standards and more training is needed to ensure accurate classification of spinal cord injury. PMID:9713924

  17. Multifunctional and specialized spinal interneurons for turtle limb movements.

    PubMed

    Berkowitz, Ari

    2010-06-01

    The turtle spinal cord can help reveal how vertebrate central nervous system (CNS) circuits select and generate an appropriate limb movement in each circumstance. Both multifunctional and specialized spinal interneurons contribute to the motor patterns for the three forms of scratching, forward swimming, and flexion reflex. Multifunctional interneurons, activated during all of these motor patterns, can have axon terminal arborizations in the ventral horn, where they likely contribute to limb motor output. Specialized interneurons can be specialized for a behavior, as opposed to a phase or motor synergy. Interneurons specialized for scratching can be hyperpolarized throughout swimming. Interneurons specialized for flexion reflex can be hyperpolarized throughout scratching and swimming. Some structure-function correlations have been revealed: flexion reflex-selective interneurons had somata exclusively in the dorsal horn, in contrast to scratch-activated interneurons. Transverse interneurons, defined by quantitative morphological criteria, had higher peak firing rates, narrower action potentials, briefer afterhyperpolarizations, and larger membrane potential oscillations than scratch-activated interneurons with different dendritic morphologies. Future investigations will focus on how multifunctional and specialized spinal interneurons interact to generate each motor output. PMID:20536926

  18. Traumatic spinal cord injuries in Turkey.

    PubMed

    Dincer, F; Oflazer, A; Beyazova, M; Celiker, R; Basgöze, O; Altioklar, K

    1992-09-01

    Spinal cord lesions have various aetiologies, and trauma is one of the leading causes. Patients with spinal cord injuries (SCI) often have motor, sensory and autonomic dysfunctions and require a multidisciplinary rehabilitation programme. In this study 1694 SCI patients were investigated, including the frequency, and the distribution by age, sex, profession, aetiology, clinical status and year of occurrence. Traumatic SCI is more frequent among males than females and among those between the ages of 15 and 39 years. Regarding the aetiology, traffic accident comprised 35.41% of the total cases, the second most common cause was falls with 29.51%, and the third was high velocity bullet wounds: 21.95%. PMID:1408341

  19. Spinal cord cysticercosis: a case report.

    PubMed

    Bouree, Patrice; Dumazedier, Deborah; Bisaro, Francine; Resende, Paula; Comoy, Jean; Aghakhani, Nozar

    2006-12-01

    Cysticercosis caused by the infection with the larva of Taenia solium, common through out the world, is located in the muscles, the eyes and the central nervous system, but mostly in the brain. Spinal cord infection is rare. The authors report a case of a young girl, living in Paris who had traveled in Latin America, and complained of back pains and troublesome walking. MRI showed a cyst in spinal cord, but other examinations were normal. Diagnosis was confirmed by a pathologist. It was a pure intramedullary cysticercosis, the check-up to find other locations was negative. Only approximately 130 cases are reported in the literature, with motor and sensory disorders. The diagnosis was based on MRI and pathological examination. Antiparasitic medical treatment was useful when combined with surgery. PMID:17153691

  20. Recovery of locomotion after spinal cord injury: some facts and mechanisms.

    PubMed

    Rossignol, Serge; Frigon, Alain

    2011-01-01

    After spinal cord injury (SCI), various sensorimotor functions can recover, ranging from simple spinal reflexes to more elaborate motor patterns, such as locomotion. Locomotor recovery after complete spinalization (complete SCI) must depend on the presence of spinal circuitry capable of generating the complex sequential activation of various leg muscles. This is achieved by an intrinsic spinal circuitry, termed the central pattern generator (CPG), working in conjunction with sensory feedback from the legs. After SCI, different changes in cellular and circuit properties occur spontaneously and can be promoted by pharmacological, electrical, or rehabilitation strategies. After partial SCI, hindlimb locomotor recovery can result from regeneration or sprouting of spared pathways, but also from mechanisms observed after complete SCI, namely changes within the intrinsic spinal circuitry and sensory inputs. PMID:21469957

  1. Serotonin affects movement gain control in the spinal cord.

    PubMed

    Wei, Kunlin; Glaser, Joshua I; Deng, Linna; Thompson, Christopher K; Stevenson, Ian H; Wang, Qining; Hornby, Thomas George; Heckman, Charles J; Kording, Konrad P

    2014-09-17

    A fundamental challenge for the nervous system is to encode signals spanning many orders of magnitude with neurons of limited bandwidth. To meet this challenge, perceptual systems use gain control. However, whether the motor system uses an analogous mechanism is essentially unknown. Neuromodulators, such as serotonin, are prime candidates for gain control signals during force production. Serotonergic neurons project diffusely to motor pools, and, therefore, force production by one muscle should change the gain of others. Here we present behavioral and pharmaceutical evidence that serotonin modulates the input-output gain of motoneurons in humans. By selectively changing the efficacy of serotonin with drugs, we systematically modulated the amplitude of spinal reflexes. More importantly, force production in different limbs interacts systematically, as predicted by a spinal gain control mechanism. Psychophysics and pharmacology suggest that the motor system adopts gain control mechanisms, and serotonin is a primary driver for their implementation in force production. PMID:25232107

  2. Serotonin Affects Movement Gain Control in the Spinal Cord

    PubMed Central

    Glaser, Joshua I.; Deng, Linna; Thompson, Christopher K.; Stevenson, Ian H.; Wang, Qining; Hornby, Thomas George; Heckman, Charles J.; Kording, Konrad P.

    2014-01-01

    A fundamental challenge for the nervous system is to encode signals spanning many orders of magnitude with neurons of limited bandwidth. To meet this challenge, perceptual systems use gain control. However, whether the motor system uses an analogous mechanism is essentially unknown. Neuromodulators, such as serotonin, are prime candidates for gain control signals during force production. Serotonergic neurons project diffusely to motor pools, and, therefore, force production by one muscle should change the gain of others. Here we present behavioral and pharmaceutical evidence that serotonin modulates the input–output gain of motoneurons in humans. By selectively changing the efficacy of serotonin with drugs, we systematically modulated the amplitude of spinal reflexes. More importantly, force production in different limbs interacts systematically, as predicted by a spinal gain control mechanism. Psychophysics and pharmacology suggest that the motor system adopts gain control mechanisms, and serotonin is a primary driver for their implementation in force production. PMID:25232107

  3. Ranking and selection of motor carrier safety performance by commodity.

    PubMed

    Horrace, William C; Keane, Thomas P

    2004-11-01

    We use recent safety performance data to rank US motor carrier commodity segments (e.g., Tank segment or Produce segment) in terms of several driver-related, vehicle-related, and crash-related safety measures. Ranking and selection inference techniques are used to determine the best and worst performing commodity segments at the 95% confidence level. The results are mixed, however the Passenger segment is generally best, while the Produce, Intermodal, and Refrigerated segments tend to be worst. PMID:15350872

  4. Neuromodulation of lower limb motor control in restorative neurology

    PubMed Central

    Minassian, Karen; Hofstoetter, Ursula; Tansey, Keith; Mayr, Winfried

    2012-01-01

    One consequence of central nervous system injury or disease is the impairment of neural control of movement, resulting in spasticity and paralysis. To enhance recovery, restorative neurology procedures modify altered, yet preserved nervous system function. This review focuses on functional electrical stimulation (FES) and spinal cord stimulation (SCS) that utilize remaining capabilities of the distal apparatus of spinal cord, peripheral nerves and muscles in upper motor neuron dysfunctions. FES for the immediate generation of lower limb movement along with current rehabilitative techniques is reviewed. The potential of SCS for controlling spinal spasticity and enhancing lower limb function in multiple sclerosis and spinal cord injury is discussed. The necessity for precise electrode placement and appropriate stimulation parameter settings to achieve therapeutic specificity is elaborated. This will lead to our human work of epidural and transcutaneous stimulation targeting the lumbar spinal cord for enhancing motor functions in spinal cord injured people, supplemented by pertinent human research of other investigators. We conclude that the concept of restorative neurology recently received new appreciation by accumulated evidence for locomotor circuits residing in the human spinal cord. Technological and clinical advancements need to follow for a major impact on the functional recovery in individuals with severe damage to their motor system. PMID:22464657

  5. Spinal Muscular Atrophy: Current Therapeutic Strategies

    NASA Astrophysics Data System (ADS)

    Kiselyov, Alex S.; Gurney, Mark E.

    Proximal spinal muscular atrophy (SMA) is an autosomal recessive disorder characterized by death of motor neurons in the spinal cord. SMA is caused by deletion and/or mutation of the survival motor neuron gene (SMN1) on chromosome 5q13. There are variable numbers of copies of a second, related gene named SMN2 located in the proximity to SMN1. Both genes encode the same protein (Smn). Loss of SMN1 and incorrect splicing of SMN2 affect cellular levels of Smn triggering death of motor neurons. The severity of SMA is directly related to the normal number of copies of SMN2 carried by the patient. A considerable effort has been dedicated to identifying modalities including both biological and small molecule agents that increase SMN2 promoter activity to upregulate gene transcription and produce increased quantities of full-length Smn protein. This review summarizes recent progress in the area and suggests potential target product profile for an SMA therapeutic.

  6. Disease Mechanisms and Therapeutic Approaches in Spinal Muscular Atrophy

    PubMed Central

    Tisdale, Sarah

    2015-01-01

    Motor neuron diseases are neurological disorders characterized primarily by the degeneration of spinal motor neurons, skeletal muscle atrophy, and debilitating and often fatal motor dysfunction. Spinal muscular atrophy (SMA) is an autosomal-recessive motor neuron disease of high incidence and severity and the most common genetic cause of infant mortality. SMA is caused by homozygous mutations in the survival motor neuron 1 (SMN1) gene and retention of at least one copy of the hypomorphic gene paralog SMN2. Early studies established a loss-of-function disease mechanism involving ubiquitous SMN deficiency and suggested SMN upregulation as a possible therapeutic approach. In recent years, greater knowledge of the central role of SMN in RNA processing combined with deep characterization of animal models of SMA has significantly advanced our understanding of the cellular and molecular basis of the disease. SMA is emerging as an RNA disease not limited to motor neurons, but one that involves dysfunction of motor circuits that comprise multiple neuronal subpopulations and possibly other cell types. Advances in SMA research have also led to the development of several potential therapeutics shown to be effective in animal models of SMA that are now in clinical trials. These agents offer unprecedented promise for the treatment of this still incurable neurodegenerative disease. PMID:26063904

  7. Brain-machine interface facilitated neurorehabilitation via spinal stimulation after spinal cord injury: Recent progress and future perspectives.

    PubMed

    Alam, Monzurul; Rodrigues, Willyam; Pham, Bau Ngoc; Thakor, Nitish V

    2016-09-01

    Restoration of motor function is one of the highest priorities in individuals afflicted with spinal cord injury (SCI). The application of brain-machine interfaces (BMIs) to neuroprostheses provides an innovative approach to treat patients with sensorimotor impairments. A BMI decodes motor intent from cortical signals to control external devices such as a computer cursor or a robotic arm. Recent BMI systems can now use these motor intent signals to directly activate paretic muscles or to modulate the spinal cord in a way that reengage dormant neuromuscular systems below the level of injury. In this perspective, we review the progress made in the development of brain-machine-spinal-cord interfaces (BMSCIs) and highlight their potential for neurorehabilitation after SCI. The advancement and application of these neuroprostheses goes beyond improved motor control. The use of BMSCI may combine repetitive physical training along with intent-driven neuromodulation to promote neurorehabilitation by facilitating activity-dependent plasticity. Strong evidence suggests that proper timing of volitional neuromodulation facilitates long-term potentiation in the neuronal circuits that can promote permanent functional recovery in SCI subjects. However, the effectiveness of these implantable neuroprostheses must take into account the fact that there will be continuous changes in the interface between the signals of intent and the actual trigger to initiate the motor action. PMID:27216571

  8. Do Not Resonate with Actions: Sentence Polarity Modulates Cortico-Spinal Excitability during Action-Related Sentence Reading

    PubMed Central

    Liuzza, Marco Tullio; Candidi, Matteo; Aglioti, Salvatore Maria

    2011-01-01

    Background Theories of embodied language suggest that the motor system is differentially called into action when processing motor-related versus abstract content words or sentences. It has been recently shown that processing negative polarity action-related sentences modulates neural activity of premotor and motor cortices. Methods and Findings We sought to determine whether reading negative polarity sentences brought about differential modulation of cortico-spinal motor excitability depending on processing hand-action related or abstract sentences. Facilitatory paired-pulses Transcranial Magnetic Stimulation (pp-TMS) was applied to the primary motor representation of the right-hand and the recorded amplitude of induced motor-evoked potentials (MEP) was used to index M1 activity during passive reading of either hand-action related or abstract content sentences presented in both negative and affirmative polarity. Results showed that the cortico-spinal excitability was affected by sentence polarity only in the hand-action related condition. Indeed, in keeping with previous TMS studies, reading positive polarity, hand action-related sentences suppressed cortico-spinal reactivity. This effect was absent when reading hand action-related negative polarity sentences. Moreover, no modulation of cortico-spinal reactivity was associated with either negative or positive polarity abstract sentences. Conclusions Our results indicate that grammatical cues prompting motor negation reduce the cortico-spinal suppression associated with affirmative action sentences reading and thus suggest that motor simulative processes underlying the embodiment may involve even syntactic features of language. PMID:21347305

  9. Autonomic consequences of spinal cord injury.

    PubMed

    Hou, Shaoping; Rabchevsky, Alexander G

    2014-10-01

    Spinal cord injury (SCI) results not only in motor and sensory deficits but also in autonomic dysfunctions. The disruption of connections between higher brain centers and the spinal cord, or the impaired autonomic nervous system itself, manifests a broad range of autonomic abnormalities. This includes compromised cardiovascular, respiratory, urinary, gastrointestinal, thermoregulatory, and sexual activities. These disabilities evoke potentially life-threatening symptoms that severely interfere with the daily living of those with SCI. In particular, high thoracic or cervical SCI often causes disordered hemodynamics due to deregulated sympathetic outflow. Episodic hypertension associated with autonomic dysreflexia develops as a result of massive sympathetic discharge often triggered by unpleasant visceral or sensory stimuli below the injury level. In the pelvic floor, bladder and urethral dysfunctions are classified according to upper motor neuron versus lower motor neuron injuries; this is dependent on the level of lesion. Most impairments of the lower urinary tract manifest in two interrelated complications: bladder storage and emptying. Inadequate or excessive detrusor and sphincter functions as well as detrusor-sphincter dyssynergia are examples of micturition abnormalities stemming from SCI. Gastrointestinal motility disorders in spinal cord injured-individuals are comprised of gastric dilation, delayed gastric emptying, and diminished propulsive transit along the entire gastrointestinal tract. As a critical consequence of SCI, neurogenic bowel dysfunction exhibits constipation and/or incontinence. Thus, it is essential to recognize neural mechanisms and pathophysiology underlying various complications of autonomic dysfunctions after SCI. This overview provides both vital information for better understanding these disorders and guides to pursue novel therapeutic approaches to alleviate secondary complications. PMID:25428850

  10. Lower motor neuron dysfunction in ALS.

    PubMed

    de Carvalho, Mamede; Swash, Michael

    2016-07-01

    In the motor system there is a complex interplay between cortical structures and spinal cord lower motor neurons (LMN). In this system both inhibitory and excitatory neurons have relevant roles. LMN loss is a marker of motor neuron disease/amyotrophic lateral sclerosis (MND/ALS). Conventional needle electromyography (EMG) does not allow LMN loss to be quantified. Measurement of compound muscle action potential (CMAP) amplitude or area, and the neurophysiological index, provide a surrogate estimate of the number of functional motor units. Increased motor neuronal excitability is a neurophysiological marker of ALS in the context of a suspected clinical and electrophysiological diagnosis. In the LMN system, fasciculation potentials (FPs) are the earliest changes observed in affected muscles, a feature of LMN hyperexcitability. Reinnervation is best investigated by needle EMG although other methods can be explored. Moreover needle EMG give information about the temporal profile of the reinnervation process, important ancillary data. Quantitative motor unit potential analysis is a valuable method of evaluating reinnervation. The importance of FPs has been recognized in the Awaji criteria for the electrodiagnosis of ALS, criteria that are a sensitive adjunct to the revised El Escorial criteria. Finally, functionality of LMN's, and perhaps excitability studies in motor nerves, aids understanding of the disease process, allowing measurement of potential treatment effects in clinical trials. Other investigational techniques, such as electrical impedance myography, muscle and nerve ultrasound, and spinal cord imaging methods may prove useful in future. PMID:27117334

  11. Stress protein expression in early phase spinal cord ischemia/reperfusion injury.

    PubMed

    Zhang, Shanyong; Wu, Dankai; Wang, Jincheng; Wang, Yongming; Wang, Guoxiang; Yang, Maoguang; Yang, Xiaoyu

    2013-08-25

    Spinal cord ischemia/reperfusion injury is a stress injury to the spinal cord. Our previous studies using differential proteomics identified 21 differentially expressed proteins (n > 2) in rabbits with spinal cord ischemia/reperfusion injury. Of these proteins, stress-related proteins included protein disulfide isomerase A3, stress-induced-phosphoprotein 1 and heat shock cognate protein 70. In this study, we established New Zealand rabbit models of spinal cord ischemia/reperfusion injury by abdominal aorta occlusion. Results demonstrated that hind limb function initially improved after spinal cord ischemia/reperfusion injury, but then deteriorated. The pathological morphology of the spinal cord became aggravated, but lessened 24 hours after reperfusion. However, the numbers of motor neurons and interneurons in the spinal cord gradually decreased. The expression of protein disulfide isomerase A3, stress-induced-phosphoprotein 1 and heat shock cognate protein 70 was induced by ischemia/reperfusion injury. The expression of these proteins increased within 12 hours after reperfusion, and then decreased, reached a minimum at 24 hours, but subsequently increased again to similar levels seen at 6-12 hours, showing a characterization of induction-inhibition-induction. These three proteins were expressed only in cytoplasm but not in the nuclei. Moreover, the expression was higher in interneurons than in motor neurons, and the survival rate of interneurons was greater than that of motor neurons. It is assumed that the expression of stress-related proteins exhibited a protective effect on neurons. PMID:25206532

  12. Potential associations between chronic whiplash and incomplete spinal cord injury

    PubMed Central

    Smith, Andrew C.; Parrish, Todd B.; Hoggarth, Mark A.; McPherson, Jacob G.; Tysseling, Vicki M.; Wasielewski, Marie; Kim, Hyosub E.; Hornby, T. George; Elliott, James M.

    2016-01-01

    Study Design This research utilized a cross-sectional design with control group inclusion. Objectives Preliminary evidence suggests that a portion of the patient population with chronic whiplash may have sustained spinal cord damage. Our hypothesis is that in some cases of chronic whiplash-associated disorders (WAD), observed muscle weakness in the legs will be associated with local signs of a partial spinal cord injury of the cervical spine. Setting University based laboratory in Chicago, IL, USA. Methods Five participants with chronic WAD were compared with five gender/age/height/weight/body mass index (BMI) control participants. For a secondary investigation, the chronic WAD group was compared with five unmatched participants with motor incomplete spinal cord injury (iSCI). Spinal cord motor tract integrity was assessed using magnetization transfer imaging. Muscle fat infiltration (MFI) was quantified using fat/water separation magnetic resonance imaging. Central volitional muscle activation of the plantarflexors was assessed using a burst superimposition technique. Results We found reduced spinal cord motor tract integrity, increased MFI of the neck and lower extremity muscles and significantly impaired voluntary plantarflexor muscle activation in five participants with chronic WAD. The lower extremity structural changes and volitional weakness in chronic WAD were comparable to participants with iSCI. Conclusion The results support the position that a subset of the chronic whiplash population may have sustained partial damage to the spinal cord. Sponsorship NIH R01HD079076-01A1, NIH T32 HD057845 and the Foundation for Physical Therapy Promotion of Doctoral Studies program.

  13. What Is Spinal Stenosis?

    MedlinePlus

    ... To order the Sports Injuries Handout on Health full-text version, please contact NIAMS using the contact information ... publication. To order the Spinal Stenosis Q&A full-text version, please contact NIAMS using the contact information ...

  14. Spinal cord abscess

    MedlinePlus

    ... abscess is caused by an infection inside the spine. An abscess of the spinal cord itself is ... by a staphylococcus infection that spreads through the spine. It may be caused by tuberculosis in some ...

  15. Spinal Cord Injury

    MedlinePlus

    ... Dramatically Improves Function After Spinal Cord Injury in Rats May 2004 press release on an experimental treatment ... NINDS). Signaling Molecule Improves Nerve Cell Regeneration in Rats August 2002 news summary on a signaling molecule ...

  16. Spinal cord schistosomiasis

    PubMed Central

    Adeel, Ahmed Awad

    2015-01-01

    Acute myelopathy is increasingly being recognized as a common neurological complication of schistosomiasis. Schistosome eggs reach the spinal cord either as egg emboli or as eggs produced by ectopic worms. This leads to inflammatory reaction and granuloma formation around the eggs. Patients with spinal schistosomiasis may not have clinical evidence of schistosomiasis. The typical clinical picture is that of lumbar pain preceded by other symptoms by hours or up to 3 weeks. Patients may present with paraparesis, urinary retention or paraplegia. Definitive diagnosis of spinal cord schistosomiasis is by detection of the eggs in a spinal cord biopsy or at autopsy. However, most cases are diagnosed based on a presumptive diagnosis that depends on a suggestive clinical picture, history or evidence of active schistosomiasis and exclusion of other conditions. Investigations include stools and urine examination for schistosome eggs, blood tests, magnetic resonance imaging (MRI) and examination of the cerebrospinal fluid. Treatment of cases is mainly by praziquantel, corticosteroids, surgical intervention and rehabilitation.

  17. Spinal Cord Injury 101

    MedlinePlus Videos and Cool Tools

    ... Braingate" research? What is the status of stem-cell research? How would stem-cell therapies work in the treatment of spinal cord injuries? What does stem-cell research on animals tell us? When can we ...

  18. Forelimb EMG-based trigger to control an electronic spinal bridge to enable hindlimb stepping after a complete spinal cord lesion in rats

    PubMed Central

    2012-01-01

    Background A complete spinal cord transection results in loss of all supraspinal motor control below the level of the injury. The neural circuitry in the lumbosacral spinal cord, however, can generate locomotor patterns in the hindlimbs of rats and cats with the aid of motor training, epidural stimulation and/or administration of monoaminergic agonists. We hypothesized that there are patterns of EMG signals from the forelimbs during quadrupedal locomotion that uniquely represent a signal for the “intent” to step with the hindlimbs. These observations led us to determine whether this type of “indirect” volitional control of stepping can be achieved after a complete spinal cord injury. The objective of this study was to develop an electronic bridge across the lesion of the spinal cord to facilitate hindlimb stepping after a complete mid-thoracic spinal cord injury in adult rats. Methods We developed an electronic spinal bridge that can detect specific patterns of EMG activity from the forelimb muscles to initiate electrical-enabling motor control (eEmc) of the lumbosacral spinal cord to enable quadrupedal stepping after a complete spinal cord transection in rats. A moving window detection algorithm was implemented in a small microprocessor to detect biceps brachii EMG activity bilaterally that then was used to initiate and terminate epidural stimulation in the lumbosacral spinal cord. We found dominant frequencies of 180–220 Hz in the EMG of the forelimb muscles during active periods, whereas these frequencies were between 0–10 Hz when the muscles were inactive. Results and conclusions Once the algorithm was validated to represent kinematically appropriate quadrupedal stepping, we observed that the algorithm could reliably detect, initiate, and facilitate stepping under different pharmacological conditions and at various treadmill speeds. PMID:22691460

  19. Modeling spinal cord biomechanics

    NASA Astrophysics Data System (ADS)

    Luna, Carlos; Shah, Sameer; Cohen, Avis; Aranda-Espinoza, Helim

    2012-02-01

    Regeneration after spinal cord injury is a serious health issue and there is no treatment for ailing patients. To understand regeneration of the spinal cord we used a system where regeneration occurs naturally, such as the lamprey. In this work, we analyzed the stress response of the spinal cord to tensile loading and obtained the mechanical properties of the cord both in vitro and in vivo. Physiological measurements showed that the spinal cord is pre-stressed to a strain of 10%, and during sinusoidal swimming, there is a local strain of 5% concentrated evenly at the mid-body and caudal sections. We found that the mechanical properties are homogeneous along the body and independent of the meninges. The mechanical behavior of the spinal cord can be characterized by a non-linear viscoelastic model, described by a modulus of 20 KPa for strains up to 15% and a modulus of 0.5 MPa for strains above 15%, in agreement with experimental data. However, this model does not offer a full understanding of the behavior of the spinal cord fibers. Using polymer physics we developed a model that relates the stress response as a function of the number of fibers.

  20. Ginsenoside Rd inhibits apoptosis following spinal cord ischemia/reperfusion injury

    PubMed Central

    Wang, Baogang; Zhu, Qingsan; Man, Xiaxia; Guo, Li; Hao, Liming

    2014-01-01

    Ginsenoside Rd has a clear neuroprotective effect against ischemic stroke. We aimed to verify the neuroprotective effect of ginsenoside Rd in spinal cord ischemia/reperfusion injury and explore its anti-apoptotic mechanisms. We established a spinal cord ischemia/reperfusion injury model in rats through the occlusion of the abdominal aorta below the level of the renal artery for 1 hour. Successfully established models were injected intraperitoneally with 6.25, 12.5, 25 or 50 mg/kg per day ginsenoside Rd. Spinal cord morphology was observed at 1, 3, 5 and 7 days after spinal cord ischemia/reperfusion injury. Intraperitoneal injection of ginsenoside Rd in ischemia/reperfusion injury rats not only improved hindlimb motor function and the morphology of motor neurons in the anterior horn of the spinal cord, but it also reduced neuronal apoptosis. The optimal dose of ginsenoside Rd was 25 mg/kg per day and the optimal time point was 5 days after ischemia/reperfusion. Immunohistochemistry and western blot analysis showed ginsenoside Rd dose-dependently inhibited expression of pro-apoptotic Caspase 3 and down-regulated the expression of the apoptotic proteins ASK1 and JNK in the spinal cord of rats with spinal cord ischemia/reperfusion injury. These findings indicate that ginsenoside Rd exerts neuroprotective effects against spinal cord ischemia/reperfusion injury and the underlying mechanisms are achieved through the inhibition of ASK1-JNK pathway and the down-regulation of Caspase 3 expression. PMID:25374589

  1. Multidisciplinary Interventions in Motor Neuron Disease

    PubMed Central

    Williams, U. E.; Philip-Ephraim, E. E.; Oparah, S. K.

    2014-01-01

    Motor neuron disease is a neurodegenerative disease characterized by loss of upper motor neuron in the motor cortex and lower motor neurons in the brain stem and spinal cord. Death occurs 2–4 years after the onset of the disease. A complex interplay of cellular processes such as mitochondrial dysfunction, oxidative stress, excitotoxicity, and impaired axonal transport are proposed pathogenetic processes underlying neuronal cell loss. Currently evidence exists for the use of riluzole as a disease modifying drug; multidisciplinary team care approach to patient management; noninvasive ventilation for respiratory management; botulinum toxin B for sialorrhoea treatment; palliative care throughout the course of the disease; and Modafinil use for fatigue treatment. Further research is needed in management of dysphagia, bronchial secretion, pseudobulbar affect, spasticity, cramps, insomnia, cognitive impairment, and communication in motor neuron disease. PMID:26317009

  2. Motor Starters

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The power factor controller (PFC) was invented by a NASA engineer. It matches voltage with a motor's actual need by sensing shifts in the relationship between voltage and current flow. With the device, power can be trimmed as much as 65%. Intellinet adopted this technology and designed "soft start" and "load-responsive" control modes to start engines gradually and recycle voltage without reducing motor speed. Other features are lower motor heat and faster fault identification.

  3. Motor syndromes.

    PubMed

    Corea, Francesco; Micheli, Sara

    2012-01-01

    Motor disturbances alone or associated with other focal deficits are the most common symptoms suggesting a neurovascular event. An appropriate clinical assessment of these signs and symptoms may help physicians to better diagnose and to both better treat and predict outcome. In this paper the main clinical features of motor deficit are described together with other motor-related events such as ataxia and movement disturbances. PMID:22377850

  4. Restoring motor function using optogenetics and neural engraftment.

    PubMed

    Bryson, J Barney; Machado, Carolina Barcellos; Lieberam, Ivo; Greensmith, Linda

    2016-08-01

    Controlling muscle function is essential for human behaviour and survival, thus, impairment of motor function and muscle paralysis can severely impact quality of life and may be immediately life-threatening, as occurs in many cases of traumatic spinal cord injury (SCI) and in patients with amyotrophic lateral sclerosis (ALS). Repairing damaged spinal motor circuits, in either SCI or ALS, currently remains an elusive goal. Therefore alternative strategies are needed to artificially control muscle function and thereby enable essential motor tasks. This review focuses on recent advances towards restoring motor function, with a particular focus on stem cell-derived neuronal engraftment strategies, optogenetic control of motor function and the potential future translational application of these approaches. PMID:27016703

  5. Spinal Cord Anatomy and Clinical Syndromes.

    PubMed

    Diaz, Eric; Morales, Humberto

    2016-10-01

    We review the anatomy of the spinal cord, providing correlation with key functional and clinically relevant neural pathways, as well as magnetic resonance imaging. Peripherally, the main descending (corticospinal tract) and ascending (gracilis or cuneatus fasciculi and spinothalamic tracts) pathways compose the white matter. Centrally, the gray matter can be divided into multiple laminae. Laminae 1-5 carry sensitive neuron information in the posterior horn, and lamina 9 carries most lower motor neuron information in the anterior horn. Damage to the unilateral corticospinal tract (upper motor neuron information) or gracillis-cuneatus fasciculi (touch and vibration) correlates with ipsilateral clinical findings, whereas damage to unilateral spinothalamic tract (pain-temperature) correlates with contralateral clinical findings. Damage to commissural fibers correlates with a suspended bilateral "girdle" sensory level. Autonomic dysfunction is expected when there is bilateral cord involvement. PMID:27616310

  6. Genetic inhibition of JNK3 ameliorates spinal muscular atrophy.

    PubMed

    Genabai, Naresh K; Ahmad, Saif; Zhang, Zhanying; Jiang, Xiaoting; Gabaldon, Cynthia A; Gangwani, Laxman

    2015-12-15

    Mutation of the Survival Motor Neuron 1 (SMN1) gene causes spinal muscular atrophy (SMA), an autosomal recessive neurodegenerative disorder that occurs in early childhood. Degeneration of spinal motor neurons caused by SMN deficiency results in progressive muscle atrophy and death in SMA. The molecular mechanism underlying neurodegeneration in SMA is unknown. No treatment is available to prevent neurodegeneration and reduce the burden of illness in SMA. We report that the c-Jun NH2-terminal kinase (JNK) signaling pathway mediates neurodegeneration in SMA. The neuron-specific isoform JNK3 is required for neuron degeneration caused by SMN deficiency. JNK3 deficiency reduces degeneration of cultured neurons caused by low levels of SMN. Genetic inhibition of JNK pathway in vivo by Jnk3 knockout results in amelioration of SMA phenotype. JNK3 deficiency prevents the loss of spinal cord motor neurons, reduces muscle degeneration, improves muscle fiber thickness and muscle growth, improves motor function and overall growth and increases lifespan of mice with SMA that shows a systemic rescue of phenotype by a SMN-independent mechanism. JNK3 represents a potential (non-SMN) therapeutic target for the treatment of SMA. PMID:26423457

  7. Imaging in spinal trauma.

    PubMed

    Van Goethem, Johan W M; Maes, Menno; Ozsarlak, Ozkan; van den Hauwe, Luc; Parizel, Paul M

    2005-03-01

    Because it may cause paralysis, injury to the spine is one of the most feared traumas, and spinal cord injury is a major cause of disability. In the USA approximately 10,000 traumatic cervical spine fractures and 4000 traumatic thoracolumbar fractures are diagnosed each year. Although the number of individuals sustaining paralysis is far less than those with moderate or severe brain injury, the socioeconomic costs are significant. Since most of the spinal trauma patients survive their injuries, almost one out of 1000 inhabitants in the USA are currently being cared for partial or complete paralysis. Little controversy exists regarding the need for accurate and emergent imaging assessment of the traumatized spine in order to evaluate spinal stability and integrity of neural elements. Because clinicians fear missing occult spine injuries, they obtain radiographs for nearly all patients who present with blunt trauma. We are influenced on one side by fear of litigation and the possible devastating medical, psychologic and financial consequences of cervical spine injury, and on the other side by pressure to reduce health care costs. A set of clinical and/or anamnestic criteria, however, can be very useful in identifying patients who have an extremely low probability of injury and who consequently have no need for imaging studies. Multidetector (or multislice) computed tomography (MDCT) is the preferred primary imaging modality in blunt spinal trauma patients who do need imaging. Not only is CT more accurate in diagnosing spinal injury, it also reduces imaging time and patient manipulation. Evidence-based research has established that MDCT improves patient outcome and saves money in comparison to plain film. This review discusses the use, advantages and disadvantages of the different imaging techniques used in spinal trauma patients and the criteria used in selecting patients who do not need imaging. Finally an overview of different types of spinal injuries is given

  8. Reduced endplate currents underlie motor unit dysfunction in canine motor neuron disease.

    PubMed

    Rich, Mark M; Waldeck, Robert F; Cork, Linda C; Balice-Gordon, Rita J; Fyffe, Robert E W; Wang, Xueyong; Cope, Timothy C; Pinter, Martin J

    2002-12-01

    Hereditary canine spinal muscular atrophy (HCSMA) is an autosomal dominant degenerative disorder of motor neurons. In homozygous animals, motor units produce decreased force output and fail during repetitive activity. Previous studies suggest that decreased efficacy of neuromuscular transmission underlies these abnormalities. To examine this, we recorded muscle fiber endplate currents (EPCs) and found reduced amplitudes and increased failures during nerve stimulation in homozygotes compared with wild-type controls. Comparison of EPC amplitudes with muscle fiber current thresholds indicate that many EPCs from homozygotes fall below threshold for activating muscle fibers but can be raised above threshold following potentiation. To determine whether axonal abnormalities might play a role in causing motor unit dysfunction, we examined the postnatal maturation of axonal conduction velocity in relation to the appearance of tetanic failure. We also examined intracellularly labeled motor neurons for evidence of axonal neurofilament accumulations, which are found in many instances of motor neuron disease including HCSMA. Despite the appearance of tetanic failure between 90 and 120 days, average motor axon conduction velocity increased with age in homozygotes and achieved adult levels. Normal correlations between motor neuron properties (including conduction velocity) and motor unit properties were also observed. Labeled proximal motor axons of several motor neurons that supplied failing motor units exhibited little or no evidence of axonal swellings. We conclude that decreased release of transmitter from motor terminals underlies motor unit dysfunction in HCSMA and that the mechanisms determining the maturation of axonal conduction velocity and the pattern of correlation between motor neuron and motor unit properties do not contribute to the appearance or evolution of motor unit dysfunction. PMID:12466447

  9. Cell-Specific Survival Motor Neuron Gene Expression during Human Development of the Central Nervous System

    PubMed Central

    Tizzano, Eduardo F.; Cabot, Carmen; Baiget, Montserrat

    1998-01-01

    Spinal muscular atrophy is an autosomal recessive disorder characterized by the progressive loss or degeneration of the motor neurons. To investigate the expression of survival motor neuron (SMN), the spinal muscular atrophy-determining gene, and its relationship with the pathogenesis of the disease, we analyzed by means of in situ hybridization the location of SMN mRNA in fetal, newborn, infant, and adult human central nervous system tissues. The large motor neurons of the spinal cord are the main cells that express SMN together with the neurons of the medulla oblongata, the pyramidal cells of the cortex, and the Purkinje cells of the cerebellum. Some sensory neurons from the posterior horn and dorsal root ganglia express SMN to a lesser degree. Furthermore, strong SMN expression is detected in the ependymal cells of the central canal. The expression is present in the spinal cord at 8 weeks of fetal life throughout postnatal and adult life. The sharp expression of SMN in the motor neurons of the human spinal cord, the target cells in spinal muscular atrophy, suggests that this gene is implicated in neuronal development and in the pathogenesis of the disease. The location of the SMN gene expression in other neuronal structures not clearly or directly associated with clinical manifestations or pathological findings of spinal muscular atrophy may indicate a varying sensitivity to the absence or dysfunction of the SMN gene in motor neurons. PMID:9708795

  10. New evidence of corticospinal network modulation induced by motor imagery.

    PubMed

    Grosprêtre, Sidney; Lebon, Florent; Papaxanthis, Charalambos; Martin, Alain

    2016-03-01

    Motor imagery (MI) is the mental simulation of movement, without the corresponding muscle contraction. Whereas the activation of cortical motor areas during MI is established, the involvement of spinal structures is still under debate. We used original and complementary techniques to probe the influence of MI on spinal structures. Amplitude of motor-evoked potentials (MEPs), cervico-medullary-evoked potentials (CMEPs), and Hoffmann (H)-reflexes of the flexor carpi radialis (FCR) muscle and of the triceps surae muscles was measured in young, healthy subjects at rest and during MI. Participants were asked to imagine maximal voluntary contraction of the wrist and ankle, while the targeted limb was fixed (static condition). We confirmed previous studies with an increase of FCR MEPs during MI compared with rest. Interestingly, CMEPs, but not H-reflexes, also increased during MI, revealing a possible activation of subcortical structures. Then, to investigate the effect of MI on the spinal network, we used two techniques: 1) passive lengthening of the targeted muscle via an isokinetic dynamometer and 2) conditioning of H-reflexes with stimulation of the antagonistic nerve. Both techniques activate spinal inhibitory presynaptic circuitry, reducing the H-reflex amplitude at rest. In contrast, no reduction of H-reflex amplitude was observed during MI. These findings suggest that MI has modulatory effects on the spinal neuronal network. Specifically, the activation of low-threshold spinal structures during specific conditions (lengthening and H-reflex conditioning) highlights the possible generation of subliminal cortical output during MI. PMID:26719089

  11. Corticospinal reorganization after spinal cord injury

    PubMed Central

    Oudega, Martin; Perez, Monica A

    2012-01-01

    The corticospinal tract (CST) is a major descending pathway contributing to the control of voluntary movement in mammals. During the last decades anatomical and electrophysiological studies have demonstrated significant reorganization in the CST after spinal cord injury (SCI) in animals and humans. In animal models of SCI, anatomical evidence showed corticospinal sprouts rostral and caudal to the lesion and their integration into intraspinal axonal circuits. Electrophysiological data suggested that indirect connections from the primary motor cortex to forelimb motoneurons, via brainstem nuclei and spinal cord interneurons, or direct connections from slow uninjured corticospinal axons, might contribute to the control of movement after a CST injury. In humans with SCI, post mortem spinal cord tissue revealed anatomical changes in the CST some of which were similar but others markedly different from those found in animal models of SCI. Human electrophysiological studies have provided ample evidence for corticospinal reorganization after SCI that may contribute to functional recovery. Together these studies have revealed a large plastic capacity of the CST after SCI. There is also a limited understanding of the relationship between anatomical and electrophysiological changes in the CST and control of movement after SCI. Increasing our knowledge of the role of CST plasticity in functional restoration after SCI may support the development of more effective repair strategies. PMID:22586214

  12. Molecular motors

    NASA Astrophysics Data System (ADS)

    Allemand, Jean François Desbiolles, Pierre

    2015-10-01

    How do we move? More precisely, what are the molecular mechanisms that can explain that our muscles, made of very small components can move at a osopic scale? To answer these questions we must introduce molecular motors. Those motors are proteins, or small protein assemblies that, in our cells, transform chemical energy into mechanical work. Then, like we could do for a oscopic motor, used in a car or in a fan, we are going to study the basic behavior of these molecular machines, present what are their energy sources, calculate their power, their yield. If molecular motors are crucial for our oscopic movements, we are going to see that they are also essential to cellular transport and that considering the activity of some enzymes as molecular motors bring some interesting new insights on their activity.

  13. The stress response and anesthetic potency of unilateral spinal anesthesia for total Hip Replacement in geriatric patients.

    PubMed

    Zhu, Li; Tian, Chun; Li, Min; Peng, Ming-Qing; Ma, Kun-Long; Wang, Zhong-Lin; Ding, Jia-Hui; Cai, Yi

    2014-11-01

    Recently, some scholars suggested that it is important to keep a stablehemodynamic state and prevent the stress responses in geriatric patients undergoing total hip replacement (THR). We conducted this randomized prospective study to observe anesthetic potency of unilateral spinal anesthesia and stress response to it in geriatric patients during THR. We compared the effect of unilateral spinal and bilateral spinal on inhibition of stress response through measuring Norepinephrine (NE), epinephrine (E) and cortisol (CORT). Plasma concentrations of NE, E and CORT were determined in blood samples using ELISA (enzyme-linked immunosorbent assays) at three time points: To (prior to anesthesia) T1 (at the time point of skin closure), T2 (twenty-four hours after the operation). Sixty patients were randomly divided into two groups: group A (unilateral spinal anesthesia) and group B (conventional bilateral spinal anesthesia). 7.5tymg of hypobaric bupivacaine were injected into subarachnoid cavity at group A and 12mg hypobaric bupivacaine were given at group B. The onset time of sensory and motor block, loss of pinprick sensation, degree of motor block, regression of sensory and motor blocks and hemodynamic changes were also recorded. These data were used to evaluate anesthetic potency of spinal anesthesia. The results of this experiment show that unilateral spinal anesthesia can provide restriction of sensory and motor block, minimize the incidence of hypotension and prevent the stress responses undergoing THR. It is optimal anesthesia procedure for geriatric patients by rapid subarachnoid injection of small doses of bupivacaine. PMID:25410068

  14. Cerebral spinal fluid (CSF) collection

    MedlinePlus

    ... neurologic disorders. These may include infections (such as meningitis) and brain or spinal cord damage. A spinal ... blood sugar), bacterial or fungal infection (such as meningitis ), tuberculosis, or certain other types of meningitis. BLOOD ...

  15. Human neural progenitors differentiate into astrocytes and protect motor neurons in aging rats.

    PubMed

    Das, Melanie M; Avalos, Pablo; Suezaki, Patrick; Godoy, Marlesa; Garcia, Leslie; Chang, Christine D; Vit, Jean-Philippe; Shelley, Brandon; Gowing, Genevieve; Svendsen, Clive N

    2016-06-01

    Age-associated health decline presents a significant challenge to healthcare, although there are few animal models that can be used to test potential treatments. Here, we show that there is a significant reduction in both spinal cord motor neurons and motor function over time in the aging rat. One explanation for this motor neuron loss could be reduced support from surrounding aging astrocytes. Indeed, we have previously shown using in vitro models that aging rat astrocytes are less supportive to rat motor neuron function and survival over time. Here, we test whether rejuvenating the astrocyte niche can improve the survival of motor neurons in an aging spinal cord. We transplanted fetal-derived human neural progenitor cells (hNPCs) into the aging rat spinal cord and found that the cells survive and differentiate into astrocytes with a much higher efficiency than when transplanted into younger animals, suggesting that the aging environment stimulates astrocyte maturation. Importantly, the engrafted astrocytes were able to protect against motor neuron loss associated with aging, although this did not result in an increase in motor function based on behavioral assays. We also transplanted hNPCs genetically modified to secrete glial cell line-derived neurotrophic factor (GDNF) into the aging rat spinal cord, as this combination of cell and protein delivery can protect motor neurons in animal models of ALS. During aging, GDNF-expressing hNPCs protected motor neurons, though to the same extent as hNPCs alone, and again had no effect on motor function. We conclude that hNPCs can survive well in the aging spinal cord, protect motor neurons and mature faster into astrocytes when compared to transplantation into the young spinal cord. While there was no functional improvement, there were no functional deficits either, further supporting a good safety profile of hNPC transplantation even into the older patient population. PMID:27032721

  16. Transposed firing activation of motor units

    PubMed Central

    Kline, Joshua C.; Contessa, Paola

    2014-01-01

    Muscles are composed of groups of muscle fibers, called motor units, each innervated by a single motoneuron originating in the spinal cord. During constant or linearly varying voluntary force contractions, motor units are activated in a hierarchical order, with the earlier-recruited motor units having greater firing rates than the later-recruited ones. We found that this normal pattern of firing activation can be altered during oscillatory contractions where the force oscillates at frequencies ≥2 Hz. During these high-frequency oscillations, the activation of the lower-threshold motor units effectively decreases and that of the higher-threshold motor units effectively increases. This transposition of firing activation provides means to activate higher-threshold motor units preferentially. Our results demonstrate that the hierarchical regulation of motor unit activation can be manipulated to activate specific motoneuron populations preferentially. This finding can be exploited to develop new forms of physical therapies and exercise programs that enhance muscle performance or that target the preferential atrophy of high-threshold motor units as a result of aging or motor disorders such as stroke and amyotrophic lateral sclerosis. PMID:24899671

  17. Patterns of Phrenic Nerve Discharge after Complete High Cervical Spinal Cord Injury in the Decerebrate Rat.

    PubMed

    Ghali, Michael George Zaki; Marchenko, Vitaliy

    2016-06-15

    Studies conducted since the second half of the 19th century have revealed spontaneous as well as pharmacologically induced phasic/rhythmic discharge in spinal respiratory motor outputs of cats, dogs, rabbits, and neonatal rats following high cervical transection (Tx). The extent to which these various studies validate the existence of a true spinal respiratory rhythm generator remains debated. In this set of studies, we seek to characterize patterns of spontaneous phasic/rhythmic, asphyxia-induced, and pharmacologically induced activity occurring in phrenic nerve (PhN) discharge after complete high cervical (C1-C2) spinal cord transection. Experiments were performed on 20 unanesthetized decerebrate Sprague-Dawley adult male rats. Patterns of spontaneous activity after spinalization included tonic, phasic, slow oscillatory, and long-lasting tonic discharges. Topical application of antagonists of GABAA and glycine receptors to C1- and C2- spinal segments induced left-right synchronized phasic decrementing activity in PhN discharge that was abolished by an additional C2Tx. Asphyxia elicited increases in tonic activity and left-right synchronized gasp-like bursts in PhN discharge, demonstrating the presence of spinal circuits that may underlie a spinal gasping-like mechanism. We conclude that intrinsic slow oscillators and a phasic burst/rhythm generator exist in the spinal cord of the adult rat. If present in humans, this mechanism may be exploited to recover respiratory function in patients sustaining severe spinal cord injury. PMID:26239508

  18. Gamma and alpha motor neurons distinguished by expression of transcription factor Err3.

    PubMed

    Friese, Andreas; Kaltschmidt, Julia A; Ladle, David R; Sigrist, Markus; Jessell, Thomas M; Arber, Silvia

    2009-08-11

    Spinal motor neurons are specified to innervate different muscle targets through combinatorial programs of transcription factor expression. Whether transcriptional programs also establish finer aspects of motor neuron subtype identity, notably the prominent functional distinction between alpha and gamma motor neurons, remains unclear. In this study, we identify DNA binding proteins with complementary expression profiles in alpha and gamma motor neurons, providing evidence for molecular distinctions in these two motor neuron subtypes. The transcription factor Err3 is expressed at high levels in gamma but not alpha motor neurons, whereas the neuronal DNA binding protein NeuN marks alpha but not gamma motor neurons. Signals from muscle spindles are needed to support the differentiation of Err3(on)/NeuN(off) presumptive gamma motor neurons, whereas direct proprioceptive sensory input to a motor neuron pool is apparently dispensable. Together, these findings provide evidence that transcriptional programs define functionally distinct motor neuron subpopulations, even within anatomically defined motor pools. PMID:19651609

  19. Spinal Subdural Haematoma

    PubMed Central

    Manish K, Kothari; Chandrakant, Shah Kunal; Abhay M, Nene

    2015-01-01

    Introduction: Spinal Subdural hematoma is a rare cause of radiculopathy and spinal cord compression syndromes. It’s early diagnosis is essential. Chronological appearance of these bleeds vary on MRI. Case Report: A 56 year old man presented with progressive left lower limb radiculopathy and paraesthesias with claudication of three days duration. MRI revealed a subdural space occupying lesion compressing the cauda equina at L5-S1 level producing a ‘Y’ shaped dural sac (Y sign), which was hyperintense on T1W imaging and hypointense to cord on T2W image. The STIR sequence showed hyperintensity to cord. There was no history of bleeding diathesis. The patient underwent decompressive durotomy and biopsy which confirmed the diagnosis. Conclusion: Spinal subdural hematoma may present with rapidly progressive neurological symptoms. MRI is the investigation of choice. The knowledge of MRI appearance with respect to the chronological stage of the bleed is essential to avoid diagnostic and hence surgical dilemma PMID:27299051

  20. Spinal injuries in children.

    PubMed

    Babcock, J L

    1975-05-01

    Spinal injuries with neurologic sequelae are a rare but catastrophic injury. Many of these injuries might be preventable through proper parent and child education, particularly in water sports and vehicles accidents. A significant number of neurologic injuries are incomplete at the time of injury and proper rescue and initial care may make the difference between life as a quadriplegic and life as a normal individual. Because of the complexity of the management of the child with spinal injuries and their relative rarity, the definitive care is best undertaken at hospitals which specialize in the care of spinal injuries. Progressive deformity of the spine, a problem unique to childhood and adolescent paralysis, is often preventable with prolonged immobilization and protection of the spine. Progressive deformities which interfere with function or result in neurologic deterioration require an aggressive surgical approach. PMID:1124228

  1. Lumbar spinal stenosis.

    PubMed Central

    Ciricillo, S F; Weinstein, P R

    1993-01-01

    Lumbar spinal stenosis, the results of congenital and degenerative constriction of the neural canal and foramina leading to lumbosacral nerve root or cauda equina compression, is a common cause of disability in middle-aged and elderly patients. Advanced neuroradiologic imaging techniques have improved our ability to localize the site of nerve root entrapment in patients presenting with neurogenic claudication or painful radiculopathy. Although conservative medical management may be successful initially, surgical decompression by wide laminectomy or an intralaminar approach should be done in patients with serious or progressive pain or neurologic dysfunction. Because the early diagnosis and treatment of lumbar spinal stenosis may prevent intractable pain and the permanent neurologic sequelae of chronic nerve root entrapment, all physicians should be aware of the different neurologic presentations and the treatment options for patients with spinal stenosis. Images PMID:8434469

  2. Spinal cord injury pain.

    PubMed

    Beric, Aleksandar

    2003-01-01

    Awareness that SCI pain is common emerged during the past decade. However, there are a number of unresolved issues. There is a need for variety of experimental models to reflect diversity of SCI pains. Current classification is not as user-friendly as it should be. More attention should be given to a condition of the spinal cord below and above the SCI lesion. A consensus for what is an optimal SCI functional assessment for patients with sensory complaints and pain should be developed. Further extensive SCI pain research is needed prior to spinal cord regeneration trials in order to be able to cope with a potential for newly developed pains that may appear during incomplete spinal cord regenerative attempts. PMID:12821403

  3. [Lumbar spinal angiolipoma].

    PubMed

    Isla, Alberto; Ortega Martinez, Rodrigo; Pérez López, Carlos; Gómez de la Riva, Alvaro; Mansilla, Beatriz

    2016-01-01

    Spinal angiolipomas are fairly infrequent benign tumours that are usually located in the epidural space of the thoracic column and represent 0.14% to 1.3% of all spinal tumours. Lumbar angiolipomas are extremely rare, representing only 9.6% of all spinal extradural angiolipomas. We report the case of a woman who complained of a lumbar pain of several months duration with no neurological focality and that had intensified in the last three days without her having had any injury or made a physical effort. The MR revealed an extradural mass L1-L2, on the posterior face of the medulla, decreasing the anteroposterior diameter of the canal. The patient symptoms improved after surgery. Total extirpation of the lesion is possible in most cases, and the prognosis is excellent even if the lesion is infiltrative. For this reason, excessively aggressive surgery is not necessary to obtain complete resection. PMID:27263067

  4. Brain and spinal tumour.

    PubMed

    Goh, C H; Lu, Y Y; Lau, B L; Oy, J; Lee, H K; Liew, D; Wong, A

    2014-12-01

    This study reviewed the epidemiology of brain and spinal tumours in Sarawak from January 2009 till December 2012. The crude incidence of brain tumour in Sarawak was 4.6 per 100,000 population/year with cumulative rate 0.5%. Meningioma was the most common brain tumour (32.3%) and followed by astrocytoma (19.4%). Only brain metastases showed a rising trend and cases were doubled in 4 years. This accounted for 15.4% and lung carcinoma was the commonest primary. Others tumour load were consistent. Primitive neuroectodermal tumour (PNET) and astrocytoma were common in paediatrics (60%). We encountered more primary spinal tumour rather than spinal metastases. Intradural schwannoma was the commonest and frequently located at thoracic level. The current healthcare system in Sarawak enables a more consolidate data collection to reflect accurate brain tumours incidence. This advantage allows subsequent future survival outcome research and benchmarking for healthcare resource planning. PMID:25934956

  5. Intraoperative monitoring of motor function by magnetic motor evoked potentials.

    PubMed

    Lee, W Y; Hou, W Y; Yang, L H; Lin, S M

    1995-03-01

    Under etomidate anesthesia, motor evoked potentials produced by magnetic stimulation were successfully recorded from 10 thenar muscles and 10 anterior tibial muscles of eight patients who had undergone surgery on the medulla oblongata and the cervical and thoracic spinal cords. Recordings taken before placing the neural tissue at risk were assessed for variability in amplitude and latency. The lower limit in amplitude was approximately one-third (25-43%) of the baseline. The latencies were more difficult to monitor than were the amplitudes. The latency variations were 2.56 +/- 0.50 milliseconds for the hand and 6.84 +/- 1.37 milliseconds for the leg. During surgery, the unilateral recordings of two patients were transiently lost but partially recovered after a pause in the operation. No obvious postoperative weaknesses in the corresponding limbs occurred. One patient, who showed a permanent loss of unilateral recording, had transient monoplegia with a complete recovery. None of the remaining five patients who had amplitudes larger than one-third of the baseline at the end of the operation had additional motor deficits. Our conclusions are that under etomidate anesthesia, the magnetic motor evoked potentials can be convenient and reliable monitors of motor function, that changes in the amplitude may be superior to those in the latency for intraoperative warning, that the criterion for potential neural damage under magnetic motor evoked potential monitoring might be an amplitude reduction of two-thirds of the control value, and that the magnetic stimulation seems to be more sensitive than the electrical stimulation in the monitoring of motor function and also allows more time and opportunities for the motor function to recover. PMID:7753349

  6. Clinical and genetic diversity of SMN1-negative proximal spinal muscular atrophies

    PubMed Central

    Jordanova, Albena

    2014-01-01

    Hereditary spinal muscular atrophy is a motor neuron disorder characterized by muscle weakness and atrophy due to degeneration of the anterior horn cells of the spinal cord. Initially, the disease was considered purely as an autosomal recessive condition caused by loss-of-function SMN1 mutations on 5q13. Recent developments in next generation sequencing technologies, however, have unveiled a growing number of clinical conditions designated as non-5q forms of spinal muscular atrophy. At present, 16 different genes and one unresolved locus are associated with proximal non-5q forms, having high phenotypic variability and diverse inheritance patterns. This review provides an overview of the current knowledge regarding the phenotypes, causative genes, and disease mechanisms associated with proximal SMN1-negative spinal muscular atrophies. We describe the molecular and cellular functions enriched among causative genes, and discuss the challenges in the post-genomics era of spinal muscular atrophy research. PMID:24970098

  7. Caramiphen-induced block of sodium currents and spinal anesthesia.

    PubMed

    Leung, Yuk-Man; Tzeng, Jann-Inn; Gong, Chi-Li; Wang, Yu-Wen; Chen, Yu-Wen; Wang, Jhi-Joung

    2015-01-01

    The underlying mechanisms for the action of caramiphen used in local anesthesia are not well understood. The purpose of this study was to evaluate the block of caramiphen on voltage-gated Na⁺ channels and in spinal anesthesia. We investigated the effect of caramiphen on voltage-gated sodium channels in differentiated neuronal NG108-15 cells as well as on rat motor function, proprioception, and pain behavior (when administered intrathecally). In in vitro experiments, lidocaine produced concentration- and state-dependent effects on tonic block of voltage-gated Na⁺ currents (IC₅₀ of 66.2 and 212.9 µM at holding potentials of -70 and -100 mV, respectively). Caramiphen exhibited a milder state-dependence of block (IC₅₀ of 52.1 and 99.5 µM at holding potentials of -70 and -100 mV, respectively). Lidocaine showed a much stronger frequency-dependence of block than caramiphen: with high frequency stimulation (3.33 Hz), 50 µM caramiphen elicited an additional 20% blockade, whereas the same concentration of lidocaine produced 50% more block. In in vivo experiments, caramiphen with a more sensory-selective action over motor blockade was more potent than lidocaine (P<0.05) in spinal anesthesia. On an equipotent basis (25% effective dose (ED₂₅), ED₅₀, and ED₇₅), the duration of caramiphen at producing spinal anesthesia was longer than that of lidocaine (P<0.01). Our data revealed that caramiphen had a more potent, prolonged spinal blockade with a more sensory/nociceptive-selective action over motor blockade in comparison with lidocaine. Spinal anesthesia with caramiphen could be through the suppression of voltage-gated Na⁺ currents. PMID:25446426

  8. Complete rat spinal cord transection as a faithful model of spinal cord injury for translational cell transplantation.

    PubMed

    Lukovic, Dunja; Moreno-Manzano, Victoria; Lopez-Mocholi, Eric; Rodriguez-Jiménez, Francisco Javier; Jendelova, Pavla; Sykova, Eva; Oria, Marc; Stojkovic, Miodrag; Erceg, Slaven

    2015-01-01

    Spinal cord injury (SCI) results in neural loss and consequently motor and sensory impairment below the injury. There are currently no effective therapies for the treatment of traumatic SCI in humans. Various animal models have been developed to mimic human SCI. Widely used animal models of SCI are complete or partial transection or experimental contusion and compression, with both bearing controversy as to which one more appropriately reproduces the human SCI functional consequences. Here we present in details the widely used procedure of complete spinal cord transection as a faithful animal model to investigate neural and functional repair of the damaged tissue by exogenous human transplanted cells. This injury model offers the advantage of complete damage to a spinal cord at a defined place and time, is relatively simple to standardize and is highly reproducible. PMID:25860664

  9. Motor Controller

    NASA Technical Reports Server (NTRS)

    1988-01-01

    M.H. Marks Enterprises' Power Factor Controller (PFC) matches voltage with motor's actual need. Plugged into a motor, PFC continuously determines motor load by sensing shifts between voltage and current flow. When it senses a light load, it cuts voltage to the minimum needed. It offers potential energy savings ranging from eight percent up to 65 percent depending on the application. Myles Marks started out with the notion of writing an article for Popular Electronics magazine at the same time offering to furnish kits to readers interested in assembling PFC's. Within two weeks from publication he had orders for 500 kits and orders are still coming three years later.

  10. Stepper motor

    NASA Technical Reports Server (NTRS)

    Dekramer, Cornelis

    1994-01-01

    The purpose of this document is to describe the more commonly used permanent magnet stepper motors for spaceflight. It will discuss the mechanical and electrical aspects of the devices, their torque behavior, those parameters which need to be controlled and measured, and test methods to be employed. It will also discuss torque margins, compare these to the existing margin requirements, and determine the applicability of these requirements. Finally it will attempt to generate a set of requirements which will be used in any stepper motor procurement and will fully characterize the stepper motor behavior in a consistent and repeatable fashion.

  11. Prognostic value of cortical magnetic stimulation in spinal cord injury.

    PubMed

    Clarke, C E; Modarres-Sadeghi, H; Twomey, J A; Burt, A A

    1994-08-01

    Cortical magnetic stimulation was performed in a consecutive series of 10 patients presenting within 15 days of traumatic spinal cord injury. In those patients with complete paraplegia or quadriplegia, motor evoked potentials at presentation were absent below the level of the lesion. Six months after the injury, potentials had returned in the biceps brachii and abductor pollicis brevis muscles in some quadriplegic cases, but remained absent from the tibialis anterior in all of this group. None of those with a complete lesion made a significant functional recovery. Of the three patients with incomplete quadriplegia, two showed a significant recovery after 6 months. Motor evoked potentials were recordable below the level of the lesion at presentation in these cases, although the latencies were prolonged. In the remaining patient who failed to improve, potentials were unrecordable throughout the study. This small pilot study suggests that cortical magnetic stimulation may be useful in refining the prognosis in patients with an incomplete spinal cord injury. PMID:7970860

  12. Spinal cord injury-related bone impairment and fractures: an update on epidemiology and physiopathological mechanisms.

    PubMed

    Dionyssiotis, Y

    2011-09-01

    A sudden loss of motor function in segments of the spinal cord results in immobilisation and is complicated by bone loss and fractures in areas below the level of injury. Despite the acceptance of osteoporosis and fractures as two major public health problems, in people with spinal cord injuries, the mechanisms are not adequately investigated. Multiple risk factors for bone loss and fractures are present in this disabled population. This review is an update on the epidemiology and physiopathological mechanisms in spinal cord injury-related bone impairment and fractures. PMID:21885901

  13. Sensory abnormalities and dysaesthesias in the anterior spinal artery syndrome.

    PubMed

    Triggs, W J; Berić, A

    1992-02-01

    We present three patients with a nontraumatic cervical anterior spinal artery syndrome, two of whom developed painful burning dysaesthesias below the level of spinal cord lesion, refractory to opiate, anticonvulsant and tricyclic antidepressant therapy. Quantitative sensory testing and neurophysiological assessment showed absence of pain and temperature sensation below the level of the lesion, with preservation of light touch, vibratory and position sensibilities and cortical somatosensory evoked potentials in all three patients. Dysaesthesias in both affected patients were exacerbated by somatosensory input attributed to intact posterior column function. Posterior column electrical stimulation worsened the dysaesthesias in one affected patient, and was ineffective in the other. Both patients affected with dysaesthesias showed significant improvement in motor function and developed clinical spasticity, while the third patient developed neither dysaesthesias nor spasticity, but remained flaccid without motor improvement, suggesting a more complete lesion of anterolateral spinal pathways. These cases illustrate that lesions of the anterolateral spinal cord may lead to the development of dysaesthesias, perhaps related in part to selective neospinothalamic deafferentation and preservation of the posterior columns. PMID:1559153

  14. Post-traumatic acute anterior spinal cord syndrome.

    PubMed

    Foo, D; Subrahmanyan, T S; Rossier, A B

    1981-01-01

    Thirteen patients with motor complete but sensory incomplete lesions following vertebral and spinal cord injuries are described. Sensory dissociation was present with more impairment of pain than touch or proprioception. The loss of pain sensation was complete in seven patients, but was incomplete in the other six subjects four of whom showed major motor recovery. The major point of interest of this study is to show that patients who retain not only touch but also pain sensation have a definitely better prognosis for neurological recovery. PMID:7290729

  15. Chaotic motors

    NASA Astrophysics Data System (ADS)

    Laroche, C.; Labbé, R.; Pétrélis, F.; Fauve, S.

    2012-02-01

    We show that electric motors and dynamos can be used to illustrate most elementary instabilities or bifurcations discussed in courses on nonlinear oscillators and dynamical systems. These examples are easier to understand and display a richer behavior than the ones commonly used from mechanics, electronics, hydrodynamics, lasers, chemical reactions, and population dynamics. In particular, an electric motor driven by a dynamo can display stationary, Hopf, and codimension-two bifurcations by tuning the driving speed of the dynamo and the electric current in the stator of the electric motor. When the dynamo is driven at constant torque instead of constant rotation rate, chaotic reversals of the generated current and of the angular rotation of the motor are observed. Simple deterministic models are presented which capture the observed dynamical regimes.

  16. Repetitive acute intermittent hypoxia increases growth/neurotrophic factor expression in non-respiratory motor neurons.

    PubMed

    Satriotomo, I; Nichols, N L; Dale, E A; Emery, A T; Dahlberg, J M; Mitchell, G S

    2016-05-13

    Repetitive acute intermittent hypoxia (rAIH) increases growth/trophic factor expression in respiratory motor neurons, thereby eliciting spinal respiratory motor plasticity and/or neuroprotection. Here we demonstrate that rAIH effects are not unique to respiratory motor neurons, but are also expressed in non-respiratory, spinal alpha motor neurons and upper motor neurons of the motor cortex. In specific, we used immunohistochemistry and immunofluorescence to assess growth/trophic factor protein expression in spinal sections from rats exposed to AIH three times per week for 10weeks (3×wAIH). 3×wAIH increased brain-derived neurotrophic factor (BDNF), its high-affinity receptor, tropomyosin receptor kinase B (TrkB), and phosphorylated TrkB (pTrkB) immunoreactivity in putative alpha motor neurons of spinal cervical 7 (C7) and lumbar 3 (L3) segments, as well as in upper motor neurons of the primary motor cortex (M1). 3×wAIH also increased immunoreactivity of vascular endothelial growth factor A (VEGFA), the high-affinity VEGFA receptor (VEGFR-2) and an important VEGF gene regulator, hypoxia-inducible factor-1α (HIF-1α). Thus, rAIH effects on growth/trophic factors are characteristic of non-respiratory as well as respiratory motor neurons. rAIH may be a useful tool in the treatment of disorders causing paralysis, such as spinal injury and motor neuron disease, as a pretreatment to enhance motor neuron survival during disease, or as preconditioning for cell-transplant therapies. PMID:26944605

  17. Anterior spinal cord syndrome of unknown etiology

    PubMed Central

    Klakeel, Merrine; Thompson, Justin; McDonald, Frank

    2015-01-01

    A spinal cord injury encompasses a physical insult to the spinal cord. In the case of anterior spinal cord syndrome, the insult is a vascular lesion at the anterior spinal artery. We present the cases of two 13-year-old boys with anterior spinal cord syndrome, along with a review of the anatomy and vasculature of the spinal cord and an explanation of how a lesion in the cord corresponds to anterior spinal cord syndrome. PMID:25552812

  18. Overexpression of survival motor neuron improves neuromuscular function and motor neuron survival in mutant SOD1 mice

    PubMed Central

    Turner, Bradley J.; Alfazema, Neza; Sheean, Rebecca K.; Sleigh, James N.; Davies, Kay E.; Horne, Malcolm K.; Talbot, Kevin

    2014-01-01

    Spinal muscular atrophy results from diminished levels of survival motor neuron (SMN) protein in spinal motor neurons. Low levels of SMN also occur in models of amyotrophic lateral sclerosis (ALS) caused by mutant superoxide dismutase 1 (SOD1) and genetic reduction of SMN levels exacerbates the phenotype of transgenic SOD1G93A mice. Here, we demonstrate that SMN protein is significantly reduced in the spinal cords of patients with sporadic ALS. To test the potential of SMN as a modifier of ALS, we overexpressed SMN in 2 different strains of SOD1G93A mice. Neuronal overexpression of SMN significantly preserved locomotor function, rescued motor neurons, and attenuated astrogliosis in spinal cords of SOD1G93A mice. Despite this, survival was not prolonged, most likely resulting from SMN mislocalization and depletion of gems in motor neurons of symptomatic mice. Our results reveal that SMN upregulation slows locomotor deficit onset and motor neuron loss in this mouse model of ALS. However, disruption of SMN nuclear complexes by high levels of mutant SOD1, even in the presence of SMN overexpression, might limit its survival promoting effects in this specific mouse model. Studies in emerging mouse models of ALS are therefore warranted to further explore the potential of SMN as a modifier of ALS. PMID:24210254

  19. Spinal Cord Injury

    MedlinePlus

    ... How much do you know about taking good care of yourself? Links to more information girlshealth glossary girlshealth.gov home http://www.girlshealth.gov/ Home Illness & disability Types of ... Spinal cord injury Read advice from Dr. Jeffrey Rabin , a pediatric rehabilitation specialist at the Children’s National Medical Center. ...

  20. Spinal and epidural anesthesia

    MedlinePlus

    ... your spinal cord. This is called the epidural space. The medicine numbs, or blocks feeling in a certain part of your body so that you cannot feel pain. The medicine begins to take effect in about 10 to 20 minutes. It works ...

  1. Lumbar Spinal Stenosis.

    PubMed

    Feeney, Richard

    2016-06-01

    Questions from patients about pain conditions and analgesic pharmacotherapy and responses from authors are presented to help educate patients and make them more effective self-advocates. In reply to a question, lumbar spinal stenosis, commonly a multifactorial disease that can have profound functional consequences, is considered, along with a discussion of physical and pharmacologic treatments and quality of life. PMID:27145444

  2. Maladaptive spinal plasticity opposes spinal learning and recovery in spinal cord injury

    PubMed Central

    Ferguson, Adam R.; Huie, J. Russell; Crown, Eric D.; Baumbauer, Kyle M.; Hook, Michelle A.; Garraway, Sandra M.; Lee, Kuan H.; Hoy, Kevin C.; Grau, James W.

    2012-01-01

    Synaptic plasticity within the spinal cord has great potential to facilitate recovery of function after spinal cord injury (SCI). Spinal plasticity can be induced in an activity-dependent manner even without input from the brain after complete SCI. A mechanistic basis for these effects is provided by research demonstrating that spinal synapses have many of the same plasticity mechanisms that are known to underlie learning and memory in the brain. In addition, the lumbar spinal cord can sustain several forms of learning and memory, including limb-position training. However, not all spinal plasticity promotes recovery of function. Central sensitization of nociceptive (pain) pathways in the spinal cord may emerge in response to various noxious inputs, demonstrating that plasticity within the spinal cord may contribute to maladaptive pain states. In this review we discuss interactions between adaptive and maladaptive forms of activity-dependent plasticity in the spinal cord below the level of SCI. The literature demonstrates that activity-dependent plasticity within the spinal cord must be carefully tuned to promote adaptive spinal training. Prior work from our group has shown that stimulation that is delivered in a limb position-dependent manner or on a fixed interval can induce adaptive plasticity that promotes future spinal cord learning and reduces nociceptive hyper-reactivity. On the other hand, stimulation that is delivered in an unsynchronized fashion, such as randomized electrical stimulation or peripheral skin injuries, can generate maladaptive spinal plasticity that undermines future spinal cord learning, reduces recovery of locomotor function, and promotes nociceptive hyper-reactivity after SCI. We review these basic phenomena, how these findings relate to the broader spinal plasticity literature, discuss the cellular and molecular mechanisms, and finally discuss implications of these and other findings for improved rehabilitative therapies after SCI. PMID

  3. Motor neuron abiotrophy in a saluki.

    PubMed

    Kent, M; Knowles, K; Glass, E; deLahunta, A; Braund, K; Alroy, J

    1999-01-01

    A nine-week-old saluki puppy was presented to Tufts University School of Veterinary Medicine for progressive, generalized weakness and bilateral forelimb deformities. Examination suggested a diffuse neuromuscular lesion. Cerebrospinal fluid (CSF) analysis showed normal nucleated cell count and protein level; however, many macrophages had vacuolated cytoplasm. Electromyography (EMG) recordings suggested denervation in paraspinal and appendicular muscles. Tibial motor nerve conduction velocity was normal, but direct evoked muscle potential had reduced amplitude. Histopathology revealed diffuse, symmetrical, degenerative motor neuronopathy of the ventral horn of the spinal cord with associated lesions in nerves and muscles. Histopathology was consistent with an abiotrophy that was likely inherited. PMID:10493421

  4. Frequency Mapping of Rat Spinal Cord at 7T

    NASA Astrophysics Data System (ADS)

    Chen, Evan; Rauscher, Alexander; Kozlowski, Piotr; Yung, Andrew

    2012-10-01

    The spinal cord is an integral part of the nervous system responsible for sensory, motor, and reflex control crucial to all bodily function. Due to its non-invasive nature, MRI is well matched for characterizing and imaging of spinal cord, and is used extensively for clinical applications. Recent developments in magnetic resonance imaging (MRI) at high field (7T) using phase represents a new approach of characterizing spinal cord myelin. Theory suggests that microstructure differences in myelinated white matter (WM) and non-myelinated gray matter (GM) affect MR phase, measurable frequency shifts. Data from pilot experiments using a multi-gradient echo (MGE) sequence to image rat spinal cords placed parallel to main magnetic field B0 has shown frequency shifts between not only between WM and GM, but also between specific WM tracts of the dorsal column, including the fasciculus gracilis, fasciculus cuneatus, and corticospinal tract. Using MGE, frequency maps at multiple echo times (TE) between 4ms and 22ms show a non-linear relationship between WM frequency, contrary to what was previously expected. These results demonstrate the effectiveness of MGE in revealing new information about spinal cord tissue microstructure, and lays important groundwork for in-vivo and human studies.

  5. Genetic Deficiency of GABA Differentially Regulates Respiratory and Non-Respiratory Motor Neuron Development

    PubMed Central

    Yanagawa, Yuchio; Obata, Kunihiko; Bellingham, Mark C.; Noakes, Peter G.

    2013-01-01

    Central nervous system GABAergic and glycinergic synaptic activity switches from postsynaptic excitation to inhibition during the stage when motor neuron numbers are being reduced, and when synaptic connections are being established onto and by motor neurons. In mice this occurs between embryonic (E) day 13 and birth (postnatal day 0). Our previous work on mice lacking glycinergic transmission suggested that altered motor neuron activity levels correspondingly regulated motor neuron survival and muscle innervation for all respiratory and non respiratory motor neuron pools, during this period of development [1]. To determine if GABAergic transmission plays a similar role, we quantified motor neuron number and the extent of muscle innervation in four distinct regions of the brain stem and spinal cord; hypoglossal, phrenic, brachial and lumbar motor pools, in mice lacking the enzyme GAD67. These mice display a 90% drop in CNS GABA levels ( [2]; this study). For respiratory-based motor neurons (hypoglossal and phrenic motor pools), we have observed significant drops in motor neuron number (17% decline for hypoglossal and 23% decline for phrenic) and muscle innervations (55% decrease). By contrast for non-respiratory motor neurons of the brachial lateral motor column, we have observed an increase in motor neuron number (43% increase) and muscle innervations (99% increase); however for more caudally located motor neurons within the lumbar lateral motor column, we observed no change in either neuron number or muscle innervation. These results show in mice lacking physiological levels of GABA, there are distinct regional changes in motor neuron number and muscle innervation, which appear to be linked to their physiological function and to their rostral-caudal position within the developing spinal cord. Our results also suggest that for more caudal (lumbar) regions of the spinal cord, the effect of GABA is less influential on motor neuron development compared to that of

  6. A Pilot Clinical Study of Olfactory Mucosa Autograft for Chronic Complete Spinal Cord Injury

    PubMed Central

    IWATSUKI, Koichi; TAJIMA, Fumihiro; OHNISHI, Yu-ichiro; NAKAMURA, Takeshi; ISHIHARA, Masahiro; HOSOMI, Koichi; NINOMIYA, Koshi; MORIWAKI, Takashi; YOSHIMINE, Toshiki

    2016-01-01

    Recent studies of spinal cord axon regeneration have reported good long-term results using various types of tissue scaffolds. Olfactory tissue allows autologous transplantation and can easily be obtained by a simple biopsy that is performed through the external nares. We performed a clinical pilot study of olfactory mucosa autograft (OMA) for chronic complete spinal cord injury in eight patients according to the procedure outlined by Lima et al. Our results showed no serious adverse events and improvement in both the American Spinal Injury Association (ASIA) Impairment Scale (AIS) grade and ASIA motor score in five patients. The preoperative post-rehabilitation ASIA motor score improved from 50 in all cases to 52 in case 2, 60 in case 4, 52 in case 6, 55 in case 7, and 58 in case 8 at 96 weeks after OMA. The AIS improved from A to C in four cases and from B to C in one case. Motor evoked potentials (MEPs) were also seen in one patient, reflecting conductivity in the central nervous system, including the corticospinal tract. The MEPs induced with transcranial magnetic stimulation allow objective assessment of the integrity of the motor circuitry comprising both the corticospinal tract and the peripheral motor nerves.We show the feasibility of OMA for chronic complete spinal cord injury. PMID:27053327

  7. Closed-loop control of spinal cord stimulation to restore hand function after paralysis

    PubMed Central

    Zimmermann, Jonas B.; Jackson, Andrew

    2014-01-01

    As yet, no cure exists for upper-limb paralysis resulting from the damage to motor pathways after spinal cord injury or stroke. Recently, neural activity from the motor cortex of paralyzed individuals has been used to control the movements of a robot arm but restoring function to patients' actual limbs remains a considerable challenge. Previously we have shown that electrical stimulation of the cervical spinal cord in anesthetized monkeys can elicit functional upper-limb movements like reaching and grasping. Here we show that stimulation can be controlled using cortical activity in awake animals to bypass disruption of the corticospinal system, restoring their ability to perform a simple upper-limb task. Monkeys were trained to grasp and pull a spring-loaded handle. After temporary paralysis of the hand was induced by reversible inactivation of primary motor cortex using muscimol, grasp-related single-unit activity from the ventral premotor cortex was converted into stimulation patterns delivered in real-time to the cervical spinal gray matter. During periods of closed-loop stimulation, task-modulated electromyogram, movement amplitude, and task success rate were improved relative to interleaved control periods without stimulation. In some sessions, single motor unit activity from weakly active muscles was also used successfully to control stimulation. These results are the first use of a neural prosthesis to improve the hand function of primates after motor cortex disruption, and demonstrate the potential for closed-loop cortical control of spinal cord stimulation to reanimate paralyzed limbs. PMID:24904251

  8. A Pilot Clinical Study of Olfactory Mucosa Autograft for Chronic Complete Spinal Cord Injury.

    PubMed

    Iwatsuki, Koichi; Tajima, Fumihiro; Ohnishi, Yu-Ichiro; Nakamura, Takeshi; Ishihara, Masahiro; Hosomi, Koichi; Ninomiya, Koshi; Moriwaki, Takashi; Yoshimine, Toshiki

    2016-06-15

    Recent studies of spinal cord axon regeneration have reported good long-term results using various types of tissue scaffolds. Olfactory tissue allows autologous transplantation and can easily be obtained by a simple biopsy that is performed through the external nares. We performed a clinical pilot study of olfactory mucosa autograft (OMA) for chronic complete spinal cord injury in eight patients according to the procedure outlined by Lima et al. Our results showed no serious adverse events and improvement in both the American Spinal Injury Association (ASIA) Impairment Scale (AIS) grade and ASIA motor score in five patients. The preoperative post-rehabilitation ASIA motor score improved from 50 in all cases to 52 in case 2, 60 in case 4, 52 in case 6, 55 in case 7, and 58 in case 8 at 96 weeks after OMA. The AIS improved from A to C in four cases and from B to C in one case. Motor evoked potentials (MEPs) were also seen in one patient, reflecting conductivity in the central nervous system, including the corticospinal tract. The MEPs induced with transcranial magnetic stimulation allow objective assessment of the integrity of the motor circuitry comprising both the corticospinal tract and the peripheral motor nerves.We show the feasibility of OMA for chronic complete spinal cord injury. PMID:27053327

  9. Motor cortex electrical stimulation augments sprouting of the corticospinal tract and promotes recovery of motor function

    PubMed Central

    Carmel, Jason B.; Martin, John H.

    2014-01-01

    The corticospinal system—with its direct spinal pathway, the corticospinal tract (CST) – is the primary system for controlling voluntary movement. Our approach to CST repair after injury in mature animals was informed by our finding that activity drives establishment of connections with spinal cord circuits during postnatal development. After incomplete injury in maturity, spared CST circuits sprout, and partially restore lost function. Our approach harnesses activity to augment this injury-dependent CST sprouting and to promote function. Lesion of the medullary pyramid unilaterally eliminates all CST axons from one hemisphere and allows examination of CST sprouting from the unaffected hemisphere. We discovered that 10 days of electrical stimulation of either the spared CST or motor cortex induces CST axon sprouting that partially reconstructs the lost CST. Stimulation also leads to sprouting of the cortical projection to the magnocellular red nucleus, where the rubrospinal tract originates. Coordinated outgrowth of the CST and cortical projections to the red nucleus could support partial re-establishment of motor systems connections to the denervated spinal motor circuits. Stimulation restores skilled motor function in our animal model. Lesioned animals have a persistent forelimb deficit contralateral to pyramidotomy in the horizontal ladder task. Rats that received motor cortex stimulation either after acute or chronic injury showed a significant functional improvement that brought error rate to pre-lesion control levels. Reversible inactivation of the stimulated motor cortex reinstated the impairment demonstrating the importance of the stimulated system to recovery. Motor cortex electrical stimulation is an effective approach to promote spouting of spared CST axons. By optimizing activity-dependent sprouting in animals, we could have an approach that can be translated to the human for evaluation with minimal delay. PMID:24994971

  10. Use of quadrupedal step training to re-engage spinal interneuronal networks and improve locomotor function after spinal cord injury

    PubMed Central

    Garcia-Alias, Guillermo; Choe, Jaehoon; Gad, Parag; Gerasimenko, Yury; Tillakaratne, Niranjala; Zhong, Hui; Roy, Roland R.

    2013-01-01

    Can lower limb motor function be improved after a spinal cord lesion by re-engaging functional activity of the upper limbs? We addressed this issue by training the forelimbs in conjunction with the hindlimbs after a thoracic spinal cord hemisection in adult rats. The spinal circuitries were more excitable, and behavioural and electrophysiological analyses showed improved hindlimb function when the forelimbs were engaged simultaneously with the hindlimbs during treadmill step-training as opposed to training only the hindlimbs. Neuronal retrograde labelling demonstrated a greater number of propriospinal labelled neurons above and below the thoracic lesion site in quadrupedally versus bipedally trained rats. The results provide strong evidence that actively engaging the forelimbs improves hindlimb function and that one likely mechanism underlying these effects is the reorganization and re-engagement of rostrocaudal spinal interneuronal networks. For the first time, we provide evidence that the spinal interneuronal networks linking the forelimbs and hindlimbs are amenable to a rehabilitation training paradigm. Identification of this phenomenon provides a strong rationale for proceeding toward preclinical studies for determining whether training paradigms involving upper arm training in concert with lower extremity training can enhance locomotor recovery after neurological damage. PMID:24103912

  11. Hand motor recovery after stroke: tuning the orchestra to improve hand motor function.

    PubMed

    Fregni, Felipe; Pascual-Leone, Alvaro

    2006-03-01

    The motor deficits after stroke are not only the manifestation of the injured brain region, but rather the expression of the ability of the rest of the brain to maintain function. After a lesion in the primary motor cortex, parallel motor circuits might be activated to generate some alternative input to the spinal motoneurons. These parallel circuits may originate from areas such as the contralateral, undamaged primary motor area, bilateral premotor areas, bilateral supplementary motor areas, bilateral somatosensory areas, cerebellum, and basal ganglia. Most importantly, the efferent, cortico-spinal output pathways must be preserved for a desired behavioral result. Most of the recovery of function after a stroke may represent actual relearning of the skills with the injured brain. The main neural mechanisms underlying this relearning process after stroke involve shifts of distributed contributions across a specific neural network (fundamentally the network engaged in skill learning in the healthy). If these notions are indeed correct, then neuromodulatory approaches, such as transcranial magnetic stimulation, targeting these parallel circuits might be useful to limit injury and promote recovery after a stroke. This paper reviews the stroke characteristics that can predict a good recovery and compensations across brain areas that can be implemented after a stroke to accelerate motor function recovery. PMID:16633016

  12. Addition of magnesium sulphate to ropivacaine for spinal analgesia in dogs undergoing tibial plateau levelling osteotomy.

    PubMed

    Adami, C; Casoni, D; Noussitou, F; Rytz, U; Spadavecchia, C

    2016-03-01

    The aim of this blinded, randomised, prospective clinical trial was to determine whether the addition of magnesium sulphate to spinally-administered ropivacaine would improve peri-operative analgesia without impairing motor function in dogs undergoing orthopaedic surgery. Twenty client-owned dogs undergoing tibial plateau levelling osteotomy were randomly assigned to one of two treatment groups: group C (control, receiving hyperbaric ropivacaine by the spinal route) or group M (magnesium, receiving a hyperbaric combination of magnesium sulphate and ropivacaine by the spinal route). During surgery, changes in physiological variables above baseline were used to evaluate nociception. Arterial blood was collected before and after spinal injection, at four time points, to monitor plasma magnesium concentrations. Post-operatively, pain was assessed with a modified Sammarco pain score, a Glasgow pain scale and a visual analogue scale, while motor function was evaluated with a modified Tarlov scale. Assessments were performed at recovery and 1, 2 and 3 h thereafter. Fentanyl and buprenorphine were administered as rescue analgesics in the intra- and post-operative periods, respectively. Plasma magnesium concentrations did not increase after spinal injection compared to baseline. Group M required less intra-operative fentanyl, had lower Glasgow pain scores and experienced analgesia of longer duration than group C (527.0 ± 341.0 min vs. 176.0 ± 109.0 min). However, in group M the motor block was significantly longer, which limits the usefulness of magnesium for spinal analgesia at the investigated dose. Further research is needed to determine a clinically effective dose with shorter duration of motor block for magnesium used as an additive to spinal analgesic agents. PMID:26831174

  13. Metachronal coupling between spinal neuronal networks during locomotor activity in newborn rat

    PubMed Central

    Falgairolle, Mélanie; Cazalets, Jean-René

    2007-01-01

    In the present study, we investigate spinal cord neuronal network interactions in the neonatal rat during locomotion. The behavioural and physiological relevance of metachronally propagated locomotor activity were inferred from kinematic, anatomical and in vitro electrophysiological data. Kinematic analysis of freely behaving animals indicated that there is a rhythmic sequential change in trunk curvature during the step cycle. The motoneurons innervating back and tail muscles were identified along the spinal cord using retrograde labelling. Systematic multiple recordings from ventral roots were made to determine the precise intrinsic pattern of coordination in the isolated spinal cord. During locomotor-like activity, rhythmic ventral root motor bursts propagate caudo-rostrally in the sacral and the thoracic spinal cord regions. Plotting the latency as a function of the cycle period revealed that the system adapts the intersegmental latency to the ongoing motor period in order to maintain a constant phase relationship along the spinal axis. The thoracic, lumbar and sacral regions were capable of generating right and left alternating motor bursts when isolated. Longitudinal sections of the spinal cord revealed that both the bilateral antiphase pattern observed for the sacral region with respect to the lumbar segment 2 as well as the intersegmental phase lag were due to cross-cord connections. Together, these results provide physiological evidence that the dynamic changes observed in trunk bending during locomotion are determined by the intrinsic organization of spinal cord networks and their longitudinal and transverse interactions. Similarities between this organization, and that of locomotor pattern generation in more primitive vertebrates, suggest that the circuits responsible for metachronal propagation of motor patterns during locomotion are highly conserved. PMID:17185345

  14. Spinal cord injury-induced immune deficiency syndrome enhances infection susceptibility dependent on lesion level.

    PubMed

    Brommer, Benedikt; Engel, Odilo; Kopp, Marcel A; Watzlawick, Ralf; Müller, Susanne; Prüss, Harald; Chen, Yuying; DeVivo, Michael J; Finkenstaedt, Felix W; Dirnagl, Ulrich; Liebscher, Thomas; Meisel, Andreas; Schwab, Jan M

    2016-03-01

    Pneumonia is the leading cause of death after acute spinal cord injury and is associated with poor neurological outcome. In contrast to the current understanding, attributing enhanced infection susceptibility solely to the patient's environment and motor dysfunction, we investigate whether a secondary functional neurogenic immune deficiency (spinal cord injury-induced immune deficiency syndrome, SCI-IDS) may account for the enhanced infection susceptibility. We applied a clinically relevant model of experimental induced pneumonia to investigate whether the systemic SCI-IDS is functional sufficient to cause pneumonia dependent on spinal cord injury lesion level and investigated whether findings are mirrored in a large prospective cohort study after human spinal cord injury. In a mouse model of inducible pneumonia, high thoracic lesions that interrupt sympathetic innervation to major immune organs, but not low thoracic lesions, significantly increased bacterial load in lungs. The ability to clear the bacterial load from the lung remained preserved in sham animals. Propagated immune susceptibility depended on injury of central pre-ganglionic but not peripheral postganglionic sympathetic innervation to the spleen. Thoracic spinal cord injury level was confirmed as an independent increased risk factor of pneumonia in patients after motor complete spinal cord injury (odds ratio = 1.35, P < 0.001) independently from mechanical ventilation and preserved sensory function by multiple regression analysis. We present evidence that spinal cord injury directly causes increased risk for bacterial infection in mice as well as in patients. Besides obvious motor and sensory paralysis, spinal cord injury also induces a functional SCI-IDS ('immune paralysis'), sufficient to propagate clinically relevant infection in an injury level dependent manner. PMID:26754788

  15. Effect of melatonin on the functional recovery from experimental traumatic compression of the spinal cord

    PubMed Central

    Schiaveto-de-Souza, A.; da-Silva, C.A.; Defino, H.L.A.; Bel, E.A.Del

    2013-01-01

    Spinal cord injury is an extremely severe condition with no available effective therapies. We examined the effect of melatonin on traumatic compression of the spinal cord. Sixty male adult Wistar rats were divided into three groups: sham-operated animals and animals with 35 and 50% spinal cord compression with a polycarbonate rod spacer. Each group was divided into two subgroups, each receiving an injection of vehicle or melatonin (2.5 mg/kg, intraperitoneal) 5 min prior to and 1, 2, 3, and 4 h after injury. Functional recovery was monitored weekly by the open-field test, the Basso, Beattie and Bresnahan locomotor scale and the inclined plane test. Histological changes of the spinal cord were examined 35 days after injury. Motor scores were progressively lower as spacer size increased according to the motor scale and inclined plane test evaluation at all times of assessment. The results of the two tests were correlated. The open-field test presented similar results with a less pronounced difference between the 35 and 50% compression groups. The injured groups presented functional recovery that was more evident in the first and second weeks. Animals receiving melatonin treatment presented more pronounced functional recovery than vehicle-treated animals as measured by the motor scale or inclined plane. NADPH-d histochemistry revealed integrity of the spinal cord thoracic segment in sham-operated animals and confirmed the severity of the lesion after spinal cord narrowing. The results obtained after experimental compression of the spinal cord support the hypothesis that melatonin may be considered for use in clinical practice because of its protective effect on the secondary wave of neuronal death following the primary wave after spinal cord injury. PMID:23579633

  16. Advanced Motors

    SciTech Connect

    Knoth, Edward A; Chelluri, Bhanumathi; Schumaker, Edward J

    2012-12-14

    vProject Summary Transportation energy usage is predicted to increase substantially by 2020. Hybrid vehicles and fuel cell powered vehicles are destined to become more prominent as fuel prices rise with the demand. Hybrid and fuel cell vehicle platforms are both dependent on high performance electric motors. Electric motors for transportation duty will require sizeable low-speed torque to accelerate the vehicle. As motor speed increases, the torque requirement decreases which results in a nearly constant power motor output. Interior permanent magnet synchronous motors (IPMSM) are well suited for this duty. , , These rotor geometries are configured in straight lines and semi circular arc shapes. These designs are of limited configurations because of the lack of availability of permanent magnets of any other shapes at present. We propose to fabricate rotors via a novel processing approach where we start with magnet powders and compact them into a net shape rotor in a single step. Using this approach, widely different rotor designs can be implemented for efficiency. The current limitation on magnet shape and thickness will be eliminated. This is accomplished by co-filling magnet and soft iron powders at specified locations in intricate shapes using specially designed dies and automatic powder filling station. The process fundamentals for accomplishing occurred under a previous Applied Technology Program titled, Motors and Generators for the 21st Century. New efficient motor designs that are not currently possible (or cost prohibitive) can be accomplished by this approach. Such an approach to motor fabrication opens up a new dimension in motor design. Feasibility Results We were able to optimize a IPMSM rotor to take advantage of the powder co-filling and DMC compaction processing methods. The minimum low speed torque requirement of 5 N-m can be met through an optimized design with magnet material having a Br capability of 0.2 T. This level of magnetic performance can

  17. Motor Planning.

    PubMed

    Wong, Aaron L; Haith, Adrian M; Krakauer, John W

    2015-08-01

    Motor planning colloquially refers to any process related to the preparation of a movement that occurs during the reaction time prior to movement onset. However, this broad definition encompasses processes that are not strictly motor-related, such as decision-making about the identity of task-relevant stimuli in the environment. Furthermore, the assumption that all motor-planning processes require processing time, and can therefore be studied behaviorally by measuring changes in the reaction time, needs to be reexamined. In this review, we take a critical look at the processes leading from perception to action and suggest a definition of motor planning that encompasses only those processes necessary for a movement to be executed-that is, processes that are strictly movement related. These processes resolve the ambiguity inherent in an abstract goal by defining a specific movement to achieve it. We propose that the majority of processes that meet this definition can be completed nearly instantaneously, which means that motor planning itself in fact consumes only a small fraction of the reaction time. PMID:24981338

  18. The validity of multimodal intraoperative monitoring (MIOM) in surgery of 109 spine and spinal cord tumors

    PubMed Central

    Eggspuehler, Andreas; Grob, Dieter; Jeszenszky, Dezsö; Benini, Arnaldo; Porchet, Francois; Mueller, Alfred; Dvorak, Jiri

    2007-01-01

    In a prospective study of 109 patients with tumor of the spine MIOM was performed during the surgical procedure between March 2000 and December 2005. To determine the sensitivity and specificity of MIOM techniques used to monitor spinal cord and nerve root function during surgical procedure of spinal tumors. MIOM become an integrated procedure during surgical approach to intramedullar and extramedullar spine tumors. The combination of monitoring ascending and descending pathways may provide more sensitive and specific results than SEP alone giving immediate feedback information regarding any neurological deficit during the operation. Intraoperative sensory spinal and cerebral evoked potential combined with EMG recordings and motor evoked potential of the spinal cord and muscles were evaluated and compared with postoperative clinical neurological changes. One hundred and nine consecutive patients with spinal tumors of different aetiologies were monitored by the means of MIOM during the entire surgical procedure. Eighty-two patients presented true negative findings while two patients monitored false negative, one false positive and 24 patients true positive findings where neurological deficits after the operation were present. All patients with neurological deficit recovered completely or to pre-existing neurological situation. The sensitivity of MIOM applied during surgery of spinal tumors has been calculated of 92% and specificity 99%. Based upon the results of the study MIOM is an effective method of monitoring the spinal cord and nerve root function during surgical approach of spinal tumors and consequently can reduce or prevent the occurrence of postoperative neurological deficit. PMID:17661095

  19. How to prevent spinal cord injury during endovascular repair of thoracic aortic disease.

    PubMed

    Uchida, Naomichi

    2014-07-01

    The incidence of spinal cord injury in thoracic endovascular aortic repair (TEVAR) has been 3-5 % from recent major papers where sacrifice of the critical intercostal arteries is inevitable by a stent graft. Hemodynamic stability, which depends on a network of blood vessels around the cord is most important not only during but also after stent-graft deployment. High risk factors of spinal cord injury during endovascular aortic repair are (1) coverage of the left subclavian artery, (2) extensive coverage of long segments of the thoracic aorta, (3) prior downstream aortic repair, (4) compromising important intercostal (T8-L1), vertebral, pelvic and hypogastric collaterals, and (5) shaggy aorta. Preoperative, intraoperative, and postoperative managements have been required to prevent spinal cord injury with TEVAR. For imaging assessment of blood supply to spinal cord including Adamkiewicz artery, prophylactic cerebrospinal fluid drainage is mandatory, and monitoring motor-evoked potential is recommended for high risk factors of spinal cord injury. Mean arterial pressure should be maintained over 90 mmHg after stent-graft placement for a while to prevent delayed spinal cord ischemia in high-risk patients of spinal cord ischemia. Finally, because spinal cord injury during TEVAR is not rare and negligible, perioperative care during TEVAR should be strictly performed according to the protocol proposed by each cardiovascular team. PMID:24696427

  20. Pain-related modulation of the human motor cortex.

    PubMed

    Farina, Simona; Tinazzi, Michele; Le Pera, Domenica; Valeriani, Massimiliano

    2003-03-01

    Pain is a complex multi-dimensional phenomenon that influences a wide variety of nervous system functions, including sensory--discriminative, affective--motivational and cognitive--evaluative components. So far, these components have been studied in both patients with chronic pain and in normal subjects in whom pain was induced experimentally. The interaction between pain and motor function is not fully understood, although from everyday life it is known that pain affects movements. The effects of pain on motor control are typically seen as a limited or impaired ability to perform movements. Most studies have dealt with the effects of pain on the spinal cord reflexes, but in recent years, several lines of evidence suggest that the interaction between motor and pain systems in conditions of pain induced experimentally, rather than a simple spinal reflex, is a more complex process that involves also supraspinal brain areas. Although pain-motor interaction shows different features and time course depending on different pain variables, such as duration (tonic versus phasic pain), submodalities (deep versus superficial pain) and location (distal versus proximal pain), a common finding is that pain is able to inhibit the motor cortex. This motor cortex inhibition may act as a sort of motor 'decerebration' so as to allow the spinal motor system to freely develop protective responses to noxious stimulation. Further studies are required to assess the effects of pain on the motor system in patients suffering from chronic pain, in order to develop innovative rational therapeutic strategies to reduce both pain and motor disability. PMID:12635511

  1. Inhibition of motoneurons during the cutaneous silent period in the spinal cord of the turtle.

    PubMed

    Guzulaitis, Robertas; Hounsgaard, Jorn; Alaburda, Aidas

    2012-07-01

    The transient suppression of motor activity in the spinal cord after a cutaneous stimulus is termed the cutaneous silent period (CSP). It is not known if CSP is due to suppression of the premotor network or direct inhibition of motoneurons. This issue was examined by intracellular recordings from motoneurons in the isolated carapace-spinal cord preparation from adult turtles during rhythmic scratch-like reflex. Electrical stimulation of cutaneous nerves induced CSP-like suppression of motor nerve firing during rhythmic network activity. The stimulus that generated the CSP-like suppression of motor activity evokes a polysynaptic compound synaptic potential in motoneurons and suppressed their firing. This compound synaptic potential was hyperpolarizing near threshold for action potentials and was associated with a substantial increase in conductance during the CSP in the motor pool. These results show that direct postsynaptic inhibition of motoneurons contributes to the CSP. PMID:22580573

  2. Spinal Muscular Atrophy: Diagnosis and Management in a New Therapeutic Era

    PubMed Central

    Arnold, W. David; Kassar, Darine; Kissel, John T.

    2014-01-01

    Spinal muscular atrophy (SMA) describes a group of disorders associated with spinal motor neuron loss. In this review we provide an update regarding the most common form of SMA, proximal or 5q SMA, and discuss the contemporary approach to diagnosis and treatment. Electromyography and muscle biopsy features of denervation were once the basis for diagnosis, but molecular testing for homozygous deletion or mutation of the SMN1 gene allows efficient and specific diagnosis. In combination with loss of SMN1, patients retain variable numbers of copies of a second similar gene, SMN2, which produce reduced levels of the survival motor neuron (SMN) protein that are insufficient for normal motor neuron function. Despite the fact that the understanding of how ubiquitous reduction of SMN protein leads to motor neuron loss remains incomplete, several promising therapeutics are now being tested in early phase clinical trials. PMID:25346245

  3. Closed-loop neuromodulation of spinal sensorimotor circuits controls refined locomotion after complete spinal cord injury.

    PubMed

    Wenger, Nikolaus; Moraud, Eduardo Martin; Raspopovic, Stanisa; Bonizzato, Marco; DiGiovanna, Jack; Musienko, Pavel; Morari, Manfred; Micera, Silvestro; Courtine, Grégoire

    2014-09-24

    Neuromodulation of spinal sensorimotor circuits improves motor control in animal models and humans with spinal cord injury. With common neuromodulation devices, electrical stimulation parameters are tuned manually and remain constant during movement. We developed a mechanistic framework to optimize neuromodulation in real time to achieve high-fidelity control of leg kinematics during locomotion in rats. We first uncovered relationships between neuromodulation parameters and recruitment of distinct sensorimotor circuits, resulting in predictive adjustments of leg kinematics. Second, we established a technological platform with embedded control policies that integrated robust movement feedback and feed-forward control loops in real time. These developments allowed us to conceive a neuroprosthetic system that controlled a broad range of foot trajectories during continuous locomotion in paralyzed rats. Animals with complete spinal cord injury performed more than 1000 successive steps without failure, and were able to climb staircases of various heights and lengths with precision and fluidity. Beyond therapeutic potential, these findings provide a conceptual and technical framework to personalize neuromodulation treatments for other neurological disorders. PMID:25253676

  4. Spinal tumors: Trends from Northern India

    PubMed Central

    Arora, Rajnish Kumar; Kumar, Raj

    2015-01-01

    Introduction and Methods: We retrospectively analyzed 111 patients with spinal tumors operated over a period of 9 years to observe the relative frequency of different lesions, their clinical profile, functional outcome and prognostic factors. 30/111 (27%) were extradural, 40/111 (36.1%) were intradural extramedullary (IDEM) and 41/111 (36.9%) were intramedullary spinal cord tumors (IMSCTs). Mean age at surgery was 30.81 years (range 1–73 years). The average preoperative duration of symptoms was 16.17 months (15 days to 15 years). Major diagnoses were ependymomas and astrocytomas in IMSCT group, schwanommas and neurofibromas in IDEM group, and metastasis, lymphoma in extradural group. The common clinical features were motor weakness in 78/111 (70.27%), sensory loss in 55/111 (49.54%), pain 46/111 (41.44%), and sphincter involvement in 47/111 (42.43%) cases. Results: Totally, 88/111 (79.27%) patients had improvement in their functional status, 17/111 (15.31%) remained same, and 6/111 (5.4%) were worse at time of their last follow-up. The mean follow-up was 15.64 months (1.5 m−10 years). Totally, 59 out of 79 patients, who were dependent initially, were ambulatory with or without the aid. Most common complication was persistent pain in 10/111 (9%) patients and nonimprovement of bladder/bowel symptoms in 7/111 (6.3%). One patient died 3 months after surgery. Conclusions: (1) Congenital malformative tumors like epidermoids/dermoids (unrelated to spina bifida) occur more frequently, whereas the incidence of spinal meningioma is less in developing countries than western populations. (2) The incidence of intramedullary tumors approaches to that of IDEM tumors. Intramedullary tumors present at a younger age in developing countries. (3) Rare histological variants like primitive neuroectodermal tumors should also be considered for histological differential diagnosis of spinal tumors. (4) Preoperative neurologic status is the most important factor related to outcome in

  5. "Low-intensity laser therapy effect on the recovery of traumatic spinal cord injury".

    PubMed

    Paula, Alecsandra Araujo; Nicolau, Renata Amadei; Lima, Mario de Oliveira; Salgado, Miguel Angel Castillo; Cogo, José Carlos

    2014-11-01

    Scientific advances have been made to optimize the healing process in spinal cord injury. Studies have been developed to obtain effective treatments in controlling the secondary injury that occurs after spinal cord injury, which substantially changes the prognosis. Low-intensity laser therapy (LILT) has been applied in neuroscience due to its anti-inflammatory effects on biological tissue in the repairing process. Few studies have been made associating LILT to the spinal cord injury. The objective of this study was to investigate the effect of the LILT (GaAlAs laser-780 nm) on the locomotor functional recovery, histomorphometric, and histopathological changes of the spinal cord after moderate traumatic injury in rats (spinal cord injury at T9 and T10). Thirty-one adult Wistar rats were used, which were divided into seven groups: control without surgery (n = 3), control surgery (n = 3), laser 6 h after surgery (n = 5), laser 48 h after surgery (n = 5), medullar lesion (n = 5) without phototherapy, medullar lesion + laser 6 h after surgery (n = 5), and medullar lesion + laser 48 h after surgery (n = 5). The assessment of the motor function was performed using Basso, Beattie, and Bresnahan (BBB) scale and adapted Sciatic Functional Index (aSFI). The assessment of urinary dysfunction was clinically performed. After 21 days postoperative, the anima